]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: generalize the socket accounting jump label
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
4ffef5fe
DN
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
1dfab5ab 201 unsigned long flags;
4ffef5fe 202 unsigned long precharge;
854ffa8d 203 unsigned long moved_charge;
483c30b5 204 unsigned long moved_swap;
8033b97c
DN
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207} mc = {
2bd9bb20 208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210};
4ffef5fe 211
4e416953
BS
212/*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
a0db00fc 216#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 217#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 218
217bc319
KH
219enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 221 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
224 NR_CHARGE_TYPE,
225};
226
8c7c6e34 227/* for encoding cft->private value on file */
86ae53e1
GC
228enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
510fc4e1 232 _KMEM,
86ae53e1
GC
233};
234
a0db00fc
KS
235#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 237#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
238/* Used for OOM nofiier */
239#define OOM_CONTROL (0)
8c7c6e34 240
0999821b
GC
241/*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246static DEFINE_MUTEX(memcg_create_mutex);
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
256struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257{
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259}
260
7ffc0edc
MH
261static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262{
263 return (memcg == root_mem_cgroup);
264}
265
4219b2da
LZ
266/*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270#define MEM_CGROUP_ID_MAX USHRT_MAX
271
34c00c31
LZ
272static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273{
15a4c835 274 return memcg->css.id;
34c00c31
LZ
275}
276
adbe427b
VD
277/*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
34c00c31
LZ
283static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284{
285 struct cgroup_subsys_state *css;
286
7d699ddb 287 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
288 return mem_cgroup_from_css(css);
289}
290
e1aab161 291/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 292#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 293
80e95fe0
JW
294struct static_key memcg_sockets_enabled_key;
295EXPORT_SYMBOL(memcg_sockets_enabled_key);
296
e1aab161
GC
297void sock_update_memcg(struct sock *sk)
298{
3d596f7b 299 struct mem_cgroup *memcg;
3d596f7b
JW
300
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
baac50bb
JW
309 if (sk->sk_memcg) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
311 css_get(&sk->sk_memcg->css);
3d596f7b 312 return;
e1aab161 313 }
3d596f7b
JW
314
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
baac50bb
JW
317 if (memcg != root_mem_cgroup &&
318 memcg->tcp_mem.active &&
319 css_tryget_online(&memcg->css))
320 sk->sk_memcg = memcg;
3d596f7b 321 rcu_read_unlock();
e1aab161
GC
322}
323EXPORT_SYMBOL(sock_update_memcg);
324
325void sock_release_memcg(struct sock *sk)
326{
baac50bb
JW
327 WARN_ON(!sk->sk_memcg);
328 css_put(&sk->sk_memcg->css);
d1a4c0b3 329}
e1aab161 330
e805605c
JW
331/**
332 * mem_cgroup_charge_skmem - charge socket memory
baac50bb 333 * @memcg: memcg to charge
e805605c
JW
334 * @nr_pages: number of pages to charge
335 *
baac50bb
JW
336 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
337 * @memcg's configured limit, %false if the charge had to be forced.
e805605c 338 */
baac50bb 339bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
e805605c
JW
340{
341 struct page_counter *counter;
342
baac50bb 343 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
e805605c 344 nr_pages, &counter)) {
baac50bb 345 memcg->tcp_mem.memory_pressure = 0;
e805605c
JW
346 return true;
347 }
baac50bb
JW
348 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
349 memcg->tcp_mem.memory_pressure = 1;
e805605c
JW
350 return false;
351}
352
353/**
354 * mem_cgroup_uncharge_skmem - uncharge socket memory
baac50bb 355 * @memcg - memcg to uncharge
e805605c
JW
356 * @nr_pages - number of pages to uncharge
357 */
baac50bb 358void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
e805605c 359{
baac50bb 360 page_counter_uncharge(&memcg->tcp_mem.memory_allocated, nr_pages);
e805605c
JW
361}
362
3f134619
GC
363#endif
364
a8964b9b 365#ifdef CONFIG_MEMCG_KMEM
55007d84 366/*
f7ce3190 367 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
368 * The main reason for not using cgroup id for this:
369 * this works better in sparse environments, where we have a lot of memcgs,
370 * but only a few kmem-limited. Or also, if we have, for instance, 200
371 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
372 * 200 entry array for that.
55007d84 373 *
dbcf73e2
VD
374 * The current size of the caches array is stored in memcg_nr_cache_ids. It
375 * will double each time we have to increase it.
55007d84 376 */
dbcf73e2
VD
377static DEFINE_IDA(memcg_cache_ida);
378int memcg_nr_cache_ids;
749c5415 379
05257a1a
VD
380/* Protects memcg_nr_cache_ids */
381static DECLARE_RWSEM(memcg_cache_ids_sem);
382
383void memcg_get_cache_ids(void)
384{
385 down_read(&memcg_cache_ids_sem);
386}
387
388void memcg_put_cache_ids(void)
389{
390 up_read(&memcg_cache_ids_sem);
391}
392
55007d84
GC
393/*
394 * MIN_SIZE is different than 1, because we would like to avoid going through
395 * the alloc/free process all the time. In a small machine, 4 kmem-limited
396 * cgroups is a reasonable guess. In the future, it could be a parameter or
397 * tunable, but that is strictly not necessary.
398 *
b8627835 399 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
400 * this constant directly from cgroup, but it is understandable that this is
401 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 402 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
403 * increase ours as well if it increases.
404 */
405#define MEMCG_CACHES_MIN_SIZE 4
b8627835 406#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 407
d7f25f8a
GC
408/*
409 * A lot of the calls to the cache allocation functions are expected to be
410 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
411 * conditional to this static branch, we'll have to allow modules that does
412 * kmem_cache_alloc and the such to see this symbol as well
413 */
a8964b9b 414struct static_key memcg_kmem_enabled_key;
d7f25f8a 415EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 416
a8964b9b
GC
417#endif /* CONFIG_MEMCG_KMEM */
418
f64c3f54 419static struct mem_cgroup_per_zone *
e231875b 420mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 421{
e231875b
JZ
422 int nid = zone_to_nid(zone);
423 int zid = zone_idx(zone);
424
54f72fe0 425 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
426}
427
ad7fa852
TH
428/**
429 * mem_cgroup_css_from_page - css of the memcg associated with a page
430 * @page: page of interest
431 *
432 * If memcg is bound to the default hierarchy, css of the memcg associated
433 * with @page is returned. The returned css remains associated with @page
434 * until it is released.
435 *
436 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
437 * is returned.
438 *
439 * XXX: The above description of behavior on the default hierarchy isn't
440 * strictly true yet as replace_page_cache_page() can modify the
441 * association before @page is released even on the default hierarchy;
442 * however, the current and planned usages don't mix the the two functions
443 * and replace_page_cache_page() will soon be updated to make the invariant
444 * actually true.
445 */
446struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
447{
448 struct mem_cgroup *memcg;
449
450 rcu_read_lock();
451
452 memcg = page->mem_cgroup;
453
9e10a130 454 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
455 memcg = root_mem_cgroup;
456
457 rcu_read_unlock();
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 memcg = READ_ONCE(page->mem_cgroup);
481 while (memcg && !(memcg->css.flags & CSS_ONLINE))
482 memcg = parent_mem_cgroup(memcg);
483 if (memcg)
484 ino = cgroup_ino(memcg->css.cgroup);
485 rcu_read_unlock();
486 return ino;
487}
488
f64c3f54 489static struct mem_cgroup_per_zone *
e231875b 490mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 491{
97a6c37b
JW
492 int nid = page_to_nid(page);
493 int zid = page_zonenum(page);
f64c3f54 494
e231875b 495 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
496}
497
bb4cc1a8
AM
498static struct mem_cgroup_tree_per_zone *
499soft_limit_tree_node_zone(int nid, int zid)
500{
501 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
502}
503
504static struct mem_cgroup_tree_per_zone *
505soft_limit_tree_from_page(struct page *page)
506{
507 int nid = page_to_nid(page);
508 int zid = page_zonenum(page);
509
510 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
511}
512
cf2c8127
JW
513static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
514 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 515 unsigned long new_usage_in_excess)
bb4cc1a8
AM
516{
517 struct rb_node **p = &mctz->rb_root.rb_node;
518 struct rb_node *parent = NULL;
519 struct mem_cgroup_per_zone *mz_node;
520
521 if (mz->on_tree)
522 return;
523
524 mz->usage_in_excess = new_usage_in_excess;
525 if (!mz->usage_in_excess)
526 return;
527 while (*p) {
528 parent = *p;
529 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
530 tree_node);
531 if (mz->usage_in_excess < mz_node->usage_in_excess)
532 p = &(*p)->rb_left;
533 /*
534 * We can't avoid mem cgroups that are over their soft
535 * limit by the same amount
536 */
537 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
538 p = &(*p)->rb_right;
539 }
540 rb_link_node(&mz->tree_node, parent, p);
541 rb_insert_color(&mz->tree_node, &mctz->rb_root);
542 mz->on_tree = true;
543}
544
cf2c8127
JW
545static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
546 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
547{
548 if (!mz->on_tree)
549 return;
550 rb_erase(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = false;
552}
553
cf2c8127
JW
554static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
555 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 556{
0a31bc97
JW
557 unsigned long flags;
558
559 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 560 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 561 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
562}
563
3e32cb2e
JW
564static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
565{
566 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 567 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
568 unsigned long excess = 0;
569
570 if (nr_pages > soft_limit)
571 excess = nr_pages - soft_limit;
572
573 return excess;
574}
bb4cc1a8
AM
575
576static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
577{
3e32cb2e 578 unsigned long excess;
bb4cc1a8
AM
579 struct mem_cgroup_per_zone *mz;
580 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 581
e231875b 582 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
583 /*
584 * Necessary to update all ancestors when hierarchy is used.
585 * because their event counter is not touched.
586 */
587 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 588 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 589 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
590 /*
591 * We have to update the tree if mz is on RB-tree or
592 * mem is over its softlimit.
593 */
594 if (excess || mz->on_tree) {
0a31bc97
JW
595 unsigned long flags;
596
597 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
598 /* if on-tree, remove it */
599 if (mz->on_tree)
cf2c8127 600 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
601 /*
602 * Insert again. mz->usage_in_excess will be updated.
603 * If excess is 0, no tree ops.
604 */
cf2c8127 605 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 606 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
607 }
608 }
609}
610
611static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
612{
bb4cc1a8 613 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
614 struct mem_cgroup_per_zone *mz;
615 int nid, zid;
bb4cc1a8 616
e231875b
JZ
617 for_each_node(nid) {
618 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
619 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
620 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 621 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
622 }
623 }
624}
625
626static struct mem_cgroup_per_zone *
627__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct rb_node *rightmost = NULL;
630 struct mem_cgroup_per_zone *mz;
631
632retry:
633 mz = NULL;
634 rightmost = rb_last(&mctz->rb_root);
635 if (!rightmost)
636 goto done; /* Nothing to reclaim from */
637
638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
639 /*
640 * Remove the node now but someone else can add it back,
641 * we will to add it back at the end of reclaim to its correct
642 * position in the tree.
643 */
cf2c8127 644 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 645 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 646 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
647 goto retry;
648done:
649 return mz;
650}
651
652static struct mem_cgroup_per_zone *
653mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
654{
655 struct mem_cgroup_per_zone *mz;
656
0a31bc97 657 spin_lock_irq(&mctz->lock);
bb4cc1a8 658 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 659 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
660 return mz;
661}
662
711d3d2c 663/*
484ebb3b
GT
664 * Return page count for single (non recursive) @memcg.
665 *
711d3d2c
KH
666 * Implementation Note: reading percpu statistics for memcg.
667 *
668 * Both of vmstat[] and percpu_counter has threshold and do periodic
669 * synchronization to implement "quick" read. There are trade-off between
670 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 671 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
672 *
673 * But this _read() function is used for user interface now. The user accounts
674 * memory usage by memory cgroup and he _always_ requires exact value because
675 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
676 * have to visit all online cpus and make sum. So, for now, unnecessary
677 * synchronization is not implemented. (just implemented for cpu hotplug)
678 *
679 * If there are kernel internal actions which can make use of some not-exact
680 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 681 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
682 * implemented.
683 */
484ebb3b
GT
684static unsigned long
685mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 686{
7a159cc9 687 long val = 0;
c62b1a3b 688 int cpu;
c62b1a3b 689
484ebb3b 690 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 691 for_each_possible_cpu(cpu)
c0ff4b85 692 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
693 /*
694 * Summing races with updates, so val may be negative. Avoid exposing
695 * transient negative values.
696 */
697 if (val < 0)
698 val = 0;
c62b1a3b
KH
699 return val;
700}
701
c0ff4b85 702static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
703 enum mem_cgroup_events_index idx)
704{
705 unsigned long val = 0;
706 int cpu;
707
733a572e 708 for_each_possible_cpu(cpu)
c0ff4b85 709 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
710 return val;
711}
712
c0ff4b85 713static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 714 struct page *page,
0a31bc97 715 int nr_pages)
d52aa412 716{
b2402857
KH
717 /*
718 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
719 * counted as CACHE even if it's on ANON LRU.
720 */
0a31bc97 721 if (PageAnon(page))
b2402857 722 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 723 nr_pages);
d52aa412 724 else
b2402857 725 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 726 nr_pages);
55e462b0 727
b070e65c
DR
728 if (PageTransHuge(page))
729 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
730 nr_pages);
731
e401f176
KH
732 /* pagein of a big page is an event. So, ignore page size */
733 if (nr_pages > 0)
c0ff4b85 734 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 735 else {
c0ff4b85 736 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
737 nr_pages = -nr_pages; /* for event */
738 }
e401f176 739
13114716 740 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
741}
742
e231875b
JZ
743static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
744 int nid,
745 unsigned int lru_mask)
bb2a0de9 746{
e231875b 747 unsigned long nr = 0;
889976db
YH
748 int zid;
749
e231875b 750 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 751
e231875b
JZ
752 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
753 struct mem_cgroup_per_zone *mz;
754 enum lru_list lru;
755
756 for_each_lru(lru) {
757 if (!(BIT(lru) & lru_mask))
758 continue;
759 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
760 nr += mz->lru_size[lru];
761 }
762 }
763 return nr;
889976db 764}
bb2a0de9 765
c0ff4b85 766static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 767 unsigned int lru_mask)
6d12e2d8 768{
e231875b 769 unsigned long nr = 0;
889976db 770 int nid;
6d12e2d8 771
31aaea4a 772 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
773 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
774 return nr;
d52aa412
KH
775}
776
f53d7ce3
JW
777static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
778 enum mem_cgroup_events_target target)
7a159cc9
JW
779{
780 unsigned long val, next;
781
13114716 782 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 783 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 784 /* from time_after() in jiffies.h */
f53d7ce3
JW
785 if ((long)next - (long)val < 0) {
786 switch (target) {
787 case MEM_CGROUP_TARGET_THRESH:
788 next = val + THRESHOLDS_EVENTS_TARGET;
789 break;
bb4cc1a8
AM
790 case MEM_CGROUP_TARGET_SOFTLIMIT:
791 next = val + SOFTLIMIT_EVENTS_TARGET;
792 break;
f53d7ce3
JW
793 case MEM_CGROUP_TARGET_NUMAINFO:
794 next = val + NUMAINFO_EVENTS_TARGET;
795 break;
796 default:
797 break;
798 }
799 __this_cpu_write(memcg->stat->targets[target], next);
800 return true;
7a159cc9 801 }
f53d7ce3 802 return false;
d2265e6f
KH
803}
804
805/*
806 * Check events in order.
807 *
808 */
c0ff4b85 809static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
810{
811 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 814 bool do_softlimit;
82b3f2a7 815 bool do_numainfo __maybe_unused;
f53d7ce3 816
bb4cc1a8
AM
817 do_softlimit = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
819#if MAX_NUMNODES > 1
820 do_numainfo = mem_cgroup_event_ratelimit(memcg,
821 MEM_CGROUP_TARGET_NUMAINFO);
822#endif
c0ff4b85 823 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
824 if (unlikely(do_softlimit))
825 mem_cgroup_update_tree(memcg, page);
453a9bf3 826#if MAX_NUMNODES > 1
f53d7ce3 827 if (unlikely(do_numainfo))
c0ff4b85 828 atomic_inc(&memcg->numainfo_events);
453a9bf3 829#endif
0a31bc97 830 }
d2265e6f
KH
831}
832
cf475ad2 833struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 834{
31a78f23
BS
835 /*
836 * mm_update_next_owner() may clear mm->owner to NULL
837 * if it races with swapoff, page migration, etc.
838 * So this can be called with p == NULL.
839 */
840 if (unlikely(!p))
841 return NULL;
842
073219e9 843 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 844}
33398cf2 845EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 846
df381975 847static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 848{
c0ff4b85 849 struct mem_cgroup *memcg = NULL;
0b7f569e 850
54595fe2
KH
851 rcu_read_lock();
852 do {
6f6acb00
MH
853 /*
854 * Page cache insertions can happen withou an
855 * actual mm context, e.g. during disk probing
856 * on boot, loopback IO, acct() writes etc.
857 */
858 if (unlikely(!mm))
df381975 859 memcg = root_mem_cgroup;
6f6acb00
MH
860 else {
861 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
862 if (unlikely(!memcg))
863 memcg = root_mem_cgroup;
864 }
ec903c0c 865 } while (!css_tryget_online(&memcg->css));
54595fe2 866 rcu_read_unlock();
c0ff4b85 867 return memcg;
54595fe2
KH
868}
869
5660048c
JW
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
694fbc0f 887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 888 struct mem_cgroup *prev,
694fbc0f 889 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 890{
33398cf2 891 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 892 struct cgroup_subsys_state *css = NULL;
9f3a0d09 893 struct mem_cgroup *memcg = NULL;
5ac8fb31 894 struct mem_cgroup *pos = NULL;
711d3d2c 895
694fbc0f
AM
896 if (mem_cgroup_disabled())
897 return NULL;
5660048c 898
9f3a0d09
JW
899 if (!root)
900 root = root_mem_cgroup;
7d74b06f 901
9f3a0d09 902 if (prev && !reclaim)
5ac8fb31 903 pos = prev;
14067bb3 904
9f3a0d09
JW
905 if (!root->use_hierarchy && root != root_mem_cgroup) {
906 if (prev)
5ac8fb31 907 goto out;
694fbc0f 908 return root;
9f3a0d09 909 }
14067bb3 910
542f85f9 911 rcu_read_lock();
5f578161 912
5ac8fb31
JW
913 if (reclaim) {
914 struct mem_cgroup_per_zone *mz;
915
916 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
917 iter = &mz->iter[reclaim->priority];
918
919 if (prev && reclaim->generation != iter->generation)
920 goto out_unlock;
921
6df38689 922 while (1) {
4db0c3c2 923 pos = READ_ONCE(iter->position);
6df38689
VD
924 if (!pos || css_tryget(&pos->css))
925 break;
5ac8fb31 926 /*
6df38689
VD
927 * css reference reached zero, so iter->position will
928 * be cleared by ->css_released. However, we should not
929 * rely on this happening soon, because ->css_released
930 * is called from a work queue, and by busy-waiting we
931 * might block it. So we clear iter->position right
932 * away.
5ac8fb31 933 */
6df38689
VD
934 (void)cmpxchg(&iter->position, pos, NULL);
935 }
5ac8fb31
JW
936 }
937
938 if (pos)
939 css = &pos->css;
940
941 for (;;) {
942 css = css_next_descendant_pre(css, &root->css);
943 if (!css) {
944 /*
945 * Reclaimers share the hierarchy walk, and a
946 * new one might jump in right at the end of
947 * the hierarchy - make sure they see at least
948 * one group and restart from the beginning.
949 */
950 if (!prev)
951 continue;
952 break;
527a5ec9 953 }
7d74b06f 954
5ac8fb31
JW
955 /*
956 * Verify the css and acquire a reference. The root
957 * is provided by the caller, so we know it's alive
958 * and kicking, and don't take an extra reference.
959 */
960 memcg = mem_cgroup_from_css(css);
14067bb3 961
5ac8fb31
JW
962 if (css == &root->css)
963 break;
14067bb3 964
b2052564 965 if (css_tryget(css)) {
5ac8fb31
JW
966 /*
967 * Make sure the memcg is initialized:
968 * mem_cgroup_css_online() orders the the
969 * initialization against setting the flag.
970 */
971 if (smp_load_acquire(&memcg->initialized))
972 break;
542f85f9 973
5ac8fb31 974 css_put(css);
527a5ec9 975 }
9f3a0d09 976
5ac8fb31 977 memcg = NULL;
9f3a0d09 978 }
5ac8fb31
JW
979
980 if (reclaim) {
5ac8fb31 981 /*
6df38689
VD
982 * The position could have already been updated by a competing
983 * thread, so check that the value hasn't changed since we read
984 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 985 */
6df38689
VD
986 (void)cmpxchg(&iter->position, pos, memcg);
987
5ac8fb31
JW
988 if (pos)
989 css_put(&pos->css);
990
991 if (!memcg)
992 iter->generation++;
993 else if (!prev)
994 reclaim->generation = iter->generation;
9f3a0d09 995 }
5ac8fb31 996
542f85f9
MH
997out_unlock:
998 rcu_read_unlock();
5ac8fb31 999out:
c40046f3
MH
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1002
9f3a0d09 1003 return memcg;
14067bb3 1004}
7d74b06f 1005
5660048c
JW
1006/**
1007 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1008 * @root: hierarchy root
1009 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1010 */
1011void mem_cgroup_iter_break(struct mem_cgroup *root,
1012 struct mem_cgroup *prev)
9f3a0d09
JW
1013{
1014 if (!root)
1015 root = root_mem_cgroup;
1016 if (prev && prev != root)
1017 css_put(&prev->css);
1018}
7d74b06f 1019
6df38689
VD
1020static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1021{
1022 struct mem_cgroup *memcg = dead_memcg;
1023 struct mem_cgroup_reclaim_iter *iter;
1024 struct mem_cgroup_per_zone *mz;
1025 int nid, zid;
1026 int i;
1027
1028 while ((memcg = parent_mem_cgroup(memcg))) {
1029 for_each_node(nid) {
1030 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1031 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1032 for (i = 0; i <= DEF_PRIORITY; i++) {
1033 iter = &mz->iter[i];
1034 cmpxchg(&iter->position,
1035 dead_memcg, NULL);
1036 }
1037 }
1038 }
1039 }
1040}
1041
9f3a0d09
JW
1042/*
1043 * Iteration constructs for visiting all cgroups (under a tree). If
1044 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1045 * be used for reference counting.
1046 */
1047#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1048 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1049 iter != NULL; \
527a5ec9 1050 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1051
9f3a0d09 1052#define for_each_mem_cgroup(iter) \
527a5ec9 1053 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1054 iter != NULL; \
527a5ec9 1055 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1056
925b7673
JW
1057/**
1058 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1059 * @zone: zone of the wanted lruvec
fa9add64 1060 * @memcg: memcg of the wanted lruvec
925b7673
JW
1061 *
1062 * Returns the lru list vector holding pages for the given @zone and
1063 * @mem. This can be the global zone lruvec, if the memory controller
1064 * is disabled.
1065 */
1066struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1067 struct mem_cgroup *memcg)
1068{
1069 struct mem_cgroup_per_zone *mz;
bea8c150 1070 struct lruvec *lruvec;
925b7673 1071
bea8c150
HD
1072 if (mem_cgroup_disabled()) {
1073 lruvec = &zone->lruvec;
1074 goto out;
1075 }
925b7673 1076
e231875b 1077 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1078 lruvec = &mz->lruvec;
1079out:
1080 /*
1081 * Since a node can be onlined after the mem_cgroup was created,
1082 * we have to be prepared to initialize lruvec->zone here;
1083 * and if offlined then reonlined, we need to reinitialize it.
1084 */
1085 if (unlikely(lruvec->zone != zone))
1086 lruvec->zone = zone;
1087 return lruvec;
925b7673
JW
1088}
1089
925b7673 1090/**
dfe0e773 1091 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1092 * @page: the page
fa9add64 1093 * @zone: zone of the page
dfe0e773
JW
1094 *
1095 * This function is only safe when following the LRU page isolation
1096 * and putback protocol: the LRU lock must be held, and the page must
1097 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1098 */
fa9add64 1099struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1100{
08e552c6 1101 struct mem_cgroup_per_zone *mz;
925b7673 1102 struct mem_cgroup *memcg;
bea8c150 1103 struct lruvec *lruvec;
6d12e2d8 1104
bea8c150
HD
1105 if (mem_cgroup_disabled()) {
1106 lruvec = &zone->lruvec;
1107 goto out;
1108 }
925b7673 1109
1306a85a 1110 memcg = page->mem_cgroup;
7512102c 1111 /*
dfe0e773 1112 * Swapcache readahead pages are added to the LRU - and
29833315 1113 * possibly migrated - before they are charged.
7512102c 1114 */
29833315
JW
1115 if (!memcg)
1116 memcg = root_mem_cgroup;
7512102c 1117
e231875b 1118 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1119 lruvec = &mz->lruvec;
1120out:
1121 /*
1122 * Since a node can be onlined after the mem_cgroup was created,
1123 * we have to be prepared to initialize lruvec->zone here;
1124 * and if offlined then reonlined, we need to reinitialize it.
1125 */
1126 if (unlikely(lruvec->zone != zone))
1127 lruvec->zone = zone;
1128 return lruvec;
08e552c6 1129}
b69408e8 1130
925b7673 1131/**
fa9add64
HD
1132 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1133 * @lruvec: mem_cgroup per zone lru vector
1134 * @lru: index of lru list the page is sitting on
1135 * @nr_pages: positive when adding or negative when removing
925b7673 1136 *
fa9add64
HD
1137 * This function must be called when a page is added to or removed from an
1138 * lru list.
3f58a829 1139 */
fa9add64
HD
1140void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1141 int nr_pages)
3f58a829
MK
1142{
1143 struct mem_cgroup_per_zone *mz;
fa9add64 1144 unsigned long *lru_size;
3f58a829
MK
1145
1146 if (mem_cgroup_disabled())
1147 return;
1148
fa9add64
HD
1149 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1150 lru_size = mz->lru_size + lru;
1151 *lru_size += nr_pages;
1152 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1153}
544122e5 1154
2314b42d 1155bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1156{
2314b42d 1157 struct mem_cgroup *task_memcg;
158e0a2d 1158 struct task_struct *p;
ffbdccf5 1159 bool ret;
4c4a2214 1160
158e0a2d 1161 p = find_lock_task_mm(task);
de077d22 1162 if (p) {
2314b42d 1163 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1164 task_unlock(p);
1165 } else {
1166 /*
1167 * All threads may have already detached their mm's, but the oom
1168 * killer still needs to detect if they have already been oom
1169 * killed to prevent needlessly killing additional tasks.
1170 */
ffbdccf5 1171 rcu_read_lock();
2314b42d
JW
1172 task_memcg = mem_cgroup_from_task(task);
1173 css_get(&task_memcg->css);
ffbdccf5 1174 rcu_read_unlock();
de077d22 1175 }
2314b42d
JW
1176 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1177 css_put(&task_memcg->css);
4c4a2214
DR
1178 return ret;
1179}
1180
3e32cb2e 1181#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1182 container_of(counter, struct mem_cgroup, member)
1183
19942822 1184/**
9d11ea9f 1185 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1186 * @memcg: the memory cgroup
19942822 1187 *
9d11ea9f 1188 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1189 * pages.
19942822 1190 */
c0ff4b85 1191static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1192{
3e32cb2e
JW
1193 unsigned long margin = 0;
1194 unsigned long count;
1195 unsigned long limit;
9d11ea9f 1196
3e32cb2e 1197 count = page_counter_read(&memcg->memory);
4db0c3c2 1198 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1199 if (count < limit)
1200 margin = limit - count;
1201
1202 if (do_swap_account) {
1203 count = page_counter_read(&memcg->memsw);
4db0c3c2 1204 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1205 if (count <= limit)
1206 margin = min(margin, limit - count);
1207 }
1208
1209 return margin;
19942822
JW
1210}
1211
32047e2a 1212/*
bdcbb659 1213 * A routine for checking "mem" is under move_account() or not.
32047e2a 1214 *
bdcbb659
QH
1215 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1216 * moving cgroups. This is for waiting at high-memory pressure
1217 * caused by "move".
32047e2a 1218 */
c0ff4b85 1219static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1220{
2bd9bb20
KH
1221 struct mem_cgroup *from;
1222 struct mem_cgroup *to;
4b534334 1223 bool ret = false;
2bd9bb20
KH
1224 /*
1225 * Unlike task_move routines, we access mc.to, mc.from not under
1226 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1227 */
1228 spin_lock(&mc.lock);
1229 from = mc.from;
1230 to = mc.to;
1231 if (!from)
1232 goto unlock;
3e92041d 1233
2314b42d
JW
1234 ret = mem_cgroup_is_descendant(from, memcg) ||
1235 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1236unlock:
1237 spin_unlock(&mc.lock);
4b534334
KH
1238 return ret;
1239}
1240
c0ff4b85 1241static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1242{
1243 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1244 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1245 DEFINE_WAIT(wait);
1246 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1247 /* moving charge context might have finished. */
1248 if (mc.moving_task)
1249 schedule();
1250 finish_wait(&mc.waitq, &wait);
1251 return true;
1252 }
1253 }
1254 return false;
1255}
1256
58cf188e 1257#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1258/**
58cf188e 1259 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1260 * @memcg: The memory cgroup that went over limit
1261 * @p: Task that is going to be killed
1262 *
1263 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1264 * enabled
1265 */
1266void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1267{
e61734c5 1268 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1269 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1270 struct mem_cgroup *iter;
1271 unsigned int i;
e222432b 1272
08088cb9 1273 mutex_lock(&oom_info_lock);
e222432b
BS
1274 rcu_read_lock();
1275
2415b9f5
BV
1276 if (p) {
1277 pr_info("Task in ");
1278 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1279 pr_cont(" killed as a result of limit of ");
1280 } else {
1281 pr_info("Memory limit reached of cgroup ");
1282 }
1283
e61734c5 1284 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1285 pr_cont("\n");
e222432b 1286
e222432b
BS
1287 rcu_read_unlock();
1288
3e32cb2e
JW
1289 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1290 K((u64)page_counter_read(&memcg->memory)),
1291 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1292 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1293 K((u64)page_counter_read(&memcg->memsw)),
1294 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1295 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1296 K((u64)page_counter_read(&memcg->kmem)),
1297 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1298
1299 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1300 pr_info("Memory cgroup stats for ");
1301 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1302 pr_cont(":");
1303
1304 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1305 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1306 continue;
484ebb3b 1307 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1308 K(mem_cgroup_read_stat(iter, i)));
1309 }
1310
1311 for (i = 0; i < NR_LRU_LISTS; i++)
1312 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1313 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1314
1315 pr_cont("\n");
1316 }
08088cb9 1317 mutex_unlock(&oom_info_lock);
e222432b
BS
1318}
1319
81d39c20
KH
1320/*
1321 * This function returns the number of memcg under hierarchy tree. Returns
1322 * 1(self count) if no children.
1323 */
c0ff4b85 1324static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1325{
1326 int num = 0;
7d74b06f
KH
1327 struct mem_cgroup *iter;
1328
c0ff4b85 1329 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1330 num++;
81d39c20
KH
1331 return num;
1332}
1333
a63d83f4
DR
1334/*
1335 * Return the memory (and swap, if configured) limit for a memcg.
1336 */
3e32cb2e 1337static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1338{
3e32cb2e 1339 unsigned long limit;
f3e8eb70 1340
3e32cb2e 1341 limit = memcg->memory.limit;
9a5a8f19 1342 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1343 unsigned long memsw_limit;
9a5a8f19 1344
3e32cb2e
JW
1345 memsw_limit = memcg->memsw.limit;
1346 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1347 }
9a5a8f19 1348 return limit;
a63d83f4
DR
1349}
1350
19965460
DR
1351static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1352 int order)
9cbb78bb 1353{
6e0fc46d
DR
1354 struct oom_control oc = {
1355 .zonelist = NULL,
1356 .nodemask = NULL,
1357 .gfp_mask = gfp_mask,
1358 .order = order,
6e0fc46d 1359 };
9cbb78bb
DR
1360 struct mem_cgroup *iter;
1361 unsigned long chosen_points = 0;
1362 unsigned long totalpages;
1363 unsigned int points = 0;
1364 struct task_struct *chosen = NULL;
1365
dc56401f
JW
1366 mutex_lock(&oom_lock);
1367
876aafbf 1368 /*
465adcf1
DR
1369 * If current has a pending SIGKILL or is exiting, then automatically
1370 * select it. The goal is to allow it to allocate so that it may
1371 * quickly exit and free its memory.
876aafbf 1372 */
d003f371 1373 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1374 mark_oom_victim(current);
dc56401f 1375 goto unlock;
876aafbf
DR
1376 }
1377
6e0fc46d 1378 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1379 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1380 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1381 struct css_task_iter it;
9cbb78bb
DR
1382 struct task_struct *task;
1383
72ec7029
TH
1384 css_task_iter_start(&iter->css, &it);
1385 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1386 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1387 case OOM_SCAN_SELECT:
1388 if (chosen)
1389 put_task_struct(chosen);
1390 chosen = task;
1391 chosen_points = ULONG_MAX;
1392 get_task_struct(chosen);
1393 /* fall through */
1394 case OOM_SCAN_CONTINUE:
1395 continue;
1396 case OOM_SCAN_ABORT:
72ec7029 1397 css_task_iter_end(&it);
9cbb78bb
DR
1398 mem_cgroup_iter_break(memcg, iter);
1399 if (chosen)
1400 put_task_struct(chosen);
dc56401f 1401 goto unlock;
9cbb78bb
DR
1402 case OOM_SCAN_OK:
1403 break;
1404 };
1405 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1406 if (!points || points < chosen_points)
1407 continue;
1408 /* Prefer thread group leaders for display purposes */
1409 if (points == chosen_points &&
1410 thread_group_leader(chosen))
1411 continue;
1412
1413 if (chosen)
1414 put_task_struct(chosen);
1415 chosen = task;
1416 chosen_points = points;
1417 get_task_struct(chosen);
9cbb78bb 1418 }
72ec7029 1419 css_task_iter_end(&it);
9cbb78bb
DR
1420 }
1421
dc56401f
JW
1422 if (chosen) {
1423 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1424 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1425 "Memory cgroup out of memory");
dc56401f
JW
1426 }
1427unlock:
1428 mutex_unlock(&oom_lock);
9cbb78bb
DR
1429}
1430
ae6e71d3
MC
1431#if MAX_NUMNODES > 1
1432
4d0c066d
KH
1433/**
1434 * test_mem_cgroup_node_reclaimable
dad7557e 1435 * @memcg: the target memcg
4d0c066d
KH
1436 * @nid: the node ID to be checked.
1437 * @noswap : specify true here if the user wants flle only information.
1438 *
1439 * This function returns whether the specified memcg contains any
1440 * reclaimable pages on a node. Returns true if there are any reclaimable
1441 * pages in the node.
1442 */
c0ff4b85 1443static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1444 int nid, bool noswap)
1445{
c0ff4b85 1446 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1447 return true;
1448 if (noswap || !total_swap_pages)
1449 return false;
c0ff4b85 1450 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1451 return true;
1452 return false;
1453
1454}
889976db
YH
1455
1456/*
1457 * Always updating the nodemask is not very good - even if we have an empty
1458 * list or the wrong list here, we can start from some node and traverse all
1459 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1460 *
1461 */
c0ff4b85 1462static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1463{
1464 int nid;
453a9bf3
KH
1465 /*
1466 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1467 * pagein/pageout changes since the last update.
1468 */
c0ff4b85 1469 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1470 return;
c0ff4b85 1471 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1472 return;
1473
889976db 1474 /* make a nodemask where this memcg uses memory from */
31aaea4a 1475 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1476
31aaea4a 1477 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1478
c0ff4b85
R
1479 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1480 node_clear(nid, memcg->scan_nodes);
889976db 1481 }
453a9bf3 1482
c0ff4b85
R
1483 atomic_set(&memcg->numainfo_events, 0);
1484 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1485}
1486
1487/*
1488 * Selecting a node where we start reclaim from. Because what we need is just
1489 * reducing usage counter, start from anywhere is O,K. Considering
1490 * memory reclaim from current node, there are pros. and cons.
1491 *
1492 * Freeing memory from current node means freeing memory from a node which
1493 * we'll use or we've used. So, it may make LRU bad. And if several threads
1494 * hit limits, it will see a contention on a node. But freeing from remote
1495 * node means more costs for memory reclaim because of memory latency.
1496 *
1497 * Now, we use round-robin. Better algorithm is welcomed.
1498 */
c0ff4b85 1499int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1500{
1501 int node;
1502
c0ff4b85
R
1503 mem_cgroup_may_update_nodemask(memcg);
1504 node = memcg->last_scanned_node;
889976db 1505
c0ff4b85 1506 node = next_node(node, memcg->scan_nodes);
889976db 1507 if (node == MAX_NUMNODES)
c0ff4b85 1508 node = first_node(memcg->scan_nodes);
889976db
YH
1509 /*
1510 * We call this when we hit limit, not when pages are added to LRU.
1511 * No LRU may hold pages because all pages are UNEVICTABLE or
1512 * memcg is too small and all pages are not on LRU. In that case,
1513 * we use curret node.
1514 */
1515 if (unlikely(node == MAX_NUMNODES))
1516 node = numa_node_id();
1517
c0ff4b85 1518 memcg->last_scanned_node = node;
889976db
YH
1519 return node;
1520}
889976db 1521#else
c0ff4b85 1522int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1523{
1524 return 0;
1525}
1526#endif
1527
0608f43d
AM
1528static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1529 struct zone *zone,
1530 gfp_t gfp_mask,
1531 unsigned long *total_scanned)
1532{
1533 struct mem_cgroup *victim = NULL;
1534 int total = 0;
1535 int loop = 0;
1536 unsigned long excess;
1537 unsigned long nr_scanned;
1538 struct mem_cgroup_reclaim_cookie reclaim = {
1539 .zone = zone,
1540 .priority = 0,
1541 };
1542
3e32cb2e 1543 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1544
1545 while (1) {
1546 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1547 if (!victim) {
1548 loop++;
1549 if (loop >= 2) {
1550 /*
1551 * If we have not been able to reclaim
1552 * anything, it might because there are
1553 * no reclaimable pages under this hierarchy
1554 */
1555 if (!total)
1556 break;
1557 /*
1558 * We want to do more targeted reclaim.
1559 * excess >> 2 is not to excessive so as to
1560 * reclaim too much, nor too less that we keep
1561 * coming back to reclaim from this cgroup
1562 */
1563 if (total >= (excess >> 2) ||
1564 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1565 break;
1566 }
1567 continue;
1568 }
0608f43d
AM
1569 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1570 zone, &nr_scanned);
1571 *total_scanned += nr_scanned;
3e32cb2e 1572 if (!soft_limit_excess(root_memcg))
0608f43d 1573 break;
6d61ef40 1574 }
0608f43d
AM
1575 mem_cgroup_iter_break(root_memcg, victim);
1576 return total;
6d61ef40
BS
1577}
1578
0056f4e6
JW
1579#ifdef CONFIG_LOCKDEP
1580static struct lockdep_map memcg_oom_lock_dep_map = {
1581 .name = "memcg_oom_lock",
1582};
1583#endif
1584
fb2a6fc5
JW
1585static DEFINE_SPINLOCK(memcg_oom_lock);
1586
867578cb
KH
1587/*
1588 * Check OOM-Killer is already running under our hierarchy.
1589 * If someone is running, return false.
1590 */
fb2a6fc5 1591static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1592{
79dfdacc 1593 struct mem_cgroup *iter, *failed = NULL;
a636b327 1594
fb2a6fc5
JW
1595 spin_lock(&memcg_oom_lock);
1596
9f3a0d09 1597 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1598 if (iter->oom_lock) {
79dfdacc
MH
1599 /*
1600 * this subtree of our hierarchy is already locked
1601 * so we cannot give a lock.
1602 */
79dfdacc 1603 failed = iter;
9f3a0d09
JW
1604 mem_cgroup_iter_break(memcg, iter);
1605 break;
23751be0
JW
1606 } else
1607 iter->oom_lock = true;
7d74b06f 1608 }
867578cb 1609
fb2a6fc5
JW
1610 if (failed) {
1611 /*
1612 * OK, we failed to lock the whole subtree so we have
1613 * to clean up what we set up to the failing subtree
1614 */
1615 for_each_mem_cgroup_tree(iter, memcg) {
1616 if (iter == failed) {
1617 mem_cgroup_iter_break(memcg, iter);
1618 break;
1619 }
1620 iter->oom_lock = false;
79dfdacc 1621 }
0056f4e6
JW
1622 } else
1623 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1624
1625 spin_unlock(&memcg_oom_lock);
1626
1627 return !failed;
a636b327 1628}
0b7f569e 1629
fb2a6fc5 1630static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1631{
7d74b06f
KH
1632 struct mem_cgroup *iter;
1633
fb2a6fc5 1634 spin_lock(&memcg_oom_lock);
0056f4e6 1635 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1636 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1637 iter->oom_lock = false;
fb2a6fc5 1638 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1639}
1640
c0ff4b85 1641static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1642{
1643 struct mem_cgroup *iter;
1644
c2b42d3c 1645 spin_lock(&memcg_oom_lock);
c0ff4b85 1646 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1647 iter->under_oom++;
1648 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1649}
1650
c0ff4b85 1651static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1652{
1653 struct mem_cgroup *iter;
1654
867578cb
KH
1655 /*
1656 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1657 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1658 */
c2b42d3c 1659 spin_lock(&memcg_oom_lock);
c0ff4b85 1660 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1661 if (iter->under_oom > 0)
1662 iter->under_oom--;
1663 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1664}
1665
867578cb
KH
1666static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1667
dc98df5a 1668struct oom_wait_info {
d79154bb 1669 struct mem_cgroup *memcg;
dc98df5a
KH
1670 wait_queue_t wait;
1671};
1672
1673static int memcg_oom_wake_function(wait_queue_t *wait,
1674 unsigned mode, int sync, void *arg)
1675{
d79154bb
HD
1676 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1677 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1678 struct oom_wait_info *oom_wait_info;
1679
1680 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1681 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1682
2314b42d
JW
1683 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1684 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1685 return 0;
dc98df5a
KH
1686 return autoremove_wake_function(wait, mode, sync, arg);
1687}
1688
c0ff4b85 1689static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1690{
c2b42d3c
TH
1691 /*
1692 * For the following lockless ->under_oom test, the only required
1693 * guarantee is that it must see the state asserted by an OOM when
1694 * this function is called as a result of userland actions
1695 * triggered by the notification of the OOM. This is trivially
1696 * achieved by invoking mem_cgroup_mark_under_oom() before
1697 * triggering notification.
1698 */
1699 if (memcg && memcg->under_oom)
f4b90b70 1700 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1701}
1702
3812c8c8 1703static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1704{
626ebc41 1705 if (!current->memcg_may_oom)
3812c8c8 1706 return;
867578cb 1707 /*
49426420
JW
1708 * We are in the middle of the charge context here, so we
1709 * don't want to block when potentially sitting on a callstack
1710 * that holds all kinds of filesystem and mm locks.
1711 *
1712 * Also, the caller may handle a failed allocation gracefully
1713 * (like optional page cache readahead) and so an OOM killer
1714 * invocation might not even be necessary.
1715 *
1716 * That's why we don't do anything here except remember the
1717 * OOM context and then deal with it at the end of the page
1718 * fault when the stack is unwound, the locks are released,
1719 * and when we know whether the fault was overall successful.
867578cb 1720 */
49426420 1721 css_get(&memcg->css);
626ebc41
TH
1722 current->memcg_in_oom = memcg;
1723 current->memcg_oom_gfp_mask = mask;
1724 current->memcg_oom_order = order;
3812c8c8
JW
1725}
1726
1727/**
1728 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1729 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1730 *
49426420
JW
1731 * This has to be called at the end of a page fault if the memcg OOM
1732 * handler was enabled.
3812c8c8 1733 *
49426420 1734 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1735 * sleep on a waitqueue until the userspace task resolves the
1736 * situation. Sleeping directly in the charge context with all kinds
1737 * of locks held is not a good idea, instead we remember an OOM state
1738 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1739 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1740 *
1741 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1742 * completed, %false otherwise.
3812c8c8 1743 */
49426420 1744bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1745{
626ebc41 1746 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1747 struct oom_wait_info owait;
49426420 1748 bool locked;
3812c8c8
JW
1749
1750 /* OOM is global, do not handle */
3812c8c8 1751 if (!memcg)
49426420 1752 return false;
3812c8c8 1753
c32b3cbe 1754 if (!handle || oom_killer_disabled)
49426420 1755 goto cleanup;
3812c8c8
JW
1756
1757 owait.memcg = memcg;
1758 owait.wait.flags = 0;
1759 owait.wait.func = memcg_oom_wake_function;
1760 owait.wait.private = current;
1761 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1762
3812c8c8 1763 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1764 mem_cgroup_mark_under_oom(memcg);
1765
1766 locked = mem_cgroup_oom_trylock(memcg);
1767
1768 if (locked)
1769 mem_cgroup_oom_notify(memcg);
1770
1771 if (locked && !memcg->oom_kill_disable) {
1772 mem_cgroup_unmark_under_oom(memcg);
1773 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1774 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1775 current->memcg_oom_order);
49426420 1776 } else {
3812c8c8 1777 schedule();
49426420
JW
1778 mem_cgroup_unmark_under_oom(memcg);
1779 finish_wait(&memcg_oom_waitq, &owait.wait);
1780 }
1781
1782 if (locked) {
fb2a6fc5
JW
1783 mem_cgroup_oom_unlock(memcg);
1784 /*
1785 * There is no guarantee that an OOM-lock contender
1786 * sees the wakeups triggered by the OOM kill
1787 * uncharges. Wake any sleepers explicitely.
1788 */
1789 memcg_oom_recover(memcg);
1790 }
49426420 1791cleanup:
626ebc41 1792 current->memcg_in_oom = NULL;
3812c8c8 1793 css_put(&memcg->css);
867578cb 1794 return true;
0b7f569e
KH
1795}
1796
d7365e78
JW
1797/**
1798 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1799 * @page: page that is going to change accounted state
32047e2a 1800 *
d7365e78
JW
1801 * This function must mark the beginning of an accounted page state
1802 * change to prevent double accounting when the page is concurrently
1803 * being moved to another memcg:
32047e2a 1804 *
6de22619 1805 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1806 * if (TestClearPageState(page))
1807 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1808 * mem_cgroup_end_page_stat(memcg);
d69b042f 1809 */
6de22619 1810struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1811{
1812 struct mem_cgroup *memcg;
6de22619 1813 unsigned long flags;
89c06bd5 1814
6de22619
JW
1815 /*
1816 * The RCU lock is held throughout the transaction. The fast
1817 * path can get away without acquiring the memcg->move_lock
1818 * because page moving starts with an RCU grace period.
1819 *
1820 * The RCU lock also protects the memcg from being freed when
1821 * the page state that is going to change is the only thing
1822 * preventing the page from being uncharged.
1823 * E.g. end-writeback clearing PageWriteback(), which allows
1824 * migration to go ahead and uncharge the page before the
1825 * account transaction might be complete.
1826 */
d7365e78
JW
1827 rcu_read_lock();
1828
1829 if (mem_cgroup_disabled())
1830 return NULL;
89c06bd5 1831again:
1306a85a 1832 memcg = page->mem_cgroup;
29833315 1833 if (unlikely(!memcg))
d7365e78
JW
1834 return NULL;
1835
bdcbb659 1836 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1837 return memcg;
89c06bd5 1838
6de22619 1839 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1840 if (memcg != page->mem_cgroup) {
6de22619 1841 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1842 goto again;
1843 }
6de22619
JW
1844
1845 /*
1846 * When charge migration first begins, we can have locked and
1847 * unlocked page stat updates happening concurrently. Track
1848 * the task who has the lock for mem_cgroup_end_page_stat().
1849 */
1850 memcg->move_lock_task = current;
1851 memcg->move_lock_flags = flags;
d7365e78
JW
1852
1853 return memcg;
89c06bd5 1854}
c4843a75 1855EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1856
d7365e78
JW
1857/**
1858 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1859 * @memcg: the memcg that was accounted against
d7365e78 1860 */
6de22619 1861void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1862{
6de22619
JW
1863 if (memcg && memcg->move_lock_task == current) {
1864 unsigned long flags = memcg->move_lock_flags;
1865
1866 memcg->move_lock_task = NULL;
1867 memcg->move_lock_flags = 0;
1868
1869 spin_unlock_irqrestore(&memcg->move_lock, flags);
1870 }
89c06bd5 1871
d7365e78 1872 rcu_read_unlock();
89c06bd5 1873}
c4843a75 1874EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1875
cdec2e42
KH
1876/*
1877 * size of first charge trial. "32" comes from vmscan.c's magic value.
1878 * TODO: maybe necessary to use big numbers in big irons.
1879 */
7ec99d62 1880#define CHARGE_BATCH 32U
cdec2e42
KH
1881struct memcg_stock_pcp {
1882 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1883 unsigned int nr_pages;
cdec2e42 1884 struct work_struct work;
26fe6168 1885 unsigned long flags;
a0db00fc 1886#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1887};
1888static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1889static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1890
a0956d54
SS
1891/**
1892 * consume_stock: Try to consume stocked charge on this cpu.
1893 * @memcg: memcg to consume from.
1894 * @nr_pages: how many pages to charge.
1895 *
1896 * The charges will only happen if @memcg matches the current cpu's memcg
1897 * stock, and at least @nr_pages are available in that stock. Failure to
1898 * service an allocation will refill the stock.
1899 *
1900 * returns true if successful, false otherwise.
cdec2e42 1901 */
a0956d54 1902static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1903{
1904 struct memcg_stock_pcp *stock;
3e32cb2e 1905 bool ret = false;
cdec2e42 1906
a0956d54 1907 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1908 return ret;
a0956d54 1909
cdec2e42 1910 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1911 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1912 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1913 ret = true;
1914 }
cdec2e42
KH
1915 put_cpu_var(memcg_stock);
1916 return ret;
1917}
1918
1919/*
3e32cb2e 1920 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1921 */
1922static void drain_stock(struct memcg_stock_pcp *stock)
1923{
1924 struct mem_cgroup *old = stock->cached;
1925
11c9ea4e 1926 if (stock->nr_pages) {
3e32cb2e 1927 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1928 if (do_swap_account)
3e32cb2e 1929 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1930 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1931 stock->nr_pages = 0;
cdec2e42
KH
1932 }
1933 stock->cached = NULL;
cdec2e42
KH
1934}
1935
1936/*
1937 * This must be called under preempt disabled or must be called by
1938 * a thread which is pinned to local cpu.
1939 */
1940static void drain_local_stock(struct work_struct *dummy)
1941{
7c8e0181 1942 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1943 drain_stock(stock);
26fe6168 1944 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1945}
1946
1947/*
3e32cb2e 1948 * Cache charges(val) to local per_cpu area.
320cc51d 1949 * This will be consumed by consume_stock() function, later.
cdec2e42 1950 */
c0ff4b85 1951static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1952{
1953 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1954
c0ff4b85 1955 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1956 drain_stock(stock);
c0ff4b85 1957 stock->cached = memcg;
cdec2e42 1958 }
11c9ea4e 1959 stock->nr_pages += nr_pages;
cdec2e42
KH
1960 put_cpu_var(memcg_stock);
1961}
1962
1963/*
c0ff4b85 1964 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1965 * of the hierarchy under it.
cdec2e42 1966 */
6d3d6aa2 1967static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1968{
26fe6168 1969 int cpu, curcpu;
d38144b7 1970
6d3d6aa2
JW
1971 /* If someone's already draining, avoid adding running more workers. */
1972 if (!mutex_trylock(&percpu_charge_mutex))
1973 return;
cdec2e42 1974 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1975 get_online_cpus();
5af12d0e 1976 curcpu = get_cpu();
cdec2e42
KH
1977 for_each_online_cpu(cpu) {
1978 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1979 struct mem_cgroup *memcg;
26fe6168 1980
c0ff4b85
R
1981 memcg = stock->cached;
1982 if (!memcg || !stock->nr_pages)
26fe6168 1983 continue;
2314b42d 1984 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1985 continue;
d1a05b69
MH
1986 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1987 if (cpu == curcpu)
1988 drain_local_stock(&stock->work);
1989 else
1990 schedule_work_on(cpu, &stock->work);
1991 }
cdec2e42 1992 }
5af12d0e 1993 put_cpu();
f894ffa8 1994 put_online_cpus();
9f50fad6 1995 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1996}
1997
0db0628d 1998static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1999 unsigned long action,
2000 void *hcpu)
2001{
2002 int cpu = (unsigned long)hcpu;
2003 struct memcg_stock_pcp *stock;
2004
619d094b 2005 if (action == CPU_ONLINE)
1489ebad 2006 return NOTIFY_OK;
1489ebad 2007
d833049b 2008 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2009 return NOTIFY_OK;
711d3d2c 2010
cdec2e42
KH
2011 stock = &per_cpu(memcg_stock, cpu);
2012 drain_stock(stock);
2013 return NOTIFY_OK;
2014}
2015
b23afb93
TH
2016/*
2017 * Scheduled by try_charge() to be executed from the userland return path
2018 * and reclaims memory over the high limit.
2019 */
2020void mem_cgroup_handle_over_high(void)
2021{
2022 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2023 struct mem_cgroup *memcg, *pos;
2024
2025 if (likely(!nr_pages))
2026 return;
2027
2028 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2029
2030 do {
2031 if (page_counter_read(&pos->memory) <= pos->high)
2032 continue;
2033 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2034 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2035 } while ((pos = parent_mem_cgroup(pos)));
2036
2037 css_put(&memcg->css);
2038 current->memcg_nr_pages_over_high = 0;
2039}
2040
00501b53
JW
2041static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2042 unsigned int nr_pages)
8a9f3ccd 2043{
7ec99d62 2044 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2045 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2046 struct mem_cgroup *mem_over_limit;
3e32cb2e 2047 struct page_counter *counter;
6539cc05 2048 unsigned long nr_reclaimed;
b70a2a21
JW
2049 bool may_swap = true;
2050 bool drained = false;
a636b327 2051
ce00a967 2052 if (mem_cgroup_is_root(memcg))
10d53c74 2053 return 0;
6539cc05 2054retry:
b6b6cc72 2055 if (consume_stock(memcg, nr_pages))
10d53c74 2056 return 0;
8a9f3ccd 2057
3fbe7244 2058 if (!do_swap_account ||
6071ca52
JW
2059 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2060 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2061 goto done_restock;
3fbe7244 2062 if (do_swap_account)
3e32cb2e
JW
2063 page_counter_uncharge(&memcg->memsw, batch);
2064 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2065 } else {
3e32cb2e 2066 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2067 may_swap = false;
3fbe7244 2068 }
7a81b88c 2069
6539cc05
JW
2070 if (batch > nr_pages) {
2071 batch = nr_pages;
2072 goto retry;
2073 }
6d61ef40 2074
06b078fc
JW
2075 /*
2076 * Unlike in global OOM situations, memcg is not in a physical
2077 * memory shortage. Allow dying and OOM-killed tasks to
2078 * bypass the last charges so that they can exit quickly and
2079 * free their memory.
2080 */
2081 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2082 fatal_signal_pending(current) ||
2083 current->flags & PF_EXITING))
10d53c74 2084 goto force;
06b078fc
JW
2085
2086 if (unlikely(task_in_memcg_oom(current)))
2087 goto nomem;
2088
d0164adc 2089 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2090 goto nomem;
4b534334 2091
241994ed
JW
2092 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2093
b70a2a21
JW
2094 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2095 gfp_mask, may_swap);
6539cc05 2096
61e02c74 2097 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2098 goto retry;
28c34c29 2099
b70a2a21 2100 if (!drained) {
6d3d6aa2 2101 drain_all_stock(mem_over_limit);
b70a2a21
JW
2102 drained = true;
2103 goto retry;
2104 }
2105
28c34c29
JW
2106 if (gfp_mask & __GFP_NORETRY)
2107 goto nomem;
6539cc05
JW
2108 /*
2109 * Even though the limit is exceeded at this point, reclaim
2110 * may have been able to free some pages. Retry the charge
2111 * before killing the task.
2112 *
2113 * Only for regular pages, though: huge pages are rather
2114 * unlikely to succeed so close to the limit, and we fall back
2115 * to regular pages anyway in case of failure.
2116 */
61e02c74 2117 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2118 goto retry;
2119 /*
2120 * At task move, charge accounts can be doubly counted. So, it's
2121 * better to wait until the end of task_move if something is going on.
2122 */
2123 if (mem_cgroup_wait_acct_move(mem_over_limit))
2124 goto retry;
2125
9b130619
JW
2126 if (nr_retries--)
2127 goto retry;
2128
06b078fc 2129 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2130 goto force;
06b078fc 2131
6539cc05 2132 if (fatal_signal_pending(current))
10d53c74 2133 goto force;
6539cc05 2134
241994ed
JW
2135 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2136
3608de07
JM
2137 mem_cgroup_oom(mem_over_limit, gfp_mask,
2138 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2139nomem:
6d1fdc48 2140 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2141 return -ENOMEM;
10d53c74
TH
2142force:
2143 /*
2144 * The allocation either can't fail or will lead to more memory
2145 * being freed very soon. Allow memory usage go over the limit
2146 * temporarily by force charging it.
2147 */
2148 page_counter_charge(&memcg->memory, nr_pages);
2149 if (do_swap_account)
2150 page_counter_charge(&memcg->memsw, nr_pages);
2151 css_get_many(&memcg->css, nr_pages);
2152
2153 return 0;
6539cc05
JW
2154
2155done_restock:
e8ea14cc 2156 css_get_many(&memcg->css, batch);
6539cc05
JW
2157 if (batch > nr_pages)
2158 refill_stock(memcg, batch - nr_pages);
b23afb93 2159
241994ed 2160 /*
b23afb93
TH
2161 * If the hierarchy is above the normal consumption range, schedule
2162 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2163 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2164 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2165 * not recorded as it most likely matches current's and won't
2166 * change in the meantime. As high limit is checked again before
2167 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2168 */
2169 do {
b23afb93 2170 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2171 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2172 set_notify_resume(current);
2173 break;
2174 }
241994ed 2175 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2176
2177 return 0;
7a81b88c 2178}
8a9f3ccd 2179
00501b53 2180static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2181{
ce00a967
JW
2182 if (mem_cgroup_is_root(memcg))
2183 return;
2184
3e32cb2e 2185 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2186 if (do_swap_account)
3e32cb2e 2187 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2188
e8ea14cc 2189 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2190}
2191
0a31bc97
JW
2192static void lock_page_lru(struct page *page, int *isolated)
2193{
2194 struct zone *zone = page_zone(page);
2195
2196 spin_lock_irq(&zone->lru_lock);
2197 if (PageLRU(page)) {
2198 struct lruvec *lruvec;
2199
2200 lruvec = mem_cgroup_page_lruvec(page, zone);
2201 ClearPageLRU(page);
2202 del_page_from_lru_list(page, lruvec, page_lru(page));
2203 *isolated = 1;
2204 } else
2205 *isolated = 0;
2206}
2207
2208static void unlock_page_lru(struct page *page, int isolated)
2209{
2210 struct zone *zone = page_zone(page);
2211
2212 if (isolated) {
2213 struct lruvec *lruvec;
2214
2215 lruvec = mem_cgroup_page_lruvec(page, zone);
2216 VM_BUG_ON_PAGE(PageLRU(page), page);
2217 SetPageLRU(page);
2218 add_page_to_lru_list(page, lruvec, page_lru(page));
2219 }
2220 spin_unlock_irq(&zone->lru_lock);
2221}
2222
00501b53 2223static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2224 bool lrucare)
7a81b88c 2225{
0a31bc97 2226 int isolated;
9ce70c02 2227
1306a85a 2228 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2229
2230 /*
2231 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2232 * may already be on some other mem_cgroup's LRU. Take care of it.
2233 */
0a31bc97
JW
2234 if (lrucare)
2235 lock_page_lru(page, &isolated);
9ce70c02 2236
0a31bc97
JW
2237 /*
2238 * Nobody should be changing or seriously looking at
1306a85a 2239 * page->mem_cgroup at this point:
0a31bc97
JW
2240 *
2241 * - the page is uncharged
2242 *
2243 * - the page is off-LRU
2244 *
2245 * - an anonymous fault has exclusive page access, except for
2246 * a locked page table
2247 *
2248 * - a page cache insertion, a swapin fault, or a migration
2249 * have the page locked
2250 */
1306a85a 2251 page->mem_cgroup = memcg;
9ce70c02 2252
0a31bc97
JW
2253 if (lrucare)
2254 unlock_page_lru(page, isolated);
7a81b88c 2255}
66e1707b 2256
7ae1e1d0 2257#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2258static int memcg_alloc_cache_id(void)
55007d84 2259{
f3bb3043
VD
2260 int id, size;
2261 int err;
2262
dbcf73e2 2263 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2264 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2265 if (id < 0)
2266 return id;
55007d84 2267
dbcf73e2 2268 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2269 return id;
2270
2271 /*
2272 * There's no space for the new id in memcg_caches arrays,
2273 * so we have to grow them.
2274 */
05257a1a 2275 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2276
2277 size = 2 * (id + 1);
55007d84
GC
2278 if (size < MEMCG_CACHES_MIN_SIZE)
2279 size = MEMCG_CACHES_MIN_SIZE;
2280 else if (size > MEMCG_CACHES_MAX_SIZE)
2281 size = MEMCG_CACHES_MAX_SIZE;
2282
f3bb3043 2283 err = memcg_update_all_caches(size);
60d3fd32
VD
2284 if (!err)
2285 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2286 if (!err)
2287 memcg_nr_cache_ids = size;
2288
2289 up_write(&memcg_cache_ids_sem);
2290
f3bb3043 2291 if (err) {
dbcf73e2 2292 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2293 return err;
2294 }
2295 return id;
2296}
2297
2298static void memcg_free_cache_id(int id)
2299{
dbcf73e2 2300 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2301}
2302
d5b3cf71 2303struct memcg_kmem_cache_create_work {
5722d094
VD
2304 struct mem_cgroup *memcg;
2305 struct kmem_cache *cachep;
2306 struct work_struct work;
2307};
2308
d5b3cf71 2309static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2310{
d5b3cf71
VD
2311 struct memcg_kmem_cache_create_work *cw =
2312 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2313 struct mem_cgroup *memcg = cw->memcg;
2314 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2315
d5b3cf71 2316 memcg_create_kmem_cache(memcg, cachep);
bd673145 2317
5722d094 2318 css_put(&memcg->css);
d7f25f8a
GC
2319 kfree(cw);
2320}
2321
2322/*
2323 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2324 */
d5b3cf71
VD
2325static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2326 struct kmem_cache *cachep)
d7f25f8a 2327{
d5b3cf71 2328 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2329
776ed0f0 2330 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2331 if (!cw)
d7f25f8a 2332 return;
8135be5a
VD
2333
2334 css_get(&memcg->css);
d7f25f8a
GC
2335
2336 cw->memcg = memcg;
2337 cw->cachep = cachep;
d5b3cf71 2338 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2339
d7f25f8a
GC
2340 schedule_work(&cw->work);
2341}
2342
d5b3cf71
VD
2343static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2344 struct kmem_cache *cachep)
0e9d92f2
GC
2345{
2346 /*
2347 * We need to stop accounting when we kmalloc, because if the
2348 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2349 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2350 *
2351 * However, it is better to enclose the whole function. Depending on
2352 * the debugging options enabled, INIT_WORK(), for instance, can
2353 * trigger an allocation. This too, will make us recurse. Because at
2354 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2355 * the safest choice is to do it like this, wrapping the whole function.
2356 */
6f185c29 2357 current->memcg_kmem_skip_account = 1;
d5b3cf71 2358 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2359 current->memcg_kmem_skip_account = 0;
0e9d92f2 2360}
c67a8a68 2361
d7f25f8a
GC
2362/*
2363 * Return the kmem_cache we're supposed to use for a slab allocation.
2364 * We try to use the current memcg's version of the cache.
2365 *
2366 * If the cache does not exist yet, if we are the first user of it,
2367 * we either create it immediately, if possible, or create it asynchronously
2368 * in a workqueue.
2369 * In the latter case, we will let the current allocation go through with
2370 * the original cache.
2371 *
2372 * Can't be called in interrupt context or from kernel threads.
2373 * This function needs to be called with rcu_read_lock() held.
2374 */
230e9fc2 2375struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2376{
2377 struct mem_cgroup *memcg;
959c8963 2378 struct kmem_cache *memcg_cachep;
2a4db7eb 2379 int kmemcg_id;
d7f25f8a 2380
f7ce3190 2381 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2382
230e9fc2
VD
2383 if (cachep->flags & SLAB_ACCOUNT)
2384 gfp |= __GFP_ACCOUNT;
2385
2386 if (!(gfp & __GFP_ACCOUNT))
2387 return cachep;
2388
9d100c5e 2389 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2390 return cachep;
2391
8135be5a 2392 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2393 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2394 if (kmemcg_id < 0)
ca0dde97 2395 goto out;
d7f25f8a 2396
2a4db7eb 2397 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2398 if (likely(memcg_cachep))
2399 return memcg_cachep;
ca0dde97
LZ
2400
2401 /*
2402 * If we are in a safe context (can wait, and not in interrupt
2403 * context), we could be be predictable and return right away.
2404 * This would guarantee that the allocation being performed
2405 * already belongs in the new cache.
2406 *
2407 * However, there are some clashes that can arrive from locking.
2408 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2409 * memcg_create_kmem_cache, this means no further allocation
2410 * could happen with the slab_mutex held. So it's better to
2411 * defer everything.
ca0dde97 2412 */
d5b3cf71 2413 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2414out:
8135be5a 2415 css_put(&memcg->css);
ca0dde97 2416 return cachep;
d7f25f8a 2417}
d7f25f8a 2418
8135be5a
VD
2419void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2420{
2421 if (!is_root_cache(cachep))
f7ce3190 2422 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2423}
2424
f3ccb2c4
VD
2425int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2426 struct mem_cgroup *memcg)
7ae1e1d0 2427{
f3ccb2c4
VD
2428 unsigned int nr_pages = 1 << order;
2429 struct page_counter *counter;
7ae1e1d0
GC
2430 int ret;
2431
f3ccb2c4 2432 if (!memcg_kmem_is_active(memcg))
d05e83a6 2433 return 0;
6d42c232 2434
6071ca52
JW
2435 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2436 return -ENOMEM;
7ae1e1d0 2437
f3ccb2c4
VD
2438 ret = try_charge(memcg, gfp, nr_pages);
2439 if (ret) {
2440 page_counter_uncharge(&memcg->kmem, nr_pages);
2441 return ret;
7ae1e1d0
GC
2442 }
2443
f3ccb2c4 2444 page->mem_cgroup = memcg;
7ae1e1d0 2445
f3ccb2c4 2446 return 0;
7ae1e1d0
GC
2447}
2448
f3ccb2c4 2449int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2450{
f3ccb2c4
VD
2451 struct mem_cgroup *memcg;
2452 int ret;
7ae1e1d0 2453
f3ccb2c4
VD
2454 memcg = get_mem_cgroup_from_mm(current->mm);
2455 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2456 css_put(&memcg->css);
d05e83a6 2457 return ret;
7ae1e1d0
GC
2458}
2459
d05e83a6 2460void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2461{
1306a85a 2462 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2463 unsigned int nr_pages = 1 << order;
7ae1e1d0 2464
7ae1e1d0
GC
2465 if (!memcg)
2466 return;
2467
309381fe 2468 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2469
f3ccb2c4
VD
2470 page_counter_uncharge(&memcg->kmem, nr_pages);
2471 page_counter_uncharge(&memcg->memory, nr_pages);
2472 if (do_swap_account)
2473 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2474
1306a85a 2475 page->mem_cgroup = NULL;
f3ccb2c4 2476 css_put_many(&memcg->css, nr_pages);
60d3fd32 2477}
7ae1e1d0
GC
2478#endif /* CONFIG_MEMCG_KMEM */
2479
ca3e0214
KH
2480#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2481
ca3e0214
KH
2482/*
2483 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2484 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2485 * charge/uncharge will be never happen and move_account() is done under
2486 * compound_lock(), so we don't have to take care of races.
ca3e0214 2487 */
e94c8a9c 2488void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2489{
e94c8a9c 2490 int i;
ca3e0214 2491
3d37c4a9
KH
2492 if (mem_cgroup_disabled())
2493 return;
b070e65c 2494
29833315 2495 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2496 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2497
1306a85a 2498 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2499 HPAGE_PMD_NR);
ca3e0214 2500}
12d27107 2501#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2502
c255a458 2503#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2504static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2505 bool charge)
d13d1443 2506{
0a31bc97
JW
2507 int val = (charge) ? 1 : -1;
2508 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2509}
02491447
DN
2510
2511/**
2512 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2513 * @entry: swap entry to be moved
2514 * @from: mem_cgroup which the entry is moved from
2515 * @to: mem_cgroup which the entry is moved to
2516 *
2517 * It succeeds only when the swap_cgroup's record for this entry is the same
2518 * as the mem_cgroup's id of @from.
2519 *
2520 * Returns 0 on success, -EINVAL on failure.
2521 *
3e32cb2e 2522 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2523 * both res and memsw, and called css_get().
2524 */
2525static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2526 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2527{
2528 unsigned short old_id, new_id;
2529
34c00c31
LZ
2530 old_id = mem_cgroup_id(from);
2531 new_id = mem_cgroup_id(to);
02491447
DN
2532
2533 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2534 mem_cgroup_swap_statistics(from, false);
483c30b5 2535 mem_cgroup_swap_statistics(to, true);
02491447
DN
2536 return 0;
2537 }
2538 return -EINVAL;
2539}
2540#else
2541static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2542 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2543{
2544 return -EINVAL;
2545}
8c7c6e34 2546#endif
d13d1443 2547
3e32cb2e 2548static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2549
d38d2a75 2550static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2551 unsigned long limit)
628f4235 2552{
3e32cb2e
JW
2553 unsigned long curusage;
2554 unsigned long oldusage;
2555 bool enlarge = false;
81d39c20 2556 int retry_count;
3e32cb2e 2557 int ret;
81d39c20
KH
2558
2559 /*
2560 * For keeping hierarchical_reclaim simple, how long we should retry
2561 * is depends on callers. We set our retry-count to be function
2562 * of # of children which we should visit in this loop.
2563 */
3e32cb2e
JW
2564 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2565 mem_cgroup_count_children(memcg);
81d39c20 2566
3e32cb2e 2567 oldusage = page_counter_read(&memcg->memory);
628f4235 2568
3e32cb2e 2569 do {
628f4235
KH
2570 if (signal_pending(current)) {
2571 ret = -EINTR;
2572 break;
2573 }
3e32cb2e
JW
2574
2575 mutex_lock(&memcg_limit_mutex);
2576 if (limit > memcg->memsw.limit) {
2577 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2578 ret = -EINVAL;
628f4235
KH
2579 break;
2580 }
3e32cb2e
JW
2581 if (limit > memcg->memory.limit)
2582 enlarge = true;
2583 ret = page_counter_limit(&memcg->memory, limit);
2584 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2585
2586 if (!ret)
2587 break;
2588
b70a2a21
JW
2589 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2590
3e32cb2e 2591 curusage = page_counter_read(&memcg->memory);
81d39c20 2592 /* Usage is reduced ? */
f894ffa8 2593 if (curusage >= oldusage)
81d39c20
KH
2594 retry_count--;
2595 else
2596 oldusage = curusage;
3e32cb2e
JW
2597 } while (retry_count);
2598
3c11ecf4
KH
2599 if (!ret && enlarge)
2600 memcg_oom_recover(memcg);
14797e23 2601
8c7c6e34
KH
2602 return ret;
2603}
2604
338c8431 2605static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2606 unsigned long limit)
8c7c6e34 2607{
3e32cb2e
JW
2608 unsigned long curusage;
2609 unsigned long oldusage;
2610 bool enlarge = false;
81d39c20 2611 int retry_count;
3e32cb2e 2612 int ret;
8c7c6e34 2613
81d39c20 2614 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2615 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2616 mem_cgroup_count_children(memcg);
2617
2618 oldusage = page_counter_read(&memcg->memsw);
2619
2620 do {
8c7c6e34
KH
2621 if (signal_pending(current)) {
2622 ret = -EINTR;
2623 break;
2624 }
3e32cb2e
JW
2625
2626 mutex_lock(&memcg_limit_mutex);
2627 if (limit < memcg->memory.limit) {
2628 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2629 ret = -EINVAL;
8c7c6e34
KH
2630 break;
2631 }
3e32cb2e
JW
2632 if (limit > memcg->memsw.limit)
2633 enlarge = true;
2634 ret = page_counter_limit(&memcg->memsw, limit);
2635 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2636
2637 if (!ret)
2638 break;
2639
b70a2a21
JW
2640 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2641
3e32cb2e 2642 curusage = page_counter_read(&memcg->memsw);
81d39c20 2643 /* Usage is reduced ? */
8c7c6e34 2644 if (curusage >= oldusage)
628f4235 2645 retry_count--;
81d39c20
KH
2646 else
2647 oldusage = curusage;
3e32cb2e
JW
2648 } while (retry_count);
2649
3c11ecf4
KH
2650 if (!ret && enlarge)
2651 memcg_oom_recover(memcg);
3e32cb2e 2652
628f4235
KH
2653 return ret;
2654}
2655
0608f43d
AM
2656unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2657 gfp_t gfp_mask,
2658 unsigned long *total_scanned)
2659{
2660 unsigned long nr_reclaimed = 0;
2661 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2662 unsigned long reclaimed;
2663 int loop = 0;
2664 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2665 unsigned long excess;
0608f43d
AM
2666 unsigned long nr_scanned;
2667
2668 if (order > 0)
2669 return 0;
2670
2671 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2672 /*
2673 * This loop can run a while, specially if mem_cgroup's continuously
2674 * keep exceeding their soft limit and putting the system under
2675 * pressure
2676 */
2677 do {
2678 if (next_mz)
2679 mz = next_mz;
2680 else
2681 mz = mem_cgroup_largest_soft_limit_node(mctz);
2682 if (!mz)
2683 break;
2684
2685 nr_scanned = 0;
2686 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2687 gfp_mask, &nr_scanned);
2688 nr_reclaimed += reclaimed;
2689 *total_scanned += nr_scanned;
0a31bc97 2690 spin_lock_irq(&mctz->lock);
bc2f2e7f 2691 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2692
2693 /*
2694 * If we failed to reclaim anything from this memory cgroup
2695 * it is time to move on to the next cgroup
2696 */
2697 next_mz = NULL;
bc2f2e7f
VD
2698 if (!reclaimed)
2699 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2700
3e32cb2e 2701 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2702 /*
2703 * One school of thought says that we should not add
2704 * back the node to the tree if reclaim returns 0.
2705 * But our reclaim could return 0, simply because due
2706 * to priority we are exposing a smaller subset of
2707 * memory to reclaim from. Consider this as a longer
2708 * term TODO.
2709 */
2710 /* If excess == 0, no tree ops */
cf2c8127 2711 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2712 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2713 css_put(&mz->memcg->css);
2714 loop++;
2715 /*
2716 * Could not reclaim anything and there are no more
2717 * mem cgroups to try or we seem to be looping without
2718 * reclaiming anything.
2719 */
2720 if (!nr_reclaimed &&
2721 (next_mz == NULL ||
2722 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2723 break;
2724 } while (!nr_reclaimed);
2725 if (next_mz)
2726 css_put(&next_mz->memcg->css);
2727 return nr_reclaimed;
2728}
2729
ea280e7b
TH
2730/*
2731 * Test whether @memcg has children, dead or alive. Note that this
2732 * function doesn't care whether @memcg has use_hierarchy enabled and
2733 * returns %true if there are child csses according to the cgroup
2734 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2735 */
b5f99b53
GC
2736static inline bool memcg_has_children(struct mem_cgroup *memcg)
2737{
ea280e7b
TH
2738 bool ret;
2739
696ac172 2740 /*
ea280e7b
TH
2741 * The lock does not prevent addition or deletion of children, but
2742 * it prevents a new child from being initialized based on this
2743 * parent in css_online(), so it's enough to decide whether
2744 * hierarchically inherited attributes can still be changed or not.
696ac172 2745 */
ea280e7b
TH
2746 lockdep_assert_held(&memcg_create_mutex);
2747
2748 rcu_read_lock();
2749 ret = css_next_child(NULL, &memcg->css);
2750 rcu_read_unlock();
2751 return ret;
b5f99b53
GC
2752}
2753
c26251f9
MH
2754/*
2755 * Reclaims as many pages from the given memcg as possible and moves
2756 * the rest to the parent.
2757 *
2758 * Caller is responsible for holding css reference for memcg.
2759 */
2760static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2761{
2762 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2763
c1e862c1
KH
2764 /* we call try-to-free pages for make this cgroup empty */
2765 lru_add_drain_all();
f817ed48 2766 /* try to free all pages in this cgroup */
3e32cb2e 2767 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2768 int progress;
c1e862c1 2769
c26251f9
MH
2770 if (signal_pending(current))
2771 return -EINTR;
2772
b70a2a21
JW
2773 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2774 GFP_KERNEL, true);
c1e862c1 2775 if (!progress) {
f817ed48 2776 nr_retries--;
c1e862c1 2777 /* maybe some writeback is necessary */
8aa7e847 2778 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2779 }
f817ed48
KH
2780
2781 }
ab5196c2
MH
2782
2783 return 0;
cc847582
KH
2784}
2785
6770c64e
TH
2786static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2787 char *buf, size_t nbytes,
2788 loff_t off)
c1e862c1 2789{
6770c64e 2790 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2791
d8423011
MH
2792 if (mem_cgroup_is_root(memcg))
2793 return -EINVAL;
6770c64e 2794 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2795}
2796
182446d0
TH
2797static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2798 struct cftype *cft)
18f59ea7 2799{
182446d0 2800 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2801}
2802
182446d0
TH
2803static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2804 struct cftype *cft, u64 val)
18f59ea7
BS
2805{
2806 int retval = 0;
182446d0 2807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2808 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2809
0999821b 2810 mutex_lock(&memcg_create_mutex);
567fb435
GC
2811
2812 if (memcg->use_hierarchy == val)
2813 goto out;
2814
18f59ea7 2815 /*
af901ca1 2816 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2817 * in the child subtrees. If it is unset, then the change can
2818 * occur, provided the current cgroup has no children.
2819 *
2820 * For the root cgroup, parent_mem is NULL, we allow value to be
2821 * set if there are no children.
2822 */
c0ff4b85 2823 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2824 (val == 1 || val == 0)) {
ea280e7b 2825 if (!memcg_has_children(memcg))
c0ff4b85 2826 memcg->use_hierarchy = val;
18f59ea7
BS
2827 else
2828 retval = -EBUSY;
2829 } else
2830 retval = -EINVAL;
567fb435
GC
2831
2832out:
0999821b 2833 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2834
2835 return retval;
2836}
2837
3e32cb2e
JW
2838static unsigned long tree_stat(struct mem_cgroup *memcg,
2839 enum mem_cgroup_stat_index idx)
ce00a967
JW
2840{
2841 struct mem_cgroup *iter;
484ebb3b 2842 unsigned long val = 0;
ce00a967 2843
ce00a967
JW
2844 for_each_mem_cgroup_tree(iter, memcg)
2845 val += mem_cgroup_read_stat(iter, idx);
2846
ce00a967
JW
2847 return val;
2848}
2849
6f646156 2850static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2851{
c12176d3 2852 unsigned long val;
ce00a967 2853
3e32cb2e
JW
2854 if (mem_cgroup_is_root(memcg)) {
2855 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2856 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2857 if (swap)
2858 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2859 } else {
ce00a967 2860 if (!swap)
3e32cb2e 2861 val = page_counter_read(&memcg->memory);
ce00a967 2862 else
3e32cb2e 2863 val = page_counter_read(&memcg->memsw);
ce00a967 2864 }
c12176d3 2865 return val;
ce00a967
JW
2866}
2867
3e32cb2e
JW
2868enum {
2869 RES_USAGE,
2870 RES_LIMIT,
2871 RES_MAX_USAGE,
2872 RES_FAILCNT,
2873 RES_SOFT_LIMIT,
2874};
ce00a967 2875
791badbd 2876static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2877 struct cftype *cft)
8cdea7c0 2878{
182446d0 2879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2880 struct page_counter *counter;
af36f906 2881
3e32cb2e 2882 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2883 case _MEM:
3e32cb2e
JW
2884 counter = &memcg->memory;
2885 break;
8c7c6e34 2886 case _MEMSWAP:
3e32cb2e
JW
2887 counter = &memcg->memsw;
2888 break;
510fc4e1 2889 case _KMEM:
3e32cb2e 2890 counter = &memcg->kmem;
510fc4e1 2891 break;
8c7c6e34
KH
2892 default:
2893 BUG();
8c7c6e34 2894 }
3e32cb2e
JW
2895
2896 switch (MEMFILE_ATTR(cft->private)) {
2897 case RES_USAGE:
2898 if (counter == &memcg->memory)
c12176d3 2899 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2900 if (counter == &memcg->memsw)
c12176d3 2901 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2902 return (u64)page_counter_read(counter) * PAGE_SIZE;
2903 case RES_LIMIT:
2904 return (u64)counter->limit * PAGE_SIZE;
2905 case RES_MAX_USAGE:
2906 return (u64)counter->watermark * PAGE_SIZE;
2907 case RES_FAILCNT:
2908 return counter->failcnt;
2909 case RES_SOFT_LIMIT:
2910 return (u64)memcg->soft_limit * PAGE_SIZE;
2911 default:
2912 BUG();
2913 }
8cdea7c0 2914}
510fc4e1 2915
510fc4e1 2916#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2917static int memcg_activate_kmem(struct mem_cgroup *memcg,
2918 unsigned long nr_pages)
d6441637
VD
2919{
2920 int err = 0;
2921 int memcg_id;
2922
2a4db7eb 2923 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2924 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2925 BUG_ON(memcg->kmem_acct_active);
d6441637 2926
510fc4e1
GC
2927 /*
2928 * For simplicity, we won't allow this to be disabled. It also can't
2929 * be changed if the cgroup has children already, or if tasks had
2930 * already joined.
2931 *
2932 * If tasks join before we set the limit, a person looking at
2933 * kmem.usage_in_bytes will have no way to determine when it took
2934 * place, which makes the value quite meaningless.
2935 *
2936 * After it first became limited, changes in the value of the limit are
2937 * of course permitted.
510fc4e1 2938 */
0999821b 2939 mutex_lock(&memcg_create_mutex);
27bd4dbb 2940 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2941 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2942 err = -EBUSY;
2943 mutex_unlock(&memcg_create_mutex);
2944 if (err)
2945 goto out;
510fc4e1 2946
f3bb3043 2947 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2948 if (memcg_id < 0) {
2949 err = memcg_id;
2950 goto out;
2951 }
2952
d6441637 2953 /*
900a38f0
VD
2954 * We couldn't have accounted to this cgroup, because it hasn't got
2955 * activated yet, so this should succeed.
d6441637 2956 */
3e32cb2e 2957 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2958 VM_BUG_ON(err);
2959
2960 static_key_slow_inc(&memcg_kmem_enabled_key);
2961 /*
900a38f0
VD
2962 * A memory cgroup is considered kmem-active as soon as it gets
2963 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2964 * guarantee no one starts accounting before all call sites are
2965 * patched.
2966 */
900a38f0 2967 memcg->kmemcg_id = memcg_id;
2788cf0c 2968 memcg->kmem_acct_activated = true;
2a4db7eb 2969 memcg->kmem_acct_active = true;
510fc4e1 2970out:
d6441637 2971 return err;
d6441637
VD
2972}
2973
d6441637 2974static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2975 unsigned long limit)
d6441637
VD
2976{
2977 int ret;
2978
3e32cb2e 2979 mutex_lock(&memcg_limit_mutex);
d6441637 2980 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2981 ret = memcg_activate_kmem(memcg, limit);
d6441637 2982 else
3e32cb2e
JW
2983 ret = page_counter_limit(&memcg->kmem, limit);
2984 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2985 return ret;
2986}
2987
55007d84 2988static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2989{
55007d84 2990 int ret = 0;
510fc4e1 2991 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2992
d6441637
VD
2993 if (!parent)
2994 return 0;
55007d84 2995
8c0145b6 2996 mutex_lock(&memcg_limit_mutex);
55007d84 2997 /*
d6441637
VD
2998 * If the parent cgroup is not kmem-active now, it cannot be activated
2999 * after this point, because it has at least one child already.
55007d84 3000 */
d6441637 3001 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3002 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3003 mutex_unlock(&memcg_limit_mutex);
55007d84 3004 return ret;
510fc4e1 3005}
d6441637
VD
3006#else
3007static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3008 unsigned long limit)
d6441637
VD
3009{
3010 return -EINVAL;
3011}
6d043990 3012#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3013
628f4235
KH
3014/*
3015 * The user of this function is...
3016 * RES_LIMIT.
3017 */
451af504
TH
3018static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3019 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3020{
451af504 3021 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3022 unsigned long nr_pages;
628f4235
KH
3023 int ret;
3024
451af504 3025 buf = strstrip(buf);
650c5e56 3026 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3027 if (ret)
3028 return ret;
af36f906 3029
3e32cb2e 3030 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3031 case RES_LIMIT:
4b3bde4c
BS
3032 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3033 ret = -EINVAL;
3034 break;
3035 }
3e32cb2e
JW
3036 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3037 case _MEM:
3038 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3039 break;
3e32cb2e
JW
3040 case _MEMSWAP:
3041 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3042 break;
3e32cb2e
JW
3043 case _KMEM:
3044 ret = memcg_update_kmem_limit(memcg, nr_pages);
3045 break;
3046 }
296c81d8 3047 break;
3e32cb2e
JW
3048 case RES_SOFT_LIMIT:
3049 memcg->soft_limit = nr_pages;
3050 ret = 0;
628f4235
KH
3051 break;
3052 }
451af504 3053 return ret ?: nbytes;
8cdea7c0
BS
3054}
3055
6770c64e
TH
3056static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3057 size_t nbytes, loff_t off)
c84872e1 3058{
6770c64e 3059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3060 struct page_counter *counter;
c84872e1 3061
3e32cb2e
JW
3062 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3063 case _MEM:
3064 counter = &memcg->memory;
3065 break;
3066 case _MEMSWAP:
3067 counter = &memcg->memsw;
3068 break;
3069 case _KMEM:
3070 counter = &memcg->kmem;
3071 break;
3072 default:
3073 BUG();
3074 }
af36f906 3075
3e32cb2e 3076 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3077 case RES_MAX_USAGE:
3e32cb2e 3078 page_counter_reset_watermark(counter);
29f2a4da
PE
3079 break;
3080 case RES_FAILCNT:
3e32cb2e 3081 counter->failcnt = 0;
29f2a4da 3082 break;
3e32cb2e
JW
3083 default:
3084 BUG();
29f2a4da 3085 }
f64c3f54 3086
6770c64e 3087 return nbytes;
c84872e1
PE
3088}
3089
182446d0 3090static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3091 struct cftype *cft)
3092{
182446d0 3093 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3094}
3095
02491447 3096#ifdef CONFIG_MMU
182446d0 3097static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3098 struct cftype *cft, u64 val)
3099{
182446d0 3100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3101
1dfab5ab 3102 if (val & ~MOVE_MASK)
7dc74be0 3103 return -EINVAL;
ee5e8472 3104
7dc74be0 3105 /*
ee5e8472
GC
3106 * No kind of locking is needed in here, because ->can_attach() will
3107 * check this value once in the beginning of the process, and then carry
3108 * on with stale data. This means that changes to this value will only
3109 * affect task migrations starting after the change.
7dc74be0 3110 */
c0ff4b85 3111 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3112 return 0;
3113}
02491447 3114#else
182446d0 3115static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3116 struct cftype *cft, u64 val)
3117{
3118 return -ENOSYS;
3119}
3120#endif
7dc74be0 3121
406eb0c9 3122#ifdef CONFIG_NUMA
2da8ca82 3123static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3124{
25485de6
GT
3125 struct numa_stat {
3126 const char *name;
3127 unsigned int lru_mask;
3128 };
3129
3130 static const struct numa_stat stats[] = {
3131 { "total", LRU_ALL },
3132 { "file", LRU_ALL_FILE },
3133 { "anon", LRU_ALL_ANON },
3134 { "unevictable", BIT(LRU_UNEVICTABLE) },
3135 };
3136 const struct numa_stat *stat;
406eb0c9 3137 int nid;
25485de6 3138 unsigned long nr;
2da8ca82 3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3140
25485de6
GT
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3143 seq_printf(m, "%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3145 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3146 stat->lru_mask);
3147 seq_printf(m, " N%d=%lu", nid, nr);
3148 }
3149 seq_putc(m, '\n');
406eb0c9 3150 }
406eb0c9 3151
071aee13
YH
3152 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3153 struct mem_cgroup *iter;
3154
3155 nr = 0;
3156 for_each_mem_cgroup_tree(iter, memcg)
3157 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3158 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3159 for_each_node_state(nid, N_MEMORY) {
3160 nr = 0;
3161 for_each_mem_cgroup_tree(iter, memcg)
3162 nr += mem_cgroup_node_nr_lru_pages(
3163 iter, nid, stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
406eb0c9 3167 }
406eb0c9 3168
406eb0c9
YH
3169 return 0;
3170}
3171#endif /* CONFIG_NUMA */
3172
2da8ca82 3173static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3174{
2da8ca82 3175 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3176 unsigned long memory, memsw;
af7c4b0e
JW
3177 struct mem_cgroup *mi;
3178 unsigned int i;
406eb0c9 3179
0ca44b14
GT
3180 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3181 MEM_CGROUP_STAT_NSTATS);
3182 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3183 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3184 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3185
af7c4b0e 3186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3188 continue;
484ebb3b 3189 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3190 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3191 }
7b854121 3192
af7c4b0e
JW
3193 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3194 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3195 mem_cgroup_read_events(memcg, i));
3196
3197 for (i = 0; i < NR_LRU_LISTS; i++)
3198 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3199 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3200
14067bb3 3201 /* Hierarchical information */
3e32cb2e
JW
3202 memory = memsw = PAGE_COUNTER_MAX;
3203 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3204 memory = min(memory, mi->memory.limit);
3205 memsw = min(memsw, mi->memsw.limit);
fee7b548 3206 }
3e32cb2e
JW
3207 seq_printf(m, "hierarchical_memory_limit %llu\n",
3208 (u64)memory * PAGE_SIZE);
3209 if (do_swap_account)
3210 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3211 (u64)memsw * PAGE_SIZE);
7f016ee8 3212
af7c4b0e 3213 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3214 unsigned long long val = 0;
af7c4b0e 3215
bff6bb83 3216 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3217 continue;
af7c4b0e
JW
3218 for_each_mem_cgroup_tree(mi, memcg)
3219 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3220 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3221 }
3222
3223 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3224 unsigned long long val = 0;
3225
3226 for_each_mem_cgroup_tree(mi, memcg)
3227 val += mem_cgroup_read_events(mi, i);
3228 seq_printf(m, "total_%s %llu\n",
3229 mem_cgroup_events_names[i], val);
3230 }
3231
3232 for (i = 0; i < NR_LRU_LISTS; i++) {
3233 unsigned long long val = 0;
3234
3235 for_each_mem_cgroup_tree(mi, memcg)
3236 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3237 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3238 }
14067bb3 3239
7f016ee8 3240#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3241 {
3242 int nid, zid;
3243 struct mem_cgroup_per_zone *mz;
89abfab1 3244 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3245 unsigned long recent_rotated[2] = {0, 0};
3246 unsigned long recent_scanned[2] = {0, 0};
3247
3248 for_each_online_node(nid)
3249 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3250 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3251 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3252
89abfab1
HD
3253 recent_rotated[0] += rstat->recent_rotated[0];
3254 recent_rotated[1] += rstat->recent_rotated[1];
3255 recent_scanned[0] += rstat->recent_scanned[0];
3256 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3257 }
78ccf5b5
JW
3258 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3259 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3260 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3261 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3262 }
3263#endif
3264
d2ceb9b7
KH
3265 return 0;
3266}
3267
182446d0
TH
3268static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3269 struct cftype *cft)
a7885eb8 3270{
182446d0 3271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3272
1f4c025b 3273 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3274}
3275
182446d0
TH
3276static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3277 struct cftype *cft, u64 val)
a7885eb8 3278{
182446d0 3279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3280
3dae7fec 3281 if (val > 100)
a7885eb8
KM
3282 return -EINVAL;
3283
14208b0e 3284 if (css->parent)
3dae7fec
JW
3285 memcg->swappiness = val;
3286 else
3287 vm_swappiness = val;
068b38c1 3288
a7885eb8
KM
3289 return 0;
3290}
3291
2e72b634
KS
3292static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3293{
3294 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3295 unsigned long usage;
2e72b634
KS
3296 int i;
3297
3298 rcu_read_lock();
3299 if (!swap)
2c488db2 3300 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3301 else
2c488db2 3302 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3303
3304 if (!t)
3305 goto unlock;
3306
ce00a967 3307 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3308
3309 /*
748dad36 3310 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3311 * If it's not true, a threshold was crossed after last
3312 * call of __mem_cgroup_threshold().
3313 */
5407a562 3314 i = t->current_threshold;
2e72b634
KS
3315
3316 /*
3317 * Iterate backward over array of thresholds starting from
3318 * current_threshold and check if a threshold is crossed.
3319 * If none of thresholds below usage is crossed, we read
3320 * only one element of the array here.
3321 */
3322 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3323 eventfd_signal(t->entries[i].eventfd, 1);
3324
3325 /* i = current_threshold + 1 */
3326 i++;
3327
3328 /*
3329 * Iterate forward over array of thresholds starting from
3330 * current_threshold+1 and check if a threshold is crossed.
3331 * If none of thresholds above usage is crossed, we read
3332 * only one element of the array here.
3333 */
3334 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3335 eventfd_signal(t->entries[i].eventfd, 1);
3336
3337 /* Update current_threshold */
5407a562 3338 t->current_threshold = i - 1;
2e72b634
KS
3339unlock:
3340 rcu_read_unlock();
3341}
3342
3343static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3344{
ad4ca5f4
KS
3345 while (memcg) {
3346 __mem_cgroup_threshold(memcg, false);
3347 if (do_swap_account)
3348 __mem_cgroup_threshold(memcg, true);
3349
3350 memcg = parent_mem_cgroup(memcg);
3351 }
2e72b634
KS
3352}
3353
3354static int compare_thresholds(const void *a, const void *b)
3355{
3356 const struct mem_cgroup_threshold *_a = a;
3357 const struct mem_cgroup_threshold *_b = b;
3358
2bff24a3
GT
3359 if (_a->threshold > _b->threshold)
3360 return 1;
3361
3362 if (_a->threshold < _b->threshold)
3363 return -1;
3364
3365 return 0;
2e72b634
KS
3366}
3367
c0ff4b85 3368static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3369{
3370 struct mem_cgroup_eventfd_list *ev;
3371
2bcf2e92
MH
3372 spin_lock(&memcg_oom_lock);
3373
c0ff4b85 3374 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3375 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3376
3377 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3378 return 0;
3379}
3380
c0ff4b85 3381static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3382{
7d74b06f
KH
3383 struct mem_cgroup *iter;
3384
c0ff4b85 3385 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3386 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3387}
3388
59b6f873 3389static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3390 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3391{
2c488db2
KS
3392 struct mem_cgroup_thresholds *thresholds;
3393 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3394 unsigned long threshold;
3395 unsigned long usage;
2c488db2 3396 int i, size, ret;
2e72b634 3397
650c5e56 3398 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3399 if (ret)
3400 return ret;
3401
3402 mutex_lock(&memcg->thresholds_lock);
2c488db2 3403
05b84301 3404 if (type == _MEM) {
2c488db2 3405 thresholds = &memcg->thresholds;
ce00a967 3406 usage = mem_cgroup_usage(memcg, false);
05b84301 3407 } else if (type == _MEMSWAP) {
2c488db2 3408 thresholds = &memcg->memsw_thresholds;
ce00a967 3409 usage = mem_cgroup_usage(memcg, true);
05b84301 3410 } else
2e72b634
KS
3411 BUG();
3412
2e72b634 3413 /* Check if a threshold crossed before adding a new one */
2c488db2 3414 if (thresholds->primary)
2e72b634
KS
3415 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3416
2c488db2 3417 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3418
3419 /* Allocate memory for new array of thresholds */
2c488db2 3420 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3421 GFP_KERNEL);
2c488db2 3422 if (!new) {
2e72b634
KS
3423 ret = -ENOMEM;
3424 goto unlock;
3425 }
2c488db2 3426 new->size = size;
2e72b634
KS
3427
3428 /* Copy thresholds (if any) to new array */
2c488db2
KS
3429 if (thresholds->primary) {
3430 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3431 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3432 }
3433
2e72b634 3434 /* Add new threshold */
2c488db2
KS
3435 new->entries[size - 1].eventfd = eventfd;
3436 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3437
3438 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3439 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3440 compare_thresholds, NULL);
3441
3442 /* Find current threshold */
2c488db2 3443 new->current_threshold = -1;
2e72b634 3444 for (i = 0; i < size; i++) {
748dad36 3445 if (new->entries[i].threshold <= usage) {
2e72b634 3446 /*
2c488db2
KS
3447 * new->current_threshold will not be used until
3448 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3449 * it here.
3450 */
2c488db2 3451 ++new->current_threshold;
748dad36
SZ
3452 } else
3453 break;
2e72b634
KS
3454 }
3455
2c488db2
KS
3456 /* Free old spare buffer and save old primary buffer as spare */
3457 kfree(thresholds->spare);
3458 thresholds->spare = thresholds->primary;
3459
3460 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3461
907860ed 3462 /* To be sure that nobody uses thresholds */
2e72b634
KS
3463 synchronize_rcu();
3464
2e72b634
KS
3465unlock:
3466 mutex_unlock(&memcg->thresholds_lock);
3467
3468 return ret;
3469}
3470
59b6f873 3471static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3472 struct eventfd_ctx *eventfd, const char *args)
3473{
59b6f873 3474 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3475}
3476
59b6f873 3477static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3478 struct eventfd_ctx *eventfd, const char *args)
3479{
59b6f873 3480 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3481}
3482
59b6f873 3483static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3484 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3485{
2c488db2
KS
3486 struct mem_cgroup_thresholds *thresholds;
3487 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3488 unsigned long usage;
2c488db2 3489 int i, j, size;
2e72b634
KS
3490
3491 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3492
3493 if (type == _MEM) {
2c488db2 3494 thresholds = &memcg->thresholds;
ce00a967 3495 usage = mem_cgroup_usage(memcg, false);
05b84301 3496 } else if (type == _MEMSWAP) {
2c488db2 3497 thresholds = &memcg->memsw_thresholds;
ce00a967 3498 usage = mem_cgroup_usage(memcg, true);
05b84301 3499 } else
2e72b634
KS
3500 BUG();
3501
371528ca
AV
3502 if (!thresholds->primary)
3503 goto unlock;
3504
2e72b634
KS
3505 /* Check if a threshold crossed before removing */
3506 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3507
3508 /* Calculate new number of threshold */
2c488db2
KS
3509 size = 0;
3510 for (i = 0; i < thresholds->primary->size; i++) {
3511 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3512 size++;
3513 }
3514
2c488db2 3515 new = thresholds->spare;
907860ed 3516
2e72b634
KS
3517 /* Set thresholds array to NULL if we don't have thresholds */
3518 if (!size) {
2c488db2
KS
3519 kfree(new);
3520 new = NULL;
907860ed 3521 goto swap_buffers;
2e72b634
KS
3522 }
3523
2c488db2 3524 new->size = size;
2e72b634
KS
3525
3526 /* Copy thresholds and find current threshold */
2c488db2
KS
3527 new->current_threshold = -1;
3528 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3529 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3530 continue;
3531
2c488db2 3532 new->entries[j] = thresholds->primary->entries[i];
748dad36 3533 if (new->entries[j].threshold <= usage) {
2e72b634 3534 /*
2c488db2 3535 * new->current_threshold will not be used
2e72b634
KS
3536 * until rcu_assign_pointer(), so it's safe to increment
3537 * it here.
3538 */
2c488db2 3539 ++new->current_threshold;
2e72b634
KS
3540 }
3541 j++;
3542 }
3543
907860ed 3544swap_buffers:
2c488db2
KS
3545 /* Swap primary and spare array */
3546 thresholds->spare = thresholds->primary;
8c757763
SZ
3547 /* If all events are unregistered, free the spare array */
3548 if (!new) {
3549 kfree(thresholds->spare);
3550 thresholds->spare = NULL;
3551 }
3552
2c488db2 3553 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3554
907860ed 3555 /* To be sure that nobody uses thresholds */
2e72b634 3556 synchronize_rcu();
371528ca 3557unlock:
2e72b634 3558 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3559}
c1e862c1 3560
59b6f873 3561static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3562 struct eventfd_ctx *eventfd)
3563{
59b6f873 3564 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3565}
3566
59b6f873 3567static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3568 struct eventfd_ctx *eventfd)
3569{
59b6f873 3570 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3571}
3572
59b6f873 3573static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3574 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3575{
9490ff27 3576 struct mem_cgroup_eventfd_list *event;
9490ff27 3577
9490ff27
KH
3578 event = kmalloc(sizeof(*event), GFP_KERNEL);
3579 if (!event)
3580 return -ENOMEM;
3581
1af8efe9 3582 spin_lock(&memcg_oom_lock);
9490ff27
KH
3583
3584 event->eventfd = eventfd;
3585 list_add(&event->list, &memcg->oom_notify);
3586
3587 /* already in OOM ? */
c2b42d3c 3588 if (memcg->under_oom)
9490ff27 3589 eventfd_signal(eventfd, 1);
1af8efe9 3590 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3591
3592 return 0;
3593}
3594
59b6f873 3595static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3596 struct eventfd_ctx *eventfd)
9490ff27 3597{
9490ff27 3598 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3599
1af8efe9 3600 spin_lock(&memcg_oom_lock);
9490ff27 3601
c0ff4b85 3602 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3603 if (ev->eventfd == eventfd) {
3604 list_del(&ev->list);
3605 kfree(ev);
3606 }
3607 }
3608
1af8efe9 3609 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3610}
3611
2da8ca82 3612static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3613{
2da8ca82 3614 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3615
791badbd 3616 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3617 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3618 return 0;
3619}
3620
182446d0 3621static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3622 struct cftype *cft, u64 val)
3623{
182446d0 3624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3625
3626 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3627 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3628 return -EINVAL;
3629
c0ff4b85 3630 memcg->oom_kill_disable = val;
4d845ebf 3631 if (!val)
c0ff4b85 3632 memcg_oom_recover(memcg);
3dae7fec 3633
3c11ecf4
KH
3634 return 0;
3635}
3636
c255a458 3637#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3638static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3639{
55007d84
GC
3640 int ret;
3641
55007d84
GC
3642 ret = memcg_propagate_kmem(memcg);
3643 if (ret)
3644 return ret;
2633d7a0 3645
baac50bb 3646 return tcp_init_cgroup(memcg, ss);
573b400d 3647}
e5671dfa 3648
2a4db7eb
VD
3649static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3650{
2788cf0c
VD
3651 struct cgroup_subsys_state *css;
3652 struct mem_cgroup *parent, *child;
3653 int kmemcg_id;
3654
2a4db7eb
VD
3655 if (!memcg->kmem_acct_active)
3656 return;
3657
3658 /*
3659 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3660 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3661 * guarantees no cache will be created for this cgroup after we are
3662 * done (see memcg_create_kmem_cache()).
3663 */
3664 memcg->kmem_acct_active = false;
3665
3666 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3667
3668 kmemcg_id = memcg->kmemcg_id;
3669 BUG_ON(kmemcg_id < 0);
3670
3671 parent = parent_mem_cgroup(memcg);
3672 if (!parent)
3673 parent = root_mem_cgroup;
3674
3675 /*
3676 * Change kmemcg_id of this cgroup and all its descendants to the
3677 * parent's id, and then move all entries from this cgroup's list_lrus
3678 * to ones of the parent. After we have finished, all list_lrus
3679 * corresponding to this cgroup are guaranteed to remain empty. The
3680 * ordering is imposed by list_lru_node->lock taken by
3681 * memcg_drain_all_list_lrus().
3682 */
3683 css_for_each_descendant_pre(css, &memcg->css) {
3684 child = mem_cgroup_from_css(css);
3685 BUG_ON(child->kmemcg_id != kmemcg_id);
3686 child->kmemcg_id = parent->kmemcg_id;
3687 if (!memcg->use_hierarchy)
3688 break;
3689 }
3690 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3691
3692 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3693}
3694
10d5ebf4 3695static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3696{
f48b80a5
VD
3697 if (memcg->kmem_acct_activated) {
3698 memcg_destroy_kmem_caches(memcg);
3699 static_key_slow_dec(&memcg_kmem_enabled_key);
3700 WARN_ON(page_counter_read(&memcg->kmem));
3701 }
baac50bb 3702 tcp_destroy_cgroup(memcg);
10d5ebf4 3703}
e5671dfa 3704#else
cbe128e3 3705static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3706{
3707 return 0;
3708}
d1a4c0b3 3709
2a4db7eb
VD
3710static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3711{
3712}
3713
10d5ebf4
LZ
3714static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3715{
3716}
e5671dfa
GC
3717#endif
3718
52ebea74
TH
3719#ifdef CONFIG_CGROUP_WRITEBACK
3720
3721struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3722{
3723 return &memcg->cgwb_list;
3724}
3725
841710aa
TH
3726static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3727{
3728 return wb_domain_init(&memcg->cgwb_domain, gfp);
3729}
3730
3731static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3732{
3733 wb_domain_exit(&memcg->cgwb_domain);
3734}
3735
2529bb3a
TH
3736static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737{
3738 wb_domain_size_changed(&memcg->cgwb_domain);
3739}
3740
841710aa
TH
3741struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3742{
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3744
3745 if (!memcg->css.parent)
3746 return NULL;
3747
3748 return &memcg->cgwb_domain;
3749}
3750
c2aa723a
TH
3751/**
3752 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3753 * @wb: bdi_writeback in question
c5edf9cd
TH
3754 * @pfilepages: out parameter for number of file pages
3755 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3756 * @pdirty: out parameter for number of dirty pages
3757 * @pwriteback: out parameter for number of pages under writeback
3758 *
c5edf9cd
TH
3759 * Determine the numbers of file, headroom, dirty, and writeback pages in
3760 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3761 * is a bit more involved.
c2aa723a 3762 *
c5edf9cd
TH
3763 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3764 * headroom is calculated as the lowest headroom of itself and the
3765 * ancestors. Note that this doesn't consider the actual amount of
3766 * available memory in the system. The caller should further cap
3767 * *@pheadroom accordingly.
c2aa723a 3768 */
c5edf9cd
TH
3769void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3770 unsigned long *pheadroom, unsigned long *pdirty,
3771 unsigned long *pwriteback)
c2aa723a
TH
3772{
3773 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3774 struct mem_cgroup *parent;
c2aa723a
TH
3775
3776 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3777
3778 /* this should eventually include NR_UNSTABLE_NFS */
3779 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3780 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3781 (1 << LRU_ACTIVE_FILE));
3782 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3783
c2aa723a
TH
3784 while ((parent = parent_mem_cgroup(memcg))) {
3785 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3786 unsigned long used = page_counter_read(&memcg->memory);
3787
c5edf9cd 3788 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3789 memcg = parent;
3790 }
c2aa723a
TH
3791}
3792
841710aa
TH
3793#else /* CONFIG_CGROUP_WRITEBACK */
3794
3795static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3796{
3797 return 0;
3798}
3799
3800static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3801{
3802}
3803
2529bb3a
TH
3804static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3805{
3806}
3807
52ebea74
TH
3808#endif /* CONFIG_CGROUP_WRITEBACK */
3809
3bc942f3
TH
3810/*
3811 * DO NOT USE IN NEW FILES.
3812 *
3813 * "cgroup.event_control" implementation.
3814 *
3815 * This is way over-engineered. It tries to support fully configurable
3816 * events for each user. Such level of flexibility is completely
3817 * unnecessary especially in the light of the planned unified hierarchy.
3818 *
3819 * Please deprecate this and replace with something simpler if at all
3820 * possible.
3821 */
3822
79bd9814
TH
3823/*
3824 * Unregister event and free resources.
3825 *
3826 * Gets called from workqueue.
3827 */
3bc942f3 3828static void memcg_event_remove(struct work_struct *work)
79bd9814 3829{
3bc942f3
TH
3830 struct mem_cgroup_event *event =
3831 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3832 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3833
3834 remove_wait_queue(event->wqh, &event->wait);
3835
59b6f873 3836 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3837
3838 /* Notify userspace the event is going away. */
3839 eventfd_signal(event->eventfd, 1);
3840
3841 eventfd_ctx_put(event->eventfd);
3842 kfree(event);
59b6f873 3843 css_put(&memcg->css);
79bd9814
TH
3844}
3845
3846/*
3847 * Gets called on POLLHUP on eventfd when user closes it.
3848 *
3849 * Called with wqh->lock held and interrupts disabled.
3850 */
3bc942f3
TH
3851static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3852 int sync, void *key)
79bd9814 3853{
3bc942f3
TH
3854 struct mem_cgroup_event *event =
3855 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3856 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3857 unsigned long flags = (unsigned long)key;
3858
3859 if (flags & POLLHUP) {
3860 /*
3861 * If the event has been detached at cgroup removal, we
3862 * can simply return knowing the other side will cleanup
3863 * for us.
3864 *
3865 * We can't race against event freeing since the other
3866 * side will require wqh->lock via remove_wait_queue(),
3867 * which we hold.
3868 */
fba94807 3869 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3870 if (!list_empty(&event->list)) {
3871 list_del_init(&event->list);
3872 /*
3873 * We are in atomic context, but cgroup_event_remove()
3874 * may sleep, so we have to call it in workqueue.
3875 */
3876 schedule_work(&event->remove);
3877 }
fba94807 3878 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3879 }
3880
3881 return 0;
3882}
3883
3bc942f3 3884static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3885 wait_queue_head_t *wqh, poll_table *pt)
3886{
3bc942f3
TH
3887 struct mem_cgroup_event *event =
3888 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3889
3890 event->wqh = wqh;
3891 add_wait_queue(wqh, &event->wait);
3892}
3893
3894/*
3bc942f3
TH
3895 * DO NOT USE IN NEW FILES.
3896 *
79bd9814
TH
3897 * Parse input and register new cgroup event handler.
3898 *
3899 * Input must be in format '<event_fd> <control_fd> <args>'.
3900 * Interpretation of args is defined by control file implementation.
3901 */
451af504
TH
3902static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3903 char *buf, size_t nbytes, loff_t off)
79bd9814 3904{
451af504 3905 struct cgroup_subsys_state *css = of_css(of);
fba94807 3906 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3907 struct mem_cgroup_event *event;
79bd9814
TH
3908 struct cgroup_subsys_state *cfile_css;
3909 unsigned int efd, cfd;
3910 struct fd efile;
3911 struct fd cfile;
fba94807 3912 const char *name;
79bd9814
TH
3913 char *endp;
3914 int ret;
3915
451af504
TH
3916 buf = strstrip(buf);
3917
3918 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3919 if (*endp != ' ')
3920 return -EINVAL;
451af504 3921 buf = endp + 1;
79bd9814 3922
451af504 3923 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3924 if ((*endp != ' ') && (*endp != '\0'))
3925 return -EINVAL;
451af504 3926 buf = endp + 1;
79bd9814
TH
3927
3928 event = kzalloc(sizeof(*event), GFP_KERNEL);
3929 if (!event)
3930 return -ENOMEM;
3931
59b6f873 3932 event->memcg = memcg;
79bd9814 3933 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3934 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3935 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3936 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3937
3938 efile = fdget(efd);
3939 if (!efile.file) {
3940 ret = -EBADF;
3941 goto out_kfree;
3942 }
3943
3944 event->eventfd = eventfd_ctx_fileget(efile.file);
3945 if (IS_ERR(event->eventfd)) {
3946 ret = PTR_ERR(event->eventfd);
3947 goto out_put_efile;
3948 }
3949
3950 cfile = fdget(cfd);
3951 if (!cfile.file) {
3952 ret = -EBADF;
3953 goto out_put_eventfd;
3954 }
3955
3956 /* the process need read permission on control file */
3957 /* AV: shouldn't we check that it's been opened for read instead? */
3958 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3959 if (ret < 0)
3960 goto out_put_cfile;
3961
fba94807
TH
3962 /*
3963 * Determine the event callbacks and set them in @event. This used
3964 * to be done via struct cftype but cgroup core no longer knows
3965 * about these events. The following is crude but the whole thing
3966 * is for compatibility anyway.
3bc942f3
TH
3967 *
3968 * DO NOT ADD NEW FILES.
fba94807 3969 */
b583043e 3970 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3971
3972 if (!strcmp(name, "memory.usage_in_bytes")) {
3973 event->register_event = mem_cgroup_usage_register_event;
3974 event->unregister_event = mem_cgroup_usage_unregister_event;
3975 } else if (!strcmp(name, "memory.oom_control")) {
3976 event->register_event = mem_cgroup_oom_register_event;
3977 event->unregister_event = mem_cgroup_oom_unregister_event;
3978 } else if (!strcmp(name, "memory.pressure_level")) {
3979 event->register_event = vmpressure_register_event;
3980 event->unregister_event = vmpressure_unregister_event;
3981 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3982 event->register_event = memsw_cgroup_usage_register_event;
3983 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3984 } else {
3985 ret = -EINVAL;
3986 goto out_put_cfile;
3987 }
3988
79bd9814 3989 /*
b5557c4c
TH
3990 * Verify @cfile should belong to @css. Also, remaining events are
3991 * automatically removed on cgroup destruction but the removal is
3992 * asynchronous, so take an extra ref on @css.
79bd9814 3993 */
b583043e 3994 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3995 &memory_cgrp_subsys);
79bd9814 3996 ret = -EINVAL;
5a17f543 3997 if (IS_ERR(cfile_css))
79bd9814 3998 goto out_put_cfile;
5a17f543
TH
3999 if (cfile_css != css) {
4000 css_put(cfile_css);
79bd9814 4001 goto out_put_cfile;
5a17f543 4002 }
79bd9814 4003
451af504 4004 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4005 if (ret)
4006 goto out_put_css;
4007
4008 efile.file->f_op->poll(efile.file, &event->pt);
4009
fba94807
TH
4010 spin_lock(&memcg->event_list_lock);
4011 list_add(&event->list, &memcg->event_list);
4012 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4013
4014 fdput(cfile);
4015 fdput(efile);
4016
451af504 4017 return nbytes;
79bd9814
TH
4018
4019out_put_css:
b5557c4c 4020 css_put(css);
79bd9814
TH
4021out_put_cfile:
4022 fdput(cfile);
4023out_put_eventfd:
4024 eventfd_ctx_put(event->eventfd);
4025out_put_efile:
4026 fdput(efile);
4027out_kfree:
4028 kfree(event);
4029
4030 return ret;
4031}
4032
241994ed 4033static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4034 {
0eea1030 4035 .name = "usage_in_bytes",
8c7c6e34 4036 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4037 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4038 },
c84872e1
PE
4039 {
4040 .name = "max_usage_in_bytes",
8c7c6e34 4041 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4042 .write = mem_cgroup_reset,
791badbd 4043 .read_u64 = mem_cgroup_read_u64,
c84872e1 4044 },
8cdea7c0 4045 {
0eea1030 4046 .name = "limit_in_bytes",
8c7c6e34 4047 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4048 .write = mem_cgroup_write,
791badbd 4049 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4050 },
296c81d8
BS
4051 {
4052 .name = "soft_limit_in_bytes",
4053 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4054 .write = mem_cgroup_write,
791badbd 4055 .read_u64 = mem_cgroup_read_u64,
296c81d8 4056 },
8cdea7c0
BS
4057 {
4058 .name = "failcnt",
8c7c6e34 4059 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4060 .write = mem_cgroup_reset,
791badbd 4061 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4062 },
d2ceb9b7
KH
4063 {
4064 .name = "stat",
2da8ca82 4065 .seq_show = memcg_stat_show,
d2ceb9b7 4066 },
c1e862c1
KH
4067 {
4068 .name = "force_empty",
6770c64e 4069 .write = mem_cgroup_force_empty_write,
c1e862c1 4070 },
18f59ea7
BS
4071 {
4072 .name = "use_hierarchy",
4073 .write_u64 = mem_cgroup_hierarchy_write,
4074 .read_u64 = mem_cgroup_hierarchy_read,
4075 },
79bd9814 4076 {
3bc942f3 4077 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4078 .write = memcg_write_event_control,
7dbdb199 4079 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4080 },
a7885eb8
KM
4081 {
4082 .name = "swappiness",
4083 .read_u64 = mem_cgroup_swappiness_read,
4084 .write_u64 = mem_cgroup_swappiness_write,
4085 },
7dc74be0
DN
4086 {
4087 .name = "move_charge_at_immigrate",
4088 .read_u64 = mem_cgroup_move_charge_read,
4089 .write_u64 = mem_cgroup_move_charge_write,
4090 },
9490ff27
KH
4091 {
4092 .name = "oom_control",
2da8ca82 4093 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4094 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4095 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4096 },
70ddf637
AV
4097 {
4098 .name = "pressure_level",
70ddf637 4099 },
406eb0c9
YH
4100#ifdef CONFIG_NUMA
4101 {
4102 .name = "numa_stat",
2da8ca82 4103 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4104 },
4105#endif
510fc4e1
GC
4106#ifdef CONFIG_MEMCG_KMEM
4107 {
4108 .name = "kmem.limit_in_bytes",
4109 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4110 .write = mem_cgroup_write,
791badbd 4111 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4112 },
4113 {
4114 .name = "kmem.usage_in_bytes",
4115 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4116 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4117 },
4118 {
4119 .name = "kmem.failcnt",
4120 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4121 .write = mem_cgroup_reset,
791badbd 4122 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4123 },
4124 {
4125 .name = "kmem.max_usage_in_bytes",
4126 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4127 .write = mem_cgroup_reset,
791badbd 4128 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4129 },
749c5415
GC
4130#ifdef CONFIG_SLABINFO
4131 {
4132 .name = "kmem.slabinfo",
b047501c
VD
4133 .seq_start = slab_start,
4134 .seq_next = slab_next,
4135 .seq_stop = slab_stop,
4136 .seq_show = memcg_slab_show,
749c5415
GC
4137 },
4138#endif
8c7c6e34 4139#endif
6bc10349 4140 { }, /* terminate */
af36f906 4141};
8c7c6e34 4142
c0ff4b85 4143static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4144{
4145 struct mem_cgroup_per_node *pn;
1ecaab2b 4146 struct mem_cgroup_per_zone *mz;
41e3355d 4147 int zone, tmp = node;
1ecaab2b
KH
4148 /*
4149 * This routine is called against possible nodes.
4150 * But it's BUG to call kmalloc() against offline node.
4151 *
4152 * TODO: this routine can waste much memory for nodes which will
4153 * never be onlined. It's better to use memory hotplug callback
4154 * function.
4155 */
41e3355d
KH
4156 if (!node_state(node, N_NORMAL_MEMORY))
4157 tmp = -1;
17295c88 4158 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4159 if (!pn)
4160 return 1;
1ecaab2b 4161
1ecaab2b
KH
4162 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4163 mz = &pn->zoneinfo[zone];
bea8c150 4164 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4165 mz->usage_in_excess = 0;
4166 mz->on_tree = false;
d79154bb 4167 mz->memcg = memcg;
1ecaab2b 4168 }
54f72fe0 4169 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4170 return 0;
4171}
4172
c0ff4b85 4173static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4174{
54f72fe0 4175 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4176}
4177
33327948
KH
4178static struct mem_cgroup *mem_cgroup_alloc(void)
4179{
d79154bb 4180 struct mem_cgroup *memcg;
8ff69e2c 4181 size_t size;
33327948 4182
8ff69e2c
VD
4183 size = sizeof(struct mem_cgroup);
4184 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4185
8ff69e2c 4186 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4187 if (!memcg)
e7bbcdf3
DC
4188 return NULL;
4189
d79154bb
HD
4190 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4191 if (!memcg->stat)
d2e61b8d 4192 goto out_free;
841710aa
TH
4193
4194 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4195 goto out_free_stat;
4196
d79154bb 4197 return memcg;
d2e61b8d 4198
841710aa
TH
4199out_free_stat:
4200 free_percpu(memcg->stat);
d2e61b8d 4201out_free:
8ff69e2c 4202 kfree(memcg);
d2e61b8d 4203 return NULL;
33327948
KH
4204}
4205
59927fb9 4206/*
c8b2a36f
GC
4207 * At destroying mem_cgroup, references from swap_cgroup can remain.
4208 * (scanning all at force_empty is too costly...)
4209 *
4210 * Instead of clearing all references at force_empty, we remember
4211 * the number of reference from swap_cgroup and free mem_cgroup when
4212 * it goes down to 0.
4213 *
4214 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4215 */
c8b2a36f
GC
4216
4217static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4218{
c8b2a36f 4219 int node;
59927fb9 4220
bb4cc1a8 4221 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4222
4223 for_each_node(node)
4224 free_mem_cgroup_per_zone_info(memcg, node);
4225
4226 free_percpu(memcg->stat);
841710aa 4227 memcg_wb_domain_exit(memcg);
8ff69e2c 4228 kfree(memcg);
59927fb9 4229}
3afe36b1 4230
7bcc1bb1
DN
4231/*
4232 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4233 */
e1aab161 4234struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4235{
3e32cb2e 4236 if (!memcg->memory.parent)
7bcc1bb1 4237 return NULL;
3e32cb2e 4238 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4239}
e1aab161 4240EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4241
0eb253e2 4242static struct cgroup_subsys_state * __ref
eb95419b 4243mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4244{
d142e3e6 4245 struct mem_cgroup *memcg;
04046e1a 4246 long error = -ENOMEM;
6d12e2d8 4247 int node;
8cdea7c0 4248
c0ff4b85
R
4249 memcg = mem_cgroup_alloc();
4250 if (!memcg)
04046e1a 4251 return ERR_PTR(error);
78fb7466 4252
3ed28fa1 4253 for_each_node(node)
c0ff4b85 4254 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4255 goto free_out;
f64c3f54 4256
c077719b 4257 /* root ? */
eb95419b 4258 if (parent_css == NULL) {
a41c58a6 4259 root_mem_cgroup = memcg;
3e32cb2e 4260 page_counter_init(&memcg->memory, NULL);
241994ed 4261 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4262 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4263 page_counter_init(&memcg->memsw, NULL);
4264 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4265 }
28dbc4b6 4266
d142e3e6
GC
4267 memcg->last_scanned_node = MAX_NUMNODES;
4268 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4269 memcg->move_charge_at_immigrate = 0;
4270 mutex_init(&memcg->thresholds_lock);
4271 spin_lock_init(&memcg->move_lock);
70ddf637 4272 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4273 INIT_LIST_HEAD(&memcg->event_list);
4274 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4275#ifdef CONFIG_MEMCG_KMEM
4276 memcg->kmemcg_id = -1;
900a38f0 4277#endif
52ebea74
TH
4278#ifdef CONFIG_CGROUP_WRITEBACK
4279 INIT_LIST_HEAD(&memcg->cgwb_list);
4280#endif
d142e3e6
GC
4281 return &memcg->css;
4282
4283free_out:
4284 __mem_cgroup_free(memcg);
4285 return ERR_PTR(error);
4286}
4287
4288static int
eb95419b 4289mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4290{
eb95419b 4291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4292 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4293 int ret;
d142e3e6 4294
15a4c835 4295 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4296 return -ENOSPC;
4297
63876986 4298 if (!parent)
d142e3e6
GC
4299 return 0;
4300
0999821b 4301 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4302
4303 memcg->use_hierarchy = parent->use_hierarchy;
4304 memcg->oom_kill_disable = parent->oom_kill_disable;
4305 memcg->swappiness = mem_cgroup_swappiness(parent);
4306
4307 if (parent->use_hierarchy) {
3e32cb2e 4308 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4309 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4310 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4311 page_counter_init(&memcg->memsw, &parent->memsw);
4312 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4313
7bcc1bb1 4314 /*
8d76a979
LZ
4315 * No need to take a reference to the parent because cgroup
4316 * core guarantees its existence.
7bcc1bb1 4317 */
18f59ea7 4318 } else {
3e32cb2e 4319 page_counter_init(&memcg->memory, NULL);
241994ed 4320 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4321 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4322 page_counter_init(&memcg->memsw, NULL);
4323 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4324 /*
4325 * Deeper hierachy with use_hierarchy == false doesn't make
4326 * much sense so let cgroup subsystem know about this
4327 * unfortunate state in our controller.
4328 */
d142e3e6 4329 if (parent != root_mem_cgroup)
073219e9 4330 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4331 }
0999821b 4332 mutex_unlock(&memcg_create_mutex);
d6441637 4333
2f7dd7a4
JW
4334 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4335 if (ret)
4336 return ret;
4337
4338 /*
4339 * Make sure the memcg is initialized: mem_cgroup_iter()
4340 * orders reading memcg->initialized against its callers
4341 * reading the memcg members.
4342 */
4343 smp_store_release(&memcg->initialized, 1);
4344
4345 return 0;
8cdea7c0
BS
4346}
4347
eb95419b 4348static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4349{
eb95419b 4350 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4351 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4352
4353 /*
4354 * Unregister events and notify userspace.
4355 * Notify userspace about cgroup removing only after rmdir of cgroup
4356 * directory to avoid race between userspace and kernelspace.
4357 */
fba94807
TH
4358 spin_lock(&memcg->event_list_lock);
4359 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4360 list_del_init(&event->list);
4361 schedule_work(&event->remove);
4362 }
fba94807 4363 spin_unlock(&memcg->event_list_lock);
ec64f515 4364
33cb876e 4365 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4366
4367 memcg_deactivate_kmem(memcg);
52ebea74
TH
4368
4369 wb_memcg_offline(memcg);
df878fb0
KH
4370}
4371
6df38689
VD
4372static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4373{
4374 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4375
4376 invalidate_reclaim_iterators(memcg);
4377}
4378
eb95419b 4379static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4380{
eb95419b 4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4382
10d5ebf4 4383 memcg_destroy_kmem(memcg);
465939a1 4384 __mem_cgroup_free(memcg);
8cdea7c0
BS
4385}
4386
1ced953b
TH
4387/**
4388 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4389 * @css: the target css
4390 *
4391 * Reset the states of the mem_cgroup associated with @css. This is
4392 * invoked when the userland requests disabling on the default hierarchy
4393 * but the memcg is pinned through dependency. The memcg should stop
4394 * applying policies and should revert to the vanilla state as it may be
4395 * made visible again.
4396 *
4397 * The current implementation only resets the essential configurations.
4398 * This needs to be expanded to cover all the visible parts.
4399 */
4400static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4401{
4402 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4403
3e32cb2e
JW
4404 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4405 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4406 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4407 memcg->low = 0;
4408 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4409 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4410 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4411}
4412
02491447 4413#ifdef CONFIG_MMU
7dc74be0 4414/* Handlers for move charge at task migration. */
854ffa8d 4415static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4416{
05b84301 4417 int ret;
9476db97 4418
d0164adc
MG
4419 /* Try a single bulk charge without reclaim first, kswapd may wake */
4420 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4421 if (!ret) {
854ffa8d 4422 mc.precharge += count;
854ffa8d
DN
4423 return ret;
4424 }
9476db97
JW
4425
4426 /* Try charges one by one with reclaim */
854ffa8d 4427 while (count--) {
00501b53 4428 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4429 if (ret)
38c5d72f 4430 return ret;
854ffa8d 4431 mc.precharge++;
9476db97 4432 cond_resched();
854ffa8d 4433 }
9476db97 4434 return 0;
4ffef5fe
DN
4435}
4436
4437/**
8d32ff84 4438 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4439 * @vma: the vma the pte to be checked belongs
4440 * @addr: the address corresponding to the pte to be checked
4441 * @ptent: the pte to be checked
02491447 4442 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4443 *
4444 * Returns
4445 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4446 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4447 * move charge. if @target is not NULL, the page is stored in target->page
4448 * with extra refcnt got(Callers should handle it).
02491447
DN
4449 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4450 * target for charge migration. if @target is not NULL, the entry is stored
4451 * in target->ent.
4ffef5fe
DN
4452 *
4453 * Called with pte lock held.
4454 */
4ffef5fe
DN
4455union mc_target {
4456 struct page *page;
02491447 4457 swp_entry_t ent;
4ffef5fe
DN
4458};
4459
4ffef5fe 4460enum mc_target_type {
8d32ff84 4461 MC_TARGET_NONE = 0,
4ffef5fe 4462 MC_TARGET_PAGE,
02491447 4463 MC_TARGET_SWAP,
4ffef5fe
DN
4464};
4465
90254a65
DN
4466static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4467 unsigned long addr, pte_t ptent)
4ffef5fe 4468{
90254a65 4469 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4470
90254a65
DN
4471 if (!page || !page_mapped(page))
4472 return NULL;
4473 if (PageAnon(page)) {
1dfab5ab 4474 if (!(mc.flags & MOVE_ANON))
90254a65 4475 return NULL;
1dfab5ab
JW
4476 } else {
4477 if (!(mc.flags & MOVE_FILE))
4478 return NULL;
4479 }
90254a65
DN
4480 if (!get_page_unless_zero(page))
4481 return NULL;
4482
4483 return page;
4484}
4485
4b91355e 4486#ifdef CONFIG_SWAP
90254a65
DN
4487static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4488 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4489{
90254a65
DN
4490 struct page *page = NULL;
4491 swp_entry_t ent = pte_to_swp_entry(ptent);
4492
1dfab5ab 4493 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4494 return NULL;
4b91355e
KH
4495 /*
4496 * Because lookup_swap_cache() updates some statistics counter,
4497 * we call find_get_page() with swapper_space directly.
4498 */
33806f06 4499 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4500 if (do_swap_account)
4501 entry->val = ent.val;
4502
4503 return page;
4504}
4b91355e
KH
4505#else
4506static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4507 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4508{
4509 return NULL;
4510}
4511#endif
90254a65 4512
87946a72
DN
4513static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4514 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4515{
4516 struct page *page = NULL;
87946a72
DN
4517 struct address_space *mapping;
4518 pgoff_t pgoff;
4519
4520 if (!vma->vm_file) /* anonymous vma */
4521 return NULL;
1dfab5ab 4522 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4523 return NULL;
4524
87946a72 4525 mapping = vma->vm_file->f_mapping;
0661a336 4526 pgoff = linear_page_index(vma, addr);
87946a72
DN
4527
4528 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4529#ifdef CONFIG_SWAP
4530 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4531 if (shmem_mapping(mapping)) {
4532 page = find_get_entry(mapping, pgoff);
4533 if (radix_tree_exceptional_entry(page)) {
4534 swp_entry_t swp = radix_to_swp_entry(page);
4535 if (do_swap_account)
4536 *entry = swp;
4537 page = find_get_page(swap_address_space(swp), swp.val);
4538 }
4539 } else
4540 page = find_get_page(mapping, pgoff);
4541#else
4542 page = find_get_page(mapping, pgoff);
aa3b1895 4543#endif
87946a72
DN
4544 return page;
4545}
4546
b1b0deab
CG
4547/**
4548 * mem_cgroup_move_account - move account of the page
4549 * @page: the page
4550 * @nr_pages: number of regular pages (>1 for huge pages)
4551 * @from: mem_cgroup which the page is moved from.
4552 * @to: mem_cgroup which the page is moved to. @from != @to.
4553 *
4554 * The caller must confirm following.
4555 * - page is not on LRU (isolate_page() is useful.)
4556 * - compound_lock is held when nr_pages > 1
4557 *
4558 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4559 * from old cgroup.
4560 */
4561static int mem_cgroup_move_account(struct page *page,
4562 unsigned int nr_pages,
4563 struct mem_cgroup *from,
4564 struct mem_cgroup *to)
4565{
4566 unsigned long flags;
4567 int ret;
c4843a75 4568 bool anon;
b1b0deab
CG
4569
4570 VM_BUG_ON(from == to);
4571 VM_BUG_ON_PAGE(PageLRU(page), page);
4572 /*
4573 * The page is isolated from LRU. So, collapse function
4574 * will not handle this page. But page splitting can happen.
4575 * Do this check under compound_page_lock(). The caller should
4576 * hold it.
4577 */
4578 ret = -EBUSY;
4579 if (nr_pages > 1 && !PageTransHuge(page))
4580 goto out;
4581
4582 /*
45637bab
HD
4583 * Prevent mem_cgroup_replace_page() from looking at
4584 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4585 */
4586 if (!trylock_page(page))
4587 goto out;
4588
4589 ret = -EINVAL;
4590 if (page->mem_cgroup != from)
4591 goto out_unlock;
4592
c4843a75
GT
4593 anon = PageAnon(page);
4594
b1b0deab
CG
4595 spin_lock_irqsave(&from->move_lock, flags);
4596
c4843a75 4597 if (!anon && page_mapped(page)) {
b1b0deab
CG
4598 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4599 nr_pages);
4600 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4601 nr_pages);
4602 }
4603
c4843a75
GT
4604 /*
4605 * move_lock grabbed above and caller set from->moving_account, so
4606 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4607 * So mapping should be stable for dirty pages.
4608 */
4609 if (!anon && PageDirty(page)) {
4610 struct address_space *mapping = page_mapping(page);
4611
4612 if (mapping_cap_account_dirty(mapping)) {
4613 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4614 nr_pages);
4615 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4616 nr_pages);
4617 }
4618 }
4619
b1b0deab
CG
4620 if (PageWriteback(page)) {
4621 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4622 nr_pages);
4623 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4624 nr_pages);
4625 }
4626
4627 /*
4628 * It is safe to change page->mem_cgroup here because the page
4629 * is referenced, charged, and isolated - we can't race with
4630 * uncharging, charging, migration, or LRU putback.
4631 */
4632
4633 /* caller should have done css_get */
4634 page->mem_cgroup = to;
4635 spin_unlock_irqrestore(&from->move_lock, flags);
4636
4637 ret = 0;
4638
4639 local_irq_disable();
4640 mem_cgroup_charge_statistics(to, page, nr_pages);
4641 memcg_check_events(to, page);
4642 mem_cgroup_charge_statistics(from, page, -nr_pages);
4643 memcg_check_events(from, page);
4644 local_irq_enable();
4645out_unlock:
4646 unlock_page(page);
4647out:
4648 return ret;
4649}
4650
8d32ff84 4651static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4652 unsigned long addr, pte_t ptent, union mc_target *target)
4653{
4654 struct page *page = NULL;
8d32ff84 4655 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4656 swp_entry_t ent = { .val = 0 };
4657
4658 if (pte_present(ptent))
4659 page = mc_handle_present_pte(vma, addr, ptent);
4660 else if (is_swap_pte(ptent))
4661 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4662 else if (pte_none(ptent))
87946a72 4663 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4664
4665 if (!page && !ent.val)
8d32ff84 4666 return ret;
02491447 4667 if (page) {
02491447 4668 /*
0a31bc97 4669 * Do only loose check w/o serialization.
1306a85a 4670 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4671 * not under LRU exclusion.
02491447 4672 */
1306a85a 4673 if (page->mem_cgroup == mc.from) {
02491447
DN
4674 ret = MC_TARGET_PAGE;
4675 if (target)
4676 target->page = page;
4677 }
4678 if (!ret || !target)
4679 put_page(page);
4680 }
90254a65
DN
4681 /* There is a swap entry and a page doesn't exist or isn't charged */
4682 if (ent.val && !ret &&
34c00c31 4683 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4684 ret = MC_TARGET_SWAP;
4685 if (target)
4686 target->ent = ent;
4ffef5fe 4687 }
4ffef5fe
DN
4688 return ret;
4689}
4690
12724850
NH
4691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4692/*
4693 * We don't consider swapping or file mapped pages because THP does not
4694 * support them for now.
4695 * Caller should make sure that pmd_trans_huge(pmd) is true.
4696 */
4697static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4698 unsigned long addr, pmd_t pmd, union mc_target *target)
4699{
4700 struct page *page = NULL;
12724850
NH
4701 enum mc_target_type ret = MC_TARGET_NONE;
4702
4703 page = pmd_page(pmd);
309381fe 4704 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4705 if (!(mc.flags & MOVE_ANON))
12724850 4706 return ret;
1306a85a 4707 if (page->mem_cgroup == mc.from) {
12724850
NH
4708 ret = MC_TARGET_PAGE;
4709 if (target) {
4710 get_page(page);
4711 target->page = page;
4712 }
4713 }
4714 return ret;
4715}
4716#else
4717static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4718 unsigned long addr, pmd_t pmd, union mc_target *target)
4719{
4720 return MC_TARGET_NONE;
4721}
4722#endif
4723
4ffef5fe
DN
4724static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
4727{
26bcd64a 4728 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4729 pte_t *pte;
4730 spinlock_t *ptl;
4731
bf929152 4732 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4733 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4734 mc.precharge += HPAGE_PMD_NR;
bf929152 4735 spin_unlock(ptl);
1a5a9906 4736 return 0;
12724850 4737 }
03319327 4738
45f83cef
AA
4739 if (pmd_trans_unstable(pmd))
4740 return 0;
4ffef5fe
DN
4741 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4742 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4743 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4744 mc.precharge++; /* increment precharge temporarily */
4745 pte_unmap_unlock(pte - 1, ptl);
4746 cond_resched();
4747
7dc74be0
DN
4748 return 0;
4749}
4750
4ffef5fe
DN
4751static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4752{
4753 unsigned long precharge;
4ffef5fe 4754
26bcd64a
NH
4755 struct mm_walk mem_cgroup_count_precharge_walk = {
4756 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4757 .mm = mm,
4758 };
dfe076b0 4759 down_read(&mm->mmap_sem);
26bcd64a 4760 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4761 up_read(&mm->mmap_sem);
4ffef5fe
DN
4762
4763 precharge = mc.precharge;
4764 mc.precharge = 0;
4765
4766 return precharge;
4767}
4768
4ffef5fe
DN
4769static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4770{
dfe076b0
DN
4771 unsigned long precharge = mem_cgroup_count_precharge(mm);
4772
4773 VM_BUG_ON(mc.moving_task);
4774 mc.moving_task = current;
4775 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4776}
4777
dfe076b0
DN
4778/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4779static void __mem_cgroup_clear_mc(void)
4ffef5fe 4780{
2bd9bb20
KH
4781 struct mem_cgroup *from = mc.from;
4782 struct mem_cgroup *to = mc.to;
4783
4ffef5fe 4784 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4785 if (mc.precharge) {
00501b53 4786 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4787 mc.precharge = 0;
4788 }
4789 /*
4790 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4791 * we must uncharge here.
4792 */
4793 if (mc.moved_charge) {
00501b53 4794 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4795 mc.moved_charge = 0;
4ffef5fe 4796 }
483c30b5
DN
4797 /* we must fixup refcnts and charges */
4798 if (mc.moved_swap) {
483c30b5 4799 /* uncharge swap account from the old cgroup */
ce00a967 4800 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4801 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4802
05b84301 4803 /*
3e32cb2e
JW
4804 * we charged both to->memory and to->memsw, so we
4805 * should uncharge to->memory.
05b84301 4806 */
ce00a967 4807 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4808 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4809
e8ea14cc 4810 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4811
4050377b 4812 /* we've already done css_get(mc.to) */
483c30b5
DN
4813 mc.moved_swap = 0;
4814 }
dfe076b0
DN
4815 memcg_oom_recover(from);
4816 memcg_oom_recover(to);
4817 wake_up_all(&mc.waitq);
4818}
4819
4820static void mem_cgroup_clear_mc(void)
4821{
dfe076b0
DN
4822 /*
4823 * we must clear moving_task before waking up waiters at the end of
4824 * task migration.
4825 */
4826 mc.moving_task = NULL;
4827 __mem_cgroup_clear_mc();
2bd9bb20 4828 spin_lock(&mc.lock);
4ffef5fe
DN
4829 mc.from = NULL;
4830 mc.to = NULL;
2bd9bb20 4831 spin_unlock(&mc.lock);
4ffef5fe
DN
4832}
4833
1f7dd3e5 4834static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4835{
1f7dd3e5 4836 struct cgroup_subsys_state *css;
eed67d75 4837 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4838 struct mem_cgroup *from;
4530eddb 4839 struct task_struct *leader, *p;
9f2115f9 4840 struct mm_struct *mm;
1dfab5ab 4841 unsigned long move_flags;
9f2115f9 4842 int ret = 0;
7dc74be0 4843
1f7dd3e5
TH
4844 /* charge immigration isn't supported on the default hierarchy */
4845 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4846 return 0;
4847
4530eddb
TH
4848 /*
4849 * Multi-process migrations only happen on the default hierarchy
4850 * where charge immigration is not used. Perform charge
4851 * immigration if @tset contains a leader and whine if there are
4852 * multiple.
4853 */
4854 p = NULL;
1f7dd3e5 4855 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4856 WARN_ON_ONCE(p);
4857 p = leader;
1f7dd3e5 4858 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4859 }
4860 if (!p)
4861 return 0;
4862
1f7dd3e5
TH
4863 /*
4864 * We are now commited to this value whatever it is. Changes in this
4865 * tunable will only affect upcoming migrations, not the current one.
4866 * So we need to save it, and keep it going.
4867 */
4868 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4869 if (!move_flags)
4870 return 0;
4871
9f2115f9
TH
4872 from = mem_cgroup_from_task(p);
4873
4874 VM_BUG_ON(from == memcg);
4875
4876 mm = get_task_mm(p);
4877 if (!mm)
4878 return 0;
4879 /* We move charges only when we move a owner of the mm */
4880 if (mm->owner == p) {
4881 VM_BUG_ON(mc.from);
4882 VM_BUG_ON(mc.to);
4883 VM_BUG_ON(mc.precharge);
4884 VM_BUG_ON(mc.moved_charge);
4885 VM_BUG_ON(mc.moved_swap);
4886
4887 spin_lock(&mc.lock);
4888 mc.from = from;
4889 mc.to = memcg;
4890 mc.flags = move_flags;
4891 spin_unlock(&mc.lock);
4892 /* We set mc.moving_task later */
4893
4894 ret = mem_cgroup_precharge_mc(mm);
4895 if (ret)
4896 mem_cgroup_clear_mc();
7dc74be0 4897 }
9f2115f9 4898 mmput(mm);
7dc74be0
DN
4899 return ret;
4900}
4901
1f7dd3e5 4902static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4903{
4e2f245d
JW
4904 if (mc.to)
4905 mem_cgroup_clear_mc();
7dc74be0
DN
4906}
4907
4ffef5fe
DN
4908static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4909 unsigned long addr, unsigned long end,
4910 struct mm_walk *walk)
7dc74be0 4911{
4ffef5fe 4912 int ret = 0;
26bcd64a 4913 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4914 pte_t *pte;
4915 spinlock_t *ptl;
12724850
NH
4916 enum mc_target_type target_type;
4917 union mc_target target;
4918 struct page *page;
4ffef5fe 4919
12724850
NH
4920 /*
4921 * We don't take compound_lock() here but no race with splitting thp
4922 * happens because:
4923 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4924 * under splitting, which means there's no concurrent thp split,
4925 * - if another thread runs into split_huge_page() just after we
4926 * entered this if-block, the thread must wait for page table lock
4927 * to be unlocked in __split_huge_page_splitting(), where the main
4928 * part of thp split is not executed yet.
4929 */
bf929152 4930 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4931 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4932 spin_unlock(ptl);
12724850
NH
4933 return 0;
4934 }
4935 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4936 if (target_type == MC_TARGET_PAGE) {
4937 page = target.page;
4938 if (!isolate_lru_page(page)) {
12724850 4939 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4940 mc.from, mc.to)) {
12724850
NH
4941 mc.precharge -= HPAGE_PMD_NR;
4942 mc.moved_charge += HPAGE_PMD_NR;
4943 }
4944 putback_lru_page(page);
4945 }
4946 put_page(page);
4947 }
bf929152 4948 spin_unlock(ptl);
1a5a9906 4949 return 0;
12724850
NH
4950 }
4951
45f83cef
AA
4952 if (pmd_trans_unstable(pmd))
4953 return 0;
4ffef5fe
DN
4954retry:
4955 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4956 for (; addr != end; addr += PAGE_SIZE) {
4957 pte_t ptent = *(pte++);
02491447 4958 swp_entry_t ent;
4ffef5fe
DN
4959
4960 if (!mc.precharge)
4961 break;
4962
8d32ff84 4963 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4964 case MC_TARGET_PAGE:
4965 page = target.page;
4966 if (isolate_lru_page(page))
4967 goto put;
1306a85a 4968 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4969 mc.precharge--;
854ffa8d
DN
4970 /* we uncharge from mc.from later. */
4971 mc.moved_charge++;
4ffef5fe
DN
4972 }
4973 putback_lru_page(page);
8d32ff84 4974put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4975 put_page(page);
4976 break;
02491447
DN
4977 case MC_TARGET_SWAP:
4978 ent = target.ent;
e91cbb42 4979 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4980 mc.precharge--;
483c30b5
DN
4981 /* we fixup refcnts and charges later. */
4982 mc.moved_swap++;
4983 }
02491447 4984 break;
4ffef5fe
DN
4985 default:
4986 break;
4987 }
4988 }
4989 pte_unmap_unlock(pte - 1, ptl);
4990 cond_resched();
4991
4992 if (addr != end) {
4993 /*
4994 * We have consumed all precharges we got in can_attach().
4995 * We try charge one by one, but don't do any additional
4996 * charges to mc.to if we have failed in charge once in attach()
4997 * phase.
4998 */
854ffa8d 4999 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5000 if (!ret)
5001 goto retry;
5002 }
5003
5004 return ret;
5005}
5006
5007static void mem_cgroup_move_charge(struct mm_struct *mm)
5008{
26bcd64a
NH
5009 struct mm_walk mem_cgroup_move_charge_walk = {
5010 .pmd_entry = mem_cgroup_move_charge_pte_range,
5011 .mm = mm,
5012 };
4ffef5fe
DN
5013
5014 lru_add_drain_all();
312722cb
JW
5015 /*
5016 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5017 * move_lock while we're moving its pages to another memcg.
5018 * Then wait for already started RCU-only updates to finish.
5019 */
5020 atomic_inc(&mc.from->moving_account);
5021 synchronize_rcu();
dfe076b0
DN
5022retry:
5023 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5024 /*
5025 * Someone who are holding the mmap_sem might be waiting in
5026 * waitq. So we cancel all extra charges, wake up all waiters,
5027 * and retry. Because we cancel precharges, we might not be able
5028 * to move enough charges, but moving charge is a best-effort
5029 * feature anyway, so it wouldn't be a big problem.
5030 */
5031 __mem_cgroup_clear_mc();
5032 cond_resched();
5033 goto retry;
5034 }
26bcd64a
NH
5035 /*
5036 * When we have consumed all precharges and failed in doing
5037 * additional charge, the page walk just aborts.
5038 */
5039 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5040 up_read(&mm->mmap_sem);
312722cb 5041 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5042}
5043
1f7dd3e5 5044static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 5045{
1f7dd3e5
TH
5046 struct cgroup_subsys_state *css;
5047 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 5048 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5049
dfe076b0 5050 if (mm) {
a433658c
KM
5051 if (mc.to)
5052 mem_cgroup_move_charge(mm);
dfe076b0
DN
5053 mmput(mm);
5054 }
a433658c
KM
5055 if (mc.to)
5056 mem_cgroup_clear_mc();
67e465a7 5057}
5cfb80a7 5058#else /* !CONFIG_MMU */
1f7dd3e5 5059static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5060{
5061 return 0;
5062}
1f7dd3e5 5063static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5064{
5065}
1f7dd3e5 5066static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5067{
5068}
5069#endif
67e465a7 5070
f00baae7
TH
5071/*
5072 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5073 * to verify whether we're attached to the default hierarchy on each mount
5074 * attempt.
f00baae7 5075 */
eb95419b 5076static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5077{
5078 /*
aa6ec29b 5079 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5080 * guarantees that @root doesn't have any children, so turning it
5081 * on for the root memcg is enough.
5082 */
9e10a130 5083 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5084 root_mem_cgroup->use_hierarchy = true;
5085 else
5086 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5087}
5088
241994ed
JW
5089static u64 memory_current_read(struct cgroup_subsys_state *css,
5090 struct cftype *cft)
5091{
f5fc3c5d
JW
5092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5093
5094 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5095}
5096
5097static int memory_low_show(struct seq_file *m, void *v)
5098{
5099 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5100 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5101
5102 if (low == PAGE_COUNTER_MAX)
d2973697 5103 seq_puts(m, "max\n");
241994ed
JW
5104 else
5105 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5106
5107 return 0;
5108}
5109
5110static ssize_t memory_low_write(struct kernfs_open_file *of,
5111 char *buf, size_t nbytes, loff_t off)
5112{
5113 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5114 unsigned long low;
5115 int err;
5116
5117 buf = strstrip(buf);
d2973697 5118 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5119 if (err)
5120 return err;
5121
5122 memcg->low = low;
5123
5124 return nbytes;
5125}
5126
5127static int memory_high_show(struct seq_file *m, void *v)
5128{
5129 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5130 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5131
5132 if (high == PAGE_COUNTER_MAX)
d2973697 5133 seq_puts(m, "max\n");
241994ed
JW
5134 else
5135 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5136
5137 return 0;
5138}
5139
5140static ssize_t memory_high_write(struct kernfs_open_file *of,
5141 char *buf, size_t nbytes, loff_t off)
5142{
5143 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5144 unsigned long high;
5145 int err;
5146
5147 buf = strstrip(buf);
d2973697 5148 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5149 if (err)
5150 return err;
5151
5152 memcg->high = high;
5153
2529bb3a 5154 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5155 return nbytes;
5156}
5157
5158static int memory_max_show(struct seq_file *m, void *v)
5159{
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5161 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5162
5163 if (max == PAGE_COUNTER_MAX)
d2973697 5164 seq_puts(m, "max\n");
241994ed
JW
5165 else
5166 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5167
5168 return 0;
5169}
5170
5171static ssize_t memory_max_write(struct kernfs_open_file *of,
5172 char *buf, size_t nbytes, loff_t off)
5173{
5174 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5175 unsigned long max;
5176 int err;
5177
5178 buf = strstrip(buf);
d2973697 5179 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5180 if (err)
5181 return err;
5182
5183 err = mem_cgroup_resize_limit(memcg, max);
5184 if (err)
5185 return err;
5186
2529bb3a 5187 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5188 return nbytes;
5189}
5190
5191static int memory_events_show(struct seq_file *m, void *v)
5192{
5193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5194
5195 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5196 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5197 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5198 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5199
5200 return 0;
5201}
5202
5203static struct cftype memory_files[] = {
5204 {
5205 .name = "current",
f5fc3c5d 5206 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5207 .read_u64 = memory_current_read,
5208 },
5209 {
5210 .name = "low",
5211 .flags = CFTYPE_NOT_ON_ROOT,
5212 .seq_show = memory_low_show,
5213 .write = memory_low_write,
5214 },
5215 {
5216 .name = "high",
5217 .flags = CFTYPE_NOT_ON_ROOT,
5218 .seq_show = memory_high_show,
5219 .write = memory_high_write,
5220 },
5221 {
5222 .name = "max",
5223 .flags = CFTYPE_NOT_ON_ROOT,
5224 .seq_show = memory_max_show,
5225 .write = memory_max_write,
5226 },
5227 {
5228 .name = "events",
5229 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5230 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5231 .seq_show = memory_events_show,
5232 },
5233 { } /* terminate */
5234};
5235
073219e9 5236struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5237 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5238 .css_online = mem_cgroup_css_online,
92fb9748 5239 .css_offline = mem_cgroup_css_offline,
6df38689 5240 .css_released = mem_cgroup_css_released,
92fb9748 5241 .css_free = mem_cgroup_css_free,
1ced953b 5242 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5243 .can_attach = mem_cgroup_can_attach,
5244 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5245 .attach = mem_cgroup_move_task,
f00baae7 5246 .bind = mem_cgroup_bind,
241994ed
JW
5247 .dfl_cftypes = memory_files,
5248 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5249 .early_init = 0,
8cdea7c0 5250};
c077719b 5251
241994ed
JW
5252/**
5253 * mem_cgroup_low - check if memory consumption is below the normal range
5254 * @root: the highest ancestor to consider
5255 * @memcg: the memory cgroup to check
5256 *
5257 * Returns %true if memory consumption of @memcg, and that of all
5258 * configurable ancestors up to @root, is below the normal range.
5259 */
5260bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5261{
5262 if (mem_cgroup_disabled())
5263 return false;
5264
5265 /*
5266 * The toplevel group doesn't have a configurable range, so
5267 * it's never low when looked at directly, and it is not
5268 * considered an ancestor when assessing the hierarchy.
5269 */
5270
5271 if (memcg == root_mem_cgroup)
5272 return false;
5273
4e54dede 5274 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5275 return false;
5276
5277 while (memcg != root) {
5278 memcg = parent_mem_cgroup(memcg);
5279
5280 if (memcg == root_mem_cgroup)
5281 break;
5282
4e54dede 5283 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5284 return false;
5285 }
5286 return true;
5287}
5288
00501b53
JW
5289/**
5290 * mem_cgroup_try_charge - try charging a page
5291 * @page: page to charge
5292 * @mm: mm context of the victim
5293 * @gfp_mask: reclaim mode
5294 * @memcgp: charged memcg return
5295 *
5296 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5297 * pages according to @gfp_mask if necessary.
5298 *
5299 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5300 * Otherwise, an error code is returned.
5301 *
5302 * After page->mapping has been set up, the caller must finalize the
5303 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5304 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5305 */
5306int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5307 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5308{
5309 struct mem_cgroup *memcg = NULL;
5310 unsigned int nr_pages = 1;
5311 int ret = 0;
5312
5313 if (mem_cgroup_disabled())
5314 goto out;
5315
5316 if (PageSwapCache(page)) {
00501b53
JW
5317 /*
5318 * Every swap fault against a single page tries to charge the
5319 * page, bail as early as possible. shmem_unuse() encounters
5320 * already charged pages, too. The USED bit is protected by
5321 * the page lock, which serializes swap cache removal, which
5322 * in turn serializes uncharging.
5323 */
e993d905 5324 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5325 if (page->mem_cgroup)
00501b53 5326 goto out;
e993d905
VD
5327
5328 if (do_swap_account) {
5329 swp_entry_t ent = { .val = page_private(page), };
5330 unsigned short id = lookup_swap_cgroup_id(ent);
5331
5332 rcu_read_lock();
5333 memcg = mem_cgroup_from_id(id);
5334 if (memcg && !css_tryget_online(&memcg->css))
5335 memcg = NULL;
5336 rcu_read_unlock();
5337 }
00501b53
JW
5338 }
5339
5340 if (PageTransHuge(page)) {
5341 nr_pages <<= compound_order(page);
5342 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5343 }
5344
00501b53
JW
5345 if (!memcg)
5346 memcg = get_mem_cgroup_from_mm(mm);
5347
5348 ret = try_charge(memcg, gfp_mask, nr_pages);
5349
5350 css_put(&memcg->css);
00501b53
JW
5351out:
5352 *memcgp = memcg;
5353 return ret;
5354}
5355
5356/**
5357 * mem_cgroup_commit_charge - commit a page charge
5358 * @page: page to charge
5359 * @memcg: memcg to charge the page to
5360 * @lrucare: page might be on LRU already
5361 *
5362 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5363 * after page->mapping has been set up. This must happen atomically
5364 * as part of the page instantiation, i.e. under the page table lock
5365 * for anonymous pages, under the page lock for page and swap cache.
5366 *
5367 * In addition, the page must not be on the LRU during the commit, to
5368 * prevent racing with task migration. If it might be, use @lrucare.
5369 *
5370 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5371 */
5372void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5373 bool lrucare)
5374{
5375 unsigned int nr_pages = 1;
5376
5377 VM_BUG_ON_PAGE(!page->mapping, page);
5378 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5379
5380 if (mem_cgroup_disabled())
5381 return;
5382 /*
5383 * Swap faults will attempt to charge the same page multiple
5384 * times. But reuse_swap_page() might have removed the page
5385 * from swapcache already, so we can't check PageSwapCache().
5386 */
5387 if (!memcg)
5388 return;
5389
6abb5a86
JW
5390 commit_charge(page, memcg, lrucare);
5391
00501b53
JW
5392 if (PageTransHuge(page)) {
5393 nr_pages <<= compound_order(page);
5394 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5395 }
5396
6abb5a86
JW
5397 local_irq_disable();
5398 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5399 memcg_check_events(memcg, page);
5400 local_irq_enable();
00501b53
JW
5401
5402 if (do_swap_account && PageSwapCache(page)) {
5403 swp_entry_t entry = { .val = page_private(page) };
5404 /*
5405 * The swap entry might not get freed for a long time,
5406 * let's not wait for it. The page already received a
5407 * memory+swap charge, drop the swap entry duplicate.
5408 */
5409 mem_cgroup_uncharge_swap(entry);
5410 }
5411}
5412
5413/**
5414 * mem_cgroup_cancel_charge - cancel a page charge
5415 * @page: page to charge
5416 * @memcg: memcg to charge the page to
5417 *
5418 * Cancel a charge transaction started by mem_cgroup_try_charge().
5419 */
5420void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5421{
5422 unsigned int nr_pages = 1;
5423
5424 if (mem_cgroup_disabled())
5425 return;
5426 /*
5427 * Swap faults will attempt to charge the same page multiple
5428 * times. But reuse_swap_page() might have removed the page
5429 * from swapcache already, so we can't check PageSwapCache().
5430 */
5431 if (!memcg)
5432 return;
5433
5434 if (PageTransHuge(page)) {
5435 nr_pages <<= compound_order(page);
5436 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5437 }
5438
5439 cancel_charge(memcg, nr_pages);
5440}
5441
747db954 5442static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5443 unsigned long nr_anon, unsigned long nr_file,
5444 unsigned long nr_huge, struct page *dummy_page)
5445{
18eca2e6 5446 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5447 unsigned long flags;
5448
ce00a967 5449 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5450 page_counter_uncharge(&memcg->memory, nr_pages);
5451 if (do_swap_account)
5452 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5453 memcg_oom_recover(memcg);
5454 }
747db954
JW
5455
5456 local_irq_save(flags);
5457 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5458 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5459 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5460 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5461 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5462 memcg_check_events(memcg, dummy_page);
5463 local_irq_restore(flags);
e8ea14cc
JW
5464
5465 if (!mem_cgroup_is_root(memcg))
18eca2e6 5466 css_put_many(&memcg->css, nr_pages);
747db954
JW
5467}
5468
5469static void uncharge_list(struct list_head *page_list)
5470{
5471 struct mem_cgroup *memcg = NULL;
747db954
JW
5472 unsigned long nr_anon = 0;
5473 unsigned long nr_file = 0;
5474 unsigned long nr_huge = 0;
5475 unsigned long pgpgout = 0;
747db954
JW
5476 struct list_head *next;
5477 struct page *page;
5478
5479 next = page_list->next;
5480 do {
5481 unsigned int nr_pages = 1;
747db954
JW
5482
5483 page = list_entry(next, struct page, lru);
5484 next = page->lru.next;
5485
5486 VM_BUG_ON_PAGE(PageLRU(page), page);
5487 VM_BUG_ON_PAGE(page_count(page), page);
5488
1306a85a 5489 if (!page->mem_cgroup)
747db954
JW
5490 continue;
5491
5492 /*
5493 * Nobody should be changing or seriously looking at
1306a85a 5494 * page->mem_cgroup at this point, we have fully
29833315 5495 * exclusive access to the page.
747db954
JW
5496 */
5497
1306a85a 5498 if (memcg != page->mem_cgroup) {
747db954 5499 if (memcg) {
18eca2e6
JW
5500 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5501 nr_huge, page);
5502 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5503 }
1306a85a 5504 memcg = page->mem_cgroup;
747db954
JW
5505 }
5506
5507 if (PageTransHuge(page)) {
5508 nr_pages <<= compound_order(page);
5509 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5510 nr_huge += nr_pages;
5511 }
5512
5513 if (PageAnon(page))
5514 nr_anon += nr_pages;
5515 else
5516 nr_file += nr_pages;
5517
1306a85a 5518 page->mem_cgroup = NULL;
747db954
JW
5519
5520 pgpgout++;
5521 } while (next != page_list);
5522
5523 if (memcg)
18eca2e6
JW
5524 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5525 nr_huge, page);
747db954
JW
5526}
5527
0a31bc97
JW
5528/**
5529 * mem_cgroup_uncharge - uncharge a page
5530 * @page: page to uncharge
5531 *
5532 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5533 * mem_cgroup_commit_charge().
5534 */
5535void mem_cgroup_uncharge(struct page *page)
5536{
0a31bc97
JW
5537 if (mem_cgroup_disabled())
5538 return;
5539
747db954 5540 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5541 if (!page->mem_cgroup)
0a31bc97
JW
5542 return;
5543
747db954
JW
5544 INIT_LIST_HEAD(&page->lru);
5545 uncharge_list(&page->lru);
5546}
0a31bc97 5547
747db954
JW
5548/**
5549 * mem_cgroup_uncharge_list - uncharge a list of page
5550 * @page_list: list of pages to uncharge
5551 *
5552 * Uncharge a list of pages previously charged with
5553 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5554 */
5555void mem_cgroup_uncharge_list(struct list_head *page_list)
5556{
5557 if (mem_cgroup_disabled())
5558 return;
0a31bc97 5559
747db954
JW
5560 if (!list_empty(page_list))
5561 uncharge_list(page_list);
0a31bc97
JW
5562}
5563
5564/**
45637bab 5565 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5566 * @oldpage: currently charged page
5567 * @newpage: page to transfer the charge to
0a31bc97
JW
5568 *
5569 * Migrate the charge from @oldpage to @newpage.
5570 *
5571 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5572 * Either or both pages might be on the LRU already.
0a31bc97 5573 */
45637bab 5574void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5575{
29833315 5576 struct mem_cgroup *memcg;
0a31bc97
JW
5577 int isolated;
5578
5579 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5580 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5581 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5582 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5583 newpage);
0a31bc97
JW
5584
5585 if (mem_cgroup_disabled())
5586 return;
5587
5588 /* Page cache replacement: new page already charged? */
1306a85a 5589 if (newpage->mem_cgroup)
0a31bc97
JW
5590 return;
5591
45637bab 5592 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5593 memcg = oldpage->mem_cgroup;
29833315 5594 if (!memcg)
0a31bc97
JW
5595 return;
5596
45637bab 5597 lock_page_lru(oldpage, &isolated);
1306a85a 5598 oldpage->mem_cgroup = NULL;
45637bab 5599 unlock_page_lru(oldpage, isolated);
0a31bc97 5600
45637bab 5601 commit_charge(newpage, memcg, true);
0a31bc97
JW
5602}
5603
2d11085e 5604/*
1081312f
MH
5605 * subsys_initcall() for memory controller.
5606 *
5607 * Some parts like hotcpu_notifier() have to be initialized from this context
5608 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5609 * everything that doesn't depend on a specific mem_cgroup structure should
5610 * be initialized from here.
2d11085e
MH
5611 */
5612static int __init mem_cgroup_init(void)
5613{
95a045f6
JW
5614 int cpu, node;
5615
2d11085e 5616 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5617
5618 for_each_possible_cpu(cpu)
5619 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5620 drain_local_stock);
5621
5622 for_each_node(node) {
5623 struct mem_cgroup_tree_per_node *rtpn;
5624 int zone;
5625
5626 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5627 node_online(node) ? node : NUMA_NO_NODE);
5628
5629 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5630 struct mem_cgroup_tree_per_zone *rtpz;
5631
5632 rtpz = &rtpn->rb_tree_per_zone[zone];
5633 rtpz->rb_root = RB_ROOT;
5634 spin_lock_init(&rtpz->lock);
5635 }
5636 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5637 }
5638
2d11085e
MH
5639 return 0;
5640}
5641subsys_initcall(mem_cgroup_init);
21afa38e
JW
5642
5643#ifdef CONFIG_MEMCG_SWAP
5644/**
5645 * mem_cgroup_swapout - transfer a memsw charge to swap
5646 * @page: page whose memsw charge to transfer
5647 * @entry: swap entry to move the charge to
5648 *
5649 * Transfer the memsw charge of @page to @entry.
5650 */
5651void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5652{
5653 struct mem_cgroup *memcg;
5654 unsigned short oldid;
5655
5656 VM_BUG_ON_PAGE(PageLRU(page), page);
5657 VM_BUG_ON_PAGE(page_count(page), page);
5658
5659 if (!do_swap_account)
5660 return;
5661
5662 memcg = page->mem_cgroup;
5663
5664 /* Readahead page, never charged */
5665 if (!memcg)
5666 return;
5667
5668 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5669 VM_BUG_ON_PAGE(oldid, page);
5670 mem_cgroup_swap_statistics(memcg, true);
5671
5672 page->mem_cgroup = NULL;
5673
5674 if (!mem_cgroup_is_root(memcg))
5675 page_counter_uncharge(&memcg->memory, 1);
5676
ce9ce665
SAS
5677 /*
5678 * Interrupts should be disabled here because the caller holds the
5679 * mapping->tree_lock lock which is taken with interrupts-off. It is
5680 * important here to have the interrupts disabled because it is the
5681 * only synchronisation we have for udpating the per-CPU variables.
5682 */
5683 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5684 mem_cgroup_charge_statistics(memcg, page, -1);
5685 memcg_check_events(memcg, page);
5686}
5687
5688/**
5689 * mem_cgroup_uncharge_swap - uncharge a swap entry
5690 * @entry: swap entry to uncharge
5691 *
5692 * Drop the memsw charge associated with @entry.
5693 */
5694void mem_cgroup_uncharge_swap(swp_entry_t entry)
5695{
5696 struct mem_cgroup *memcg;
5697 unsigned short id;
5698
5699 if (!do_swap_account)
5700 return;
5701
5702 id = swap_cgroup_record(entry, 0);
5703 rcu_read_lock();
adbe427b 5704 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5705 if (memcg) {
5706 if (!mem_cgroup_is_root(memcg))
5707 page_counter_uncharge(&memcg->memsw, 1);
5708 mem_cgroup_swap_statistics(memcg, false);
5709 css_put(&memcg->css);
5710 }
5711 rcu_read_unlock();
5712}
5713
5714/* for remember boot option*/
5715#ifdef CONFIG_MEMCG_SWAP_ENABLED
5716static int really_do_swap_account __initdata = 1;
5717#else
5718static int really_do_swap_account __initdata;
5719#endif
5720
5721static int __init enable_swap_account(char *s)
5722{
5723 if (!strcmp(s, "1"))
5724 really_do_swap_account = 1;
5725 else if (!strcmp(s, "0"))
5726 really_do_swap_account = 0;
5727 return 1;
5728}
5729__setup("swapaccount=", enable_swap_account);
5730
5731static struct cftype memsw_cgroup_files[] = {
5732 {
5733 .name = "memsw.usage_in_bytes",
5734 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5735 .read_u64 = mem_cgroup_read_u64,
5736 },
5737 {
5738 .name = "memsw.max_usage_in_bytes",
5739 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5740 .write = mem_cgroup_reset,
5741 .read_u64 = mem_cgroup_read_u64,
5742 },
5743 {
5744 .name = "memsw.limit_in_bytes",
5745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5746 .write = mem_cgroup_write,
5747 .read_u64 = mem_cgroup_read_u64,
5748 },
5749 {
5750 .name = "memsw.failcnt",
5751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5752 .write = mem_cgroup_reset,
5753 .read_u64 = mem_cgroup_read_u64,
5754 },
5755 { }, /* terminate */
5756};
5757
5758static int __init mem_cgroup_swap_init(void)
5759{
5760 if (!mem_cgroup_disabled() && really_do_swap_account) {
5761 do_swap_account = 1;
5762 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5763 memsw_cgroup_files));
5764 }
5765 return 0;
5766}
5767subsys_initcall(mem_cgroup_swap_init);
5768
5769#endif /* CONFIG_MEMCG_SWAP */