]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcg: move swapin charge functions above callsites
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c255a458 64#ifdef CONFIG_MEMCG_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
c255a458 69#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
af7c4b0e
JW
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
7a159cc9
JW
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 125 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
126 MEM_CGROUP_NTARGETS,
127};
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
d52aa412 132struct mem_cgroup_stat_cpu {
7a159cc9 133 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 135 unsigned long nr_page_events;
7a159cc9 136 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
137};
138
527a5ec9
JW
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
6d12e2d8
KH
146/*
147 * per-zone information in memory controller.
148 */
6d12e2d8 149struct mem_cgroup_per_zone {
6290df54 150 struct lruvec lruvec;
1eb49272 151 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 152
527a5ec9
JW
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
f64c3f54
BS
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
d79154bb 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 160 /* use container_of */
6d12e2d8 161};
6d12e2d8
KH
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
f64c3f54
BS
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
2e72b634
KS
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
9490ff27 196/* For threshold */
2e72b634 197struct mem_cgroup_threshold_ary {
748dad36 198 /* An array index points to threshold just below or equal to usage. */
5407a562 199 int current_threshold;
2e72b634
KS
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
2c488db2
KS
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
9490ff27
KH
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
2e72b634 222
c0ff4b85
R
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 225
8cdea7c0
BS
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
8cdea7c0
BS
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
59927fb9
HD
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
3afe36b1
GC
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
263 */
264 struct work_struct work_freeing;
265 };
266
78fb7466
PE
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
78fb7466 270 */
6d12e2d8 271 struct mem_cgroup_lru_info info;
889976db
YH
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
453a9bf3
KH
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
889976db 277#endif
18f59ea7
BS
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
79dfdacc
MH
282
283 bool oom_lock;
284 atomic_t under_oom;
285
8c7c6e34 286 atomic_t refcnt;
14797e23 287
1f4c025b 288 int swappiness;
3c11ecf4
KH
289 /* OOM-Killer disable */
290 int oom_kill_disable;
a7885eb8 291
22a668d7
KH
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
312734c0
KH
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
d52aa412 318 /*
c62b1a3b 319 * percpu counter.
d52aa412 320 */
3a7951b4 321 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
8cdea7c0
BS
332};
333
7dc74be0
DN
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
4ffef5fe 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
342 NR_MOVE_TYPE,
343};
344
4ffef5fe
DN
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
b1dd693e 347 spinlock_t lock; /* for from, to */
4ffef5fe
DN
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
854ffa8d 351 unsigned long moved_charge;
483c30b5 352 unsigned long moved_swap;
8033b97c
DN
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
2bd9bb20 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
4ffef5fe 359
90254a65
DN
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
87946a72
DN
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
4e416953
BS
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
a0db00fc
KS
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 378
217bc319
KH
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 381 MEM_CGROUP_CHARGE_TYPE_ANON,
4f98a2fe 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
408
409/* Writing them here to avoid exposing memcg's inner layout */
c255a458 410#ifdef CONFIG_MEMCG_KMEM
e1aab161 411#include <net/sock.h>
d1a4c0b3 412#include <net/ip.h>
e1aab161
GC
413
414static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415void sock_update_memcg(struct sock *sk)
416{
376be5ff 417 if (mem_cgroup_sockets_enabled) {
e1aab161 418 struct mem_cgroup *memcg;
3f134619 419 struct cg_proto *cg_proto;
e1aab161
GC
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
f3f511e1
GC
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
e1aab161
GC
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
3f134619
GC
439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 441 mem_cgroup_get(memcg);
3f134619 442 sk->sk_cgrp = cg_proto;
e1aab161
GC
443 }
444 rcu_read_unlock();
445 }
446}
447EXPORT_SYMBOL(sock_update_memcg);
448
449void sock_release_memcg(struct sock *sk)
450{
376be5ff 451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg);
456 }
457}
d1a4c0b3 458
319d3b9c 459#ifdef CONFIG_INET
d1a4c0b3
GC
460struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
461{
462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL;
464
465 return &memcg->tcp_mem.cg_proto;
466}
467EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 468#endif /* CONFIG_INET */
c255a458 469#endif /* CONFIG_MEMCG_KMEM */
e1aab161 470
c255a458 471#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
3f134619
GC
472static void disarm_sock_keys(struct mem_cgroup *memcg)
473{
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477}
478#else
479static void disarm_sock_keys(struct mem_cgroup *memcg)
480{
481}
482#endif
483
c0ff4b85 484static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 485
f64c3f54 486static struct mem_cgroup_per_zone *
c0ff4b85 487mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 488{
c0ff4b85 489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
490}
491
c0ff4b85 492struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 493{
c0ff4b85 494 return &memcg->css;
d324236b
WF
495}
496
f64c3f54 497static struct mem_cgroup_per_zone *
c0ff4b85 498page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 499{
97a6c37b
JW
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
f64c3f54 502
c0ff4b85 503 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
504}
505
506static struct mem_cgroup_tree_per_zone *
507soft_limit_tree_node_zone(int nid, int zid)
508{
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510}
511
512static struct mem_cgroup_tree_per_zone *
513soft_limit_tree_from_page(struct page *page)
514{
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519}
520
521static void
c0ff4b85 522__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 523 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
f64c3f54
BS
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
ef8745c1
KH
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
f64c3f54
BS
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
4e416953
BS
553}
554
555static void
c0ff4b85 556__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559{
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564}
565
f64c3f54 566static void
c0ff4b85 567mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570{
571 spin_lock(&mctz->lock);
c0ff4b85 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 spin_unlock(&mctz->lock);
574}
575
f64c3f54 576
c0ff4b85 577static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
ef8745c1 579 unsigned long long excess;
f64c3f54
BS
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
f64c3f54
BS
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
4e649152
KH
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
f64c3f54 589 */
c0ff4b85
R
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
ef8745c1 597 if (excess || mz->on_tree) {
4e649152
KH
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
c0ff4b85 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 602 /*
ef8745c1
KH
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
4e649152 605 */
c0ff4b85 606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
607 spin_unlock(&mctz->lock);
608 }
f64c3f54
BS
609 }
610}
611
c0ff4b85 612static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
613{
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
3ed28fa1 618 for_each_node(node) {
f64c3f54 619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 621 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
623 }
624 }
625}
626
4e416953
BS
627static struct mem_cgroup_per_zone *
628__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629{
630 struct rb_node *rightmost = NULL;
26251eaf 631 struct mem_cgroup_per_zone *mz;
4e416953
BS
632
633retry:
26251eaf 634 mz = NULL;
4e416953
BS
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
d79154bb
HD
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
4e416953
BS
648 goto retry;
649done:
650 return mz;
651}
652
653static struct mem_cgroup_per_zone *
654mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655{
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662}
663
711d3d2c
KH
664/*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
c0ff4b85 683static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 684 enum mem_cgroup_stat_index idx)
c62b1a3b 685{
7a159cc9 686 long val = 0;
c62b1a3b 687 int cpu;
c62b1a3b 688
711d3d2c
KH
689 get_online_cpus();
690 for_each_online_cpu(cpu)
c0ff4b85 691 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 692#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
696#endif
697 put_online_cpus();
c62b1a3b
KH
698 return val;
699}
700
c0ff4b85 701static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
702 bool charge)
703{
704 int val = (charge) ? 1 : -1;
bff6bb83 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 716#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
720#endif
721 return val;
722}
723
c0ff4b85 724static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 725 bool anon, int nr_pages)
d52aa412 726{
c62b1a3b
KH
727 preempt_disable();
728
b2402857
KH
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 735 nr_pages);
d52aa412 736 else
b2402857 737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 738 nr_pages);
55e462b0 739
e401f176
KH
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
c0ff4b85 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 743 else {
c0ff4b85 744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
745 nr_pages = -nr_pages; /* for event */
746 }
e401f176 747
13114716 748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 749
c62b1a3b 750 preempt_enable();
6d12e2d8
KH
751}
752
bb2a0de9 753unsigned long
4d7dcca2 754mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
755{
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760}
761
762static unsigned long
c0ff4b85 763mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 764 unsigned int lru_mask)
889976db
YH
765{
766 struct mem_cgroup_per_zone *mz;
f156ab93 767 enum lru_list lru;
bb2a0de9
KH
768 unsigned long ret = 0;
769
c0ff4b85 770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 771
f156ab93
HD
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
bb2a0de9
KH
775 }
776 return ret;
777}
778
779static unsigned long
c0ff4b85 780mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
781 int nid, unsigned int lru_mask)
782{
889976db
YH
783 u64 total = 0;
784 int zid;
785
bb2a0de9 786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
bb2a0de9 789
889976db
YH
790 return total;
791}
bb2a0de9 792
c0ff4b85 793static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 794 unsigned int lru_mask)
6d12e2d8 795{
889976db 796 int nid;
6d12e2d8
KH
797 u64 total = 0;
798
bb2a0de9 799 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 801 return total;
d52aa412
KH
802}
803
f53d7ce3
JW
804static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
7a159cc9
JW
806{
807 unsigned long val, next;
808
13114716 809 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 810 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 811 /* from time_after() in jiffies.h */
f53d7ce3
JW
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
7a159cc9 828 }
f53d7ce3 829 return false;
d2265e6f
KH
830}
831
832/*
833 * Check events in order.
834 *
835 */
c0ff4b85 836static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 837{
4799401f 838 preempt_disable();
d2265e6f 839 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
f53d7ce3
JW
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847#if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850#endif
851 preempt_enable();
852
c0ff4b85 853 mem_cgroup_threshold(memcg);
f53d7ce3 854 if (unlikely(do_softlimit))
c0ff4b85 855 mem_cgroup_update_tree(memcg, page);
453a9bf3 856#if MAX_NUMNODES > 1
f53d7ce3 857 if (unlikely(do_numainfo))
c0ff4b85 858 atomic_inc(&memcg->numainfo_events);
453a9bf3 859#endif
f53d7ce3
JW
860 } else
861 preempt_enable();
d2265e6f
KH
862}
863
d1a4c0b3 864struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
865{
866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css);
869}
870
cf475ad2 871struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 872{
31a78f23
BS
873 /*
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
877 */
878 if (unlikely(!p))
879 return NULL;
880
78fb7466
PE
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css);
883}
884
a433658c 885struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 886{
c0ff4b85 887 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
888
889 if (!mm)
890 return NULL;
54595fe2
KH
891 /*
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
895 */
896 rcu_read_lock();
897 do {
c0ff4b85
R
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg))
54595fe2 900 break;
c0ff4b85 901 } while (!css_tryget(&memcg->css));
54595fe2 902 rcu_read_unlock();
c0ff4b85 903 return memcg;
54595fe2
KH
904}
905
5660048c
JW
906/**
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
911 *
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
914 *
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
918 *
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
922 */
923struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 926{
9f3a0d09
JW
927 struct mem_cgroup *memcg = NULL;
928 int id = 0;
711d3d2c 929
5660048c
JW
930 if (mem_cgroup_disabled())
931 return NULL;
932
9f3a0d09
JW
933 if (!root)
934 root = root_mem_cgroup;
7d74b06f 935
9f3a0d09
JW
936 if (prev && !reclaim)
937 id = css_id(&prev->css);
14067bb3 938
9f3a0d09
JW
939 if (prev && prev != root)
940 css_put(&prev->css);
14067bb3 941
9f3a0d09
JW
942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev)
944 return NULL;
945 return root;
946 }
14067bb3 947
9f3a0d09 948 while (!memcg) {
527a5ec9 949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 950 struct cgroup_subsys_state *css;
711d3d2c 951
527a5ec9
JW
952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz;
956
957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation)
960 return NULL;
961 id = iter->position;
962 }
7d74b06f 963
9f3a0d09
JW
964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) {
967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css,
969 struct mem_cgroup, css);
970 } else
971 id = 0;
14067bb3 972 rcu_read_unlock();
14067bb3 973
527a5ec9
JW
974 if (reclaim) {
975 iter->position = id;
976 if (!css)
977 iter->generation++;
978 else if (!prev && memcg)
979 reclaim->generation = iter->generation;
980 }
9f3a0d09
JW
981
982 if (prev && !css)
983 return NULL;
984 }
985 return memcg;
14067bb3 986}
7d74b06f 987
5660048c
JW
988/**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
9f3a0d09
JW
995{
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000}
7d74b06f 1001
9f3a0d09
JW
1002/*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1009 iter != NULL; \
527a5ec9 1010 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1011
9f3a0d09 1012#define for_each_mem_cgroup(iter) \
527a5ec9 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1014 iter != NULL; \
527a5ec9 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1016
c0ff4b85 1017static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1018{
c0ff4b85 1019 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1020}
1021
456f998e
YH
1022void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1023{
c0ff4b85 1024 struct mem_cgroup *memcg;
456f998e
YH
1025
1026 if (!mm)
1027 return;
1028
1029 rcu_read_lock();
c0ff4b85
R
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg))
456f998e
YH
1032 goto out;
1033
1034 switch (idx) {
456f998e 1035 case PGFAULT:
0e574a93
JW
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break;
1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1040 break;
1041 default:
1042 BUG();
1043 }
1044out:
1045 rcu_read_unlock();
1046}
1047EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1048
925b7673
JW
1049/**
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
fa9add64 1052 * @memcg: memcg of the wanted lruvec
925b7673
JW
1053 *
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled.
1057 */
1058struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg)
1060{
1061 struct mem_cgroup_per_zone *mz;
1062
1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec;
1065
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec;
1068}
1069
08e552c6
KH
1070/*
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1074 *
1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge
1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1082 */
4f98a2fe 1083
925b7673 1084/**
fa9add64 1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1086 * @page: the page
fa9add64 1087 * @zone: zone of the page
925b7673 1088 */
fa9add64 1089struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1090{
08e552c6 1091 struct mem_cgroup_per_zone *mz;
925b7673
JW
1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc;
6d12e2d8 1094
f8d66542 1095 if (mem_cgroup_disabled())
925b7673
JW
1096 return &zone->lruvec;
1097
08e552c6 1098 pc = lookup_page_cgroup(page);
38c5d72f 1099 memcg = pc->mem_cgroup;
7512102c
HD
1100
1101 /*
fa9add64 1102 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1105 *
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1109 */
fa9add64 1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1112
925b7673 1113 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1114 return &mz->lruvec;
08e552c6 1115}
b69408e8 1116
925b7673 1117/**
fa9add64
HD
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
925b7673 1122 *
fa9add64
HD
1123 * This function must be called when a page is added to or removed from an
1124 * lru list.
3f58a829 1125 */
fa9add64
HD
1126void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages)
3f58a829
MK
1128{
1129 struct mem_cgroup_per_zone *mz;
fa9add64 1130 unsigned long *lru_size;
3f58a829
MK
1131
1132 if (mem_cgroup_disabled())
1133 return;
1134
fa9add64
HD
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1139}
544122e5 1140
3e92041d 1141/*
c0ff4b85 1142 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1143 * hierarchy subtree
1144 */
c3ac9a8a
JW
1145bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
3e92041d 1147{
91c63734
JW
1148 if (root_memcg == memcg)
1149 return true;
3a981f48 1150 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1151 return false;
c3ac9a8a
JW
1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1153}
1154
1155static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157{
1158 bool ret;
1159
91c63734 1160 rcu_read_lock();
c3ac9a8a 1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1162 rcu_read_unlock();
1163 return ret;
3e92041d
MH
1164}
1165
c0ff4b85 1166int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1167{
1168 int ret;
0b7f569e 1169 struct mem_cgroup *curr = NULL;
158e0a2d 1170 struct task_struct *p;
4c4a2214 1171
158e0a2d 1172 p = find_lock_task_mm(task);
de077d22
DR
1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p);
1176 } else {
1177 /*
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1181 */
1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task);
1184 if (curr)
1185 css_get(&curr->css);
1186 task_unlock(task);
1187 }
0b7f569e
KH
1188 if (!curr)
1189 return 0;
d31f56db 1190 /*
c0ff4b85 1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1192 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1195 */
c0ff4b85 1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1197 css_put(&curr->css);
4c4a2214
DR
1198 return ret;
1199}
1200
c56d5c7d 1201int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1202{
9b272977 1203 unsigned long inactive_ratio;
14797e23 1204 unsigned long inactive;
9b272977 1205 unsigned long active;
c772be93 1206 unsigned long gb;
14797e23 1207
4d7dcca2
HD
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1210
c772be93
KM
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb);
1214 else
1215 inactive_ratio = 1;
1216
9b272977 1217 return inactive * inactive_ratio < active;
14797e23
KM
1218}
1219
c56d5c7d 1220int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1221{
1222 unsigned long active;
1223 unsigned long inactive;
1224
4d7dcca2
HD
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1227
1228 return (active > inactive);
1229}
1230
6d61ef40
BS
1231#define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1233
19942822 1234/**
9d11ea9f 1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1236 * @memcg: the memory cgroup
19942822 1237 *
9d11ea9f 1238 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1239 * pages.
19942822 1240 */
c0ff4b85 1241static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1242{
9d11ea9f
JW
1243 unsigned long long margin;
1244
c0ff4b85 1245 margin = res_counter_margin(&memcg->res);
9d11ea9f 1246 if (do_swap_account)
c0ff4b85 1247 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1248 return margin >> PAGE_SHIFT;
19942822
JW
1249}
1250
1f4c025b 1251int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1252{
1253 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1254
1255 /* root ? */
1256 if (cgrp->parent == NULL)
1257 return vm_swappiness;
1258
bf1ff263 1259 return memcg->swappiness;
a7885eb8
KM
1260}
1261
619d094b
KH
1262/*
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1267 *
1268 * CPU-A CPU-B
1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks.
1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock()
1274 * start move here.
1275 */
4331f7d3
KH
1276
1277/* for quick checking without looking up memcg */
1278atomic_t memcg_moving __read_mostly;
1279
c0ff4b85 1280static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1281{
4331f7d3 1282 atomic_inc(&memcg_moving);
619d094b 1283 atomic_inc(&memcg->moving_account);
32047e2a
KH
1284 synchronize_rcu();
1285}
1286
c0ff4b85 1287static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1288{
619d094b
KH
1289 /*
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1292 */
4331f7d3
KH
1293 if (memcg) {
1294 atomic_dec(&memcg_moving);
619d094b 1295 atomic_dec(&memcg->moving_account);
4331f7d3 1296 }
32047e2a 1297}
619d094b 1298
32047e2a
KH
1299/*
1300 * 2 routines for checking "mem" is under move_account() or not.
1301 *
13fd1dd9
AM
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
32047e2a
KH
1304 * pc->mem_cgroup may be overwritten.
1305 *
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1309 */
1310
13fd1dd9 1311static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1312{
1313 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1314 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1315}
4b534334 1316
c0ff4b85 1317static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1318{
2bd9bb20
KH
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
4b534334 1321 bool ret = false;
2bd9bb20
KH
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
3e92041d 1331
c0ff4b85
R
1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1334unlock:
1335 spin_unlock(&mc.lock);
4b534334
KH
1336 return ret;
1337}
1338
c0ff4b85 1339static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1340{
1341 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1342 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353}
1354
312734c0
KH
1355/*
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1359 * see mem_cgroup_stolen(), too.
312734c0
KH
1360 */
1361static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags)
1363{
1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1365}
1366
1367static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags)
1369{
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1371}
1372
e222432b 1373/**
6a6135b6 1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1377 *
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1380 */
1381void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1382{
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1385 /*
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1389 */
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1392
d31f56db 1393 if (!memcg || !p)
e222432b
BS
1394 return;
1395
e222432b
BS
1396 rcu_read_lock();
1397
1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1400
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 /*
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1406 */
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1413
1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) {
1417 rcu_read_unlock();
1418 goto done;
1419 }
1420 rcu_read_unlock();
1421
1422 /*
1423 * Continues from above, so we don't need an KERN_ level
1424 */
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426done:
1427
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1437}
1438
81d39c20
KH
1439/*
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1442 */
c0ff4b85 1443static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1444{
1445 int num = 0;
7d74b06f
KH
1446 struct mem_cgroup *iter;
1447
c0ff4b85 1448 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1449 num++;
81d39c20
KH
1450 return num;
1451}
1452
a63d83f4
DR
1453/*
1454 * Return the memory (and swap, if configured) limit for a memcg.
1455 */
9cbb78bb 1456static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1457{
1458 u64 limit;
1459 u64 memsw;
1460
f3e8eb70
JW
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT;
1463
a63d83f4
DR
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1465 /*
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1468 */
1469 return min(limit, memsw);
1470}
1471
876aafbf
DR
1472void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1473 int order)
9cbb78bb
DR
1474{
1475 struct mem_cgroup *iter;
1476 unsigned long chosen_points = 0;
1477 unsigned long totalpages;
1478 unsigned int points = 0;
1479 struct task_struct *chosen = NULL;
1480
876aafbf
DR
1481 /*
1482 * If current has a pending SIGKILL, then automatically select it. The
1483 * goal is to allow it to allocate so that it may quickly exit and free
1484 * its memory.
1485 */
1486 if (fatal_signal_pending(current)) {
1487 set_thread_flag(TIF_MEMDIE);
1488 return;
1489 }
1490
1491 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1492 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1493 for_each_mem_cgroup_tree(iter, memcg) {
1494 struct cgroup *cgroup = iter->css.cgroup;
1495 struct cgroup_iter it;
1496 struct task_struct *task;
1497
1498 cgroup_iter_start(cgroup, &it);
1499 while ((task = cgroup_iter_next(cgroup, &it))) {
1500 switch (oom_scan_process_thread(task, totalpages, NULL,
1501 false)) {
1502 case OOM_SCAN_SELECT:
1503 if (chosen)
1504 put_task_struct(chosen);
1505 chosen = task;
1506 chosen_points = ULONG_MAX;
1507 get_task_struct(chosen);
1508 /* fall through */
1509 case OOM_SCAN_CONTINUE:
1510 continue;
1511 case OOM_SCAN_ABORT:
1512 cgroup_iter_end(cgroup, &it);
1513 mem_cgroup_iter_break(memcg, iter);
1514 if (chosen)
1515 put_task_struct(chosen);
1516 return;
1517 case OOM_SCAN_OK:
1518 break;
1519 };
1520 points = oom_badness(task, memcg, NULL, totalpages);
1521 if (points > chosen_points) {
1522 if (chosen)
1523 put_task_struct(chosen);
1524 chosen = task;
1525 chosen_points = points;
1526 get_task_struct(chosen);
1527 }
1528 }
1529 cgroup_iter_end(cgroup, &it);
1530 }
1531
1532 if (!chosen)
1533 return;
1534 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1535 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1536 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1537}
1538
5660048c
JW
1539static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1540 gfp_t gfp_mask,
1541 unsigned long flags)
1542{
1543 unsigned long total = 0;
1544 bool noswap = false;
1545 int loop;
1546
1547 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1548 noswap = true;
1549 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1550 noswap = true;
1551
1552 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1553 if (loop)
1554 drain_all_stock_async(memcg);
1555 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1556 /*
1557 * Allow limit shrinkers, which are triggered directly
1558 * by userspace, to catch signals and stop reclaim
1559 * after minimal progress, regardless of the margin.
1560 */
1561 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1562 break;
1563 if (mem_cgroup_margin(memcg))
1564 break;
1565 /*
1566 * If nothing was reclaimed after two attempts, there
1567 * may be no reclaimable pages in this hierarchy.
1568 */
1569 if (loop && !total)
1570 break;
1571 }
1572 return total;
1573}
1574
4d0c066d
KH
1575/**
1576 * test_mem_cgroup_node_reclaimable
dad7557e 1577 * @memcg: the target memcg
4d0c066d
KH
1578 * @nid: the node ID to be checked.
1579 * @noswap : specify true here if the user wants flle only information.
1580 *
1581 * This function returns whether the specified memcg contains any
1582 * reclaimable pages on a node. Returns true if there are any reclaimable
1583 * pages in the node.
1584 */
c0ff4b85 1585static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1586 int nid, bool noswap)
1587{
c0ff4b85 1588 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1589 return true;
1590 if (noswap || !total_swap_pages)
1591 return false;
c0ff4b85 1592 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1593 return true;
1594 return false;
1595
1596}
889976db
YH
1597#if MAX_NUMNODES > 1
1598
1599/*
1600 * Always updating the nodemask is not very good - even if we have an empty
1601 * list or the wrong list here, we can start from some node and traverse all
1602 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1603 *
1604 */
c0ff4b85 1605static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1606{
1607 int nid;
453a9bf3
KH
1608 /*
1609 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1610 * pagein/pageout changes since the last update.
1611 */
c0ff4b85 1612 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1613 return;
c0ff4b85 1614 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1615 return;
1616
889976db 1617 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1618 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1619
1620 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1621
c0ff4b85
R
1622 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1623 node_clear(nid, memcg->scan_nodes);
889976db 1624 }
453a9bf3 1625
c0ff4b85
R
1626 atomic_set(&memcg->numainfo_events, 0);
1627 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1628}
1629
1630/*
1631 * Selecting a node where we start reclaim from. Because what we need is just
1632 * reducing usage counter, start from anywhere is O,K. Considering
1633 * memory reclaim from current node, there are pros. and cons.
1634 *
1635 * Freeing memory from current node means freeing memory from a node which
1636 * we'll use or we've used. So, it may make LRU bad. And if several threads
1637 * hit limits, it will see a contention on a node. But freeing from remote
1638 * node means more costs for memory reclaim because of memory latency.
1639 *
1640 * Now, we use round-robin. Better algorithm is welcomed.
1641 */
c0ff4b85 1642int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1643{
1644 int node;
1645
c0ff4b85
R
1646 mem_cgroup_may_update_nodemask(memcg);
1647 node = memcg->last_scanned_node;
889976db 1648
c0ff4b85 1649 node = next_node(node, memcg->scan_nodes);
889976db 1650 if (node == MAX_NUMNODES)
c0ff4b85 1651 node = first_node(memcg->scan_nodes);
889976db
YH
1652 /*
1653 * We call this when we hit limit, not when pages are added to LRU.
1654 * No LRU may hold pages because all pages are UNEVICTABLE or
1655 * memcg is too small and all pages are not on LRU. In that case,
1656 * we use curret node.
1657 */
1658 if (unlikely(node == MAX_NUMNODES))
1659 node = numa_node_id();
1660
c0ff4b85 1661 memcg->last_scanned_node = node;
889976db
YH
1662 return node;
1663}
1664
4d0c066d
KH
1665/*
1666 * Check all nodes whether it contains reclaimable pages or not.
1667 * For quick scan, we make use of scan_nodes. This will allow us to skip
1668 * unused nodes. But scan_nodes is lazily updated and may not cotain
1669 * enough new information. We need to do double check.
1670 */
6bbda35c 1671static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1672{
1673 int nid;
1674
1675 /*
1676 * quick check...making use of scan_node.
1677 * We can skip unused nodes.
1678 */
c0ff4b85
R
1679 if (!nodes_empty(memcg->scan_nodes)) {
1680 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1681 nid < MAX_NUMNODES;
c0ff4b85 1682 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1683
c0ff4b85 1684 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1685 return true;
1686 }
1687 }
1688 /*
1689 * Check rest of nodes.
1690 */
1691 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1692 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1693 continue;
c0ff4b85 1694 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1695 return true;
1696 }
1697 return false;
1698}
1699
889976db 1700#else
c0ff4b85 1701int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1702{
1703 return 0;
1704}
4d0c066d 1705
6bbda35c 1706static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1707{
c0ff4b85 1708 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1709}
889976db
YH
1710#endif
1711
5660048c
JW
1712static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1713 struct zone *zone,
1714 gfp_t gfp_mask,
1715 unsigned long *total_scanned)
6d61ef40 1716{
9f3a0d09 1717 struct mem_cgroup *victim = NULL;
5660048c 1718 int total = 0;
04046e1a 1719 int loop = 0;
9d11ea9f 1720 unsigned long excess;
185efc0f 1721 unsigned long nr_scanned;
527a5ec9
JW
1722 struct mem_cgroup_reclaim_cookie reclaim = {
1723 .zone = zone,
1724 .priority = 0,
1725 };
9d11ea9f 1726
c0ff4b85 1727 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1728
4e416953 1729 while (1) {
527a5ec9 1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1731 if (!victim) {
04046e1a 1732 loop++;
4e416953
BS
1733 if (loop >= 2) {
1734 /*
1735 * If we have not been able to reclaim
1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy
1738 */
5660048c 1739 if (!total)
4e416953 1740 break;
4e416953 1741 /*
25985edc 1742 * We want to do more targeted reclaim.
4e416953
BS
1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup
1746 */
1747 if (total >= (excess >> 2) ||
9f3a0d09 1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1749 break;
4e416953 1750 }
9f3a0d09 1751 continue;
4e416953 1752 }
5660048c 1753 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1754 continue;
5660048c
JW
1755 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1756 zone, &nr_scanned);
1757 *total_scanned += nr_scanned;
1758 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1759 break;
6d61ef40 1760 }
9f3a0d09 1761 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1762 return total;
6d61ef40
BS
1763}
1764
867578cb
KH
1765/*
1766 * Check OOM-Killer is already running under our hierarchy.
1767 * If someone is running, return false.
1af8efe9 1768 * Has to be called with memcg_oom_lock
867578cb 1769 */
c0ff4b85 1770static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1771{
79dfdacc 1772 struct mem_cgroup *iter, *failed = NULL;
a636b327 1773
9f3a0d09 1774 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1775 if (iter->oom_lock) {
79dfdacc
MH
1776 /*
1777 * this subtree of our hierarchy is already locked
1778 * so we cannot give a lock.
1779 */
79dfdacc 1780 failed = iter;
9f3a0d09
JW
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
23751be0
JW
1783 } else
1784 iter->oom_lock = true;
7d74b06f 1785 }
867578cb 1786
79dfdacc 1787 if (!failed)
23751be0 1788 return true;
79dfdacc
MH
1789
1790 /*
1791 * OK, we failed to lock the whole subtree so we have to clean up
1792 * what we set up to the failing subtree
1793 */
9f3a0d09 1794 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1795 if (iter == failed) {
9f3a0d09
JW
1796 mem_cgroup_iter_break(memcg, iter);
1797 break;
79dfdacc
MH
1798 }
1799 iter->oom_lock = false;
1800 }
23751be0 1801 return false;
a636b327 1802}
0b7f569e 1803
79dfdacc 1804/*
1af8efe9 1805 * Has to be called with memcg_oom_lock
79dfdacc 1806 */
c0ff4b85 1807static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1808{
7d74b06f
KH
1809 struct mem_cgroup *iter;
1810
c0ff4b85 1811 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1812 iter->oom_lock = false;
1813 return 0;
1814}
1815
c0ff4b85 1816static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1817{
1818 struct mem_cgroup *iter;
1819
c0ff4b85 1820 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1821 atomic_inc(&iter->under_oom);
1822}
1823
c0ff4b85 1824static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1825{
1826 struct mem_cgroup *iter;
1827
867578cb
KH
1828 /*
1829 * When a new child is created while the hierarchy is under oom,
1830 * mem_cgroup_oom_lock() may not be called. We have to use
1831 * atomic_add_unless() here.
1832 */
c0ff4b85 1833 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1834 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1835}
1836
1af8efe9 1837static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1838static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1839
dc98df5a 1840struct oom_wait_info {
d79154bb 1841 struct mem_cgroup *memcg;
dc98df5a
KH
1842 wait_queue_t wait;
1843};
1844
1845static int memcg_oom_wake_function(wait_queue_t *wait,
1846 unsigned mode, int sync, void *arg)
1847{
d79154bb
HD
1848 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1849 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1850 struct oom_wait_info *oom_wait_info;
1851
1852 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1853 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1854
dc98df5a 1855 /*
d79154bb 1856 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1857 * Then we can use css_is_ancestor without taking care of RCU.
1858 */
c0ff4b85
R
1859 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1860 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1861 return 0;
dc98df5a
KH
1862 return autoremove_wake_function(wait, mode, sync, arg);
1863}
1864
c0ff4b85 1865static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1866{
c0ff4b85
R
1867 /* for filtering, pass "memcg" as argument. */
1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1869}
1870
c0ff4b85 1871static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1872{
c0ff4b85
R
1873 if (memcg && atomic_read(&memcg->under_oom))
1874 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1875}
1876
867578cb
KH
1877/*
1878 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1879 */
6bbda35c
KS
1880static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1881 int order)
0b7f569e 1882{
dc98df5a 1883 struct oom_wait_info owait;
3c11ecf4 1884 bool locked, need_to_kill;
867578cb 1885
d79154bb 1886 owait.memcg = memcg;
dc98df5a
KH
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1891 need_to_kill = true;
c0ff4b85 1892 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1893
c0ff4b85 1894 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1895 spin_lock(&memcg_oom_lock);
c0ff4b85 1896 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1897 /*
1898 * Even if signal_pending(), we can't quit charge() loop without
1899 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900 * under OOM is always welcomed, use TASK_KILLABLE here.
1901 */
3c11ecf4 1902 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1903 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1904 need_to_kill = false;
1905 if (locked)
c0ff4b85 1906 mem_cgroup_oom_notify(memcg);
1af8efe9 1907 spin_unlock(&memcg_oom_lock);
867578cb 1908
3c11ecf4
KH
1909 if (need_to_kill) {
1910 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1911 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1912 } else {
867578cb 1913 schedule();
dc98df5a 1914 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1915 }
1af8efe9 1916 spin_lock(&memcg_oom_lock);
79dfdacc 1917 if (locked)
c0ff4b85
R
1918 mem_cgroup_oom_unlock(memcg);
1919 memcg_wakeup_oom(memcg);
1af8efe9 1920 spin_unlock(&memcg_oom_lock);
867578cb 1921
c0ff4b85 1922 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1923
867578cb
KH
1924 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925 return false;
1926 /* Give chance to dying process */
715a5ee8 1927 schedule_timeout_uninterruptible(1);
867578cb 1928 return true;
0b7f569e
KH
1929}
1930
d69b042f
BS
1931/*
1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well.
32047e2a
KH
1934 *
1935 * Notes: Race condition
1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_.
1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge".
1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags.
1949 *
1950 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1951 * small, we check mm->moving_account and detect there are possibility of race
1952 * If there is, we take a lock.
d69b042f 1953 */
26174efd 1954
89c06bd5
KH
1955void __mem_cgroup_begin_update_page_stat(struct page *page,
1956 bool *locked, unsigned long *flags)
1957{
1958 struct mem_cgroup *memcg;
1959 struct page_cgroup *pc;
1960
1961 pc = lookup_page_cgroup(page);
1962again:
1963 memcg = pc->mem_cgroup;
1964 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1965 return;
1966 /*
1967 * If this memory cgroup is not under account moving, we don't
da92c47d 1968 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1969 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1970 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1971 */
13fd1dd9 1972 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1973 return;
1974
1975 move_lock_mem_cgroup(memcg, flags);
1976 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1977 move_unlock_mem_cgroup(memcg, flags);
1978 goto again;
1979 }
1980 *locked = true;
1981}
1982
1983void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1984{
1985 struct page_cgroup *pc = lookup_page_cgroup(page);
1986
1987 /*
1988 * It's guaranteed that pc->mem_cgroup never changes while
1989 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 1990 * should take move_lock_mem_cgroup().
89c06bd5
KH
1991 */
1992 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1993}
1994
2a7106f2
GT
1995void mem_cgroup_update_page_stat(struct page *page,
1996 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1997{
c0ff4b85 1998 struct mem_cgroup *memcg;
32047e2a 1999 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2000 unsigned long uninitialized_var(flags);
d69b042f 2001
cfa44946 2002 if (mem_cgroup_disabled())
d69b042f 2003 return;
89c06bd5 2004
c0ff4b85
R
2005 memcg = pc->mem_cgroup;
2006 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2007 return;
26174efd 2008
26174efd 2009 switch (idx) {
2a7106f2 2010 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2011 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2012 break;
2013 default:
2014 BUG();
8725d541 2015 }
d69b042f 2016
c0ff4b85 2017 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2018}
26174efd 2019
cdec2e42
KH
2020/*
2021 * size of first charge trial. "32" comes from vmscan.c's magic value.
2022 * TODO: maybe necessary to use big numbers in big irons.
2023 */
7ec99d62 2024#define CHARGE_BATCH 32U
cdec2e42
KH
2025struct memcg_stock_pcp {
2026 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2027 unsigned int nr_pages;
cdec2e42 2028 struct work_struct work;
26fe6168 2029 unsigned long flags;
a0db00fc 2030#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2031};
2032static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2033static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2034
2035/*
11c9ea4e 2036 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2037 * from local stock and true is returned. If the stock is 0 or charges from a
2038 * cgroup which is not current target, returns false. This stock will be
2039 * refilled.
2040 */
c0ff4b85 2041static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2042{
2043 struct memcg_stock_pcp *stock;
2044 bool ret = true;
2045
2046 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2047 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2048 stock->nr_pages--;
cdec2e42
KH
2049 else /* need to call res_counter_charge */
2050 ret = false;
2051 put_cpu_var(memcg_stock);
2052 return ret;
2053}
2054
2055/*
2056 * Returns stocks cached in percpu to res_counter and reset cached information.
2057 */
2058static void drain_stock(struct memcg_stock_pcp *stock)
2059{
2060 struct mem_cgroup *old = stock->cached;
2061
11c9ea4e
JW
2062 if (stock->nr_pages) {
2063 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2064
2065 res_counter_uncharge(&old->res, bytes);
cdec2e42 2066 if (do_swap_account)
11c9ea4e
JW
2067 res_counter_uncharge(&old->memsw, bytes);
2068 stock->nr_pages = 0;
cdec2e42
KH
2069 }
2070 stock->cached = NULL;
cdec2e42
KH
2071}
2072
2073/*
2074 * This must be called under preempt disabled or must be called by
2075 * a thread which is pinned to local cpu.
2076 */
2077static void drain_local_stock(struct work_struct *dummy)
2078{
2079 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2080 drain_stock(stock);
26fe6168 2081 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2082}
2083
2084/*
2085 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2086 * This will be consumed by consume_stock() function, later.
cdec2e42 2087 */
c0ff4b85 2088static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2089{
2090 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2091
c0ff4b85 2092 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2093 drain_stock(stock);
c0ff4b85 2094 stock->cached = memcg;
cdec2e42 2095 }
11c9ea4e 2096 stock->nr_pages += nr_pages;
cdec2e42
KH
2097 put_cpu_var(memcg_stock);
2098}
2099
2100/*
c0ff4b85 2101 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2102 * of the hierarchy under it. sync flag says whether we should block
2103 * until the work is done.
cdec2e42 2104 */
c0ff4b85 2105static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2106{
26fe6168 2107 int cpu, curcpu;
d38144b7 2108
cdec2e42 2109 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2110 get_online_cpus();
5af12d0e 2111 curcpu = get_cpu();
cdec2e42
KH
2112 for_each_online_cpu(cpu) {
2113 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2114 struct mem_cgroup *memcg;
26fe6168 2115
c0ff4b85
R
2116 memcg = stock->cached;
2117 if (!memcg || !stock->nr_pages)
26fe6168 2118 continue;
c0ff4b85 2119 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2120 continue;
d1a05b69
MH
2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2122 if (cpu == curcpu)
2123 drain_local_stock(&stock->work);
2124 else
2125 schedule_work_on(cpu, &stock->work);
2126 }
cdec2e42 2127 }
5af12d0e 2128 put_cpu();
d38144b7
MH
2129
2130 if (!sync)
2131 goto out;
2132
2133 for_each_online_cpu(cpu) {
2134 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2135 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2136 flush_work(&stock->work);
2137 }
2138out:
cdec2e42 2139 put_online_cpus();
d38144b7
MH
2140}
2141
2142/*
2143 * Tries to drain stocked charges in other cpus. This function is asynchronous
2144 * and just put a work per cpu for draining localy on each cpu. Caller can
2145 * expects some charges will be back to res_counter later but cannot wait for
2146 * it.
2147 */
c0ff4b85 2148static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2149{
9f50fad6
MH
2150 /*
2151 * If someone calls draining, avoid adding more kworker runs.
2152 */
2153 if (!mutex_trylock(&percpu_charge_mutex))
2154 return;
c0ff4b85 2155 drain_all_stock(root_memcg, false);
9f50fad6 2156 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2157}
2158
2159/* This is a synchronous drain interface. */
c0ff4b85 2160static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2161{
2162 /* called when force_empty is called */
9f50fad6 2163 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2164 drain_all_stock(root_memcg, true);
9f50fad6 2165 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2166}
2167
711d3d2c
KH
2168/*
2169 * This function drains percpu counter value from DEAD cpu and
2170 * move it to local cpu. Note that this function can be preempted.
2171 */
c0ff4b85 2172static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2173{
2174 int i;
2175
c0ff4b85 2176 spin_lock(&memcg->pcp_counter_lock);
6104621d 2177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2178 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2179
c0ff4b85
R
2180 per_cpu(memcg->stat->count[i], cpu) = 0;
2181 memcg->nocpu_base.count[i] += x;
711d3d2c 2182 }
e9f8974f 2183 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2184 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2185
c0ff4b85
R
2186 per_cpu(memcg->stat->events[i], cpu) = 0;
2187 memcg->nocpu_base.events[i] += x;
e9f8974f 2188 }
c0ff4b85 2189 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2190}
2191
2192static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2193 unsigned long action,
2194 void *hcpu)
2195{
2196 int cpu = (unsigned long)hcpu;
2197 struct memcg_stock_pcp *stock;
711d3d2c 2198 struct mem_cgroup *iter;
cdec2e42 2199
619d094b 2200 if (action == CPU_ONLINE)
1489ebad 2201 return NOTIFY_OK;
1489ebad 2202
d833049b 2203 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2204 return NOTIFY_OK;
711d3d2c 2205
9f3a0d09 2206 for_each_mem_cgroup(iter)
711d3d2c
KH
2207 mem_cgroup_drain_pcp_counter(iter, cpu);
2208
cdec2e42
KH
2209 stock = &per_cpu(memcg_stock, cpu);
2210 drain_stock(stock);
2211 return NOTIFY_OK;
2212}
2213
4b534334
KH
2214
2215/* See __mem_cgroup_try_charge() for details */
2216enum {
2217 CHARGE_OK, /* success */
2218 CHARGE_RETRY, /* need to retry but retry is not bad */
2219 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2220 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2221 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2222};
2223
c0ff4b85 2224static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2225 unsigned int nr_pages, bool oom_check)
4b534334 2226{
7ec99d62 2227 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2228 struct mem_cgroup *mem_over_limit;
2229 struct res_counter *fail_res;
2230 unsigned long flags = 0;
2231 int ret;
2232
c0ff4b85 2233 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2234
2235 if (likely(!ret)) {
2236 if (!do_swap_account)
2237 return CHARGE_OK;
c0ff4b85 2238 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2239 if (likely(!ret))
2240 return CHARGE_OK;
2241
c0ff4b85 2242 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2243 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2244 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2245 } else
2246 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2247 /*
7ec99d62
JW
2248 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2249 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2250 *
2251 * Never reclaim on behalf of optional batching, retry with a
2252 * single page instead.
2253 */
7ec99d62 2254 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2255 return CHARGE_RETRY;
2256
2257 if (!(gfp_mask & __GFP_WAIT))
2258 return CHARGE_WOULDBLOCK;
2259
5660048c 2260 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2261 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2262 return CHARGE_RETRY;
4b534334 2263 /*
19942822
JW
2264 * Even though the limit is exceeded at this point, reclaim
2265 * may have been able to free some pages. Retry the charge
2266 * before killing the task.
2267 *
2268 * Only for regular pages, though: huge pages are rather
2269 * unlikely to succeed so close to the limit, and we fall back
2270 * to regular pages anyway in case of failure.
4b534334 2271 */
7ec99d62 2272 if (nr_pages == 1 && ret)
4b534334
KH
2273 return CHARGE_RETRY;
2274
2275 /*
2276 * At task move, charge accounts can be doubly counted. So, it's
2277 * better to wait until the end of task_move if something is going on.
2278 */
2279 if (mem_cgroup_wait_acct_move(mem_over_limit))
2280 return CHARGE_RETRY;
2281
2282 /* If we don't need to call oom-killer at el, return immediately */
2283 if (!oom_check)
2284 return CHARGE_NOMEM;
2285 /* check OOM */
e845e199 2286 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2287 return CHARGE_OOM_DIE;
2288
2289 return CHARGE_RETRY;
2290}
2291
f817ed48 2292/*
38c5d72f
KH
2293 * __mem_cgroup_try_charge() does
2294 * 1. detect memcg to be charged against from passed *mm and *ptr,
2295 * 2. update res_counter
2296 * 3. call memory reclaim if necessary.
2297 *
2298 * In some special case, if the task is fatal, fatal_signal_pending() or
2299 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2300 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2301 * as possible without any hazards. 2: all pages should have a valid
2302 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2303 * pointer, that is treated as a charge to root_mem_cgroup.
2304 *
2305 * So __mem_cgroup_try_charge() will return
2306 * 0 ... on success, filling *ptr with a valid memcg pointer.
2307 * -ENOMEM ... charge failure because of resource limits.
2308 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2309 *
2310 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2311 * the oom-killer can be invoked.
8a9f3ccd 2312 */
f817ed48 2313static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2314 gfp_t gfp_mask,
7ec99d62 2315 unsigned int nr_pages,
c0ff4b85 2316 struct mem_cgroup **ptr,
7ec99d62 2317 bool oom)
8a9f3ccd 2318{
7ec99d62 2319 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2320 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2321 struct mem_cgroup *memcg = NULL;
4b534334 2322 int ret;
a636b327 2323
867578cb
KH
2324 /*
2325 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2326 * in system level. So, allow to go ahead dying process in addition to
2327 * MEMDIE process.
2328 */
2329 if (unlikely(test_thread_flag(TIF_MEMDIE)
2330 || fatal_signal_pending(current)))
2331 goto bypass;
a636b327 2332
8a9f3ccd 2333 /*
3be91277
HD
2334 * We always charge the cgroup the mm_struct belongs to.
2335 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2336 * thread group leader migrates. It's possible that mm is not
2337 * set, if so charge the init_mm (happens for pagecache usage).
2338 */
c0ff4b85 2339 if (!*ptr && !mm)
38c5d72f 2340 *ptr = root_mem_cgroup;
f75ca962 2341again:
c0ff4b85
R
2342 if (*ptr) { /* css should be a valid one */
2343 memcg = *ptr;
2344 VM_BUG_ON(css_is_removed(&memcg->css));
2345 if (mem_cgroup_is_root(memcg))
f75ca962 2346 goto done;
c0ff4b85 2347 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2348 goto done;
c0ff4b85 2349 css_get(&memcg->css);
4b534334 2350 } else {
f75ca962 2351 struct task_struct *p;
54595fe2 2352
f75ca962
KH
2353 rcu_read_lock();
2354 p = rcu_dereference(mm->owner);
f75ca962 2355 /*
ebb76ce1 2356 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2357 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2358 * race with swapoff. Then, we have small risk of mis-accouning.
2359 * But such kind of mis-account by race always happens because
2360 * we don't have cgroup_mutex(). It's overkill and we allo that
2361 * small race, here.
2362 * (*) swapoff at el will charge against mm-struct not against
2363 * task-struct. So, mm->owner can be NULL.
f75ca962 2364 */
c0ff4b85 2365 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2366 if (!memcg)
2367 memcg = root_mem_cgroup;
2368 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2369 rcu_read_unlock();
2370 goto done;
2371 }
c0ff4b85 2372 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2373 /*
2374 * It seems dagerous to access memcg without css_get().
2375 * But considering how consume_stok works, it's not
2376 * necessary. If consume_stock success, some charges
2377 * from this memcg are cached on this cpu. So, we
2378 * don't need to call css_get()/css_tryget() before
2379 * calling consume_stock().
2380 */
2381 rcu_read_unlock();
2382 goto done;
2383 }
2384 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2385 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2386 rcu_read_unlock();
2387 goto again;
2388 }
2389 rcu_read_unlock();
2390 }
8a9f3ccd 2391
4b534334
KH
2392 do {
2393 bool oom_check;
7a81b88c 2394
4b534334 2395 /* If killed, bypass charge */
f75ca962 2396 if (fatal_signal_pending(current)) {
c0ff4b85 2397 css_put(&memcg->css);
4b534334 2398 goto bypass;
f75ca962 2399 }
6d61ef40 2400
4b534334
KH
2401 oom_check = false;
2402 if (oom && !nr_oom_retries) {
2403 oom_check = true;
2404 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2405 }
66e1707b 2406
c0ff4b85 2407 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2408 switch (ret) {
2409 case CHARGE_OK:
2410 break;
2411 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2412 batch = nr_pages;
c0ff4b85
R
2413 css_put(&memcg->css);
2414 memcg = NULL;
f75ca962 2415 goto again;
4b534334 2416 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2417 css_put(&memcg->css);
4b534334
KH
2418 goto nomem;
2419 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2420 if (!oom) {
c0ff4b85 2421 css_put(&memcg->css);
867578cb 2422 goto nomem;
f75ca962 2423 }
4b534334
KH
2424 /* If oom, we never return -ENOMEM */
2425 nr_oom_retries--;
2426 break;
2427 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2428 css_put(&memcg->css);
867578cb 2429 goto bypass;
66e1707b 2430 }
4b534334
KH
2431 } while (ret != CHARGE_OK);
2432
7ec99d62 2433 if (batch > nr_pages)
c0ff4b85
R
2434 refill_stock(memcg, batch - nr_pages);
2435 css_put(&memcg->css);
0c3e73e8 2436done:
c0ff4b85 2437 *ptr = memcg;
7a81b88c
KH
2438 return 0;
2439nomem:
c0ff4b85 2440 *ptr = NULL;
7a81b88c 2441 return -ENOMEM;
867578cb 2442bypass:
38c5d72f
KH
2443 *ptr = root_mem_cgroup;
2444 return -EINTR;
7a81b88c 2445}
8a9f3ccd 2446
a3032a2c
DN
2447/*
2448 * Somemtimes we have to undo a charge we got by try_charge().
2449 * This function is for that and do uncharge, put css's refcnt.
2450 * gotten by try_charge().
2451 */
c0ff4b85 2452static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2453 unsigned int nr_pages)
a3032a2c 2454{
c0ff4b85 2455 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2456 unsigned long bytes = nr_pages * PAGE_SIZE;
2457
c0ff4b85 2458 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2459 if (do_swap_account)
c0ff4b85 2460 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2461 }
854ffa8d
DN
2462}
2463
d01dd17f
KH
2464/*
2465 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2466 * This is useful when moving usage to parent cgroup.
2467 */
2468static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2469 unsigned int nr_pages)
2470{
2471 unsigned long bytes = nr_pages * PAGE_SIZE;
2472
2473 if (mem_cgroup_is_root(memcg))
2474 return;
2475
2476 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2477 if (do_swap_account)
2478 res_counter_uncharge_until(&memcg->memsw,
2479 memcg->memsw.parent, bytes);
2480}
2481
a3b2d692
KH
2482/*
2483 * A helper function to get mem_cgroup from ID. must be called under
2484 * rcu_read_lock(). The caller must check css_is_removed() or some if
2485 * it's concern. (dropping refcnt from swap can be called against removed
2486 * memcg.)
2487 */
2488static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2489{
2490 struct cgroup_subsys_state *css;
2491
2492 /* ID 0 is unused ID */
2493 if (!id)
2494 return NULL;
2495 css = css_lookup(&mem_cgroup_subsys, id);
2496 if (!css)
2497 return NULL;
2498 return container_of(css, struct mem_cgroup, css);
2499}
2500
e42d9d5d 2501struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2502{
c0ff4b85 2503 struct mem_cgroup *memcg = NULL;
3c776e64 2504 struct page_cgroup *pc;
a3b2d692 2505 unsigned short id;
b5a84319
KH
2506 swp_entry_t ent;
2507
3c776e64
DN
2508 VM_BUG_ON(!PageLocked(page));
2509
3c776e64 2510 pc = lookup_page_cgroup(page);
c0bd3f63 2511 lock_page_cgroup(pc);
a3b2d692 2512 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2513 memcg = pc->mem_cgroup;
2514 if (memcg && !css_tryget(&memcg->css))
2515 memcg = NULL;
e42d9d5d 2516 } else if (PageSwapCache(page)) {
3c776e64 2517 ent.val = page_private(page);
9fb4b7cc 2518 id = lookup_swap_cgroup_id(ent);
a3b2d692 2519 rcu_read_lock();
c0ff4b85
R
2520 memcg = mem_cgroup_lookup(id);
2521 if (memcg && !css_tryget(&memcg->css))
2522 memcg = NULL;
a3b2d692 2523 rcu_read_unlock();
3c776e64 2524 }
c0bd3f63 2525 unlock_page_cgroup(pc);
c0ff4b85 2526 return memcg;
b5a84319
KH
2527}
2528
c0ff4b85 2529static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2530 struct page *page,
7ec99d62 2531 unsigned int nr_pages,
9ce70c02
HD
2532 enum charge_type ctype,
2533 bool lrucare)
7a81b88c 2534{
ce587e65 2535 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2536 struct zone *uninitialized_var(zone);
fa9add64 2537 struct lruvec *lruvec;
9ce70c02 2538 bool was_on_lru = false;
b2402857 2539 bool anon;
9ce70c02 2540
ca3e0214
KH
2541 lock_page_cgroup(pc);
2542 if (unlikely(PageCgroupUsed(pc))) {
2543 unlock_page_cgroup(pc);
c0ff4b85 2544 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2545 return;
2546 }
2547 /*
2548 * we don't need page_cgroup_lock about tail pages, becase they are not
2549 * accessed by any other context at this point.
2550 */
9ce70c02
HD
2551
2552 /*
2553 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2554 * may already be on some other mem_cgroup's LRU. Take care of it.
2555 */
2556 if (lrucare) {
2557 zone = page_zone(page);
2558 spin_lock_irq(&zone->lru_lock);
2559 if (PageLRU(page)) {
fa9add64 2560 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2561 ClearPageLRU(page);
fa9add64 2562 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2563 was_on_lru = true;
2564 }
2565 }
2566
c0ff4b85 2567 pc->mem_cgroup = memcg;
261fb61a
KH
2568 /*
2569 * We access a page_cgroup asynchronously without lock_page_cgroup().
2570 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2571 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2572 * before USED bit, we need memory barrier here.
2573 * See mem_cgroup_add_lru_list(), etc.
2574 */
08e552c6 2575 smp_wmb();
b2402857 2576 SetPageCgroupUsed(pc);
3be91277 2577
9ce70c02
HD
2578 if (lrucare) {
2579 if (was_on_lru) {
fa9add64 2580 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2581 VM_BUG_ON(PageLRU(page));
2582 SetPageLRU(page);
fa9add64 2583 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2584 }
2585 spin_unlock_irq(&zone->lru_lock);
2586 }
2587
41326c17 2588 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2589 anon = true;
2590 else
2591 anon = false;
2592
2593 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2594 unlock_page_cgroup(pc);
9ce70c02 2595
430e4863
KH
2596 /*
2597 * "charge_statistics" updated event counter. Then, check it.
2598 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2599 * if they exceeds softlimit.
2600 */
c0ff4b85 2601 memcg_check_events(memcg, page);
7a81b88c 2602}
66e1707b 2603
ca3e0214
KH
2604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605
a0db00fc 2606#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2607/*
2608 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2609 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2610 * charge/uncharge will be never happen and move_account() is done under
2611 * compound_lock(), so we don't have to take care of races.
ca3e0214 2612 */
e94c8a9c 2613void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2614{
2615 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2616 struct page_cgroup *pc;
2617 int i;
ca3e0214 2618
3d37c4a9
KH
2619 if (mem_cgroup_disabled())
2620 return;
e94c8a9c
KH
2621 for (i = 1; i < HPAGE_PMD_NR; i++) {
2622 pc = head_pc + i;
2623 pc->mem_cgroup = head_pc->mem_cgroup;
2624 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2625 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2626 }
ca3e0214 2627}
12d27107 2628#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2629
f817ed48 2630/**
de3638d9 2631 * mem_cgroup_move_account - move account of the page
5564e88b 2632 * @page: the page
7ec99d62 2633 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2634 * @pc: page_cgroup of the page.
2635 * @from: mem_cgroup which the page is moved from.
2636 * @to: mem_cgroup which the page is moved to. @from != @to.
2637 *
2638 * The caller must confirm following.
08e552c6 2639 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2640 * - compound_lock is held when nr_pages > 1
f817ed48 2641 *
2f3479b1
KH
2642 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2643 * from old cgroup.
f817ed48 2644 */
7ec99d62
JW
2645static int mem_cgroup_move_account(struct page *page,
2646 unsigned int nr_pages,
2647 struct page_cgroup *pc,
2648 struct mem_cgroup *from,
2f3479b1 2649 struct mem_cgroup *to)
f817ed48 2650{
de3638d9
JW
2651 unsigned long flags;
2652 int ret;
b2402857 2653 bool anon = PageAnon(page);
987eba66 2654
f817ed48 2655 VM_BUG_ON(from == to);
5564e88b 2656 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2657 /*
2658 * The page is isolated from LRU. So, collapse function
2659 * will not handle this page. But page splitting can happen.
2660 * Do this check under compound_page_lock(). The caller should
2661 * hold it.
2662 */
2663 ret = -EBUSY;
7ec99d62 2664 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2665 goto out;
2666
2667 lock_page_cgroup(pc);
2668
2669 ret = -EINVAL;
2670 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2671 goto unlock;
2672
312734c0 2673 move_lock_mem_cgroup(from, &flags);
f817ed48 2674
2ff76f11 2675 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2676 /* Update mapped_file data for mem_cgroup */
2677 preempt_disable();
2678 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2680 preempt_enable();
d69b042f 2681 }
b2402857 2682 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2683
854ffa8d 2684 /* caller should have done css_get */
08e552c6 2685 pc->mem_cgroup = to;
b2402857 2686 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2687 /*
2688 * We charges against "to" which may not have any tasks. Then, "to"
2689 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2690 * this function is just force_empty() and move charge, so it's
25985edc 2691 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2692 * status here.
88703267 2693 */
312734c0 2694 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2695 ret = 0;
2696unlock:
57f9fd7d 2697 unlock_page_cgroup(pc);
d2265e6f
KH
2698 /*
2699 * check events
2700 */
5564e88b
JW
2701 memcg_check_events(to, page);
2702 memcg_check_events(from, page);
de3638d9 2703out:
f817ed48
KH
2704 return ret;
2705}
2706
2707/*
2708 * move charges to its parent.
2709 */
2710
5564e88b
JW
2711static int mem_cgroup_move_parent(struct page *page,
2712 struct page_cgroup *pc,
6068bf01 2713 struct mem_cgroup *child)
f817ed48 2714{
f817ed48 2715 struct mem_cgroup *parent;
7ec99d62 2716 unsigned int nr_pages;
4be4489f 2717 unsigned long uninitialized_var(flags);
f817ed48
KH
2718 int ret;
2719
2720 /* Is ROOT ? */
cc926f78 2721 if (mem_cgroup_is_root(child))
f817ed48
KH
2722 return -EINVAL;
2723
57f9fd7d
DN
2724 ret = -EBUSY;
2725 if (!get_page_unless_zero(page))
2726 goto out;
2727 if (isolate_lru_page(page))
2728 goto put;
52dbb905 2729
7ec99d62 2730 nr_pages = hpage_nr_pages(page);
08e552c6 2731
cc926f78
KH
2732 parent = parent_mem_cgroup(child);
2733 /*
2734 * If no parent, move charges to root cgroup.
2735 */
2736 if (!parent)
2737 parent = root_mem_cgroup;
f817ed48 2738
7ec99d62 2739 if (nr_pages > 1)
987eba66
KH
2740 flags = compound_lock_irqsave(page);
2741
cc926f78 2742 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2743 pc, child, parent);
cc926f78
KH
2744 if (!ret)
2745 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2746
7ec99d62 2747 if (nr_pages > 1)
987eba66 2748 compound_unlock_irqrestore(page, flags);
08e552c6 2749 putback_lru_page(page);
57f9fd7d 2750put:
40d58138 2751 put_page(page);
57f9fd7d 2752out:
f817ed48
KH
2753 return ret;
2754}
2755
7a81b88c
KH
2756/*
2757 * Charge the memory controller for page usage.
2758 * Return
2759 * 0 if the charge was successful
2760 * < 0 if the cgroup is over its limit
2761 */
2762static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2763 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2764{
c0ff4b85 2765 struct mem_cgroup *memcg = NULL;
7ec99d62 2766 unsigned int nr_pages = 1;
8493ae43 2767 bool oom = true;
7a81b88c 2768 int ret;
ec168510 2769
37c2ac78 2770 if (PageTransHuge(page)) {
7ec99d62 2771 nr_pages <<= compound_order(page);
37c2ac78 2772 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2773 /*
2774 * Never OOM-kill a process for a huge page. The
2775 * fault handler will fall back to regular pages.
2776 */
2777 oom = false;
37c2ac78 2778 }
7a81b88c 2779
c0ff4b85 2780 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2781 if (ret == -ENOMEM)
7a81b88c 2782 return ret;
ce587e65 2783 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2784 return 0;
8a9f3ccd
BS
2785}
2786
7a81b88c
KH
2787int mem_cgroup_newpage_charge(struct page *page,
2788 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2789{
f8d66542 2790 if (mem_cgroup_disabled())
cede86ac 2791 return 0;
7a0524cf
JW
2792 VM_BUG_ON(page_mapped(page));
2793 VM_BUG_ON(page->mapping && !PageAnon(page));
2794 VM_BUG_ON(!mm);
217bc319 2795 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2796 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2797}
2798
54595fe2
KH
2799/*
2800 * While swap-in, try_charge -> commit or cancel, the page is locked.
2801 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2802 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2803 * "commit()" or removed by "cancel()"
2804 */
8c7c6e34
KH
2805int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2806 struct page *page,
72835c86 2807 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2808{
c0ff4b85 2809 struct mem_cgroup *memcg;
54595fe2 2810 int ret;
8c7c6e34 2811
72835c86 2812 *memcgp = NULL;
56039efa 2813
f8d66542 2814 if (mem_cgroup_disabled())
8c7c6e34
KH
2815 return 0;
2816
2817 if (!do_swap_account)
2818 goto charge_cur_mm;
8c7c6e34
KH
2819 /*
2820 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2821 * the pte, and even removed page from swap cache: in those cases
2822 * do_swap_page()'s pte_same() test will fail; but there's also a
2823 * KSM case which does need to charge the page.
8c7c6e34
KH
2824 */
2825 if (!PageSwapCache(page))
407f9c8b 2826 goto charge_cur_mm;
c0ff4b85
R
2827 memcg = try_get_mem_cgroup_from_page(page);
2828 if (!memcg)
54595fe2 2829 goto charge_cur_mm;
72835c86
JW
2830 *memcgp = memcg;
2831 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2832 css_put(&memcg->css);
38c5d72f
KH
2833 if (ret == -EINTR)
2834 ret = 0;
54595fe2 2835 return ret;
8c7c6e34
KH
2836charge_cur_mm:
2837 if (unlikely(!mm))
2838 mm = &init_mm;
38c5d72f
KH
2839 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2840 if (ret == -EINTR)
2841 ret = 0;
2842 return ret;
8c7c6e34
KH
2843}
2844
827a03d2
JW
2845void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2846{
2847 if (mem_cgroup_disabled())
2848 return;
2849 if (!memcg)
2850 return;
2851 __mem_cgroup_cancel_charge(memcg, 1);
2852}
2853
83aae4c7 2854static void
72835c86 2855__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2856 enum charge_type ctype)
7a81b88c 2857{
f8d66542 2858 if (mem_cgroup_disabled())
7a81b88c 2859 return;
72835c86 2860 if (!memcg)
7a81b88c 2861 return;
72835c86 2862 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2863
ce587e65 2864 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2865 /*
2866 * Now swap is on-memory. This means this page may be
2867 * counted both as mem and swap....double count.
03f3c433
KH
2868 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2869 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2870 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2871 */
03f3c433 2872 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2873 swp_entry_t ent = {.val = page_private(page)};
86493009 2874 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2875 }
88703267
KH
2876 /*
2877 * At swapin, we may charge account against cgroup which has no tasks.
2878 * So, rmdir()->pre_destroy() can be called while we do this charge.
2879 * In that case, we need to call pre_destroy() again. check it here.
2880 */
72835c86 2881 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2882}
2883
72835c86
JW
2884void mem_cgroup_commit_charge_swapin(struct page *page,
2885 struct mem_cgroup *memcg)
83aae4c7 2886{
72835c86 2887 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2888 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2889}
2890
827a03d2
JW
2891int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2892 gfp_t gfp_mask)
7a81b88c 2893{
827a03d2
JW
2894 struct mem_cgroup *memcg = NULL;
2895 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2896 int ret;
2897
f8d66542 2898 if (mem_cgroup_disabled())
827a03d2
JW
2899 return 0;
2900 if (PageCompound(page))
2901 return 0;
2902
2903 if (unlikely(!mm))
2904 mm = &init_mm;
2905 if (!page_is_file_cache(page))
2906 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2907
2908 if (!PageSwapCache(page))
2909 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2910 else { /* page is swapcache/shmem */
2911 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2912 if (!ret)
2913 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2914 }
2915 return ret;
7a81b88c
KH
2916}
2917
c0ff4b85 2918static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2919 unsigned int nr_pages,
2920 const enum charge_type ctype)
569b846d
KH
2921{
2922 struct memcg_batch_info *batch = NULL;
2923 bool uncharge_memsw = true;
7ec99d62 2924
569b846d
KH
2925 /* If swapout, usage of swap doesn't decrease */
2926 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2927 uncharge_memsw = false;
569b846d
KH
2928
2929 batch = &current->memcg_batch;
2930 /*
2931 * In usual, we do css_get() when we remember memcg pointer.
2932 * But in this case, we keep res->usage until end of a series of
2933 * uncharges. Then, it's ok to ignore memcg's refcnt.
2934 */
2935 if (!batch->memcg)
c0ff4b85 2936 batch->memcg = memcg;
3c11ecf4
KH
2937 /*
2938 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2939 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2940 * the same cgroup and we have chance to coalesce uncharges.
2941 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2942 * because we want to do uncharge as soon as possible.
2943 */
2944
2945 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2946 goto direct_uncharge;
2947
7ec99d62 2948 if (nr_pages > 1)
ec168510
AA
2949 goto direct_uncharge;
2950
569b846d
KH
2951 /*
2952 * In typical case, batch->memcg == mem. This means we can
2953 * merge a series of uncharges to an uncharge of res_counter.
2954 * If not, we uncharge res_counter ony by one.
2955 */
c0ff4b85 2956 if (batch->memcg != memcg)
569b846d
KH
2957 goto direct_uncharge;
2958 /* remember freed charge and uncharge it later */
7ffd4ca7 2959 batch->nr_pages++;
569b846d 2960 if (uncharge_memsw)
7ffd4ca7 2961 batch->memsw_nr_pages++;
569b846d
KH
2962 return;
2963direct_uncharge:
c0ff4b85 2964 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2965 if (uncharge_memsw)
c0ff4b85
R
2966 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2967 if (unlikely(batch->memcg != memcg))
2968 memcg_oom_recover(memcg);
569b846d 2969}
7a81b88c 2970
8a9f3ccd 2971/*
69029cd5 2972 * uncharge if !page_mapped(page)
8a9f3ccd 2973 */
8c7c6e34 2974static struct mem_cgroup *
0030f535
JW
2975__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2976 bool end_migration)
8a9f3ccd 2977{
c0ff4b85 2978 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2979 unsigned int nr_pages = 1;
2980 struct page_cgroup *pc;
b2402857 2981 bool anon;
8a9f3ccd 2982
f8d66542 2983 if (mem_cgroup_disabled())
8c7c6e34 2984 return NULL;
4077960e 2985
0c59b89c 2986 VM_BUG_ON(PageSwapCache(page));
d13d1443 2987
37c2ac78 2988 if (PageTransHuge(page)) {
7ec99d62 2989 nr_pages <<= compound_order(page);
37c2ac78
AA
2990 VM_BUG_ON(!PageTransHuge(page));
2991 }
8697d331 2992 /*
3c541e14 2993 * Check if our page_cgroup is valid
8697d331 2994 */
52d4b9ac 2995 pc = lookup_page_cgroup(page);
cfa44946 2996 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2997 return NULL;
b9c565d5 2998
52d4b9ac 2999 lock_page_cgroup(pc);
d13d1443 3000
c0ff4b85 3001 memcg = pc->mem_cgroup;
8c7c6e34 3002
d13d1443
KH
3003 if (!PageCgroupUsed(pc))
3004 goto unlock_out;
3005
b2402857
KH
3006 anon = PageAnon(page);
3007
d13d1443 3008 switch (ctype) {
41326c17 3009 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3010 /*
3011 * Generally PageAnon tells if it's the anon statistics to be
3012 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3013 * used before page reached the stage of being marked PageAnon.
3014 */
b2402857
KH
3015 anon = true;
3016 /* fallthrough */
8a9478ca 3017 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3018 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3019 if (page_mapped(page))
3020 goto unlock_out;
3021 /*
3022 * Pages under migration may not be uncharged. But
3023 * end_migration() /must/ be the one uncharging the
3024 * unused post-migration page and so it has to call
3025 * here with the migration bit still set. See the
3026 * res_counter handling below.
3027 */
3028 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3029 goto unlock_out;
3030 break;
3031 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3032 if (!PageAnon(page)) { /* Shared memory */
3033 if (page->mapping && !page_is_file_cache(page))
3034 goto unlock_out;
3035 } else if (page_mapped(page)) /* Anon */
3036 goto unlock_out;
3037 break;
3038 default:
3039 break;
52d4b9ac 3040 }
d13d1443 3041
b2402857 3042 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3043
52d4b9ac 3044 ClearPageCgroupUsed(pc);
544122e5
KH
3045 /*
3046 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3047 * freed from LRU. This is safe because uncharged page is expected not
3048 * to be reused (freed soon). Exception is SwapCache, it's handled by
3049 * special functions.
3050 */
b9c565d5 3051
52d4b9ac 3052 unlock_page_cgroup(pc);
f75ca962 3053 /*
c0ff4b85 3054 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3055 * will never be freed.
3056 */
c0ff4b85 3057 memcg_check_events(memcg, page);
f75ca962 3058 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3059 mem_cgroup_swap_statistics(memcg, true);
3060 mem_cgroup_get(memcg);
f75ca962 3061 }
0030f535
JW
3062 /*
3063 * Migration does not charge the res_counter for the
3064 * replacement page, so leave it alone when phasing out the
3065 * page that is unused after the migration.
3066 */
3067 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3068 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3069
c0ff4b85 3070 return memcg;
d13d1443
KH
3071
3072unlock_out:
3073 unlock_page_cgroup(pc);
8c7c6e34 3074 return NULL;
3c541e14
BS
3075}
3076
69029cd5
KH
3077void mem_cgroup_uncharge_page(struct page *page)
3078{
52d4b9ac
KH
3079 /* early check. */
3080 if (page_mapped(page))
3081 return;
40f23a21 3082 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3083 if (PageSwapCache(page))
3084 return;
0030f535 3085 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3086}
3087
3088void mem_cgroup_uncharge_cache_page(struct page *page)
3089{
3090 VM_BUG_ON(page_mapped(page));
b7abea96 3091 VM_BUG_ON(page->mapping);
0030f535 3092 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3093}
3094
569b846d
KH
3095/*
3096 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3097 * In that cases, pages are freed continuously and we can expect pages
3098 * are in the same memcg. All these calls itself limits the number of
3099 * pages freed at once, then uncharge_start/end() is called properly.
3100 * This may be called prural(2) times in a context,
3101 */
3102
3103void mem_cgroup_uncharge_start(void)
3104{
3105 current->memcg_batch.do_batch++;
3106 /* We can do nest. */
3107 if (current->memcg_batch.do_batch == 1) {
3108 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3109 current->memcg_batch.nr_pages = 0;
3110 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3111 }
3112}
3113
3114void mem_cgroup_uncharge_end(void)
3115{
3116 struct memcg_batch_info *batch = &current->memcg_batch;
3117
3118 if (!batch->do_batch)
3119 return;
3120
3121 batch->do_batch--;
3122 if (batch->do_batch) /* If stacked, do nothing. */
3123 return;
3124
3125 if (!batch->memcg)
3126 return;
3127 /*
3128 * This "batch->memcg" is valid without any css_get/put etc...
3129 * bacause we hide charges behind us.
3130 */
7ffd4ca7
JW
3131 if (batch->nr_pages)
3132 res_counter_uncharge(&batch->memcg->res,
3133 batch->nr_pages * PAGE_SIZE);
3134 if (batch->memsw_nr_pages)
3135 res_counter_uncharge(&batch->memcg->memsw,
3136 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3137 memcg_oom_recover(batch->memcg);
569b846d
KH
3138 /* forget this pointer (for sanity check) */
3139 batch->memcg = NULL;
3140}
3141
e767e056 3142#ifdef CONFIG_SWAP
8c7c6e34 3143/*
e767e056 3144 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3145 * memcg information is recorded to swap_cgroup of "ent"
3146 */
8a9478ca
KH
3147void
3148mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3149{
3150 struct mem_cgroup *memcg;
8a9478ca
KH
3151 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3152
3153 if (!swapout) /* this was a swap cache but the swap is unused ! */
3154 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3155
0030f535 3156 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3157
f75ca962
KH
3158 /*
3159 * record memcg information, if swapout && memcg != NULL,
3160 * mem_cgroup_get() was called in uncharge().
3161 */
3162 if (do_swap_account && swapout && memcg)
a3b2d692 3163 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3164}
e767e056 3165#endif
8c7c6e34 3166
c255a458 3167#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3168/*
3169 * called from swap_entry_free(). remove record in swap_cgroup and
3170 * uncharge "memsw" account.
3171 */
3172void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3173{
8c7c6e34 3174 struct mem_cgroup *memcg;
a3b2d692 3175 unsigned short id;
8c7c6e34
KH
3176
3177 if (!do_swap_account)
3178 return;
3179
a3b2d692
KH
3180 id = swap_cgroup_record(ent, 0);
3181 rcu_read_lock();
3182 memcg = mem_cgroup_lookup(id);
8c7c6e34 3183 if (memcg) {
a3b2d692
KH
3184 /*
3185 * We uncharge this because swap is freed.
3186 * This memcg can be obsolete one. We avoid calling css_tryget
3187 */
0c3e73e8 3188 if (!mem_cgroup_is_root(memcg))
4e649152 3189 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3190 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3191 mem_cgroup_put(memcg);
3192 }
a3b2d692 3193 rcu_read_unlock();
d13d1443 3194}
02491447
DN
3195
3196/**
3197 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3198 * @entry: swap entry to be moved
3199 * @from: mem_cgroup which the entry is moved from
3200 * @to: mem_cgroup which the entry is moved to
3201 *
3202 * It succeeds only when the swap_cgroup's record for this entry is the same
3203 * as the mem_cgroup's id of @from.
3204 *
3205 * Returns 0 on success, -EINVAL on failure.
3206 *
3207 * The caller must have charged to @to, IOW, called res_counter_charge() about
3208 * both res and memsw, and called css_get().
3209 */
3210static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3211 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3212{
3213 unsigned short old_id, new_id;
3214
3215 old_id = css_id(&from->css);
3216 new_id = css_id(&to->css);
3217
3218 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3219 mem_cgroup_swap_statistics(from, false);
483c30b5 3220 mem_cgroup_swap_statistics(to, true);
02491447 3221 /*
483c30b5
DN
3222 * This function is only called from task migration context now.
3223 * It postpones res_counter and refcount handling till the end
3224 * of task migration(mem_cgroup_clear_mc()) for performance
3225 * improvement. But we cannot postpone mem_cgroup_get(to)
3226 * because if the process that has been moved to @to does
3227 * swap-in, the refcount of @to might be decreased to 0.
02491447 3228 */
02491447 3229 mem_cgroup_get(to);
02491447
DN
3230 return 0;
3231 }
3232 return -EINVAL;
3233}
3234#else
3235static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3236 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3237{
3238 return -EINVAL;
3239}
8c7c6e34 3240#endif
d13d1443 3241
ae41be37 3242/*
01b1ae63
KH
3243 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3244 * page belongs to.
ae41be37 3245 */
0030f535
JW
3246void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3247 struct mem_cgroup **memcgp)
ae41be37 3248{
c0ff4b85 3249 struct mem_cgroup *memcg = NULL;
7ec99d62 3250 struct page_cgroup *pc;
ac39cf8c 3251 enum charge_type ctype;
8869b8f6 3252
72835c86 3253 *memcgp = NULL;
56039efa 3254
ec168510 3255 VM_BUG_ON(PageTransHuge(page));
f8d66542 3256 if (mem_cgroup_disabled())
0030f535 3257 return;
4077960e 3258
52d4b9ac
KH
3259 pc = lookup_page_cgroup(page);
3260 lock_page_cgroup(pc);
3261 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3262 memcg = pc->mem_cgroup;
3263 css_get(&memcg->css);
ac39cf8c
AM
3264 /*
3265 * At migrating an anonymous page, its mapcount goes down
3266 * to 0 and uncharge() will be called. But, even if it's fully
3267 * unmapped, migration may fail and this page has to be
3268 * charged again. We set MIGRATION flag here and delay uncharge
3269 * until end_migration() is called
3270 *
3271 * Corner Case Thinking
3272 * A)
3273 * When the old page was mapped as Anon and it's unmap-and-freed
3274 * while migration was ongoing.
3275 * If unmap finds the old page, uncharge() of it will be delayed
3276 * until end_migration(). If unmap finds a new page, it's
3277 * uncharged when it make mapcount to be 1->0. If unmap code
3278 * finds swap_migration_entry, the new page will not be mapped
3279 * and end_migration() will find it(mapcount==0).
3280 *
3281 * B)
3282 * When the old page was mapped but migraion fails, the kernel
3283 * remaps it. A charge for it is kept by MIGRATION flag even
3284 * if mapcount goes down to 0. We can do remap successfully
3285 * without charging it again.
3286 *
3287 * C)
3288 * The "old" page is under lock_page() until the end of
3289 * migration, so, the old page itself will not be swapped-out.
3290 * If the new page is swapped out before end_migraton, our
3291 * hook to usual swap-out path will catch the event.
3292 */
3293 if (PageAnon(page))
3294 SetPageCgroupMigration(pc);
e8589cc1 3295 }
52d4b9ac 3296 unlock_page_cgroup(pc);
ac39cf8c
AM
3297 /*
3298 * If the page is not charged at this point,
3299 * we return here.
3300 */
c0ff4b85 3301 if (!memcg)
0030f535 3302 return;
01b1ae63 3303
72835c86 3304 *memcgp = memcg;
ac39cf8c
AM
3305 /*
3306 * We charge new page before it's used/mapped. So, even if unlock_page()
3307 * is called before end_migration, we can catch all events on this new
3308 * page. In the case new page is migrated but not remapped, new page's
3309 * mapcount will be finally 0 and we call uncharge in end_migration().
3310 */
ac39cf8c 3311 if (PageAnon(page))
41326c17 3312 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c
AM
3313 else if (page_is_file_cache(page))
3314 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3315 else
3316 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
0030f535
JW
3317 /*
3318 * The page is committed to the memcg, but it's not actually
3319 * charged to the res_counter since we plan on replacing the
3320 * old one and only one page is going to be left afterwards.
3321 */
ce587e65 3322 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3323}
8869b8f6 3324
69029cd5 3325/* remove redundant charge if migration failed*/
c0ff4b85 3326void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3327 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3328{
ac39cf8c 3329 struct page *used, *unused;
01b1ae63 3330 struct page_cgroup *pc;
b2402857 3331 bool anon;
01b1ae63 3332
c0ff4b85 3333 if (!memcg)
01b1ae63 3334 return;
ac39cf8c 3335 /* blocks rmdir() */
c0ff4b85 3336 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3337 if (!migration_ok) {
ac39cf8c
AM
3338 used = oldpage;
3339 unused = newpage;
01b1ae63 3340 } else {
ac39cf8c 3341 used = newpage;
01b1ae63
KH
3342 unused = oldpage;
3343 }
0030f535 3344 anon = PageAnon(used);
7d188958
JW
3345 __mem_cgroup_uncharge_common(unused,
3346 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3347 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3348 true);
0030f535 3349 css_put(&memcg->css);
69029cd5 3350 /*
ac39cf8c
AM
3351 * We disallowed uncharge of pages under migration because mapcount
3352 * of the page goes down to zero, temporarly.
3353 * Clear the flag and check the page should be charged.
01b1ae63 3354 */
ac39cf8c
AM
3355 pc = lookup_page_cgroup(oldpage);
3356 lock_page_cgroup(pc);
3357 ClearPageCgroupMigration(pc);
3358 unlock_page_cgroup(pc);
ac39cf8c 3359
01b1ae63 3360 /*
ac39cf8c
AM
3361 * If a page is a file cache, radix-tree replacement is very atomic
3362 * and we can skip this check. When it was an Anon page, its mapcount
3363 * goes down to 0. But because we added MIGRATION flage, it's not
3364 * uncharged yet. There are several case but page->mapcount check
3365 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3366 * check. (see prepare_charge() also)
69029cd5 3367 */
b2402857 3368 if (anon)
ac39cf8c 3369 mem_cgroup_uncharge_page(used);
88703267 3370 /*
ac39cf8c
AM
3371 * At migration, we may charge account against cgroup which has no
3372 * tasks.
88703267
KH
3373 * So, rmdir()->pre_destroy() can be called while we do this charge.
3374 * In that case, we need to call pre_destroy() again. check it here.
3375 */
c0ff4b85 3376 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3377}
78fb7466 3378
ab936cbc
KH
3379/*
3380 * At replace page cache, newpage is not under any memcg but it's on
3381 * LRU. So, this function doesn't touch res_counter but handles LRU
3382 * in correct way. Both pages are locked so we cannot race with uncharge.
3383 */
3384void mem_cgroup_replace_page_cache(struct page *oldpage,
3385 struct page *newpage)
3386{
bde05d1c 3387 struct mem_cgroup *memcg = NULL;
ab936cbc 3388 struct page_cgroup *pc;
ab936cbc 3389 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3390
3391 if (mem_cgroup_disabled())
3392 return;
3393
3394 pc = lookup_page_cgroup(oldpage);
3395 /* fix accounting on old pages */
3396 lock_page_cgroup(pc);
bde05d1c
HD
3397 if (PageCgroupUsed(pc)) {
3398 memcg = pc->mem_cgroup;
3399 mem_cgroup_charge_statistics(memcg, false, -1);
3400 ClearPageCgroupUsed(pc);
3401 }
ab936cbc
KH
3402 unlock_page_cgroup(pc);
3403
bde05d1c
HD
3404 /*
3405 * When called from shmem_replace_page(), in some cases the
3406 * oldpage has already been charged, and in some cases not.
3407 */
3408 if (!memcg)
3409 return;
3410
ab936cbc
KH
3411 if (PageSwapBacked(oldpage))
3412 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3413
ab936cbc
KH
3414 /*
3415 * Even if newpage->mapping was NULL before starting replacement,
3416 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3417 * LRU while we overwrite pc->mem_cgroup.
3418 */
ce587e65 3419 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3420}
3421
f212ad7c
DN
3422#ifdef CONFIG_DEBUG_VM
3423static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3424{
3425 struct page_cgroup *pc;
3426
3427 pc = lookup_page_cgroup(page);
cfa44946
JW
3428 /*
3429 * Can be NULL while feeding pages into the page allocator for
3430 * the first time, i.e. during boot or memory hotplug;
3431 * or when mem_cgroup_disabled().
3432 */
f212ad7c
DN
3433 if (likely(pc) && PageCgroupUsed(pc))
3434 return pc;
3435 return NULL;
3436}
3437
3438bool mem_cgroup_bad_page_check(struct page *page)
3439{
3440 if (mem_cgroup_disabled())
3441 return false;
3442
3443 return lookup_page_cgroup_used(page) != NULL;
3444}
3445
3446void mem_cgroup_print_bad_page(struct page *page)
3447{
3448 struct page_cgroup *pc;
3449
3450 pc = lookup_page_cgroup_used(page);
3451 if (pc) {
90b3feae 3452 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3453 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3454 }
3455}
3456#endif
3457
8c7c6e34
KH
3458static DEFINE_MUTEX(set_limit_mutex);
3459
d38d2a75 3460static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3461 unsigned long long val)
628f4235 3462{
81d39c20 3463 int retry_count;
3c11ecf4 3464 u64 memswlimit, memlimit;
628f4235 3465 int ret = 0;
81d39c20
KH
3466 int children = mem_cgroup_count_children(memcg);
3467 u64 curusage, oldusage;
3c11ecf4 3468 int enlarge;
81d39c20
KH
3469
3470 /*
3471 * For keeping hierarchical_reclaim simple, how long we should retry
3472 * is depends on callers. We set our retry-count to be function
3473 * of # of children which we should visit in this loop.
3474 */
3475 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3476
3477 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3478
3c11ecf4 3479 enlarge = 0;
8c7c6e34 3480 while (retry_count) {
628f4235
KH
3481 if (signal_pending(current)) {
3482 ret = -EINTR;
3483 break;
3484 }
8c7c6e34
KH
3485 /*
3486 * Rather than hide all in some function, I do this in
3487 * open coded manner. You see what this really does.
aaad153e 3488 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3489 */
3490 mutex_lock(&set_limit_mutex);
3491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492 if (memswlimit < val) {
3493 ret = -EINVAL;
3494 mutex_unlock(&set_limit_mutex);
628f4235
KH
3495 break;
3496 }
3c11ecf4
KH
3497
3498 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3499 if (memlimit < val)
3500 enlarge = 1;
3501
8c7c6e34 3502 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3503 if (!ret) {
3504 if (memswlimit == val)
3505 memcg->memsw_is_minimum = true;
3506 else
3507 memcg->memsw_is_minimum = false;
3508 }
8c7c6e34
KH
3509 mutex_unlock(&set_limit_mutex);
3510
3511 if (!ret)
3512 break;
3513
5660048c
JW
3514 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3515 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3516 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3517 /* Usage is reduced ? */
3518 if (curusage >= oldusage)
3519 retry_count--;
3520 else
3521 oldusage = curusage;
8c7c6e34 3522 }
3c11ecf4
KH
3523 if (!ret && enlarge)
3524 memcg_oom_recover(memcg);
14797e23 3525
8c7c6e34
KH
3526 return ret;
3527}
3528
338c8431
LZ
3529static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3530 unsigned long long val)
8c7c6e34 3531{
81d39c20 3532 int retry_count;
3c11ecf4 3533 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3534 int children = mem_cgroup_count_children(memcg);
3535 int ret = -EBUSY;
3c11ecf4 3536 int enlarge = 0;
8c7c6e34 3537
81d39c20
KH
3538 /* see mem_cgroup_resize_res_limit */
3539 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3540 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3541 while (retry_count) {
3542 if (signal_pending(current)) {
3543 ret = -EINTR;
3544 break;
3545 }
3546 /*
3547 * Rather than hide all in some function, I do this in
3548 * open coded manner. You see what this really does.
aaad153e 3549 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3550 */
3551 mutex_lock(&set_limit_mutex);
3552 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3553 if (memlimit > val) {
3554 ret = -EINVAL;
3555 mutex_unlock(&set_limit_mutex);
3556 break;
3557 }
3c11ecf4
KH
3558 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3559 if (memswlimit < val)
3560 enlarge = 1;
8c7c6e34 3561 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3562 if (!ret) {
3563 if (memlimit == val)
3564 memcg->memsw_is_minimum = true;
3565 else
3566 memcg->memsw_is_minimum = false;
3567 }
8c7c6e34
KH
3568 mutex_unlock(&set_limit_mutex);
3569
3570 if (!ret)
3571 break;
3572
5660048c
JW
3573 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3574 MEM_CGROUP_RECLAIM_NOSWAP |
3575 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3576 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3577 /* Usage is reduced ? */
8c7c6e34 3578 if (curusage >= oldusage)
628f4235 3579 retry_count--;
81d39c20
KH
3580 else
3581 oldusage = curusage;
628f4235 3582 }
3c11ecf4
KH
3583 if (!ret && enlarge)
3584 memcg_oom_recover(memcg);
628f4235
KH
3585 return ret;
3586}
3587
4e416953 3588unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3589 gfp_t gfp_mask,
3590 unsigned long *total_scanned)
4e416953
BS
3591{
3592 unsigned long nr_reclaimed = 0;
3593 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3594 unsigned long reclaimed;
3595 int loop = 0;
3596 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3597 unsigned long long excess;
0ae5e89c 3598 unsigned long nr_scanned;
4e416953
BS
3599
3600 if (order > 0)
3601 return 0;
3602
00918b6a 3603 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3604 /*
3605 * This loop can run a while, specially if mem_cgroup's continuously
3606 * keep exceeding their soft limit and putting the system under
3607 * pressure
3608 */
3609 do {
3610 if (next_mz)
3611 mz = next_mz;
3612 else
3613 mz = mem_cgroup_largest_soft_limit_node(mctz);
3614 if (!mz)
3615 break;
3616
0ae5e89c 3617 nr_scanned = 0;
d79154bb 3618 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3619 gfp_mask, &nr_scanned);
4e416953 3620 nr_reclaimed += reclaimed;
0ae5e89c 3621 *total_scanned += nr_scanned;
4e416953
BS
3622 spin_lock(&mctz->lock);
3623
3624 /*
3625 * If we failed to reclaim anything from this memory cgroup
3626 * it is time to move on to the next cgroup
3627 */
3628 next_mz = NULL;
3629 if (!reclaimed) {
3630 do {
3631 /*
3632 * Loop until we find yet another one.
3633 *
3634 * By the time we get the soft_limit lock
3635 * again, someone might have aded the
3636 * group back on the RB tree. Iterate to
3637 * make sure we get a different mem.
3638 * mem_cgroup_largest_soft_limit_node returns
3639 * NULL if no other cgroup is present on
3640 * the tree
3641 */
3642 next_mz =
3643 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3644 if (next_mz == mz)
d79154bb 3645 css_put(&next_mz->memcg->css);
39cc98f1 3646 else /* next_mz == NULL or other memcg */
4e416953
BS
3647 break;
3648 } while (1);
3649 }
d79154bb
HD
3650 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3651 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3652 /*
3653 * One school of thought says that we should not add
3654 * back the node to the tree if reclaim returns 0.
3655 * But our reclaim could return 0, simply because due
3656 * to priority we are exposing a smaller subset of
3657 * memory to reclaim from. Consider this as a longer
3658 * term TODO.
3659 */
ef8745c1 3660 /* If excess == 0, no tree ops */
d79154bb 3661 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3662 spin_unlock(&mctz->lock);
d79154bb 3663 css_put(&mz->memcg->css);
4e416953
BS
3664 loop++;
3665 /*
3666 * Could not reclaim anything and there are no more
3667 * mem cgroups to try or we seem to be looping without
3668 * reclaiming anything.
3669 */
3670 if (!nr_reclaimed &&
3671 (next_mz == NULL ||
3672 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3673 break;
3674 } while (!nr_reclaimed);
3675 if (next_mz)
d79154bb 3676 css_put(&next_mz->memcg->css);
4e416953
BS
3677 return nr_reclaimed;
3678}
3679
cc847582 3680/*
3c935d18
KH
3681 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3682 * reclaim the pages page themselves - it just removes the page_cgroups.
3683 * Returns true if some page_cgroups were not freed, indicating that the caller
3684 * must retry this operation.
cc847582 3685 */
3c935d18 3686static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3687 int node, int zid, enum lru_list lru)
cc847582 3688{
08e552c6 3689 struct mem_cgroup_per_zone *mz;
08e552c6 3690 unsigned long flags, loop;
072c56c1 3691 struct list_head *list;
925b7673
JW
3692 struct page *busy;
3693 struct zone *zone;
072c56c1 3694
08e552c6 3695 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3696 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3697 list = &mz->lruvec.lists[lru];
cc847582 3698
1eb49272 3699 loop = mz->lru_size[lru];
f817ed48
KH
3700 /* give some margin against EBUSY etc...*/
3701 loop += 256;
3702 busy = NULL;
3703 while (loop--) {
925b7673 3704 struct page_cgroup *pc;
5564e88b
JW
3705 struct page *page;
3706
08e552c6 3707 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3708 if (list_empty(list)) {
08e552c6 3709 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3710 break;
f817ed48 3711 }
925b7673
JW
3712 page = list_entry(list->prev, struct page, lru);
3713 if (busy == page) {
3714 list_move(&page->lru, list);
648bcc77 3715 busy = NULL;
08e552c6 3716 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3717 continue;
3718 }
08e552c6 3719 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3720
925b7673 3721 pc = lookup_page_cgroup(page);
5564e88b 3722
3c935d18 3723 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3724 /* found lock contention or "pc" is obsolete. */
925b7673 3725 busy = page;
f817ed48
KH
3726 cond_resched();
3727 } else
3728 busy = NULL;
cc847582 3729 }
3c935d18 3730 return !list_empty(list);
cc847582
KH
3731}
3732
3733/*
3734 * make mem_cgroup's charge to be 0 if there is no task.
3735 * This enables deleting this mem_cgroup.
3736 */
c0ff4b85 3737static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3738{
f817ed48
KH
3739 int ret;
3740 int node, zid, shrink;
3741 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3742 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3743
c0ff4b85 3744 css_get(&memcg->css);
f817ed48
KH
3745
3746 shrink = 0;
c1e862c1
KH
3747 /* should free all ? */
3748 if (free_all)
3749 goto try_to_free;
f817ed48 3750move_account:
fce66477 3751 do {
f817ed48 3752 ret = -EBUSY;
c1e862c1
KH
3753 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3754 goto out;
52d4b9ac
KH
3755 /* This is for making all *used* pages to be on LRU. */
3756 lru_add_drain_all();
c0ff4b85 3757 drain_all_stock_sync(memcg);
f817ed48 3758 ret = 0;
c0ff4b85 3759 mem_cgroup_start_move(memcg);
299b4eaa 3760 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3761 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3762 enum lru_list lru;
3763 for_each_lru(lru) {
c0ff4b85 3764 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3765 node, zid, lru);
f817ed48
KH
3766 if (ret)
3767 break;
3768 }
1ecaab2b 3769 }
f817ed48
KH
3770 if (ret)
3771 break;
3772 }
c0ff4b85
R
3773 mem_cgroup_end_move(memcg);
3774 memcg_oom_recover(memcg);
52d4b9ac 3775 cond_resched();
fce66477 3776 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3777 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3778out:
c0ff4b85 3779 css_put(&memcg->css);
cc847582 3780 return ret;
f817ed48
KH
3781
3782try_to_free:
c1e862c1
KH
3783 /* returns EBUSY if there is a task or if we come here twice. */
3784 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3785 ret = -EBUSY;
3786 goto out;
3787 }
c1e862c1
KH
3788 /* we call try-to-free pages for make this cgroup empty */
3789 lru_add_drain_all();
f817ed48
KH
3790 /* try to free all pages in this cgroup */
3791 shrink = 1;
569530fb 3792 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3793 int progress;
c1e862c1
KH
3794
3795 if (signal_pending(current)) {
3796 ret = -EINTR;
3797 goto out;
3798 }
c0ff4b85 3799 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3800 false);
c1e862c1 3801 if (!progress) {
f817ed48 3802 nr_retries--;
c1e862c1 3803 /* maybe some writeback is necessary */
8aa7e847 3804 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3805 }
f817ed48
KH
3806
3807 }
08e552c6 3808 lru_add_drain();
f817ed48 3809 /* try move_account...there may be some *locked* pages. */
fce66477 3810 goto move_account;
cc847582
KH
3811}
3812
6bbda35c 3813static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3814{
3815 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3816}
3817
3818
18f59ea7
BS
3819static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3820{
3821 return mem_cgroup_from_cont(cont)->use_hierarchy;
3822}
3823
3824static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3825 u64 val)
3826{
3827 int retval = 0;
c0ff4b85 3828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3829 struct cgroup *parent = cont->parent;
c0ff4b85 3830 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3831
3832 if (parent)
c0ff4b85 3833 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3834
3835 cgroup_lock();
567fb435
GC
3836
3837 if (memcg->use_hierarchy == val)
3838 goto out;
3839
18f59ea7 3840 /*
af901ca1 3841 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3842 * in the child subtrees. If it is unset, then the change can
3843 * occur, provided the current cgroup has no children.
3844 *
3845 * For the root cgroup, parent_mem is NULL, we allow value to be
3846 * set if there are no children.
3847 */
c0ff4b85 3848 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3849 (val == 1 || val == 0)) {
3850 if (list_empty(&cont->children))
c0ff4b85 3851 memcg->use_hierarchy = val;
18f59ea7
BS
3852 else
3853 retval = -EBUSY;
3854 } else
3855 retval = -EINVAL;
567fb435
GC
3856
3857out:
18f59ea7
BS
3858 cgroup_unlock();
3859
3860 return retval;
3861}
3862
0c3e73e8 3863
c0ff4b85 3864static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3865 enum mem_cgroup_stat_index idx)
0c3e73e8 3866{
7d74b06f 3867 struct mem_cgroup *iter;
7a159cc9 3868 long val = 0;
0c3e73e8 3869
7a159cc9 3870 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3871 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3872 val += mem_cgroup_read_stat(iter, idx);
3873
3874 if (val < 0) /* race ? */
3875 val = 0;
3876 return val;
0c3e73e8
BS
3877}
3878
c0ff4b85 3879static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3880{
7d74b06f 3881 u64 val;
104f3928 3882
c0ff4b85 3883 if (!mem_cgroup_is_root(memcg)) {
104f3928 3884 if (!swap)
65c64ce8 3885 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3886 else
65c64ce8 3887 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3888 }
3889
c0ff4b85
R
3890 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3891 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3892
7d74b06f 3893 if (swap)
bff6bb83 3894 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3895
3896 return val << PAGE_SHIFT;
3897}
3898
af36f906
TH
3899static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3900 struct file *file, char __user *buf,
3901 size_t nbytes, loff_t *ppos)
8cdea7c0 3902{
c0ff4b85 3903 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3904 char str[64];
104f3928 3905 u64 val;
af36f906 3906 int type, name, len;
8c7c6e34
KH
3907
3908 type = MEMFILE_TYPE(cft->private);
3909 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3910
3911 if (!do_swap_account && type == _MEMSWAP)
3912 return -EOPNOTSUPP;
3913
8c7c6e34
KH
3914 switch (type) {
3915 case _MEM:
104f3928 3916 if (name == RES_USAGE)
c0ff4b85 3917 val = mem_cgroup_usage(memcg, false);
104f3928 3918 else
c0ff4b85 3919 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3920 break;
3921 case _MEMSWAP:
104f3928 3922 if (name == RES_USAGE)
c0ff4b85 3923 val = mem_cgroup_usage(memcg, true);
104f3928 3924 else
c0ff4b85 3925 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3926 break;
3927 default:
3928 BUG();
8c7c6e34 3929 }
af36f906
TH
3930
3931 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3932 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3933}
628f4235
KH
3934/*
3935 * The user of this function is...
3936 * RES_LIMIT.
3937 */
856c13aa
PM
3938static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3939 const char *buffer)
8cdea7c0 3940{
628f4235 3941 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3942 int type, name;
628f4235
KH
3943 unsigned long long val;
3944 int ret;
3945
8c7c6e34
KH
3946 type = MEMFILE_TYPE(cft->private);
3947 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3948
3949 if (!do_swap_account && type == _MEMSWAP)
3950 return -EOPNOTSUPP;
3951
8c7c6e34 3952 switch (name) {
628f4235 3953 case RES_LIMIT:
4b3bde4c
BS
3954 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3955 ret = -EINVAL;
3956 break;
3957 }
628f4235
KH
3958 /* This function does all necessary parse...reuse it */
3959 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3960 if (ret)
3961 break;
3962 if (type == _MEM)
628f4235 3963 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3964 else
3965 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3966 break;
296c81d8
BS
3967 case RES_SOFT_LIMIT:
3968 ret = res_counter_memparse_write_strategy(buffer, &val);
3969 if (ret)
3970 break;
3971 /*
3972 * For memsw, soft limits are hard to implement in terms
3973 * of semantics, for now, we support soft limits for
3974 * control without swap
3975 */
3976 if (type == _MEM)
3977 ret = res_counter_set_soft_limit(&memcg->res, val);
3978 else
3979 ret = -EINVAL;
3980 break;
628f4235
KH
3981 default:
3982 ret = -EINVAL; /* should be BUG() ? */
3983 break;
3984 }
3985 return ret;
8cdea7c0
BS
3986}
3987
fee7b548
KH
3988static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3989 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3990{
3991 struct cgroup *cgroup;
3992 unsigned long long min_limit, min_memsw_limit, tmp;
3993
3994 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3995 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3996 cgroup = memcg->css.cgroup;
3997 if (!memcg->use_hierarchy)
3998 goto out;
3999
4000 while (cgroup->parent) {
4001 cgroup = cgroup->parent;
4002 memcg = mem_cgroup_from_cont(cgroup);
4003 if (!memcg->use_hierarchy)
4004 break;
4005 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 min_limit = min(min_limit, tmp);
4007 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4008 min_memsw_limit = min(min_memsw_limit, tmp);
4009 }
4010out:
4011 *mem_limit = min_limit;
4012 *memsw_limit = min_memsw_limit;
fee7b548
KH
4013}
4014
29f2a4da 4015static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4016{
af36f906 4017 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4018 int type, name;
c84872e1 4019
8c7c6e34
KH
4020 type = MEMFILE_TYPE(event);
4021 name = MEMFILE_ATTR(event);
af36f906
TH
4022
4023 if (!do_swap_account && type == _MEMSWAP)
4024 return -EOPNOTSUPP;
4025
8c7c6e34 4026 switch (name) {
29f2a4da 4027 case RES_MAX_USAGE:
8c7c6e34 4028 if (type == _MEM)
c0ff4b85 4029 res_counter_reset_max(&memcg->res);
8c7c6e34 4030 else
c0ff4b85 4031 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4032 break;
4033 case RES_FAILCNT:
8c7c6e34 4034 if (type == _MEM)
c0ff4b85 4035 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4036 else
c0ff4b85 4037 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4038 break;
4039 }
f64c3f54 4040
85cc59db 4041 return 0;
c84872e1
PE
4042}
4043
7dc74be0
DN
4044static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4045 struct cftype *cft)
4046{
4047 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4048}
4049
02491447 4050#ifdef CONFIG_MMU
7dc74be0
DN
4051static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4052 struct cftype *cft, u64 val)
4053{
c0ff4b85 4054 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4055
4056 if (val >= (1 << NR_MOVE_TYPE))
4057 return -EINVAL;
4058 /*
4059 * We check this value several times in both in can_attach() and
4060 * attach(), so we need cgroup lock to prevent this value from being
4061 * inconsistent.
4062 */
4063 cgroup_lock();
c0ff4b85 4064 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4065 cgroup_unlock();
4066
4067 return 0;
4068}
02491447
DN
4069#else
4070static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4071 struct cftype *cft, u64 val)
4072{
4073 return -ENOSYS;
4074}
4075#endif
7dc74be0 4076
406eb0c9 4077#ifdef CONFIG_NUMA
ab215884 4078static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4079 struct seq_file *m)
406eb0c9
YH
4080{
4081 int nid;
4082 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4083 unsigned long node_nr;
d79154bb 4084 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4085
d79154bb 4086 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4087 seq_printf(m, "total=%lu", total_nr);
4088 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4089 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4090 seq_printf(m, " N%d=%lu", nid, node_nr);
4091 }
4092 seq_putc(m, '\n');
4093
d79154bb 4094 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4095 seq_printf(m, "file=%lu", file_nr);
4096 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4097 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4098 LRU_ALL_FILE);
406eb0c9
YH
4099 seq_printf(m, " N%d=%lu", nid, node_nr);
4100 }
4101 seq_putc(m, '\n');
4102
d79154bb 4103 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4104 seq_printf(m, "anon=%lu", anon_nr);
4105 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4106 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4107 LRU_ALL_ANON);
406eb0c9
YH
4108 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 }
4110 seq_putc(m, '\n');
4111
d79154bb 4112 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4113 seq_printf(m, "unevictable=%lu", unevictable_nr);
4114 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4115 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4116 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4117 seq_printf(m, " N%d=%lu", nid, node_nr);
4118 }
4119 seq_putc(m, '\n');
4120 return 0;
4121}
4122#endif /* CONFIG_NUMA */
4123
af7c4b0e
JW
4124static const char * const mem_cgroup_lru_names[] = {
4125 "inactive_anon",
4126 "active_anon",
4127 "inactive_file",
4128 "active_file",
4129 "unevictable",
4130};
4131
4132static inline void mem_cgroup_lru_names_not_uptodate(void)
4133{
4134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4135}
4136
ab215884 4137static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4138 struct seq_file *m)
d2ceb9b7 4139{
d79154bb 4140 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4141 struct mem_cgroup *mi;
4142 unsigned int i;
406eb0c9 4143
af7c4b0e 4144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4145 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4146 continue;
af7c4b0e
JW
4147 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4149 }
7b854121 4150
af7c4b0e
JW
4151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4153 mem_cgroup_read_events(memcg, i));
4154
4155 for (i = 0; i < NR_LRU_LISTS; i++)
4156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4158
14067bb3 4159 /* Hierarchical information */
fee7b548
KH
4160 {
4161 unsigned long long limit, memsw_limit;
d79154bb 4162 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4163 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4164 if (do_swap_account)
78ccf5b5
JW
4165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4166 memsw_limit);
fee7b548 4167 }
7f016ee8 4168
af7c4b0e
JW
4169 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4170 long long val = 0;
4171
bff6bb83 4172 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4173 continue;
af7c4b0e
JW
4174 for_each_mem_cgroup_tree(mi, memcg)
4175 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4176 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4177 }
4178
4179 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4180 unsigned long long val = 0;
4181
4182 for_each_mem_cgroup_tree(mi, memcg)
4183 val += mem_cgroup_read_events(mi, i);
4184 seq_printf(m, "total_%s %llu\n",
4185 mem_cgroup_events_names[i], val);
4186 }
4187
4188 for (i = 0; i < NR_LRU_LISTS; i++) {
4189 unsigned long long val = 0;
4190
4191 for_each_mem_cgroup_tree(mi, memcg)
4192 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4193 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4194 }
14067bb3 4195
7f016ee8 4196#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4197 {
4198 int nid, zid;
4199 struct mem_cgroup_per_zone *mz;
89abfab1 4200 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4201 unsigned long recent_rotated[2] = {0, 0};
4202 unsigned long recent_scanned[2] = {0, 0};
4203
4204 for_each_online_node(nid)
4205 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4206 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4207 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4208
89abfab1
HD
4209 recent_rotated[0] += rstat->recent_rotated[0];
4210 recent_rotated[1] += rstat->recent_rotated[1];
4211 recent_scanned[0] += rstat->recent_scanned[0];
4212 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4213 }
78ccf5b5
JW
4214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4218 }
4219#endif
4220
d2ceb9b7
KH
4221 return 0;
4222}
4223
a7885eb8
KM
4224static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4227
1f4c025b 4228 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4229}
4230
4231static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4232 u64 val)
4233{
4234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4235 struct mem_cgroup *parent;
068b38c1 4236
a7885eb8
KM
4237 if (val > 100)
4238 return -EINVAL;
4239
4240 if (cgrp->parent == NULL)
4241 return -EINVAL;
4242
4243 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4244
4245 cgroup_lock();
4246
a7885eb8
KM
4247 /* If under hierarchy, only empty-root can set this value */
4248 if ((parent->use_hierarchy) ||
068b38c1
LZ
4249 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4250 cgroup_unlock();
a7885eb8 4251 return -EINVAL;
068b38c1 4252 }
a7885eb8 4253
a7885eb8 4254 memcg->swappiness = val;
a7885eb8 4255
068b38c1
LZ
4256 cgroup_unlock();
4257
a7885eb8
KM
4258 return 0;
4259}
4260
2e72b634
KS
4261static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4262{
4263 struct mem_cgroup_threshold_ary *t;
4264 u64 usage;
4265 int i;
4266
4267 rcu_read_lock();
4268 if (!swap)
2c488db2 4269 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4270 else
2c488db2 4271 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4272
4273 if (!t)
4274 goto unlock;
4275
4276 usage = mem_cgroup_usage(memcg, swap);
4277
4278 /*
748dad36 4279 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4280 * If it's not true, a threshold was crossed after last
4281 * call of __mem_cgroup_threshold().
4282 */
5407a562 4283 i = t->current_threshold;
2e72b634
KS
4284
4285 /*
4286 * Iterate backward over array of thresholds starting from
4287 * current_threshold and check if a threshold is crossed.
4288 * If none of thresholds below usage is crossed, we read
4289 * only one element of the array here.
4290 */
4291 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4292 eventfd_signal(t->entries[i].eventfd, 1);
4293
4294 /* i = current_threshold + 1 */
4295 i++;
4296
4297 /*
4298 * Iterate forward over array of thresholds starting from
4299 * current_threshold+1 and check if a threshold is crossed.
4300 * If none of thresholds above usage is crossed, we read
4301 * only one element of the array here.
4302 */
4303 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4304 eventfd_signal(t->entries[i].eventfd, 1);
4305
4306 /* Update current_threshold */
5407a562 4307 t->current_threshold = i - 1;
2e72b634
KS
4308unlock:
4309 rcu_read_unlock();
4310}
4311
4312static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4313{
ad4ca5f4
KS
4314 while (memcg) {
4315 __mem_cgroup_threshold(memcg, false);
4316 if (do_swap_account)
4317 __mem_cgroup_threshold(memcg, true);
4318
4319 memcg = parent_mem_cgroup(memcg);
4320 }
2e72b634
KS
4321}
4322
4323static int compare_thresholds(const void *a, const void *b)
4324{
4325 const struct mem_cgroup_threshold *_a = a;
4326 const struct mem_cgroup_threshold *_b = b;
4327
4328 return _a->threshold - _b->threshold;
4329}
4330
c0ff4b85 4331static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4332{
4333 struct mem_cgroup_eventfd_list *ev;
4334
c0ff4b85 4335 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4336 eventfd_signal(ev->eventfd, 1);
4337 return 0;
4338}
4339
c0ff4b85 4340static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4341{
7d74b06f
KH
4342 struct mem_cgroup *iter;
4343
c0ff4b85 4344 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4345 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4346}
4347
4348static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4349 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4350{
4351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4352 struct mem_cgroup_thresholds *thresholds;
4353 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4354 int type = MEMFILE_TYPE(cft->private);
4355 u64 threshold, usage;
2c488db2 4356 int i, size, ret;
2e72b634
KS
4357
4358 ret = res_counter_memparse_write_strategy(args, &threshold);
4359 if (ret)
4360 return ret;
4361
4362 mutex_lock(&memcg->thresholds_lock);
2c488db2 4363
2e72b634 4364 if (type == _MEM)
2c488db2 4365 thresholds = &memcg->thresholds;
2e72b634 4366 else if (type == _MEMSWAP)
2c488db2 4367 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4368 else
4369 BUG();
4370
4371 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4372
4373 /* Check if a threshold crossed before adding a new one */
2c488db2 4374 if (thresholds->primary)
2e72b634
KS
4375 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4376
2c488db2 4377 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4378
4379 /* Allocate memory for new array of thresholds */
2c488db2 4380 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4381 GFP_KERNEL);
2c488db2 4382 if (!new) {
2e72b634
KS
4383 ret = -ENOMEM;
4384 goto unlock;
4385 }
2c488db2 4386 new->size = size;
2e72b634
KS
4387
4388 /* Copy thresholds (if any) to new array */
2c488db2
KS
4389 if (thresholds->primary) {
4390 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4391 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4392 }
4393
2e72b634 4394 /* Add new threshold */
2c488db2
KS
4395 new->entries[size - 1].eventfd = eventfd;
4396 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4397
4398 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4399 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4400 compare_thresholds, NULL);
4401
4402 /* Find current threshold */
2c488db2 4403 new->current_threshold = -1;
2e72b634 4404 for (i = 0; i < size; i++) {
748dad36 4405 if (new->entries[i].threshold <= usage) {
2e72b634 4406 /*
2c488db2
KS
4407 * new->current_threshold will not be used until
4408 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4409 * it here.
4410 */
2c488db2 4411 ++new->current_threshold;
748dad36
SZ
4412 } else
4413 break;
2e72b634
KS
4414 }
4415
2c488db2
KS
4416 /* Free old spare buffer and save old primary buffer as spare */
4417 kfree(thresholds->spare);
4418 thresholds->spare = thresholds->primary;
4419
4420 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4421
907860ed 4422 /* To be sure that nobody uses thresholds */
2e72b634
KS
4423 synchronize_rcu();
4424
2e72b634
KS
4425unlock:
4426 mutex_unlock(&memcg->thresholds_lock);
4427
4428 return ret;
4429}
4430
907860ed 4431static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4432 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4433{
4434 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4435 struct mem_cgroup_thresholds *thresholds;
4436 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4437 int type = MEMFILE_TYPE(cft->private);
4438 u64 usage;
2c488db2 4439 int i, j, size;
2e72b634
KS
4440
4441 mutex_lock(&memcg->thresholds_lock);
4442 if (type == _MEM)
2c488db2 4443 thresholds = &memcg->thresholds;
2e72b634 4444 else if (type == _MEMSWAP)
2c488db2 4445 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4446 else
4447 BUG();
4448
371528ca
AV
4449 if (!thresholds->primary)
4450 goto unlock;
4451
2e72b634
KS
4452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457 /* Calculate new number of threshold */
2c488db2
KS
4458 size = 0;
4459 for (i = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4461 size++;
4462 }
4463
2c488db2 4464 new = thresholds->spare;
907860ed 4465
2e72b634
KS
4466 /* Set thresholds array to NULL if we don't have thresholds */
4467 if (!size) {
2c488db2
KS
4468 kfree(new);
4469 new = NULL;
907860ed 4470 goto swap_buffers;
2e72b634
KS
4471 }
4472
2c488db2 4473 new->size = size;
2e72b634
KS
4474
4475 /* Copy thresholds and find current threshold */
2c488db2
KS
4476 new->current_threshold = -1;
4477 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4479 continue;
4480
2c488db2 4481 new->entries[j] = thresholds->primary->entries[i];
748dad36 4482 if (new->entries[j].threshold <= usage) {
2e72b634 4483 /*
2c488db2 4484 * new->current_threshold will not be used
2e72b634
KS
4485 * until rcu_assign_pointer(), so it's safe to increment
4486 * it here.
4487 */
2c488db2 4488 ++new->current_threshold;
2e72b634
KS
4489 }
4490 j++;
4491 }
4492
907860ed 4493swap_buffers:
2c488db2
KS
4494 /* Swap primary and spare array */
4495 thresholds->spare = thresholds->primary;
8c757763
SZ
4496 /* If all events are unregistered, free the spare array */
4497 if (!new) {
4498 kfree(thresholds->spare);
4499 thresholds->spare = NULL;
4500 }
4501
2c488db2 4502 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4503
907860ed 4504 /* To be sure that nobody uses thresholds */
2e72b634 4505 synchronize_rcu();
371528ca 4506unlock:
2e72b634 4507 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4508}
c1e862c1 4509
9490ff27
KH
4510static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4511 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4512{
4513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4514 struct mem_cgroup_eventfd_list *event;
4515 int type = MEMFILE_TYPE(cft->private);
4516
4517 BUG_ON(type != _OOM_TYPE);
4518 event = kmalloc(sizeof(*event), GFP_KERNEL);
4519 if (!event)
4520 return -ENOMEM;
4521
1af8efe9 4522 spin_lock(&memcg_oom_lock);
9490ff27
KH
4523
4524 event->eventfd = eventfd;
4525 list_add(&event->list, &memcg->oom_notify);
4526
4527 /* already in OOM ? */
79dfdacc 4528 if (atomic_read(&memcg->under_oom))
9490ff27 4529 eventfd_signal(eventfd, 1);
1af8efe9 4530 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4531
4532 return 0;
4533}
4534
907860ed 4535static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4536 struct cftype *cft, struct eventfd_ctx *eventfd)
4537{
c0ff4b85 4538 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4539 struct mem_cgroup_eventfd_list *ev, *tmp;
4540 int type = MEMFILE_TYPE(cft->private);
4541
4542 BUG_ON(type != _OOM_TYPE);
4543
1af8efe9 4544 spin_lock(&memcg_oom_lock);
9490ff27 4545
c0ff4b85 4546 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4547 if (ev->eventfd == eventfd) {
4548 list_del(&ev->list);
4549 kfree(ev);
4550 }
4551 }
4552
1af8efe9 4553 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4554}
4555
3c11ecf4
KH
4556static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4557 struct cftype *cft, struct cgroup_map_cb *cb)
4558{
c0ff4b85 4559 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4560
c0ff4b85 4561 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4562
c0ff4b85 4563 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4564 cb->fill(cb, "under_oom", 1);
4565 else
4566 cb->fill(cb, "under_oom", 0);
4567 return 0;
4568}
4569
3c11ecf4
KH
4570static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4571 struct cftype *cft, u64 val)
4572{
c0ff4b85 4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4574 struct mem_cgroup *parent;
4575
4576 /* cannot set to root cgroup and only 0 and 1 are allowed */
4577 if (!cgrp->parent || !((val == 0) || (val == 1)))
4578 return -EINVAL;
4579
4580 parent = mem_cgroup_from_cont(cgrp->parent);
4581
4582 cgroup_lock();
4583 /* oom-kill-disable is a flag for subhierarchy. */
4584 if ((parent->use_hierarchy) ||
c0ff4b85 4585 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4586 cgroup_unlock();
4587 return -EINVAL;
4588 }
c0ff4b85 4589 memcg->oom_kill_disable = val;
4d845ebf 4590 if (!val)
c0ff4b85 4591 memcg_oom_recover(memcg);
3c11ecf4
KH
4592 cgroup_unlock();
4593 return 0;
4594}
4595
c255a458 4596#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4597static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4598{
1d62e436 4599 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4600};
4601
1d62e436 4602static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4603{
1d62e436 4604 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4605}
e5671dfa 4606#else
cbe128e3 4607static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4608{
4609 return 0;
4610}
d1a4c0b3 4611
1d62e436 4612static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4613{
4614}
e5671dfa
GC
4615#endif
4616
8cdea7c0
BS
4617static struct cftype mem_cgroup_files[] = {
4618 {
0eea1030 4619 .name = "usage_in_bytes",
8c7c6e34 4620 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4621 .read = mem_cgroup_read,
9490ff27
KH
4622 .register_event = mem_cgroup_usage_register_event,
4623 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4624 },
c84872e1
PE
4625 {
4626 .name = "max_usage_in_bytes",
8c7c6e34 4627 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4628 .trigger = mem_cgroup_reset,
af36f906 4629 .read = mem_cgroup_read,
c84872e1 4630 },
8cdea7c0 4631 {
0eea1030 4632 .name = "limit_in_bytes",
8c7c6e34 4633 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4634 .write_string = mem_cgroup_write,
af36f906 4635 .read = mem_cgroup_read,
8cdea7c0 4636 },
296c81d8
BS
4637 {
4638 .name = "soft_limit_in_bytes",
4639 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4640 .write_string = mem_cgroup_write,
af36f906 4641 .read = mem_cgroup_read,
296c81d8 4642 },
8cdea7c0
BS
4643 {
4644 .name = "failcnt",
8c7c6e34 4645 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4646 .trigger = mem_cgroup_reset,
af36f906 4647 .read = mem_cgroup_read,
8cdea7c0 4648 },
d2ceb9b7
KH
4649 {
4650 .name = "stat",
ab215884 4651 .read_seq_string = memcg_stat_show,
d2ceb9b7 4652 },
c1e862c1
KH
4653 {
4654 .name = "force_empty",
4655 .trigger = mem_cgroup_force_empty_write,
4656 },
18f59ea7
BS
4657 {
4658 .name = "use_hierarchy",
4659 .write_u64 = mem_cgroup_hierarchy_write,
4660 .read_u64 = mem_cgroup_hierarchy_read,
4661 },
a7885eb8
KM
4662 {
4663 .name = "swappiness",
4664 .read_u64 = mem_cgroup_swappiness_read,
4665 .write_u64 = mem_cgroup_swappiness_write,
4666 },
7dc74be0
DN
4667 {
4668 .name = "move_charge_at_immigrate",
4669 .read_u64 = mem_cgroup_move_charge_read,
4670 .write_u64 = mem_cgroup_move_charge_write,
4671 },
9490ff27
KH
4672 {
4673 .name = "oom_control",
3c11ecf4
KH
4674 .read_map = mem_cgroup_oom_control_read,
4675 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4676 .register_event = mem_cgroup_oom_register_event,
4677 .unregister_event = mem_cgroup_oom_unregister_event,
4678 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4679 },
406eb0c9
YH
4680#ifdef CONFIG_NUMA
4681 {
4682 .name = "numa_stat",
ab215884 4683 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4684 },
4685#endif
c255a458 4686#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4687 {
4688 .name = "memsw.usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4690 .read = mem_cgroup_read,
9490ff27
KH
4691 .register_event = mem_cgroup_usage_register_event,
4692 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4693 },
4694 {
4695 .name = "memsw.max_usage_in_bytes",
4696 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4697 .trigger = mem_cgroup_reset,
af36f906 4698 .read = mem_cgroup_read,
8c7c6e34
KH
4699 },
4700 {
4701 .name = "memsw.limit_in_bytes",
4702 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4703 .write_string = mem_cgroup_write,
af36f906 4704 .read = mem_cgroup_read,
8c7c6e34
KH
4705 },
4706 {
4707 .name = "memsw.failcnt",
4708 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4709 .trigger = mem_cgroup_reset,
af36f906 4710 .read = mem_cgroup_read,
8c7c6e34 4711 },
8c7c6e34 4712#endif
6bc10349 4713 { }, /* terminate */
af36f906 4714};
8c7c6e34 4715
c0ff4b85 4716static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4717{
4718 struct mem_cgroup_per_node *pn;
1ecaab2b 4719 struct mem_cgroup_per_zone *mz;
41e3355d 4720 int zone, tmp = node;
1ecaab2b
KH
4721 /*
4722 * This routine is called against possible nodes.
4723 * But it's BUG to call kmalloc() against offline node.
4724 *
4725 * TODO: this routine can waste much memory for nodes which will
4726 * never be onlined. It's better to use memory hotplug callback
4727 * function.
4728 */
41e3355d
KH
4729 if (!node_state(node, N_NORMAL_MEMORY))
4730 tmp = -1;
17295c88 4731 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4732 if (!pn)
4733 return 1;
1ecaab2b 4734
1ecaab2b
KH
4735 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4736 mz = &pn->zoneinfo[zone];
7f5e86c2 4737 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4738 mz->usage_in_excess = 0;
4e416953 4739 mz->on_tree = false;
d79154bb 4740 mz->memcg = memcg;
1ecaab2b 4741 }
0a619e58 4742 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4743 return 0;
4744}
4745
c0ff4b85 4746static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4747{
c0ff4b85 4748 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4749}
4750
33327948
KH
4751static struct mem_cgroup *mem_cgroup_alloc(void)
4752{
d79154bb 4753 struct mem_cgroup *memcg;
c62b1a3b 4754 int size = sizeof(struct mem_cgroup);
33327948 4755
c62b1a3b 4756 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4757 if (size < PAGE_SIZE)
d79154bb 4758 memcg = kzalloc(size, GFP_KERNEL);
33327948 4759 else
d79154bb 4760 memcg = vzalloc(size);
33327948 4761
d79154bb 4762 if (!memcg)
e7bbcdf3
DC
4763 return NULL;
4764
d79154bb
HD
4765 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4766 if (!memcg->stat)
d2e61b8d 4767 goto out_free;
d79154bb
HD
4768 spin_lock_init(&memcg->pcp_counter_lock);
4769 return memcg;
d2e61b8d
DC
4770
4771out_free:
4772 if (size < PAGE_SIZE)
d79154bb 4773 kfree(memcg);
d2e61b8d 4774 else
d79154bb 4775 vfree(memcg);
d2e61b8d 4776 return NULL;
33327948
KH
4777}
4778
59927fb9 4779/*
3afe36b1 4780 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4781 * but in process context. The work_freeing structure is overlaid
4782 * on the rcu_freeing structure, which itself is overlaid on memsw.
4783 */
3afe36b1 4784static void free_work(struct work_struct *work)
59927fb9
HD
4785{
4786 struct mem_cgroup *memcg;
3afe36b1 4787 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4788
4789 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4790 /*
4791 * We need to make sure that (at least for now), the jump label
4792 * destruction code runs outside of the cgroup lock. This is because
4793 * get_online_cpus(), which is called from the static_branch update,
4794 * can't be called inside the cgroup_lock. cpusets are the ones
4795 * enforcing this dependency, so if they ever change, we might as well.
4796 *
4797 * schedule_work() will guarantee this happens. Be careful if you need
4798 * to move this code around, and make sure it is outside
4799 * the cgroup_lock.
4800 */
4801 disarm_sock_keys(memcg);
3afe36b1
GC
4802 if (size < PAGE_SIZE)
4803 kfree(memcg);
4804 else
4805 vfree(memcg);
59927fb9 4806}
3afe36b1
GC
4807
4808static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4809{
4810 struct mem_cgroup *memcg;
4811
4812 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4813 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4814 schedule_work(&memcg->work_freeing);
4815}
4816
8c7c6e34
KH
4817/*
4818 * At destroying mem_cgroup, references from swap_cgroup can remain.
4819 * (scanning all at force_empty is too costly...)
4820 *
4821 * Instead of clearing all references at force_empty, we remember
4822 * the number of reference from swap_cgroup and free mem_cgroup when
4823 * it goes down to 0.
4824 *
8c7c6e34
KH
4825 * Removal of cgroup itself succeeds regardless of refs from swap.
4826 */
4827
c0ff4b85 4828static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4829{
08e552c6
KH
4830 int node;
4831
c0ff4b85
R
4832 mem_cgroup_remove_from_trees(memcg);
4833 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4834
3ed28fa1 4835 for_each_node(node)
c0ff4b85 4836 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4837
c0ff4b85 4838 free_percpu(memcg->stat);
3afe36b1 4839 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4840}
4841
c0ff4b85 4842static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4843{
c0ff4b85 4844 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4845}
4846
c0ff4b85 4847static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4848{
c0ff4b85
R
4849 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4850 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4851 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4852 if (parent)
4853 mem_cgroup_put(parent);
4854 }
8c7c6e34
KH
4855}
4856
c0ff4b85 4857static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4858{
c0ff4b85 4859 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4860}
4861
7bcc1bb1
DN
4862/*
4863 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4864 */
e1aab161 4865struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4866{
c0ff4b85 4867 if (!memcg->res.parent)
7bcc1bb1 4868 return NULL;
c0ff4b85 4869 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4870}
e1aab161 4871EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4872
c255a458 4873#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4874static void __init enable_swap_cgroup(void)
4875{
f8d66542 4876 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4877 do_swap_account = 1;
4878}
4879#else
4880static void __init enable_swap_cgroup(void)
4881{
4882}
4883#endif
4884
f64c3f54
BS
4885static int mem_cgroup_soft_limit_tree_init(void)
4886{
4887 struct mem_cgroup_tree_per_node *rtpn;
4888 struct mem_cgroup_tree_per_zone *rtpz;
4889 int tmp, node, zone;
4890
3ed28fa1 4891 for_each_node(node) {
f64c3f54
BS
4892 tmp = node;
4893 if (!node_state(node, N_NORMAL_MEMORY))
4894 tmp = -1;
4895 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4896 if (!rtpn)
c3cecc68 4897 goto err_cleanup;
f64c3f54
BS
4898
4899 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4900
4901 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4902 rtpz = &rtpn->rb_tree_per_zone[zone];
4903 rtpz->rb_root = RB_ROOT;
4904 spin_lock_init(&rtpz->lock);
4905 }
4906 }
4907 return 0;
c3cecc68
MH
4908
4909err_cleanup:
3ed28fa1 4910 for_each_node(node) {
c3cecc68
MH
4911 if (!soft_limit_tree.rb_tree_per_node[node])
4912 break;
4913 kfree(soft_limit_tree.rb_tree_per_node[node]);
4914 soft_limit_tree.rb_tree_per_node[node] = NULL;
4915 }
4916 return 1;
4917
f64c3f54
BS
4918}
4919
0eb253e2 4920static struct cgroup_subsys_state * __ref
761b3ef5 4921mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4922{
c0ff4b85 4923 struct mem_cgroup *memcg, *parent;
04046e1a 4924 long error = -ENOMEM;
6d12e2d8 4925 int node;
8cdea7c0 4926
c0ff4b85
R
4927 memcg = mem_cgroup_alloc();
4928 if (!memcg)
04046e1a 4929 return ERR_PTR(error);
78fb7466 4930
3ed28fa1 4931 for_each_node(node)
c0ff4b85 4932 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4933 goto free_out;
f64c3f54 4934
c077719b 4935 /* root ? */
28dbc4b6 4936 if (cont->parent == NULL) {
cdec2e42 4937 int cpu;
c077719b 4938 enable_swap_cgroup();
28dbc4b6 4939 parent = NULL;
f64c3f54
BS
4940 if (mem_cgroup_soft_limit_tree_init())
4941 goto free_out;
a41c58a6 4942 root_mem_cgroup = memcg;
cdec2e42
KH
4943 for_each_possible_cpu(cpu) {
4944 struct memcg_stock_pcp *stock =
4945 &per_cpu(memcg_stock, cpu);
4946 INIT_WORK(&stock->work, drain_local_stock);
4947 }
711d3d2c 4948 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4949 } else {
28dbc4b6 4950 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4951 memcg->use_hierarchy = parent->use_hierarchy;
4952 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4953 }
28dbc4b6 4954
18f59ea7 4955 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4956 res_counter_init(&memcg->res, &parent->res);
4957 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4958 /*
4959 * We increment refcnt of the parent to ensure that we can
4960 * safely access it on res_counter_charge/uncharge.
4961 * This refcnt will be decremented when freeing this
4962 * mem_cgroup(see mem_cgroup_put).
4963 */
4964 mem_cgroup_get(parent);
18f59ea7 4965 } else {
c0ff4b85
R
4966 res_counter_init(&memcg->res, NULL);
4967 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4968 }
c0ff4b85
R
4969 memcg->last_scanned_node = MAX_NUMNODES;
4970 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4971
a7885eb8 4972 if (parent)
c0ff4b85
R
4973 memcg->swappiness = mem_cgroup_swappiness(parent);
4974 atomic_set(&memcg->refcnt, 1);
4975 memcg->move_charge_at_immigrate = 0;
4976 mutex_init(&memcg->thresholds_lock);
312734c0 4977 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4978
4979 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4980 if (error) {
4981 /*
4982 * We call put now because our (and parent's) refcnts
4983 * are already in place. mem_cgroup_put() will internally
4984 * call __mem_cgroup_free, so return directly
4985 */
4986 mem_cgroup_put(memcg);
4987 return ERR_PTR(error);
4988 }
c0ff4b85 4989 return &memcg->css;
6d12e2d8 4990free_out:
c0ff4b85 4991 __mem_cgroup_free(memcg);
04046e1a 4992 return ERR_PTR(error);
8cdea7c0
BS
4993}
4994
761b3ef5 4995static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4996{
c0ff4b85 4997 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4998
c0ff4b85 4999 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5000}
5001
761b3ef5 5002static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5003{
c0ff4b85 5004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5005
1d62e436 5006 kmem_cgroup_destroy(memcg);
d1a4c0b3 5007
c0ff4b85 5008 mem_cgroup_put(memcg);
8cdea7c0
BS
5009}
5010
02491447 5011#ifdef CONFIG_MMU
7dc74be0 5012/* Handlers for move charge at task migration. */
854ffa8d
DN
5013#define PRECHARGE_COUNT_AT_ONCE 256
5014static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5015{
854ffa8d
DN
5016 int ret = 0;
5017 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5018 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5019
c0ff4b85 5020 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5021 mc.precharge += count;
5022 /* we don't need css_get for root */
5023 return ret;
5024 }
5025 /* try to charge at once */
5026 if (count > 1) {
5027 struct res_counter *dummy;
5028 /*
c0ff4b85 5029 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5030 * by cgroup_lock_live_cgroup() that it is not removed and we
5031 * are still under the same cgroup_mutex. So we can postpone
5032 * css_get().
5033 */
c0ff4b85 5034 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5035 goto one_by_one;
c0ff4b85 5036 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5037 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5038 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5039 goto one_by_one;
5040 }
5041 mc.precharge += count;
854ffa8d
DN
5042 return ret;
5043 }
5044one_by_one:
5045 /* fall back to one by one charge */
5046 while (count--) {
5047 if (signal_pending(current)) {
5048 ret = -EINTR;
5049 break;
5050 }
5051 if (!batch_count--) {
5052 batch_count = PRECHARGE_COUNT_AT_ONCE;
5053 cond_resched();
5054 }
c0ff4b85
R
5055 ret = __mem_cgroup_try_charge(NULL,
5056 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5057 if (ret)
854ffa8d 5058 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5059 return ret;
854ffa8d
DN
5060 mc.precharge++;
5061 }
4ffef5fe
DN
5062 return ret;
5063}
5064
5065/**
8d32ff84 5066 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5067 * @vma: the vma the pte to be checked belongs
5068 * @addr: the address corresponding to the pte to be checked
5069 * @ptent: the pte to be checked
02491447 5070 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5071 *
5072 * Returns
5073 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5074 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5075 * move charge. if @target is not NULL, the page is stored in target->page
5076 * with extra refcnt got(Callers should handle it).
02491447
DN
5077 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5078 * target for charge migration. if @target is not NULL, the entry is stored
5079 * in target->ent.
4ffef5fe
DN
5080 *
5081 * Called with pte lock held.
5082 */
4ffef5fe
DN
5083union mc_target {
5084 struct page *page;
02491447 5085 swp_entry_t ent;
4ffef5fe
DN
5086};
5087
4ffef5fe 5088enum mc_target_type {
8d32ff84 5089 MC_TARGET_NONE = 0,
4ffef5fe 5090 MC_TARGET_PAGE,
02491447 5091 MC_TARGET_SWAP,
4ffef5fe
DN
5092};
5093
90254a65
DN
5094static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5095 unsigned long addr, pte_t ptent)
4ffef5fe 5096{
90254a65 5097 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5098
90254a65
DN
5099 if (!page || !page_mapped(page))
5100 return NULL;
5101 if (PageAnon(page)) {
5102 /* we don't move shared anon */
4b91355e 5103 if (!move_anon())
90254a65 5104 return NULL;
87946a72
DN
5105 } else if (!move_file())
5106 /* we ignore mapcount for file pages */
90254a65
DN
5107 return NULL;
5108 if (!get_page_unless_zero(page))
5109 return NULL;
5110
5111 return page;
5112}
5113
4b91355e 5114#ifdef CONFIG_SWAP
90254a65
DN
5115static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5116 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5117{
90254a65
DN
5118 struct page *page = NULL;
5119 swp_entry_t ent = pte_to_swp_entry(ptent);
5120
5121 if (!move_anon() || non_swap_entry(ent))
5122 return NULL;
4b91355e
KH
5123 /*
5124 * Because lookup_swap_cache() updates some statistics counter,
5125 * we call find_get_page() with swapper_space directly.
5126 */
5127 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5128 if (do_swap_account)
5129 entry->val = ent.val;
5130
5131 return page;
5132}
4b91355e
KH
5133#else
5134static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5135 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5136{
5137 return NULL;
5138}
5139#endif
90254a65 5140
87946a72
DN
5141static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5143{
5144 struct page *page = NULL;
87946a72
DN
5145 struct address_space *mapping;
5146 pgoff_t pgoff;
5147
5148 if (!vma->vm_file) /* anonymous vma */
5149 return NULL;
5150 if (!move_file())
5151 return NULL;
5152
87946a72
DN
5153 mapping = vma->vm_file->f_mapping;
5154 if (pte_none(ptent))
5155 pgoff = linear_page_index(vma, addr);
5156 else /* pte_file(ptent) is true */
5157 pgoff = pte_to_pgoff(ptent);
5158
5159 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5160 page = find_get_page(mapping, pgoff);
5161
5162#ifdef CONFIG_SWAP
5163 /* shmem/tmpfs may report page out on swap: account for that too. */
5164 if (radix_tree_exceptional_entry(page)) {
5165 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5166 if (do_swap_account)
aa3b1895
HD
5167 *entry = swap;
5168 page = find_get_page(&swapper_space, swap.val);
87946a72 5169 }
aa3b1895 5170#endif
87946a72
DN
5171 return page;
5172}
5173
8d32ff84 5174static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5175 unsigned long addr, pte_t ptent, union mc_target *target)
5176{
5177 struct page *page = NULL;
5178 struct page_cgroup *pc;
8d32ff84 5179 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5180 swp_entry_t ent = { .val = 0 };
5181
5182 if (pte_present(ptent))
5183 page = mc_handle_present_pte(vma, addr, ptent);
5184 else if (is_swap_pte(ptent))
5185 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5186 else if (pte_none(ptent) || pte_file(ptent))
5187 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5188
5189 if (!page && !ent.val)
8d32ff84 5190 return ret;
02491447
DN
5191 if (page) {
5192 pc = lookup_page_cgroup(page);
5193 /*
5194 * Do only loose check w/o page_cgroup lock.
5195 * mem_cgroup_move_account() checks the pc is valid or not under
5196 * the lock.
5197 */
5198 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5199 ret = MC_TARGET_PAGE;
5200 if (target)
5201 target->page = page;
5202 }
5203 if (!ret || !target)
5204 put_page(page);
5205 }
90254a65
DN
5206 /* There is a swap entry and a page doesn't exist or isn't charged */
5207 if (ent.val && !ret &&
9fb4b7cc 5208 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5209 ret = MC_TARGET_SWAP;
5210 if (target)
5211 target->ent = ent;
4ffef5fe 5212 }
4ffef5fe
DN
5213 return ret;
5214}
5215
12724850
NH
5216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5217/*
5218 * We don't consider swapping or file mapped pages because THP does not
5219 * support them for now.
5220 * Caller should make sure that pmd_trans_huge(pmd) is true.
5221 */
5222static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5223 unsigned long addr, pmd_t pmd, union mc_target *target)
5224{
5225 struct page *page = NULL;
5226 struct page_cgroup *pc;
5227 enum mc_target_type ret = MC_TARGET_NONE;
5228
5229 page = pmd_page(pmd);
5230 VM_BUG_ON(!page || !PageHead(page));
5231 if (!move_anon())
5232 return ret;
5233 pc = lookup_page_cgroup(page);
5234 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5235 ret = MC_TARGET_PAGE;
5236 if (target) {
5237 get_page(page);
5238 target->page = page;
5239 }
5240 }
5241 return ret;
5242}
5243#else
5244static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5245 unsigned long addr, pmd_t pmd, union mc_target *target)
5246{
5247 return MC_TARGET_NONE;
5248}
5249#endif
5250
4ffef5fe
DN
5251static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5252 unsigned long addr, unsigned long end,
5253 struct mm_walk *walk)
5254{
5255 struct vm_area_struct *vma = walk->private;
5256 pte_t *pte;
5257 spinlock_t *ptl;
5258
12724850
NH
5259 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5260 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5261 mc.precharge += HPAGE_PMD_NR;
5262 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5263 return 0;
12724850 5264 }
03319327 5265
45f83cef
AA
5266 if (pmd_trans_unstable(pmd))
5267 return 0;
4ffef5fe
DN
5268 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5269 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5270 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5271 mc.precharge++; /* increment precharge temporarily */
5272 pte_unmap_unlock(pte - 1, ptl);
5273 cond_resched();
5274
7dc74be0
DN
5275 return 0;
5276}
5277
4ffef5fe
DN
5278static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5279{
5280 unsigned long precharge;
5281 struct vm_area_struct *vma;
5282
dfe076b0 5283 down_read(&mm->mmap_sem);
4ffef5fe
DN
5284 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5285 struct mm_walk mem_cgroup_count_precharge_walk = {
5286 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5287 .mm = mm,
5288 .private = vma,
5289 };
5290 if (is_vm_hugetlb_page(vma))
5291 continue;
4ffef5fe
DN
5292 walk_page_range(vma->vm_start, vma->vm_end,
5293 &mem_cgroup_count_precharge_walk);
5294 }
dfe076b0 5295 up_read(&mm->mmap_sem);
4ffef5fe
DN
5296
5297 precharge = mc.precharge;
5298 mc.precharge = 0;
5299
5300 return precharge;
5301}
5302
4ffef5fe
DN
5303static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5304{
dfe076b0
DN
5305 unsigned long precharge = mem_cgroup_count_precharge(mm);
5306
5307 VM_BUG_ON(mc.moving_task);
5308 mc.moving_task = current;
5309 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5310}
5311
dfe076b0
DN
5312/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5313static void __mem_cgroup_clear_mc(void)
4ffef5fe 5314{
2bd9bb20
KH
5315 struct mem_cgroup *from = mc.from;
5316 struct mem_cgroup *to = mc.to;
5317
4ffef5fe 5318 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5319 if (mc.precharge) {
5320 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5321 mc.precharge = 0;
5322 }
5323 /*
5324 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5325 * we must uncharge here.
5326 */
5327 if (mc.moved_charge) {
5328 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5329 mc.moved_charge = 0;
4ffef5fe 5330 }
483c30b5
DN
5331 /* we must fixup refcnts and charges */
5332 if (mc.moved_swap) {
483c30b5
DN
5333 /* uncharge swap account from the old cgroup */
5334 if (!mem_cgroup_is_root(mc.from))
5335 res_counter_uncharge(&mc.from->memsw,
5336 PAGE_SIZE * mc.moved_swap);
5337 __mem_cgroup_put(mc.from, mc.moved_swap);
5338
5339 if (!mem_cgroup_is_root(mc.to)) {
5340 /*
5341 * we charged both to->res and to->memsw, so we should
5342 * uncharge to->res.
5343 */
5344 res_counter_uncharge(&mc.to->res,
5345 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5346 }
5347 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5348 mc.moved_swap = 0;
5349 }
dfe076b0
DN
5350 memcg_oom_recover(from);
5351 memcg_oom_recover(to);
5352 wake_up_all(&mc.waitq);
5353}
5354
5355static void mem_cgroup_clear_mc(void)
5356{
5357 struct mem_cgroup *from = mc.from;
5358
5359 /*
5360 * we must clear moving_task before waking up waiters at the end of
5361 * task migration.
5362 */
5363 mc.moving_task = NULL;
5364 __mem_cgroup_clear_mc();
2bd9bb20 5365 spin_lock(&mc.lock);
4ffef5fe
DN
5366 mc.from = NULL;
5367 mc.to = NULL;
2bd9bb20 5368 spin_unlock(&mc.lock);
32047e2a 5369 mem_cgroup_end_move(from);
4ffef5fe
DN
5370}
5371
761b3ef5
LZ
5372static int mem_cgroup_can_attach(struct cgroup *cgroup,
5373 struct cgroup_taskset *tset)
7dc74be0 5374{
2f7ee569 5375 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5376 int ret = 0;
c0ff4b85 5377 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5378
c0ff4b85 5379 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5380 struct mm_struct *mm;
5381 struct mem_cgroup *from = mem_cgroup_from_task(p);
5382
c0ff4b85 5383 VM_BUG_ON(from == memcg);
7dc74be0
DN
5384
5385 mm = get_task_mm(p);
5386 if (!mm)
5387 return 0;
7dc74be0 5388 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5389 if (mm->owner == p) {
5390 VM_BUG_ON(mc.from);
5391 VM_BUG_ON(mc.to);
5392 VM_BUG_ON(mc.precharge);
854ffa8d 5393 VM_BUG_ON(mc.moved_charge);
483c30b5 5394 VM_BUG_ON(mc.moved_swap);
32047e2a 5395 mem_cgroup_start_move(from);
2bd9bb20 5396 spin_lock(&mc.lock);
4ffef5fe 5397 mc.from = from;
c0ff4b85 5398 mc.to = memcg;
2bd9bb20 5399 spin_unlock(&mc.lock);
dfe076b0 5400 /* We set mc.moving_task later */
4ffef5fe
DN
5401
5402 ret = mem_cgroup_precharge_mc(mm);
5403 if (ret)
5404 mem_cgroup_clear_mc();
dfe076b0
DN
5405 }
5406 mmput(mm);
7dc74be0
DN
5407 }
5408 return ret;
5409}
5410
761b3ef5
LZ
5411static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5412 struct cgroup_taskset *tset)
7dc74be0 5413{
4ffef5fe 5414 mem_cgroup_clear_mc();
7dc74be0
DN
5415}
5416
4ffef5fe
DN
5417static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5418 unsigned long addr, unsigned long end,
5419 struct mm_walk *walk)
7dc74be0 5420{
4ffef5fe
DN
5421 int ret = 0;
5422 struct vm_area_struct *vma = walk->private;
5423 pte_t *pte;
5424 spinlock_t *ptl;
12724850
NH
5425 enum mc_target_type target_type;
5426 union mc_target target;
5427 struct page *page;
5428 struct page_cgroup *pc;
4ffef5fe 5429
12724850
NH
5430 /*
5431 * We don't take compound_lock() here but no race with splitting thp
5432 * happens because:
5433 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5434 * under splitting, which means there's no concurrent thp split,
5435 * - if another thread runs into split_huge_page() just after we
5436 * entered this if-block, the thread must wait for page table lock
5437 * to be unlocked in __split_huge_page_splitting(), where the main
5438 * part of thp split is not executed yet.
5439 */
5440 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5441 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5442 spin_unlock(&vma->vm_mm->page_table_lock);
5443 return 0;
5444 }
5445 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5446 if (target_type == MC_TARGET_PAGE) {
5447 page = target.page;
5448 if (!isolate_lru_page(page)) {
5449 pc = lookup_page_cgroup(page);
5450 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5451 pc, mc.from, mc.to)) {
12724850
NH
5452 mc.precharge -= HPAGE_PMD_NR;
5453 mc.moved_charge += HPAGE_PMD_NR;
5454 }
5455 putback_lru_page(page);
5456 }
5457 put_page(page);
5458 }
5459 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5460 return 0;
12724850
NH
5461 }
5462
45f83cef
AA
5463 if (pmd_trans_unstable(pmd))
5464 return 0;
4ffef5fe
DN
5465retry:
5466 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5467 for (; addr != end; addr += PAGE_SIZE) {
5468 pte_t ptent = *(pte++);
02491447 5469 swp_entry_t ent;
4ffef5fe
DN
5470
5471 if (!mc.precharge)
5472 break;
5473
8d32ff84 5474 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5475 case MC_TARGET_PAGE:
5476 page = target.page;
5477 if (isolate_lru_page(page))
5478 goto put;
5479 pc = lookup_page_cgroup(page);
7ec99d62 5480 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5481 mc.from, mc.to)) {
4ffef5fe 5482 mc.precharge--;
854ffa8d
DN
5483 /* we uncharge from mc.from later. */
5484 mc.moved_charge++;
4ffef5fe
DN
5485 }
5486 putback_lru_page(page);
8d32ff84 5487put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5488 put_page(page);
5489 break;
02491447
DN
5490 case MC_TARGET_SWAP:
5491 ent = target.ent;
e91cbb42 5492 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5493 mc.precharge--;
483c30b5
DN
5494 /* we fixup refcnts and charges later. */
5495 mc.moved_swap++;
5496 }
02491447 5497 break;
4ffef5fe
DN
5498 default:
5499 break;
5500 }
5501 }
5502 pte_unmap_unlock(pte - 1, ptl);
5503 cond_resched();
5504
5505 if (addr != end) {
5506 /*
5507 * We have consumed all precharges we got in can_attach().
5508 * We try charge one by one, but don't do any additional
5509 * charges to mc.to if we have failed in charge once in attach()
5510 * phase.
5511 */
854ffa8d 5512 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5513 if (!ret)
5514 goto retry;
5515 }
5516
5517 return ret;
5518}
5519
5520static void mem_cgroup_move_charge(struct mm_struct *mm)
5521{
5522 struct vm_area_struct *vma;
5523
5524 lru_add_drain_all();
dfe076b0
DN
5525retry:
5526 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5527 /*
5528 * Someone who are holding the mmap_sem might be waiting in
5529 * waitq. So we cancel all extra charges, wake up all waiters,
5530 * and retry. Because we cancel precharges, we might not be able
5531 * to move enough charges, but moving charge is a best-effort
5532 * feature anyway, so it wouldn't be a big problem.
5533 */
5534 __mem_cgroup_clear_mc();
5535 cond_resched();
5536 goto retry;
5537 }
4ffef5fe
DN
5538 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5539 int ret;
5540 struct mm_walk mem_cgroup_move_charge_walk = {
5541 .pmd_entry = mem_cgroup_move_charge_pte_range,
5542 .mm = mm,
5543 .private = vma,
5544 };
5545 if (is_vm_hugetlb_page(vma))
5546 continue;
4ffef5fe
DN
5547 ret = walk_page_range(vma->vm_start, vma->vm_end,
5548 &mem_cgroup_move_charge_walk);
5549 if (ret)
5550 /*
5551 * means we have consumed all precharges and failed in
5552 * doing additional charge. Just abandon here.
5553 */
5554 break;
5555 }
dfe076b0 5556 up_read(&mm->mmap_sem);
7dc74be0
DN
5557}
5558
761b3ef5
LZ
5559static void mem_cgroup_move_task(struct cgroup *cont,
5560 struct cgroup_taskset *tset)
67e465a7 5561{
2f7ee569 5562 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5563 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5564
dfe076b0 5565 if (mm) {
a433658c
KM
5566 if (mc.to)
5567 mem_cgroup_move_charge(mm);
dfe076b0
DN
5568 mmput(mm);
5569 }
a433658c
KM
5570 if (mc.to)
5571 mem_cgroup_clear_mc();
67e465a7 5572}
5cfb80a7 5573#else /* !CONFIG_MMU */
761b3ef5
LZ
5574static int mem_cgroup_can_attach(struct cgroup *cgroup,
5575 struct cgroup_taskset *tset)
5cfb80a7
DN
5576{
5577 return 0;
5578}
761b3ef5
LZ
5579static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5580 struct cgroup_taskset *tset)
5cfb80a7
DN
5581{
5582}
761b3ef5
LZ
5583static void mem_cgroup_move_task(struct cgroup *cont,
5584 struct cgroup_taskset *tset)
5cfb80a7
DN
5585{
5586}
5587#endif
67e465a7 5588
8cdea7c0
BS
5589struct cgroup_subsys mem_cgroup_subsys = {
5590 .name = "memory",
5591 .subsys_id = mem_cgroup_subsys_id,
5592 .create = mem_cgroup_create,
df878fb0 5593 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5594 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5595 .can_attach = mem_cgroup_can_attach,
5596 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5597 .attach = mem_cgroup_move_task,
6bc10349 5598 .base_cftypes = mem_cgroup_files,
6d12e2d8 5599 .early_init = 0,
04046e1a 5600 .use_id = 1,
48ddbe19 5601 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5602};
c077719b 5603
c255a458 5604#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5605static int __init enable_swap_account(char *s)
5606{
5607 /* consider enabled if no parameter or 1 is given */
a2c8990a 5608 if (!strcmp(s, "1"))
a42c390c 5609 really_do_swap_account = 1;
a2c8990a 5610 else if (!strcmp(s, "0"))
a42c390c
MH
5611 really_do_swap_account = 0;
5612 return 1;
5613}
a2c8990a 5614__setup("swapaccount=", enable_swap_account);
c077719b 5615
c077719b 5616#endif