]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcgroup: fix hang with shmem/tmpfs
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
8a9f3ccd 24#include <linux/page-flags.h>
66e1707b 25#include <linux/backing-dev.h>
8a9f3ccd
BS
26#include <linux/bit_spinlock.h>
27#include <linux/rcupdate.h>
66e1707b
BS
28#include <linux/swap.h>
29#include <linux/spinlock.h>
30#include <linux/fs.h>
8cdea7c0 31
8697d331
BS
32#include <asm/uaccess.h>
33
8cdea7c0 34struct cgroup_subsys mem_cgroup_subsys;
66e1707b 35static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0
BS
36
37/*
38 * The memory controller data structure. The memory controller controls both
39 * page cache and RSS per cgroup. We would eventually like to provide
40 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
41 * to help the administrator determine what knobs to tune.
42 *
43 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
44 * we hit the water mark. May be even add a low water mark, such that
45 * no reclaim occurs from a cgroup at it's low water mark, this is
46 * a feature that will be implemented much later in the future.
8cdea7c0
BS
47 */
48struct mem_cgroup {
49 struct cgroup_subsys_state css;
50 /*
51 * the counter to account for memory usage
52 */
53 struct res_counter res;
78fb7466
PE
54 /*
55 * Per cgroup active and inactive list, similar to the
56 * per zone LRU lists.
57 * TODO: Consider making these lists per zone
58 */
59 struct list_head active_list;
60 struct list_head inactive_list;
66e1707b
BS
61 /*
62 * spin_lock to protect the per cgroup LRU
63 */
64 spinlock_t lru_lock;
8697d331 65 unsigned long control_type; /* control RSS or RSS+Pagecache */
8cdea7c0
BS
66};
67
8a9f3ccd
BS
68/*
69 * We use the lower bit of the page->page_cgroup pointer as a bit spin
70 * lock. We need to ensure that page->page_cgroup is atleast two
71 * byte aligned (based on comments from Nick Piggin)
72 */
73#define PAGE_CGROUP_LOCK_BIT 0x0
74#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
75
8cdea7c0
BS
76/*
77 * A page_cgroup page is associated with every page descriptor. The
78 * page_cgroup helps us identify information about the cgroup
79 */
80struct page_cgroup {
81 struct list_head lru; /* per cgroup LRU list */
82 struct page *page;
83 struct mem_cgroup *mem_cgroup;
8a9f3ccd
BS
84 atomic_t ref_cnt; /* Helpful when pages move b/w */
85 /* mapped and cached states */
217bc319 86 int flags;
8cdea7c0 87};
217bc319 88#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
8cdea7c0 89
8697d331
BS
90enum {
91 MEM_CGROUP_TYPE_UNSPEC = 0,
92 MEM_CGROUP_TYPE_MAPPED,
93 MEM_CGROUP_TYPE_CACHED,
94 MEM_CGROUP_TYPE_ALL,
95 MEM_CGROUP_TYPE_MAX,
96};
97
217bc319
KH
98enum charge_type {
99 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
100 MEM_CGROUP_CHARGE_TYPE_MAPPED,
101};
102
8697d331 103static struct mem_cgroup init_mem_cgroup;
8cdea7c0
BS
104
105static inline
106struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
107{
108 return container_of(cgroup_subsys_state(cont,
109 mem_cgroup_subsys_id), struct mem_cgroup,
110 css);
111}
112
78fb7466
PE
113static inline
114struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
115{
116 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
117 struct mem_cgroup, css);
118}
119
120void mm_init_cgroup(struct mm_struct *mm, struct task_struct *p)
121{
122 struct mem_cgroup *mem;
123
124 mem = mem_cgroup_from_task(p);
125 css_get(&mem->css);
126 mm->mem_cgroup = mem;
127}
128
129void mm_free_cgroup(struct mm_struct *mm)
130{
131 css_put(&mm->mem_cgroup->css);
132}
133
8a9f3ccd
BS
134static inline int page_cgroup_locked(struct page *page)
135{
136 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
137 &page->page_cgroup);
138}
139
78fb7466
PE
140void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
141{
8a9f3ccd
BS
142 int locked;
143
144 /*
145 * While resetting the page_cgroup we might not hold the
146 * page_cgroup lock. free_hot_cold_page() is an example
147 * of such a scenario
148 */
149 if (pc)
150 VM_BUG_ON(!page_cgroup_locked(page));
151 locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
152 page->page_cgroup = ((unsigned long)pc | locked);
78fb7466
PE
153}
154
155struct page_cgroup *page_get_page_cgroup(struct page *page)
156{
8a9f3ccd
BS
157 return (struct page_cgroup *)
158 (page->page_cgroup & ~PAGE_CGROUP_LOCK);
159}
160
8697d331 161static void __always_inline lock_page_cgroup(struct page *page)
8a9f3ccd
BS
162{
163 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
164 VM_BUG_ON(!page_cgroup_locked(page));
165}
166
8697d331 167static void __always_inline unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
168{
169 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
170}
171
9175e031
KH
172/*
173 * Tie new page_cgroup to struct page under lock_page_cgroup()
174 * This can fail if the page has been tied to a page_cgroup.
175 * If success, returns 0.
176 */
177static inline int
178page_cgroup_assign_new_page_cgroup(struct page *page, struct page_cgroup *pc)
179{
180 int ret = 0;
181
182 lock_page_cgroup(page);
183 if (!page_get_page_cgroup(page))
184 page_assign_page_cgroup(page, pc);
185 else /* A page is tied to other pc. */
186 ret = 1;
187 unlock_page_cgroup(page);
188 return ret;
189}
190
191/*
192 * Clear page->page_cgroup member under lock_page_cgroup().
193 * If given "pc" value is different from one page->page_cgroup,
194 * page->cgroup is not cleared.
195 * Returns a value of page->page_cgroup at lock taken.
196 * A can can detect failure of clearing by following
197 * clear_page_cgroup(page, pc) == pc
198 */
199
200static inline struct page_cgroup *
201clear_page_cgroup(struct page *page, struct page_cgroup *pc)
202{
203 struct page_cgroup *ret;
204 /* lock and clear */
205 lock_page_cgroup(page);
206 ret = page_get_page_cgroup(page);
207 if (likely(ret == pc))
208 page_assign_page_cgroup(page, NULL);
209 unlock_page_cgroup(page);
210 return ret;
211}
212
213
8697d331 214static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b
BS
215{
216 if (active)
217 list_move(&pc->lru, &pc->mem_cgroup->active_list);
218 else
219 list_move(&pc->lru, &pc->mem_cgroup->inactive_list);
220}
221
4c4a2214
DR
222int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
223{
224 int ret;
225
226 task_lock(task);
227 ret = task->mm && mm_cgroup(task->mm) == mem;
228 task_unlock(task);
229 return ret;
230}
231
66e1707b
BS
232/*
233 * This routine assumes that the appropriate zone's lru lock is already held
234 */
235void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
236{
237 struct mem_cgroup *mem;
238 if (!pc)
239 return;
240
241 mem = pc->mem_cgroup;
242
243 spin_lock(&mem->lru_lock);
244 __mem_cgroup_move_lists(pc, active);
245 spin_unlock(&mem->lru_lock);
246}
247
248unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
249 struct list_head *dst,
250 unsigned long *scanned, int order,
251 int mode, struct zone *z,
252 struct mem_cgroup *mem_cont,
253 int active)
254{
255 unsigned long nr_taken = 0;
256 struct page *page;
257 unsigned long scan;
258 LIST_HEAD(pc_list);
259 struct list_head *src;
ff7283fa 260 struct page_cgroup *pc, *tmp;
66e1707b
BS
261
262 if (active)
263 src = &mem_cont->active_list;
264 else
265 src = &mem_cont->inactive_list;
266
267 spin_lock(&mem_cont->lru_lock);
ff7283fa
KH
268 scan = 0;
269 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 270 if (scan >= nr_to_scan)
ff7283fa 271 break;
66e1707b
BS
272 page = pc->page;
273 VM_BUG_ON(!pc);
274
436c6541 275 if (unlikely(!PageLRU(page)))
ff7283fa 276 continue;
ff7283fa 277
66e1707b
BS
278 if (PageActive(page) && !active) {
279 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
280 continue;
281 }
282 if (!PageActive(page) && active) {
283 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
284 continue;
285 }
286
287 /*
288 * Reclaim, per zone
289 * TODO: make the active/inactive lists per zone
290 */
291 if (page_zone(page) != z)
292 continue;
293
436c6541
HD
294 scan++;
295 list_move(&pc->lru, &pc_list);
66e1707b
BS
296
297 if (__isolate_lru_page(page, mode) == 0) {
298 list_move(&page->lru, dst);
299 nr_taken++;
300 }
301 }
302
303 list_splice(&pc_list, src);
304 spin_unlock(&mem_cont->lru_lock);
305
306 *scanned = scan;
307 return nr_taken;
308}
309
8a9f3ccd
BS
310/*
311 * Charge the memory controller for page usage.
312 * Return
313 * 0 if the charge was successful
314 * < 0 if the cgroup is over its limit
315 */
217bc319
KH
316static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
317 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
318{
319 struct mem_cgroup *mem;
9175e031 320 struct page_cgroup *pc;
66e1707b
BS
321 unsigned long flags;
322 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
8a9f3ccd
BS
323
324 /*
325 * Should page_cgroup's go to their own slab?
326 * One could optimize the performance of the charging routine
327 * by saving a bit in the page_flags and using it as a lock
328 * to see if the cgroup page already has a page_cgroup associated
329 * with it
330 */
66e1707b 331retry:
82369553
HD
332 if (page) {
333 lock_page_cgroup(page);
334 pc = page_get_page_cgroup(page);
335 /*
336 * The page_cgroup exists and
337 * the page has already been accounted.
338 */
339 if (pc) {
340 if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
341 /* this page is under being uncharged ? */
342 unlock_page_cgroup(page);
343 cpu_relax();
344 goto retry;
345 } else {
346 unlock_page_cgroup(page);
347 goto done;
348 }
9175e031 349 }
82369553 350 unlock_page_cgroup(page);
8a9f3ccd 351 }
8a9f3ccd 352
e1a1cd59 353 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
354 if (pc == NULL)
355 goto err;
356
8a9f3ccd 357 /*
3be91277
HD
358 * We always charge the cgroup the mm_struct belongs to.
359 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
360 * thread group leader migrates. It's possible that mm is not
361 * set, if so charge the init_mm (happens for pagecache usage).
362 */
363 if (!mm)
364 mm = &init_mm;
365
3be91277 366 rcu_read_lock();
8a9f3ccd
BS
367 mem = rcu_dereference(mm->mem_cgroup);
368 /*
369 * For every charge from the cgroup, increment reference
370 * count
371 */
372 css_get(&mem->css);
373 rcu_read_unlock();
374
375 /*
376 * If we created the page_cgroup, we should free it on exceeding
377 * the cgroup limit.
378 */
0eea1030 379 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
380 if (!(gfp_mask & __GFP_WAIT))
381 goto out;
e1a1cd59
BS
382
383 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
384 continue;
385
386 /*
387 * try_to_free_mem_cgroup_pages() might not give us a full
388 * picture of reclaim. Some pages are reclaimed and might be
389 * moved to swap cache or just unmapped from the cgroup.
390 * Check the limit again to see if the reclaim reduced the
391 * current usage of the cgroup before giving up
392 */
393 if (res_counter_check_under_limit(&mem->res))
394 continue;
3be91277
HD
395
396 if (!nr_retries--) {
397 mem_cgroup_out_of_memory(mem, gfp_mask);
398 goto out;
66e1707b 399 }
3be91277 400 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
401 }
402
8a9f3ccd
BS
403 atomic_set(&pc->ref_cnt, 1);
404 pc->mem_cgroup = mem;
405 pc->page = page;
217bc319
KH
406 pc->flags = 0;
407 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
408 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 409
82369553 410 if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
9175e031 411 /*
3be91277
HD
412 * Another charge has been added to this page already.
413 * We take lock_page_cgroup(page) again and read
9175e031
KH
414 * page->cgroup, increment refcnt.... just retry is OK.
415 */
416 res_counter_uncharge(&mem->res, PAGE_SIZE);
417 css_put(&mem->css);
418 kfree(pc);
82369553
HD
419 if (!page)
420 goto done;
9175e031
KH
421 goto retry;
422 }
8a9f3ccd 423
66e1707b
BS
424 spin_lock_irqsave(&mem->lru_lock, flags);
425 list_add(&pc->lru, &mem->active_list);
426 spin_unlock_irqrestore(&mem->lru_lock, flags);
427
8a9f3ccd 428done:
8a9f3ccd 429 return 0;
3be91277
HD
430out:
431 css_put(&mem->css);
8a9f3ccd 432 kfree(pc);
8a9f3ccd 433err:
8a9f3ccd
BS
434 return -ENOMEM;
435}
436
217bc319
KH
437int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
438 gfp_t gfp_mask)
439{
440 return mem_cgroup_charge_common(page, mm, gfp_mask,
441 MEM_CGROUP_CHARGE_TYPE_MAPPED);
442}
443
8697d331
BS
444/*
445 * See if the cached pages should be charged at all?
446 */
e1a1cd59
BS
447int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
448 gfp_t gfp_mask)
8697d331 449{
ac44d354 450 int ret = 0;
8697d331
BS
451 struct mem_cgroup *mem;
452 if (!mm)
453 mm = &init_mm;
454
ac44d354 455 rcu_read_lock();
8697d331 456 mem = rcu_dereference(mm->mem_cgroup);
ac44d354
BS
457 css_get(&mem->css);
458 rcu_read_unlock();
8697d331 459 if (mem->control_type == MEM_CGROUP_TYPE_ALL)
ac44d354 460 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 461 MEM_CGROUP_CHARGE_TYPE_CACHE);
ac44d354
BS
462 css_put(&mem->css);
463 return ret;
8697d331
BS
464}
465
8a9f3ccd
BS
466/*
467 * Uncharging is always a welcome operation, we never complain, simply
468 * uncharge.
469 */
470void mem_cgroup_uncharge(struct page_cgroup *pc)
471{
472 struct mem_cgroup *mem;
473 struct page *page;
66e1707b 474 unsigned long flags;
8a9f3ccd 475
8697d331
BS
476 /*
477 * This can handle cases when a page is not charged at all and we
478 * are switching between handling the control_type.
479 */
8a9f3ccd
BS
480 if (!pc)
481 return;
482
483 if (atomic_dec_and_test(&pc->ref_cnt)) {
484 page = pc->page;
9175e031
KH
485 /*
486 * get page->cgroup and clear it under lock.
cc847582 487 * force_empty can drop page->cgroup without checking refcnt.
9175e031
KH
488 */
489 if (clear_page_cgroup(page, pc) == pc) {
490 mem = pc->mem_cgroup;
491 css_put(&mem->css);
492 res_counter_uncharge(&mem->res, PAGE_SIZE);
493 spin_lock_irqsave(&mem->lru_lock, flags);
494 list_del_init(&pc->lru);
495 spin_unlock_irqrestore(&mem->lru_lock, flags);
496 kfree(pc);
9175e031 497 }
8a9f3ccd 498 }
78fb7466 499}
ae41be37
KH
500/*
501 * Returns non-zero if a page (under migration) has valid page_cgroup member.
502 * Refcnt of page_cgroup is incremented.
503 */
504
505int mem_cgroup_prepare_migration(struct page *page)
506{
507 struct page_cgroup *pc;
508 int ret = 0;
509 lock_page_cgroup(page);
510 pc = page_get_page_cgroup(page);
511 if (pc && atomic_inc_not_zero(&pc->ref_cnt))
512 ret = 1;
513 unlock_page_cgroup(page);
514 return ret;
515}
516
517void mem_cgroup_end_migration(struct page *page)
518{
519 struct page_cgroup *pc = page_get_page_cgroup(page);
520 mem_cgroup_uncharge(pc);
521}
522/*
523 * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
524 * And no race with uncharge() routines because page_cgroup for *page*
525 * has extra one reference by mem_cgroup_prepare_migration.
526 */
527
528void mem_cgroup_page_migration(struct page *page, struct page *newpage)
529{
530 struct page_cgroup *pc;
531retry:
532 pc = page_get_page_cgroup(page);
533 if (!pc)
534 return;
535 if (clear_page_cgroup(page, pc) != pc)
536 goto retry;
537 pc->page = newpage;
538 lock_page_cgroup(newpage);
539 page_assign_page_cgroup(newpage, pc);
540 unlock_page_cgroup(newpage);
541 return;
542}
78fb7466 543
cc847582
KH
544/*
545 * This routine traverse page_cgroup in given list and drop them all.
546 * This routine ignores page_cgroup->ref_cnt.
547 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
548 */
549#define FORCE_UNCHARGE_BATCH (128)
550static void
551mem_cgroup_force_empty_list(struct mem_cgroup *mem, struct list_head *list)
552{
553 struct page_cgroup *pc;
554 struct page *page;
555 int count;
556 unsigned long flags;
557
558retry:
559 count = FORCE_UNCHARGE_BATCH;
560 spin_lock_irqsave(&mem->lru_lock, flags);
561
562 while (--count && !list_empty(list)) {
563 pc = list_entry(list->prev, struct page_cgroup, lru);
564 page = pc->page;
565 /* Avoid race with charge */
566 atomic_set(&pc->ref_cnt, 0);
567 if (clear_page_cgroup(page, pc) == pc) {
568 css_put(&mem->css);
569 res_counter_uncharge(&mem->res, PAGE_SIZE);
570 list_del_init(&pc->lru);
571 kfree(pc);
572 } else /* being uncharged ? ...do relax */
573 break;
574 }
575 spin_unlock_irqrestore(&mem->lru_lock, flags);
576 if (!list_empty(list)) {
577 cond_resched();
578 goto retry;
579 }
580 return;
581}
582
583/*
584 * make mem_cgroup's charge to be 0 if there is no task.
585 * This enables deleting this mem_cgroup.
586 */
587
588int mem_cgroup_force_empty(struct mem_cgroup *mem)
589{
590 int ret = -EBUSY;
591 css_get(&mem->css);
592 /*
593 * page reclaim code (kswapd etc..) will move pages between
594` * active_list <-> inactive_list while we don't take a lock.
595 * So, we have to do loop here until all lists are empty.
596 */
597 while (!(list_empty(&mem->active_list) &&
598 list_empty(&mem->inactive_list))) {
599 if (atomic_read(&mem->css.cgroup->count) > 0)
600 goto out;
601 /* drop all page_cgroup in active_list */
602 mem_cgroup_force_empty_list(mem, &mem->active_list);
603 /* drop all page_cgroup in inactive_list */
604 mem_cgroup_force_empty_list(mem, &mem->inactive_list);
605 }
606 ret = 0;
607out:
608 css_put(&mem->css);
609 return ret;
610}
611
612
613
0eea1030
BS
614int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
615{
616 *tmp = memparse(buf, &buf);
617 if (*buf != '\0')
618 return -EINVAL;
619
620 /*
621 * Round up the value to the closest page size
622 */
623 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
624 return 0;
625}
626
627static ssize_t mem_cgroup_read(struct cgroup *cont,
628 struct cftype *cft, struct file *file,
629 char __user *userbuf, size_t nbytes, loff_t *ppos)
8cdea7c0
BS
630{
631 return res_counter_read(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
632 cft->private, userbuf, nbytes, ppos,
633 NULL);
8cdea7c0
BS
634}
635
636static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
637 struct file *file, const char __user *userbuf,
638 size_t nbytes, loff_t *ppos)
639{
640 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
641 cft->private, userbuf, nbytes, ppos,
642 mem_cgroup_write_strategy);
8cdea7c0
BS
643}
644
8697d331
BS
645static ssize_t mem_control_type_write(struct cgroup *cont,
646 struct cftype *cft, struct file *file,
647 const char __user *userbuf,
648 size_t nbytes, loff_t *pos)
649{
650 int ret;
651 char *buf, *end;
652 unsigned long tmp;
653 struct mem_cgroup *mem;
654
655 mem = mem_cgroup_from_cont(cont);
656 buf = kmalloc(nbytes + 1, GFP_KERNEL);
657 ret = -ENOMEM;
658 if (buf == NULL)
659 goto out;
660
661 buf[nbytes] = 0;
662 ret = -EFAULT;
663 if (copy_from_user(buf, userbuf, nbytes))
664 goto out_free;
665
666 ret = -EINVAL;
667 tmp = simple_strtoul(buf, &end, 10);
668 if (*end != '\0')
669 goto out_free;
670
671 if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
672 goto out_free;
673
674 mem->control_type = tmp;
675 ret = nbytes;
676out_free:
677 kfree(buf);
678out:
679 return ret;
680}
681
682static ssize_t mem_control_type_read(struct cgroup *cont,
683 struct cftype *cft,
684 struct file *file, char __user *userbuf,
685 size_t nbytes, loff_t *ppos)
686{
687 unsigned long val;
688 char buf[64], *s;
689 struct mem_cgroup *mem;
690
691 mem = mem_cgroup_from_cont(cont);
692 s = buf;
693 val = mem->control_type;
694 s += sprintf(s, "%lu\n", val);
695 return simple_read_from_buffer((void __user *)userbuf, nbytes,
696 ppos, buf, s - buf);
697}
698
cc847582
KH
699
700static ssize_t mem_force_empty_write(struct cgroup *cont,
701 struct cftype *cft, struct file *file,
702 const char __user *userbuf,
703 size_t nbytes, loff_t *ppos)
704{
705 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
706 int ret;
707 ret = mem_cgroup_force_empty(mem);
708 if (!ret)
709 ret = nbytes;
710 return ret;
711}
712
713/*
714 * Note: This should be removed if cgroup supports write-only file.
715 */
716
717static ssize_t mem_force_empty_read(struct cgroup *cont,
718 struct cftype *cft,
719 struct file *file, char __user *userbuf,
720 size_t nbytes, loff_t *ppos)
721{
722 return -EINVAL;
723}
724
725
8cdea7c0
BS
726static struct cftype mem_cgroup_files[] = {
727 {
0eea1030 728 .name = "usage_in_bytes",
8cdea7c0
BS
729 .private = RES_USAGE,
730 .read = mem_cgroup_read,
731 },
732 {
0eea1030 733 .name = "limit_in_bytes",
8cdea7c0
BS
734 .private = RES_LIMIT,
735 .write = mem_cgroup_write,
736 .read = mem_cgroup_read,
737 },
738 {
739 .name = "failcnt",
740 .private = RES_FAILCNT,
741 .read = mem_cgroup_read,
742 },
8697d331
BS
743 {
744 .name = "control_type",
745 .write = mem_control_type_write,
746 .read = mem_control_type_read,
747 },
cc847582
KH
748 {
749 .name = "force_empty",
750 .write = mem_force_empty_write,
751 .read = mem_force_empty_read,
752 },
8cdea7c0
BS
753};
754
78fb7466
PE
755static struct mem_cgroup init_mem_cgroup;
756
8cdea7c0
BS
757static struct cgroup_subsys_state *
758mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
759{
760 struct mem_cgroup *mem;
761
78fb7466
PE
762 if (unlikely((cont->parent) == NULL)) {
763 mem = &init_mem_cgroup;
764 init_mm.mem_cgroup = mem;
765 } else
766 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
767
768 if (mem == NULL)
769 return NULL;
8cdea7c0
BS
770
771 res_counter_init(&mem->res);
8a9f3ccd
BS
772 INIT_LIST_HEAD(&mem->active_list);
773 INIT_LIST_HEAD(&mem->inactive_list);
66e1707b 774 spin_lock_init(&mem->lru_lock);
8697d331 775 mem->control_type = MEM_CGROUP_TYPE_ALL;
8cdea7c0
BS
776 return &mem->css;
777}
778
779static void mem_cgroup_destroy(struct cgroup_subsys *ss,
780 struct cgroup *cont)
781{
782 kfree(mem_cgroup_from_cont(cont));
783}
784
785static int mem_cgroup_populate(struct cgroup_subsys *ss,
786 struct cgroup *cont)
787{
788 return cgroup_add_files(cont, ss, mem_cgroup_files,
789 ARRAY_SIZE(mem_cgroup_files));
790}
791
67e465a7
BS
792static void mem_cgroup_move_task(struct cgroup_subsys *ss,
793 struct cgroup *cont,
794 struct cgroup *old_cont,
795 struct task_struct *p)
796{
797 struct mm_struct *mm;
798 struct mem_cgroup *mem, *old_mem;
799
800 mm = get_task_mm(p);
801 if (mm == NULL)
802 return;
803
804 mem = mem_cgroup_from_cont(cont);
805 old_mem = mem_cgroup_from_cont(old_cont);
806
807 if (mem == old_mem)
808 goto out;
809
810 /*
811 * Only thread group leaders are allowed to migrate, the mm_struct is
812 * in effect owned by the leader
813 */
814 if (p->tgid != p->pid)
815 goto out;
816
817 css_get(&mem->css);
818 rcu_assign_pointer(mm->mem_cgroup, mem);
819 css_put(&old_mem->css);
820
821out:
822 mmput(mm);
823 return;
824}
825
8cdea7c0
BS
826struct cgroup_subsys mem_cgroup_subsys = {
827 .name = "memory",
828 .subsys_id = mem_cgroup_subsys_id,
829 .create = mem_cgroup_create,
830 .destroy = mem_cgroup_destroy,
831 .populate = mem_cgroup_populate,
67e465a7 832 .attach = mem_cgroup_move_task,
78fb7466 833 .early_init = 1,
8cdea7c0 834};