]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: memcg: remove unneeded checks from newpage_charge()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
8c7c6e34
KH
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
78fb7466
PE
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
78fb7466 240 */
6d12e2d8 241 struct mem_cgroup_lru_info info;
889976db
YH
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
453a9bf3
KH
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
889976db 247#endif
18f59ea7
BS
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
79dfdacc
MH
252
253 bool oom_lock;
254 atomic_t under_oom;
255
8c7c6e34 256 atomic_t refcnt;
14797e23 257
1f4c025b 258 int swappiness;
3c11ecf4
KH
259 /* OOM-Killer disable */
260 int oom_kill_disable;
a7885eb8 261
22a668d7
KH
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
2e72b634
KS
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
2c488db2 269 struct mem_cgroup_thresholds thresholds;
907860ed 270
2e72b634 271 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 273
9490ff27
KH
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
185efc0f 276
7dc74be0
DN
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
d52aa412 282 /*
c62b1a3b 283 * percpu counter.
d52aa412 284 */
c62b1a3b 285 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
292
293#ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295#endif
8cdea7c0
BS
296};
297
7dc74be0
DN
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
4ffef5fe 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
306 NR_MOVE_TYPE,
307};
308
4ffef5fe
DN
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
b1dd693e 311 spinlock_t lock; /* for from, to */
4ffef5fe
DN
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
854ffa8d 315 unsigned long moved_charge;
483c30b5 316 unsigned long moved_swap;
8033b97c
DN
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319} mc = {
2bd9bb20 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
4ffef5fe 323
90254a65
DN
324static bool move_anon(void)
325{
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328}
329
87946a72
DN
330static bool move_file(void)
331{
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334}
335
4e416953
BS
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
217bc319
KH
343enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
350 NR_CHARGE_TYPE,
351};
352
8c7c6e34 353/* for encoding cft->private value on file */
65c64ce8
GC
354#define _MEM (0)
355#define _MEMSWAP (1)
356#define _OOM_TYPE (2)
8c7c6e34
KH
357#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
360/* Used for OOM nofiier */
361#define OOM_CONTROL (0)
8c7c6e34 362
75822b44
BS
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
c0ff4b85
R
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
d1a4c0b3 378#include <net/ip.h>
e1aab161
GC
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
e1aab161
GC
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
f3f511e1
GC
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
e1aab161
GC
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421}
d1a4c0b3
GC
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
c0ff4b85 434static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 435
f64c3f54 436static struct mem_cgroup_per_zone *
c0ff4b85 437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 438{
c0ff4b85 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
440}
441
c0ff4b85 442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 443{
c0ff4b85 444 return &memcg->css;
d324236b
WF
445}
446
f64c3f54 447static struct mem_cgroup_per_zone *
c0ff4b85 448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 449{
97a6c37b
JW
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
f64c3f54 452
c0ff4b85 453 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
c0ff4b85 472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 473 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
f64c3f54
BS
476{
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
ef8745c1
KH
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
f64c3f54
BS
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
4e416953
BS
503}
504
505static void
c0ff4b85 506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509{
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514}
515
f64c3f54 516static void
c0ff4b85 517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520{
521 spin_lock(&mctz->lock);
c0ff4b85 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
523 spin_unlock(&mctz->lock);
524}
525
f64c3f54 526
c0ff4b85 527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
ef8745c1 529 unsigned long long excess;
f64c3f54
BS
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
f64c3f54
BS
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
4e649152
KH
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
f64c3f54 539 */
c0ff4b85
R
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
ef8745c1 547 if (excess || mz->on_tree) {
4e649152
KH
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
c0ff4b85 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 552 /*
ef8745c1
KH
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
4e649152 555 */
c0ff4b85 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
557 spin_unlock(&mctz->lock);
558 }
f64c3f54
BS
559 }
560}
561
c0ff4b85 562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
563{
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 571 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 }
574 }
575}
576
4e416953
BS
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580 struct rb_node *rightmost = NULL;
26251eaf 581 struct mem_cgroup_per_zone *mz;
4e416953
BS
582
583retry:
26251eaf 584 mz = NULL;
4e416953
BS
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599done:
600 return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612}
613
711d3d2c
KH
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
c0ff4b85 633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 634 enum mem_cgroup_stat_index idx)
c62b1a3b 635{
7a159cc9 636 long val = 0;
c62b1a3b 637 int cpu;
c62b1a3b 638
711d3d2c
KH
639 get_online_cpus();
640 for_each_online_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 642#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
646#endif
647 put_online_cpus();
c62b1a3b
KH
648 return val;
649}
650
c0ff4b85 651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
652 bool charge)
653{
654 int val = (charge) ? 1 : -1;
c0ff4b85 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
f53d7ce3
JW
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
7a159cc9
JW
743{
744 unsigned long val, next;
745
4799401f
SR
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 748 /* from time_after() in jiffies.h */
f53d7ce3
JW
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
7a159cc9 765 }
f53d7ce3 766 return false;
d2265e6f
KH
767}
768
769/*
770 * Check events in order.
771 *
772 */
c0ff4b85 773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 774{
4799401f 775 preempt_disable();
d2265e6f 776 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
780
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787 preempt_enable();
788
c0ff4b85 789 mem_cgroup_threshold(memcg);
f53d7ce3 790 if (unlikely(do_softlimit))
c0ff4b85 791 mem_cgroup_update_tree(memcg, page);
453a9bf3 792#if MAX_NUMNODES > 1
f53d7ce3 793 if (unlikely(do_numainfo))
c0ff4b85 794 atomic_inc(&memcg->numainfo_events);
453a9bf3 795#endif
f53d7ce3
JW
796 } else
797 preempt_enable();
d2265e6f
KH
798}
799
d1a4c0b3 800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
801{
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
78fb7466
PE
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
819}
820
a433658c 821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
824
825 if (!mm)
826 return NULL;
54595fe2
KH
827 /*
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
831 */
832 rcu_read_lock();
833 do {
c0ff4b85
R
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
54595fe2 836 break;
c0ff4b85 837 } while (!css_tryget(&memcg->css));
54595fe2 838 rcu_read_unlock();
c0ff4b85 839 return memcg;
54595fe2
KH
840}
841
5660048c
JW
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 862{
9f3a0d09
JW
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
711d3d2c 865
5660048c
JW
866 if (mem_cgroup_disabled())
867 return NULL;
868
9f3a0d09
JW
869 if (!root)
870 root = root_mem_cgroup;
7d74b06f 871
9f3a0d09
JW
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
14067bb3 874
9f3a0d09
JW
875 if (prev && prev != root)
876 css_put(&prev->css);
14067bb3 877
9f3a0d09
JW
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
882 }
14067bb3 883
9f3a0d09 884 while (!memcg) {
527a5ec9 885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 886 struct cgroup_subsys_state *css;
711d3d2c 887
527a5ec9
JW
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
892
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
898 }
7d74b06f 899
9f3a0d09
JW
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
14067bb3 908 rcu_read_unlock();
14067bb3 909
527a5ec9
JW
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
916 }
9f3a0d09
JW
917
918 if (prev && !css)
919 return NULL;
920 }
921 return memcg;
14067bb3 922}
7d74b06f 923
5660048c
JW
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
9f3a0d09
JW
931{
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936}
7d74b06f 937
9f3a0d09
JW
938/*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 945 iter != NULL; \
527a5ec9 946 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 947
9f3a0d09 948#define for_each_mem_cgroup(iter) \
527a5ec9 949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 950 iter != NULL; \
527a5ec9 951 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 952
c0ff4b85 953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 954{
c0ff4b85 955 return (memcg == root_mem_cgroup);
4b3bde4c
BS
956}
957
456f998e
YH
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
c0ff4b85 960 struct mem_cgroup *memcg;
456f998e
YH
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
c0ff4b85
R
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
456f998e
YH
968 goto out;
969
970 switch (idx) {
456f998e 971 case PGFAULT:
0e574a93
JW
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
976 break;
977 default:
978 BUG();
979 }
980out:
981 rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
925b7673
JW
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
996{
997 struct mem_cgroup_per_zone *mz;
998
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1001
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1004}
1005
08e552c6
KH
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
4f98a2fe 1019
925b7673
JW
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
08e552c6 1034{
08e552c6 1035 struct mem_cgroup_per_zone *mz;
925b7673
JW
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
6d12e2d8 1038
f8d66542 1039 if (mem_cgroup_disabled())
925b7673
JW
1040 return &zone->lruvec;
1041
08e552c6 1042 pc = lookup_page_cgroup(page);
925b7673 1043 VM_BUG_ON(PageCgroupAcctLRU(pc));
544122e5 1044 /*
925b7673
JW
1045 * putback: charge:
1046 * SetPageLRU SetPageCgroupUsed
1047 * smp_mb smp_mb
1048 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1049 *
1050 * Ensure that one of the two sides adds the page to the memcg
1051 * LRU during a race.
544122e5 1052 */
925b7673
JW
1053 smp_mb();
1054 /*
1055 * If the page is uncharged, it may be freed soon, but it
1056 * could also be swap cache (readahead, swapoff) that needs to
1057 * be reclaimable in the future. root_mem_cgroup will babysit
1058 * it for the time being.
1059 */
1060 if (PageCgroupUsed(pc)) {
1061 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062 smp_rmb();
1063 memcg = pc->mem_cgroup;
1064 SetPageCgroupAcctLRU(pc);
1065 } else
1066 memcg = root_mem_cgroup;
1067 mz = page_cgroup_zoneinfo(memcg, page);
1068 /* compound_order() is stabilized through lru_lock */
1069 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070 return &mz->lruvec;
08e552c6 1071}
b69408e8 1072
925b7673
JW
1073/**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
3f58a829 1082 */
925b7673 1083void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1084{
1085 struct mem_cgroup_per_zone *mz;
925b7673 1086 struct mem_cgroup *memcg;
3f58a829 1087 struct page_cgroup *pc;
3f58a829
MK
1088
1089 if (mem_cgroup_disabled())
1090 return;
1091
1092 pc = lookup_page_cgroup(page);
925b7673
JW
1093 /*
1094 * root_mem_cgroup babysits uncharged LRU pages, but
1095 * PageCgroupUsed is cleared when the page is about to get
1096 * freed. PageCgroupAcctLRU remembers whether the
1097 * LRU-accounting happened against pc->mem_cgroup or
1098 * root_mem_cgroup.
1099 */
1100 if (TestClearPageCgroupAcctLRU(pc)) {
1101 VM_BUG_ON(!pc->mem_cgroup);
1102 memcg = pc->mem_cgroup;
1103 } else
1104 memcg = root_mem_cgroup;
1105 mz = page_cgroup_zoneinfo(memcg, page);
1106 /* huge page split is done under lru_lock. so, we have no races. */
1107 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1108}
1109
925b7673 1110void mem_cgroup_lru_del(struct page *page)
08e552c6 1111{
925b7673 1112 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1113}
1114
925b7673
JW
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130 struct page *page,
1131 enum lru_list from,
1132 enum lru_list to)
66e1707b 1133{
925b7673
JW
1134 /* XXX: Optimize this, especially for @from == @to */
1135 mem_cgroup_lru_del_list(page, from);
1136 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1137}
544122e5 1138
08e552c6 1139/*
5a6475a4
KH
1140 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1141 * while it's linked to lru because the page may be reused after it's fully
1142 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1143 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1144 */
5a6475a4 1145static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1146{
925b7673 1147 enum lru_list lru;
544122e5
KH
1148 unsigned long flags;
1149 struct zone *zone = page_zone(page);
1150 struct page_cgroup *pc = lookup_page_cgroup(page);
1151
5a6475a4
KH
1152 /*
1153 * Doing this check without taking ->lru_lock seems wrong but this
1154 * is safe. Because if page_cgroup's USED bit is unset, the page
1155 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1156 * set, the commit after this will fail, anyway.
1157 * This all charge/uncharge is done under some mutual execustion.
1158 * So, we don't need to taking care of changes in USED bit.
1159 */
1160 if (likely(!PageLRU(page)))
1161 return;
1162
544122e5 1163 spin_lock_irqsave(&zone->lru_lock, flags);
925b7673 1164 lru = page_lru(page);
544122e5 1165 /*
925b7673
JW
1166 * The uncharged page could still be registered to the LRU of
1167 * the stale pc->mem_cgroup.
1168 *
1169 * As pc->mem_cgroup is about to get overwritten, the old LRU
1170 * accounting needs to be taken care of. Let root_mem_cgroup
1171 * babysit the page until the new memcg is responsible for it.
1172 *
1173 * The PCG_USED bit is guarded by lock_page() as the page is
1174 * swapcache/pagecache.
544122e5 1175 */
925b7673
JW
1176 if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1177 del_page_from_lru_list(zone, page, lru);
1178 add_page_to_lru_list(zone, page, lru);
1179 }
544122e5 1180 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1181}
1182
5a6475a4 1183static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5 1184{
925b7673 1185 enum lru_list lru;
544122e5
KH
1186 unsigned long flags;
1187 struct zone *zone = page_zone(page);
1188 struct page_cgroup *pc = lookup_page_cgroup(page);
a61ed3ce
JW
1189 /*
1190 * putback: charge:
1191 * SetPageLRU SetPageCgroupUsed
1192 * smp_mb smp_mb
1193 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1194 *
1195 * Ensure that one of the two sides adds the page to the memcg
1196 * LRU during a race.
1197 */
1198 smp_mb();
5a6475a4
KH
1199 /* taking care of that the page is added to LRU while we commit it */
1200 if (likely(!PageLRU(page)))
1201 return;
544122e5 1202 spin_lock_irqsave(&zone->lru_lock, flags);
925b7673
JW
1203 lru = page_lru(page);
1204 /*
1205 * If the page is not on the LRU, someone will soon put it
1206 * there. If it is, and also already accounted for on the
1207 * memcg-side, it must be on the right lruvec as setting
1208 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1209 * Otherwise, root_mem_cgroup has been babysitting the page
1210 * during the charge. Move it to the new memcg now.
1211 */
1212 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1213 del_page_from_lru_list(zone, page, lru);
1214 add_page_to_lru_list(zone, page, lru);
1215 }
544122e5
KH
1216 spin_unlock_irqrestore(&zone->lru_lock, flags);
1217}
1218
3e92041d 1219/*
c0ff4b85 1220 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1221 * hierarchy subtree
1222 */
c0ff4b85
R
1223static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1224 struct mem_cgroup *memcg)
3e92041d 1225{
c0ff4b85
R
1226 if (root_memcg != memcg) {
1227 return (root_memcg->use_hierarchy &&
1228 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1229 }
1230
1231 return true;
1232}
1233
c0ff4b85 1234int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1235{
1236 int ret;
0b7f569e 1237 struct mem_cgroup *curr = NULL;
158e0a2d 1238 struct task_struct *p;
4c4a2214 1239
158e0a2d
KH
1240 p = find_lock_task_mm(task);
1241 if (!p)
1242 return 0;
1243 curr = try_get_mem_cgroup_from_mm(p->mm);
1244 task_unlock(p);
0b7f569e
KH
1245 if (!curr)
1246 return 0;
d31f56db 1247 /*
c0ff4b85 1248 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1249 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1250 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1251 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1252 */
c0ff4b85 1253 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1254 css_put(&curr->css);
4c4a2214
DR
1255 return ret;
1256}
1257
9b272977 1258int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1259{
9b272977
JW
1260 unsigned long inactive_ratio;
1261 int nid = zone_to_nid(zone);
1262 int zid = zone_idx(zone);
14797e23 1263 unsigned long inactive;
9b272977 1264 unsigned long active;
c772be93 1265 unsigned long gb;
14797e23 1266
9b272977
JW
1267 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1268 BIT(LRU_INACTIVE_ANON));
1269 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1270 BIT(LRU_ACTIVE_ANON));
14797e23 1271
c772be93
KM
1272 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1273 if (gb)
1274 inactive_ratio = int_sqrt(10 * gb);
1275 else
1276 inactive_ratio = 1;
1277
9b272977 1278 return inactive * inactive_ratio < active;
14797e23
KM
1279}
1280
9b272977 1281int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1282{
1283 unsigned long active;
1284 unsigned long inactive;
9b272977
JW
1285 int zid = zone_idx(zone);
1286 int nid = zone_to_nid(zone);
56e49d21 1287
9b272977
JW
1288 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1289 BIT(LRU_INACTIVE_FILE));
1290 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1291 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1292
1293 return (active > inactive);
1294}
1295
3e2f41f1
KM
1296struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1297 struct zone *zone)
1298{
13d7e3a2 1299 int nid = zone_to_nid(zone);
3e2f41f1
KM
1300 int zid = zone_idx(zone);
1301 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1302
1303 return &mz->reclaim_stat;
1304}
1305
1306struct zone_reclaim_stat *
1307mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1308{
1309 struct page_cgroup *pc;
1310 struct mem_cgroup_per_zone *mz;
1311
1312 if (mem_cgroup_disabled())
1313 return NULL;
1314
1315 pc = lookup_page_cgroup(page);
bd112db8
DN
1316 if (!PageCgroupUsed(pc))
1317 return NULL;
713735b4
JW
1318 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1319 smp_rmb();
97a6c37b 1320 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1321 return &mz->reclaim_stat;
1322}
1323
6d61ef40
BS
1324#define mem_cgroup_from_res_counter(counter, member) \
1325 container_of(counter, struct mem_cgroup, member)
1326
19942822 1327/**
9d11ea9f
JW
1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1329 * @mem: the memory cgroup
19942822 1330 *
9d11ea9f 1331 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1332 * pages.
19942822 1333 */
c0ff4b85 1334static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1335{
9d11ea9f
JW
1336 unsigned long long margin;
1337
c0ff4b85 1338 margin = res_counter_margin(&memcg->res);
9d11ea9f 1339 if (do_swap_account)
c0ff4b85 1340 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1341 return margin >> PAGE_SHIFT;
19942822
JW
1342}
1343
1f4c025b 1344int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1345{
1346 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1347
1348 /* root ? */
1349 if (cgrp->parent == NULL)
1350 return vm_swappiness;
1351
bf1ff263 1352 return memcg->swappiness;
a7885eb8
KM
1353}
1354
c0ff4b85 1355static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1356{
1357 int cpu;
1489ebad
KH
1358
1359 get_online_cpus();
c0ff4b85 1360 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1361 for_each_online_cpu(cpu)
c0ff4b85
R
1362 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1363 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1364 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1365 put_online_cpus();
32047e2a
KH
1366
1367 synchronize_rcu();
1368}
1369
c0ff4b85 1370static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1371{
1372 int cpu;
1373
c0ff4b85 1374 if (!memcg)
32047e2a 1375 return;
1489ebad 1376 get_online_cpus();
c0ff4b85 1377 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1378 for_each_online_cpu(cpu)
c0ff4b85
R
1379 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1380 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1381 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1382 put_online_cpus();
32047e2a
KH
1383}
1384/*
1385 * 2 routines for checking "mem" is under move_account() or not.
1386 *
1387 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1388 * for avoiding race in accounting. If true,
1389 * pc->mem_cgroup may be overwritten.
1390 *
1391 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1392 * under hierarchy of moving cgroups. This is for
1393 * waiting at hith-memory prressure caused by "move".
1394 */
1395
c0ff4b85 1396static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1397{
1398 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1399 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1400}
4b534334 1401
c0ff4b85 1402static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1403{
2bd9bb20
KH
1404 struct mem_cgroup *from;
1405 struct mem_cgroup *to;
4b534334 1406 bool ret = false;
2bd9bb20
KH
1407 /*
1408 * Unlike task_move routines, we access mc.to, mc.from not under
1409 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1410 */
1411 spin_lock(&mc.lock);
1412 from = mc.from;
1413 to = mc.to;
1414 if (!from)
1415 goto unlock;
3e92041d 1416
c0ff4b85
R
1417 ret = mem_cgroup_same_or_subtree(memcg, from)
1418 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1419unlock:
1420 spin_unlock(&mc.lock);
4b534334
KH
1421 return ret;
1422}
1423
c0ff4b85 1424static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1425{
1426 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1427 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1428 DEFINE_WAIT(wait);
1429 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1430 /* moving charge context might have finished. */
1431 if (mc.moving_task)
1432 schedule();
1433 finish_wait(&mc.waitq, &wait);
1434 return true;
1435 }
1436 }
1437 return false;
1438}
1439
e222432b 1440/**
6a6135b6 1441 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1442 * @memcg: The memory cgroup that went over limit
1443 * @p: Task that is going to be killed
1444 *
1445 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1446 * enabled
1447 */
1448void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1449{
1450 struct cgroup *task_cgrp;
1451 struct cgroup *mem_cgrp;
1452 /*
1453 * Need a buffer in BSS, can't rely on allocations. The code relies
1454 * on the assumption that OOM is serialized for memory controller.
1455 * If this assumption is broken, revisit this code.
1456 */
1457 static char memcg_name[PATH_MAX];
1458 int ret;
1459
d31f56db 1460 if (!memcg || !p)
e222432b
BS
1461 return;
1462
1463
1464 rcu_read_lock();
1465
1466 mem_cgrp = memcg->css.cgroup;
1467 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1468
1469 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1470 if (ret < 0) {
1471 /*
1472 * Unfortunately, we are unable to convert to a useful name
1473 * But we'll still print out the usage information
1474 */
1475 rcu_read_unlock();
1476 goto done;
1477 }
1478 rcu_read_unlock();
1479
1480 printk(KERN_INFO "Task in %s killed", memcg_name);
1481
1482 rcu_read_lock();
1483 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1484 if (ret < 0) {
1485 rcu_read_unlock();
1486 goto done;
1487 }
1488 rcu_read_unlock();
1489
1490 /*
1491 * Continues from above, so we don't need an KERN_ level
1492 */
1493 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1494done:
1495
1496 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1497 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1498 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1499 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1500 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1501 "failcnt %llu\n",
1502 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1503 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1504 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1505}
1506
81d39c20
KH
1507/*
1508 * This function returns the number of memcg under hierarchy tree. Returns
1509 * 1(self count) if no children.
1510 */
c0ff4b85 1511static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1512{
1513 int num = 0;
7d74b06f
KH
1514 struct mem_cgroup *iter;
1515
c0ff4b85 1516 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1517 num++;
81d39c20
KH
1518 return num;
1519}
1520
a63d83f4
DR
1521/*
1522 * Return the memory (and swap, if configured) limit for a memcg.
1523 */
1524u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1525{
1526 u64 limit;
1527 u64 memsw;
1528
f3e8eb70
JW
1529 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1530 limit += total_swap_pages << PAGE_SHIFT;
1531
a63d83f4
DR
1532 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1533 /*
1534 * If memsw is finite and limits the amount of swap space available
1535 * to this memcg, return that limit.
1536 */
1537 return min(limit, memsw);
1538}
1539
5660048c
JW
1540static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1541 gfp_t gfp_mask,
1542 unsigned long flags)
1543{
1544 unsigned long total = 0;
1545 bool noswap = false;
1546 int loop;
1547
1548 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1549 noswap = true;
1550 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1551 noswap = true;
1552
1553 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1554 if (loop)
1555 drain_all_stock_async(memcg);
1556 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1557 /*
1558 * Allow limit shrinkers, which are triggered directly
1559 * by userspace, to catch signals and stop reclaim
1560 * after minimal progress, regardless of the margin.
1561 */
1562 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1563 break;
1564 if (mem_cgroup_margin(memcg))
1565 break;
1566 /*
1567 * If nothing was reclaimed after two attempts, there
1568 * may be no reclaimable pages in this hierarchy.
1569 */
1570 if (loop && !total)
1571 break;
1572 }
1573 return total;
1574}
1575
4d0c066d
KH
1576/**
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1581 *
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1585 */
c0ff4b85 1586static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1587 int nid, bool noswap)
1588{
c0ff4b85 1589 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1590 return true;
1591 if (noswap || !total_swap_pages)
1592 return false;
c0ff4b85 1593 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1594 return true;
1595 return false;
1596
1597}
889976db
YH
1598#if MAX_NUMNODES > 1
1599
1600/*
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604 *
1605 */
c0ff4b85 1606static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1607{
1608 int nid;
453a9bf3
KH
1609 /*
1610 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611 * pagein/pageout changes since the last update.
1612 */
c0ff4b85 1613 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1614 return;
c0ff4b85 1615 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1616 return;
1617
889976db 1618 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1619 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1620
1621 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622
c0ff4b85
R
1623 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624 node_clear(nid, memcg->scan_nodes);
889976db 1625 }
453a9bf3 1626
c0ff4b85
R
1627 atomic_set(&memcg->numainfo_events, 0);
1628 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1629}
1630
1631/*
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1635 *
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1640 *
1641 * Now, we use round-robin. Better algorithm is welcomed.
1642 */
c0ff4b85 1643int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1644{
1645 int node;
1646
c0ff4b85
R
1647 mem_cgroup_may_update_nodemask(memcg);
1648 node = memcg->last_scanned_node;
889976db 1649
c0ff4b85 1650 node = next_node(node, memcg->scan_nodes);
889976db 1651 if (node == MAX_NUMNODES)
c0ff4b85 1652 node = first_node(memcg->scan_nodes);
889976db
YH
1653 /*
1654 * We call this when we hit limit, not when pages are added to LRU.
1655 * No LRU may hold pages because all pages are UNEVICTABLE or
1656 * memcg is too small and all pages are not on LRU. In that case,
1657 * we use curret node.
1658 */
1659 if (unlikely(node == MAX_NUMNODES))
1660 node = numa_node_id();
1661
c0ff4b85 1662 memcg->last_scanned_node = node;
889976db
YH
1663 return node;
1664}
1665
4d0c066d
KH
1666/*
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1671 */
c0ff4b85 1672bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1673{
1674 int nid;
1675
1676 /*
1677 * quick check...making use of scan_node.
1678 * We can skip unused nodes.
1679 */
c0ff4b85
R
1680 if (!nodes_empty(memcg->scan_nodes)) {
1681 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1682 nid < MAX_NUMNODES;
c0ff4b85 1683 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1684
c0ff4b85 1685 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1686 return true;
1687 }
1688 }
1689 /*
1690 * Check rest of nodes.
1691 */
1692 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1693 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1694 continue;
c0ff4b85 1695 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1696 return true;
1697 }
1698 return false;
1699}
1700
889976db 1701#else
c0ff4b85 1702int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1703{
1704 return 0;
1705}
4d0c066d 1706
c0ff4b85 1707bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1708{
c0ff4b85 1709 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1710}
889976db
YH
1711#endif
1712
5660048c
JW
1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 struct zone *zone,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
6d61ef40 1717{
9f3a0d09 1718 struct mem_cgroup *victim = NULL;
5660048c 1719 int total = 0;
04046e1a 1720 int loop = 0;
9d11ea9f 1721 unsigned long excess;
185efc0f 1722 unsigned long nr_scanned;
527a5ec9
JW
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .zone = zone,
1725 .priority = 0,
1726 };
9d11ea9f 1727
c0ff4b85 1728 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1729
4e416953 1730 while (1) {
527a5ec9 1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1732 if (!victim) {
04046e1a 1733 loop++;
4e416953
BS
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
5660048c 1740 if (!total)
4e416953 1741 break;
4e416953 1742 /*
25985edc 1743 * We want to do more targeted reclaim.
4e416953
BS
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
9f3a0d09 1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1750 break;
4e416953 1751 }
9f3a0d09 1752 continue;
4e416953 1753 }
5660048c 1754 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1755 continue;
5660048c
JW
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
1759 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1760 break;
6d61ef40 1761 }
9f3a0d09 1762 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1763 return total;
6d61ef40
BS
1764}
1765
867578cb
KH
1766/*
1767 * Check OOM-Killer is already running under our hierarchy.
1768 * If someone is running, return false.
1af8efe9 1769 * Has to be called with memcg_oom_lock
867578cb 1770 */
c0ff4b85 1771static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1772{
79dfdacc 1773 struct mem_cgroup *iter, *failed = NULL;
a636b327 1774
9f3a0d09 1775 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1776 if (iter->oom_lock) {
79dfdacc
MH
1777 /*
1778 * this subtree of our hierarchy is already locked
1779 * so we cannot give a lock.
1780 */
79dfdacc 1781 failed = iter;
9f3a0d09
JW
1782 mem_cgroup_iter_break(memcg, iter);
1783 break;
23751be0
JW
1784 } else
1785 iter->oom_lock = true;
7d74b06f 1786 }
867578cb 1787
79dfdacc 1788 if (!failed)
23751be0 1789 return true;
79dfdacc
MH
1790
1791 /*
1792 * OK, we failed to lock the whole subtree so we have to clean up
1793 * what we set up to the failing subtree
1794 */
9f3a0d09 1795 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1796 if (iter == failed) {
9f3a0d09
JW
1797 mem_cgroup_iter_break(memcg, iter);
1798 break;
79dfdacc
MH
1799 }
1800 iter->oom_lock = false;
1801 }
23751be0 1802 return false;
a636b327 1803}
0b7f569e 1804
79dfdacc 1805/*
1af8efe9 1806 * Has to be called with memcg_oom_lock
79dfdacc 1807 */
c0ff4b85 1808static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1809{
7d74b06f
KH
1810 struct mem_cgroup *iter;
1811
c0ff4b85 1812 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1813 iter->oom_lock = false;
1814 return 0;
1815}
1816
c0ff4b85 1817static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1818{
1819 struct mem_cgroup *iter;
1820
c0ff4b85 1821 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1822 atomic_inc(&iter->under_oom);
1823}
1824
c0ff4b85 1825static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1826{
1827 struct mem_cgroup *iter;
1828
867578cb
KH
1829 /*
1830 * When a new child is created while the hierarchy is under oom,
1831 * mem_cgroup_oom_lock() may not be called. We have to use
1832 * atomic_add_unless() here.
1833 */
c0ff4b85 1834 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1835 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1836}
1837
1af8efe9 1838static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1839static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840
dc98df5a
KH
1841struct oom_wait_info {
1842 struct mem_cgroup *mem;
1843 wait_queue_t wait;
1844};
1845
1846static int memcg_oom_wake_function(wait_queue_t *wait,
1847 unsigned mode, int sync, void *arg)
1848{
c0ff4b85
R
1849 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1850 *oom_wait_memcg;
dc98df5a
KH
1851 struct oom_wait_info *oom_wait_info;
1852
1853 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1854 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1855
dc98df5a
KH
1856 /*
1857 * Both of oom_wait_info->mem and wake_mem are stable under us.
1858 * Then we can use css_is_ancestor without taking care of RCU.
1859 */
c0ff4b85
R
1860 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1861 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1862 return 0;
dc98df5a
KH
1863 return autoremove_wake_function(wait, mode, sync, arg);
1864}
1865
c0ff4b85 1866static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1867{
c0ff4b85
R
1868 /* for filtering, pass "memcg" as argument. */
1869 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1870}
1871
c0ff4b85 1872static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1873{
c0ff4b85
R
1874 if (memcg && atomic_read(&memcg->under_oom))
1875 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1876}
1877
867578cb
KH
1878/*
1879 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1880 */
c0ff4b85 1881bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1882{
dc98df5a 1883 struct oom_wait_info owait;
3c11ecf4 1884 bool locked, need_to_kill;
867578cb 1885
c0ff4b85 1886 owait.mem = memcg;
dc98df5a
KH
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1891 need_to_kill = true;
c0ff4b85 1892 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1893
c0ff4b85 1894 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1895 spin_lock(&memcg_oom_lock);
c0ff4b85 1896 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1897 /*
1898 * Even if signal_pending(), we can't quit charge() loop without
1899 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900 * under OOM is always welcomed, use TASK_KILLABLE here.
1901 */
3c11ecf4 1902 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1903 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1904 need_to_kill = false;
1905 if (locked)
c0ff4b85 1906 mem_cgroup_oom_notify(memcg);
1af8efe9 1907 spin_unlock(&memcg_oom_lock);
867578cb 1908
3c11ecf4
KH
1909 if (need_to_kill) {
1910 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1911 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1912 } else {
867578cb 1913 schedule();
dc98df5a 1914 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1915 }
1af8efe9 1916 spin_lock(&memcg_oom_lock);
79dfdacc 1917 if (locked)
c0ff4b85
R
1918 mem_cgroup_oom_unlock(memcg);
1919 memcg_wakeup_oom(memcg);
1af8efe9 1920 spin_unlock(&memcg_oom_lock);
867578cb 1921
c0ff4b85 1922 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1923
867578cb
KH
1924 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925 return false;
1926 /* Give chance to dying process */
715a5ee8 1927 schedule_timeout_uninterruptible(1);
867578cb 1928 return true;
0b7f569e
KH
1929}
1930
d69b042f
BS
1931/*
1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well.
32047e2a
KH
1934 *
1935 * Notes: Race condition
1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_.
1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge".
1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags.
1949 *
1950 * Considering "move", this is an only case we see a race. To make the race
1951 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1952 * possibility of race condition. If there is, we take a lock.
d69b042f 1953 */
26174efd 1954
2a7106f2
GT
1955void mem_cgroup_update_page_stat(struct page *page,
1956 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1957{
c0ff4b85 1958 struct mem_cgroup *memcg;
32047e2a
KH
1959 struct page_cgroup *pc = lookup_page_cgroup(page);
1960 bool need_unlock = false;
dbd4ea78 1961 unsigned long uninitialized_var(flags);
d69b042f 1962
cfa44946 1963 if (mem_cgroup_disabled())
d69b042f
BS
1964 return;
1965
32047e2a 1966 rcu_read_lock();
c0ff4b85
R
1967 memcg = pc->mem_cgroup;
1968 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1969 goto out;
1970 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1971 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1972 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1973 move_lock_page_cgroup(pc, &flags);
32047e2a 1974 need_unlock = true;
c0ff4b85
R
1975 memcg = pc->mem_cgroup;
1976 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1977 goto out;
1978 }
26174efd 1979
26174efd 1980 switch (idx) {
2a7106f2 1981 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1982 if (val > 0)
1983 SetPageCgroupFileMapped(pc);
1984 else if (!page_mapped(page))
0c270f8f 1985 ClearPageCgroupFileMapped(pc);
2a7106f2 1986 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1987 break;
1988 default:
1989 BUG();
8725d541 1990 }
d69b042f 1991
c0ff4b85 1992 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1993
32047e2a
KH
1994out:
1995 if (unlikely(need_unlock))
dbd4ea78 1996 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1997 rcu_read_unlock();
1998 return;
d69b042f 1999}
2a7106f2 2000EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2001
cdec2e42
KH
2002/*
2003 * size of first charge trial. "32" comes from vmscan.c's magic value.
2004 * TODO: maybe necessary to use big numbers in big irons.
2005 */
7ec99d62 2006#define CHARGE_BATCH 32U
cdec2e42
KH
2007struct memcg_stock_pcp {
2008 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2009 unsigned int nr_pages;
cdec2e42 2010 struct work_struct work;
26fe6168
KH
2011 unsigned long flags;
2012#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2013};
2014static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2015static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2016
2017/*
11c9ea4e 2018 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2019 * from local stock and true is returned. If the stock is 0 or charges from a
2020 * cgroup which is not current target, returns false. This stock will be
2021 * refilled.
2022 */
c0ff4b85 2023static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2024{
2025 struct memcg_stock_pcp *stock;
2026 bool ret = true;
2027
2028 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2029 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2030 stock->nr_pages--;
cdec2e42
KH
2031 else /* need to call res_counter_charge */
2032 ret = false;
2033 put_cpu_var(memcg_stock);
2034 return ret;
2035}
2036
2037/*
2038 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 */
2040static void drain_stock(struct memcg_stock_pcp *stock)
2041{
2042 struct mem_cgroup *old = stock->cached;
2043
11c9ea4e
JW
2044 if (stock->nr_pages) {
2045 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2046
2047 res_counter_uncharge(&old->res, bytes);
cdec2e42 2048 if (do_swap_account)
11c9ea4e
JW
2049 res_counter_uncharge(&old->memsw, bytes);
2050 stock->nr_pages = 0;
cdec2e42
KH
2051 }
2052 stock->cached = NULL;
cdec2e42
KH
2053}
2054
2055/*
2056 * This must be called under preempt disabled or must be called by
2057 * a thread which is pinned to local cpu.
2058 */
2059static void drain_local_stock(struct work_struct *dummy)
2060{
2061 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2062 drain_stock(stock);
26fe6168 2063 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2064}
2065
2066/*
2067 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2068 * This will be consumed by consume_stock() function, later.
cdec2e42 2069 */
c0ff4b85 2070static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2071{
2072 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2073
c0ff4b85 2074 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2075 drain_stock(stock);
c0ff4b85 2076 stock->cached = memcg;
cdec2e42 2077 }
11c9ea4e 2078 stock->nr_pages += nr_pages;
cdec2e42
KH
2079 put_cpu_var(memcg_stock);
2080}
2081
2082/*
c0ff4b85 2083 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2084 * of the hierarchy under it. sync flag says whether we should block
2085 * until the work is done.
cdec2e42 2086 */
c0ff4b85 2087static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2088{
26fe6168 2089 int cpu, curcpu;
d38144b7 2090
cdec2e42 2091 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2092 get_online_cpus();
5af12d0e 2093 curcpu = get_cpu();
cdec2e42
KH
2094 for_each_online_cpu(cpu) {
2095 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2096 struct mem_cgroup *memcg;
26fe6168 2097
c0ff4b85
R
2098 memcg = stock->cached;
2099 if (!memcg || !stock->nr_pages)
26fe6168 2100 continue;
c0ff4b85 2101 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2102 continue;
d1a05b69
MH
2103 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2104 if (cpu == curcpu)
2105 drain_local_stock(&stock->work);
2106 else
2107 schedule_work_on(cpu, &stock->work);
2108 }
cdec2e42 2109 }
5af12d0e 2110 put_cpu();
d38144b7
MH
2111
2112 if (!sync)
2113 goto out;
2114
2115 for_each_online_cpu(cpu) {
2116 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2117 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2118 flush_work(&stock->work);
2119 }
2120out:
cdec2e42 2121 put_online_cpus();
d38144b7
MH
2122}
2123
2124/*
2125 * Tries to drain stocked charges in other cpus. This function is asynchronous
2126 * and just put a work per cpu for draining localy on each cpu. Caller can
2127 * expects some charges will be back to res_counter later but cannot wait for
2128 * it.
2129 */
c0ff4b85 2130static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2131{
9f50fad6
MH
2132 /*
2133 * If someone calls draining, avoid adding more kworker runs.
2134 */
2135 if (!mutex_trylock(&percpu_charge_mutex))
2136 return;
c0ff4b85 2137 drain_all_stock(root_memcg, false);
9f50fad6 2138 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2139}
2140
2141/* This is a synchronous drain interface. */
c0ff4b85 2142static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2143{
2144 /* called when force_empty is called */
9f50fad6 2145 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2146 drain_all_stock(root_memcg, true);
9f50fad6 2147 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2148}
2149
711d3d2c
KH
2150/*
2151 * This function drains percpu counter value from DEAD cpu and
2152 * move it to local cpu. Note that this function can be preempted.
2153 */
c0ff4b85 2154static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2155{
2156 int i;
2157
c0ff4b85 2158 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2159 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2160 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2161
c0ff4b85
R
2162 per_cpu(memcg->stat->count[i], cpu) = 0;
2163 memcg->nocpu_base.count[i] += x;
711d3d2c 2164 }
e9f8974f 2165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2166 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2167
c0ff4b85
R
2168 per_cpu(memcg->stat->events[i], cpu) = 0;
2169 memcg->nocpu_base.events[i] += x;
e9f8974f 2170 }
1489ebad 2171 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2172 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2173 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2174}
2175
c0ff4b85 2176static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2177{
2178 int idx = MEM_CGROUP_ON_MOVE;
2179
c0ff4b85
R
2180 spin_lock(&memcg->pcp_counter_lock);
2181 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2182 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2183}
2184
2185static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2186 unsigned long action,
2187 void *hcpu)
2188{
2189 int cpu = (unsigned long)hcpu;
2190 struct memcg_stock_pcp *stock;
711d3d2c 2191 struct mem_cgroup *iter;
cdec2e42 2192
1489ebad 2193 if ((action == CPU_ONLINE)) {
9f3a0d09 2194 for_each_mem_cgroup(iter)
1489ebad
KH
2195 synchronize_mem_cgroup_on_move(iter, cpu);
2196 return NOTIFY_OK;
2197 }
2198
711d3d2c 2199 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2200 return NOTIFY_OK;
711d3d2c 2201
9f3a0d09 2202 for_each_mem_cgroup(iter)
711d3d2c
KH
2203 mem_cgroup_drain_pcp_counter(iter, cpu);
2204
cdec2e42
KH
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207 return NOTIFY_OK;
2208}
2209
4b534334
KH
2210
2211/* See __mem_cgroup_try_charge() for details */
2212enum {
2213 CHARGE_OK, /* success */
2214 CHARGE_RETRY, /* need to retry but retry is not bad */
2215 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2216 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2217 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2218};
2219
c0ff4b85 2220static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2221 unsigned int nr_pages, bool oom_check)
4b534334 2222{
7ec99d62 2223 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2224 struct mem_cgroup *mem_over_limit;
2225 struct res_counter *fail_res;
2226 unsigned long flags = 0;
2227 int ret;
2228
c0ff4b85 2229 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2230
2231 if (likely(!ret)) {
2232 if (!do_swap_account)
2233 return CHARGE_OK;
c0ff4b85 2234 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2235 if (likely(!ret))
2236 return CHARGE_OK;
2237
c0ff4b85 2238 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2239 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241 } else
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2243 /*
7ec99d62
JW
2244 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2246 *
2247 * Never reclaim on behalf of optional batching, retry with a
2248 * single page instead.
2249 */
7ec99d62 2250 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2251 return CHARGE_RETRY;
2252
2253 if (!(gfp_mask & __GFP_WAIT))
2254 return CHARGE_WOULDBLOCK;
2255
5660048c 2256 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2257 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2258 return CHARGE_RETRY;
4b534334 2259 /*
19942822
JW
2260 * Even though the limit is exceeded at this point, reclaim
2261 * may have been able to free some pages. Retry the charge
2262 * before killing the task.
2263 *
2264 * Only for regular pages, though: huge pages are rather
2265 * unlikely to succeed so close to the limit, and we fall back
2266 * to regular pages anyway in case of failure.
4b534334 2267 */
7ec99d62 2268 if (nr_pages == 1 && ret)
4b534334
KH
2269 return CHARGE_RETRY;
2270
2271 /*
2272 * At task move, charge accounts can be doubly counted. So, it's
2273 * better to wait until the end of task_move if something is going on.
2274 */
2275 if (mem_cgroup_wait_acct_move(mem_over_limit))
2276 return CHARGE_RETRY;
2277
2278 /* If we don't need to call oom-killer at el, return immediately */
2279 if (!oom_check)
2280 return CHARGE_NOMEM;
2281 /* check OOM */
2282 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2283 return CHARGE_OOM_DIE;
2284
2285 return CHARGE_RETRY;
2286}
2287
f817ed48
KH
2288/*
2289 * Unlike exported interface, "oom" parameter is added. if oom==true,
2290 * oom-killer can be invoked.
8a9f3ccd 2291 */
f817ed48 2292static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2293 gfp_t gfp_mask,
7ec99d62 2294 unsigned int nr_pages,
c0ff4b85 2295 struct mem_cgroup **ptr,
7ec99d62 2296 bool oom)
8a9f3ccd 2297{
7ec99d62 2298 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2299 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2300 struct mem_cgroup *memcg = NULL;
4b534334 2301 int ret;
a636b327 2302
867578cb
KH
2303 /*
2304 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2305 * in system level. So, allow to go ahead dying process in addition to
2306 * MEMDIE process.
2307 */
2308 if (unlikely(test_thread_flag(TIF_MEMDIE)
2309 || fatal_signal_pending(current)))
2310 goto bypass;
a636b327 2311
8a9f3ccd 2312 /*
3be91277
HD
2313 * We always charge the cgroup the mm_struct belongs to.
2314 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2315 * thread group leader migrates. It's possible that mm is not
2316 * set, if so charge the init_mm (happens for pagecache usage).
2317 */
c0ff4b85 2318 if (!*ptr && !mm)
f75ca962
KH
2319 goto bypass;
2320again:
c0ff4b85
R
2321 if (*ptr) { /* css should be a valid one */
2322 memcg = *ptr;
2323 VM_BUG_ON(css_is_removed(&memcg->css));
2324 if (mem_cgroup_is_root(memcg))
f75ca962 2325 goto done;
c0ff4b85 2326 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2327 goto done;
c0ff4b85 2328 css_get(&memcg->css);
4b534334 2329 } else {
f75ca962 2330 struct task_struct *p;
54595fe2 2331
f75ca962
KH
2332 rcu_read_lock();
2333 p = rcu_dereference(mm->owner);
f75ca962 2334 /*
ebb76ce1 2335 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2336 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2337 * race with swapoff. Then, we have small risk of mis-accouning.
2338 * But such kind of mis-account by race always happens because
2339 * we don't have cgroup_mutex(). It's overkill and we allo that
2340 * small race, here.
2341 * (*) swapoff at el will charge against mm-struct not against
2342 * task-struct. So, mm->owner can be NULL.
f75ca962 2343 */
c0ff4b85
R
2344 memcg = mem_cgroup_from_task(p);
2345 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2346 rcu_read_unlock();
2347 goto done;
2348 }
c0ff4b85 2349 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2350 /*
2351 * It seems dagerous to access memcg without css_get().
2352 * But considering how consume_stok works, it's not
2353 * necessary. If consume_stock success, some charges
2354 * from this memcg are cached on this cpu. So, we
2355 * don't need to call css_get()/css_tryget() before
2356 * calling consume_stock().
2357 */
2358 rcu_read_unlock();
2359 goto done;
2360 }
2361 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2362 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2363 rcu_read_unlock();
2364 goto again;
2365 }
2366 rcu_read_unlock();
2367 }
8a9f3ccd 2368
4b534334
KH
2369 do {
2370 bool oom_check;
7a81b88c 2371
4b534334 2372 /* If killed, bypass charge */
f75ca962 2373 if (fatal_signal_pending(current)) {
c0ff4b85 2374 css_put(&memcg->css);
4b534334 2375 goto bypass;
f75ca962 2376 }
6d61ef40 2377
4b534334
KH
2378 oom_check = false;
2379 if (oom && !nr_oom_retries) {
2380 oom_check = true;
2381 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2382 }
66e1707b 2383
c0ff4b85 2384 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2385 switch (ret) {
2386 case CHARGE_OK:
2387 break;
2388 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2389 batch = nr_pages;
c0ff4b85
R
2390 css_put(&memcg->css);
2391 memcg = NULL;
f75ca962 2392 goto again;
4b534334 2393 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2394 css_put(&memcg->css);
4b534334
KH
2395 goto nomem;
2396 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2397 if (!oom) {
c0ff4b85 2398 css_put(&memcg->css);
867578cb 2399 goto nomem;
f75ca962 2400 }
4b534334
KH
2401 /* If oom, we never return -ENOMEM */
2402 nr_oom_retries--;
2403 break;
2404 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2405 css_put(&memcg->css);
867578cb 2406 goto bypass;
66e1707b 2407 }
4b534334
KH
2408 } while (ret != CHARGE_OK);
2409
7ec99d62 2410 if (batch > nr_pages)
c0ff4b85
R
2411 refill_stock(memcg, batch - nr_pages);
2412 css_put(&memcg->css);
0c3e73e8 2413done:
c0ff4b85 2414 *ptr = memcg;
7a81b88c
KH
2415 return 0;
2416nomem:
c0ff4b85 2417 *ptr = NULL;
7a81b88c 2418 return -ENOMEM;
867578cb 2419bypass:
c0ff4b85 2420 *ptr = NULL;
867578cb 2421 return 0;
7a81b88c 2422}
8a9f3ccd 2423
a3032a2c
DN
2424/*
2425 * Somemtimes we have to undo a charge we got by try_charge().
2426 * This function is for that and do uncharge, put css's refcnt.
2427 * gotten by try_charge().
2428 */
c0ff4b85 2429static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2430 unsigned int nr_pages)
a3032a2c 2431{
c0ff4b85 2432 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2433 unsigned long bytes = nr_pages * PAGE_SIZE;
2434
c0ff4b85 2435 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2436 if (do_swap_account)
c0ff4b85 2437 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2438 }
854ffa8d
DN
2439}
2440
a3b2d692
KH
2441/*
2442 * A helper function to get mem_cgroup from ID. must be called under
2443 * rcu_read_lock(). The caller must check css_is_removed() or some if
2444 * it's concern. (dropping refcnt from swap can be called against removed
2445 * memcg.)
2446 */
2447static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2448{
2449 struct cgroup_subsys_state *css;
2450
2451 /* ID 0 is unused ID */
2452 if (!id)
2453 return NULL;
2454 css = css_lookup(&mem_cgroup_subsys, id);
2455 if (!css)
2456 return NULL;
2457 return container_of(css, struct mem_cgroup, css);
2458}
2459
e42d9d5d 2460struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2461{
c0ff4b85 2462 struct mem_cgroup *memcg = NULL;
3c776e64 2463 struct page_cgroup *pc;
a3b2d692 2464 unsigned short id;
b5a84319
KH
2465 swp_entry_t ent;
2466
3c776e64
DN
2467 VM_BUG_ON(!PageLocked(page));
2468
3c776e64 2469 pc = lookup_page_cgroup(page);
c0bd3f63 2470 lock_page_cgroup(pc);
a3b2d692 2471 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2472 memcg = pc->mem_cgroup;
2473 if (memcg && !css_tryget(&memcg->css))
2474 memcg = NULL;
e42d9d5d 2475 } else if (PageSwapCache(page)) {
3c776e64 2476 ent.val = page_private(page);
a3b2d692
KH
2477 id = lookup_swap_cgroup(ent);
2478 rcu_read_lock();
c0ff4b85
R
2479 memcg = mem_cgroup_lookup(id);
2480 if (memcg && !css_tryget(&memcg->css))
2481 memcg = NULL;
a3b2d692 2482 rcu_read_unlock();
3c776e64 2483 }
c0bd3f63 2484 unlock_page_cgroup(pc);
c0ff4b85 2485 return memcg;
b5a84319
KH
2486}
2487
c0ff4b85 2488static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2489 struct page *page,
7ec99d62 2490 unsigned int nr_pages,
ca3e0214 2491 struct page_cgroup *pc,
7ec99d62 2492 enum charge_type ctype)
7a81b88c 2493{
ca3e0214
KH
2494 lock_page_cgroup(pc);
2495 if (unlikely(PageCgroupUsed(pc))) {
2496 unlock_page_cgroup(pc);
c0ff4b85 2497 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2498 return;
2499 }
2500 /*
2501 * we don't need page_cgroup_lock about tail pages, becase they are not
2502 * accessed by any other context at this point.
2503 */
c0ff4b85 2504 pc->mem_cgroup = memcg;
261fb61a
KH
2505 /*
2506 * We access a page_cgroup asynchronously without lock_page_cgroup().
2507 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2508 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2509 * before USED bit, we need memory barrier here.
2510 * See mem_cgroup_add_lru_list(), etc.
2511 */
08e552c6 2512 smp_wmb();
4b3bde4c
BS
2513 switch (ctype) {
2514 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2515 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2516 SetPageCgroupCache(pc);
2517 SetPageCgroupUsed(pc);
2518 break;
2519 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2520 ClearPageCgroupCache(pc);
2521 SetPageCgroupUsed(pc);
2522 break;
2523 default:
2524 break;
2525 }
3be91277 2526
c0ff4b85 2527 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2528 unlock_page_cgroup(pc);
430e4863
KH
2529 /*
2530 * "charge_statistics" updated event counter. Then, check it.
2531 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532 * if they exceeds softlimit.
2533 */
c0ff4b85 2534 memcg_check_events(memcg, page);
7a81b88c 2535}
66e1707b 2536
ca3e0214
KH
2537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
2539#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2540 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2541/*
2542 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
ca3e0214 2546 */
e94c8a9c 2547void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2548{
2549 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2550 struct page_cgroup *pc;
2551 int i;
ca3e0214 2552
3d37c4a9
KH
2553 if (mem_cgroup_disabled())
2554 return;
e94c8a9c
KH
2555 for (i = 1; i < HPAGE_PMD_NR; i++) {
2556 pc = head_pc + i;
2557 pc->mem_cgroup = head_pc->mem_cgroup;
2558 smp_wmb();/* see __commit_charge() */
2559 /*
2560 * LRU flags cannot be copied because we need to add tail
2561 * page to LRU by generic call and our hooks will be called.
2562 */
2563 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564 }
ca3e0214 2565
ece35ca8
KH
2566 if (PageCgroupAcctLRU(head_pc)) {
2567 enum lru_list lru;
2568 struct mem_cgroup_per_zone *mz;
ece35ca8 2569 /*
ece35ca8
KH
2570 * We hold lru_lock, then, reduce counter directly.
2571 */
2572 lru = page_lru(head);
97a6c37b 2573 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
e94c8a9c 2574 MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
ece35ca8 2575 }
ca3e0214
KH
2576}
2577#endif
2578
f817ed48 2579/**
de3638d9 2580 * mem_cgroup_move_account - move account of the page
5564e88b 2581 * @page: the page
7ec99d62 2582 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2583 * @pc: page_cgroup of the page.
2584 * @from: mem_cgroup which the page is moved from.
2585 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2586 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2587 *
2588 * The caller must confirm following.
08e552c6 2589 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2590 * - compound_lock is held when nr_pages > 1
f817ed48 2591 *
854ffa8d 2592 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2593 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2594 * true, this function does "uncharge" from old cgroup, but it doesn't if
2595 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2596 */
7ec99d62
JW
2597static int mem_cgroup_move_account(struct page *page,
2598 unsigned int nr_pages,
2599 struct page_cgroup *pc,
2600 struct mem_cgroup *from,
2601 struct mem_cgroup *to,
2602 bool uncharge)
f817ed48 2603{
de3638d9
JW
2604 unsigned long flags;
2605 int ret;
987eba66 2606
f817ed48 2607 VM_BUG_ON(from == to);
5564e88b 2608 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2609 /*
2610 * The page is isolated from LRU. So, collapse function
2611 * will not handle this page. But page splitting can happen.
2612 * Do this check under compound_page_lock(). The caller should
2613 * hold it.
2614 */
2615 ret = -EBUSY;
7ec99d62 2616 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2617 goto out;
2618
2619 lock_page_cgroup(pc);
2620
2621 ret = -EINVAL;
2622 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623 goto unlock;
2624
2625 move_lock_page_cgroup(pc, &flags);
f817ed48 2626
8725d541 2627 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2628 /* Update mapped_file data for mem_cgroup */
2629 preempt_disable();
2630 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632 preempt_enable();
d69b042f 2633 }
987eba66 2634 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2635 if (uncharge)
2636 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2637 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2638
854ffa8d 2639 /* caller should have done css_get */
08e552c6 2640 pc->mem_cgroup = to;
987eba66 2641 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2642 /*
2643 * We charges against "to" which may not have any tasks. Then, "to"
2644 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2645 * this function is just force_empty() and move charge, so it's
25985edc 2646 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2647 * status here.
88703267 2648 */
de3638d9
JW
2649 move_unlock_page_cgroup(pc, &flags);
2650 ret = 0;
2651unlock:
57f9fd7d 2652 unlock_page_cgroup(pc);
d2265e6f
KH
2653 /*
2654 * check events
2655 */
5564e88b
JW
2656 memcg_check_events(to, page);
2657 memcg_check_events(from, page);
de3638d9 2658out:
f817ed48
KH
2659 return ret;
2660}
2661
2662/*
2663 * move charges to its parent.
2664 */
2665
5564e88b
JW
2666static int mem_cgroup_move_parent(struct page *page,
2667 struct page_cgroup *pc,
f817ed48
KH
2668 struct mem_cgroup *child,
2669 gfp_t gfp_mask)
2670{
2671 struct cgroup *cg = child->css.cgroup;
2672 struct cgroup *pcg = cg->parent;
2673 struct mem_cgroup *parent;
7ec99d62 2674 unsigned int nr_pages;
4be4489f 2675 unsigned long uninitialized_var(flags);
f817ed48
KH
2676 int ret;
2677
2678 /* Is ROOT ? */
2679 if (!pcg)
2680 return -EINVAL;
2681
57f9fd7d
DN
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
52dbb905 2687
7ec99d62 2688 nr_pages = hpage_nr_pages(page);
08e552c6 2689
f817ed48 2690 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2691 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2692 if (ret || !parent)
57f9fd7d 2693 goto put_back;
f817ed48 2694
7ec99d62 2695 if (nr_pages > 1)
987eba66
KH
2696 flags = compound_lock_irqsave(page);
2697
7ec99d62 2698 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2699 if (ret)
7ec99d62 2700 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2701
7ec99d62 2702 if (nr_pages > 1)
987eba66 2703 compound_unlock_irqrestore(page, flags);
8dba474f 2704put_back:
08e552c6 2705 putback_lru_page(page);
57f9fd7d 2706put:
40d58138 2707 put_page(page);
57f9fd7d 2708out:
f817ed48
KH
2709 return ret;
2710}
2711
7a81b88c
KH
2712/*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2719 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2720{
c0ff4b85 2721 struct mem_cgroup *memcg = NULL;
7ec99d62 2722 unsigned int nr_pages = 1;
7a81b88c 2723 struct page_cgroup *pc;
8493ae43 2724 bool oom = true;
7a81b88c 2725 int ret;
ec168510 2726
37c2ac78 2727 if (PageTransHuge(page)) {
7ec99d62 2728 nr_pages <<= compound_order(page);
37c2ac78 2729 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2730 /*
2731 * Never OOM-kill a process for a huge page. The
2732 * fault handler will fall back to regular pages.
2733 */
2734 oom = false;
37c2ac78 2735 }
7a81b88c
KH
2736
2737 pc = lookup_page_cgroup(page);
c0ff4b85
R
2738 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2739 if (ret || !memcg)
7a81b88c
KH
2740 return ret;
2741
c0ff4b85 2742 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2743 return 0;
8a9f3ccd
BS
2744}
2745
7a81b88c
KH
2746int mem_cgroup_newpage_charge(struct page *page,
2747 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2748{
f8d66542 2749 if (mem_cgroup_disabled())
cede86ac 2750 return 0;
7a0524cf
JW
2751 VM_BUG_ON(page_mapped(page));
2752 VM_BUG_ON(page->mapping && !PageAnon(page));
2753 VM_BUG_ON(!mm);
217bc319 2754 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2755 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2756}
2757
83aae4c7
DN
2758static void
2759__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2760 enum charge_type ctype);
2761
5a6475a4 2762static void
c0ff4b85 2763__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2764 enum charge_type ctype)
2765{
2766 struct page_cgroup *pc = lookup_page_cgroup(page);
2767 /*
2768 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2769 * is already on LRU. It means the page may on some other page_cgroup's
2770 * LRU. Take care of it.
2771 */
2772 mem_cgroup_lru_del_before_commit(page);
c0ff4b85 2773 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
5a6475a4
KH
2774 mem_cgroup_lru_add_after_commit(page);
2775 return;
2776}
2777
e1a1cd59
BS
2778int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2779 gfp_t gfp_mask)
8697d331 2780{
c0ff4b85 2781 struct mem_cgroup *memcg = NULL;
b5a84319
KH
2782 int ret;
2783
f8d66542 2784 if (mem_cgroup_disabled())
cede86ac 2785 return 0;
52d4b9ac
KH
2786 if (PageCompound(page))
2787 return 0;
accf163e 2788
73045c47 2789 if (unlikely(!mm))
8697d331 2790 mm = &init_mm;
accf163e 2791
5a6475a4 2792 if (page_is_file_cache(page)) {
c0ff4b85
R
2793 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2794 if (ret || !memcg)
5a6475a4 2795 return ret;
b5a84319 2796
5a6475a4
KH
2797 /*
2798 * FUSE reuses pages without going through the final
2799 * put that would remove them from the LRU list, make
2800 * sure that they get relinked properly.
2801 */
c0ff4b85 2802 __mem_cgroup_commit_charge_lrucare(page, memcg,
5a6475a4
KH
2803 MEM_CGROUP_CHARGE_TYPE_CACHE);
2804 return ret;
2805 }
83aae4c7
DN
2806 /* shmem */
2807 if (PageSwapCache(page)) {
c0ff4b85 2808 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2809 if (!ret)
c0ff4b85 2810 __mem_cgroup_commit_charge_swapin(page, memcg,
83aae4c7
DN
2811 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2812 } else
2813 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2814 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2815
b5a84319 2816 return ret;
e8589cc1
KH
2817}
2818
54595fe2
KH
2819/*
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2822 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2823 * "commit()" or removed by "cancel()"
2824 */
8c7c6e34
KH
2825int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826 struct page *page,
72835c86 2827 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2828{
c0ff4b85 2829 struct mem_cgroup *memcg;
54595fe2 2830 int ret;
8c7c6e34 2831
72835c86 2832 *memcgp = NULL;
56039efa 2833
f8d66542 2834 if (mem_cgroup_disabled())
8c7c6e34
KH
2835 return 0;
2836
2837 if (!do_swap_account)
2838 goto charge_cur_mm;
8c7c6e34
KH
2839 /*
2840 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2841 * the pte, and even removed page from swap cache: in those cases
2842 * do_swap_page()'s pte_same() test will fail; but there's also a
2843 * KSM case which does need to charge the page.
8c7c6e34
KH
2844 */
2845 if (!PageSwapCache(page))
407f9c8b 2846 goto charge_cur_mm;
c0ff4b85
R
2847 memcg = try_get_mem_cgroup_from_page(page);
2848 if (!memcg)
54595fe2 2849 goto charge_cur_mm;
72835c86
JW
2850 *memcgp = memcg;
2851 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2852 css_put(&memcg->css);
54595fe2 2853 return ret;
8c7c6e34
KH
2854charge_cur_mm:
2855 if (unlikely(!mm))
2856 mm = &init_mm;
72835c86 2857 return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
8c7c6e34
KH
2858}
2859
83aae4c7 2860static void
72835c86 2861__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2862 enum charge_type ctype)
7a81b88c 2863{
f8d66542 2864 if (mem_cgroup_disabled())
7a81b88c 2865 return;
72835c86 2866 if (!memcg)
7a81b88c 2867 return;
72835c86 2868 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2869
72835c86 2870 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
8c7c6e34
KH
2871 /*
2872 * Now swap is on-memory. This means this page may be
2873 * counted both as mem and swap....double count.
03f3c433
KH
2874 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2875 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2876 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2877 */
03f3c433 2878 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2879 swp_entry_t ent = {.val = page_private(page)};
72835c86 2880 struct mem_cgroup *swap_memcg;
a3b2d692 2881 unsigned short id;
a3b2d692
KH
2882
2883 id = swap_cgroup_record(ent, 0);
2884 rcu_read_lock();
72835c86
JW
2885 swap_memcg = mem_cgroup_lookup(id);
2886 if (swap_memcg) {
a3b2d692
KH
2887 /*
2888 * This recorded memcg can be obsolete one. So, avoid
2889 * calling css_tryget
2890 */
72835c86
JW
2891 if (!mem_cgroup_is_root(swap_memcg))
2892 res_counter_uncharge(&swap_memcg->memsw,
2893 PAGE_SIZE);
2894 mem_cgroup_swap_statistics(swap_memcg, false);
2895 mem_cgroup_put(swap_memcg);
8c7c6e34 2896 }
a3b2d692 2897 rcu_read_unlock();
8c7c6e34 2898 }
88703267
KH
2899 /*
2900 * At swapin, we may charge account against cgroup which has no tasks.
2901 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902 * In that case, we need to call pre_destroy() again. check it here.
2903 */
72835c86 2904 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2905}
2906
72835c86
JW
2907void mem_cgroup_commit_charge_swapin(struct page *page,
2908 struct mem_cgroup *memcg)
83aae4c7 2909{
72835c86
JW
2910 __mem_cgroup_commit_charge_swapin(page, memcg,
2911 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2912}
2913
c0ff4b85 2914void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2915{
f8d66542 2916 if (mem_cgroup_disabled())
7a81b88c 2917 return;
c0ff4b85 2918 if (!memcg)
7a81b88c 2919 return;
c0ff4b85 2920 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2921}
2922
c0ff4b85 2923static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2924 unsigned int nr_pages,
2925 const enum charge_type ctype)
569b846d
KH
2926{
2927 struct memcg_batch_info *batch = NULL;
2928 bool uncharge_memsw = true;
7ec99d62 2929
569b846d
KH
2930 /* If swapout, usage of swap doesn't decrease */
2931 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2932 uncharge_memsw = false;
569b846d
KH
2933
2934 batch = &current->memcg_batch;
2935 /*
2936 * In usual, we do css_get() when we remember memcg pointer.
2937 * But in this case, we keep res->usage until end of a series of
2938 * uncharges. Then, it's ok to ignore memcg's refcnt.
2939 */
2940 if (!batch->memcg)
c0ff4b85 2941 batch->memcg = memcg;
3c11ecf4
KH
2942 /*
2943 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2944 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2945 * the same cgroup and we have chance to coalesce uncharges.
2946 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2947 * because we want to do uncharge as soon as possible.
2948 */
2949
2950 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2951 goto direct_uncharge;
2952
7ec99d62 2953 if (nr_pages > 1)
ec168510
AA
2954 goto direct_uncharge;
2955
569b846d
KH
2956 /*
2957 * In typical case, batch->memcg == mem. This means we can
2958 * merge a series of uncharges to an uncharge of res_counter.
2959 * If not, we uncharge res_counter ony by one.
2960 */
c0ff4b85 2961 if (batch->memcg != memcg)
569b846d
KH
2962 goto direct_uncharge;
2963 /* remember freed charge and uncharge it later */
7ffd4ca7 2964 batch->nr_pages++;
569b846d 2965 if (uncharge_memsw)
7ffd4ca7 2966 batch->memsw_nr_pages++;
569b846d
KH
2967 return;
2968direct_uncharge:
c0ff4b85 2969 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2970 if (uncharge_memsw)
c0ff4b85
R
2971 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2972 if (unlikely(batch->memcg != memcg))
2973 memcg_oom_recover(memcg);
569b846d
KH
2974 return;
2975}
7a81b88c 2976
8a9f3ccd 2977/*
69029cd5 2978 * uncharge if !page_mapped(page)
8a9f3ccd 2979 */
8c7c6e34 2980static struct mem_cgroup *
69029cd5 2981__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2982{
c0ff4b85 2983 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2984 unsigned int nr_pages = 1;
2985 struct page_cgroup *pc;
8a9f3ccd 2986
f8d66542 2987 if (mem_cgroup_disabled())
8c7c6e34 2988 return NULL;
4077960e 2989
d13d1443 2990 if (PageSwapCache(page))
8c7c6e34 2991 return NULL;
d13d1443 2992
37c2ac78 2993 if (PageTransHuge(page)) {
7ec99d62 2994 nr_pages <<= compound_order(page);
37c2ac78
AA
2995 VM_BUG_ON(!PageTransHuge(page));
2996 }
8697d331 2997 /*
3c541e14 2998 * Check if our page_cgroup is valid
8697d331 2999 */
52d4b9ac 3000 pc = lookup_page_cgroup(page);
cfa44946 3001 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3002 return NULL;
b9c565d5 3003
52d4b9ac 3004 lock_page_cgroup(pc);
d13d1443 3005
c0ff4b85 3006 memcg = pc->mem_cgroup;
8c7c6e34 3007
d13d1443
KH
3008 if (!PageCgroupUsed(pc))
3009 goto unlock_out;
3010
3011 switch (ctype) {
3012 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3013 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3014 /* See mem_cgroup_prepare_migration() */
3015 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3016 goto unlock_out;
3017 break;
3018 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3019 if (!PageAnon(page)) { /* Shared memory */
3020 if (page->mapping && !page_is_file_cache(page))
3021 goto unlock_out;
3022 } else if (page_mapped(page)) /* Anon */
3023 goto unlock_out;
3024 break;
3025 default:
3026 break;
52d4b9ac 3027 }
d13d1443 3028
c0ff4b85 3029 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 3030
52d4b9ac 3031 ClearPageCgroupUsed(pc);
544122e5
KH
3032 /*
3033 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3034 * freed from LRU. This is safe because uncharged page is expected not
3035 * to be reused (freed soon). Exception is SwapCache, it's handled by
3036 * special functions.
3037 */
b9c565d5 3038
52d4b9ac 3039 unlock_page_cgroup(pc);
f75ca962 3040 /*
c0ff4b85 3041 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3042 * will never be freed.
3043 */
c0ff4b85 3044 memcg_check_events(memcg, page);
f75ca962 3045 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3046 mem_cgroup_swap_statistics(memcg, true);
3047 mem_cgroup_get(memcg);
f75ca962 3048 }
c0ff4b85
R
3049 if (!mem_cgroup_is_root(memcg))
3050 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3051
c0ff4b85 3052 return memcg;
d13d1443
KH
3053
3054unlock_out:
3055 unlock_page_cgroup(pc);
8c7c6e34 3056 return NULL;
3c541e14
BS
3057}
3058
69029cd5
KH
3059void mem_cgroup_uncharge_page(struct page *page)
3060{
52d4b9ac
KH
3061 /* early check. */
3062 if (page_mapped(page))
3063 return;
3064 if (page->mapping && !PageAnon(page))
3065 return;
69029cd5
KH
3066 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3067}
3068
3069void mem_cgroup_uncharge_cache_page(struct page *page)
3070{
3071 VM_BUG_ON(page_mapped(page));
b7abea96 3072 VM_BUG_ON(page->mapping);
69029cd5
KH
3073 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3074}
3075
569b846d
KH
3076/*
3077 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3078 * In that cases, pages are freed continuously and we can expect pages
3079 * are in the same memcg. All these calls itself limits the number of
3080 * pages freed at once, then uncharge_start/end() is called properly.
3081 * This may be called prural(2) times in a context,
3082 */
3083
3084void mem_cgroup_uncharge_start(void)
3085{
3086 current->memcg_batch.do_batch++;
3087 /* We can do nest. */
3088 if (current->memcg_batch.do_batch == 1) {
3089 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3090 current->memcg_batch.nr_pages = 0;
3091 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3092 }
3093}
3094
3095void mem_cgroup_uncharge_end(void)
3096{
3097 struct memcg_batch_info *batch = &current->memcg_batch;
3098
3099 if (!batch->do_batch)
3100 return;
3101
3102 batch->do_batch--;
3103 if (batch->do_batch) /* If stacked, do nothing. */
3104 return;
3105
3106 if (!batch->memcg)
3107 return;
3108 /*
3109 * This "batch->memcg" is valid without any css_get/put etc...
3110 * bacause we hide charges behind us.
3111 */
7ffd4ca7
JW
3112 if (batch->nr_pages)
3113 res_counter_uncharge(&batch->memcg->res,
3114 batch->nr_pages * PAGE_SIZE);
3115 if (batch->memsw_nr_pages)
3116 res_counter_uncharge(&batch->memcg->memsw,
3117 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3118 memcg_oom_recover(batch->memcg);
569b846d
KH
3119 /* forget this pointer (for sanity check) */
3120 batch->memcg = NULL;
3121}
3122
e767e056 3123#ifdef CONFIG_SWAP
8c7c6e34 3124/*
e767e056 3125 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3126 * memcg information is recorded to swap_cgroup of "ent"
3127 */
8a9478ca
KH
3128void
3129mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3130{
3131 struct mem_cgroup *memcg;
8a9478ca
KH
3132 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3133
3134 if (!swapout) /* this was a swap cache but the swap is unused ! */
3135 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3136
3137 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3138
f75ca962
KH
3139 /*
3140 * record memcg information, if swapout && memcg != NULL,
3141 * mem_cgroup_get() was called in uncharge().
3142 */
3143 if (do_swap_account && swapout && memcg)
a3b2d692 3144 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3145}
e767e056 3146#endif
8c7c6e34
KH
3147
3148#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3149/*
3150 * called from swap_entry_free(). remove record in swap_cgroup and
3151 * uncharge "memsw" account.
3152 */
3153void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3154{
8c7c6e34 3155 struct mem_cgroup *memcg;
a3b2d692 3156 unsigned short id;
8c7c6e34
KH
3157
3158 if (!do_swap_account)
3159 return;
3160
a3b2d692
KH
3161 id = swap_cgroup_record(ent, 0);
3162 rcu_read_lock();
3163 memcg = mem_cgroup_lookup(id);
8c7c6e34 3164 if (memcg) {
a3b2d692
KH
3165 /*
3166 * We uncharge this because swap is freed.
3167 * This memcg can be obsolete one. We avoid calling css_tryget
3168 */
0c3e73e8 3169 if (!mem_cgroup_is_root(memcg))
4e649152 3170 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3171 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3172 mem_cgroup_put(memcg);
3173 }
a3b2d692 3174 rcu_read_unlock();
d13d1443 3175}
02491447
DN
3176
3177/**
3178 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3179 * @entry: swap entry to be moved
3180 * @from: mem_cgroup which the entry is moved from
3181 * @to: mem_cgroup which the entry is moved to
483c30b5 3182 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3183 *
3184 * It succeeds only when the swap_cgroup's record for this entry is the same
3185 * as the mem_cgroup's id of @from.
3186 *
3187 * Returns 0 on success, -EINVAL on failure.
3188 *
3189 * The caller must have charged to @to, IOW, called res_counter_charge() about
3190 * both res and memsw, and called css_get().
3191 */
3192static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3193 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3194{
3195 unsigned short old_id, new_id;
3196
3197 old_id = css_id(&from->css);
3198 new_id = css_id(&to->css);
3199
3200 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3201 mem_cgroup_swap_statistics(from, false);
483c30b5 3202 mem_cgroup_swap_statistics(to, true);
02491447 3203 /*
483c30b5
DN
3204 * This function is only called from task migration context now.
3205 * It postpones res_counter and refcount handling till the end
3206 * of task migration(mem_cgroup_clear_mc()) for performance
3207 * improvement. But we cannot postpone mem_cgroup_get(to)
3208 * because if the process that has been moved to @to does
3209 * swap-in, the refcount of @to might be decreased to 0.
02491447 3210 */
02491447 3211 mem_cgroup_get(to);
483c30b5
DN
3212 if (need_fixup) {
3213 if (!mem_cgroup_is_root(from))
3214 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3215 mem_cgroup_put(from);
3216 /*
3217 * we charged both to->res and to->memsw, so we should
3218 * uncharge to->res.
3219 */
3220 if (!mem_cgroup_is_root(to))
3221 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3222 }
02491447
DN
3223 return 0;
3224 }
3225 return -EINVAL;
3226}
3227#else
3228static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3229 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3230{
3231 return -EINVAL;
3232}
8c7c6e34 3233#endif
d13d1443 3234
ae41be37 3235/*
01b1ae63
KH
3236 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3237 * page belongs to.
ae41be37 3238 */
ac39cf8c 3239int mem_cgroup_prepare_migration(struct page *page,
72835c86 3240 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3241{
c0ff4b85 3242 struct mem_cgroup *memcg = NULL;
7ec99d62 3243 struct page_cgroup *pc;
ac39cf8c 3244 enum charge_type ctype;
e8589cc1 3245 int ret = 0;
8869b8f6 3246
72835c86 3247 *memcgp = NULL;
56039efa 3248
ec168510 3249 VM_BUG_ON(PageTransHuge(page));
f8d66542 3250 if (mem_cgroup_disabled())
4077960e
BS
3251 return 0;
3252
52d4b9ac
KH
3253 pc = lookup_page_cgroup(page);
3254 lock_page_cgroup(pc);
3255 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3256 memcg = pc->mem_cgroup;
3257 css_get(&memcg->css);
ac39cf8c 3258 /*
3259 * At migrating an anonymous page, its mapcount goes down
3260 * to 0 and uncharge() will be called. But, even if it's fully
3261 * unmapped, migration may fail and this page has to be
3262 * charged again. We set MIGRATION flag here and delay uncharge
3263 * until end_migration() is called
3264 *
3265 * Corner Case Thinking
3266 * A)
3267 * When the old page was mapped as Anon and it's unmap-and-freed
3268 * while migration was ongoing.
3269 * If unmap finds the old page, uncharge() of it will be delayed
3270 * until end_migration(). If unmap finds a new page, it's
3271 * uncharged when it make mapcount to be 1->0. If unmap code
3272 * finds swap_migration_entry, the new page will not be mapped
3273 * and end_migration() will find it(mapcount==0).
3274 *
3275 * B)
3276 * When the old page was mapped but migraion fails, the kernel
3277 * remaps it. A charge for it is kept by MIGRATION flag even
3278 * if mapcount goes down to 0. We can do remap successfully
3279 * without charging it again.
3280 *
3281 * C)
3282 * The "old" page is under lock_page() until the end of
3283 * migration, so, the old page itself will not be swapped-out.
3284 * If the new page is swapped out before end_migraton, our
3285 * hook to usual swap-out path will catch the event.
3286 */
3287 if (PageAnon(page))
3288 SetPageCgroupMigration(pc);
e8589cc1 3289 }
52d4b9ac 3290 unlock_page_cgroup(pc);
ac39cf8c 3291 /*
3292 * If the page is not charged at this point,
3293 * we return here.
3294 */
c0ff4b85 3295 if (!memcg)
ac39cf8c 3296 return 0;
01b1ae63 3297
72835c86
JW
3298 *memcgp = memcg;
3299 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3300 css_put(&memcg->css);/* drop extra refcnt */
72835c86 3301 if (ret || *memcgp == NULL) {
ac39cf8c 3302 if (PageAnon(page)) {
3303 lock_page_cgroup(pc);
3304 ClearPageCgroupMigration(pc);
3305 unlock_page_cgroup(pc);
3306 /*
3307 * The old page may be fully unmapped while we kept it.
3308 */
3309 mem_cgroup_uncharge_page(page);
3310 }
3311 return -ENOMEM;
e8589cc1 3312 }
ac39cf8c 3313 /*
3314 * We charge new page before it's used/mapped. So, even if unlock_page()
3315 * is called before end_migration, we can catch all events on this new
3316 * page. In the case new page is migrated but not remapped, new page's
3317 * mapcount will be finally 0 and we call uncharge in end_migration().
3318 */
3319 pc = lookup_page_cgroup(newpage);
3320 if (PageAnon(page))
3321 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3322 else if (page_is_file_cache(page))
3323 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3324 else
3325 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3326 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3327 return ret;
ae41be37 3328}
8869b8f6 3329
69029cd5 3330/* remove redundant charge if migration failed*/
c0ff4b85 3331void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3332 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3333{
ac39cf8c 3334 struct page *used, *unused;
01b1ae63 3335 struct page_cgroup *pc;
01b1ae63 3336
c0ff4b85 3337 if (!memcg)
01b1ae63 3338 return;
ac39cf8c 3339 /* blocks rmdir() */
c0ff4b85 3340 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3341 if (!migration_ok) {
ac39cf8c 3342 used = oldpage;
3343 unused = newpage;
01b1ae63 3344 } else {
ac39cf8c 3345 used = newpage;
01b1ae63
KH
3346 unused = oldpage;
3347 }
69029cd5 3348 /*
ac39cf8c 3349 * We disallowed uncharge of pages under migration because mapcount
3350 * of the page goes down to zero, temporarly.
3351 * Clear the flag and check the page should be charged.
01b1ae63 3352 */
ac39cf8c 3353 pc = lookup_page_cgroup(oldpage);
3354 lock_page_cgroup(pc);
3355 ClearPageCgroupMigration(pc);
3356 unlock_page_cgroup(pc);
01b1ae63 3357
ac39cf8c 3358 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3359
01b1ae63 3360 /*
ac39cf8c 3361 * If a page is a file cache, radix-tree replacement is very atomic
3362 * and we can skip this check. When it was an Anon page, its mapcount
3363 * goes down to 0. But because we added MIGRATION flage, it's not
3364 * uncharged yet. There are several case but page->mapcount check
3365 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3366 * check. (see prepare_charge() also)
69029cd5 3367 */
ac39cf8c 3368 if (PageAnon(used))
3369 mem_cgroup_uncharge_page(used);
88703267 3370 /*
ac39cf8c 3371 * At migration, we may charge account against cgroup which has no
3372 * tasks.
88703267
KH
3373 * So, rmdir()->pre_destroy() can be called while we do this charge.
3374 * In that case, we need to call pre_destroy() again. check it here.
3375 */
c0ff4b85 3376 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3377}
78fb7466 3378
ab936cbc
KH
3379/*
3380 * At replace page cache, newpage is not under any memcg but it's on
3381 * LRU. So, this function doesn't touch res_counter but handles LRU
3382 * in correct way. Both pages are locked so we cannot race with uncharge.
3383 */
3384void mem_cgroup_replace_page_cache(struct page *oldpage,
3385 struct page *newpage)
3386{
3387 struct mem_cgroup *memcg;
3388 struct page_cgroup *pc;
3389 struct zone *zone;
3390 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3391 unsigned long flags;
3392
3393 if (mem_cgroup_disabled())
3394 return;
3395
3396 pc = lookup_page_cgroup(oldpage);
3397 /* fix accounting on old pages */
3398 lock_page_cgroup(pc);
3399 memcg = pc->mem_cgroup;
3400 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3401 ClearPageCgroupUsed(pc);
3402 unlock_page_cgroup(pc);
3403
3404 if (PageSwapBacked(oldpage))
3405 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3406
3407 zone = page_zone(newpage);
3408 pc = lookup_page_cgroup(newpage);
3409 /*
3410 * Even if newpage->mapping was NULL before starting replacement,
3411 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3412 * LRU while we overwrite pc->mem_cgroup.
3413 */
3414 spin_lock_irqsave(&zone->lru_lock, flags);
3415 if (PageLRU(newpage))
3416 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3417 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3418 if (PageLRU(newpage))
3419 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3420 spin_unlock_irqrestore(&zone->lru_lock, flags);
3421}
3422
f212ad7c
DN
3423#ifdef CONFIG_DEBUG_VM
3424static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3425{
3426 struct page_cgroup *pc;
3427
3428 pc = lookup_page_cgroup(page);
cfa44946
JW
3429 /*
3430 * Can be NULL while feeding pages into the page allocator for
3431 * the first time, i.e. during boot or memory hotplug;
3432 * or when mem_cgroup_disabled().
3433 */
f212ad7c
DN
3434 if (likely(pc) && PageCgroupUsed(pc))
3435 return pc;
3436 return NULL;
3437}
3438
3439bool mem_cgroup_bad_page_check(struct page *page)
3440{
3441 if (mem_cgroup_disabled())
3442 return false;
3443
3444 return lookup_page_cgroup_used(page) != NULL;
3445}
3446
3447void mem_cgroup_print_bad_page(struct page *page)
3448{
3449 struct page_cgroup *pc;
3450
3451 pc = lookup_page_cgroup_used(page);
3452 if (pc) {
3453 int ret = -1;
3454 char *path;
3455
3456 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3457 pc, pc->flags, pc->mem_cgroup);
3458
3459 path = kmalloc(PATH_MAX, GFP_KERNEL);
3460 if (path) {
3461 rcu_read_lock();
3462 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3463 path, PATH_MAX);
3464 rcu_read_unlock();
3465 }
3466
3467 printk(KERN_CONT "(%s)\n",
3468 (ret < 0) ? "cannot get the path" : path);
3469 kfree(path);
3470 }
3471}
3472#endif
3473
8c7c6e34
KH
3474static DEFINE_MUTEX(set_limit_mutex);
3475
d38d2a75 3476static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3477 unsigned long long val)
628f4235 3478{
81d39c20 3479 int retry_count;
3c11ecf4 3480 u64 memswlimit, memlimit;
628f4235 3481 int ret = 0;
81d39c20
KH
3482 int children = mem_cgroup_count_children(memcg);
3483 u64 curusage, oldusage;
3c11ecf4 3484 int enlarge;
81d39c20
KH
3485
3486 /*
3487 * For keeping hierarchical_reclaim simple, how long we should retry
3488 * is depends on callers. We set our retry-count to be function
3489 * of # of children which we should visit in this loop.
3490 */
3491 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3492
3493 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3494
3c11ecf4 3495 enlarge = 0;
8c7c6e34 3496 while (retry_count) {
628f4235
KH
3497 if (signal_pending(current)) {
3498 ret = -EINTR;
3499 break;
3500 }
8c7c6e34
KH
3501 /*
3502 * Rather than hide all in some function, I do this in
3503 * open coded manner. You see what this really does.
c0ff4b85 3504 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3505 */
3506 mutex_lock(&set_limit_mutex);
3507 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3508 if (memswlimit < val) {
3509 ret = -EINVAL;
3510 mutex_unlock(&set_limit_mutex);
628f4235
KH
3511 break;
3512 }
3c11ecf4
KH
3513
3514 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3515 if (memlimit < val)
3516 enlarge = 1;
3517
8c7c6e34 3518 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3519 if (!ret) {
3520 if (memswlimit == val)
3521 memcg->memsw_is_minimum = true;
3522 else
3523 memcg->memsw_is_minimum = false;
3524 }
8c7c6e34
KH
3525 mutex_unlock(&set_limit_mutex);
3526
3527 if (!ret)
3528 break;
3529
5660048c
JW
3530 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3531 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3532 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3533 /* Usage is reduced ? */
3534 if (curusage >= oldusage)
3535 retry_count--;
3536 else
3537 oldusage = curusage;
8c7c6e34 3538 }
3c11ecf4
KH
3539 if (!ret && enlarge)
3540 memcg_oom_recover(memcg);
14797e23 3541
8c7c6e34
KH
3542 return ret;
3543}
3544
338c8431
LZ
3545static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3546 unsigned long long val)
8c7c6e34 3547{
81d39c20 3548 int retry_count;
3c11ecf4 3549 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3550 int children = mem_cgroup_count_children(memcg);
3551 int ret = -EBUSY;
3c11ecf4 3552 int enlarge = 0;
8c7c6e34 3553
81d39c20
KH
3554 /* see mem_cgroup_resize_res_limit */
3555 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3556 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3557 while (retry_count) {
3558 if (signal_pending(current)) {
3559 ret = -EINTR;
3560 break;
3561 }
3562 /*
3563 * Rather than hide all in some function, I do this in
3564 * open coded manner. You see what this really does.
c0ff4b85 3565 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3566 */
3567 mutex_lock(&set_limit_mutex);
3568 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3569 if (memlimit > val) {
3570 ret = -EINVAL;
3571 mutex_unlock(&set_limit_mutex);
3572 break;
3573 }
3c11ecf4
KH
3574 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3575 if (memswlimit < val)
3576 enlarge = 1;
8c7c6e34 3577 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3578 if (!ret) {
3579 if (memlimit == val)
3580 memcg->memsw_is_minimum = true;
3581 else
3582 memcg->memsw_is_minimum = false;
3583 }
8c7c6e34
KH
3584 mutex_unlock(&set_limit_mutex);
3585
3586 if (!ret)
3587 break;
3588
5660048c
JW
3589 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3590 MEM_CGROUP_RECLAIM_NOSWAP |
3591 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3592 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3593 /* Usage is reduced ? */
8c7c6e34 3594 if (curusage >= oldusage)
628f4235 3595 retry_count--;
81d39c20
KH
3596 else
3597 oldusage = curusage;
628f4235 3598 }
3c11ecf4
KH
3599 if (!ret && enlarge)
3600 memcg_oom_recover(memcg);
628f4235
KH
3601 return ret;
3602}
3603
4e416953 3604unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3605 gfp_t gfp_mask,
3606 unsigned long *total_scanned)
4e416953
BS
3607{
3608 unsigned long nr_reclaimed = 0;
3609 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3610 unsigned long reclaimed;
3611 int loop = 0;
3612 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3613 unsigned long long excess;
0ae5e89c 3614 unsigned long nr_scanned;
4e416953
BS
3615
3616 if (order > 0)
3617 return 0;
3618
00918b6a 3619 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3620 /*
3621 * This loop can run a while, specially if mem_cgroup's continuously
3622 * keep exceeding their soft limit and putting the system under
3623 * pressure
3624 */
3625 do {
3626 if (next_mz)
3627 mz = next_mz;
3628 else
3629 mz = mem_cgroup_largest_soft_limit_node(mctz);
3630 if (!mz)
3631 break;
3632
0ae5e89c 3633 nr_scanned = 0;
5660048c
JW
3634 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3635 gfp_mask, &nr_scanned);
4e416953 3636 nr_reclaimed += reclaimed;
0ae5e89c 3637 *total_scanned += nr_scanned;
4e416953
BS
3638 spin_lock(&mctz->lock);
3639
3640 /*
3641 * If we failed to reclaim anything from this memory cgroup
3642 * it is time to move on to the next cgroup
3643 */
3644 next_mz = NULL;
3645 if (!reclaimed) {
3646 do {
3647 /*
3648 * Loop until we find yet another one.
3649 *
3650 * By the time we get the soft_limit lock
3651 * again, someone might have aded the
3652 * group back on the RB tree. Iterate to
3653 * make sure we get a different mem.
3654 * mem_cgroup_largest_soft_limit_node returns
3655 * NULL if no other cgroup is present on
3656 * the tree
3657 */
3658 next_mz =
3659 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3660 if (next_mz == mz)
4e416953 3661 css_put(&next_mz->mem->css);
39cc98f1 3662 else /* next_mz == NULL or other memcg */
4e416953
BS
3663 break;
3664 } while (1);
3665 }
4e416953 3666 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3667 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3668 /*
3669 * One school of thought says that we should not add
3670 * back the node to the tree if reclaim returns 0.
3671 * But our reclaim could return 0, simply because due
3672 * to priority we are exposing a smaller subset of
3673 * memory to reclaim from. Consider this as a longer
3674 * term TODO.
3675 */
ef8745c1
KH
3676 /* If excess == 0, no tree ops */
3677 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3678 spin_unlock(&mctz->lock);
3679 css_put(&mz->mem->css);
3680 loop++;
3681 /*
3682 * Could not reclaim anything and there are no more
3683 * mem cgroups to try or we seem to be looping without
3684 * reclaiming anything.
3685 */
3686 if (!nr_reclaimed &&
3687 (next_mz == NULL ||
3688 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3689 break;
3690 } while (!nr_reclaimed);
3691 if (next_mz)
3692 css_put(&next_mz->mem->css);
3693 return nr_reclaimed;
3694}
3695
cc847582
KH
3696/*
3697 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3698 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3699 */
c0ff4b85 3700static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3701 int node, int zid, enum lru_list lru)
cc847582 3702{
08e552c6 3703 struct mem_cgroup_per_zone *mz;
08e552c6 3704 unsigned long flags, loop;
072c56c1 3705 struct list_head *list;
925b7673
JW
3706 struct page *busy;
3707 struct zone *zone;
f817ed48 3708 int ret = 0;
072c56c1 3709
08e552c6 3710 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3711 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3712 list = &mz->lruvec.lists[lru];
cc847582 3713
f817ed48
KH
3714 loop = MEM_CGROUP_ZSTAT(mz, lru);
3715 /* give some margin against EBUSY etc...*/
3716 loop += 256;
3717 busy = NULL;
3718 while (loop--) {
925b7673 3719 struct page_cgroup *pc;
5564e88b
JW
3720 struct page *page;
3721
f817ed48 3722 ret = 0;
08e552c6 3723 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3724 if (list_empty(list)) {
08e552c6 3725 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3726 break;
f817ed48 3727 }
925b7673
JW
3728 page = list_entry(list->prev, struct page, lru);
3729 if (busy == page) {
3730 list_move(&page->lru, list);
648bcc77 3731 busy = NULL;
08e552c6 3732 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3733 continue;
3734 }
08e552c6 3735 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3736
925b7673 3737 pc = lookup_page_cgroup(page);
5564e88b 3738
c0ff4b85 3739 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3740 if (ret == -ENOMEM)
52d4b9ac 3741 break;
f817ed48
KH
3742
3743 if (ret == -EBUSY || ret == -EINVAL) {
3744 /* found lock contention or "pc" is obsolete. */
925b7673 3745 busy = page;
f817ed48
KH
3746 cond_resched();
3747 } else
3748 busy = NULL;
cc847582 3749 }
08e552c6 3750
f817ed48
KH
3751 if (!ret && !list_empty(list))
3752 return -EBUSY;
3753 return ret;
cc847582
KH
3754}
3755
3756/*
3757 * make mem_cgroup's charge to be 0 if there is no task.
3758 * This enables deleting this mem_cgroup.
3759 */
c0ff4b85 3760static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3761{
f817ed48
KH
3762 int ret;
3763 int node, zid, shrink;
3764 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3765 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3766
c0ff4b85 3767 css_get(&memcg->css);
f817ed48
KH
3768
3769 shrink = 0;
c1e862c1
KH
3770 /* should free all ? */
3771 if (free_all)
3772 goto try_to_free;
f817ed48 3773move_account:
fce66477 3774 do {
f817ed48 3775 ret = -EBUSY;
c1e862c1
KH
3776 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3777 goto out;
3778 ret = -EINTR;
3779 if (signal_pending(current))
cc847582 3780 goto out;
52d4b9ac
KH
3781 /* This is for making all *used* pages to be on LRU. */
3782 lru_add_drain_all();
c0ff4b85 3783 drain_all_stock_sync(memcg);
f817ed48 3784 ret = 0;
c0ff4b85 3785 mem_cgroup_start_move(memcg);
299b4eaa 3786 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3787 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3788 enum lru_list l;
f817ed48 3789 for_each_lru(l) {
c0ff4b85 3790 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3791 node, zid, l);
f817ed48
KH
3792 if (ret)
3793 break;
3794 }
1ecaab2b 3795 }
f817ed48
KH
3796 if (ret)
3797 break;
3798 }
c0ff4b85
R
3799 mem_cgroup_end_move(memcg);
3800 memcg_oom_recover(memcg);
f817ed48
KH
3801 /* it seems parent cgroup doesn't have enough mem */
3802 if (ret == -ENOMEM)
3803 goto try_to_free;
52d4b9ac 3804 cond_resched();
fce66477 3805 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3806 } while (memcg->res.usage > 0 || ret);
cc847582 3807out:
c0ff4b85 3808 css_put(&memcg->css);
cc847582 3809 return ret;
f817ed48
KH
3810
3811try_to_free:
c1e862c1
KH
3812 /* returns EBUSY if there is a task or if we come here twice. */
3813 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3814 ret = -EBUSY;
3815 goto out;
3816 }
c1e862c1
KH
3817 /* we call try-to-free pages for make this cgroup empty */
3818 lru_add_drain_all();
f817ed48
KH
3819 /* try to free all pages in this cgroup */
3820 shrink = 1;
c0ff4b85 3821 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3822 int progress;
c1e862c1
KH
3823
3824 if (signal_pending(current)) {
3825 ret = -EINTR;
3826 goto out;
3827 }
c0ff4b85 3828 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3829 false);
c1e862c1 3830 if (!progress) {
f817ed48 3831 nr_retries--;
c1e862c1 3832 /* maybe some writeback is necessary */
8aa7e847 3833 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3834 }
f817ed48
KH
3835
3836 }
08e552c6 3837 lru_add_drain();
f817ed48 3838 /* try move_account...there may be some *locked* pages. */
fce66477 3839 goto move_account;
cc847582
KH
3840}
3841
c1e862c1
KH
3842int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3843{
3844 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3845}
3846
3847
18f59ea7
BS
3848static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3849{
3850 return mem_cgroup_from_cont(cont)->use_hierarchy;
3851}
3852
3853static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3854 u64 val)
3855{
3856 int retval = 0;
c0ff4b85 3857 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3858 struct cgroup *parent = cont->parent;
c0ff4b85 3859 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3860
3861 if (parent)
c0ff4b85 3862 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3863
3864 cgroup_lock();
3865 /*
af901ca1 3866 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3867 * in the child subtrees. If it is unset, then the change can
3868 * occur, provided the current cgroup has no children.
3869 *
3870 * For the root cgroup, parent_mem is NULL, we allow value to be
3871 * set if there are no children.
3872 */
c0ff4b85 3873 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3874 (val == 1 || val == 0)) {
3875 if (list_empty(&cont->children))
c0ff4b85 3876 memcg->use_hierarchy = val;
18f59ea7
BS
3877 else
3878 retval = -EBUSY;
3879 } else
3880 retval = -EINVAL;
3881 cgroup_unlock();
3882
3883 return retval;
3884}
3885
0c3e73e8 3886
c0ff4b85 3887static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3888 enum mem_cgroup_stat_index idx)
0c3e73e8 3889{
7d74b06f 3890 struct mem_cgroup *iter;
7a159cc9 3891 long val = 0;
0c3e73e8 3892
7a159cc9 3893 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3894 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3895 val += mem_cgroup_read_stat(iter, idx);
3896
3897 if (val < 0) /* race ? */
3898 val = 0;
3899 return val;
0c3e73e8
BS
3900}
3901
c0ff4b85 3902static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3903{
7d74b06f 3904 u64 val;
104f3928 3905
c0ff4b85 3906 if (!mem_cgroup_is_root(memcg)) {
104f3928 3907 if (!swap)
65c64ce8 3908 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3909 else
65c64ce8 3910 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3911 }
3912
c0ff4b85
R
3913 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3914 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3915
7d74b06f 3916 if (swap)
c0ff4b85 3917 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3918
3919 return val << PAGE_SHIFT;
3920}
3921
2c3daa72 3922static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3923{
c0ff4b85 3924 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3925 u64 val;
8c7c6e34
KH
3926 int type, name;
3927
3928 type = MEMFILE_TYPE(cft->private);
3929 name = MEMFILE_ATTR(cft->private);
3930 switch (type) {
3931 case _MEM:
104f3928 3932 if (name == RES_USAGE)
c0ff4b85 3933 val = mem_cgroup_usage(memcg, false);
104f3928 3934 else
c0ff4b85 3935 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3936 break;
3937 case _MEMSWAP:
104f3928 3938 if (name == RES_USAGE)
c0ff4b85 3939 val = mem_cgroup_usage(memcg, true);
104f3928 3940 else
c0ff4b85 3941 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3942 break;
3943 default:
3944 BUG();
3945 break;
3946 }
3947 return val;
8cdea7c0 3948}
628f4235
KH
3949/*
3950 * The user of this function is...
3951 * RES_LIMIT.
3952 */
856c13aa
PM
3953static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3954 const char *buffer)
8cdea7c0 3955{
628f4235 3956 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3957 int type, name;
628f4235
KH
3958 unsigned long long val;
3959 int ret;
3960
8c7c6e34
KH
3961 type = MEMFILE_TYPE(cft->private);
3962 name = MEMFILE_ATTR(cft->private);
3963 switch (name) {
628f4235 3964 case RES_LIMIT:
4b3bde4c
BS
3965 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3966 ret = -EINVAL;
3967 break;
3968 }
628f4235
KH
3969 /* This function does all necessary parse...reuse it */
3970 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3971 if (ret)
3972 break;
3973 if (type == _MEM)
628f4235 3974 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3975 else
3976 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3977 break;
296c81d8
BS
3978 case RES_SOFT_LIMIT:
3979 ret = res_counter_memparse_write_strategy(buffer, &val);
3980 if (ret)
3981 break;
3982 /*
3983 * For memsw, soft limits are hard to implement in terms
3984 * of semantics, for now, we support soft limits for
3985 * control without swap
3986 */
3987 if (type == _MEM)
3988 ret = res_counter_set_soft_limit(&memcg->res, val);
3989 else
3990 ret = -EINVAL;
3991 break;
628f4235
KH
3992 default:
3993 ret = -EINVAL; /* should be BUG() ? */
3994 break;
3995 }
3996 return ret;
8cdea7c0
BS
3997}
3998
fee7b548
KH
3999static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4000 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4001{
4002 struct cgroup *cgroup;
4003 unsigned long long min_limit, min_memsw_limit, tmp;
4004
4005 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 cgroup = memcg->css.cgroup;
4008 if (!memcg->use_hierarchy)
4009 goto out;
4010
4011 while (cgroup->parent) {
4012 cgroup = cgroup->parent;
4013 memcg = mem_cgroup_from_cont(cgroup);
4014 if (!memcg->use_hierarchy)
4015 break;
4016 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 min_limit = min(min_limit, tmp);
4018 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4019 min_memsw_limit = min(min_memsw_limit, tmp);
4020 }
4021out:
4022 *mem_limit = min_limit;
4023 *memsw_limit = min_memsw_limit;
4024 return;
4025}
4026
29f2a4da 4027static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4028{
c0ff4b85 4029 struct mem_cgroup *memcg;
8c7c6e34 4030 int type, name;
c84872e1 4031
c0ff4b85 4032 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4033 type = MEMFILE_TYPE(event);
4034 name = MEMFILE_ATTR(event);
4035 switch (name) {
29f2a4da 4036 case RES_MAX_USAGE:
8c7c6e34 4037 if (type == _MEM)
c0ff4b85 4038 res_counter_reset_max(&memcg->res);
8c7c6e34 4039 else
c0ff4b85 4040 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4041 break;
4042 case RES_FAILCNT:
8c7c6e34 4043 if (type == _MEM)
c0ff4b85 4044 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4045 else
c0ff4b85 4046 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4047 break;
4048 }
f64c3f54 4049
85cc59db 4050 return 0;
c84872e1
PE
4051}
4052
7dc74be0
DN
4053static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4054 struct cftype *cft)
4055{
4056 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4057}
4058
02491447 4059#ifdef CONFIG_MMU
7dc74be0
DN
4060static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4061 struct cftype *cft, u64 val)
4062{
c0ff4b85 4063 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4064
4065 if (val >= (1 << NR_MOVE_TYPE))
4066 return -EINVAL;
4067 /*
4068 * We check this value several times in both in can_attach() and
4069 * attach(), so we need cgroup lock to prevent this value from being
4070 * inconsistent.
4071 */
4072 cgroup_lock();
c0ff4b85 4073 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4074 cgroup_unlock();
4075
4076 return 0;
4077}
02491447
DN
4078#else
4079static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4080 struct cftype *cft, u64 val)
4081{
4082 return -ENOSYS;
4083}
4084#endif
7dc74be0 4085
14067bb3
KH
4086
4087/* For read statistics */
4088enum {
4089 MCS_CACHE,
4090 MCS_RSS,
d8046582 4091 MCS_FILE_MAPPED,
14067bb3
KH
4092 MCS_PGPGIN,
4093 MCS_PGPGOUT,
1dd3a273 4094 MCS_SWAP,
456f998e
YH
4095 MCS_PGFAULT,
4096 MCS_PGMAJFAULT,
14067bb3
KH
4097 MCS_INACTIVE_ANON,
4098 MCS_ACTIVE_ANON,
4099 MCS_INACTIVE_FILE,
4100 MCS_ACTIVE_FILE,
4101 MCS_UNEVICTABLE,
4102 NR_MCS_STAT,
4103};
4104
4105struct mcs_total_stat {
4106 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4107};
4108
14067bb3
KH
4109struct {
4110 char *local_name;
4111 char *total_name;
4112} memcg_stat_strings[NR_MCS_STAT] = {
4113 {"cache", "total_cache"},
4114 {"rss", "total_rss"},
d69b042f 4115 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4116 {"pgpgin", "total_pgpgin"},
4117 {"pgpgout", "total_pgpgout"},
1dd3a273 4118 {"swap", "total_swap"},
456f998e
YH
4119 {"pgfault", "total_pgfault"},
4120 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4121 {"inactive_anon", "total_inactive_anon"},
4122 {"active_anon", "total_active_anon"},
4123 {"inactive_file", "total_inactive_file"},
4124 {"active_file", "total_active_file"},
4125 {"unevictable", "total_unevictable"}
4126};
4127
4128
7d74b06f 4129static void
c0ff4b85 4130mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4131{
14067bb3
KH
4132 s64 val;
4133
4134 /* per cpu stat */
c0ff4b85 4135 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4136 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4137 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4138 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4139 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4140 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4141 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4142 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4143 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4144 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4145 if (do_swap_account) {
c0ff4b85 4146 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4147 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4148 }
c0ff4b85 4149 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4150 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4151 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4152 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4153
4154 /* per zone stat */
c0ff4b85 4155 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4156 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4157 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4158 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4159 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4160 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4161 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4162 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4163 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4164 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4165}
4166
4167static void
c0ff4b85 4168mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4169{
7d74b06f
KH
4170 struct mem_cgroup *iter;
4171
c0ff4b85 4172 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4173 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4174}
4175
406eb0c9
YH
4176#ifdef CONFIG_NUMA
4177static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4178{
4179 int nid;
4180 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4181 unsigned long node_nr;
4182 struct cgroup *cont = m->private;
4183 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4184
bb2a0de9 4185 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4186 seq_printf(m, "total=%lu", total_nr);
4187 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4188 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4189 seq_printf(m, " N%d=%lu", nid, node_nr);
4190 }
4191 seq_putc(m, '\n');
4192
bb2a0de9 4193 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4194 seq_printf(m, "file=%lu", file_nr);
4195 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4196 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4197 LRU_ALL_FILE);
406eb0c9
YH
4198 seq_printf(m, " N%d=%lu", nid, node_nr);
4199 }
4200 seq_putc(m, '\n');
4201
bb2a0de9 4202 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4203 seq_printf(m, "anon=%lu", anon_nr);
4204 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4205 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4206 LRU_ALL_ANON);
406eb0c9
YH
4207 seq_printf(m, " N%d=%lu", nid, node_nr);
4208 }
4209 seq_putc(m, '\n');
4210
bb2a0de9 4211 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4212 seq_printf(m, "unevictable=%lu", unevictable_nr);
4213 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4214 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4215 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4216 seq_printf(m, " N%d=%lu", nid, node_nr);
4217 }
4218 seq_putc(m, '\n');
4219 return 0;
4220}
4221#endif /* CONFIG_NUMA */
4222
c64745cf
PM
4223static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4224 struct cgroup_map_cb *cb)
d2ceb9b7 4225{
d2ceb9b7 4226 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4227 struct mcs_total_stat mystat;
d2ceb9b7
KH
4228 int i;
4229
14067bb3
KH
4230 memset(&mystat, 0, sizeof(mystat));
4231 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4232
406eb0c9 4233
1dd3a273
DN
4234 for (i = 0; i < NR_MCS_STAT; i++) {
4235 if (i == MCS_SWAP && !do_swap_account)
4236 continue;
14067bb3 4237 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4238 }
7b854121 4239
14067bb3 4240 /* Hierarchical information */
fee7b548
KH
4241 {
4242 unsigned long long limit, memsw_limit;
4243 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4244 cb->fill(cb, "hierarchical_memory_limit", limit);
4245 if (do_swap_account)
4246 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4247 }
7f016ee8 4248
14067bb3
KH
4249 memset(&mystat, 0, sizeof(mystat));
4250 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4251 for (i = 0; i < NR_MCS_STAT; i++) {
4252 if (i == MCS_SWAP && !do_swap_account)
4253 continue;
14067bb3 4254 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4255 }
14067bb3 4256
7f016ee8 4257#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4258 {
4259 int nid, zid;
4260 struct mem_cgroup_per_zone *mz;
4261 unsigned long recent_rotated[2] = {0, 0};
4262 unsigned long recent_scanned[2] = {0, 0};
4263
4264 for_each_online_node(nid)
4265 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4266 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4267
4268 recent_rotated[0] +=
4269 mz->reclaim_stat.recent_rotated[0];
4270 recent_rotated[1] +=
4271 mz->reclaim_stat.recent_rotated[1];
4272 recent_scanned[0] +=
4273 mz->reclaim_stat.recent_scanned[0];
4274 recent_scanned[1] +=
4275 mz->reclaim_stat.recent_scanned[1];
4276 }
4277 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4278 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4279 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4280 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4281 }
4282#endif
4283
d2ceb9b7
KH
4284 return 0;
4285}
4286
a7885eb8
KM
4287static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4288{
4289 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4290
1f4c025b 4291 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4292}
4293
4294static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4295 u64 val)
4296{
4297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4298 struct mem_cgroup *parent;
068b38c1 4299
a7885eb8
KM
4300 if (val > 100)
4301 return -EINVAL;
4302
4303 if (cgrp->parent == NULL)
4304 return -EINVAL;
4305
4306 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4307
4308 cgroup_lock();
4309
a7885eb8
KM
4310 /* If under hierarchy, only empty-root can set this value */
4311 if ((parent->use_hierarchy) ||
068b38c1
LZ
4312 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4313 cgroup_unlock();
a7885eb8 4314 return -EINVAL;
068b38c1 4315 }
a7885eb8 4316
a7885eb8 4317 memcg->swappiness = val;
a7885eb8 4318
068b38c1
LZ
4319 cgroup_unlock();
4320
a7885eb8
KM
4321 return 0;
4322}
4323
2e72b634
KS
4324static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4325{
4326 struct mem_cgroup_threshold_ary *t;
4327 u64 usage;
4328 int i;
4329
4330 rcu_read_lock();
4331 if (!swap)
2c488db2 4332 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4333 else
2c488db2 4334 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4335
4336 if (!t)
4337 goto unlock;
4338
4339 usage = mem_cgroup_usage(memcg, swap);
4340
4341 /*
4342 * current_threshold points to threshold just below usage.
4343 * If it's not true, a threshold was crossed after last
4344 * call of __mem_cgroup_threshold().
4345 */
5407a562 4346 i = t->current_threshold;
2e72b634
KS
4347
4348 /*
4349 * Iterate backward over array of thresholds starting from
4350 * current_threshold and check if a threshold is crossed.
4351 * If none of thresholds below usage is crossed, we read
4352 * only one element of the array here.
4353 */
4354 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4355 eventfd_signal(t->entries[i].eventfd, 1);
4356
4357 /* i = current_threshold + 1 */
4358 i++;
4359
4360 /*
4361 * Iterate forward over array of thresholds starting from
4362 * current_threshold+1 and check if a threshold is crossed.
4363 * If none of thresholds above usage is crossed, we read
4364 * only one element of the array here.
4365 */
4366 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4367 eventfd_signal(t->entries[i].eventfd, 1);
4368
4369 /* Update current_threshold */
5407a562 4370 t->current_threshold = i - 1;
2e72b634
KS
4371unlock:
4372 rcu_read_unlock();
4373}
4374
4375static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4376{
ad4ca5f4
KS
4377 while (memcg) {
4378 __mem_cgroup_threshold(memcg, false);
4379 if (do_swap_account)
4380 __mem_cgroup_threshold(memcg, true);
4381
4382 memcg = parent_mem_cgroup(memcg);
4383 }
2e72b634
KS
4384}
4385
4386static int compare_thresholds(const void *a, const void *b)
4387{
4388 const struct mem_cgroup_threshold *_a = a;
4389 const struct mem_cgroup_threshold *_b = b;
4390
4391 return _a->threshold - _b->threshold;
4392}
4393
c0ff4b85 4394static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4395{
4396 struct mem_cgroup_eventfd_list *ev;
4397
c0ff4b85 4398 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4399 eventfd_signal(ev->eventfd, 1);
4400 return 0;
4401}
4402
c0ff4b85 4403static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4404{
7d74b06f
KH
4405 struct mem_cgroup *iter;
4406
c0ff4b85 4407 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4408 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4409}
4410
4411static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4412 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4413{
4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4415 struct mem_cgroup_thresholds *thresholds;
4416 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4417 int type = MEMFILE_TYPE(cft->private);
4418 u64 threshold, usage;
2c488db2 4419 int i, size, ret;
2e72b634
KS
4420
4421 ret = res_counter_memparse_write_strategy(args, &threshold);
4422 if (ret)
4423 return ret;
4424
4425 mutex_lock(&memcg->thresholds_lock);
2c488db2 4426
2e72b634 4427 if (type == _MEM)
2c488db2 4428 thresholds = &memcg->thresholds;
2e72b634 4429 else if (type == _MEMSWAP)
2c488db2 4430 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4431 else
4432 BUG();
4433
4434 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4435
4436 /* Check if a threshold crossed before adding a new one */
2c488db2 4437 if (thresholds->primary)
2e72b634
KS
4438 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4439
2c488db2 4440 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4441
4442 /* Allocate memory for new array of thresholds */
2c488db2 4443 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4444 GFP_KERNEL);
2c488db2 4445 if (!new) {
2e72b634
KS
4446 ret = -ENOMEM;
4447 goto unlock;
4448 }
2c488db2 4449 new->size = size;
2e72b634
KS
4450
4451 /* Copy thresholds (if any) to new array */
2c488db2
KS
4452 if (thresholds->primary) {
4453 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4454 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4455 }
4456
2e72b634 4457 /* Add new threshold */
2c488db2
KS
4458 new->entries[size - 1].eventfd = eventfd;
4459 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4460
4461 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4462 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4463 compare_thresholds, NULL);
4464
4465 /* Find current threshold */
2c488db2 4466 new->current_threshold = -1;
2e72b634 4467 for (i = 0; i < size; i++) {
2c488db2 4468 if (new->entries[i].threshold < usage) {
2e72b634 4469 /*
2c488db2
KS
4470 * new->current_threshold will not be used until
4471 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4472 * it here.
4473 */
2c488db2 4474 ++new->current_threshold;
2e72b634
KS
4475 }
4476 }
4477
2c488db2
KS
4478 /* Free old spare buffer and save old primary buffer as spare */
4479 kfree(thresholds->spare);
4480 thresholds->spare = thresholds->primary;
4481
4482 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4483
907860ed 4484 /* To be sure that nobody uses thresholds */
2e72b634
KS
4485 synchronize_rcu();
4486
2e72b634
KS
4487unlock:
4488 mutex_unlock(&memcg->thresholds_lock);
4489
4490 return ret;
4491}
4492
907860ed 4493static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4494 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4495{
4496 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4497 struct mem_cgroup_thresholds *thresholds;
4498 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4499 int type = MEMFILE_TYPE(cft->private);
4500 u64 usage;
2c488db2 4501 int i, j, size;
2e72b634
KS
4502
4503 mutex_lock(&memcg->thresholds_lock);
4504 if (type == _MEM)
2c488db2 4505 thresholds = &memcg->thresholds;
2e72b634 4506 else if (type == _MEMSWAP)
2c488db2 4507 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4508 else
4509 BUG();
4510
4511 /*
4512 * Something went wrong if we trying to unregister a threshold
4513 * if we don't have thresholds
4514 */
4515 BUG_ON(!thresholds);
4516
4517 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4518
4519 /* Check if a threshold crossed before removing */
4520 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4521
4522 /* Calculate new number of threshold */
2c488db2
KS
4523 size = 0;
4524 for (i = 0; i < thresholds->primary->size; i++) {
4525 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4526 size++;
4527 }
4528
2c488db2 4529 new = thresholds->spare;
907860ed 4530
2e72b634
KS
4531 /* Set thresholds array to NULL if we don't have thresholds */
4532 if (!size) {
2c488db2
KS
4533 kfree(new);
4534 new = NULL;
907860ed 4535 goto swap_buffers;
2e72b634
KS
4536 }
4537
2c488db2 4538 new->size = size;
2e72b634
KS
4539
4540 /* Copy thresholds and find current threshold */
2c488db2
KS
4541 new->current_threshold = -1;
4542 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4543 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4544 continue;
4545
2c488db2
KS
4546 new->entries[j] = thresholds->primary->entries[i];
4547 if (new->entries[j].threshold < usage) {
2e72b634 4548 /*
2c488db2 4549 * new->current_threshold will not be used
2e72b634
KS
4550 * until rcu_assign_pointer(), so it's safe to increment
4551 * it here.
4552 */
2c488db2 4553 ++new->current_threshold;
2e72b634
KS
4554 }
4555 j++;
4556 }
4557
907860ed 4558swap_buffers:
2c488db2
KS
4559 /* Swap primary and spare array */
4560 thresholds->spare = thresholds->primary;
4561 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4562
907860ed 4563 /* To be sure that nobody uses thresholds */
2e72b634
KS
4564 synchronize_rcu();
4565
2e72b634 4566 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4567}
c1e862c1 4568
9490ff27
KH
4569static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4570 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4571{
4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4573 struct mem_cgroup_eventfd_list *event;
4574 int type = MEMFILE_TYPE(cft->private);
4575
4576 BUG_ON(type != _OOM_TYPE);
4577 event = kmalloc(sizeof(*event), GFP_KERNEL);
4578 if (!event)
4579 return -ENOMEM;
4580
1af8efe9 4581 spin_lock(&memcg_oom_lock);
9490ff27
KH
4582
4583 event->eventfd = eventfd;
4584 list_add(&event->list, &memcg->oom_notify);
4585
4586 /* already in OOM ? */
79dfdacc 4587 if (atomic_read(&memcg->under_oom))
9490ff27 4588 eventfd_signal(eventfd, 1);
1af8efe9 4589 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4590
4591 return 0;
4592}
4593
907860ed 4594static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4595 struct cftype *cft, struct eventfd_ctx *eventfd)
4596{
c0ff4b85 4597 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4598 struct mem_cgroup_eventfd_list *ev, *tmp;
4599 int type = MEMFILE_TYPE(cft->private);
4600
4601 BUG_ON(type != _OOM_TYPE);
4602
1af8efe9 4603 spin_lock(&memcg_oom_lock);
9490ff27 4604
c0ff4b85 4605 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4606 if (ev->eventfd == eventfd) {
4607 list_del(&ev->list);
4608 kfree(ev);
4609 }
4610 }
4611
1af8efe9 4612 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4613}
4614
3c11ecf4
KH
4615static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4616 struct cftype *cft, struct cgroup_map_cb *cb)
4617{
c0ff4b85 4618 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4619
c0ff4b85 4620 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4621
c0ff4b85 4622 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4623 cb->fill(cb, "under_oom", 1);
4624 else
4625 cb->fill(cb, "under_oom", 0);
4626 return 0;
4627}
4628
3c11ecf4
KH
4629static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4630 struct cftype *cft, u64 val)
4631{
c0ff4b85 4632 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4633 struct mem_cgroup *parent;
4634
4635 /* cannot set to root cgroup and only 0 and 1 are allowed */
4636 if (!cgrp->parent || !((val == 0) || (val == 1)))
4637 return -EINVAL;
4638
4639 parent = mem_cgroup_from_cont(cgrp->parent);
4640
4641 cgroup_lock();
4642 /* oom-kill-disable is a flag for subhierarchy. */
4643 if ((parent->use_hierarchy) ||
c0ff4b85 4644 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4645 cgroup_unlock();
4646 return -EINVAL;
4647 }
c0ff4b85 4648 memcg->oom_kill_disable = val;
4d845ebf 4649 if (!val)
c0ff4b85 4650 memcg_oom_recover(memcg);
3c11ecf4
KH
4651 cgroup_unlock();
4652 return 0;
4653}
4654
406eb0c9
YH
4655#ifdef CONFIG_NUMA
4656static const struct file_operations mem_control_numa_stat_file_operations = {
4657 .read = seq_read,
4658 .llseek = seq_lseek,
4659 .release = single_release,
4660};
4661
4662static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4663{
4664 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4665
4666 file->f_op = &mem_control_numa_stat_file_operations;
4667 return single_open(file, mem_control_numa_stat_show, cont);
4668}
4669#endif /* CONFIG_NUMA */
4670
e5671dfa 4671#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4672static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4673{
d1a4c0b3
GC
4674 /*
4675 * Part of this would be better living in a separate allocation
4676 * function, leaving us with just the cgroup tree population work.
4677 * We, however, depend on state such as network's proto_list that
4678 * is only initialized after cgroup creation. I found the less
4679 * cumbersome way to deal with it to defer it all to populate time
4680 */
65c64ce8 4681 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4682};
4683
d1a4c0b3
GC
4684static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4685 struct cgroup *cont)
4686{
4687 mem_cgroup_sockets_destroy(cont, ss);
4688}
e5671dfa
GC
4689#else
4690static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4691{
4692 return 0;
4693}
d1a4c0b3
GC
4694
4695static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4696 struct cgroup *cont)
4697{
4698}
e5671dfa
GC
4699#endif
4700
8cdea7c0
BS
4701static struct cftype mem_cgroup_files[] = {
4702 {
0eea1030 4703 .name = "usage_in_bytes",
8c7c6e34 4704 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4705 .read_u64 = mem_cgroup_read,
9490ff27
KH
4706 .register_event = mem_cgroup_usage_register_event,
4707 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4708 },
c84872e1
PE
4709 {
4710 .name = "max_usage_in_bytes",
8c7c6e34 4711 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4712 .trigger = mem_cgroup_reset,
c84872e1
PE
4713 .read_u64 = mem_cgroup_read,
4714 },
8cdea7c0 4715 {
0eea1030 4716 .name = "limit_in_bytes",
8c7c6e34 4717 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4718 .write_string = mem_cgroup_write,
2c3daa72 4719 .read_u64 = mem_cgroup_read,
8cdea7c0 4720 },
296c81d8
BS
4721 {
4722 .name = "soft_limit_in_bytes",
4723 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4724 .write_string = mem_cgroup_write,
4725 .read_u64 = mem_cgroup_read,
4726 },
8cdea7c0
BS
4727 {
4728 .name = "failcnt",
8c7c6e34 4729 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4730 .trigger = mem_cgroup_reset,
2c3daa72 4731 .read_u64 = mem_cgroup_read,
8cdea7c0 4732 },
d2ceb9b7
KH
4733 {
4734 .name = "stat",
c64745cf 4735 .read_map = mem_control_stat_show,
d2ceb9b7 4736 },
c1e862c1
KH
4737 {
4738 .name = "force_empty",
4739 .trigger = mem_cgroup_force_empty_write,
4740 },
18f59ea7
BS
4741 {
4742 .name = "use_hierarchy",
4743 .write_u64 = mem_cgroup_hierarchy_write,
4744 .read_u64 = mem_cgroup_hierarchy_read,
4745 },
a7885eb8
KM
4746 {
4747 .name = "swappiness",
4748 .read_u64 = mem_cgroup_swappiness_read,
4749 .write_u64 = mem_cgroup_swappiness_write,
4750 },
7dc74be0
DN
4751 {
4752 .name = "move_charge_at_immigrate",
4753 .read_u64 = mem_cgroup_move_charge_read,
4754 .write_u64 = mem_cgroup_move_charge_write,
4755 },
9490ff27
KH
4756 {
4757 .name = "oom_control",
3c11ecf4
KH
4758 .read_map = mem_cgroup_oom_control_read,
4759 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4760 .register_event = mem_cgroup_oom_register_event,
4761 .unregister_event = mem_cgroup_oom_unregister_event,
4762 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4763 },
406eb0c9
YH
4764#ifdef CONFIG_NUMA
4765 {
4766 .name = "numa_stat",
4767 .open = mem_control_numa_stat_open,
89577127 4768 .mode = S_IRUGO,
406eb0c9
YH
4769 },
4770#endif
8cdea7c0
BS
4771};
4772
8c7c6e34
KH
4773#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4774static struct cftype memsw_cgroup_files[] = {
4775 {
4776 .name = "memsw.usage_in_bytes",
4777 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4778 .read_u64 = mem_cgroup_read,
9490ff27
KH
4779 .register_event = mem_cgroup_usage_register_event,
4780 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4781 },
4782 {
4783 .name = "memsw.max_usage_in_bytes",
4784 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4785 .trigger = mem_cgroup_reset,
4786 .read_u64 = mem_cgroup_read,
4787 },
4788 {
4789 .name = "memsw.limit_in_bytes",
4790 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4791 .write_string = mem_cgroup_write,
4792 .read_u64 = mem_cgroup_read,
4793 },
4794 {
4795 .name = "memsw.failcnt",
4796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4797 .trigger = mem_cgroup_reset,
4798 .read_u64 = mem_cgroup_read,
4799 },
4800};
4801
4802static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4803{
4804 if (!do_swap_account)
4805 return 0;
4806 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4807 ARRAY_SIZE(memsw_cgroup_files));
4808};
4809#else
4810static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4811{
4812 return 0;
4813}
4814#endif
4815
c0ff4b85 4816static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4817{
4818 struct mem_cgroup_per_node *pn;
1ecaab2b 4819 struct mem_cgroup_per_zone *mz;
b69408e8 4820 enum lru_list l;
41e3355d 4821 int zone, tmp = node;
1ecaab2b
KH
4822 /*
4823 * This routine is called against possible nodes.
4824 * But it's BUG to call kmalloc() against offline node.
4825 *
4826 * TODO: this routine can waste much memory for nodes which will
4827 * never be onlined. It's better to use memory hotplug callback
4828 * function.
4829 */
41e3355d
KH
4830 if (!node_state(node, N_NORMAL_MEMORY))
4831 tmp = -1;
17295c88 4832 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4833 if (!pn)
4834 return 1;
1ecaab2b 4835
1ecaab2b
KH
4836 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4837 mz = &pn->zoneinfo[zone];
b69408e8 4838 for_each_lru(l)
6290df54 4839 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4840 mz->usage_in_excess = 0;
4e416953 4841 mz->on_tree = false;
c0ff4b85 4842 mz->mem = memcg;
1ecaab2b 4843 }
0a619e58 4844 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4845 return 0;
4846}
4847
c0ff4b85 4848static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4849{
c0ff4b85 4850 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4851}
4852
33327948
KH
4853static struct mem_cgroup *mem_cgroup_alloc(void)
4854{
4855 struct mem_cgroup *mem;
c62b1a3b 4856 int size = sizeof(struct mem_cgroup);
33327948 4857
c62b1a3b 4858 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4859 if (size < PAGE_SIZE)
17295c88 4860 mem = kzalloc(size, GFP_KERNEL);
33327948 4861 else
17295c88 4862 mem = vzalloc(size);
33327948 4863
e7bbcdf3
DC
4864 if (!mem)
4865 return NULL;
4866
c62b1a3b 4867 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4868 if (!mem->stat)
4869 goto out_free;
711d3d2c 4870 spin_lock_init(&mem->pcp_counter_lock);
33327948 4871 return mem;
d2e61b8d
DC
4872
4873out_free:
4874 if (size < PAGE_SIZE)
4875 kfree(mem);
4876 else
4877 vfree(mem);
4878 return NULL;
33327948
KH
4879}
4880
8c7c6e34
KH
4881/*
4882 * At destroying mem_cgroup, references from swap_cgroup can remain.
4883 * (scanning all at force_empty is too costly...)
4884 *
4885 * Instead of clearing all references at force_empty, we remember
4886 * the number of reference from swap_cgroup and free mem_cgroup when
4887 * it goes down to 0.
4888 *
8c7c6e34
KH
4889 * Removal of cgroup itself succeeds regardless of refs from swap.
4890 */
4891
c0ff4b85 4892static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4893{
08e552c6
KH
4894 int node;
4895
c0ff4b85
R
4896 mem_cgroup_remove_from_trees(memcg);
4897 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4898
08e552c6 4899 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4900 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4901
c0ff4b85 4902 free_percpu(memcg->stat);
c62b1a3b 4903 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4904 kfree(memcg);
33327948 4905 else
c0ff4b85 4906 vfree(memcg);
33327948
KH
4907}
4908
c0ff4b85 4909static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4910{
c0ff4b85 4911 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4912}
4913
c0ff4b85 4914static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4915{
c0ff4b85
R
4916 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4917 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4918 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4919 if (parent)
4920 mem_cgroup_put(parent);
4921 }
8c7c6e34
KH
4922}
4923
c0ff4b85 4924static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4925{
c0ff4b85 4926 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4927}
4928
7bcc1bb1
DN
4929/*
4930 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4931 */
e1aab161 4932struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4933{
c0ff4b85 4934 if (!memcg->res.parent)
7bcc1bb1 4935 return NULL;
c0ff4b85 4936 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4937}
e1aab161 4938EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4939
c077719b
KH
4940#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4941static void __init enable_swap_cgroup(void)
4942{
f8d66542 4943 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4944 do_swap_account = 1;
4945}
4946#else
4947static void __init enable_swap_cgroup(void)
4948{
4949}
4950#endif
4951
f64c3f54
BS
4952static int mem_cgroup_soft_limit_tree_init(void)
4953{
4954 struct mem_cgroup_tree_per_node *rtpn;
4955 struct mem_cgroup_tree_per_zone *rtpz;
4956 int tmp, node, zone;
4957
4958 for_each_node_state(node, N_POSSIBLE) {
4959 tmp = node;
4960 if (!node_state(node, N_NORMAL_MEMORY))
4961 tmp = -1;
4962 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4963 if (!rtpn)
4964 return 1;
4965
4966 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4967
4968 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4969 rtpz = &rtpn->rb_tree_per_zone[zone];
4970 rtpz->rb_root = RB_ROOT;
4971 spin_lock_init(&rtpz->lock);
4972 }
4973 }
4974 return 0;
4975}
4976
0eb253e2 4977static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4978mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4979{
c0ff4b85 4980 struct mem_cgroup *memcg, *parent;
04046e1a 4981 long error = -ENOMEM;
6d12e2d8 4982 int node;
8cdea7c0 4983
c0ff4b85
R
4984 memcg = mem_cgroup_alloc();
4985 if (!memcg)
04046e1a 4986 return ERR_PTR(error);
78fb7466 4987
6d12e2d8 4988 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4989 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4990 goto free_out;
f64c3f54 4991
c077719b 4992 /* root ? */
28dbc4b6 4993 if (cont->parent == NULL) {
cdec2e42 4994 int cpu;
c077719b 4995 enable_swap_cgroup();
28dbc4b6 4996 parent = NULL;
f64c3f54
BS
4997 if (mem_cgroup_soft_limit_tree_init())
4998 goto free_out;
a41c58a6 4999 root_mem_cgroup = memcg;
cdec2e42
KH
5000 for_each_possible_cpu(cpu) {
5001 struct memcg_stock_pcp *stock =
5002 &per_cpu(memcg_stock, cpu);
5003 INIT_WORK(&stock->work, drain_local_stock);
5004 }
711d3d2c 5005 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5006 } else {
28dbc4b6 5007 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5008 memcg->use_hierarchy = parent->use_hierarchy;
5009 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5010 }
28dbc4b6 5011
18f59ea7 5012 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5013 res_counter_init(&memcg->res, &parent->res);
5014 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5015 /*
5016 * We increment refcnt of the parent to ensure that we can
5017 * safely access it on res_counter_charge/uncharge.
5018 * This refcnt will be decremented when freeing this
5019 * mem_cgroup(see mem_cgroup_put).
5020 */
5021 mem_cgroup_get(parent);
18f59ea7 5022 } else {
c0ff4b85
R
5023 res_counter_init(&memcg->res, NULL);
5024 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5025 }
c0ff4b85
R
5026 memcg->last_scanned_node = MAX_NUMNODES;
5027 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5028
a7885eb8 5029 if (parent)
c0ff4b85
R
5030 memcg->swappiness = mem_cgroup_swappiness(parent);
5031 atomic_set(&memcg->refcnt, 1);
5032 memcg->move_charge_at_immigrate = 0;
5033 mutex_init(&memcg->thresholds_lock);
5034 return &memcg->css;
6d12e2d8 5035free_out:
c0ff4b85 5036 __mem_cgroup_free(memcg);
04046e1a 5037 return ERR_PTR(error);
8cdea7c0
BS
5038}
5039
ec64f515 5040static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5041 struct cgroup *cont)
5042{
c0ff4b85 5043 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5044
c0ff4b85 5045 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5046}
5047
8cdea7c0
BS
5048static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5049 struct cgroup *cont)
5050{
c0ff4b85 5051 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5052
d1a4c0b3
GC
5053 kmem_cgroup_destroy(ss, cont);
5054
c0ff4b85 5055 mem_cgroup_put(memcg);
8cdea7c0
BS
5056}
5057
5058static int mem_cgroup_populate(struct cgroup_subsys *ss,
5059 struct cgroup *cont)
5060{
8c7c6e34
KH
5061 int ret;
5062
5063 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5064 ARRAY_SIZE(mem_cgroup_files));
5065
5066 if (!ret)
5067 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5068
5069 if (!ret)
5070 ret = register_kmem_files(cont, ss);
5071
8c7c6e34 5072 return ret;
8cdea7c0
BS
5073}
5074
02491447 5075#ifdef CONFIG_MMU
7dc74be0 5076/* Handlers for move charge at task migration. */
854ffa8d
DN
5077#define PRECHARGE_COUNT_AT_ONCE 256
5078static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5079{
854ffa8d
DN
5080 int ret = 0;
5081 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5082 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5083
c0ff4b85 5084 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5085 mc.precharge += count;
5086 /* we don't need css_get for root */
5087 return ret;
5088 }
5089 /* try to charge at once */
5090 if (count > 1) {
5091 struct res_counter *dummy;
5092 /*
c0ff4b85 5093 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5094 * by cgroup_lock_live_cgroup() that it is not removed and we
5095 * are still under the same cgroup_mutex. So we can postpone
5096 * css_get().
5097 */
c0ff4b85 5098 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5099 goto one_by_one;
c0ff4b85 5100 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5101 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5102 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5103 goto one_by_one;
5104 }
5105 mc.precharge += count;
854ffa8d
DN
5106 return ret;
5107 }
5108one_by_one:
5109 /* fall back to one by one charge */
5110 while (count--) {
5111 if (signal_pending(current)) {
5112 ret = -EINTR;
5113 break;
5114 }
5115 if (!batch_count--) {
5116 batch_count = PRECHARGE_COUNT_AT_ONCE;
5117 cond_resched();
5118 }
c0ff4b85
R
5119 ret = __mem_cgroup_try_charge(NULL,
5120 GFP_KERNEL, 1, &memcg, false);
5121 if (ret || !memcg)
854ffa8d
DN
5122 /* mem_cgroup_clear_mc() will do uncharge later */
5123 return -ENOMEM;
5124 mc.precharge++;
5125 }
4ffef5fe
DN
5126 return ret;
5127}
5128
5129/**
5130 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5131 * @vma: the vma the pte to be checked belongs
5132 * @addr: the address corresponding to the pte to be checked
5133 * @ptent: the pte to be checked
02491447 5134 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5135 *
5136 * Returns
5137 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5138 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5139 * move charge. if @target is not NULL, the page is stored in target->page
5140 * with extra refcnt got(Callers should handle it).
02491447
DN
5141 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5142 * target for charge migration. if @target is not NULL, the entry is stored
5143 * in target->ent.
4ffef5fe
DN
5144 *
5145 * Called with pte lock held.
5146 */
4ffef5fe
DN
5147union mc_target {
5148 struct page *page;
02491447 5149 swp_entry_t ent;
4ffef5fe
DN
5150};
5151
4ffef5fe
DN
5152enum mc_target_type {
5153 MC_TARGET_NONE, /* not used */
5154 MC_TARGET_PAGE,
02491447 5155 MC_TARGET_SWAP,
4ffef5fe
DN
5156};
5157
90254a65
DN
5158static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5159 unsigned long addr, pte_t ptent)
4ffef5fe 5160{
90254a65 5161 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5162
90254a65
DN
5163 if (!page || !page_mapped(page))
5164 return NULL;
5165 if (PageAnon(page)) {
5166 /* we don't move shared anon */
5167 if (!move_anon() || page_mapcount(page) > 2)
5168 return NULL;
87946a72
DN
5169 } else if (!move_file())
5170 /* we ignore mapcount for file pages */
90254a65
DN
5171 return NULL;
5172 if (!get_page_unless_zero(page))
5173 return NULL;
5174
5175 return page;
5176}
5177
5178static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5179 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5180{
5181 int usage_count;
5182 struct page *page = NULL;
5183 swp_entry_t ent = pte_to_swp_entry(ptent);
5184
5185 if (!move_anon() || non_swap_entry(ent))
5186 return NULL;
5187 usage_count = mem_cgroup_count_swap_user(ent, &page);
5188 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5189 if (page)
5190 put_page(page);
90254a65 5191 return NULL;
02491447 5192 }
90254a65
DN
5193 if (do_swap_account)
5194 entry->val = ent.val;
5195
5196 return page;
5197}
5198
87946a72
DN
5199static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5200 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5201{
5202 struct page *page = NULL;
5203 struct inode *inode;
5204 struct address_space *mapping;
5205 pgoff_t pgoff;
5206
5207 if (!vma->vm_file) /* anonymous vma */
5208 return NULL;
5209 if (!move_file())
5210 return NULL;
5211
5212 inode = vma->vm_file->f_path.dentry->d_inode;
5213 mapping = vma->vm_file->f_mapping;
5214 if (pte_none(ptent))
5215 pgoff = linear_page_index(vma, addr);
5216 else /* pte_file(ptent) is true */
5217 pgoff = pte_to_pgoff(ptent);
5218
5219 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5220 page = find_get_page(mapping, pgoff);
5221
5222#ifdef CONFIG_SWAP
5223 /* shmem/tmpfs may report page out on swap: account for that too. */
5224 if (radix_tree_exceptional_entry(page)) {
5225 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5226 if (do_swap_account)
aa3b1895
HD
5227 *entry = swap;
5228 page = find_get_page(&swapper_space, swap.val);
87946a72 5229 }
aa3b1895 5230#endif
87946a72
DN
5231 return page;
5232}
5233
90254a65
DN
5234static int is_target_pte_for_mc(struct vm_area_struct *vma,
5235 unsigned long addr, pte_t ptent, union mc_target *target)
5236{
5237 struct page *page = NULL;
5238 struct page_cgroup *pc;
5239 int ret = 0;
5240 swp_entry_t ent = { .val = 0 };
5241
5242 if (pte_present(ptent))
5243 page = mc_handle_present_pte(vma, addr, ptent);
5244 else if (is_swap_pte(ptent))
5245 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5246 else if (pte_none(ptent) || pte_file(ptent))
5247 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5248
5249 if (!page && !ent.val)
5250 return 0;
02491447
DN
5251 if (page) {
5252 pc = lookup_page_cgroup(page);
5253 /*
5254 * Do only loose check w/o page_cgroup lock.
5255 * mem_cgroup_move_account() checks the pc is valid or not under
5256 * the lock.
5257 */
5258 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5259 ret = MC_TARGET_PAGE;
5260 if (target)
5261 target->page = page;
5262 }
5263 if (!ret || !target)
5264 put_page(page);
5265 }
90254a65
DN
5266 /* There is a swap entry and a page doesn't exist or isn't charged */
5267 if (ent.val && !ret &&
7f0f1546
KH
5268 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5269 ret = MC_TARGET_SWAP;
5270 if (target)
5271 target->ent = ent;
4ffef5fe 5272 }
4ffef5fe
DN
5273 return ret;
5274}
5275
5276static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5277 unsigned long addr, unsigned long end,
5278 struct mm_walk *walk)
5279{
5280 struct vm_area_struct *vma = walk->private;
5281 pte_t *pte;
5282 spinlock_t *ptl;
5283
03319327
DH
5284 split_huge_page_pmd(walk->mm, pmd);
5285
4ffef5fe
DN
5286 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5287 for (; addr != end; pte++, addr += PAGE_SIZE)
5288 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5289 mc.precharge++; /* increment precharge temporarily */
5290 pte_unmap_unlock(pte - 1, ptl);
5291 cond_resched();
5292
7dc74be0
DN
5293 return 0;
5294}
5295
4ffef5fe
DN
5296static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5297{
5298 unsigned long precharge;
5299 struct vm_area_struct *vma;
5300
dfe076b0 5301 down_read(&mm->mmap_sem);
4ffef5fe
DN
5302 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5303 struct mm_walk mem_cgroup_count_precharge_walk = {
5304 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5305 .mm = mm,
5306 .private = vma,
5307 };
5308 if (is_vm_hugetlb_page(vma))
5309 continue;
4ffef5fe
DN
5310 walk_page_range(vma->vm_start, vma->vm_end,
5311 &mem_cgroup_count_precharge_walk);
5312 }
dfe076b0 5313 up_read(&mm->mmap_sem);
4ffef5fe
DN
5314
5315 precharge = mc.precharge;
5316 mc.precharge = 0;
5317
5318 return precharge;
5319}
5320
4ffef5fe
DN
5321static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5322{
dfe076b0
DN
5323 unsigned long precharge = mem_cgroup_count_precharge(mm);
5324
5325 VM_BUG_ON(mc.moving_task);
5326 mc.moving_task = current;
5327 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5328}
5329
dfe076b0
DN
5330/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5331static void __mem_cgroup_clear_mc(void)
4ffef5fe 5332{
2bd9bb20
KH
5333 struct mem_cgroup *from = mc.from;
5334 struct mem_cgroup *to = mc.to;
5335
4ffef5fe 5336 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5337 if (mc.precharge) {
5338 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5339 mc.precharge = 0;
5340 }
5341 /*
5342 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5343 * we must uncharge here.
5344 */
5345 if (mc.moved_charge) {
5346 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5347 mc.moved_charge = 0;
4ffef5fe 5348 }
483c30b5
DN
5349 /* we must fixup refcnts and charges */
5350 if (mc.moved_swap) {
483c30b5
DN
5351 /* uncharge swap account from the old cgroup */
5352 if (!mem_cgroup_is_root(mc.from))
5353 res_counter_uncharge(&mc.from->memsw,
5354 PAGE_SIZE * mc.moved_swap);
5355 __mem_cgroup_put(mc.from, mc.moved_swap);
5356
5357 if (!mem_cgroup_is_root(mc.to)) {
5358 /*
5359 * we charged both to->res and to->memsw, so we should
5360 * uncharge to->res.
5361 */
5362 res_counter_uncharge(&mc.to->res,
5363 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5364 }
5365 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5366 mc.moved_swap = 0;
5367 }
dfe076b0
DN
5368 memcg_oom_recover(from);
5369 memcg_oom_recover(to);
5370 wake_up_all(&mc.waitq);
5371}
5372
5373static void mem_cgroup_clear_mc(void)
5374{
5375 struct mem_cgroup *from = mc.from;
5376
5377 /*
5378 * we must clear moving_task before waking up waiters at the end of
5379 * task migration.
5380 */
5381 mc.moving_task = NULL;
5382 __mem_cgroup_clear_mc();
2bd9bb20 5383 spin_lock(&mc.lock);
4ffef5fe
DN
5384 mc.from = NULL;
5385 mc.to = NULL;
2bd9bb20 5386 spin_unlock(&mc.lock);
32047e2a 5387 mem_cgroup_end_move(from);
4ffef5fe
DN
5388}
5389
7dc74be0
DN
5390static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5391 struct cgroup *cgroup,
2f7ee569 5392 struct cgroup_taskset *tset)
7dc74be0 5393{
2f7ee569 5394 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5395 int ret = 0;
c0ff4b85 5396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5397
c0ff4b85 5398 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5399 struct mm_struct *mm;
5400 struct mem_cgroup *from = mem_cgroup_from_task(p);
5401
c0ff4b85 5402 VM_BUG_ON(from == memcg);
7dc74be0
DN
5403
5404 mm = get_task_mm(p);
5405 if (!mm)
5406 return 0;
7dc74be0 5407 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5408 if (mm->owner == p) {
5409 VM_BUG_ON(mc.from);
5410 VM_BUG_ON(mc.to);
5411 VM_BUG_ON(mc.precharge);
854ffa8d 5412 VM_BUG_ON(mc.moved_charge);
483c30b5 5413 VM_BUG_ON(mc.moved_swap);
32047e2a 5414 mem_cgroup_start_move(from);
2bd9bb20 5415 spin_lock(&mc.lock);
4ffef5fe 5416 mc.from = from;
c0ff4b85 5417 mc.to = memcg;
2bd9bb20 5418 spin_unlock(&mc.lock);
dfe076b0 5419 /* We set mc.moving_task later */
4ffef5fe
DN
5420
5421 ret = mem_cgroup_precharge_mc(mm);
5422 if (ret)
5423 mem_cgroup_clear_mc();
dfe076b0
DN
5424 }
5425 mmput(mm);
7dc74be0
DN
5426 }
5427 return ret;
5428}
5429
5430static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5431 struct cgroup *cgroup,
2f7ee569 5432 struct cgroup_taskset *tset)
7dc74be0 5433{
4ffef5fe 5434 mem_cgroup_clear_mc();
7dc74be0
DN
5435}
5436
4ffef5fe
DN
5437static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5438 unsigned long addr, unsigned long end,
5439 struct mm_walk *walk)
7dc74be0 5440{
4ffef5fe
DN
5441 int ret = 0;
5442 struct vm_area_struct *vma = walk->private;
5443 pte_t *pte;
5444 spinlock_t *ptl;
5445
03319327 5446 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5447retry:
5448 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5449 for (; addr != end; addr += PAGE_SIZE) {
5450 pte_t ptent = *(pte++);
5451 union mc_target target;
5452 int type;
5453 struct page *page;
5454 struct page_cgroup *pc;
02491447 5455 swp_entry_t ent;
4ffef5fe
DN
5456
5457 if (!mc.precharge)
5458 break;
5459
5460 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5461 switch (type) {
5462 case MC_TARGET_PAGE:
5463 page = target.page;
5464 if (isolate_lru_page(page))
5465 goto put;
5466 pc = lookup_page_cgroup(page);
7ec99d62
JW
5467 if (!mem_cgroup_move_account(page, 1, pc,
5468 mc.from, mc.to, false)) {
4ffef5fe 5469 mc.precharge--;
854ffa8d
DN
5470 /* we uncharge from mc.from later. */
5471 mc.moved_charge++;
4ffef5fe
DN
5472 }
5473 putback_lru_page(page);
5474put: /* is_target_pte_for_mc() gets the page */
5475 put_page(page);
5476 break;
02491447
DN
5477 case MC_TARGET_SWAP:
5478 ent = target.ent;
483c30b5
DN
5479 if (!mem_cgroup_move_swap_account(ent,
5480 mc.from, mc.to, false)) {
02491447 5481 mc.precharge--;
483c30b5
DN
5482 /* we fixup refcnts and charges later. */
5483 mc.moved_swap++;
5484 }
02491447 5485 break;
4ffef5fe
DN
5486 default:
5487 break;
5488 }
5489 }
5490 pte_unmap_unlock(pte - 1, ptl);
5491 cond_resched();
5492
5493 if (addr != end) {
5494 /*
5495 * We have consumed all precharges we got in can_attach().
5496 * We try charge one by one, but don't do any additional
5497 * charges to mc.to if we have failed in charge once in attach()
5498 * phase.
5499 */
854ffa8d 5500 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5501 if (!ret)
5502 goto retry;
5503 }
5504
5505 return ret;
5506}
5507
5508static void mem_cgroup_move_charge(struct mm_struct *mm)
5509{
5510 struct vm_area_struct *vma;
5511
5512 lru_add_drain_all();
dfe076b0
DN
5513retry:
5514 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5515 /*
5516 * Someone who are holding the mmap_sem might be waiting in
5517 * waitq. So we cancel all extra charges, wake up all waiters,
5518 * and retry. Because we cancel precharges, we might not be able
5519 * to move enough charges, but moving charge is a best-effort
5520 * feature anyway, so it wouldn't be a big problem.
5521 */
5522 __mem_cgroup_clear_mc();
5523 cond_resched();
5524 goto retry;
5525 }
4ffef5fe
DN
5526 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5527 int ret;
5528 struct mm_walk mem_cgroup_move_charge_walk = {
5529 .pmd_entry = mem_cgroup_move_charge_pte_range,
5530 .mm = mm,
5531 .private = vma,
5532 };
5533 if (is_vm_hugetlb_page(vma))
5534 continue;
4ffef5fe
DN
5535 ret = walk_page_range(vma->vm_start, vma->vm_end,
5536 &mem_cgroup_move_charge_walk);
5537 if (ret)
5538 /*
5539 * means we have consumed all precharges and failed in
5540 * doing additional charge. Just abandon here.
5541 */
5542 break;
5543 }
dfe076b0 5544 up_read(&mm->mmap_sem);
7dc74be0
DN
5545}
5546
67e465a7
BS
5547static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5548 struct cgroup *cont,
2f7ee569 5549 struct cgroup_taskset *tset)
67e465a7 5550{
2f7ee569 5551 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5552 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5553
dfe076b0 5554 if (mm) {
a433658c
KM
5555 if (mc.to)
5556 mem_cgroup_move_charge(mm);
5557 put_swap_token(mm);
dfe076b0
DN
5558 mmput(mm);
5559 }
a433658c
KM
5560 if (mc.to)
5561 mem_cgroup_clear_mc();
67e465a7 5562}
5cfb80a7
DN
5563#else /* !CONFIG_MMU */
5564static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5565 struct cgroup *cgroup,
2f7ee569 5566 struct cgroup_taskset *tset)
5cfb80a7
DN
5567{
5568 return 0;
5569}
5570static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5571 struct cgroup *cgroup,
2f7ee569 5572 struct cgroup_taskset *tset)
5cfb80a7
DN
5573{
5574}
5575static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5576 struct cgroup *cont,
2f7ee569 5577 struct cgroup_taskset *tset)
5cfb80a7
DN
5578{
5579}
5580#endif
67e465a7 5581
8cdea7c0
BS
5582struct cgroup_subsys mem_cgroup_subsys = {
5583 .name = "memory",
5584 .subsys_id = mem_cgroup_subsys_id,
5585 .create = mem_cgroup_create,
df878fb0 5586 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5587 .destroy = mem_cgroup_destroy,
5588 .populate = mem_cgroup_populate,
7dc74be0
DN
5589 .can_attach = mem_cgroup_can_attach,
5590 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5591 .attach = mem_cgroup_move_task,
6d12e2d8 5592 .early_init = 0,
04046e1a 5593 .use_id = 1,
8cdea7c0 5594};
c077719b
KH
5595
5596#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5597static int __init enable_swap_account(char *s)
5598{
5599 /* consider enabled if no parameter or 1 is given */
a2c8990a 5600 if (!strcmp(s, "1"))
a42c390c 5601 really_do_swap_account = 1;
a2c8990a 5602 else if (!strcmp(s, "0"))
a42c390c
MH
5603 really_do_swap_account = 0;
5604 return 1;
5605}
a2c8990a 5606__setup("swapaccount=", enable_swap_account);
c077719b 5607
c077719b 5608#endif