]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcg: remove unnecessary preemption disabling
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
073219e9 541 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
b2402857
KH
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 930 nr_pages);
d52aa412 931 else
b2402857 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 933 nr_pages);
55e462b0 934
b070e65c
DR
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
e401f176
KH
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
c0ff4b85 941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 942 else {
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
944 nr_pages = -nr_pages; /* for event */
945 }
e401f176 946
13114716 947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
948}
949
bb2a0de9 950unsigned long
4d7dcca2 951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
952{
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957}
958
959static unsigned long
c0ff4b85 960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 961 unsigned int lru_mask)
889976db
YH
962{
963 struct mem_cgroup_per_zone *mz;
f156ab93 964 enum lru_list lru;
bb2a0de9
KH
965 unsigned long ret = 0;
966
c0ff4b85 967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 968
f156ab93
HD
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
bb2a0de9
KH
972 }
973 return ret;
974}
975
976static unsigned long
c0ff4b85 977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
978 int nid, unsigned int lru_mask)
979{
889976db
YH
980 u64 total = 0;
981 int zid;
982
bb2a0de9 983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
bb2a0de9 986
889976db
YH
987 return total;
988}
bb2a0de9 989
c0ff4b85 990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 991 unsigned int lru_mask)
6d12e2d8 992{
889976db 993 int nid;
6d12e2d8
KH
994 u64 total = 0;
995
31aaea4a 996 for_each_node_state(nid, N_MEMORY)
c0ff4b85 997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 998 return total;
d52aa412
KH
999}
1000
f53d7ce3
JW
1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
7a159cc9
JW
1003{
1004 unsigned long val, next;
1005
13114716 1006 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1007 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1008 /* from time_after() in jiffies.h */
f53d7ce3
JW
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
bb4cc1a8
AM
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
f53d7ce3
JW
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
7a159cc9 1025 }
f53d7ce3 1026 return false;
d2265e6f
KH
1027}
1028
1029/*
1030 * Check events in order.
1031 *
1032 */
c0ff4b85 1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1034{
4799401f 1035 preempt_disable();
d2265e6f 1036 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1039 bool do_softlimit;
82b3f2a7 1040 bool do_numainfo __maybe_unused;
f53d7ce3 1041
bb4cc1a8
AM
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1044#if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047#endif
1048 preempt_enable();
1049
c0ff4b85 1050 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
453a9bf3 1053#if MAX_NUMNODES > 1
f53d7ce3 1054 if (unlikely(do_numainfo))
c0ff4b85 1055 atomic_inc(&memcg->numainfo_events);
453a9bf3 1056#endif
f53d7ce3
JW
1057 } else
1058 preempt_enable();
d2265e6f
KH
1059}
1060
cf475ad2 1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1062{
31a78f23
BS
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
073219e9 1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1072}
1073
a433658c 1074struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1075{
c0ff4b85 1076 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1077
1078 if (!mm)
1079 return NULL;
54595fe2
KH
1080 /*
1081 * Because we have no locks, mm->owner's may be being moved to other
1082 * cgroup. We use css_tryget() here even if this looks
1083 * pessimistic (rather than adding locks here).
1084 */
1085 rcu_read_lock();
1086 do {
c0ff4b85
R
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
54595fe2 1089 break;
c0ff4b85 1090 } while (!css_tryget(&memcg->css));
54595fe2 1091 rcu_read_unlock();
c0ff4b85 1092 return memcg;
54595fe2
KH
1093}
1094
16248d8f
MH
1095/*
1096 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1097 * ref. count) or NULL if the whole root's subtree has been visited.
1098 *
1099 * helper function to be used by mem_cgroup_iter
1100 */
1101static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1102 struct mem_cgroup *last_visited)
16248d8f 1103{
492eb21b 1104 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1105
bd8815a6 1106 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1107skip_node:
492eb21b 1108 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1109
1110 /*
1111 * Even if we found a group we have to make sure it is
1112 * alive. css && !memcg means that the groups should be
1113 * skipped and we should continue the tree walk.
1114 * last_visited css is safe to use because it is
1115 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1116 *
1117 * We do not take a reference on the root of the tree walk
1118 * because we might race with the root removal when it would
1119 * be the only node in the iterated hierarchy and mem_cgroup_iter
1120 * would end up in an endless loop because it expects that at
1121 * least one valid node will be returned. Root cannot disappear
1122 * because caller of the iterator should hold it already so
1123 * skipping css reference should be safe.
16248d8f 1124 */
492eb21b 1125 if (next_css) {
ce48225f
HD
1126 if ((next_css == &root->css) ||
1127 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1128 return mem_cgroup_from_css(next_css);
0eef6156
MH
1129
1130 prev_css = next_css;
1131 goto skip_node;
16248d8f
MH
1132 }
1133
1134 return NULL;
1135}
1136
519ebea3
JW
1137static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1138{
1139 /*
1140 * When a group in the hierarchy below root is destroyed, the
1141 * hierarchy iterator can no longer be trusted since it might
1142 * have pointed to the destroyed group. Invalidate it.
1143 */
1144 atomic_inc(&root->dead_count);
1145}
1146
1147static struct mem_cgroup *
1148mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1149 struct mem_cgroup *root,
1150 int *sequence)
1151{
1152 struct mem_cgroup *position = NULL;
1153 /*
1154 * A cgroup destruction happens in two stages: offlining and
1155 * release. They are separated by a RCU grace period.
1156 *
1157 * If the iterator is valid, we may still race with an
1158 * offlining. The RCU lock ensures the object won't be
1159 * released, tryget will fail if we lost the race.
1160 */
1161 *sequence = atomic_read(&root->dead_count);
1162 if (iter->last_dead_count == *sequence) {
1163 smp_rmb();
1164 position = iter->last_visited;
ecc736fc
MH
1165
1166 /*
1167 * We cannot take a reference to root because we might race
1168 * with root removal and returning NULL would end up in
1169 * an endless loop on the iterator user level when root
1170 * would be returned all the time.
1171 */
1172 if (position && position != root &&
1173 !css_tryget(&position->css))
519ebea3
JW
1174 position = NULL;
1175 }
1176 return position;
1177}
1178
1179static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1180 struct mem_cgroup *last_visited,
1181 struct mem_cgroup *new_position,
ecc736fc 1182 struct mem_cgroup *root,
519ebea3
JW
1183 int sequence)
1184{
ecc736fc
MH
1185 /* root reference counting symmetric to mem_cgroup_iter_load */
1186 if (last_visited && last_visited != root)
519ebea3
JW
1187 css_put(&last_visited->css);
1188 /*
1189 * We store the sequence count from the time @last_visited was
1190 * loaded successfully instead of rereading it here so that we
1191 * don't lose destruction events in between. We could have
1192 * raced with the destruction of @new_position after all.
1193 */
1194 iter->last_visited = new_position;
1195 smp_wmb();
1196 iter->last_dead_count = sequence;
1197}
1198
5660048c
JW
1199/**
1200 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1201 * @root: hierarchy root
1202 * @prev: previously returned memcg, NULL on first invocation
1203 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1204 *
1205 * Returns references to children of the hierarchy below @root, or
1206 * @root itself, or %NULL after a full round-trip.
1207 *
1208 * Caller must pass the return value in @prev on subsequent
1209 * invocations for reference counting, or use mem_cgroup_iter_break()
1210 * to cancel a hierarchy walk before the round-trip is complete.
1211 *
1212 * Reclaimers can specify a zone and a priority level in @reclaim to
1213 * divide up the memcgs in the hierarchy among all concurrent
1214 * reclaimers operating on the same zone and priority.
1215 */
694fbc0f 1216struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1217 struct mem_cgroup *prev,
694fbc0f 1218 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1219{
9f3a0d09 1220 struct mem_cgroup *memcg = NULL;
542f85f9 1221 struct mem_cgroup *last_visited = NULL;
711d3d2c 1222
694fbc0f
AM
1223 if (mem_cgroup_disabled())
1224 return NULL;
5660048c 1225
9f3a0d09
JW
1226 if (!root)
1227 root = root_mem_cgroup;
7d74b06f 1228
9f3a0d09 1229 if (prev && !reclaim)
542f85f9 1230 last_visited = prev;
14067bb3 1231
9f3a0d09
JW
1232 if (!root->use_hierarchy && root != root_mem_cgroup) {
1233 if (prev)
c40046f3 1234 goto out_css_put;
694fbc0f 1235 return root;
9f3a0d09 1236 }
14067bb3 1237
542f85f9 1238 rcu_read_lock();
9f3a0d09 1239 while (!memcg) {
527a5ec9 1240 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1241 int uninitialized_var(seq);
711d3d2c 1242
527a5ec9
JW
1243 if (reclaim) {
1244 int nid = zone_to_nid(reclaim->zone);
1245 int zid = zone_idx(reclaim->zone);
1246 struct mem_cgroup_per_zone *mz;
1247
1248 mz = mem_cgroup_zoneinfo(root, nid, zid);
1249 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1250 if (prev && reclaim->generation != iter->generation) {
5f578161 1251 iter->last_visited = NULL;
542f85f9
MH
1252 goto out_unlock;
1253 }
5f578161 1254
519ebea3 1255 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1256 }
7d74b06f 1257
694fbc0f 1258 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1259
527a5ec9 1260 if (reclaim) {
ecc736fc
MH
1261 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1262 seq);
542f85f9 1263
19f39402 1264 if (!memcg)
527a5ec9
JW
1265 iter->generation++;
1266 else if (!prev && memcg)
1267 reclaim->generation = iter->generation;
1268 }
9f3a0d09 1269
694fbc0f 1270 if (prev && !memcg)
542f85f9 1271 goto out_unlock;
9f3a0d09 1272 }
542f85f9
MH
1273out_unlock:
1274 rcu_read_unlock();
c40046f3
MH
1275out_css_put:
1276 if (prev && prev != root)
1277 css_put(&prev->css);
1278
9f3a0d09 1279 return memcg;
14067bb3 1280}
7d74b06f 1281
5660048c
JW
1282/**
1283 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1284 * @root: hierarchy root
1285 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1286 */
1287void mem_cgroup_iter_break(struct mem_cgroup *root,
1288 struct mem_cgroup *prev)
9f3a0d09
JW
1289{
1290 if (!root)
1291 root = root_mem_cgroup;
1292 if (prev && prev != root)
1293 css_put(&prev->css);
1294}
7d74b06f 1295
9f3a0d09
JW
1296/*
1297 * Iteration constructs for visiting all cgroups (under a tree). If
1298 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1299 * be used for reference counting.
1300 */
1301#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1302 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1303 iter != NULL; \
527a5ec9 1304 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1305
9f3a0d09 1306#define for_each_mem_cgroup(iter) \
527a5ec9 1307 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1308 iter != NULL; \
527a5ec9 1309 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1310
68ae564b 1311void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1312{
c0ff4b85 1313 struct mem_cgroup *memcg;
456f998e 1314
456f998e 1315 rcu_read_lock();
c0ff4b85
R
1316 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1317 if (unlikely(!memcg))
456f998e
YH
1318 goto out;
1319
1320 switch (idx) {
456f998e 1321 case PGFAULT:
0e574a93
JW
1322 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1323 break;
1324 case PGMAJFAULT:
1325 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1326 break;
1327 default:
1328 BUG();
1329 }
1330out:
1331 rcu_read_unlock();
1332}
68ae564b 1333EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1334
925b7673
JW
1335/**
1336 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1337 * @zone: zone of the wanted lruvec
fa9add64 1338 * @memcg: memcg of the wanted lruvec
925b7673
JW
1339 *
1340 * Returns the lru list vector holding pages for the given @zone and
1341 * @mem. This can be the global zone lruvec, if the memory controller
1342 * is disabled.
1343 */
1344struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1345 struct mem_cgroup *memcg)
1346{
1347 struct mem_cgroup_per_zone *mz;
bea8c150 1348 struct lruvec *lruvec;
925b7673 1349
bea8c150
HD
1350 if (mem_cgroup_disabled()) {
1351 lruvec = &zone->lruvec;
1352 goto out;
1353 }
925b7673
JW
1354
1355 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1356 lruvec = &mz->lruvec;
1357out:
1358 /*
1359 * Since a node can be onlined after the mem_cgroup was created,
1360 * we have to be prepared to initialize lruvec->zone here;
1361 * and if offlined then reonlined, we need to reinitialize it.
1362 */
1363 if (unlikely(lruvec->zone != zone))
1364 lruvec->zone = zone;
1365 return lruvec;
925b7673
JW
1366}
1367
08e552c6
KH
1368/*
1369 * Following LRU functions are allowed to be used without PCG_LOCK.
1370 * Operations are called by routine of global LRU independently from memcg.
1371 * What we have to take care of here is validness of pc->mem_cgroup.
1372 *
1373 * Changes to pc->mem_cgroup happens when
1374 * 1. charge
1375 * 2. moving account
1376 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1377 * It is added to LRU before charge.
1378 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1379 * When moving account, the page is not on LRU. It's isolated.
1380 */
4f98a2fe 1381
925b7673 1382/**
fa9add64 1383 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1384 * @page: the page
fa9add64 1385 * @zone: zone of the page
925b7673 1386 */
fa9add64 1387struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1388{
08e552c6 1389 struct mem_cgroup_per_zone *mz;
925b7673
JW
1390 struct mem_cgroup *memcg;
1391 struct page_cgroup *pc;
bea8c150 1392 struct lruvec *lruvec;
6d12e2d8 1393
bea8c150
HD
1394 if (mem_cgroup_disabled()) {
1395 lruvec = &zone->lruvec;
1396 goto out;
1397 }
925b7673 1398
08e552c6 1399 pc = lookup_page_cgroup(page);
38c5d72f 1400 memcg = pc->mem_cgroup;
7512102c
HD
1401
1402 /*
fa9add64 1403 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1404 * an uncharged page off lru does nothing to secure
1405 * its former mem_cgroup from sudden removal.
1406 *
1407 * Our caller holds lru_lock, and PageCgroupUsed is updated
1408 * under page_cgroup lock: between them, they make all uses
1409 * of pc->mem_cgroup safe.
1410 */
fa9add64 1411 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1412 pc->mem_cgroup = memcg = root_mem_cgroup;
1413
925b7673 1414 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1415 lruvec = &mz->lruvec;
1416out:
1417 /*
1418 * Since a node can be onlined after the mem_cgroup was created,
1419 * we have to be prepared to initialize lruvec->zone here;
1420 * and if offlined then reonlined, we need to reinitialize it.
1421 */
1422 if (unlikely(lruvec->zone != zone))
1423 lruvec->zone = zone;
1424 return lruvec;
08e552c6 1425}
b69408e8 1426
925b7673 1427/**
fa9add64
HD
1428 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1429 * @lruvec: mem_cgroup per zone lru vector
1430 * @lru: index of lru list the page is sitting on
1431 * @nr_pages: positive when adding or negative when removing
925b7673 1432 *
fa9add64
HD
1433 * This function must be called when a page is added to or removed from an
1434 * lru list.
3f58a829 1435 */
fa9add64
HD
1436void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1437 int nr_pages)
3f58a829
MK
1438{
1439 struct mem_cgroup_per_zone *mz;
fa9add64 1440 unsigned long *lru_size;
3f58a829
MK
1441
1442 if (mem_cgroup_disabled())
1443 return;
1444
fa9add64
HD
1445 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1446 lru_size = mz->lru_size + lru;
1447 *lru_size += nr_pages;
1448 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1449}
544122e5 1450
3e92041d 1451/*
c0ff4b85 1452 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1453 * hierarchy subtree
1454 */
c3ac9a8a
JW
1455bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1456 struct mem_cgroup *memcg)
3e92041d 1457{
91c63734
JW
1458 if (root_memcg == memcg)
1459 return true;
3a981f48 1460 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1461 return false;
b47f77b5 1462 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1463}
1464
1465static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1466 struct mem_cgroup *memcg)
1467{
1468 bool ret;
1469
91c63734 1470 rcu_read_lock();
c3ac9a8a 1471 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1472 rcu_read_unlock();
1473 return ret;
3e92041d
MH
1474}
1475
ffbdccf5
DR
1476bool task_in_mem_cgroup(struct task_struct *task,
1477 const struct mem_cgroup *memcg)
4c4a2214 1478{
0b7f569e 1479 struct mem_cgroup *curr = NULL;
158e0a2d 1480 struct task_struct *p;
ffbdccf5 1481 bool ret;
4c4a2214 1482
158e0a2d 1483 p = find_lock_task_mm(task);
de077d22
DR
1484 if (p) {
1485 curr = try_get_mem_cgroup_from_mm(p->mm);
1486 task_unlock(p);
1487 } else {
1488 /*
1489 * All threads may have already detached their mm's, but the oom
1490 * killer still needs to detect if they have already been oom
1491 * killed to prevent needlessly killing additional tasks.
1492 */
ffbdccf5 1493 rcu_read_lock();
de077d22
DR
1494 curr = mem_cgroup_from_task(task);
1495 if (curr)
1496 css_get(&curr->css);
ffbdccf5 1497 rcu_read_unlock();
de077d22 1498 }
0b7f569e 1499 if (!curr)
ffbdccf5 1500 return false;
d31f56db 1501 /*
c0ff4b85 1502 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1503 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1505 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1506 */
c0ff4b85 1507 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1508 css_put(&curr->css);
4c4a2214
DR
1509 return ret;
1510}
1511
c56d5c7d 1512int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1513{
9b272977 1514 unsigned long inactive_ratio;
14797e23 1515 unsigned long inactive;
9b272977 1516 unsigned long active;
c772be93 1517 unsigned long gb;
14797e23 1518
4d7dcca2
HD
1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1521
c772be93
KM
1522 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1523 if (gb)
1524 inactive_ratio = int_sqrt(10 * gb);
1525 else
1526 inactive_ratio = 1;
1527
9b272977 1528 return inactive * inactive_ratio < active;
14797e23
KM
1529}
1530
6d61ef40
BS
1531#define mem_cgroup_from_res_counter(counter, member) \
1532 container_of(counter, struct mem_cgroup, member)
1533
19942822 1534/**
9d11ea9f 1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1536 * @memcg: the memory cgroup
19942822 1537 *
9d11ea9f 1538 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1539 * pages.
19942822 1540 */
c0ff4b85 1541static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1542{
9d11ea9f
JW
1543 unsigned long long margin;
1544
c0ff4b85 1545 margin = res_counter_margin(&memcg->res);
9d11ea9f 1546 if (do_swap_account)
c0ff4b85 1547 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1548 return margin >> PAGE_SHIFT;
19942822
JW
1549}
1550
1f4c025b 1551int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1552{
a7885eb8 1553 /* root ? */
63876986 1554 if (!css_parent(&memcg->css))
a7885eb8
KM
1555 return vm_swappiness;
1556
bf1ff263 1557 return memcg->swappiness;
a7885eb8
KM
1558}
1559
619d094b
KH
1560/*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
4331f7d3
KH
1574
1575/* for quick checking without looking up memcg */
1576atomic_t memcg_moving __read_mostly;
1577
c0ff4b85 1578static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1579{
4331f7d3 1580 atomic_inc(&memcg_moving);
619d094b 1581 atomic_inc(&memcg->moving_account);
32047e2a
KH
1582 synchronize_rcu();
1583}
1584
c0ff4b85 1585static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1586{
619d094b
KH
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
4331f7d3
KH
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
619d094b 1593 atomic_dec(&memcg->moving_account);
4331f7d3 1594 }
32047e2a 1595}
619d094b 1596
32047e2a
KH
1597/*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
13fd1dd9
AM
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
32047e2a
KH
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
13fd1dd9 1609static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1610{
1611 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1612 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1613}
4b534334 1614
c0ff4b85 1615static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1616{
2bd9bb20
KH
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
4b534334 1619 bool ret = false;
2bd9bb20
KH
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
3e92041d 1629
c0ff4b85
R
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1632unlock:
1633 spin_unlock(&mc.lock);
4b534334
KH
1634 return ret;
1635}
1636
c0ff4b85 1637static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1638{
1639 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1640 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651}
1652
312734c0
KH
1653/*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1657 * see mem_cgroup_stolen(), too.
312734c0
KH
1658 */
1659static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661{
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663}
1664
1665static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667{
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669}
1670
58cf188e 1671#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1672/**
58cf188e 1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681{
e61734c5 1682 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1683 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1684 struct mem_cgroup *iter;
1685 unsigned int i;
e222432b 1686
58cf188e 1687 if (!p)
e222432b
BS
1688 return;
1689
08088cb9 1690 mutex_lock(&oom_info_lock);
e222432b
BS
1691 rcu_read_lock();
1692
e61734c5
TH
1693 pr_info("Task in ");
1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1695 pr_info(" killed as a result of limit of ");
1696 pr_cont_cgroup_path(memcg->css.cgroup);
1697 pr_info("\n");
e222432b 1698
e222432b
BS
1699 rcu_read_unlock();
1700
d045197f 1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1713
1714 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1715 pr_info("Memory cgroup stats for ");
1716 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
08088cb9 1732 mutex_unlock(&oom_info_lock);
e222432b
BS
1733}
1734
81d39c20
KH
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
c0ff4b85 1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1740{
1741 int num = 0;
7d74b06f
KH
1742 struct mem_cgroup *iter;
1743
c0ff4b85 1744 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1745 num++;
81d39c20
KH
1746 return num;
1747}
1748
a63d83f4
DR
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
9cbb78bb 1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1753{
1754 u64 limit;
a63d83f4 1755
f3e8eb70 1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1757
a63d83f4 1758 /*
9a5a8f19 1759 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1760 */
9a5a8f19
MH
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
a63d83f4
DR
1775}
1776
19965460
DR
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
9cbb78bb
DR
1779{
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
876aafbf 1786 /*
465adcf1
DR
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
876aafbf 1790 */
465adcf1 1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1799 struct css_task_iter it;
9cbb78bb
DR
1800 struct task_struct *task;
1801
72ec7029
TH
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
72ec7029 1816 css_task_iter_end(&it);
9cbb78bb
DR
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1825 if (!points || points < chosen_points)
1826 continue;
1827 /* Prefer thread group leaders for display purposes */
1828 if (points == chosen_points &&
1829 thread_group_leader(chosen))
1830 continue;
1831
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
9cbb78bb 1837 }
72ec7029 1838 css_task_iter_end(&it);
9cbb78bb
DR
1839 }
1840
1841 if (!chosen)
1842 return;
1843 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1845 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1846}
1847
5660048c
JW
1848static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1849 gfp_t gfp_mask,
1850 unsigned long flags)
1851{
1852 unsigned long total = 0;
1853 bool noswap = false;
1854 int loop;
1855
1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1857 noswap = true;
1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1859 noswap = true;
1860
1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1862 if (loop)
1863 drain_all_stock_async(memcg);
1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1865 /*
1866 * Allow limit shrinkers, which are triggered directly
1867 * by userspace, to catch signals and stop reclaim
1868 * after minimal progress, regardless of the margin.
1869 */
1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1871 break;
1872 if (mem_cgroup_margin(memcg))
1873 break;
1874 /*
1875 * If nothing was reclaimed after two attempts, there
1876 * may be no reclaimable pages in this hierarchy.
1877 */
1878 if (loop && !total)
1879 break;
1880 }
1881 return total;
1882}
1883
4d0c066d
KH
1884/**
1885 * test_mem_cgroup_node_reclaimable
dad7557e 1886 * @memcg: the target memcg
4d0c066d
KH
1887 * @nid: the node ID to be checked.
1888 * @noswap : specify true here if the user wants flle only information.
1889 *
1890 * This function returns whether the specified memcg contains any
1891 * reclaimable pages on a node. Returns true if there are any reclaimable
1892 * pages in the node.
1893 */
c0ff4b85 1894static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1895 int nid, bool noswap)
1896{
c0ff4b85 1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1898 return true;
1899 if (noswap || !total_swap_pages)
1900 return false;
c0ff4b85 1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1902 return true;
1903 return false;
1904
1905}
bb4cc1a8 1906#if MAX_NUMNODES > 1
889976db
YH
1907
1908/*
1909 * Always updating the nodemask is not very good - even if we have an empty
1910 * list or the wrong list here, we can start from some node and traverse all
1911 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 *
1913 */
c0ff4b85 1914static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1915{
1916 int nid;
453a9bf3
KH
1917 /*
1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1919 * pagein/pageout changes since the last update.
1920 */
c0ff4b85 1921 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1922 return;
c0ff4b85 1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1924 return;
1925
889976db 1926 /* make a nodemask where this memcg uses memory from */
31aaea4a 1927 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1928
31aaea4a 1929 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1930
c0ff4b85
R
1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1932 node_clear(nid, memcg->scan_nodes);
889976db 1933 }
453a9bf3 1934
c0ff4b85
R
1935 atomic_set(&memcg->numainfo_events, 0);
1936 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1937}
1938
1939/*
1940 * Selecting a node where we start reclaim from. Because what we need is just
1941 * reducing usage counter, start from anywhere is O,K. Considering
1942 * memory reclaim from current node, there are pros. and cons.
1943 *
1944 * Freeing memory from current node means freeing memory from a node which
1945 * we'll use or we've used. So, it may make LRU bad. And if several threads
1946 * hit limits, it will see a contention on a node. But freeing from remote
1947 * node means more costs for memory reclaim because of memory latency.
1948 *
1949 * Now, we use round-robin. Better algorithm is welcomed.
1950 */
c0ff4b85 1951int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1952{
1953 int node;
1954
c0ff4b85
R
1955 mem_cgroup_may_update_nodemask(memcg);
1956 node = memcg->last_scanned_node;
889976db 1957
c0ff4b85 1958 node = next_node(node, memcg->scan_nodes);
889976db 1959 if (node == MAX_NUMNODES)
c0ff4b85 1960 node = first_node(memcg->scan_nodes);
889976db
YH
1961 /*
1962 * We call this when we hit limit, not when pages are added to LRU.
1963 * No LRU may hold pages because all pages are UNEVICTABLE or
1964 * memcg is too small and all pages are not on LRU. In that case,
1965 * we use curret node.
1966 */
1967 if (unlikely(node == MAX_NUMNODES))
1968 node = numa_node_id();
1969
c0ff4b85 1970 memcg->last_scanned_node = node;
889976db
YH
1971 return node;
1972}
1973
bb4cc1a8
AM
1974/*
1975 * Check all nodes whether it contains reclaimable pages or not.
1976 * For quick scan, we make use of scan_nodes. This will allow us to skip
1977 * unused nodes. But scan_nodes is lazily updated and may not cotain
1978 * enough new information. We need to do double check.
1979 */
1980static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981{
1982 int nid;
1983
1984 /*
1985 * quick check...making use of scan_node.
1986 * We can skip unused nodes.
1987 */
1988 if (!nodes_empty(memcg->scan_nodes)) {
1989 for (nid = first_node(memcg->scan_nodes);
1990 nid < MAX_NUMNODES;
1991 nid = next_node(nid, memcg->scan_nodes)) {
1992
1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1994 return true;
1995 }
1996 }
1997 /*
1998 * Check rest of nodes.
1999 */
2000 for_each_node_state(nid, N_MEMORY) {
2001 if (node_isset(nid, memcg->scan_nodes))
2002 continue;
2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2004 return true;
2005 }
2006 return false;
2007}
2008
889976db 2009#else
c0ff4b85 2010int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2011{
2012 return 0;
2013}
4d0c066d 2014
bb4cc1a8
AM
2015static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2016{
2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2018}
889976db
YH
2019#endif
2020
0608f43d
AM
2021static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2022 struct zone *zone,
2023 gfp_t gfp_mask,
2024 unsigned long *total_scanned)
2025{
2026 struct mem_cgroup *victim = NULL;
2027 int total = 0;
2028 int loop = 0;
2029 unsigned long excess;
2030 unsigned long nr_scanned;
2031 struct mem_cgroup_reclaim_cookie reclaim = {
2032 .zone = zone,
2033 .priority = 0,
2034 };
2035
2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2037
2038 while (1) {
2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2040 if (!victim) {
2041 loop++;
2042 if (loop >= 2) {
2043 /*
2044 * If we have not been able to reclaim
2045 * anything, it might because there are
2046 * no reclaimable pages under this hierarchy
2047 */
2048 if (!total)
2049 break;
2050 /*
2051 * We want to do more targeted reclaim.
2052 * excess >> 2 is not to excessive so as to
2053 * reclaim too much, nor too less that we keep
2054 * coming back to reclaim from this cgroup
2055 */
2056 if (total >= (excess >> 2) ||
2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2058 break;
2059 }
2060 continue;
2061 }
2062 if (!mem_cgroup_reclaimable(victim, false))
2063 continue;
2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2065 zone, &nr_scanned);
2066 *total_scanned += nr_scanned;
2067 if (!res_counter_soft_limit_excess(&root_memcg->res))
2068 break;
6d61ef40 2069 }
0608f43d
AM
2070 mem_cgroup_iter_break(root_memcg, victim);
2071 return total;
6d61ef40
BS
2072}
2073
0056f4e6
JW
2074#ifdef CONFIG_LOCKDEP
2075static struct lockdep_map memcg_oom_lock_dep_map = {
2076 .name = "memcg_oom_lock",
2077};
2078#endif
2079
fb2a6fc5
JW
2080static DEFINE_SPINLOCK(memcg_oom_lock);
2081
867578cb
KH
2082/*
2083 * Check OOM-Killer is already running under our hierarchy.
2084 * If someone is running, return false.
2085 */
fb2a6fc5 2086static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2087{
79dfdacc 2088 struct mem_cgroup *iter, *failed = NULL;
a636b327 2089
fb2a6fc5
JW
2090 spin_lock(&memcg_oom_lock);
2091
9f3a0d09 2092 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2093 if (iter->oom_lock) {
79dfdacc
MH
2094 /*
2095 * this subtree of our hierarchy is already locked
2096 * so we cannot give a lock.
2097 */
79dfdacc 2098 failed = iter;
9f3a0d09
JW
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
23751be0
JW
2101 } else
2102 iter->oom_lock = true;
7d74b06f 2103 }
867578cb 2104
fb2a6fc5
JW
2105 if (failed) {
2106 /*
2107 * OK, we failed to lock the whole subtree so we have
2108 * to clean up what we set up to the failing subtree
2109 */
2110 for_each_mem_cgroup_tree(iter, memcg) {
2111 if (iter == failed) {
2112 mem_cgroup_iter_break(memcg, iter);
2113 break;
2114 }
2115 iter->oom_lock = false;
79dfdacc 2116 }
0056f4e6
JW
2117 } else
2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2119
2120 spin_unlock(&memcg_oom_lock);
2121
2122 return !failed;
a636b327 2123}
0b7f569e 2124
fb2a6fc5 2125static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2126{
7d74b06f
KH
2127 struct mem_cgroup *iter;
2128
fb2a6fc5 2129 spin_lock(&memcg_oom_lock);
0056f4e6 2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2131 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2132 iter->oom_lock = false;
fb2a6fc5 2133 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2134}
2135
c0ff4b85 2136static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2137{
2138 struct mem_cgroup *iter;
2139
c0ff4b85 2140 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2141 atomic_inc(&iter->under_oom);
2142}
2143
c0ff4b85 2144static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2145{
2146 struct mem_cgroup *iter;
2147
867578cb
KH
2148 /*
2149 * When a new child is created while the hierarchy is under oom,
2150 * mem_cgroup_oom_lock() may not be called. We have to use
2151 * atomic_add_unless() here.
2152 */
c0ff4b85 2153 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2154 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2155}
2156
867578cb
KH
2157static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2158
dc98df5a 2159struct oom_wait_info {
d79154bb 2160 struct mem_cgroup *memcg;
dc98df5a
KH
2161 wait_queue_t wait;
2162};
2163
2164static int memcg_oom_wake_function(wait_queue_t *wait,
2165 unsigned mode, int sync, void *arg)
2166{
d79154bb
HD
2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2168 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2169 struct oom_wait_info *oom_wait_info;
2170
2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2172 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2173
dc98df5a 2174 /*
d79154bb 2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2176 * Then we can use css_is_ancestor without taking care of RCU.
2177 */
c0ff4b85
R
2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2180 return 0;
dc98df5a
KH
2181 return autoremove_wake_function(wait, mode, sync, arg);
2182}
2183
c0ff4b85 2184static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2185{
3812c8c8 2186 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2187 /* for filtering, pass "memcg" as argument. */
2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2189}
2190
c0ff4b85 2191static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2192{
c0ff4b85
R
2193 if (memcg && atomic_read(&memcg->under_oom))
2194 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2195}
2196
3812c8c8 2197static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2198{
3812c8c8
JW
2199 if (!current->memcg_oom.may_oom)
2200 return;
867578cb 2201 /*
49426420
JW
2202 * We are in the middle of the charge context here, so we
2203 * don't want to block when potentially sitting on a callstack
2204 * that holds all kinds of filesystem and mm locks.
2205 *
2206 * Also, the caller may handle a failed allocation gracefully
2207 * (like optional page cache readahead) and so an OOM killer
2208 * invocation might not even be necessary.
2209 *
2210 * That's why we don't do anything here except remember the
2211 * OOM context and then deal with it at the end of the page
2212 * fault when the stack is unwound, the locks are released,
2213 * and when we know whether the fault was overall successful.
867578cb 2214 */
49426420
JW
2215 css_get(&memcg->css);
2216 current->memcg_oom.memcg = memcg;
2217 current->memcg_oom.gfp_mask = mask;
2218 current->memcg_oom.order = order;
3812c8c8
JW
2219}
2220
2221/**
2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2223 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2224 *
49426420
JW
2225 * This has to be called at the end of a page fault if the memcg OOM
2226 * handler was enabled.
3812c8c8 2227 *
49426420 2228 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2229 * sleep on a waitqueue until the userspace task resolves the
2230 * situation. Sleeping directly in the charge context with all kinds
2231 * of locks held is not a good idea, instead we remember an OOM state
2232 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2233 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2234 *
2235 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2236 * completed, %false otherwise.
3812c8c8 2237 */
49426420 2238bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2239{
49426420 2240 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2241 struct oom_wait_info owait;
49426420 2242 bool locked;
3812c8c8
JW
2243
2244 /* OOM is global, do not handle */
3812c8c8 2245 if (!memcg)
49426420 2246 return false;
3812c8c8 2247
49426420
JW
2248 if (!handle)
2249 goto cleanup;
3812c8c8
JW
2250
2251 owait.memcg = memcg;
2252 owait.wait.flags = 0;
2253 owait.wait.func = memcg_oom_wake_function;
2254 owait.wait.private = current;
2255 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2256
3812c8c8 2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2258 mem_cgroup_mark_under_oom(memcg);
2259
2260 locked = mem_cgroup_oom_trylock(memcg);
2261
2262 if (locked)
2263 mem_cgroup_oom_notify(memcg);
2264
2265 if (locked && !memcg->oom_kill_disable) {
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2269 current->memcg_oom.order);
2270 } else {
3812c8c8 2271 schedule();
49426420
JW
2272 mem_cgroup_unmark_under_oom(memcg);
2273 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 }
2275
2276 if (locked) {
fb2a6fc5
JW
2277 mem_cgroup_oom_unlock(memcg);
2278 /*
2279 * There is no guarantee that an OOM-lock contender
2280 * sees the wakeups triggered by the OOM kill
2281 * uncharges. Wake any sleepers explicitely.
2282 */
2283 memcg_oom_recover(memcg);
2284 }
49426420
JW
2285cleanup:
2286 current->memcg_oom.memcg = NULL;
3812c8c8 2287 css_put(&memcg->css);
867578cb 2288 return true;
0b7f569e
KH
2289}
2290
d69b042f
BS
2291/*
2292 * Currently used to update mapped file statistics, but the routine can be
2293 * generalized to update other statistics as well.
32047e2a
KH
2294 *
2295 * Notes: Race condition
2296 *
2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2298 * it tends to be costly. But considering some conditions, we doesn't need
2299 * to do so _always_.
2300 *
2301 * Considering "charge", lock_page_cgroup() is not required because all
2302 * file-stat operations happen after a page is attached to radix-tree. There
2303 * are no race with "charge".
2304 *
2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2307 * if there are race with "uncharge". Statistics itself is properly handled
2308 * by flags.
2309 *
2310 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2311 * small, we check mm->moving_account and detect there are possibility of race
2312 * If there is, we take a lock.
d69b042f 2313 */
26174efd 2314
89c06bd5
KH
2315void __mem_cgroup_begin_update_page_stat(struct page *page,
2316 bool *locked, unsigned long *flags)
2317{
2318 struct mem_cgroup *memcg;
2319 struct page_cgroup *pc;
2320
2321 pc = lookup_page_cgroup(page);
2322again:
2323 memcg = pc->mem_cgroup;
2324 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2325 return;
2326 /*
2327 * If this memory cgroup is not under account moving, we don't
da92c47d 2328 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2329 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2330 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2331 */
13fd1dd9 2332 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2333 return;
2334
2335 move_lock_mem_cgroup(memcg, flags);
2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2337 move_unlock_mem_cgroup(memcg, flags);
2338 goto again;
2339 }
2340 *locked = true;
2341}
2342
2343void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2344{
2345 struct page_cgroup *pc = lookup_page_cgroup(page);
2346
2347 /*
2348 * It's guaranteed that pc->mem_cgroup never changes while
2349 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2350 * should take move_lock_mem_cgroup().
89c06bd5
KH
2351 */
2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353}
2354
2a7106f2 2355void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2356 enum mem_cgroup_stat_index idx, int val)
d69b042f 2357{
c0ff4b85 2358 struct mem_cgroup *memcg;
32047e2a 2359 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2360 unsigned long uninitialized_var(flags);
d69b042f 2361
cfa44946 2362 if (mem_cgroup_disabled())
d69b042f 2363 return;
89c06bd5 2364
658b72c5 2365 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2366 memcg = pc->mem_cgroup;
2367 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2368 return;
26174efd 2369
c0ff4b85 2370 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2371}
26174efd 2372
cdec2e42
KH
2373/*
2374 * size of first charge trial. "32" comes from vmscan.c's magic value.
2375 * TODO: maybe necessary to use big numbers in big irons.
2376 */
7ec99d62 2377#define CHARGE_BATCH 32U
cdec2e42
KH
2378struct memcg_stock_pcp {
2379 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2380 unsigned int nr_pages;
cdec2e42 2381 struct work_struct work;
26fe6168 2382 unsigned long flags;
a0db00fc 2383#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2384};
2385static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2386static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2387
a0956d54
SS
2388/**
2389 * consume_stock: Try to consume stocked charge on this cpu.
2390 * @memcg: memcg to consume from.
2391 * @nr_pages: how many pages to charge.
2392 *
2393 * The charges will only happen if @memcg matches the current cpu's memcg
2394 * stock, and at least @nr_pages are available in that stock. Failure to
2395 * service an allocation will refill the stock.
2396 *
2397 * returns true if successful, false otherwise.
cdec2e42 2398 */
a0956d54 2399static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2400{
2401 struct memcg_stock_pcp *stock;
2402 bool ret = true;
2403
a0956d54
SS
2404 if (nr_pages > CHARGE_BATCH)
2405 return false;
2406
cdec2e42 2407 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2409 stock->nr_pages -= nr_pages;
cdec2e42
KH
2410 else /* need to call res_counter_charge */
2411 ret = false;
2412 put_cpu_var(memcg_stock);
2413 return ret;
2414}
2415
2416/*
2417 * Returns stocks cached in percpu to res_counter and reset cached information.
2418 */
2419static void drain_stock(struct memcg_stock_pcp *stock)
2420{
2421 struct mem_cgroup *old = stock->cached;
2422
11c9ea4e
JW
2423 if (stock->nr_pages) {
2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2425
2426 res_counter_uncharge(&old->res, bytes);
cdec2e42 2427 if (do_swap_account)
11c9ea4e
JW
2428 res_counter_uncharge(&old->memsw, bytes);
2429 stock->nr_pages = 0;
cdec2e42
KH
2430 }
2431 stock->cached = NULL;
cdec2e42
KH
2432}
2433
2434/*
2435 * This must be called under preempt disabled or must be called by
2436 * a thread which is pinned to local cpu.
2437 */
2438static void drain_local_stock(struct work_struct *dummy)
2439{
2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2441 drain_stock(stock);
26fe6168 2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2443}
2444
e4777496
MH
2445static void __init memcg_stock_init(void)
2446{
2447 int cpu;
2448
2449 for_each_possible_cpu(cpu) {
2450 struct memcg_stock_pcp *stock =
2451 &per_cpu(memcg_stock, cpu);
2452 INIT_WORK(&stock->work, drain_local_stock);
2453 }
2454}
2455
cdec2e42
KH
2456/*
2457 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2458 * This will be consumed by consume_stock() function, later.
cdec2e42 2459 */
c0ff4b85 2460static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2461{
2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2463
c0ff4b85 2464 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2465 drain_stock(stock);
c0ff4b85 2466 stock->cached = memcg;
cdec2e42 2467 }
11c9ea4e 2468 stock->nr_pages += nr_pages;
cdec2e42
KH
2469 put_cpu_var(memcg_stock);
2470}
2471
2472/*
c0ff4b85 2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2474 * of the hierarchy under it. sync flag says whether we should block
2475 * until the work is done.
cdec2e42 2476 */
c0ff4b85 2477static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2478{
26fe6168 2479 int cpu, curcpu;
d38144b7 2480
cdec2e42 2481 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2482 get_online_cpus();
5af12d0e 2483 curcpu = get_cpu();
cdec2e42
KH
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2486 struct mem_cgroup *memcg;
26fe6168 2487
c0ff4b85
R
2488 memcg = stock->cached;
2489 if (!memcg || !stock->nr_pages)
26fe6168 2490 continue;
c0ff4b85 2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2492 continue;
d1a05b69
MH
2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2494 if (cpu == curcpu)
2495 drain_local_stock(&stock->work);
2496 else
2497 schedule_work_on(cpu, &stock->work);
2498 }
cdec2e42 2499 }
5af12d0e 2500 put_cpu();
d38144b7
MH
2501
2502 if (!sync)
2503 goto out;
2504
2505 for_each_online_cpu(cpu) {
2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2508 flush_work(&stock->work);
2509 }
2510out:
f894ffa8 2511 put_online_cpus();
d38144b7
MH
2512}
2513
2514/*
2515 * Tries to drain stocked charges in other cpus. This function is asynchronous
2516 * and just put a work per cpu for draining localy on each cpu. Caller can
2517 * expects some charges will be back to res_counter later but cannot wait for
2518 * it.
2519 */
c0ff4b85 2520static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2521{
9f50fad6
MH
2522 /*
2523 * If someone calls draining, avoid adding more kworker runs.
2524 */
2525 if (!mutex_trylock(&percpu_charge_mutex))
2526 return;
c0ff4b85 2527 drain_all_stock(root_memcg, false);
9f50fad6 2528 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2529}
2530
2531/* This is a synchronous drain interface. */
c0ff4b85 2532static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2533{
2534 /* called when force_empty is called */
9f50fad6 2535 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2536 drain_all_stock(root_memcg, true);
9f50fad6 2537 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2538}
2539
711d3d2c
KH
2540/*
2541 * This function drains percpu counter value from DEAD cpu and
2542 * move it to local cpu. Note that this function can be preempted.
2543 */
c0ff4b85 2544static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2545{
2546 int i;
2547
c0ff4b85 2548 spin_lock(&memcg->pcp_counter_lock);
6104621d 2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2550 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2551
c0ff4b85
R
2552 per_cpu(memcg->stat->count[i], cpu) = 0;
2553 memcg->nocpu_base.count[i] += x;
711d3d2c 2554 }
e9f8974f 2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2557
c0ff4b85
R
2558 per_cpu(memcg->stat->events[i], cpu) = 0;
2559 memcg->nocpu_base.events[i] += x;
e9f8974f 2560 }
c0ff4b85 2561 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2562}
2563
0db0628d 2564static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2565 unsigned long action,
2566 void *hcpu)
2567{
2568 int cpu = (unsigned long)hcpu;
2569 struct memcg_stock_pcp *stock;
711d3d2c 2570 struct mem_cgroup *iter;
cdec2e42 2571
619d094b 2572 if (action == CPU_ONLINE)
1489ebad 2573 return NOTIFY_OK;
1489ebad 2574
d833049b 2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2576 return NOTIFY_OK;
711d3d2c 2577
9f3a0d09 2578 for_each_mem_cgroup(iter)
711d3d2c
KH
2579 mem_cgroup_drain_pcp_counter(iter, cpu);
2580
cdec2e42
KH
2581 stock = &per_cpu(memcg_stock, cpu);
2582 drain_stock(stock);
2583 return NOTIFY_OK;
2584}
2585
4b534334
KH
2586
2587/* See __mem_cgroup_try_charge() for details */
2588enum {
2589 CHARGE_OK, /* success */
2590 CHARGE_RETRY, /* need to retry but retry is not bad */
2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2593};
2594
c0ff4b85 2595static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2596 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2597 bool invoke_oom)
4b534334 2598{
7ec99d62 2599 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2600 struct mem_cgroup *mem_over_limit;
2601 struct res_counter *fail_res;
2602 unsigned long flags = 0;
2603 int ret;
2604
c0ff4b85 2605 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2606
2607 if (likely(!ret)) {
2608 if (!do_swap_account)
2609 return CHARGE_OK;
c0ff4b85 2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2611 if (likely(!ret))
2612 return CHARGE_OK;
2613
c0ff4b85 2614 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2617 } else
2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2619 /*
9221edb7
JW
2620 * Never reclaim on behalf of optional batching, retry with a
2621 * single page instead.
2622 */
4c9c5359 2623 if (nr_pages > min_pages)
4b534334
KH
2624 return CHARGE_RETRY;
2625
2626 if (!(gfp_mask & __GFP_WAIT))
2627 return CHARGE_WOULDBLOCK;
2628
4c9c5359
SS
2629 if (gfp_mask & __GFP_NORETRY)
2630 return CHARGE_NOMEM;
2631
5660048c 2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2634 return CHARGE_RETRY;
4b534334 2635 /*
19942822
JW
2636 * Even though the limit is exceeded at this point, reclaim
2637 * may have been able to free some pages. Retry the charge
2638 * before killing the task.
2639 *
2640 * Only for regular pages, though: huge pages are rather
2641 * unlikely to succeed so close to the limit, and we fall back
2642 * to regular pages anyway in case of failure.
4b534334 2643 */
4c9c5359 2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2645 return CHARGE_RETRY;
2646
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 return CHARGE_RETRY;
2653
3812c8c8
JW
2654 if (invoke_oom)
2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2656
3812c8c8 2657 return CHARGE_NOMEM;
4b534334
KH
2658}
2659
f817ed48 2660/*
38c5d72f
KH
2661 * __mem_cgroup_try_charge() does
2662 * 1. detect memcg to be charged against from passed *mm and *ptr,
2663 * 2. update res_counter
2664 * 3. call memory reclaim if necessary.
2665 *
2666 * In some special case, if the task is fatal, fatal_signal_pending() or
2667 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2668 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2669 * as possible without any hazards. 2: all pages should have a valid
2670 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2671 * pointer, that is treated as a charge to root_mem_cgroup.
2672 *
2673 * So __mem_cgroup_try_charge() will return
2674 * 0 ... on success, filling *ptr with a valid memcg pointer.
2675 * -ENOMEM ... charge failure because of resource limits.
2676 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2677 *
2678 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2679 * the oom-killer can be invoked.
8a9f3ccd 2680 */
f817ed48 2681static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2682 gfp_t gfp_mask,
7ec99d62 2683 unsigned int nr_pages,
c0ff4b85 2684 struct mem_cgroup **ptr,
7ec99d62 2685 bool oom)
8a9f3ccd 2686{
7ec99d62 2687 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2688 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2689 struct mem_cgroup *memcg = NULL;
4b534334 2690 int ret;
a636b327 2691
867578cb
KH
2692 /*
2693 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2694 * in system level. So, allow to go ahead dying process in addition to
2695 * MEMDIE process.
2696 */
2697 if (unlikely(test_thread_flag(TIF_MEMDIE)
2698 || fatal_signal_pending(current)))
2699 goto bypass;
a636b327 2700
49426420 2701 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2702 goto nomem;
49426420 2703
a0d8b00a
JW
2704 if (gfp_mask & __GFP_NOFAIL)
2705 oom = false;
2706
8a9f3ccd 2707 /*
3be91277
HD
2708 * We always charge the cgroup the mm_struct belongs to.
2709 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2710 * thread group leader migrates. It's possible that mm is not
24467cac 2711 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2712 */
c0ff4b85 2713 if (!*ptr && !mm)
38c5d72f 2714 *ptr = root_mem_cgroup;
f75ca962 2715again:
c0ff4b85
R
2716 if (*ptr) { /* css should be a valid one */
2717 memcg = *ptr;
c0ff4b85 2718 if (mem_cgroup_is_root(memcg))
f75ca962 2719 goto done;
a0956d54 2720 if (consume_stock(memcg, nr_pages))
f75ca962 2721 goto done;
c0ff4b85 2722 css_get(&memcg->css);
4b534334 2723 } else {
f75ca962 2724 struct task_struct *p;
54595fe2 2725
f75ca962
KH
2726 rcu_read_lock();
2727 p = rcu_dereference(mm->owner);
f75ca962 2728 /*
ebb76ce1 2729 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2730 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2731 * race with swapoff. Then, we have small risk of mis-accouning.
2732 * But such kind of mis-account by race always happens because
2733 * we don't have cgroup_mutex(). It's overkill and we allo that
2734 * small race, here.
2735 * (*) swapoff at el will charge against mm-struct not against
2736 * task-struct. So, mm->owner can be NULL.
f75ca962 2737 */
c0ff4b85 2738 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2739 if (!memcg)
2740 memcg = root_mem_cgroup;
2741 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2742 rcu_read_unlock();
2743 goto done;
2744 }
a0956d54 2745 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2746 /*
2747 * It seems dagerous to access memcg without css_get().
2748 * But considering how consume_stok works, it's not
2749 * necessary. If consume_stock success, some charges
2750 * from this memcg are cached on this cpu. So, we
2751 * don't need to call css_get()/css_tryget() before
2752 * calling consume_stock().
2753 */
2754 rcu_read_unlock();
2755 goto done;
2756 }
2757 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2758 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2759 rcu_read_unlock();
2760 goto again;
2761 }
2762 rcu_read_unlock();
2763 }
8a9f3ccd 2764
4b534334 2765 do {
3812c8c8 2766 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2767
4b534334 2768 /* If killed, bypass charge */
f75ca962 2769 if (fatal_signal_pending(current)) {
c0ff4b85 2770 css_put(&memcg->css);
4b534334 2771 goto bypass;
f75ca962 2772 }
6d61ef40 2773
3812c8c8
JW
2774 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2775 nr_pages, invoke_oom);
4b534334
KH
2776 switch (ret) {
2777 case CHARGE_OK:
2778 break;
2779 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2780 batch = nr_pages;
c0ff4b85
R
2781 css_put(&memcg->css);
2782 memcg = NULL;
f75ca962 2783 goto again;
4b534334 2784 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2785 css_put(&memcg->css);
4b534334
KH
2786 goto nomem;
2787 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2788 if (!oom || invoke_oom) {
c0ff4b85 2789 css_put(&memcg->css);
867578cb 2790 goto nomem;
f75ca962 2791 }
4b534334
KH
2792 nr_oom_retries--;
2793 break;
66e1707b 2794 }
4b534334
KH
2795 } while (ret != CHARGE_OK);
2796
7ec99d62 2797 if (batch > nr_pages)
c0ff4b85
R
2798 refill_stock(memcg, batch - nr_pages);
2799 css_put(&memcg->css);
0c3e73e8 2800done:
c0ff4b85 2801 *ptr = memcg;
7a81b88c
KH
2802 return 0;
2803nomem:
3168ecbe
JW
2804 if (!(gfp_mask & __GFP_NOFAIL)) {
2805 *ptr = NULL;
2806 return -ENOMEM;
2807 }
867578cb 2808bypass:
38c5d72f
KH
2809 *ptr = root_mem_cgroup;
2810 return -EINTR;
7a81b88c 2811}
8a9f3ccd 2812
a3032a2c
DN
2813/*
2814 * Somemtimes we have to undo a charge we got by try_charge().
2815 * This function is for that and do uncharge, put css's refcnt.
2816 * gotten by try_charge().
2817 */
c0ff4b85 2818static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2819 unsigned int nr_pages)
a3032a2c 2820{
c0ff4b85 2821 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2822 unsigned long bytes = nr_pages * PAGE_SIZE;
2823
c0ff4b85 2824 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2825 if (do_swap_account)
c0ff4b85 2826 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2827 }
854ffa8d
DN
2828}
2829
d01dd17f
KH
2830/*
2831 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2832 * This is useful when moving usage to parent cgroup.
2833 */
2834static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2835 unsigned int nr_pages)
2836{
2837 unsigned long bytes = nr_pages * PAGE_SIZE;
2838
2839 if (mem_cgroup_is_root(memcg))
2840 return;
2841
2842 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2843 if (do_swap_account)
2844 res_counter_uncharge_until(&memcg->memsw,
2845 memcg->memsw.parent, bytes);
2846}
2847
a3b2d692
KH
2848/*
2849 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2850 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2851 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2852 * called against removed memcg.)
a3b2d692
KH
2853 */
2854static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2855{
a3b2d692
KH
2856 /* ID 0 is unused ID */
2857 if (!id)
2858 return NULL;
34c00c31 2859 return mem_cgroup_from_id(id);
a3b2d692
KH
2860}
2861
e42d9d5d 2862struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2863{
c0ff4b85 2864 struct mem_cgroup *memcg = NULL;
3c776e64 2865 struct page_cgroup *pc;
a3b2d692 2866 unsigned short id;
b5a84319
KH
2867 swp_entry_t ent;
2868
309381fe 2869 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2870
3c776e64 2871 pc = lookup_page_cgroup(page);
c0bd3f63 2872 lock_page_cgroup(pc);
a3b2d692 2873 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2874 memcg = pc->mem_cgroup;
2875 if (memcg && !css_tryget(&memcg->css))
2876 memcg = NULL;
e42d9d5d 2877 } else if (PageSwapCache(page)) {
3c776e64 2878 ent.val = page_private(page);
9fb4b7cc 2879 id = lookup_swap_cgroup_id(ent);
a3b2d692 2880 rcu_read_lock();
c0ff4b85
R
2881 memcg = mem_cgroup_lookup(id);
2882 if (memcg && !css_tryget(&memcg->css))
2883 memcg = NULL;
a3b2d692 2884 rcu_read_unlock();
3c776e64 2885 }
c0bd3f63 2886 unlock_page_cgroup(pc);
c0ff4b85 2887 return memcg;
b5a84319
KH
2888}
2889
c0ff4b85 2890static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2891 struct page *page,
7ec99d62 2892 unsigned int nr_pages,
9ce70c02
HD
2893 enum charge_type ctype,
2894 bool lrucare)
7a81b88c 2895{
ce587e65 2896 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2897 struct zone *uninitialized_var(zone);
fa9add64 2898 struct lruvec *lruvec;
9ce70c02 2899 bool was_on_lru = false;
b2402857 2900 bool anon;
9ce70c02 2901
ca3e0214 2902 lock_page_cgroup(pc);
309381fe 2903 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2904 /*
2905 * we don't need page_cgroup_lock about tail pages, becase they are not
2906 * accessed by any other context at this point.
2907 */
9ce70c02
HD
2908
2909 /*
2910 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2911 * may already be on some other mem_cgroup's LRU. Take care of it.
2912 */
2913 if (lrucare) {
2914 zone = page_zone(page);
2915 spin_lock_irq(&zone->lru_lock);
2916 if (PageLRU(page)) {
fa9add64 2917 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2918 ClearPageLRU(page);
fa9add64 2919 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2920 was_on_lru = true;
2921 }
2922 }
2923
c0ff4b85 2924 pc->mem_cgroup = memcg;
261fb61a
KH
2925 /*
2926 * We access a page_cgroup asynchronously without lock_page_cgroup().
2927 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2928 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2929 * before USED bit, we need memory barrier here.
2930 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2931 */
08e552c6 2932 smp_wmb();
b2402857 2933 SetPageCgroupUsed(pc);
3be91277 2934
9ce70c02
HD
2935 if (lrucare) {
2936 if (was_on_lru) {
fa9add64 2937 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2938 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2939 SetPageLRU(page);
fa9add64 2940 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2941 }
2942 spin_unlock_irq(&zone->lru_lock);
2943 }
2944
41326c17 2945 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2946 anon = true;
2947 else
2948 anon = false;
2949
b070e65c 2950 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2951 unlock_page_cgroup(pc);
9ce70c02 2952
430e4863 2953 /*
bb4cc1a8
AM
2954 * "charge_statistics" updated event counter. Then, check it.
2955 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2956 * if they exceeds softlimit.
430e4863 2957 */
c0ff4b85 2958 memcg_check_events(memcg, page);
7a81b88c 2959}
66e1707b 2960
7cf27982
GC
2961static DEFINE_MUTEX(set_limit_mutex);
2962
7ae1e1d0 2963#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2964static DEFINE_MUTEX(activate_kmem_mutex);
2965
7ae1e1d0
GC
2966static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2967{
2968 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2969 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2970}
2971
1f458cbf
GC
2972/*
2973 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2974 * in the memcg_cache_params struct.
2975 */
2976static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2977{
2978 struct kmem_cache *cachep;
2979
2980 VM_BUG_ON(p->is_root_cache);
2981 cachep = p->root_cache;
7a67d7ab 2982 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2983}
2984
749c5415 2985#ifdef CONFIG_SLABINFO
2da8ca82 2986static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2987{
2da8ca82 2988 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2989 struct memcg_cache_params *params;
2990
2991 if (!memcg_can_account_kmem(memcg))
2992 return -EIO;
2993
2994 print_slabinfo_header(m);
2995
2996 mutex_lock(&memcg->slab_caches_mutex);
2997 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2998 cache_show(memcg_params_to_cache(params), m);
2999 mutex_unlock(&memcg->slab_caches_mutex);
3000
3001 return 0;
3002}
3003#endif
3004
7ae1e1d0
GC
3005static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3006{
3007 struct res_counter *fail_res;
3008 struct mem_cgroup *_memcg;
3009 int ret = 0;
7ae1e1d0
GC
3010
3011 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3012 if (ret)
3013 return ret;
3014
7ae1e1d0
GC
3015 _memcg = memcg;
3016 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3017 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3018
3019 if (ret == -EINTR) {
3020 /*
3021 * __mem_cgroup_try_charge() chosed to bypass to root due to
3022 * OOM kill or fatal signal. Since our only options are to
3023 * either fail the allocation or charge it to this cgroup, do
3024 * it as a temporary condition. But we can't fail. From a
3025 * kmem/slab perspective, the cache has already been selected,
3026 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3027 * our minds.
3028 *
3029 * This condition will only trigger if the task entered
3030 * memcg_charge_kmem in a sane state, but was OOM-killed during
3031 * __mem_cgroup_try_charge() above. Tasks that were already
3032 * dying when the allocation triggers should have been already
3033 * directed to the root cgroup in memcontrol.h
3034 */
3035 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3036 if (do_swap_account)
3037 res_counter_charge_nofail(&memcg->memsw, size,
3038 &fail_res);
3039 ret = 0;
3040 } else if (ret)
3041 res_counter_uncharge(&memcg->kmem, size);
3042
3043 return ret;
3044}
3045
3046static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3047{
7ae1e1d0
GC
3048 res_counter_uncharge(&memcg->res, size);
3049 if (do_swap_account)
3050 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3051
3052 /* Not down to 0 */
3053 if (res_counter_uncharge(&memcg->kmem, size))
3054 return;
3055
10d5ebf4
LZ
3056 /*
3057 * Releases a reference taken in kmem_cgroup_css_offline in case
3058 * this last uncharge is racing with the offlining code or it is
3059 * outliving the memcg existence.
3060 *
3061 * The memory barrier imposed by test&clear is paired with the
3062 * explicit one in memcg_kmem_mark_dead().
3063 */
7de37682 3064 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3065 css_put(&memcg->css);
7ae1e1d0
GC
3066}
3067
2633d7a0
GC
3068/*
3069 * helper for acessing a memcg's index. It will be used as an index in the
3070 * child cache array in kmem_cache, and also to derive its name. This function
3071 * will return -1 when this is not a kmem-limited memcg.
3072 */
3073int memcg_cache_id(struct mem_cgroup *memcg)
3074{
3075 return memcg ? memcg->kmemcg_id : -1;
3076}
3077
55007d84
GC
3078static size_t memcg_caches_array_size(int num_groups)
3079{
3080 ssize_t size;
3081 if (num_groups <= 0)
3082 return 0;
3083
3084 size = 2 * num_groups;
3085 if (size < MEMCG_CACHES_MIN_SIZE)
3086 size = MEMCG_CACHES_MIN_SIZE;
3087 else if (size > MEMCG_CACHES_MAX_SIZE)
3088 size = MEMCG_CACHES_MAX_SIZE;
3089
3090 return size;
3091}
3092
3093/*
3094 * We should update the current array size iff all caches updates succeed. This
3095 * can only be done from the slab side. The slab mutex needs to be held when
3096 * calling this.
3097 */
3098void memcg_update_array_size(int num)
3099{
3100 if (num > memcg_limited_groups_array_size)
3101 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3102}
3103
15cf17d2
KK
3104static void kmem_cache_destroy_work_func(struct work_struct *w);
3105
55007d84
GC
3106int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3107{
3108 struct memcg_cache_params *cur_params = s->memcg_params;
3109
f35c3a8e 3110 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3111
3112 if (num_groups > memcg_limited_groups_array_size) {
3113 int i;
f8570263 3114 struct memcg_cache_params *new_params;
55007d84
GC
3115 ssize_t size = memcg_caches_array_size(num_groups);
3116
3117 size *= sizeof(void *);
90c7a79c 3118 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3119
f8570263
VD
3120 new_params = kzalloc(size, GFP_KERNEL);
3121 if (!new_params)
55007d84 3122 return -ENOMEM;
55007d84 3123
f8570263 3124 new_params->is_root_cache = true;
55007d84
GC
3125
3126 /*
3127 * There is the chance it will be bigger than
3128 * memcg_limited_groups_array_size, if we failed an allocation
3129 * in a cache, in which case all caches updated before it, will
3130 * have a bigger array.
3131 *
3132 * But if that is the case, the data after
3133 * memcg_limited_groups_array_size is certainly unused
3134 */
3135 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3136 if (!cur_params->memcg_caches[i])
3137 continue;
f8570263 3138 new_params->memcg_caches[i] =
55007d84
GC
3139 cur_params->memcg_caches[i];
3140 }
3141
3142 /*
3143 * Ideally, we would wait until all caches succeed, and only
3144 * then free the old one. But this is not worth the extra
3145 * pointer per-cache we'd have to have for this.
3146 *
3147 * It is not a big deal if some caches are left with a size
3148 * bigger than the others. And all updates will reset this
3149 * anyway.
3150 */
f8570263
VD
3151 rcu_assign_pointer(s->memcg_params, new_params);
3152 if (cur_params)
3153 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3154 }
3155 return 0;
3156}
3157
363a044f
VD
3158int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3159 struct kmem_cache *root_cache)
2633d7a0 3160{
90c7a79c 3161 size_t size;
2633d7a0
GC
3162
3163 if (!memcg_kmem_enabled())
3164 return 0;
3165
90c7a79c
AV
3166 if (!memcg) {
3167 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3168 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3169 } else
3170 size = sizeof(struct memcg_cache_params);
55007d84 3171
2633d7a0
GC
3172 s->memcg_params = kzalloc(size, GFP_KERNEL);
3173 if (!s->memcg_params)
3174 return -ENOMEM;
3175
943a451a 3176 if (memcg) {
2633d7a0 3177 s->memcg_params->memcg = memcg;
943a451a 3178 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3179 INIT_WORK(&s->memcg_params->destroy,
3180 kmem_cache_destroy_work_func);
4ba902b5
GC
3181 } else
3182 s->memcg_params->is_root_cache = true;
3183
2633d7a0
GC
3184 return 0;
3185}
3186
363a044f
VD
3187void memcg_free_cache_params(struct kmem_cache *s)
3188{
3189 kfree(s->memcg_params);
3190}
3191
1aa13254 3192void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3193{
d7f25f8a
GC
3194 struct kmem_cache *root;
3195 struct mem_cgroup *memcg;
3196 int id;
3197
1aa13254
VD
3198 if (is_root_cache(s))
3199 return;
3200
2edefe11
VD
3201 /*
3202 * Holding the slab_mutex assures nobody will touch the memcg_caches
3203 * array while we are modifying it.
3204 */
3205 lockdep_assert_held(&slab_mutex);
3206
1aa13254
VD
3207 root = s->memcg_params->root_cache;
3208 memcg = s->memcg_params->memcg;
3209 id = memcg_cache_id(memcg);
3210
3211 css_get(&memcg->css);
3212
1aa13254 3213
d7f25f8a 3214 /*
959c8963
VD
3215 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3216 * barrier here to ensure nobody will see the kmem_cache partially
3217 * initialized.
d7f25f8a 3218 */
959c8963
VD
3219 smp_wmb();
3220
96403da2
VD
3221 /*
3222 * Initialize the pointer to this cache in its parent's memcg_params
3223 * before adding it to the memcg_slab_caches list, otherwise we can
3224 * fail to convert memcg_params_to_cache() while traversing the list.
3225 */
2edefe11 3226 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3227 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3228
3229 mutex_lock(&memcg->slab_caches_mutex);
3230 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3231 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3232}
d7f25f8a 3233
1aa13254
VD
3234void memcg_unregister_cache(struct kmem_cache *s)
3235{
3236 struct kmem_cache *root;
3237 struct mem_cgroup *memcg;
3238 int id;
3239
3240 if (is_root_cache(s))
3241 return;
d7f25f8a 3242
2edefe11
VD
3243 /*
3244 * Holding the slab_mutex assures nobody will touch the memcg_caches
3245 * array while we are modifying it.
3246 */
3247 lockdep_assert_held(&slab_mutex);
3248
d7f25f8a 3249 root = s->memcg_params->root_cache;
96403da2
VD
3250 memcg = s->memcg_params->memcg;
3251 id = memcg_cache_id(memcg);
d7f25f8a
GC
3252
3253 mutex_lock(&memcg->slab_caches_mutex);
3254 list_del(&s->memcg_params->list);
3255 mutex_unlock(&memcg->slab_caches_mutex);
3256
96403da2
VD
3257 /*
3258 * Clear the pointer to this cache in its parent's memcg_params only
3259 * after removing it from the memcg_slab_caches list, otherwise we can
3260 * fail to convert memcg_params_to_cache() while traversing the list.
3261 */
2edefe11 3262 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3263 root->memcg_params->memcg_caches[id] = NULL;
3264
20f05310 3265 css_put(&memcg->css);
2633d7a0
GC
3266}
3267
0e9d92f2
GC
3268/*
3269 * During the creation a new cache, we need to disable our accounting mechanism
3270 * altogether. This is true even if we are not creating, but rather just
3271 * enqueing new caches to be created.
3272 *
3273 * This is because that process will trigger allocations; some visible, like
3274 * explicit kmallocs to auxiliary data structures, name strings and internal
3275 * cache structures; some well concealed, like INIT_WORK() that can allocate
3276 * objects during debug.
3277 *
3278 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3279 * to it. This may not be a bounded recursion: since the first cache creation
3280 * failed to complete (waiting on the allocation), we'll just try to create the
3281 * cache again, failing at the same point.
3282 *
3283 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3284 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3285 * inside the following two functions.
3286 */
3287static inline void memcg_stop_kmem_account(void)
3288{
3289 VM_BUG_ON(!current->mm);
3290 current->memcg_kmem_skip_account++;
3291}
3292
3293static inline void memcg_resume_kmem_account(void)
3294{
3295 VM_BUG_ON(!current->mm);
3296 current->memcg_kmem_skip_account--;
3297}
3298
1f458cbf
GC
3299static void kmem_cache_destroy_work_func(struct work_struct *w)
3300{
3301 struct kmem_cache *cachep;
3302 struct memcg_cache_params *p;
3303
3304 p = container_of(w, struct memcg_cache_params, destroy);
3305
3306 cachep = memcg_params_to_cache(p);
3307
22933152
GC
3308 /*
3309 * If we get down to 0 after shrink, we could delete right away.
3310 * However, memcg_release_pages() already puts us back in the workqueue
3311 * in that case. If we proceed deleting, we'll get a dangling
3312 * reference, and removing the object from the workqueue in that case
3313 * is unnecessary complication. We are not a fast path.
3314 *
3315 * Note that this case is fundamentally different from racing with
3316 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3317 * kmem_cache_shrink, not only we would be reinserting a dead cache
3318 * into the queue, but doing so from inside the worker racing to
3319 * destroy it.
3320 *
3321 * So if we aren't down to zero, we'll just schedule a worker and try
3322 * again
3323 */
0d8a4a37 3324 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
22933152 3325 kmem_cache_shrink(cachep);
0d8a4a37 3326 else
1f458cbf
GC
3327 kmem_cache_destroy(cachep);
3328}
3329
3330void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3331{
3332 if (!cachep->memcg_params->dead)
3333 return;
3334
22933152
GC
3335 /*
3336 * There are many ways in which we can get here.
3337 *
3338 * We can get to a memory-pressure situation while the delayed work is
3339 * still pending to run. The vmscan shrinkers can then release all
3340 * cache memory and get us to destruction. If this is the case, we'll
3341 * be executed twice, which is a bug (the second time will execute over
3342 * bogus data). In this case, cancelling the work should be fine.
3343 *
3344 * But we can also get here from the worker itself, if
3345 * kmem_cache_shrink is enough to shake all the remaining objects and
3346 * get the page count to 0. In this case, we'll deadlock if we try to
3347 * cancel the work (the worker runs with an internal lock held, which
3348 * is the same lock we would hold for cancel_work_sync().)
3349 *
3350 * Since we can't possibly know who got us here, just refrain from
3351 * running if there is already work pending
3352 */
3353 if (work_pending(&cachep->memcg_params->destroy))
3354 return;
1f458cbf
GC
3355 /*
3356 * We have to defer the actual destroying to a workqueue, because
3357 * we might currently be in a context that cannot sleep.
3358 */
3359 schedule_work(&cachep->memcg_params->destroy);
3360}
3361
842e2873
VD
3362static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3363 struct kmem_cache *s)
d7f25f8a 3364{
7c094fd6 3365 struct kmem_cache *new = NULL;
e61734c5 3366 static char *tmp_path = NULL, *tmp_name = NULL;
842e2873 3367 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3368
842e2873 3369 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3370
842e2873 3371 mutex_lock(&mutex);
d9c10ddd
MH
3372 /*
3373 * kmem_cache_create_memcg duplicates the given name and
3374 * cgroup_name for this name requires RCU context.
3375 * This static temporary buffer is used to prevent from
3376 * pointless shortliving allocation.
3377 */
e61734c5
TH
3378 if (!tmp_path || !tmp_name) {
3379 if (!tmp_path)
3380 tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
d9c10ddd 3381 if (!tmp_name)
e61734c5
TH
3382 tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3383 if (!tmp_path || !tmp_name)
7c094fd6 3384 goto out;
d9c10ddd
MH
3385 }
3386
e61734c5
TH
3387 cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
3388 snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
3389 memcg_cache_id(memcg), tmp_name);
d7f25f8a 3390
e61734c5 3391 new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
943a451a 3392 (s->flags & ~SLAB_PANIC), s->ctor, s);
d79923fa
GC
3393 if (new)
3394 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3395 else
3396 new = s;
7c094fd6 3397out:
842e2873 3398 mutex_unlock(&mutex);
d7f25f8a
GC
3399 return new;
3400}
3401
7cf27982
GC
3402void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3403{
3404 struct kmem_cache *c;
3405 int i;
3406
3407 if (!s->memcg_params)
3408 return;
3409 if (!s->memcg_params->is_root_cache)
3410 return;
3411
3412 /*
3413 * If the cache is being destroyed, we trust that there is no one else
3414 * requesting objects from it. Even if there are, the sanity checks in
3415 * kmem_cache_destroy should caught this ill-case.
3416 *
3417 * Still, we don't want anyone else freeing memcg_caches under our
3418 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3419 * we'll take the activate_kmem_mutex to protect ourselves against
3420 * this.
7cf27982 3421 */
d6441637 3422 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3423 for_each_memcg_cache_index(i) {
3424 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3425 if (!c)
3426 continue;
3427
3428 /*
3429 * We will now manually delete the caches, so to avoid races
3430 * we need to cancel all pending destruction workers and
3431 * proceed with destruction ourselves.
3432 *
3433 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3434 * and that could spawn the workers again: it is likely that
3435 * the cache still have active pages until this very moment.
3436 * This would lead us back to mem_cgroup_destroy_cache.
3437 *
3438 * But that will not execute at all if the "dead" flag is not
3439 * set, so flip it down to guarantee we are in control.
3440 */
3441 c->memcg_params->dead = false;
22933152 3442 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3443 kmem_cache_destroy(c);
3444 }
d6441637 3445 mutex_unlock(&activate_kmem_mutex);
7cf27982
GC
3446}
3447
d7f25f8a
GC
3448struct create_work {
3449 struct mem_cgroup *memcg;
3450 struct kmem_cache *cachep;
3451 struct work_struct work;
3452};
3453
1f458cbf
GC
3454static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3455{
3456 struct kmem_cache *cachep;
3457 struct memcg_cache_params *params;
3458
3459 if (!memcg_kmem_is_active(memcg))
3460 return;
3461
3462 mutex_lock(&memcg->slab_caches_mutex);
3463 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3464 cachep = memcg_params_to_cache(params);
3465 cachep->memcg_params->dead = true;
1f458cbf
GC
3466 schedule_work(&cachep->memcg_params->destroy);
3467 }
3468 mutex_unlock(&memcg->slab_caches_mutex);
3469}
3470
d7f25f8a
GC
3471static void memcg_create_cache_work_func(struct work_struct *w)
3472{
3473 struct create_work *cw;
3474
3475 cw = container_of(w, struct create_work, work);
3476 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3477 css_put(&cw->memcg->css);
d7f25f8a
GC
3478 kfree(cw);
3479}
3480
3481/*
3482 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3483 */
0e9d92f2
GC
3484static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3485 struct kmem_cache *cachep)
d7f25f8a
GC
3486{
3487 struct create_work *cw;
3488
3489 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3490 if (cw == NULL) {
3491 css_put(&memcg->css);
d7f25f8a
GC
3492 return;
3493 }
3494
3495 cw->memcg = memcg;
3496 cw->cachep = cachep;
3497
3498 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3499 schedule_work(&cw->work);
3500}
3501
0e9d92f2
GC
3502static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3503 struct kmem_cache *cachep)
3504{
3505 /*
3506 * We need to stop accounting when we kmalloc, because if the
3507 * corresponding kmalloc cache is not yet created, the first allocation
3508 * in __memcg_create_cache_enqueue will recurse.
3509 *
3510 * However, it is better to enclose the whole function. Depending on
3511 * the debugging options enabled, INIT_WORK(), for instance, can
3512 * trigger an allocation. This too, will make us recurse. Because at
3513 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3514 * the safest choice is to do it like this, wrapping the whole function.
3515 */
3516 memcg_stop_kmem_account();
3517 __memcg_create_cache_enqueue(memcg, cachep);
3518 memcg_resume_kmem_account();
3519}
d7f25f8a
GC
3520/*
3521 * Return the kmem_cache we're supposed to use for a slab allocation.
3522 * We try to use the current memcg's version of the cache.
3523 *
3524 * If the cache does not exist yet, if we are the first user of it,
3525 * we either create it immediately, if possible, or create it asynchronously
3526 * in a workqueue.
3527 * In the latter case, we will let the current allocation go through with
3528 * the original cache.
3529 *
3530 * Can't be called in interrupt context or from kernel threads.
3531 * This function needs to be called with rcu_read_lock() held.
3532 */
3533struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3534 gfp_t gfp)
3535{
3536 struct mem_cgroup *memcg;
959c8963 3537 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3538
3539 VM_BUG_ON(!cachep->memcg_params);
3540 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3541
0e9d92f2
GC
3542 if (!current->mm || current->memcg_kmem_skip_account)
3543 return cachep;
3544
d7f25f8a
GC
3545 rcu_read_lock();
3546 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3547
3548 if (!memcg_can_account_kmem(memcg))
ca0dde97 3549 goto out;
d7f25f8a 3550
959c8963
VD
3551 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3552 if (likely(memcg_cachep)) {
3553 cachep = memcg_cachep;
ca0dde97 3554 goto out;
d7f25f8a
GC
3555 }
3556
ca0dde97
LZ
3557 /* The corresponding put will be done in the workqueue. */
3558 if (!css_tryget(&memcg->css))
3559 goto out;
3560 rcu_read_unlock();
3561
3562 /*
3563 * If we are in a safe context (can wait, and not in interrupt
3564 * context), we could be be predictable and return right away.
3565 * This would guarantee that the allocation being performed
3566 * already belongs in the new cache.
3567 *
3568 * However, there are some clashes that can arrive from locking.
3569 * For instance, because we acquire the slab_mutex while doing
3570 * kmem_cache_dup, this means no further allocation could happen
3571 * with the slab_mutex held.
3572 *
3573 * Also, because cache creation issue get_online_cpus(), this
3574 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3575 * that ends up reversed during cpu hotplug. (cpuset allocates
3576 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3577 * better to defer everything.
3578 */
3579 memcg_create_cache_enqueue(memcg, cachep);
3580 return cachep;
3581out:
3582 rcu_read_unlock();
3583 return cachep;
d7f25f8a
GC
3584}
3585EXPORT_SYMBOL(__memcg_kmem_get_cache);
3586
7ae1e1d0
GC
3587/*
3588 * We need to verify if the allocation against current->mm->owner's memcg is
3589 * possible for the given order. But the page is not allocated yet, so we'll
3590 * need a further commit step to do the final arrangements.
3591 *
3592 * It is possible for the task to switch cgroups in this mean time, so at
3593 * commit time, we can't rely on task conversion any longer. We'll then use
3594 * the handle argument to return to the caller which cgroup we should commit
3595 * against. We could also return the memcg directly and avoid the pointer
3596 * passing, but a boolean return value gives better semantics considering
3597 * the compiled-out case as well.
3598 *
3599 * Returning true means the allocation is possible.
3600 */
3601bool
3602__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3603{
3604 struct mem_cgroup *memcg;
3605 int ret;
3606
3607 *_memcg = NULL;
6d42c232
GC
3608
3609 /*
3610 * Disabling accounting is only relevant for some specific memcg
3611 * internal allocations. Therefore we would initially not have such
3612 * check here, since direct calls to the page allocator that are marked
3613 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3614 * concerned with cache allocations, and by having this test at
3615 * memcg_kmem_get_cache, we are already able to relay the allocation to
3616 * the root cache and bypass the memcg cache altogether.
3617 *
3618 * There is one exception, though: the SLUB allocator does not create
3619 * large order caches, but rather service large kmallocs directly from
3620 * the page allocator. Therefore, the following sequence when backed by
3621 * the SLUB allocator:
3622 *
f894ffa8
AM
3623 * memcg_stop_kmem_account();
3624 * kmalloc(<large_number>)
3625 * memcg_resume_kmem_account();
6d42c232
GC
3626 *
3627 * would effectively ignore the fact that we should skip accounting,
3628 * since it will drive us directly to this function without passing
3629 * through the cache selector memcg_kmem_get_cache. Such large
3630 * allocations are extremely rare but can happen, for instance, for the
3631 * cache arrays. We bring this test here.
3632 */
3633 if (!current->mm || current->memcg_kmem_skip_account)
3634 return true;
3635
7ae1e1d0
GC
3636 memcg = try_get_mem_cgroup_from_mm(current->mm);
3637
3638 /*
3639 * very rare case described in mem_cgroup_from_task. Unfortunately there
3640 * isn't much we can do without complicating this too much, and it would
3641 * be gfp-dependent anyway. Just let it go
3642 */
3643 if (unlikely(!memcg))
3644 return true;
3645
3646 if (!memcg_can_account_kmem(memcg)) {
3647 css_put(&memcg->css);
3648 return true;
3649 }
3650
7ae1e1d0
GC
3651 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3652 if (!ret)
3653 *_memcg = memcg;
7ae1e1d0
GC
3654
3655 css_put(&memcg->css);
3656 return (ret == 0);
3657}
3658
3659void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3660 int order)
3661{
3662 struct page_cgroup *pc;
3663
3664 VM_BUG_ON(mem_cgroup_is_root(memcg));
3665
3666 /* The page allocation failed. Revert */
3667 if (!page) {
3668 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3669 return;
3670 }
3671
3672 pc = lookup_page_cgroup(page);
3673 lock_page_cgroup(pc);
3674 pc->mem_cgroup = memcg;
3675 SetPageCgroupUsed(pc);
3676 unlock_page_cgroup(pc);
3677}
3678
3679void __memcg_kmem_uncharge_pages(struct page *page, int order)
3680{
3681 struct mem_cgroup *memcg = NULL;
3682 struct page_cgroup *pc;
3683
3684
3685 pc = lookup_page_cgroup(page);
3686 /*
3687 * Fast unlocked return. Theoretically might have changed, have to
3688 * check again after locking.
3689 */
3690 if (!PageCgroupUsed(pc))
3691 return;
3692
3693 lock_page_cgroup(pc);
3694 if (PageCgroupUsed(pc)) {
3695 memcg = pc->mem_cgroup;
3696 ClearPageCgroupUsed(pc);
3697 }
3698 unlock_page_cgroup(pc);
3699
3700 /*
3701 * We trust that only if there is a memcg associated with the page, it
3702 * is a valid allocation
3703 */
3704 if (!memcg)
3705 return;
3706
309381fe 3707 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3708 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3709}
1f458cbf
GC
3710#else
3711static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3712{
3713}
7ae1e1d0
GC
3714#endif /* CONFIG_MEMCG_KMEM */
3715
ca3e0214
KH
3716#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3717
a0db00fc 3718#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3719/*
3720 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3721 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3722 * charge/uncharge will be never happen and move_account() is done under
3723 * compound_lock(), so we don't have to take care of races.
ca3e0214 3724 */
e94c8a9c 3725void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3726{
3727 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3728 struct page_cgroup *pc;
b070e65c 3729 struct mem_cgroup *memcg;
e94c8a9c 3730 int i;
ca3e0214 3731
3d37c4a9
KH
3732 if (mem_cgroup_disabled())
3733 return;
b070e65c
DR
3734
3735 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3736 for (i = 1; i < HPAGE_PMD_NR; i++) {
3737 pc = head_pc + i;
b070e65c 3738 pc->mem_cgroup = memcg;
e94c8a9c 3739 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3740 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3741 }
b070e65c
DR
3742 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3743 HPAGE_PMD_NR);
ca3e0214 3744}
12d27107 3745#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3746
7af467e8
JW
3747static void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3748 struct mem_cgroup *to,
3749 unsigned int nr_pages,
3750 enum mem_cgroup_stat_index idx)
3ea67d06
SZ
3751{
3752 /* Update stat data for mem_cgroup */
5e8cfc3c 3753 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06 3754 __this_cpu_add(to->stat->count[idx], nr_pages);
3ea67d06
SZ
3755}
3756
f817ed48 3757/**
de3638d9 3758 * mem_cgroup_move_account - move account of the page
5564e88b 3759 * @page: the page
7ec99d62 3760 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3761 * @pc: page_cgroup of the page.
3762 * @from: mem_cgroup which the page is moved from.
3763 * @to: mem_cgroup which the page is moved to. @from != @to.
3764 *
3765 * The caller must confirm following.
08e552c6 3766 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3767 * - compound_lock is held when nr_pages > 1
f817ed48 3768 *
2f3479b1
KH
3769 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3770 * from old cgroup.
f817ed48 3771 */
7ec99d62
JW
3772static int mem_cgroup_move_account(struct page *page,
3773 unsigned int nr_pages,
3774 struct page_cgroup *pc,
3775 struct mem_cgroup *from,
2f3479b1 3776 struct mem_cgroup *to)
f817ed48 3777{
de3638d9
JW
3778 unsigned long flags;
3779 int ret;
b2402857 3780 bool anon = PageAnon(page);
987eba66 3781
f817ed48 3782 VM_BUG_ON(from == to);
309381fe 3783 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3784 /*
3785 * The page is isolated from LRU. So, collapse function
3786 * will not handle this page. But page splitting can happen.
3787 * Do this check under compound_page_lock(). The caller should
3788 * hold it.
3789 */
3790 ret = -EBUSY;
7ec99d62 3791 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3792 goto out;
3793
3794 lock_page_cgroup(pc);
3795
3796 ret = -EINVAL;
3797 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3798 goto unlock;
3799
312734c0 3800 move_lock_mem_cgroup(from, &flags);
f817ed48 3801
3ea67d06
SZ
3802 if (!anon && page_mapped(page))
3803 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3804 MEM_CGROUP_STAT_FILE_MAPPED);
3805
3806 if (PageWriteback(page))
3807 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3808 MEM_CGROUP_STAT_WRITEBACK);
3809
b070e65c 3810 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3811
854ffa8d 3812 /* caller should have done css_get */
08e552c6 3813 pc->mem_cgroup = to;
b070e65c 3814 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3815 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3816 ret = 0;
3817unlock:
57f9fd7d 3818 unlock_page_cgroup(pc);
d2265e6f
KH
3819 /*
3820 * check events
3821 */
5564e88b
JW
3822 memcg_check_events(to, page);
3823 memcg_check_events(from, page);
de3638d9 3824out:
f817ed48
KH
3825 return ret;
3826}
3827
2ef37d3f
MH
3828/**
3829 * mem_cgroup_move_parent - moves page to the parent group
3830 * @page: the page to move
3831 * @pc: page_cgroup of the page
3832 * @child: page's cgroup
3833 *
3834 * move charges to its parent or the root cgroup if the group has no
3835 * parent (aka use_hierarchy==0).
3836 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3837 * mem_cgroup_move_account fails) the failure is always temporary and
3838 * it signals a race with a page removal/uncharge or migration. In the
3839 * first case the page is on the way out and it will vanish from the LRU
3840 * on the next attempt and the call should be retried later.
3841 * Isolation from the LRU fails only if page has been isolated from
3842 * the LRU since we looked at it and that usually means either global
3843 * reclaim or migration going on. The page will either get back to the
3844 * LRU or vanish.
3845 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3846 * (!PageCgroupUsed) or moved to a different group. The page will
3847 * disappear in the next attempt.
f817ed48 3848 */
5564e88b
JW
3849static int mem_cgroup_move_parent(struct page *page,
3850 struct page_cgroup *pc,
6068bf01 3851 struct mem_cgroup *child)
f817ed48 3852{
f817ed48 3853 struct mem_cgroup *parent;
7ec99d62 3854 unsigned int nr_pages;
4be4489f 3855 unsigned long uninitialized_var(flags);
f817ed48
KH
3856 int ret;
3857
d8423011 3858 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3859
57f9fd7d
DN
3860 ret = -EBUSY;
3861 if (!get_page_unless_zero(page))
3862 goto out;
3863 if (isolate_lru_page(page))
3864 goto put;
52dbb905 3865
7ec99d62 3866 nr_pages = hpage_nr_pages(page);
08e552c6 3867
cc926f78
KH
3868 parent = parent_mem_cgroup(child);
3869 /*
3870 * If no parent, move charges to root cgroup.
3871 */
3872 if (!parent)
3873 parent = root_mem_cgroup;
f817ed48 3874
2ef37d3f 3875 if (nr_pages > 1) {
309381fe 3876 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3877 flags = compound_lock_irqsave(page);
2ef37d3f 3878 }
987eba66 3879
cc926f78 3880 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3881 pc, child, parent);
cc926f78
KH
3882 if (!ret)
3883 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3884
7ec99d62 3885 if (nr_pages > 1)
987eba66 3886 compound_unlock_irqrestore(page, flags);
08e552c6 3887 putback_lru_page(page);
57f9fd7d 3888put:
40d58138 3889 put_page(page);
57f9fd7d 3890out:
f817ed48
KH
3891 return ret;
3892}
3893
7a81b88c
KH
3894/*
3895 * Charge the memory controller for page usage.
3896 * Return
3897 * 0 if the charge was successful
3898 * < 0 if the cgroup is over its limit
3899 */
3900static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3901 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3902{
c0ff4b85 3903 struct mem_cgroup *memcg = NULL;
7ec99d62 3904 unsigned int nr_pages = 1;
8493ae43 3905 bool oom = true;
7a81b88c 3906 int ret;
ec168510 3907
37c2ac78 3908 if (PageTransHuge(page)) {
7ec99d62 3909 nr_pages <<= compound_order(page);
309381fe 3910 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3911 /*
3912 * Never OOM-kill a process for a huge page. The
3913 * fault handler will fall back to regular pages.
3914 */
3915 oom = false;
37c2ac78 3916 }
7a81b88c 3917
c0ff4b85 3918 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3919 if (ret == -ENOMEM)
7a81b88c 3920 return ret;
ce587e65 3921 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3922 return 0;
8a9f3ccd
BS
3923}
3924
7a81b88c
KH
3925int mem_cgroup_newpage_charge(struct page *page,
3926 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3927{
f8d66542 3928 if (mem_cgroup_disabled())
cede86ac 3929 return 0;
309381fe
SL
3930 VM_BUG_ON_PAGE(page_mapped(page), page);
3931 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 3932 VM_BUG_ON(!mm);
217bc319 3933 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3934 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3935}
3936
54595fe2
KH
3937/*
3938 * While swap-in, try_charge -> commit or cancel, the page is locked.
3939 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3940 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3941 * "commit()" or removed by "cancel()"
3942 */
0435a2fd
JW
3943static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3944 struct page *page,
3945 gfp_t mask,
3946 struct mem_cgroup **memcgp)
8c7c6e34 3947{
c0ff4b85 3948 struct mem_cgroup *memcg;
90deb788 3949 struct page_cgroup *pc;
54595fe2 3950 int ret;
8c7c6e34 3951
90deb788
JW
3952 pc = lookup_page_cgroup(page);
3953 /*
3954 * Every swap fault against a single page tries to charge the
3955 * page, bail as early as possible. shmem_unuse() encounters
3956 * already charged pages, too. The USED bit is protected by
3957 * the page lock, which serializes swap cache removal, which
3958 * in turn serializes uncharging.
3959 */
3960 if (PageCgroupUsed(pc))
3961 return 0;
8c7c6e34
KH
3962 if (!do_swap_account)
3963 goto charge_cur_mm;
c0ff4b85
R
3964 memcg = try_get_mem_cgroup_from_page(page);
3965 if (!memcg)
54595fe2 3966 goto charge_cur_mm;
72835c86
JW
3967 *memcgp = memcg;
3968 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3969 css_put(&memcg->css);
38c5d72f
KH
3970 if (ret == -EINTR)
3971 ret = 0;
54595fe2 3972 return ret;
8c7c6e34 3973charge_cur_mm:
38c5d72f
KH
3974 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3975 if (ret == -EINTR)
3976 ret = 0;
3977 return ret;
8c7c6e34
KH
3978}
3979
0435a2fd
JW
3980int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3981 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3982{
3983 *memcgp = NULL;
3984 if (mem_cgroup_disabled())
3985 return 0;
bdf4f4d2
JW
3986 /*
3987 * A racing thread's fault, or swapoff, may have already
3988 * updated the pte, and even removed page from swap cache: in
3989 * those cases unuse_pte()'s pte_same() test will fail; but
3990 * there's also a KSM case which does need to charge the page.
3991 */
3992 if (!PageSwapCache(page)) {
3993 int ret;
3994
3995 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3996 if (ret == -EINTR)
3997 ret = 0;
3998 return ret;
3999 }
0435a2fd
JW
4000 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4001}
4002
827a03d2
JW
4003void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4004{
4005 if (mem_cgroup_disabled())
4006 return;
4007 if (!memcg)
4008 return;
4009 __mem_cgroup_cancel_charge(memcg, 1);
4010}
4011
83aae4c7 4012static void
72835c86 4013__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4014 enum charge_type ctype)
7a81b88c 4015{
f8d66542 4016 if (mem_cgroup_disabled())
7a81b88c 4017 return;
72835c86 4018 if (!memcg)
7a81b88c 4019 return;
5a6475a4 4020
ce587e65 4021 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4022 /*
4023 * Now swap is on-memory. This means this page may be
4024 * counted both as mem and swap....double count.
03f3c433
KH
4025 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4026 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4027 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4028 */
03f3c433 4029 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4030 swp_entry_t ent = {.val = page_private(page)};
86493009 4031 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4032 }
7a81b88c
KH
4033}
4034
72835c86
JW
4035void mem_cgroup_commit_charge_swapin(struct page *page,
4036 struct mem_cgroup *memcg)
83aae4c7 4037{
72835c86 4038 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4039 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4040}
4041
827a03d2
JW
4042int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4043 gfp_t gfp_mask)
7a81b88c 4044{
827a03d2
JW
4045 struct mem_cgroup *memcg = NULL;
4046 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4047 int ret;
4048
f8d66542 4049 if (mem_cgroup_disabled())
827a03d2
JW
4050 return 0;
4051 if (PageCompound(page))
4052 return 0;
4053
827a03d2
JW
4054 if (!PageSwapCache(page))
4055 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4056 else { /* page is swapcache/shmem */
0435a2fd
JW
4057 ret = __mem_cgroup_try_charge_swapin(mm, page,
4058 gfp_mask, &memcg);
827a03d2
JW
4059 if (!ret)
4060 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4061 }
4062 return ret;
7a81b88c
KH
4063}
4064
c0ff4b85 4065static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4066 unsigned int nr_pages,
4067 const enum charge_type ctype)
569b846d
KH
4068{
4069 struct memcg_batch_info *batch = NULL;
4070 bool uncharge_memsw = true;
7ec99d62 4071
569b846d
KH
4072 /* If swapout, usage of swap doesn't decrease */
4073 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4074 uncharge_memsw = false;
569b846d
KH
4075
4076 batch = &current->memcg_batch;
4077 /*
4078 * In usual, we do css_get() when we remember memcg pointer.
4079 * But in this case, we keep res->usage until end of a series of
4080 * uncharges. Then, it's ok to ignore memcg's refcnt.
4081 */
4082 if (!batch->memcg)
c0ff4b85 4083 batch->memcg = memcg;
3c11ecf4
KH
4084 /*
4085 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4086 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4087 * the same cgroup and we have chance to coalesce uncharges.
4088 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4089 * because we want to do uncharge as soon as possible.
4090 */
4091
4092 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4093 goto direct_uncharge;
4094
7ec99d62 4095 if (nr_pages > 1)
ec168510
AA
4096 goto direct_uncharge;
4097
569b846d
KH
4098 /*
4099 * In typical case, batch->memcg == mem. This means we can
4100 * merge a series of uncharges to an uncharge of res_counter.
4101 * If not, we uncharge res_counter ony by one.
4102 */
c0ff4b85 4103 if (batch->memcg != memcg)
569b846d
KH
4104 goto direct_uncharge;
4105 /* remember freed charge and uncharge it later */
7ffd4ca7 4106 batch->nr_pages++;
569b846d 4107 if (uncharge_memsw)
7ffd4ca7 4108 batch->memsw_nr_pages++;
569b846d
KH
4109 return;
4110direct_uncharge:
c0ff4b85 4111 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4112 if (uncharge_memsw)
c0ff4b85
R
4113 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4114 if (unlikely(batch->memcg != memcg))
4115 memcg_oom_recover(memcg);
569b846d 4116}
7a81b88c 4117
8a9f3ccd 4118/*
69029cd5 4119 * uncharge if !page_mapped(page)
8a9f3ccd 4120 */
8c7c6e34 4121static struct mem_cgroup *
0030f535
JW
4122__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4123 bool end_migration)
8a9f3ccd 4124{
c0ff4b85 4125 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4126 unsigned int nr_pages = 1;
4127 struct page_cgroup *pc;
b2402857 4128 bool anon;
8a9f3ccd 4129
f8d66542 4130 if (mem_cgroup_disabled())
8c7c6e34 4131 return NULL;
4077960e 4132
37c2ac78 4133 if (PageTransHuge(page)) {
7ec99d62 4134 nr_pages <<= compound_order(page);
309381fe 4135 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4136 }
8697d331 4137 /*
3c541e14 4138 * Check if our page_cgroup is valid
8697d331 4139 */
52d4b9ac 4140 pc = lookup_page_cgroup(page);
cfa44946 4141 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4142 return NULL;
b9c565d5 4143
52d4b9ac 4144 lock_page_cgroup(pc);
d13d1443 4145
c0ff4b85 4146 memcg = pc->mem_cgroup;
8c7c6e34 4147
d13d1443
KH
4148 if (!PageCgroupUsed(pc))
4149 goto unlock_out;
4150
b2402857
KH
4151 anon = PageAnon(page);
4152
d13d1443 4153 switch (ctype) {
41326c17 4154 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4155 /*
4156 * Generally PageAnon tells if it's the anon statistics to be
4157 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4158 * used before page reached the stage of being marked PageAnon.
4159 */
b2402857
KH
4160 anon = true;
4161 /* fallthrough */
8a9478ca 4162 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4163 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4164 if (page_mapped(page))
4165 goto unlock_out;
4166 /*
4167 * Pages under migration may not be uncharged. But
4168 * end_migration() /must/ be the one uncharging the
4169 * unused post-migration page and so it has to call
4170 * here with the migration bit still set. See the
4171 * res_counter handling below.
4172 */
4173 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4174 goto unlock_out;
4175 break;
4176 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4177 if (!PageAnon(page)) { /* Shared memory */
4178 if (page->mapping && !page_is_file_cache(page))
4179 goto unlock_out;
4180 } else if (page_mapped(page)) /* Anon */
4181 goto unlock_out;
4182 break;
4183 default:
4184 break;
52d4b9ac 4185 }
d13d1443 4186
b070e65c 4187 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4188
52d4b9ac 4189 ClearPageCgroupUsed(pc);
544122e5
KH
4190 /*
4191 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4192 * freed from LRU. This is safe because uncharged page is expected not
4193 * to be reused (freed soon). Exception is SwapCache, it's handled by
4194 * special functions.
4195 */
b9c565d5 4196
52d4b9ac 4197 unlock_page_cgroup(pc);
f75ca962 4198 /*
c0ff4b85 4199 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4200 * will never be freed, so it's safe to call css_get().
f75ca962 4201 */
c0ff4b85 4202 memcg_check_events(memcg, page);
f75ca962 4203 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4204 mem_cgroup_swap_statistics(memcg, true);
4050377b 4205 css_get(&memcg->css);
f75ca962 4206 }
0030f535
JW
4207 /*
4208 * Migration does not charge the res_counter for the
4209 * replacement page, so leave it alone when phasing out the
4210 * page that is unused after the migration.
4211 */
4212 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4213 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4214
c0ff4b85 4215 return memcg;
d13d1443
KH
4216
4217unlock_out:
4218 unlock_page_cgroup(pc);
8c7c6e34 4219 return NULL;
3c541e14
BS
4220}
4221
69029cd5
KH
4222void mem_cgroup_uncharge_page(struct page *page)
4223{
52d4b9ac
KH
4224 /* early check. */
4225 if (page_mapped(page))
4226 return;
309381fe 4227 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4228 /*
4229 * If the page is in swap cache, uncharge should be deferred
4230 * to the swap path, which also properly accounts swap usage
4231 * and handles memcg lifetime.
4232 *
4233 * Note that this check is not stable and reclaim may add the
4234 * page to swap cache at any time after this. However, if the
4235 * page is not in swap cache by the time page->mapcount hits
4236 * 0, there won't be any page table references to the swap
4237 * slot, and reclaim will free it and not actually write the
4238 * page to disk.
4239 */
0c59b89c
JW
4240 if (PageSwapCache(page))
4241 return;
0030f535 4242 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4243}
4244
4245void mem_cgroup_uncharge_cache_page(struct page *page)
4246{
309381fe
SL
4247 VM_BUG_ON_PAGE(page_mapped(page), page);
4248 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4249 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4250}
4251
569b846d
KH
4252/*
4253 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4254 * In that cases, pages are freed continuously and we can expect pages
4255 * are in the same memcg. All these calls itself limits the number of
4256 * pages freed at once, then uncharge_start/end() is called properly.
4257 * This may be called prural(2) times in a context,
4258 */
4259
4260void mem_cgroup_uncharge_start(void)
4261{
4262 current->memcg_batch.do_batch++;
4263 /* We can do nest. */
4264 if (current->memcg_batch.do_batch == 1) {
4265 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4266 current->memcg_batch.nr_pages = 0;
4267 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4268 }
4269}
4270
4271void mem_cgroup_uncharge_end(void)
4272{
4273 struct memcg_batch_info *batch = &current->memcg_batch;
4274
4275 if (!batch->do_batch)
4276 return;
4277
4278 batch->do_batch--;
4279 if (batch->do_batch) /* If stacked, do nothing. */
4280 return;
4281
4282 if (!batch->memcg)
4283 return;
4284 /*
4285 * This "batch->memcg" is valid without any css_get/put etc...
4286 * bacause we hide charges behind us.
4287 */
7ffd4ca7
JW
4288 if (batch->nr_pages)
4289 res_counter_uncharge(&batch->memcg->res,
4290 batch->nr_pages * PAGE_SIZE);
4291 if (batch->memsw_nr_pages)
4292 res_counter_uncharge(&batch->memcg->memsw,
4293 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4294 memcg_oom_recover(batch->memcg);
569b846d
KH
4295 /* forget this pointer (for sanity check) */
4296 batch->memcg = NULL;
4297}
4298
e767e056 4299#ifdef CONFIG_SWAP
8c7c6e34 4300/*
e767e056 4301 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4302 * memcg information is recorded to swap_cgroup of "ent"
4303 */
8a9478ca
KH
4304void
4305mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4306{
4307 struct mem_cgroup *memcg;
8a9478ca
KH
4308 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4309
4310 if (!swapout) /* this was a swap cache but the swap is unused ! */
4311 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4312
0030f535 4313 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4314
f75ca962
KH
4315 /*
4316 * record memcg information, if swapout && memcg != NULL,
4050377b 4317 * css_get() was called in uncharge().
f75ca962
KH
4318 */
4319 if (do_swap_account && swapout && memcg)
34c00c31 4320 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4321}
e767e056 4322#endif
8c7c6e34 4323
c255a458 4324#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4325/*
4326 * called from swap_entry_free(). remove record in swap_cgroup and
4327 * uncharge "memsw" account.
4328 */
4329void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4330{
8c7c6e34 4331 struct mem_cgroup *memcg;
a3b2d692 4332 unsigned short id;
8c7c6e34
KH
4333
4334 if (!do_swap_account)
4335 return;
4336
a3b2d692
KH
4337 id = swap_cgroup_record(ent, 0);
4338 rcu_read_lock();
4339 memcg = mem_cgroup_lookup(id);
8c7c6e34 4340 if (memcg) {
a3b2d692
KH
4341 /*
4342 * We uncharge this because swap is freed.
4343 * This memcg can be obsolete one. We avoid calling css_tryget
4344 */
0c3e73e8 4345 if (!mem_cgroup_is_root(memcg))
4e649152 4346 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4347 mem_cgroup_swap_statistics(memcg, false);
4050377b 4348 css_put(&memcg->css);
8c7c6e34 4349 }
a3b2d692 4350 rcu_read_unlock();
d13d1443 4351}
02491447
DN
4352
4353/**
4354 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4355 * @entry: swap entry to be moved
4356 * @from: mem_cgroup which the entry is moved from
4357 * @to: mem_cgroup which the entry is moved to
4358 *
4359 * It succeeds only when the swap_cgroup's record for this entry is the same
4360 * as the mem_cgroup's id of @from.
4361 *
4362 * Returns 0 on success, -EINVAL on failure.
4363 *
4364 * The caller must have charged to @to, IOW, called res_counter_charge() about
4365 * both res and memsw, and called css_get().
4366 */
4367static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4368 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4369{
4370 unsigned short old_id, new_id;
4371
34c00c31
LZ
4372 old_id = mem_cgroup_id(from);
4373 new_id = mem_cgroup_id(to);
02491447
DN
4374
4375 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4376 mem_cgroup_swap_statistics(from, false);
483c30b5 4377 mem_cgroup_swap_statistics(to, true);
02491447 4378 /*
483c30b5
DN
4379 * This function is only called from task migration context now.
4380 * It postpones res_counter and refcount handling till the end
4381 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4382 * improvement. But we cannot postpone css_get(to) because if
4383 * the process that has been moved to @to does swap-in, the
4384 * refcount of @to might be decreased to 0.
4385 *
4386 * We are in attach() phase, so the cgroup is guaranteed to be
4387 * alive, so we can just call css_get().
02491447 4388 */
4050377b 4389 css_get(&to->css);
02491447
DN
4390 return 0;
4391 }
4392 return -EINVAL;
4393}
4394#else
4395static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4396 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4397{
4398 return -EINVAL;
4399}
8c7c6e34 4400#endif
d13d1443 4401
ae41be37 4402/*
01b1ae63
KH
4403 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4404 * page belongs to.
ae41be37 4405 */
0030f535
JW
4406void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4407 struct mem_cgroup **memcgp)
ae41be37 4408{
c0ff4b85 4409 struct mem_cgroup *memcg = NULL;
b32967ff 4410 unsigned int nr_pages = 1;
7ec99d62 4411 struct page_cgroup *pc;
ac39cf8c 4412 enum charge_type ctype;
8869b8f6 4413
72835c86 4414 *memcgp = NULL;
56039efa 4415
f8d66542 4416 if (mem_cgroup_disabled())
0030f535 4417 return;
4077960e 4418
b32967ff
MG
4419 if (PageTransHuge(page))
4420 nr_pages <<= compound_order(page);
4421
52d4b9ac
KH
4422 pc = lookup_page_cgroup(page);
4423 lock_page_cgroup(pc);
4424 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4425 memcg = pc->mem_cgroup;
4426 css_get(&memcg->css);
ac39cf8c
AM
4427 /*
4428 * At migrating an anonymous page, its mapcount goes down
4429 * to 0 and uncharge() will be called. But, even if it's fully
4430 * unmapped, migration may fail and this page has to be
4431 * charged again. We set MIGRATION flag here and delay uncharge
4432 * until end_migration() is called
4433 *
4434 * Corner Case Thinking
4435 * A)
4436 * When the old page was mapped as Anon and it's unmap-and-freed
4437 * while migration was ongoing.
4438 * If unmap finds the old page, uncharge() of it will be delayed
4439 * until end_migration(). If unmap finds a new page, it's
4440 * uncharged when it make mapcount to be 1->0. If unmap code
4441 * finds swap_migration_entry, the new page will not be mapped
4442 * and end_migration() will find it(mapcount==0).
4443 *
4444 * B)
4445 * When the old page was mapped but migraion fails, the kernel
4446 * remaps it. A charge for it is kept by MIGRATION flag even
4447 * if mapcount goes down to 0. We can do remap successfully
4448 * without charging it again.
4449 *
4450 * C)
4451 * The "old" page is under lock_page() until the end of
4452 * migration, so, the old page itself will not be swapped-out.
4453 * If the new page is swapped out before end_migraton, our
4454 * hook to usual swap-out path will catch the event.
4455 */
4456 if (PageAnon(page))
4457 SetPageCgroupMigration(pc);
e8589cc1 4458 }
52d4b9ac 4459 unlock_page_cgroup(pc);
ac39cf8c
AM
4460 /*
4461 * If the page is not charged at this point,
4462 * we return here.
4463 */
c0ff4b85 4464 if (!memcg)
0030f535 4465 return;
01b1ae63 4466
72835c86 4467 *memcgp = memcg;
ac39cf8c
AM
4468 /*
4469 * We charge new page before it's used/mapped. So, even if unlock_page()
4470 * is called before end_migration, we can catch all events on this new
4471 * page. In the case new page is migrated but not remapped, new page's
4472 * mapcount will be finally 0 and we call uncharge in end_migration().
4473 */
ac39cf8c 4474 if (PageAnon(page))
41326c17 4475 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4476 else
62ba7442 4477 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4478 /*
4479 * The page is committed to the memcg, but it's not actually
4480 * charged to the res_counter since we plan on replacing the
4481 * old one and only one page is going to be left afterwards.
4482 */
b32967ff 4483 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4484}
8869b8f6 4485
69029cd5 4486/* remove redundant charge if migration failed*/
c0ff4b85 4487void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4488 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4489{
ac39cf8c 4490 struct page *used, *unused;
01b1ae63 4491 struct page_cgroup *pc;
b2402857 4492 bool anon;
01b1ae63 4493
c0ff4b85 4494 if (!memcg)
01b1ae63 4495 return;
b25ed609 4496
50de1dd9 4497 if (!migration_ok) {
ac39cf8c
AM
4498 used = oldpage;
4499 unused = newpage;
01b1ae63 4500 } else {
ac39cf8c 4501 used = newpage;
01b1ae63
KH
4502 unused = oldpage;
4503 }
0030f535 4504 anon = PageAnon(used);
7d188958
JW
4505 __mem_cgroup_uncharge_common(unused,
4506 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4507 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4508 true);
0030f535 4509 css_put(&memcg->css);
69029cd5 4510 /*
ac39cf8c
AM
4511 * We disallowed uncharge of pages under migration because mapcount
4512 * of the page goes down to zero, temporarly.
4513 * Clear the flag and check the page should be charged.
01b1ae63 4514 */
ac39cf8c
AM
4515 pc = lookup_page_cgroup(oldpage);
4516 lock_page_cgroup(pc);
4517 ClearPageCgroupMigration(pc);
4518 unlock_page_cgroup(pc);
ac39cf8c 4519
01b1ae63 4520 /*
ac39cf8c
AM
4521 * If a page is a file cache, radix-tree replacement is very atomic
4522 * and we can skip this check. When it was an Anon page, its mapcount
4523 * goes down to 0. But because we added MIGRATION flage, it's not
4524 * uncharged yet. There are several case but page->mapcount check
4525 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4526 * check. (see prepare_charge() also)
69029cd5 4527 */
b2402857 4528 if (anon)
ac39cf8c 4529 mem_cgroup_uncharge_page(used);
ae41be37 4530}
78fb7466 4531
ab936cbc
KH
4532/*
4533 * At replace page cache, newpage is not under any memcg but it's on
4534 * LRU. So, this function doesn't touch res_counter but handles LRU
4535 * in correct way. Both pages are locked so we cannot race with uncharge.
4536 */
4537void mem_cgroup_replace_page_cache(struct page *oldpage,
4538 struct page *newpage)
4539{
bde05d1c 4540 struct mem_cgroup *memcg = NULL;
ab936cbc 4541 struct page_cgroup *pc;
ab936cbc 4542 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4543
4544 if (mem_cgroup_disabled())
4545 return;
4546
4547 pc = lookup_page_cgroup(oldpage);
4548 /* fix accounting on old pages */
4549 lock_page_cgroup(pc);
bde05d1c
HD
4550 if (PageCgroupUsed(pc)) {
4551 memcg = pc->mem_cgroup;
b070e65c 4552 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4553 ClearPageCgroupUsed(pc);
4554 }
ab936cbc
KH
4555 unlock_page_cgroup(pc);
4556
bde05d1c
HD
4557 /*
4558 * When called from shmem_replace_page(), in some cases the
4559 * oldpage has already been charged, and in some cases not.
4560 */
4561 if (!memcg)
4562 return;
ab936cbc
KH
4563 /*
4564 * Even if newpage->mapping was NULL before starting replacement,
4565 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4566 * LRU while we overwrite pc->mem_cgroup.
4567 */
ce587e65 4568 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4569}
4570
f212ad7c
DN
4571#ifdef CONFIG_DEBUG_VM
4572static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4573{
4574 struct page_cgroup *pc;
4575
4576 pc = lookup_page_cgroup(page);
cfa44946
JW
4577 /*
4578 * Can be NULL while feeding pages into the page allocator for
4579 * the first time, i.e. during boot or memory hotplug;
4580 * or when mem_cgroup_disabled().
4581 */
f212ad7c
DN
4582 if (likely(pc) && PageCgroupUsed(pc))
4583 return pc;
4584 return NULL;
4585}
4586
4587bool mem_cgroup_bad_page_check(struct page *page)
4588{
4589 if (mem_cgroup_disabled())
4590 return false;
4591
4592 return lookup_page_cgroup_used(page) != NULL;
4593}
4594
4595void mem_cgroup_print_bad_page(struct page *page)
4596{
4597 struct page_cgroup *pc;
4598
4599 pc = lookup_page_cgroup_used(page);
4600 if (pc) {
d045197f
AM
4601 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4602 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4603 }
4604}
4605#endif
4606
d38d2a75 4607static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4608 unsigned long long val)
628f4235 4609{
81d39c20 4610 int retry_count;
3c11ecf4 4611 u64 memswlimit, memlimit;
628f4235 4612 int ret = 0;
81d39c20
KH
4613 int children = mem_cgroup_count_children(memcg);
4614 u64 curusage, oldusage;
3c11ecf4 4615 int enlarge;
81d39c20
KH
4616
4617 /*
4618 * For keeping hierarchical_reclaim simple, how long we should retry
4619 * is depends on callers. We set our retry-count to be function
4620 * of # of children which we should visit in this loop.
4621 */
4622 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4623
4624 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4625
3c11ecf4 4626 enlarge = 0;
8c7c6e34 4627 while (retry_count) {
628f4235
KH
4628 if (signal_pending(current)) {
4629 ret = -EINTR;
4630 break;
4631 }
8c7c6e34
KH
4632 /*
4633 * Rather than hide all in some function, I do this in
4634 * open coded manner. You see what this really does.
aaad153e 4635 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4636 */
4637 mutex_lock(&set_limit_mutex);
4638 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4639 if (memswlimit < val) {
4640 ret = -EINVAL;
4641 mutex_unlock(&set_limit_mutex);
628f4235
KH
4642 break;
4643 }
3c11ecf4
KH
4644
4645 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4646 if (memlimit < val)
4647 enlarge = 1;
4648
8c7c6e34 4649 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4650 if (!ret) {
4651 if (memswlimit == val)
4652 memcg->memsw_is_minimum = true;
4653 else
4654 memcg->memsw_is_minimum = false;
4655 }
8c7c6e34
KH
4656 mutex_unlock(&set_limit_mutex);
4657
4658 if (!ret)
4659 break;
4660
5660048c
JW
4661 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4662 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4663 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664 /* Usage is reduced ? */
f894ffa8 4665 if (curusage >= oldusage)
81d39c20
KH
4666 retry_count--;
4667 else
4668 oldusage = curusage;
8c7c6e34 4669 }
3c11ecf4
KH
4670 if (!ret && enlarge)
4671 memcg_oom_recover(memcg);
14797e23 4672
8c7c6e34
KH
4673 return ret;
4674}
4675
338c8431
LZ
4676static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4677 unsigned long long val)
8c7c6e34 4678{
81d39c20 4679 int retry_count;
3c11ecf4 4680 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4681 int children = mem_cgroup_count_children(memcg);
4682 int ret = -EBUSY;
3c11ecf4 4683 int enlarge = 0;
8c7c6e34 4684
81d39c20 4685 /* see mem_cgroup_resize_res_limit */
f894ffa8 4686 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4687 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4688 while (retry_count) {
4689 if (signal_pending(current)) {
4690 ret = -EINTR;
4691 break;
4692 }
4693 /*
4694 * Rather than hide all in some function, I do this in
4695 * open coded manner. You see what this really does.
aaad153e 4696 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4697 */
4698 mutex_lock(&set_limit_mutex);
4699 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4700 if (memlimit > val) {
4701 ret = -EINVAL;
4702 mutex_unlock(&set_limit_mutex);
4703 break;
4704 }
3c11ecf4
KH
4705 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4706 if (memswlimit < val)
4707 enlarge = 1;
8c7c6e34 4708 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4709 if (!ret) {
4710 if (memlimit == val)
4711 memcg->memsw_is_minimum = true;
4712 else
4713 memcg->memsw_is_minimum = false;
4714 }
8c7c6e34
KH
4715 mutex_unlock(&set_limit_mutex);
4716
4717 if (!ret)
4718 break;
4719
5660048c
JW
4720 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4721 MEM_CGROUP_RECLAIM_NOSWAP |
4722 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4723 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4724 /* Usage is reduced ? */
8c7c6e34 4725 if (curusage >= oldusage)
628f4235 4726 retry_count--;
81d39c20
KH
4727 else
4728 oldusage = curusage;
628f4235 4729 }
3c11ecf4
KH
4730 if (!ret && enlarge)
4731 memcg_oom_recover(memcg);
628f4235
KH
4732 return ret;
4733}
4734
0608f43d
AM
4735unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4736 gfp_t gfp_mask,
4737 unsigned long *total_scanned)
4738{
4739 unsigned long nr_reclaimed = 0;
4740 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4741 unsigned long reclaimed;
4742 int loop = 0;
4743 struct mem_cgroup_tree_per_zone *mctz;
4744 unsigned long long excess;
4745 unsigned long nr_scanned;
4746
4747 if (order > 0)
4748 return 0;
4749
4750 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4751 /*
4752 * This loop can run a while, specially if mem_cgroup's continuously
4753 * keep exceeding their soft limit and putting the system under
4754 * pressure
4755 */
4756 do {
4757 if (next_mz)
4758 mz = next_mz;
4759 else
4760 mz = mem_cgroup_largest_soft_limit_node(mctz);
4761 if (!mz)
4762 break;
4763
4764 nr_scanned = 0;
4765 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4766 gfp_mask, &nr_scanned);
4767 nr_reclaimed += reclaimed;
4768 *total_scanned += nr_scanned;
4769 spin_lock(&mctz->lock);
4770
4771 /*
4772 * If we failed to reclaim anything from this memory cgroup
4773 * it is time to move on to the next cgroup
4774 */
4775 next_mz = NULL;
4776 if (!reclaimed) {
4777 do {
4778 /*
4779 * Loop until we find yet another one.
4780 *
4781 * By the time we get the soft_limit lock
4782 * again, someone might have aded the
4783 * group back on the RB tree. Iterate to
4784 * make sure we get a different mem.
4785 * mem_cgroup_largest_soft_limit_node returns
4786 * NULL if no other cgroup is present on
4787 * the tree
4788 */
4789 next_mz =
4790 __mem_cgroup_largest_soft_limit_node(mctz);
4791 if (next_mz == mz)
4792 css_put(&next_mz->memcg->css);
4793 else /* next_mz == NULL or other memcg */
4794 break;
4795 } while (1);
4796 }
4797 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4798 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4799 /*
4800 * One school of thought says that we should not add
4801 * back the node to the tree if reclaim returns 0.
4802 * But our reclaim could return 0, simply because due
4803 * to priority we are exposing a smaller subset of
4804 * memory to reclaim from. Consider this as a longer
4805 * term TODO.
4806 */
4807 /* If excess == 0, no tree ops */
4808 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4809 spin_unlock(&mctz->lock);
4810 css_put(&mz->memcg->css);
4811 loop++;
4812 /*
4813 * Could not reclaim anything and there are no more
4814 * mem cgroups to try or we seem to be looping without
4815 * reclaiming anything.
4816 */
4817 if (!nr_reclaimed &&
4818 (next_mz == NULL ||
4819 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4820 break;
4821 } while (!nr_reclaimed);
4822 if (next_mz)
4823 css_put(&next_mz->memcg->css);
4824 return nr_reclaimed;
4825}
4826
2ef37d3f
MH
4827/**
4828 * mem_cgroup_force_empty_list - clears LRU of a group
4829 * @memcg: group to clear
4830 * @node: NUMA node
4831 * @zid: zone id
4832 * @lru: lru to to clear
4833 *
3c935d18 4834 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4835 * reclaim the pages page themselves - pages are moved to the parent (or root)
4836 * group.
cc847582 4837 */
2ef37d3f 4838static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4839 int node, int zid, enum lru_list lru)
cc847582 4840{
bea8c150 4841 struct lruvec *lruvec;
2ef37d3f 4842 unsigned long flags;
072c56c1 4843 struct list_head *list;
925b7673
JW
4844 struct page *busy;
4845 struct zone *zone;
072c56c1 4846
08e552c6 4847 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4848 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4849 list = &lruvec->lists[lru];
cc847582 4850
f817ed48 4851 busy = NULL;
2ef37d3f 4852 do {
925b7673 4853 struct page_cgroup *pc;
5564e88b
JW
4854 struct page *page;
4855
08e552c6 4856 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4857 if (list_empty(list)) {
08e552c6 4858 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4859 break;
f817ed48 4860 }
925b7673
JW
4861 page = list_entry(list->prev, struct page, lru);
4862 if (busy == page) {
4863 list_move(&page->lru, list);
648bcc77 4864 busy = NULL;
08e552c6 4865 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4866 continue;
4867 }
08e552c6 4868 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4869
925b7673 4870 pc = lookup_page_cgroup(page);
5564e88b 4871
3c935d18 4872 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4873 /* found lock contention or "pc" is obsolete. */
925b7673 4874 busy = page;
f817ed48
KH
4875 cond_resched();
4876 } else
4877 busy = NULL;
2ef37d3f 4878 } while (!list_empty(list));
cc847582
KH
4879}
4880
4881/*
c26251f9
MH
4882 * make mem_cgroup's charge to be 0 if there is no task by moving
4883 * all the charges and pages to the parent.
cc847582 4884 * This enables deleting this mem_cgroup.
c26251f9
MH
4885 *
4886 * Caller is responsible for holding css reference on the memcg.
cc847582 4887 */
ab5196c2 4888static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4889{
c26251f9 4890 int node, zid;
bea207c8 4891 u64 usage;
f817ed48 4892
fce66477 4893 do {
52d4b9ac
KH
4894 /* This is for making all *used* pages to be on LRU. */
4895 lru_add_drain_all();
c0ff4b85 4896 drain_all_stock_sync(memcg);
c0ff4b85 4897 mem_cgroup_start_move(memcg);
31aaea4a 4898 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4899 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4900 enum lru_list lru;
4901 for_each_lru(lru) {
2ef37d3f 4902 mem_cgroup_force_empty_list(memcg,
f156ab93 4903 node, zid, lru);
f817ed48 4904 }
1ecaab2b 4905 }
f817ed48 4906 }
c0ff4b85
R
4907 mem_cgroup_end_move(memcg);
4908 memcg_oom_recover(memcg);
52d4b9ac 4909 cond_resched();
f817ed48 4910
2ef37d3f 4911 /*
bea207c8
GC
4912 * Kernel memory may not necessarily be trackable to a specific
4913 * process. So they are not migrated, and therefore we can't
4914 * expect their value to drop to 0 here.
4915 * Having res filled up with kmem only is enough.
4916 *
2ef37d3f
MH
4917 * This is a safety check because mem_cgroup_force_empty_list
4918 * could have raced with mem_cgroup_replace_page_cache callers
4919 * so the lru seemed empty but the page could have been added
4920 * right after the check. RES_USAGE should be safe as we always
4921 * charge before adding to the LRU.
4922 */
bea207c8
GC
4923 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4924 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4925 } while (usage > 0);
c26251f9
MH
4926}
4927
b5f99b53
GC
4928static inline bool memcg_has_children(struct mem_cgroup *memcg)
4929{
696ac172
JW
4930 lockdep_assert_held(&memcg_create_mutex);
4931 /*
4932 * The lock does not prevent addition or deletion to the list
4933 * of children, but it prevents a new child from being
4934 * initialized based on this parent in css_online(), so it's
4935 * enough to decide whether hierarchically inherited
4936 * attributes can still be changed or not.
4937 */
4938 return memcg->use_hierarchy &&
4939 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4940}
4941
c26251f9
MH
4942/*
4943 * Reclaims as many pages from the given memcg as possible and moves
4944 * the rest to the parent.
4945 *
4946 * Caller is responsible for holding css reference for memcg.
4947 */
4948static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4949{
4950 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4951 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4952
c1e862c1 4953 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4954 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4955 return -EBUSY;
4956
c1e862c1
KH
4957 /* we call try-to-free pages for make this cgroup empty */
4958 lru_add_drain_all();
f817ed48 4959 /* try to free all pages in this cgroup */
569530fb 4960 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4961 int progress;
c1e862c1 4962
c26251f9
MH
4963 if (signal_pending(current))
4964 return -EINTR;
4965
c0ff4b85 4966 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4967 false);
c1e862c1 4968 if (!progress) {
f817ed48 4969 nr_retries--;
c1e862c1 4970 /* maybe some writeback is necessary */
8aa7e847 4971 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4972 }
f817ed48
KH
4973
4974 }
08e552c6 4975 lru_add_drain();
ab5196c2
MH
4976 mem_cgroup_reparent_charges(memcg);
4977
4978 return 0;
cc847582
KH
4979}
4980
182446d0
TH
4981static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4982 unsigned int event)
c1e862c1 4983{
182446d0 4984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4985
d8423011
MH
4986 if (mem_cgroup_is_root(memcg))
4987 return -EINVAL;
c33bd835 4988 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4989}
4990
182446d0
TH
4991static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4992 struct cftype *cft)
18f59ea7 4993{
182446d0 4994 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4995}
4996
182446d0
TH
4997static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4998 struct cftype *cft, u64 val)
18f59ea7
BS
4999{
5000 int retval = 0;
182446d0 5001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5002 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5003
0999821b 5004 mutex_lock(&memcg_create_mutex);
567fb435
GC
5005
5006 if (memcg->use_hierarchy == val)
5007 goto out;
5008
18f59ea7 5009 /*
af901ca1 5010 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5011 * in the child subtrees. If it is unset, then the change can
5012 * occur, provided the current cgroup has no children.
5013 *
5014 * For the root cgroup, parent_mem is NULL, we allow value to be
5015 * set if there are no children.
5016 */
c0ff4b85 5017 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5018 (val == 1 || val == 0)) {
696ac172 5019 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5020 memcg->use_hierarchy = val;
18f59ea7
BS
5021 else
5022 retval = -EBUSY;
5023 } else
5024 retval = -EINVAL;
567fb435
GC
5025
5026out:
0999821b 5027 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5028
5029 return retval;
5030}
5031
0c3e73e8 5032
c0ff4b85 5033static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5034 enum mem_cgroup_stat_index idx)
0c3e73e8 5035{
7d74b06f 5036 struct mem_cgroup *iter;
7a159cc9 5037 long val = 0;
0c3e73e8 5038
7a159cc9 5039 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5040 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5041 val += mem_cgroup_read_stat(iter, idx);
5042
5043 if (val < 0) /* race ? */
5044 val = 0;
5045 return val;
0c3e73e8
BS
5046}
5047
c0ff4b85 5048static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5049{
7d74b06f 5050 u64 val;
104f3928 5051
c0ff4b85 5052 if (!mem_cgroup_is_root(memcg)) {
104f3928 5053 if (!swap)
65c64ce8 5054 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5055 else
65c64ce8 5056 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5057 }
5058
b070e65c
DR
5059 /*
5060 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5061 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5062 */
c0ff4b85
R
5063 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5064 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5065
7d74b06f 5066 if (swap)
bff6bb83 5067 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5068
5069 return val << PAGE_SHIFT;
5070}
5071
791badbd
TH
5072static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5073 struct cftype *cft)
8cdea7c0 5074{
182446d0 5075 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5076 u64 val;
791badbd 5077 int name;
86ae53e1 5078 enum res_type type;
8c7c6e34
KH
5079
5080 type = MEMFILE_TYPE(cft->private);
5081 name = MEMFILE_ATTR(cft->private);
af36f906 5082
8c7c6e34
KH
5083 switch (type) {
5084 case _MEM:
104f3928 5085 if (name == RES_USAGE)
c0ff4b85 5086 val = mem_cgroup_usage(memcg, false);
104f3928 5087 else
c0ff4b85 5088 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5089 break;
5090 case _MEMSWAP:
104f3928 5091 if (name == RES_USAGE)
c0ff4b85 5092 val = mem_cgroup_usage(memcg, true);
104f3928 5093 else
c0ff4b85 5094 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5095 break;
510fc4e1
GC
5096 case _KMEM:
5097 val = res_counter_read_u64(&memcg->kmem, name);
5098 break;
8c7c6e34
KH
5099 default:
5100 BUG();
8c7c6e34 5101 }
af36f906 5102
791badbd 5103 return val;
8cdea7c0 5104}
510fc4e1 5105
510fc4e1 5106#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5107/* should be called with activate_kmem_mutex held */
5108static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5109 unsigned long long limit)
5110{
5111 int err = 0;
5112 int memcg_id;
5113
5114 if (memcg_kmem_is_active(memcg))
5115 return 0;
5116
5117 /*
5118 * We are going to allocate memory for data shared by all memory
5119 * cgroups so let's stop accounting here.
5120 */
5121 memcg_stop_kmem_account();
5122
510fc4e1
GC
5123 /*
5124 * For simplicity, we won't allow this to be disabled. It also can't
5125 * be changed if the cgroup has children already, or if tasks had
5126 * already joined.
5127 *
5128 * If tasks join before we set the limit, a person looking at
5129 * kmem.usage_in_bytes will have no way to determine when it took
5130 * place, which makes the value quite meaningless.
5131 *
5132 * After it first became limited, changes in the value of the limit are
5133 * of course permitted.
510fc4e1 5134 */
0999821b 5135 mutex_lock(&memcg_create_mutex);
07bc356e 5136 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
5137 err = -EBUSY;
5138 mutex_unlock(&memcg_create_mutex);
5139 if (err)
5140 goto out;
510fc4e1 5141
d6441637
VD
5142 memcg_id = ida_simple_get(&kmem_limited_groups,
5143 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5144 if (memcg_id < 0) {
5145 err = memcg_id;
5146 goto out;
5147 }
5148
5149 /*
5150 * Make sure we have enough space for this cgroup in each root cache's
5151 * memcg_params.
5152 */
5153 err = memcg_update_all_caches(memcg_id + 1);
5154 if (err)
5155 goto out_rmid;
5156
5157 memcg->kmemcg_id = memcg_id;
5158 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5159 mutex_init(&memcg->slab_caches_mutex);
5160
5161 /*
5162 * We couldn't have accounted to this cgroup, because it hasn't got the
5163 * active bit set yet, so this should succeed.
5164 */
5165 err = res_counter_set_limit(&memcg->kmem, limit);
5166 VM_BUG_ON(err);
5167
5168 static_key_slow_inc(&memcg_kmem_enabled_key);
5169 /*
5170 * Setting the active bit after enabling static branching will
5171 * guarantee no one starts accounting before all call sites are
5172 * patched.
5173 */
5174 memcg_kmem_set_active(memcg);
510fc4e1 5175out:
d6441637
VD
5176 memcg_resume_kmem_account();
5177 return err;
5178
5179out_rmid:
5180 ida_simple_remove(&kmem_limited_groups, memcg_id);
5181 goto out;
5182}
5183
5184static int memcg_activate_kmem(struct mem_cgroup *memcg,
5185 unsigned long long limit)
5186{
5187 int ret;
5188
5189 mutex_lock(&activate_kmem_mutex);
5190 ret = __memcg_activate_kmem(memcg, limit);
5191 mutex_unlock(&activate_kmem_mutex);
5192 return ret;
5193}
5194
5195static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5196 unsigned long long val)
5197{
5198 int ret;
5199
5200 if (!memcg_kmem_is_active(memcg))
5201 ret = memcg_activate_kmem(memcg, val);
5202 else
5203 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5204 return ret;
5205}
5206
55007d84 5207static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5208{
55007d84 5209 int ret = 0;
510fc4e1 5210 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5211
d6441637
VD
5212 if (!parent)
5213 return 0;
55007d84 5214
d6441637 5215 mutex_lock(&activate_kmem_mutex);
55007d84 5216 /*
d6441637
VD
5217 * If the parent cgroup is not kmem-active now, it cannot be activated
5218 * after this point, because it has at least one child already.
55007d84 5219 */
d6441637
VD
5220 if (memcg_kmem_is_active(parent))
5221 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5222 mutex_unlock(&activate_kmem_mutex);
55007d84 5223 return ret;
510fc4e1 5224}
d6441637
VD
5225#else
5226static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5227 unsigned long long val)
5228{
5229 return -EINVAL;
5230}
6d043990 5231#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5232
628f4235
KH
5233/*
5234 * The user of this function is...
5235 * RES_LIMIT.
5236 */
182446d0 5237static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5238 char *buffer)
8cdea7c0 5239{
182446d0 5240 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5241 enum res_type type;
5242 int name;
628f4235
KH
5243 unsigned long long val;
5244 int ret;
5245
8c7c6e34
KH
5246 type = MEMFILE_TYPE(cft->private);
5247 name = MEMFILE_ATTR(cft->private);
af36f906 5248
8c7c6e34 5249 switch (name) {
628f4235 5250 case RES_LIMIT:
4b3bde4c
BS
5251 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5252 ret = -EINVAL;
5253 break;
5254 }
628f4235
KH
5255 /* This function does all necessary parse...reuse it */
5256 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5257 if (ret)
5258 break;
5259 if (type == _MEM)
628f4235 5260 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5261 else if (type == _MEMSWAP)
8c7c6e34 5262 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5263 else if (type == _KMEM)
d6441637 5264 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5265 else
5266 return -EINVAL;
628f4235 5267 break;
296c81d8
BS
5268 case RES_SOFT_LIMIT:
5269 ret = res_counter_memparse_write_strategy(buffer, &val);
5270 if (ret)
5271 break;
5272 /*
5273 * For memsw, soft limits are hard to implement in terms
5274 * of semantics, for now, we support soft limits for
5275 * control without swap
5276 */
5277 if (type == _MEM)
5278 ret = res_counter_set_soft_limit(&memcg->res, val);
5279 else
5280 ret = -EINVAL;
5281 break;
628f4235
KH
5282 default:
5283 ret = -EINVAL; /* should be BUG() ? */
5284 break;
5285 }
5286 return ret;
8cdea7c0
BS
5287}
5288
fee7b548
KH
5289static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5290 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5291{
fee7b548
KH
5292 unsigned long long min_limit, min_memsw_limit, tmp;
5293
5294 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5295 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5296 if (!memcg->use_hierarchy)
5297 goto out;
5298
63876986
TH
5299 while (css_parent(&memcg->css)) {
5300 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5301 if (!memcg->use_hierarchy)
5302 break;
5303 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5304 min_limit = min(min_limit, tmp);
5305 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5306 min_memsw_limit = min(min_memsw_limit, tmp);
5307 }
5308out:
5309 *mem_limit = min_limit;
5310 *memsw_limit = min_memsw_limit;
fee7b548
KH
5311}
5312
182446d0 5313static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5314{
182446d0 5315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5316 int name;
5317 enum res_type type;
c84872e1 5318
8c7c6e34
KH
5319 type = MEMFILE_TYPE(event);
5320 name = MEMFILE_ATTR(event);
af36f906 5321
8c7c6e34 5322 switch (name) {
29f2a4da 5323 case RES_MAX_USAGE:
8c7c6e34 5324 if (type == _MEM)
c0ff4b85 5325 res_counter_reset_max(&memcg->res);
510fc4e1 5326 else if (type == _MEMSWAP)
c0ff4b85 5327 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5328 else if (type == _KMEM)
5329 res_counter_reset_max(&memcg->kmem);
5330 else
5331 return -EINVAL;
29f2a4da
PE
5332 break;
5333 case RES_FAILCNT:
8c7c6e34 5334 if (type == _MEM)
c0ff4b85 5335 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5336 else if (type == _MEMSWAP)
c0ff4b85 5337 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5338 else if (type == _KMEM)
5339 res_counter_reset_failcnt(&memcg->kmem);
5340 else
5341 return -EINVAL;
29f2a4da
PE
5342 break;
5343 }
f64c3f54 5344
85cc59db 5345 return 0;
c84872e1
PE
5346}
5347
182446d0 5348static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5349 struct cftype *cft)
5350{
182446d0 5351 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5352}
5353
02491447 5354#ifdef CONFIG_MMU
182446d0 5355static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5356 struct cftype *cft, u64 val)
5357{
182446d0 5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5359
5360 if (val >= (1 << NR_MOVE_TYPE))
5361 return -EINVAL;
ee5e8472 5362
7dc74be0 5363 /*
ee5e8472
GC
5364 * No kind of locking is needed in here, because ->can_attach() will
5365 * check this value once in the beginning of the process, and then carry
5366 * on with stale data. This means that changes to this value will only
5367 * affect task migrations starting after the change.
7dc74be0 5368 */
c0ff4b85 5369 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5370 return 0;
5371}
02491447 5372#else
182446d0 5373static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5374 struct cftype *cft, u64 val)
5375{
5376 return -ENOSYS;
5377}
5378#endif
7dc74be0 5379
406eb0c9 5380#ifdef CONFIG_NUMA
2da8ca82 5381static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5382{
25485de6
GT
5383 struct numa_stat {
5384 const char *name;
5385 unsigned int lru_mask;
5386 };
5387
5388 static const struct numa_stat stats[] = {
5389 { "total", LRU_ALL },
5390 { "file", LRU_ALL_FILE },
5391 { "anon", LRU_ALL_ANON },
5392 { "unevictable", BIT(LRU_UNEVICTABLE) },
5393 };
5394 const struct numa_stat *stat;
406eb0c9 5395 int nid;
25485de6 5396 unsigned long nr;
2da8ca82 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5398
25485de6
GT
5399 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5400 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5401 seq_printf(m, "%s=%lu", stat->name, nr);
5402 for_each_node_state(nid, N_MEMORY) {
5403 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5404 stat->lru_mask);
5405 seq_printf(m, " N%d=%lu", nid, nr);
5406 }
5407 seq_putc(m, '\n');
406eb0c9 5408 }
406eb0c9 5409
071aee13
YH
5410 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5411 struct mem_cgroup *iter;
5412
5413 nr = 0;
5414 for_each_mem_cgroup_tree(iter, memcg)
5415 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5416 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5417 for_each_node_state(nid, N_MEMORY) {
5418 nr = 0;
5419 for_each_mem_cgroup_tree(iter, memcg)
5420 nr += mem_cgroup_node_nr_lru_pages(
5421 iter, nid, stat->lru_mask);
5422 seq_printf(m, " N%d=%lu", nid, nr);
5423 }
5424 seq_putc(m, '\n');
406eb0c9 5425 }
406eb0c9 5426
406eb0c9
YH
5427 return 0;
5428}
5429#endif /* CONFIG_NUMA */
5430
af7c4b0e
JW
5431static inline void mem_cgroup_lru_names_not_uptodate(void)
5432{
5433 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5434}
5435
2da8ca82 5436static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5437{
2da8ca82 5438 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5439 struct mem_cgroup *mi;
5440 unsigned int i;
406eb0c9 5441
af7c4b0e 5442 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5443 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5444 continue;
af7c4b0e
JW
5445 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5446 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5447 }
7b854121 5448
af7c4b0e
JW
5449 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5450 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5451 mem_cgroup_read_events(memcg, i));
5452
5453 for (i = 0; i < NR_LRU_LISTS; i++)
5454 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5455 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5456
14067bb3 5457 /* Hierarchical information */
fee7b548
KH
5458 {
5459 unsigned long long limit, memsw_limit;
d79154bb 5460 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5461 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5462 if (do_swap_account)
78ccf5b5
JW
5463 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5464 memsw_limit);
fee7b548 5465 }
7f016ee8 5466
af7c4b0e
JW
5467 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5468 long long val = 0;
5469
bff6bb83 5470 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5471 continue;
af7c4b0e
JW
5472 for_each_mem_cgroup_tree(mi, memcg)
5473 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5474 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5475 }
5476
5477 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5478 unsigned long long val = 0;
5479
5480 for_each_mem_cgroup_tree(mi, memcg)
5481 val += mem_cgroup_read_events(mi, i);
5482 seq_printf(m, "total_%s %llu\n",
5483 mem_cgroup_events_names[i], val);
5484 }
5485
5486 for (i = 0; i < NR_LRU_LISTS; i++) {
5487 unsigned long long val = 0;
5488
5489 for_each_mem_cgroup_tree(mi, memcg)
5490 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5491 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5492 }
14067bb3 5493
7f016ee8 5494#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5495 {
5496 int nid, zid;
5497 struct mem_cgroup_per_zone *mz;
89abfab1 5498 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5499 unsigned long recent_rotated[2] = {0, 0};
5500 unsigned long recent_scanned[2] = {0, 0};
5501
5502 for_each_online_node(nid)
5503 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5504 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5505 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5506
89abfab1
HD
5507 recent_rotated[0] += rstat->recent_rotated[0];
5508 recent_rotated[1] += rstat->recent_rotated[1];
5509 recent_scanned[0] += rstat->recent_scanned[0];
5510 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5511 }
78ccf5b5
JW
5512 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5513 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5514 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5515 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5516 }
5517#endif
5518
d2ceb9b7
KH
5519 return 0;
5520}
5521
182446d0
TH
5522static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5523 struct cftype *cft)
a7885eb8 5524{
182446d0 5525 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5526
1f4c025b 5527 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5528}
5529
182446d0
TH
5530static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5531 struct cftype *cft, u64 val)
a7885eb8 5532{
182446d0 5533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5534 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5535
63876986 5536 if (val > 100 || !parent)
a7885eb8
KM
5537 return -EINVAL;
5538
0999821b 5539 mutex_lock(&memcg_create_mutex);
068b38c1 5540
a7885eb8 5541 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5542 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5543 mutex_unlock(&memcg_create_mutex);
a7885eb8 5544 return -EINVAL;
068b38c1 5545 }
a7885eb8 5546
a7885eb8 5547 memcg->swappiness = val;
a7885eb8 5548
0999821b 5549 mutex_unlock(&memcg_create_mutex);
068b38c1 5550
a7885eb8
KM
5551 return 0;
5552}
5553
2e72b634
KS
5554static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5555{
5556 struct mem_cgroup_threshold_ary *t;
5557 u64 usage;
5558 int i;
5559
5560 rcu_read_lock();
5561 if (!swap)
2c488db2 5562 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5563 else
2c488db2 5564 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5565
5566 if (!t)
5567 goto unlock;
5568
5569 usage = mem_cgroup_usage(memcg, swap);
5570
5571 /*
748dad36 5572 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5573 * If it's not true, a threshold was crossed after last
5574 * call of __mem_cgroup_threshold().
5575 */
5407a562 5576 i = t->current_threshold;
2e72b634
KS
5577
5578 /*
5579 * Iterate backward over array of thresholds starting from
5580 * current_threshold and check if a threshold is crossed.
5581 * If none of thresholds below usage is crossed, we read
5582 * only one element of the array here.
5583 */
5584 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5585 eventfd_signal(t->entries[i].eventfd, 1);
5586
5587 /* i = current_threshold + 1 */
5588 i++;
5589
5590 /*
5591 * Iterate forward over array of thresholds starting from
5592 * current_threshold+1 and check if a threshold is crossed.
5593 * If none of thresholds above usage is crossed, we read
5594 * only one element of the array here.
5595 */
5596 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5597 eventfd_signal(t->entries[i].eventfd, 1);
5598
5599 /* Update current_threshold */
5407a562 5600 t->current_threshold = i - 1;
2e72b634
KS
5601unlock:
5602 rcu_read_unlock();
5603}
5604
5605static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5606{
ad4ca5f4
KS
5607 while (memcg) {
5608 __mem_cgroup_threshold(memcg, false);
5609 if (do_swap_account)
5610 __mem_cgroup_threshold(memcg, true);
5611
5612 memcg = parent_mem_cgroup(memcg);
5613 }
2e72b634
KS
5614}
5615
5616static int compare_thresholds(const void *a, const void *b)
5617{
5618 const struct mem_cgroup_threshold *_a = a;
5619 const struct mem_cgroup_threshold *_b = b;
5620
2bff24a3
GT
5621 if (_a->threshold > _b->threshold)
5622 return 1;
5623
5624 if (_a->threshold < _b->threshold)
5625 return -1;
5626
5627 return 0;
2e72b634
KS
5628}
5629
c0ff4b85 5630static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5631{
5632 struct mem_cgroup_eventfd_list *ev;
5633
c0ff4b85 5634 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5635 eventfd_signal(ev->eventfd, 1);
5636 return 0;
5637}
5638
c0ff4b85 5639static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5640{
7d74b06f
KH
5641 struct mem_cgroup *iter;
5642
c0ff4b85 5643 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5644 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5645}
5646
59b6f873 5647static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5648 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5649{
2c488db2
KS
5650 struct mem_cgroup_thresholds *thresholds;
5651 struct mem_cgroup_threshold_ary *new;
2e72b634 5652 u64 threshold, usage;
2c488db2 5653 int i, size, ret;
2e72b634
KS
5654
5655 ret = res_counter_memparse_write_strategy(args, &threshold);
5656 if (ret)
5657 return ret;
5658
5659 mutex_lock(&memcg->thresholds_lock);
2c488db2 5660
2e72b634 5661 if (type == _MEM)
2c488db2 5662 thresholds = &memcg->thresholds;
2e72b634 5663 else if (type == _MEMSWAP)
2c488db2 5664 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5665 else
5666 BUG();
5667
5668 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5669
5670 /* Check if a threshold crossed before adding a new one */
2c488db2 5671 if (thresholds->primary)
2e72b634
KS
5672 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5673
2c488db2 5674 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5675
5676 /* Allocate memory for new array of thresholds */
2c488db2 5677 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5678 GFP_KERNEL);
2c488db2 5679 if (!new) {
2e72b634
KS
5680 ret = -ENOMEM;
5681 goto unlock;
5682 }
2c488db2 5683 new->size = size;
2e72b634
KS
5684
5685 /* Copy thresholds (if any) to new array */
2c488db2
KS
5686 if (thresholds->primary) {
5687 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5688 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5689 }
5690
2e72b634 5691 /* Add new threshold */
2c488db2
KS
5692 new->entries[size - 1].eventfd = eventfd;
5693 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5694
5695 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5696 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5697 compare_thresholds, NULL);
5698
5699 /* Find current threshold */
2c488db2 5700 new->current_threshold = -1;
2e72b634 5701 for (i = 0; i < size; i++) {
748dad36 5702 if (new->entries[i].threshold <= usage) {
2e72b634 5703 /*
2c488db2
KS
5704 * new->current_threshold will not be used until
5705 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5706 * it here.
5707 */
2c488db2 5708 ++new->current_threshold;
748dad36
SZ
5709 } else
5710 break;
2e72b634
KS
5711 }
5712
2c488db2
KS
5713 /* Free old spare buffer and save old primary buffer as spare */
5714 kfree(thresholds->spare);
5715 thresholds->spare = thresholds->primary;
5716
5717 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5718
907860ed 5719 /* To be sure that nobody uses thresholds */
2e72b634
KS
5720 synchronize_rcu();
5721
2e72b634
KS
5722unlock:
5723 mutex_unlock(&memcg->thresholds_lock);
5724
5725 return ret;
5726}
5727
59b6f873 5728static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5729 struct eventfd_ctx *eventfd, const char *args)
5730{
59b6f873 5731 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5732}
5733
59b6f873 5734static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5735 struct eventfd_ctx *eventfd, const char *args)
5736{
59b6f873 5737 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5738}
5739
59b6f873 5740static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5741 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5742{
2c488db2
KS
5743 struct mem_cgroup_thresholds *thresholds;
5744 struct mem_cgroup_threshold_ary *new;
2e72b634 5745 u64 usage;
2c488db2 5746 int i, j, size;
2e72b634
KS
5747
5748 mutex_lock(&memcg->thresholds_lock);
5749 if (type == _MEM)
2c488db2 5750 thresholds = &memcg->thresholds;
2e72b634 5751 else if (type == _MEMSWAP)
2c488db2 5752 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5753 else
5754 BUG();
5755
371528ca
AV
5756 if (!thresholds->primary)
5757 goto unlock;
5758
2e72b634
KS
5759 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5760
5761 /* Check if a threshold crossed before removing */
5762 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5763
5764 /* Calculate new number of threshold */
2c488db2
KS
5765 size = 0;
5766 for (i = 0; i < thresholds->primary->size; i++) {
5767 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5768 size++;
5769 }
5770
2c488db2 5771 new = thresholds->spare;
907860ed 5772
2e72b634
KS
5773 /* Set thresholds array to NULL if we don't have thresholds */
5774 if (!size) {
2c488db2
KS
5775 kfree(new);
5776 new = NULL;
907860ed 5777 goto swap_buffers;
2e72b634
KS
5778 }
5779
2c488db2 5780 new->size = size;
2e72b634
KS
5781
5782 /* Copy thresholds and find current threshold */
2c488db2
KS
5783 new->current_threshold = -1;
5784 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5785 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5786 continue;
5787
2c488db2 5788 new->entries[j] = thresholds->primary->entries[i];
748dad36 5789 if (new->entries[j].threshold <= usage) {
2e72b634 5790 /*
2c488db2 5791 * new->current_threshold will not be used
2e72b634
KS
5792 * until rcu_assign_pointer(), so it's safe to increment
5793 * it here.
5794 */
2c488db2 5795 ++new->current_threshold;
2e72b634
KS
5796 }
5797 j++;
5798 }
5799
907860ed 5800swap_buffers:
2c488db2
KS
5801 /* Swap primary and spare array */
5802 thresholds->spare = thresholds->primary;
8c757763
SZ
5803 /* If all events are unregistered, free the spare array */
5804 if (!new) {
5805 kfree(thresholds->spare);
5806 thresholds->spare = NULL;
5807 }
5808
2c488db2 5809 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5810
907860ed 5811 /* To be sure that nobody uses thresholds */
2e72b634 5812 synchronize_rcu();
371528ca 5813unlock:
2e72b634 5814 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5815}
c1e862c1 5816
59b6f873 5817static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5818 struct eventfd_ctx *eventfd)
5819{
59b6f873 5820 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5821}
5822
59b6f873 5823static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5824 struct eventfd_ctx *eventfd)
5825{
59b6f873 5826 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5827}
5828
59b6f873 5829static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5830 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5831{
9490ff27 5832 struct mem_cgroup_eventfd_list *event;
9490ff27 5833
9490ff27
KH
5834 event = kmalloc(sizeof(*event), GFP_KERNEL);
5835 if (!event)
5836 return -ENOMEM;
5837
1af8efe9 5838 spin_lock(&memcg_oom_lock);
9490ff27
KH
5839
5840 event->eventfd = eventfd;
5841 list_add(&event->list, &memcg->oom_notify);
5842
5843 /* already in OOM ? */
79dfdacc 5844 if (atomic_read(&memcg->under_oom))
9490ff27 5845 eventfd_signal(eventfd, 1);
1af8efe9 5846 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5847
5848 return 0;
5849}
5850
59b6f873 5851static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5852 struct eventfd_ctx *eventfd)
9490ff27 5853{
9490ff27 5854 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5855
1af8efe9 5856 spin_lock(&memcg_oom_lock);
9490ff27 5857
c0ff4b85 5858 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5859 if (ev->eventfd == eventfd) {
5860 list_del(&ev->list);
5861 kfree(ev);
5862 }
5863 }
5864
1af8efe9 5865 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5866}
5867
2da8ca82 5868static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5869{
2da8ca82 5870 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5871
791badbd
TH
5872 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5873 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5874 return 0;
5875}
5876
182446d0 5877static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5878 struct cftype *cft, u64 val)
5879{
182446d0 5880 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5881 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5882
5883 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5884 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5885 return -EINVAL;
5886
0999821b 5887 mutex_lock(&memcg_create_mutex);
3c11ecf4 5888 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5889 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5890 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5891 return -EINVAL;
5892 }
c0ff4b85 5893 memcg->oom_kill_disable = val;
4d845ebf 5894 if (!val)
c0ff4b85 5895 memcg_oom_recover(memcg);
0999821b 5896 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5897 return 0;
5898}
5899
c255a458 5900#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5901static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5902{
55007d84
GC
5903 int ret;
5904
2633d7a0 5905 memcg->kmemcg_id = -1;
55007d84
GC
5906 ret = memcg_propagate_kmem(memcg);
5907 if (ret)
5908 return ret;
2633d7a0 5909
1d62e436 5910 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5911}
e5671dfa 5912
10d5ebf4 5913static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5914{
1d62e436 5915 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5916}
5917
5918static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5919{
5920 if (!memcg_kmem_is_active(memcg))
5921 return;
5922
5923 /*
5924 * kmem charges can outlive the cgroup. In the case of slab
5925 * pages, for instance, a page contain objects from various
5926 * processes. As we prevent from taking a reference for every
5927 * such allocation we have to be careful when doing uncharge
5928 * (see memcg_uncharge_kmem) and here during offlining.
5929 *
5930 * The idea is that that only the _last_ uncharge which sees
5931 * the dead memcg will drop the last reference. An additional
5932 * reference is taken here before the group is marked dead
5933 * which is then paired with css_put during uncharge resp. here.
5934 *
5935 * Although this might sound strange as this path is called from
5936 * css_offline() when the referencemight have dropped down to 0
5937 * and shouldn't be incremented anymore (css_tryget would fail)
5938 * we do not have other options because of the kmem allocations
5939 * lifetime.
5940 */
5941 css_get(&memcg->css);
7de37682
GC
5942
5943 memcg_kmem_mark_dead(memcg);
5944
5945 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5946 return;
5947
7de37682 5948 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5949 css_put(&memcg->css);
d1a4c0b3 5950}
e5671dfa 5951#else
cbe128e3 5952static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5953{
5954 return 0;
5955}
d1a4c0b3 5956
10d5ebf4
LZ
5957static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5958{
5959}
5960
5961static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5962{
5963}
e5671dfa
GC
5964#endif
5965
3bc942f3
TH
5966/*
5967 * DO NOT USE IN NEW FILES.
5968 *
5969 * "cgroup.event_control" implementation.
5970 *
5971 * This is way over-engineered. It tries to support fully configurable
5972 * events for each user. Such level of flexibility is completely
5973 * unnecessary especially in the light of the planned unified hierarchy.
5974 *
5975 * Please deprecate this and replace with something simpler if at all
5976 * possible.
5977 */
5978
79bd9814
TH
5979/*
5980 * Unregister event and free resources.
5981 *
5982 * Gets called from workqueue.
5983 */
3bc942f3 5984static void memcg_event_remove(struct work_struct *work)
79bd9814 5985{
3bc942f3
TH
5986 struct mem_cgroup_event *event =
5987 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5988 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5989
5990 remove_wait_queue(event->wqh, &event->wait);
5991
59b6f873 5992 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5993
5994 /* Notify userspace the event is going away. */
5995 eventfd_signal(event->eventfd, 1);
5996
5997 eventfd_ctx_put(event->eventfd);
5998 kfree(event);
59b6f873 5999 css_put(&memcg->css);
79bd9814
TH
6000}
6001
6002/*
6003 * Gets called on POLLHUP on eventfd when user closes it.
6004 *
6005 * Called with wqh->lock held and interrupts disabled.
6006 */
3bc942f3
TH
6007static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6008 int sync, void *key)
79bd9814 6009{
3bc942f3
TH
6010 struct mem_cgroup_event *event =
6011 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6012 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6013 unsigned long flags = (unsigned long)key;
6014
6015 if (flags & POLLHUP) {
6016 /*
6017 * If the event has been detached at cgroup removal, we
6018 * can simply return knowing the other side will cleanup
6019 * for us.
6020 *
6021 * We can't race against event freeing since the other
6022 * side will require wqh->lock via remove_wait_queue(),
6023 * which we hold.
6024 */
fba94807 6025 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6026 if (!list_empty(&event->list)) {
6027 list_del_init(&event->list);
6028 /*
6029 * We are in atomic context, but cgroup_event_remove()
6030 * may sleep, so we have to call it in workqueue.
6031 */
6032 schedule_work(&event->remove);
6033 }
fba94807 6034 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6035 }
6036
6037 return 0;
6038}
6039
3bc942f3 6040static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6041 wait_queue_head_t *wqh, poll_table *pt)
6042{
3bc942f3
TH
6043 struct mem_cgroup_event *event =
6044 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6045
6046 event->wqh = wqh;
6047 add_wait_queue(wqh, &event->wait);
6048}
6049
6050/*
3bc942f3
TH
6051 * DO NOT USE IN NEW FILES.
6052 *
79bd9814
TH
6053 * Parse input and register new cgroup event handler.
6054 *
6055 * Input must be in format '<event_fd> <control_fd> <args>'.
6056 * Interpretation of args is defined by control file implementation.
6057 */
3bc942f3 6058static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 6059 struct cftype *cft, char *buffer)
79bd9814 6060{
fba94807 6061 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6062 struct mem_cgroup_event *event;
79bd9814
TH
6063 struct cgroup_subsys_state *cfile_css;
6064 unsigned int efd, cfd;
6065 struct fd efile;
6066 struct fd cfile;
fba94807 6067 const char *name;
79bd9814
TH
6068 char *endp;
6069 int ret;
6070
6071 efd = simple_strtoul(buffer, &endp, 10);
6072 if (*endp != ' ')
6073 return -EINVAL;
6074 buffer = endp + 1;
6075
6076 cfd = simple_strtoul(buffer, &endp, 10);
6077 if ((*endp != ' ') && (*endp != '\0'))
6078 return -EINVAL;
6079 buffer = endp + 1;
6080
6081 event = kzalloc(sizeof(*event), GFP_KERNEL);
6082 if (!event)
6083 return -ENOMEM;
6084
59b6f873 6085 event->memcg = memcg;
79bd9814 6086 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6087 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6088 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6089 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6090
6091 efile = fdget(efd);
6092 if (!efile.file) {
6093 ret = -EBADF;
6094 goto out_kfree;
6095 }
6096
6097 event->eventfd = eventfd_ctx_fileget(efile.file);
6098 if (IS_ERR(event->eventfd)) {
6099 ret = PTR_ERR(event->eventfd);
6100 goto out_put_efile;
6101 }
6102
6103 cfile = fdget(cfd);
6104 if (!cfile.file) {
6105 ret = -EBADF;
6106 goto out_put_eventfd;
6107 }
6108
6109 /* the process need read permission on control file */
6110 /* AV: shouldn't we check that it's been opened for read instead? */
6111 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6112 if (ret < 0)
6113 goto out_put_cfile;
6114
fba94807
TH
6115 /*
6116 * Determine the event callbacks and set them in @event. This used
6117 * to be done via struct cftype but cgroup core no longer knows
6118 * about these events. The following is crude but the whole thing
6119 * is for compatibility anyway.
3bc942f3
TH
6120 *
6121 * DO NOT ADD NEW FILES.
fba94807
TH
6122 */
6123 name = cfile.file->f_dentry->d_name.name;
6124
6125 if (!strcmp(name, "memory.usage_in_bytes")) {
6126 event->register_event = mem_cgroup_usage_register_event;
6127 event->unregister_event = mem_cgroup_usage_unregister_event;
6128 } else if (!strcmp(name, "memory.oom_control")) {
6129 event->register_event = mem_cgroup_oom_register_event;
6130 event->unregister_event = mem_cgroup_oom_unregister_event;
6131 } else if (!strcmp(name, "memory.pressure_level")) {
6132 event->register_event = vmpressure_register_event;
6133 event->unregister_event = vmpressure_unregister_event;
6134 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6135 event->register_event = memsw_cgroup_usage_register_event;
6136 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6137 } else {
6138 ret = -EINVAL;
6139 goto out_put_cfile;
6140 }
6141
79bd9814 6142 /*
b5557c4c
TH
6143 * Verify @cfile should belong to @css. Also, remaining events are
6144 * automatically removed on cgroup destruction but the removal is
6145 * asynchronous, so take an extra ref on @css.
79bd9814 6146 */
5a17f543
TH
6147 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6148 &memory_cgrp_subsys);
79bd9814 6149 ret = -EINVAL;
5a17f543 6150 if (IS_ERR(cfile_css))
79bd9814 6151 goto out_put_cfile;
5a17f543
TH
6152 if (cfile_css != css) {
6153 css_put(cfile_css);
79bd9814 6154 goto out_put_cfile;
5a17f543 6155 }
79bd9814 6156
59b6f873 6157 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6158 if (ret)
6159 goto out_put_css;
6160
6161 efile.file->f_op->poll(efile.file, &event->pt);
6162
fba94807
TH
6163 spin_lock(&memcg->event_list_lock);
6164 list_add(&event->list, &memcg->event_list);
6165 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6166
6167 fdput(cfile);
6168 fdput(efile);
6169
6170 return 0;
6171
6172out_put_css:
b5557c4c 6173 css_put(css);
79bd9814
TH
6174out_put_cfile:
6175 fdput(cfile);
6176out_put_eventfd:
6177 eventfd_ctx_put(event->eventfd);
6178out_put_efile:
6179 fdput(efile);
6180out_kfree:
6181 kfree(event);
6182
6183 return ret;
6184}
6185
8cdea7c0
BS
6186static struct cftype mem_cgroup_files[] = {
6187 {
0eea1030 6188 .name = "usage_in_bytes",
8c7c6e34 6189 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6190 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6191 },
c84872e1
PE
6192 {
6193 .name = "max_usage_in_bytes",
8c7c6e34 6194 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6195 .trigger = mem_cgroup_reset,
791badbd 6196 .read_u64 = mem_cgroup_read_u64,
c84872e1 6197 },
8cdea7c0 6198 {
0eea1030 6199 .name = "limit_in_bytes",
8c7c6e34 6200 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6201 .write_string = mem_cgroup_write,
791badbd 6202 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6203 },
296c81d8
BS
6204 {
6205 .name = "soft_limit_in_bytes",
6206 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6207 .write_string = mem_cgroup_write,
791badbd 6208 .read_u64 = mem_cgroup_read_u64,
296c81d8 6209 },
8cdea7c0
BS
6210 {
6211 .name = "failcnt",
8c7c6e34 6212 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6213 .trigger = mem_cgroup_reset,
791badbd 6214 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6215 },
d2ceb9b7
KH
6216 {
6217 .name = "stat",
2da8ca82 6218 .seq_show = memcg_stat_show,
d2ceb9b7 6219 },
c1e862c1
KH
6220 {
6221 .name = "force_empty",
6222 .trigger = mem_cgroup_force_empty_write,
6223 },
18f59ea7
BS
6224 {
6225 .name = "use_hierarchy",
f00baae7 6226 .flags = CFTYPE_INSANE,
18f59ea7
BS
6227 .write_u64 = mem_cgroup_hierarchy_write,
6228 .read_u64 = mem_cgroup_hierarchy_read,
6229 },
79bd9814 6230 {
3bc942f3
TH
6231 .name = "cgroup.event_control", /* XXX: for compat */
6232 .write_string = memcg_write_event_control,
79bd9814
TH
6233 .flags = CFTYPE_NO_PREFIX,
6234 .mode = S_IWUGO,
6235 },
a7885eb8
KM
6236 {
6237 .name = "swappiness",
6238 .read_u64 = mem_cgroup_swappiness_read,
6239 .write_u64 = mem_cgroup_swappiness_write,
6240 },
7dc74be0
DN
6241 {
6242 .name = "move_charge_at_immigrate",
6243 .read_u64 = mem_cgroup_move_charge_read,
6244 .write_u64 = mem_cgroup_move_charge_write,
6245 },
9490ff27
KH
6246 {
6247 .name = "oom_control",
2da8ca82 6248 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6249 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6250 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6251 },
70ddf637
AV
6252 {
6253 .name = "pressure_level",
70ddf637 6254 },
406eb0c9
YH
6255#ifdef CONFIG_NUMA
6256 {
6257 .name = "numa_stat",
2da8ca82 6258 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6259 },
6260#endif
510fc4e1
GC
6261#ifdef CONFIG_MEMCG_KMEM
6262 {
6263 .name = "kmem.limit_in_bytes",
6264 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6265 .write_string = mem_cgroup_write,
791badbd 6266 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6267 },
6268 {
6269 .name = "kmem.usage_in_bytes",
6270 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6271 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6272 },
6273 {
6274 .name = "kmem.failcnt",
6275 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6276 .trigger = mem_cgroup_reset,
791badbd 6277 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6278 },
6279 {
6280 .name = "kmem.max_usage_in_bytes",
6281 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6282 .trigger = mem_cgroup_reset,
791badbd 6283 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6284 },
749c5415
GC
6285#ifdef CONFIG_SLABINFO
6286 {
6287 .name = "kmem.slabinfo",
2da8ca82 6288 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6289 },
6290#endif
8c7c6e34 6291#endif
6bc10349 6292 { }, /* terminate */
af36f906 6293};
8c7c6e34 6294
2d11085e
MH
6295#ifdef CONFIG_MEMCG_SWAP
6296static struct cftype memsw_cgroup_files[] = {
6297 {
6298 .name = "memsw.usage_in_bytes",
6299 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6300 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6301 },
6302 {
6303 .name = "memsw.max_usage_in_bytes",
6304 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6305 .trigger = mem_cgroup_reset,
791badbd 6306 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6307 },
6308 {
6309 .name = "memsw.limit_in_bytes",
6310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6311 .write_string = mem_cgroup_write,
791badbd 6312 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6313 },
6314 {
6315 .name = "memsw.failcnt",
6316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6317 .trigger = mem_cgroup_reset,
791badbd 6318 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6319 },
6320 { }, /* terminate */
6321};
6322#endif
c0ff4b85 6323static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6324{
6325 struct mem_cgroup_per_node *pn;
1ecaab2b 6326 struct mem_cgroup_per_zone *mz;
41e3355d 6327 int zone, tmp = node;
1ecaab2b
KH
6328 /*
6329 * This routine is called against possible nodes.
6330 * But it's BUG to call kmalloc() against offline node.
6331 *
6332 * TODO: this routine can waste much memory for nodes which will
6333 * never be onlined. It's better to use memory hotplug callback
6334 * function.
6335 */
41e3355d
KH
6336 if (!node_state(node, N_NORMAL_MEMORY))
6337 tmp = -1;
17295c88 6338 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6339 if (!pn)
6340 return 1;
1ecaab2b 6341
1ecaab2b
KH
6342 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6343 mz = &pn->zoneinfo[zone];
bea8c150 6344 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6345 mz->usage_in_excess = 0;
6346 mz->on_tree = false;
d79154bb 6347 mz->memcg = memcg;
1ecaab2b 6348 }
54f72fe0 6349 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6350 return 0;
6351}
6352
c0ff4b85 6353static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6354{
54f72fe0 6355 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6356}
6357
33327948
KH
6358static struct mem_cgroup *mem_cgroup_alloc(void)
6359{
d79154bb 6360 struct mem_cgroup *memcg;
8ff69e2c 6361 size_t size;
33327948 6362
8ff69e2c
VD
6363 size = sizeof(struct mem_cgroup);
6364 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6365
8ff69e2c 6366 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6367 if (!memcg)
e7bbcdf3
DC
6368 return NULL;
6369
d79154bb
HD
6370 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6371 if (!memcg->stat)
d2e61b8d 6372 goto out_free;
d79154bb
HD
6373 spin_lock_init(&memcg->pcp_counter_lock);
6374 return memcg;
d2e61b8d
DC
6375
6376out_free:
8ff69e2c 6377 kfree(memcg);
d2e61b8d 6378 return NULL;
33327948
KH
6379}
6380
59927fb9 6381/*
c8b2a36f
GC
6382 * At destroying mem_cgroup, references from swap_cgroup can remain.
6383 * (scanning all at force_empty is too costly...)
6384 *
6385 * Instead of clearing all references at force_empty, we remember
6386 * the number of reference from swap_cgroup and free mem_cgroup when
6387 * it goes down to 0.
6388 *
6389 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6390 */
c8b2a36f
GC
6391
6392static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6393{
c8b2a36f 6394 int node;
59927fb9 6395
bb4cc1a8 6396 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6397
6398 for_each_node(node)
6399 free_mem_cgroup_per_zone_info(memcg, node);
6400
6401 free_percpu(memcg->stat);
6402
3f134619
GC
6403 /*
6404 * We need to make sure that (at least for now), the jump label
6405 * destruction code runs outside of the cgroup lock. This is because
6406 * get_online_cpus(), which is called from the static_branch update,
6407 * can't be called inside the cgroup_lock. cpusets are the ones
6408 * enforcing this dependency, so if they ever change, we might as well.
6409 *
6410 * schedule_work() will guarantee this happens. Be careful if you need
6411 * to move this code around, and make sure it is outside
6412 * the cgroup_lock.
6413 */
a8964b9b 6414 disarm_static_keys(memcg);
8ff69e2c 6415 kfree(memcg);
59927fb9 6416}
3afe36b1 6417
7bcc1bb1
DN
6418/*
6419 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6420 */
e1aab161 6421struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6422{
c0ff4b85 6423 if (!memcg->res.parent)
7bcc1bb1 6424 return NULL;
c0ff4b85 6425 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6426}
e1aab161 6427EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6428
bb4cc1a8
AM
6429static void __init mem_cgroup_soft_limit_tree_init(void)
6430{
6431 struct mem_cgroup_tree_per_node *rtpn;
6432 struct mem_cgroup_tree_per_zone *rtpz;
6433 int tmp, node, zone;
6434
6435 for_each_node(node) {
6436 tmp = node;
6437 if (!node_state(node, N_NORMAL_MEMORY))
6438 tmp = -1;
6439 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6440 BUG_ON(!rtpn);
6441
6442 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6443
6444 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6445 rtpz = &rtpn->rb_tree_per_zone[zone];
6446 rtpz->rb_root = RB_ROOT;
6447 spin_lock_init(&rtpz->lock);
6448 }
6449 }
6450}
6451
0eb253e2 6452static struct cgroup_subsys_state * __ref
eb95419b 6453mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6454{
d142e3e6 6455 struct mem_cgroup *memcg;
04046e1a 6456 long error = -ENOMEM;
6d12e2d8 6457 int node;
8cdea7c0 6458
c0ff4b85
R
6459 memcg = mem_cgroup_alloc();
6460 if (!memcg)
04046e1a 6461 return ERR_PTR(error);
78fb7466 6462
3ed28fa1 6463 for_each_node(node)
c0ff4b85 6464 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6465 goto free_out;
f64c3f54 6466
c077719b 6467 /* root ? */
eb95419b 6468 if (parent_css == NULL) {
a41c58a6 6469 root_mem_cgroup = memcg;
d142e3e6
GC
6470 res_counter_init(&memcg->res, NULL);
6471 res_counter_init(&memcg->memsw, NULL);
6472 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6473 }
28dbc4b6 6474
d142e3e6
GC
6475 memcg->last_scanned_node = MAX_NUMNODES;
6476 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6477 memcg->move_charge_at_immigrate = 0;
6478 mutex_init(&memcg->thresholds_lock);
6479 spin_lock_init(&memcg->move_lock);
70ddf637 6480 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6481 INIT_LIST_HEAD(&memcg->event_list);
6482 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6483
6484 return &memcg->css;
6485
6486free_out:
6487 __mem_cgroup_free(memcg);
6488 return ERR_PTR(error);
6489}
6490
6491static int
eb95419b 6492mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6493{
eb95419b
TH
6494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6495 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6496
4219b2da
LZ
6497 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6498 return -ENOSPC;
6499
63876986 6500 if (!parent)
d142e3e6
GC
6501 return 0;
6502
0999821b 6503 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6504
6505 memcg->use_hierarchy = parent->use_hierarchy;
6506 memcg->oom_kill_disable = parent->oom_kill_disable;
6507 memcg->swappiness = mem_cgroup_swappiness(parent);
6508
6509 if (parent->use_hierarchy) {
c0ff4b85
R
6510 res_counter_init(&memcg->res, &parent->res);
6511 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6512 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6513
7bcc1bb1 6514 /*
8d76a979
LZ
6515 * No need to take a reference to the parent because cgroup
6516 * core guarantees its existence.
7bcc1bb1 6517 */
18f59ea7 6518 } else {
c0ff4b85
R
6519 res_counter_init(&memcg->res, NULL);
6520 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6521 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6522 /*
6523 * Deeper hierachy with use_hierarchy == false doesn't make
6524 * much sense so let cgroup subsystem know about this
6525 * unfortunate state in our controller.
6526 */
d142e3e6 6527 if (parent != root_mem_cgroup)
073219e9 6528 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6529 }
0999821b 6530 mutex_unlock(&memcg_create_mutex);
d6441637 6531
073219e9 6532 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6533}
6534
5f578161
MH
6535/*
6536 * Announce all parents that a group from their hierarchy is gone.
6537 */
6538static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6539{
6540 struct mem_cgroup *parent = memcg;
6541
6542 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6543 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6544
6545 /*
6546 * if the root memcg is not hierarchical we have to check it
6547 * explicitely.
6548 */
6549 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6550 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6551}
6552
eb95419b 6553static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6554{
eb95419b 6555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6556 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6557 struct cgroup_subsys_state *iter;
79bd9814
TH
6558
6559 /*
6560 * Unregister events and notify userspace.
6561 * Notify userspace about cgroup removing only after rmdir of cgroup
6562 * directory to avoid race between userspace and kernelspace.
6563 */
fba94807
TH
6564 spin_lock(&memcg->event_list_lock);
6565 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6566 list_del_init(&event->list);
6567 schedule_work(&event->remove);
6568 }
fba94807 6569 spin_unlock(&memcg->event_list_lock);
ec64f515 6570
10d5ebf4
LZ
6571 kmem_cgroup_css_offline(memcg);
6572
5f578161 6573 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6574
6575 /*
6576 * This requires that offlining is serialized. Right now that is
6577 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6578 */
6579 css_for_each_descendant_post(iter, css)
6580 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6581
1f458cbf 6582 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6583 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6584}
6585
eb95419b 6586static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6587{
eb95419b 6588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6589 /*
6590 * XXX: css_offline() would be where we should reparent all
6591 * memory to prepare the cgroup for destruction. However,
6592 * memcg does not do css_tryget() and res_counter charging
6593 * under the same RCU lock region, which means that charging
6594 * could race with offlining. Offlining only happens to
6595 * cgroups with no tasks in them but charges can show up
6596 * without any tasks from the swapin path when the target
6597 * memcg is looked up from the swapout record and not from the
6598 * current task as it usually is. A race like this can leak
6599 * charges and put pages with stale cgroup pointers into
6600 * circulation:
6601 *
6602 * #0 #1
6603 * lookup_swap_cgroup_id()
6604 * rcu_read_lock()
6605 * mem_cgroup_lookup()
6606 * css_tryget()
6607 * rcu_read_unlock()
6608 * disable css_tryget()
6609 * call_rcu()
6610 * offline_css()
6611 * reparent_charges()
6612 * res_counter_charge()
6613 * css_put()
6614 * css_free()
6615 * pc->mem_cgroup = dead memcg
6616 * add page to lru
6617 *
6618 * The bulk of the charges are still moved in offline_css() to
6619 * avoid pinning a lot of pages in case a long-term reference
6620 * like a swapout record is deferring the css_free() to long
6621 * after offlining. But this makes sure we catch any charges
6622 * made after offlining:
6623 */
6624 mem_cgroup_reparent_charges(memcg);
c268e994 6625
10d5ebf4 6626 memcg_destroy_kmem(memcg);
465939a1 6627 __mem_cgroup_free(memcg);
8cdea7c0
BS
6628}
6629
02491447 6630#ifdef CONFIG_MMU
7dc74be0 6631/* Handlers for move charge at task migration. */
854ffa8d
DN
6632#define PRECHARGE_COUNT_AT_ONCE 256
6633static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6634{
854ffa8d
DN
6635 int ret = 0;
6636 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6637 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6638
c0ff4b85 6639 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6640 mc.precharge += count;
6641 /* we don't need css_get for root */
6642 return ret;
6643 }
6644 /* try to charge at once */
6645 if (count > 1) {
6646 struct res_counter *dummy;
6647 /*
c0ff4b85 6648 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6649 * by cgroup_lock_live_cgroup() that it is not removed and we
6650 * are still under the same cgroup_mutex. So we can postpone
6651 * css_get().
6652 */
c0ff4b85 6653 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6654 goto one_by_one;
c0ff4b85 6655 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6656 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6657 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6658 goto one_by_one;
6659 }
6660 mc.precharge += count;
854ffa8d
DN
6661 return ret;
6662 }
6663one_by_one:
6664 /* fall back to one by one charge */
6665 while (count--) {
6666 if (signal_pending(current)) {
6667 ret = -EINTR;
6668 break;
6669 }
6670 if (!batch_count--) {
6671 batch_count = PRECHARGE_COUNT_AT_ONCE;
6672 cond_resched();
6673 }
c0ff4b85
R
6674 ret = __mem_cgroup_try_charge(NULL,
6675 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6676 if (ret)
854ffa8d 6677 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6678 return ret;
854ffa8d
DN
6679 mc.precharge++;
6680 }
4ffef5fe
DN
6681 return ret;
6682}
6683
6684/**
8d32ff84 6685 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6686 * @vma: the vma the pte to be checked belongs
6687 * @addr: the address corresponding to the pte to be checked
6688 * @ptent: the pte to be checked
02491447 6689 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6690 *
6691 * Returns
6692 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6693 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6694 * move charge. if @target is not NULL, the page is stored in target->page
6695 * with extra refcnt got(Callers should handle it).
02491447
DN
6696 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6697 * target for charge migration. if @target is not NULL, the entry is stored
6698 * in target->ent.
4ffef5fe
DN
6699 *
6700 * Called with pte lock held.
6701 */
4ffef5fe
DN
6702union mc_target {
6703 struct page *page;
02491447 6704 swp_entry_t ent;
4ffef5fe
DN
6705};
6706
4ffef5fe 6707enum mc_target_type {
8d32ff84 6708 MC_TARGET_NONE = 0,
4ffef5fe 6709 MC_TARGET_PAGE,
02491447 6710 MC_TARGET_SWAP,
4ffef5fe
DN
6711};
6712
90254a65
DN
6713static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6714 unsigned long addr, pte_t ptent)
4ffef5fe 6715{
90254a65 6716 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6717
90254a65
DN
6718 if (!page || !page_mapped(page))
6719 return NULL;
6720 if (PageAnon(page)) {
6721 /* we don't move shared anon */
4b91355e 6722 if (!move_anon())
90254a65 6723 return NULL;
87946a72
DN
6724 } else if (!move_file())
6725 /* we ignore mapcount for file pages */
90254a65
DN
6726 return NULL;
6727 if (!get_page_unless_zero(page))
6728 return NULL;
6729
6730 return page;
6731}
6732
4b91355e 6733#ifdef CONFIG_SWAP
90254a65
DN
6734static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6735 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6736{
90254a65
DN
6737 struct page *page = NULL;
6738 swp_entry_t ent = pte_to_swp_entry(ptent);
6739
6740 if (!move_anon() || non_swap_entry(ent))
6741 return NULL;
4b91355e
KH
6742 /*
6743 * Because lookup_swap_cache() updates some statistics counter,
6744 * we call find_get_page() with swapper_space directly.
6745 */
33806f06 6746 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6747 if (do_swap_account)
6748 entry->val = ent.val;
6749
6750 return page;
6751}
4b91355e
KH
6752#else
6753static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6754 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6755{
6756 return NULL;
6757}
6758#endif
90254a65 6759
87946a72
DN
6760static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6761 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6762{
6763 struct page *page = NULL;
87946a72
DN
6764 struct address_space *mapping;
6765 pgoff_t pgoff;
6766
6767 if (!vma->vm_file) /* anonymous vma */
6768 return NULL;
6769 if (!move_file())
6770 return NULL;
6771
87946a72
DN
6772 mapping = vma->vm_file->f_mapping;
6773 if (pte_none(ptent))
6774 pgoff = linear_page_index(vma, addr);
6775 else /* pte_file(ptent) is true */
6776 pgoff = pte_to_pgoff(ptent);
6777
6778 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6779 page = find_get_page(mapping, pgoff);
6780
6781#ifdef CONFIG_SWAP
6782 /* shmem/tmpfs may report page out on swap: account for that too. */
6783 if (radix_tree_exceptional_entry(page)) {
6784 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6785 if (do_swap_account)
aa3b1895 6786 *entry = swap;
33806f06 6787 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6788 }
aa3b1895 6789#endif
87946a72
DN
6790 return page;
6791}
6792
8d32ff84 6793static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6794 unsigned long addr, pte_t ptent, union mc_target *target)
6795{
6796 struct page *page = NULL;
6797 struct page_cgroup *pc;
8d32ff84 6798 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6799 swp_entry_t ent = { .val = 0 };
6800
6801 if (pte_present(ptent))
6802 page = mc_handle_present_pte(vma, addr, ptent);
6803 else if (is_swap_pte(ptent))
6804 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6805 else if (pte_none(ptent) || pte_file(ptent))
6806 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6807
6808 if (!page && !ent.val)
8d32ff84 6809 return ret;
02491447
DN
6810 if (page) {
6811 pc = lookup_page_cgroup(page);
6812 /*
6813 * Do only loose check w/o page_cgroup lock.
6814 * mem_cgroup_move_account() checks the pc is valid or not under
6815 * the lock.
6816 */
6817 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6818 ret = MC_TARGET_PAGE;
6819 if (target)
6820 target->page = page;
6821 }
6822 if (!ret || !target)
6823 put_page(page);
6824 }
90254a65
DN
6825 /* There is a swap entry and a page doesn't exist or isn't charged */
6826 if (ent.val && !ret &&
34c00c31 6827 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6828 ret = MC_TARGET_SWAP;
6829 if (target)
6830 target->ent = ent;
4ffef5fe 6831 }
4ffef5fe
DN
6832 return ret;
6833}
6834
12724850
NH
6835#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6836/*
6837 * We don't consider swapping or file mapped pages because THP does not
6838 * support them for now.
6839 * Caller should make sure that pmd_trans_huge(pmd) is true.
6840 */
6841static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6842 unsigned long addr, pmd_t pmd, union mc_target *target)
6843{
6844 struct page *page = NULL;
6845 struct page_cgroup *pc;
6846 enum mc_target_type ret = MC_TARGET_NONE;
6847
6848 page = pmd_page(pmd);
309381fe 6849 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6850 if (!move_anon())
6851 return ret;
6852 pc = lookup_page_cgroup(page);
6853 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6854 ret = MC_TARGET_PAGE;
6855 if (target) {
6856 get_page(page);
6857 target->page = page;
6858 }
6859 }
6860 return ret;
6861}
6862#else
6863static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6864 unsigned long addr, pmd_t pmd, union mc_target *target)
6865{
6866 return MC_TARGET_NONE;
6867}
6868#endif
6869
4ffef5fe
DN
6870static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6871 unsigned long addr, unsigned long end,
6872 struct mm_walk *walk)
6873{
6874 struct vm_area_struct *vma = walk->private;
6875 pte_t *pte;
6876 spinlock_t *ptl;
6877
bf929152 6878 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6879 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6880 mc.precharge += HPAGE_PMD_NR;
bf929152 6881 spin_unlock(ptl);
1a5a9906 6882 return 0;
12724850 6883 }
03319327 6884
45f83cef
AA
6885 if (pmd_trans_unstable(pmd))
6886 return 0;
4ffef5fe
DN
6887 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6888 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6889 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6890 mc.precharge++; /* increment precharge temporarily */
6891 pte_unmap_unlock(pte - 1, ptl);
6892 cond_resched();
6893
7dc74be0
DN
6894 return 0;
6895}
6896
4ffef5fe
DN
6897static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6898{
6899 unsigned long precharge;
6900 struct vm_area_struct *vma;
6901
dfe076b0 6902 down_read(&mm->mmap_sem);
4ffef5fe
DN
6903 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6904 struct mm_walk mem_cgroup_count_precharge_walk = {
6905 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6906 .mm = mm,
6907 .private = vma,
6908 };
6909 if (is_vm_hugetlb_page(vma))
6910 continue;
4ffef5fe
DN
6911 walk_page_range(vma->vm_start, vma->vm_end,
6912 &mem_cgroup_count_precharge_walk);
6913 }
dfe076b0 6914 up_read(&mm->mmap_sem);
4ffef5fe
DN
6915
6916 precharge = mc.precharge;
6917 mc.precharge = 0;
6918
6919 return precharge;
6920}
6921
4ffef5fe
DN
6922static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6923{
dfe076b0
DN
6924 unsigned long precharge = mem_cgroup_count_precharge(mm);
6925
6926 VM_BUG_ON(mc.moving_task);
6927 mc.moving_task = current;
6928 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6929}
6930
dfe076b0
DN
6931/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6932static void __mem_cgroup_clear_mc(void)
4ffef5fe 6933{
2bd9bb20
KH
6934 struct mem_cgroup *from = mc.from;
6935 struct mem_cgroup *to = mc.to;
4050377b 6936 int i;
2bd9bb20 6937
4ffef5fe 6938 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6939 if (mc.precharge) {
6940 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6941 mc.precharge = 0;
6942 }
6943 /*
6944 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6945 * we must uncharge here.
6946 */
6947 if (mc.moved_charge) {
6948 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6949 mc.moved_charge = 0;
4ffef5fe 6950 }
483c30b5
DN
6951 /* we must fixup refcnts and charges */
6952 if (mc.moved_swap) {
483c30b5
DN
6953 /* uncharge swap account from the old cgroup */
6954 if (!mem_cgroup_is_root(mc.from))
6955 res_counter_uncharge(&mc.from->memsw,
6956 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6957
6958 for (i = 0; i < mc.moved_swap; i++)
6959 css_put(&mc.from->css);
483c30b5
DN
6960
6961 if (!mem_cgroup_is_root(mc.to)) {
6962 /*
6963 * we charged both to->res and to->memsw, so we should
6964 * uncharge to->res.
6965 */
6966 res_counter_uncharge(&mc.to->res,
6967 PAGE_SIZE * mc.moved_swap);
483c30b5 6968 }
4050377b 6969 /* we've already done css_get(mc.to) */
483c30b5
DN
6970 mc.moved_swap = 0;
6971 }
dfe076b0
DN
6972 memcg_oom_recover(from);
6973 memcg_oom_recover(to);
6974 wake_up_all(&mc.waitq);
6975}
6976
6977static void mem_cgroup_clear_mc(void)
6978{
6979 struct mem_cgroup *from = mc.from;
6980
6981 /*
6982 * we must clear moving_task before waking up waiters at the end of
6983 * task migration.
6984 */
6985 mc.moving_task = NULL;
6986 __mem_cgroup_clear_mc();
2bd9bb20 6987 spin_lock(&mc.lock);
4ffef5fe
DN
6988 mc.from = NULL;
6989 mc.to = NULL;
2bd9bb20 6990 spin_unlock(&mc.lock);
32047e2a 6991 mem_cgroup_end_move(from);
4ffef5fe
DN
6992}
6993
eb95419b 6994static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6995 struct cgroup_taskset *tset)
7dc74be0 6996{
2f7ee569 6997 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6998 int ret = 0;
eb95419b 6999 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7000 unsigned long move_charge_at_immigrate;
7dc74be0 7001
ee5e8472
GC
7002 /*
7003 * We are now commited to this value whatever it is. Changes in this
7004 * tunable will only affect upcoming migrations, not the current one.
7005 * So we need to save it, and keep it going.
7006 */
7007 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7008 if (move_charge_at_immigrate) {
7dc74be0
DN
7009 struct mm_struct *mm;
7010 struct mem_cgroup *from = mem_cgroup_from_task(p);
7011
c0ff4b85 7012 VM_BUG_ON(from == memcg);
7dc74be0
DN
7013
7014 mm = get_task_mm(p);
7015 if (!mm)
7016 return 0;
7dc74be0 7017 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7018 if (mm->owner == p) {
7019 VM_BUG_ON(mc.from);
7020 VM_BUG_ON(mc.to);
7021 VM_BUG_ON(mc.precharge);
854ffa8d 7022 VM_BUG_ON(mc.moved_charge);
483c30b5 7023 VM_BUG_ON(mc.moved_swap);
32047e2a 7024 mem_cgroup_start_move(from);
2bd9bb20 7025 spin_lock(&mc.lock);
4ffef5fe 7026 mc.from = from;
c0ff4b85 7027 mc.to = memcg;
ee5e8472 7028 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7029 spin_unlock(&mc.lock);
dfe076b0 7030 /* We set mc.moving_task later */
4ffef5fe
DN
7031
7032 ret = mem_cgroup_precharge_mc(mm);
7033 if (ret)
7034 mem_cgroup_clear_mc();
dfe076b0
DN
7035 }
7036 mmput(mm);
7dc74be0
DN
7037 }
7038 return ret;
7039}
7040
eb95419b 7041static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7042 struct cgroup_taskset *tset)
7dc74be0 7043{
4ffef5fe 7044 mem_cgroup_clear_mc();
7dc74be0
DN
7045}
7046
4ffef5fe
DN
7047static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7048 unsigned long addr, unsigned long end,
7049 struct mm_walk *walk)
7dc74be0 7050{
4ffef5fe
DN
7051 int ret = 0;
7052 struct vm_area_struct *vma = walk->private;
7053 pte_t *pte;
7054 spinlock_t *ptl;
12724850
NH
7055 enum mc_target_type target_type;
7056 union mc_target target;
7057 struct page *page;
7058 struct page_cgroup *pc;
4ffef5fe 7059
12724850
NH
7060 /*
7061 * We don't take compound_lock() here but no race with splitting thp
7062 * happens because:
7063 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7064 * under splitting, which means there's no concurrent thp split,
7065 * - if another thread runs into split_huge_page() just after we
7066 * entered this if-block, the thread must wait for page table lock
7067 * to be unlocked in __split_huge_page_splitting(), where the main
7068 * part of thp split is not executed yet.
7069 */
bf929152 7070 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7071 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7072 spin_unlock(ptl);
12724850
NH
7073 return 0;
7074 }
7075 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7076 if (target_type == MC_TARGET_PAGE) {
7077 page = target.page;
7078 if (!isolate_lru_page(page)) {
7079 pc = lookup_page_cgroup(page);
7080 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7081 pc, mc.from, mc.to)) {
12724850
NH
7082 mc.precharge -= HPAGE_PMD_NR;
7083 mc.moved_charge += HPAGE_PMD_NR;
7084 }
7085 putback_lru_page(page);
7086 }
7087 put_page(page);
7088 }
bf929152 7089 spin_unlock(ptl);
1a5a9906 7090 return 0;
12724850
NH
7091 }
7092
45f83cef
AA
7093 if (pmd_trans_unstable(pmd))
7094 return 0;
4ffef5fe
DN
7095retry:
7096 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7097 for (; addr != end; addr += PAGE_SIZE) {
7098 pte_t ptent = *(pte++);
02491447 7099 swp_entry_t ent;
4ffef5fe
DN
7100
7101 if (!mc.precharge)
7102 break;
7103
8d32ff84 7104 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7105 case MC_TARGET_PAGE:
7106 page = target.page;
7107 if (isolate_lru_page(page))
7108 goto put;
7109 pc = lookup_page_cgroup(page);
7ec99d62 7110 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7111 mc.from, mc.to)) {
4ffef5fe 7112 mc.precharge--;
854ffa8d
DN
7113 /* we uncharge from mc.from later. */
7114 mc.moved_charge++;
4ffef5fe
DN
7115 }
7116 putback_lru_page(page);
8d32ff84 7117put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7118 put_page(page);
7119 break;
02491447
DN
7120 case MC_TARGET_SWAP:
7121 ent = target.ent;
e91cbb42 7122 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7123 mc.precharge--;
483c30b5
DN
7124 /* we fixup refcnts and charges later. */
7125 mc.moved_swap++;
7126 }
02491447 7127 break;
4ffef5fe
DN
7128 default:
7129 break;
7130 }
7131 }
7132 pte_unmap_unlock(pte - 1, ptl);
7133 cond_resched();
7134
7135 if (addr != end) {
7136 /*
7137 * We have consumed all precharges we got in can_attach().
7138 * We try charge one by one, but don't do any additional
7139 * charges to mc.to if we have failed in charge once in attach()
7140 * phase.
7141 */
854ffa8d 7142 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7143 if (!ret)
7144 goto retry;
7145 }
7146
7147 return ret;
7148}
7149
7150static void mem_cgroup_move_charge(struct mm_struct *mm)
7151{
7152 struct vm_area_struct *vma;
7153
7154 lru_add_drain_all();
dfe076b0
DN
7155retry:
7156 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7157 /*
7158 * Someone who are holding the mmap_sem might be waiting in
7159 * waitq. So we cancel all extra charges, wake up all waiters,
7160 * and retry. Because we cancel precharges, we might not be able
7161 * to move enough charges, but moving charge is a best-effort
7162 * feature anyway, so it wouldn't be a big problem.
7163 */
7164 __mem_cgroup_clear_mc();
7165 cond_resched();
7166 goto retry;
7167 }
4ffef5fe
DN
7168 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7169 int ret;
7170 struct mm_walk mem_cgroup_move_charge_walk = {
7171 .pmd_entry = mem_cgroup_move_charge_pte_range,
7172 .mm = mm,
7173 .private = vma,
7174 };
7175 if (is_vm_hugetlb_page(vma))
7176 continue;
4ffef5fe
DN
7177 ret = walk_page_range(vma->vm_start, vma->vm_end,
7178 &mem_cgroup_move_charge_walk);
7179 if (ret)
7180 /*
7181 * means we have consumed all precharges and failed in
7182 * doing additional charge. Just abandon here.
7183 */
7184 break;
7185 }
dfe076b0 7186 up_read(&mm->mmap_sem);
7dc74be0
DN
7187}
7188
eb95419b 7189static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7190 struct cgroup_taskset *tset)
67e465a7 7191{
2f7ee569 7192 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7193 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7194
dfe076b0 7195 if (mm) {
a433658c
KM
7196 if (mc.to)
7197 mem_cgroup_move_charge(mm);
dfe076b0
DN
7198 mmput(mm);
7199 }
a433658c
KM
7200 if (mc.to)
7201 mem_cgroup_clear_mc();
67e465a7 7202}
5cfb80a7 7203#else /* !CONFIG_MMU */
eb95419b 7204static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7205 struct cgroup_taskset *tset)
5cfb80a7
DN
7206{
7207 return 0;
7208}
eb95419b 7209static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7210 struct cgroup_taskset *tset)
5cfb80a7
DN
7211{
7212}
eb95419b 7213static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7214 struct cgroup_taskset *tset)
5cfb80a7
DN
7215{
7216}
7217#endif
67e465a7 7218
f00baae7
TH
7219/*
7220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7221 * to verify sane_behavior flag on each mount attempt.
7222 */
eb95419b 7223static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7224{
7225 /*
7226 * use_hierarchy is forced with sane_behavior. cgroup core
7227 * guarantees that @root doesn't have any children, so turning it
7228 * on for the root memcg is enough.
7229 */
eb95419b
TH
7230 if (cgroup_sane_behavior(root_css->cgroup))
7231 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7232}
7233
073219e9 7234struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7235 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7236 .css_online = mem_cgroup_css_online,
92fb9748
TH
7237 .css_offline = mem_cgroup_css_offline,
7238 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7239 .can_attach = mem_cgroup_can_attach,
7240 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7241 .attach = mem_cgroup_move_task,
f00baae7 7242 .bind = mem_cgroup_bind,
6bc10349 7243 .base_cftypes = mem_cgroup_files,
6d12e2d8 7244 .early_init = 0,
8cdea7c0 7245};
c077719b 7246
c255a458 7247#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7248static int __init enable_swap_account(char *s)
7249{
a2c8990a 7250 if (!strcmp(s, "1"))
a42c390c 7251 really_do_swap_account = 1;
a2c8990a 7252 else if (!strcmp(s, "0"))
a42c390c
MH
7253 really_do_swap_account = 0;
7254 return 1;
7255}
a2c8990a 7256__setup("swapaccount=", enable_swap_account);
c077719b 7257
2d11085e
MH
7258static void __init memsw_file_init(void)
7259{
073219e9 7260 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7261}
7262
7263static void __init enable_swap_cgroup(void)
7264{
7265 if (!mem_cgroup_disabled() && really_do_swap_account) {
7266 do_swap_account = 1;
7267 memsw_file_init();
7268 }
2d11085e 7269}
6acc8b02 7270
2d11085e 7271#else
6acc8b02 7272static void __init enable_swap_cgroup(void)
2d11085e
MH
7273{
7274}
c077719b 7275#endif
2d11085e
MH
7276
7277/*
1081312f
MH
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like hotcpu_notifier() have to be initialized from this context
7281 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7282 * everything that doesn't depend on a specific mem_cgroup structure should
7283 * be initialized from here.
2d11085e
MH
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7288 enable_swap_cgroup();
bb4cc1a8 7289 mem_cgroup_soft_limit_tree_init();
e4777496 7290 memcg_stock_init();
2d11085e
MH
7291 return 0;
7292}
7293subsys_initcall(mem_cgroup_init);