]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memcontrol.c
fs: buffer: use raw page_memcg() on locked page
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
c1a660de
RG
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
55007d84 353/*
9855609b 354 * This will be used as a shrinker list's index.
b8627835
LZ
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
55007d84 360 *
dbcf73e2
VD
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
55007d84 363 */
dbcf73e2
VD
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
749c5415 366
05257a1a
VD
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
55007d84
GC
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
b8627835 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
b8627835 393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 394
d7f25f8a
GC
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
272911a4 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
ef12947c 401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 402EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 403#endif
17cc4dfe 404
0a4465d3
KT
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
417 int nid;
418
419 lockdep_assert_held(&memcg_shrinker_map_mutex);
420
421 for_each_node(nid) {
422 old = rcu_dereference_protected(
423 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
424 /* Not yet online memcg */
425 if (!old)
426 return 0;
427
86daf94e 428 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
429 if (!new)
430 return -ENOMEM;
431
432 /* Set all old bits, clear all new bits */
433 memset(new->map, (int)0xff, old_size);
434 memset((void *)new->map + old_size, 0, size - old_size);
435
436 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
437 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 }
439
440 return 0;
441}
442
443static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
444{
445 struct mem_cgroup_per_node *pn;
446 struct memcg_shrinker_map *map;
447 int nid;
448
449 if (mem_cgroup_is_root(memcg))
450 return;
451
452 for_each_node(nid) {
453 pn = mem_cgroup_nodeinfo(memcg, nid);
454 map = rcu_dereference_protected(pn->shrinker_map, true);
8a260162 455 kvfree(map);
0a4465d3
KT
456 rcu_assign_pointer(pn->shrinker_map, NULL);
457 }
458}
459
460static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461{
462 struct memcg_shrinker_map *map;
463 int nid, size, ret = 0;
464
465 if (mem_cgroup_is_root(memcg))
466 return 0;
467
468 mutex_lock(&memcg_shrinker_map_mutex);
469 size = memcg_shrinker_map_size;
470 for_each_node(nid) {
86daf94e 471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
472 if (!map) {
473 memcg_free_shrinker_maps(memcg);
474 ret = -ENOMEM;
475 break;
476 }
477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 }
479 mutex_unlock(&memcg_shrinker_map_mutex);
480
481 return ret;
482}
483
484int memcg_expand_shrinker_maps(int new_id)
485{
486 int size, old_size, ret = 0;
487 struct mem_cgroup *memcg;
488
489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 old_size = memcg_shrinker_map_size;
491 if (size <= old_size)
492 return 0;
493
494 mutex_lock(&memcg_shrinker_map_mutex);
495 if (!root_mem_cgroup)
496 goto unlock;
497
498 for_each_mem_cgroup(memcg) {
499 if (mem_cgroup_is_root(memcg))
500 continue;
501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
502 if (ret) {
503 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 504 goto unlock;
75866af6 505 }
0a4465d3
KT
506 }
507unlock:
508 if (!ret)
509 memcg_shrinker_map_size = size;
510 mutex_unlock(&memcg_shrinker_map_mutex);
511 return ret;
512}
fae91d6d
KT
513
514void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515{
516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 struct memcg_shrinker_map *map;
518
519 rcu_read_lock();
520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
521 /* Pairs with smp mb in shrink_slab() */
522 smp_mb__before_atomic();
fae91d6d
KT
523 set_bit(shrinker_id, map->map);
524 rcu_read_unlock();
525 }
526}
527
ad7fa852
TH
528/**
529 * mem_cgroup_css_from_page - css of the memcg associated with a page
530 * @page: page of interest
531 *
532 * If memcg is bound to the default hierarchy, css of the memcg associated
533 * with @page is returned. The returned css remains associated with @page
534 * until it is released.
535 *
536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537 * is returned.
ad7fa852
TH
538 */
539struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540{
541 struct mem_cgroup *memcg;
542
bcfe06bf 543 memcg = page_memcg(page);
ad7fa852 544
9e10a130 545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
546 memcg = root_mem_cgroup;
547
ad7fa852
TH
548 return &memcg->css;
549}
550
2fc04524
VD
551/**
552 * page_cgroup_ino - return inode number of the memcg a page is charged to
553 * @page: the page
554 *
555 * Look up the closest online ancestor of the memory cgroup @page is charged to
556 * and return its inode number or 0 if @page is not charged to any cgroup. It
557 * is safe to call this function without holding a reference to @page.
558 *
559 * Note, this function is inherently racy, because there is nothing to prevent
560 * the cgroup inode from getting torn down and potentially reallocated a moment
561 * after page_cgroup_ino() returns, so it only should be used by callers that
562 * do not care (such as procfs interfaces).
563 */
564ino_t page_cgroup_ino(struct page *page)
565{
566 struct mem_cgroup *memcg;
567 unsigned long ino = 0;
568
569 rcu_read_lock();
bcfe06bf 570 memcg = page_memcg_check(page);
286e04b8 571
2fc04524
VD
572 while (memcg && !(memcg->css.flags & CSS_ONLINE))
573 memcg = parent_mem_cgroup(memcg);
574 if (memcg)
575 ino = cgroup_ino(memcg->css.cgroup);
576 rcu_read_unlock();
577 return ino;
578}
579
ef8f2327
MG
580static struct mem_cgroup_per_node *
581mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
97a6c37b 583 int nid = page_to_nid(page);
f64c3f54 584
ef8f2327 585 return memcg->nodeinfo[nid];
f64c3f54
BS
586}
587
ef8f2327
MG
588static struct mem_cgroup_tree_per_node *
589soft_limit_tree_node(int nid)
bb4cc1a8 590{
ef8f2327 591 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
592}
593
ef8f2327 594static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
595soft_limit_tree_from_page(struct page *page)
596{
597 int nid = page_to_nid(page);
bb4cc1a8 598
ef8f2327 599 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
600}
601
ef8f2327
MG
602static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
603 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 604 unsigned long new_usage_in_excess)
bb4cc1a8
AM
605{
606 struct rb_node **p = &mctz->rb_root.rb_node;
607 struct rb_node *parent = NULL;
ef8f2327 608 struct mem_cgroup_per_node *mz_node;
fa90b2fd 609 bool rightmost = true;
bb4cc1a8
AM
610
611 if (mz->on_tree)
612 return;
613
614 mz->usage_in_excess = new_usage_in_excess;
615 if (!mz->usage_in_excess)
616 return;
617 while (*p) {
618 parent = *p;
ef8f2327 619 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 620 tree_node);
fa90b2fd 621 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 622 p = &(*p)->rb_left;
fa90b2fd 623 rightmost = false;
378876b0 624 } else {
bb4cc1a8 625 p = &(*p)->rb_right;
378876b0 626 }
bb4cc1a8 627 }
fa90b2fd
DB
628
629 if (rightmost)
630 mctz->rb_rightmost = &mz->tree_node;
631
bb4cc1a8
AM
632 rb_link_node(&mz->tree_node, parent, p);
633 rb_insert_color(&mz->tree_node, &mctz->rb_root);
634 mz->on_tree = true;
635}
636
ef8f2327
MG
637static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
638 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
639{
640 if (!mz->on_tree)
641 return;
fa90b2fd
DB
642
643 if (&mz->tree_node == mctz->rb_rightmost)
644 mctz->rb_rightmost = rb_prev(&mz->tree_node);
645
bb4cc1a8
AM
646 rb_erase(&mz->tree_node, &mctz->rb_root);
647 mz->on_tree = false;
648}
649
ef8f2327
MG
650static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
651 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 652{
0a31bc97
JW
653 unsigned long flags;
654
655 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 656 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 657 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
658}
659
3e32cb2e
JW
660static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
661{
662 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 663 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
664 unsigned long excess = 0;
665
666 if (nr_pages > soft_limit)
667 excess = nr_pages - soft_limit;
668
669 return excess;
670}
bb4cc1a8
AM
671
672static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
673{
3e32cb2e 674 unsigned long excess;
ef8f2327
MG
675 struct mem_cgroup_per_node *mz;
676 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 677
e231875b 678 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
679 if (!mctz)
680 return;
bb4cc1a8
AM
681 /*
682 * Necessary to update all ancestors when hierarchy is used.
683 * because their event counter is not touched.
684 */
685 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 686 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 687 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
688 /*
689 * We have to update the tree if mz is on RB-tree or
690 * mem is over its softlimit.
691 */
692 if (excess || mz->on_tree) {
0a31bc97
JW
693 unsigned long flags;
694
695 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
696 /* if on-tree, remove it */
697 if (mz->on_tree)
cf2c8127 698 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
699 /*
700 * Insert again. mz->usage_in_excess will be updated.
701 * If excess is 0, no tree ops.
702 */
cf2c8127 703 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 704 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
705 }
706 }
707}
708
709static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
710{
ef8f2327
MG
711 struct mem_cgroup_tree_per_node *mctz;
712 struct mem_cgroup_per_node *mz;
713 int nid;
bb4cc1a8 714
e231875b 715 for_each_node(nid) {
ef8f2327
MG
716 mz = mem_cgroup_nodeinfo(memcg, nid);
717 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
718 if (mctz)
719 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
720 }
721}
722
ef8f2327
MG
723static struct mem_cgroup_per_node *
724__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 725{
ef8f2327 726 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
727
728retry:
729 mz = NULL;
fa90b2fd 730 if (!mctz->rb_rightmost)
bb4cc1a8
AM
731 goto done; /* Nothing to reclaim from */
732
fa90b2fd
DB
733 mz = rb_entry(mctz->rb_rightmost,
734 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
735 /*
736 * Remove the node now but someone else can add it back,
737 * we will to add it back at the end of reclaim to its correct
738 * position in the tree.
739 */
cf2c8127 740 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 741 if (!soft_limit_excess(mz->memcg) ||
8965aa28 742 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
743 goto retry;
744done:
745 return mz;
746}
747
ef8f2327
MG
748static struct mem_cgroup_per_node *
749mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 750{
ef8f2327 751 struct mem_cgroup_per_node *mz;
bb4cc1a8 752
0a31bc97 753 spin_lock_irq(&mctz->lock);
bb4cc1a8 754 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 755 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
756 return mz;
757}
758
db9adbcb
JW
759/**
760 * __mod_memcg_state - update cgroup memory statistics
761 * @memcg: the memory cgroup
762 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
763 * @val: delta to add to the counter, can be negative
764 */
765void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
766{
ea426c2a 767 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
768
769 if (mem_cgroup_disabled())
770 return;
771
772616b0 772 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
773 threshold <<= PAGE_SHIFT;
774
db9adbcb 775 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 776 if (unlikely(abs(x) > threshold)) {
42a30035
JW
777 struct mem_cgroup *mi;
778
766a4c19
YS
779 /*
780 * Batch local counters to keep them in sync with
781 * the hierarchical ones.
782 */
783 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
784 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
785 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
786 x = 0;
787 }
788 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
789}
790
42a30035
JW
791static struct mem_cgroup_per_node *
792parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
793{
794 struct mem_cgroup *parent;
795
796 parent = parent_mem_cgroup(pn->memcg);
797 if (!parent)
798 return NULL;
799 return mem_cgroup_nodeinfo(parent, nid);
800}
801
eedc4e5a
RG
802void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
803 int val)
db9adbcb
JW
804{
805 struct mem_cgroup_per_node *pn;
42a30035 806 struct mem_cgroup *memcg;
ea426c2a 807 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 808
db9adbcb 809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 810 memcg = pn->memcg;
db9adbcb
JW
811
812 /* Update memcg */
42a30035 813 __mod_memcg_state(memcg, idx, val);
db9adbcb 814
b4c46484
RG
815 /* Update lruvec */
816 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
817
ea426c2a
RG
818 if (vmstat_item_in_bytes(idx))
819 threshold <<= PAGE_SHIFT;
820
db9adbcb 821 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 822 if (unlikely(abs(x) > threshold)) {
eedc4e5a 823 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
824 struct mem_cgroup_per_node *pi;
825
42a30035
JW
826 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
827 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
828 x = 0;
829 }
830 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
831}
832
eedc4e5a
RG
833/**
834 * __mod_lruvec_state - update lruvec memory statistics
835 * @lruvec: the lruvec
836 * @idx: the stat item
837 * @val: delta to add to the counter, can be negative
838 *
839 * The lruvec is the intersection of the NUMA node and a cgroup. This
840 * function updates the all three counters that are affected by a
841 * change of state at this level: per-node, per-cgroup, per-lruvec.
842 */
843void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
844 int val)
845{
846 /* Update node */
847 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
848
849 /* Update memcg and lruvec */
850 if (!mem_cgroup_disabled())
851 __mod_memcg_lruvec_state(lruvec, idx, val);
852}
853
c47d5032
SB
854void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
855 int val)
856{
857 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 858 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
859 pg_data_t *pgdat = page_pgdat(page);
860 struct lruvec *lruvec;
861
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 863 if (!memcg) {
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
869 __mod_lruvec_state(lruvec, idx, val);
870}
f0c0c115 871EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 872
da3ceeff 873void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 874{
4f103c63 875 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
876 struct mem_cgroup *memcg;
877 struct lruvec *lruvec;
878
879 rcu_read_lock();
4f103c63 880 memcg = mem_cgroup_from_obj(p);
ec9f0238 881
8faeb1ff
MS
882 /*
883 * Untracked pages have no memcg, no lruvec. Update only the
884 * node. If we reparent the slab objects to the root memcg,
885 * when we free the slab object, we need to update the per-memcg
886 * vmstats to keep it correct for the root memcg.
887 */
888 if (!memcg) {
ec9f0238
RG
889 __mod_node_page_state(pgdat, idx, val);
890 } else {
867e5e1d 891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
892 __mod_lruvec_state(lruvec, idx, val);
893 }
894 rcu_read_unlock();
895}
896
db9adbcb
JW
897/**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
903void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905{
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
913 struct mem_cgroup *mi;
914
766a4c19
YS
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925}
926
42a30035 927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 928{
871789d4 929 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
930}
931
42a30035
JW
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
815744d7
JW
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
42a30035
JW
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
3fba69a5 944 int nr_pages)
d52aa412 945{
e401f176
KH
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
c9019e9b 948 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 949 else {
c9019e9b 950 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
951 nr_pages = -nr_pages; /* for event */
952 }
e401f176 953
871789d4 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
955}
956
f53d7ce3
JW
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
7a159cc9
JW
959{
960 unsigned long val, next;
961
871789d4
CD
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 964 /* from time_after() in jiffies.h */
6a1a8b80 965 if ((long)(next - val) < 0) {
f53d7ce3
JW
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
bb4cc1a8
AM
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
f53d7ce3
JW
973 default:
974 break;
975 }
871789d4 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
f53d7ce3 992
bb4cc1a8
AM
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 995 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
0a31bc97 998 }
d2265e6f
KH
999}
1000
cf475ad2 1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1002{
31a78f23
BS
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
073219e9 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1012}
33398cf2 1013EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1014
d46eb14b
SB
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
d46eb14b
SB
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
0b7f569e 1029
54595fe2
KH
1030 rcu_read_lock();
1031 do {
6f6acb00
MH
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
df381975 1038 memcg = root_mem_cgroup;
6f6acb00
MH
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
37d5985c 1050static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1051{
37d5985c
RG
1052 if (in_interrupt())
1053 return this_cpu_read(int_active_memcg);
1054 else
1055 return current->active_memcg;
1056}
279c3393 1057
37d5985c
RG
1058static __always_inline struct mem_cgroup *get_active_memcg(void)
1059{
1060 struct mem_cgroup *memcg;
d46eb14b 1061
37d5985c
RG
1062 rcu_read_lock();
1063 memcg = active_memcg();
1064 if (memcg) {
8965aa28 1065 /* current->active_memcg must hold a ref. */
37d5985c 1066 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1067 memcg = root_mem_cgroup;
1068 else
d46eb14b 1069 memcg = current->active_memcg;
d46eb14b 1070 }
37d5985c
RG
1071 rcu_read_unlock();
1072
1073 return memcg;
1074}
1075
4127c650
RG
1076static __always_inline bool memcg_kmem_bypass(void)
1077{
1078 /* Allow remote memcg charging from any context. */
1079 if (unlikely(active_memcg()))
1080 return false;
1081
1082 /* Memcg to charge can't be determined. */
1083 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1084 return true;
1085
1086 return false;
1087}
1088
37d5985c
RG
1089/**
1090 * If active memcg is set, do not fallback to current->mm->memcg.
1091 */
1092static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1093{
1094 if (memcg_kmem_bypass())
1095 return NULL;
1096
1097 if (unlikely(active_memcg()))
1098 return get_active_memcg();
1099
d46eb14b
SB
1100 return get_mem_cgroup_from_mm(current->mm);
1101}
54595fe2 1102
5660048c
JW
1103/**
1104 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1105 * @root: hierarchy root
1106 * @prev: previously returned memcg, NULL on first invocation
1107 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1108 *
1109 * Returns references to children of the hierarchy below @root, or
1110 * @root itself, or %NULL after a full round-trip.
1111 *
1112 * Caller must pass the return value in @prev on subsequent
1113 * invocations for reference counting, or use mem_cgroup_iter_break()
1114 * to cancel a hierarchy walk before the round-trip is complete.
1115 *
05bdc520
ML
1116 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1117 * in the hierarchy among all concurrent reclaimers operating on the
1118 * same node.
5660048c 1119 */
694fbc0f 1120struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1121 struct mem_cgroup *prev,
694fbc0f 1122 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1123{
3f649ab7 1124 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1125 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1126 struct mem_cgroup *memcg = NULL;
5ac8fb31 1127 struct mem_cgroup *pos = NULL;
711d3d2c 1128
694fbc0f
AM
1129 if (mem_cgroup_disabled())
1130 return NULL;
5660048c 1131
9f3a0d09
JW
1132 if (!root)
1133 root = root_mem_cgroup;
7d74b06f 1134
9f3a0d09 1135 if (prev && !reclaim)
5ac8fb31 1136 pos = prev;
14067bb3 1137
542f85f9 1138 rcu_read_lock();
5f578161 1139
5ac8fb31 1140 if (reclaim) {
ef8f2327 1141 struct mem_cgroup_per_node *mz;
5ac8fb31 1142
ef8f2327 1143 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1144 iter = &mz->iter;
5ac8fb31
JW
1145
1146 if (prev && reclaim->generation != iter->generation)
1147 goto out_unlock;
1148
6df38689 1149 while (1) {
4db0c3c2 1150 pos = READ_ONCE(iter->position);
6df38689
VD
1151 if (!pos || css_tryget(&pos->css))
1152 break;
5ac8fb31 1153 /*
6df38689
VD
1154 * css reference reached zero, so iter->position will
1155 * be cleared by ->css_released. However, we should not
1156 * rely on this happening soon, because ->css_released
1157 * is called from a work queue, and by busy-waiting we
1158 * might block it. So we clear iter->position right
1159 * away.
5ac8fb31 1160 */
6df38689
VD
1161 (void)cmpxchg(&iter->position, pos, NULL);
1162 }
5ac8fb31
JW
1163 }
1164
1165 if (pos)
1166 css = &pos->css;
1167
1168 for (;;) {
1169 css = css_next_descendant_pre(css, &root->css);
1170 if (!css) {
1171 /*
1172 * Reclaimers share the hierarchy walk, and a
1173 * new one might jump in right at the end of
1174 * the hierarchy - make sure they see at least
1175 * one group and restart from the beginning.
1176 */
1177 if (!prev)
1178 continue;
1179 break;
527a5ec9 1180 }
7d74b06f 1181
5ac8fb31
JW
1182 /*
1183 * Verify the css and acquire a reference. The root
1184 * is provided by the caller, so we know it's alive
1185 * and kicking, and don't take an extra reference.
1186 */
1187 memcg = mem_cgroup_from_css(css);
14067bb3 1188
5ac8fb31
JW
1189 if (css == &root->css)
1190 break;
14067bb3 1191
0b8f73e1
JW
1192 if (css_tryget(css))
1193 break;
9f3a0d09 1194
5ac8fb31 1195 memcg = NULL;
9f3a0d09 1196 }
5ac8fb31
JW
1197
1198 if (reclaim) {
5ac8fb31 1199 /*
6df38689
VD
1200 * The position could have already been updated by a competing
1201 * thread, so check that the value hasn't changed since we read
1202 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1203 */
6df38689
VD
1204 (void)cmpxchg(&iter->position, pos, memcg);
1205
5ac8fb31
JW
1206 if (pos)
1207 css_put(&pos->css);
1208
1209 if (!memcg)
1210 iter->generation++;
1211 else if (!prev)
1212 reclaim->generation = iter->generation;
9f3a0d09 1213 }
5ac8fb31 1214
542f85f9
MH
1215out_unlock:
1216 rcu_read_unlock();
c40046f3
MH
1217 if (prev && prev != root)
1218 css_put(&prev->css);
1219
9f3a0d09 1220 return memcg;
14067bb3 1221}
7d74b06f 1222
5660048c
JW
1223/**
1224 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1225 * @root: hierarchy root
1226 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1227 */
1228void mem_cgroup_iter_break(struct mem_cgroup *root,
1229 struct mem_cgroup *prev)
9f3a0d09
JW
1230{
1231 if (!root)
1232 root = root_mem_cgroup;
1233 if (prev && prev != root)
1234 css_put(&prev->css);
1235}
7d74b06f 1236
54a83d6b
MC
1237static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1238 struct mem_cgroup *dead_memcg)
6df38689 1239{
6df38689 1240 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1241 struct mem_cgroup_per_node *mz;
1242 int nid;
6df38689 1243
54a83d6b
MC
1244 for_each_node(nid) {
1245 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1246 iter = &mz->iter;
1247 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1248 }
1249}
1250
54a83d6b
MC
1251static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1252{
1253 struct mem_cgroup *memcg = dead_memcg;
1254 struct mem_cgroup *last;
1255
1256 do {
1257 __invalidate_reclaim_iterators(memcg, dead_memcg);
1258 last = memcg;
1259 } while ((memcg = parent_mem_cgroup(memcg)));
1260
1261 /*
1262 * When cgruop1 non-hierarchy mode is used,
1263 * parent_mem_cgroup() does not walk all the way up to the
1264 * cgroup root (root_mem_cgroup). So we have to handle
1265 * dead_memcg from cgroup root separately.
1266 */
1267 if (last != root_mem_cgroup)
1268 __invalidate_reclaim_iterators(root_mem_cgroup,
1269 dead_memcg);
1270}
1271
7c5f64f8
VD
1272/**
1273 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1274 * @memcg: hierarchy root
1275 * @fn: function to call for each task
1276 * @arg: argument passed to @fn
1277 *
1278 * This function iterates over tasks attached to @memcg or to any of its
1279 * descendants and calls @fn for each task. If @fn returns a non-zero
1280 * value, the function breaks the iteration loop and returns the value.
1281 * Otherwise, it will iterate over all tasks and return 0.
1282 *
1283 * This function must not be called for the root memory cgroup.
1284 */
1285int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1286 int (*fn)(struct task_struct *, void *), void *arg)
1287{
1288 struct mem_cgroup *iter;
1289 int ret = 0;
1290
1291 BUG_ON(memcg == root_mem_cgroup);
1292
1293 for_each_mem_cgroup_tree(iter, memcg) {
1294 struct css_task_iter it;
1295 struct task_struct *task;
1296
f168a9a5 1297 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1298 while (!ret && (task = css_task_iter_next(&it)))
1299 ret = fn(task, arg);
1300 css_task_iter_end(&it);
1301 if (ret) {
1302 mem_cgroup_iter_break(memcg, iter);
1303 break;
1304 }
1305 }
1306 return ret;
1307}
1308
6168d0da
AS
1309#ifdef CONFIG_DEBUG_VM
1310void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1311{
1312 struct mem_cgroup *memcg;
1313
1314 if (mem_cgroup_disabled())
1315 return;
1316
1317 memcg = page_memcg(page);
1318
1319 if (!memcg)
1320 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1321 else
1322 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1323}
1324#endif
1325
6168d0da
AS
1326/**
1327 * lock_page_lruvec - lock and return lruvec for a given page.
1328 * @page: the page
1329 *
d7e3aba5
AS
1330 * These functions are safe to use under any of the following conditions:
1331 * - page locked
1332 * - PageLRU cleared
1333 * - lock_page_memcg()
1334 * - page->_refcount is zero
6168d0da
AS
1335 */
1336struct lruvec *lock_page_lruvec(struct page *page)
1337{
1338 struct lruvec *lruvec;
1339 struct pglist_data *pgdat = page_pgdat(page);
1340
6168d0da
AS
1341 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1342 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1343
1344 lruvec_memcg_debug(lruvec, page);
1345
1346 return lruvec;
1347}
1348
1349struct lruvec *lock_page_lruvec_irq(struct page *page)
1350{
1351 struct lruvec *lruvec;
1352 struct pglist_data *pgdat = page_pgdat(page);
1353
6168d0da
AS
1354 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1355 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1356
1357 lruvec_memcg_debug(lruvec, page);
1358
1359 return lruvec;
1360}
1361
1362struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1363{
1364 struct lruvec *lruvec;
1365 struct pglist_data *pgdat = page_pgdat(page);
1366
6168d0da
AS
1367 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1368 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1369
1370 lruvec_memcg_debug(lruvec, page);
1371
1372 return lruvec;
1373}
1374
925b7673 1375/**
fa9add64
HD
1376 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1377 * @lruvec: mem_cgroup per zone lru vector
1378 * @lru: index of lru list the page is sitting on
b4536f0c 1379 * @zid: zone id of the accounted pages
fa9add64 1380 * @nr_pages: positive when adding or negative when removing
925b7673 1381 *
ca707239
HD
1382 * This function must be called under lru_lock, just before a page is added
1383 * to or just after a page is removed from an lru list (that ordering being
1384 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1385 */
fa9add64 1386void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1387 int zid, int nr_pages)
3f58a829 1388{
ef8f2327 1389 struct mem_cgroup_per_node *mz;
fa9add64 1390 unsigned long *lru_size;
ca707239 1391 long size;
3f58a829
MK
1392
1393 if (mem_cgroup_disabled())
1394 return;
1395
ef8f2327 1396 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1397 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1398
1399 if (nr_pages < 0)
1400 *lru_size += nr_pages;
1401
1402 size = *lru_size;
b4536f0c
MH
1403 if (WARN_ONCE(size < 0,
1404 "%s(%p, %d, %d): lru_size %ld\n",
1405 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1406 VM_BUG_ON(1);
1407 *lru_size = 0;
1408 }
1409
1410 if (nr_pages > 0)
1411 *lru_size += nr_pages;
08e552c6 1412}
544122e5 1413
19942822 1414/**
9d11ea9f 1415 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1416 * @memcg: the memory cgroup
19942822 1417 *
9d11ea9f 1418 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1419 * pages.
19942822 1420 */
c0ff4b85 1421static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1422{
3e32cb2e
JW
1423 unsigned long margin = 0;
1424 unsigned long count;
1425 unsigned long limit;
9d11ea9f 1426
3e32cb2e 1427 count = page_counter_read(&memcg->memory);
bbec2e15 1428 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1429 if (count < limit)
1430 margin = limit - count;
1431
7941d214 1432 if (do_memsw_account()) {
3e32cb2e 1433 count = page_counter_read(&memcg->memsw);
bbec2e15 1434 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1435 if (count < limit)
3e32cb2e 1436 margin = min(margin, limit - count);
cbedbac3
LR
1437 else
1438 margin = 0;
3e32cb2e
JW
1439 }
1440
1441 return margin;
19942822
JW
1442}
1443
32047e2a 1444/*
bdcbb659 1445 * A routine for checking "mem" is under move_account() or not.
32047e2a 1446 *
bdcbb659
QH
1447 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1448 * moving cgroups. This is for waiting at high-memory pressure
1449 * caused by "move".
32047e2a 1450 */
c0ff4b85 1451static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1452{
2bd9bb20
KH
1453 struct mem_cgroup *from;
1454 struct mem_cgroup *to;
4b534334 1455 bool ret = false;
2bd9bb20
KH
1456 /*
1457 * Unlike task_move routines, we access mc.to, mc.from not under
1458 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1459 */
1460 spin_lock(&mc.lock);
1461 from = mc.from;
1462 to = mc.to;
1463 if (!from)
1464 goto unlock;
3e92041d 1465
2314b42d
JW
1466 ret = mem_cgroup_is_descendant(from, memcg) ||
1467 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1468unlock:
1469 spin_unlock(&mc.lock);
4b534334
KH
1470 return ret;
1471}
1472
c0ff4b85 1473static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1474{
1475 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1476 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1477 DEFINE_WAIT(wait);
1478 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1479 /* moving charge context might have finished. */
1480 if (mc.moving_task)
1481 schedule();
1482 finish_wait(&mc.waitq, &wait);
1483 return true;
1484 }
1485 }
1486 return false;
1487}
1488
5f9a4f4a
MS
1489struct memory_stat {
1490 const char *name;
5f9a4f4a
MS
1491 unsigned int idx;
1492};
1493
57b2847d 1494static const struct memory_stat memory_stats[] = {
fff66b79
MS
1495 { "anon", NR_ANON_MAPPED },
1496 { "file", NR_FILE_PAGES },
1497 { "kernel_stack", NR_KERNEL_STACK_KB },
1498 { "pagetables", NR_PAGETABLE },
1499 { "percpu", MEMCG_PERCPU_B },
1500 { "sock", MEMCG_SOCK },
1501 { "shmem", NR_SHMEM },
1502 { "file_mapped", NR_FILE_MAPPED },
1503 { "file_dirty", NR_FILE_DIRTY },
1504 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1505#ifdef CONFIG_SWAP
1506 { "swapcached", NR_SWAPCACHE },
1507#endif
5f9a4f4a 1508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1509 { "anon_thp", NR_ANON_THPS },
1510 { "file_thp", NR_FILE_THPS },
1511 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1512#endif
fff66b79
MS
1513 { "inactive_anon", NR_INACTIVE_ANON },
1514 { "active_anon", NR_ACTIVE_ANON },
1515 { "inactive_file", NR_INACTIVE_FILE },
1516 { "active_file", NR_ACTIVE_FILE },
1517 { "unevictable", NR_UNEVICTABLE },
1518 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1519 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1520
1521 /* The memory events */
fff66b79
MS
1522 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1523 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1524 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1525 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1526 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1527 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1528 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1529};
1530
fff66b79
MS
1531/* Translate stat items to the correct unit for memory.stat output */
1532static int memcg_page_state_unit(int item)
1533{
1534 switch (item) {
1535 case MEMCG_PERCPU_B:
1536 case NR_SLAB_RECLAIMABLE_B:
1537 case NR_SLAB_UNRECLAIMABLE_B:
1538 case WORKINGSET_REFAULT_ANON:
1539 case WORKINGSET_REFAULT_FILE:
1540 case WORKINGSET_ACTIVATE_ANON:
1541 case WORKINGSET_ACTIVATE_FILE:
1542 case WORKINGSET_RESTORE_ANON:
1543 case WORKINGSET_RESTORE_FILE:
1544 case WORKINGSET_NODERECLAIM:
1545 return 1;
1546 case NR_KERNEL_STACK_KB:
1547 return SZ_1K;
1548 default:
1549 return PAGE_SIZE;
1550 }
1551}
1552
1553static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1554 int item)
1555{
1556 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1557}
1558
c8713d0b
JW
1559static char *memory_stat_format(struct mem_cgroup *memcg)
1560{
1561 struct seq_buf s;
1562 int i;
71cd3113 1563
c8713d0b
JW
1564 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1565 if (!s.buffer)
1566 return NULL;
1567
1568 /*
1569 * Provide statistics on the state of the memory subsystem as
1570 * well as cumulative event counters that show past behavior.
1571 *
1572 * This list is ordered following a combination of these gradients:
1573 * 1) generic big picture -> specifics and details
1574 * 2) reflecting userspace activity -> reflecting kernel heuristics
1575 *
1576 * Current memory state:
1577 */
1578
5f9a4f4a
MS
1579 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1580 u64 size;
c8713d0b 1581
fff66b79 1582 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1583 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1584
5f9a4f4a 1585 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1586 size += memcg_page_state_output(memcg,
1587 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1588 seq_buf_printf(&s, "slab %llu\n", size);
1589 }
1590 }
c8713d0b
JW
1591
1592 /* Accumulated memory events */
1593
ebc5d83d
KK
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1595 memcg_events(memcg, PGFAULT));
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1597 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1598 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1599 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1600 seq_buf_printf(&s, "pgscan %lu\n",
1601 memcg_events(memcg, PGSCAN_KSWAPD) +
1602 memcg_events(memcg, PGSCAN_DIRECT));
1603 seq_buf_printf(&s, "pgsteal %lu\n",
1604 memcg_events(memcg, PGSTEAL_KSWAPD) +
1605 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1607 memcg_events(memcg, PGACTIVATE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1609 memcg_events(memcg, PGDEACTIVATE));
1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1611 memcg_events(memcg, PGLAZYFREE));
1612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1613 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1614
1615#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1617 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1619 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1620#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1621
1622 /* The above should easily fit into one page */
1623 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1624
1625 return s.buffer;
1626}
71cd3113 1627
58cf188e 1628#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1629/**
f0c867d9 1630 * mem_cgroup_print_oom_context: Print OOM information relevant to
1631 * memory controller.
e222432b
BS
1632 * @memcg: The memory cgroup that went over limit
1633 * @p: Task that is going to be killed
1634 *
1635 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1636 * enabled
1637 */
f0c867d9 1638void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1639{
e222432b
BS
1640 rcu_read_lock();
1641
f0c867d9 1642 if (memcg) {
1643 pr_cont(",oom_memcg=");
1644 pr_cont_cgroup_path(memcg->css.cgroup);
1645 } else
1646 pr_cont(",global_oom");
2415b9f5 1647 if (p) {
f0c867d9 1648 pr_cont(",task_memcg=");
2415b9f5 1649 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1650 }
e222432b 1651 rcu_read_unlock();
f0c867d9 1652}
1653
1654/**
1655 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1656 * memory controller.
1657 * @memcg: The memory cgroup that went over limit
1658 */
1659void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1660{
c8713d0b 1661 char *buf;
e222432b 1662
3e32cb2e
JW
1663 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1664 K((u64)page_counter_read(&memcg->memory)),
15b42562 1665 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1666 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1667 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1669 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1670 else {
1671 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1672 K((u64)page_counter_read(&memcg->memsw)),
1673 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1674 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1675 K((u64)page_counter_read(&memcg->kmem)),
1676 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1677 }
c8713d0b
JW
1678
1679 pr_info("Memory cgroup stats for ");
1680 pr_cont_cgroup_path(memcg->css.cgroup);
1681 pr_cont(":");
1682 buf = memory_stat_format(memcg);
1683 if (!buf)
1684 return;
1685 pr_info("%s", buf);
1686 kfree(buf);
e222432b
BS
1687}
1688
a63d83f4
DR
1689/*
1690 * Return the memory (and swap, if configured) limit for a memcg.
1691 */
bbec2e15 1692unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1693{
8d387a5f
WL
1694 unsigned long max = READ_ONCE(memcg->memory.max);
1695
1696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1697 if (mem_cgroup_swappiness(memcg))
1698 max += min(READ_ONCE(memcg->swap.max),
1699 (unsigned long)total_swap_pages);
1700 } else { /* v1 */
1701 if (mem_cgroup_swappiness(memcg)) {
1702 /* Calculate swap excess capacity from memsw limit */
1703 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1704
1705 max += min(swap, (unsigned long)total_swap_pages);
1706 }
9a5a8f19 1707 }
bbec2e15 1708 return max;
a63d83f4
DR
1709}
1710
9783aa99
CD
1711unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1712{
1713 return page_counter_read(&memcg->memory);
1714}
1715
b6e6edcf 1716static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1717 int order)
9cbb78bb 1718{
6e0fc46d
DR
1719 struct oom_control oc = {
1720 .zonelist = NULL,
1721 .nodemask = NULL,
2a966b77 1722 .memcg = memcg,
6e0fc46d
DR
1723 .gfp_mask = gfp_mask,
1724 .order = order,
6e0fc46d 1725 };
1378b37d 1726 bool ret = true;
9cbb78bb 1727
7775face
TH
1728 if (mutex_lock_killable(&oom_lock))
1729 return true;
1378b37d
YS
1730
1731 if (mem_cgroup_margin(memcg) >= (1 << order))
1732 goto unlock;
1733
7775face
TH
1734 /*
1735 * A few threads which were not waiting at mutex_lock_killable() can
1736 * fail to bail out. Therefore, check again after holding oom_lock.
1737 */
1738 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1739
1740unlock:
dc56401f 1741 mutex_unlock(&oom_lock);
7c5f64f8 1742 return ret;
9cbb78bb
DR
1743}
1744
0608f43d 1745static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1746 pg_data_t *pgdat,
0608f43d
AM
1747 gfp_t gfp_mask,
1748 unsigned long *total_scanned)
1749{
1750 struct mem_cgroup *victim = NULL;
1751 int total = 0;
1752 int loop = 0;
1753 unsigned long excess;
1754 unsigned long nr_scanned;
1755 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1756 .pgdat = pgdat,
0608f43d
AM
1757 };
1758
3e32cb2e 1759 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1760
1761 while (1) {
1762 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1763 if (!victim) {
1764 loop++;
1765 if (loop >= 2) {
1766 /*
1767 * If we have not been able to reclaim
1768 * anything, it might because there are
1769 * no reclaimable pages under this hierarchy
1770 */
1771 if (!total)
1772 break;
1773 /*
1774 * We want to do more targeted reclaim.
1775 * excess >> 2 is not to excessive so as to
1776 * reclaim too much, nor too less that we keep
1777 * coming back to reclaim from this cgroup
1778 */
1779 if (total >= (excess >> 2) ||
1780 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1781 break;
1782 }
1783 continue;
1784 }
a9dd0a83 1785 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1786 pgdat, &nr_scanned);
0608f43d 1787 *total_scanned += nr_scanned;
3e32cb2e 1788 if (!soft_limit_excess(root_memcg))
0608f43d 1789 break;
6d61ef40 1790 }
0608f43d
AM
1791 mem_cgroup_iter_break(root_memcg, victim);
1792 return total;
6d61ef40
BS
1793}
1794
0056f4e6
JW
1795#ifdef CONFIG_LOCKDEP
1796static struct lockdep_map memcg_oom_lock_dep_map = {
1797 .name = "memcg_oom_lock",
1798};
1799#endif
1800
fb2a6fc5
JW
1801static DEFINE_SPINLOCK(memcg_oom_lock);
1802
867578cb
KH
1803/*
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1806 */
fb2a6fc5 1807static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1808{
79dfdacc 1809 struct mem_cgroup *iter, *failed = NULL;
a636b327 1810
fb2a6fc5
JW
1811 spin_lock(&memcg_oom_lock);
1812
9f3a0d09 1813 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1814 if (iter->oom_lock) {
79dfdacc
MH
1815 /*
1816 * this subtree of our hierarchy is already locked
1817 * so we cannot give a lock.
1818 */
79dfdacc 1819 failed = iter;
9f3a0d09
JW
1820 mem_cgroup_iter_break(memcg, iter);
1821 break;
23751be0
JW
1822 } else
1823 iter->oom_lock = true;
7d74b06f 1824 }
867578cb 1825
fb2a6fc5
JW
1826 if (failed) {
1827 /*
1828 * OK, we failed to lock the whole subtree so we have
1829 * to clean up what we set up to the failing subtree
1830 */
1831 for_each_mem_cgroup_tree(iter, memcg) {
1832 if (iter == failed) {
1833 mem_cgroup_iter_break(memcg, iter);
1834 break;
1835 }
1836 iter->oom_lock = false;
79dfdacc 1837 }
0056f4e6
JW
1838 } else
1839 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1840
1841 spin_unlock(&memcg_oom_lock);
1842
1843 return !failed;
a636b327 1844}
0b7f569e 1845
fb2a6fc5 1846static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1847{
7d74b06f
KH
1848 struct mem_cgroup *iter;
1849
fb2a6fc5 1850 spin_lock(&memcg_oom_lock);
5facae4f 1851 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1852 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1853 iter->oom_lock = false;
fb2a6fc5 1854 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1855}
1856
c0ff4b85 1857static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1858{
1859 struct mem_cgroup *iter;
1860
c2b42d3c 1861 spin_lock(&memcg_oom_lock);
c0ff4b85 1862 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1863 iter->under_oom++;
1864 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1865}
1866
c0ff4b85 1867static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1868{
1869 struct mem_cgroup *iter;
1870
867578cb 1871 /*
7a52d4d8
ML
1872 * Be careful about under_oom underflows becase a child memcg
1873 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1874 */
c2b42d3c 1875 spin_lock(&memcg_oom_lock);
c0ff4b85 1876 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1877 if (iter->under_oom > 0)
1878 iter->under_oom--;
1879 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1880}
1881
867578cb
KH
1882static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1883
dc98df5a 1884struct oom_wait_info {
d79154bb 1885 struct mem_cgroup *memcg;
ac6424b9 1886 wait_queue_entry_t wait;
dc98df5a
KH
1887};
1888
ac6424b9 1889static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1890 unsigned mode, int sync, void *arg)
1891{
d79154bb
HD
1892 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1893 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1894 struct oom_wait_info *oom_wait_info;
1895
1896 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1897 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1898
2314b42d
JW
1899 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1900 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1901 return 0;
dc98df5a
KH
1902 return autoremove_wake_function(wait, mode, sync, arg);
1903}
1904
c0ff4b85 1905static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1906{
c2b42d3c
TH
1907 /*
1908 * For the following lockless ->under_oom test, the only required
1909 * guarantee is that it must see the state asserted by an OOM when
1910 * this function is called as a result of userland actions
1911 * triggered by the notification of the OOM. This is trivially
1912 * achieved by invoking mem_cgroup_mark_under_oom() before
1913 * triggering notification.
1914 */
1915 if (memcg && memcg->under_oom)
f4b90b70 1916 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1917}
1918
29ef680a
MH
1919enum oom_status {
1920 OOM_SUCCESS,
1921 OOM_FAILED,
1922 OOM_ASYNC,
1923 OOM_SKIPPED
1924};
1925
1926static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1927{
7056d3a3
MH
1928 enum oom_status ret;
1929 bool locked;
1930
29ef680a
MH
1931 if (order > PAGE_ALLOC_COSTLY_ORDER)
1932 return OOM_SKIPPED;
1933
7a1adfdd
RG
1934 memcg_memory_event(memcg, MEMCG_OOM);
1935
867578cb 1936 /*
49426420
JW
1937 * We are in the middle of the charge context here, so we
1938 * don't want to block when potentially sitting on a callstack
1939 * that holds all kinds of filesystem and mm locks.
1940 *
29ef680a
MH
1941 * cgroup1 allows disabling the OOM killer and waiting for outside
1942 * handling until the charge can succeed; remember the context and put
1943 * the task to sleep at the end of the page fault when all locks are
1944 * released.
49426420 1945 *
29ef680a
MH
1946 * On the other hand, in-kernel OOM killer allows for an async victim
1947 * memory reclaim (oom_reaper) and that means that we are not solely
1948 * relying on the oom victim to make a forward progress and we can
1949 * invoke the oom killer here.
1950 *
1951 * Please note that mem_cgroup_out_of_memory might fail to find a
1952 * victim and then we have to bail out from the charge path.
867578cb 1953 */
29ef680a
MH
1954 if (memcg->oom_kill_disable) {
1955 if (!current->in_user_fault)
1956 return OOM_SKIPPED;
1957 css_get(&memcg->css);
1958 current->memcg_in_oom = memcg;
1959 current->memcg_oom_gfp_mask = mask;
1960 current->memcg_oom_order = order;
1961
1962 return OOM_ASYNC;
1963 }
1964
7056d3a3
MH
1965 mem_cgroup_mark_under_oom(memcg);
1966
1967 locked = mem_cgroup_oom_trylock(memcg);
1968
1969 if (locked)
1970 mem_cgroup_oom_notify(memcg);
1971
1972 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1973 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1974 ret = OOM_SUCCESS;
1975 else
1976 ret = OOM_FAILED;
1977
1978 if (locked)
1979 mem_cgroup_oom_unlock(memcg);
29ef680a 1980
7056d3a3 1981 return ret;
3812c8c8
JW
1982}
1983
1984/**
1985 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1986 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1987 *
49426420
JW
1988 * This has to be called at the end of a page fault if the memcg OOM
1989 * handler was enabled.
3812c8c8 1990 *
49426420 1991 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1992 * sleep on a waitqueue until the userspace task resolves the
1993 * situation. Sleeping directly in the charge context with all kinds
1994 * of locks held is not a good idea, instead we remember an OOM state
1995 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1996 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1997 *
1998 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1999 * completed, %false otherwise.
3812c8c8 2000 */
49426420 2001bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2002{
626ebc41 2003 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2004 struct oom_wait_info owait;
49426420 2005 bool locked;
3812c8c8
JW
2006
2007 /* OOM is global, do not handle */
3812c8c8 2008 if (!memcg)
49426420 2009 return false;
3812c8c8 2010
7c5f64f8 2011 if (!handle)
49426420 2012 goto cleanup;
3812c8c8
JW
2013
2014 owait.memcg = memcg;
2015 owait.wait.flags = 0;
2016 owait.wait.func = memcg_oom_wake_function;
2017 owait.wait.private = current;
2055da97 2018 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2019
3812c8c8 2020 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2021 mem_cgroup_mark_under_oom(memcg);
2022
2023 locked = mem_cgroup_oom_trylock(memcg);
2024
2025 if (locked)
2026 mem_cgroup_oom_notify(memcg);
2027
2028 if (locked && !memcg->oom_kill_disable) {
2029 mem_cgroup_unmark_under_oom(memcg);
2030 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2031 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2032 current->memcg_oom_order);
49426420 2033 } else {
3812c8c8 2034 schedule();
49426420
JW
2035 mem_cgroup_unmark_under_oom(memcg);
2036 finish_wait(&memcg_oom_waitq, &owait.wait);
2037 }
2038
2039 if (locked) {
fb2a6fc5
JW
2040 mem_cgroup_oom_unlock(memcg);
2041 /*
2042 * There is no guarantee that an OOM-lock contender
2043 * sees the wakeups triggered by the OOM kill
2044 * uncharges. Wake any sleepers explicitely.
2045 */
2046 memcg_oom_recover(memcg);
2047 }
49426420 2048cleanup:
626ebc41 2049 current->memcg_in_oom = NULL;
3812c8c8 2050 css_put(&memcg->css);
867578cb 2051 return true;
0b7f569e
KH
2052}
2053
3d8b38eb
RG
2054/**
2055 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2056 * @victim: task to be killed by the OOM killer
2057 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2058 *
2059 * Returns a pointer to a memory cgroup, which has to be cleaned up
2060 * by killing all belonging OOM-killable tasks.
2061 *
2062 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2063 */
2064struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2065 struct mem_cgroup *oom_domain)
2066{
2067 struct mem_cgroup *oom_group = NULL;
2068 struct mem_cgroup *memcg;
2069
2070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2071 return NULL;
2072
2073 if (!oom_domain)
2074 oom_domain = root_mem_cgroup;
2075
2076 rcu_read_lock();
2077
2078 memcg = mem_cgroup_from_task(victim);
2079 if (memcg == root_mem_cgroup)
2080 goto out;
2081
48fe267c
RG
2082 /*
2083 * If the victim task has been asynchronously moved to a different
2084 * memory cgroup, we might end up killing tasks outside oom_domain.
2085 * In this case it's better to ignore memory.group.oom.
2086 */
2087 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2088 goto out;
2089
3d8b38eb
RG
2090 /*
2091 * Traverse the memory cgroup hierarchy from the victim task's
2092 * cgroup up to the OOMing cgroup (or root) to find the
2093 * highest-level memory cgroup with oom.group set.
2094 */
2095 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2096 if (memcg->oom_group)
2097 oom_group = memcg;
2098
2099 if (memcg == oom_domain)
2100 break;
2101 }
2102
2103 if (oom_group)
2104 css_get(&oom_group->css);
2105out:
2106 rcu_read_unlock();
2107
2108 return oom_group;
2109}
2110
2111void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2112{
2113 pr_info("Tasks in ");
2114 pr_cont_cgroup_path(memcg->css.cgroup);
2115 pr_cont(" are going to be killed due to memory.oom.group set\n");
2116}
2117
d7365e78 2118/**
bcfe06bf 2119 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2120 * @page: the page
32047e2a 2121 *
81f8c3a4 2122 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2123 * another cgroup.
2124 *
2125 * It ensures lifetime of the returned memcg. Caller is responsible
2126 * for the lifetime of the page; __unlock_page_memcg() is available
2127 * when @page might get freed inside the locked section.
d69b042f 2128 */
739f79fc 2129struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2130{
9da7b521 2131 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2132 struct mem_cgroup *memcg;
6de22619 2133 unsigned long flags;
89c06bd5 2134
6de22619
JW
2135 /*
2136 * The RCU lock is held throughout the transaction. The fast
2137 * path can get away without acquiring the memcg->move_lock
2138 * because page moving starts with an RCU grace period.
739f79fc
JW
2139 *
2140 * The RCU lock also protects the memcg from being freed when
2141 * the page state that is going to change is the only thing
2142 * preventing the page itself from being freed. E.g. writeback
2143 * doesn't hold a page reference and relies on PG_writeback to
2144 * keep off truncation, migration and so forth.
2145 */
d7365e78
JW
2146 rcu_read_lock();
2147
2148 if (mem_cgroup_disabled())
739f79fc 2149 return NULL;
89c06bd5 2150again:
bcfe06bf 2151 memcg = page_memcg(head);
29833315 2152 if (unlikely(!memcg))
739f79fc 2153 return NULL;
d7365e78 2154
20ad50d6
AS
2155#ifdef CONFIG_PROVE_LOCKING
2156 local_irq_save(flags);
2157 might_lock(&memcg->move_lock);
2158 local_irq_restore(flags);
2159#endif
2160
bdcbb659 2161 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2162 return memcg;
89c06bd5 2163
6de22619 2164 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2165 if (memcg != page_memcg(head)) {
6de22619 2166 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2167 goto again;
2168 }
6de22619
JW
2169
2170 /*
2171 * When charge migration first begins, we can have locked and
2172 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2173 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2174 */
2175 memcg->move_lock_task = current;
2176 memcg->move_lock_flags = flags;
d7365e78 2177
739f79fc 2178 return memcg;
89c06bd5 2179}
81f8c3a4 2180EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2181
d7365e78 2182/**
739f79fc
JW
2183 * __unlock_page_memcg - unlock and unpin a memcg
2184 * @memcg: the memcg
2185 *
2186 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2187 */
739f79fc 2188void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2189{
6de22619
JW
2190 if (memcg && memcg->move_lock_task == current) {
2191 unsigned long flags = memcg->move_lock_flags;
2192
2193 memcg->move_lock_task = NULL;
2194 memcg->move_lock_flags = 0;
2195
2196 spin_unlock_irqrestore(&memcg->move_lock, flags);
2197 }
89c06bd5 2198
d7365e78 2199 rcu_read_unlock();
89c06bd5 2200}
739f79fc
JW
2201
2202/**
bcfe06bf 2203 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2204 * @page: the page
2205 */
2206void unlock_page_memcg(struct page *page)
2207{
9da7b521
JW
2208 struct page *head = compound_head(page);
2209
bcfe06bf 2210 __unlock_page_memcg(page_memcg(head));
739f79fc 2211}
81f8c3a4 2212EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2213
cdec2e42
KH
2214struct memcg_stock_pcp {
2215 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2216 unsigned int nr_pages;
bf4f0599
RG
2217
2218#ifdef CONFIG_MEMCG_KMEM
2219 struct obj_cgroup *cached_objcg;
2220 unsigned int nr_bytes;
2221#endif
2222
cdec2e42 2223 struct work_struct work;
26fe6168 2224 unsigned long flags;
a0db00fc 2225#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2226};
2227static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2228static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2229
bf4f0599
RG
2230#ifdef CONFIG_MEMCG_KMEM
2231static void drain_obj_stock(struct memcg_stock_pcp *stock);
2232static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2233 struct mem_cgroup *root_memcg);
2234
2235#else
2236static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2237{
2238}
2239static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2240 struct mem_cgroup *root_memcg)
2241{
2242 return false;
2243}
2244#endif
2245
a0956d54
SS
2246/**
2247 * consume_stock: Try to consume stocked charge on this cpu.
2248 * @memcg: memcg to consume from.
2249 * @nr_pages: how many pages to charge.
2250 *
2251 * The charges will only happen if @memcg matches the current cpu's memcg
2252 * stock, and at least @nr_pages are available in that stock. Failure to
2253 * service an allocation will refill the stock.
2254 *
2255 * returns true if successful, false otherwise.
cdec2e42 2256 */
a0956d54 2257static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2258{
2259 struct memcg_stock_pcp *stock;
db2ba40c 2260 unsigned long flags;
3e32cb2e 2261 bool ret = false;
cdec2e42 2262
a983b5eb 2263 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2264 return ret;
a0956d54 2265
db2ba40c
JW
2266 local_irq_save(flags);
2267
2268 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2269 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2270 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2271 ret = true;
2272 }
db2ba40c
JW
2273
2274 local_irq_restore(flags);
2275
cdec2e42
KH
2276 return ret;
2277}
2278
2279/*
3e32cb2e 2280 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2281 */
2282static void drain_stock(struct memcg_stock_pcp *stock)
2283{
2284 struct mem_cgroup *old = stock->cached;
2285
1a3e1f40
JW
2286 if (!old)
2287 return;
2288
11c9ea4e 2289 if (stock->nr_pages) {
3e32cb2e 2290 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2291 if (do_memsw_account())
3e32cb2e 2292 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2293 stock->nr_pages = 0;
cdec2e42 2294 }
1a3e1f40
JW
2295
2296 css_put(&old->css);
cdec2e42 2297 stock->cached = NULL;
cdec2e42
KH
2298}
2299
cdec2e42
KH
2300static void drain_local_stock(struct work_struct *dummy)
2301{
db2ba40c
JW
2302 struct memcg_stock_pcp *stock;
2303 unsigned long flags;
2304
72f0184c
MH
2305 /*
2306 * The only protection from memory hotplug vs. drain_stock races is
2307 * that we always operate on local CPU stock here with IRQ disabled
2308 */
db2ba40c
JW
2309 local_irq_save(flags);
2310
2311 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2312 drain_obj_stock(stock);
cdec2e42 2313 drain_stock(stock);
26fe6168 2314 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2315
2316 local_irq_restore(flags);
cdec2e42
KH
2317}
2318
2319/*
3e32cb2e 2320 * Cache charges(val) to local per_cpu area.
320cc51d 2321 * This will be consumed by consume_stock() function, later.
cdec2e42 2322 */
c0ff4b85 2323static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2324{
db2ba40c
JW
2325 struct memcg_stock_pcp *stock;
2326 unsigned long flags;
2327
2328 local_irq_save(flags);
cdec2e42 2329
db2ba40c 2330 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2331 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2332 drain_stock(stock);
1a3e1f40 2333 css_get(&memcg->css);
c0ff4b85 2334 stock->cached = memcg;
cdec2e42 2335 }
11c9ea4e 2336 stock->nr_pages += nr_pages;
db2ba40c 2337
a983b5eb 2338 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2339 drain_stock(stock);
2340
db2ba40c 2341 local_irq_restore(flags);
cdec2e42
KH
2342}
2343
2344/*
c0ff4b85 2345 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2346 * of the hierarchy under it.
cdec2e42 2347 */
6d3d6aa2 2348static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2349{
26fe6168 2350 int cpu, curcpu;
d38144b7 2351
6d3d6aa2
JW
2352 /* If someone's already draining, avoid adding running more workers. */
2353 if (!mutex_trylock(&percpu_charge_mutex))
2354 return;
72f0184c
MH
2355 /*
2356 * Notify other cpus that system-wide "drain" is running
2357 * We do not care about races with the cpu hotplug because cpu down
2358 * as well as workers from this path always operate on the local
2359 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2360 */
5af12d0e 2361 curcpu = get_cpu();
cdec2e42
KH
2362 for_each_online_cpu(cpu) {
2363 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2364 struct mem_cgroup *memcg;
e1a366be 2365 bool flush = false;
26fe6168 2366
e1a366be 2367 rcu_read_lock();
c0ff4b85 2368 memcg = stock->cached;
e1a366be
RG
2369 if (memcg && stock->nr_pages &&
2370 mem_cgroup_is_descendant(memcg, root_memcg))
2371 flush = true;
bf4f0599
RG
2372 if (obj_stock_flush_required(stock, root_memcg))
2373 flush = true;
e1a366be
RG
2374 rcu_read_unlock();
2375
2376 if (flush &&
2377 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2378 if (cpu == curcpu)
2379 drain_local_stock(&stock->work);
2380 else
2381 schedule_work_on(cpu, &stock->work);
2382 }
cdec2e42 2383 }
5af12d0e 2384 put_cpu();
9f50fad6 2385 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2386}
2387
308167fc 2388static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2389{
cdec2e42 2390 struct memcg_stock_pcp *stock;
42a30035 2391 struct mem_cgroup *memcg, *mi;
cdec2e42 2392
cdec2e42
KH
2393 stock = &per_cpu(memcg_stock, cpu);
2394 drain_stock(stock);
a983b5eb
JW
2395
2396 for_each_mem_cgroup(memcg) {
2397 int i;
2398
2399 for (i = 0; i < MEMCG_NR_STAT; i++) {
2400 int nid;
2401 long x;
2402
871789d4 2403 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2404 if (x)
42a30035
JW
2405 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2406 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2407
2408 if (i >= NR_VM_NODE_STAT_ITEMS)
2409 continue;
2410
2411 for_each_node(nid) {
2412 struct mem_cgroup_per_node *pn;
2413
2414 pn = mem_cgroup_nodeinfo(memcg, nid);
2415 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2416 if (x)
42a30035
JW
2417 do {
2418 atomic_long_add(x, &pn->lruvec_stat[i]);
2419 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2420 }
2421 }
2422
e27be240 2423 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2424 long x;
2425
871789d4 2426 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2427 if (x)
42a30035
JW
2428 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2429 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2430 }
2431 }
2432
308167fc 2433 return 0;
cdec2e42
KH
2434}
2435
b3ff9291
CD
2436static unsigned long reclaim_high(struct mem_cgroup *memcg,
2437 unsigned int nr_pages,
2438 gfp_t gfp_mask)
f7e1cb6e 2439{
b3ff9291
CD
2440 unsigned long nr_reclaimed = 0;
2441
f7e1cb6e 2442 do {
e22c6ed9
JW
2443 unsigned long pflags;
2444
d1663a90
JK
2445 if (page_counter_read(&memcg->memory) <=
2446 READ_ONCE(memcg->memory.high))
f7e1cb6e 2447 continue;
e22c6ed9 2448
e27be240 2449 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2450
2451 psi_memstall_enter(&pflags);
b3ff9291
CD
2452 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2453 gfp_mask, true);
e22c6ed9 2454 psi_memstall_leave(&pflags);
4bf17307
CD
2455 } while ((memcg = parent_mem_cgroup(memcg)) &&
2456 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2457
2458 return nr_reclaimed;
f7e1cb6e
JW
2459}
2460
2461static void high_work_func(struct work_struct *work)
2462{
2463 struct mem_cgroup *memcg;
2464
2465 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2466 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2467}
2468
0e4b01df
CD
2469/*
2470 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2471 * enough to still cause a significant slowdown in most cases, while still
2472 * allowing diagnostics and tracing to proceed without becoming stuck.
2473 */
2474#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2475
2476/*
2477 * When calculating the delay, we use these either side of the exponentiation to
2478 * maintain precision and scale to a reasonable number of jiffies (see the table
2479 * below.
2480 *
2481 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2482 * overage ratio to a delay.
ac5ddd0f 2483 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2484 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2485 * to produce a reasonable delay curve.
2486 *
2487 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2488 * reasonable delay curve compared to precision-adjusted overage, not
2489 * penalising heavily at first, but still making sure that growth beyond the
2490 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2491 * example, with a high of 100 megabytes:
2492 *
2493 * +-------+------------------------+
2494 * | usage | time to allocate in ms |
2495 * +-------+------------------------+
2496 * | 100M | 0 |
2497 * | 101M | 6 |
2498 * | 102M | 25 |
2499 * | 103M | 57 |
2500 * | 104M | 102 |
2501 * | 105M | 159 |
2502 * | 106M | 230 |
2503 * | 107M | 313 |
2504 * | 108M | 409 |
2505 * | 109M | 518 |
2506 * | 110M | 639 |
2507 * | 111M | 774 |
2508 * | 112M | 921 |
2509 * | 113M | 1081 |
2510 * | 114M | 1254 |
2511 * | 115M | 1439 |
2512 * | 116M | 1638 |
2513 * | 117M | 1849 |
2514 * | 118M | 2000 |
2515 * | 119M | 2000 |
2516 * | 120M | 2000 |
2517 * +-------+------------------------+
2518 */
2519 #define MEMCG_DELAY_PRECISION_SHIFT 20
2520 #define MEMCG_DELAY_SCALING_SHIFT 14
2521
8a5dbc65 2522static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2523{
8a5dbc65 2524 u64 overage;
b23afb93 2525
8a5dbc65
JK
2526 if (usage <= high)
2527 return 0;
e26733e0 2528
8a5dbc65
JK
2529 /*
2530 * Prevent division by 0 in overage calculation by acting as if
2531 * it was a threshold of 1 page
2532 */
2533 high = max(high, 1UL);
9b8b1754 2534
8a5dbc65
JK
2535 overage = usage - high;
2536 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2537 return div64_u64(overage, high);
2538}
e26733e0 2539
8a5dbc65
JK
2540static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2541{
2542 u64 overage, max_overage = 0;
e26733e0 2543
8a5dbc65
JK
2544 do {
2545 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2546 READ_ONCE(memcg->memory.high));
8a5dbc65 2547 max_overage = max(overage, max_overage);
e26733e0
CD
2548 } while ((memcg = parent_mem_cgroup(memcg)) &&
2549 !mem_cgroup_is_root(memcg));
2550
8a5dbc65
JK
2551 return max_overage;
2552}
2553
4b82ab4f
JK
2554static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2555{
2556 u64 overage, max_overage = 0;
2557
2558 do {
2559 overage = calculate_overage(page_counter_read(&memcg->swap),
2560 READ_ONCE(memcg->swap.high));
2561 if (overage)
2562 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2563 max_overage = max(overage, max_overage);
2564 } while ((memcg = parent_mem_cgroup(memcg)) &&
2565 !mem_cgroup_is_root(memcg));
2566
2567 return max_overage;
2568}
2569
8a5dbc65
JK
2570/*
2571 * Get the number of jiffies that we should penalise a mischievous cgroup which
2572 * is exceeding its memory.high by checking both it and its ancestors.
2573 */
2574static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2575 unsigned int nr_pages,
2576 u64 max_overage)
2577{
2578 unsigned long penalty_jiffies;
2579
e26733e0
CD
2580 if (!max_overage)
2581 return 0;
0e4b01df
CD
2582
2583 /*
0e4b01df
CD
2584 * We use overage compared to memory.high to calculate the number of
2585 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2586 * fairly lenient on small overages, and increasingly harsh when the
2587 * memcg in question makes it clear that it has no intention of stopping
2588 * its crazy behaviour, so we exponentially increase the delay based on
2589 * overage amount.
2590 */
e26733e0
CD
2591 penalty_jiffies = max_overage * max_overage * HZ;
2592 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2593 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2594
2595 /*
2596 * Factor in the task's own contribution to the overage, such that four
2597 * N-sized allocations are throttled approximately the same as one
2598 * 4N-sized allocation.
2599 *
2600 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2601 * larger the current charge patch is than that.
2602 */
ff144e69 2603 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2604}
2605
2606/*
2607 * Scheduled by try_charge() to be executed from the userland return path
2608 * and reclaims memory over the high limit.
2609 */
2610void mem_cgroup_handle_over_high(void)
2611{
2612 unsigned long penalty_jiffies;
2613 unsigned long pflags;
b3ff9291 2614 unsigned long nr_reclaimed;
e26733e0 2615 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2616 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2617 struct mem_cgroup *memcg;
b3ff9291 2618 bool in_retry = false;
e26733e0
CD
2619
2620 if (likely(!nr_pages))
2621 return;
2622
2623 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2624 current->memcg_nr_pages_over_high = 0;
2625
b3ff9291
CD
2626retry_reclaim:
2627 /*
2628 * The allocating task should reclaim at least the batch size, but for
2629 * subsequent retries we only want to do what's necessary to prevent oom
2630 * or breaching resource isolation.
2631 *
2632 * This is distinct from memory.max or page allocator behaviour because
2633 * memory.high is currently batched, whereas memory.max and the page
2634 * allocator run every time an allocation is made.
2635 */
2636 nr_reclaimed = reclaim_high(memcg,
2637 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2638 GFP_KERNEL);
2639
e26733e0
CD
2640 /*
2641 * memory.high is breached and reclaim is unable to keep up. Throttle
2642 * allocators proactively to slow down excessive growth.
2643 */
8a5dbc65
JK
2644 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2645 mem_find_max_overage(memcg));
0e4b01df 2646
4b82ab4f
JK
2647 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2648 swap_find_max_overage(memcg));
2649
ff144e69
JK
2650 /*
2651 * Clamp the max delay per usermode return so as to still keep the
2652 * application moving forwards and also permit diagnostics, albeit
2653 * extremely slowly.
2654 */
2655 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2656
0e4b01df
CD
2657 /*
2658 * Don't sleep if the amount of jiffies this memcg owes us is so low
2659 * that it's not even worth doing, in an attempt to be nice to those who
2660 * go only a small amount over their memory.high value and maybe haven't
2661 * been aggressively reclaimed enough yet.
2662 */
2663 if (penalty_jiffies <= HZ / 100)
2664 goto out;
2665
b3ff9291
CD
2666 /*
2667 * If reclaim is making forward progress but we're still over
2668 * memory.high, we want to encourage that rather than doing allocator
2669 * throttling.
2670 */
2671 if (nr_reclaimed || nr_retries--) {
2672 in_retry = true;
2673 goto retry_reclaim;
2674 }
2675
0e4b01df
CD
2676 /*
2677 * If we exit early, we're guaranteed to die (since
2678 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2679 * need to account for any ill-begotten jiffies to pay them off later.
2680 */
2681 psi_memstall_enter(&pflags);
2682 schedule_timeout_killable(penalty_jiffies);
2683 psi_memstall_leave(&pflags);
2684
2685out:
2686 css_put(&memcg->css);
b23afb93
TH
2687}
2688
00501b53
JW
2689static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2690 unsigned int nr_pages)
8a9f3ccd 2691{
a983b5eb 2692 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2693 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2694 struct mem_cgroup *mem_over_limit;
3e32cb2e 2695 struct page_counter *counter;
e22c6ed9 2696 enum oom_status oom_status;
6539cc05 2697 unsigned long nr_reclaimed;
b70a2a21
JW
2698 bool may_swap = true;
2699 bool drained = false;
e22c6ed9 2700 unsigned long pflags;
a636b327 2701
ce00a967 2702 if (mem_cgroup_is_root(memcg))
10d53c74 2703 return 0;
6539cc05 2704retry:
b6b6cc72 2705 if (consume_stock(memcg, nr_pages))
10d53c74 2706 return 0;
8a9f3ccd 2707
7941d214 2708 if (!do_memsw_account() ||
6071ca52
JW
2709 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2710 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2711 goto done_restock;
7941d214 2712 if (do_memsw_account())
3e32cb2e
JW
2713 page_counter_uncharge(&memcg->memsw, batch);
2714 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2715 } else {
3e32cb2e 2716 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2717 may_swap = false;
3fbe7244 2718 }
7a81b88c 2719
6539cc05
JW
2720 if (batch > nr_pages) {
2721 batch = nr_pages;
2722 goto retry;
2723 }
6d61ef40 2724
869712fd
JW
2725 /*
2726 * Memcg doesn't have a dedicated reserve for atomic
2727 * allocations. But like the global atomic pool, we need to
2728 * put the burden of reclaim on regular allocation requests
2729 * and let these go through as privileged allocations.
2730 */
2731 if (gfp_mask & __GFP_ATOMIC)
2732 goto force;
2733
06b078fc
JW
2734 /*
2735 * Unlike in global OOM situations, memcg is not in a physical
2736 * memory shortage. Allow dying and OOM-killed tasks to
2737 * bypass the last charges so that they can exit quickly and
2738 * free their memory.
2739 */
7775face 2740 if (unlikely(should_force_charge()))
10d53c74 2741 goto force;
06b078fc 2742
89a28483
JW
2743 /*
2744 * Prevent unbounded recursion when reclaim operations need to
2745 * allocate memory. This might exceed the limits temporarily,
2746 * but we prefer facilitating memory reclaim and getting back
2747 * under the limit over triggering OOM kills in these cases.
2748 */
2749 if (unlikely(current->flags & PF_MEMALLOC))
2750 goto force;
2751
06b078fc
JW
2752 if (unlikely(task_in_memcg_oom(current)))
2753 goto nomem;
2754
d0164adc 2755 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2756 goto nomem;
4b534334 2757
e27be240 2758 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2759
e22c6ed9 2760 psi_memstall_enter(&pflags);
b70a2a21
JW
2761 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2762 gfp_mask, may_swap);
e22c6ed9 2763 psi_memstall_leave(&pflags);
6539cc05 2764
61e02c74 2765 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2766 goto retry;
28c34c29 2767
b70a2a21 2768 if (!drained) {
6d3d6aa2 2769 drain_all_stock(mem_over_limit);
b70a2a21
JW
2770 drained = true;
2771 goto retry;
2772 }
2773
28c34c29
JW
2774 if (gfp_mask & __GFP_NORETRY)
2775 goto nomem;
6539cc05
JW
2776 /*
2777 * Even though the limit is exceeded at this point, reclaim
2778 * may have been able to free some pages. Retry the charge
2779 * before killing the task.
2780 *
2781 * Only for regular pages, though: huge pages are rather
2782 * unlikely to succeed so close to the limit, and we fall back
2783 * to regular pages anyway in case of failure.
2784 */
61e02c74 2785 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2786 goto retry;
2787 /*
2788 * At task move, charge accounts can be doubly counted. So, it's
2789 * better to wait until the end of task_move if something is going on.
2790 */
2791 if (mem_cgroup_wait_acct_move(mem_over_limit))
2792 goto retry;
2793
9b130619
JW
2794 if (nr_retries--)
2795 goto retry;
2796
38d38493 2797 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2798 goto nomem;
2799
06b078fc 2800 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2801 goto force;
06b078fc 2802
6539cc05 2803 if (fatal_signal_pending(current))
10d53c74 2804 goto force;
6539cc05 2805
29ef680a
MH
2806 /*
2807 * keep retrying as long as the memcg oom killer is able to make
2808 * a forward progress or bypass the charge if the oom killer
2809 * couldn't make any progress.
2810 */
2811 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2812 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2813 switch (oom_status) {
2814 case OOM_SUCCESS:
d977aa93 2815 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2816 goto retry;
2817 case OOM_FAILED:
2818 goto force;
2819 default:
2820 goto nomem;
2821 }
7a81b88c 2822nomem:
6d1fdc48 2823 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2824 return -ENOMEM;
10d53c74
TH
2825force:
2826 /*
2827 * The allocation either can't fail or will lead to more memory
2828 * being freed very soon. Allow memory usage go over the limit
2829 * temporarily by force charging it.
2830 */
2831 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2832 if (do_memsw_account())
10d53c74 2833 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2834
2835 return 0;
6539cc05
JW
2836
2837done_restock:
2838 if (batch > nr_pages)
2839 refill_stock(memcg, batch - nr_pages);
b23afb93 2840
241994ed 2841 /*
b23afb93
TH
2842 * If the hierarchy is above the normal consumption range, schedule
2843 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2844 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2845 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2846 * not recorded as it most likely matches current's and won't
2847 * change in the meantime. As high limit is checked again before
2848 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2849 */
2850 do {
4b82ab4f
JK
2851 bool mem_high, swap_high;
2852
2853 mem_high = page_counter_read(&memcg->memory) >
2854 READ_ONCE(memcg->memory.high);
2855 swap_high = page_counter_read(&memcg->swap) >
2856 READ_ONCE(memcg->swap.high);
2857
2858 /* Don't bother a random interrupted task */
2859 if (in_interrupt()) {
2860 if (mem_high) {
f7e1cb6e
JW
2861 schedule_work(&memcg->high_work);
2862 break;
2863 }
4b82ab4f
JK
2864 continue;
2865 }
2866
2867 if (mem_high || swap_high) {
2868 /*
2869 * The allocating tasks in this cgroup will need to do
2870 * reclaim or be throttled to prevent further growth
2871 * of the memory or swap footprints.
2872 *
2873 * Target some best-effort fairness between the tasks,
2874 * and distribute reclaim work and delay penalties
2875 * based on how much each task is actually allocating.
2876 */
9516a18a 2877 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2878 set_notify_resume(current);
2879 break;
2880 }
241994ed 2881 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2882
2883 return 0;
7a81b88c 2884}
8a9f3ccd 2885
f0e45fb4 2886#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2887static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2888{
ce00a967
JW
2889 if (mem_cgroup_is_root(memcg))
2890 return;
2891
3e32cb2e 2892 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2893 if (do_memsw_account())
3e32cb2e 2894 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2895}
f0e45fb4 2896#endif
d01dd17f 2897
d9eb1ea2 2898static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2899{
bcfe06bf 2900 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2901 /*
a5eb011a 2902 * Any of the following ensures page's memcg stability:
0a31bc97 2903 *
a0b5b414
JW
2904 * - the page lock
2905 * - LRU isolation
2906 * - lock_page_memcg()
2907 * - exclusive reference
0a31bc97 2908 */
bcfe06bf 2909 page->memcg_data = (unsigned long)memcg;
7a81b88c 2910}
66e1707b 2911
84c07d11 2912#ifdef CONFIG_MEMCG_KMEM
10befea9 2913int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2914 gfp_t gfp, bool new_page)
10befea9
RG
2915{
2916 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2917 unsigned long memcg_data;
10befea9
RG
2918 void *vec;
2919
2920 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2921 page_to_nid(page));
2922 if (!vec)
2923 return -ENOMEM;
2924
2e9bd483
RG
2925 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2926 if (new_page) {
2927 /*
2928 * If the slab page is brand new and nobody can yet access
2929 * it's memcg_data, no synchronization is required and
2930 * memcg_data can be simply assigned.
2931 */
2932 page->memcg_data = memcg_data;
2933 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2934 /*
2935 * If the slab page is already in use, somebody can allocate
2936 * and assign obj_cgroups in parallel. In this case the existing
2937 * objcg vector should be reused.
2938 */
10befea9 2939 kfree(vec);
2e9bd483
RG
2940 return 0;
2941 }
10befea9 2942
2e9bd483 2943 kmemleak_not_leak(vec);
10befea9
RG
2944 return 0;
2945}
2946
8380ce47
RG
2947/*
2948 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949 *
bcfe06bf
RG
2950 * A passed kernel object can be a slab object or a generic kernel page, so
2951 * different mechanisms for getting the memory cgroup pointer should be used.
2952 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2953 * can not know for sure how the kernel object is implemented.
2954 * mem_cgroup_from_obj() can be safely used in such cases.
2955 *
8380ce47
RG
2956 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2957 * cgroup_mutex, etc.
2958 */
2959struct mem_cgroup *mem_cgroup_from_obj(void *p)
2960{
2961 struct page *page;
2962
2963 if (mem_cgroup_disabled())
2964 return NULL;
2965
2966 page = virt_to_head_page(p);
2967
2968 /*
9855609b
RG
2969 * Slab objects are accounted individually, not per-page.
2970 * Memcg membership data for each individual object is saved in
2971 * the page->obj_cgroups.
8380ce47 2972 */
270c6a71 2973 if (page_objcgs_check(page)) {
9855609b
RG
2974 struct obj_cgroup *objcg;
2975 unsigned int off;
2976
2977 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2978 objcg = page_objcgs(page)[off];
10befea9
RG
2979 if (objcg)
2980 return obj_cgroup_memcg(objcg);
2981
2982 return NULL;
9855609b 2983 }
8380ce47 2984
bcfe06bf
RG
2985 /*
2986 * page_memcg_check() is used here, because page_has_obj_cgroups()
2987 * check above could fail because the object cgroups vector wasn't set
2988 * at that moment, but it can be set concurrently.
2989 * page_memcg_check(page) will guarantee that a proper memory
2990 * cgroup pointer or NULL will be returned.
2991 */
2992 return page_memcg_check(page);
8380ce47
RG
2993}
2994
bf4f0599
RG
2995__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2996{
2997 struct obj_cgroup *objcg = NULL;
2998 struct mem_cgroup *memcg;
2999
279c3393
RG
3000 if (memcg_kmem_bypass())
3001 return NULL;
3002
bf4f0599 3003 rcu_read_lock();
37d5985c
RG
3004 if (unlikely(active_memcg()))
3005 memcg = active_memcg();
bf4f0599
RG
3006 else
3007 memcg = mem_cgroup_from_task(current);
3008
3009 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3010 objcg = rcu_dereference(memcg->objcg);
3011 if (objcg && obj_cgroup_tryget(objcg))
3012 break;
2f7659a3 3013 objcg = NULL;
bf4f0599
RG
3014 }
3015 rcu_read_unlock();
3016
3017 return objcg;
3018}
3019
f3bb3043 3020static int memcg_alloc_cache_id(void)
55007d84 3021{
f3bb3043
VD
3022 int id, size;
3023 int err;
3024
dbcf73e2 3025 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3026 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3027 if (id < 0)
3028 return id;
55007d84 3029
dbcf73e2 3030 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3031 return id;
3032
3033 /*
3034 * There's no space for the new id in memcg_caches arrays,
3035 * so we have to grow them.
3036 */
05257a1a 3037 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3038
3039 size = 2 * (id + 1);
55007d84
GC
3040 if (size < MEMCG_CACHES_MIN_SIZE)
3041 size = MEMCG_CACHES_MIN_SIZE;
3042 else if (size > MEMCG_CACHES_MAX_SIZE)
3043 size = MEMCG_CACHES_MAX_SIZE;
3044
9855609b 3045 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3046 if (!err)
3047 memcg_nr_cache_ids = size;
3048
3049 up_write(&memcg_cache_ids_sem);
3050
f3bb3043 3051 if (err) {
dbcf73e2 3052 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3053 return err;
3054 }
3055 return id;
3056}
3057
3058static void memcg_free_cache_id(int id)
3059{
dbcf73e2 3060 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3061}
3062
45264778 3063/**
4b13f64d 3064 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3065 * @memcg: memory cgroup to charge
45264778 3066 * @gfp: reclaim mode
92d0510c 3067 * @nr_pages: number of pages to charge
45264778
VD
3068 *
3069 * Returns 0 on success, an error code on failure.
3070 */
c1a660de
RG
3071static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3072 unsigned int nr_pages)
7ae1e1d0 3073{
f3ccb2c4 3074 struct page_counter *counter;
7ae1e1d0
GC
3075 int ret;
3076
f3ccb2c4 3077 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3078 if (ret)
f3ccb2c4 3079 return ret;
52c29b04
JW
3080
3081 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3082 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3083
3084 /*
3085 * Enforce __GFP_NOFAIL allocation because callers are not
3086 * prepared to see failures and likely do not have any failure
3087 * handling code.
3088 */
3089 if (gfp & __GFP_NOFAIL) {
3090 page_counter_charge(&memcg->kmem, nr_pages);
3091 return 0;
3092 }
52c29b04
JW
3093 cancel_charge(memcg, nr_pages);
3094 return -ENOMEM;
7ae1e1d0 3095 }
f3ccb2c4 3096 return 0;
7ae1e1d0
GC
3097}
3098
4b13f64d
RG
3099/**
3100 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3101 * @memcg: memcg to uncharge
3102 * @nr_pages: number of pages to uncharge
3103 */
c1a660de 3104static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
4b13f64d
RG
3105{
3106 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3107 page_counter_uncharge(&memcg->kmem, nr_pages);
3108
3de7d4f2 3109 refill_stock(memcg, nr_pages);
4b13f64d
RG
3110}
3111
45264778 3112/**
f4b00eab 3113 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3114 * @page: page to charge
3115 * @gfp: reclaim mode
3116 * @order: allocation order
3117 *
3118 * Returns 0 on success, an error code on failure.
3119 */
f4b00eab 3120int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3121{
f3ccb2c4 3122 struct mem_cgroup *memcg;
fcff7d7e 3123 int ret = 0;
7ae1e1d0 3124
d46eb14b 3125 memcg = get_mem_cgroup_from_current();
279c3393 3126 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3127 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3128 if (!ret) {
18b2db3b
RG
3129 page->memcg_data = (unsigned long)memcg |
3130 MEMCG_DATA_KMEM;
1a3e1f40 3131 return 0;
4d96ba35 3132 }
279c3393 3133 css_put(&memcg->css);
c4159a75 3134 }
d05e83a6 3135 return ret;
7ae1e1d0 3136}
49a18eae 3137
45264778 3138/**
f4b00eab 3139 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3140 * @page: page to uncharge
3141 * @order: allocation order
3142 */
f4b00eab 3143void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3144{
bcfe06bf 3145 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3146 unsigned int nr_pages = 1 << order;
7ae1e1d0 3147
7ae1e1d0
GC
3148 if (!memcg)
3149 return;
3150
309381fe 3151 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3152 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3153 page->memcg_data = 0;
1a3e1f40 3154 css_put(&memcg->css);
60d3fd32 3155}
bf4f0599
RG
3156
3157static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3158{
3159 struct memcg_stock_pcp *stock;
3160 unsigned long flags;
3161 bool ret = false;
3162
3163 local_irq_save(flags);
3164
3165 stock = this_cpu_ptr(&memcg_stock);
3166 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3167 stock->nr_bytes -= nr_bytes;
3168 ret = true;
3169 }
3170
3171 local_irq_restore(flags);
3172
3173 return ret;
3174}
3175
3176static void drain_obj_stock(struct memcg_stock_pcp *stock)
3177{
3178 struct obj_cgroup *old = stock->cached_objcg;
3179
3180 if (!old)
3181 return;
3182
3183 if (stock->nr_bytes) {
3184 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3185 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3186
3187 if (nr_pages) {
3188 rcu_read_lock();
3189 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3190 rcu_read_unlock();
3191 }
3192
3193 /*
3194 * The leftover is flushed to the centralized per-memcg value.
3195 * On the next attempt to refill obj stock it will be moved
3196 * to a per-cpu stock (probably, on an other CPU), see
3197 * refill_obj_stock().
3198 *
3199 * How often it's flushed is a trade-off between the memory
3200 * limit enforcement accuracy and potential CPU contention,
3201 * so it might be changed in the future.
3202 */
3203 atomic_add(nr_bytes, &old->nr_charged_bytes);
3204 stock->nr_bytes = 0;
3205 }
3206
3207 obj_cgroup_put(old);
3208 stock->cached_objcg = NULL;
3209}
3210
3211static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3212 struct mem_cgroup *root_memcg)
3213{
3214 struct mem_cgroup *memcg;
3215
3216 if (stock->cached_objcg) {
3217 memcg = obj_cgroup_memcg(stock->cached_objcg);
3218 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3219 return true;
3220 }
3221
3222 return false;
3223}
3224
3225static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3226{
3227 struct memcg_stock_pcp *stock;
3228 unsigned long flags;
3229
3230 local_irq_save(flags);
3231
3232 stock = this_cpu_ptr(&memcg_stock);
3233 if (stock->cached_objcg != objcg) { /* reset if necessary */
3234 drain_obj_stock(stock);
3235 obj_cgroup_get(objcg);
3236 stock->cached_objcg = objcg;
3237 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3238 }
3239 stock->nr_bytes += nr_bytes;
3240
3241 if (stock->nr_bytes > PAGE_SIZE)
3242 drain_obj_stock(stock);
3243
3244 local_irq_restore(flags);
3245}
3246
3247int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3248{
3249 struct mem_cgroup *memcg;
3250 unsigned int nr_pages, nr_bytes;
3251 int ret;
3252
3253 if (consume_obj_stock(objcg, size))
3254 return 0;
3255
3256 /*
3257 * In theory, memcg->nr_charged_bytes can have enough
3258 * pre-charged bytes to satisfy the allocation. However,
3259 * flushing memcg->nr_charged_bytes requires two atomic
3260 * operations, and memcg->nr_charged_bytes can't be big,
3261 * so it's better to ignore it and try grab some new pages.
3262 * memcg->nr_charged_bytes will be flushed in
3263 * refill_obj_stock(), called from this function or
3264 * independently later.
3265 */
3266 rcu_read_lock();
eefbfa7f 3267retry:
bf4f0599 3268 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3269 if (unlikely(!css_tryget(&memcg->css)))
3270 goto retry;
bf4f0599
RG
3271 rcu_read_unlock();
3272
3273 nr_pages = size >> PAGE_SHIFT;
3274 nr_bytes = size & (PAGE_SIZE - 1);
3275
3276 if (nr_bytes)
3277 nr_pages += 1;
3278
3279 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3280 if (!ret && nr_bytes)
3281 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3282
3283 css_put(&memcg->css);
3284 return ret;
3285}
3286
3287void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3288{
3289 refill_obj_stock(objcg, size);
3290}
3291
84c07d11 3292#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3293
ca3e0214 3294#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ca3e0214 3295/*
6168d0da 3296 * Because page_memcg(head) is not set on compound tails, set it now.
ca3e0214 3297 */
e94c8a9c 3298void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3299{
bcfe06bf 3300 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3301 int i;
ca3e0214 3302
3d37c4a9
KH
3303 if (mem_cgroup_disabled())
3304 return;
b070e65c 3305
1a3e1f40
JW
3306 for (i = 1; i < HPAGE_PMD_NR; i++) {
3307 css_get(&memcg->css);
bcfe06bf 3308 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3309 }
ca3e0214 3310}
12d27107 3311#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3312
c255a458 3313#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3314/**
3315 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3316 * @entry: swap entry to be moved
3317 * @from: mem_cgroup which the entry is moved from
3318 * @to: mem_cgroup which the entry is moved to
3319 *
3320 * It succeeds only when the swap_cgroup's record for this entry is the same
3321 * as the mem_cgroup's id of @from.
3322 *
3323 * Returns 0 on success, -EINVAL on failure.
3324 *
3e32cb2e 3325 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3326 * both res and memsw, and called css_get().
3327 */
3328static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3329 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3330{
3331 unsigned short old_id, new_id;
3332
34c00c31
LZ
3333 old_id = mem_cgroup_id(from);
3334 new_id = mem_cgroup_id(to);
02491447
DN
3335
3336 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3337 mod_memcg_state(from, MEMCG_SWAP, -1);
3338 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3339 return 0;
3340 }
3341 return -EINVAL;
3342}
3343#else
3344static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3345 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3346{
3347 return -EINVAL;
3348}
8c7c6e34 3349#endif
d13d1443 3350
bbec2e15 3351static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3352
bbec2e15
RG
3353static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3354 unsigned long max, bool memsw)
628f4235 3355{
3e32cb2e 3356 bool enlarge = false;
bb4a7ea2 3357 bool drained = false;
3e32cb2e 3358 int ret;
c054a78c
YZ
3359 bool limits_invariant;
3360 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3361
3e32cb2e 3362 do {
628f4235
KH
3363 if (signal_pending(current)) {
3364 ret = -EINTR;
3365 break;
3366 }
3e32cb2e 3367
bbec2e15 3368 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3369 /*
3370 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3371 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3372 */
15b42562 3373 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3374 max <= memcg->memsw.max;
c054a78c 3375 if (!limits_invariant) {
bbec2e15 3376 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3377 ret = -EINVAL;
8c7c6e34
KH
3378 break;
3379 }
bbec2e15 3380 if (max > counter->max)
3e32cb2e 3381 enlarge = true;
bbec2e15
RG
3382 ret = page_counter_set_max(counter, max);
3383 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3384
3385 if (!ret)
3386 break;
3387
bb4a7ea2
SB
3388 if (!drained) {
3389 drain_all_stock(memcg);
3390 drained = true;
3391 continue;
3392 }
3393
1ab5c056
AR
3394 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3395 GFP_KERNEL, !memsw)) {
3396 ret = -EBUSY;
3397 break;
3398 }
3399 } while (true);
3e32cb2e 3400
3c11ecf4
KH
3401 if (!ret && enlarge)
3402 memcg_oom_recover(memcg);
3e32cb2e 3403
628f4235
KH
3404 return ret;
3405}
3406
ef8f2327 3407unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3408 gfp_t gfp_mask,
3409 unsigned long *total_scanned)
3410{
3411 unsigned long nr_reclaimed = 0;
ef8f2327 3412 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3413 unsigned long reclaimed;
3414 int loop = 0;
ef8f2327 3415 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3416 unsigned long excess;
0608f43d
AM
3417 unsigned long nr_scanned;
3418
3419 if (order > 0)
3420 return 0;
3421
ef8f2327 3422 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3423
3424 /*
3425 * Do not even bother to check the largest node if the root
3426 * is empty. Do it lockless to prevent lock bouncing. Races
3427 * are acceptable as soft limit is best effort anyway.
3428 */
bfc7228b 3429 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3430 return 0;
3431
0608f43d
AM
3432 /*
3433 * This loop can run a while, specially if mem_cgroup's continuously
3434 * keep exceeding their soft limit and putting the system under
3435 * pressure
3436 */
3437 do {
3438 if (next_mz)
3439 mz = next_mz;
3440 else
3441 mz = mem_cgroup_largest_soft_limit_node(mctz);
3442 if (!mz)
3443 break;
3444
3445 nr_scanned = 0;
ef8f2327 3446 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3447 gfp_mask, &nr_scanned);
3448 nr_reclaimed += reclaimed;
3449 *total_scanned += nr_scanned;
0a31bc97 3450 spin_lock_irq(&mctz->lock);
bc2f2e7f 3451 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3452
3453 /*
3454 * If we failed to reclaim anything from this memory cgroup
3455 * it is time to move on to the next cgroup
3456 */
3457 next_mz = NULL;
bc2f2e7f
VD
3458 if (!reclaimed)
3459 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3460
3e32cb2e 3461 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3462 /*
3463 * One school of thought says that we should not add
3464 * back the node to the tree if reclaim returns 0.
3465 * But our reclaim could return 0, simply because due
3466 * to priority we are exposing a smaller subset of
3467 * memory to reclaim from. Consider this as a longer
3468 * term TODO.
3469 */
3470 /* If excess == 0, no tree ops */
cf2c8127 3471 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3472 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3473 css_put(&mz->memcg->css);
3474 loop++;
3475 /*
3476 * Could not reclaim anything and there are no more
3477 * mem cgroups to try or we seem to be looping without
3478 * reclaiming anything.
3479 */
3480 if (!nr_reclaimed &&
3481 (next_mz == NULL ||
3482 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3483 break;
3484 } while (!nr_reclaimed);
3485 if (next_mz)
3486 css_put(&next_mz->memcg->css);
3487 return nr_reclaimed;
3488}
3489
c26251f9 3490/*
51038171 3491 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3492 *
3493 * Caller is responsible for holding css reference for memcg.
3494 */
3495static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3496{
d977aa93 3497 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3498
c1e862c1
KH
3499 /* we call try-to-free pages for make this cgroup empty */
3500 lru_add_drain_all();
d12c60f6
JS
3501
3502 drain_all_stock(memcg);
3503
f817ed48 3504 /* try to free all pages in this cgroup */
3e32cb2e 3505 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3506 int progress;
c1e862c1 3507
c26251f9
MH
3508 if (signal_pending(current))
3509 return -EINTR;
3510
b70a2a21
JW
3511 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3512 GFP_KERNEL, true);
c1e862c1 3513 if (!progress) {
f817ed48 3514 nr_retries--;
c1e862c1 3515 /* maybe some writeback is necessary */
8aa7e847 3516 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3517 }
f817ed48
KH
3518
3519 }
ab5196c2
MH
3520
3521 return 0;
cc847582
KH
3522}
3523
6770c64e
TH
3524static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3525 char *buf, size_t nbytes,
3526 loff_t off)
c1e862c1 3527{
6770c64e 3528 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3529
d8423011
MH
3530 if (mem_cgroup_is_root(memcg))
3531 return -EINVAL;
6770c64e 3532 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3533}
3534
182446d0
TH
3535static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3536 struct cftype *cft)
18f59ea7 3537{
bef8620c 3538 return 1;
18f59ea7
BS
3539}
3540
182446d0
TH
3541static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3542 struct cftype *cft, u64 val)
18f59ea7 3543{
bef8620c 3544 if (val == 1)
0b8f73e1 3545 return 0;
567fb435 3546
bef8620c
RG
3547 pr_warn_once("Non-hierarchical mode is deprecated. "
3548 "Please report your usecase to linux-mm@kvack.org if you "
3549 "depend on this functionality.\n");
567fb435 3550
bef8620c 3551 return -EINVAL;
18f59ea7
BS
3552}
3553
6f646156 3554static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3555{
42a30035 3556 unsigned long val;
ce00a967 3557
3e32cb2e 3558 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3559 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3560 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3561 if (swap)
3562 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3563 } else {
ce00a967 3564 if (!swap)
3e32cb2e 3565 val = page_counter_read(&memcg->memory);
ce00a967 3566 else
3e32cb2e 3567 val = page_counter_read(&memcg->memsw);
ce00a967 3568 }
c12176d3 3569 return val;
ce00a967
JW
3570}
3571
3e32cb2e
JW
3572enum {
3573 RES_USAGE,
3574 RES_LIMIT,
3575 RES_MAX_USAGE,
3576 RES_FAILCNT,
3577 RES_SOFT_LIMIT,
3578};
ce00a967 3579
791badbd 3580static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3581 struct cftype *cft)
8cdea7c0 3582{
182446d0 3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3584 struct page_counter *counter;
af36f906 3585
3e32cb2e 3586 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3587 case _MEM:
3e32cb2e
JW
3588 counter = &memcg->memory;
3589 break;
8c7c6e34 3590 case _MEMSWAP:
3e32cb2e
JW
3591 counter = &memcg->memsw;
3592 break;
510fc4e1 3593 case _KMEM:
3e32cb2e 3594 counter = &memcg->kmem;
510fc4e1 3595 break;
d55f90bf 3596 case _TCP:
0db15298 3597 counter = &memcg->tcpmem;
d55f90bf 3598 break;
8c7c6e34
KH
3599 default:
3600 BUG();
8c7c6e34 3601 }
3e32cb2e
JW
3602
3603 switch (MEMFILE_ATTR(cft->private)) {
3604 case RES_USAGE:
3605 if (counter == &memcg->memory)
c12176d3 3606 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3607 if (counter == &memcg->memsw)
c12176d3 3608 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3609 return (u64)page_counter_read(counter) * PAGE_SIZE;
3610 case RES_LIMIT:
bbec2e15 3611 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3612 case RES_MAX_USAGE:
3613 return (u64)counter->watermark * PAGE_SIZE;
3614 case RES_FAILCNT:
3615 return counter->failcnt;
3616 case RES_SOFT_LIMIT:
3617 return (u64)memcg->soft_limit * PAGE_SIZE;
3618 default:
3619 BUG();
3620 }
8cdea7c0 3621}
510fc4e1 3622
4a87e2a2 3623static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3624{
4a87e2a2 3625 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3626 struct mem_cgroup *mi;
3627 int node, cpu, i;
c350a99e
RG
3628
3629 for_each_online_cpu(cpu)
4a87e2a2 3630 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3631 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3632
3633 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3634 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3635 atomic_long_add(stat[i], &mi->vmstats[i]);
3636
3637 for_each_node(node) {
3638 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3639 struct mem_cgroup_per_node *pi;
3640
4a87e2a2 3641 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3642 stat[i] = 0;
3643
3644 for_each_online_cpu(cpu)
4a87e2a2 3645 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3646 stat[i] += per_cpu(
3647 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3648
3649 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3650 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3651 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3652 }
3653}
3654
bb65f89b
RG
3655static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3656{
3657 unsigned long events[NR_VM_EVENT_ITEMS];
3658 struct mem_cgroup *mi;
3659 int cpu, i;
3660
3661 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3662 events[i] = 0;
3663
3664 for_each_online_cpu(cpu)
3665 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3666 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3667 cpu);
bb65f89b
RG
3668
3669 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3670 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3671 atomic_long_add(events[i], &mi->vmevents[i]);
3672}
3673
84c07d11 3674#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3675static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3676{
bf4f0599 3677 struct obj_cgroup *objcg;
d6441637
VD
3678 int memcg_id;
3679
b313aeee
VD
3680 if (cgroup_memory_nokmem)
3681 return 0;
3682
2a4db7eb 3683 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3684 BUG_ON(memcg->kmem_state);
d6441637 3685
f3bb3043 3686 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3687 if (memcg_id < 0)
3688 return memcg_id;
d6441637 3689
bf4f0599
RG
3690 objcg = obj_cgroup_alloc();
3691 if (!objcg) {
3692 memcg_free_cache_id(memcg_id);
3693 return -ENOMEM;
3694 }
3695 objcg->memcg = memcg;
3696 rcu_assign_pointer(memcg->objcg, objcg);
3697
d648bcc7
RG
3698 static_branch_enable(&memcg_kmem_enabled_key);
3699
900a38f0 3700 memcg->kmemcg_id = memcg_id;
567e9ab2 3701 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3702
3703 return 0;
d6441637
VD
3704}
3705
8e0a8912
JW
3706static void memcg_offline_kmem(struct mem_cgroup *memcg)
3707{
3708 struct cgroup_subsys_state *css;
3709 struct mem_cgroup *parent, *child;
3710 int kmemcg_id;
3711
3712 if (memcg->kmem_state != KMEM_ONLINE)
3713 return;
9855609b 3714
8e0a8912
JW
3715 memcg->kmem_state = KMEM_ALLOCATED;
3716
8e0a8912
JW
3717 parent = parent_mem_cgroup(memcg);
3718 if (!parent)
3719 parent = root_mem_cgroup;
3720
bf4f0599 3721 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3722
3723 kmemcg_id = memcg->kmemcg_id;
3724 BUG_ON(kmemcg_id < 0);
3725
8e0a8912
JW
3726 /*
3727 * Change kmemcg_id of this cgroup and all its descendants to the
3728 * parent's id, and then move all entries from this cgroup's list_lrus
3729 * to ones of the parent. After we have finished, all list_lrus
3730 * corresponding to this cgroup are guaranteed to remain empty. The
3731 * ordering is imposed by list_lru_node->lock taken by
3732 * memcg_drain_all_list_lrus().
3733 */
3a06bb78 3734 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3735 css_for_each_descendant_pre(css, &memcg->css) {
3736 child = mem_cgroup_from_css(css);
3737 BUG_ON(child->kmemcg_id != kmemcg_id);
3738 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3739 }
3a06bb78
TH
3740 rcu_read_unlock();
3741
9bec5c35 3742 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3743
3744 memcg_free_cache_id(kmemcg_id);
3745}
3746
3747static void memcg_free_kmem(struct mem_cgroup *memcg)
3748{
0b8f73e1
JW
3749 /* css_alloc() failed, offlining didn't happen */
3750 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3751 memcg_offline_kmem(memcg);
8e0a8912 3752}
d6441637 3753#else
0b8f73e1 3754static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3755{
3756 return 0;
3757}
3758static void memcg_offline_kmem(struct mem_cgroup *memcg)
3759{
3760}
3761static void memcg_free_kmem(struct mem_cgroup *memcg)
3762{
3763}
84c07d11 3764#endif /* CONFIG_MEMCG_KMEM */
127424c8 3765
bbec2e15
RG
3766static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3767 unsigned long max)
d6441637 3768{
b313aeee 3769 int ret;
127424c8 3770
bbec2e15
RG
3771 mutex_lock(&memcg_max_mutex);
3772 ret = page_counter_set_max(&memcg->kmem, max);
3773 mutex_unlock(&memcg_max_mutex);
127424c8 3774 return ret;
d6441637 3775}
510fc4e1 3776
bbec2e15 3777static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3778{
3779 int ret;
3780
bbec2e15 3781 mutex_lock(&memcg_max_mutex);
d55f90bf 3782
bbec2e15 3783 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3784 if (ret)
3785 goto out;
3786
0db15298 3787 if (!memcg->tcpmem_active) {
d55f90bf
VD
3788 /*
3789 * The active flag needs to be written after the static_key
3790 * update. This is what guarantees that the socket activation
2d758073
JW
3791 * function is the last one to run. See mem_cgroup_sk_alloc()
3792 * for details, and note that we don't mark any socket as
3793 * belonging to this memcg until that flag is up.
d55f90bf
VD
3794 *
3795 * We need to do this, because static_keys will span multiple
3796 * sites, but we can't control their order. If we mark a socket
3797 * as accounted, but the accounting functions are not patched in
3798 * yet, we'll lose accounting.
3799 *
2d758073 3800 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3801 * because when this value change, the code to process it is not
3802 * patched in yet.
3803 */
3804 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3805 memcg->tcpmem_active = true;
d55f90bf
VD
3806 }
3807out:
bbec2e15 3808 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3809 return ret;
3810}
d55f90bf 3811
628f4235
KH
3812/*
3813 * The user of this function is...
3814 * RES_LIMIT.
3815 */
451af504
TH
3816static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3817 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3818{
451af504 3819 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3820 unsigned long nr_pages;
628f4235
KH
3821 int ret;
3822
451af504 3823 buf = strstrip(buf);
650c5e56 3824 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3825 if (ret)
3826 return ret;
af36f906 3827
3e32cb2e 3828 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3829 case RES_LIMIT:
4b3bde4c
BS
3830 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3831 ret = -EINVAL;
3832 break;
3833 }
3e32cb2e
JW
3834 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3835 case _MEM:
bbec2e15 3836 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3837 break;
3e32cb2e 3838 case _MEMSWAP:
bbec2e15 3839 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3840 break;
3e32cb2e 3841 case _KMEM:
0158115f
MH
3842 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3843 "Please report your usecase to linux-mm@kvack.org if you "
3844 "depend on this functionality.\n");
bbec2e15 3845 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3846 break;
d55f90bf 3847 case _TCP:
bbec2e15 3848 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3849 break;
3e32cb2e 3850 }
296c81d8 3851 break;
3e32cb2e
JW
3852 case RES_SOFT_LIMIT:
3853 memcg->soft_limit = nr_pages;
3854 ret = 0;
628f4235
KH
3855 break;
3856 }
451af504 3857 return ret ?: nbytes;
8cdea7c0
BS
3858}
3859
6770c64e
TH
3860static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3861 size_t nbytes, loff_t off)
c84872e1 3862{
6770c64e 3863 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3864 struct page_counter *counter;
c84872e1 3865
3e32cb2e
JW
3866 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3867 case _MEM:
3868 counter = &memcg->memory;
3869 break;
3870 case _MEMSWAP:
3871 counter = &memcg->memsw;
3872 break;
3873 case _KMEM:
3874 counter = &memcg->kmem;
3875 break;
d55f90bf 3876 case _TCP:
0db15298 3877 counter = &memcg->tcpmem;
d55f90bf 3878 break;
3e32cb2e
JW
3879 default:
3880 BUG();
3881 }
af36f906 3882
3e32cb2e 3883 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3884 case RES_MAX_USAGE:
3e32cb2e 3885 page_counter_reset_watermark(counter);
29f2a4da
PE
3886 break;
3887 case RES_FAILCNT:
3e32cb2e 3888 counter->failcnt = 0;
29f2a4da 3889 break;
3e32cb2e
JW
3890 default:
3891 BUG();
29f2a4da 3892 }
f64c3f54 3893
6770c64e 3894 return nbytes;
c84872e1
PE
3895}
3896
182446d0 3897static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3898 struct cftype *cft)
3899{
182446d0 3900 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3901}
3902
02491447 3903#ifdef CONFIG_MMU
182446d0 3904static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3905 struct cftype *cft, u64 val)
3906{
182446d0 3907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3908
1dfab5ab 3909 if (val & ~MOVE_MASK)
7dc74be0 3910 return -EINVAL;
ee5e8472 3911
7dc74be0 3912 /*
ee5e8472
GC
3913 * No kind of locking is needed in here, because ->can_attach() will
3914 * check this value once in the beginning of the process, and then carry
3915 * on with stale data. This means that changes to this value will only
3916 * affect task migrations starting after the change.
7dc74be0 3917 */
c0ff4b85 3918 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3919 return 0;
3920}
02491447 3921#else
182446d0 3922static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3923 struct cftype *cft, u64 val)
3924{
3925 return -ENOSYS;
3926}
3927#endif
7dc74be0 3928
406eb0c9 3929#ifdef CONFIG_NUMA
113b7dfd
JW
3930
3931#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3932#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3933#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3934
3935static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3936 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3937{
867e5e1d 3938 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3939 unsigned long nr = 0;
3940 enum lru_list lru;
3941
3942 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3943
3944 for_each_lru(lru) {
3945 if (!(BIT(lru) & lru_mask))
3946 continue;
dd8657b6
SB
3947 if (tree)
3948 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3949 else
3950 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3951 }
3952 return nr;
3953}
3954
3955static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3956 unsigned int lru_mask,
3957 bool tree)
113b7dfd
JW
3958{
3959 unsigned long nr = 0;
3960 enum lru_list lru;
3961
3962 for_each_lru(lru) {
3963 if (!(BIT(lru) & lru_mask))
3964 continue;
dd8657b6
SB
3965 if (tree)
3966 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3967 else
3968 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3969 }
3970 return nr;
3971}
3972
2da8ca82 3973static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3974{
25485de6
GT
3975 struct numa_stat {
3976 const char *name;
3977 unsigned int lru_mask;
3978 };
3979
3980 static const struct numa_stat stats[] = {
3981 { "total", LRU_ALL },
3982 { "file", LRU_ALL_FILE },
3983 { "anon", LRU_ALL_ANON },
3984 { "unevictable", BIT(LRU_UNEVICTABLE) },
3985 };
3986 const struct numa_stat *stat;
406eb0c9 3987 int nid;
aa9694bb 3988 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3989
25485de6 3990 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3991 seq_printf(m, "%s=%lu", stat->name,
3992 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3993 false));
3994 for_each_node_state(nid, N_MEMORY)
3995 seq_printf(m, " N%d=%lu", nid,
3996 mem_cgroup_node_nr_lru_pages(memcg, nid,
3997 stat->lru_mask, false));
25485de6 3998 seq_putc(m, '\n');
406eb0c9 3999 }
406eb0c9 4000
071aee13 4001 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4002
4003 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4004 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4005 true));
4006 for_each_node_state(nid, N_MEMORY)
4007 seq_printf(m, " N%d=%lu", nid,
4008 mem_cgroup_node_nr_lru_pages(memcg, nid,
4009 stat->lru_mask, true));
071aee13 4010 seq_putc(m, '\n');
406eb0c9 4011 }
406eb0c9 4012
406eb0c9
YH
4013 return 0;
4014}
4015#endif /* CONFIG_NUMA */
4016
c8713d0b 4017static const unsigned int memcg1_stats[] = {
0d1c2072 4018 NR_FILE_PAGES,
be5d0a74 4019 NR_ANON_MAPPED,
468c3982
JW
4020#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4021 NR_ANON_THPS,
4022#endif
c8713d0b
JW
4023 NR_SHMEM,
4024 NR_FILE_MAPPED,
4025 NR_FILE_DIRTY,
4026 NR_WRITEBACK,
4027 MEMCG_SWAP,
4028};
4029
4030static const char *const memcg1_stat_names[] = {
4031 "cache",
4032 "rss",
468c3982 4033#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4034 "rss_huge",
468c3982 4035#endif
c8713d0b
JW
4036 "shmem",
4037 "mapped_file",
4038 "dirty",
4039 "writeback",
4040 "swap",
4041};
4042
df0e53d0 4043/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4044static const unsigned int memcg1_events[] = {
df0e53d0
JW
4045 PGPGIN,
4046 PGPGOUT,
4047 PGFAULT,
4048 PGMAJFAULT,
4049};
4050
2da8ca82 4051static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4052{
aa9694bb 4053 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4054 unsigned long memory, memsw;
af7c4b0e
JW
4055 struct mem_cgroup *mi;
4056 unsigned int i;
406eb0c9 4057
71cd3113 4058 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4059
71cd3113 4060 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4061 unsigned long nr;
4062
71cd3113 4063 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4064 continue;
468c3982 4065 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4066 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4067 }
7b854121 4068
df0e53d0 4069 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4070 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4071 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4072
4073 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4074 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4075 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4076 PAGE_SIZE);
af7c4b0e 4077
14067bb3 4078 /* Hierarchical information */
3e32cb2e
JW
4079 memory = memsw = PAGE_COUNTER_MAX;
4080 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4081 memory = min(memory, READ_ONCE(mi->memory.max));
4082 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4083 }
3e32cb2e
JW
4084 seq_printf(m, "hierarchical_memory_limit %llu\n",
4085 (u64)memory * PAGE_SIZE);
7941d214 4086 if (do_memsw_account())
3e32cb2e
JW
4087 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4088 (u64)memsw * PAGE_SIZE);
7f016ee8 4089
8de7ecc6 4090 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4091 unsigned long nr;
4092
71cd3113 4093 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4094 continue;
7de2e9f1 4095 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4096 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4097 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4098 }
4099
8de7ecc6 4100 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4101 seq_printf(m, "total_%s %llu\n",
4102 vm_event_name(memcg1_events[i]),
dd923990 4103 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4104
8de7ecc6 4105 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4106 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4107 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4108 PAGE_SIZE);
14067bb3 4109
7f016ee8 4110#ifdef CONFIG_DEBUG_VM
7f016ee8 4111 {
ef8f2327
MG
4112 pg_data_t *pgdat;
4113 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4114 unsigned long anon_cost = 0;
4115 unsigned long file_cost = 0;
7f016ee8 4116
ef8f2327
MG
4117 for_each_online_pgdat(pgdat) {
4118 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4119
1431d4d1
JW
4120 anon_cost += mz->lruvec.anon_cost;
4121 file_cost += mz->lruvec.file_cost;
ef8f2327 4122 }
1431d4d1
JW
4123 seq_printf(m, "anon_cost %lu\n", anon_cost);
4124 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4125 }
4126#endif
4127
d2ceb9b7
KH
4128 return 0;
4129}
4130
182446d0
TH
4131static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4132 struct cftype *cft)
a7885eb8 4133{
182446d0 4134 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4135
1f4c025b 4136 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4137}
4138
182446d0
TH
4139static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4140 struct cftype *cft, u64 val)
a7885eb8 4141{
182446d0 4142 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4143
3dae7fec 4144 if (val > 100)
a7885eb8
KM
4145 return -EINVAL;
4146
14208b0e 4147 if (css->parent)
3dae7fec
JW
4148 memcg->swappiness = val;
4149 else
4150 vm_swappiness = val;
068b38c1 4151
a7885eb8
KM
4152 return 0;
4153}
4154
2e72b634
KS
4155static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4156{
4157 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4158 unsigned long usage;
2e72b634
KS
4159 int i;
4160
4161 rcu_read_lock();
4162 if (!swap)
2c488db2 4163 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4164 else
2c488db2 4165 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4166
4167 if (!t)
4168 goto unlock;
4169
ce00a967 4170 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4171
4172 /*
748dad36 4173 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4174 * If it's not true, a threshold was crossed after last
4175 * call of __mem_cgroup_threshold().
4176 */
5407a562 4177 i = t->current_threshold;
2e72b634
KS
4178
4179 /*
4180 * Iterate backward over array of thresholds starting from
4181 * current_threshold and check if a threshold is crossed.
4182 * If none of thresholds below usage is crossed, we read
4183 * only one element of the array here.
4184 */
4185 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4186 eventfd_signal(t->entries[i].eventfd, 1);
4187
4188 /* i = current_threshold + 1 */
4189 i++;
4190
4191 /*
4192 * Iterate forward over array of thresholds starting from
4193 * current_threshold+1 and check if a threshold is crossed.
4194 * If none of thresholds above usage is crossed, we read
4195 * only one element of the array here.
4196 */
4197 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4198 eventfd_signal(t->entries[i].eventfd, 1);
4199
4200 /* Update current_threshold */
5407a562 4201 t->current_threshold = i - 1;
2e72b634
KS
4202unlock:
4203 rcu_read_unlock();
4204}
4205
4206static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4207{
ad4ca5f4
KS
4208 while (memcg) {
4209 __mem_cgroup_threshold(memcg, false);
7941d214 4210 if (do_memsw_account())
ad4ca5f4
KS
4211 __mem_cgroup_threshold(memcg, true);
4212
4213 memcg = parent_mem_cgroup(memcg);
4214 }
2e72b634
KS
4215}
4216
4217static int compare_thresholds(const void *a, const void *b)
4218{
4219 const struct mem_cgroup_threshold *_a = a;
4220 const struct mem_cgroup_threshold *_b = b;
4221
2bff24a3
GT
4222 if (_a->threshold > _b->threshold)
4223 return 1;
4224
4225 if (_a->threshold < _b->threshold)
4226 return -1;
4227
4228 return 0;
2e72b634
KS
4229}
4230
c0ff4b85 4231static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4232{
4233 struct mem_cgroup_eventfd_list *ev;
4234
2bcf2e92
MH
4235 spin_lock(&memcg_oom_lock);
4236
c0ff4b85 4237 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4238 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4239
4240 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4241 return 0;
4242}
4243
c0ff4b85 4244static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4245{
7d74b06f
KH
4246 struct mem_cgroup *iter;
4247
c0ff4b85 4248 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4249 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4250}
4251
59b6f873 4252static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4253 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4254{
2c488db2
KS
4255 struct mem_cgroup_thresholds *thresholds;
4256 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4257 unsigned long threshold;
4258 unsigned long usage;
2c488db2 4259 int i, size, ret;
2e72b634 4260
650c5e56 4261 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4262 if (ret)
4263 return ret;
4264
4265 mutex_lock(&memcg->thresholds_lock);
2c488db2 4266
05b84301 4267 if (type == _MEM) {
2c488db2 4268 thresholds = &memcg->thresholds;
ce00a967 4269 usage = mem_cgroup_usage(memcg, false);
05b84301 4270 } else if (type == _MEMSWAP) {
2c488db2 4271 thresholds = &memcg->memsw_thresholds;
ce00a967 4272 usage = mem_cgroup_usage(memcg, true);
05b84301 4273 } else
2e72b634
KS
4274 BUG();
4275
2e72b634 4276 /* Check if a threshold crossed before adding a new one */
2c488db2 4277 if (thresholds->primary)
2e72b634
KS
4278 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4279
2c488db2 4280 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4281
4282 /* Allocate memory for new array of thresholds */
67b8046f 4283 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4284 if (!new) {
2e72b634
KS
4285 ret = -ENOMEM;
4286 goto unlock;
4287 }
2c488db2 4288 new->size = size;
2e72b634
KS
4289
4290 /* Copy thresholds (if any) to new array */
e90342e6
GS
4291 if (thresholds->primary)
4292 memcpy(new->entries, thresholds->primary->entries,
4293 flex_array_size(new, entries, size - 1));
2c488db2 4294
2e72b634 4295 /* Add new threshold */
2c488db2
KS
4296 new->entries[size - 1].eventfd = eventfd;
4297 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4298
4299 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4300 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4301 compare_thresholds, NULL);
4302
4303 /* Find current threshold */
2c488db2 4304 new->current_threshold = -1;
2e72b634 4305 for (i = 0; i < size; i++) {
748dad36 4306 if (new->entries[i].threshold <= usage) {
2e72b634 4307 /*
2c488db2
KS
4308 * new->current_threshold will not be used until
4309 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4310 * it here.
4311 */
2c488db2 4312 ++new->current_threshold;
748dad36
SZ
4313 } else
4314 break;
2e72b634
KS
4315 }
4316
2c488db2
KS
4317 /* Free old spare buffer and save old primary buffer as spare */
4318 kfree(thresholds->spare);
4319 thresholds->spare = thresholds->primary;
4320
4321 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4322
907860ed 4323 /* To be sure that nobody uses thresholds */
2e72b634
KS
4324 synchronize_rcu();
4325
2e72b634
KS
4326unlock:
4327 mutex_unlock(&memcg->thresholds_lock);
4328
4329 return ret;
4330}
4331
59b6f873 4332static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4333 struct eventfd_ctx *eventfd, const char *args)
4334{
59b6f873 4335 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4336}
4337
59b6f873 4338static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4339 struct eventfd_ctx *eventfd, const char *args)
4340{
59b6f873 4341 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4342}
4343
59b6f873 4344static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4345 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4346{
2c488db2
KS
4347 struct mem_cgroup_thresholds *thresholds;
4348 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4349 unsigned long usage;
7d36665a 4350 int i, j, size, entries;
2e72b634
KS
4351
4352 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4353
4354 if (type == _MEM) {
2c488db2 4355 thresholds = &memcg->thresholds;
ce00a967 4356 usage = mem_cgroup_usage(memcg, false);
05b84301 4357 } else if (type == _MEMSWAP) {
2c488db2 4358 thresholds = &memcg->memsw_thresholds;
ce00a967 4359 usage = mem_cgroup_usage(memcg, true);
05b84301 4360 } else
2e72b634
KS
4361 BUG();
4362
371528ca
AV
4363 if (!thresholds->primary)
4364 goto unlock;
4365
2e72b634
KS
4366 /* Check if a threshold crossed before removing */
4367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4368
4369 /* Calculate new number of threshold */
7d36665a 4370 size = entries = 0;
2c488db2
KS
4371 for (i = 0; i < thresholds->primary->size; i++) {
4372 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4373 size++;
7d36665a
CX
4374 else
4375 entries++;
2e72b634
KS
4376 }
4377
2c488db2 4378 new = thresholds->spare;
907860ed 4379
7d36665a
CX
4380 /* If no items related to eventfd have been cleared, nothing to do */
4381 if (!entries)
4382 goto unlock;
4383
2e72b634
KS
4384 /* Set thresholds array to NULL if we don't have thresholds */
4385 if (!size) {
2c488db2
KS
4386 kfree(new);
4387 new = NULL;
907860ed 4388 goto swap_buffers;
2e72b634
KS
4389 }
4390
2c488db2 4391 new->size = size;
2e72b634
KS
4392
4393 /* Copy thresholds and find current threshold */
2c488db2
KS
4394 new->current_threshold = -1;
4395 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4396 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4397 continue;
4398
2c488db2 4399 new->entries[j] = thresholds->primary->entries[i];
748dad36 4400 if (new->entries[j].threshold <= usage) {
2e72b634 4401 /*
2c488db2 4402 * new->current_threshold will not be used
2e72b634
KS
4403 * until rcu_assign_pointer(), so it's safe to increment
4404 * it here.
4405 */
2c488db2 4406 ++new->current_threshold;
2e72b634
KS
4407 }
4408 j++;
4409 }
4410
907860ed 4411swap_buffers:
2c488db2
KS
4412 /* Swap primary and spare array */
4413 thresholds->spare = thresholds->primary;
8c757763 4414
2c488db2 4415 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4416
907860ed 4417 /* To be sure that nobody uses thresholds */
2e72b634 4418 synchronize_rcu();
6611d8d7
MC
4419
4420 /* If all events are unregistered, free the spare array */
4421 if (!new) {
4422 kfree(thresholds->spare);
4423 thresholds->spare = NULL;
4424 }
371528ca 4425unlock:
2e72b634 4426 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4427}
c1e862c1 4428
59b6f873 4429static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4430 struct eventfd_ctx *eventfd)
4431{
59b6f873 4432 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4433}
4434
59b6f873 4435static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4436 struct eventfd_ctx *eventfd)
4437{
59b6f873 4438 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4439}
4440
59b6f873 4441static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4442 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4443{
9490ff27 4444 struct mem_cgroup_eventfd_list *event;
9490ff27 4445
9490ff27
KH
4446 event = kmalloc(sizeof(*event), GFP_KERNEL);
4447 if (!event)
4448 return -ENOMEM;
4449
1af8efe9 4450 spin_lock(&memcg_oom_lock);
9490ff27
KH
4451
4452 event->eventfd = eventfd;
4453 list_add(&event->list, &memcg->oom_notify);
4454
4455 /* already in OOM ? */
c2b42d3c 4456 if (memcg->under_oom)
9490ff27 4457 eventfd_signal(eventfd, 1);
1af8efe9 4458 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4459
4460 return 0;
4461}
4462
59b6f873 4463static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4464 struct eventfd_ctx *eventfd)
9490ff27 4465{
9490ff27 4466 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4467
1af8efe9 4468 spin_lock(&memcg_oom_lock);
9490ff27 4469
c0ff4b85 4470 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4471 if (ev->eventfd == eventfd) {
4472 list_del(&ev->list);
4473 kfree(ev);
4474 }
4475 }
4476
1af8efe9 4477 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4478}
4479
2da8ca82 4480static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4481{
aa9694bb 4482 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4483
791badbd 4484 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4485 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4486 seq_printf(sf, "oom_kill %lu\n",
4487 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4488 return 0;
4489}
4490
182446d0 4491static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4492 struct cftype *cft, u64 val)
4493{
182446d0 4494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4495
4496 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4497 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4498 return -EINVAL;
4499
c0ff4b85 4500 memcg->oom_kill_disable = val;
4d845ebf 4501 if (!val)
c0ff4b85 4502 memcg_oom_recover(memcg);
3dae7fec 4503
3c11ecf4
KH
4504 return 0;
4505}
4506
52ebea74
TH
4507#ifdef CONFIG_CGROUP_WRITEBACK
4508
3a8e9ac8
TH
4509#include <trace/events/writeback.h>
4510
841710aa
TH
4511static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4512{
4513 return wb_domain_init(&memcg->cgwb_domain, gfp);
4514}
4515
4516static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4517{
4518 wb_domain_exit(&memcg->cgwb_domain);
4519}
4520
2529bb3a
TH
4521static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4522{
4523 wb_domain_size_changed(&memcg->cgwb_domain);
4524}
4525
841710aa
TH
4526struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4527{
4528 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4529
4530 if (!memcg->css.parent)
4531 return NULL;
4532
4533 return &memcg->cgwb_domain;
4534}
4535
0b3d6e6f
GT
4536/*
4537 * idx can be of type enum memcg_stat_item or node_stat_item.
4538 * Keep in sync with memcg_exact_page().
4539 */
4540static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4541{
871789d4 4542 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4543 int cpu;
4544
4545 for_each_online_cpu(cpu)
871789d4 4546 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4547 if (x < 0)
4548 x = 0;
4549 return x;
4550}
4551
c2aa723a
TH
4552/**
4553 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4554 * @wb: bdi_writeback in question
c5edf9cd
TH
4555 * @pfilepages: out parameter for number of file pages
4556 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4557 * @pdirty: out parameter for number of dirty pages
4558 * @pwriteback: out parameter for number of pages under writeback
4559 *
c5edf9cd
TH
4560 * Determine the numbers of file, headroom, dirty, and writeback pages in
4561 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4562 * is a bit more involved.
c2aa723a 4563 *
c5edf9cd
TH
4564 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4565 * headroom is calculated as the lowest headroom of itself and the
4566 * ancestors. Note that this doesn't consider the actual amount of
4567 * available memory in the system. The caller should further cap
4568 * *@pheadroom accordingly.
c2aa723a 4569 */
c5edf9cd
TH
4570void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4571 unsigned long *pheadroom, unsigned long *pdirty,
4572 unsigned long *pwriteback)
c2aa723a
TH
4573{
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4575 struct mem_cgroup *parent;
c2aa723a 4576
0b3d6e6f 4577 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4578
0b3d6e6f 4579 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4580 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4581 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4582 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4583
c2aa723a 4584 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4585 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4586 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4587 unsigned long used = page_counter_read(&memcg->memory);
4588
c5edf9cd 4589 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4590 memcg = parent;
4591 }
c2aa723a
TH
4592}
4593
97b27821
TH
4594/*
4595 * Foreign dirty flushing
4596 *
4597 * There's an inherent mismatch between memcg and writeback. The former
4598 * trackes ownership per-page while the latter per-inode. This was a
4599 * deliberate design decision because honoring per-page ownership in the
4600 * writeback path is complicated, may lead to higher CPU and IO overheads
4601 * and deemed unnecessary given that write-sharing an inode across
4602 * different cgroups isn't a common use-case.
4603 *
4604 * Combined with inode majority-writer ownership switching, this works well
4605 * enough in most cases but there are some pathological cases. For
4606 * example, let's say there are two cgroups A and B which keep writing to
4607 * different but confined parts of the same inode. B owns the inode and
4608 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4609 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4610 * triggering background writeback. A will be slowed down without a way to
4611 * make writeback of the dirty pages happen.
4612 *
4613 * Conditions like the above can lead to a cgroup getting repatedly and
4614 * severely throttled after making some progress after each
4615 * dirty_expire_interval while the underyling IO device is almost
4616 * completely idle.
4617 *
4618 * Solving this problem completely requires matching the ownership tracking
4619 * granularities between memcg and writeback in either direction. However,
4620 * the more egregious behaviors can be avoided by simply remembering the
4621 * most recent foreign dirtying events and initiating remote flushes on
4622 * them when local writeback isn't enough to keep the memory clean enough.
4623 *
4624 * The following two functions implement such mechanism. When a foreign
4625 * page - a page whose memcg and writeback ownerships don't match - is
4626 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4627 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4628 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4629 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4630 * foreign bdi_writebacks which haven't expired. Both the numbers of
4631 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4632 * limited to MEMCG_CGWB_FRN_CNT.
4633 *
4634 * The mechanism only remembers IDs and doesn't hold any object references.
4635 * As being wrong occasionally doesn't matter, updates and accesses to the
4636 * records are lockless and racy.
4637 */
4638void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4639 struct bdi_writeback *wb)
4640{
bcfe06bf 4641 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4642 struct memcg_cgwb_frn *frn;
4643 u64 now = get_jiffies_64();
4644 u64 oldest_at = now;
4645 int oldest = -1;
4646 int i;
4647
3a8e9ac8
TH
4648 trace_track_foreign_dirty(page, wb);
4649
97b27821
TH
4650 /*
4651 * Pick the slot to use. If there is already a slot for @wb, keep
4652 * using it. If not replace the oldest one which isn't being
4653 * written out.
4654 */
4655 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4656 frn = &memcg->cgwb_frn[i];
4657 if (frn->bdi_id == wb->bdi->id &&
4658 frn->memcg_id == wb->memcg_css->id)
4659 break;
4660 if (time_before64(frn->at, oldest_at) &&
4661 atomic_read(&frn->done.cnt) == 1) {
4662 oldest = i;
4663 oldest_at = frn->at;
4664 }
4665 }
4666
4667 if (i < MEMCG_CGWB_FRN_CNT) {
4668 /*
4669 * Re-using an existing one. Update timestamp lazily to
4670 * avoid making the cacheline hot. We want them to be
4671 * reasonably up-to-date and significantly shorter than
4672 * dirty_expire_interval as that's what expires the record.
4673 * Use the shorter of 1s and dirty_expire_interval / 8.
4674 */
4675 unsigned long update_intv =
4676 min_t(unsigned long, HZ,
4677 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4678
4679 if (time_before64(frn->at, now - update_intv))
4680 frn->at = now;
4681 } else if (oldest >= 0) {
4682 /* replace the oldest free one */
4683 frn = &memcg->cgwb_frn[oldest];
4684 frn->bdi_id = wb->bdi->id;
4685 frn->memcg_id = wb->memcg_css->id;
4686 frn->at = now;
4687 }
4688}
4689
4690/* issue foreign writeback flushes for recorded foreign dirtying events */
4691void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4692{
4693 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4694 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4695 u64 now = jiffies_64;
4696 int i;
4697
4698 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4699 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4700
4701 /*
4702 * If the record is older than dirty_expire_interval,
4703 * writeback on it has already started. No need to kick it
4704 * off again. Also, don't start a new one if there's
4705 * already one in flight.
4706 */
4707 if (time_after64(frn->at, now - intv) &&
4708 atomic_read(&frn->done.cnt) == 1) {
4709 frn->at = 0;
3a8e9ac8 4710 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4711 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4712 WB_REASON_FOREIGN_FLUSH,
4713 &frn->done);
4714 }
4715 }
4716}
4717
841710aa
TH
4718#else /* CONFIG_CGROUP_WRITEBACK */
4719
4720static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4721{
4722 return 0;
4723}
4724
4725static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4726{
4727}
4728
2529bb3a
TH
4729static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4730{
4731}
4732
52ebea74
TH
4733#endif /* CONFIG_CGROUP_WRITEBACK */
4734
3bc942f3
TH
4735/*
4736 * DO NOT USE IN NEW FILES.
4737 *
4738 * "cgroup.event_control" implementation.
4739 *
4740 * This is way over-engineered. It tries to support fully configurable
4741 * events for each user. Such level of flexibility is completely
4742 * unnecessary especially in the light of the planned unified hierarchy.
4743 *
4744 * Please deprecate this and replace with something simpler if at all
4745 * possible.
4746 */
4747
79bd9814
TH
4748/*
4749 * Unregister event and free resources.
4750 *
4751 * Gets called from workqueue.
4752 */
3bc942f3 4753static void memcg_event_remove(struct work_struct *work)
79bd9814 4754{
3bc942f3
TH
4755 struct mem_cgroup_event *event =
4756 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4757 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4758
4759 remove_wait_queue(event->wqh, &event->wait);
4760
59b6f873 4761 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4762
4763 /* Notify userspace the event is going away. */
4764 eventfd_signal(event->eventfd, 1);
4765
4766 eventfd_ctx_put(event->eventfd);
4767 kfree(event);
59b6f873 4768 css_put(&memcg->css);
79bd9814
TH
4769}
4770
4771/*
a9a08845 4772 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4773 *
4774 * Called with wqh->lock held and interrupts disabled.
4775 */
ac6424b9 4776static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4777 int sync, void *key)
79bd9814 4778{
3bc942f3
TH
4779 struct mem_cgroup_event *event =
4780 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4781 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4782 __poll_t flags = key_to_poll(key);
79bd9814 4783
a9a08845 4784 if (flags & EPOLLHUP) {
79bd9814
TH
4785 /*
4786 * If the event has been detached at cgroup removal, we
4787 * can simply return knowing the other side will cleanup
4788 * for us.
4789 *
4790 * We can't race against event freeing since the other
4791 * side will require wqh->lock via remove_wait_queue(),
4792 * which we hold.
4793 */
fba94807 4794 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4795 if (!list_empty(&event->list)) {
4796 list_del_init(&event->list);
4797 /*
4798 * We are in atomic context, but cgroup_event_remove()
4799 * may sleep, so we have to call it in workqueue.
4800 */
4801 schedule_work(&event->remove);
4802 }
fba94807 4803 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4804 }
4805
4806 return 0;
4807}
4808
3bc942f3 4809static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4810 wait_queue_head_t *wqh, poll_table *pt)
4811{
3bc942f3
TH
4812 struct mem_cgroup_event *event =
4813 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4814
4815 event->wqh = wqh;
4816 add_wait_queue(wqh, &event->wait);
4817}
4818
4819/*
3bc942f3
TH
4820 * DO NOT USE IN NEW FILES.
4821 *
79bd9814
TH
4822 * Parse input and register new cgroup event handler.
4823 *
4824 * Input must be in format '<event_fd> <control_fd> <args>'.
4825 * Interpretation of args is defined by control file implementation.
4826 */
451af504
TH
4827static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4828 char *buf, size_t nbytes, loff_t off)
79bd9814 4829{
451af504 4830 struct cgroup_subsys_state *css = of_css(of);
fba94807 4831 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4832 struct mem_cgroup_event *event;
79bd9814
TH
4833 struct cgroup_subsys_state *cfile_css;
4834 unsigned int efd, cfd;
4835 struct fd efile;
4836 struct fd cfile;
fba94807 4837 const char *name;
79bd9814
TH
4838 char *endp;
4839 int ret;
4840
451af504
TH
4841 buf = strstrip(buf);
4842
4843 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4844 if (*endp != ' ')
4845 return -EINVAL;
451af504 4846 buf = endp + 1;
79bd9814 4847
451af504 4848 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4849 if ((*endp != ' ') && (*endp != '\0'))
4850 return -EINVAL;
451af504 4851 buf = endp + 1;
79bd9814
TH
4852
4853 event = kzalloc(sizeof(*event), GFP_KERNEL);
4854 if (!event)
4855 return -ENOMEM;
4856
59b6f873 4857 event->memcg = memcg;
79bd9814 4858 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4859 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4860 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4861 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4862
4863 efile = fdget(efd);
4864 if (!efile.file) {
4865 ret = -EBADF;
4866 goto out_kfree;
4867 }
4868
4869 event->eventfd = eventfd_ctx_fileget(efile.file);
4870 if (IS_ERR(event->eventfd)) {
4871 ret = PTR_ERR(event->eventfd);
4872 goto out_put_efile;
4873 }
4874
4875 cfile = fdget(cfd);
4876 if (!cfile.file) {
4877 ret = -EBADF;
4878 goto out_put_eventfd;
4879 }
4880
4881 /* the process need read permission on control file */
4882 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4883 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4884 if (ret < 0)
4885 goto out_put_cfile;
4886
fba94807
TH
4887 /*
4888 * Determine the event callbacks and set them in @event. This used
4889 * to be done via struct cftype but cgroup core no longer knows
4890 * about these events. The following is crude but the whole thing
4891 * is for compatibility anyway.
3bc942f3
TH
4892 *
4893 * DO NOT ADD NEW FILES.
fba94807 4894 */
b583043e 4895 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4896
4897 if (!strcmp(name, "memory.usage_in_bytes")) {
4898 event->register_event = mem_cgroup_usage_register_event;
4899 event->unregister_event = mem_cgroup_usage_unregister_event;
4900 } else if (!strcmp(name, "memory.oom_control")) {
4901 event->register_event = mem_cgroup_oom_register_event;
4902 event->unregister_event = mem_cgroup_oom_unregister_event;
4903 } else if (!strcmp(name, "memory.pressure_level")) {
4904 event->register_event = vmpressure_register_event;
4905 event->unregister_event = vmpressure_unregister_event;
4906 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4907 event->register_event = memsw_cgroup_usage_register_event;
4908 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4909 } else {
4910 ret = -EINVAL;
4911 goto out_put_cfile;
4912 }
4913
79bd9814 4914 /*
b5557c4c
TH
4915 * Verify @cfile should belong to @css. Also, remaining events are
4916 * automatically removed on cgroup destruction but the removal is
4917 * asynchronous, so take an extra ref on @css.
79bd9814 4918 */
b583043e 4919 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4920 &memory_cgrp_subsys);
79bd9814 4921 ret = -EINVAL;
5a17f543 4922 if (IS_ERR(cfile_css))
79bd9814 4923 goto out_put_cfile;
5a17f543
TH
4924 if (cfile_css != css) {
4925 css_put(cfile_css);
79bd9814 4926 goto out_put_cfile;
5a17f543 4927 }
79bd9814 4928
451af504 4929 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4930 if (ret)
4931 goto out_put_css;
4932
9965ed17 4933 vfs_poll(efile.file, &event->pt);
79bd9814 4934
fba94807
TH
4935 spin_lock(&memcg->event_list_lock);
4936 list_add(&event->list, &memcg->event_list);
4937 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4938
4939 fdput(cfile);
4940 fdput(efile);
4941
451af504 4942 return nbytes;
79bd9814
TH
4943
4944out_put_css:
b5557c4c 4945 css_put(css);
79bd9814
TH
4946out_put_cfile:
4947 fdput(cfile);
4948out_put_eventfd:
4949 eventfd_ctx_put(event->eventfd);
4950out_put_efile:
4951 fdput(efile);
4952out_kfree:
4953 kfree(event);
4954
4955 return ret;
4956}
4957
241994ed 4958static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4959 {
0eea1030 4960 .name = "usage_in_bytes",
8c7c6e34 4961 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4962 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4963 },
c84872e1
PE
4964 {
4965 .name = "max_usage_in_bytes",
8c7c6e34 4966 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4967 .write = mem_cgroup_reset,
791badbd 4968 .read_u64 = mem_cgroup_read_u64,
c84872e1 4969 },
8cdea7c0 4970 {
0eea1030 4971 .name = "limit_in_bytes",
8c7c6e34 4972 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4973 .write = mem_cgroup_write,
791badbd 4974 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4975 },
296c81d8
BS
4976 {
4977 .name = "soft_limit_in_bytes",
4978 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4979 .write = mem_cgroup_write,
791badbd 4980 .read_u64 = mem_cgroup_read_u64,
296c81d8 4981 },
8cdea7c0
BS
4982 {
4983 .name = "failcnt",
8c7c6e34 4984 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4985 .write = mem_cgroup_reset,
791badbd 4986 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4987 },
d2ceb9b7
KH
4988 {
4989 .name = "stat",
2da8ca82 4990 .seq_show = memcg_stat_show,
d2ceb9b7 4991 },
c1e862c1
KH
4992 {
4993 .name = "force_empty",
6770c64e 4994 .write = mem_cgroup_force_empty_write,
c1e862c1 4995 },
18f59ea7
BS
4996 {
4997 .name = "use_hierarchy",
4998 .write_u64 = mem_cgroup_hierarchy_write,
4999 .read_u64 = mem_cgroup_hierarchy_read,
5000 },
79bd9814 5001 {
3bc942f3 5002 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5003 .write = memcg_write_event_control,
7dbdb199 5004 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5005 },
a7885eb8
KM
5006 {
5007 .name = "swappiness",
5008 .read_u64 = mem_cgroup_swappiness_read,
5009 .write_u64 = mem_cgroup_swappiness_write,
5010 },
7dc74be0
DN
5011 {
5012 .name = "move_charge_at_immigrate",
5013 .read_u64 = mem_cgroup_move_charge_read,
5014 .write_u64 = mem_cgroup_move_charge_write,
5015 },
9490ff27
KH
5016 {
5017 .name = "oom_control",
2da8ca82 5018 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5019 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5020 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5021 },
70ddf637
AV
5022 {
5023 .name = "pressure_level",
70ddf637 5024 },
406eb0c9
YH
5025#ifdef CONFIG_NUMA
5026 {
5027 .name = "numa_stat",
2da8ca82 5028 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5029 },
5030#endif
510fc4e1
GC
5031 {
5032 .name = "kmem.limit_in_bytes",
5033 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5034 .write = mem_cgroup_write,
791badbd 5035 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5036 },
5037 {
5038 .name = "kmem.usage_in_bytes",
5039 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5040 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5041 },
5042 {
5043 .name = "kmem.failcnt",
5044 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5045 .write = mem_cgroup_reset,
791badbd 5046 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5047 },
5048 {
5049 .name = "kmem.max_usage_in_bytes",
5050 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5051 .write = mem_cgroup_reset,
791badbd 5052 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5053 },
a87425a3
YS
5054#if defined(CONFIG_MEMCG_KMEM) && \
5055 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5056 {
5057 .name = "kmem.slabinfo",
b047501c 5058 .seq_show = memcg_slab_show,
749c5415
GC
5059 },
5060#endif
d55f90bf
VD
5061 {
5062 .name = "kmem.tcp.limit_in_bytes",
5063 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5064 .write = mem_cgroup_write,
5065 .read_u64 = mem_cgroup_read_u64,
5066 },
5067 {
5068 .name = "kmem.tcp.usage_in_bytes",
5069 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5070 .read_u64 = mem_cgroup_read_u64,
5071 },
5072 {
5073 .name = "kmem.tcp.failcnt",
5074 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5075 .write = mem_cgroup_reset,
5076 .read_u64 = mem_cgroup_read_u64,
5077 },
5078 {
5079 .name = "kmem.tcp.max_usage_in_bytes",
5080 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5081 .write = mem_cgroup_reset,
5082 .read_u64 = mem_cgroup_read_u64,
5083 },
6bc10349 5084 { }, /* terminate */
af36f906 5085};
8c7c6e34 5086
73f576c0
JW
5087/*
5088 * Private memory cgroup IDR
5089 *
5090 * Swap-out records and page cache shadow entries need to store memcg
5091 * references in constrained space, so we maintain an ID space that is
5092 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5093 * memory-controlled cgroups to 64k.
5094 *
b8f2935f 5095 * However, there usually are many references to the offline CSS after
73f576c0
JW
5096 * the cgroup has been destroyed, such as page cache or reclaimable
5097 * slab objects, that don't need to hang on to the ID. We want to keep
5098 * those dead CSS from occupying IDs, or we might quickly exhaust the
5099 * relatively small ID space and prevent the creation of new cgroups
5100 * even when there are much fewer than 64k cgroups - possibly none.
5101 *
5102 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5103 * be freed and recycled when it's no longer needed, which is usually
5104 * when the CSS is offlined.
5105 *
5106 * The only exception to that are records of swapped out tmpfs/shmem
5107 * pages that need to be attributed to live ancestors on swapin. But
5108 * those references are manageable from userspace.
5109 */
5110
5111static DEFINE_IDR(mem_cgroup_idr);
5112
7e97de0b
KT
5113static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5114{
5115 if (memcg->id.id > 0) {
5116 idr_remove(&mem_cgroup_idr, memcg->id.id);
5117 memcg->id.id = 0;
5118 }
5119}
5120
c1514c0a
VF
5121static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5122 unsigned int n)
73f576c0 5123{
1c2d479a 5124 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5125}
5126
615d66c3 5127static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5128{
1c2d479a 5129 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5130 mem_cgroup_id_remove(memcg);
73f576c0
JW
5131
5132 /* Memcg ID pins CSS */
5133 css_put(&memcg->css);
5134 }
5135}
5136
615d66c3
VD
5137static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5138{
5139 mem_cgroup_id_put_many(memcg, 1);
5140}
5141
73f576c0
JW
5142/**
5143 * mem_cgroup_from_id - look up a memcg from a memcg id
5144 * @id: the memcg id to look up
5145 *
5146 * Caller must hold rcu_read_lock().
5147 */
5148struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5149{
5150 WARN_ON_ONCE(!rcu_read_lock_held());
5151 return idr_find(&mem_cgroup_idr, id);
5152}
5153
ef8f2327 5154static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5155{
5156 struct mem_cgroup_per_node *pn;
ef8f2327 5157 int tmp = node;
1ecaab2b
KH
5158 /*
5159 * This routine is called against possible nodes.
5160 * But it's BUG to call kmalloc() against offline node.
5161 *
5162 * TODO: this routine can waste much memory for nodes which will
5163 * never be onlined. It's better to use memory hotplug callback
5164 * function.
5165 */
41e3355d
KH
5166 if (!node_state(node, N_NORMAL_MEMORY))
5167 tmp = -1;
17295c88 5168 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5169 if (!pn)
5170 return 1;
1ecaab2b 5171
3e38e0aa
RG
5172 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5173 GFP_KERNEL_ACCOUNT);
815744d7
JW
5174 if (!pn->lruvec_stat_local) {
5175 kfree(pn);
5176 return 1;
5177 }
5178
f3344adf 5179 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5180 GFP_KERNEL_ACCOUNT);
a983b5eb 5181 if (!pn->lruvec_stat_cpu) {
815744d7 5182 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5183 kfree(pn);
5184 return 1;
5185 }
5186
ef8f2327
MG
5187 lruvec_init(&pn->lruvec);
5188 pn->usage_in_excess = 0;
5189 pn->on_tree = false;
5190 pn->memcg = memcg;
5191
54f72fe0 5192 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5193 return 0;
5194}
5195
ef8f2327 5196static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5197{
00f3ca2c
JW
5198 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5199
4eaf431f
MH
5200 if (!pn)
5201 return;
5202
a983b5eb 5203 free_percpu(pn->lruvec_stat_cpu);
815744d7 5204 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5205 kfree(pn);
1ecaab2b
KH
5206}
5207
40e952f9 5208static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5209{
c8b2a36f 5210 int node;
59927fb9 5211
c8b2a36f 5212 for_each_node(node)
ef8f2327 5213 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5214 free_percpu(memcg->vmstats_percpu);
815744d7 5215 free_percpu(memcg->vmstats_local);
8ff69e2c 5216 kfree(memcg);
59927fb9 5217}
3afe36b1 5218
40e952f9
TE
5219static void mem_cgroup_free(struct mem_cgroup *memcg)
5220{
5221 memcg_wb_domain_exit(memcg);
7961eee3
SB
5222 /*
5223 * Flush percpu vmstats and vmevents to guarantee the value correctness
5224 * on parent's and all ancestor levels.
5225 */
4a87e2a2 5226 memcg_flush_percpu_vmstats(memcg);
7961eee3 5227 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5228 __mem_cgroup_free(memcg);
5229}
5230
0b8f73e1 5231static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5232{
d142e3e6 5233 struct mem_cgroup *memcg;
b9726c26 5234 unsigned int size;
6d12e2d8 5235 int node;
97b27821 5236 int __maybe_unused i;
11d67612 5237 long error = -ENOMEM;
8cdea7c0 5238
0b8f73e1
JW
5239 size = sizeof(struct mem_cgroup);
5240 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5241
5242 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5243 if (!memcg)
11d67612 5244 return ERR_PTR(error);
0b8f73e1 5245
73f576c0
JW
5246 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5247 1, MEM_CGROUP_ID_MAX,
5248 GFP_KERNEL);
11d67612
YS
5249 if (memcg->id.id < 0) {
5250 error = memcg->id.id;
73f576c0 5251 goto fail;
11d67612 5252 }
73f576c0 5253
3e38e0aa
RG
5254 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5255 GFP_KERNEL_ACCOUNT);
815744d7
JW
5256 if (!memcg->vmstats_local)
5257 goto fail;
5258
3e38e0aa
RG
5259 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5260 GFP_KERNEL_ACCOUNT);
871789d4 5261 if (!memcg->vmstats_percpu)
0b8f73e1 5262 goto fail;
78fb7466 5263
3ed28fa1 5264 for_each_node(node)
ef8f2327 5265 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5266 goto fail;
f64c3f54 5267
0b8f73e1
JW
5268 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5269 goto fail;
28dbc4b6 5270
f7e1cb6e 5271 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5272 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5273 mutex_init(&memcg->thresholds_lock);
5274 spin_lock_init(&memcg->move_lock);
70ddf637 5275 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5276 INIT_LIST_HEAD(&memcg->event_list);
5277 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5278 memcg->socket_pressure = jiffies;
84c07d11 5279#ifdef CONFIG_MEMCG_KMEM
900a38f0 5280 memcg->kmemcg_id = -1;
bf4f0599 5281 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5282#endif
52ebea74
TH
5283#ifdef CONFIG_CGROUP_WRITEBACK
5284 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5285 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5286 memcg->cgwb_frn[i].done =
5287 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5288#endif
5289#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5290 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5291 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5292 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5293#endif
73f576c0 5294 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5295 return memcg;
5296fail:
7e97de0b 5297 mem_cgroup_id_remove(memcg);
40e952f9 5298 __mem_cgroup_free(memcg);
11d67612 5299 return ERR_PTR(error);
d142e3e6
GC
5300}
5301
0b8f73e1
JW
5302static struct cgroup_subsys_state * __ref
5303mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5304{
0b8f73e1 5305 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5306 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5307 long error = -ENOMEM;
d142e3e6 5308
b87d8cef 5309 old_memcg = set_active_memcg(parent);
0b8f73e1 5310 memcg = mem_cgroup_alloc();
b87d8cef 5311 set_active_memcg(old_memcg);
11d67612
YS
5312 if (IS_ERR(memcg))
5313 return ERR_CAST(memcg);
d142e3e6 5314
d1663a90 5315 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5316 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5317 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5318 if (parent) {
5319 memcg->swappiness = mem_cgroup_swappiness(parent);
5320 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5321
3e32cb2e 5322 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5323 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5324 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5325 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5326 } else {
bef8620c
RG
5327 page_counter_init(&memcg->memory, NULL);
5328 page_counter_init(&memcg->swap, NULL);
5329 page_counter_init(&memcg->kmem, NULL);
5330 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5331
0b8f73e1
JW
5332 root_mem_cgroup = memcg;
5333 return &memcg->css;
5334 }
5335
bef8620c 5336 /* The following stuff does not apply to the root */
b313aeee 5337 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5338 if (error)
5339 goto fail;
127424c8 5340
f7e1cb6e 5341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5342 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5343
0b8f73e1
JW
5344 return &memcg->css;
5345fail:
7e97de0b 5346 mem_cgroup_id_remove(memcg);
0b8f73e1 5347 mem_cgroup_free(memcg);
11d67612 5348 return ERR_PTR(error);
0b8f73e1
JW
5349}
5350
73f576c0 5351static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5352{
58fa2a55
VD
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354
0a4465d3
KT
5355 /*
5356 * A memcg must be visible for memcg_expand_shrinker_maps()
5357 * by the time the maps are allocated. So, we allocate maps
5358 * here, when for_each_mem_cgroup() can't skip it.
5359 */
5360 if (memcg_alloc_shrinker_maps(memcg)) {
5361 mem_cgroup_id_remove(memcg);
5362 return -ENOMEM;
5363 }
5364
73f576c0 5365 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5366 refcount_set(&memcg->id.ref, 1);
73f576c0 5367 css_get(css);
2f7dd7a4 5368 return 0;
8cdea7c0
BS
5369}
5370
eb95419b 5371static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5372{
eb95419b 5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5374 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5375
5376 /*
5377 * Unregister events and notify userspace.
5378 * Notify userspace about cgroup removing only after rmdir of cgroup
5379 * directory to avoid race between userspace and kernelspace.
5380 */
fba94807
TH
5381 spin_lock(&memcg->event_list_lock);
5382 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5383 list_del_init(&event->list);
5384 schedule_work(&event->remove);
5385 }
fba94807 5386 spin_unlock(&memcg->event_list_lock);
ec64f515 5387
bf8d5d52 5388 page_counter_set_min(&memcg->memory, 0);
23067153 5389 page_counter_set_low(&memcg->memory, 0);
63677c74 5390
567e9ab2 5391 memcg_offline_kmem(memcg);
52ebea74 5392 wb_memcg_offline(memcg);
73f576c0 5393
591edfb1
RG
5394 drain_all_stock(memcg);
5395
73f576c0 5396 mem_cgroup_id_put(memcg);
df878fb0
KH
5397}
5398
6df38689
VD
5399static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 invalidate_reclaim_iterators(memcg);
5404}
5405
eb95419b 5406static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5407{
eb95419b 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5409 int __maybe_unused i;
c268e994 5410
97b27821
TH
5411#ifdef CONFIG_CGROUP_WRITEBACK
5412 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5413 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5414#endif
f7e1cb6e 5415 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5416 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5417
0db15298 5418 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5419 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5420
0b8f73e1
JW
5421 vmpressure_cleanup(&memcg->vmpressure);
5422 cancel_work_sync(&memcg->high_work);
5423 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5424 memcg_free_shrinker_maps(memcg);
d886f4e4 5425 memcg_free_kmem(memcg);
0b8f73e1 5426 mem_cgroup_free(memcg);
8cdea7c0
BS
5427}
5428
1ced953b
TH
5429/**
5430 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5431 * @css: the target css
5432 *
5433 * Reset the states of the mem_cgroup associated with @css. This is
5434 * invoked when the userland requests disabling on the default hierarchy
5435 * but the memcg is pinned through dependency. The memcg should stop
5436 * applying policies and should revert to the vanilla state as it may be
5437 * made visible again.
5438 *
5439 * The current implementation only resets the essential configurations.
5440 * This needs to be expanded to cover all the visible parts.
5441 */
5442static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5443{
5444 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445
bbec2e15
RG
5446 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5447 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5448 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5449 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5450 page_counter_set_min(&memcg->memory, 0);
23067153 5451 page_counter_set_low(&memcg->memory, 0);
d1663a90 5452 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5453 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5454 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5455 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5456}
5457
02491447 5458#ifdef CONFIG_MMU
7dc74be0 5459/* Handlers for move charge at task migration. */
854ffa8d 5460static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5461{
05b84301 5462 int ret;
9476db97 5463
d0164adc
MG
5464 /* Try a single bulk charge without reclaim first, kswapd may wake */
5465 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5466 if (!ret) {
854ffa8d 5467 mc.precharge += count;
854ffa8d
DN
5468 return ret;
5469 }
9476db97 5470
3674534b 5471 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5472 while (count--) {
3674534b 5473 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5474 if (ret)
38c5d72f 5475 return ret;
854ffa8d 5476 mc.precharge++;
9476db97 5477 cond_resched();
854ffa8d 5478 }
9476db97 5479 return 0;
4ffef5fe
DN
5480}
5481
4ffef5fe
DN
5482union mc_target {
5483 struct page *page;
02491447 5484 swp_entry_t ent;
4ffef5fe
DN
5485};
5486
4ffef5fe 5487enum mc_target_type {
8d32ff84 5488 MC_TARGET_NONE = 0,
4ffef5fe 5489 MC_TARGET_PAGE,
02491447 5490 MC_TARGET_SWAP,
c733a828 5491 MC_TARGET_DEVICE,
4ffef5fe
DN
5492};
5493
90254a65
DN
5494static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5495 unsigned long addr, pte_t ptent)
4ffef5fe 5496{
25b2995a 5497 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5498
90254a65
DN
5499 if (!page || !page_mapped(page))
5500 return NULL;
5501 if (PageAnon(page)) {
1dfab5ab 5502 if (!(mc.flags & MOVE_ANON))
90254a65 5503 return NULL;
1dfab5ab
JW
5504 } else {
5505 if (!(mc.flags & MOVE_FILE))
5506 return NULL;
5507 }
90254a65
DN
5508 if (!get_page_unless_zero(page))
5509 return NULL;
5510
5511 return page;
5512}
5513
c733a828 5514#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5515static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5516 pte_t ptent, swp_entry_t *entry)
90254a65 5517{
90254a65
DN
5518 struct page *page = NULL;
5519 swp_entry_t ent = pte_to_swp_entry(ptent);
5520
9a137153 5521 if (!(mc.flags & MOVE_ANON))
90254a65 5522 return NULL;
c733a828
JG
5523
5524 /*
5525 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5526 * a device and because they are not accessible by CPU they are store
5527 * as special swap entry in the CPU page table.
5528 */
5529 if (is_device_private_entry(ent)) {
5530 page = device_private_entry_to_page(ent);
5531 /*
5532 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5533 * a refcount of 1 when free (unlike normal page)
5534 */
5535 if (!page_ref_add_unless(page, 1, 1))
5536 return NULL;
5537 return page;
5538 }
5539
9a137153
RC
5540 if (non_swap_entry(ent))
5541 return NULL;
5542
4b91355e
KH
5543 /*
5544 * Because lookup_swap_cache() updates some statistics counter,
5545 * we call find_get_page() with swapper_space directly.
5546 */
f6ab1f7f 5547 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5548 entry->val = ent.val;
90254a65
DN
5549
5550 return page;
5551}
4b91355e
KH
5552#else
5553static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5554 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5555{
5556 return NULL;
5557}
5558#endif
90254a65 5559
87946a72
DN
5560static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5561 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5562{
87946a72
DN
5563 if (!vma->vm_file) /* anonymous vma */
5564 return NULL;
1dfab5ab 5565 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5566 return NULL;
5567
87946a72 5568 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5569 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5570 return find_get_incore_page(vma->vm_file->f_mapping,
5571 linear_page_index(vma, addr));
87946a72
DN
5572}
5573
b1b0deab
CG
5574/**
5575 * mem_cgroup_move_account - move account of the page
5576 * @page: the page
25843c2b 5577 * @compound: charge the page as compound or small page
b1b0deab
CG
5578 * @from: mem_cgroup which the page is moved from.
5579 * @to: mem_cgroup which the page is moved to. @from != @to.
5580 *
3ac808fd 5581 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5582 *
5583 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5584 * from old cgroup.
5585 */
5586static int mem_cgroup_move_account(struct page *page,
f627c2f5 5587 bool compound,
b1b0deab
CG
5588 struct mem_cgroup *from,
5589 struct mem_cgroup *to)
5590{
ae8af438
KK
5591 struct lruvec *from_vec, *to_vec;
5592 struct pglist_data *pgdat;
6c357848 5593 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5594 int ret;
5595
5596 VM_BUG_ON(from == to);
5597 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5598 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5599
5600 /*
6a93ca8f 5601 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5602 * page's memory cgroup of its source page while we change it.
b1b0deab 5603 */
f627c2f5 5604 ret = -EBUSY;
b1b0deab
CG
5605 if (!trylock_page(page))
5606 goto out;
5607
5608 ret = -EINVAL;
bcfe06bf 5609 if (page_memcg(page) != from)
b1b0deab
CG
5610 goto out_unlock;
5611
ae8af438 5612 pgdat = page_pgdat(page);
867e5e1d
JW
5613 from_vec = mem_cgroup_lruvec(from, pgdat);
5614 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5615
abb242f5 5616 lock_page_memcg(page);
b1b0deab 5617
be5d0a74
JW
5618 if (PageAnon(page)) {
5619 if (page_mapped(page)) {
5620 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5621 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5622 if (PageTransHuge(page)) {
69473e5d
MS
5623 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5624 -nr_pages);
5625 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5626 nr_pages);
468c3982 5627 }
be5d0a74
JW
5628 }
5629 } else {
0d1c2072
JW
5630 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5632
5633 if (PageSwapBacked(page)) {
5634 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5636 }
5637
49e50d27
JW
5638 if (page_mapped(page)) {
5639 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5641 }
b1b0deab 5642
49e50d27
JW
5643 if (PageDirty(page)) {
5644 struct address_space *mapping = page_mapping(page);
c4843a75 5645
f56753ac 5646 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5647 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5648 -nr_pages);
5649 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5650 nr_pages);
5651 }
c4843a75
GT
5652 }
5653 }
5654
b1b0deab 5655 if (PageWriteback(page)) {
ae8af438
KK
5656 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5657 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5658 }
5659
5660 /*
abb242f5
JW
5661 * All state has been migrated, let's switch to the new memcg.
5662 *
bcfe06bf 5663 * It is safe to change page's memcg here because the page
abb242f5
JW
5664 * is referenced, charged, isolated, and locked: we can't race
5665 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5666 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5667 *
5668 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5669 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5670 * new memcg that isn't locked, the above state can change
5671 * concurrently again. Make sure we're truly done with it.
b1b0deab 5672 */
abb242f5 5673 smp_mb();
b1b0deab 5674
1a3e1f40
JW
5675 css_get(&to->css);
5676 css_put(&from->css);
5677
bcfe06bf 5678 page->memcg_data = (unsigned long)to;
87eaceb3 5679
abb242f5 5680 __unlock_page_memcg(from);
b1b0deab
CG
5681
5682 ret = 0;
5683
5684 local_irq_disable();
3fba69a5 5685 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5686 memcg_check_events(to, page);
3fba69a5 5687 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5688 memcg_check_events(from, page);
5689 local_irq_enable();
5690out_unlock:
5691 unlock_page(page);
5692out:
5693 return ret;
5694}
5695
7cf7806c
LR
5696/**
5697 * get_mctgt_type - get target type of moving charge
5698 * @vma: the vma the pte to be checked belongs
5699 * @addr: the address corresponding to the pte to be checked
5700 * @ptent: the pte to be checked
5701 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5702 *
5703 * Returns
5704 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5705 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5706 * move charge. if @target is not NULL, the page is stored in target->page
5707 * with extra refcnt got(Callers should handle it).
5708 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5709 * target for charge migration. if @target is not NULL, the entry is stored
5710 * in target->ent.
25b2995a
CH
5711 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5712 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5713 * For now we such page is charge like a regular page would be as for all
5714 * intent and purposes it is just special memory taking the place of a
5715 * regular page.
c733a828
JG
5716 *
5717 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5718 *
5719 * Called with pte lock held.
5720 */
5721
8d32ff84 5722static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5723 unsigned long addr, pte_t ptent, union mc_target *target)
5724{
5725 struct page *page = NULL;
8d32ff84 5726 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5727 swp_entry_t ent = { .val = 0 };
5728
5729 if (pte_present(ptent))
5730 page = mc_handle_present_pte(vma, addr, ptent);
5731 else if (is_swap_pte(ptent))
48406ef8 5732 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5733 else if (pte_none(ptent))
87946a72 5734 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5735
5736 if (!page && !ent.val)
8d32ff84 5737 return ret;
02491447 5738 if (page) {
02491447 5739 /*
0a31bc97 5740 * Do only loose check w/o serialization.
1306a85a 5741 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5742 * not under LRU exclusion.
02491447 5743 */
bcfe06bf 5744 if (page_memcg(page) == mc.from) {
02491447 5745 ret = MC_TARGET_PAGE;
25b2995a 5746 if (is_device_private_page(page))
c733a828 5747 ret = MC_TARGET_DEVICE;
02491447
DN
5748 if (target)
5749 target->page = page;
5750 }
5751 if (!ret || !target)
5752 put_page(page);
5753 }
3e14a57b
HY
5754 /*
5755 * There is a swap entry and a page doesn't exist or isn't charged.
5756 * But we cannot move a tail-page in a THP.
5757 */
5758 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5759 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5760 ret = MC_TARGET_SWAP;
5761 if (target)
5762 target->ent = ent;
4ffef5fe 5763 }
4ffef5fe
DN
5764 return ret;
5765}
5766
12724850
NH
5767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5768/*
d6810d73
HY
5769 * We don't consider PMD mapped swapping or file mapped pages because THP does
5770 * not support them for now.
12724850
NH
5771 * Caller should make sure that pmd_trans_huge(pmd) is true.
5772 */
5773static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774 unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776 struct page *page = NULL;
12724850
NH
5777 enum mc_target_type ret = MC_TARGET_NONE;
5778
84c3fc4e
ZY
5779 if (unlikely(is_swap_pmd(pmd))) {
5780 VM_BUG_ON(thp_migration_supported() &&
5781 !is_pmd_migration_entry(pmd));
5782 return ret;
5783 }
12724850 5784 page = pmd_page(pmd);
309381fe 5785 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5786 if (!(mc.flags & MOVE_ANON))
12724850 5787 return ret;
bcfe06bf 5788 if (page_memcg(page) == mc.from) {
12724850
NH
5789 ret = MC_TARGET_PAGE;
5790 if (target) {
5791 get_page(page);
5792 target->page = page;
5793 }
5794 }
5795 return ret;
5796}
5797#else
5798static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799 unsigned long addr, pmd_t pmd, union mc_target *target)
5800{
5801 return MC_TARGET_NONE;
5802}
5803#endif
5804
4ffef5fe
DN
5805static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5806 unsigned long addr, unsigned long end,
5807 struct mm_walk *walk)
5808{
26bcd64a 5809 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5810 pte_t *pte;
5811 spinlock_t *ptl;
5812
b6ec57f4
KS
5813 ptl = pmd_trans_huge_lock(pmd, vma);
5814 if (ptl) {
c733a828
JG
5815 /*
5816 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5817 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5818 * this might change.
c733a828 5819 */
12724850
NH
5820 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5821 mc.precharge += HPAGE_PMD_NR;
bf929152 5822 spin_unlock(ptl);
1a5a9906 5823 return 0;
12724850 5824 }
03319327 5825
45f83cef
AA
5826 if (pmd_trans_unstable(pmd))
5827 return 0;
4ffef5fe
DN
5828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5829 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5830 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5831 mc.precharge++; /* increment precharge temporarily */
5832 pte_unmap_unlock(pte - 1, ptl);
5833 cond_resched();
5834
7dc74be0
DN
5835 return 0;
5836}
5837
7b86ac33
CH
5838static const struct mm_walk_ops precharge_walk_ops = {
5839 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5840};
5841
4ffef5fe
DN
5842static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5843{
5844 unsigned long precharge;
4ffef5fe 5845
d8ed45c5 5846 mmap_read_lock(mm);
7b86ac33 5847 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5848 mmap_read_unlock(mm);
4ffef5fe
DN
5849
5850 precharge = mc.precharge;
5851 mc.precharge = 0;
5852
5853 return precharge;
5854}
5855
4ffef5fe
DN
5856static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5857{
dfe076b0
DN
5858 unsigned long precharge = mem_cgroup_count_precharge(mm);
5859
5860 VM_BUG_ON(mc.moving_task);
5861 mc.moving_task = current;
5862 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5863}
5864
dfe076b0
DN
5865/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5866static void __mem_cgroup_clear_mc(void)
4ffef5fe 5867{
2bd9bb20
KH
5868 struct mem_cgroup *from = mc.from;
5869 struct mem_cgroup *to = mc.to;
5870
4ffef5fe 5871 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5872 if (mc.precharge) {
00501b53 5873 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5874 mc.precharge = 0;
5875 }
5876 /*
5877 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5878 * we must uncharge here.
5879 */
5880 if (mc.moved_charge) {
00501b53 5881 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5882 mc.moved_charge = 0;
4ffef5fe 5883 }
483c30b5
DN
5884 /* we must fixup refcnts and charges */
5885 if (mc.moved_swap) {
483c30b5 5886 /* uncharge swap account from the old cgroup */
ce00a967 5887 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5888 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5889
615d66c3
VD
5890 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5891
05b84301 5892 /*
3e32cb2e
JW
5893 * we charged both to->memory and to->memsw, so we
5894 * should uncharge to->memory.
05b84301 5895 */
ce00a967 5896 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5897 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5898
483c30b5
DN
5899 mc.moved_swap = 0;
5900 }
dfe076b0
DN
5901 memcg_oom_recover(from);
5902 memcg_oom_recover(to);
5903 wake_up_all(&mc.waitq);
5904}
5905
5906static void mem_cgroup_clear_mc(void)
5907{
264a0ae1
TH
5908 struct mm_struct *mm = mc.mm;
5909
dfe076b0
DN
5910 /*
5911 * we must clear moving_task before waking up waiters at the end of
5912 * task migration.
5913 */
5914 mc.moving_task = NULL;
5915 __mem_cgroup_clear_mc();
2bd9bb20 5916 spin_lock(&mc.lock);
4ffef5fe
DN
5917 mc.from = NULL;
5918 mc.to = NULL;
264a0ae1 5919 mc.mm = NULL;
2bd9bb20 5920 spin_unlock(&mc.lock);
264a0ae1
TH
5921
5922 mmput(mm);
4ffef5fe
DN
5923}
5924
1f7dd3e5 5925static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5926{
1f7dd3e5 5927 struct cgroup_subsys_state *css;
eed67d75 5928 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5929 struct mem_cgroup *from;
4530eddb 5930 struct task_struct *leader, *p;
9f2115f9 5931 struct mm_struct *mm;
1dfab5ab 5932 unsigned long move_flags;
9f2115f9 5933 int ret = 0;
7dc74be0 5934
1f7dd3e5
TH
5935 /* charge immigration isn't supported on the default hierarchy */
5936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5937 return 0;
5938
4530eddb
TH
5939 /*
5940 * Multi-process migrations only happen on the default hierarchy
5941 * where charge immigration is not used. Perform charge
5942 * immigration if @tset contains a leader and whine if there are
5943 * multiple.
5944 */
5945 p = NULL;
1f7dd3e5 5946 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5947 WARN_ON_ONCE(p);
5948 p = leader;
1f7dd3e5 5949 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5950 }
5951 if (!p)
5952 return 0;
5953
1f7dd3e5
TH
5954 /*
5955 * We are now commited to this value whatever it is. Changes in this
5956 * tunable will only affect upcoming migrations, not the current one.
5957 * So we need to save it, and keep it going.
5958 */
5959 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5960 if (!move_flags)
5961 return 0;
5962
9f2115f9
TH
5963 from = mem_cgroup_from_task(p);
5964
5965 VM_BUG_ON(from == memcg);
5966
5967 mm = get_task_mm(p);
5968 if (!mm)
5969 return 0;
5970 /* We move charges only when we move a owner of the mm */
5971 if (mm->owner == p) {
5972 VM_BUG_ON(mc.from);
5973 VM_BUG_ON(mc.to);
5974 VM_BUG_ON(mc.precharge);
5975 VM_BUG_ON(mc.moved_charge);
5976 VM_BUG_ON(mc.moved_swap);
5977
5978 spin_lock(&mc.lock);
264a0ae1 5979 mc.mm = mm;
9f2115f9
TH
5980 mc.from = from;
5981 mc.to = memcg;
5982 mc.flags = move_flags;
5983 spin_unlock(&mc.lock);
5984 /* We set mc.moving_task later */
5985
5986 ret = mem_cgroup_precharge_mc(mm);
5987 if (ret)
5988 mem_cgroup_clear_mc();
264a0ae1
TH
5989 } else {
5990 mmput(mm);
7dc74be0
DN
5991 }
5992 return ret;
5993}
5994
1f7dd3e5 5995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5996{
4e2f245d
JW
5997 if (mc.to)
5998 mem_cgroup_clear_mc();
7dc74be0
DN
5999}
6000
4ffef5fe
DN
6001static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002 unsigned long addr, unsigned long end,
6003 struct mm_walk *walk)
7dc74be0 6004{
4ffef5fe 6005 int ret = 0;
26bcd64a 6006 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6007 pte_t *pte;
6008 spinlock_t *ptl;
12724850
NH
6009 enum mc_target_type target_type;
6010 union mc_target target;
6011 struct page *page;
4ffef5fe 6012
b6ec57f4
KS
6013 ptl = pmd_trans_huge_lock(pmd, vma);
6014 if (ptl) {
62ade86a 6015 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6016 spin_unlock(ptl);
12724850
NH
6017 return 0;
6018 }
6019 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6020 if (target_type == MC_TARGET_PAGE) {
6021 page = target.page;
6022 if (!isolate_lru_page(page)) {
f627c2f5 6023 if (!mem_cgroup_move_account(page, true,
1306a85a 6024 mc.from, mc.to)) {
12724850
NH
6025 mc.precharge -= HPAGE_PMD_NR;
6026 mc.moved_charge += HPAGE_PMD_NR;
6027 }
6028 putback_lru_page(page);
6029 }
6030 put_page(page);
c733a828
JG
6031 } else if (target_type == MC_TARGET_DEVICE) {
6032 page = target.page;
6033 if (!mem_cgroup_move_account(page, true,
6034 mc.from, mc.to)) {
6035 mc.precharge -= HPAGE_PMD_NR;
6036 mc.moved_charge += HPAGE_PMD_NR;
6037 }
6038 put_page(page);
12724850 6039 }
bf929152 6040 spin_unlock(ptl);
1a5a9906 6041 return 0;
12724850
NH
6042 }
6043
45f83cef
AA
6044 if (pmd_trans_unstable(pmd))
6045 return 0;
4ffef5fe
DN
6046retry:
6047 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6048 for (; addr != end; addr += PAGE_SIZE) {
6049 pte_t ptent = *(pte++);
c733a828 6050 bool device = false;
02491447 6051 swp_entry_t ent;
4ffef5fe
DN
6052
6053 if (!mc.precharge)
6054 break;
6055
8d32ff84 6056 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6057 case MC_TARGET_DEVICE:
6058 device = true;
e4a9bc58 6059 fallthrough;
4ffef5fe
DN
6060 case MC_TARGET_PAGE:
6061 page = target.page;
53f9263b
KS
6062 /*
6063 * We can have a part of the split pmd here. Moving it
6064 * can be done but it would be too convoluted so simply
6065 * ignore such a partial THP and keep it in original
6066 * memcg. There should be somebody mapping the head.
6067 */
6068 if (PageTransCompound(page))
6069 goto put;
c733a828 6070 if (!device && isolate_lru_page(page))
4ffef5fe 6071 goto put;
f627c2f5
KS
6072 if (!mem_cgroup_move_account(page, false,
6073 mc.from, mc.to)) {
4ffef5fe 6074 mc.precharge--;
854ffa8d
DN
6075 /* we uncharge from mc.from later. */
6076 mc.moved_charge++;
4ffef5fe 6077 }
c733a828
JG
6078 if (!device)
6079 putback_lru_page(page);
8d32ff84 6080put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6081 put_page(page);
6082 break;
02491447
DN
6083 case MC_TARGET_SWAP:
6084 ent = target.ent;
e91cbb42 6085 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6086 mc.precharge--;
8d22a935
HD
6087 mem_cgroup_id_get_many(mc.to, 1);
6088 /* we fixup other refcnts and charges later. */
483c30b5
DN
6089 mc.moved_swap++;
6090 }
02491447 6091 break;
4ffef5fe
DN
6092 default:
6093 break;
6094 }
6095 }
6096 pte_unmap_unlock(pte - 1, ptl);
6097 cond_resched();
6098
6099 if (addr != end) {
6100 /*
6101 * We have consumed all precharges we got in can_attach().
6102 * We try charge one by one, but don't do any additional
6103 * charges to mc.to if we have failed in charge once in attach()
6104 * phase.
6105 */
854ffa8d 6106 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6107 if (!ret)
6108 goto retry;
6109 }
6110
6111 return ret;
6112}
6113
7b86ac33
CH
6114static const struct mm_walk_ops charge_walk_ops = {
6115 .pmd_entry = mem_cgroup_move_charge_pte_range,
6116};
6117
264a0ae1 6118static void mem_cgroup_move_charge(void)
4ffef5fe 6119{
4ffef5fe 6120 lru_add_drain_all();
312722cb 6121 /*
81f8c3a4
JW
6122 * Signal lock_page_memcg() to take the memcg's move_lock
6123 * while we're moving its pages to another memcg. Then wait
6124 * for already started RCU-only updates to finish.
312722cb
JW
6125 */
6126 atomic_inc(&mc.from->moving_account);
6127 synchronize_rcu();
dfe076b0 6128retry:
d8ed45c5 6129 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6130 /*
c1e8d7c6 6131 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6132 * waitq. So we cancel all extra charges, wake up all waiters,
6133 * and retry. Because we cancel precharges, we might not be able
6134 * to move enough charges, but moving charge is a best-effort
6135 * feature anyway, so it wouldn't be a big problem.
6136 */
6137 __mem_cgroup_clear_mc();
6138 cond_resched();
6139 goto retry;
6140 }
26bcd64a
NH
6141 /*
6142 * When we have consumed all precharges and failed in doing
6143 * additional charge, the page walk just aborts.
6144 */
7b86ac33
CH
6145 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6146 NULL);
0247f3f4 6147
d8ed45c5 6148 mmap_read_unlock(mc.mm);
312722cb 6149 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6150}
6151
264a0ae1 6152static void mem_cgroup_move_task(void)
67e465a7 6153{
264a0ae1
TH
6154 if (mc.to) {
6155 mem_cgroup_move_charge();
a433658c 6156 mem_cgroup_clear_mc();
264a0ae1 6157 }
67e465a7 6158}
5cfb80a7 6159#else /* !CONFIG_MMU */
1f7dd3e5 6160static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6161{
6162 return 0;
6163}
1f7dd3e5 6164static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6165{
6166}
264a0ae1 6167static void mem_cgroup_move_task(void)
5cfb80a7
DN
6168{
6169}
6170#endif
67e465a7 6171
677dc973
CD
6172static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6173{
6174 if (value == PAGE_COUNTER_MAX)
6175 seq_puts(m, "max\n");
6176 else
6177 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6178
6179 return 0;
6180}
6181
241994ed
JW
6182static u64 memory_current_read(struct cgroup_subsys_state *css,
6183 struct cftype *cft)
6184{
f5fc3c5d
JW
6185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6186
6187 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6188}
6189
bf8d5d52
RG
6190static int memory_min_show(struct seq_file *m, void *v)
6191{
677dc973
CD
6192 return seq_puts_memcg_tunable(m,
6193 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6194}
6195
6196static ssize_t memory_min_write(struct kernfs_open_file *of,
6197 char *buf, size_t nbytes, loff_t off)
6198{
6199 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6200 unsigned long min;
6201 int err;
6202
6203 buf = strstrip(buf);
6204 err = page_counter_memparse(buf, "max", &min);
6205 if (err)
6206 return err;
6207
6208 page_counter_set_min(&memcg->memory, min);
6209
6210 return nbytes;
6211}
6212
241994ed
JW
6213static int memory_low_show(struct seq_file *m, void *v)
6214{
677dc973
CD
6215 return seq_puts_memcg_tunable(m,
6216 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6217}
6218
6219static ssize_t memory_low_write(struct kernfs_open_file *of,
6220 char *buf, size_t nbytes, loff_t off)
6221{
6222 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6223 unsigned long low;
6224 int err;
6225
6226 buf = strstrip(buf);
d2973697 6227 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6228 if (err)
6229 return err;
6230
23067153 6231 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6232
6233 return nbytes;
6234}
6235
6236static int memory_high_show(struct seq_file *m, void *v)
6237{
d1663a90
JK
6238 return seq_puts_memcg_tunable(m,
6239 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6240}
6241
6242static ssize_t memory_high_write(struct kernfs_open_file *of,
6243 char *buf, size_t nbytes, loff_t off)
6244{
6245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6246 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6247 bool drained = false;
241994ed
JW
6248 unsigned long high;
6249 int err;
6250
6251 buf = strstrip(buf);
d2973697 6252 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6253 if (err)
6254 return err;
6255
e82553c1
JW
6256 page_counter_set_high(&memcg->memory, high);
6257
8c8c383c
JW
6258 for (;;) {
6259 unsigned long nr_pages = page_counter_read(&memcg->memory);
6260 unsigned long reclaimed;
6261
6262 if (nr_pages <= high)
6263 break;
6264
6265 if (signal_pending(current))
6266 break;
6267
6268 if (!drained) {
6269 drain_all_stock(memcg);
6270 drained = true;
6271 continue;
6272 }
6273
6274 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6275 GFP_KERNEL, true);
6276
6277 if (!reclaimed && !nr_retries--)
6278 break;
6279 }
588083bb 6280
19ce33ac 6281 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6282 return nbytes;
6283}
6284
6285static int memory_max_show(struct seq_file *m, void *v)
6286{
677dc973
CD
6287 return seq_puts_memcg_tunable(m,
6288 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6289}
6290
6291static ssize_t memory_max_write(struct kernfs_open_file *of,
6292 char *buf, size_t nbytes, loff_t off)
6293{
6294 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6295 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6296 bool drained = false;
241994ed
JW
6297 unsigned long max;
6298 int err;
6299
6300 buf = strstrip(buf);
d2973697 6301 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6302 if (err)
6303 return err;
6304
bbec2e15 6305 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6306
6307 for (;;) {
6308 unsigned long nr_pages = page_counter_read(&memcg->memory);
6309
6310 if (nr_pages <= max)
6311 break;
6312
7249c9f0 6313 if (signal_pending(current))
b6e6edcf 6314 break;
b6e6edcf
JW
6315
6316 if (!drained) {
6317 drain_all_stock(memcg);
6318 drained = true;
6319 continue;
6320 }
6321
6322 if (nr_reclaims) {
6323 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6324 GFP_KERNEL, true))
6325 nr_reclaims--;
6326 continue;
6327 }
6328
e27be240 6329 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6330 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6331 break;
6332 }
241994ed 6333
2529bb3a 6334 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6335 return nbytes;
6336}
6337
1e577f97
SB
6338static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6339{
6340 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6341 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6342 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6343 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6344 seq_printf(m, "oom_kill %lu\n",
6345 atomic_long_read(&events[MEMCG_OOM_KILL]));
6346}
6347
241994ed
JW
6348static int memory_events_show(struct seq_file *m, void *v)
6349{
aa9694bb 6350 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6351
1e577f97
SB
6352 __memory_events_show(m, memcg->memory_events);
6353 return 0;
6354}
6355
6356static int memory_events_local_show(struct seq_file *m, void *v)
6357{
6358 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6359
1e577f97 6360 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6361 return 0;
6362}
6363
587d9f72
JW
6364static int memory_stat_show(struct seq_file *m, void *v)
6365{
aa9694bb 6366 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6367 char *buf;
1ff9e6e1 6368
c8713d0b
JW
6369 buf = memory_stat_format(memcg);
6370 if (!buf)
6371 return -ENOMEM;
6372 seq_puts(m, buf);
6373 kfree(buf);
587d9f72
JW
6374 return 0;
6375}
6376
5f9a4f4a 6377#ifdef CONFIG_NUMA
fff66b79
MS
6378static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6379 int item)
6380{
6381 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6382}
6383
5f9a4f4a
MS
6384static int memory_numa_stat_show(struct seq_file *m, void *v)
6385{
6386 int i;
6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388
6389 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6390 int nid;
6391
6392 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6393 continue;
6394
6395 seq_printf(m, "%s", memory_stats[i].name);
6396 for_each_node_state(nid, N_MEMORY) {
6397 u64 size;
6398 struct lruvec *lruvec;
6399
6400 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6401 size = lruvec_page_state_output(lruvec,
6402 memory_stats[i].idx);
5f9a4f4a
MS
6403 seq_printf(m, " N%d=%llu", nid, size);
6404 }
6405 seq_putc(m, '\n');
6406 }
6407
6408 return 0;
6409}
6410#endif
6411
3d8b38eb
RG
6412static int memory_oom_group_show(struct seq_file *m, void *v)
6413{
aa9694bb 6414 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6415
6416 seq_printf(m, "%d\n", memcg->oom_group);
6417
6418 return 0;
6419}
6420
6421static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6422 char *buf, size_t nbytes, loff_t off)
6423{
6424 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6425 int ret, oom_group;
6426
6427 buf = strstrip(buf);
6428 if (!buf)
6429 return -EINVAL;
6430
6431 ret = kstrtoint(buf, 0, &oom_group);
6432 if (ret)
6433 return ret;
6434
6435 if (oom_group != 0 && oom_group != 1)
6436 return -EINVAL;
6437
6438 memcg->oom_group = oom_group;
6439
6440 return nbytes;
6441}
6442
241994ed
JW
6443static struct cftype memory_files[] = {
6444 {
6445 .name = "current",
f5fc3c5d 6446 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6447 .read_u64 = memory_current_read,
6448 },
bf8d5d52
RG
6449 {
6450 .name = "min",
6451 .flags = CFTYPE_NOT_ON_ROOT,
6452 .seq_show = memory_min_show,
6453 .write = memory_min_write,
6454 },
241994ed
JW
6455 {
6456 .name = "low",
6457 .flags = CFTYPE_NOT_ON_ROOT,
6458 .seq_show = memory_low_show,
6459 .write = memory_low_write,
6460 },
6461 {
6462 .name = "high",
6463 .flags = CFTYPE_NOT_ON_ROOT,
6464 .seq_show = memory_high_show,
6465 .write = memory_high_write,
6466 },
6467 {
6468 .name = "max",
6469 .flags = CFTYPE_NOT_ON_ROOT,
6470 .seq_show = memory_max_show,
6471 .write = memory_max_write,
6472 },
6473 {
6474 .name = "events",
6475 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6476 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6477 .seq_show = memory_events_show,
6478 },
1e577f97
SB
6479 {
6480 .name = "events.local",
6481 .flags = CFTYPE_NOT_ON_ROOT,
6482 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6483 .seq_show = memory_events_local_show,
6484 },
587d9f72
JW
6485 {
6486 .name = "stat",
587d9f72
JW
6487 .seq_show = memory_stat_show,
6488 },
5f9a4f4a
MS
6489#ifdef CONFIG_NUMA
6490 {
6491 .name = "numa_stat",
6492 .seq_show = memory_numa_stat_show,
6493 },
6494#endif
3d8b38eb
RG
6495 {
6496 .name = "oom.group",
6497 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6498 .seq_show = memory_oom_group_show,
6499 .write = memory_oom_group_write,
6500 },
241994ed
JW
6501 { } /* terminate */
6502};
6503
073219e9 6504struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6505 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6506 .css_online = mem_cgroup_css_online,
92fb9748 6507 .css_offline = mem_cgroup_css_offline,
6df38689 6508 .css_released = mem_cgroup_css_released,
92fb9748 6509 .css_free = mem_cgroup_css_free,
1ced953b 6510 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6511 .can_attach = mem_cgroup_can_attach,
6512 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6513 .post_attach = mem_cgroup_move_task,
241994ed
JW
6514 .dfl_cftypes = memory_files,
6515 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6516 .early_init = 0,
8cdea7c0 6517};
c077719b 6518
bc50bcc6
JW
6519/*
6520 * This function calculates an individual cgroup's effective
6521 * protection which is derived from its own memory.min/low, its
6522 * parent's and siblings' settings, as well as the actual memory
6523 * distribution in the tree.
6524 *
6525 * The following rules apply to the effective protection values:
6526 *
6527 * 1. At the first level of reclaim, effective protection is equal to
6528 * the declared protection in memory.min and memory.low.
6529 *
6530 * 2. To enable safe delegation of the protection configuration, at
6531 * subsequent levels the effective protection is capped to the
6532 * parent's effective protection.
6533 *
6534 * 3. To make complex and dynamic subtrees easier to configure, the
6535 * user is allowed to overcommit the declared protection at a given
6536 * level. If that is the case, the parent's effective protection is
6537 * distributed to the children in proportion to how much protection
6538 * they have declared and how much of it they are utilizing.
6539 *
6540 * This makes distribution proportional, but also work-conserving:
6541 * if one cgroup claims much more protection than it uses memory,
6542 * the unused remainder is available to its siblings.
6543 *
6544 * 4. Conversely, when the declared protection is undercommitted at a
6545 * given level, the distribution of the larger parental protection
6546 * budget is NOT proportional. A cgroup's protection from a sibling
6547 * is capped to its own memory.min/low setting.
6548 *
8a931f80
JW
6549 * 5. However, to allow protecting recursive subtrees from each other
6550 * without having to declare each individual cgroup's fixed share
6551 * of the ancestor's claim to protection, any unutilized -
6552 * "floating" - protection from up the tree is distributed in
6553 * proportion to each cgroup's *usage*. This makes the protection
6554 * neutral wrt sibling cgroups and lets them compete freely over
6555 * the shared parental protection budget, but it protects the
6556 * subtree as a whole from neighboring subtrees.
6557 *
6558 * Note that 4. and 5. are not in conflict: 4. is about protecting
6559 * against immediate siblings whereas 5. is about protecting against
6560 * neighboring subtrees.
bc50bcc6
JW
6561 */
6562static unsigned long effective_protection(unsigned long usage,
8a931f80 6563 unsigned long parent_usage,
bc50bcc6
JW
6564 unsigned long setting,
6565 unsigned long parent_effective,
6566 unsigned long siblings_protected)
6567{
6568 unsigned long protected;
8a931f80 6569 unsigned long ep;
bc50bcc6
JW
6570
6571 protected = min(usage, setting);
6572 /*
6573 * If all cgroups at this level combined claim and use more
6574 * protection then what the parent affords them, distribute
6575 * shares in proportion to utilization.
6576 *
6577 * We are using actual utilization rather than the statically
6578 * claimed protection in order to be work-conserving: claimed
6579 * but unused protection is available to siblings that would
6580 * otherwise get a smaller chunk than what they claimed.
6581 */
6582 if (siblings_protected > parent_effective)
6583 return protected * parent_effective / siblings_protected;
6584
6585 /*
6586 * Ok, utilized protection of all children is within what the
6587 * parent affords them, so we know whatever this child claims
6588 * and utilizes is effectively protected.
6589 *
6590 * If there is unprotected usage beyond this value, reclaim
6591 * will apply pressure in proportion to that amount.
6592 *
6593 * If there is unutilized protection, the cgroup will be fully
6594 * shielded from reclaim, but we do return a smaller value for
6595 * protection than what the group could enjoy in theory. This
6596 * is okay. With the overcommit distribution above, effective
6597 * protection is always dependent on how memory is actually
6598 * consumed among the siblings anyway.
6599 */
8a931f80
JW
6600 ep = protected;
6601
6602 /*
6603 * If the children aren't claiming (all of) the protection
6604 * afforded to them by the parent, distribute the remainder in
6605 * proportion to the (unprotected) memory of each cgroup. That
6606 * way, cgroups that aren't explicitly prioritized wrt each
6607 * other compete freely over the allowance, but they are
6608 * collectively protected from neighboring trees.
6609 *
6610 * We're using unprotected memory for the weight so that if
6611 * some cgroups DO claim explicit protection, we don't protect
6612 * the same bytes twice.
cd324edc
JW
6613 *
6614 * Check both usage and parent_usage against the respective
6615 * protected values. One should imply the other, but they
6616 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6617 */
6618 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6619 return ep;
cd324edc
JW
6620 if (parent_effective > siblings_protected &&
6621 parent_usage > siblings_protected &&
6622 usage > protected) {
8a931f80
JW
6623 unsigned long unclaimed;
6624
6625 unclaimed = parent_effective - siblings_protected;
6626 unclaimed *= usage - protected;
6627 unclaimed /= parent_usage - siblings_protected;
6628
6629 ep += unclaimed;
6630 }
6631
6632 return ep;
bc50bcc6
JW
6633}
6634
241994ed 6635/**
bf8d5d52 6636 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6637 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6638 * @memcg: the memory cgroup to check
6639 *
23067153
RG
6640 * WARNING: This function is not stateless! It can only be used as part
6641 * of a top-down tree iteration, not for isolated queries.
241994ed 6642 */
45c7f7e1
CD
6643void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6644 struct mem_cgroup *memcg)
241994ed 6645{
8a931f80 6646 unsigned long usage, parent_usage;
23067153
RG
6647 struct mem_cgroup *parent;
6648
241994ed 6649 if (mem_cgroup_disabled())
45c7f7e1 6650 return;
241994ed 6651
34c81057
SC
6652 if (!root)
6653 root = root_mem_cgroup;
22f7496f
YS
6654
6655 /*
6656 * Effective values of the reclaim targets are ignored so they
6657 * can be stale. Have a look at mem_cgroup_protection for more
6658 * details.
6659 * TODO: calculation should be more robust so that we do not need
6660 * that special casing.
6661 */
34c81057 6662 if (memcg == root)
45c7f7e1 6663 return;
241994ed 6664
23067153 6665 usage = page_counter_read(&memcg->memory);
bf8d5d52 6666 if (!usage)
45c7f7e1 6667 return;
bf8d5d52 6668
bf8d5d52 6669 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6670 /* No parent means a non-hierarchical mode on v1 memcg */
6671 if (!parent)
45c7f7e1 6672 return;
df2a4196 6673
bc50bcc6 6674 if (parent == root) {
c3d53200 6675 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6676 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6677 return;
bf8d5d52
RG
6678 }
6679
8a931f80
JW
6680 parent_usage = page_counter_read(&parent->memory);
6681
b3a7822e 6682 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6683 READ_ONCE(memcg->memory.min),
6684 READ_ONCE(parent->memory.emin),
b3a7822e 6685 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6686
b3a7822e 6687 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6688 READ_ONCE(memcg->memory.low),
6689 READ_ONCE(parent->memory.elow),
b3a7822e 6690 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6691}
6692
00501b53 6693/**
f0e45fb4 6694 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6695 * @page: page to charge
6696 * @mm: mm context of the victim
6697 * @gfp_mask: reclaim mode
00501b53
JW
6698 *
6699 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6700 * pages according to @gfp_mask if necessary.
6701 *
f0e45fb4 6702 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6703 */
d9eb1ea2 6704int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6705{
6c357848 6706 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6707 struct mem_cgroup *memcg = NULL;
00501b53
JW
6708 int ret = 0;
6709
6710 if (mem_cgroup_disabled())
6711 goto out;
6712
6713 if (PageSwapCache(page)) {
2d1c4980
JW
6714 swp_entry_t ent = { .val = page_private(page), };
6715 unsigned short id;
6716
00501b53
JW
6717 /*
6718 * Every swap fault against a single page tries to charge the
6719 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6720 * already charged pages, too. page and memcg binding is
6721 * protected by the page lock, which serializes swap cache
6722 * removal, which in turn serializes uncharging.
00501b53 6723 */
e993d905 6724 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6725 if (page_memcg(compound_head(page)))
00501b53 6726 goto out;
e993d905 6727
2d1c4980
JW
6728 id = lookup_swap_cgroup_id(ent);
6729 rcu_read_lock();
6730 memcg = mem_cgroup_from_id(id);
6731 if (memcg && !css_tryget_online(&memcg->css))
6732 memcg = NULL;
6733 rcu_read_unlock();
00501b53
JW
6734 }
6735
00501b53
JW
6736 if (!memcg)
6737 memcg = get_mem_cgroup_from_mm(mm);
6738
6739 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6740 if (ret)
6741 goto out_put;
00501b53 6742
1a3e1f40 6743 css_get(&memcg->css);
d9eb1ea2 6744 commit_charge(page, memcg);
6abb5a86 6745
6abb5a86 6746 local_irq_disable();
3fba69a5 6747 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6748 memcg_check_events(memcg, page);
6749 local_irq_enable();
00501b53 6750
2d1c4980 6751 if (PageSwapCache(page)) {
00501b53
JW
6752 swp_entry_t entry = { .val = page_private(page) };
6753 /*
6754 * The swap entry might not get freed for a long time,
6755 * let's not wait for it. The page already received a
6756 * memory+swap charge, drop the swap entry duplicate.
6757 */
38d8b4e6 6758 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6759 }
00501b53 6760
f0e45fb4
JW
6761out_put:
6762 css_put(&memcg->css);
6763out:
6764 return ret;
3fea5a49
JW
6765}
6766
a9d5adee
JG
6767struct uncharge_gather {
6768 struct mem_cgroup *memcg;
9f762dbe 6769 unsigned long nr_pages;
a9d5adee 6770 unsigned long pgpgout;
a9d5adee 6771 unsigned long nr_kmem;
a9d5adee
JG
6772 struct page *dummy_page;
6773};
6774
6775static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6776{
a9d5adee
JG
6777 memset(ug, 0, sizeof(*ug));
6778}
6779
6780static void uncharge_batch(const struct uncharge_gather *ug)
6781{
747db954
JW
6782 unsigned long flags;
6783
a9d5adee 6784 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6785 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6786 if (do_memsw_account())
9f762dbe 6787 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6788 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6789 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6790 memcg_oom_recover(ug->memcg);
ce00a967 6791 }
747db954
JW
6792
6793 local_irq_save(flags);
c9019e9b 6794 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6795 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6796 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6797 local_irq_restore(flags);
f1796544
MH
6798
6799 /* drop reference from uncharge_page */
6800 css_put(&ug->memcg->css);
a9d5adee
JG
6801}
6802
6803static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6804{
9f762dbe
JW
6805 unsigned long nr_pages;
6806
a9d5adee 6807 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6808
bcfe06bf 6809 if (!page_memcg(page))
a9d5adee
JG
6810 return;
6811
6812 /*
6813 * Nobody should be changing or seriously looking at
bcfe06bf 6814 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6815 * exclusive access to the page.
6816 */
6817
bcfe06bf 6818 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6819 if (ug->memcg) {
6820 uncharge_batch(ug);
6821 uncharge_gather_clear(ug);
6822 }
bcfe06bf 6823 ug->memcg = page_memcg(page);
f1796544
MH
6824
6825 /* pairs with css_put in uncharge_batch */
6826 css_get(&ug->memcg->css);
a9d5adee
JG
6827 }
6828
9f762dbe
JW
6829 nr_pages = compound_nr(page);
6830 ug->nr_pages += nr_pages;
a9d5adee 6831
18b2db3b 6832 if (PageMemcgKmem(page))
9f762dbe 6833 ug->nr_kmem += nr_pages;
18b2db3b
RG
6834 else
6835 ug->pgpgout++;
a9d5adee
JG
6836
6837 ug->dummy_page = page;
bcfe06bf 6838 page->memcg_data = 0;
1a3e1f40 6839 css_put(&ug->memcg->css);
747db954
JW
6840}
6841
0a31bc97
JW
6842/**
6843 * mem_cgroup_uncharge - uncharge a page
6844 * @page: page to uncharge
6845 *
f0e45fb4 6846 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6847 */
6848void mem_cgroup_uncharge(struct page *page)
6849{
a9d5adee
JG
6850 struct uncharge_gather ug;
6851
0a31bc97
JW
6852 if (mem_cgroup_disabled())
6853 return;
6854
747db954 6855 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6856 if (!page_memcg(page))
0a31bc97
JW
6857 return;
6858
a9d5adee
JG
6859 uncharge_gather_clear(&ug);
6860 uncharge_page(page, &ug);
6861 uncharge_batch(&ug);
747db954 6862}
0a31bc97 6863
747db954
JW
6864/**
6865 * mem_cgroup_uncharge_list - uncharge a list of page
6866 * @page_list: list of pages to uncharge
6867 *
6868 * Uncharge a list of pages previously charged with
f0e45fb4 6869 * mem_cgroup_charge().
747db954
JW
6870 */
6871void mem_cgroup_uncharge_list(struct list_head *page_list)
6872{
c41a40b6
MS
6873 struct uncharge_gather ug;
6874 struct page *page;
6875
747db954
JW
6876 if (mem_cgroup_disabled())
6877 return;
0a31bc97 6878
c41a40b6
MS
6879 uncharge_gather_clear(&ug);
6880 list_for_each_entry(page, page_list, lru)
6881 uncharge_page(page, &ug);
6882 if (ug.memcg)
6883 uncharge_batch(&ug);
0a31bc97
JW
6884}
6885
6886/**
6a93ca8f
JW
6887 * mem_cgroup_migrate - charge a page's replacement
6888 * @oldpage: currently circulating page
6889 * @newpage: replacement page
0a31bc97 6890 *
6a93ca8f
JW
6891 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6892 * be uncharged upon free.
0a31bc97
JW
6893 *
6894 * Both pages must be locked, @newpage->mapping must be set up.
6895 */
6a93ca8f 6896void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6897{
29833315 6898 struct mem_cgroup *memcg;
44b7a8d3 6899 unsigned int nr_pages;
d93c4130 6900 unsigned long flags;
0a31bc97
JW
6901
6902 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6903 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6904 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6905 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6906 newpage);
0a31bc97
JW
6907
6908 if (mem_cgroup_disabled())
6909 return;
6910
6911 /* Page cache replacement: new page already charged? */
bcfe06bf 6912 if (page_memcg(newpage))
0a31bc97
JW
6913 return;
6914
bcfe06bf 6915 memcg = page_memcg(oldpage);
a4055888 6916 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6917 if (!memcg)
0a31bc97
JW
6918 return;
6919
44b7a8d3 6920 /* Force-charge the new page. The old one will be freed soon */
6c357848 6921 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6922
6923 page_counter_charge(&memcg->memory, nr_pages);
6924 if (do_memsw_account())
6925 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6926
1a3e1f40 6927 css_get(&memcg->css);
d9eb1ea2 6928 commit_charge(newpage, memcg);
44b7a8d3 6929
d93c4130 6930 local_irq_save(flags);
3fba69a5 6931 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6932 memcg_check_events(memcg, newpage);
d93c4130 6933 local_irq_restore(flags);
0a31bc97
JW
6934}
6935
ef12947c 6936DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6937EXPORT_SYMBOL(memcg_sockets_enabled_key);
6938
2d758073 6939void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6940{
6941 struct mem_cgroup *memcg;
6942
2d758073
JW
6943 if (!mem_cgroup_sockets_enabled)
6944 return;
6945
e876ecc6
SB
6946 /* Do not associate the sock with unrelated interrupted task's memcg. */
6947 if (in_interrupt())
6948 return;
6949
11092087
JW
6950 rcu_read_lock();
6951 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6952 if (memcg == root_mem_cgroup)
6953 goto out;
0db15298 6954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6955 goto out;
8965aa28 6956 if (css_tryget(&memcg->css))
11092087 6957 sk->sk_memcg = memcg;
f7e1cb6e 6958out:
11092087
JW
6959 rcu_read_unlock();
6960}
11092087 6961
2d758073 6962void mem_cgroup_sk_free(struct sock *sk)
11092087 6963{
2d758073
JW
6964 if (sk->sk_memcg)
6965 css_put(&sk->sk_memcg->css);
11092087
JW
6966}
6967
6968/**
6969 * mem_cgroup_charge_skmem - charge socket memory
6970 * @memcg: memcg to charge
6971 * @nr_pages: number of pages to charge
6972 *
6973 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6974 * @memcg's configured limit, %false if the charge had to be forced.
6975 */
6976bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6977{
f7e1cb6e 6978 gfp_t gfp_mask = GFP_KERNEL;
11092087 6979
f7e1cb6e 6980 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6981 struct page_counter *fail;
f7e1cb6e 6982
0db15298
JW
6983 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6984 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6985 return true;
6986 }
0db15298
JW
6987 page_counter_charge(&memcg->tcpmem, nr_pages);
6988 memcg->tcpmem_pressure = 1;
f7e1cb6e 6989 return false;
11092087 6990 }
d886f4e4 6991
f7e1cb6e
JW
6992 /* Don't block in the packet receive path */
6993 if (in_softirq())
6994 gfp_mask = GFP_NOWAIT;
6995
c9019e9b 6996 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6997
f7e1cb6e
JW
6998 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6999 return true;
7000
7001 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7002 return false;
7003}
7004
7005/**
7006 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7007 * @memcg: memcg to uncharge
7008 * @nr_pages: number of pages to uncharge
11092087
JW
7009 */
7010void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011{
f7e1cb6e 7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7013 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7014 return;
7015 }
d886f4e4 7016
c9019e9b 7017 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7018
475d0487 7019 refill_stock(memcg, nr_pages);
11092087
JW
7020}
7021
f7e1cb6e
JW
7022static int __init cgroup_memory(char *s)
7023{
7024 char *token;
7025
7026 while ((token = strsep(&s, ",")) != NULL) {
7027 if (!*token)
7028 continue;
7029 if (!strcmp(token, "nosocket"))
7030 cgroup_memory_nosocket = true;
04823c83
VD
7031 if (!strcmp(token, "nokmem"))
7032 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7033 }
7034 return 0;
7035}
7036__setup("cgroup.memory=", cgroup_memory);
11092087 7037
2d11085e 7038/*
1081312f
MH
7039 * subsys_initcall() for memory controller.
7040 *
308167fc
SAS
7041 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7042 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7043 * basically everything that doesn't depend on a specific mem_cgroup structure
7044 * should be initialized from here.
2d11085e
MH
7045 */
7046static int __init mem_cgroup_init(void)
7047{
95a045f6
JW
7048 int cpu, node;
7049
f3344adf
MS
7050 /*
7051 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7052 * used for per-memcg-per-cpu caching of per-node statistics. In order
7053 * to work fine, we should make sure that the overfill threshold can't
7054 * exceed S32_MAX / PAGE_SIZE.
7055 */
7056 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7057
308167fc
SAS
7058 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7059 memcg_hotplug_cpu_dead);
95a045f6
JW
7060
7061 for_each_possible_cpu(cpu)
7062 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7063 drain_local_stock);
7064
7065 for_each_node(node) {
7066 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7067
7068 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7069 node_online(node) ? node : NUMA_NO_NODE);
7070
ef8f2327 7071 rtpn->rb_root = RB_ROOT;
fa90b2fd 7072 rtpn->rb_rightmost = NULL;
ef8f2327 7073 spin_lock_init(&rtpn->lock);
95a045f6
JW
7074 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7075 }
7076
2d11085e
MH
7077 return 0;
7078}
7079subsys_initcall(mem_cgroup_init);
21afa38e
JW
7080
7081#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7082static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7083{
1c2d479a 7084 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7085 /*
7086 * The root cgroup cannot be destroyed, so it's refcount must
7087 * always be >= 1.
7088 */
7089 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7090 VM_BUG_ON(1);
7091 break;
7092 }
7093 memcg = parent_mem_cgroup(memcg);
7094 if (!memcg)
7095 memcg = root_mem_cgroup;
7096 }
7097 return memcg;
7098}
7099
21afa38e
JW
7100/**
7101 * mem_cgroup_swapout - transfer a memsw charge to swap
7102 * @page: page whose memsw charge to transfer
7103 * @entry: swap entry to move the charge to
7104 *
7105 * Transfer the memsw charge of @page to @entry.
7106 */
7107void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7108{
1f47b61f 7109 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7110 unsigned int nr_entries;
21afa38e
JW
7111 unsigned short oldid;
7112
7113 VM_BUG_ON_PAGE(PageLRU(page), page);
7114 VM_BUG_ON_PAGE(page_count(page), page);
7115
76358ab5
AS
7116 if (mem_cgroup_disabled())
7117 return;
7118
2d1c4980 7119 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7120 return;
7121
bcfe06bf 7122 memcg = page_memcg(page);
21afa38e 7123
a4055888 7124 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7125 if (!memcg)
7126 return;
7127
1f47b61f
VD
7128 /*
7129 * In case the memcg owning these pages has been offlined and doesn't
7130 * have an ID allocated to it anymore, charge the closest online
7131 * ancestor for the swap instead and transfer the memory+swap charge.
7132 */
7133 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7134 nr_entries = thp_nr_pages(page);
d6810d73
HY
7135 /* Get references for the tail pages, too */
7136 if (nr_entries > 1)
7137 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7138 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7139 nr_entries);
21afa38e 7140 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7141 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7142
bcfe06bf 7143 page->memcg_data = 0;
21afa38e
JW
7144
7145 if (!mem_cgroup_is_root(memcg))
d6810d73 7146 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7147
2d1c4980 7148 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7149 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7150 page_counter_charge(&swap_memcg->memsw, nr_entries);
7151 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7152 }
7153
ce9ce665
SAS
7154 /*
7155 * Interrupts should be disabled here because the caller holds the
b93b0163 7156 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7157 * important here to have the interrupts disabled because it is the
b93b0163 7158 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7159 */
7160 VM_BUG_ON(!irqs_disabled());
3fba69a5 7161 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7162 memcg_check_events(memcg, page);
73f576c0 7163
1a3e1f40 7164 css_put(&memcg->css);
21afa38e
JW
7165}
7166
38d8b4e6
HY
7167/**
7168 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7169 * @page: page being added to swap
7170 * @entry: swap entry to charge
7171 *
38d8b4e6 7172 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7173 *
7174 * Returns 0 on success, -ENOMEM on failure.
7175 */
7176int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7177{
6c357848 7178 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7179 struct page_counter *counter;
38d8b4e6 7180 struct mem_cgroup *memcg;
37e84351
VD
7181 unsigned short oldid;
7182
76358ab5
AS
7183 if (mem_cgroup_disabled())
7184 return 0;
7185
2d1c4980 7186 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7187 return 0;
7188
bcfe06bf 7189 memcg = page_memcg(page);
37e84351 7190
a4055888 7191 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7192 if (!memcg)
7193 return 0;
7194
f3a53a3a
TH
7195 if (!entry.val) {
7196 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7197 return 0;
f3a53a3a 7198 }
bb98f2c5 7199
1f47b61f
VD
7200 memcg = mem_cgroup_id_get_online(memcg);
7201
2d1c4980 7202 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7203 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7204 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7205 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7206 mem_cgroup_id_put(memcg);
37e84351 7207 return -ENOMEM;
1f47b61f 7208 }
37e84351 7209
38d8b4e6
HY
7210 /* Get references for the tail pages, too */
7211 if (nr_pages > 1)
7212 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7213 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7214 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7215 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7216
37e84351
VD
7217 return 0;
7218}
7219
21afa38e 7220/**
38d8b4e6 7221 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7222 * @entry: swap entry to uncharge
38d8b4e6 7223 * @nr_pages: the amount of swap space to uncharge
21afa38e 7224 */
38d8b4e6 7225void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7226{
7227 struct mem_cgroup *memcg;
7228 unsigned short id;
7229
38d8b4e6 7230 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7231 rcu_read_lock();
adbe427b 7232 memcg = mem_cgroup_from_id(id);
21afa38e 7233 if (memcg) {
2d1c4980 7234 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7235 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7236 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7237 else
38d8b4e6 7238 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7239 }
c9019e9b 7240 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7241 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7242 }
7243 rcu_read_unlock();
7244}
7245
d8b38438
VD
7246long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7247{
7248 long nr_swap_pages = get_nr_swap_pages();
7249
eccb52e7 7250 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7251 return nr_swap_pages;
7252 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7253 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7254 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7255 page_counter_read(&memcg->swap));
7256 return nr_swap_pages;
7257}
7258
5ccc5aba
VD
7259bool mem_cgroup_swap_full(struct page *page)
7260{
7261 struct mem_cgroup *memcg;
7262
7263 VM_BUG_ON_PAGE(!PageLocked(page), page);
7264
7265 if (vm_swap_full())
7266 return true;
eccb52e7 7267 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7268 return false;
7269
bcfe06bf 7270 memcg = page_memcg(page);
5ccc5aba
VD
7271 if (!memcg)
7272 return false;
7273
4b82ab4f
JK
7274 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7275 unsigned long usage = page_counter_read(&memcg->swap);
7276
7277 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7278 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7279 return true;
4b82ab4f 7280 }
5ccc5aba
VD
7281
7282 return false;
7283}
7284
eccb52e7 7285static int __init setup_swap_account(char *s)
21afa38e
JW
7286{
7287 if (!strcmp(s, "1"))
5ab92901 7288 cgroup_memory_noswap = false;
21afa38e 7289 else if (!strcmp(s, "0"))
5ab92901 7290 cgroup_memory_noswap = true;
21afa38e
JW
7291 return 1;
7292}
eccb52e7 7293__setup("swapaccount=", setup_swap_account);
21afa38e 7294
37e84351
VD
7295static u64 swap_current_read(struct cgroup_subsys_state *css,
7296 struct cftype *cft)
7297{
7298 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7299
7300 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7301}
7302
4b82ab4f
JK
7303static int swap_high_show(struct seq_file *m, void *v)
7304{
7305 return seq_puts_memcg_tunable(m,
7306 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7307}
7308
7309static ssize_t swap_high_write(struct kernfs_open_file *of,
7310 char *buf, size_t nbytes, loff_t off)
7311{
7312 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7313 unsigned long high;
7314 int err;
7315
7316 buf = strstrip(buf);
7317 err = page_counter_memparse(buf, "max", &high);
7318 if (err)
7319 return err;
7320
7321 page_counter_set_high(&memcg->swap, high);
7322
7323 return nbytes;
7324}
7325
37e84351
VD
7326static int swap_max_show(struct seq_file *m, void *v)
7327{
677dc973
CD
7328 return seq_puts_memcg_tunable(m,
7329 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7330}
7331
7332static ssize_t swap_max_write(struct kernfs_open_file *of,
7333 char *buf, size_t nbytes, loff_t off)
7334{
7335 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7336 unsigned long max;
7337 int err;
7338
7339 buf = strstrip(buf);
7340 err = page_counter_memparse(buf, "max", &max);
7341 if (err)
7342 return err;
7343
be09102b 7344 xchg(&memcg->swap.max, max);
37e84351
VD
7345
7346 return nbytes;
7347}
7348
f3a53a3a
TH
7349static int swap_events_show(struct seq_file *m, void *v)
7350{
aa9694bb 7351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7352
4b82ab4f
JK
7353 seq_printf(m, "high %lu\n",
7354 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7355 seq_printf(m, "max %lu\n",
7356 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7357 seq_printf(m, "fail %lu\n",
7358 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7359
7360 return 0;
7361}
7362
37e84351
VD
7363static struct cftype swap_files[] = {
7364 {
7365 .name = "swap.current",
7366 .flags = CFTYPE_NOT_ON_ROOT,
7367 .read_u64 = swap_current_read,
7368 },
4b82ab4f
JK
7369 {
7370 .name = "swap.high",
7371 .flags = CFTYPE_NOT_ON_ROOT,
7372 .seq_show = swap_high_show,
7373 .write = swap_high_write,
7374 },
37e84351
VD
7375 {
7376 .name = "swap.max",
7377 .flags = CFTYPE_NOT_ON_ROOT,
7378 .seq_show = swap_max_show,
7379 .write = swap_max_write,
7380 },
f3a53a3a
TH
7381 {
7382 .name = "swap.events",
7383 .flags = CFTYPE_NOT_ON_ROOT,
7384 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7385 .seq_show = swap_events_show,
7386 },
37e84351
VD
7387 { } /* terminate */
7388};
7389
eccb52e7 7390static struct cftype memsw_files[] = {
21afa38e
JW
7391 {
7392 .name = "memsw.usage_in_bytes",
7393 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7394 .read_u64 = mem_cgroup_read_u64,
7395 },
7396 {
7397 .name = "memsw.max_usage_in_bytes",
7398 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7399 .write = mem_cgroup_reset,
7400 .read_u64 = mem_cgroup_read_u64,
7401 },
7402 {
7403 .name = "memsw.limit_in_bytes",
7404 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7405 .write = mem_cgroup_write,
7406 .read_u64 = mem_cgroup_read_u64,
7407 },
7408 {
7409 .name = "memsw.failcnt",
7410 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7411 .write = mem_cgroup_reset,
7412 .read_u64 = mem_cgroup_read_u64,
7413 },
7414 { }, /* terminate */
7415};
7416
82ff165c
BS
7417/*
7418 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7419 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7420 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7421 * boot parameter. This may result in premature OOPS inside
7422 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7423 */
21afa38e
JW
7424static int __init mem_cgroup_swap_init(void)
7425{
2d1c4980
JW
7426 /* No memory control -> no swap control */
7427 if (mem_cgroup_disabled())
7428 cgroup_memory_noswap = true;
7429
7430 if (cgroup_memory_noswap)
eccb52e7
JW
7431 return 0;
7432
7433 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7434 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7435
21afa38e
JW
7436 return 0;
7437}
82ff165c 7438core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7439
7440#endif /* CONFIG_MEMCG_SWAP */