]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
7ae1e1d0 GC |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
8cdea7c0 BS |
17 | * This program is free software; you can redistribute it and/or modify |
18 | * it under the terms of the GNU General Public License as published by | |
19 | * the Free Software Foundation; either version 2 of the License, or | |
20 | * (at your option) any later version. | |
21 | * | |
22 | * This program is distributed in the hope that it will be useful, | |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
25 | * GNU General Public License for more details. | |
26 | */ | |
27 | ||
28 | #include <linux/res_counter.h> | |
29 | #include <linux/memcontrol.h> | |
30 | #include <linux/cgroup.h> | |
78fb7466 | 31 | #include <linux/mm.h> |
4ffef5fe | 32 | #include <linux/hugetlb.h> |
d13d1443 | 33 | #include <linux/pagemap.h> |
d52aa412 | 34 | #include <linux/smp.h> |
8a9f3ccd | 35 | #include <linux/page-flags.h> |
66e1707b | 36 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
37 | #include <linux/bit_spinlock.h> |
38 | #include <linux/rcupdate.h> | |
e222432b | 39 | #include <linux/limits.h> |
b9e15baf | 40 | #include <linux/export.h> |
8c7c6e34 | 41 | #include <linux/mutex.h> |
f64c3f54 | 42 | #include <linux/rbtree.h> |
b6ac57d5 | 43 | #include <linux/slab.h> |
66e1707b | 44 | #include <linux/swap.h> |
02491447 | 45 | #include <linux/swapops.h> |
66e1707b | 46 | #include <linux/spinlock.h> |
2e72b634 KS |
47 | #include <linux/eventfd.h> |
48 | #include <linux/sort.h> | |
66e1707b | 49 | #include <linux/fs.h> |
d2ceb9b7 | 50 | #include <linux/seq_file.h> |
33327948 | 51 | #include <linux/vmalloc.h> |
b69408e8 | 52 | #include <linux/mm_inline.h> |
52d4b9ac | 53 | #include <linux/page_cgroup.h> |
cdec2e42 | 54 | #include <linux/cpu.h> |
158e0a2d | 55 | #include <linux/oom.h> |
08e552c6 | 56 | #include "internal.h" |
d1a4c0b3 | 57 | #include <net/sock.h> |
4bd2c1ee | 58 | #include <net/ip.h> |
d1a4c0b3 | 59 | #include <net/tcp_memcontrol.h> |
8cdea7c0 | 60 | |
8697d331 BS |
61 | #include <asm/uaccess.h> |
62 | ||
cc8e970c KM |
63 | #include <trace/events/vmscan.h> |
64 | ||
a181b0e8 | 65 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
68ae564b DR |
66 | EXPORT_SYMBOL(mem_cgroup_subsys); |
67 | ||
a181b0e8 | 68 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
6bbda35c | 69 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 70 | |
c255a458 | 71 | #ifdef CONFIG_MEMCG_SWAP |
338c8431 | 72 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 73 | int do_swap_account __read_mostly; |
a42c390c MH |
74 | |
75 | /* for remember boot option*/ | |
c255a458 | 76 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
a42c390c MH |
77 | static int really_do_swap_account __initdata = 1; |
78 | #else | |
79 | static int really_do_swap_account __initdata = 0; | |
80 | #endif | |
81 | ||
c077719b | 82 | #else |
a0db00fc | 83 | #define do_swap_account 0 |
c077719b KH |
84 | #endif |
85 | ||
86 | ||
d52aa412 KH |
87 | /* |
88 | * Statistics for memory cgroup. | |
89 | */ | |
90 | enum mem_cgroup_stat_index { | |
91 | /* | |
92 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
93 | */ | |
94 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | |
d69b042f | 95 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ |
d8046582 | 96 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ |
bff6bb83 | 97 | MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ |
d52aa412 KH |
98 | MEM_CGROUP_STAT_NSTATS, |
99 | }; | |
100 | ||
af7c4b0e JW |
101 | static const char * const mem_cgroup_stat_names[] = { |
102 | "cache", | |
103 | "rss", | |
104 | "mapped_file", | |
105 | "swap", | |
106 | }; | |
107 | ||
e9f8974f JW |
108 | enum mem_cgroup_events_index { |
109 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
110 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
456f998e YH |
111 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
112 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | |
e9f8974f JW |
113 | MEM_CGROUP_EVENTS_NSTATS, |
114 | }; | |
af7c4b0e JW |
115 | |
116 | static const char * const mem_cgroup_events_names[] = { | |
117 | "pgpgin", | |
118 | "pgpgout", | |
119 | "pgfault", | |
120 | "pgmajfault", | |
121 | }; | |
122 | ||
58cf188e SZ |
123 | static const char * const mem_cgroup_lru_names[] = { |
124 | "inactive_anon", | |
125 | "active_anon", | |
126 | "inactive_file", | |
127 | "active_file", | |
128 | "unevictable", | |
129 | }; | |
130 | ||
7a159cc9 JW |
131 | /* |
132 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
133 | * it will be incremated by the number of pages. This counter is used for | |
134 | * for trigger some periodic events. This is straightforward and better | |
135 | * than using jiffies etc. to handle periodic memcg event. | |
136 | */ | |
137 | enum mem_cgroup_events_target { | |
138 | MEM_CGROUP_TARGET_THRESH, | |
139 | MEM_CGROUP_TARGET_SOFTLIMIT, | |
453a9bf3 | 140 | MEM_CGROUP_TARGET_NUMAINFO, |
7a159cc9 JW |
141 | MEM_CGROUP_NTARGETS, |
142 | }; | |
a0db00fc KS |
143 | #define THRESHOLDS_EVENTS_TARGET 128 |
144 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
145 | #define NUMAINFO_EVENTS_TARGET 1024 | |
e9f8974f | 146 | |
d52aa412 | 147 | struct mem_cgroup_stat_cpu { |
7a159cc9 | 148 | long count[MEM_CGROUP_STAT_NSTATS]; |
e9f8974f | 149 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
13114716 | 150 | unsigned long nr_page_events; |
7a159cc9 | 151 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
d52aa412 KH |
152 | }; |
153 | ||
527a5ec9 JW |
154 | struct mem_cgroup_reclaim_iter { |
155 | /* css_id of the last scanned hierarchy member */ | |
156 | int position; | |
157 | /* scan generation, increased every round-trip */ | |
158 | unsigned int generation; | |
159 | }; | |
160 | ||
6d12e2d8 KH |
161 | /* |
162 | * per-zone information in memory controller. | |
163 | */ | |
6d12e2d8 | 164 | struct mem_cgroup_per_zone { |
6290df54 | 165 | struct lruvec lruvec; |
1eb49272 | 166 | unsigned long lru_size[NR_LRU_LISTS]; |
3e2f41f1 | 167 | |
527a5ec9 JW |
168 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
169 | ||
f64c3f54 BS |
170 | struct rb_node tree_node; /* RB tree node */ |
171 | unsigned long long usage_in_excess;/* Set to the value by which */ | |
172 | /* the soft limit is exceeded*/ | |
173 | bool on_tree; | |
d79154bb | 174 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
4e416953 | 175 | /* use container_of */ |
6d12e2d8 | 176 | }; |
6d12e2d8 KH |
177 | |
178 | struct mem_cgroup_per_node { | |
179 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
180 | }; | |
181 | ||
182 | struct mem_cgroup_lru_info { | |
45cf7ebd | 183 | struct mem_cgroup_per_node *nodeinfo[0]; |
6d12e2d8 KH |
184 | }; |
185 | ||
f64c3f54 BS |
186 | /* |
187 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
188 | * their hierarchy representation | |
189 | */ | |
190 | ||
191 | struct mem_cgroup_tree_per_zone { | |
192 | struct rb_root rb_root; | |
193 | spinlock_t lock; | |
194 | }; | |
195 | ||
196 | struct mem_cgroup_tree_per_node { | |
197 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
198 | }; | |
199 | ||
200 | struct mem_cgroup_tree { | |
201 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
202 | }; | |
203 | ||
204 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
205 | ||
2e72b634 KS |
206 | struct mem_cgroup_threshold { |
207 | struct eventfd_ctx *eventfd; | |
208 | u64 threshold; | |
209 | }; | |
210 | ||
9490ff27 | 211 | /* For threshold */ |
2e72b634 | 212 | struct mem_cgroup_threshold_ary { |
748dad36 | 213 | /* An array index points to threshold just below or equal to usage. */ |
5407a562 | 214 | int current_threshold; |
2e72b634 KS |
215 | /* Size of entries[] */ |
216 | unsigned int size; | |
217 | /* Array of thresholds */ | |
218 | struct mem_cgroup_threshold entries[0]; | |
219 | }; | |
2c488db2 KS |
220 | |
221 | struct mem_cgroup_thresholds { | |
222 | /* Primary thresholds array */ | |
223 | struct mem_cgroup_threshold_ary *primary; | |
224 | /* | |
225 | * Spare threshold array. | |
226 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
227 | * It must be able to store at least primary->size - 1 entries. | |
228 | */ | |
229 | struct mem_cgroup_threshold_ary *spare; | |
230 | }; | |
231 | ||
9490ff27 KH |
232 | /* for OOM */ |
233 | struct mem_cgroup_eventfd_list { | |
234 | struct list_head list; | |
235 | struct eventfd_ctx *eventfd; | |
236 | }; | |
2e72b634 | 237 | |
c0ff4b85 R |
238 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
239 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
2e72b634 | 240 | |
8cdea7c0 BS |
241 | /* |
242 | * The memory controller data structure. The memory controller controls both | |
243 | * page cache and RSS per cgroup. We would eventually like to provide | |
244 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
245 | * to help the administrator determine what knobs to tune. | |
246 | * | |
247 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
248 | * we hit the water mark. May be even add a low water mark, such that |
249 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
250 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
251 | */ |
252 | struct mem_cgroup { | |
253 | struct cgroup_subsys_state css; | |
254 | /* | |
255 | * the counter to account for memory usage | |
256 | */ | |
257 | struct res_counter res; | |
59927fb9 HD |
258 | |
259 | union { | |
260 | /* | |
261 | * the counter to account for mem+swap usage. | |
262 | */ | |
263 | struct res_counter memsw; | |
264 | ||
265 | /* | |
266 | * rcu_freeing is used only when freeing struct mem_cgroup, | |
267 | * so put it into a union to avoid wasting more memory. | |
268 | * It must be disjoint from the css field. It could be | |
269 | * in a union with the res field, but res plays a much | |
270 | * larger part in mem_cgroup life than memsw, and might | |
271 | * be of interest, even at time of free, when debugging. | |
272 | * So share rcu_head with the less interesting memsw. | |
273 | */ | |
274 | struct rcu_head rcu_freeing; | |
275 | /* | |
3afe36b1 GC |
276 | * We also need some space for a worker in deferred freeing. |
277 | * By the time we call it, rcu_freeing is no longer in use. | |
59927fb9 HD |
278 | */ |
279 | struct work_struct work_freeing; | |
280 | }; | |
281 | ||
510fc4e1 GC |
282 | /* |
283 | * the counter to account for kernel memory usage. | |
284 | */ | |
285 | struct res_counter kmem; | |
18f59ea7 BS |
286 | /* |
287 | * Should the accounting and control be hierarchical, per subtree? | |
288 | */ | |
289 | bool use_hierarchy; | |
510fc4e1 | 290 | unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ |
79dfdacc MH |
291 | |
292 | bool oom_lock; | |
293 | atomic_t under_oom; | |
294 | ||
8c7c6e34 | 295 | atomic_t refcnt; |
14797e23 | 296 | |
1f4c025b | 297 | int swappiness; |
3c11ecf4 KH |
298 | /* OOM-Killer disable */ |
299 | int oom_kill_disable; | |
a7885eb8 | 300 | |
22a668d7 KH |
301 | /* set when res.limit == memsw.limit */ |
302 | bool memsw_is_minimum; | |
303 | ||
2e72b634 KS |
304 | /* protect arrays of thresholds */ |
305 | struct mutex thresholds_lock; | |
306 | ||
307 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 308 | struct mem_cgroup_thresholds thresholds; |
907860ed | 309 | |
2e72b634 | 310 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 311 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 312 | |
9490ff27 KH |
313 | /* For oom notifier event fd */ |
314 | struct list_head oom_notify; | |
185efc0f | 315 | |
7dc74be0 DN |
316 | /* |
317 | * Should we move charges of a task when a task is moved into this | |
318 | * mem_cgroup ? And what type of charges should we move ? | |
319 | */ | |
320 | unsigned long move_charge_at_immigrate; | |
619d094b KH |
321 | /* |
322 | * set > 0 if pages under this cgroup are moving to other cgroup. | |
323 | */ | |
324 | atomic_t moving_account; | |
312734c0 KH |
325 | /* taken only while moving_account > 0 */ |
326 | spinlock_t move_lock; | |
d52aa412 | 327 | /* |
c62b1a3b | 328 | * percpu counter. |
d52aa412 | 329 | */ |
3a7951b4 | 330 | struct mem_cgroup_stat_cpu __percpu *stat; |
711d3d2c KH |
331 | /* |
332 | * used when a cpu is offlined or other synchronizations | |
333 | * See mem_cgroup_read_stat(). | |
334 | */ | |
335 | struct mem_cgroup_stat_cpu nocpu_base; | |
336 | spinlock_t pcp_counter_lock; | |
d1a4c0b3 | 337 | |
4bd2c1ee | 338 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) |
d1a4c0b3 GC |
339 | struct tcp_memcontrol tcp_mem; |
340 | #endif | |
2633d7a0 GC |
341 | #if defined(CONFIG_MEMCG_KMEM) |
342 | /* analogous to slab_common's slab_caches list. per-memcg */ | |
343 | struct list_head memcg_slab_caches; | |
344 | /* Not a spinlock, we can take a lot of time walking the list */ | |
345 | struct mutex slab_caches_mutex; | |
346 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ | |
347 | int kmemcg_id; | |
348 | #endif | |
45cf7ebd GC |
349 | |
350 | int last_scanned_node; | |
351 | #if MAX_NUMNODES > 1 | |
352 | nodemask_t scan_nodes; | |
353 | atomic_t numainfo_events; | |
354 | atomic_t numainfo_updating; | |
355 | #endif | |
356 | /* | |
357 | * Per cgroup active and inactive list, similar to the | |
358 | * per zone LRU lists. | |
359 | * | |
360 | * WARNING: This has to be the last element of the struct. Don't | |
361 | * add new fields after this point. | |
362 | */ | |
363 | struct mem_cgroup_lru_info info; | |
8cdea7c0 BS |
364 | }; |
365 | ||
45cf7ebd GC |
366 | static size_t memcg_size(void) |
367 | { | |
368 | return sizeof(struct mem_cgroup) + | |
369 | nr_node_ids * sizeof(struct mem_cgroup_per_node); | |
370 | } | |
371 | ||
510fc4e1 GC |
372 | /* internal only representation about the status of kmem accounting. */ |
373 | enum { | |
374 | KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ | |
a8964b9b | 375 | KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ |
7de37682 | 376 | KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ |
510fc4e1 GC |
377 | }; |
378 | ||
a8964b9b GC |
379 | /* We account when limit is on, but only after call sites are patched */ |
380 | #define KMEM_ACCOUNTED_MASK \ | |
381 | ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) | |
510fc4e1 GC |
382 | |
383 | #ifdef CONFIG_MEMCG_KMEM | |
384 | static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) | |
385 | { | |
386 | set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
387 | } | |
7de37682 GC |
388 | |
389 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) | |
390 | { | |
391 | return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
392 | } | |
393 | ||
a8964b9b GC |
394 | static void memcg_kmem_set_activated(struct mem_cgroup *memcg) |
395 | { | |
396 | set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | |
397 | } | |
398 | ||
55007d84 GC |
399 | static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) |
400 | { | |
401 | clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | |
402 | } | |
403 | ||
7de37682 GC |
404 | static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) |
405 | { | |
406 | if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) | |
407 | set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); | |
408 | } | |
409 | ||
410 | static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) | |
411 | { | |
412 | return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, | |
413 | &memcg->kmem_account_flags); | |
414 | } | |
510fc4e1 GC |
415 | #endif |
416 | ||
7dc74be0 DN |
417 | /* Stuffs for move charges at task migration. */ |
418 | /* | |
ee5e8472 GC |
419 | * Types of charges to be moved. "move_charge_at_immitgrate" and |
420 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. | |
7dc74be0 DN |
421 | */ |
422 | enum move_type { | |
4ffef5fe | 423 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 424 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
425 | NR_MOVE_TYPE, |
426 | }; | |
427 | ||
4ffef5fe DN |
428 | /* "mc" and its members are protected by cgroup_mutex */ |
429 | static struct move_charge_struct { | |
b1dd693e | 430 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
431 | struct mem_cgroup *from; |
432 | struct mem_cgroup *to; | |
ee5e8472 | 433 | unsigned long immigrate_flags; |
4ffef5fe | 434 | unsigned long precharge; |
854ffa8d | 435 | unsigned long moved_charge; |
483c30b5 | 436 | unsigned long moved_swap; |
8033b97c DN |
437 | struct task_struct *moving_task; /* a task moving charges */ |
438 | wait_queue_head_t waitq; /* a waitq for other context */ | |
439 | } mc = { | |
2bd9bb20 | 440 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
441 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
442 | }; | |
4ffef5fe | 443 | |
90254a65 DN |
444 | static bool move_anon(void) |
445 | { | |
ee5e8472 | 446 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); |
90254a65 DN |
447 | } |
448 | ||
87946a72 DN |
449 | static bool move_file(void) |
450 | { | |
ee5e8472 | 451 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); |
87946a72 DN |
452 | } |
453 | ||
4e416953 BS |
454 | /* |
455 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
456 | * limit reclaim to prevent infinite loops, if they ever occur. | |
457 | */ | |
a0db00fc KS |
458 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
459 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | |
4e416953 | 460 | |
217bc319 KH |
461 | enum charge_type { |
462 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
41326c17 | 463 | MEM_CGROUP_CHARGE_TYPE_ANON, |
d13d1443 | 464 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 465 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
466 | NR_CHARGE_TYPE, |
467 | }; | |
468 | ||
8c7c6e34 | 469 | /* for encoding cft->private value on file */ |
86ae53e1 GC |
470 | enum res_type { |
471 | _MEM, | |
472 | _MEMSWAP, | |
473 | _OOM_TYPE, | |
510fc4e1 | 474 | _KMEM, |
86ae53e1 GC |
475 | }; |
476 | ||
a0db00fc KS |
477 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
478 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
8c7c6e34 | 479 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
9490ff27 KH |
480 | /* Used for OOM nofiier */ |
481 | #define OOM_CONTROL (0) | |
8c7c6e34 | 482 | |
75822b44 BS |
483 | /* |
484 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | |
485 | */ | |
486 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | |
487 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | |
488 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | |
489 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | |
490 | ||
0999821b GC |
491 | /* |
492 | * The memcg_create_mutex will be held whenever a new cgroup is created. | |
493 | * As a consequence, any change that needs to protect against new child cgroups | |
494 | * appearing has to hold it as well. | |
495 | */ | |
496 | static DEFINE_MUTEX(memcg_create_mutex); | |
497 | ||
c0ff4b85 R |
498 | static void mem_cgroup_get(struct mem_cgroup *memcg); |
499 | static void mem_cgroup_put(struct mem_cgroup *memcg); | |
e1aab161 | 500 | |
b2145145 WL |
501 | static inline |
502 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) | |
503 | { | |
504 | return container_of(s, struct mem_cgroup, css); | |
505 | } | |
506 | ||
7ffc0edc MH |
507 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
508 | { | |
509 | return (memcg == root_mem_cgroup); | |
510 | } | |
511 | ||
e1aab161 | 512 | /* Writing them here to avoid exposing memcg's inner layout */ |
4bd2c1ee | 513 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
e1aab161 | 514 | |
e1aab161 GC |
515 | void sock_update_memcg(struct sock *sk) |
516 | { | |
376be5ff | 517 | if (mem_cgroup_sockets_enabled) { |
e1aab161 | 518 | struct mem_cgroup *memcg; |
3f134619 | 519 | struct cg_proto *cg_proto; |
e1aab161 GC |
520 | |
521 | BUG_ON(!sk->sk_prot->proto_cgroup); | |
522 | ||
f3f511e1 GC |
523 | /* Socket cloning can throw us here with sk_cgrp already |
524 | * filled. It won't however, necessarily happen from | |
525 | * process context. So the test for root memcg given | |
526 | * the current task's memcg won't help us in this case. | |
527 | * | |
528 | * Respecting the original socket's memcg is a better | |
529 | * decision in this case. | |
530 | */ | |
531 | if (sk->sk_cgrp) { | |
532 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | |
533 | mem_cgroup_get(sk->sk_cgrp->memcg); | |
534 | return; | |
535 | } | |
536 | ||
e1aab161 GC |
537 | rcu_read_lock(); |
538 | memcg = mem_cgroup_from_task(current); | |
3f134619 GC |
539 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
540 | if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { | |
e1aab161 | 541 | mem_cgroup_get(memcg); |
3f134619 | 542 | sk->sk_cgrp = cg_proto; |
e1aab161 GC |
543 | } |
544 | rcu_read_unlock(); | |
545 | } | |
546 | } | |
547 | EXPORT_SYMBOL(sock_update_memcg); | |
548 | ||
549 | void sock_release_memcg(struct sock *sk) | |
550 | { | |
376be5ff | 551 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
e1aab161 GC |
552 | struct mem_cgroup *memcg; |
553 | WARN_ON(!sk->sk_cgrp->memcg); | |
554 | memcg = sk->sk_cgrp->memcg; | |
555 | mem_cgroup_put(memcg); | |
556 | } | |
557 | } | |
d1a4c0b3 GC |
558 | |
559 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | |
560 | { | |
561 | if (!memcg || mem_cgroup_is_root(memcg)) | |
562 | return NULL; | |
563 | ||
564 | return &memcg->tcp_mem.cg_proto; | |
565 | } | |
566 | EXPORT_SYMBOL(tcp_proto_cgroup); | |
e1aab161 | 567 | |
3f134619 GC |
568 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
569 | { | |
570 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) | |
571 | return; | |
572 | static_key_slow_dec(&memcg_socket_limit_enabled); | |
573 | } | |
574 | #else | |
575 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
576 | { | |
577 | } | |
578 | #endif | |
579 | ||
a8964b9b | 580 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 GC |
581 | /* |
582 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | |
583 | * There are two main reasons for not using the css_id for this: | |
584 | * 1) this works better in sparse environments, where we have a lot of memcgs, | |
585 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
586 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
587 | * 200 entry array for that. | |
588 | * | |
589 | * 2) In order not to violate the cgroup API, we would like to do all memory | |
590 | * allocation in ->create(). At that point, we haven't yet allocated the | |
591 | * css_id. Having a separate index prevents us from messing with the cgroup | |
592 | * core for this | |
593 | * | |
594 | * The current size of the caches array is stored in | |
595 | * memcg_limited_groups_array_size. It will double each time we have to | |
596 | * increase it. | |
597 | */ | |
598 | static DEFINE_IDA(kmem_limited_groups); | |
749c5415 GC |
599 | int memcg_limited_groups_array_size; |
600 | ||
55007d84 GC |
601 | /* |
602 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
603 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
604 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
605 | * tunable, but that is strictly not necessary. | |
606 | * | |
607 | * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get | |
608 | * this constant directly from cgroup, but it is understandable that this is | |
609 | * better kept as an internal representation in cgroup.c. In any case, the | |
610 | * css_id space is not getting any smaller, and we don't have to necessarily | |
611 | * increase ours as well if it increases. | |
612 | */ | |
613 | #define MEMCG_CACHES_MIN_SIZE 4 | |
614 | #define MEMCG_CACHES_MAX_SIZE 65535 | |
615 | ||
d7f25f8a GC |
616 | /* |
617 | * A lot of the calls to the cache allocation functions are expected to be | |
618 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
619 | * conditional to this static branch, we'll have to allow modules that does | |
620 | * kmem_cache_alloc and the such to see this symbol as well | |
621 | */ | |
a8964b9b | 622 | struct static_key memcg_kmem_enabled_key; |
d7f25f8a | 623 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
a8964b9b GC |
624 | |
625 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
626 | { | |
55007d84 | 627 | if (memcg_kmem_is_active(memcg)) { |
a8964b9b | 628 | static_key_slow_dec(&memcg_kmem_enabled_key); |
55007d84 GC |
629 | ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); |
630 | } | |
bea207c8 GC |
631 | /* |
632 | * This check can't live in kmem destruction function, | |
633 | * since the charges will outlive the cgroup | |
634 | */ | |
635 | WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); | |
a8964b9b GC |
636 | } |
637 | #else | |
638 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
639 | { | |
640 | } | |
641 | #endif /* CONFIG_MEMCG_KMEM */ | |
642 | ||
643 | static void disarm_static_keys(struct mem_cgroup *memcg) | |
644 | { | |
645 | disarm_sock_keys(memcg); | |
646 | disarm_kmem_keys(memcg); | |
647 | } | |
648 | ||
c0ff4b85 | 649 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
8c7c6e34 | 650 | |
f64c3f54 | 651 | static struct mem_cgroup_per_zone * |
c0ff4b85 | 652 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) |
f64c3f54 | 653 | { |
45cf7ebd | 654 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
c0ff4b85 | 655 | return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
656 | } |
657 | ||
c0ff4b85 | 658 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
d324236b | 659 | { |
c0ff4b85 | 660 | return &memcg->css; |
d324236b WF |
661 | } |
662 | ||
f64c3f54 | 663 | static struct mem_cgroup_per_zone * |
c0ff4b85 | 664 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 665 | { |
97a6c37b JW |
666 | int nid = page_to_nid(page); |
667 | int zid = page_zonenum(page); | |
f64c3f54 | 668 | |
c0ff4b85 | 669 | return mem_cgroup_zoneinfo(memcg, nid, zid); |
f64c3f54 BS |
670 | } |
671 | ||
672 | static struct mem_cgroup_tree_per_zone * | |
673 | soft_limit_tree_node_zone(int nid, int zid) | |
674 | { | |
675 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
676 | } | |
677 | ||
678 | static struct mem_cgroup_tree_per_zone * | |
679 | soft_limit_tree_from_page(struct page *page) | |
680 | { | |
681 | int nid = page_to_nid(page); | |
682 | int zid = page_zonenum(page); | |
683 | ||
684 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
685 | } | |
686 | ||
687 | static void | |
c0ff4b85 | 688 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, |
f64c3f54 | 689 | struct mem_cgroup_per_zone *mz, |
ef8745c1 KH |
690 | struct mem_cgroup_tree_per_zone *mctz, |
691 | unsigned long long new_usage_in_excess) | |
f64c3f54 BS |
692 | { |
693 | struct rb_node **p = &mctz->rb_root.rb_node; | |
694 | struct rb_node *parent = NULL; | |
695 | struct mem_cgroup_per_zone *mz_node; | |
696 | ||
697 | if (mz->on_tree) | |
698 | return; | |
699 | ||
ef8745c1 KH |
700 | mz->usage_in_excess = new_usage_in_excess; |
701 | if (!mz->usage_in_excess) | |
702 | return; | |
f64c3f54 BS |
703 | while (*p) { |
704 | parent = *p; | |
705 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
706 | tree_node); | |
707 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
708 | p = &(*p)->rb_left; | |
709 | /* | |
710 | * We can't avoid mem cgroups that are over their soft | |
711 | * limit by the same amount | |
712 | */ | |
713 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
714 | p = &(*p)->rb_right; | |
715 | } | |
716 | rb_link_node(&mz->tree_node, parent, p); | |
717 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
718 | mz->on_tree = true; | |
4e416953 BS |
719 | } |
720 | ||
721 | static void | |
c0ff4b85 | 722 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
4e416953 BS |
723 | struct mem_cgroup_per_zone *mz, |
724 | struct mem_cgroup_tree_per_zone *mctz) | |
725 | { | |
726 | if (!mz->on_tree) | |
727 | return; | |
728 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
729 | mz->on_tree = false; | |
730 | } | |
731 | ||
f64c3f54 | 732 | static void |
c0ff4b85 | 733 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
f64c3f54 BS |
734 | struct mem_cgroup_per_zone *mz, |
735 | struct mem_cgroup_tree_per_zone *mctz) | |
736 | { | |
737 | spin_lock(&mctz->lock); | |
c0ff4b85 | 738 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
f64c3f54 BS |
739 | spin_unlock(&mctz->lock); |
740 | } | |
741 | ||
f64c3f54 | 742 | |
c0ff4b85 | 743 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 744 | { |
ef8745c1 | 745 | unsigned long long excess; |
f64c3f54 BS |
746 | struct mem_cgroup_per_zone *mz; |
747 | struct mem_cgroup_tree_per_zone *mctz; | |
4e649152 KH |
748 | int nid = page_to_nid(page); |
749 | int zid = page_zonenum(page); | |
f64c3f54 BS |
750 | mctz = soft_limit_tree_from_page(page); |
751 | ||
752 | /* | |
4e649152 KH |
753 | * Necessary to update all ancestors when hierarchy is used. |
754 | * because their event counter is not touched. | |
f64c3f54 | 755 | */ |
c0ff4b85 R |
756 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
757 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
758 | excess = res_counter_soft_limit_excess(&memcg->res); | |
4e649152 KH |
759 | /* |
760 | * We have to update the tree if mz is on RB-tree or | |
761 | * mem is over its softlimit. | |
762 | */ | |
ef8745c1 | 763 | if (excess || mz->on_tree) { |
4e649152 KH |
764 | spin_lock(&mctz->lock); |
765 | /* if on-tree, remove it */ | |
766 | if (mz->on_tree) | |
c0ff4b85 | 767 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
4e649152 | 768 | /* |
ef8745c1 KH |
769 | * Insert again. mz->usage_in_excess will be updated. |
770 | * If excess is 0, no tree ops. | |
4e649152 | 771 | */ |
c0ff4b85 | 772 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); |
4e649152 KH |
773 | spin_unlock(&mctz->lock); |
774 | } | |
f64c3f54 BS |
775 | } |
776 | } | |
777 | ||
c0ff4b85 | 778 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
f64c3f54 BS |
779 | { |
780 | int node, zone; | |
781 | struct mem_cgroup_per_zone *mz; | |
782 | struct mem_cgroup_tree_per_zone *mctz; | |
783 | ||
3ed28fa1 | 784 | for_each_node(node) { |
f64c3f54 | 785 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
c0ff4b85 | 786 | mz = mem_cgroup_zoneinfo(memcg, node, zone); |
f64c3f54 | 787 | mctz = soft_limit_tree_node_zone(node, zone); |
c0ff4b85 | 788 | mem_cgroup_remove_exceeded(memcg, mz, mctz); |
f64c3f54 BS |
789 | } |
790 | } | |
791 | } | |
792 | ||
4e416953 BS |
793 | static struct mem_cgroup_per_zone * |
794 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
795 | { | |
796 | struct rb_node *rightmost = NULL; | |
26251eaf | 797 | struct mem_cgroup_per_zone *mz; |
4e416953 BS |
798 | |
799 | retry: | |
26251eaf | 800 | mz = NULL; |
4e416953 BS |
801 | rightmost = rb_last(&mctz->rb_root); |
802 | if (!rightmost) | |
803 | goto done; /* Nothing to reclaim from */ | |
804 | ||
805 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
806 | /* | |
807 | * Remove the node now but someone else can add it back, | |
808 | * we will to add it back at the end of reclaim to its correct | |
809 | * position in the tree. | |
810 | */ | |
d79154bb HD |
811 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
812 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || | |
813 | !css_tryget(&mz->memcg->css)) | |
4e416953 BS |
814 | goto retry; |
815 | done: | |
816 | return mz; | |
817 | } | |
818 | ||
819 | static struct mem_cgroup_per_zone * | |
820 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
821 | { | |
822 | struct mem_cgroup_per_zone *mz; | |
823 | ||
824 | spin_lock(&mctz->lock); | |
825 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
826 | spin_unlock(&mctz->lock); | |
827 | return mz; | |
828 | } | |
829 | ||
711d3d2c KH |
830 | /* |
831 | * Implementation Note: reading percpu statistics for memcg. | |
832 | * | |
833 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
834 | * synchronization to implement "quick" read. There are trade-off between | |
835 | * reading cost and precision of value. Then, we may have a chance to implement | |
836 | * a periodic synchronizion of counter in memcg's counter. | |
837 | * | |
838 | * But this _read() function is used for user interface now. The user accounts | |
839 | * memory usage by memory cgroup and he _always_ requires exact value because | |
840 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
841 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
842 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
843 | * | |
844 | * If there are kernel internal actions which can make use of some not-exact | |
845 | * value, and reading all cpu value can be performance bottleneck in some | |
846 | * common workload, threashold and synchonization as vmstat[] should be | |
847 | * implemented. | |
848 | */ | |
c0ff4b85 | 849 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
7a159cc9 | 850 | enum mem_cgroup_stat_index idx) |
c62b1a3b | 851 | { |
7a159cc9 | 852 | long val = 0; |
c62b1a3b | 853 | int cpu; |
c62b1a3b | 854 | |
711d3d2c KH |
855 | get_online_cpus(); |
856 | for_each_online_cpu(cpu) | |
c0ff4b85 | 857 | val += per_cpu(memcg->stat->count[idx], cpu); |
711d3d2c | 858 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
859 | spin_lock(&memcg->pcp_counter_lock); |
860 | val += memcg->nocpu_base.count[idx]; | |
861 | spin_unlock(&memcg->pcp_counter_lock); | |
711d3d2c KH |
862 | #endif |
863 | put_online_cpus(); | |
c62b1a3b KH |
864 | return val; |
865 | } | |
866 | ||
c0ff4b85 | 867 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
0c3e73e8 BS |
868 | bool charge) |
869 | { | |
870 | int val = (charge) ? 1 : -1; | |
bff6bb83 | 871 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
0c3e73e8 BS |
872 | } |
873 | ||
c0ff4b85 | 874 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
e9f8974f JW |
875 | enum mem_cgroup_events_index idx) |
876 | { | |
877 | unsigned long val = 0; | |
878 | int cpu; | |
879 | ||
880 | for_each_online_cpu(cpu) | |
c0ff4b85 | 881 | val += per_cpu(memcg->stat->events[idx], cpu); |
e9f8974f | 882 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
883 | spin_lock(&memcg->pcp_counter_lock); |
884 | val += memcg->nocpu_base.events[idx]; | |
885 | spin_unlock(&memcg->pcp_counter_lock); | |
e9f8974f JW |
886 | #endif |
887 | return val; | |
888 | } | |
889 | ||
c0ff4b85 | 890 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
b2402857 | 891 | bool anon, int nr_pages) |
d52aa412 | 892 | { |
c62b1a3b KH |
893 | preempt_disable(); |
894 | ||
b2402857 KH |
895 | /* |
896 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
897 | * counted as CACHE even if it's on ANON LRU. | |
898 | */ | |
899 | if (anon) | |
900 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | |
c0ff4b85 | 901 | nr_pages); |
d52aa412 | 902 | else |
b2402857 | 903 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
c0ff4b85 | 904 | nr_pages); |
55e462b0 | 905 | |
e401f176 KH |
906 | /* pagein of a big page is an event. So, ignore page size */ |
907 | if (nr_pages > 0) | |
c0ff4b85 | 908 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 909 | else { |
c0ff4b85 | 910 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
911 | nr_pages = -nr_pages; /* for event */ |
912 | } | |
e401f176 | 913 | |
13114716 | 914 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
2e72b634 | 915 | |
c62b1a3b | 916 | preempt_enable(); |
6d12e2d8 KH |
917 | } |
918 | ||
bb2a0de9 | 919 | unsigned long |
4d7dcca2 | 920 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
074291fe KK |
921 | { |
922 | struct mem_cgroup_per_zone *mz; | |
923 | ||
924 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
925 | return mz->lru_size[lru]; | |
926 | } | |
927 | ||
928 | static unsigned long | |
c0ff4b85 | 929 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, |
bb2a0de9 | 930 | unsigned int lru_mask) |
889976db YH |
931 | { |
932 | struct mem_cgroup_per_zone *mz; | |
f156ab93 | 933 | enum lru_list lru; |
bb2a0de9 KH |
934 | unsigned long ret = 0; |
935 | ||
c0ff4b85 | 936 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
bb2a0de9 | 937 | |
f156ab93 HD |
938 | for_each_lru(lru) { |
939 | if (BIT(lru) & lru_mask) | |
940 | ret += mz->lru_size[lru]; | |
bb2a0de9 KH |
941 | } |
942 | return ret; | |
943 | } | |
944 | ||
945 | static unsigned long | |
c0ff4b85 | 946 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 KH |
947 | int nid, unsigned int lru_mask) |
948 | { | |
889976db YH |
949 | u64 total = 0; |
950 | int zid; | |
951 | ||
bb2a0de9 | 952 | for (zid = 0; zid < MAX_NR_ZONES; zid++) |
c0ff4b85 R |
953 | total += mem_cgroup_zone_nr_lru_pages(memcg, |
954 | nid, zid, lru_mask); | |
bb2a0de9 | 955 | |
889976db YH |
956 | return total; |
957 | } | |
bb2a0de9 | 958 | |
c0ff4b85 | 959 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 | 960 | unsigned int lru_mask) |
6d12e2d8 | 961 | { |
889976db | 962 | int nid; |
6d12e2d8 KH |
963 | u64 total = 0; |
964 | ||
31aaea4a | 965 | for_each_node_state(nid, N_MEMORY) |
c0ff4b85 | 966 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
6d12e2d8 | 967 | return total; |
d52aa412 KH |
968 | } |
969 | ||
f53d7ce3 JW |
970 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
971 | enum mem_cgroup_events_target target) | |
7a159cc9 JW |
972 | { |
973 | unsigned long val, next; | |
974 | ||
13114716 | 975 | val = __this_cpu_read(memcg->stat->nr_page_events); |
4799401f | 976 | next = __this_cpu_read(memcg->stat->targets[target]); |
7a159cc9 | 977 | /* from time_after() in jiffies.h */ |
f53d7ce3 JW |
978 | if ((long)next - (long)val < 0) { |
979 | switch (target) { | |
980 | case MEM_CGROUP_TARGET_THRESH: | |
981 | next = val + THRESHOLDS_EVENTS_TARGET; | |
982 | break; | |
983 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
984 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
985 | break; | |
986 | case MEM_CGROUP_TARGET_NUMAINFO: | |
987 | next = val + NUMAINFO_EVENTS_TARGET; | |
988 | break; | |
989 | default: | |
990 | break; | |
991 | } | |
992 | __this_cpu_write(memcg->stat->targets[target], next); | |
993 | return true; | |
7a159cc9 | 994 | } |
f53d7ce3 | 995 | return false; |
d2265e6f KH |
996 | } |
997 | ||
998 | /* | |
999 | * Check events in order. | |
1000 | * | |
1001 | */ | |
c0ff4b85 | 1002 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
d2265e6f | 1003 | { |
4799401f | 1004 | preempt_disable(); |
d2265e6f | 1005 | /* threshold event is triggered in finer grain than soft limit */ |
f53d7ce3 JW |
1006 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
1007 | MEM_CGROUP_TARGET_THRESH))) { | |
82b3f2a7 AM |
1008 | bool do_softlimit; |
1009 | bool do_numainfo __maybe_unused; | |
f53d7ce3 JW |
1010 | |
1011 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | |
1012 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
1013 | #if MAX_NUMNODES > 1 | |
1014 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
1015 | MEM_CGROUP_TARGET_NUMAINFO); | |
1016 | #endif | |
1017 | preempt_enable(); | |
1018 | ||
c0ff4b85 | 1019 | mem_cgroup_threshold(memcg); |
f53d7ce3 | 1020 | if (unlikely(do_softlimit)) |
c0ff4b85 | 1021 | mem_cgroup_update_tree(memcg, page); |
453a9bf3 | 1022 | #if MAX_NUMNODES > 1 |
f53d7ce3 | 1023 | if (unlikely(do_numainfo)) |
c0ff4b85 | 1024 | atomic_inc(&memcg->numainfo_events); |
453a9bf3 | 1025 | #endif |
f53d7ce3 JW |
1026 | } else |
1027 | preempt_enable(); | |
d2265e6f KH |
1028 | } |
1029 | ||
d1a4c0b3 | 1030 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 | 1031 | { |
b2145145 WL |
1032 | return mem_cgroup_from_css( |
1033 | cgroup_subsys_state(cont, mem_cgroup_subsys_id)); | |
8cdea7c0 BS |
1034 | } |
1035 | ||
cf475ad2 | 1036 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 1037 | { |
31a78f23 BS |
1038 | /* |
1039 | * mm_update_next_owner() may clear mm->owner to NULL | |
1040 | * if it races with swapoff, page migration, etc. | |
1041 | * So this can be called with p == NULL. | |
1042 | */ | |
1043 | if (unlikely(!p)) | |
1044 | return NULL; | |
1045 | ||
b2145145 | 1046 | return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); |
78fb7466 PE |
1047 | } |
1048 | ||
a433658c | 1049 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
54595fe2 | 1050 | { |
c0ff4b85 | 1051 | struct mem_cgroup *memcg = NULL; |
0b7f569e KH |
1052 | |
1053 | if (!mm) | |
1054 | return NULL; | |
54595fe2 KH |
1055 | /* |
1056 | * Because we have no locks, mm->owner's may be being moved to other | |
1057 | * cgroup. We use css_tryget() here even if this looks | |
1058 | * pessimistic (rather than adding locks here). | |
1059 | */ | |
1060 | rcu_read_lock(); | |
1061 | do { | |
c0ff4b85 R |
1062 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1063 | if (unlikely(!memcg)) | |
54595fe2 | 1064 | break; |
c0ff4b85 | 1065 | } while (!css_tryget(&memcg->css)); |
54595fe2 | 1066 | rcu_read_unlock(); |
c0ff4b85 | 1067 | return memcg; |
54595fe2 KH |
1068 | } |
1069 | ||
5660048c JW |
1070 | /** |
1071 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1072 | * @root: hierarchy root | |
1073 | * @prev: previously returned memcg, NULL on first invocation | |
1074 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1075 | * | |
1076 | * Returns references to children of the hierarchy below @root, or | |
1077 | * @root itself, or %NULL after a full round-trip. | |
1078 | * | |
1079 | * Caller must pass the return value in @prev on subsequent | |
1080 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1081 | * to cancel a hierarchy walk before the round-trip is complete. | |
1082 | * | |
1083 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
1084 | * divide up the memcgs in the hierarchy among all concurrent | |
1085 | * reclaimers operating on the same zone and priority. | |
1086 | */ | |
1087 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | |
1088 | struct mem_cgroup *prev, | |
1089 | struct mem_cgroup_reclaim_cookie *reclaim) | |
14067bb3 | 1090 | { |
9f3a0d09 JW |
1091 | struct mem_cgroup *memcg = NULL; |
1092 | int id = 0; | |
711d3d2c | 1093 | |
5660048c JW |
1094 | if (mem_cgroup_disabled()) |
1095 | return NULL; | |
1096 | ||
9f3a0d09 JW |
1097 | if (!root) |
1098 | root = root_mem_cgroup; | |
7d74b06f | 1099 | |
9f3a0d09 JW |
1100 | if (prev && !reclaim) |
1101 | id = css_id(&prev->css); | |
14067bb3 | 1102 | |
9f3a0d09 JW |
1103 | if (prev && prev != root) |
1104 | css_put(&prev->css); | |
14067bb3 | 1105 | |
9f3a0d09 JW |
1106 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
1107 | if (prev) | |
1108 | return NULL; | |
1109 | return root; | |
1110 | } | |
14067bb3 | 1111 | |
9f3a0d09 | 1112 | while (!memcg) { |
527a5ec9 | 1113 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
9f3a0d09 | 1114 | struct cgroup_subsys_state *css; |
711d3d2c | 1115 | |
527a5ec9 JW |
1116 | if (reclaim) { |
1117 | int nid = zone_to_nid(reclaim->zone); | |
1118 | int zid = zone_idx(reclaim->zone); | |
1119 | struct mem_cgroup_per_zone *mz; | |
1120 | ||
1121 | mz = mem_cgroup_zoneinfo(root, nid, zid); | |
1122 | iter = &mz->reclaim_iter[reclaim->priority]; | |
1123 | if (prev && reclaim->generation != iter->generation) | |
1124 | return NULL; | |
1125 | id = iter->position; | |
1126 | } | |
7d74b06f | 1127 | |
9f3a0d09 JW |
1128 | rcu_read_lock(); |
1129 | css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); | |
1130 | if (css) { | |
1131 | if (css == &root->css || css_tryget(css)) | |
b2145145 | 1132 | memcg = mem_cgroup_from_css(css); |
9f3a0d09 JW |
1133 | } else |
1134 | id = 0; | |
14067bb3 | 1135 | rcu_read_unlock(); |
14067bb3 | 1136 | |
527a5ec9 JW |
1137 | if (reclaim) { |
1138 | iter->position = id; | |
1139 | if (!css) | |
1140 | iter->generation++; | |
1141 | else if (!prev && memcg) | |
1142 | reclaim->generation = iter->generation; | |
1143 | } | |
9f3a0d09 JW |
1144 | |
1145 | if (prev && !css) | |
1146 | return NULL; | |
1147 | } | |
1148 | return memcg; | |
14067bb3 | 1149 | } |
7d74b06f | 1150 | |
5660048c JW |
1151 | /** |
1152 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1153 | * @root: hierarchy root | |
1154 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1155 | */ | |
1156 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1157 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
1158 | { |
1159 | if (!root) | |
1160 | root = root_mem_cgroup; | |
1161 | if (prev && prev != root) | |
1162 | css_put(&prev->css); | |
1163 | } | |
7d74b06f | 1164 | |
9f3a0d09 JW |
1165 | /* |
1166 | * Iteration constructs for visiting all cgroups (under a tree). If | |
1167 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
1168 | * be used for reference counting. | |
1169 | */ | |
1170 | #define for_each_mem_cgroup_tree(iter, root) \ | |
527a5ec9 | 1171 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
9f3a0d09 | 1172 | iter != NULL; \ |
527a5ec9 | 1173 | iter = mem_cgroup_iter(root, iter, NULL)) |
711d3d2c | 1174 | |
9f3a0d09 | 1175 | #define for_each_mem_cgroup(iter) \ |
527a5ec9 | 1176 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
9f3a0d09 | 1177 | iter != NULL; \ |
527a5ec9 | 1178 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
14067bb3 | 1179 | |
68ae564b | 1180 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
456f998e | 1181 | { |
c0ff4b85 | 1182 | struct mem_cgroup *memcg; |
456f998e | 1183 | |
456f998e | 1184 | rcu_read_lock(); |
c0ff4b85 R |
1185 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1186 | if (unlikely(!memcg)) | |
456f998e YH |
1187 | goto out; |
1188 | ||
1189 | switch (idx) { | |
456f998e | 1190 | case PGFAULT: |
0e574a93 JW |
1191 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1192 | break; | |
1193 | case PGMAJFAULT: | |
1194 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
456f998e YH |
1195 | break; |
1196 | default: | |
1197 | BUG(); | |
1198 | } | |
1199 | out: | |
1200 | rcu_read_unlock(); | |
1201 | } | |
68ae564b | 1202 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); |
456f998e | 1203 | |
925b7673 JW |
1204 | /** |
1205 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
1206 | * @zone: zone of the wanted lruvec | |
fa9add64 | 1207 | * @memcg: memcg of the wanted lruvec |
925b7673 JW |
1208 | * |
1209 | * Returns the lru list vector holding pages for the given @zone and | |
1210 | * @mem. This can be the global zone lruvec, if the memory controller | |
1211 | * is disabled. | |
1212 | */ | |
1213 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
1214 | struct mem_cgroup *memcg) | |
1215 | { | |
1216 | struct mem_cgroup_per_zone *mz; | |
bea8c150 | 1217 | struct lruvec *lruvec; |
925b7673 | 1218 | |
bea8c150 HD |
1219 | if (mem_cgroup_disabled()) { |
1220 | lruvec = &zone->lruvec; | |
1221 | goto out; | |
1222 | } | |
925b7673 JW |
1223 | |
1224 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); | |
bea8c150 HD |
1225 | lruvec = &mz->lruvec; |
1226 | out: | |
1227 | /* | |
1228 | * Since a node can be onlined after the mem_cgroup was created, | |
1229 | * we have to be prepared to initialize lruvec->zone here; | |
1230 | * and if offlined then reonlined, we need to reinitialize it. | |
1231 | */ | |
1232 | if (unlikely(lruvec->zone != zone)) | |
1233 | lruvec->zone = zone; | |
1234 | return lruvec; | |
925b7673 JW |
1235 | } |
1236 | ||
08e552c6 KH |
1237 | /* |
1238 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
1239 | * Operations are called by routine of global LRU independently from memcg. | |
1240 | * What we have to take care of here is validness of pc->mem_cgroup. | |
1241 | * | |
1242 | * Changes to pc->mem_cgroup happens when | |
1243 | * 1. charge | |
1244 | * 2. moving account | |
1245 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
1246 | * It is added to LRU before charge. | |
1247 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
1248 | * When moving account, the page is not on LRU. It's isolated. | |
1249 | */ | |
4f98a2fe | 1250 | |
925b7673 | 1251 | /** |
fa9add64 | 1252 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
925b7673 | 1253 | * @page: the page |
fa9add64 | 1254 | * @zone: zone of the page |
925b7673 | 1255 | */ |
fa9add64 | 1256 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
08e552c6 | 1257 | { |
08e552c6 | 1258 | struct mem_cgroup_per_zone *mz; |
925b7673 JW |
1259 | struct mem_cgroup *memcg; |
1260 | struct page_cgroup *pc; | |
bea8c150 | 1261 | struct lruvec *lruvec; |
6d12e2d8 | 1262 | |
bea8c150 HD |
1263 | if (mem_cgroup_disabled()) { |
1264 | lruvec = &zone->lruvec; | |
1265 | goto out; | |
1266 | } | |
925b7673 | 1267 | |
08e552c6 | 1268 | pc = lookup_page_cgroup(page); |
38c5d72f | 1269 | memcg = pc->mem_cgroup; |
7512102c HD |
1270 | |
1271 | /* | |
fa9add64 | 1272 | * Surreptitiously switch any uncharged offlist page to root: |
7512102c HD |
1273 | * an uncharged page off lru does nothing to secure |
1274 | * its former mem_cgroup from sudden removal. | |
1275 | * | |
1276 | * Our caller holds lru_lock, and PageCgroupUsed is updated | |
1277 | * under page_cgroup lock: between them, they make all uses | |
1278 | * of pc->mem_cgroup safe. | |
1279 | */ | |
fa9add64 | 1280 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
7512102c HD |
1281 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1282 | ||
925b7673 | 1283 | mz = page_cgroup_zoneinfo(memcg, page); |
bea8c150 HD |
1284 | lruvec = &mz->lruvec; |
1285 | out: | |
1286 | /* | |
1287 | * Since a node can be onlined after the mem_cgroup was created, | |
1288 | * we have to be prepared to initialize lruvec->zone here; | |
1289 | * and if offlined then reonlined, we need to reinitialize it. | |
1290 | */ | |
1291 | if (unlikely(lruvec->zone != zone)) | |
1292 | lruvec->zone = zone; | |
1293 | return lruvec; | |
08e552c6 | 1294 | } |
b69408e8 | 1295 | |
925b7673 | 1296 | /** |
fa9add64 HD |
1297 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1298 | * @lruvec: mem_cgroup per zone lru vector | |
1299 | * @lru: index of lru list the page is sitting on | |
1300 | * @nr_pages: positive when adding or negative when removing | |
925b7673 | 1301 | * |
fa9add64 HD |
1302 | * This function must be called when a page is added to or removed from an |
1303 | * lru list. | |
3f58a829 | 1304 | */ |
fa9add64 HD |
1305 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1306 | int nr_pages) | |
3f58a829 MK |
1307 | { |
1308 | struct mem_cgroup_per_zone *mz; | |
fa9add64 | 1309 | unsigned long *lru_size; |
3f58a829 MK |
1310 | |
1311 | if (mem_cgroup_disabled()) | |
1312 | return; | |
1313 | ||
fa9add64 HD |
1314 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1315 | lru_size = mz->lru_size + lru; | |
1316 | *lru_size += nr_pages; | |
1317 | VM_BUG_ON((long)(*lru_size) < 0); | |
08e552c6 | 1318 | } |
544122e5 | 1319 | |
3e92041d | 1320 | /* |
c0ff4b85 | 1321 | * Checks whether given mem is same or in the root_mem_cgroup's |
3e92041d MH |
1322 | * hierarchy subtree |
1323 | */ | |
c3ac9a8a JW |
1324 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1325 | struct mem_cgroup *memcg) | |
3e92041d | 1326 | { |
91c63734 JW |
1327 | if (root_memcg == memcg) |
1328 | return true; | |
3a981f48 | 1329 | if (!root_memcg->use_hierarchy || !memcg) |
91c63734 | 1330 | return false; |
c3ac9a8a JW |
1331 | return css_is_ancestor(&memcg->css, &root_memcg->css); |
1332 | } | |
1333 | ||
1334 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | |
1335 | struct mem_cgroup *memcg) | |
1336 | { | |
1337 | bool ret; | |
1338 | ||
91c63734 | 1339 | rcu_read_lock(); |
c3ac9a8a | 1340 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
91c63734 JW |
1341 | rcu_read_unlock(); |
1342 | return ret; | |
3e92041d MH |
1343 | } |
1344 | ||
c0ff4b85 | 1345 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) |
4c4a2214 DR |
1346 | { |
1347 | int ret; | |
0b7f569e | 1348 | struct mem_cgroup *curr = NULL; |
158e0a2d | 1349 | struct task_struct *p; |
4c4a2214 | 1350 | |
158e0a2d | 1351 | p = find_lock_task_mm(task); |
de077d22 DR |
1352 | if (p) { |
1353 | curr = try_get_mem_cgroup_from_mm(p->mm); | |
1354 | task_unlock(p); | |
1355 | } else { | |
1356 | /* | |
1357 | * All threads may have already detached their mm's, but the oom | |
1358 | * killer still needs to detect if they have already been oom | |
1359 | * killed to prevent needlessly killing additional tasks. | |
1360 | */ | |
1361 | task_lock(task); | |
1362 | curr = mem_cgroup_from_task(task); | |
1363 | if (curr) | |
1364 | css_get(&curr->css); | |
1365 | task_unlock(task); | |
1366 | } | |
0b7f569e KH |
1367 | if (!curr) |
1368 | return 0; | |
d31f56db | 1369 | /* |
c0ff4b85 | 1370 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
d31f56db | 1371 | * use_hierarchy of "curr" here make this function true if hierarchy is |
c0ff4b85 R |
1372 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1373 | * hierarchy(even if use_hierarchy is disabled in "memcg"). | |
d31f56db | 1374 | */ |
c0ff4b85 | 1375 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
0b7f569e | 1376 | css_put(&curr->css); |
4c4a2214 DR |
1377 | return ret; |
1378 | } | |
1379 | ||
c56d5c7d | 1380 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1381 | { |
9b272977 | 1382 | unsigned long inactive_ratio; |
14797e23 | 1383 | unsigned long inactive; |
9b272977 | 1384 | unsigned long active; |
c772be93 | 1385 | unsigned long gb; |
14797e23 | 1386 | |
4d7dcca2 HD |
1387 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1388 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | |
14797e23 | 1389 | |
c772be93 KM |
1390 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1391 | if (gb) | |
1392 | inactive_ratio = int_sqrt(10 * gb); | |
1393 | else | |
1394 | inactive_ratio = 1; | |
1395 | ||
9b272977 | 1396 | return inactive * inactive_ratio < active; |
14797e23 KM |
1397 | } |
1398 | ||
6d61ef40 BS |
1399 | #define mem_cgroup_from_res_counter(counter, member) \ |
1400 | container_of(counter, struct mem_cgroup, member) | |
1401 | ||
19942822 | 1402 | /** |
9d11ea9f | 1403 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1404 | * @memcg: the memory cgroup |
19942822 | 1405 | * |
9d11ea9f | 1406 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1407 | * pages. |
19942822 | 1408 | */ |
c0ff4b85 | 1409 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1410 | { |
9d11ea9f JW |
1411 | unsigned long long margin; |
1412 | ||
c0ff4b85 | 1413 | margin = res_counter_margin(&memcg->res); |
9d11ea9f | 1414 | if (do_swap_account) |
c0ff4b85 | 1415 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
7ec99d62 | 1416 | return margin >> PAGE_SHIFT; |
19942822 JW |
1417 | } |
1418 | ||
1f4c025b | 1419 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
a7885eb8 KM |
1420 | { |
1421 | struct cgroup *cgrp = memcg->css.cgroup; | |
a7885eb8 KM |
1422 | |
1423 | /* root ? */ | |
1424 | if (cgrp->parent == NULL) | |
1425 | return vm_swappiness; | |
1426 | ||
bf1ff263 | 1427 | return memcg->swappiness; |
a7885eb8 KM |
1428 | } |
1429 | ||
619d094b KH |
1430 | /* |
1431 | * memcg->moving_account is used for checking possibility that some thread is | |
1432 | * calling move_account(). When a thread on CPU-A starts moving pages under | |
1433 | * a memcg, other threads should check memcg->moving_account under | |
1434 | * rcu_read_lock(), like this: | |
1435 | * | |
1436 | * CPU-A CPU-B | |
1437 | * rcu_read_lock() | |
1438 | * memcg->moving_account+1 if (memcg->mocing_account) | |
1439 | * take heavy locks. | |
1440 | * synchronize_rcu() update something. | |
1441 | * rcu_read_unlock() | |
1442 | * start move here. | |
1443 | */ | |
4331f7d3 KH |
1444 | |
1445 | /* for quick checking without looking up memcg */ | |
1446 | atomic_t memcg_moving __read_mostly; | |
1447 | ||
c0ff4b85 | 1448 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
32047e2a | 1449 | { |
4331f7d3 | 1450 | atomic_inc(&memcg_moving); |
619d094b | 1451 | atomic_inc(&memcg->moving_account); |
32047e2a KH |
1452 | synchronize_rcu(); |
1453 | } | |
1454 | ||
c0ff4b85 | 1455 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
32047e2a | 1456 | { |
619d094b KH |
1457 | /* |
1458 | * Now, mem_cgroup_clear_mc() may call this function with NULL. | |
1459 | * We check NULL in callee rather than caller. | |
1460 | */ | |
4331f7d3 KH |
1461 | if (memcg) { |
1462 | atomic_dec(&memcg_moving); | |
619d094b | 1463 | atomic_dec(&memcg->moving_account); |
4331f7d3 | 1464 | } |
32047e2a | 1465 | } |
619d094b | 1466 | |
32047e2a KH |
1467 | /* |
1468 | * 2 routines for checking "mem" is under move_account() or not. | |
1469 | * | |
13fd1dd9 AM |
1470 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This |
1471 | * is used for avoiding races in accounting. If true, | |
32047e2a KH |
1472 | * pc->mem_cgroup may be overwritten. |
1473 | * | |
1474 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | |
1475 | * under hierarchy of moving cgroups. This is for | |
1476 | * waiting at hith-memory prressure caused by "move". | |
1477 | */ | |
1478 | ||
13fd1dd9 | 1479 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) |
32047e2a KH |
1480 | { |
1481 | VM_BUG_ON(!rcu_read_lock_held()); | |
619d094b | 1482 | return atomic_read(&memcg->moving_account) > 0; |
32047e2a | 1483 | } |
4b534334 | 1484 | |
c0ff4b85 | 1485 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
4b534334 | 1486 | { |
2bd9bb20 KH |
1487 | struct mem_cgroup *from; |
1488 | struct mem_cgroup *to; | |
4b534334 | 1489 | bool ret = false; |
2bd9bb20 KH |
1490 | /* |
1491 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1492 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1493 | */ | |
1494 | spin_lock(&mc.lock); | |
1495 | from = mc.from; | |
1496 | to = mc.to; | |
1497 | if (!from) | |
1498 | goto unlock; | |
3e92041d | 1499 | |
c0ff4b85 R |
1500 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1501 | || mem_cgroup_same_or_subtree(memcg, to); | |
2bd9bb20 KH |
1502 | unlock: |
1503 | spin_unlock(&mc.lock); | |
4b534334 KH |
1504 | return ret; |
1505 | } | |
1506 | ||
c0ff4b85 | 1507 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
4b534334 KH |
1508 | { |
1509 | if (mc.moving_task && current != mc.moving_task) { | |
c0ff4b85 | 1510 | if (mem_cgroup_under_move(memcg)) { |
4b534334 KH |
1511 | DEFINE_WAIT(wait); |
1512 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1513 | /* moving charge context might have finished. */ | |
1514 | if (mc.moving_task) | |
1515 | schedule(); | |
1516 | finish_wait(&mc.waitq, &wait); | |
1517 | return true; | |
1518 | } | |
1519 | } | |
1520 | return false; | |
1521 | } | |
1522 | ||
312734c0 KH |
1523 | /* |
1524 | * Take this lock when | |
1525 | * - a code tries to modify page's memcg while it's USED. | |
1526 | * - a code tries to modify page state accounting in a memcg. | |
13fd1dd9 | 1527 | * see mem_cgroup_stolen(), too. |
312734c0 KH |
1528 | */ |
1529 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, | |
1530 | unsigned long *flags) | |
1531 | { | |
1532 | spin_lock_irqsave(&memcg->move_lock, *flags); | |
1533 | } | |
1534 | ||
1535 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, | |
1536 | unsigned long *flags) | |
1537 | { | |
1538 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
1539 | } | |
1540 | ||
58cf188e | 1541 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
e222432b | 1542 | /** |
58cf188e | 1543 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
e222432b BS |
1544 | * @memcg: The memory cgroup that went over limit |
1545 | * @p: Task that is going to be killed | |
1546 | * | |
1547 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1548 | * enabled | |
1549 | */ | |
1550 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1551 | { | |
1552 | struct cgroup *task_cgrp; | |
1553 | struct cgroup *mem_cgrp; | |
1554 | /* | |
1555 | * Need a buffer in BSS, can't rely on allocations. The code relies | |
1556 | * on the assumption that OOM is serialized for memory controller. | |
1557 | * If this assumption is broken, revisit this code. | |
1558 | */ | |
1559 | static char memcg_name[PATH_MAX]; | |
1560 | int ret; | |
58cf188e SZ |
1561 | struct mem_cgroup *iter; |
1562 | unsigned int i; | |
e222432b | 1563 | |
58cf188e | 1564 | if (!p) |
e222432b BS |
1565 | return; |
1566 | ||
e222432b BS |
1567 | rcu_read_lock(); |
1568 | ||
1569 | mem_cgrp = memcg->css.cgroup; | |
1570 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | |
1571 | ||
1572 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | |
1573 | if (ret < 0) { | |
1574 | /* | |
1575 | * Unfortunately, we are unable to convert to a useful name | |
1576 | * But we'll still print out the usage information | |
1577 | */ | |
1578 | rcu_read_unlock(); | |
1579 | goto done; | |
1580 | } | |
1581 | rcu_read_unlock(); | |
1582 | ||
d045197f | 1583 | pr_info("Task in %s killed", memcg_name); |
e222432b BS |
1584 | |
1585 | rcu_read_lock(); | |
1586 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | |
1587 | if (ret < 0) { | |
1588 | rcu_read_unlock(); | |
1589 | goto done; | |
1590 | } | |
1591 | rcu_read_unlock(); | |
1592 | ||
1593 | /* | |
1594 | * Continues from above, so we don't need an KERN_ level | |
1595 | */ | |
d045197f | 1596 | pr_cont(" as a result of limit of %s\n", memcg_name); |
e222432b BS |
1597 | done: |
1598 | ||
d045197f | 1599 | pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1600 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1601 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | |
1602 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | |
d045197f | 1603 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1604 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1605 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | |
1606 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | |
d045197f | 1607 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", |
510fc4e1 GC |
1608 | res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, |
1609 | res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, | |
1610 | res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); | |
58cf188e SZ |
1611 | |
1612 | for_each_mem_cgroup_tree(iter, memcg) { | |
1613 | pr_info("Memory cgroup stats"); | |
1614 | ||
1615 | rcu_read_lock(); | |
1616 | ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); | |
1617 | if (!ret) | |
1618 | pr_cont(" for %s", memcg_name); | |
1619 | rcu_read_unlock(); | |
1620 | pr_cont(":"); | |
1621 | ||
1622 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1623 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1624 | continue; | |
1625 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | |
1626 | K(mem_cgroup_read_stat(iter, i))); | |
1627 | } | |
1628 | ||
1629 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1630 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1631 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1632 | ||
1633 | pr_cont("\n"); | |
1634 | } | |
e222432b BS |
1635 | } |
1636 | ||
81d39c20 KH |
1637 | /* |
1638 | * This function returns the number of memcg under hierarchy tree. Returns | |
1639 | * 1(self count) if no children. | |
1640 | */ | |
c0ff4b85 | 1641 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
81d39c20 KH |
1642 | { |
1643 | int num = 0; | |
7d74b06f KH |
1644 | struct mem_cgroup *iter; |
1645 | ||
c0ff4b85 | 1646 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 1647 | num++; |
81d39c20 KH |
1648 | return num; |
1649 | } | |
1650 | ||
a63d83f4 DR |
1651 | /* |
1652 | * Return the memory (and swap, if configured) limit for a memcg. | |
1653 | */ | |
9cbb78bb | 1654 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
a63d83f4 DR |
1655 | { |
1656 | u64 limit; | |
a63d83f4 | 1657 | |
f3e8eb70 | 1658 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
f3e8eb70 | 1659 | |
a63d83f4 | 1660 | /* |
9a5a8f19 | 1661 | * Do not consider swap space if we cannot swap due to swappiness |
a63d83f4 | 1662 | */ |
9a5a8f19 MH |
1663 | if (mem_cgroup_swappiness(memcg)) { |
1664 | u64 memsw; | |
1665 | ||
1666 | limit += total_swap_pages << PAGE_SHIFT; | |
1667 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1668 | ||
1669 | /* | |
1670 | * If memsw is finite and limits the amount of swap space | |
1671 | * available to this memcg, return that limit. | |
1672 | */ | |
1673 | limit = min(limit, memsw); | |
1674 | } | |
1675 | ||
1676 | return limit; | |
a63d83f4 DR |
1677 | } |
1678 | ||
19965460 DR |
1679 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1680 | int order) | |
9cbb78bb DR |
1681 | { |
1682 | struct mem_cgroup *iter; | |
1683 | unsigned long chosen_points = 0; | |
1684 | unsigned long totalpages; | |
1685 | unsigned int points = 0; | |
1686 | struct task_struct *chosen = NULL; | |
1687 | ||
876aafbf DR |
1688 | /* |
1689 | * If current has a pending SIGKILL, then automatically select it. The | |
1690 | * goal is to allow it to allocate so that it may quickly exit and free | |
1691 | * its memory. | |
1692 | */ | |
1693 | if (fatal_signal_pending(current)) { | |
1694 | set_thread_flag(TIF_MEMDIE); | |
1695 | return; | |
1696 | } | |
1697 | ||
1698 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | |
9cbb78bb DR |
1699 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1700 | for_each_mem_cgroup_tree(iter, memcg) { | |
1701 | struct cgroup *cgroup = iter->css.cgroup; | |
1702 | struct cgroup_iter it; | |
1703 | struct task_struct *task; | |
1704 | ||
1705 | cgroup_iter_start(cgroup, &it); | |
1706 | while ((task = cgroup_iter_next(cgroup, &it))) { | |
1707 | switch (oom_scan_process_thread(task, totalpages, NULL, | |
1708 | false)) { | |
1709 | case OOM_SCAN_SELECT: | |
1710 | if (chosen) | |
1711 | put_task_struct(chosen); | |
1712 | chosen = task; | |
1713 | chosen_points = ULONG_MAX; | |
1714 | get_task_struct(chosen); | |
1715 | /* fall through */ | |
1716 | case OOM_SCAN_CONTINUE: | |
1717 | continue; | |
1718 | case OOM_SCAN_ABORT: | |
1719 | cgroup_iter_end(cgroup, &it); | |
1720 | mem_cgroup_iter_break(memcg, iter); | |
1721 | if (chosen) | |
1722 | put_task_struct(chosen); | |
1723 | return; | |
1724 | case OOM_SCAN_OK: | |
1725 | break; | |
1726 | }; | |
1727 | points = oom_badness(task, memcg, NULL, totalpages); | |
1728 | if (points > chosen_points) { | |
1729 | if (chosen) | |
1730 | put_task_struct(chosen); | |
1731 | chosen = task; | |
1732 | chosen_points = points; | |
1733 | get_task_struct(chosen); | |
1734 | } | |
1735 | } | |
1736 | cgroup_iter_end(cgroup, &it); | |
1737 | } | |
1738 | ||
1739 | if (!chosen) | |
1740 | return; | |
1741 | points = chosen_points * 1000 / totalpages; | |
9cbb78bb DR |
1742 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1743 | NULL, "Memory cgroup out of memory"); | |
9cbb78bb DR |
1744 | } |
1745 | ||
5660048c JW |
1746 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1747 | gfp_t gfp_mask, | |
1748 | unsigned long flags) | |
1749 | { | |
1750 | unsigned long total = 0; | |
1751 | bool noswap = false; | |
1752 | int loop; | |
1753 | ||
1754 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) | |
1755 | noswap = true; | |
1756 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) | |
1757 | noswap = true; | |
1758 | ||
1759 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { | |
1760 | if (loop) | |
1761 | drain_all_stock_async(memcg); | |
1762 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); | |
1763 | /* | |
1764 | * Allow limit shrinkers, which are triggered directly | |
1765 | * by userspace, to catch signals and stop reclaim | |
1766 | * after minimal progress, regardless of the margin. | |
1767 | */ | |
1768 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) | |
1769 | break; | |
1770 | if (mem_cgroup_margin(memcg)) | |
1771 | break; | |
1772 | /* | |
1773 | * If nothing was reclaimed after two attempts, there | |
1774 | * may be no reclaimable pages in this hierarchy. | |
1775 | */ | |
1776 | if (loop && !total) | |
1777 | break; | |
1778 | } | |
1779 | return total; | |
1780 | } | |
1781 | ||
4d0c066d KH |
1782 | /** |
1783 | * test_mem_cgroup_node_reclaimable | |
dad7557e | 1784 | * @memcg: the target memcg |
4d0c066d KH |
1785 | * @nid: the node ID to be checked. |
1786 | * @noswap : specify true here if the user wants flle only information. | |
1787 | * | |
1788 | * This function returns whether the specified memcg contains any | |
1789 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1790 | * pages in the node. | |
1791 | */ | |
c0ff4b85 | 1792 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
4d0c066d KH |
1793 | int nid, bool noswap) |
1794 | { | |
c0ff4b85 | 1795 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
4d0c066d KH |
1796 | return true; |
1797 | if (noswap || !total_swap_pages) | |
1798 | return false; | |
c0ff4b85 | 1799 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
4d0c066d KH |
1800 | return true; |
1801 | return false; | |
1802 | ||
1803 | } | |
889976db YH |
1804 | #if MAX_NUMNODES > 1 |
1805 | ||
1806 | /* | |
1807 | * Always updating the nodemask is not very good - even if we have an empty | |
1808 | * list or the wrong list here, we can start from some node and traverse all | |
1809 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1810 | * | |
1811 | */ | |
c0ff4b85 | 1812 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
889976db YH |
1813 | { |
1814 | int nid; | |
453a9bf3 KH |
1815 | /* |
1816 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1817 | * pagein/pageout changes since the last update. | |
1818 | */ | |
c0ff4b85 | 1819 | if (!atomic_read(&memcg->numainfo_events)) |
453a9bf3 | 1820 | return; |
c0ff4b85 | 1821 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
889976db YH |
1822 | return; |
1823 | ||
889976db | 1824 | /* make a nodemask where this memcg uses memory from */ |
31aaea4a | 1825 | memcg->scan_nodes = node_states[N_MEMORY]; |
889976db | 1826 | |
31aaea4a | 1827 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
889976db | 1828 | |
c0ff4b85 R |
1829 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1830 | node_clear(nid, memcg->scan_nodes); | |
889976db | 1831 | } |
453a9bf3 | 1832 | |
c0ff4b85 R |
1833 | atomic_set(&memcg->numainfo_events, 0); |
1834 | atomic_set(&memcg->numainfo_updating, 0); | |
889976db YH |
1835 | } |
1836 | ||
1837 | /* | |
1838 | * Selecting a node where we start reclaim from. Because what we need is just | |
1839 | * reducing usage counter, start from anywhere is O,K. Considering | |
1840 | * memory reclaim from current node, there are pros. and cons. | |
1841 | * | |
1842 | * Freeing memory from current node means freeing memory from a node which | |
1843 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1844 | * hit limits, it will see a contention on a node. But freeing from remote | |
1845 | * node means more costs for memory reclaim because of memory latency. | |
1846 | * | |
1847 | * Now, we use round-robin. Better algorithm is welcomed. | |
1848 | */ | |
c0ff4b85 | 1849 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1850 | { |
1851 | int node; | |
1852 | ||
c0ff4b85 R |
1853 | mem_cgroup_may_update_nodemask(memcg); |
1854 | node = memcg->last_scanned_node; | |
889976db | 1855 | |
c0ff4b85 | 1856 | node = next_node(node, memcg->scan_nodes); |
889976db | 1857 | if (node == MAX_NUMNODES) |
c0ff4b85 | 1858 | node = first_node(memcg->scan_nodes); |
889976db YH |
1859 | /* |
1860 | * We call this when we hit limit, not when pages are added to LRU. | |
1861 | * No LRU may hold pages because all pages are UNEVICTABLE or | |
1862 | * memcg is too small and all pages are not on LRU. In that case, | |
1863 | * we use curret node. | |
1864 | */ | |
1865 | if (unlikely(node == MAX_NUMNODES)) | |
1866 | node = numa_node_id(); | |
1867 | ||
c0ff4b85 | 1868 | memcg->last_scanned_node = node; |
889976db YH |
1869 | return node; |
1870 | } | |
1871 | ||
4d0c066d KH |
1872 | /* |
1873 | * Check all nodes whether it contains reclaimable pages or not. | |
1874 | * For quick scan, we make use of scan_nodes. This will allow us to skip | |
1875 | * unused nodes. But scan_nodes is lazily updated and may not cotain | |
1876 | * enough new information. We need to do double check. | |
1877 | */ | |
6bbda35c | 1878 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
4d0c066d KH |
1879 | { |
1880 | int nid; | |
1881 | ||
1882 | /* | |
1883 | * quick check...making use of scan_node. | |
1884 | * We can skip unused nodes. | |
1885 | */ | |
c0ff4b85 R |
1886 | if (!nodes_empty(memcg->scan_nodes)) { |
1887 | for (nid = first_node(memcg->scan_nodes); | |
4d0c066d | 1888 | nid < MAX_NUMNODES; |
c0ff4b85 | 1889 | nid = next_node(nid, memcg->scan_nodes)) { |
4d0c066d | 1890 | |
c0ff4b85 | 1891 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
4d0c066d KH |
1892 | return true; |
1893 | } | |
1894 | } | |
1895 | /* | |
1896 | * Check rest of nodes. | |
1897 | */ | |
31aaea4a | 1898 | for_each_node_state(nid, N_MEMORY) { |
c0ff4b85 | 1899 | if (node_isset(nid, memcg->scan_nodes)) |
4d0c066d | 1900 | continue; |
c0ff4b85 | 1901 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
4d0c066d KH |
1902 | return true; |
1903 | } | |
1904 | return false; | |
1905 | } | |
1906 | ||
889976db | 1907 | #else |
c0ff4b85 | 1908 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1909 | { |
1910 | return 0; | |
1911 | } | |
4d0c066d | 1912 | |
6bbda35c | 1913 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
4d0c066d | 1914 | { |
c0ff4b85 | 1915 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); |
4d0c066d | 1916 | } |
889976db YH |
1917 | #endif |
1918 | ||
5660048c JW |
1919 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1920 | struct zone *zone, | |
1921 | gfp_t gfp_mask, | |
1922 | unsigned long *total_scanned) | |
6d61ef40 | 1923 | { |
9f3a0d09 | 1924 | struct mem_cgroup *victim = NULL; |
5660048c | 1925 | int total = 0; |
04046e1a | 1926 | int loop = 0; |
9d11ea9f | 1927 | unsigned long excess; |
185efc0f | 1928 | unsigned long nr_scanned; |
527a5ec9 JW |
1929 | struct mem_cgroup_reclaim_cookie reclaim = { |
1930 | .zone = zone, | |
1931 | .priority = 0, | |
1932 | }; | |
9d11ea9f | 1933 | |
c0ff4b85 | 1934 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; |
04046e1a | 1935 | |
4e416953 | 1936 | while (1) { |
527a5ec9 | 1937 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
9f3a0d09 | 1938 | if (!victim) { |
04046e1a | 1939 | loop++; |
4e416953 BS |
1940 | if (loop >= 2) { |
1941 | /* | |
1942 | * If we have not been able to reclaim | |
1943 | * anything, it might because there are | |
1944 | * no reclaimable pages under this hierarchy | |
1945 | */ | |
5660048c | 1946 | if (!total) |
4e416953 | 1947 | break; |
4e416953 | 1948 | /* |
25985edc | 1949 | * We want to do more targeted reclaim. |
4e416953 BS |
1950 | * excess >> 2 is not to excessive so as to |
1951 | * reclaim too much, nor too less that we keep | |
1952 | * coming back to reclaim from this cgroup | |
1953 | */ | |
1954 | if (total >= (excess >> 2) || | |
9f3a0d09 | 1955 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
4e416953 | 1956 | break; |
4e416953 | 1957 | } |
9f3a0d09 | 1958 | continue; |
4e416953 | 1959 | } |
5660048c | 1960 | if (!mem_cgroup_reclaimable(victim, false)) |
6d61ef40 | 1961 | continue; |
5660048c JW |
1962 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
1963 | zone, &nr_scanned); | |
1964 | *total_scanned += nr_scanned; | |
1965 | if (!res_counter_soft_limit_excess(&root_memcg->res)) | |
9f3a0d09 | 1966 | break; |
6d61ef40 | 1967 | } |
9f3a0d09 | 1968 | mem_cgroup_iter_break(root_memcg, victim); |
04046e1a | 1969 | return total; |
6d61ef40 BS |
1970 | } |
1971 | ||
867578cb KH |
1972 | /* |
1973 | * Check OOM-Killer is already running under our hierarchy. | |
1974 | * If someone is running, return false. | |
1af8efe9 | 1975 | * Has to be called with memcg_oom_lock |
867578cb | 1976 | */ |
c0ff4b85 | 1977 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) |
867578cb | 1978 | { |
79dfdacc | 1979 | struct mem_cgroup *iter, *failed = NULL; |
a636b327 | 1980 | |
9f3a0d09 | 1981 | for_each_mem_cgroup_tree(iter, memcg) { |
23751be0 | 1982 | if (iter->oom_lock) { |
79dfdacc MH |
1983 | /* |
1984 | * this subtree of our hierarchy is already locked | |
1985 | * so we cannot give a lock. | |
1986 | */ | |
79dfdacc | 1987 | failed = iter; |
9f3a0d09 JW |
1988 | mem_cgroup_iter_break(memcg, iter); |
1989 | break; | |
23751be0 JW |
1990 | } else |
1991 | iter->oom_lock = true; | |
7d74b06f | 1992 | } |
867578cb | 1993 | |
79dfdacc | 1994 | if (!failed) |
23751be0 | 1995 | return true; |
79dfdacc MH |
1996 | |
1997 | /* | |
1998 | * OK, we failed to lock the whole subtree so we have to clean up | |
1999 | * what we set up to the failing subtree | |
2000 | */ | |
9f3a0d09 | 2001 | for_each_mem_cgroup_tree(iter, memcg) { |
79dfdacc | 2002 | if (iter == failed) { |
9f3a0d09 JW |
2003 | mem_cgroup_iter_break(memcg, iter); |
2004 | break; | |
79dfdacc MH |
2005 | } |
2006 | iter->oom_lock = false; | |
2007 | } | |
23751be0 | 2008 | return false; |
a636b327 | 2009 | } |
0b7f569e | 2010 | |
79dfdacc | 2011 | /* |
1af8efe9 | 2012 | * Has to be called with memcg_oom_lock |
79dfdacc | 2013 | */ |
c0ff4b85 | 2014 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
0b7f569e | 2015 | { |
7d74b06f KH |
2016 | struct mem_cgroup *iter; |
2017 | ||
c0ff4b85 | 2018 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
2019 | iter->oom_lock = false; |
2020 | return 0; | |
2021 | } | |
2022 | ||
c0ff4b85 | 2023 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2024 | { |
2025 | struct mem_cgroup *iter; | |
2026 | ||
c0ff4b85 | 2027 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
2028 | atomic_inc(&iter->under_oom); |
2029 | } | |
2030 | ||
c0ff4b85 | 2031 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2032 | { |
2033 | struct mem_cgroup *iter; | |
2034 | ||
867578cb KH |
2035 | /* |
2036 | * When a new child is created while the hierarchy is under oom, | |
2037 | * mem_cgroup_oom_lock() may not be called. We have to use | |
2038 | * atomic_add_unless() here. | |
2039 | */ | |
c0ff4b85 | 2040 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 2041 | atomic_add_unless(&iter->under_oom, -1, 0); |
0b7f569e KH |
2042 | } |
2043 | ||
1af8efe9 | 2044 | static DEFINE_SPINLOCK(memcg_oom_lock); |
867578cb KH |
2045 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
2046 | ||
dc98df5a | 2047 | struct oom_wait_info { |
d79154bb | 2048 | struct mem_cgroup *memcg; |
dc98df5a KH |
2049 | wait_queue_t wait; |
2050 | }; | |
2051 | ||
2052 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
2053 | unsigned mode, int sync, void *arg) | |
2054 | { | |
d79154bb HD |
2055 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
2056 | struct mem_cgroup *oom_wait_memcg; | |
dc98df5a KH |
2057 | struct oom_wait_info *oom_wait_info; |
2058 | ||
2059 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
d79154bb | 2060 | oom_wait_memcg = oom_wait_info->memcg; |
dc98df5a | 2061 | |
dc98df5a | 2062 | /* |
d79154bb | 2063 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
dc98df5a KH |
2064 | * Then we can use css_is_ancestor without taking care of RCU. |
2065 | */ | |
c0ff4b85 R |
2066 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
2067 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) | |
dc98df5a | 2068 | return 0; |
dc98df5a KH |
2069 | return autoremove_wake_function(wait, mode, sync, arg); |
2070 | } | |
2071 | ||
c0ff4b85 | 2072 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
dc98df5a | 2073 | { |
c0ff4b85 R |
2074 | /* for filtering, pass "memcg" as argument. */ |
2075 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
dc98df5a KH |
2076 | } |
2077 | ||
c0ff4b85 | 2078 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
3c11ecf4 | 2079 | { |
c0ff4b85 R |
2080 | if (memcg && atomic_read(&memcg->under_oom)) |
2081 | memcg_wakeup_oom(memcg); | |
3c11ecf4 KH |
2082 | } |
2083 | ||
867578cb KH |
2084 | /* |
2085 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | |
2086 | */ | |
6bbda35c KS |
2087 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, |
2088 | int order) | |
0b7f569e | 2089 | { |
dc98df5a | 2090 | struct oom_wait_info owait; |
3c11ecf4 | 2091 | bool locked, need_to_kill; |
867578cb | 2092 | |
d79154bb | 2093 | owait.memcg = memcg; |
dc98df5a KH |
2094 | owait.wait.flags = 0; |
2095 | owait.wait.func = memcg_oom_wake_function; | |
2096 | owait.wait.private = current; | |
2097 | INIT_LIST_HEAD(&owait.wait.task_list); | |
3c11ecf4 | 2098 | need_to_kill = true; |
c0ff4b85 | 2099 | mem_cgroup_mark_under_oom(memcg); |
79dfdacc | 2100 | |
c0ff4b85 | 2101 | /* At first, try to OOM lock hierarchy under memcg.*/ |
1af8efe9 | 2102 | spin_lock(&memcg_oom_lock); |
c0ff4b85 | 2103 | locked = mem_cgroup_oom_lock(memcg); |
867578cb KH |
2104 | /* |
2105 | * Even if signal_pending(), we can't quit charge() loop without | |
2106 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | |
2107 | * under OOM is always welcomed, use TASK_KILLABLE here. | |
2108 | */ | |
3c11ecf4 | 2109 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
c0ff4b85 | 2110 | if (!locked || memcg->oom_kill_disable) |
3c11ecf4 KH |
2111 | need_to_kill = false; |
2112 | if (locked) | |
c0ff4b85 | 2113 | mem_cgroup_oom_notify(memcg); |
1af8efe9 | 2114 | spin_unlock(&memcg_oom_lock); |
867578cb | 2115 | |
3c11ecf4 KH |
2116 | if (need_to_kill) { |
2117 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
e845e199 | 2118 | mem_cgroup_out_of_memory(memcg, mask, order); |
3c11ecf4 | 2119 | } else { |
867578cb | 2120 | schedule(); |
dc98df5a | 2121 | finish_wait(&memcg_oom_waitq, &owait.wait); |
867578cb | 2122 | } |
1af8efe9 | 2123 | spin_lock(&memcg_oom_lock); |
79dfdacc | 2124 | if (locked) |
c0ff4b85 R |
2125 | mem_cgroup_oom_unlock(memcg); |
2126 | memcg_wakeup_oom(memcg); | |
1af8efe9 | 2127 | spin_unlock(&memcg_oom_lock); |
867578cb | 2128 | |
c0ff4b85 | 2129 | mem_cgroup_unmark_under_oom(memcg); |
79dfdacc | 2130 | |
867578cb KH |
2131 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) |
2132 | return false; | |
2133 | /* Give chance to dying process */ | |
715a5ee8 | 2134 | schedule_timeout_uninterruptible(1); |
867578cb | 2135 | return true; |
0b7f569e KH |
2136 | } |
2137 | ||
d69b042f BS |
2138 | /* |
2139 | * Currently used to update mapped file statistics, but the routine can be | |
2140 | * generalized to update other statistics as well. | |
32047e2a KH |
2141 | * |
2142 | * Notes: Race condition | |
2143 | * | |
2144 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | |
2145 | * it tends to be costly. But considering some conditions, we doesn't need | |
2146 | * to do so _always_. | |
2147 | * | |
2148 | * Considering "charge", lock_page_cgroup() is not required because all | |
2149 | * file-stat operations happen after a page is attached to radix-tree. There | |
2150 | * are no race with "charge". | |
2151 | * | |
2152 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | |
2153 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | |
2154 | * if there are race with "uncharge". Statistics itself is properly handled | |
2155 | * by flags. | |
2156 | * | |
2157 | * Considering "move", this is an only case we see a race. To make the race | |
619d094b KH |
2158 | * small, we check mm->moving_account and detect there are possibility of race |
2159 | * If there is, we take a lock. | |
d69b042f | 2160 | */ |
26174efd | 2161 | |
89c06bd5 KH |
2162 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
2163 | bool *locked, unsigned long *flags) | |
2164 | { | |
2165 | struct mem_cgroup *memcg; | |
2166 | struct page_cgroup *pc; | |
2167 | ||
2168 | pc = lookup_page_cgroup(page); | |
2169 | again: | |
2170 | memcg = pc->mem_cgroup; | |
2171 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
2172 | return; | |
2173 | /* | |
2174 | * If this memory cgroup is not under account moving, we don't | |
da92c47d | 2175 | * need to take move_lock_mem_cgroup(). Because we already hold |
89c06bd5 | 2176 | * rcu_read_lock(), any calls to move_account will be delayed until |
13fd1dd9 | 2177 | * rcu_read_unlock() if mem_cgroup_stolen() == true. |
89c06bd5 | 2178 | */ |
13fd1dd9 | 2179 | if (!mem_cgroup_stolen(memcg)) |
89c06bd5 KH |
2180 | return; |
2181 | ||
2182 | move_lock_mem_cgroup(memcg, flags); | |
2183 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { | |
2184 | move_unlock_mem_cgroup(memcg, flags); | |
2185 | goto again; | |
2186 | } | |
2187 | *locked = true; | |
2188 | } | |
2189 | ||
2190 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) | |
2191 | { | |
2192 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
2193 | ||
2194 | /* | |
2195 | * It's guaranteed that pc->mem_cgroup never changes while | |
2196 | * lock is held because a routine modifies pc->mem_cgroup | |
da92c47d | 2197 | * should take move_lock_mem_cgroup(). |
89c06bd5 KH |
2198 | */ |
2199 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); | |
2200 | } | |
2201 | ||
2a7106f2 GT |
2202 | void mem_cgroup_update_page_stat(struct page *page, |
2203 | enum mem_cgroup_page_stat_item idx, int val) | |
d69b042f | 2204 | { |
c0ff4b85 | 2205 | struct mem_cgroup *memcg; |
32047e2a | 2206 | struct page_cgroup *pc = lookup_page_cgroup(page); |
dbd4ea78 | 2207 | unsigned long uninitialized_var(flags); |
d69b042f | 2208 | |
cfa44946 | 2209 | if (mem_cgroup_disabled()) |
d69b042f | 2210 | return; |
89c06bd5 | 2211 | |
c0ff4b85 R |
2212 | memcg = pc->mem_cgroup; |
2213 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
89c06bd5 | 2214 | return; |
26174efd | 2215 | |
26174efd | 2216 | switch (idx) { |
2a7106f2 | 2217 | case MEMCG_NR_FILE_MAPPED: |
2a7106f2 | 2218 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
26174efd KH |
2219 | break; |
2220 | default: | |
2221 | BUG(); | |
8725d541 | 2222 | } |
d69b042f | 2223 | |
c0ff4b85 | 2224 | this_cpu_add(memcg->stat->count[idx], val); |
d69b042f | 2225 | } |
26174efd | 2226 | |
cdec2e42 KH |
2227 | /* |
2228 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
2229 | * TODO: maybe necessary to use big numbers in big irons. | |
2230 | */ | |
7ec99d62 | 2231 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
2232 | struct memcg_stock_pcp { |
2233 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 2234 | unsigned int nr_pages; |
cdec2e42 | 2235 | struct work_struct work; |
26fe6168 | 2236 | unsigned long flags; |
a0db00fc | 2237 | #define FLUSHING_CACHED_CHARGE 0 |
cdec2e42 KH |
2238 | }; |
2239 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
9f50fad6 | 2240 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 2241 | |
a0956d54 SS |
2242 | /** |
2243 | * consume_stock: Try to consume stocked charge on this cpu. | |
2244 | * @memcg: memcg to consume from. | |
2245 | * @nr_pages: how many pages to charge. | |
2246 | * | |
2247 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2248 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2249 | * service an allocation will refill the stock. | |
2250 | * | |
2251 | * returns true if successful, false otherwise. | |
cdec2e42 | 2252 | */ |
a0956d54 | 2253 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2254 | { |
2255 | struct memcg_stock_pcp *stock; | |
2256 | bool ret = true; | |
2257 | ||
a0956d54 SS |
2258 | if (nr_pages > CHARGE_BATCH) |
2259 | return false; | |
2260 | ||
cdec2e42 | 2261 | stock = &get_cpu_var(memcg_stock); |
a0956d54 SS |
2262 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) |
2263 | stock->nr_pages -= nr_pages; | |
cdec2e42 KH |
2264 | else /* need to call res_counter_charge */ |
2265 | ret = false; | |
2266 | put_cpu_var(memcg_stock); | |
2267 | return ret; | |
2268 | } | |
2269 | ||
2270 | /* | |
2271 | * Returns stocks cached in percpu to res_counter and reset cached information. | |
2272 | */ | |
2273 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2274 | { | |
2275 | struct mem_cgroup *old = stock->cached; | |
2276 | ||
11c9ea4e JW |
2277 | if (stock->nr_pages) { |
2278 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; | |
2279 | ||
2280 | res_counter_uncharge(&old->res, bytes); | |
cdec2e42 | 2281 | if (do_swap_account) |
11c9ea4e JW |
2282 | res_counter_uncharge(&old->memsw, bytes); |
2283 | stock->nr_pages = 0; | |
cdec2e42 KH |
2284 | } |
2285 | stock->cached = NULL; | |
cdec2e42 KH |
2286 | } |
2287 | ||
2288 | /* | |
2289 | * This must be called under preempt disabled or must be called by | |
2290 | * a thread which is pinned to local cpu. | |
2291 | */ | |
2292 | static void drain_local_stock(struct work_struct *dummy) | |
2293 | { | |
2294 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | |
2295 | drain_stock(stock); | |
26fe6168 | 2296 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
cdec2e42 KH |
2297 | } |
2298 | ||
e4777496 MH |
2299 | static void __init memcg_stock_init(void) |
2300 | { | |
2301 | int cpu; | |
2302 | ||
2303 | for_each_possible_cpu(cpu) { | |
2304 | struct memcg_stock_pcp *stock = | |
2305 | &per_cpu(memcg_stock, cpu); | |
2306 | INIT_WORK(&stock->work, drain_local_stock); | |
2307 | } | |
2308 | } | |
2309 | ||
cdec2e42 KH |
2310 | /* |
2311 | * Cache charges(val) which is from res_counter, to local per_cpu area. | |
320cc51d | 2312 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 2313 | */ |
c0ff4b85 | 2314 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2315 | { |
2316 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
2317 | ||
c0ff4b85 | 2318 | if (stock->cached != memcg) { /* reset if necessary */ |
cdec2e42 | 2319 | drain_stock(stock); |
c0ff4b85 | 2320 | stock->cached = memcg; |
cdec2e42 | 2321 | } |
11c9ea4e | 2322 | stock->nr_pages += nr_pages; |
cdec2e42 KH |
2323 | put_cpu_var(memcg_stock); |
2324 | } | |
2325 | ||
2326 | /* | |
c0ff4b85 | 2327 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
d38144b7 MH |
2328 | * of the hierarchy under it. sync flag says whether we should block |
2329 | * until the work is done. | |
cdec2e42 | 2330 | */ |
c0ff4b85 | 2331 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
cdec2e42 | 2332 | { |
26fe6168 | 2333 | int cpu, curcpu; |
d38144b7 | 2334 | |
cdec2e42 | 2335 | /* Notify other cpus that system-wide "drain" is running */ |
cdec2e42 | 2336 | get_online_cpus(); |
5af12d0e | 2337 | curcpu = get_cpu(); |
cdec2e42 KH |
2338 | for_each_online_cpu(cpu) { |
2339 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
c0ff4b85 | 2340 | struct mem_cgroup *memcg; |
26fe6168 | 2341 | |
c0ff4b85 R |
2342 | memcg = stock->cached; |
2343 | if (!memcg || !stock->nr_pages) | |
26fe6168 | 2344 | continue; |
c0ff4b85 | 2345 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
3e92041d | 2346 | continue; |
d1a05b69 MH |
2347 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2348 | if (cpu == curcpu) | |
2349 | drain_local_stock(&stock->work); | |
2350 | else | |
2351 | schedule_work_on(cpu, &stock->work); | |
2352 | } | |
cdec2e42 | 2353 | } |
5af12d0e | 2354 | put_cpu(); |
d38144b7 MH |
2355 | |
2356 | if (!sync) | |
2357 | goto out; | |
2358 | ||
2359 | for_each_online_cpu(cpu) { | |
2360 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
9f50fad6 | 2361 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
d38144b7 MH |
2362 | flush_work(&stock->work); |
2363 | } | |
2364 | out: | |
cdec2e42 | 2365 | put_online_cpus(); |
d38144b7 MH |
2366 | } |
2367 | ||
2368 | /* | |
2369 | * Tries to drain stocked charges in other cpus. This function is asynchronous | |
2370 | * and just put a work per cpu for draining localy on each cpu. Caller can | |
2371 | * expects some charges will be back to res_counter later but cannot wait for | |
2372 | * it. | |
2373 | */ | |
c0ff4b85 | 2374 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
d38144b7 | 2375 | { |
9f50fad6 MH |
2376 | /* |
2377 | * If someone calls draining, avoid adding more kworker runs. | |
2378 | */ | |
2379 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2380 | return; | |
c0ff4b85 | 2381 | drain_all_stock(root_memcg, false); |
9f50fad6 | 2382 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2383 | } |
2384 | ||
2385 | /* This is a synchronous drain interface. */ | |
c0ff4b85 | 2386 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
cdec2e42 KH |
2387 | { |
2388 | /* called when force_empty is called */ | |
9f50fad6 | 2389 | mutex_lock(&percpu_charge_mutex); |
c0ff4b85 | 2390 | drain_all_stock(root_memcg, true); |
9f50fad6 | 2391 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2392 | } |
2393 | ||
711d3d2c KH |
2394 | /* |
2395 | * This function drains percpu counter value from DEAD cpu and | |
2396 | * move it to local cpu. Note that this function can be preempted. | |
2397 | */ | |
c0ff4b85 | 2398 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
711d3d2c KH |
2399 | { |
2400 | int i; | |
2401 | ||
c0ff4b85 | 2402 | spin_lock(&memcg->pcp_counter_lock); |
6104621d | 2403 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
c0ff4b85 | 2404 | long x = per_cpu(memcg->stat->count[i], cpu); |
711d3d2c | 2405 | |
c0ff4b85 R |
2406 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2407 | memcg->nocpu_base.count[i] += x; | |
711d3d2c | 2408 | } |
e9f8974f | 2409 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
c0ff4b85 | 2410 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
e9f8974f | 2411 | |
c0ff4b85 R |
2412 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2413 | memcg->nocpu_base.events[i] += x; | |
e9f8974f | 2414 | } |
c0ff4b85 | 2415 | spin_unlock(&memcg->pcp_counter_lock); |
711d3d2c KH |
2416 | } |
2417 | ||
2418 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
cdec2e42 KH |
2419 | unsigned long action, |
2420 | void *hcpu) | |
2421 | { | |
2422 | int cpu = (unsigned long)hcpu; | |
2423 | struct memcg_stock_pcp *stock; | |
711d3d2c | 2424 | struct mem_cgroup *iter; |
cdec2e42 | 2425 | |
619d094b | 2426 | if (action == CPU_ONLINE) |
1489ebad | 2427 | return NOTIFY_OK; |
1489ebad | 2428 | |
d833049b | 2429 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
cdec2e42 | 2430 | return NOTIFY_OK; |
711d3d2c | 2431 | |
9f3a0d09 | 2432 | for_each_mem_cgroup(iter) |
711d3d2c KH |
2433 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2434 | ||
cdec2e42 KH |
2435 | stock = &per_cpu(memcg_stock, cpu); |
2436 | drain_stock(stock); | |
2437 | return NOTIFY_OK; | |
2438 | } | |
2439 | ||
4b534334 KH |
2440 | |
2441 | /* See __mem_cgroup_try_charge() for details */ | |
2442 | enum { | |
2443 | CHARGE_OK, /* success */ | |
2444 | CHARGE_RETRY, /* need to retry but retry is not bad */ | |
2445 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | |
2446 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | |
2447 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | |
2448 | }; | |
2449 | ||
c0ff4b85 | 2450 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
4c9c5359 SS |
2451 | unsigned int nr_pages, unsigned int min_pages, |
2452 | bool oom_check) | |
4b534334 | 2453 | { |
7ec99d62 | 2454 | unsigned long csize = nr_pages * PAGE_SIZE; |
4b534334 KH |
2455 | struct mem_cgroup *mem_over_limit; |
2456 | struct res_counter *fail_res; | |
2457 | unsigned long flags = 0; | |
2458 | int ret; | |
2459 | ||
c0ff4b85 | 2460 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
4b534334 KH |
2461 | |
2462 | if (likely(!ret)) { | |
2463 | if (!do_swap_account) | |
2464 | return CHARGE_OK; | |
c0ff4b85 | 2465 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
4b534334 KH |
2466 | if (likely(!ret)) |
2467 | return CHARGE_OK; | |
2468 | ||
c0ff4b85 | 2469 | res_counter_uncharge(&memcg->res, csize); |
4b534334 KH |
2470 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2471 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | |
2472 | } else | |
2473 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | |
9221edb7 | 2474 | /* |
9221edb7 JW |
2475 | * Never reclaim on behalf of optional batching, retry with a |
2476 | * single page instead. | |
2477 | */ | |
4c9c5359 | 2478 | if (nr_pages > min_pages) |
4b534334 KH |
2479 | return CHARGE_RETRY; |
2480 | ||
2481 | if (!(gfp_mask & __GFP_WAIT)) | |
2482 | return CHARGE_WOULDBLOCK; | |
2483 | ||
4c9c5359 SS |
2484 | if (gfp_mask & __GFP_NORETRY) |
2485 | return CHARGE_NOMEM; | |
2486 | ||
5660048c | 2487 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
7ec99d62 | 2488 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
19942822 | 2489 | return CHARGE_RETRY; |
4b534334 | 2490 | /* |
19942822 JW |
2491 | * Even though the limit is exceeded at this point, reclaim |
2492 | * may have been able to free some pages. Retry the charge | |
2493 | * before killing the task. | |
2494 | * | |
2495 | * Only for regular pages, though: huge pages are rather | |
2496 | * unlikely to succeed so close to the limit, and we fall back | |
2497 | * to regular pages anyway in case of failure. | |
4b534334 | 2498 | */ |
4c9c5359 | 2499 | if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) |
4b534334 KH |
2500 | return CHARGE_RETRY; |
2501 | ||
2502 | /* | |
2503 | * At task move, charge accounts can be doubly counted. So, it's | |
2504 | * better to wait until the end of task_move if something is going on. | |
2505 | */ | |
2506 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2507 | return CHARGE_RETRY; | |
2508 | ||
2509 | /* If we don't need to call oom-killer at el, return immediately */ | |
2510 | if (!oom_check) | |
2511 | return CHARGE_NOMEM; | |
2512 | /* check OOM */ | |
e845e199 | 2513 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) |
4b534334 KH |
2514 | return CHARGE_OOM_DIE; |
2515 | ||
2516 | return CHARGE_RETRY; | |
2517 | } | |
2518 | ||
f817ed48 | 2519 | /* |
38c5d72f KH |
2520 | * __mem_cgroup_try_charge() does |
2521 | * 1. detect memcg to be charged against from passed *mm and *ptr, | |
2522 | * 2. update res_counter | |
2523 | * 3. call memory reclaim if necessary. | |
2524 | * | |
2525 | * In some special case, if the task is fatal, fatal_signal_pending() or | |
2526 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup | |
2527 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon | |
2528 | * as possible without any hazards. 2: all pages should have a valid | |
2529 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg | |
2530 | * pointer, that is treated as a charge to root_mem_cgroup. | |
2531 | * | |
2532 | * So __mem_cgroup_try_charge() will return | |
2533 | * 0 ... on success, filling *ptr with a valid memcg pointer. | |
2534 | * -ENOMEM ... charge failure because of resource limits. | |
2535 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. | |
2536 | * | |
2537 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, | |
2538 | * the oom-killer can be invoked. | |
8a9f3ccd | 2539 | */ |
f817ed48 | 2540 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
ec168510 | 2541 | gfp_t gfp_mask, |
7ec99d62 | 2542 | unsigned int nr_pages, |
c0ff4b85 | 2543 | struct mem_cgroup **ptr, |
7ec99d62 | 2544 | bool oom) |
8a9f3ccd | 2545 | { |
7ec99d62 | 2546 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
4b534334 | 2547 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
c0ff4b85 | 2548 | struct mem_cgroup *memcg = NULL; |
4b534334 | 2549 | int ret; |
a636b327 | 2550 | |
867578cb KH |
2551 | /* |
2552 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | |
2553 | * in system level. So, allow to go ahead dying process in addition to | |
2554 | * MEMDIE process. | |
2555 | */ | |
2556 | if (unlikely(test_thread_flag(TIF_MEMDIE) | |
2557 | || fatal_signal_pending(current))) | |
2558 | goto bypass; | |
a636b327 | 2559 | |
8a9f3ccd | 2560 | /* |
3be91277 HD |
2561 | * We always charge the cgroup the mm_struct belongs to. |
2562 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd | 2563 | * thread group leader migrates. It's possible that mm is not |
24467cac | 2564 | * set, if so charge the root memcg (happens for pagecache usage). |
8a9f3ccd | 2565 | */ |
c0ff4b85 | 2566 | if (!*ptr && !mm) |
38c5d72f | 2567 | *ptr = root_mem_cgroup; |
f75ca962 | 2568 | again: |
c0ff4b85 R |
2569 | if (*ptr) { /* css should be a valid one */ |
2570 | memcg = *ptr; | |
c0ff4b85 | 2571 | if (mem_cgroup_is_root(memcg)) |
f75ca962 | 2572 | goto done; |
a0956d54 | 2573 | if (consume_stock(memcg, nr_pages)) |
f75ca962 | 2574 | goto done; |
c0ff4b85 | 2575 | css_get(&memcg->css); |
4b534334 | 2576 | } else { |
f75ca962 | 2577 | struct task_struct *p; |
54595fe2 | 2578 | |
f75ca962 KH |
2579 | rcu_read_lock(); |
2580 | p = rcu_dereference(mm->owner); | |
f75ca962 | 2581 | /* |
ebb76ce1 | 2582 | * Because we don't have task_lock(), "p" can exit. |
c0ff4b85 | 2583 | * In that case, "memcg" can point to root or p can be NULL with |
ebb76ce1 KH |
2584 | * race with swapoff. Then, we have small risk of mis-accouning. |
2585 | * But such kind of mis-account by race always happens because | |
2586 | * we don't have cgroup_mutex(). It's overkill and we allo that | |
2587 | * small race, here. | |
2588 | * (*) swapoff at el will charge against mm-struct not against | |
2589 | * task-struct. So, mm->owner can be NULL. | |
f75ca962 | 2590 | */ |
c0ff4b85 | 2591 | memcg = mem_cgroup_from_task(p); |
38c5d72f KH |
2592 | if (!memcg) |
2593 | memcg = root_mem_cgroup; | |
2594 | if (mem_cgroup_is_root(memcg)) { | |
f75ca962 KH |
2595 | rcu_read_unlock(); |
2596 | goto done; | |
2597 | } | |
a0956d54 | 2598 | if (consume_stock(memcg, nr_pages)) { |
f75ca962 KH |
2599 | /* |
2600 | * It seems dagerous to access memcg without css_get(). | |
2601 | * But considering how consume_stok works, it's not | |
2602 | * necessary. If consume_stock success, some charges | |
2603 | * from this memcg are cached on this cpu. So, we | |
2604 | * don't need to call css_get()/css_tryget() before | |
2605 | * calling consume_stock(). | |
2606 | */ | |
2607 | rcu_read_unlock(); | |
2608 | goto done; | |
2609 | } | |
2610 | /* after here, we may be blocked. we need to get refcnt */ | |
c0ff4b85 | 2611 | if (!css_tryget(&memcg->css)) { |
f75ca962 KH |
2612 | rcu_read_unlock(); |
2613 | goto again; | |
2614 | } | |
2615 | rcu_read_unlock(); | |
2616 | } | |
8a9f3ccd | 2617 | |
4b534334 KH |
2618 | do { |
2619 | bool oom_check; | |
7a81b88c | 2620 | |
4b534334 | 2621 | /* If killed, bypass charge */ |
f75ca962 | 2622 | if (fatal_signal_pending(current)) { |
c0ff4b85 | 2623 | css_put(&memcg->css); |
4b534334 | 2624 | goto bypass; |
f75ca962 | 2625 | } |
6d61ef40 | 2626 | |
4b534334 KH |
2627 | oom_check = false; |
2628 | if (oom && !nr_oom_retries) { | |
2629 | oom_check = true; | |
2630 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
cdec2e42 | 2631 | } |
66e1707b | 2632 | |
4c9c5359 SS |
2633 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, |
2634 | oom_check); | |
4b534334 KH |
2635 | switch (ret) { |
2636 | case CHARGE_OK: | |
2637 | break; | |
2638 | case CHARGE_RETRY: /* not in OOM situation but retry */ | |
7ec99d62 | 2639 | batch = nr_pages; |
c0ff4b85 R |
2640 | css_put(&memcg->css); |
2641 | memcg = NULL; | |
f75ca962 | 2642 | goto again; |
4b534334 | 2643 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
c0ff4b85 | 2644 | css_put(&memcg->css); |
4b534334 KH |
2645 | goto nomem; |
2646 | case CHARGE_NOMEM: /* OOM routine works */ | |
f75ca962 | 2647 | if (!oom) { |
c0ff4b85 | 2648 | css_put(&memcg->css); |
867578cb | 2649 | goto nomem; |
f75ca962 | 2650 | } |
4b534334 KH |
2651 | /* If oom, we never return -ENOMEM */ |
2652 | nr_oom_retries--; | |
2653 | break; | |
2654 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | |
c0ff4b85 | 2655 | css_put(&memcg->css); |
867578cb | 2656 | goto bypass; |
66e1707b | 2657 | } |
4b534334 KH |
2658 | } while (ret != CHARGE_OK); |
2659 | ||
7ec99d62 | 2660 | if (batch > nr_pages) |
c0ff4b85 R |
2661 | refill_stock(memcg, batch - nr_pages); |
2662 | css_put(&memcg->css); | |
0c3e73e8 | 2663 | done: |
c0ff4b85 | 2664 | *ptr = memcg; |
7a81b88c KH |
2665 | return 0; |
2666 | nomem: | |
c0ff4b85 | 2667 | *ptr = NULL; |
7a81b88c | 2668 | return -ENOMEM; |
867578cb | 2669 | bypass: |
38c5d72f KH |
2670 | *ptr = root_mem_cgroup; |
2671 | return -EINTR; | |
7a81b88c | 2672 | } |
8a9f3ccd | 2673 | |
a3032a2c DN |
2674 | /* |
2675 | * Somemtimes we have to undo a charge we got by try_charge(). | |
2676 | * This function is for that and do uncharge, put css's refcnt. | |
2677 | * gotten by try_charge(). | |
2678 | */ | |
c0ff4b85 | 2679 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
e7018b8d | 2680 | unsigned int nr_pages) |
a3032a2c | 2681 | { |
c0ff4b85 | 2682 | if (!mem_cgroup_is_root(memcg)) { |
e7018b8d JW |
2683 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2684 | ||
c0ff4b85 | 2685 | res_counter_uncharge(&memcg->res, bytes); |
a3032a2c | 2686 | if (do_swap_account) |
c0ff4b85 | 2687 | res_counter_uncharge(&memcg->memsw, bytes); |
a3032a2c | 2688 | } |
854ffa8d DN |
2689 | } |
2690 | ||
d01dd17f KH |
2691 | /* |
2692 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. | |
2693 | * This is useful when moving usage to parent cgroup. | |
2694 | */ | |
2695 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, | |
2696 | unsigned int nr_pages) | |
2697 | { | |
2698 | unsigned long bytes = nr_pages * PAGE_SIZE; | |
2699 | ||
2700 | if (mem_cgroup_is_root(memcg)) | |
2701 | return; | |
2702 | ||
2703 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); | |
2704 | if (do_swap_account) | |
2705 | res_counter_uncharge_until(&memcg->memsw, | |
2706 | memcg->memsw.parent, bytes); | |
2707 | } | |
2708 | ||
a3b2d692 KH |
2709 | /* |
2710 | * A helper function to get mem_cgroup from ID. must be called under | |
e9316080 TH |
2711 | * rcu_read_lock(). The caller is responsible for calling css_tryget if |
2712 | * the mem_cgroup is used for charging. (dropping refcnt from swap can be | |
2713 | * called against removed memcg.) | |
a3b2d692 KH |
2714 | */ |
2715 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2716 | { | |
2717 | struct cgroup_subsys_state *css; | |
2718 | ||
2719 | /* ID 0 is unused ID */ | |
2720 | if (!id) | |
2721 | return NULL; | |
2722 | css = css_lookup(&mem_cgroup_subsys, id); | |
2723 | if (!css) | |
2724 | return NULL; | |
b2145145 | 2725 | return mem_cgroup_from_css(css); |
a3b2d692 KH |
2726 | } |
2727 | ||
e42d9d5d | 2728 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2729 | { |
c0ff4b85 | 2730 | struct mem_cgroup *memcg = NULL; |
3c776e64 | 2731 | struct page_cgroup *pc; |
a3b2d692 | 2732 | unsigned short id; |
b5a84319 KH |
2733 | swp_entry_t ent; |
2734 | ||
3c776e64 DN |
2735 | VM_BUG_ON(!PageLocked(page)); |
2736 | ||
3c776e64 | 2737 | pc = lookup_page_cgroup(page); |
c0bd3f63 | 2738 | lock_page_cgroup(pc); |
a3b2d692 | 2739 | if (PageCgroupUsed(pc)) { |
c0ff4b85 R |
2740 | memcg = pc->mem_cgroup; |
2741 | if (memcg && !css_tryget(&memcg->css)) | |
2742 | memcg = NULL; | |
e42d9d5d | 2743 | } else if (PageSwapCache(page)) { |
3c776e64 | 2744 | ent.val = page_private(page); |
9fb4b7cc | 2745 | id = lookup_swap_cgroup_id(ent); |
a3b2d692 | 2746 | rcu_read_lock(); |
c0ff4b85 R |
2747 | memcg = mem_cgroup_lookup(id); |
2748 | if (memcg && !css_tryget(&memcg->css)) | |
2749 | memcg = NULL; | |
a3b2d692 | 2750 | rcu_read_unlock(); |
3c776e64 | 2751 | } |
c0bd3f63 | 2752 | unlock_page_cgroup(pc); |
c0ff4b85 | 2753 | return memcg; |
b5a84319 KH |
2754 | } |
2755 | ||
c0ff4b85 | 2756 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
5564e88b | 2757 | struct page *page, |
7ec99d62 | 2758 | unsigned int nr_pages, |
9ce70c02 HD |
2759 | enum charge_type ctype, |
2760 | bool lrucare) | |
7a81b88c | 2761 | { |
ce587e65 | 2762 | struct page_cgroup *pc = lookup_page_cgroup(page); |
9ce70c02 | 2763 | struct zone *uninitialized_var(zone); |
fa9add64 | 2764 | struct lruvec *lruvec; |
9ce70c02 | 2765 | bool was_on_lru = false; |
b2402857 | 2766 | bool anon; |
9ce70c02 | 2767 | |
ca3e0214 | 2768 | lock_page_cgroup(pc); |
90deb788 | 2769 | VM_BUG_ON(PageCgroupUsed(pc)); |
ca3e0214 KH |
2770 | /* |
2771 | * we don't need page_cgroup_lock about tail pages, becase they are not | |
2772 | * accessed by any other context at this point. | |
2773 | */ | |
9ce70c02 HD |
2774 | |
2775 | /* | |
2776 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2777 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2778 | */ | |
2779 | if (lrucare) { | |
2780 | zone = page_zone(page); | |
2781 | spin_lock_irq(&zone->lru_lock); | |
2782 | if (PageLRU(page)) { | |
fa9add64 | 2783 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
9ce70c02 | 2784 | ClearPageLRU(page); |
fa9add64 | 2785 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2786 | was_on_lru = true; |
2787 | } | |
2788 | } | |
2789 | ||
c0ff4b85 | 2790 | pc->mem_cgroup = memcg; |
261fb61a KH |
2791 | /* |
2792 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | |
2793 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | |
2794 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | |
2795 | * before USED bit, we need memory barrier here. | |
2796 | * See mem_cgroup_add_lru_list(), etc. | |
2797 | */ | |
08e552c6 | 2798 | smp_wmb(); |
b2402857 | 2799 | SetPageCgroupUsed(pc); |
3be91277 | 2800 | |
9ce70c02 HD |
2801 | if (lrucare) { |
2802 | if (was_on_lru) { | |
fa9add64 | 2803 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
9ce70c02 HD |
2804 | VM_BUG_ON(PageLRU(page)); |
2805 | SetPageLRU(page); | |
fa9add64 | 2806 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2807 | } |
2808 | spin_unlock_irq(&zone->lru_lock); | |
2809 | } | |
2810 | ||
41326c17 | 2811 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
b2402857 KH |
2812 | anon = true; |
2813 | else | |
2814 | anon = false; | |
2815 | ||
2816 | mem_cgroup_charge_statistics(memcg, anon, nr_pages); | |
52d4b9ac | 2817 | unlock_page_cgroup(pc); |
9ce70c02 | 2818 | |
430e4863 KH |
2819 | /* |
2820 | * "charge_statistics" updated event counter. Then, check it. | |
2821 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | |
2822 | * if they exceeds softlimit. | |
2823 | */ | |
c0ff4b85 | 2824 | memcg_check_events(memcg, page); |
7a81b88c | 2825 | } |
66e1707b | 2826 | |
7cf27982 GC |
2827 | static DEFINE_MUTEX(set_limit_mutex); |
2828 | ||
7ae1e1d0 GC |
2829 | #ifdef CONFIG_MEMCG_KMEM |
2830 | static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) | |
2831 | { | |
2832 | return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && | |
2833 | (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); | |
2834 | } | |
2835 | ||
1f458cbf GC |
2836 | /* |
2837 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer | |
2838 | * in the memcg_cache_params struct. | |
2839 | */ | |
2840 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | |
2841 | { | |
2842 | struct kmem_cache *cachep; | |
2843 | ||
2844 | VM_BUG_ON(p->is_root_cache); | |
2845 | cachep = p->root_cache; | |
2846 | return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; | |
2847 | } | |
2848 | ||
749c5415 GC |
2849 | #ifdef CONFIG_SLABINFO |
2850 | static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, | |
2851 | struct seq_file *m) | |
2852 | { | |
2853 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | |
2854 | struct memcg_cache_params *params; | |
2855 | ||
2856 | if (!memcg_can_account_kmem(memcg)) | |
2857 | return -EIO; | |
2858 | ||
2859 | print_slabinfo_header(m); | |
2860 | ||
2861 | mutex_lock(&memcg->slab_caches_mutex); | |
2862 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) | |
2863 | cache_show(memcg_params_to_cache(params), m); | |
2864 | mutex_unlock(&memcg->slab_caches_mutex); | |
2865 | ||
2866 | return 0; | |
2867 | } | |
2868 | #endif | |
2869 | ||
7ae1e1d0 GC |
2870 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) |
2871 | { | |
2872 | struct res_counter *fail_res; | |
2873 | struct mem_cgroup *_memcg; | |
2874 | int ret = 0; | |
2875 | bool may_oom; | |
2876 | ||
2877 | ret = res_counter_charge(&memcg->kmem, size, &fail_res); | |
2878 | if (ret) | |
2879 | return ret; | |
2880 | ||
2881 | /* | |
2882 | * Conditions under which we can wait for the oom_killer. Those are | |
2883 | * the same conditions tested by the core page allocator | |
2884 | */ | |
2885 | may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); | |
2886 | ||
2887 | _memcg = memcg; | |
2888 | ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, | |
2889 | &_memcg, may_oom); | |
2890 | ||
2891 | if (ret == -EINTR) { | |
2892 | /* | |
2893 | * __mem_cgroup_try_charge() chosed to bypass to root due to | |
2894 | * OOM kill or fatal signal. Since our only options are to | |
2895 | * either fail the allocation or charge it to this cgroup, do | |
2896 | * it as a temporary condition. But we can't fail. From a | |
2897 | * kmem/slab perspective, the cache has already been selected, | |
2898 | * by mem_cgroup_kmem_get_cache(), so it is too late to change | |
2899 | * our minds. | |
2900 | * | |
2901 | * This condition will only trigger if the task entered | |
2902 | * memcg_charge_kmem in a sane state, but was OOM-killed during | |
2903 | * __mem_cgroup_try_charge() above. Tasks that were already | |
2904 | * dying when the allocation triggers should have been already | |
2905 | * directed to the root cgroup in memcontrol.h | |
2906 | */ | |
2907 | res_counter_charge_nofail(&memcg->res, size, &fail_res); | |
2908 | if (do_swap_account) | |
2909 | res_counter_charge_nofail(&memcg->memsw, size, | |
2910 | &fail_res); | |
2911 | ret = 0; | |
2912 | } else if (ret) | |
2913 | res_counter_uncharge(&memcg->kmem, size); | |
2914 | ||
2915 | return ret; | |
2916 | } | |
2917 | ||
2918 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) | |
2919 | { | |
7ae1e1d0 GC |
2920 | res_counter_uncharge(&memcg->res, size); |
2921 | if (do_swap_account) | |
2922 | res_counter_uncharge(&memcg->memsw, size); | |
7de37682 GC |
2923 | |
2924 | /* Not down to 0 */ | |
2925 | if (res_counter_uncharge(&memcg->kmem, size)) | |
2926 | return; | |
2927 | ||
2928 | if (memcg_kmem_test_and_clear_dead(memcg)) | |
2929 | mem_cgroup_put(memcg); | |
7ae1e1d0 GC |
2930 | } |
2931 | ||
2633d7a0 GC |
2932 | void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) |
2933 | { | |
2934 | if (!memcg) | |
2935 | return; | |
2936 | ||
2937 | mutex_lock(&memcg->slab_caches_mutex); | |
2938 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); | |
2939 | mutex_unlock(&memcg->slab_caches_mutex); | |
2940 | } | |
2941 | ||
2942 | /* | |
2943 | * helper for acessing a memcg's index. It will be used as an index in the | |
2944 | * child cache array in kmem_cache, and also to derive its name. This function | |
2945 | * will return -1 when this is not a kmem-limited memcg. | |
2946 | */ | |
2947 | int memcg_cache_id(struct mem_cgroup *memcg) | |
2948 | { | |
2949 | return memcg ? memcg->kmemcg_id : -1; | |
2950 | } | |
2951 | ||
55007d84 GC |
2952 | /* |
2953 | * This ends up being protected by the set_limit mutex, during normal | |
2954 | * operation, because that is its main call site. | |
2955 | * | |
2956 | * But when we create a new cache, we can call this as well if its parent | |
2957 | * is kmem-limited. That will have to hold set_limit_mutex as well. | |
2958 | */ | |
2959 | int memcg_update_cache_sizes(struct mem_cgroup *memcg) | |
2960 | { | |
2961 | int num, ret; | |
2962 | ||
2963 | num = ida_simple_get(&kmem_limited_groups, | |
2964 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
2965 | if (num < 0) | |
2966 | return num; | |
2967 | /* | |
2968 | * After this point, kmem_accounted (that we test atomically in | |
2969 | * the beginning of this conditional), is no longer 0. This | |
2970 | * guarantees only one process will set the following boolean | |
2971 | * to true. We don't need test_and_set because we're protected | |
2972 | * by the set_limit_mutex anyway. | |
2973 | */ | |
2974 | memcg_kmem_set_activated(memcg); | |
2975 | ||
2976 | ret = memcg_update_all_caches(num+1); | |
2977 | if (ret) { | |
2978 | ida_simple_remove(&kmem_limited_groups, num); | |
2979 | memcg_kmem_clear_activated(memcg); | |
2980 | return ret; | |
2981 | } | |
2982 | ||
2983 | memcg->kmemcg_id = num; | |
2984 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); | |
2985 | mutex_init(&memcg->slab_caches_mutex); | |
2986 | return 0; | |
2987 | } | |
2988 | ||
2989 | static size_t memcg_caches_array_size(int num_groups) | |
2990 | { | |
2991 | ssize_t size; | |
2992 | if (num_groups <= 0) | |
2993 | return 0; | |
2994 | ||
2995 | size = 2 * num_groups; | |
2996 | if (size < MEMCG_CACHES_MIN_SIZE) | |
2997 | size = MEMCG_CACHES_MIN_SIZE; | |
2998 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2999 | size = MEMCG_CACHES_MAX_SIZE; | |
3000 | ||
3001 | return size; | |
3002 | } | |
3003 | ||
3004 | /* | |
3005 | * We should update the current array size iff all caches updates succeed. This | |
3006 | * can only be done from the slab side. The slab mutex needs to be held when | |
3007 | * calling this. | |
3008 | */ | |
3009 | void memcg_update_array_size(int num) | |
3010 | { | |
3011 | if (num > memcg_limited_groups_array_size) | |
3012 | memcg_limited_groups_array_size = memcg_caches_array_size(num); | |
3013 | } | |
3014 | ||
3015 | int memcg_update_cache_size(struct kmem_cache *s, int num_groups) | |
3016 | { | |
3017 | struct memcg_cache_params *cur_params = s->memcg_params; | |
3018 | ||
3019 | VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); | |
3020 | ||
3021 | if (num_groups > memcg_limited_groups_array_size) { | |
3022 | int i; | |
3023 | ssize_t size = memcg_caches_array_size(num_groups); | |
3024 | ||
3025 | size *= sizeof(void *); | |
3026 | size += sizeof(struct memcg_cache_params); | |
3027 | ||
3028 | s->memcg_params = kzalloc(size, GFP_KERNEL); | |
3029 | if (!s->memcg_params) { | |
3030 | s->memcg_params = cur_params; | |
3031 | return -ENOMEM; | |
3032 | } | |
3033 | ||
3034 | s->memcg_params->is_root_cache = true; | |
3035 | ||
3036 | /* | |
3037 | * There is the chance it will be bigger than | |
3038 | * memcg_limited_groups_array_size, if we failed an allocation | |
3039 | * in a cache, in which case all caches updated before it, will | |
3040 | * have a bigger array. | |
3041 | * | |
3042 | * But if that is the case, the data after | |
3043 | * memcg_limited_groups_array_size is certainly unused | |
3044 | */ | |
3045 | for (i = 0; i < memcg_limited_groups_array_size; i++) { | |
3046 | if (!cur_params->memcg_caches[i]) | |
3047 | continue; | |
3048 | s->memcg_params->memcg_caches[i] = | |
3049 | cur_params->memcg_caches[i]; | |
3050 | } | |
3051 | ||
3052 | /* | |
3053 | * Ideally, we would wait until all caches succeed, and only | |
3054 | * then free the old one. But this is not worth the extra | |
3055 | * pointer per-cache we'd have to have for this. | |
3056 | * | |
3057 | * It is not a big deal if some caches are left with a size | |
3058 | * bigger than the others. And all updates will reset this | |
3059 | * anyway. | |
3060 | */ | |
3061 | kfree(cur_params); | |
3062 | } | |
3063 | return 0; | |
3064 | } | |
3065 | ||
943a451a GC |
3066 | int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, |
3067 | struct kmem_cache *root_cache) | |
2633d7a0 GC |
3068 | { |
3069 | size_t size = sizeof(struct memcg_cache_params); | |
3070 | ||
3071 | if (!memcg_kmem_enabled()) | |
3072 | return 0; | |
3073 | ||
55007d84 GC |
3074 | if (!memcg) |
3075 | size += memcg_limited_groups_array_size * sizeof(void *); | |
3076 | ||
2633d7a0 GC |
3077 | s->memcg_params = kzalloc(size, GFP_KERNEL); |
3078 | if (!s->memcg_params) | |
3079 | return -ENOMEM; | |
3080 | ||
943a451a | 3081 | if (memcg) { |
2633d7a0 | 3082 | s->memcg_params->memcg = memcg; |
943a451a | 3083 | s->memcg_params->root_cache = root_cache; |
4ba902b5 GC |
3084 | } else |
3085 | s->memcg_params->is_root_cache = true; | |
3086 | ||
2633d7a0 GC |
3087 | return 0; |
3088 | } | |
3089 | ||
3090 | void memcg_release_cache(struct kmem_cache *s) | |
3091 | { | |
d7f25f8a GC |
3092 | struct kmem_cache *root; |
3093 | struct mem_cgroup *memcg; | |
3094 | int id; | |
3095 | ||
3096 | /* | |
3097 | * This happens, for instance, when a root cache goes away before we | |
3098 | * add any memcg. | |
3099 | */ | |
3100 | if (!s->memcg_params) | |
3101 | return; | |
3102 | ||
3103 | if (s->memcg_params->is_root_cache) | |
3104 | goto out; | |
3105 | ||
3106 | memcg = s->memcg_params->memcg; | |
3107 | id = memcg_cache_id(memcg); | |
3108 | ||
3109 | root = s->memcg_params->root_cache; | |
3110 | root->memcg_params->memcg_caches[id] = NULL; | |
3111 | mem_cgroup_put(memcg); | |
3112 | ||
3113 | mutex_lock(&memcg->slab_caches_mutex); | |
3114 | list_del(&s->memcg_params->list); | |
3115 | mutex_unlock(&memcg->slab_caches_mutex); | |
3116 | ||
3117 | out: | |
2633d7a0 GC |
3118 | kfree(s->memcg_params); |
3119 | } | |
3120 | ||
0e9d92f2 GC |
3121 | /* |
3122 | * During the creation a new cache, we need to disable our accounting mechanism | |
3123 | * altogether. This is true even if we are not creating, but rather just | |
3124 | * enqueing new caches to be created. | |
3125 | * | |
3126 | * This is because that process will trigger allocations; some visible, like | |
3127 | * explicit kmallocs to auxiliary data structures, name strings and internal | |
3128 | * cache structures; some well concealed, like INIT_WORK() that can allocate | |
3129 | * objects during debug. | |
3130 | * | |
3131 | * If any allocation happens during memcg_kmem_get_cache, we will recurse back | |
3132 | * to it. This may not be a bounded recursion: since the first cache creation | |
3133 | * failed to complete (waiting on the allocation), we'll just try to create the | |
3134 | * cache again, failing at the same point. | |
3135 | * | |
3136 | * memcg_kmem_get_cache is prepared to abort after seeing a positive count of | |
3137 | * memcg_kmem_skip_account. So we enclose anything that might allocate memory | |
3138 | * inside the following two functions. | |
3139 | */ | |
3140 | static inline void memcg_stop_kmem_account(void) | |
3141 | { | |
3142 | VM_BUG_ON(!current->mm); | |
3143 | current->memcg_kmem_skip_account++; | |
3144 | } | |
3145 | ||
3146 | static inline void memcg_resume_kmem_account(void) | |
3147 | { | |
3148 | VM_BUG_ON(!current->mm); | |
3149 | current->memcg_kmem_skip_account--; | |
3150 | } | |
3151 | ||
1f458cbf GC |
3152 | static void kmem_cache_destroy_work_func(struct work_struct *w) |
3153 | { | |
3154 | struct kmem_cache *cachep; | |
3155 | struct memcg_cache_params *p; | |
3156 | ||
3157 | p = container_of(w, struct memcg_cache_params, destroy); | |
3158 | ||
3159 | cachep = memcg_params_to_cache(p); | |
3160 | ||
22933152 GC |
3161 | /* |
3162 | * If we get down to 0 after shrink, we could delete right away. | |
3163 | * However, memcg_release_pages() already puts us back in the workqueue | |
3164 | * in that case. If we proceed deleting, we'll get a dangling | |
3165 | * reference, and removing the object from the workqueue in that case | |
3166 | * is unnecessary complication. We are not a fast path. | |
3167 | * | |
3168 | * Note that this case is fundamentally different from racing with | |
3169 | * shrink_slab(): if memcg_cgroup_destroy_cache() is called in | |
3170 | * kmem_cache_shrink, not only we would be reinserting a dead cache | |
3171 | * into the queue, but doing so from inside the worker racing to | |
3172 | * destroy it. | |
3173 | * | |
3174 | * So if we aren't down to zero, we'll just schedule a worker and try | |
3175 | * again | |
3176 | */ | |
3177 | if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { | |
3178 | kmem_cache_shrink(cachep); | |
3179 | if (atomic_read(&cachep->memcg_params->nr_pages) == 0) | |
3180 | return; | |
3181 | } else | |
1f458cbf GC |
3182 | kmem_cache_destroy(cachep); |
3183 | } | |
3184 | ||
3185 | void mem_cgroup_destroy_cache(struct kmem_cache *cachep) | |
3186 | { | |
3187 | if (!cachep->memcg_params->dead) | |
3188 | return; | |
3189 | ||
22933152 GC |
3190 | /* |
3191 | * There are many ways in which we can get here. | |
3192 | * | |
3193 | * We can get to a memory-pressure situation while the delayed work is | |
3194 | * still pending to run. The vmscan shrinkers can then release all | |
3195 | * cache memory and get us to destruction. If this is the case, we'll | |
3196 | * be executed twice, which is a bug (the second time will execute over | |
3197 | * bogus data). In this case, cancelling the work should be fine. | |
3198 | * | |
3199 | * But we can also get here from the worker itself, if | |
3200 | * kmem_cache_shrink is enough to shake all the remaining objects and | |
3201 | * get the page count to 0. In this case, we'll deadlock if we try to | |
3202 | * cancel the work (the worker runs with an internal lock held, which | |
3203 | * is the same lock we would hold for cancel_work_sync().) | |
3204 | * | |
3205 | * Since we can't possibly know who got us here, just refrain from | |
3206 | * running if there is already work pending | |
3207 | */ | |
3208 | if (work_pending(&cachep->memcg_params->destroy)) | |
3209 | return; | |
1f458cbf GC |
3210 | /* |
3211 | * We have to defer the actual destroying to a workqueue, because | |
3212 | * we might currently be in a context that cannot sleep. | |
3213 | */ | |
3214 | schedule_work(&cachep->memcg_params->destroy); | |
3215 | } | |
3216 | ||
d7f25f8a GC |
3217 | static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s) |
3218 | { | |
3219 | char *name; | |
3220 | struct dentry *dentry; | |
3221 | ||
3222 | rcu_read_lock(); | |
3223 | dentry = rcu_dereference(memcg->css.cgroup->dentry); | |
3224 | rcu_read_unlock(); | |
3225 | ||
3226 | BUG_ON(dentry == NULL); | |
3227 | ||
3228 | name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name, | |
3229 | memcg_cache_id(memcg), dentry->d_name.name); | |
3230 | ||
3231 | return name; | |
3232 | } | |
3233 | ||
3234 | static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, | |
3235 | struct kmem_cache *s) | |
3236 | { | |
3237 | char *name; | |
3238 | struct kmem_cache *new; | |
3239 | ||
3240 | name = memcg_cache_name(memcg, s); | |
3241 | if (!name) | |
3242 | return NULL; | |
3243 | ||
3244 | new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align, | |
943a451a | 3245 | (s->flags & ~SLAB_PANIC), s->ctor, s); |
d7f25f8a | 3246 | |
d79923fa GC |
3247 | if (new) |
3248 | new->allocflags |= __GFP_KMEMCG; | |
3249 | ||
d7f25f8a GC |
3250 | kfree(name); |
3251 | return new; | |
3252 | } | |
3253 | ||
3254 | /* | |
3255 | * This lock protects updaters, not readers. We want readers to be as fast as | |
3256 | * they can, and they will either see NULL or a valid cache value. Our model | |
3257 | * allow them to see NULL, in which case the root memcg will be selected. | |
3258 | * | |
3259 | * We need this lock because multiple allocations to the same cache from a non | |
3260 | * will span more than one worker. Only one of them can create the cache. | |
3261 | */ | |
3262 | static DEFINE_MUTEX(memcg_cache_mutex); | |
3263 | static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, | |
3264 | struct kmem_cache *cachep) | |
3265 | { | |
3266 | struct kmem_cache *new_cachep; | |
3267 | int idx; | |
3268 | ||
3269 | BUG_ON(!memcg_can_account_kmem(memcg)); | |
3270 | ||
3271 | idx = memcg_cache_id(memcg); | |
3272 | ||
3273 | mutex_lock(&memcg_cache_mutex); | |
3274 | new_cachep = cachep->memcg_params->memcg_caches[idx]; | |
3275 | if (new_cachep) | |
3276 | goto out; | |
3277 | ||
3278 | new_cachep = kmem_cache_dup(memcg, cachep); | |
d7f25f8a GC |
3279 | if (new_cachep == NULL) { |
3280 | new_cachep = cachep; | |
3281 | goto out; | |
3282 | } | |
3283 | ||
3284 | mem_cgroup_get(memcg); | |
1f458cbf | 3285 | atomic_set(&new_cachep->memcg_params->nr_pages , 0); |
d7f25f8a GC |
3286 | |
3287 | cachep->memcg_params->memcg_caches[idx] = new_cachep; | |
3288 | /* | |
3289 | * the readers won't lock, make sure everybody sees the updated value, | |
3290 | * so they won't put stuff in the queue again for no reason | |
3291 | */ | |
3292 | wmb(); | |
3293 | out: | |
3294 | mutex_unlock(&memcg_cache_mutex); | |
3295 | return new_cachep; | |
3296 | } | |
3297 | ||
7cf27982 GC |
3298 | void kmem_cache_destroy_memcg_children(struct kmem_cache *s) |
3299 | { | |
3300 | struct kmem_cache *c; | |
3301 | int i; | |
3302 | ||
3303 | if (!s->memcg_params) | |
3304 | return; | |
3305 | if (!s->memcg_params->is_root_cache) | |
3306 | return; | |
3307 | ||
3308 | /* | |
3309 | * If the cache is being destroyed, we trust that there is no one else | |
3310 | * requesting objects from it. Even if there are, the sanity checks in | |
3311 | * kmem_cache_destroy should caught this ill-case. | |
3312 | * | |
3313 | * Still, we don't want anyone else freeing memcg_caches under our | |
3314 | * noses, which can happen if a new memcg comes to life. As usual, | |
3315 | * we'll take the set_limit_mutex to protect ourselves against this. | |
3316 | */ | |
3317 | mutex_lock(&set_limit_mutex); | |
3318 | for (i = 0; i < memcg_limited_groups_array_size; i++) { | |
3319 | c = s->memcg_params->memcg_caches[i]; | |
3320 | if (!c) | |
3321 | continue; | |
3322 | ||
3323 | /* | |
3324 | * We will now manually delete the caches, so to avoid races | |
3325 | * we need to cancel all pending destruction workers and | |
3326 | * proceed with destruction ourselves. | |
3327 | * | |
3328 | * kmem_cache_destroy() will call kmem_cache_shrink internally, | |
3329 | * and that could spawn the workers again: it is likely that | |
3330 | * the cache still have active pages until this very moment. | |
3331 | * This would lead us back to mem_cgroup_destroy_cache. | |
3332 | * | |
3333 | * But that will not execute at all if the "dead" flag is not | |
3334 | * set, so flip it down to guarantee we are in control. | |
3335 | */ | |
3336 | c->memcg_params->dead = false; | |
22933152 | 3337 | cancel_work_sync(&c->memcg_params->destroy); |
7cf27982 GC |
3338 | kmem_cache_destroy(c); |
3339 | } | |
3340 | mutex_unlock(&set_limit_mutex); | |
3341 | } | |
3342 | ||
d7f25f8a GC |
3343 | struct create_work { |
3344 | struct mem_cgroup *memcg; | |
3345 | struct kmem_cache *cachep; | |
3346 | struct work_struct work; | |
3347 | }; | |
3348 | ||
1f458cbf GC |
3349 | static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) |
3350 | { | |
3351 | struct kmem_cache *cachep; | |
3352 | struct memcg_cache_params *params; | |
3353 | ||
3354 | if (!memcg_kmem_is_active(memcg)) | |
3355 | return; | |
3356 | ||
3357 | mutex_lock(&memcg->slab_caches_mutex); | |
3358 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) { | |
3359 | cachep = memcg_params_to_cache(params); | |
3360 | cachep->memcg_params->dead = true; | |
3361 | INIT_WORK(&cachep->memcg_params->destroy, | |
22933152 | 3362 | kmem_cache_destroy_work_func); |
1f458cbf GC |
3363 | schedule_work(&cachep->memcg_params->destroy); |
3364 | } | |
3365 | mutex_unlock(&memcg->slab_caches_mutex); | |
3366 | } | |
3367 | ||
d7f25f8a GC |
3368 | static void memcg_create_cache_work_func(struct work_struct *w) |
3369 | { | |
3370 | struct create_work *cw; | |
3371 | ||
3372 | cw = container_of(w, struct create_work, work); | |
3373 | memcg_create_kmem_cache(cw->memcg, cw->cachep); | |
3374 | /* Drop the reference gotten when we enqueued. */ | |
3375 | css_put(&cw->memcg->css); | |
3376 | kfree(cw); | |
3377 | } | |
3378 | ||
3379 | /* | |
3380 | * Enqueue the creation of a per-memcg kmem_cache. | |
3381 | * Called with rcu_read_lock. | |
3382 | */ | |
0e9d92f2 GC |
3383 | static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3384 | struct kmem_cache *cachep) | |
d7f25f8a GC |
3385 | { |
3386 | struct create_work *cw; | |
3387 | ||
3388 | cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); | |
3389 | if (cw == NULL) | |
3390 | return; | |
3391 | ||
3392 | /* The corresponding put will be done in the workqueue. */ | |
3393 | if (!css_tryget(&memcg->css)) { | |
3394 | kfree(cw); | |
3395 | return; | |
3396 | } | |
3397 | ||
3398 | cw->memcg = memcg; | |
3399 | cw->cachep = cachep; | |
3400 | ||
3401 | INIT_WORK(&cw->work, memcg_create_cache_work_func); | |
3402 | schedule_work(&cw->work); | |
3403 | } | |
3404 | ||
0e9d92f2 GC |
3405 | static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3406 | struct kmem_cache *cachep) | |
3407 | { | |
3408 | /* | |
3409 | * We need to stop accounting when we kmalloc, because if the | |
3410 | * corresponding kmalloc cache is not yet created, the first allocation | |
3411 | * in __memcg_create_cache_enqueue will recurse. | |
3412 | * | |
3413 | * However, it is better to enclose the whole function. Depending on | |
3414 | * the debugging options enabled, INIT_WORK(), for instance, can | |
3415 | * trigger an allocation. This too, will make us recurse. Because at | |
3416 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
3417 | * the safest choice is to do it like this, wrapping the whole function. | |
3418 | */ | |
3419 | memcg_stop_kmem_account(); | |
3420 | __memcg_create_cache_enqueue(memcg, cachep); | |
3421 | memcg_resume_kmem_account(); | |
3422 | } | |
d7f25f8a GC |
3423 | /* |
3424 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
3425 | * We try to use the current memcg's version of the cache. | |
3426 | * | |
3427 | * If the cache does not exist yet, if we are the first user of it, | |
3428 | * we either create it immediately, if possible, or create it asynchronously | |
3429 | * in a workqueue. | |
3430 | * In the latter case, we will let the current allocation go through with | |
3431 | * the original cache. | |
3432 | * | |
3433 | * Can't be called in interrupt context or from kernel threads. | |
3434 | * This function needs to be called with rcu_read_lock() held. | |
3435 | */ | |
3436 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, | |
3437 | gfp_t gfp) | |
3438 | { | |
3439 | struct mem_cgroup *memcg; | |
3440 | int idx; | |
3441 | ||
3442 | VM_BUG_ON(!cachep->memcg_params); | |
3443 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); | |
3444 | ||
0e9d92f2 GC |
3445 | if (!current->mm || current->memcg_kmem_skip_account) |
3446 | return cachep; | |
3447 | ||
d7f25f8a GC |
3448 | rcu_read_lock(); |
3449 | memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); | |
3450 | rcu_read_unlock(); | |
3451 | ||
3452 | if (!memcg_can_account_kmem(memcg)) | |
3453 | return cachep; | |
3454 | ||
3455 | idx = memcg_cache_id(memcg); | |
3456 | ||
3457 | /* | |
3458 | * barrier to mare sure we're always seeing the up to date value. The | |
3459 | * code updating memcg_caches will issue a write barrier to match this. | |
3460 | */ | |
3461 | read_barrier_depends(); | |
3462 | if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) { | |
3463 | /* | |
3464 | * If we are in a safe context (can wait, and not in interrupt | |
3465 | * context), we could be be predictable and return right away. | |
3466 | * This would guarantee that the allocation being performed | |
3467 | * already belongs in the new cache. | |
3468 | * | |
3469 | * However, there are some clashes that can arrive from locking. | |
3470 | * For instance, because we acquire the slab_mutex while doing | |
3471 | * kmem_cache_dup, this means no further allocation could happen | |
3472 | * with the slab_mutex held. | |
3473 | * | |
3474 | * Also, because cache creation issue get_online_cpus(), this | |
3475 | * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, | |
3476 | * that ends up reversed during cpu hotplug. (cpuset allocates | |
3477 | * a bunch of GFP_KERNEL memory during cpuup). Due to all that, | |
3478 | * better to defer everything. | |
3479 | */ | |
3480 | memcg_create_cache_enqueue(memcg, cachep); | |
3481 | return cachep; | |
3482 | } | |
3483 | ||
3484 | return cachep->memcg_params->memcg_caches[idx]; | |
3485 | } | |
3486 | EXPORT_SYMBOL(__memcg_kmem_get_cache); | |
3487 | ||
7ae1e1d0 GC |
3488 | /* |
3489 | * We need to verify if the allocation against current->mm->owner's memcg is | |
3490 | * possible for the given order. But the page is not allocated yet, so we'll | |
3491 | * need a further commit step to do the final arrangements. | |
3492 | * | |
3493 | * It is possible for the task to switch cgroups in this mean time, so at | |
3494 | * commit time, we can't rely on task conversion any longer. We'll then use | |
3495 | * the handle argument to return to the caller which cgroup we should commit | |
3496 | * against. We could also return the memcg directly and avoid the pointer | |
3497 | * passing, but a boolean return value gives better semantics considering | |
3498 | * the compiled-out case as well. | |
3499 | * | |
3500 | * Returning true means the allocation is possible. | |
3501 | */ | |
3502 | bool | |
3503 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | |
3504 | { | |
3505 | struct mem_cgroup *memcg; | |
3506 | int ret; | |
3507 | ||
3508 | *_memcg = NULL; | |
3509 | memcg = try_get_mem_cgroup_from_mm(current->mm); | |
3510 | ||
3511 | /* | |
3512 | * very rare case described in mem_cgroup_from_task. Unfortunately there | |
3513 | * isn't much we can do without complicating this too much, and it would | |
3514 | * be gfp-dependent anyway. Just let it go | |
3515 | */ | |
3516 | if (unlikely(!memcg)) | |
3517 | return true; | |
3518 | ||
3519 | if (!memcg_can_account_kmem(memcg)) { | |
3520 | css_put(&memcg->css); | |
3521 | return true; | |
3522 | } | |
3523 | ||
7ae1e1d0 GC |
3524 | ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); |
3525 | if (!ret) | |
3526 | *_memcg = memcg; | |
7ae1e1d0 GC |
3527 | |
3528 | css_put(&memcg->css); | |
3529 | return (ret == 0); | |
3530 | } | |
3531 | ||
3532 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
3533 | int order) | |
3534 | { | |
3535 | struct page_cgroup *pc; | |
3536 | ||
3537 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
3538 | ||
3539 | /* The page allocation failed. Revert */ | |
3540 | if (!page) { | |
3541 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | |
7ae1e1d0 GC |
3542 | return; |
3543 | } | |
3544 | ||
3545 | pc = lookup_page_cgroup(page); | |
3546 | lock_page_cgroup(pc); | |
3547 | pc->mem_cgroup = memcg; | |
3548 | SetPageCgroupUsed(pc); | |
3549 | unlock_page_cgroup(pc); | |
3550 | } | |
3551 | ||
3552 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | |
3553 | { | |
3554 | struct mem_cgroup *memcg = NULL; | |
3555 | struct page_cgroup *pc; | |
3556 | ||
3557 | ||
3558 | pc = lookup_page_cgroup(page); | |
3559 | /* | |
3560 | * Fast unlocked return. Theoretically might have changed, have to | |
3561 | * check again after locking. | |
3562 | */ | |
3563 | if (!PageCgroupUsed(pc)) | |
3564 | return; | |
3565 | ||
3566 | lock_page_cgroup(pc); | |
3567 | if (PageCgroupUsed(pc)) { | |
3568 | memcg = pc->mem_cgroup; | |
3569 | ClearPageCgroupUsed(pc); | |
3570 | } | |
3571 | unlock_page_cgroup(pc); | |
3572 | ||
3573 | /* | |
3574 | * We trust that only if there is a memcg associated with the page, it | |
3575 | * is a valid allocation | |
3576 | */ | |
3577 | if (!memcg) | |
3578 | return; | |
3579 | ||
3580 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
3581 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | |
7ae1e1d0 | 3582 | } |
1f458cbf GC |
3583 | #else |
3584 | static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) | |
3585 | { | |
3586 | } | |
7ae1e1d0 GC |
3587 | #endif /* CONFIG_MEMCG_KMEM */ |
3588 | ||
ca3e0214 KH |
3589 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
3590 | ||
a0db00fc | 3591 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
ca3e0214 KH |
3592 | /* |
3593 | * Because tail pages are not marked as "used", set it. We're under | |
e94c8a9c KH |
3594 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
3595 | * charge/uncharge will be never happen and move_account() is done under | |
3596 | * compound_lock(), so we don't have to take care of races. | |
ca3e0214 | 3597 | */ |
e94c8a9c | 3598 | void mem_cgroup_split_huge_fixup(struct page *head) |
ca3e0214 KH |
3599 | { |
3600 | struct page_cgroup *head_pc = lookup_page_cgroup(head); | |
e94c8a9c KH |
3601 | struct page_cgroup *pc; |
3602 | int i; | |
ca3e0214 | 3603 | |
3d37c4a9 KH |
3604 | if (mem_cgroup_disabled()) |
3605 | return; | |
e94c8a9c KH |
3606 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
3607 | pc = head_pc + i; | |
3608 | pc->mem_cgroup = head_pc->mem_cgroup; | |
3609 | smp_wmb();/* see __commit_charge() */ | |
e94c8a9c KH |
3610 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
3611 | } | |
ca3e0214 | 3612 | } |
12d27107 | 3613 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
ca3e0214 | 3614 | |
f817ed48 | 3615 | /** |
de3638d9 | 3616 | * mem_cgroup_move_account - move account of the page |
5564e88b | 3617 | * @page: the page |
7ec99d62 | 3618 | * @nr_pages: number of regular pages (>1 for huge pages) |
f817ed48 KH |
3619 | * @pc: page_cgroup of the page. |
3620 | * @from: mem_cgroup which the page is moved from. | |
3621 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
3622 | * | |
3623 | * The caller must confirm following. | |
08e552c6 | 3624 | * - page is not on LRU (isolate_page() is useful.) |
7ec99d62 | 3625 | * - compound_lock is held when nr_pages > 1 |
f817ed48 | 3626 | * |
2f3479b1 KH |
3627 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
3628 | * from old cgroup. | |
f817ed48 | 3629 | */ |
7ec99d62 JW |
3630 | static int mem_cgroup_move_account(struct page *page, |
3631 | unsigned int nr_pages, | |
3632 | struct page_cgroup *pc, | |
3633 | struct mem_cgroup *from, | |
2f3479b1 | 3634 | struct mem_cgroup *to) |
f817ed48 | 3635 | { |
de3638d9 JW |
3636 | unsigned long flags; |
3637 | int ret; | |
b2402857 | 3638 | bool anon = PageAnon(page); |
987eba66 | 3639 | |
f817ed48 | 3640 | VM_BUG_ON(from == to); |
5564e88b | 3641 | VM_BUG_ON(PageLRU(page)); |
de3638d9 JW |
3642 | /* |
3643 | * The page is isolated from LRU. So, collapse function | |
3644 | * will not handle this page. But page splitting can happen. | |
3645 | * Do this check under compound_page_lock(). The caller should | |
3646 | * hold it. | |
3647 | */ | |
3648 | ret = -EBUSY; | |
7ec99d62 | 3649 | if (nr_pages > 1 && !PageTransHuge(page)) |
de3638d9 JW |
3650 | goto out; |
3651 | ||
3652 | lock_page_cgroup(pc); | |
3653 | ||
3654 | ret = -EINVAL; | |
3655 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | |
3656 | goto unlock; | |
3657 | ||
312734c0 | 3658 | move_lock_mem_cgroup(from, &flags); |
f817ed48 | 3659 | |
2ff76f11 | 3660 | if (!anon && page_mapped(page)) { |
c62b1a3b KH |
3661 | /* Update mapped_file data for mem_cgroup */ |
3662 | preempt_disable(); | |
3663 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
3664 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
3665 | preempt_enable(); | |
d69b042f | 3666 | } |
b2402857 | 3667 | mem_cgroup_charge_statistics(from, anon, -nr_pages); |
d69b042f | 3668 | |
854ffa8d | 3669 | /* caller should have done css_get */ |
08e552c6 | 3670 | pc->mem_cgroup = to; |
b2402857 | 3671 | mem_cgroup_charge_statistics(to, anon, nr_pages); |
312734c0 | 3672 | move_unlock_mem_cgroup(from, &flags); |
de3638d9 JW |
3673 | ret = 0; |
3674 | unlock: | |
57f9fd7d | 3675 | unlock_page_cgroup(pc); |
d2265e6f KH |
3676 | /* |
3677 | * check events | |
3678 | */ | |
5564e88b JW |
3679 | memcg_check_events(to, page); |
3680 | memcg_check_events(from, page); | |
de3638d9 | 3681 | out: |
f817ed48 KH |
3682 | return ret; |
3683 | } | |
3684 | ||
2ef37d3f MH |
3685 | /** |
3686 | * mem_cgroup_move_parent - moves page to the parent group | |
3687 | * @page: the page to move | |
3688 | * @pc: page_cgroup of the page | |
3689 | * @child: page's cgroup | |
3690 | * | |
3691 | * move charges to its parent or the root cgroup if the group has no | |
3692 | * parent (aka use_hierarchy==0). | |
3693 | * Although this might fail (get_page_unless_zero, isolate_lru_page or | |
3694 | * mem_cgroup_move_account fails) the failure is always temporary and | |
3695 | * it signals a race with a page removal/uncharge or migration. In the | |
3696 | * first case the page is on the way out and it will vanish from the LRU | |
3697 | * on the next attempt and the call should be retried later. | |
3698 | * Isolation from the LRU fails only if page has been isolated from | |
3699 | * the LRU since we looked at it and that usually means either global | |
3700 | * reclaim or migration going on. The page will either get back to the | |
3701 | * LRU or vanish. | |
3702 | * Finaly mem_cgroup_move_account fails only if the page got uncharged | |
3703 | * (!PageCgroupUsed) or moved to a different group. The page will | |
3704 | * disappear in the next attempt. | |
f817ed48 | 3705 | */ |
5564e88b JW |
3706 | static int mem_cgroup_move_parent(struct page *page, |
3707 | struct page_cgroup *pc, | |
6068bf01 | 3708 | struct mem_cgroup *child) |
f817ed48 | 3709 | { |
f817ed48 | 3710 | struct mem_cgroup *parent; |
7ec99d62 | 3711 | unsigned int nr_pages; |
4be4489f | 3712 | unsigned long uninitialized_var(flags); |
f817ed48 KH |
3713 | int ret; |
3714 | ||
d8423011 | 3715 | VM_BUG_ON(mem_cgroup_is_root(child)); |
f817ed48 | 3716 | |
57f9fd7d DN |
3717 | ret = -EBUSY; |
3718 | if (!get_page_unless_zero(page)) | |
3719 | goto out; | |
3720 | if (isolate_lru_page(page)) | |
3721 | goto put; | |
52dbb905 | 3722 | |
7ec99d62 | 3723 | nr_pages = hpage_nr_pages(page); |
08e552c6 | 3724 | |
cc926f78 KH |
3725 | parent = parent_mem_cgroup(child); |
3726 | /* | |
3727 | * If no parent, move charges to root cgroup. | |
3728 | */ | |
3729 | if (!parent) | |
3730 | parent = root_mem_cgroup; | |
f817ed48 | 3731 | |
2ef37d3f MH |
3732 | if (nr_pages > 1) { |
3733 | VM_BUG_ON(!PageTransHuge(page)); | |
987eba66 | 3734 | flags = compound_lock_irqsave(page); |
2ef37d3f | 3735 | } |
987eba66 | 3736 | |
cc926f78 | 3737 | ret = mem_cgroup_move_account(page, nr_pages, |
2f3479b1 | 3738 | pc, child, parent); |
cc926f78 KH |
3739 | if (!ret) |
3740 | __mem_cgroup_cancel_local_charge(child, nr_pages); | |
8dba474f | 3741 | |
7ec99d62 | 3742 | if (nr_pages > 1) |
987eba66 | 3743 | compound_unlock_irqrestore(page, flags); |
08e552c6 | 3744 | putback_lru_page(page); |
57f9fd7d | 3745 | put: |
40d58138 | 3746 | put_page(page); |
57f9fd7d | 3747 | out: |
f817ed48 KH |
3748 | return ret; |
3749 | } | |
3750 | ||
7a81b88c KH |
3751 | /* |
3752 | * Charge the memory controller for page usage. | |
3753 | * Return | |
3754 | * 0 if the charge was successful | |
3755 | * < 0 if the cgroup is over its limit | |
3756 | */ | |
3757 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |
73045c47 | 3758 | gfp_t gfp_mask, enum charge_type ctype) |
7a81b88c | 3759 | { |
c0ff4b85 | 3760 | struct mem_cgroup *memcg = NULL; |
7ec99d62 | 3761 | unsigned int nr_pages = 1; |
8493ae43 | 3762 | bool oom = true; |
7a81b88c | 3763 | int ret; |
ec168510 | 3764 | |
37c2ac78 | 3765 | if (PageTransHuge(page)) { |
7ec99d62 | 3766 | nr_pages <<= compound_order(page); |
37c2ac78 | 3767 | VM_BUG_ON(!PageTransHuge(page)); |
8493ae43 JW |
3768 | /* |
3769 | * Never OOM-kill a process for a huge page. The | |
3770 | * fault handler will fall back to regular pages. | |
3771 | */ | |
3772 | oom = false; | |
37c2ac78 | 3773 | } |
7a81b88c | 3774 | |
c0ff4b85 | 3775 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); |
38c5d72f | 3776 | if (ret == -ENOMEM) |
7a81b88c | 3777 | return ret; |
ce587e65 | 3778 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); |
8a9f3ccd | 3779 | return 0; |
8a9f3ccd BS |
3780 | } |
3781 | ||
7a81b88c KH |
3782 | int mem_cgroup_newpage_charge(struct page *page, |
3783 | struct mm_struct *mm, gfp_t gfp_mask) | |
217bc319 | 3784 | { |
f8d66542 | 3785 | if (mem_cgroup_disabled()) |
cede86ac | 3786 | return 0; |
7a0524cf JW |
3787 | VM_BUG_ON(page_mapped(page)); |
3788 | VM_BUG_ON(page->mapping && !PageAnon(page)); | |
3789 | VM_BUG_ON(!mm); | |
217bc319 | 3790 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
41326c17 | 3791 | MEM_CGROUP_CHARGE_TYPE_ANON); |
217bc319 KH |
3792 | } |
3793 | ||
54595fe2 KH |
3794 | /* |
3795 | * While swap-in, try_charge -> commit or cancel, the page is locked. | |
3796 | * And when try_charge() successfully returns, one refcnt to memcg without | |
21ae2956 | 3797 | * struct page_cgroup is acquired. This refcnt will be consumed by |
54595fe2 KH |
3798 | * "commit()" or removed by "cancel()" |
3799 | */ | |
0435a2fd JW |
3800 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
3801 | struct page *page, | |
3802 | gfp_t mask, | |
3803 | struct mem_cgroup **memcgp) | |
8c7c6e34 | 3804 | { |
c0ff4b85 | 3805 | struct mem_cgroup *memcg; |
90deb788 | 3806 | struct page_cgroup *pc; |
54595fe2 | 3807 | int ret; |
8c7c6e34 | 3808 | |
90deb788 JW |
3809 | pc = lookup_page_cgroup(page); |
3810 | /* | |
3811 | * Every swap fault against a single page tries to charge the | |
3812 | * page, bail as early as possible. shmem_unuse() encounters | |
3813 | * already charged pages, too. The USED bit is protected by | |
3814 | * the page lock, which serializes swap cache removal, which | |
3815 | * in turn serializes uncharging. | |
3816 | */ | |
3817 | if (PageCgroupUsed(pc)) | |
3818 | return 0; | |
8c7c6e34 KH |
3819 | if (!do_swap_account) |
3820 | goto charge_cur_mm; | |
c0ff4b85 R |
3821 | memcg = try_get_mem_cgroup_from_page(page); |
3822 | if (!memcg) | |
54595fe2 | 3823 | goto charge_cur_mm; |
72835c86 JW |
3824 | *memcgp = memcg; |
3825 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); | |
c0ff4b85 | 3826 | css_put(&memcg->css); |
38c5d72f KH |
3827 | if (ret == -EINTR) |
3828 | ret = 0; | |
54595fe2 | 3829 | return ret; |
8c7c6e34 | 3830 | charge_cur_mm: |
38c5d72f KH |
3831 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); |
3832 | if (ret == -EINTR) | |
3833 | ret = 0; | |
3834 | return ret; | |
8c7c6e34 KH |
3835 | } |
3836 | ||
0435a2fd JW |
3837 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
3838 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | |
3839 | { | |
3840 | *memcgp = NULL; | |
3841 | if (mem_cgroup_disabled()) | |
3842 | return 0; | |
bdf4f4d2 JW |
3843 | /* |
3844 | * A racing thread's fault, or swapoff, may have already | |
3845 | * updated the pte, and even removed page from swap cache: in | |
3846 | * those cases unuse_pte()'s pte_same() test will fail; but | |
3847 | * there's also a KSM case which does need to charge the page. | |
3848 | */ | |
3849 | if (!PageSwapCache(page)) { | |
3850 | int ret; | |
3851 | ||
3852 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); | |
3853 | if (ret == -EINTR) | |
3854 | ret = 0; | |
3855 | return ret; | |
3856 | } | |
0435a2fd JW |
3857 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
3858 | } | |
3859 | ||
827a03d2 JW |
3860 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
3861 | { | |
3862 | if (mem_cgroup_disabled()) | |
3863 | return; | |
3864 | if (!memcg) | |
3865 | return; | |
3866 | __mem_cgroup_cancel_charge(memcg, 1); | |
3867 | } | |
3868 | ||
83aae4c7 | 3869 | static void |
72835c86 | 3870 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
83aae4c7 | 3871 | enum charge_type ctype) |
7a81b88c | 3872 | { |
f8d66542 | 3873 | if (mem_cgroup_disabled()) |
7a81b88c | 3874 | return; |
72835c86 | 3875 | if (!memcg) |
7a81b88c | 3876 | return; |
5a6475a4 | 3877 | |
ce587e65 | 3878 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
8c7c6e34 KH |
3879 | /* |
3880 | * Now swap is on-memory. This means this page may be | |
3881 | * counted both as mem and swap....double count. | |
03f3c433 KH |
3882 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
3883 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
3884 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 3885 | */ |
03f3c433 | 3886 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 | 3887 | swp_entry_t ent = {.val = page_private(page)}; |
86493009 | 3888 | mem_cgroup_uncharge_swap(ent); |
8c7c6e34 | 3889 | } |
7a81b88c KH |
3890 | } |
3891 | ||
72835c86 JW |
3892 | void mem_cgroup_commit_charge_swapin(struct page *page, |
3893 | struct mem_cgroup *memcg) | |
83aae4c7 | 3894 | { |
72835c86 | 3895 | __mem_cgroup_commit_charge_swapin(page, memcg, |
41326c17 | 3896 | MEM_CGROUP_CHARGE_TYPE_ANON); |
83aae4c7 DN |
3897 | } |
3898 | ||
827a03d2 JW |
3899 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
3900 | gfp_t gfp_mask) | |
7a81b88c | 3901 | { |
827a03d2 JW |
3902 | struct mem_cgroup *memcg = NULL; |
3903 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
3904 | int ret; | |
3905 | ||
f8d66542 | 3906 | if (mem_cgroup_disabled()) |
827a03d2 JW |
3907 | return 0; |
3908 | if (PageCompound(page)) | |
3909 | return 0; | |
3910 | ||
827a03d2 JW |
3911 | if (!PageSwapCache(page)) |
3912 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); | |
3913 | else { /* page is swapcache/shmem */ | |
0435a2fd JW |
3914 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
3915 | gfp_mask, &memcg); | |
827a03d2 JW |
3916 | if (!ret) |
3917 | __mem_cgroup_commit_charge_swapin(page, memcg, type); | |
3918 | } | |
3919 | return ret; | |
7a81b88c KH |
3920 | } |
3921 | ||
c0ff4b85 | 3922 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
7ec99d62 JW |
3923 | unsigned int nr_pages, |
3924 | const enum charge_type ctype) | |
569b846d KH |
3925 | { |
3926 | struct memcg_batch_info *batch = NULL; | |
3927 | bool uncharge_memsw = true; | |
7ec99d62 | 3928 | |
569b846d KH |
3929 | /* If swapout, usage of swap doesn't decrease */ |
3930 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
3931 | uncharge_memsw = false; | |
569b846d KH |
3932 | |
3933 | batch = ¤t->memcg_batch; | |
3934 | /* | |
3935 | * In usual, we do css_get() when we remember memcg pointer. | |
3936 | * But in this case, we keep res->usage until end of a series of | |
3937 | * uncharges. Then, it's ok to ignore memcg's refcnt. | |
3938 | */ | |
3939 | if (!batch->memcg) | |
c0ff4b85 | 3940 | batch->memcg = memcg; |
3c11ecf4 KH |
3941 | /* |
3942 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | |
25985edc | 3943 | * In those cases, all pages freed continuously can be expected to be in |
3c11ecf4 KH |
3944 | * the same cgroup and we have chance to coalesce uncharges. |
3945 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | |
3946 | * because we want to do uncharge as soon as possible. | |
3947 | */ | |
3948 | ||
3949 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | |
3950 | goto direct_uncharge; | |
3951 | ||
7ec99d62 | 3952 | if (nr_pages > 1) |
ec168510 AA |
3953 | goto direct_uncharge; |
3954 | ||
569b846d KH |
3955 | /* |
3956 | * In typical case, batch->memcg == mem. This means we can | |
3957 | * merge a series of uncharges to an uncharge of res_counter. | |
3958 | * If not, we uncharge res_counter ony by one. | |
3959 | */ | |
c0ff4b85 | 3960 | if (batch->memcg != memcg) |
569b846d KH |
3961 | goto direct_uncharge; |
3962 | /* remember freed charge and uncharge it later */ | |
7ffd4ca7 | 3963 | batch->nr_pages++; |
569b846d | 3964 | if (uncharge_memsw) |
7ffd4ca7 | 3965 | batch->memsw_nr_pages++; |
569b846d KH |
3966 | return; |
3967 | direct_uncharge: | |
c0ff4b85 | 3968 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
569b846d | 3969 | if (uncharge_memsw) |
c0ff4b85 R |
3970 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
3971 | if (unlikely(batch->memcg != memcg)) | |
3972 | memcg_oom_recover(memcg); | |
569b846d | 3973 | } |
7a81b88c | 3974 | |
8a9f3ccd | 3975 | /* |
69029cd5 | 3976 | * uncharge if !page_mapped(page) |
8a9f3ccd | 3977 | */ |
8c7c6e34 | 3978 | static struct mem_cgroup * |
0030f535 JW |
3979 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
3980 | bool end_migration) | |
8a9f3ccd | 3981 | { |
c0ff4b85 | 3982 | struct mem_cgroup *memcg = NULL; |
7ec99d62 JW |
3983 | unsigned int nr_pages = 1; |
3984 | struct page_cgroup *pc; | |
b2402857 | 3985 | bool anon; |
8a9f3ccd | 3986 | |
f8d66542 | 3987 | if (mem_cgroup_disabled()) |
8c7c6e34 | 3988 | return NULL; |
4077960e | 3989 | |
0c59b89c | 3990 | VM_BUG_ON(PageSwapCache(page)); |
d13d1443 | 3991 | |
37c2ac78 | 3992 | if (PageTransHuge(page)) { |
7ec99d62 | 3993 | nr_pages <<= compound_order(page); |
37c2ac78 AA |
3994 | VM_BUG_ON(!PageTransHuge(page)); |
3995 | } | |
8697d331 | 3996 | /* |
3c541e14 | 3997 | * Check if our page_cgroup is valid |
8697d331 | 3998 | */ |
52d4b9ac | 3999 | pc = lookup_page_cgroup(page); |
cfa44946 | 4000 | if (unlikely(!PageCgroupUsed(pc))) |
8c7c6e34 | 4001 | return NULL; |
b9c565d5 | 4002 | |
52d4b9ac | 4003 | lock_page_cgroup(pc); |
d13d1443 | 4004 | |
c0ff4b85 | 4005 | memcg = pc->mem_cgroup; |
8c7c6e34 | 4006 | |
d13d1443 KH |
4007 | if (!PageCgroupUsed(pc)) |
4008 | goto unlock_out; | |
4009 | ||
b2402857 KH |
4010 | anon = PageAnon(page); |
4011 | ||
d13d1443 | 4012 | switch (ctype) { |
41326c17 | 4013 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
2ff76f11 KH |
4014 | /* |
4015 | * Generally PageAnon tells if it's the anon statistics to be | |
4016 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is | |
4017 | * used before page reached the stage of being marked PageAnon. | |
4018 | */ | |
b2402857 KH |
4019 | anon = true; |
4020 | /* fallthrough */ | |
8a9478ca | 4021 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
ac39cf8c | 4022 | /* See mem_cgroup_prepare_migration() */ |
0030f535 JW |
4023 | if (page_mapped(page)) |
4024 | goto unlock_out; | |
4025 | /* | |
4026 | * Pages under migration may not be uncharged. But | |
4027 | * end_migration() /must/ be the one uncharging the | |
4028 | * unused post-migration page and so it has to call | |
4029 | * here with the migration bit still set. See the | |
4030 | * res_counter handling below. | |
4031 | */ | |
4032 | if (!end_migration && PageCgroupMigration(pc)) | |
d13d1443 KH |
4033 | goto unlock_out; |
4034 | break; | |
4035 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
4036 | if (!PageAnon(page)) { /* Shared memory */ | |
4037 | if (page->mapping && !page_is_file_cache(page)) | |
4038 | goto unlock_out; | |
4039 | } else if (page_mapped(page)) /* Anon */ | |
4040 | goto unlock_out; | |
4041 | break; | |
4042 | default: | |
4043 | break; | |
52d4b9ac | 4044 | } |
d13d1443 | 4045 | |
b2402857 | 4046 | mem_cgroup_charge_statistics(memcg, anon, -nr_pages); |
04046e1a | 4047 | |
52d4b9ac | 4048 | ClearPageCgroupUsed(pc); |
544122e5 KH |
4049 | /* |
4050 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | |
4051 | * freed from LRU. This is safe because uncharged page is expected not | |
4052 | * to be reused (freed soon). Exception is SwapCache, it's handled by | |
4053 | * special functions. | |
4054 | */ | |
b9c565d5 | 4055 | |
52d4b9ac | 4056 | unlock_page_cgroup(pc); |
f75ca962 | 4057 | /* |
c0ff4b85 | 4058 | * even after unlock, we have memcg->res.usage here and this memcg |
f75ca962 KH |
4059 | * will never be freed. |
4060 | */ | |
c0ff4b85 | 4061 | memcg_check_events(memcg, page); |
f75ca962 | 4062 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
c0ff4b85 R |
4063 | mem_cgroup_swap_statistics(memcg, true); |
4064 | mem_cgroup_get(memcg); | |
f75ca962 | 4065 | } |
0030f535 JW |
4066 | /* |
4067 | * Migration does not charge the res_counter for the | |
4068 | * replacement page, so leave it alone when phasing out the | |
4069 | * page that is unused after the migration. | |
4070 | */ | |
4071 | if (!end_migration && !mem_cgroup_is_root(memcg)) | |
c0ff4b85 | 4072 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
6d12e2d8 | 4073 | |
c0ff4b85 | 4074 | return memcg; |
d13d1443 KH |
4075 | |
4076 | unlock_out: | |
4077 | unlock_page_cgroup(pc); | |
8c7c6e34 | 4078 | return NULL; |
3c541e14 BS |
4079 | } |
4080 | ||
69029cd5 KH |
4081 | void mem_cgroup_uncharge_page(struct page *page) |
4082 | { | |
52d4b9ac KH |
4083 | /* early check. */ |
4084 | if (page_mapped(page)) | |
4085 | return; | |
40f23a21 | 4086 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
0c59b89c JW |
4087 | if (PageSwapCache(page)) |
4088 | return; | |
0030f535 | 4089 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
69029cd5 KH |
4090 | } |
4091 | ||
4092 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
4093 | { | |
4094 | VM_BUG_ON(page_mapped(page)); | |
b7abea96 | 4095 | VM_BUG_ON(page->mapping); |
0030f535 | 4096 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
69029cd5 KH |
4097 | } |
4098 | ||
569b846d KH |
4099 | /* |
4100 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | |
4101 | * In that cases, pages are freed continuously and we can expect pages | |
4102 | * are in the same memcg. All these calls itself limits the number of | |
4103 | * pages freed at once, then uncharge_start/end() is called properly. | |
4104 | * This may be called prural(2) times in a context, | |
4105 | */ | |
4106 | ||
4107 | void mem_cgroup_uncharge_start(void) | |
4108 | { | |
4109 | current->memcg_batch.do_batch++; | |
4110 | /* We can do nest. */ | |
4111 | if (current->memcg_batch.do_batch == 1) { | |
4112 | current->memcg_batch.memcg = NULL; | |
7ffd4ca7 JW |
4113 | current->memcg_batch.nr_pages = 0; |
4114 | current->memcg_batch.memsw_nr_pages = 0; | |
569b846d KH |
4115 | } |
4116 | } | |
4117 | ||
4118 | void mem_cgroup_uncharge_end(void) | |
4119 | { | |
4120 | struct memcg_batch_info *batch = ¤t->memcg_batch; | |
4121 | ||
4122 | if (!batch->do_batch) | |
4123 | return; | |
4124 | ||
4125 | batch->do_batch--; | |
4126 | if (batch->do_batch) /* If stacked, do nothing. */ | |
4127 | return; | |
4128 | ||
4129 | if (!batch->memcg) | |
4130 | return; | |
4131 | /* | |
4132 | * This "batch->memcg" is valid without any css_get/put etc... | |
4133 | * bacause we hide charges behind us. | |
4134 | */ | |
7ffd4ca7 JW |
4135 | if (batch->nr_pages) |
4136 | res_counter_uncharge(&batch->memcg->res, | |
4137 | batch->nr_pages * PAGE_SIZE); | |
4138 | if (batch->memsw_nr_pages) | |
4139 | res_counter_uncharge(&batch->memcg->memsw, | |
4140 | batch->memsw_nr_pages * PAGE_SIZE); | |
3c11ecf4 | 4141 | memcg_oom_recover(batch->memcg); |
569b846d KH |
4142 | /* forget this pointer (for sanity check) */ |
4143 | batch->memcg = NULL; | |
4144 | } | |
4145 | ||
e767e056 | 4146 | #ifdef CONFIG_SWAP |
8c7c6e34 | 4147 | /* |
e767e056 | 4148 | * called after __delete_from_swap_cache() and drop "page" account. |
8c7c6e34 KH |
4149 | * memcg information is recorded to swap_cgroup of "ent" |
4150 | */ | |
8a9478ca KH |
4151 | void |
4152 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |
8c7c6e34 KH |
4153 | { |
4154 | struct mem_cgroup *memcg; | |
8a9478ca KH |
4155 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
4156 | ||
4157 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | |
4158 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | |
4159 | ||
0030f535 | 4160 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
8c7c6e34 | 4161 | |
f75ca962 KH |
4162 | /* |
4163 | * record memcg information, if swapout && memcg != NULL, | |
4164 | * mem_cgroup_get() was called in uncharge(). | |
4165 | */ | |
4166 | if (do_swap_account && swapout && memcg) | |
a3b2d692 | 4167 | swap_cgroup_record(ent, css_id(&memcg->css)); |
8c7c6e34 | 4168 | } |
e767e056 | 4169 | #endif |
8c7c6e34 | 4170 | |
c255a458 | 4171 | #ifdef CONFIG_MEMCG_SWAP |
8c7c6e34 KH |
4172 | /* |
4173 | * called from swap_entry_free(). remove record in swap_cgroup and | |
4174 | * uncharge "memsw" account. | |
4175 | */ | |
4176 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 4177 | { |
8c7c6e34 | 4178 | struct mem_cgroup *memcg; |
a3b2d692 | 4179 | unsigned short id; |
8c7c6e34 KH |
4180 | |
4181 | if (!do_swap_account) | |
4182 | return; | |
4183 | ||
a3b2d692 KH |
4184 | id = swap_cgroup_record(ent, 0); |
4185 | rcu_read_lock(); | |
4186 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 4187 | if (memcg) { |
a3b2d692 KH |
4188 | /* |
4189 | * We uncharge this because swap is freed. | |
4190 | * This memcg can be obsolete one. We avoid calling css_tryget | |
4191 | */ | |
0c3e73e8 | 4192 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 4193 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 4194 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
4195 | mem_cgroup_put(memcg); |
4196 | } | |
a3b2d692 | 4197 | rcu_read_unlock(); |
d13d1443 | 4198 | } |
02491447 DN |
4199 | |
4200 | /** | |
4201 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
4202 | * @entry: swap entry to be moved | |
4203 | * @from: mem_cgroup which the entry is moved from | |
4204 | * @to: mem_cgroup which the entry is moved to | |
4205 | * | |
4206 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
4207 | * as the mem_cgroup's id of @from. | |
4208 | * | |
4209 | * Returns 0 on success, -EINVAL on failure. | |
4210 | * | |
4211 | * The caller must have charged to @to, IOW, called res_counter_charge() about | |
4212 | * both res and memsw, and called css_get(). | |
4213 | */ | |
4214 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4215 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4216 | { |
4217 | unsigned short old_id, new_id; | |
4218 | ||
4219 | old_id = css_id(&from->css); | |
4220 | new_id = css_id(&to->css); | |
4221 | ||
4222 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 4223 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 4224 | mem_cgroup_swap_statistics(to, true); |
02491447 | 4225 | /* |
483c30b5 DN |
4226 | * This function is only called from task migration context now. |
4227 | * It postpones res_counter and refcount handling till the end | |
4228 | * of task migration(mem_cgroup_clear_mc()) for performance | |
4229 | * improvement. But we cannot postpone mem_cgroup_get(to) | |
4230 | * because if the process that has been moved to @to does | |
4231 | * swap-in, the refcount of @to might be decreased to 0. | |
02491447 | 4232 | */ |
02491447 | 4233 | mem_cgroup_get(to); |
02491447 DN |
4234 | return 0; |
4235 | } | |
4236 | return -EINVAL; | |
4237 | } | |
4238 | #else | |
4239 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4240 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4241 | { |
4242 | return -EINVAL; | |
4243 | } | |
8c7c6e34 | 4244 | #endif |
d13d1443 | 4245 | |
ae41be37 | 4246 | /* |
01b1ae63 KH |
4247 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
4248 | * page belongs to. | |
ae41be37 | 4249 | */ |
0030f535 JW |
4250 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
4251 | struct mem_cgroup **memcgp) | |
ae41be37 | 4252 | { |
c0ff4b85 | 4253 | struct mem_cgroup *memcg = NULL; |
b32967ff | 4254 | unsigned int nr_pages = 1; |
7ec99d62 | 4255 | struct page_cgroup *pc; |
ac39cf8c | 4256 | enum charge_type ctype; |
8869b8f6 | 4257 | |
72835c86 | 4258 | *memcgp = NULL; |
56039efa | 4259 | |
f8d66542 | 4260 | if (mem_cgroup_disabled()) |
0030f535 | 4261 | return; |
4077960e | 4262 | |
b32967ff MG |
4263 | if (PageTransHuge(page)) |
4264 | nr_pages <<= compound_order(page); | |
4265 | ||
52d4b9ac KH |
4266 | pc = lookup_page_cgroup(page); |
4267 | lock_page_cgroup(pc); | |
4268 | if (PageCgroupUsed(pc)) { | |
c0ff4b85 R |
4269 | memcg = pc->mem_cgroup; |
4270 | css_get(&memcg->css); | |
ac39cf8c AM |
4271 | /* |
4272 | * At migrating an anonymous page, its mapcount goes down | |
4273 | * to 0 and uncharge() will be called. But, even if it's fully | |
4274 | * unmapped, migration may fail and this page has to be | |
4275 | * charged again. We set MIGRATION flag here and delay uncharge | |
4276 | * until end_migration() is called | |
4277 | * | |
4278 | * Corner Case Thinking | |
4279 | * A) | |
4280 | * When the old page was mapped as Anon and it's unmap-and-freed | |
4281 | * while migration was ongoing. | |
4282 | * If unmap finds the old page, uncharge() of it will be delayed | |
4283 | * until end_migration(). If unmap finds a new page, it's | |
4284 | * uncharged when it make mapcount to be 1->0. If unmap code | |
4285 | * finds swap_migration_entry, the new page will not be mapped | |
4286 | * and end_migration() will find it(mapcount==0). | |
4287 | * | |
4288 | * B) | |
4289 | * When the old page was mapped but migraion fails, the kernel | |
4290 | * remaps it. A charge for it is kept by MIGRATION flag even | |
4291 | * if mapcount goes down to 0. We can do remap successfully | |
4292 | * without charging it again. | |
4293 | * | |
4294 | * C) | |
4295 | * The "old" page is under lock_page() until the end of | |
4296 | * migration, so, the old page itself will not be swapped-out. | |
4297 | * If the new page is swapped out before end_migraton, our | |
4298 | * hook to usual swap-out path will catch the event. | |
4299 | */ | |
4300 | if (PageAnon(page)) | |
4301 | SetPageCgroupMigration(pc); | |
e8589cc1 | 4302 | } |
52d4b9ac | 4303 | unlock_page_cgroup(pc); |
ac39cf8c AM |
4304 | /* |
4305 | * If the page is not charged at this point, | |
4306 | * we return here. | |
4307 | */ | |
c0ff4b85 | 4308 | if (!memcg) |
0030f535 | 4309 | return; |
01b1ae63 | 4310 | |
72835c86 | 4311 | *memcgp = memcg; |
ac39cf8c AM |
4312 | /* |
4313 | * We charge new page before it's used/mapped. So, even if unlock_page() | |
4314 | * is called before end_migration, we can catch all events on this new | |
4315 | * page. In the case new page is migrated but not remapped, new page's | |
4316 | * mapcount will be finally 0 and we call uncharge in end_migration(). | |
4317 | */ | |
ac39cf8c | 4318 | if (PageAnon(page)) |
41326c17 | 4319 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
ac39cf8c | 4320 | else |
62ba7442 | 4321 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
0030f535 JW |
4322 | /* |
4323 | * The page is committed to the memcg, but it's not actually | |
4324 | * charged to the res_counter since we plan on replacing the | |
4325 | * old one and only one page is going to be left afterwards. | |
4326 | */ | |
b32967ff | 4327 | __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); |
ae41be37 | 4328 | } |
8869b8f6 | 4329 | |
69029cd5 | 4330 | /* remove redundant charge if migration failed*/ |
c0ff4b85 | 4331 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
50de1dd9 | 4332 | struct page *oldpage, struct page *newpage, bool migration_ok) |
ae41be37 | 4333 | { |
ac39cf8c | 4334 | struct page *used, *unused; |
01b1ae63 | 4335 | struct page_cgroup *pc; |
b2402857 | 4336 | bool anon; |
01b1ae63 | 4337 | |
c0ff4b85 | 4338 | if (!memcg) |
01b1ae63 | 4339 | return; |
b25ed609 | 4340 | |
50de1dd9 | 4341 | if (!migration_ok) { |
ac39cf8c AM |
4342 | used = oldpage; |
4343 | unused = newpage; | |
01b1ae63 | 4344 | } else { |
ac39cf8c | 4345 | used = newpage; |
01b1ae63 KH |
4346 | unused = oldpage; |
4347 | } | |
0030f535 | 4348 | anon = PageAnon(used); |
7d188958 JW |
4349 | __mem_cgroup_uncharge_common(unused, |
4350 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON | |
4351 | : MEM_CGROUP_CHARGE_TYPE_CACHE, | |
4352 | true); | |
0030f535 | 4353 | css_put(&memcg->css); |
69029cd5 | 4354 | /* |
ac39cf8c AM |
4355 | * We disallowed uncharge of pages under migration because mapcount |
4356 | * of the page goes down to zero, temporarly. | |
4357 | * Clear the flag and check the page should be charged. | |
01b1ae63 | 4358 | */ |
ac39cf8c AM |
4359 | pc = lookup_page_cgroup(oldpage); |
4360 | lock_page_cgroup(pc); | |
4361 | ClearPageCgroupMigration(pc); | |
4362 | unlock_page_cgroup(pc); | |
ac39cf8c | 4363 | |
01b1ae63 | 4364 | /* |
ac39cf8c AM |
4365 | * If a page is a file cache, radix-tree replacement is very atomic |
4366 | * and we can skip this check. When it was an Anon page, its mapcount | |
4367 | * goes down to 0. But because we added MIGRATION flage, it's not | |
4368 | * uncharged yet. There are several case but page->mapcount check | |
4369 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | |
4370 | * check. (see prepare_charge() also) | |
69029cd5 | 4371 | */ |
b2402857 | 4372 | if (anon) |
ac39cf8c | 4373 | mem_cgroup_uncharge_page(used); |
ae41be37 | 4374 | } |
78fb7466 | 4375 | |
ab936cbc KH |
4376 | /* |
4377 | * At replace page cache, newpage is not under any memcg but it's on | |
4378 | * LRU. So, this function doesn't touch res_counter but handles LRU | |
4379 | * in correct way. Both pages are locked so we cannot race with uncharge. | |
4380 | */ | |
4381 | void mem_cgroup_replace_page_cache(struct page *oldpage, | |
4382 | struct page *newpage) | |
4383 | { | |
bde05d1c | 4384 | struct mem_cgroup *memcg = NULL; |
ab936cbc | 4385 | struct page_cgroup *pc; |
ab936cbc | 4386 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
ab936cbc KH |
4387 | |
4388 | if (mem_cgroup_disabled()) | |
4389 | return; | |
4390 | ||
4391 | pc = lookup_page_cgroup(oldpage); | |
4392 | /* fix accounting on old pages */ | |
4393 | lock_page_cgroup(pc); | |
bde05d1c HD |
4394 | if (PageCgroupUsed(pc)) { |
4395 | memcg = pc->mem_cgroup; | |
4396 | mem_cgroup_charge_statistics(memcg, false, -1); | |
4397 | ClearPageCgroupUsed(pc); | |
4398 | } | |
ab936cbc KH |
4399 | unlock_page_cgroup(pc); |
4400 | ||
bde05d1c HD |
4401 | /* |
4402 | * When called from shmem_replace_page(), in some cases the | |
4403 | * oldpage has already been charged, and in some cases not. | |
4404 | */ | |
4405 | if (!memcg) | |
4406 | return; | |
ab936cbc KH |
4407 | /* |
4408 | * Even if newpage->mapping was NULL before starting replacement, | |
4409 | * the newpage may be on LRU(or pagevec for LRU) already. We lock | |
4410 | * LRU while we overwrite pc->mem_cgroup. | |
4411 | */ | |
ce587e65 | 4412 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
ab936cbc KH |
4413 | } |
4414 | ||
f212ad7c DN |
4415 | #ifdef CONFIG_DEBUG_VM |
4416 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | |
4417 | { | |
4418 | struct page_cgroup *pc; | |
4419 | ||
4420 | pc = lookup_page_cgroup(page); | |
cfa44946 JW |
4421 | /* |
4422 | * Can be NULL while feeding pages into the page allocator for | |
4423 | * the first time, i.e. during boot or memory hotplug; | |
4424 | * or when mem_cgroup_disabled(). | |
4425 | */ | |
f212ad7c DN |
4426 | if (likely(pc) && PageCgroupUsed(pc)) |
4427 | return pc; | |
4428 | return NULL; | |
4429 | } | |
4430 | ||
4431 | bool mem_cgroup_bad_page_check(struct page *page) | |
4432 | { | |
4433 | if (mem_cgroup_disabled()) | |
4434 | return false; | |
4435 | ||
4436 | return lookup_page_cgroup_used(page) != NULL; | |
4437 | } | |
4438 | ||
4439 | void mem_cgroup_print_bad_page(struct page *page) | |
4440 | { | |
4441 | struct page_cgroup *pc; | |
4442 | ||
4443 | pc = lookup_page_cgroup_used(page); | |
4444 | if (pc) { | |
d045197f AM |
4445 | pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
4446 | pc, pc->flags, pc->mem_cgroup); | |
f212ad7c DN |
4447 | } |
4448 | } | |
4449 | #endif | |
4450 | ||
d38d2a75 | 4451 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 4452 | unsigned long long val) |
628f4235 | 4453 | { |
81d39c20 | 4454 | int retry_count; |
3c11ecf4 | 4455 | u64 memswlimit, memlimit; |
628f4235 | 4456 | int ret = 0; |
81d39c20 KH |
4457 | int children = mem_cgroup_count_children(memcg); |
4458 | u64 curusage, oldusage; | |
3c11ecf4 | 4459 | int enlarge; |
81d39c20 KH |
4460 | |
4461 | /* | |
4462 | * For keeping hierarchical_reclaim simple, how long we should retry | |
4463 | * is depends on callers. We set our retry-count to be function | |
4464 | * of # of children which we should visit in this loop. | |
4465 | */ | |
4466 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | |
4467 | ||
4468 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | |
628f4235 | 4469 | |
3c11ecf4 | 4470 | enlarge = 0; |
8c7c6e34 | 4471 | while (retry_count) { |
628f4235 KH |
4472 | if (signal_pending(current)) { |
4473 | ret = -EINTR; | |
4474 | break; | |
4475 | } | |
8c7c6e34 KH |
4476 | /* |
4477 | * Rather than hide all in some function, I do this in | |
4478 | * open coded manner. You see what this really does. | |
aaad153e | 4479 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4480 | */ |
4481 | mutex_lock(&set_limit_mutex); | |
4482 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
4483 | if (memswlimit < val) { | |
4484 | ret = -EINVAL; | |
4485 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
4486 | break; |
4487 | } | |
3c11ecf4 KH |
4488 | |
4489 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4490 | if (memlimit < val) | |
4491 | enlarge = 1; | |
4492 | ||
8c7c6e34 | 4493 | ret = res_counter_set_limit(&memcg->res, val); |
22a668d7 KH |
4494 | if (!ret) { |
4495 | if (memswlimit == val) | |
4496 | memcg->memsw_is_minimum = true; | |
4497 | else | |
4498 | memcg->memsw_is_minimum = false; | |
4499 | } | |
8c7c6e34 KH |
4500 | mutex_unlock(&set_limit_mutex); |
4501 | ||
4502 | if (!ret) | |
4503 | break; | |
4504 | ||
5660048c JW |
4505 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4506 | MEM_CGROUP_RECLAIM_SHRINK); | |
81d39c20 KH |
4507 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
4508 | /* Usage is reduced ? */ | |
4509 | if (curusage >= oldusage) | |
4510 | retry_count--; | |
4511 | else | |
4512 | oldusage = curusage; | |
8c7c6e34 | 4513 | } |
3c11ecf4 KH |
4514 | if (!ret && enlarge) |
4515 | memcg_oom_recover(memcg); | |
14797e23 | 4516 | |
8c7c6e34 KH |
4517 | return ret; |
4518 | } | |
4519 | ||
338c8431 LZ |
4520 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
4521 | unsigned long long val) | |
8c7c6e34 | 4522 | { |
81d39c20 | 4523 | int retry_count; |
3c11ecf4 | 4524 | u64 memlimit, memswlimit, oldusage, curusage; |
81d39c20 KH |
4525 | int children = mem_cgroup_count_children(memcg); |
4526 | int ret = -EBUSY; | |
3c11ecf4 | 4527 | int enlarge = 0; |
8c7c6e34 | 4528 | |
81d39c20 KH |
4529 | /* see mem_cgroup_resize_res_limit */ |
4530 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | |
4531 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | |
8c7c6e34 KH |
4532 | while (retry_count) { |
4533 | if (signal_pending(current)) { | |
4534 | ret = -EINTR; | |
4535 | break; | |
4536 | } | |
4537 | /* | |
4538 | * Rather than hide all in some function, I do this in | |
4539 | * open coded manner. You see what this really does. | |
aaad153e | 4540 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4541 | */ |
4542 | mutex_lock(&set_limit_mutex); | |
4543 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4544 | if (memlimit > val) { | |
4545 | ret = -EINVAL; | |
4546 | mutex_unlock(&set_limit_mutex); | |
4547 | break; | |
4548 | } | |
3c11ecf4 KH |
4549 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4550 | if (memswlimit < val) | |
4551 | enlarge = 1; | |
8c7c6e34 | 4552 | ret = res_counter_set_limit(&memcg->memsw, val); |
22a668d7 KH |
4553 | if (!ret) { |
4554 | if (memlimit == val) | |
4555 | memcg->memsw_is_minimum = true; | |
4556 | else | |
4557 | memcg->memsw_is_minimum = false; | |
4558 | } | |
8c7c6e34 KH |
4559 | mutex_unlock(&set_limit_mutex); |
4560 | ||
4561 | if (!ret) | |
4562 | break; | |
4563 | ||
5660048c JW |
4564 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4565 | MEM_CGROUP_RECLAIM_NOSWAP | | |
4566 | MEM_CGROUP_RECLAIM_SHRINK); | |
8c7c6e34 | 4567 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
81d39c20 | 4568 | /* Usage is reduced ? */ |
8c7c6e34 | 4569 | if (curusage >= oldusage) |
628f4235 | 4570 | retry_count--; |
81d39c20 KH |
4571 | else |
4572 | oldusage = curusage; | |
628f4235 | 4573 | } |
3c11ecf4 KH |
4574 | if (!ret && enlarge) |
4575 | memcg_oom_recover(memcg); | |
628f4235 KH |
4576 | return ret; |
4577 | } | |
4578 | ||
4e416953 | 4579 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
0ae5e89c YH |
4580 | gfp_t gfp_mask, |
4581 | unsigned long *total_scanned) | |
4e416953 BS |
4582 | { |
4583 | unsigned long nr_reclaimed = 0; | |
4584 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
4585 | unsigned long reclaimed; | |
4586 | int loop = 0; | |
4587 | struct mem_cgroup_tree_per_zone *mctz; | |
ef8745c1 | 4588 | unsigned long long excess; |
0ae5e89c | 4589 | unsigned long nr_scanned; |
4e416953 BS |
4590 | |
4591 | if (order > 0) | |
4592 | return 0; | |
4593 | ||
00918b6a | 4594 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
4e416953 BS |
4595 | /* |
4596 | * This loop can run a while, specially if mem_cgroup's continuously | |
4597 | * keep exceeding their soft limit and putting the system under | |
4598 | * pressure | |
4599 | */ | |
4600 | do { | |
4601 | if (next_mz) | |
4602 | mz = next_mz; | |
4603 | else | |
4604 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
4605 | if (!mz) | |
4606 | break; | |
4607 | ||
0ae5e89c | 4608 | nr_scanned = 0; |
d79154bb | 4609 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, |
5660048c | 4610 | gfp_mask, &nr_scanned); |
4e416953 | 4611 | nr_reclaimed += reclaimed; |
0ae5e89c | 4612 | *total_scanned += nr_scanned; |
4e416953 BS |
4613 | spin_lock(&mctz->lock); |
4614 | ||
4615 | /* | |
4616 | * If we failed to reclaim anything from this memory cgroup | |
4617 | * it is time to move on to the next cgroup | |
4618 | */ | |
4619 | next_mz = NULL; | |
4620 | if (!reclaimed) { | |
4621 | do { | |
4622 | /* | |
4623 | * Loop until we find yet another one. | |
4624 | * | |
4625 | * By the time we get the soft_limit lock | |
4626 | * again, someone might have aded the | |
4627 | * group back on the RB tree. Iterate to | |
4628 | * make sure we get a different mem. | |
4629 | * mem_cgroup_largest_soft_limit_node returns | |
4630 | * NULL if no other cgroup is present on | |
4631 | * the tree | |
4632 | */ | |
4633 | next_mz = | |
4634 | __mem_cgroup_largest_soft_limit_node(mctz); | |
39cc98f1 | 4635 | if (next_mz == mz) |
d79154bb | 4636 | css_put(&next_mz->memcg->css); |
39cc98f1 | 4637 | else /* next_mz == NULL or other memcg */ |
4e416953 BS |
4638 | break; |
4639 | } while (1); | |
4640 | } | |
d79154bb HD |
4641 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
4642 | excess = res_counter_soft_limit_excess(&mz->memcg->res); | |
4e416953 BS |
4643 | /* |
4644 | * One school of thought says that we should not add | |
4645 | * back the node to the tree if reclaim returns 0. | |
4646 | * But our reclaim could return 0, simply because due | |
4647 | * to priority we are exposing a smaller subset of | |
4648 | * memory to reclaim from. Consider this as a longer | |
4649 | * term TODO. | |
4650 | */ | |
ef8745c1 | 4651 | /* If excess == 0, no tree ops */ |
d79154bb | 4652 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); |
4e416953 | 4653 | spin_unlock(&mctz->lock); |
d79154bb | 4654 | css_put(&mz->memcg->css); |
4e416953 BS |
4655 | loop++; |
4656 | /* | |
4657 | * Could not reclaim anything and there are no more | |
4658 | * mem cgroups to try or we seem to be looping without | |
4659 | * reclaiming anything. | |
4660 | */ | |
4661 | if (!nr_reclaimed && | |
4662 | (next_mz == NULL || | |
4663 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
4664 | break; | |
4665 | } while (!nr_reclaimed); | |
4666 | if (next_mz) | |
d79154bb | 4667 | css_put(&next_mz->memcg->css); |
4e416953 BS |
4668 | return nr_reclaimed; |
4669 | } | |
4670 | ||
2ef37d3f MH |
4671 | /** |
4672 | * mem_cgroup_force_empty_list - clears LRU of a group | |
4673 | * @memcg: group to clear | |
4674 | * @node: NUMA node | |
4675 | * @zid: zone id | |
4676 | * @lru: lru to to clear | |
4677 | * | |
3c935d18 | 4678 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
2ef37d3f MH |
4679 | * reclaim the pages page themselves - pages are moved to the parent (or root) |
4680 | * group. | |
cc847582 | 4681 | */ |
2ef37d3f | 4682 | static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
08e552c6 | 4683 | int node, int zid, enum lru_list lru) |
cc847582 | 4684 | { |
bea8c150 | 4685 | struct lruvec *lruvec; |
2ef37d3f | 4686 | unsigned long flags; |
072c56c1 | 4687 | struct list_head *list; |
925b7673 JW |
4688 | struct page *busy; |
4689 | struct zone *zone; | |
072c56c1 | 4690 | |
08e552c6 | 4691 | zone = &NODE_DATA(node)->node_zones[zid]; |
bea8c150 HD |
4692 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
4693 | list = &lruvec->lists[lru]; | |
cc847582 | 4694 | |
f817ed48 | 4695 | busy = NULL; |
2ef37d3f | 4696 | do { |
925b7673 | 4697 | struct page_cgroup *pc; |
5564e88b JW |
4698 | struct page *page; |
4699 | ||
08e552c6 | 4700 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 4701 | if (list_empty(list)) { |
08e552c6 | 4702 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 4703 | break; |
f817ed48 | 4704 | } |
925b7673 JW |
4705 | page = list_entry(list->prev, struct page, lru); |
4706 | if (busy == page) { | |
4707 | list_move(&page->lru, list); | |
648bcc77 | 4708 | busy = NULL; |
08e552c6 | 4709 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
4710 | continue; |
4711 | } | |
08e552c6 | 4712 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 4713 | |
925b7673 | 4714 | pc = lookup_page_cgroup(page); |
5564e88b | 4715 | |
3c935d18 | 4716 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
f817ed48 | 4717 | /* found lock contention or "pc" is obsolete. */ |
925b7673 | 4718 | busy = page; |
f817ed48 KH |
4719 | cond_resched(); |
4720 | } else | |
4721 | busy = NULL; | |
2ef37d3f | 4722 | } while (!list_empty(list)); |
cc847582 KH |
4723 | } |
4724 | ||
4725 | /* | |
c26251f9 MH |
4726 | * make mem_cgroup's charge to be 0 if there is no task by moving |
4727 | * all the charges and pages to the parent. | |
cc847582 | 4728 | * This enables deleting this mem_cgroup. |
c26251f9 MH |
4729 | * |
4730 | * Caller is responsible for holding css reference on the memcg. | |
cc847582 | 4731 | */ |
ab5196c2 | 4732 | static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) |
cc847582 | 4733 | { |
c26251f9 | 4734 | int node, zid; |
bea207c8 | 4735 | u64 usage; |
f817ed48 | 4736 | |
fce66477 | 4737 | do { |
52d4b9ac KH |
4738 | /* This is for making all *used* pages to be on LRU. */ |
4739 | lru_add_drain_all(); | |
c0ff4b85 | 4740 | drain_all_stock_sync(memcg); |
c0ff4b85 | 4741 | mem_cgroup_start_move(memcg); |
31aaea4a | 4742 | for_each_node_state(node, N_MEMORY) { |
2ef37d3f | 4743 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
f156ab93 HD |
4744 | enum lru_list lru; |
4745 | for_each_lru(lru) { | |
2ef37d3f | 4746 | mem_cgroup_force_empty_list(memcg, |
f156ab93 | 4747 | node, zid, lru); |
f817ed48 | 4748 | } |
1ecaab2b | 4749 | } |
f817ed48 | 4750 | } |
c0ff4b85 R |
4751 | mem_cgroup_end_move(memcg); |
4752 | memcg_oom_recover(memcg); | |
52d4b9ac | 4753 | cond_resched(); |
f817ed48 | 4754 | |
2ef37d3f | 4755 | /* |
bea207c8 GC |
4756 | * Kernel memory may not necessarily be trackable to a specific |
4757 | * process. So they are not migrated, and therefore we can't | |
4758 | * expect their value to drop to 0 here. | |
4759 | * Having res filled up with kmem only is enough. | |
4760 | * | |
2ef37d3f MH |
4761 | * This is a safety check because mem_cgroup_force_empty_list |
4762 | * could have raced with mem_cgroup_replace_page_cache callers | |
4763 | * so the lru seemed empty but the page could have been added | |
4764 | * right after the check. RES_USAGE should be safe as we always | |
4765 | * charge before adding to the LRU. | |
4766 | */ | |
bea207c8 GC |
4767 | usage = res_counter_read_u64(&memcg->res, RES_USAGE) - |
4768 | res_counter_read_u64(&memcg->kmem, RES_USAGE); | |
4769 | } while (usage > 0); | |
c26251f9 MH |
4770 | } |
4771 | ||
b5f99b53 GC |
4772 | /* |
4773 | * This mainly exists for tests during the setting of set of use_hierarchy. | |
4774 | * Since this is the very setting we are changing, the current hierarchy value | |
4775 | * is meaningless | |
4776 | */ | |
4777 | static inline bool __memcg_has_children(struct mem_cgroup *memcg) | |
4778 | { | |
4779 | struct cgroup *pos; | |
4780 | ||
4781 | /* bounce at first found */ | |
4782 | cgroup_for_each_child(pos, memcg->css.cgroup) | |
4783 | return true; | |
4784 | return false; | |
4785 | } | |
4786 | ||
4787 | /* | |
0999821b GC |
4788 | * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed |
4789 | * to be already dead (as in mem_cgroup_force_empty, for instance). This is | |
b5f99b53 GC |
4790 | * from mem_cgroup_count_children(), in the sense that we don't really care how |
4791 | * many children we have; we only need to know if we have any. It also counts | |
4792 | * any memcg without hierarchy as infertile. | |
4793 | */ | |
4794 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | |
4795 | { | |
4796 | return memcg->use_hierarchy && __memcg_has_children(memcg); | |
4797 | } | |
4798 | ||
c26251f9 MH |
4799 | /* |
4800 | * Reclaims as many pages from the given memcg as possible and moves | |
4801 | * the rest to the parent. | |
4802 | * | |
4803 | * Caller is responsible for holding css reference for memcg. | |
4804 | */ | |
4805 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
4806 | { | |
4807 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
4808 | struct cgroup *cgrp = memcg->css.cgroup; | |
f817ed48 | 4809 | |
c1e862c1 | 4810 | /* returns EBUSY if there is a task or if we come here twice. */ |
c26251f9 MH |
4811 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
4812 | return -EBUSY; | |
4813 | ||
c1e862c1 KH |
4814 | /* we call try-to-free pages for make this cgroup empty */ |
4815 | lru_add_drain_all(); | |
f817ed48 | 4816 | /* try to free all pages in this cgroup */ |
569530fb | 4817 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
f817ed48 | 4818 | int progress; |
c1e862c1 | 4819 | |
c26251f9 MH |
4820 | if (signal_pending(current)) |
4821 | return -EINTR; | |
4822 | ||
c0ff4b85 | 4823 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
185efc0f | 4824 | false); |
c1e862c1 | 4825 | if (!progress) { |
f817ed48 | 4826 | nr_retries--; |
c1e862c1 | 4827 | /* maybe some writeback is necessary */ |
8aa7e847 | 4828 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 4829 | } |
f817ed48 KH |
4830 | |
4831 | } | |
08e552c6 | 4832 | lru_add_drain(); |
ab5196c2 MH |
4833 | mem_cgroup_reparent_charges(memcg); |
4834 | ||
4835 | return 0; | |
cc847582 KH |
4836 | } |
4837 | ||
6bbda35c | 4838 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
c1e862c1 | 4839 | { |
c26251f9 MH |
4840 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4841 | int ret; | |
4842 | ||
d8423011 MH |
4843 | if (mem_cgroup_is_root(memcg)) |
4844 | return -EINVAL; | |
c26251f9 MH |
4845 | css_get(&memcg->css); |
4846 | ret = mem_cgroup_force_empty(memcg); | |
4847 | css_put(&memcg->css); | |
4848 | ||
4849 | return ret; | |
c1e862c1 KH |
4850 | } |
4851 | ||
4852 | ||
18f59ea7 BS |
4853 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
4854 | { | |
4855 | return mem_cgroup_from_cont(cont)->use_hierarchy; | |
4856 | } | |
4857 | ||
4858 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |
4859 | u64 val) | |
4860 | { | |
4861 | int retval = 0; | |
c0ff4b85 | 4862 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
18f59ea7 | 4863 | struct cgroup *parent = cont->parent; |
c0ff4b85 | 4864 | struct mem_cgroup *parent_memcg = NULL; |
18f59ea7 BS |
4865 | |
4866 | if (parent) | |
c0ff4b85 | 4867 | parent_memcg = mem_cgroup_from_cont(parent); |
18f59ea7 | 4868 | |
0999821b | 4869 | mutex_lock(&memcg_create_mutex); |
567fb435 GC |
4870 | |
4871 | if (memcg->use_hierarchy == val) | |
4872 | goto out; | |
4873 | ||
18f59ea7 | 4874 | /* |
af901ca1 | 4875 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
4876 | * in the child subtrees. If it is unset, then the change can |
4877 | * occur, provided the current cgroup has no children. | |
4878 | * | |
4879 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
4880 | * set if there are no children. | |
4881 | */ | |
c0ff4b85 | 4882 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
18f59ea7 | 4883 | (val == 1 || val == 0)) { |
b5f99b53 | 4884 | if (!__memcg_has_children(memcg)) |
c0ff4b85 | 4885 | memcg->use_hierarchy = val; |
18f59ea7 BS |
4886 | else |
4887 | retval = -EBUSY; | |
4888 | } else | |
4889 | retval = -EINVAL; | |
567fb435 GC |
4890 | |
4891 | out: | |
0999821b | 4892 | mutex_unlock(&memcg_create_mutex); |
18f59ea7 BS |
4893 | |
4894 | return retval; | |
4895 | } | |
4896 | ||
0c3e73e8 | 4897 | |
c0ff4b85 | 4898 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
7a159cc9 | 4899 | enum mem_cgroup_stat_index idx) |
0c3e73e8 | 4900 | { |
7d74b06f | 4901 | struct mem_cgroup *iter; |
7a159cc9 | 4902 | long val = 0; |
0c3e73e8 | 4903 | |
7a159cc9 | 4904 | /* Per-cpu values can be negative, use a signed accumulator */ |
c0ff4b85 | 4905 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f KH |
4906 | val += mem_cgroup_read_stat(iter, idx); |
4907 | ||
4908 | if (val < 0) /* race ? */ | |
4909 | val = 0; | |
4910 | return val; | |
0c3e73e8 BS |
4911 | } |
4912 | ||
c0ff4b85 | 4913 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
104f3928 | 4914 | { |
7d74b06f | 4915 | u64 val; |
104f3928 | 4916 | |
c0ff4b85 | 4917 | if (!mem_cgroup_is_root(memcg)) { |
104f3928 | 4918 | if (!swap) |
65c64ce8 | 4919 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
104f3928 | 4920 | else |
65c64ce8 | 4921 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
104f3928 KS |
4922 | } |
4923 | ||
c0ff4b85 R |
4924 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
4925 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); | |
104f3928 | 4926 | |
7d74b06f | 4927 | if (swap) |
bff6bb83 | 4928 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
104f3928 KS |
4929 | |
4930 | return val << PAGE_SHIFT; | |
4931 | } | |
4932 | ||
af36f906 TH |
4933 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, |
4934 | struct file *file, char __user *buf, | |
4935 | size_t nbytes, loff_t *ppos) | |
8cdea7c0 | 4936 | { |
c0ff4b85 | 4937 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
af36f906 | 4938 | char str[64]; |
104f3928 | 4939 | u64 val; |
86ae53e1 GC |
4940 | int name, len; |
4941 | enum res_type type; | |
8c7c6e34 KH |
4942 | |
4943 | type = MEMFILE_TYPE(cft->private); | |
4944 | name = MEMFILE_ATTR(cft->private); | |
af36f906 TH |
4945 | |
4946 | if (!do_swap_account && type == _MEMSWAP) | |
4947 | return -EOPNOTSUPP; | |
4948 | ||
8c7c6e34 KH |
4949 | switch (type) { |
4950 | case _MEM: | |
104f3928 | 4951 | if (name == RES_USAGE) |
c0ff4b85 | 4952 | val = mem_cgroup_usage(memcg, false); |
104f3928 | 4953 | else |
c0ff4b85 | 4954 | val = res_counter_read_u64(&memcg->res, name); |
8c7c6e34 KH |
4955 | break; |
4956 | case _MEMSWAP: | |
104f3928 | 4957 | if (name == RES_USAGE) |
c0ff4b85 | 4958 | val = mem_cgroup_usage(memcg, true); |
104f3928 | 4959 | else |
c0ff4b85 | 4960 | val = res_counter_read_u64(&memcg->memsw, name); |
8c7c6e34 | 4961 | break; |
510fc4e1 GC |
4962 | case _KMEM: |
4963 | val = res_counter_read_u64(&memcg->kmem, name); | |
4964 | break; | |
8c7c6e34 KH |
4965 | default: |
4966 | BUG(); | |
8c7c6e34 | 4967 | } |
af36f906 TH |
4968 | |
4969 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); | |
4970 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); | |
8cdea7c0 | 4971 | } |
510fc4e1 GC |
4972 | |
4973 | static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) | |
4974 | { | |
4975 | int ret = -EINVAL; | |
4976 | #ifdef CONFIG_MEMCG_KMEM | |
4977 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | |
4978 | /* | |
4979 | * For simplicity, we won't allow this to be disabled. It also can't | |
4980 | * be changed if the cgroup has children already, or if tasks had | |
4981 | * already joined. | |
4982 | * | |
4983 | * If tasks join before we set the limit, a person looking at | |
4984 | * kmem.usage_in_bytes will have no way to determine when it took | |
4985 | * place, which makes the value quite meaningless. | |
4986 | * | |
4987 | * After it first became limited, changes in the value of the limit are | |
4988 | * of course permitted. | |
510fc4e1 | 4989 | */ |
0999821b | 4990 | mutex_lock(&memcg_create_mutex); |
510fc4e1 GC |
4991 | mutex_lock(&set_limit_mutex); |
4992 | if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { | |
b5f99b53 | 4993 | if (cgroup_task_count(cont) || memcg_has_children(memcg)) { |
510fc4e1 GC |
4994 | ret = -EBUSY; |
4995 | goto out; | |
4996 | } | |
4997 | ret = res_counter_set_limit(&memcg->kmem, val); | |
4998 | VM_BUG_ON(ret); | |
4999 | ||
55007d84 GC |
5000 | ret = memcg_update_cache_sizes(memcg); |
5001 | if (ret) { | |
5002 | res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); | |
5003 | goto out; | |
5004 | } | |
692e89ab GC |
5005 | static_key_slow_inc(&memcg_kmem_enabled_key); |
5006 | /* | |
5007 | * setting the active bit after the inc will guarantee no one | |
5008 | * starts accounting before all call sites are patched | |
5009 | */ | |
5010 | memcg_kmem_set_active(memcg); | |
5011 | ||
7de37682 GC |
5012 | /* |
5013 | * kmem charges can outlive the cgroup. In the case of slab | |
5014 | * pages, for instance, a page contain objects from various | |
5015 | * processes, so it is unfeasible to migrate them away. We | |
5016 | * need to reference count the memcg because of that. | |
5017 | */ | |
5018 | mem_cgroup_get(memcg); | |
510fc4e1 GC |
5019 | } else |
5020 | ret = res_counter_set_limit(&memcg->kmem, val); | |
5021 | out: | |
5022 | mutex_unlock(&set_limit_mutex); | |
0999821b | 5023 | mutex_unlock(&memcg_create_mutex); |
510fc4e1 GC |
5024 | #endif |
5025 | return ret; | |
5026 | } | |
5027 | ||
6d043990 | 5028 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 | 5029 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) |
510fc4e1 | 5030 | { |
55007d84 | 5031 | int ret = 0; |
510fc4e1 GC |
5032 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
5033 | if (!parent) | |
55007d84 GC |
5034 | goto out; |
5035 | ||
510fc4e1 | 5036 | memcg->kmem_account_flags = parent->kmem_account_flags; |
a8964b9b GC |
5037 | /* |
5038 | * When that happen, we need to disable the static branch only on those | |
5039 | * memcgs that enabled it. To achieve this, we would be forced to | |
5040 | * complicate the code by keeping track of which memcgs were the ones | |
5041 | * that actually enabled limits, and which ones got it from its | |
5042 | * parents. | |
5043 | * | |
5044 | * It is a lot simpler just to do static_key_slow_inc() on every child | |
5045 | * that is accounted. | |
5046 | */ | |
55007d84 GC |
5047 | if (!memcg_kmem_is_active(memcg)) |
5048 | goto out; | |
5049 | ||
5050 | /* | |
5051 | * destroy(), called if we fail, will issue static_key_slow_inc() and | |
5052 | * mem_cgroup_put() if kmem is enabled. We have to either call them | |
5053 | * unconditionally, or clear the KMEM_ACTIVE flag. I personally find | |
5054 | * this more consistent, since it always leads to the same destroy path | |
5055 | */ | |
5056 | mem_cgroup_get(memcg); | |
5057 | static_key_slow_inc(&memcg_kmem_enabled_key); | |
5058 | ||
5059 | mutex_lock(&set_limit_mutex); | |
5060 | ret = memcg_update_cache_sizes(memcg); | |
5061 | mutex_unlock(&set_limit_mutex); | |
55007d84 GC |
5062 | out: |
5063 | return ret; | |
510fc4e1 | 5064 | } |
6d043990 | 5065 | #endif /* CONFIG_MEMCG_KMEM */ |
510fc4e1 | 5066 | |
628f4235 KH |
5067 | /* |
5068 | * The user of this function is... | |
5069 | * RES_LIMIT. | |
5070 | */ | |
856c13aa PM |
5071 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
5072 | const char *buffer) | |
8cdea7c0 | 5073 | { |
628f4235 | 5074 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
86ae53e1 GC |
5075 | enum res_type type; |
5076 | int name; | |
628f4235 KH |
5077 | unsigned long long val; |
5078 | int ret; | |
5079 | ||
8c7c6e34 KH |
5080 | type = MEMFILE_TYPE(cft->private); |
5081 | name = MEMFILE_ATTR(cft->private); | |
af36f906 TH |
5082 | |
5083 | if (!do_swap_account && type == _MEMSWAP) | |
5084 | return -EOPNOTSUPP; | |
5085 | ||
8c7c6e34 | 5086 | switch (name) { |
628f4235 | 5087 | case RES_LIMIT: |
4b3bde4c BS |
5088 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
5089 | ret = -EINVAL; | |
5090 | break; | |
5091 | } | |
628f4235 KH |
5092 | /* This function does all necessary parse...reuse it */ |
5093 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
8c7c6e34 KH |
5094 | if (ret) |
5095 | break; | |
5096 | if (type == _MEM) | |
628f4235 | 5097 | ret = mem_cgroup_resize_limit(memcg, val); |
510fc4e1 | 5098 | else if (type == _MEMSWAP) |
8c7c6e34 | 5099 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
510fc4e1 GC |
5100 | else if (type == _KMEM) |
5101 | ret = memcg_update_kmem_limit(cont, val); | |
5102 | else | |
5103 | return -EINVAL; | |
628f4235 | 5104 | break; |
296c81d8 BS |
5105 | case RES_SOFT_LIMIT: |
5106 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
5107 | if (ret) | |
5108 | break; | |
5109 | /* | |
5110 | * For memsw, soft limits are hard to implement in terms | |
5111 | * of semantics, for now, we support soft limits for | |
5112 | * control without swap | |
5113 | */ | |
5114 | if (type == _MEM) | |
5115 | ret = res_counter_set_soft_limit(&memcg->res, val); | |
5116 | else | |
5117 | ret = -EINVAL; | |
5118 | break; | |
628f4235 KH |
5119 | default: |
5120 | ret = -EINVAL; /* should be BUG() ? */ | |
5121 | break; | |
5122 | } | |
5123 | return ret; | |
8cdea7c0 BS |
5124 | } |
5125 | ||
fee7b548 KH |
5126 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
5127 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
5128 | { | |
5129 | struct cgroup *cgroup; | |
5130 | unsigned long long min_limit, min_memsw_limit, tmp; | |
5131 | ||
5132 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5133 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
5134 | cgroup = memcg->css.cgroup; | |
5135 | if (!memcg->use_hierarchy) | |
5136 | goto out; | |
5137 | ||
5138 | while (cgroup->parent) { | |
5139 | cgroup = cgroup->parent; | |
5140 | memcg = mem_cgroup_from_cont(cgroup); | |
5141 | if (!memcg->use_hierarchy) | |
5142 | break; | |
5143 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5144 | min_limit = min(min_limit, tmp); | |
5145 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
5146 | min_memsw_limit = min(min_memsw_limit, tmp); | |
5147 | } | |
5148 | out: | |
5149 | *mem_limit = min_limit; | |
5150 | *memsw_limit = min_memsw_limit; | |
fee7b548 KH |
5151 | } |
5152 | ||
29f2a4da | 5153 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 | 5154 | { |
af36f906 | 5155 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
86ae53e1 GC |
5156 | int name; |
5157 | enum res_type type; | |
c84872e1 | 5158 | |
8c7c6e34 KH |
5159 | type = MEMFILE_TYPE(event); |
5160 | name = MEMFILE_ATTR(event); | |
af36f906 TH |
5161 | |
5162 | if (!do_swap_account && type == _MEMSWAP) | |
5163 | return -EOPNOTSUPP; | |
5164 | ||
8c7c6e34 | 5165 | switch (name) { |
29f2a4da | 5166 | case RES_MAX_USAGE: |
8c7c6e34 | 5167 | if (type == _MEM) |
c0ff4b85 | 5168 | res_counter_reset_max(&memcg->res); |
510fc4e1 | 5169 | else if (type == _MEMSWAP) |
c0ff4b85 | 5170 | res_counter_reset_max(&memcg->memsw); |
510fc4e1 GC |
5171 | else if (type == _KMEM) |
5172 | res_counter_reset_max(&memcg->kmem); | |
5173 | else | |
5174 | return -EINVAL; | |
29f2a4da PE |
5175 | break; |
5176 | case RES_FAILCNT: | |
8c7c6e34 | 5177 | if (type == _MEM) |
c0ff4b85 | 5178 | res_counter_reset_failcnt(&memcg->res); |
510fc4e1 | 5179 | else if (type == _MEMSWAP) |
c0ff4b85 | 5180 | res_counter_reset_failcnt(&memcg->memsw); |
510fc4e1 GC |
5181 | else if (type == _KMEM) |
5182 | res_counter_reset_failcnt(&memcg->kmem); | |
5183 | else | |
5184 | return -EINVAL; | |
29f2a4da PE |
5185 | break; |
5186 | } | |
f64c3f54 | 5187 | |
85cc59db | 5188 | return 0; |
c84872e1 PE |
5189 | } |
5190 | ||
7dc74be0 DN |
5191 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
5192 | struct cftype *cft) | |
5193 | { | |
5194 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | |
5195 | } | |
5196 | ||
02491447 | 5197 | #ifdef CONFIG_MMU |
7dc74be0 DN |
5198 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
5199 | struct cftype *cft, u64 val) | |
5200 | { | |
c0ff4b85 | 5201 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
7dc74be0 DN |
5202 | |
5203 | if (val >= (1 << NR_MOVE_TYPE)) | |
5204 | return -EINVAL; | |
ee5e8472 | 5205 | |
7dc74be0 | 5206 | /* |
ee5e8472 GC |
5207 | * No kind of locking is needed in here, because ->can_attach() will |
5208 | * check this value once in the beginning of the process, and then carry | |
5209 | * on with stale data. This means that changes to this value will only | |
5210 | * affect task migrations starting after the change. | |
7dc74be0 | 5211 | */ |
c0ff4b85 | 5212 | memcg->move_charge_at_immigrate = val; |
7dc74be0 DN |
5213 | return 0; |
5214 | } | |
02491447 DN |
5215 | #else |
5216 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | |
5217 | struct cftype *cft, u64 val) | |
5218 | { | |
5219 | return -ENOSYS; | |
5220 | } | |
5221 | #endif | |
7dc74be0 | 5222 | |
406eb0c9 | 5223 | #ifdef CONFIG_NUMA |
ab215884 | 5224 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, |
fada52ca | 5225 | struct seq_file *m) |
406eb0c9 YH |
5226 | { |
5227 | int nid; | |
5228 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; | |
5229 | unsigned long node_nr; | |
d79154bb | 5230 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
406eb0c9 | 5231 | |
d79154bb | 5232 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); |
406eb0c9 | 5233 | seq_printf(m, "total=%lu", total_nr); |
31aaea4a | 5234 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5235 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); |
406eb0c9 YH |
5236 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5237 | } | |
5238 | seq_putc(m, '\n'); | |
5239 | ||
d79154bb | 5240 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); |
406eb0c9 | 5241 | seq_printf(m, "file=%lu", file_nr); |
31aaea4a | 5242 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5243 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5244 | LRU_ALL_FILE); |
406eb0c9 YH |
5245 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5246 | } | |
5247 | seq_putc(m, '\n'); | |
5248 | ||
d79154bb | 5249 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); |
406eb0c9 | 5250 | seq_printf(m, "anon=%lu", anon_nr); |
31aaea4a | 5251 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5252 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5253 | LRU_ALL_ANON); |
406eb0c9 YH |
5254 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5255 | } | |
5256 | seq_putc(m, '\n'); | |
5257 | ||
d79154bb | 5258 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); |
406eb0c9 | 5259 | seq_printf(m, "unevictable=%lu", unevictable_nr); |
31aaea4a | 5260 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5261 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5262 | BIT(LRU_UNEVICTABLE)); |
406eb0c9 YH |
5263 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5264 | } | |
5265 | seq_putc(m, '\n'); | |
5266 | return 0; | |
5267 | } | |
5268 | #endif /* CONFIG_NUMA */ | |
5269 | ||
af7c4b0e JW |
5270 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
5271 | { | |
5272 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | |
5273 | } | |
5274 | ||
ab215884 | 5275 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, |
78ccf5b5 | 5276 | struct seq_file *m) |
d2ceb9b7 | 5277 | { |
d79154bb | 5278 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
af7c4b0e JW |
5279 | struct mem_cgroup *mi; |
5280 | unsigned int i; | |
406eb0c9 | 5281 | |
af7c4b0e | 5282 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
bff6bb83 | 5283 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5284 | continue; |
af7c4b0e JW |
5285 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
5286 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
1dd3a273 | 5287 | } |
7b854121 | 5288 | |
af7c4b0e JW |
5289 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
5290 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
5291 | mem_cgroup_read_events(memcg, i)); | |
5292 | ||
5293 | for (i = 0; i < NR_LRU_LISTS; i++) | |
5294 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
5295 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
5296 | ||
14067bb3 | 5297 | /* Hierarchical information */ |
fee7b548 KH |
5298 | { |
5299 | unsigned long long limit, memsw_limit; | |
d79154bb | 5300 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
78ccf5b5 | 5301 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
fee7b548 | 5302 | if (do_swap_account) |
78ccf5b5 JW |
5303 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
5304 | memsw_limit); | |
fee7b548 | 5305 | } |
7f016ee8 | 5306 | |
af7c4b0e JW |
5307 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
5308 | long long val = 0; | |
5309 | ||
bff6bb83 | 5310 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5311 | continue; |
af7c4b0e JW |
5312 | for_each_mem_cgroup_tree(mi, memcg) |
5313 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
5314 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | |
5315 | } | |
5316 | ||
5317 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
5318 | unsigned long long val = 0; | |
5319 | ||
5320 | for_each_mem_cgroup_tree(mi, memcg) | |
5321 | val += mem_cgroup_read_events(mi, i); | |
5322 | seq_printf(m, "total_%s %llu\n", | |
5323 | mem_cgroup_events_names[i], val); | |
5324 | } | |
5325 | ||
5326 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
5327 | unsigned long long val = 0; | |
5328 | ||
5329 | for_each_mem_cgroup_tree(mi, memcg) | |
5330 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
5331 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
1dd3a273 | 5332 | } |
14067bb3 | 5333 | |
7f016ee8 | 5334 | #ifdef CONFIG_DEBUG_VM |
7f016ee8 KM |
5335 | { |
5336 | int nid, zid; | |
5337 | struct mem_cgroup_per_zone *mz; | |
89abfab1 | 5338 | struct zone_reclaim_stat *rstat; |
7f016ee8 KM |
5339 | unsigned long recent_rotated[2] = {0, 0}; |
5340 | unsigned long recent_scanned[2] = {0, 0}; | |
5341 | ||
5342 | for_each_online_node(nid) | |
5343 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
d79154bb | 5344 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
89abfab1 | 5345 | rstat = &mz->lruvec.reclaim_stat; |
7f016ee8 | 5346 | |
89abfab1 HD |
5347 | recent_rotated[0] += rstat->recent_rotated[0]; |
5348 | recent_rotated[1] += rstat->recent_rotated[1]; | |
5349 | recent_scanned[0] += rstat->recent_scanned[0]; | |
5350 | recent_scanned[1] += rstat->recent_scanned[1]; | |
7f016ee8 | 5351 | } |
78ccf5b5 JW |
5352 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
5353 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
5354 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
5355 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
7f016ee8 KM |
5356 | } |
5357 | #endif | |
5358 | ||
d2ceb9b7 KH |
5359 | return 0; |
5360 | } | |
5361 | ||
a7885eb8 KM |
5362 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
5363 | { | |
5364 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5365 | ||
1f4c025b | 5366 | return mem_cgroup_swappiness(memcg); |
a7885eb8 KM |
5367 | } |
5368 | ||
5369 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | |
5370 | u64 val) | |
5371 | { | |
5372 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5373 | struct mem_cgroup *parent; | |
068b38c1 | 5374 | |
a7885eb8 KM |
5375 | if (val > 100) |
5376 | return -EINVAL; | |
5377 | ||
5378 | if (cgrp->parent == NULL) | |
5379 | return -EINVAL; | |
5380 | ||
5381 | parent = mem_cgroup_from_cont(cgrp->parent); | |
068b38c1 | 5382 | |
0999821b | 5383 | mutex_lock(&memcg_create_mutex); |
068b38c1 | 5384 | |
a7885eb8 | 5385 | /* If under hierarchy, only empty-root can set this value */ |
b5f99b53 | 5386 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
0999821b | 5387 | mutex_unlock(&memcg_create_mutex); |
a7885eb8 | 5388 | return -EINVAL; |
068b38c1 | 5389 | } |
a7885eb8 | 5390 | |
a7885eb8 | 5391 | memcg->swappiness = val; |
a7885eb8 | 5392 | |
0999821b | 5393 | mutex_unlock(&memcg_create_mutex); |
068b38c1 | 5394 | |
a7885eb8 KM |
5395 | return 0; |
5396 | } | |
5397 | ||
2e72b634 KS |
5398 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
5399 | { | |
5400 | struct mem_cgroup_threshold_ary *t; | |
5401 | u64 usage; | |
5402 | int i; | |
5403 | ||
5404 | rcu_read_lock(); | |
5405 | if (!swap) | |
2c488db2 | 5406 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 5407 | else |
2c488db2 | 5408 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
5409 | |
5410 | if (!t) | |
5411 | goto unlock; | |
5412 | ||
5413 | usage = mem_cgroup_usage(memcg, swap); | |
5414 | ||
5415 | /* | |
748dad36 | 5416 | * current_threshold points to threshold just below or equal to usage. |
2e72b634 KS |
5417 | * If it's not true, a threshold was crossed after last |
5418 | * call of __mem_cgroup_threshold(). | |
5419 | */ | |
5407a562 | 5420 | i = t->current_threshold; |
2e72b634 KS |
5421 | |
5422 | /* | |
5423 | * Iterate backward over array of thresholds starting from | |
5424 | * current_threshold and check if a threshold is crossed. | |
5425 | * If none of thresholds below usage is crossed, we read | |
5426 | * only one element of the array here. | |
5427 | */ | |
5428 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
5429 | eventfd_signal(t->entries[i].eventfd, 1); | |
5430 | ||
5431 | /* i = current_threshold + 1 */ | |
5432 | i++; | |
5433 | ||
5434 | /* | |
5435 | * Iterate forward over array of thresholds starting from | |
5436 | * current_threshold+1 and check if a threshold is crossed. | |
5437 | * If none of thresholds above usage is crossed, we read | |
5438 | * only one element of the array here. | |
5439 | */ | |
5440 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
5441 | eventfd_signal(t->entries[i].eventfd, 1); | |
5442 | ||
5443 | /* Update current_threshold */ | |
5407a562 | 5444 | t->current_threshold = i - 1; |
2e72b634 KS |
5445 | unlock: |
5446 | rcu_read_unlock(); | |
5447 | } | |
5448 | ||
5449 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
5450 | { | |
ad4ca5f4 KS |
5451 | while (memcg) { |
5452 | __mem_cgroup_threshold(memcg, false); | |
5453 | if (do_swap_account) | |
5454 | __mem_cgroup_threshold(memcg, true); | |
5455 | ||
5456 | memcg = parent_mem_cgroup(memcg); | |
5457 | } | |
2e72b634 KS |
5458 | } |
5459 | ||
5460 | static int compare_thresholds(const void *a, const void *b) | |
5461 | { | |
5462 | const struct mem_cgroup_threshold *_a = a; | |
5463 | const struct mem_cgroup_threshold *_b = b; | |
5464 | ||
5465 | return _a->threshold - _b->threshold; | |
5466 | } | |
5467 | ||
c0ff4b85 | 5468 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
9490ff27 KH |
5469 | { |
5470 | struct mem_cgroup_eventfd_list *ev; | |
5471 | ||
c0ff4b85 | 5472 | list_for_each_entry(ev, &memcg->oom_notify, list) |
9490ff27 KH |
5473 | eventfd_signal(ev->eventfd, 1); |
5474 | return 0; | |
5475 | } | |
5476 | ||
c0ff4b85 | 5477 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
9490ff27 | 5478 | { |
7d74b06f KH |
5479 | struct mem_cgroup *iter; |
5480 | ||
c0ff4b85 | 5481 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 5482 | mem_cgroup_oom_notify_cb(iter); |
9490ff27 KH |
5483 | } |
5484 | ||
5485 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | |
5486 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
2e72b634 KS |
5487 | { |
5488 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
5489 | struct mem_cgroup_thresholds *thresholds; |
5490 | struct mem_cgroup_threshold_ary *new; | |
86ae53e1 | 5491 | enum res_type type = MEMFILE_TYPE(cft->private); |
2e72b634 | 5492 | u64 threshold, usage; |
2c488db2 | 5493 | int i, size, ret; |
2e72b634 KS |
5494 | |
5495 | ret = res_counter_memparse_write_strategy(args, &threshold); | |
5496 | if (ret) | |
5497 | return ret; | |
5498 | ||
5499 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 5500 | |
2e72b634 | 5501 | if (type == _MEM) |
2c488db2 | 5502 | thresholds = &memcg->thresholds; |
2e72b634 | 5503 | else if (type == _MEMSWAP) |
2c488db2 | 5504 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5505 | else |
5506 | BUG(); | |
5507 | ||
5508 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
5509 | ||
5510 | /* Check if a threshold crossed before adding a new one */ | |
2c488db2 | 5511 | if (thresholds->primary) |
2e72b634 KS |
5512 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
5513 | ||
2c488db2 | 5514 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
5515 | |
5516 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 5517 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 5518 | GFP_KERNEL); |
2c488db2 | 5519 | if (!new) { |
2e72b634 KS |
5520 | ret = -ENOMEM; |
5521 | goto unlock; | |
5522 | } | |
2c488db2 | 5523 | new->size = size; |
2e72b634 KS |
5524 | |
5525 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
5526 | if (thresholds->primary) { |
5527 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 5528 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
5529 | } |
5530 | ||
2e72b634 | 5531 | /* Add new threshold */ |
2c488db2 KS |
5532 | new->entries[size - 1].eventfd = eventfd; |
5533 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
5534 | |
5535 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 5536 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
5537 | compare_thresholds, NULL); |
5538 | ||
5539 | /* Find current threshold */ | |
2c488db2 | 5540 | new->current_threshold = -1; |
2e72b634 | 5541 | for (i = 0; i < size; i++) { |
748dad36 | 5542 | if (new->entries[i].threshold <= usage) { |
2e72b634 | 5543 | /* |
2c488db2 KS |
5544 | * new->current_threshold will not be used until |
5545 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
5546 | * it here. |
5547 | */ | |
2c488db2 | 5548 | ++new->current_threshold; |
748dad36 SZ |
5549 | } else |
5550 | break; | |
2e72b634 KS |
5551 | } |
5552 | ||
2c488db2 KS |
5553 | /* Free old spare buffer and save old primary buffer as spare */ |
5554 | kfree(thresholds->spare); | |
5555 | thresholds->spare = thresholds->primary; | |
5556 | ||
5557 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 5558 | |
907860ed | 5559 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
5560 | synchronize_rcu(); |
5561 | ||
2e72b634 KS |
5562 | unlock: |
5563 | mutex_unlock(&memcg->thresholds_lock); | |
5564 | ||
5565 | return ret; | |
5566 | } | |
5567 | ||
907860ed | 5568 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
9490ff27 | 5569 | struct cftype *cft, struct eventfd_ctx *eventfd) |
2e72b634 KS |
5570 | { |
5571 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
5572 | struct mem_cgroup_thresholds *thresholds; |
5573 | struct mem_cgroup_threshold_ary *new; | |
86ae53e1 | 5574 | enum res_type type = MEMFILE_TYPE(cft->private); |
2e72b634 | 5575 | u64 usage; |
2c488db2 | 5576 | int i, j, size; |
2e72b634 KS |
5577 | |
5578 | mutex_lock(&memcg->thresholds_lock); | |
5579 | if (type == _MEM) | |
2c488db2 | 5580 | thresholds = &memcg->thresholds; |
2e72b634 | 5581 | else if (type == _MEMSWAP) |
2c488db2 | 5582 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5583 | else |
5584 | BUG(); | |
5585 | ||
371528ca AV |
5586 | if (!thresholds->primary) |
5587 | goto unlock; | |
5588 | ||
2e72b634 KS |
5589 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
5590 | ||
5591 | /* Check if a threshold crossed before removing */ | |
5592 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
5593 | ||
5594 | /* Calculate new number of threshold */ | |
2c488db2 KS |
5595 | size = 0; |
5596 | for (i = 0; i < thresholds->primary->size; i++) { | |
5597 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
5598 | size++; |
5599 | } | |
5600 | ||
2c488db2 | 5601 | new = thresholds->spare; |
907860ed | 5602 | |
2e72b634 KS |
5603 | /* Set thresholds array to NULL if we don't have thresholds */ |
5604 | if (!size) { | |
2c488db2 KS |
5605 | kfree(new); |
5606 | new = NULL; | |
907860ed | 5607 | goto swap_buffers; |
2e72b634 KS |
5608 | } |
5609 | ||
2c488db2 | 5610 | new->size = size; |
2e72b634 KS |
5611 | |
5612 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
5613 | new->current_threshold = -1; |
5614 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
5615 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
5616 | continue; |
5617 | ||
2c488db2 | 5618 | new->entries[j] = thresholds->primary->entries[i]; |
748dad36 | 5619 | if (new->entries[j].threshold <= usage) { |
2e72b634 | 5620 | /* |
2c488db2 | 5621 | * new->current_threshold will not be used |
2e72b634 KS |
5622 | * until rcu_assign_pointer(), so it's safe to increment |
5623 | * it here. | |
5624 | */ | |
2c488db2 | 5625 | ++new->current_threshold; |
2e72b634 KS |
5626 | } |
5627 | j++; | |
5628 | } | |
5629 | ||
907860ed | 5630 | swap_buffers: |
2c488db2 KS |
5631 | /* Swap primary and spare array */ |
5632 | thresholds->spare = thresholds->primary; | |
8c757763 SZ |
5633 | /* If all events are unregistered, free the spare array */ |
5634 | if (!new) { | |
5635 | kfree(thresholds->spare); | |
5636 | thresholds->spare = NULL; | |
5637 | } | |
5638 | ||
2c488db2 | 5639 | rcu_assign_pointer(thresholds->primary, new); |
2e72b634 | 5640 | |
907860ed | 5641 | /* To be sure that nobody uses thresholds */ |
2e72b634 | 5642 | synchronize_rcu(); |
371528ca | 5643 | unlock: |
2e72b634 | 5644 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 5645 | } |
c1e862c1 | 5646 | |
9490ff27 KH |
5647 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
5648 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
5649 | { | |
5650 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5651 | struct mem_cgroup_eventfd_list *event; | |
86ae53e1 | 5652 | enum res_type type = MEMFILE_TYPE(cft->private); |
9490ff27 KH |
5653 | |
5654 | BUG_ON(type != _OOM_TYPE); | |
5655 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
5656 | if (!event) | |
5657 | return -ENOMEM; | |
5658 | ||
1af8efe9 | 5659 | spin_lock(&memcg_oom_lock); |
9490ff27 KH |
5660 | |
5661 | event->eventfd = eventfd; | |
5662 | list_add(&event->list, &memcg->oom_notify); | |
5663 | ||
5664 | /* already in OOM ? */ | |
79dfdacc | 5665 | if (atomic_read(&memcg->under_oom)) |
9490ff27 | 5666 | eventfd_signal(eventfd, 1); |
1af8efe9 | 5667 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5668 | |
5669 | return 0; | |
5670 | } | |
5671 | ||
907860ed | 5672 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
9490ff27 KH |
5673 | struct cftype *cft, struct eventfd_ctx *eventfd) |
5674 | { | |
c0ff4b85 | 5675 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
9490ff27 | 5676 | struct mem_cgroup_eventfd_list *ev, *tmp; |
86ae53e1 | 5677 | enum res_type type = MEMFILE_TYPE(cft->private); |
9490ff27 KH |
5678 | |
5679 | BUG_ON(type != _OOM_TYPE); | |
5680 | ||
1af8efe9 | 5681 | spin_lock(&memcg_oom_lock); |
9490ff27 | 5682 | |
c0ff4b85 | 5683 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
9490ff27 KH |
5684 | if (ev->eventfd == eventfd) { |
5685 | list_del(&ev->list); | |
5686 | kfree(ev); | |
5687 | } | |
5688 | } | |
5689 | ||
1af8efe9 | 5690 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5691 | } |
5692 | ||
3c11ecf4 KH |
5693 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
5694 | struct cftype *cft, struct cgroup_map_cb *cb) | |
5695 | { | |
c0ff4b85 | 5696 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
3c11ecf4 | 5697 | |
c0ff4b85 | 5698 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); |
3c11ecf4 | 5699 | |
c0ff4b85 | 5700 | if (atomic_read(&memcg->under_oom)) |
3c11ecf4 KH |
5701 | cb->fill(cb, "under_oom", 1); |
5702 | else | |
5703 | cb->fill(cb, "under_oom", 0); | |
5704 | return 0; | |
5705 | } | |
5706 | ||
3c11ecf4 KH |
5707 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
5708 | struct cftype *cft, u64 val) | |
5709 | { | |
c0ff4b85 | 5710 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
3c11ecf4 KH |
5711 | struct mem_cgroup *parent; |
5712 | ||
5713 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
5714 | if (!cgrp->parent || !((val == 0) || (val == 1))) | |
5715 | return -EINVAL; | |
5716 | ||
5717 | parent = mem_cgroup_from_cont(cgrp->parent); | |
5718 | ||
0999821b | 5719 | mutex_lock(&memcg_create_mutex); |
3c11ecf4 | 5720 | /* oom-kill-disable is a flag for subhierarchy. */ |
b5f99b53 | 5721 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
0999821b | 5722 | mutex_unlock(&memcg_create_mutex); |
3c11ecf4 KH |
5723 | return -EINVAL; |
5724 | } | |
c0ff4b85 | 5725 | memcg->oom_kill_disable = val; |
4d845ebf | 5726 | if (!val) |
c0ff4b85 | 5727 | memcg_oom_recover(memcg); |
0999821b | 5728 | mutex_unlock(&memcg_create_mutex); |
3c11ecf4 KH |
5729 | return 0; |
5730 | } | |
5731 | ||
c255a458 | 5732 | #ifdef CONFIG_MEMCG_KMEM |
cbe128e3 | 5733 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa | 5734 | { |
55007d84 GC |
5735 | int ret; |
5736 | ||
2633d7a0 | 5737 | memcg->kmemcg_id = -1; |
55007d84 GC |
5738 | ret = memcg_propagate_kmem(memcg); |
5739 | if (ret) | |
5740 | return ret; | |
2633d7a0 | 5741 | |
1d62e436 | 5742 | return mem_cgroup_sockets_init(memcg, ss); |
e5671dfa GC |
5743 | }; |
5744 | ||
1d62e436 | 5745 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
d1a4c0b3 | 5746 | { |
1d62e436 | 5747 | mem_cgroup_sockets_destroy(memcg); |
7de37682 GC |
5748 | |
5749 | memcg_kmem_mark_dead(memcg); | |
5750 | ||
5751 | if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) | |
5752 | return; | |
5753 | ||
5754 | /* | |
5755 | * Charges already down to 0, undo mem_cgroup_get() done in the charge | |
5756 | * path here, being careful not to race with memcg_uncharge_kmem: it is | |
5757 | * possible that the charges went down to 0 between mark_dead and the | |
5758 | * res_counter read, so in that case, we don't need the put | |
5759 | */ | |
5760 | if (memcg_kmem_test_and_clear_dead(memcg)) | |
5761 | mem_cgroup_put(memcg); | |
d1a4c0b3 | 5762 | } |
e5671dfa | 5763 | #else |
cbe128e3 | 5764 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa GC |
5765 | { |
5766 | return 0; | |
5767 | } | |
d1a4c0b3 | 5768 | |
1d62e436 | 5769 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
d1a4c0b3 GC |
5770 | { |
5771 | } | |
e5671dfa GC |
5772 | #endif |
5773 | ||
8cdea7c0 BS |
5774 | static struct cftype mem_cgroup_files[] = { |
5775 | { | |
0eea1030 | 5776 | .name = "usage_in_bytes", |
8c7c6e34 | 5777 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
af36f906 | 5778 | .read = mem_cgroup_read, |
9490ff27 KH |
5779 | .register_event = mem_cgroup_usage_register_event, |
5780 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8cdea7c0 | 5781 | }, |
c84872e1 PE |
5782 | { |
5783 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 5784 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
29f2a4da | 5785 | .trigger = mem_cgroup_reset, |
af36f906 | 5786 | .read = mem_cgroup_read, |
c84872e1 | 5787 | }, |
8cdea7c0 | 5788 | { |
0eea1030 | 5789 | .name = "limit_in_bytes", |
8c7c6e34 | 5790 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
856c13aa | 5791 | .write_string = mem_cgroup_write, |
af36f906 | 5792 | .read = mem_cgroup_read, |
8cdea7c0 | 5793 | }, |
296c81d8 BS |
5794 | { |
5795 | .name = "soft_limit_in_bytes", | |
5796 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
5797 | .write_string = mem_cgroup_write, | |
af36f906 | 5798 | .read = mem_cgroup_read, |
296c81d8 | 5799 | }, |
8cdea7c0 BS |
5800 | { |
5801 | .name = "failcnt", | |
8c7c6e34 | 5802 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
29f2a4da | 5803 | .trigger = mem_cgroup_reset, |
af36f906 | 5804 | .read = mem_cgroup_read, |
8cdea7c0 | 5805 | }, |
d2ceb9b7 KH |
5806 | { |
5807 | .name = "stat", | |
ab215884 | 5808 | .read_seq_string = memcg_stat_show, |
d2ceb9b7 | 5809 | }, |
c1e862c1 KH |
5810 | { |
5811 | .name = "force_empty", | |
5812 | .trigger = mem_cgroup_force_empty_write, | |
5813 | }, | |
18f59ea7 BS |
5814 | { |
5815 | .name = "use_hierarchy", | |
5816 | .write_u64 = mem_cgroup_hierarchy_write, | |
5817 | .read_u64 = mem_cgroup_hierarchy_read, | |
5818 | }, | |
a7885eb8 KM |
5819 | { |
5820 | .name = "swappiness", | |
5821 | .read_u64 = mem_cgroup_swappiness_read, | |
5822 | .write_u64 = mem_cgroup_swappiness_write, | |
5823 | }, | |
7dc74be0 DN |
5824 | { |
5825 | .name = "move_charge_at_immigrate", | |
5826 | .read_u64 = mem_cgroup_move_charge_read, | |
5827 | .write_u64 = mem_cgroup_move_charge_write, | |
5828 | }, | |
9490ff27 KH |
5829 | { |
5830 | .name = "oom_control", | |
3c11ecf4 KH |
5831 | .read_map = mem_cgroup_oom_control_read, |
5832 | .write_u64 = mem_cgroup_oom_control_write, | |
9490ff27 KH |
5833 | .register_event = mem_cgroup_oom_register_event, |
5834 | .unregister_event = mem_cgroup_oom_unregister_event, | |
5835 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
5836 | }, | |
406eb0c9 YH |
5837 | #ifdef CONFIG_NUMA |
5838 | { | |
5839 | .name = "numa_stat", | |
ab215884 | 5840 | .read_seq_string = memcg_numa_stat_show, |
406eb0c9 YH |
5841 | }, |
5842 | #endif | |
510fc4e1 GC |
5843 | #ifdef CONFIG_MEMCG_KMEM |
5844 | { | |
5845 | .name = "kmem.limit_in_bytes", | |
5846 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
5847 | .write_string = mem_cgroup_write, | |
5848 | .read = mem_cgroup_read, | |
5849 | }, | |
5850 | { | |
5851 | .name = "kmem.usage_in_bytes", | |
5852 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
5853 | .read = mem_cgroup_read, | |
5854 | }, | |
5855 | { | |
5856 | .name = "kmem.failcnt", | |
5857 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
5858 | .trigger = mem_cgroup_reset, | |
5859 | .read = mem_cgroup_read, | |
5860 | }, | |
5861 | { | |
5862 | .name = "kmem.max_usage_in_bytes", | |
5863 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
5864 | .trigger = mem_cgroup_reset, | |
5865 | .read = mem_cgroup_read, | |
5866 | }, | |
749c5415 GC |
5867 | #ifdef CONFIG_SLABINFO |
5868 | { | |
5869 | .name = "kmem.slabinfo", | |
5870 | .read_seq_string = mem_cgroup_slabinfo_read, | |
5871 | }, | |
5872 | #endif | |
8c7c6e34 | 5873 | #endif |
6bc10349 | 5874 | { }, /* terminate */ |
af36f906 | 5875 | }; |
8c7c6e34 | 5876 | |
2d11085e MH |
5877 | #ifdef CONFIG_MEMCG_SWAP |
5878 | static struct cftype memsw_cgroup_files[] = { | |
5879 | { | |
5880 | .name = "memsw.usage_in_bytes", | |
5881 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
5882 | .read = mem_cgroup_read, | |
5883 | .register_event = mem_cgroup_usage_register_event, | |
5884 | .unregister_event = mem_cgroup_usage_unregister_event, | |
5885 | }, | |
5886 | { | |
5887 | .name = "memsw.max_usage_in_bytes", | |
5888 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
5889 | .trigger = mem_cgroup_reset, | |
5890 | .read = mem_cgroup_read, | |
5891 | }, | |
5892 | { | |
5893 | .name = "memsw.limit_in_bytes", | |
5894 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
5895 | .write_string = mem_cgroup_write, | |
5896 | .read = mem_cgroup_read, | |
5897 | }, | |
5898 | { | |
5899 | .name = "memsw.failcnt", | |
5900 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
5901 | .trigger = mem_cgroup_reset, | |
5902 | .read = mem_cgroup_read, | |
5903 | }, | |
5904 | { }, /* terminate */ | |
5905 | }; | |
5906 | #endif | |
c0ff4b85 | 5907 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
5908 | { |
5909 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 5910 | struct mem_cgroup_per_zone *mz; |
41e3355d | 5911 | int zone, tmp = node; |
1ecaab2b KH |
5912 | /* |
5913 | * This routine is called against possible nodes. | |
5914 | * But it's BUG to call kmalloc() against offline node. | |
5915 | * | |
5916 | * TODO: this routine can waste much memory for nodes which will | |
5917 | * never be onlined. It's better to use memory hotplug callback | |
5918 | * function. | |
5919 | */ | |
41e3355d KH |
5920 | if (!node_state(node, N_NORMAL_MEMORY)) |
5921 | tmp = -1; | |
17295c88 | 5922 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
5923 | if (!pn) |
5924 | return 1; | |
1ecaab2b | 5925 | |
1ecaab2b KH |
5926 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
5927 | mz = &pn->zoneinfo[zone]; | |
bea8c150 | 5928 | lruvec_init(&mz->lruvec); |
f64c3f54 | 5929 | mz->usage_in_excess = 0; |
4e416953 | 5930 | mz->on_tree = false; |
d79154bb | 5931 | mz->memcg = memcg; |
1ecaab2b | 5932 | } |
0a619e58 | 5933 | memcg->info.nodeinfo[node] = pn; |
6d12e2d8 KH |
5934 | return 0; |
5935 | } | |
5936 | ||
c0ff4b85 | 5937 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
1ecaab2b | 5938 | { |
c0ff4b85 | 5939 | kfree(memcg->info.nodeinfo[node]); |
1ecaab2b KH |
5940 | } |
5941 | ||
33327948 KH |
5942 | static struct mem_cgroup *mem_cgroup_alloc(void) |
5943 | { | |
d79154bb | 5944 | struct mem_cgroup *memcg; |
45cf7ebd | 5945 | size_t size = memcg_size(); |
33327948 | 5946 | |
45cf7ebd | 5947 | /* Can be very big if nr_node_ids is very big */ |
c8dad2bb | 5948 | if (size < PAGE_SIZE) |
d79154bb | 5949 | memcg = kzalloc(size, GFP_KERNEL); |
33327948 | 5950 | else |
d79154bb | 5951 | memcg = vzalloc(size); |
33327948 | 5952 | |
d79154bb | 5953 | if (!memcg) |
e7bbcdf3 DC |
5954 | return NULL; |
5955 | ||
d79154bb HD |
5956 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
5957 | if (!memcg->stat) | |
d2e61b8d | 5958 | goto out_free; |
d79154bb HD |
5959 | spin_lock_init(&memcg->pcp_counter_lock); |
5960 | return memcg; | |
d2e61b8d DC |
5961 | |
5962 | out_free: | |
5963 | if (size < PAGE_SIZE) | |
d79154bb | 5964 | kfree(memcg); |
d2e61b8d | 5965 | else |
d79154bb | 5966 | vfree(memcg); |
d2e61b8d | 5967 | return NULL; |
33327948 KH |
5968 | } |
5969 | ||
59927fb9 | 5970 | /* |
c8b2a36f GC |
5971 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
5972 | * (scanning all at force_empty is too costly...) | |
5973 | * | |
5974 | * Instead of clearing all references at force_empty, we remember | |
5975 | * the number of reference from swap_cgroup and free mem_cgroup when | |
5976 | * it goes down to 0. | |
5977 | * | |
5978 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
59927fb9 | 5979 | */ |
c8b2a36f GC |
5980 | |
5981 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
59927fb9 | 5982 | { |
c8b2a36f | 5983 | int node; |
45cf7ebd | 5984 | size_t size = memcg_size(); |
59927fb9 | 5985 | |
c8b2a36f GC |
5986 | mem_cgroup_remove_from_trees(memcg); |
5987 | free_css_id(&mem_cgroup_subsys, &memcg->css); | |
5988 | ||
5989 | for_each_node(node) | |
5990 | free_mem_cgroup_per_zone_info(memcg, node); | |
5991 | ||
5992 | free_percpu(memcg->stat); | |
5993 | ||
3f134619 GC |
5994 | /* |
5995 | * We need to make sure that (at least for now), the jump label | |
5996 | * destruction code runs outside of the cgroup lock. This is because | |
5997 | * get_online_cpus(), which is called from the static_branch update, | |
5998 | * can't be called inside the cgroup_lock. cpusets are the ones | |
5999 | * enforcing this dependency, so if they ever change, we might as well. | |
6000 | * | |
6001 | * schedule_work() will guarantee this happens. Be careful if you need | |
6002 | * to move this code around, and make sure it is outside | |
6003 | * the cgroup_lock. | |
6004 | */ | |
a8964b9b | 6005 | disarm_static_keys(memcg); |
3afe36b1 GC |
6006 | if (size < PAGE_SIZE) |
6007 | kfree(memcg); | |
6008 | else | |
6009 | vfree(memcg); | |
59927fb9 | 6010 | } |
3afe36b1 | 6011 | |
59927fb9 | 6012 | |
8c7c6e34 | 6013 | /* |
c8b2a36f GC |
6014 | * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, |
6015 | * but in process context. The work_freeing structure is overlaid | |
6016 | * on the rcu_freeing structure, which itself is overlaid on memsw. | |
8c7c6e34 | 6017 | */ |
c8b2a36f | 6018 | static void free_work(struct work_struct *work) |
33327948 | 6019 | { |
c8b2a36f | 6020 | struct mem_cgroup *memcg; |
08e552c6 | 6021 | |
c8b2a36f GC |
6022 | memcg = container_of(work, struct mem_cgroup, work_freeing); |
6023 | __mem_cgroup_free(memcg); | |
6024 | } | |
04046e1a | 6025 | |
c8b2a36f GC |
6026 | static void free_rcu(struct rcu_head *rcu_head) |
6027 | { | |
6028 | struct mem_cgroup *memcg; | |
08e552c6 | 6029 | |
c8b2a36f GC |
6030 | memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); |
6031 | INIT_WORK(&memcg->work_freeing, free_work); | |
6032 | schedule_work(&memcg->work_freeing); | |
33327948 KH |
6033 | } |
6034 | ||
c0ff4b85 | 6035 | static void mem_cgroup_get(struct mem_cgroup *memcg) |
8c7c6e34 | 6036 | { |
c0ff4b85 | 6037 | atomic_inc(&memcg->refcnt); |
8c7c6e34 KH |
6038 | } |
6039 | ||
c0ff4b85 | 6040 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) |
8c7c6e34 | 6041 | { |
c0ff4b85 R |
6042 | if (atomic_sub_and_test(count, &memcg->refcnt)) { |
6043 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | |
c8b2a36f | 6044 | call_rcu(&memcg->rcu_freeing, free_rcu); |
7bcc1bb1 DN |
6045 | if (parent) |
6046 | mem_cgroup_put(parent); | |
6047 | } | |
8c7c6e34 KH |
6048 | } |
6049 | ||
c0ff4b85 | 6050 | static void mem_cgroup_put(struct mem_cgroup *memcg) |
483c30b5 | 6051 | { |
c0ff4b85 | 6052 | __mem_cgroup_put(memcg, 1); |
483c30b5 DN |
6053 | } |
6054 | ||
7bcc1bb1 DN |
6055 | /* |
6056 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
6057 | */ | |
e1aab161 | 6058 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
7bcc1bb1 | 6059 | { |
c0ff4b85 | 6060 | if (!memcg->res.parent) |
7bcc1bb1 | 6061 | return NULL; |
c0ff4b85 | 6062 | return mem_cgroup_from_res_counter(memcg->res.parent, res); |
7bcc1bb1 | 6063 | } |
e1aab161 | 6064 | EXPORT_SYMBOL(parent_mem_cgroup); |
33327948 | 6065 | |
8787a1df | 6066 | static void __init mem_cgroup_soft_limit_tree_init(void) |
f64c3f54 BS |
6067 | { |
6068 | struct mem_cgroup_tree_per_node *rtpn; | |
6069 | struct mem_cgroup_tree_per_zone *rtpz; | |
6070 | int tmp, node, zone; | |
6071 | ||
3ed28fa1 | 6072 | for_each_node(node) { |
f64c3f54 BS |
6073 | tmp = node; |
6074 | if (!node_state(node, N_NORMAL_MEMORY)) | |
6075 | tmp = -1; | |
6076 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
8787a1df | 6077 | BUG_ON(!rtpn); |
f64c3f54 BS |
6078 | |
6079 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
6080 | ||
6081 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
6082 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
6083 | rtpz->rb_root = RB_ROOT; | |
6084 | spin_lock_init(&rtpz->lock); | |
6085 | } | |
6086 | } | |
f64c3f54 BS |
6087 | } |
6088 | ||
0eb253e2 | 6089 | static struct cgroup_subsys_state * __ref |
92fb9748 | 6090 | mem_cgroup_css_alloc(struct cgroup *cont) |
8cdea7c0 | 6091 | { |
d142e3e6 | 6092 | struct mem_cgroup *memcg; |
04046e1a | 6093 | long error = -ENOMEM; |
6d12e2d8 | 6094 | int node; |
8cdea7c0 | 6095 | |
c0ff4b85 R |
6096 | memcg = mem_cgroup_alloc(); |
6097 | if (!memcg) | |
04046e1a | 6098 | return ERR_PTR(error); |
78fb7466 | 6099 | |
3ed28fa1 | 6100 | for_each_node(node) |
c0ff4b85 | 6101 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
6d12e2d8 | 6102 | goto free_out; |
f64c3f54 | 6103 | |
c077719b | 6104 | /* root ? */ |
28dbc4b6 | 6105 | if (cont->parent == NULL) { |
a41c58a6 | 6106 | root_mem_cgroup = memcg; |
d142e3e6 GC |
6107 | res_counter_init(&memcg->res, NULL); |
6108 | res_counter_init(&memcg->memsw, NULL); | |
6109 | res_counter_init(&memcg->kmem, NULL); | |
18f59ea7 | 6110 | } |
28dbc4b6 | 6111 | |
d142e3e6 GC |
6112 | memcg->last_scanned_node = MAX_NUMNODES; |
6113 | INIT_LIST_HEAD(&memcg->oom_notify); | |
6114 | atomic_set(&memcg->refcnt, 1); | |
6115 | memcg->move_charge_at_immigrate = 0; | |
6116 | mutex_init(&memcg->thresholds_lock); | |
6117 | spin_lock_init(&memcg->move_lock); | |
6118 | ||
6119 | return &memcg->css; | |
6120 | ||
6121 | free_out: | |
6122 | __mem_cgroup_free(memcg); | |
6123 | return ERR_PTR(error); | |
6124 | } | |
6125 | ||
6126 | static int | |
6127 | mem_cgroup_css_online(struct cgroup *cont) | |
6128 | { | |
6129 | struct mem_cgroup *memcg, *parent; | |
6130 | int error = 0; | |
6131 | ||
6132 | if (!cont->parent) | |
6133 | return 0; | |
6134 | ||
0999821b | 6135 | mutex_lock(&memcg_create_mutex); |
d142e3e6 GC |
6136 | memcg = mem_cgroup_from_cont(cont); |
6137 | parent = mem_cgroup_from_cont(cont->parent); | |
6138 | ||
6139 | memcg->use_hierarchy = parent->use_hierarchy; | |
6140 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
6141 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
6142 | ||
6143 | if (parent->use_hierarchy) { | |
c0ff4b85 R |
6144 | res_counter_init(&memcg->res, &parent->res); |
6145 | res_counter_init(&memcg->memsw, &parent->memsw); | |
510fc4e1 | 6146 | res_counter_init(&memcg->kmem, &parent->kmem); |
55007d84 | 6147 | |
7bcc1bb1 DN |
6148 | /* |
6149 | * We increment refcnt of the parent to ensure that we can | |
6150 | * safely access it on res_counter_charge/uncharge. | |
6151 | * This refcnt will be decremented when freeing this | |
6152 | * mem_cgroup(see mem_cgroup_put). | |
6153 | */ | |
6154 | mem_cgroup_get(parent); | |
18f59ea7 | 6155 | } else { |
c0ff4b85 R |
6156 | res_counter_init(&memcg->res, NULL); |
6157 | res_counter_init(&memcg->memsw, NULL); | |
510fc4e1 | 6158 | res_counter_init(&memcg->kmem, NULL); |
8c7f6edb TH |
6159 | /* |
6160 | * Deeper hierachy with use_hierarchy == false doesn't make | |
6161 | * much sense so let cgroup subsystem know about this | |
6162 | * unfortunate state in our controller. | |
6163 | */ | |
d142e3e6 | 6164 | if (parent != root_mem_cgroup) |
8c7f6edb | 6165 | mem_cgroup_subsys.broken_hierarchy = true; |
18f59ea7 | 6166 | } |
cbe128e3 GC |
6167 | |
6168 | error = memcg_init_kmem(memcg, &mem_cgroup_subsys); | |
0999821b | 6169 | mutex_unlock(&memcg_create_mutex); |
cbe128e3 GC |
6170 | if (error) { |
6171 | /* | |
6172 | * We call put now because our (and parent's) refcnts | |
6173 | * are already in place. mem_cgroup_put() will internally | |
6174 | * call __mem_cgroup_free, so return directly | |
6175 | */ | |
6176 | mem_cgroup_put(memcg); | |
e4715f01 GC |
6177 | if (parent->use_hierarchy) |
6178 | mem_cgroup_put(parent); | |
cbe128e3 | 6179 | } |
d142e3e6 | 6180 | return error; |
8cdea7c0 BS |
6181 | } |
6182 | ||
92fb9748 | 6183 | static void mem_cgroup_css_offline(struct cgroup *cont) |
df878fb0 | 6184 | { |
c0ff4b85 | 6185 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
ec64f515 | 6186 | |
ab5196c2 | 6187 | mem_cgroup_reparent_charges(memcg); |
1f458cbf | 6188 | mem_cgroup_destroy_all_caches(memcg); |
df878fb0 KH |
6189 | } |
6190 | ||
92fb9748 | 6191 | static void mem_cgroup_css_free(struct cgroup *cont) |
8cdea7c0 | 6192 | { |
c0ff4b85 | 6193 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
c268e994 | 6194 | |
1d62e436 | 6195 | kmem_cgroup_destroy(memcg); |
d1a4c0b3 | 6196 | |
c0ff4b85 | 6197 | mem_cgroup_put(memcg); |
8cdea7c0 BS |
6198 | } |
6199 | ||
02491447 | 6200 | #ifdef CONFIG_MMU |
7dc74be0 | 6201 | /* Handlers for move charge at task migration. */ |
854ffa8d DN |
6202 | #define PRECHARGE_COUNT_AT_ONCE 256 |
6203 | static int mem_cgroup_do_precharge(unsigned long count) | |
7dc74be0 | 6204 | { |
854ffa8d DN |
6205 | int ret = 0; |
6206 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | |
c0ff4b85 | 6207 | struct mem_cgroup *memcg = mc.to; |
4ffef5fe | 6208 | |
c0ff4b85 | 6209 | if (mem_cgroup_is_root(memcg)) { |
854ffa8d DN |
6210 | mc.precharge += count; |
6211 | /* we don't need css_get for root */ | |
6212 | return ret; | |
6213 | } | |
6214 | /* try to charge at once */ | |
6215 | if (count > 1) { | |
6216 | struct res_counter *dummy; | |
6217 | /* | |
c0ff4b85 | 6218 | * "memcg" cannot be under rmdir() because we've already checked |
854ffa8d DN |
6219 | * by cgroup_lock_live_cgroup() that it is not removed and we |
6220 | * are still under the same cgroup_mutex. So we can postpone | |
6221 | * css_get(). | |
6222 | */ | |
c0ff4b85 | 6223 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) |
854ffa8d | 6224 | goto one_by_one; |
c0ff4b85 | 6225 | if (do_swap_account && res_counter_charge(&memcg->memsw, |
854ffa8d | 6226 | PAGE_SIZE * count, &dummy)) { |
c0ff4b85 | 6227 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); |
854ffa8d DN |
6228 | goto one_by_one; |
6229 | } | |
6230 | mc.precharge += count; | |
854ffa8d DN |
6231 | return ret; |
6232 | } | |
6233 | one_by_one: | |
6234 | /* fall back to one by one charge */ | |
6235 | while (count--) { | |
6236 | if (signal_pending(current)) { | |
6237 | ret = -EINTR; | |
6238 | break; | |
6239 | } | |
6240 | if (!batch_count--) { | |
6241 | batch_count = PRECHARGE_COUNT_AT_ONCE; | |
6242 | cond_resched(); | |
6243 | } | |
c0ff4b85 R |
6244 | ret = __mem_cgroup_try_charge(NULL, |
6245 | GFP_KERNEL, 1, &memcg, false); | |
38c5d72f | 6246 | if (ret) |
854ffa8d | 6247 | /* mem_cgroup_clear_mc() will do uncharge later */ |
38c5d72f | 6248 | return ret; |
854ffa8d DN |
6249 | mc.precharge++; |
6250 | } | |
4ffef5fe DN |
6251 | return ret; |
6252 | } | |
6253 | ||
6254 | /** | |
8d32ff84 | 6255 | * get_mctgt_type - get target type of moving charge |
4ffef5fe DN |
6256 | * @vma: the vma the pte to be checked belongs |
6257 | * @addr: the address corresponding to the pte to be checked | |
6258 | * @ptent: the pte to be checked | |
02491447 | 6259 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
6260 | * |
6261 | * Returns | |
6262 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
6263 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
6264 | * move charge. if @target is not NULL, the page is stored in target->page | |
6265 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
6266 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
6267 | * target for charge migration. if @target is not NULL, the entry is stored | |
6268 | * in target->ent. | |
4ffef5fe DN |
6269 | * |
6270 | * Called with pte lock held. | |
6271 | */ | |
4ffef5fe DN |
6272 | union mc_target { |
6273 | struct page *page; | |
02491447 | 6274 | swp_entry_t ent; |
4ffef5fe DN |
6275 | }; |
6276 | ||
4ffef5fe | 6277 | enum mc_target_type { |
8d32ff84 | 6278 | MC_TARGET_NONE = 0, |
4ffef5fe | 6279 | MC_TARGET_PAGE, |
02491447 | 6280 | MC_TARGET_SWAP, |
4ffef5fe DN |
6281 | }; |
6282 | ||
90254a65 DN |
6283 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
6284 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 6285 | { |
90254a65 | 6286 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 6287 | |
90254a65 DN |
6288 | if (!page || !page_mapped(page)) |
6289 | return NULL; | |
6290 | if (PageAnon(page)) { | |
6291 | /* we don't move shared anon */ | |
4b91355e | 6292 | if (!move_anon()) |
90254a65 | 6293 | return NULL; |
87946a72 DN |
6294 | } else if (!move_file()) |
6295 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
6296 | return NULL; |
6297 | if (!get_page_unless_zero(page)) | |
6298 | return NULL; | |
6299 | ||
6300 | return page; | |
6301 | } | |
6302 | ||
4b91355e | 6303 | #ifdef CONFIG_SWAP |
90254a65 DN |
6304 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
6305 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6306 | { | |
90254a65 DN |
6307 | struct page *page = NULL; |
6308 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
6309 | ||
6310 | if (!move_anon() || non_swap_entry(ent)) | |
6311 | return NULL; | |
4b91355e KH |
6312 | /* |
6313 | * Because lookup_swap_cache() updates some statistics counter, | |
6314 | * we call find_get_page() with swapper_space directly. | |
6315 | */ | |
33806f06 | 6316 | page = find_get_page(swap_address_space(ent), ent.val); |
90254a65 DN |
6317 | if (do_swap_account) |
6318 | entry->val = ent.val; | |
6319 | ||
6320 | return page; | |
6321 | } | |
4b91355e KH |
6322 | #else |
6323 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
6324 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6325 | { | |
6326 | return NULL; | |
6327 | } | |
6328 | #endif | |
90254a65 | 6329 | |
87946a72 DN |
6330 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
6331 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6332 | { | |
6333 | struct page *page = NULL; | |
87946a72 DN |
6334 | struct address_space *mapping; |
6335 | pgoff_t pgoff; | |
6336 | ||
6337 | if (!vma->vm_file) /* anonymous vma */ | |
6338 | return NULL; | |
6339 | if (!move_file()) | |
6340 | return NULL; | |
6341 | ||
87946a72 DN |
6342 | mapping = vma->vm_file->f_mapping; |
6343 | if (pte_none(ptent)) | |
6344 | pgoff = linear_page_index(vma, addr); | |
6345 | else /* pte_file(ptent) is true */ | |
6346 | pgoff = pte_to_pgoff(ptent); | |
6347 | ||
6348 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
aa3b1895 HD |
6349 | page = find_get_page(mapping, pgoff); |
6350 | ||
6351 | #ifdef CONFIG_SWAP | |
6352 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
6353 | if (radix_tree_exceptional_entry(page)) { | |
6354 | swp_entry_t swap = radix_to_swp_entry(page); | |
87946a72 | 6355 | if (do_swap_account) |
aa3b1895 | 6356 | *entry = swap; |
33806f06 | 6357 | page = find_get_page(swap_address_space(swap), swap.val); |
87946a72 | 6358 | } |
aa3b1895 | 6359 | #endif |
87946a72 DN |
6360 | return page; |
6361 | } | |
6362 | ||
8d32ff84 | 6363 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
90254a65 DN |
6364 | unsigned long addr, pte_t ptent, union mc_target *target) |
6365 | { | |
6366 | struct page *page = NULL; | |
6367 | struct page_cgroup *pc; | |
8d32ff84 | 6368 | enum mc_target_type ret = MC_TARGET_NONE; |
90254a65 DN |
6369 | swp_entry_t ent = { .val = 0 }; |
6370 | ||
6371 | if (pte_present(ptent)) | |
6372 | page = mc_handle_present_pte(vma, addr, ptent); | |
6373 | else if (is_swap_pte(ptent)) | |
6374 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
87946a72 DN |
6375 | else if (pte_none(ptent) || pte_file(ptent)) |
6376 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
90254a65 DN |
6377 | |
6378 | if (!page && !ent.val) | |
8d32ff84 | 6379 | return ret; |
02491447 DN |
6380 | if (page) { |
6381 | pc = lookup_page_cgroup(page); | |
6382 | /* | |
6383 | * Do only loose check w/o page_cgroup lock. | |
6384 | * mem_cgroup_move_account() checks the pc is valid or not under | |
6385 | * the lock. | |
6386 | */ | |
6387 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6388 | ret = MC_TARGET_PAGE; | |
6389 | if (target) | |
6390 | target->page = page; | |
6391 | } | |
6392 | if (!ret || !target) | |
6393 | put_page(page); | |
6394 | } | |
90254a65 DN |
6395 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
6396 | if (ent.val && !ret && | |
9fb4b7cc | 6397 | css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { |
7f0f1546 KH |
6398 | ret = MC_TARGET_SWAP; |
6399 | if (target) | |
6400 | target->ent = ent; | |
4ffef5fe | 6401 | } |
4ffef5fe DN |
6402 | return ret; |
6403 | } | |
6404 | ||
12724850 NH |
6405 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6406 | /* | |
6407 | * We don't consider swapping or file mapped pages because THP does not | |
6408 | * support them for now. | |
6409 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
6410 | */ | |
6411 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6412 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6413 | { | |
6414 | struct page *page = NULL; | |
6415 | struct page_cgroup *pc; | |
6416 | enum mc_target_type ret = MC_TARGET_NONE; | |
6417 | ||
6418 | page = pmd_page(pmd); | |
6419 | VM_BUG_ON(!page || !PageHead(page)); | |
6420 | if (!move_anon()) | |
6421 | return ret; | |
6422 | pc = lookup_page_cgroup(page); | |
6423 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6424 | ret = MC_TARGET_PAGE; | |
6425 | if (target) { | |
6426 | get_page(page); | |
6427 | target->page = page; | |
6428 | } | |
6429 | } | |
6430 | return ret; | |
6431 | } | |
6432 | #else | |
6433 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6434 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6435 | { | |
6436 | return MC_TARGET_NONE; | |
6437 | } | |
6438 | #endif | |
6439 | ||
4ffef5fe DN |
6440 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
6441 | unsigned long addr, unsigned long end, | |
6442 | struct mm_walk *walk) | |
6443 | { | |
6444 | struct vm_area_struct *vma = walk->private; | |
6445 | pte_t *pte; | |
6446 | spinlock_t *ptl; | |
6447 | ||
12724850 NH |
6448 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
6449 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | |
6450 | mc.precharge += HPAGE_PMD_NR; | |
6451 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1a5a9906 | 6452 | return 0; |
12724850 | 6453 | } |
03319327 | 6454 | |
45f83cef AA |
6455 | if (pmd_trans_unstable(pmd)) |
6456 | return 0; | |
4ffef5fe DN |
6457 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
6458 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
8d32ff84 | 6459 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
4ffef5fe DN |
6460 | mc.precharge++; /* increment precharge temporarily */ |
6461 | pte_unmap_unlock(pte - 1, ptl); | |
6462 | cond_resched(); | |
6463 | ||
7dc74be0 DN |
6464 | return 0; |
6465 | } | |
6466 | ||
4ffef5fe DN |
6467 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
6468 | { | |
6469 | unsigned long precharge; | |
6470 | struct vm_area_struct *vma; | |
6471 | ||
dfe076b0 | 6472 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
6473 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6474 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
6475 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
6476 | .mm = mm, | |
6477 | .private = vma, | |
6478 | }; | |
6479 | if (is_vm_hugetlb_page(vma)) | |
6480 | continue; | |
4ffef5fe DN |
6481 | walk_page_range(vma->vm_start, vma->vm_end, |
6482 | &mem_cgroup_count_precharge_walk); | |
6483 | } | |
dfe076b0 | 6484 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
6485 | |
6486 | precharge = mc.precharge; | |
6487 | mc.precharge = 0; | |
6488 | ||
6489 | return precharge; | |
6490 | } | |
6491 | ||
4ffef5fe DN |
6492 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
6493 | { | |
dfe076b0 DN |
6494 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
6495 | ||
6496 | VM_BUG_ON(mc.moving_task); | |
6497 | mc.moving_task = current; | |
6498 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
6499 | } |
6500 | ||
dfe076b0 DN |
6501 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
6502 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 6503 | { |
2bd9bb20 KH |
6504 | struct mem_cgroup *from = mc.from; |
6505 | struct mem_cgroup *to = mc.to; | |
6506 | ||
4ffef5fe | 6507 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d DN |
6508 | if (mc.precharge) { |
6509 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | |
6510 | mc.precharge = 0; | |
6511 | } | |
6512 | /* | |
6513 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
6514 | * we must uncharge here. | |
6515 | */ | |
6516 | if (mc.moved_charge) { | |
6517 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | |
6518 | mc.moved_charge = 0; | |
4ffef5fe | 6519 | } |
483c30b5 DN |
6520 | /* we must fixup refcnts and charges */ |
6521 | if (mc.moved_swap) { | |
483c30b5 DN |
6522 | /* uncharge swap account from the old cgroup */ |
6523 | if (!mem_cgroup_is_root(mc.from)) | |
6524 | res_counter_uncharge(&mc.from->memsw, | |
6525 | PAGE_SIZE * mc.moved_swap); | |
6526 | __mem_cgroup_put(mc.from, mc.moved_swap); | |
6527 | ||
6528 | if (!mem_cgroup_is_root(mc.to)) { | |
6529 | /* | |
6530 | * we charged both to->res and to->memsw, so we should | |
6531 | * uncharge to->res. | |
6532 | */ | |
6533 | res_counter_uncharge(&mc.to->res, | |
6534 | PAGE_SIZE * mc.moved_swap); | |
483c30b5 DN |
6535 | } |
6536 | /* we've already done mem_cgroup_get(mc.to) */ | |
483c30b5 DN |
6537 | mc.moved_swap = 0; |
6538 | } | |
dfe076b0 DN |
6539 | memcg_oom_recover(from); |
6540 | memcg_oom_recover(to); | |
6541 | wake_up_all(&mc.waitq); | |
6542 | } | |
6543 | ||
6544 | static void mem_cgroup_clear_mc(void) | |
6545 | { | |
6546 | struct mem_cgroup *from = mc.from; | |
6547 | ||
6548 | /* | |
6549 | * we must clear moving_task before waking up waiters at the end of | |
6550 | * task migration. | |
6551 | */ | |
6552 | mc.moving_task = NULL; | |
6553 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 6554 | spin_lock(&mc.lock); |
4ffef5fe DN |
6555 | mc.from = NULL; |
6556 | mc.to = NULL; | |
2bd9bb20 | 6557 | spin_unlock(&mc.lock); |
32047e2a | 6558 | mem_cgroup_end_move(from); |
4ffef5fe DN |
6559 | } |
6560 | ||
761b3ef5 LZ |
6561 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
6562 | struct cgroup_taskset *tset) | |
7dc74be0 | 6563 | { |
2f7ee569 | 6564 | struct task_struct *p = cgroup_taskset_first(tset); |
7dc74be0 | 6565 | int ret = 0; |
c0ff4b85 | 6566 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); |
ee5e8472 | 6567 | unsigned long move_charge_at_immigrate; |
7dc74be0 | 6568 | |
ee5e8472 GC |
6569 | /* |
6570 | * We are now commited to this value whatever it is. Changes in this | |
6571 | * tunable will only affect upcoming migrations, not the current one. | |
6572 | * So we need to save it, and keep it going. | |
6573 | */ | |
6574 | move_charge_at_immigrate = memcg->move_charge_at_immigrate; | |
6575 | if (move_charge_at_immigrate) { | |
7dc74be0 DN |
6576 | struct mm_struct *mm; |
6577 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
6578 | ||
c0ff4b85 | 6579 | VM_BUG_ON(from == memcg); |
7dc74be0 DN |
6580 | |
6581 | mm = get_task_mm(p); | |
6582 | if (!mm) | |
6583 | return 0; | |
7dc74be0 | 6584 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
6585 | if (mm->owner == p) { |
6586 | VM_BUG_ON(mc.from); | |
6587 | VM_BUG_ON(mc.to); | |
6588 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 6589 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 6590 | VM_BUG_ON(mc.moved_swap); |
32047e2a | 6591 | mem_cgroup_start_move(from); |
2bd9bb20 | 6592 | spin_lock(&mc.lock); |
4ffef5fe | 6593 | mc.from = from; |
c0ff4b85 | 6594 | mc.to = memcg; |
ee5e8472 | 6595 | mc.immigrate_flags = move_charge_at_immigrate; |
2bd9bb20 | 6596 | spin_unlock(&mc.lock); |
dfe076b0 | 6597 | /* We set mc.moving_task later */ |
4ffef5fe DN |
6598 | |
6599 | ret = mem_cgroup_precharge_mc(mm); | |
6600 | if (ret) | |
6601 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
6602 | } |
6603 | mmput(mm); | |
7dc74be0 DN |
6604 | } |
6605 | return ret; | |
6606 | } | |
6607 | ||
761b3ef5 LZ |
6608 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
6609 | struct cgroup_taskset *tset) | |
7dc74be0 | 6610 | { |
4ffef5fe | 6611 | mem_cgroup_clear_mc(); |
7dc74be0 DN |
6612 | } |
6613 | ||
4ffef5fe DN |
6614 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
6615 | unsigned long addr, unsigned long end, | |
6616 | struct mm_walk *walk) | |
7dc74be0 | 6617 | { |
4ffef5fe DN |
6618 | int ret = 0; |
6619 | struct vm_area_struct *vma = walk->private; | |
6620 | pte_t *pte; | |
6621 | spinlock_t *ptl; | |
12724850 NH |
6622 | enum mc_target_type target_type; |
6623 | union mc_target target; | |
6624 | struct page *page; | |
6625 | struct page_cgroup *pc; | |
4ffef5fe | 6626 | |
12724850 NH |
6627 | /* |
6628 | * We don't take compound_lock() here but no race with splitting thp | |
6629 | * happens because: | |
6630 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | |
6631 | * under splitting, which means there's no concurrent thp split, | |
6632 | * - if another thread runs into split_huge_page() just after we | |
6633 | * entered this if-block, the thread must wait for page table lock | |
6634 | * to be unlocked in __split_huge_page_splitting(), where the main | |
6635 | * part of thp split is not executed yet. | |
6636 | */ | |
6637 | if (pmd_trans_huge_lock(pmd, vma) == 1) { | |
62ade86a | 6638 | if (mc.precharge < HPAGE_PMD_NR) { |
12724850 NH |
6639 | spin_unlock(&vma->vm_mm->page_table_lock); |
6640 | return 0; | |
6641 | } | |
6642 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
6643 | if (target_type == MC_TARGET_PAGE) { | |
6644 | page = target.page; | |
6645 | if (!isolate_lru_page(page)) { | |
6646 | pc = lookup_page_cgroup(page); | |
6647 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | |
2f3479b1 | 6648 | pc, mc.from, mc.to)) { |
12724850 NH |
6649 | mc.precharge -= HPAGE_PMD_NR; |
6650 | mc.moved_charge += HPAGE_PMD_NR; | |
6651 | } | |
6652 | putback_lru_page(page); | |
6653 | } | |
6654 | put_page(page); | |
6655 | } | |
6656 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1a5a9906 | 6657 | return 0; |
12724850 NH |
6658 | } |
6659 | ||
45f83cef AA |
6660 | if (pmd_trans_unstable(pmd)) |
6661 | return 0; | |
4ffef5fe DN |
6662 | retry: |
6663 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
6664 | for (; addr != end; addr += PAGE_SIZE) { | |
6665 | pte_t ptent = *(pte++); | |
02491447 | 6666 | swp_entry_t ent; |
4ffef5fe DN |
6667 | |
6668 | if (!mc.precharge) | |
6669 | break; | |
6670 | ||
8d32ff84 | 6671 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
4ffef5fe DN |
6672 | case MC_TARGET_PAGE: |
6673 | page = target.page; | |
6674 | if (isolate_lru_page(page)) | |
6675 | goto put; | |
6676 | pc = lookup_page_cgroup(page); | |
7ec99d62 | 6677 | if (!mem_cgroup_move_account(page, 1, pc, |
2f3479b1 | 6678 | mc.from, mc.to)) { |
4ffef5fe | 6679 | mc.precharge--; |
854ffa8d DN |
6680 | /* we uncharge from mc.from later. */ |
6681 | mc.moved_charge++; | |
4ffef5fe DN |
6682 | } |
6683 | putback_lru_page(page); | |
8d32ff84 | 6684 | put: /* get_mctgt_type() gets the page */ |
4ffef5fe DN |
6685 | put_page(page); |
6686 | break; | |
02491447 DN |
6687 | case MC_TARGET_SWAP: |
6688 | ent = target.ent; | |
e91cbb42 | 6689 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
02491447 | 6690 | mc.precharge--; |
483c30b5 DN |
6691 | /* we fixup refcnts and charges later. */ |
6692 | mc.moved_swap++; | |
6693 | } | |
02491447 | 6694 | break; |
4ffef5fe DN |
6695 | default: |
6696 | break; | |
6697 | } | |
6698 | } | |
6699 | pte_unmap_unlock(pte - 1, ptl); | |
6700 | cond_resched(); | |
6701 | ||
6702 | if (addr != end) { | |
6703 | /* | |
6704 | * We have consumed all precharges we got in can_attach(). | |
6705 | * We try charge one by one, but don't do any additional | |
6706 | * charges to mc.to if we have failed in charge once in attach() | |
6707 | * phase. | |
6708 | */ | |
854ffa8d | 6709 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
6710 | if (!ret) |
6711 | goto retry; | |
6712 | } | |
6713 | ||
6714 | return ret; | |
6715 | } | |
6716 | ||
6717 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
6718 | { | |
6719 | struct vm_area_struct *vma; | |
6720 | ||
6721 | lru_add_drain_all(); | |
dfe076b0 DN |
6722 | retry: |
6723 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
6724 | /* | |
6725 | * Someone who are holding the mmap_sem might be waiting in | |
6726 | * waitq. So we cancel all extra charges, wake up all waiters, | |
6727 | * and retry. Because we cancel precharges, we might not be able | |
6728 | * to move enough charges, but moving charge is a best-effort | |
6729 | * feature anyway, so it wouldn't be a big problem. | |
6730 | */ | |
6731 | __mem_cgroup_clear_mc(); | |
6732 | cond_resched(); | |
6733 | goto retry; | |
6734 | } | |
4ffef5fe DN |
6735 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6736 | int ret; | |
6737 | struct mm_walk mem_cgroup_move_charge_walk = { | |
6738 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
6739 | .mm = mm, | |
6740 | .private = vma, | |
6741 | }; | |
6742 | if (is_vm_hugetlb_page(vma)) | |
6743 | continue; | |
4ffef5fe DN |
6744 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
6745 | &mem_cgroup_move_charge_walk); | |
6746 | if (ret) | |
6747 | /* | |
6748 | * means we have consumed all precharges and failed in | |
6749 | * doing additional charge. Just abandon here. | |
6750 | */ | |
6751 | break; | |
6752 | } | |
dfe076b0 | 6753 | up_read(&mm->mmap_sem); |
7dc74be0 DN |
6754 | } |
6755 | ||
761b3ef5 LZ |
6756 | static void mem_cgroup_move_task(struct cgroup *cont, |
6757 | struct cgroup_taskset *tset) | |
67e465a7 | 6758 | { |
2f7ee569 | 6759 | struct task_struct *p = cgroup_taskset_first(tset); |
a433658c | 6760 | struct mm_struct *mm = get_task_mm(p); |
dfe076b0 | 6761 | |
dfe076b0 | 6762 | if (mm) { |
a433658c KM |
6763 | if (mc.to) |
6764 | mem_cgroup_move_charge(mm); | |
dfe076b0 DN |
6765 | mmput(mm); |
6766 | } | |
a433658c KM |
6767 | if (mc.to) |
6768 | mem_cgroup_clear_mc(); | |
67e465a7 | 6769 | } |
5cfb80a7 | 6770 | #else /* !CONFIG_MMU */ |
761b3ef5 LZ |
6771 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
6772 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6773 | { |
6774 | return 0; | |
6775 | } | |
761b3ef5 LZ |
6776 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
6777 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6778 | { |
6779 | } | |
761b3ef5 LZ |
6780 | static void mem_cgroup_move_task(struct cgroup *cont, |
6781 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6782 | { |
6783 | } | |
6784 | #endif | |
67e465a7 | 6785 | |
8cdea7c0 BS |
6786 | struct cgroup_subsys mem_cgroup_subsys = { |
6787 | .name = "memory", | |
6788 | .subsys_id = mem_cgroup_subsys_id, | |
92fb9748 | 6789 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 6790 | .css_online = mem_cgroup_css_online, |
92fb9748 TH |
6791 | .css_offline = mem_cgroup_css_offline, |
6792 | .css_free = mem_cgroup_css_free, | |
7dc74be0 DN |
6793 | .can_attach = mem_cgroup_can_attach, |
6794 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 6795 | .attach = mem_cgroup_move_task, |
6bc10349 | 6796 | .base_cftypes = mem_cgroup_files, |
6d12e2d8 | 6797 | .early_init = 0, |
04046e1a | 6798 | .use_id = 1, |
8cdea7c0 | 6799 | }; |
c077719b | 6800 | |
c255a458 | 6801 | #ifdef CONFIG_MEMCG_SWAP |
a42c390c MH |
6802 | static int __init enable_swap_account(char *s) |
6803 | { | |
6804 | /* consider enabled if no parameter or 1 is given */ | |
a2c8990a | 6805 | if (!strcmp(s, "1")) |
a42c390c | 6806 | really_do_swap_account = 1; |
a2c8990a | 6807 | else if (!strcmp(s, "0")) |
a42c390c MH |
6808 | really_do_swap_account = 0; |
6809 | return 1; | |
6810 | } | |
a2c8990a | 6811 | __setup("swapaccount=", enable_swap_account); |
c077719b | 6812 | |
2d11085e MH |
6813 | static void __init memsw_file_init(void) |
6814 | { | |
6acc8b02 MH |
6815 | WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); |
6816 | } | |
6817 | ||
6818 | static void __init enable_swap_cgroup(void) | |
6819 | { | |
6820 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
6821 | do_swap_account = 1; | |
6822 | memsw_file_init(); | |
6823 | } | |
2d11085e | 6824 | } |
6acc8b02 | 6825 | |
2d11085e | 6826 | #else |
6acc8b02 | 6827 | static void __init enable_swap_cgroup(void) |
2d11085e MH |
6828 | { |
6829 | } | |
c077719b | 6830 | #endif |
2d11085e MH |
6831 | |
6832 | /* | |
1081312f MH |
6833 | * subsys_initcall() for memory controller. |
6834 | * | |
6835 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
6836 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
6837 | * everything that doesn't depend on a specific mem_cgroup structure should | |
6838 | * be initialized from here. | |
2d11085e MH |
6839 | */ |
6840 | static int __init mem_cgroup_init(void) | |
6841 | { | |
6842 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
6acc8b02 | 6843 | enable_swap_cgroup(); |
8787a1df | 6844 | mem_cgroup_soft_limit_tree_init(); |
e4777496 | 6845 | memcg_stock_init(); |
2d11085e MH |
6846 | return 0; |
6847 | } | |
6848 | subsys_initcall(mem_cgroup_init); |