]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: change defines to an enum
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
62EXPORT_SYMBOL(mem_cgroup_subsys);
63
a181b0e8 64#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 65static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 66
c255a458 67#ifdef CONFIG_MEMCG_SWAP
338c8431 68/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 69int do_swap_account __read_mostly;
a42c390c
MH
70
71/* for remember boot option*/
c255a458 72#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
73static int really_do_swap_account __initdata = 1;
74#else
75static int really_do_swap_account __initdata = 0;
76#endif
77
c077719b 78#else
a0db00fc 79#define do_swap_account 0
c077719b
KH
80#endif
81
82
d52aa412
KH
83/*
84 * Statistics for memory cgroup.
85 */
86enum mem_cgroup_stat_index {
87 /*
88 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
89 */
90 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 91 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 92 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 93 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
94 MEM_CGROUP_STAT_NSTATS,
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_stat_names[] = {
98 "cache",
99 "rss",
100 "mapped_file",
101 "swap",
102};
103
e9f8974f
JW
104enum mem_cgroup_events_index {
105 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
106 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
107 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
108 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
109 MEM_CGROUP_EVENTS_NSTATS,
110};
af7c4b0e
JW
111
112static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
127 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 128 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
129 MEM_CGROUP_NTARGETS,
130};
a0db00fc
KS
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 134
d52aa412 135struct mem_cgroup_stat_cpu {
7a159cc9 136 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 138 unsigned long nr_page_events;
7a159cc9 139 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
140};
141
527a5ec9
JW
142struct mem_cgroup_reclaim_iter {
143 /* css_id of the last scanned hierarchy member */
144 int position;
145 /* scan generation, increased every round-trip */
146 unsigned int generation;
147};
148
6d12e2d8
KH
149/*
150 * per-zone information in memory controller.
151 */
6d12e2d8 152struct mem_cgroup_per_zone {
6290df54 153 struct lruvec lruvec;
1eb49272 154 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 155
527a5ec9
JW
156 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
157
f64c3f54
BS
158 struct rb_node tree_node; /* RB tree node */
159 unsigned long long usage_in_excess;/* Set to the value by which */
160 /* the soft limit is exceeded*/
161 bool on_tree;
d79154bb 162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 163 /* use container_of */
6d12e2d8 164};
6d12e2d8
KH
165
166struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_lru_info {
171 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172};
173
f64c3f54
BS
174/*
175 * Cgroups above their limits are maintained in a RB-Tree, independent of
176 * their hierarchy representation
177 */
178
179struct mem_cgroup_tree_per_zone {
180 struct rb_root rb_root;
181 spinlock_t lock;
182};
183
184struct mem_cgroup_tree_per_node {
185 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
186};
187
188struct mem_cgroup_tree {
189 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
190};
191
192static struct mem_cgroup_tree soft_limit_tree __read_mostly;
193
2e72b634
KS
194struct mem_cgroup_threshold {
195 struct eventfd_ctx *eventfd;
196 u64 threshold;
197};
198
9490ff27 199/* For threshold */
2e72b634 200struct mem_cgroup_threshold_ary {
748dad36 201 /* An array index points to threshold just below or equal to usage. */
5407a562 202 int current_threshold;
2e72b634
KS
203 /* Size of entries[] */
204 unsigned int size;
205 /* Array of thresholds */
206 struct mem_cgroup_threshold entries[0];
207};
2c488db2
KS
208
209struct mem_cgroup_thresholds {
210 /* Primary thresholds array */
211 struct mem_cgroup_threshold_ary *primary;
212 /*
213 * Spare threshold array.
214 * This is needed to make mem_cgroup_unregister_event() "never fail".
215 * It must be able to store at least primary->size - 1 entries.
216 */
217 struct mem_cgroup_threshold_ary *spare;
218};
219
9490ff27
KH
220/* for OOM */
221struct mem_cgroup_eventfd_list {
222 struct list_head list;
223 struct eventfd_ctx *eventfd;
224};
2e72b634 225
c0ff4b85
R
226static void mem_cgroup_threshold(struct mem_cgroup *memcg);
227static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 228
8cdea7c0
BS
229/*
230 * The memory controller data structure. The memory controller controls both
231 * page cache and RSS per cgroup. We would eventually like to provide
232 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
233 * to help the administrator determine what knobs to tune.
234 *
235 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
236 * we hit the water mark. May be even add a low water mark, such that
237 * no reclaim occurs from a cgroup at it's low water mark, this is
238 * a feature that will be implemented much later in the future.
8cdea7c0
BS
239 */
240struct mem_cgroup {
241 struct cgroup_subsys_state css;
242 /*
243 * the counter to account for memory usage
244 */
245 struct res_counter res;
59927fb9
HD
246
247 union {
248 /*
249 * the counter to account for mem+swap usage.
250 */
251 struct res_counter memsw;
252
253 /*
254 * rcu_freeing is used only when freeing struct mem_cgroup,
255 * so put it into a union to avoid wasting more memory.
256 * It must be disjoint from the css field. It could be
257 * in a union with the res field, but res plays a much
258 * larger part in mem_cgroup life than memsw, and might
259 * be of interest, even at time of free, when debugging.
260 * So share rcu_head with the less interesting memsw.
261 */
262 struct rcu_head rcu_freeing;
263 /*
3afe36b1
GC
264 * We also need some space for a worker in deferred freeing.
265 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
266 */
267 struct work_struct work_freeing;
268 };
269
78fb7466
PE
270 /*
271 * Per cgroup active and inactive list, similar to the
272 * per zone LRU lists.
78fb7466 273 */
6d12e2d8 274 struct mem_cgroup_lru_info info;
889976db
YH
275 int last_scanned_node;
276#if MAX_NUMNODES > 1
277 nodemask_t scan_nodes;
453a9bf3
KH
278 atomic_t numainfo_events;
279 atomic_t numainfo_updating;
889976db 280#endif
18f59ea7
BS
281 /*
282 * Should the accounting and control be hierarchical, per subtree?
283 */
284 bool use_hierarchy;
79dfdacc
MH
285
286 bool oom_lock;
287 atomic_t under_oom;
288
8c7c6e34 289 atomic_t refcnt;
14797e23 290
1f4c025b 291 int swappiness;
3c11ecf4
KH
292 /* OOM-Killer disable */
293 int oom_kill_disable;
a7885eb8 294
22a668d7
KH
295 /* set when res.limit == memsw.limit */
296 bool memsw_is_minimum;
297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
312734c0
KH
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
d52aa412 321 /*
c62b1a3b 322 * percpu counter.
d52aa412 323 */
3a7951b4 324 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
d1a4c0b3 331
4bd2c1ee 332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
333 struct tcp_memcontrol tcp_mem;
334#endif
8cdea7c0
BS
335};
336
7dc74be0
DN
337/* Stuffs for move charges at task migration. */
338/*
339 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
340 * left-shifted bitmap of these types.
341 */
342enum move_type {
4ffef5fe 343 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 344 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
345 NR_MOVE_TYPE,
346};
347
4ffef5fe
DN
348/* "mc" and its members are protected by cgroup_mutex */
349static struct move_charge_struct {
b1dd693e 350 spinlock_t lock; /* for from, to */
4ffef5fe
DN
351 struct mem_cgroup *from;
352 struct mem_cgroup *to;
353 unsigned long precharge;
854ffa8d 354 unsigned long moved_charge;
483c30b5 355 unsigned long moved_swap;
8033b97c
DN
356 struct task_struct *moving_task; /* a task moving charges */
357 wait_queue_head_t waitq; /* a waitq for other context */
358} mc = {
2bd9bb20 359 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
360 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
361};
4ffef5fe 362
90254a65
DN
363static bool move_anon(void)
364{
365 return test_bit(MOVE_CHARGE_TYPE_ANON,
366 &mc.to->move_charge_at_immigrate);
367}
368
87946a72
DN
369static bool move_file(void)
370{
371 return test_bit(MOVE_CHARGE_TYPE_FILE,
372 &mc.to->move_charge_at_immigrate);
373}
374
4e416953
BS
375/*
376 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
377 * limit reclaim to prevent infinite loops, if they ever occur.
378 */
a0db00fc
KS
379#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
380#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 381
217bc319
KH
382enum charge_type {
383 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 384 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
387 NR_CHARGE_TYPE,
388};
389
8c7c6e34 390/* for encoding cft->private value on file */
86ae53e1
GC
391enum res_type {
392 _MEM,
393 _MEMSWAP,
394 _OOM_TYPE,
395};
396
a0db00fc
KS
397#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
398#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 399#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
400/* Used for OOM nofiier */
401#define OOM_CONTROL (0)
8c7c6e34 402
75822b44
BS
403/*
404 * Reclaim flags for mem_cgroup_hierarchical_reclaim
405 */
406#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
407#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
408#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
409#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
410
c0ff4b85
R
411static void mem_cgroup_get(struct mem_cgroup *memcg);
412static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 413
b2145145
WL
414static inline
415struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
416{
417 return container_of(s, struct mem_cgroup, css);
418}
419
7ffc0edc
MH
420static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
421{
422 return (memcg == root_mem_cgroup);
423}
424
e1aab161 425/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 426#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 427
e1aab161
GC
428void sock_update_memcg(struct sock *sk)
429{
376be5ff 430 if (mem_cgroup_sockets_enabled) {
e1aab161 431 struct mem_cgroup *memcg;
3f134619 432 struct cg_proto *cg_proto;
e1aab161
GC
433
434 BUG_ON(!sk->sk_prot->proto_cgroup);
435
f3f511e1
GC
436 /* Socket cloning can throw us here with sk_cgrp already
437 * filled. It won't however, necessarily happen from
438 * process context. So the test for root memcg given
439 * the current task's memcg won't help us in this case.
440 *
441 * Respecting the original socket's memcg is a better
442 * decision in this case.
443 */
444 if (sk->sk_cgrp) {
445 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
446 mem_cgroup_get(sk->sk_cgrp->memcg);
447 return;
448 }
449
e1aab161
GC
450 rcu_read_lock();
451 memcg = mem_cgroup_from_task(current);
3f134619
GC
452 cg_proto = sk->sk_prot->proto_cgroup(memcg);
453 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 454 mem_cgroup_get(memcg);
3f134619 455 sk->sk_cgrp = cg_proto;
e1aab161
GC
456 }
457 rcu_read_unlock();
458 }
459}
460EXPORT_SYMBOL(sock_update_memcg);
461
462void sock_release_memcg(struct sock *sk)
463{
376be5ff 464 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
465 struct mem_cgroup *memcg;
466 WARN_ON(!sk->sk_cgrp->memcg);
467 memcg = sk->sk_cgrp->memcg;
468 mem_cgroup_put(memcg);
469 }
470}
d1a4c0b3
GC
471
472struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
473{
474 if (!memcg || mem_cgroup_is_root(memcg))
475 return NULL;
476
477 return &memcg->tcp_mem.cg_proto;
478}
479EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 480
3f134619
GC
481static void disarm_sock_keys(struct mem_cgroup *memcg)
482{
483 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
484 return;
485 static_key_slow_dec(&memcg_socket_limit_enabled);
486}
487#else
488static void disarm_sock_keys(struct mem_cgroup *memcg)
489{
490}
491#endif
492
c0ff4b85 493static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 494
f64c3f54 495static struct mem_cgroup_per_zone *
c0ff4b85 496mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 497{
c0ff4b85 498 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
499}
500
c0ff4b85 501struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 502{
c0ff4b85 503 return &memcg->css;
d324236b
WF
504}
505
f64c3f54 506static struct mem_cgroup_per_zone *
c0ff4b85 507page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 508{
97a6c37b
JW
509 int nid = page_to_nid(page);
510 int zid = page_zonenum(page);
f64c3f54 511
c0ff4b85 512 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
513}
514
515static struct mem_cgroup_tree_per_zone *
516soft_limit_tree_node_zone(int nid, int zid)
517{
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519}
520
521static struct mem_cgroup_tree_per_zone *
522soft_limit_tree_from_page(struct page *page)
523{
524 int nid = page_to_nid(page);
525 int zid = page_zonenum(page);
526
527 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
528}
529
530static void
c0ff4b85 531__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 532 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
533 struct mem_cgroup_tree_per_zone *mctz,
534 unsigned long long new_usage_in_excess)
f64c3f54
BS
535{
536 struct rb_node **p = &mctz->rb_root.rb_node;
537 struct rb_node *parent = NULL;
538 struct mem_cgroup_per_zone *mz_node;
539
540 if (mz->on_tree)
541 return;
542
ef8745c1
KH
543 mz->usage_in_excess = new_usage_in_excess;
544 if (!mz->usage_in_excess)
545 return;
f64c3f54
BS
546 while (*p) {
547 parent = *p;
548 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
549 tree_node);
550 if (mz->usage_in_excess < mz_node->usage_in_excess)
551 p = &(*p)->rb_left;
552 /*
553 * We can't avoid mem cgroups that are over their soft
554 * limit by the same amount
555 */
556 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
557 p = &(*p)->rb_right;
558 }
559 rb_link_node(&mz->tree_node, parent, p);
560 rb_insert_color(&mz->tree_node, &mctz->rb_root);
561 mz->on_tree = true;
4e416953
BS
562}
563
564static void
c0ff4b85 565__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
566 struct mem_cgroup_per_zone *mz,
567 struct mem_cgroup_tree_per_zone *mctz)
568{
569 if (!mz->on_tree)
570 return;
571 rb_erase(&mz->tree_node, &mctz->rb_root);
572 mz->on_tree = false;
573}
574
f64c3f54 575static void
c0ff4b85 576mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
577 struct mem_cgroup_per_zone *mz,
578 struct mem_cgroup_tree_per_zone *mctz)
579{
580 spin_lock(&mctz->lock);
c0ff4b85 581 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
582 spin_unlock(&mctz->lock);
583}
584
f64c3f54 585
c0ff4b85 586static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 587{
ef8745c1 588 unsigned long long excess;
f64c3f54
BS
589 struct mem_cgroup_per_zone *mz;
590 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
591 int nid = page_to_nid(page);
592 int zid = page_zonenum(page);
f64c3f54
BS
593 mctz = soft_limit_tree_from_page(page);
594
595 /*
4e649152
KH
596 * Necessary to update all ancestors when hierarchy is used.
597 * because their event counter is not touched.
f64c3f54 598 */
c0ff4b85
R
599 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
600 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
601 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
602 /*
603 * We have to update the tree if mz is on RB-tree or
604 * mem is over its softlimit.
605 */
ef8745c1 606 if (excess || mz->on_tree) {
4e649152
KH
607 spin_lock(&mctz->lock);
608 /* if on-tree, remove it */
609 if (mz->on_tree)
c0ff4b85 610 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 611 /*
ef8745c1
KH
612 * Insert again. mz->usage_in_excess will be updated.
613 * If excess is 0, no tree ops.
4e649152 614 */
c0ff4b85 615 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
616 spin_unlock(&mctz->lock);
617 }
f64c3f54
BS
618 }
619}
620
c0ff4b85 621static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
622{
623 int node, zone;
624 struct mem_cgroup_per_zone *mz;
625 struct mem_cgroup_tree_per_zone *mctz;
626
3ed28fa1 627 for_each_node(node) {
f64c3f54 628 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 629 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 630 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 631 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
632 }
633 }
634}
635
4e416953
BS
636static struct mem_cgroup_per_zone *
637__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638{
639 struct rb_node *rightmost = NULL;
26251eaf 640 struct mem_cgroup_per_zone *mz;
4e416953
BS
641
642retry:
26251eaf 643 mz = NULL;
4e416953
BS
644 rightmost = rb_last(&mctz->rb_root);
645 if (!rightmost)
646 goto done; /* Nothing to reclaim from */
647
648 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
649 /*
650 * Remove the node now but someone else can add it back,
651 * we will to add it back at the end of reclaim to its correct
652 * position in the tree.
653 */
d79154bb
HD
654 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
655 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
656 !css_tryget(&mz->memcg->css))
4e416953
BS
657 goto retry;
658done:
659 return mz;
660}
661
662static struct mem_cgroup_per_zone *
663mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
664{
665 struct mem_cgroup_per_zone *mz;
666
667 spin_lock(&mctz->lock);
668 mz = __mem_cgroup_largest_soft_limit_node(mctz);
669 spin_unlock(&mctz->lock);
670 return mz;
671}
672
711d3d2c
KH
673/*
674 * Implementation Note: reading percpu statistics for memcg.
675 *
676 * Both of vmstat[] and percpu_counter has threshold and do periodic
677 * synchronization to implement "quick" read. There are trade-off between
678 * reading cost and precision of value. Then, we may have a chance to implement
679 * a periodic synchronizion of counter in memcg's counter.
680 *
681 * But this _read() function is used for user interface now. The user accounts
682 * memory usage by memory cgroup and he _always_ requires exact value because
683 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
684 * have to visit all online cpus and make sum. So, for now, unnecessary
685 * synchronization is not implemented. (just implemented for cpu hotplug)
686 *
687 * If there are kernel internal actions which can make use of some not-exact
688 * value, and reading all cpu value can be performance bottleneck in some
689 * common workload, threashold and synchonization as vmstat[] should be
690 * implemented.
691 */
c0ff4b85 692static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 693 enum mem_cgroup_stat_index idx)
c62b1a3b 694{
7a159cc9 695 long val = 0;
c62b1a3b 696 int cpu;
c62b1a3b 697
711d3d2c
KH
698 get_online_cpus();
699 for_each_online_cpu(cpu)
c0ff4b85 700 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 701#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
702 spin_lock(&memcg->pcp_counter_lock);
703 val += memcg->nocpu_base.count[idx];
704 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
705#endif
706 put_online_cpus();
c62b1a3b
KH
707 return val;
708}
709
c0ff4b85 710static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
711 bool charge)
712{
713 int val = (charge) ? 1 : -1;
bff6bb83 714 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
715}
716
c0ff4b85 717static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
718 enum mem_cgroup_events_index idx)
719{
720 unsigned long val = 0;
721 int cpu;
722
723 for_each_online_cpu(cpu)
c0ff4b85 724 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 725#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
726 spin_lock(&memcg->pcp_counter_lock);
727 val += memcg->nocpu_base.events[idx];
728 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
729#endif
730 return val;
731}
732
c0ff4b85 733static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 734 bool anon, int nr_pages)
d52aa412 735{
c62b1a3b
KH
736 preempt_disable();
737
b2402857
KH
738 /*
739 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
740 * counted as CACHE even if it's on ANON LRU.
741 */
742 if (anon)
743 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 744 nr_pages);
d52aa412 745 else
b2402857 746 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 747 nr_pages);
55e462b0 748
e401f176
KH
749 /* pagein of a big page is an event. So, ignore page size */
750 if (nr_pages > 0)
c0ff4b85 751 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 752 else {
c0ff4b85 753 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
754 nr_pages = -nr_pages; /* for event */
755 }
e401f176 756
13114716 757 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 758
c62b1a3b 759 preempt_enable();
6d12e2d8
KH
760}
761
bb2a0de9 762unsigned long
4d7dcca2 763mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
764{
765 struct mem_cgroup_per_zone *mz;
766
767 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
768 return mz->lru_size[lru];
769}
770
771static unsigned long
c0ff4b85 772mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 773 unsigned int lru_mask)
889976db
YH
774{
775 struct mem_cgroup_per_zone *mz;
f156ab93 776 enum lru_list lru;
bb2a0de9
KH
777 unsigned long ret = 0;
778
c0ff4b85 779 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 780
f156ab93
HD
781 for_each_lru(lru) {
782 if (BIT(lru) & lru_mask)
783 ret += mz->lru_size[lru];
bb2a0de9
KH
784 }
785 return ret;
786}
787
788static unsigned long
c0ff4b85 789mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
790 int nid, unsigned int lru_mask)
791{
889976db
YH
792 u64 total = 0;
793 int zid;
794
bb2a0de9 795 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
796 total += mem_cgroup_zone_nr_lru_pages(memcg,
797 nid, zid, lru_mask);
bb2a0de9 798
889976db
YH
799 return total;
800}
bb2a0de9 801
c0ff4b85 802static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 803 unsigned int lru_mask)
6d12e2d8 804{
889976db 805 int nid;
6d12e2d8
KH
806 u64 total = 0;
807
31aaea4a 808 for_each_node_state(nid, N_MEMORY)
c0ff4b85 809 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 810 return total;
d52aa412
KH
811}
812
f53d7ce3
JW
813static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
814 enum mem_cgroup_events_target target)
7a159cc9
JW
815{
816 unsigned long val, next;
817
13114716 818 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 819 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 820 /* from time_after() in jiffies.h */
f53d7ce3
JW
821 if ((long)next - (long)val < 0) {
822 switch (target) {
823 case MEM_CGROUP_TARGET_THRESH:
824 next = val + THRESHOLDS_EVENTS_TARGET;
825 break;
826 case MEM_CGROUP_TARGET_SOFTLIMIT:
827 next = val + SOFTLIMIT_EVENTS_TARGET;
828 break;
829 case MEM_CGROUP_TARGET_NUMAINFO:
830 next = val + NUMAINFO_EVENTS_TARGET;
831 break;
832 default:
833 break;
834 }
835 __this_cpu_write(memcg->stat->targets[target], next);
836 return true;
7a159cc9 837 }
f53d7ce3 838 return false;
d2265e6f
KH
839}
840
841/*
842 * Check events in order.
843 *
844 */
c0ff4b85 845static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 846{
4799401f 847 preempt_disable();
d2265e6f 848 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
849 if (unlikely(mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
851 bool do_softlimit;
852 bool do_numainfo __maybe_unused;
f53d7ce3
JW
853
854 do_softlimit = mem_cgroup_event_ratelimit(memcg,
855 MEM_CGROUP_TARGET_SOFTLIMIT);
856#if MAX_NUMNODES > 1
857 do_numainfo = mem_cgroup_event_ratelimit(memcg,
858 MEM_CGROUP_TARGET_NUMAINFO);
859#endif
860 preempt_enable();
861
c0ff4b85 862 mem_cgroup_threshold(memcg);
f53d7ce3 863 if (unlikely(do_softlimit))
c0ff4b85 864 mem_cgroup_update_tree(memcg, page);
453a9bf3 865#if MAX_NUMNODES > 1
f53d7ce3 866 if (unlikely(do_numainfo))
c0ff4b85 867 atomic_inc(&memcg->numainfo_events);
453a9bf3 868#endif
f53d7ce3
JW
869 } else
870 preempt_enable();
d2265e6f
KH
871}
872
d1a4c0b3 873struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 874{
b2145145
WL
875 return mem_cgroup_from_css(
876 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
877}
878
cf475ad2 879struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 880{
31a78f23
BS
881 /*
882 * mm_update_next_owner() may clear mm->owner to NULL
883 * if it races with swapoff, page migration, etc.
884 * So this can be called with p == NULL.
885 */
886 if (unlikely(!p))
887 return NULL;
888
b2145145 889 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
890}
891
a433658c 892struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 893{
c0ff4b85 894 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
895
896 if (!mm)
897 return NULL;
54595fe2
KH
898 /*
899 * Because we have no locks, mm->owner's may be being moved to other
900 * cgroup. We use css_tryget() here even if this looks
901 * pessimistic (rather than adding locks here).
902 */
903 rcu_read_lock();
904 do {
c0ff4b85
R
905 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
906 if (unlikely(!memcg))
54595fe2 907 break;
c0ff4b85 908 } while (!css_tryget(&memcg->css));
54595fe2 909 rcu_read_unlock();
c0ff4b85 910 return memcg;
54595fe2
KH
911}
912
5660048c
JW
913/**
914 * mem_cgroup_iter - iterate over memory cgroup hierarchy
915 * @root: hierarchy root
916 * @prev: previously returned memcg, NULL on first invocation
917 * @reclaim: cookie for shared reclaim walks, NULL for full walks
918 *
919 * Returns references to children of the hierarchy below @root, or
920 * @root itself, or %NULL after a full round-trip.
921 *
922 * Caller must pass the return value in @prev on subsequent
923 * invocations for reference counting, or use mem_cgroup_iter_break()
924 * to cancel a hierarchy walk before the round-trip is complete.
925 *
926 * Reclaimers can specify a zone and a priority level in @reclaim to
927 * divide up the memcgs in the hierarchy among all concurrent
928 * reclaimers operating on the same zone and priority.
929 */
930struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
931 struct mem_cgroup *prev,
932 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 933{
9f3a0d09
JW
934 struct mem_cgroup *memcg = NULL;
935 int id = 0;
711d3d2c 936
5660048c
JW
937 if (mem_cgroup_disabled())
938 return NULL;
939
9f3a0d09
JW
940 if (!root)
941 root = root_mem_cgroup;
7d74b06f 942
9f3a0d09
JW
943 if (prev && !reclaim)
944 id = css_id(&prev->css);
14067bb3 945
9f3a0d09
JW
946 if (prev && prev != root)
947 css_put(&prev->css);
14067bb3 948
9f3a0d09
JW
949 if (!root->use_hierarchy && root != root_mem_cgroup) {
950 if (prev)
951 return NULL;
952 return root;
953 }
14067bb3 954
9f3a0d09 955 while (!memcg) {
527a5ec9 956 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 957 struct cgroup_subsys_state *css;
711d3d2c 958
527a5ec9
JW
959 if (reclaim) {
960 int nid = zone_to_nid(reclaim->zone);
961 int zid = zone_idx(reclaim->zone);
962 struct mem_cgroup_per_zone *mz;
963
964 mz = mem_cgroup_zoneinfo(root, nid, zid);
965 iter = &mz->reclaim_iter[reclaim->priority];
966 if (prev && reclaim->generation != iter->generation)
967 return NULL;
968 id = iter->position;
969 }
7d74b06f 970
9f3a0d09
JW
971 rcu_read_lock();
972 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
973 if (css) {
974 if (css == &root->css || css_tryget(css))
b2145145 975 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
976 } else
977 id = 0;
14067bb3 978 rcu_read_unlock();
14067bb3 979
527a5ec9
JW
980 if (reclaim) {
981 iter->position = id;
982 if (!css)
983 iter->generation++;
984 else if (!prev && memcg)
985 reclaim->generation = iter->generation;
986 }
9f3a0d09
JW
987
988 if (prev && !css)
989 return NULL;
990 }
991 return memcg;
14067bb3 992}
7d74b06f 993
5660048c
JW
994/**
995 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
996 * @root: hierarchy root
997 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
998 */
999void mem_cgroup_iter_break(struct mem_cgroup *root,
1000 struct mem_cgroup *prev)
9f3a0d09
JW
1001{
1002 if (!root)
1003 root = root_mem_cgroup;
1004 if (prev && prev != root)
1005 css_put(&prev->css);
1006}
7d74b06f 1007
9f3a0d09
JW
1008/*
1009 * Iteration constructs for visiting all cgroups (under a tree). If
1010 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1011 * be used for reference counting.
1012 */
1013#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1014 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1015 iter != NULL; \
527a5ec9 1016 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1017
9f3a0d09 1018#define for_each_mem_cgroup(iter) \
527a5ec9 1019 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1020 iter != NULL; \
527a5ec9 1021 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1022
68ae564b 1023void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1024{
c0ff4b85 1025 struct mem_cgroup *memcg;
456f998e 1026
456f998e 1027 rcu_read_lock();
c0ff4b85
R
1028 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1029 if (unlikely(!memcg))
456f998e
YH
1030 goto out;
1031
1032 switch (idx) {
456f998e 1033 case PGFAULT:
0e574a93
JW
1034 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1035 break;
1036 case PGMAJFAULT:
1037 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1038 break;
1039 default:
1040 BUG();
1041 }
1042out:
1043 rcu_read_unlock();
1044}
68ae564b 1045EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1046
925b7673
JW
1047/**
1048 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1049 * @zone: zone of the wanted lruvec
fa9add64 1050 * @memcg: memcg of the wanted lruvec
925b7673
JW
1051 *
1052 * Returns the lru list vector holding pages for the given @zone and
1053 * @mem. This can be the global zone lruvec, if the memory controller
1054 * is disabled.
1055 */
1056struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1057 struct mem_cgroup *memcg)
1058{
1059 struct mem_cgroup_per_zone *mz;
bea8c150 1060 struct lruvec *lruvec;
925b7673 1061
bea8c150
HD
1062 if (mem_cgroup_disabled()) {
1063 lruvec = &zone->lruvec;
1064 goto out;
1065 }
925b7673
JW
1066
1067 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1068 lruvec = &mz->lruvec;
1069out:
1070 /*
1071 * Since a node can be onlined after the mem_cgroup was created,
1072 * we have to be prepared to initialize lruvec->zone here;
1073 * and if offlined then reonlined, we need to reinitialize it.
1074 */
1075 if (unlikely(lruvec->zone != zone))
1076 lruvec->zone = zone;
1077 return lruvec;
925b7673
JW
1078}
1079
08e552c6
KH
1080/*
1081 * Following LRU functions are allowed to be used without PCG_LOCK.
1082 * Operations are called by routine of global LRU independently from memcg.
1083 * What we have to take care of here is validness of pc->mem_cgroup.
1084 *
1085 * Changes to pc->mem_cgroup happens when
1086 * 1. charge
1087 * 2. moving account
1088 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1089 * It is added to LRU before charge.
1090 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1091 * When moving account, the page is not on LRU. It's isolated.
1092 */
4f98a2fe 1093
925b7673 1094/**
fa9add64 1095 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1096 * @page: the page
fa9add64 1097 * @zone: zone of the page
925b7673 1098 */
fa9add64 1099struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1100{
08e552c6 1101 struct mem_cgroup_per_zone *mz;
925b7673
JW
1102 struct mem_cgroup *memcg;
1103 struct page_cgroup *pc;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150
HD
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &zone->lruvec;
1108 goto out;
1109 }
925b7673 1110
08e552c6 1111 pc = lookup_page_cgroup(page);
38c5d72f 1112 memcg = pc->mem_cgroup;
7512102c
HD
1113
1114 /*
fa9add64 1115 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1116 * an uncharged page off lru does nothing to secure
1117 * its former mem_cgroup from sudden removal.
1118 *
1119 * Our caller holds lru_lock, and PageCgroupUsed is updated
1120 * under page_cgroup lock: between them, they make all uses
1121 * of pc->mem_cgroup safe.
1122 */
fa9add64 1123 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1124 pc->mem_cgroup = memcg = root_mem_cgroup;
1125
925b7673 1126 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1127 lruvec = &mz->lruvec;
1128out:
1129 /*
1130 * Since a node can be onlined after the mem_cgroup was created,
1131 * we have to be prepared to initialize lruvec->zone here;
1132 * and if offlined then reonlined, we need to reinitialize it.
1133 */
1134 if (unlikely(lruvec->zone != zone))
1135 lruvec->zone = zone;
1136 return lruvec;
08e552c6 1137}
b69408e8 1138
925b7673 1139/**
fa9add64
HD
1140 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1141 * @lruvec: mem_cgroup per zone lru vector
1142 * @lru: index of lru list the page is sitting on
1143 * @nr_pages: positive when adding or negative when removing
925b7673 1144 *
fa9add64
HD
1145 * This function must be called when a page is added to or removed from an
1146 * lru list.
3f58a829 1147 */
fa9add64
HD
1148void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1149 int nr_pages)
3f58a829
MK
1150{
1151 struct mem_cgroup_per_zone *mz;
fa9add64 1152 unsigned long *lru_size;
3f58a829
MK
1153
1154 if (mem_cgroup_disabled())
1155 return;
1156
fa9add64
HD
1157 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1158 lru_size = mz->lru_size + lru;
1159 *lru_size += nr_pages;
1160 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1161}
544122e5 1162
3e92041d 1163/*
c0ff4b85 1164 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1165 * hierarchy subtree
1166 */
c3ac9a8a
JW
1167bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1168 struct mem_cgroup *memcg)
3e92041d 1169{
91c63734
JW
1170 if (root_memcg == memcg)
1171 return true;
3a981f48 1172 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1173 return false;
c3ac9a8a
JW
1174 return css_is_ancestor(&memcg->css, &root_memcg->css);
1175}
1176
1177static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1178 struct mem_cgroup *memcg)
1179{
1180 bool ret;
1181
91c63734 1182 rcu_read_lock();
c3ac9a8a 1183 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1184 rcu_read_unlock();
1185 return ret;
3e92041d
MH
1186}
1187
c0ff4b85 1188int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1189{
1190 int ret;
0b7f569e 1191 struct mem_cgroup *curr = NULL;
158e0a2d 1192 struct task_struct *p;
4c4a2214 1193
158e0a2d 1194 p = find_lock_task_mm(task);
de077d22
DR
1195 if (p) {
1196 curr = try_get_mem_cgroup_from_mm(p->mm);
1197 task_unlock(p);
1198 } else {
1199 /*
1200 * All threads may have already detached their mm's, but the oom
1201 * killer still needs to detect if they have already been oom
1202 * killed to prevent needlessly killing additional tasks.
1203 */
1204 task_lock(task);
1205 curr = mem_cgroup_from_task(task);
1206 if (curr)
1207 css_get(&curr->css);
1208 task_unlock(task);
1209 }
0b7f569e
KH
1210 if (!curr)
1211 return 0;
d31f56db 1212 /*
c0ff4b85 1213 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1214 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1215 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1216 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1217 */
c0ff4b85 1218 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1219 css_put(&curr->css);
4c4a2214
DR
1220 return ret;
1221}
1222
c56d5c7d 1223int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1224{
9b272977 1225 unsigned long inactive_ratio;
14797e23 1226 unsigned long inactive;
9b272977 1227 unsigned long active;
c772be93 1228 unsigned long gb;
14797e23 1229
4d7dcca2
HD
1230 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1231 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1232
c772be93
KM
1233 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1234 if (gb)
1235 inactive_ratio = int_sqrt(10 * gb);
1236 else
1237 inactive_ratio = 1;
1238
9b272977 1239 return inactive * inactive_ratio < active;
14797e23
KM
1240}
1241
c56d5c7d 1242int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1243{
1244 unsigned long active;
1245 unsigned long inactive;
1246
4d7dcca2
HD
1247 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1248 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1249
1250 return (active > inactive);
1251}
1252
6d61ef40
BS
1253#define mem_cgroup_from_res_counter(counter, member) \
1254 container_of(counter, struct mem_cgroup, member)
1255
19942822 1256/**
9d11ea9f 1257 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1258 * @memcg: the memory cgroup
19942822 1259 *
9d11ea9f 1260 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1261 * pages.
19942822 1262 */
c0ff4b85 1263static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1264{
9d11ea9f
JW
1265 unsigned long long margin;
1266
c0ff4b85 1267 margin = res_counter_margin(&memcg->res);
9d11ea9f 1268 if (do_swap_account)
c0ff4b85 1269 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1270 return margin >> PAGE_SHIFT;
19942822
JW
1271}
1272
1f4c025b 1273int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1274{
1275 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1276
1277 /* root ? */
1278 if (cgrp->parent == NULL)
1279 return vm_swappiness;
1280
bf1ff263 1281 return memcg->swappiness;
a7885eb8
KM
1282}
1283
619d094b
KH
1284/*
1285 * memcg->moving_account is used for checking possibility that some thread is
1286 * calling move_account(). When a thread on CPU-A starts moving pages under
1287 * a memcg, other threads should check memcg->moving_account under
1288 * rcu_read_lock(), like this:
1289 *
1290 * CPU-A CPU-B
1291 * rcu_read_lock()
1292 * memcg->moving_account+1 if (memcg->mocing_account)
1293 * take heavy locks.
1294 * synchronize_rcu() update something.
1295 * rcu_read_unlock()
1296 * start move here.
1297 */
4331f7d3
KH
1298
1299/* for quick checking without looking up memcg */
1300atomic_t memcg_moving __read_mostly;
1301
c0ff4b85 1302static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1303{
4331f7d3 1304 atomic_inc(&memcg_moving);
619d094b 1305 atomic_inc(&memcg->moving_account);
32047e2a
KH
1306 synchronize_rcu();
1307}
1308
c0ff4b85 1309static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1310{
619d094b
KH
1311 /*
1312 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1313 * We check NULL in callee rather than caller.
1314 */
4331f7d3
KH
1315 if (memcg) {
1316 atomic_dec(&memcg_moving);
619d094b 1317 atomic_dec(&memcg->moving_account);
4331f7d3 1318 }
32047e2a 1319}
619d094b 1320
32047e2a
KH
1321/*
1322 * 2 routines for checking "mem" is under move_account() or not.
1323 *
13fd1dd9
AM
1324 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1325 * is used for avoiding races in accounting. If true,
32047e2a
KH
1326 * pc->mem_cgroup may be overwritten.
1327 *
1328 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1329 * under hierarchy of moving cgroups. This is for
1330 * waiting at hith-memory prressure caused by "move".
1331 */
1332
13fd1dd9 1333static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1334{
1335 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1336 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1337}
4b534334 1338
c0ff4b85 1339static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1340{
2bd9bb20
KH
1341 struct mem_cgroup *from;
1342 struct mem_cgroup *to;
4b534334 1343 bool ret = false;
2bd9bb20
KH
1344 /*
1345 * Unlike task_move routines, we access mc.to, mc.from not under
1346 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1347 */
1348 spin_lock(&mc.lock);
1349 from = mc.from;
1350 to = mc.to;
1351 if (!from)
1352 goto unlock;
3e92041d 1353
c0ff4b85
R
1354 ret = mem_cgroup_same_or_subtree(memcg, from)
1355 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1356unlock:
1357 spin_unlock(&mc.lock);
4b534334
KH
1358 return ret;
1359}
1360
c0ff4b85 1361static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1362{
1363 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1364 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1365 DEFINE_WAIT(wait);
1366 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1367 /* moving charge context might have finished. */
1368 if (mc.moving_task)
1369 schedule();
1370 finish_wait(&mc.waitq, &wait);
1371 return true;
1372 }
1373 }
1374 return false;
1375}
1376
312734c0
KH
1377/*
1378 * Take this lock when
1379 * - a code tries to modify page's memcg while it's USED.
1380 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1381 * see mem_cgroup_stolen(), too.
312734c0
KH
1382 */
1383static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1384 unsigned long *flags)
1385{
1386 spin_lock_irqsave(&memcg->move_lock, *flags);
1387}
1388
1389static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1390 unsigned long *flags)
1391{
1392 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1393}
1394
e222432b 1395/**
6a6135b6 1396 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1397 * @memcg: The memory cgroup that went over limit
1398 * @p: Task that is going to be killed
1399 *
1400 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1401 * enabled
1402 */
1403void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1404{
1405 struct cgroup *task_cgrp;
1406 struct cgroup *mem_cgrp;
1407 /*
1408 * Need a buffer in BSS, can't rely on allocations. The code relies
1409 * on the assumption that OOM is serialized for memory controller.
1410 * If this assumption is broken, revisit this code.
1411 */
1412 static char memcg_name[PATH_MAX];
1413 int ret;
1414
d31f56db 1415 if (!memcg || !p)
e222432b
BS
1416 return;
1417
e222432b
BS
1418 rcu_read_lock();
1419
1420 mem_cgrp = memcg->css.cgroup;
1421 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1422
1423 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1424 if (ret < 0) {
1425 /*
1426 * Unfortunately, we are unable to convert to a useful name
1427 * But we'll still print out the usage information
1428 */
1429 rcu_read_unlock();
1430 goto done;
1431 }
1432 rcu_read_unlock();
1433
1434 printk(KERN_INFO "Task in %s killed", memcg_name);
1435
1436 rcu_read_lock();
1437 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1438 if (ret < 0) {
1439 rcu_read_unlock();
1440 goto done;
1441 }
1442 rcu_read_unlock();
1443
1444 /*
1445 * Continues from above, so we don't need an KERN_ level
1446 */
1447 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1448done:
1449
1450 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1451 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1452 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1453 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1454 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1455 "failcnt %llu\n",
1456 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1457 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1458 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1459}
1460
81d39c20
KH
1461/*
1462 * This function returns the number of memcg under hierarchy tree. Returns
1463 * 1(self count) if no children.
1464 */
c0ff4b85 1465static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1466{
1467 int num = 0;
7d74b06f
KH
1468 struct mem_cgroup *iter;
1469
c0ff4b85 1470 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1471 num++;
81d39c20
KH
1472 return num;
1473}
1474
a63d83f4
DR
1475/*
1476 * Return the memory (and swap, if configured) limit for a memcg.
1477 */
9cbb78bb 1478static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1479{
1480 u64 limit;
a63d83f4 1481
f3e8eb70 1482 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1483
a63d83f4 1484 /*
9a5a8f19 1485 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1486 */
9a5a8f19
MH
1487 if (mem_cgroup_swappiness(memcg)) {
1488 u64 memsw;
1489
1490 limit += total_swap_pages << PAGE_SHIFT;
1491 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1492
1493 /*
1494 * If memsw is finite and limits the amount of swap space
1495 * available to this memcg, return that limit.
1496 */
1497 limit = min(limit, memsw);
1498 }
1499
1500 return limit;
a63d83f4
DR
1501}
1502
19965460
DR
1503static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1504 int order)
9cbb78bb
DR
1505{
1506 struct mem_cgroup *iter;
1507 unsigned long chosen_points = 0;
1508 unsigned long totalpages;
1509 unsigned int points = 0;
1510 struct task_struct *chosen = NULL;
1511
876aafbf
DR
1512 /*
1513 * If current has a pending SIGKILL, then automatically select it. The
1514 * goal is to allow it to allocate so that it may quickly exit and free
1515 * its memory.
1516 */
1517 if (fatal_signal_pending(current)) {
1518 set_thread_flag(TIF_MEMDIE);
1519 return;
1520 }
1521
1522 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1523 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1524 for_each_mem_cgroup_tree(iter, memcg) {
1525 struct cgroup *cgroup = iter->css.cgroup;
1526 struct cgroup_iter it;
1527 struct task_struct *task;
1528
1529 cgroup_iter_start(cgroup, &it);
1530 while ((task = cgroup_iter_next(cgroup, &it))) {
1531 switch (oom_scan_process_thread(task, totalpages, NULL,
1532 false)) {
1533 case OOM_SCAN_SELECT:
1534 if (chosen)
1535 put_task_struct(chosen);
1536 chosen = task;
1537 chosen_points = ULONG_MAX;
1538 get_task_struct(chosen);
1539 /* fall through */
1540 case OOM_SCAN_CONTINUE:
1541 continue;
1542 case OOM_SCAN_ABORT:
1543 cgroup_iter_end(cgroup, &it);
1544 mem_cgroup_iter_break(memcg, iter);
1545 if (chosen)
1546 put_task_struct(chosen);
1547 return;
1548 case OOM_SCAN_OK:
1549 break;
1550 };
1551 points = oom_badness(task, memcg, NULL, totalpages);
1552 if (points > chosen_points) {
1553 if (chosen)
1554 put_task_struct(chosen);
1555 chosen = task;
1556 chosen_points = points;
1557 get_task_struct(chosen);
1558 }
1559 }
1560 cgroup_iter_end(cgroup, &it);
1561 }
1562
1563 if (!chosen)
1564 return;
1565 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1566 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1567 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1568}
1569
5660048c
JW
1570static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1571 gfp_t gfp_mask,
1572 unsigned long flags)
1573{
1574 unsigned long total = 0;
1575 bool noswap = false;
1576 int loop;
1577
1578 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1579 noswap = true;
1580 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1581 noswap = true;
1582
1583 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1584 if (loop)
1585 drain_all_stock_async(memcg);
1586 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1587 /*
1588 * Allow limit shrinkers, which are triggered directly
1589 * by userspace, to catch signals and stop reclaim
1590 * after minimal progress, regardless of the margin.
1591 */
1592 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1593 break;
1594 if (mem_cgroup_margin(memcg))
1595 break;
1596 /*
1597 * If nothing was reclaimed after two attempts, there
1598 * may be no reclaimable pages in this hierarchy.
1599 */
1600 if (loop && !total)
1601 break;
1602 }
1603 return total;
1604}
1605
4d0c066d
KH
1606/**
1607 * test_mem_cgroup_node_reclaimable
dad7557e 1608 * @memcg: the target memcg
4d0c066d
KH
1609 * @nid: the node ID to be checked.
1610 * @noswap : specify true here if the user wants flle only information.
1611 *
1612 * This function returns whether the specified memcg contains any
1613 * reclaimable pages on a node. Returns true if there are any reclaimable
1614 * pages in the node.
1615 */
c0ff4b85 1616static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1617 int nid, bool noswap)
1618{
c0ff4b85 1619 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1620 return true;
1621 if (noswap || !total_swap_pages)
1622 return false;
c0ff4b85 1623 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1624 return true;
1625 return false;
1626
1627}
889976db
YH
1628#if MAX_NUMNODES > 1
1629
1630/*
1631 * Always updating the nodemask is not very good - even if we have an empty
1632 * list or the wrong list here, we can start from some node and traverse all
1633 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1634 *
1635 */
c0ff4b85 1636static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1637{
1638 int nid;
453a9bf3
KH
1639 /*
1640 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1641 * pagein/pageout changes since the last update.
1642 */
c0ff4b85 1643 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1644 return;
c0ff4b85 1645 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1646 return;
1647
889976db 1648 /* make a nodemask where this memcg uses memory from */
31aaea4a 1649 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1650
31aaea4a 1651 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1652
c0ff4b85
R
1653 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1654 node_clear(nid, memcg->scan_nodes);
889976db 1655 }
453a9bf3 1656
c0ff4b85
R
1657 atomic_set(&memcg->numainfo_events, 0);
1658 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1659}
1660
1661/*
1662 * Selecting a node where we start reclaim from. Because what we need is just
1663 * reducing usage counter, start from anywhere is O,K. Considering
1664 * memory reclaim from current node, there are pros. and cons.
1665 *
1666 * Freeing memory from current node means freeing memory from a node which
1667 * we'll use or we've used. So, it may make LRU bad. And if several threads
1668 * hit limits, it will see a contention on a node. But freeing from remote
1669 * node means more costs for memory reclaim because of memory latency.
1670 *
1671 * Now, we use round-robin. Better algorithm is welcomed.
1672 */
c0ff4b85 1673int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1674{
1675 int node;
1676
c0ff4b85
R
1677 mem_cgroup_may_update_nodemask(memcg);
1678 node = memcg->last_scanned_node;
889976db 1679
c0ff4b85 1680 node = next_node(node, memcg->scan_nodes);
889976db 1681 if (node == MAX_NUMNODES)
c0ff4b85 1682 node = first_node(memcg->scan_nodes);
889976db
YH
1683 /*
1684 * We call this when we hit limit, not when pages are added to LRU.
1685 * No LRU may hold pages because all pages are UNEVICTABLE or
1686 * memcg is too small and all pages are not on LRU. In that case,
1687 * we use curret node.
1688 */
1689 if (unlikely(node == MAX_NUMNODES))
1690 node = numa_node_id();
1691
c0ff4b85 1692 memcg->last_scanned_node = node;
889976db
YH
1693 return node;
1694}
1695
4d0c066d
KH
1696/*
1697 * Check all nodes whether it contains reclaimable pages or not.
1698 * For quick scan, we make use of scan_nodes. This will allow us to skip
1699 * unused nodes. But scan_nodes is lazily updated and may not cotain
1700 * enough new information. We need to do double check.
1701 */
6bbda35c 1702static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1703{
1704 int nid;
1705
1706 /*
1707 * quick check...making use of scan_node.
1708 * We can skip unused nodes.
1709 */
c0ff4b85
R
1710 if (!nodes_empty(memcg->scan_nodes)) {
1711 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1712 nid < MAX_NUMNODES;
c0ff4b85 1713 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1714
c0ff4b85 1715 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1716 return true;
1717 }
1718 }
1719 /*
1720 * Check rest of nodes.
1721 */
31aaea4a 1722 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1723 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1724 continue;
c0ff4b85 1725 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1726 return true;
1727 }
1728 return false;
1729}
1730
889976db 1731#else
c0ff4b85 1732int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1733{
1734 return 0;
1735}
4d0c066d 1736
6bbda35c 1737static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1738{
c0ff4b85 1739 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1740}
889976db
YH
1741#endif
1742
5660048c
JW
1743static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1744 struct zone *zone,
1745 gfp_t gfp_mask,
1746 unsigned long *total_scanned)
6d61ef40 1747{
9f3a0d09 1748 struct mem_cgroup *victim = NULL;
5660048c 1749 int total = 0;
04046e1a 1750 int loop = 0;
9d11ea9f 1751 unsigned long excess;
185efc0f 1752 unsigned long nr_scanned;
527a5ec9
JW
1753 struct mem_cgroup_reclaim_cookie reclaim = {
1754 .zone = zone,
1755 .priority = 0,
1756 };
9d11ea9f 1757
c0ff4b85 1758 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1759
4e416953 1760 while (1) {
527a5ec9 1761 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1762 if (!victim) {
04046e1a 1763 loop++;
4e416953
BS
1764 if (loop >= 2) {
1765 /*
1766 * If we have not been able to reclaim
1767 * anything, it might because there are
1768 * no reclaimable pages under this hierarchy
1769 */
5660048c 1770 if (!total)
4e416953 1771 break;
4e416953 1772 /*
25985edc 1773 * We want to do more targeted reclaim.
4e416953
BS
1774 * excess >> 2 is not to excessive so as to
1775 * reclaim too much, nor too less that we keep
1776 * coming back to reclaim from this cgroup
1777 */
1778 if (total >= (excess >> 2) ||
9f3a0d09 1779 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1780 break;
4e416953 1781 }
9f3a0d09 1782 continue;
4e416953 1783 }
5660048c 1784 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1785 continue;
5660048c
JW
1786 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1787 zone, &nr_scanned);
1788 *total_scanned += nr_scanned;
1789 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1790 break;
6d61ef40 1791 }
9f3a0d09 1792 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1793 return total;
6d61ef40
BS
1794}
1795
867578cb
KH
1796/*
1797 * Check OOM-Killer is already running under our hierarchy.
1798 * If someone is running, return false.
1af8efe9 1799 * Has to be called with memcg_oom_lock
867578cb 1800 */
c0ff4b85 1801static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1802{
79dfdacc 1803 struct mem_cgroup *iter, *failed = NULL;
a636b327 1804
9f3a0d09 1805 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1806 if (iter->oom_lock) {
79dfdacc
MH
1807 /*
1808 * this subtree of our hierarchy is already locked
1809 * so we cannot give a lock.
1810 */
79dfdacc 1811 failed = iter;
9f3a0d09
JW
1812 mem_cgroup_iter_break(memcg, iter);
1813 break;
23751be0
JW
1814 } else
1815 iter->oom_lock = true;
7d74b06f 1816 }
867578cb 1817
79dfdacc 1818 if (!failed)
23751be0 1819 return true;
79dfdacc
MH
1820
1821 /*
1822 * OK, we failed to lock the whole subtree so we have to clean up
1823 * what we set up to the failing subtree
1824 */
9f3a0d09 1825 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1826 if (iter == failed) {
9f3a0d09
JW
1827 mem_cgroup_iter_break(memcg, iter);
1828 break;
79dfdacc
MH
1829 }
1830 iter->oom_lock = false;
1831 }
23751be0 1832 return false;
a636b327 1833}
0b7f569e 1834
79dfdacc 1835/*
1af8efe9 1836 * Has to be called with memcg_oom_lock
79dfdacc 1837 */
c0ff4b85 1838static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1839{
7d74b06f
KH
1840 struct mem_cgroup *iter;
1841
c0ff4b85 1842 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1843 iter->oom_lock = false;
1844 return 0;
1845}
1846
c0ff4b85 1847static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1848{
1849 struct mem_cgroup *iter;
1850
c0ff4b85 1851 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1852 atomic_inc(&iter->under_oom);
1853}
1854
c0ff4b85 1855static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1856{
1857 struct mem_cgroup *iter;
1858
867578cb
KH
1859 /*
1860 * When a new child is created while the hierarchy is under oom,
1861 * mem_cgroup_oom_lock() may not be called. We have to use
1862 * atomic_add_unless() here.
1863 */
c0ff4b85 1864 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1865 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1866}
1867
1af8efe9 1868static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1869static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1870
dc98df5a 1871struct oom_wait_info {
d79154bb 1872 struct mem_cgroup *memcg;
dc98df5a
KH
1873 wait_queue_t wait;
1874};
1875
1876static int memcg_oom_wake_function(wait_queue_t *wait,
1877 unsigned mode, int sync, void *arg)
1878{
d79154bb
HD
1879 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1880 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1881 struct oom_wait_info *oom_wait_info;
1882
1883 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1884 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1885
dc98df5a 1886 /*
d79154bb 1887 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1888 * Then we can use css_is_ancestor without taking care of RCU.
1889 */
c0ff4b85
R
1890 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1891 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1892 return 0;
dc98df5a
KH
1893 return autoremove_wake_function(wait, mode, sync, arg);
1894}
1895
c0ff4b85 1896static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1897{
c0ff4b85
R
1898 /* for filtering, pass "memcg" as argument. */
1899 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1900}
1901
c0ff4b85 1902static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1903{
c0ff4b85
R
1904 if (memcg && atomic_read(&memcg->under_oom))
1905 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1906}
1907
867578cb
KH
1908/*
1909 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1910 */
6bbda35c
KS
1911static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1912 int order)
0b7f569e 1913{
dc98df5a 1914 struct oom_wait_info owait;
3c11ecf4 1915 bool locked, need_to_kill;
867578cb 1916
d79154bb 1917 owait.memcg = memcg;
dc98df5a
KH
1918 owait.wait.flags = 0;
1919 owait.wait.func = memcg_oom_wake_function;
1920 owait.wait.private = current;
1921 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1922 need_to_kill = true;
c0ff4b85 1923 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1924
c0ff4b85 1925 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1926 spin_lock(&memcg_oom_lock);
c0ff4b85 1927 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1928 /*
1929 * Even if signal_pending(), we can't quit charge() loop without
1930 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1931 * under OOM is always welcomed, use TASK_KILLABLE here.
1932 */
3c11ecf4 1933 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1934 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1935 need_to_kill = false;
1936 if (locked)
c0ff4b85 1937 mem_cgroup_oom_notify(memcg);
1af8efe9 1938 spin_unlock(&memcg_oom_lock);
867578cb 1939
3c11ecf4
KH
1940 if (need_to_kill) {
1941 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1942 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1943 } else {
867578cb 1944 schedule();
dc98df5a 1945 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1946 }
1af8efe9 1947 spin_lock(&memcg_oom_lock);
79dfdacc 1948 if (locked)
c0ff4b85
R
1949 mem_cgroup_oom_unlock(memcg);
1950 memcg_wakeup_oom(memcg);
1af8efe9 1951 spin_unlock(&memcg_oom_lock);
867578cb 1952
c0ff4b85 1953 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1954
867578cb
KH
1955 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1956 return false;
1957 /* Give chance to dying process */
715a5ee8 1958 schedule_timeout_uninterruptible(1);
867578cb 1959 return true;
0b7f569e
KH
1960}
1961
d69b042f
BS
1962/*
1963 * Currently used to update mapped file statistics, but the routine can be
1964 * generalized to update other statistics as well.
32047e2a
KH
1965 *
1966 * Notes: Race condition
1967 *
1968 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1969 * it tends to be costly. But considering some conditions, we doesn't need
1970 * to do so _always_.
1971 *
1972 * Considering "charge", lock_page_cgroup() is not required because all
1973 * file-stat operations happen after a page is attached to radix-tree. There
1974 * are no race with "charge".
1975 *
1976 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1977 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1978 * if there are race with "uncharge". Statistics itself is properly handled
1979 * by flags.
1980 *
1981 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1982 * small, we check mm->moving_account and detect there are possibility of race
1983 * If there is, we take a lock.
d69b042f 1984 */
26174efd 1985
89c06bd5
KH
1986void __mem_cgroup_begin_update_page_stat(struct page *page,
1987 bool *locked, unsigned long *flags)
1988{
1989 struct mem_cgroup *memcg;
1990 struct page_cgroup *pc;
1991
1992 pc = lookup_page_cgroup(page);
1993again:
1994 memcg = pc->mem_cgroup;
1995 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1996 return;
1997 /*
1998 * If this memory cgroup is not under account moving, we don't
da92c47d 1999 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2000 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2001 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2002 */
13fd1dd9 2003 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2004 return;
2005
2006 move_lock_mem_cgroup(memcg, flags);
2007 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2008 move_unlock_mem_cgroup(memcg, flags);
2009 goto again;
2010 }
2011 *locked = true;
2012}
2013
2014void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2015{
2016 struct page_cgroup *pc = lookup_page_cgroup(page);
2017
2018 /*
2019 * It's guaranteed that pc->mem_cgroup never changes while
2020 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2021 * should take move_lock_mem_cgroup().
89c06bd5
KH
2022 */
2023 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2024}
2025
2a7106f2
GT
2026void mem_cgroup_update_page_stat(struct page *page,
2027 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2028{
c0ff4b85 2029 struct mem_cgroup *memcg;
32047e2a 2030 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2031 unsigned long uninitialized_var(flags);
d69b042f 2032
cfa44946 2033 if (mem_cgroup_disabled())
d69b042f 2034 return;
89c06bd5 2035
c0ff4b85
R
2036 memcg = pc->mem_cgroup;
2037 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2038 return;
26174efd 2039
26174efd 2040 switch (idx) {
2a7106f2 2041 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2042 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2043 break;
2044 default:
2045 BUG();
8725d541 2046 }
d69b042f 2047
c0ff4b85 2048 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2049}
26174efd 2050
cdec2e42
KH
2051/*
2052 * size of first charge trial. "32" comes from vmscan.c's magic value.
2053 * TODO: maybe necessary to use big numbers in big irons.
2054 */
7ec99d62 2055#define CHARGE_BATCH 32U
cdec2e42
KH
2056struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2058 unsigned int nr_pages;
cdec2e42 2059 struct work_struct work;
26fe6168 2060 unsigned long flags;
a0db00fc 2061#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2062};
2063static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2064static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2065
a0956d54
SS
2066/**
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2070 *
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2074 *
2075 * returns true if successful, false otherwise.
cdec2e42 2076 */
a0956d54 2077static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2078{
2079 struct memcg_stock_pcp *stock;
2080 bool ret = true;
2081
a0956d54
SS
2082 if (nr_pages > CHARGE_BATCH)
2083 return false;
2084
cdec2e42 2085 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2086 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2087 stock->nr_pages -= nr_pages;
cdec2e42
KH
2088 else /* need to call res_counter_charge */
2089 ret = false;
2090 put_cpu_var(memcg_stock);
2091 return ret;
2092}
2093
2094/*
2095 * Returns stocks cached in percpu to res_counter and reset cached information.
2096 */
2097static void drain_stock(struct memcg_stock_pcp *stock)
2098{
2099 struct mem_cgroup *old = stock->cached;
2100
11c9ea4e
JW
2101 if (stock->nr_pages) {
2102 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2103
2104 res_counter_uncharge(&old->res, bytes);
cdec2e42 2105 if (do_swap_account)
11c9ea4e
JW
2106 res_counter_uncharge(&old->memsw, bytes);
2107 stock->nr_pages = 0;
cdec2e42
KH
2108 }
2109 stock->cached = NULL;
cdec2e42
KH
2110}
2111
2112/*
2113 * This must be called under preempt disabled or must be called by
2114 * a thread which is pinned to local cpu.
2115 */
2116static void drain_local_stock(struct work_struct *dummy)
2117{
2118 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2119 drain_stock(stock);
26fe6168 2120 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2121}
2122
2123/*
2124 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2125 * This will be consumed by consume_stock() function, later.
cdec2e42 2126 */
c0ff4b85 2127static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2128{
2129 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2130
c0ff4b85 2131 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2132 drain_stock(stock);
c0ff4b85 2133 stock->cached = memcg;
cdec2e42 2134 }
11c9ea4e 2135 stock->nr_pages += nr_pages;
cdec2e42
KH
2136 put_cpu_var(memcg_stock);
2137}
2138
2139/*
c0ff4b85 2140 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2141 * of the hierarchy under it. sync flag says whether we should block
2142 * until the work is done.
cdec2e42 2143 */
c0ff4b85 2144static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2145{
26fe6168 2146 int cpu, curcpu;
d38144b7 2147
cdec2e42 2148 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2149 get_online_cpus();
5af12d0e 2150 curcpu = get_cpu();
cdec2e42
KH
2151 for_each_online_cpu(cpu) {
2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2153 struct mem_cgroup *memcg;
26fe6168 2154
c0ff4b85
R
2155 memcg = stock->cached;
2156 if (!memcg || !stock->nr_pages)
26fe6168 2157 continue;
c0ff4b85 2158 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2159 continue;
d1a05b69
MH
2160 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161 if (cpu == curcpu)
2162 drain_local_stock(&stock->work);
2163 else
2164 schedule_work_on(cpu, &stock->work);
2165 }
cdec2e42 2166 }
5af12d0e 2167 put_cpu();
d38144b7
MH
2168
2169 if (!sync)
2170 goto out;
2171
2172 for_each_online_cpu(cpu) {
2173 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2174 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2175 flush_work(&stock->work);
2176 }
2177out:
cdec2e42 2178 put_online_cpus();
d38144b7
MH
2179}
2180
2181/*
2182 * Tries to drain stocked charges in other cpus. This function is asynchronous
2183 * and just put a work per cpu for draining localy on each cpu. Caller can
2184 * expects some charges will be back to res_counter later but cannot wait for
2185 * it.
2186 */
c0ff4b85 2187static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2188{
9f50fad6
MH
2189 /*
2190 * If someone calls draining, avoid adding more kworker runs.
2191 */
2192 if (!mutex_trylock(&percpu_charge_mutex))
2193 return;
c0ff4b85 2194 drain_all_stock(root_memcg, false);
9f50fad6 2195 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2196}
2197
2198/* This is a synchronous drain interface. */
c0ff4b85 2199static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2200{
2201 /* called when force_empty is called */
9f50fad6 2202 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2203 drain_all_stock(root_memcg, true);
9f50fad6 2204 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2205}
2206
711d3d2c
KH
2207/*
2208 * This function drains percpu counter value from DEAD cpu and
2209 * move it to local cpu. Note that this function can be preempted.
2210 */
c0ff4b85 2211static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2212{
2213 int i;
2214
c0ff4b85 2215 spin_lock(&memcg->pcp_counter_lock);
6104621d 2216 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2217 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2218
c0ff4b85
R
2219 per_cpu(memcg->stat->count[i], cpu) = 0;
2220 memcg->nocpu_base.count[i] += x;
711d3d2c 2221 }
e9f8974f 2222 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2223 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2224
c0ff4b85
R
2225 per_cpu(memcg->stat->events[i], cpu) = 0;
2226 memcg->nocpu_base.events[i] += x;
e9f8974f 2227 }
c0ff4b85 2228 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2229}
2230
2231static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2232 unsigned long action,
2233 void *hcpu)
2234{
2235 int cpu = (unsigned long)hcpu;
2236 struct memcg_stock_pcp *stock;
711d3d2c 2237 struct mem_cgroup *iter;
cdec2e42 2238
619d094b 2239 if (action == CPU_ONLINE)
1489ebad 2240 return NOTIFY_OK;
1489ebad 2241
d833049b 2242 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2243 return NOTIFY_OK;
711d3d2c 2244
9f3a0d09 2245 for_each_mem_cgroup(iter)
711d3d2c
KH
2246 mem_cgroup_drain_pcp_counter(iter, cpu);
2247
cdec2e42
KH
2248 stock = &per_cpu(memcg_stock, cpu);
2249 drain_stock(stock);
2250 return NOTIFY_OK;
2251}
2252
4b534334
KH
2253
2254/* See __mem_cgroup_try_charge() for details */
2255enum {
2256 CHARGE_OK, /* success */
2257 CHARGE_RETRY, /* need to retry but retry is not bad */
2258 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2259 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2260 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2261};
2262
c0ff4b85 2263static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2264 unsigned int nr_pages, unsigned int min_pages,
2265 bool oom_check)
4b534334 2266{
7ec99d62 2267 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2268 struct mem_cgroup *mem_over_limit;
2269 struct res_counter *fail_res;
2270 unsigned long flags = 0;
2271 int ret;
2272
c0ff4b85 2273 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2274
2275 if (likely(!ret)) {
2276 if (!do_swap_account)
2277 return CHARGE_OK;
c0ff4b85 2278 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2279 if (likely(!ret))
2280 return CHARGE_OK;
2281
c0ff4b85 2282 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2283 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2284 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2285 } else
2286 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2287 /*
9221edb7
JW
2288 * Never reclaim on behalf of optional batching, retry with a
2289 * single page instead.
2290 */
4c9c5359 2291 if (nr_pages > min_pages)
4b534334
KH
2292 return CHARGE_RETRY;
2293
2294 if (!(gfp_mask & __GFP_WAIT))
2295 return CHARGE_WOULDBLOCK;
2296
4c9c5359
SS
2297 if (gfp_mask & __GFP_NORETRY)
2298 return CHARGE_NOMEM;
2299
5660048c 2300 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2301 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2302 return CHARGE_RETRY;
4b534334 2303 /*
19942822
JW
2304 * Even though the limit is exceeded at this point, reclaim
2305 * may have been able to free some pages. Retry the charge
2306 * before killing the task.
2307 *
2308 * Only for regular pages, though: huge pages are rather
2309 * unlikely to succeed so close to the limit, and we fall back
2310 * to regular pages anyway in case of failure.
4b534334 2311 */
4c9c5359 2312 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2313 return CHARGE_RETRY;
2314
2315 /*
2316 * At task move, charge accounts can be doubly counted. So, it's
2317 * better to wait until the end of task_move if something is going on.
2318 */
2319 if (mem_cgroup_wait_acct_move(mem_over_limit))
2320 return CHARGE_RETRY;
2321
2322 /* If we don't need to call oom-killer at el, return immediately */
2323 if (!oom_check)
2324 return CHARGE_NOMEM;
2325 /* check OOM */
e845e199 2326 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2327 return CHARGE_OOM_DIE;
2328
2329 return CHARGE_RETRY;
2330}
2331
f817ed48 2332/*
38c5d72f
KH
2333 * __mem_cgroup_try_charge() does
2334 * 1. detect memcg to be charged against from passed *mm and *ptr,
2335 * 2. update res_counter
2336 * 3. call memory reclaim if necessary.
2337 *
2338 * In some special case, if the task is fatal, fatal_signal_pending() or
2339 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2340 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2341 * as possible without any hazards. 2: all pages should have a valid
2342 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2343 * pointer, that is treated as a charge to root_mem_cgroup.
2344 *
2345 * So __mem_cgroup_try_charge() will return
2346 * 0 ... on success, filling *ptr with a valid memcg pointer.
2347 * -ENOMEM ... charge failure because of resource limits.
2348 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2349 *
2350 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2351 * the oom-killer can be invoked.
8a9f3ccd 2352 */
f817ed48 2353static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2354 gfp_t gfp_mask,
7ec99d62 2355 unsigned int nr_pages,
c0ff4b85 2356 struct mem_cgroup **ptr,
7ec99d62 2357 bool oom)
8a9f3ccd 2358{
7ec99d62 2359 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2360 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2361 struct mem_cgroup *memcg = NULL;
4b534334 2362 int ret;
a636b327 2363
867578cb
KH
2364 /*
2365 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2366 * in system level. So, allow to go ahead dying process in addition to
2367 * MEMDIE process.
2368 */
2369 if (unlikely(test_thread_flag(TIF_MEMDIE)
2370 || fatal_signal_pending(current)))
2371 goto bypass;
a636b327 2372
8a9f3ccd 2373 /*
3be91277
HD
2374 * We always charge the cgroup the mm_struct belongs to.
2375 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2376 * thread group leader migrates. It's possible that mm is not
24467cac 2377 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2378 */
c0ff4b85 2379 if (!*ptr && !mm)
38c5d72f 2380 *ptr = root_mem_cgroup;
f75ca962 2381again:
c0ff4b85
R
2382 if (*ptr) { /* css should be a valid one */
2383 memcg = *ptr;
c0ff4b85 2384 if (mem_cgroup_is_root(memcg))
f75ca962 2385 goto done;
a0956d54 2386 if (consume_stock(memcg, nr_pages))
f75ca962 2387 goto done;
c0ff4b85 2388 css_get(&memcg->css);
4b534334 2389 } else {
f75ca962 2390 struct task_struct *p;
54595fe2 2391
f75ca962
KH
2392 rcu_read_lock();
2393 p = rcu_dereference(mm->owner);
f75ca962 2394 /*
ebb76ce1 2395 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2396 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2397 * race with swapoff. Then, we have small risk of mis-accouning.
2398 * But such kind of mis-account by race always happens because
2399 * we don't have cgroup_mutex(). It's overkill and we allo that
2400 * small race, here.
2401 * (*) swapoff at el will charge against mm-struct not against
2402 * task-struct. So, mm->owner can be NULL.
f75ca962 2403 */
c0ff4b85 2404 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2405 if (!memcg)
2406 memcg = root_mem_cgroup;
2407 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2408 rcu_read_unlock();
2409 goto done;
2410 }
a0956d54 2411 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2412 /*
2413 * It seems dagerous to access memcg without css_get().
2414 * But considering how consume_stok works, it's not
2415 * necessary. If consume_stock success, some charges
2416 * from this memcg are cached on this cpu. So, we
2417 * don't need to call css_get()/css_tryget() before
2418 * calling consume_stock().
2419 */
2420 rcu_read_unlock();
2421 goto done;
2422 }
2423 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2424 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2425 rcu_read_unlock();
2426 goto again;
2427 }
2428 rcu_read_unlock();
2429 }
8a9f3ccd 2430
4b534334
KH
2431 do {
2432 bool oom_check;
7a81b88c 2433
4b534334 2434 /* If killed, bypass charge */
f75ca962 2435 if (fatal_signal_pending(current)) {
c0ff4b85 2436 css_put(&memcg->css);
4b534334 2437 goto bypass;
f75ca962 2438 }
6d61ef40 2439
4b534334
KH
2440 oom_check = false;
2441 if (oom && !nr_oom_retries) {
2442 oom_check = true;
2443 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2444 }
66e1707b 2445
4c9c5359
SS
2446 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2447 oom_check);
4b534334
KH
2448 switch (ret) {
2449 case CHARGE_OK:
2450 break;
2451 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2452 batch = nr_pages;
c0ff4b85
R
2453 css_put(&memcg->css);
2454 memcg = NULL;
f75ca962 2455 goto again;
4b534334 2456 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2457 css_put(&memcg->css);
4b534334
KH
2458 goto nomem;
2459 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2460 if (!oom) {
c0ff4b85 2461 css_put(&memcg->css);
867578cb 2462 goto nomem;
f75ca962 2463 }
4b534334
KH
2464 /* If oom, we never return -ENOMEM */
2465 nr_oom_retries--;
2466 break;
2467 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2468 css_put(&memcg->css);
867578cb 2469 goto bypass;
66e1707b 2470 }
4b534334
KH
2471 } while (ret != CHARGE_OK);
2472
7ec99d62 2473 if (batch > nr_pages)
c0ff4b85
R
2474 refill_stock(memcg, batch - nr_pages);
2475 css_put(&memcg->css);
0c3e73e8 2476done:
c0ff4b85 2477 *ptr = memcg;
7a81b88c
KH
2478 return 0;
2479nomem:
c0ff4b85 2480 *ptr = NULL;
7a81b88c 2481 return -ENOMEM;
867578cb 2482bypass:
38c5d72f
KH
2483 *ptr = root_mem_cgroup;
2484 return -EINTR;
7a81b88c 2485}
8a9f3ccd 2486
a3032a2c
DN
2487/*
2488 * Somemtimes we have to undo a charge we got by try_charge().
2489 * This function is for that and do uncharge, put css's refcnt.
2490 * gotten by try_charge().
2491 */
c0ff4b85 2492static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2493 unsigned int nr_pages)
a3032a2c 2494{
c0ff4b85 2495 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2496 unsigned long bytes = nr_pages * PAGE_SIZE;
2497
c0ff4b85 2498 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2499 if (do_swap_account)
c0ff4b85 2500 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2501 }
854ffa8d
DN
2502}
2503
d01dd17f
KH
2504/*
2505 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2506 * This is useful when moving usage to parent cgroup.
2507 */
2508static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2509 unsigned int nr_pages)
2510{
2511 unsigned long bytes = nr_pages * PAGE_SIZE;
2512
2513 if (mem_cgroup_is_root(memcg))
2514 return;
2515
2516 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2517 if (do_swap_account)
2518 res_counter_uncharge_until(&memcg->memsw,
2519 memcg->memsw.parent, bytes);
2520}
2521
a3b2d692
KH
2522/*
2523 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2524 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2525 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2526 * called against removed memcg.)
a3b2d692
KH
2527 */
2528static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2529{
2530 struct cgroup_subsys_state *css;
2531
2532 /* ID 0 is unused ID */
2533 if (!id)
2534 return NULL;
2535 css = css_lookup(&mem_cgroup_subsys, id);
2536 if (!css)
2537 return NULL;
b2145145 2538 return mem_cgroup_from_css(css);
a3b2d692
KH
2539}
2540
e42d9d5d 2541struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2542{
c0ff4b85 2543 struct mem_cgroup *memcg = NULL;
3c776e64 2544 struct page_cgroup *pc;
a3b2d692 2545 unsigned short id;
b5a84319
KH
2546 swp_entry_t ent;
2547
3c776e64
DN
2548 VM_BUG_ON(!PageLocked(page));
2549
3c776e64 2550 pc = lookup_page_cgroup(page);
c0bd3f63 2551 lock_page_cgroup(pc);
a3b2d692 2552 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2553 memcg = pc->mem_cgroup;
2554 if (memcg && !css_tryget(&memcg->css))
2555 memcg = NULL;
e42d9d5d 2556 } else if (PageSwapCache(page)) {
3c776e64 2557 ent.val = page_private(page);
9fb4b7cc 2558 id = lookup_swap_cgroup_id(ent);
a3b2d692 2559 rcu_read_lock();
c0ff4b85
R
2560 memcg = mem_cgroup_lookup(id);
2561 if (memcg && !css_tryget(&memcg->css))
2562 memcg = NULL;
a3b2d692 2563 rcu_read_unlock();
3c776e64 2564 }
c0bd3f63 2565 unlock_page_cgroup(pc);
c0ff4b85 2566 return memcg;
b5a84319
KH
2567}
2568
c0ff4b85 2569static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2570 struct page *page,
7ec99d62 2571 unsigned int nr_pages,
9ce70c02
HD
2572 enum charge_type ctype,
2573 bool lrucare)
7a81b88c 2574{
ce587e65 2575 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2576 struct zone *uninitialized_var(zone);
fa9add64 2577 struct lruvec *lruvec;
9ce70c02 2578 bool was_on_lru = false;
b2402857 2579 bool anon;
9ce70c02 2580
ca3e0214 2581 lock_page_cgroup(pc);
90deb788 2582 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2583 /*
2584 * we don't need page_cgroup_lock about tail pages, becase they are not
2585 * accessed by any other context at this point.
2586 */
9ce70c02
HD
2587
2588 /*
2589 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2590 * may already be on some other mem_cgroup's LRU. Take care of it.
2591 */
2592 if (lrucare) {
2593 zone = page_zone(page);
2594 spin_lock_irq(&zone->lru_lock);
2595 if (PageLRU(page)) {
fa9add64 2596 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2597 ClearPageLRU(page);
fa9add64 2598 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2599 was_on_lru = true;
2600 }
2601 }
2602
c0ff4b85 2603 pc->mem_cgroup = memcg;
261fb61a
KH
2604 /*
2605 * We access a page_cgroup asynchronously without lock_page_cgroup().
2606 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2607 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2608 * before USED bit, we need memory barrier here.
2609 * See mem_cgroup_add_lru_list(), etc.
2610 */
08e552c6 2611 smp_wmb();
b2402857 2612 SetPageCgroupUsed(pc);
3be91277 2613
9ce70c02
HD
2614 if (lrucare) {
2615 if (was_on_lru) {
fa9add64 2616 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2617 VM_BUG_ON(PageLRU(page));
2618 SetPageLRU(page);
fa9add64 2619 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2620 }
2621 spin_unlock_irq(&zone->lru_lock);
2622 }
2623
41326c17 2624 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2625 anon = true;
2626 else
2627 anon = false;
2628
2629 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2630 unlock_page_cgroup(pc);
9ce70c02 2631
430e4863
KH
2632 /*
2633 * "charge_statistics" updated event counter. Then, check it.
2634 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2635 * if they exceeds softlimit.
2636 */
c0ff4b85 2637 memcg_check_events(memcg, page);
7a81b88c 2638}
66e1707b 2639
ca3e0214
KH
2640#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2641
a0db00fc 2642#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2643/*
2644 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2645 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2646 * charge/uncharge will be never happen and move_account() is done under
2647 * compound_lock(), so we don't have to take care of races.
ca3e0214 2648 */
e94c8a9c 2649void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2650{
2651 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2652 struct page_cgroup *pc;
2653 int i;
ca3e0214 2654
3d37c4a9
KH
2655 if (mem_cgroup_disabled())
2656 return;
e94c8a9c
KH
2657 for (i = 1; i < HPAGE_PMD_NR; i++) {
2658 pc = head_pc + i;
2659 pc->mem_cgroup = head_pc->mem_cgroup;
2660 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2661 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2662 }
ca3e0214 2663}
12d27107 2664#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2665
f817ed48 2666/**
de3638d9 2667 * mem_cgroup_move_account - move account of the page
5564e88b 2668 * @page: the page
7ec99d62 2669 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2670 * @pc: page_cgroup of the page.
2671 * @from: mem_cgroup which the page is moved from.
2672 * @to: mem_cgroup which the page is moved to. @from != @to.
2673 *
2674 * The caller must confirm following.
08e552c6 2675 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2676 * - compound_lock is held when nr_pages > 1
f817ed48 2677 *
2f3479b1
KH
2678 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2679 * from old cgroup.
f817ed48 2680 */
7ec99d62
JW
2681static int mem_cgroup_move_account(struct page *page,
2682 unsigned int nr_pages,
2683 struct page_cgroup *pc,
2684 struct mem_cgroup *from,
2f3479b1 2685 struct mem_cgroup *to)
f817ed48 2686{
de3638d9
JW
2687 unsigned long flags;
2688 int ret;
b2402857 2689 bool anon = PageAnon(page);
987eba66 2690
f817ed48 2691 VM_BUG_ON(from == to);
5564e88b 2692 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2693 /*
2694 * The page is isolated from LRU. So, collapse function
2695 * will not handle this page. But page splitting can happen.
2696 * Do this check under compound_page_lock(). The caller should
2697 * hold it.
2698 */
2699 ret = -EBUSY;
7ec99d62 2700 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2701 goto out;
2702
2703 lock_page_cgroup(pc);
2704
2705 ret = -EINVAL;
2706 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2707 goto unlock;
2708
312734c0 2709 move_lock_mem_cgroup(from, &flags);
f817ed48 2710
2ff76f11 2711 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2712 /* Update mapped_file data for mem_cgroup */
2713 preempt_disable();
2714 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2715 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2716 preempt_enable();
d69b042f 2717 }
b2402857 2718 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2719
854ffa8d 2720 /* caller should have done css_get */
08e552c6 2721 pc->mem_cgroup = to;
b2402857 2722 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 2723 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2724 ret = 0;
2725unlock:
57f9fd7d 2726 unlock_page_cgroup(pc);
d2265e6f
KH
2727 /*
2728 * check events
2729 */
5564e88b
JW
2730 memcg_check_events(to, page);
2731 memcg_check_events(from, page);
de3638d9 2732out:
f817ed48
KH
2733 return ret;
2734}
2735
2ef37d3f
MH
2736/**
2737 * mem_cgroup_move_parent - moves page to the parent group
2738 * @page: the page to move
2739 * @pc: page_cgroup of the page
2740 * @child: page's cgroup
2741 *
2742 * move charges to its parent or the root cgroup if the group has no
2743 * parent (aka use_hierarchy==0).
2744 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2745 * mem_cgroup_move_account fails) the failure is always temporary and
2746 * it signals a race with a page removal/uncharge or migration. In the
2747 * first case the page is on the way out and it will vanish from the LRU
2748 * on the next attempt and the call should be retried later.
2749 * Isolation from the LRU fails only if page has been isolated from
2750 * the LRU since we looked at it and that usually means either global
2751 * reclaim or migration going on. The page will either get back to the
2752 * LRU or vanish.
2753 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2754 * (!PageCgroupUsed) or moved to a different group. The page will
2755 * disappear in the next attempt.
f817ed48 2756 */
5564e88b
JW
2757static int mem_cgroup_move_parent(struct page *page,
2758 struct page_cgroup *pc,
6068bf01 2759 struct mem_cgroup *child)
f817ed48 2760{
f817ed48 2761 struct mem_cgroup *parent;
7ec99d62 2762 unsigned int nr_pages;
4be4489f 2763 unsigned long uninitialized_var(flags);
f817ed48
KH
2764 int ret;
2765
d8423011 2766 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 2767
57f9fd7d
DN
2768 ret = -EBUSY;
2769 if (!get_page_unless_zero(page))
2770 goto out;
2771 if (isolate_lru_page(page))
2772 goto put;
52dbb905 2773
7ec99d62 2774 nr_pages = hpage_nr_pages(page);
08e552c6 2775
cc926f78
KH
2776 parent = parent_mem_cgroup(child);
2777 /*
2778 * If no parent, move charges to root cgroup.
2779 */
2780 if (!parent)
2781 parent = root_mem_cgroup;
f817ed48 2782
2ef37d3f
MH
2783 if (nr_pages > 1) {
2784 VM_BUG_ON(!PageTransHuge(page));
987eba66 2785 flags = compound_lock_irqsave(page);
2ef37d3f 2786 }
987eba66 2787
cc926f78 2788 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2789 pc, child, parent);
cc926f78
KH
2790 if (!ret)
2791 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2792
7ec99d62 2793 if (nr_pages > 1)
987eba66 2794 compound_unlock_irqrestore(page, flags);
08e552c6 2795 putback_lru_page(page);
57f9fd7d 2796put:
40d58138 2797 put_page(page);
57f9fd7d 2798out:
f817ed48
KH
2799 return ret;
2800}
2801
7a81b88c
KH
2802/*
2803 * Charge the memory controller for page usage.
2804 * Return
2805 * 0 if the charge was successful
2806 * < 0 if the cgroup is over its limit
2807 */
2808static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2809 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2810{
c0ff4b85 2811 struct mem_cgroup *memcg = NULL;
7ec99d62 2812 unsigned int nr_pages = 1;
8493ae43 2813 bool oom = true;
7a81b88c 2814 int ret;
ec168510 2815
37c2ac78 2816 if (PageTransHuge(page)) {
7ec99d62 2817 nr_pages <<= compound_order(page);
37c2ac78 2818 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2819 /*
2820 * Never OOM-kill a process for a huge page. The
2821 * fault handler will fall back to regular pages.
2822 */
2823 oom = false;
37c2ac78 2824 }
7a81b88c 2825
c0ff4b85 2826 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2827 if (ret == -ENOMEM)
7a81b88c 2828 return ret;
ce587e65 2829 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2830 return 0;
8a9f3ccd
BS
2831}
2832
7a81b88c
KH
2833int mem_cgroup_newpage_charge(struct page *page,
2834 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2835{
f8d66542 2836 if (mem_cgroup_disabled())
cede86ac 2837 return 0;
7a0524cf
JW
2838 VM_BUG_ON(page_mapped(page));
2839 VM_BUG_ON(page->mapping && !PageAnon(page));
2840 VM_BUG_ON(!mm);
217bc319 2841 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2842 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2843}
2844
54595fe2
KH
2845/*
2846 * While swap-in, try_charge -> commit or cancel, the page is locked.
2847 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2848 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2849 * "commit()" or removed by "cancel()"
2850 */
0435a2fd
JW
2851static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2852 struct page *page,
2853 gfp_t mask,
2854 struct mem_cgroup **memcgp)
8c7c6e34 2855{
c0ff4b85 2856 struct mem_cgroup *memcg;
90deb788 2857 struct page_cgroup *pc;
54595fe2 2858 int ret;
8c7c6e34 2859
90deb788
JW
2860 pc = lookup_page_cgroup(page);
2861 /*
2862 * Every swap fault against a single page tries to charge the
2863 * page, bail as early as possible. shmem_unuse() encounters
2864 * already charged pages, too. The USED bit is protected by
2865 * the page lock, which serializes swap cache removal, which
2866 * in turn serializes uncharging.
2867 */
2868 if (PageCgroupUsed(pc))
2869 return 0;
8c7c6e34
KH
2870 if (!do_swap_account)
2871 goto charge_cur_mm;
c0ff4b85
R
2872 memcg = try_get_mem_cgroup_from_page(page);
2873 if (!memcg)
54595fe2 2874 goto charge_cur_mm;
72835c86
JW
2875 *memcgp = memcg;
2876 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2877 css_put(&memcg->css);
38c5d72f
KH
2878 if (ret == -EINTR)
2879 ret = 0;
54595fe2 2880 return ret;
8c7c6e34 2881charge_cur_mm:
38c5d72f
KH
2882 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2883 if (ret == -EINTR)
2884 ret = 0;
2885 return ret;
8c7c6e34
KH
2886}
2887
0435a2fd
JW
2888int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2889 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2890{
2891 *memcgp = NULL;
2892 if (mem_cgroup_disabled())
2893 return 0;
bdf4f4d2
JW
2894 /*
2895 * A racing thread's fault, or swapoff, may have already
2896 * updated the pte, and even removed page from swap cache: in
2897 * those cases unuse_pte()'s pte_same() test will fail; but
2898 * there's also a KSM case which does need to charge the page.
2899 */
2900 if (!PageSwapCache(page)) {
2901 int ret;
2902
2903 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2904 if (ret == -EINTR)
2905 ret = 0;
2906 return ret;
2907 }
0435a2fd
JW
2908 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2909}
2910
827a03d2
JW
2911void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2912{
2913 if (mem_cgroup_disabled())
2914 return;
2915 if (!memcg)
2916 return;
2917 __mem_cgroup_cancel_charge(memcg, 1);
2918}
2919
83aae4c7 2920static void
72835c86 2921__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2922 enum charge_type ctype)
7a81b88c 2923{
f8d66542 2924 if (mem_cgroup_disabled())
7a81b88c 2925 return;
72835c86 2926 if (!memcg)
7a81b88c 2927 return;
5a6475a4 2928
ce587e65 2929 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2930 /*
2931 * Now swap is on-memory. This means this page may be
2932 * counted both as mem and swap....double count.
03f3c433
KH
2933 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2934 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2935 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2936 */
03f3c433 2937 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2938 swp_entry_t ent = {.val = page_private(page)};
86493009 2939 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2940 }
7a81b88c
KH
2941}
2942
72835c86
JW
2943void mem_cgroup_commit_charge_swapin(struct page *page,
2944 struct mem_cgroup *memcg)
83aae4c7 2945{
72835c86 2946 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2947 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2948}
2949
827a03d2
JW
2950int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2951 gfp_t gfp_mask)
7a81b88c 2952{
827a03d2
JW
2953 struct mem_cgroup *memcg = NULL;
2954 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2955 int ret;
2956
f8d66542 2957 if (mem_cgroup_disabled())
827a03d2
JW
2958 return 0;
2959 if (PageCompound(page))
2960 return 0;
2961
827a03d2
JW
2962 if (!PageSwapCache(page))
2963 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2964 else { /* page is swapcache/shmem */
0435a2fd
JW
2965 ret = __mem_cgroup_try_charge_swapin(mm, page,
2966 gfp_mask, &memcg);
827a03d2
JW
2967 if (!ret)
2968 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2969 }
2970 return ret;
7a81b88c
KH
2971}
2972
c0ff4b85 2973static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2974 unsigned int nr_pages,
2975 const enum charge_type ctype)
569b846d
KH
2976{
2977 struct memcg_batch_info *batch = NULL;
2978 bool uncharge_memsw = true;
7ec99d62 2979
569b846d
KH
2980 /* If swapout, usage of swap doesn't decrease */
2981 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2982 uncharge_memsw = false;
569b846d
KH
2983
2984 batch = &current->memcg_batch;
2985 /*
2986 * In usual, we do css_get() when we remember memcg pointer.
2987 * But in this case, we keep res->usage until end of a series of
2988 * uncharges. Then, it's ok to ignore memcg's refcnt.
2989 */
2990 if (!batch->memcg)
c0ff4b85 2991 batch->memcg = memcg;
3c11ecf4
KH
2992 /*
2993 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2994 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2995 * the same cgroup and we have chance to coalesce uncharges.
2996 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2997 * because we want to do uncharge as soon as possible.
2998 */
2999
3000 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3001 goto direct_uncharge;
3002
7ec99d62 3003 if (nr_pages > 1)
ec168510
AA
3004 goto direct_uncharge;
3005
569b846d
KH
3006 /*
3007 * In typical case, batch->memcg == mem. This means we can
3008 * merge a series of uncharges to an uncharge of res_counter.
3009 * If not, we uncharge res_counter ony by one.
3010 */
c0ff4b85 3011 if (batch->memcg != memcg)
569b846d
KH
3012 goto direct_uncharge;
3013 /* remember freed charge and uncharge it later */
7ffd4ca7 3014 batch->nr_pages++;
569b846d 3015 if (uncharge_memsw)
7ffd4ca7 3016 batch->memsw_nr_pages++;
569b846d
KH
3017 return;
3018direct_uncharge:
c0ff4b85 3019 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3020 if (uncharge_memsw)
c0ff4b85
R
3021 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3022 if (unlikely(batch->memcg != memcg))
3023 memcg_oom_recover(memcg);
569b846d 3024}
7a81b88c 3025
8a9f3ccd 3026/*
69029cd5 3027 * uncharge if !page_mapped(page)
8a9f3ccd 3028 */
8c7c6e34 3029static struct mem_cgroup *
0030f535
JW
3030__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3031 bool end_migration)
8a9f3ccd 3032{
c0ff4b85 3033 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3034 unsigned int nr_pages = 1;
3035 struct page_cgroup *pc;
b2402857 3036 bool anon;
8a9f3ccd 3037
f8d66542 3038 if (mem_cgroup_disabled())
8c7c6e34 3039 return NULL;
4077960e 3040
0c59b89c 3041 VM_BUG_ON(PageSwapCache(page));
d13d1443 3042
37c2ac78 3043 if (PageTransHuge(page)) {
7ec99d62 3044 nr_pages <<= compound_order(page);
37c2ac78
AA
3045 VM_BUG_ON(!PageTransHuge(page));
3046 }
8697d331 3047 /*
3c541e14 3048 * Check if our page_cgroup is valid
8697d331 3049 */
52d4b9ac 3050 pc = lookup_page_cgroup(page);
cfa44946 3051 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3052 return NULL;
b9c565d5 3053
52d4b9ac 3054 lock_page_cgroup(pc);
d13d1443 3055
c0ff4b85 3056 memcg = pc->mem_cgroup;
8c7c6e34 3057
d13d1443
KH
3058 if (!PageCgroupUsed(pc))
3059 goto unlock_out;
3060
b2402857
KH
3061 anon = PageAnon(page);
3062
d13d1443 3063 switch (ctype) {
41326c17 3064 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3065 /*
3066 * Generally PageAnon tells if it's the anon statistics to be
3067 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3068 * used before page reached the stage of being marked PageAnon.
3069 */
b2402857
KH
3070 anon = true;
3071 /* fallthrough */
8a9478ca 3072 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3073 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3074 if (page_mapped(page))
3075 goto unlock_out;
3076 /*
3077 * Pages under migration may not be uncharged. But
3078 * end_migration() /must/ be the one uncharging the
3079 * unused post-migration page and so it has to call
3080 * here with the migration bit still set. See the
3081 * res_counter handling below.
3082 */
3083 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3084 goto unlock_out;
3085 break;
3086 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3087 if (!PageAnon(page)) { /* Shared memory */
3088 if (page->mapping && !page_is_file_cache(page))
3089 goto unlock_out;
3090 } else if (page_mapped(page)) /* Anon */
3091 goto unlock_out;
3092 break;
3093 default:
3094 break;
52d4b9ac 3095 }
d13d1443 3096
b2402857 3097 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3098
52d4b9ac 3099 ClearPageCgroupUsed(pc);
544122e5
KH
3100 /*
3101 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3102 * freed from LRU. This is safe because uncharged page is expected not
3103 * to be reused (freed soon). Exception is SwapCache, it's handled by
3104 * special functions.
3105 */
b9c565d5 3106
52d4b9ac 3107 unlock_page_cgroup(pc);
f75ca962 3108 /*
c0ff4b85 3109 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3110 * will never be freed.
3111 */
c0ff4b85 3112 memcg_check_events(memcg, page);
f75ca962 3113 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3114 mem_cgroup_swap_statistics(memcg, true);
3115 mem_cgroup_get(memcg);
f75ca962 3116 }
0030f535
JW
3117 /*
3118 * Migration does not charge the res_counter for the
3119 * replacement page, so leave it alone when phasing out the
3120 * page that is unused after the migration.
3121 */
3122 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3123 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3124
c0ff4b85 3125 return memcg;
d13d1443
KH
3126
3127unlock_out:
3128 unlock_page_cgroup(pc);
8c7c6e34 3129 return NULL;
3c541e14
BS
3130}
3131
69029cd5
KH
3132void mem_cgroup_uncharge_page(struct page *page)
3133{
52d4b9ac
KH
3134 /* early check. */
3135 if (page_mapped(page))
3136 return;
40f23a21 3137 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3138 if (PageSwapCache(page))
3139 return;
0030f535 3140 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3141}
3142
3143void mem_cgroup_uncharge_cache_page(struct page *page)
3144{
3145 VM_BUG_ON(page_mapped(page));
b7abea96 3146 VM_BUG_ON(page->mapping);
0030f535 3147 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3148}
3149
569b846d
KH
3150/*
3151 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3152 * In that cases, pages are freed continuously and we can expect pages
3153 * are in the same memcg. All these calls itself limits the number of
3154 * pages freed at once, then uncharge_start/end() is called properly.
3155 * This may be called prural(2) times in a context,
3156 */
3157
3158void mem_cgroup_uncharge_start(void)
3159{
3160 current->memcg_batch.do_batch++;
3161 /* We can do nest. */
3162 if (current->memcg_batch.do_batch == 1) {
3163 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3164 current->memcg_batch.nr_pages = 0;
3165 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3166 }
3167}
3168
3169void mem_cgroup_uncharge_end(void)
3170{
3171 struct memcg_batch_info *batch = &current->memcg_batch;
3172
3173 if (!batch->do_batch)
3174 return;
3175
3176 batch->do_batch--;
3177 if (batch->do_batch) /* If stacked, do nothing. */
3178 return;
3179
3180 if (!batch->memcg)
3181 return;
3182 /*
3183 * This "batch->memcg" is valid without any css_get/put etc...
3184 * bacause we hide charges behind us.
3185 */
7ffd4ca7
JW
3186 if (batch->nr_pages)
3187 res_counter_uncharge(&batch->memcg->res,
3188 batch->nr_pages * PAGE_SIZE);
3189 if (batch->memsw_nr_pages)
3190 res_counter_uncharge(&batch->memcg->memsw,
3191 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3192 memcg_oom_recover(batch->memcg);
569b846d
KH
3193 /* forget this pointer (for sanity check) */
3194 batch->memcg = NULL;
3195}
3196
e767e056 3197#ifdef CONFIG_SWAP
8c7c6e34 3198/*
e767e056 3199 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3200 * memcg information is recorded to swap_cgroup of "ent"
3201 */
8a9478ca
KH
3202void
3203mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3204{
3205 struct mem_cgroup *memcg;
8a9478ca
KH
3206 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3207
3208 if (!swapout) /* this was a swap cache but the swap is unused ! */
3209 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3210
0030f535 3211 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3212
f75ca962
KH
3213 /*
3214 * record memcg information, if swapout && memcg != NULL,
3215 * mem_cgroup_get() was called in uncharge().
3216 */
3217 if (do_swap_account && swapout && memcg)
a3b2d692 3218 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3219}
e767e056 3220#endif
8c7c6e34 3221
c255a458 3222#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3223/*
3224 * called from swap_entry_free(). remove record in swap_cgroup and
3225 * uncharge "memsw" account.
3226 */
3227void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3228{
8c7c6e34 3229 struct mem_cgroup *memcg;
a3b2d692 3230 unsigned short id;
8c7c6e34
KH
3231
3232 if (!do_swap_account)
3233 return;
3234
a3b2d692
KH
3235 id = swap_cgroup_record(ent, 0);
3236 rcu_read_lock();
3237 memcg = mem_cgroup_lookup(id);
8c7c6e34 3238 if (memcg) {
a3b2d692
KH
3239 /*
3240 * We uncharge this because swap is freed.
3241 * This memcg can be obsolete one. We avoid calling css_tryget
3242 */
0c3e73e8 3243 if (!mem_cgroup_is_root(memcg))
4e649152 3244 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3245 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3246 mem_cgroup_put(memcg);
3247 }
a3b2d692 3248 rcu_read_unlock();
d13d1443 3249}
02491447
DN
3250
3251/**
3252 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3253 * @entry: swap entry to be moved
3254 * @from: mem_cgroup which the entry is moved from
3255 * @to: mem_cgroup which the entry is moved to
3256 *
3257 * It succeeds only when the swap_cgroup's record for this entry is the same
3258 * as the mem_cgroup's id of @from.
3259 *
3260 * Returns 0 on success, -EINVAL on failure.
3261 *
3262 * The caller must have charged to @to, IOW, called res_counter_charge() about
3263 * both res and memsw, and called css_get().
3264 */
3265static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3266 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3267{
3268 unsigned short old_id, new_id;
3269
3270 old_id = css_id(&from->css);
3271 new_id = css_id(&to->css);
3272
3273 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3274 mem_cgroup_swap_statistics(from, false);
483c30b5 3275 mem_cgroup_swap_statistics(to, true);
02491447 3276 /*
483c30b5
DN
3277 * This function is only called from task migration context now.
3278 * It postpones res_counter and refcount handling till the end
3279 * of task migration(mem_cgroup_clear_mc()) for performance
3280 * improvement. But we cannot postpone mem_cgroup_get(to)
3281 * because if the process that has been moved to @to does
3282 * swap-in, the refcount of @to might be decreased to 0.
02491447 3283 */
02491447 3284 mem_cgroup_get(to);
02491447
DN
3285 return 0;
3286 }
3287 return -EINVAL;
3288}
3289#else
3290static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3291 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3292{
3293 return -EINVAL;
3294}
8c7c6e34 3295#endif
d13d1443 3296
ae41be37 3297/*
01b1ae63
KH
3298 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3299 * page belongs to.
ae41be37 3300 */
0030f535
JW
3301void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3302 struct mem_cgroup **memcgp)
ae41be37 3303{
c0ff4b85 3304 struct mem_cgroup *memcg = NULL;
b32967ff 3305 unsigned int nr_pages = 1;
7ec99d62 3306 struct page_cgroup *pc;
ac39cf8c 3307 enum charge_type ctype;
8869b8f6 3308
72835c86 3309 *memcgp = NULL;
56039efa 3310
f8d66542 3311 if (mem_cgroup_disabled())
0030f535 3312 return;
4077960e 3313
b32967ff
MG
3314 if (PageTransHuge(page))
3315 nr_pages <<= compound_order(page);
3316
52d4b9ac
KH
3317 pc = lookup_page_cgroup(page);
3318 lock_page_cgroup(pc);
3319 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3320 memcg = pc->mem_cgroup;
3321 css_get(&memcg->css);
ac39cf8c
AM
3322 /*
3323 * At migrating an anonymous page, its mapcount goes down
3324 * to 0 and uncharge() will be called. But, even if it's fully
3325 * unmapped, migration may fail and this page has to be
3326 * charged again. We set MIGRATION flag here and delay uncharge
3327 * until end_migration() is called
3328 *
3329 * Corner Case Thinking
3330 * A)
3331 * When the old page was mapped as Anon and it's unmap-and-freed
3332 * while migration was ongoing.
3333 * If unmap finds the old page, uncharge() of it will be delayed
3334 * until end_migration(). If unmap finds a new page, it's
3335 * uncharged when it make mapcount to be 1->0. If unmap code
3336 * finds swap_migration_entry, the new page will not be mapped
3337 * and end_migration() will find it(mapcount==0).
3338 *
3339 * B)
3340 * When the old page was mapped but migraion fails, the kernel
3341 * remaps it. A charge for it is kept by MIGRATION flag even
3342 * if mapcount goes down to 0. We can do remap successfully
3343 * without charging it again.
3344 *
3345 * C)
3346 * The "old" page is under lock_page() until the end of
3347 * migration, so, the old page itself will not be swapped-out.
3348 * If the new page is swapped out before end_migraton, our
3349 * hook to usual swap-out path will catch the event.
3350 */
3351 if (PageAnon(page))
3352 SetPageCgroupMigration(pc);
e8589cc1 3353 }
52d4b9ac 3354 unlock_page_cgroup(pc);
ac39cf8c
AM
3355 /*
3356 * If the page is not charged at this point,
3357 * we return here.
3358 */
c0ff4b85 3359 if (!memcg)
0030f535 3360 return;
01b1ae63 3361
72835c86 3362 *memcgp = memcg;
ac39cf8c
AM
3363 /*
3364 * We charge new page before it's used/mapped. So, even if unlock_page()
3365 * is called before end_migration, we can catch all events on this new
3366 * page. In the case new page is migrated but not remapped, new page's
3367 * mapcount will be finally 0 and we call uncharge in end_migration().
3368 */
ac39cf8c 3369 if (PageAnon(page))
41326c17 3370 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3371 else
62ba7442 3372 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3373 /*
3374 * The page is committed to the memcg, but it's not actually
3375 * charged to the res_counter since we plan on replacing the
3376 * old one and only one page is going to be left afterwards.
3377 */
b32967ff 3378 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 3379}
8869b8f6 3380
69029cd5 3381/* remove redundant charge if migration failed*/
c0ff4b85 3382void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3383 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3384{
ac39cf8c 3385 struct page *used, *unused;
01b1ae63 3386 struct page_cgroup *pc;
b2402857 3387 bool anon;
01b1ae63 3388
c0ff4b85 3389 if (!memcg)
01b1ae63 3390 return;
b25ed609 3391
50de1dd9 3392 if (!migration_ok) {
ac39cf8c
AM
3393 used = oldpage;
3394 unused = newpage;
01b1ae63 3395 } else {
ac39cf8c 3396 used = newpage;
01b1ae63
KH
3397 unused = oldpage;
3398 }
0030f535 3399 anon = PageAnon(used);
7d188958
JW
3400 __mem_cgroup_uncharge_common(unused,
3401 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3402 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3403 true);
0030f535 3404 css_put(&memcg->css);
69029cd5 3405 /*
ac39cf8c
AM
3406 * We disallowed uncharge of pages under migration because mapcount
3407 * of the page goes down to zero, temporarly.
3408 * Clear the flag and check the page should be charged.
01b1ae63 3409 */
ac39cf8c
AM
3410 pc = lookup_page_cgroup(oldpage);
3411 lock_page_cgroup(pc);
3412 ClearPageCgroupMigration(pc);
3413 unlock_page_cgroup(pc);
ac39cf8c 3414
01b1ae63 3415 /*
ac39cf8c
AM
3416 * If a page is a file cache, radix-tree replacement is very atomic
3417 * and we can skip this check. When it was an Anon page, its mapcount
3418 * goes down to 0. But because we added MIGRATION flage, it's not
3419 * uncharged yet. There are several case but page->mapcount check
3420 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3421 * check. (see prepare_charge() also)
69029cd5 3422 */
b2402857 3423 if (anon)
ac39cf8c 3424 mem_cgroup_uncharge_page(used);
ae41be37 3425}
78fb7466 3426
ab936cbc
KH
3427/*
3428 * At replace page cache, newpage is not under any memcg but it's on
3429 * LRU. So, this function doesn't touch res_counter but handles LRU
3430 * in correct way. Both pages are locked so we cannot race with uncharge.
3431 */
3432void mem_cgroup_replace_page_cache(struct page *oldpage,
3433 struct page *newpage)
3434{
bde05d1c 3435 struct mem_cgroup *memcg = NULL;
ab936cbc 3436 struct page_cgroup *pc;
ab936cbc 3437 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3438
3439 if (mem_cgroup_disabled())
3440 return;
3441
3442 pc = lookup_page_cgroup(oldpage);
3443 /* fix accounting on old pages */
3444 lock_page_cgroup(pc);
bde05d1c
HD
3445 if (PageCgroupUsed(pc)) {
3446 memcg = pc->mem_cgroup;
3447 mem_cgroup_charge_statistics(memcg, false, -1);
3448 ClearPageCgroupUsed(pc);
3449 }
ab936cbc
KH
3450 unlock_page_cgroup(pc);
3451
bde05d1c
HD
3452 /*
3453 * When called from shmem_replace_page(), in some cases the
3454 * oldpage has already been charged, and in some cases not.
3455 */
3456 if (!memcg)
3457 return;
ab936cbc
KH
3458 /*
3459 * Even if newpage->mapping was NULL before starting replacement,
3460 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3461 * LRU while we overwrite pc->mem_cgroup.
3462 */
ce587e65 3463 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3464}
3465
f212ad7c
DN
3466#ifdef CONFIG_DEBUG_VM
3467static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3468{
3469 struct page_cgroup *pc;
3470
3471 pc = lookup_page_cgroup(page);
cfa44946
JW
3472 /*
3473 * Can be NULL while feeding pages into the page allocator for
3474 * the first time, i.e. during boot or memory hotplug;
3475 * or when mem_cgroup_disabled().
3476 */
f212ad7c
DN
3477 if (likely(pc) && PageCgroupUsed(pc))
3478 return pc;
3479 return NULL;
3480}
3481
3482bool mem_cgroup_bad_page_check(struct page *page)
3483{
3484 if (mem_cgroup_disabled())
3485 return false;
3486
3487 return lookup_page_cgroup_used(page) != NULL;
3488}
3489
3490void mem_cgroup_print_bad_page(struct page *page)
3491{
3492 struct page_cgroup *pc;
3493
3494 pc = lookup_page_cgroup_used(page);
3495 if (pc) {
90b3feae 3496 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3497 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3498 }
3499}
3500#endif
3501
8c7c6e34
KH
3502static DEFINE_MUTEX(set_limit_mutex);
3503
d38d2a75 3504static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3505 unsigned long long val)
628f4235 3506{
81d39c20 3507 int retry_count;
3c11ecf4 3508 u64 memswlimit, memlimit;
628f4235 3509 int ret = 0;
81d39c20
KH
3510 int children = mem_cgroup_count_children(memcg);
3511 u64 curusage, oldusage;
3c11ecf4 3512 int enlarge;
81d39c20
KH
3513
3514 /*
3515 * For keeping hierarchical_reclaim simple, how long we should retry
3516 * is depends on callers. We set our retry-count to be function
3517 * of # of children which we should visit in this loop.
3518 */
3519 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3520
3521 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3522
3c11ecf4 3523 enlarge = 0;
8c7c6e34 3524 while (retry_count) {
628f4235
KH
3525 if (signal_pending(current)) {
3526 ret = -EINTR;
3527 break;
3528 }
8c7c6e34
KH
3529 /*
3530 * Rather than hide all in some function, I do this in
3531 * open coded manner. You see what this really does.
aaad153e 3532 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3533 */
3534 mutex_lock(&set_limit_mutex);
3535 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3536 if (memswlimit < val) {
3537 ret = -EINVAL;
3538 mutex_unlock(&set_limit_mutex);
628f4235
KH
3539 break;
3540 }
3c11ecf4
KH
3541
3542 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3543 if (memlimit < val)
3544 enlarge = 1;
3545
8c7c6e34 3546 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3547 if (!ret) {
3548 if (memswlimit == val)
3549 memcg->memsw_is_minimum = true;
3550 else
3551 memcg->memsw_is_minimum = false;
3552 }
8c7c6e34
KH
3553 mutex_unlock(&set_limit_mutex);
3554
3555 if (!ret)
3556 break;
3557
5660048c
JW
3558 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3559 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3560 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3561 /* Usage is reduced ? */
3562 if (curusage >= oldusage)
3563 retry_count--;
3564 else
3565 oldusage = curusage;
8c7c6e34 3566 }
3c11ecf4
KH
3567 if (!ret && enlarge)
3568 memcg_oom_recover(memcg);
14797e23 3569
8c7c6e34
KH
3570 return ret;
3571}
3572
338c8431
LZ
3573static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3574 unsigned long long val)
8c7c6e34 3575{
81d39c20 3576 int retry_count;
3c11ecf4 3577 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3578 int children = mem_cgroup_count_children(memcg);
3579 int ret = -EBUSY;
3c11ecf4 3580 int enlarge = 0;
8c7c6e34 3581
81d39c20
KH
3582 /* see mem_cgroup_resize_res_limit */
3583 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3584 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3585 while (retry_count) {
3586 if (signal_pending(current)) {
3587 ret = -EINTR;
3588 break;
3589 }
3590 /*
3591 * Rather than hide all in some function, I do this in
3592 * open coded manner. You see what this really does.
aaad153e 3593 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3594 */
3595 mutex_lock(&set_limit_mutex);
3596 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3597 if (memlimit > val) {
3598 ret = -EINVAL;
3599 mutex_unlock(&set_limit_mutex);
3600 break;
3601 }
3c11ecf4
KH
3602 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3603 if (memswlimit < val)
3604 enlarge = 1;
8c7c6e34 3605 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3606 if (!ret) {
3607 if (memlimit == val)
3608 memcg->memsw_is_minimum = true;
3609 else
3610 memcg->memsw_is_minimum = false;
3611 }
8c7c6e34
KH
3612 mutex_unlock(&set_limit_mutex);
3613
3614 if (!ret)
3615 break;
3616
5660048c
JW
3617 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3618 MEM_CGROUP_RECLAIM_NOSWAP |
3619 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3620 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3621 /* Usage is reduced ? */
8c7c6e34 3622 if (curusage >= oldusage)
628f4235 3623 retry_count--;
81d39c20
KH
3624 else
3625 oldusage = curusage;
628f4235 3626 }
3c11ecf4
KH
3627 if (!ret && enlarge)
3628 memcg_oom_recover(memcg);
628f4235
KH
3629 return ret;
3630}
3631
4e416953 3632unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3633 gfp_t gfp_mask,
3634 unsigned long *total_scanned)
4e416953
BS
3635{
3636 unsigned long nr_reclaimed = 0;
3637 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3638 unsigned long reclaimed;
3639 int loop = 0;
3640 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3641 unsigned long long excess;
0ae5e89c 3642 unsigned long nr_scanned;
4e416953
BS
3643
3644 if (order > 0)
3645 return 0;
3646
00918b6a 3647 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3648 /*
3649 * This loop can run a while, specially if mem_cgroup's continuously
3650 * keep exceeding their soft limit and putting the system under
3651 * pressure
3652 */
3653 do {
3654 if (next_mz)
3655 mz = next_mz;
3656 else
3657 mz = mem_cgroup_largest_soft_limit_node(mctz);
3658 if (!mz)
3659 break;
3660
0ae5e89c 3661 nr_scanned = 0;
d79154bb 3662 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3663 gfp_mask, &nr_scanned);
4e416953 3664 nr_reclaimed += reclaimed;
0ae5e89c 3665 *total_scanned += nr_scanned;
4e416953
BS
3666 spin_lock(&mctz->lock);
3667
3668 /*
3669 * If we failed to reclaim anything from this memory cgroup
3670 * it is time to move on to the next cgroup
3671 */
3672 next_mz = NULL;
3673 if (!reclaimed) {
3674 do {
3675 /*
3676 * Loop until we find yet another one.
3677 *
3678 * By the time we get the soft_limit lock
3679 * again, someone might have aded the
3680 * group back on the RB tree. Iterate to
3681 * make sure we get a different mem.
3682 * mem_cgroup_largest_soft_limit_node returns
3683 * NULL if no other cgroup is present on
3684 * the tree
3685 */
3686 next_mz =
3687 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3688 if (next_mz == mz)
d79154bb 3689 css_put(&next_mz->memcg->css);
39cc98f1 3690 else /* next_mz == NULL or other memcg */
4e416953
BS
3691 break;
3692 } while (1);
3693 }
d79154bb
HD
3694 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3695 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3696 /*
3697 * One school of thought says that we should not add
3698 * back the node to the tree if reclaim returns 0.
3699 * But our reclaim could return 0, simply because due
3700 * to priority we are exposing a smaller subset of
3701 * memory to reclaim from. Consider this as a longer
3702 * term TODO.
3703 */
ef8745c1 3704 /* If excess == 0, no tree ops */
d79154bb 3705 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3706 spin_unlock(&mctz->lock);
d79154bb 3707 css_put(&mz->memcg->css);
4e416953
BS
3708 loop++;
3709 /*
3710 * Could not reclaim anything and there are no more
3711 * mem cgroups to try or we seem to be looping without
3712 * reclaiming anything.
3713 */
3714 if (!nr_reclaimed &&
3715 (next_mz == NULL ||
3716 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3717 break;
3718 } while (!nr_reclaimed);
3719 if (next_mz)
d79154bb 3720 css_put(&next_mz->memcg->css);
4e416953
BS
3721 return nr_reclaimed;
3722}
3723
2ef37d3f
MH
3724/**
3725 * mem_cgroup_force_empty_list - clears LRU of a group
3726 * @memcg: group to clear
3727 * @node: NUMA node
3728 * @zid: zone id
3729 * @lru: lru to to clear
3730 *
3c935d18 3731 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3732 * reclaim the pages page themselves - pages are moved to the parent (or root)
3733 * group.
cc847582 3734 */
2ef37d3f 3735static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3736 int node, int zid, enum lru_list lru)
cc847582 3737{
bea8c150 3738 struct lruvec *lruvec;
2ef37d3f 3739 unsigned long flags;
072c56c1 3740 struct list_head *list;
925b7673
JW
3741 struct page *busy;
3742 struct zone *zone;
072c56c1 3743
08e552c6 3744 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3745 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3746 list = &lruvec->lists[lru];
cc847582 3747
f817ed48 3748 busy = NULL;
2ef37d3f 3749 do {
925b7673 3750 struct page_cgroup *pc;
5564e88b
JW
3751 struct page *page;
3752
08e552c6 3753 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3754 if (list_empty(list)) {
08e552c6 3755 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3756 break;
f817ed48 3757 }
925b7673
JW
3758 page = list_entry(list->prev, struct page, lru);
3759 if (busy == page) {
3760 list_move(&page->lru, list);
648bcc77 3761 busy = NULL;
08e552c6 3762 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3763 continue;
3764 }
08e552c6 3765 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3766
925b7673 3767 pc = lookup_page_cgroup(page);
5564e88b 3768
3c935d18 3769 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3770 /* found lock contention or "pc" is obsolete. */
925b7673 3771 busy = page;
f817ed48
KH
3772 cond_resched();
3773 } else
3774 busy = NULL;
2ef37d3f 3775 } while (!list_empty(list));
cc847582
KH
3776}
3777
3778/*
c26251f9
MH
3779 * make mem_cgroup's charge to be 0 if there is no task by moving
3780 * all the charges and pages to the parent.
cc847582 3781 * This enables deleting this mem_cgroup.
c26251f9
MH
3782 *
3783 * Caller is responsible for holding css reference on the memcg.
cc847582 3784 */
ab5196c2 3785static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3786{
c26251f9 3787 int node, zid;
f817ed48 3788
fce66477 3789 do {
52d4b9ac
KH
3790 /* This is for making all *used* pages to be on LRU. */
3791 lru_add_drain_all();
c0ff4b85 3792 drain_all_stock_sync(memcg);
c0ff4b85 3793 mem_cgroup_start_move(memcg);
31aaea4a 3794 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3795 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3796 enum lru_list lru;
3797 for_each_lru(lru) {
2ef37d3f 3798 mem_cgroup_force_empty_list(memcg,
f156ab93 3799 node, zid, lru);
f817ed48 3800 }
1ecaab2b 3801 }
f817ed48 3802 }
c0ff4b85
R
3803 mem_cgroup_end_move(memcg);
3804 memcg_oom_recover(memcg);
52d4b9ac 3805 cond_resched();
f817ed48 3806
2ef37d3f
MH
3807 /*
3808 * This is a safety check because mem_cgroup_force_empty_list
3809 * could have raced with mem_cgroup_replace_page_cache callers
3810 * so the lru seemed empty but the page could have been added
3811 * right after the check. RES_USAGE should be safe as we always
3812 * charge before adding to the LRU.
3813 */
3814 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
c26251f9
MH
3815}
3816
3817/*
3818 * Reclaims as many pages from the given memcg as possible and moves
3819 * the rest to the parent.
3820 *
3821 * Caller is responsible for holding css reference for memcg.
3822 */
3823static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3824{
3825 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3826 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 3827
c1e862c1 3828 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
3829 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3830 return -EBUSY;
3831
c1e862c1
KH
3832 /* we call try-to-free pages for make this cgroup empty */
3833 lru_add_drain_all();
f817ed48 3834 /* try to free all pages in this cgroup */
569530fb 3835 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3836 int progress;
c1e862c1 3837
c26251f9
MH
3838 if (signal_pending(current))
3839 return -EINTR;
3840
c0ff4b85 3841 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3842 false);
c1e862c1 3843 if (!progress) {
f817ed48 3844 nr_retries--;
c1e862c1 3845 /* maybe some writeback is necessary */
8aa7e847 3846 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3847 }
f817ed48
KH
3848
3849 }
08e552c6 3850 lru_add_drain();
ab5196c2
MH
3851 mem_cgroup_reparent_charges(memcg);
3852
3853 return 0;
cc847582
KH
3854}
3855
6bbda35c 3856static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 3857{
c26251f9
MH
3858 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3859 int ret;
3860
d8423011
MH
3861 if (mem_cgroup_is_root(memcg))
3862 return -EINVAL;
c26251f9
MH
3863 css_get(&memcg->css);
3864 ret = mem_cgroup_force_empty(memcg);
3865 css_put(&memcg->css);
3866
3867 return ret;
c1e862c1
KH
3868}
3869
3870
18f59ea7
BS
3871static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3872{
3873 return mem_cgroup_from_cont(cont)->use_hierarchy;
3874}
3875
3876static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3877 u64 val)
3878{
3879 int retval = 0;
c0ff4b85 3880 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3881 struct cgroup *parent = cont->parent;
c0ff4b85 3882 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3883
3884 if (parent)
c0ff4b85 3885 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3886
3887 cgroup_lock();
567fb435
GC
3888
3889 if (memcg->use_hierarchy == val)
3890 goto out;
3891
18f59ea7 3892 /*
af901ca1 3893 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3894 * in the child subtrees. If it is unset, then the change can
3895 * occur, provided the current cgroup has no children.
3896 *
3897 * For the root cgroup, parent_mem is NULL, we allow value to be
3898 * set if there are no children.
3899 */
c0ff4b85 3900 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3901 (val == 1 || val == 0)) {
3902 if (list_empty(&cont->children))
c0ff4b85 3903 memcg->use_hierarchy = val;
18f59ea7
BS
3904 else
3905 retval = -EBUSY;
3906 } else
3907 retval = -EINVAL;
567fb435
GC
3908
3909out:
18f59ea7
BS
3910 cgroup_unlock();
3911
3912 return retval;
3913}
3914
0c3e73e8 3915
c0ff4b85 3916static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3917 enum mem_cgroup_stat_index idx)
0c3e73e8 3918{
7d74b06f 3919 struct mem_cgroup *iter;
7a159cc9 3920 long val = 0;
0c3e73e8 3921
7a159cc9 3922 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3923 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3924 val += mem_cgroup_read_stat(iter, idx);
3925
3926 if (val < 0) /* race ? */
3927 val = 0;
3928 return val;
0c3e73e8
BS
3929}
3930
c0ff4b85 3931static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3932{
7d74b06f 3933 u64 val;
104f3928 3934
c0ff4b85 3935 if (!mem_cgroup_is_root(memcg)) {
104f3928 3936 if (!swap)
65c64ce8 3937 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3938 else
65c64ce8 3939 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3940 }
3941
c0ff4b85
R
3942 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3943 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3944
7d74b06f 3945 if (swap)
bff6bb83 3946 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3947
3948 return val << PAGE_SHIFT;
3949}
3950
af36f906
TH
3951static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3952 struct file *file, char __user *buf,
3953 size_t nbytes, loff_t *ppos)
8cdea7c0 3954{
c0ff4b85 3955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3956 char str[64];
104f3928 3957 u64 val;
86ae53e1
GC
3958 int name, len;
3959 enum res_type type;
8c7c6e34
KH
3960
3961 type = MEMFILE_TYPE(cft->private);
3962 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3963
3964 if (!do_swap_account && type == _MEMSWAP)
3965 return -EOPNOTSUPP;
3966
8c7c6e34
KH
3967 switch (type) {
3968 case _MEM:
104f3928 3969 if (name == RES_USAGE)
c0ff4b85 3970 val = mem_cgroup_usage(memcg, false);
104f3928 3971 else
c0ff4b85 3972 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3973 break;
3974 case _MEMSWAP:
104f3928 3975 if (name == RES_USAGE)
c0ff4b85 3976 val = mem_cgroup_usage(memcg, true);
104f3928 3977 else
c0ff4b85 3978 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3979 break;
3980 default:
3981 BUG();
8c7c6e34 3982 }
af36f906
TH
3983
3984 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3985 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3986}
628f4235
KH
3987/*
3988 * The user of this function is...
3989 * RES_LIMIT.
3990 */
856c13aa
PM
3991static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3992 const char *buffer)
8cdea7c0 3993{
628f4235 3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
3995 enum res_type type;
3996 int name;
628f4235
KH
3997 unsigned long long val;
3998 int ret;
3999
8c7c6e34
KH
4000 type = MEMFILE_TYPE(cft->private);
4001 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4002
4003 if (!do_swap_account && type == _MEMSWAP)
4004 return -EOPNOTSUPP;
4005
8c7c6e34 4006 switch (name) {
628f4235 4007 case RES_LIMIT:
4b3bde4c
BS
4008 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4009 ret = -EINVAL;
4010 break;
4011 }
628f4235
KH
4012 /* This function does all necessary parse...reuse it */
4013 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4014 if (ret)
4015 break;
4016 if (type == _MEM)
628f4235 4017 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4018 else
4019 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4020 break;
296c81d8
BS
4021 case RES_SOFT_LIMIT:
4022 ret = res_counter_memparse_write_strategy(buffer, &val);
4023 if (ret)
4024 break;
4025 /*
4026 * For memsw, soft limits are hard to implement in terms
4027 * of semantics, for now, we support soft limits for
4028 * control without swap
4029 */
4030 if (type == _MEM)
4031 ret = res_counter_set_soft_limit(&memcg->res, val);
4032 else
4033 ret = -EINVAL;
4034 break;
628f4235
KH
4035 default:
4036 ret = -EINVAL; /* should be BUG() ? */
4037 break;
4038 }
4039 return ret;
8cdea7c0
BS
4040}
4041
fee7b548
KH
4042static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4043 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4044{
4045 struct cgroup *cgroup;
4046 unsigned long long min_limit, min_memsw_limit, tmp;
4047
4048 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4049 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4050 cgroup = memcg->css.cgroup;
4051 if (!memcg->use_hierarchy)
4052 goto out;
4053
4054 while (cgroup->parent) {
4055 cgroup = cgroup->parent;
4056 memcg = mem_cgroup_from_cont(cgroup);
4057 if (!memcg->use_hierarchy)
4058 break;
4059 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4060 min_limit = min(min_limit, tmp);
4061 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4062 min_memsw_limit = min(min_memsw_limit, tmp);
4063 }
4064out:
4065 *mem_limit = min_limit;
4066 *memsw_limit = min_memsw_limit;
fee7b548
KH
4067}
4068
29f2a4da 4069static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4070{
af36f906 4071 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4072 int name;
4073 enum res_type type;
c84872e1 4074
8c7c6e34
KH
4075 type = MEMFILE_TYPE(event);
4076 name = MEMFILE_ATTR(event);
af36f906
TH
4077
4078 if (!do_swap_account && type == _MEMSWAP)
4079 return -EOPNOTSUPP;
4080
8c7c6e34 4081 switch (name) {
29f2a4da 4082 case RES_MAX_USAGE:
8c7c6e34 4083 if (type == _MEM)
c0ff4b85 4084 res_counter_reset_max(&memcg->res);
8c7c6e34 4085 else
c0ff4b85 4086 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4087 break;
4088 case RES_FAILCNT:
8c7c6e34 4089 if (type == _MEM)
c0ff4b85 4090 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4091 else
c0ff4b85 4092 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4093 break;
4094 }
f64c3f54 4095
85cc59db 4096 return 0;
c84872e1
PE
4097}
4098
7dc74be0
DN
4099static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4100 struct cftype *cft)
4101{
4102 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4103}
4104
02491447 4105#ifdef CONFIG_MMU
7dc74be0
DN
4106static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4107 struct cftype *cft, u64 val)
4108{
c0ff4b85 4109 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4110
4111 if (val >= (1 << NR_MOVE_TYPE))
4112 return -EINVAL;
4113 /*
4114 * We check this value several times in both in can_attach() and
4115 * attach(), so we need cgroup lock to prevent this value from being
4116 * inconsistent.
4117 */
4118 cgroup_lock();
c0ff4b85 4119 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4120 cgroup_unlock();
4121
4122 return 0;
4123}
02491447
DN
4124#else
4125static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4126 struct cftype *cft, u64 val)
4127{
4128 return -ENOSYS;
4129}
4130#endif
7dc74be0 4131
406eb0c9 4132#ifdef CONFIG_NUMA
ab215884 4133static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4134 struct seq_file *m)
406eb0c9
YH
4135{
4136 int nid;
4137 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4138 unsigned long node_nr;
d79154bb 4139 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4140
d79154bb 4141 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 4142 seq_printf(m, "total=%lu", total_nr);
31aaea4a 4143 for_each_node_state(nid, N_MEMORY) {
d79154bb 4144 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4145 seq_printf(m, " N%d=%lu", nid, node_nr);
4146 }
4147 seq_putc(m, '\n');
4148
d79154bb 4149 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 4150 seq_printf(m, "file=%lu", file_nr);
31aaea4a 4151 for_each_node_state(nid, N_MEMORY) {
d79154bb 4152 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4153 LRU_ALL_FILE);
406eb0c9
YH
4154 seq_printf(m, " N%d=%lu", nid, node_nr);
4155 }
4156 seq_putc(m, '\n');
4157
d79154bb 4158 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 4159 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 4160 for_each_node_state(nid, N_MEMORY) {
d79154bb 4161 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4162 LRU_ALL_ANON);
406eb0c9
YH
4163 seq_printf(m, " N%d=%lu", nid, node_nr);
4164 }
4165 seq_putc(m, '\n');
4166
d79154bb 4167 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 4168 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 4169 for_each_node_state(nid, N_MEMORY) {
d79154bb 4170 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4171 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4172 seq_printf(m, " N%d=%lu", nid, node_nr);
4173 }
4174 seq_putc(m, '\n');
4175 return 0;
4176}
4177#endif /* CONFIG_NUMA */
4178
af7c4b0e
JW
4179static const char * const mem_cgroup_lru_names[] = {
4180 "inactive_anon",
4181 "active_anon",
4182 "inactive_file",
4183 "active_file",
4184 "unevictable",
4185};
4186
4187static inline void mem_cgroup_lru_names_not_uptodate(void)
4188{
4189 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4190}
4191
ab215884 4192static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4193 struct seq_file *m)
d2ceb9b7 4194{
d79154bb 4195 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4196 struct mem_cgroup *mi;
4197 unsigned int i;
406eb0c9 4198
af7c4b0e 4199 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4200 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4201 continue;
af7c4b0e
JW
4202 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4203 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4204 }
7b854121 4205
af7c4b0e
JW
4206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4207 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4208 mem_cgroup_read_events(memcg, i));
4209
4210 for (i = 0; i < NR_LRU_LISTS; i++)
4211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4213
14067bb3 4214 /* Hierarchical information */
fee7b548
KH
4215 {
4216 unsigned long long limit, memsw_limit;
d79154bb 4217 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4218 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4219 if (do_swap_account)
78ccf5b5
JW
4220 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4221 memsw_limit);
fee7b548 4222 }
7f016ee8 4223
af7c4b0e
JW
4224 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4225 long long val = 0;
4226
bff6bb83 4227 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4228 continue;
af7c4b0e
JW
4229 for_each_mem_cgroup_tree(mi, memcg)
4230 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4231 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4232 }
4233
4234 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4235 unsigned long long val = 0;
4236
4237 for_each_mem_cgroup_tree(mi, memcg)
4238 val += mem_cgroup_read_events(mi, i);
4239 seq_printf(m, "total_%s %llu\n",
4240 mem_cgroup_events_names[i], val);
4241 }
4242
4243 for (i = 0; i < NR_LRU_LISTS; i++) {
4244 unsigned long long val = 0;
4245
4246 for_each_mem_cgroup_tree(mi, memcg)
4247 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4248 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4249 }
14067bb3 4250
7f016ee8 4251#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4252 {
4253 int nid, zid;
4254 struct mem_cgroup_per_zone *mz;
89abfab1 4255 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4256 unsigned long recent_rotated[2] = {0, 0};
4257 unsigned long recent_scanned[2] = {0, 0};
4258
4259 for_each_online_node(nid)
4260 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4261 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4262 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4263
89abfab1
HD
4264 recent_rotated[0] += rstat->recent_rotated[0];
4265 recent_rotated[1] += rstat->recent_rotated[1];
4266 recent_scanned[0] += rstat->recent_scanned[0];
4267 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4268 }
78ccf5b5
JW
4269 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4270 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4271 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4272 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4273 }
4274#endif
4275
d2ceb9b7
KH
4276 return 0;
4277}
4278
a7885eb8
KM
4279static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4280{
4281 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4282
1f4c025b 4283 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4284}
4285
4286static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4287 u64 val)
4288{
4289 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4290 struct mem_cgroup *parent;
068b38c1 4291
a7885eb8
KM
4292 if (val > 100)
4293 return -EINVAL;
4294
4295 if (cgrp->parent == NULL)
4296 return -EINVAL;
4297
4298 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4299
4300 cgroup_lock();
4301
a7885eb8
KM
4302 /* If under hierarchy, only empty-root can set this value */
4303 if ((parent->use_hierarchy) ||
068b38c1
LZ
4304 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4305 cgroup_unlock();
a7885eb8 4306 return -EINVAL;
068b38c1 4307 }
a7885eb8 4308
a7885eb8 4309 memcg->swappiness = val;
a7885eb8 4310
068b38c1
LZ
4311 cgroup_unlock();
4312
a7885eb8
KM
4313 return 0;
4314}
4315
2e72b634
KS
4316static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4317{
4318 struct mem_cgroup_threshold_ary *t;
4319 u64 usage;
4320 int i;
4321
4322 rcu_read_lock();
4323 if (!swap)
2c488db2 4324 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4325 else
2c488db2 4326 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4327
4328 if (!t)
4329 goto unlock;
4330
4331 usage = mem_cgroup_usage(memcg, swap);
4332
4333 /*
748dad36 4334 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4335 * If it's not true, a threshold was crossed after last
4336 * call of __mem_cgroup_threshold().
4337 */
5407a562 4338 i = t->current_threshold;
2e72b634
KS
4339
4340 /*
4341 * Iterate backward over array of thresholds starting from
4342 * current_threshold and check if a threshold is crossed.
4343 * If none of thresholds below usage is crossed, we read
4344 * only one element of the array here.
4345 */
4346 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4347 eventfd_signal(t->entries[i].eventfd, 1);
4348
4349 /* i = current_threshold + 1 */
4350 i++;
4351
4352 /*
4353 * Iterate forward over array of thresholds starting from
4354 * current_threshold+1 and check if a threshold is crossed.
4355 * If none of thresholds above usage is crossed, we read
4356 * only one element of the array here.
4357 */
4358 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4359 eventfd_signal(t->entries[i].eventfd, 1);
4360
4361 /* Update current_threshold */
5407a562 4362 t->current_threshold = i - 1;
2e72b634
KS
4363unlock:
4364 rcu_read_unlock();
4365}
4366
4367static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4368{
ad4ca5f4
KS
4369 while (memcg) {
4370 __mem_cgroup_threshold(memcg, false);
4371 if (do_swap_account)
4372 __mem_cgroup_threshold(memcg, true);
4373
4374 memcg = parent_mem_cgroup(memcg);
4375 }
2e72b634
KS
4376}
4377
4378static int compare_thresholds(const void *a, const void *b)
4379{
4380 const struct mem_cgroup_threshold *_a = a;
4381 const struct mem_cgroup_threshold *_b = b;
4382
4383 return _a->threshold - _b->threshold;
4384}
4385
c0ff4b85 4386static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4387{
4388 struct mem_cgroup_eventfd_list *ev;
4389
c0ff4b85 4390 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4391 eventfd_signal(ev->eventfd, 1);
4392 return 0;
4393}
4394
c0ff4b85 4395static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4396{
7d74b06f
KH
4397 struct mem_cgroup *iter;
4398
c0ff4b85 4399 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4400 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4401}
4402
4403static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4404 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4405{
4406 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4407 struct mem_cgroup_thresholds *thresholds;
4408 struct mem_cgroup_threshold_ary *new;
86ae53e1 4409 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4410 u64 threshold, usage;
2c488db2 4411 int i, size, ret;
2e72b634
KS
4412
4413 ret = res_counter_memparse_write_strategy(args, &threshold);
4414 if (ret)
4415 return ret;
4416
4417 mutex_lock(&memcg->thresholds_lock);
2c488db2 4418
2e72b634 4419 if (type == _MEM)
2c488db2 4420 thresholds = &memcg->thresholds;
2e72b634 4421 else if (type == _MEMSWAP)
2c488db2 4422 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4423 else
4424 BUG();
4425
4426 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4427
4428 /* Check if a threshold crossed before adding a new one */
2c488db2 4429 if (thresholds->primary)
2e72b634
KS
4430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4431
2c488db2 4432 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4433
4434 /* Allocate memory for new array of thresholds */
2c488db2 4435 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4436 GFP_KERNEL);
2c488db2 4437 if (!new) {
2e72b634
KS
4438 ret = -ENOMEM;
4439 goto unlock;
4440 }
2c488db2 4441 new->size = size;
2e72b634
KS
4442
4443 /* Copy thresholds (if any) to new array */
2c488db2
KS
4444 if (thresholds->primary) {
4445 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4446 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4447 }
4448
2e72b634 4449 /* Add new threshold */
2c488db2
KS
4450 new->entries[size - 1].eventfd = eventfd;
4451 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4452
4453 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4454 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4455 compare_thresholds, NULL);
4456
4457 /* Find current threshold */
2c488db2 4458 new->current_threshold = -1;
2e72b634 4459 for (i = 0; i < size; i++) {
748dad36 4460 if (new->entries[i].threshold <= usage) {
2e72b634 4461 /*
2c488db2
KS
4462 * new->current_threshold will not be used until
4463 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4464 * it here.
4465 */
2c488db2 4466 ++new->current_threshold;
748dad36
SZ
4467 } else
4468 break;
2e72b634
KS
4469 }
4470
2c488db2
KS
4471 /* Free old spare buffer and save old primary buffer as spare */
4472 kfree(thresholds->spare);
4473 thresholds->spare = thresholds->primary;
4474
4475 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4476
907860ed 4477 /* To be sure that nobody uses thresholds */
2e72b634
KS
4478 synchronize_rcu();
4479
2e72b634
KS
4480unlock:
4481 mutex_unlock(&memcg->thresholds_lock);
4482
4483 return ret;
4484}
4485
907860ed 4486static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4487 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4488{
4489 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4490 struct mem_cgroup_thresholds *thresholds;
4491 struct mem_cgroup_threshold_ary *new;
86ae53e1 4492 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 4493 u64 usage;
2c488db2 4494 int i, j, size;
2e72b634
KS
4495
4496 mutex_lock(&memcg->thresholds_lock);
4497 if (type == _MEM)
2c488db2 4498 thresholds = &memcg->thresholds;
2e72b634 4499 else if (type == _MEMSWAP)
2c488db2 4500 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4501 else
4502 BUG();
4503
371528ca
AV
4504 if (!thresholds->primary)
4505 goto unlock;
4506
2e72b634
KS
4507 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4508
4509 /* Check if a threshold crossed before removing */
4510 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4511
4512 /* Calculate new number of threshold */
2c488db2
KS
4513 size = 0;
4514 for (i = 0; i < thresholds->primary->size; i++) {
4515 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4516 size++;
4517 }
4518
2c488db2 4519 new = thresholds->spare;
907860ed 4520
2e72b634
KS
4521 /* Set thresholds array to NULL if we don't have thresholds */
4522 if (!size) {
2c488db2
KS
4523 kfree(new);
4524 new = NULL;
907860ed 4525 goto swap_buffers;
2e72b634
KS
4526 }
4527
2c488db2 4528 new->size = size;
2e72b634
KS
4529
4530 /* Copy thresholds and find current threshold */
2c488db2
KS
4531 new->current_threshold = -1;
4532 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4533 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4534 continue;
4535
2c488db2 4536 new->entries[j] = thresholds->primary->entries[i];
748dad36 4537 if (new->entries[j].threshold <= usage) {
2e72b634 4538 /*
2c488db2 4539 * new->current_threshold will not be used
2e72b634
KS
4540 * until rcu_assign_pointer(), so it's safe to increment
4541 * it here.
4542 */
2c488db2 4543 ++new->current_threshold;
2e72b634
KS
4544 }
4545 j++;
4546 }
4547
907860ed 4548swap_buffers:
2c488db2
KS
4549 /* Swap primary and spare array */
4550 thresholds->spare = thresholds->primary;
8c757763
SZ
4551 /* If all events are unregistered, free the spare array */
4552 if (!new) {
4553 kfree(thresholds->spare);
4554 thresholds->spare = NULL;
4555 }
4556
2c488db2 4557 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4558
907860ed 4559 /* To be sure that nobody uses thresholds */
2e72b634 4560 synchronize_rcu();
371528ca 4561unlock:
2e72b634 4562 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4563}
c1e862c1 4564
9490ff27
KH
4565static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4566 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4567{
4568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4569 struct mem_cgroup_eventfd_list *event;
86ae53e1 4570 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4571
4572 BUG_ON(type != _OOM_TYPE);
4573 event = kmalloc(sizeof(*event), GFP_KERNEL);
4574 if (!event)
4575 return -ENOMEM;
4576
1af8efe9 4577 spin_lock(&memcg_oom_lock);
9490ff27
KH
4578
4579 event->eventfd = eventfd;
4580 list_add(&event->list, &memcg->oom_notify);
4581
4582 /* already in OOM ? */
79dfdacc 4583 if (atomic_read(&memcg->under_oom))
9490ff27 4584 eventfd_signal(eventfd, 1);
1af8efe9 4585 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4586
4587 return 0;
4588}
4589
907860ed 4590static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4591 struct cftype *cft, struct eventfd_ctx *eventfd)
4592{
c0ff4b85 4593 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 4594 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 4595 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
4596
4597 BUG_ON(type != _OOM_TYPE);
4598
1af8efe9 4599 spin_lock(&memcg_oom_lock);
9490ff27 4600
c0ff4b85 4601 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4602 if (ev->eventfd == eventfd) {
4603 list_del(&ev->list);
4604 kfree(ev);
4605 }
4606 }
4607
1af8efe9 4608 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4609}
4610
3c11ecf4
KH
4611static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4612 struct cftype *cft, struct cgroup_map_cb *cb)
4613{
c0ff4b85 4614 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4615
c0ff4b85 4616 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4617
c0ff4b85 4618 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4619 cb->fill(cb, "under_oom", 1);
4620 else
4621 cb->fill(cb, "under_oom", 0);
4622 return 0;
4623}
4624
3c11ecf4
KH
4625static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4626 struct cftype *cft, u64 val)
4627{
c0ff4b85 4628 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4629 struct mem_cgroup *parent;
4630
4631 /* cannot set to root cgroup and only 0 and 1 are allowed */
4632 if (!cgrp->parent || !((val == 0) || (val == 1)))
4633 return -EINVAL;
4634
4635 parent = mem_cgroup_from_cont(cgrp->parent);
4636
4637 cgroup_lock();
4638 /* oom-kill-disable is a flag for subhierarchy. */
4639 if ((parent->use_hierarchy) ||
c0ff4b85 4640 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4641 cgroup_unlock();
4642 return -EINVAL;
4643 }
c0ff4b85 4644 memcg->oom_kill_disable = val;
4d845ebf 4645 if (!val)
c0ff4b85 4646 memcg_oom_recover(memcg);
3c11ecf4
KH
4647 cgroup_unlock();
4648 return 0;
4649}
4650
c255a458 4651#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4652static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4653{
1d62e436 4654 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4655};
4656
1d62e436 4657static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4658{
1d62e436 4659 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4660}
e5671dfa 4661#else
cbe128e3 4662static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4663{
4664 return 0;
4665}
d1a4c0b3 4666
1d62e436 4667static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4668{
4669}
e5671dfa
GC
4670#endif
4671
8cdea7c0
BS
4672static struct cftype mem_cgroup_files[] = {
4673 {
0eea1030 4674 .name = "usage_in_bytes",
8c7c6e34 4675 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4676 .read = mem_cgroup_read,
9490ff27
KH
4677 .register_event = mem_cgroup_usage_register_event,
4678 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4679 },
c84872e1
PE
4680 {
4681 .name = "max_usage_in_bytes",
8c7c6e34 4682 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4683 .trigger = mem_cgroup_reset,
af36f906 4684 .read = mem_cgroup_read,
c84872e1 4685 },
8cdea7c0 4686 {
0eea1030 4687 .name = "limit_in_bytes",
8c7c6e34 4688 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4689 .write_string = mem_cgroup_write,
af36f906 4690 .read = mem_cgroup_read,
8cdea7c0 4691 },
296c81d8
BS
4692 {
4693 .name = "soft_limit_in_bytes",
4694 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4695 .write_string = mem_cgroup_write,
af36f906 4696 .read = mem_cgroup_read,
296c81d8 4697 },
8cdea7c0
BS
4698 {
4699 .name = "failcnt",
8c7c6e34 4700 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4701 .trigger = mem_cgroup_reset,
af36f906 4702 .read = mem_cgroup_read,
8cdea7c0 4703 },
d2ceb9b7
KH
4704 {
4705 .name = "stat",
ab215884 4706 .read_seq_string = memcg_stat_show,
d2ceb9b7 4707 },
c1e862c1
KH
4708 {
4709 .name = "force_empty",
4710 .trigger = mem_cgroup_force_empty_write,
4711 },
18f59ea7
BS
4712 {
4713 .name = "use_hierarchy",
4714 .write_u64 = mem_cgroup_hierarchy_write,
4715 .read_u64 = mem_cgroup_hierarchy_read,
4716 },
a7885eb8
KM
4717 {
4718 .name = "swappiness",
4719 .read_u64 = mem_cgroup_swappiness_read,
4720 .write_u64 = mem_cgroup_swappiness_write,
4721 },
7dc74be0
DN
4722 {
4723 .name = "move_charge_at_immigrate",
4724 .read_u64 = mem_cgroup_move_charge_read,
4725 .write_u64 = mem_cgroup_move_charge_write,
4726 },
9490ff27
KH
4727 {
4728 .name = "oom_control",
3c11ecf4
KH
4729 .read_map = mem_cgroup_oom_control_read,
4730 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4731 .register_event = mem_cgroup_oom_register_event,
4732 .unregister_event = mem_cgroup_oom_unregister_event,
4733 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4734 },
406eb0c9
YH
4735#ifdef CONFIG_NUMA
4736 {
4737 .name = "numa_stat",
ab215884 4738 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4739 },
4740#endif
c255a458 4741#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4742 {
4743 .name = "memsw.usage_in_bytes",
4744 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4745 .read = mem_cgroup_read,
9490ff27
KH
4746 .register_event = mem_cgroup_usage_register_event,
4747 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4748 },
4749 {
4750 .name = "memsw.max_usage_in_bytes",
4751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4752 .trigger = mem_cgroup_reset,
af36f906 4753 .read = mem_cgroup_read,
8c7c6e34
KH
4754 },
4755 {
4756 .name = "memsw.limit_in_bytes",
4757 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4758 .write_string = mem_cgroup_write,
af36f906 4759 .read = mem_cgroup_read,
8c7c6e34
KH
4760 },
4761 {
4762 .name = "memsw.failcnt",
4763 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4764 .trigger = mem_cgroup_reset,
af36f906 4765 .read = mem_cgroup_read,
8c7c6e34 4766 },
8c7c6e34 4767#endif
6bc10349 4768 { }, /* terminate */
af36f906 4769};
8c7c6e34 4770
c0ff4b85 4771static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4772{
4773 struct mem_cgroup_per_node *pn;
1ecaab2b 4774 struct mem_cgroup_per_zone *mz;
41e3355d 4775 int zone, tmp = node;
1ecaab2b
KH
4776 /*
4777 * This routine is called against possible nodes.
4778 * But it's BUG to call kmalloc() against offline node.
4779 *
4780 * TODO: this routine can waste much memory for nodes which will
4781 * never be onlined. It's better to use memory hotplug callback
4782 * function.
4783 */
41e3355d
KH
4784 if (!node_state(node, N_NORMAL_MEMORY))
4785 tmp = -1;
17295c88 4786 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4787 if (!pn)
4788 return 1;
1ecaab2b 4789
1ecaab2b
KH
4790 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4791 mz = &pn->zoneinfo[zone];
bea8c150 4792 lruvec_init(&mz->lruvec);
f64c3f54 4793 mz->usage_in_excess = 0;
4e416953 4794 mz->on_tree = false;
d79154bb 4795 mz->memcg = memcg;
1ecaab2b 4796 }
0a619e58 4797 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4798 return 0;
4799}
4800
c0ff4b85 4801static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4802{
c0ff4b85 4803 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4804}
4805
33327948
KH
4806static struct mem_cgroup *mem_cgroup_alloc(void)
4807{
d79154bb 4808 struct mem_cgroup *memcg;
c62b1a3b 4809 int size = sizeof(struct mem_cgroup);
33327948 4810
c62b1a3b 4811 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4812 if (size < PAGE_SIZE)
d79154bb 4813 memcg = kzalloc(size, GFP_KERNEL);
33327948 4814 else
d79154bb 4815 memcg = vzalloc(size);
33327948 4816
d79154bb 4817 if (!memcg)
e7bbcdf3
DC
4818 return NULL;
4819
d79154bb
HD
4820 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4821 if (!memcg->stat)
d2e61b8d 4822 goto out_free;
d79154bb
HD
4823 spin_lock_init(&memcg->pcp_counter_lock);
4824 return memcg;
d2e61b8d
DC
4825
4826out_free:
4827 if (size < PAGE_SIZE)
d79154bb 4828 kfree(memcg);
d2e61b8d 4829 else
d79154bb 4830 vfree(memcg);
d2e61b8d 4831 return NULL;
33327948
KH
4832}
4833
59927fb9 4834/*
3afe36b1 4835 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4836 * but in process context. The work_freeing structure is overlaid
4837 * on the rcu_freeing structure, which itself is overlaid on memsw.
4838 */
3afe36b1 4839static void free_work(struct work_struct *work)
59927fb9
HD
4840{
4841 struct mem_cgroup *memcg;
3afe36b1 4842 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4843
4844 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4845 /*
4846 * We need to make sure that (at least for now), the jump label
4847 * destruction code runs outside of the cgroup lock. This is because
4848 * get_online_cpus(), which is called from the static_branch update,
4849 * can't be called inside the cgroup_lock. cpusets are the ones
4850 * enforcing this dependency, so if they ever change, we might as well.
4851 *
4852 * schedule_work() will guarantee this happens. Be careful if you need
4853 * to move this code around, and make sure it is outside
4854 * the cgroup_lock.
4855 */
4856 disarm_sock_keys(memcg);
3afe36b1
GC
4857 if (size < PAGE_SIZE)
4858 kfree(memcg);
4859 else
4860 vfree(memcg);
59927fb9 4861}
3afe36b1
GC
4862
4863static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4864{
4865 struct mem_cgroup *memcg;
4866
4867 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4868 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4869 schedule_work(&memcg->work_freeing);
4870}
4871
8c7c6e34
KH
4872/*
4873 * At destroying mem_cgroup, references from swap_cgroup can remain.
4874 * (scanning all at force_empty is too costly...)
4875 *
4876 * Instead of clearing all references at force_empty, we remember
4877 * the number of reference from swap_cgroup and free mem_cgroup when
4878 * it goes down to 0.
4879 *
8c7c6e34
KH
4880 * Removal of cgroup itself succeeds regardless of refs from swap.
4881 */
4882
c0ff4b85 4883static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4884{
08e552c6
KH
4885 int node;
4886
c0ff4b85
R
4887 mem_cgroup_remove_from_trees(memcg);
4888 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4889
3ed28fa1 4890 for_each_node(node)
c0ff4b85 4891 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4892
c0ff4b85 4893 free_percpu(memcg->stat);
3afe36b1 4894 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4895}
4896
c0ff4b85 4897static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4898{
c0ff4b85 4899 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4900}
4901
c0ff4b85 4902static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4903{
c0ff4b85
R
4904 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4905 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4906 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4907 if (parent)
4908 mem_cgroup_put(parent);
4909 }
8c7c6e34
KH
4910}
4911
c0ff4b85 4912static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4913{
c0ff4b85 4914 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4915}
4916
7bcc1bb1
DN
4917/*
4918 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4919 */
e1aab161 4920struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4921{
c0ff4b85 4922 if (!memcg->res.parent)
7bcc1bb1 4923 return NULL;
c0ff4b85 4924 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4925}
e1aab161 4926EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4927
c255a458 4928#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4929static void __init enable_swap_cgroup(void)
4930{
f8d66542 4931 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4932 do_swap_account = 1;
4933}
4934#else
4935static void __init enable_swap_cgroup(void)
4936{
4937}
4938#endif
4939
f64c3f54
BS
4940static int mem_cgroup_soft_limit_tree_init(void)
4941{
4942 struct mem_cgroup_tree_per_node *rtpn;
4943 struct mem_cgroup_tree_per_zone *rtpz;
4944 int tmp, node, zone;
4945
3ed28fa1 4946 for_each_node(node) {
f64c3f54
BS
4947 tmp = node;
4948 if (!node_state(node, N_NORMAL_MEMORY))
4949 tmp = -1;
4950 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4951 if (!rtpn)
c3cecc68 4952 goto err_cleanup;
f64c3f54
BS
4953
4954 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4955
4956 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4957 rtpz = &rtpn->rb_tree_per_zone[zone];
4958 rtpz->rb_root = RB_ROOT;
4959 spin_lock_init(&rtpz->lock);
4960 }
4961 }
4962 return 0;
c3cecc68
MH
4963
4964err_cleanup:
3ed28fa1 4965 for_each_node(node) {
c3cecc68
MH
4966 if (!soft_limit_tree.rb_tree_per_node[node])
4967 break;
4968 kfree(soft_limit_tree.rb_tree_per_node[node]);
4969 soft_limit_tree.rb_tree_per_node[node] = NULL;
4970 }
4971 return 1;
4972
f64c3f54
BS
4973}
4974
0eb253e2 4975static struct cgroup_subsys_state * __ref
92fb9748 4976mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 4977{
c0ff4b85 4978 struct mem_cgroup *memcg, *parent;
04046e1a 4979 long error = -ENOMEM;
6d12e2d8 4980 int node;
8cdea7c0 4981
c0ff4b85
R
4982 memcg = mem_cgroup_alloc();
4983 if (!memcg)
04046e1a 4984 return ERR_PTR(error);
78fb7466 4985
3ed28fa1 4986 for_each_node(node)
c0ff4b85 4987 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4988 goto free_out;
f64c3f54 4989
c077719b 4990 /* root ? */
28dbc4b6 4991 if (cont->parent == NULL) {
cdec2e42 4992 int cpu;
c077719b 4993 enable_swap_cgroup();
28dbc4b6 4994 parent = NULL;
f64c3f54
BS
4995 if (mem_cgroup_soft_limit_tree_init())
4996 goto free_out;
a41c58a6 4997 root_mem_cgroup = memcg;
cdec2e42
KH
4998 for_each_possible_cpu(cpu) {
4999 struct memcg_stock_pcp *stock =
5000 &per_cpu(memcg_stock, cpu);
5001 INIT_WORK(&stock->work, drain_local_stock);
5002 }
711d3d2c 5003 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5004 } else {
28dbc4b6 5005 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5006 memcg->use_hierarchy = parent->use_hierarchy;
5007 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5008 }
28dbc4b6 5009
18f59ea7 5010 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5011 res_counter_init(&memcg->res, &parent->res);
5012 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5013 /*
5014 * We increment refcnt of the parent to ensure that we can
5015 * safely access it on res_counter_charge/uncharge.
5016 * This refcnt will be decremented when freeing this
5017 * mem_cgroup(see mem_cgroup_put).
5018 */
5019 mem_cgroup_get(parent);
18f59ea7 5020 } else {
c0ff4b85
R
5021 res_counter_init(&memcg->res, NULL);
5022 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
5023 /*
5024 * Deeper hierachy with use_hierarchy == false doesn't make
5025 * much sense so let cgroup subsystem know about this
5026 * unfortunate state in our controller.
5027 */
5028 if (parent && parent != root_mem_cgroup)
5029 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5030 }
c0ff4b85
R
5031 memcg->last_scanned_node = MAX_NUMNODES;
5032 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5033
a7885eb8 5034 if (parent)
c0ff4b85
R
5035 memcg->swappiness = mem_cgroup_swappiness(parent);
5036 atomic_set(&memcg->refcnt, 1);
5037 memcg->move_charge_at_immigrate = 0;
5038 mutex_init(&memcg->thresholds_lock);
312734c0 5039 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5040
5041 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5042 if (error) {
5043 /*
5044 * We call put now because our (and parent's) refcnts
5045 * are already in place. mem_cgroup_put() will internally
5046 * call __mem_cgroup_free, so return directly
5047 */
5048 mem_cgroup_put(memcg);
5049 return ERR_PTR(error);
5050 }
c0ff4b85 5051 return &memcg->css;
6d12e2d8 5052free_out:
c0ff4b85 5053 __mem_cgroup_free(memcg);
04046e1a 5054 return ERR_PTR(error);
8cdea7c0
BS
5055}
5056
92fb9748 5057static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5058{
c0ff4b85 5059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5060
ab5196c2 5061 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5062}
5063
92fb9748 5064static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5065{
c0ff4b85 5066 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5067
1d62e436 5068 kmem_cgroup_destroy(memcg);
d1a4c0b3 5069
c0ff4b85 5070 mem_cgroup_put(memcg);
8cdea7c0
BS
5071}
5072
02491447 5073#ifdef CONFIG_MMU
7dc74be0 5074/* Handlers for move charge at task migration. */
854ffa8d
DN
5075#define PRECHARGE_COUNT_AT_ONCE 256
5076static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5077{
854ffa8d
DN
5078 int ret = 0;
5079 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5080 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5081
c0ff4b85 5082 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5083 mc.precharge += count;
5084 /* we don't need css_get for root */
5085 return ret;
5086 }
5087 /* try to charge at once */
5088 if (count > 1) {
5089 struct res_counter *dummy;
5090 /*
c0ff4b85 5091 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5092 * by cgroup_lock_live_cgroup() that it is not removed and we
5093 * are still under the same cgroup_mutex. So we can postpone
5094 * css_get().
5095 */
c0ff4b85 5096 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5097 goto one_by_one;
c0ff4b85 5098 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5099 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5100 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5101 goto one_by_one;
5102 }
5103 mc.precharge += count;
854ffa8d
DN
5104 return ret;
5105 }
5106one_by_one:
5107 /* fall back to one by one charge */
5108 while (count--) {
5109 if (signal_pending(current)) {
5110 ret = -EINTR;
5111 break;
5112 }
5113 if (!batch_count--) {
5114 batch_count = PRECHARGE_COUNT_AT_ONCE;
5115 cond_resched();
5116 }
c0ff4b85
R
5117 ret = __mem_cgroup_try_charge(NULL,
5118 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5119 if (ret)
854ffa8d 5120 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5121 return ret;
854ffa8d
DN
5122 mc.precharge++;
5123 }
4ffef5fe
DN
5124 return ret;
5125}
5126
5127/**
8d32ff84 5128 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5129 * @vma: the vma the pte to be checked belongs
5130 * @addr: the address corresponding to the pte to be checked
5131 * @ptent: the pte to be checked
02491447 5132 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5133 *
5134 * Returns
5135 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5136 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5137 * move charge. if @target is not NULL, the page is stored in target->page
5138 * with extra refcnt got(Callers should handle it).
02491447
DN
5139 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5140 * target for charge migration. if @target is not NULL, the entry is stored
5141 * in target->ent.
4ffef5fe
DN
5142 *
5143 * Called with pte lock held.
5144 */
4ffef5fe
DN
5145union mc_target {
5146 struct page *page;
02491447 5147 swp_entry_t ent;
4ffef5fe
DN
5148};
5149
4ffef5fe 5150enum mc_target_type {
8d32ff84 5151 MC_TARGET_NONE = 0,
4ffef5fe 5152 MC_TARGET_PAGE,
02491447 5153 MC_TARGET_SWAP,
4ffef5fe
DN
5154};
5155
90254a65
DN
5156static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5157 unsigned long addr, pte_t ptent)
4ffef5fe 5158{
90254a65 5159 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5160
90254a65
DN
5161 if (!page || !page_mapped(page))
5162 return NULL;
5163 if (PageAnon(page)) {
5164 /* we don't move shared anon */
4b91355e 5165 if (!move_anon())
90254a65 5166 return NULL;
87946a72
DN
5167 } else if (!move_file())
5168 /* we ignore mapcount for file pages */
90254a65
DN
5169 return NULL;
5170 if (!get_page_unless_zero(page))
5171 return NULL;
5172
5173 return page;
5174}
5175
4b91355e 5176#ifdef CONFIG_SWAP
90254a65
DN
5177static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5178 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5179{
90254a65
DN
5180 struct page *page = NULL;
5181 swp_entry_t ent = pte_to_swp_entry(ptent);
5182
5183 if (!move_anon() || non_swap_entry(ent))
5184 return NULL;
4b91355e
KH
5185 /*
5186 * Because lookup_swap_cache() updates some statistics counter,
5187 * we call find_get_page() with swapper_space directly.
5188 */
5189 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5190 if (do_swap_account)
5191 entry->val = ent.val;
5192
5193 return page;
5194}
4b91355e
KH
5195#else
5196static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5197 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5198{
5199 return NULL;
5200}
5201#endif
90254a65 5202
87946a72
DN
5203static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5205{
5206 struct page *page = NULL;
87946a72
DN
5207 struct address_space *mapping;
5208 pgoff_t pgoff;
5209
5210 if (!vma->vm_file) /* anonymous vma */
5211 return NULL;
5212 if (!move_file())
5213 return NULL;
5214
87946a72
DN
5215 mapping = vma->vm_file->f_mapping;
5216 if (pte_none(ptent))
5217 pgoff = linear_page_index(vma, addr);
5218 else /* pte_file(ptent) is true */
5219 pgoff = pte_to_pgoff(ptent);
5220
5221 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5222 page = find_get_page(mapping, pgoff);
5223
5224#ifdef CONFIG_SWAP
5225 /* shmem/tmpfs may report page out on swap: account for that too. */
5226 if (radix_tree_exceptional_entry(page)) {
5227 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5228 if (do_swap_account)
aa3b1895
HD
5229 *entry = swap;
5230 page = find_get_page(&swapper_space, swap.val);
87946a72 5231 }
aa3b1895 5232#endif
87946a72
DN
5233 return page;
5234}
5235
8d32ff84 5236static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5237 unsigned long addr, pte_t ptent, union mc_target *target)
5238{
5239 struct page *page = NULL;
5240 struct page_cgroup *pc;
8d32ff84 5241 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5242 swp_entry_t ent = { .val = 0 };
5243
5244 if (pte_present(ptent))
5245 page = mc_handle_present_pte(vma, addr, ptent);
5246 else if (is_swap_pte(ptent))
5247 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5248 else if (pte_none(ptent) || pte_file(ptent))
5249 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5250
5251 if (!page && !ent.val)
8d32ff84 5252 return ret;
02491447
DN
5253 if (page) {
5254 pc = lookup_page_cgroup(page);
5255 /*
5256 * Do only loose check w/o page_cgroup lock.
5257 * mem_cgroup_move_account() checks the pc is valid or not under
5258 * the lock.
5259 */
5260 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5261 ret = MC_TARGET_PAGE;
5262 if (target)
5263 target->page = page;
5264 }
5265 if (!ret || !target)
5266 put_page(page);
5267 }
90254a65
DN
5268 /* There is a swap entry and a page doesn't exist or isn't charged */
5269 if (ent.val && !ret &&
9fb4b7cc 5270 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5271 ret = MC_TARGET_SWAP;
5272 if (target)
5273 target->ent = ent;
4ffef5fe 5274 }
4ffef5fe
DN
5275 return ret;
5276}
5277
12724850
NH
5278#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5279/*
5280 * We don't consider swapping or file mapped pages because THP does not
5281 * support them for now.
5282 * Caller should make sure that pmd_trans_huge(pmd) is true.
5283 */
5284static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5285 unsigned long addr, pmd_t pmd, union mc_target *target)
5286{
5287 struct page *page = NULL;
5288 struct page_cgroup *pc;
5289 enum mc_target_type ret = MC_TARGET_NONE;
5290
5291 page = pmd_page(pmd);
5292 VM_BUG_ON(!page || !PageHead(page));
5293 if (!move_anon())
5294 return ret;
5295 pc = lookup_page_cgroup(page);
5296 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5297 ret = MC_TARGET_PAGE;
5298 if (target) {
5299 get_page(page);
5300 target->page = page;
5301 }
5302 }
5303 return ret;
5304}
5305#else
5306static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5307 unsigned long addr, pmd_t pmd, union mc_target *target)
5308{
5309 return MC_TARGET_NONE;
5310}
5311#endif
5312
4ffef5fe
DN
5313static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5314 unsigned long addr, unsigned long end,
5315 struct mm_walk *walk)
5316{
5317 struct vm_area_struct *vma = walk->private;
5318 pte_t *pte;
5319 spinlock_t *ptl;
5320
12724850
NH
5321 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5322 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5323 mc.precharge += HPAGE_PMD_NR;
5324 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5325 return 0;
12724850 5326 }
03319327 5327
45f83cef
AA
5328 if (pmd_trans_unstable(pmd))
5329 return 0;
4ffef5fe
DN
5330 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5331 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5332 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5333 mc.precharge++; /* increment precharge temporarily */
5334 pte_unmap_unlock(pte - 1, ptl);
5335 cond_resched();
5336
7dc74be0
DN
5337 return 0;
5338}
5339
4ffef5fe
DN
5340static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5341{
5342 unsigned long precharge;
5343 struct vm_area_struct *vma;
5344
dfe076b0 5345 down_read(&mm->mmap_sem);
4ffef5fe
DN
5346 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5347 struct mm_walk mem_cgroup_count_precharge_walk = {
5348 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5349 .mm = mm,
5350 .private = vma,
5351 };
5352 if (is_vm_hugetlb_page(vma))
5353 continue;
4ffef5fe
DN
5354 walk_page_range(vma->vm_start, vma->vm_end,
5355 &mem_cgroup_count_precharge_walk);
5356 }
dfe076b0 5357 up_read(&mm->mmap_sem);
4ffef5fe
DN
5358
5359 precharge = mc.precharge;
5360 mc.precharge = 0;
5361
5362 return precharge;
5363}
5364
4ffef5fe
DN
5365static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5366{
dfe076b0
DN
5367 unsigned long precharge = mem_cgroup_count_precharge(mm);
5368
5369 VM_BUG_ON(mc.moving_task);
5370 mc.moving_task = current;
5371 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5372}
5373
dfe076b0
DN
5374/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5375static void __mem_cgroup_clear_mc(void)
4ffef5fe 5376{
2bd9bb20
KH
5377 struct mem_cgroup *from = mc.from;
5378 struct mem_cgroup *to = mc.to;
5379
4ffef5fe 5380 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5381 if (mc.precharge) {
5382 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5383 mc.precharge = 0;
5384 }
5385 /*
5386 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5387 * we must uncharge here.
5388 */
5389 if (mc.moved_charge) {
5390 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5391 mc.moved_charge = 0;
4ffef5fe 5392 }
483c30b5
DN
5393 /* we must fixup refcnts and charges */
5394 if (mc.moved_swap) {
483c30b5
DN
5395 /* uncharge swap account from the old cgroup */
5396 if (!mem_cgroup_is_root(mc.from))
5397 res_counter_uncharge(&mc.from->memsw,
5398 PAGE_SIZE * mc.moved_swap);
5399 __mem_cgroup_put(mc.from, mc.moved_swap);
5400
5401 if (!mem_cgroup_is_root(mc.to)) {
5402 /*
5403 * we charged both to->res and to->memsw, so we should
5404 * uncharge to->res.
5405 */
5406 res_counter_uncharge(&mc.to->res,
5407 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5408 }
5409 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5410 mc.moved_swap = 0;
5411 }
dfe076b0
DN
5412 memcg_oom_recover(from);
5413 memcg_oom_recover(to);
5414 wake_up_all(&mc.waitq);
5415}
5416
5417static void mem_cgroup_clear_mc(void)
5418{
5419 struct mem_cgroup *from = mc.from;
5420
5421 /*
5422 * we must clear moving_task before waking up waiters at the end of
5423 * task migration.
5424 */
5425 mc.moving_task = NULL;
5426 __mem_cgroup_clear_mc();
2bd9bb20 5427 spin_lock(&mc.lock);
4ffef5fe
DN
5428 mc.from = NULL;
5429 mc.to = NULL;
2bd9bb20 5430 spin_unlock(&mc.lock);
32047e2a 5431 mem_cgroup_end_move(from);
4ffef5fe
DN
5432}
5433
761b3ef5
LZ
5434static int mem_cgroup_can_attach(struct cgroup *cgroup,
5435 struct cgroup_taskset *tset)
7dc74be0 5436{
2f7ee569 5437 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5438 int ret = 0;
c0ff4b85 5439 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5440
c0ff4b85 5441 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5442 struct mm_struct *mm;
5443 struct mem_cgroup *from = mem_cgroup_from_task(p);
5444
c0ff4b85 5445 VM_BUG_ON(from == memcg);
7dc74be0
DN
5446
5447 mm = get_task_mm(p);
5448 if (!mm)
5449 return 0;
7dc74be0 5450 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5451 if (mm->owner == p) {
5452 VM_BUG_ON(mc.from);
5453 VM_BUG_ON(mc.to);
5454 VM_BUG_ON(mc.precharge);
854ffa8d 5455 VM_BUG_ON(mc.moved_charge);
483c30b5 5456 VM_BUG_ON(mc.moved_swap);
32047e2a 5457 mem_cgroup_start_move(from);
2bd9bb20 5458 spin_lock(&mc.lock);
4ffef5fe 5459 mc.from = from;
c0ff4b85 5460 mc.to = memcg;
2bd9bb20 5461 spin_unlock(&mc.lock);
dfe076b0 5462 /* We set mc.moving_task later */
4ffef5fe
DN
5463
5464 ret = mem_cgroup_precharge_mc(mm);
5465 if (ret)
5466 mem_cgroup_clear_mc();
dfe076b0
DN
5467 }
5468 mmput(mm);
7dc74be0
DN
5469 }
5470 return ret;
5471}
5472
761b3ef5
LZ
5473static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5474 struct cgroup_taskset *tset)
7dc74be0 5475{
4ffef5fe 5476 mem_cgroup_clear_mc();
7dc74be0
DN
5477}
5478
4ffef5fe
DN
5479static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5480 unsigned long addr, unsigned long end,
5481 struct mm_walk *walk)
7dc74be0 5482{
4ffef5fe
DN
5483 int ret = 0;
5484 struct vm_area_struct *vma = walk->private;
5485 pte_t *pte;
5486 spinlock_t *ptl;
12724850
NH
5487 enum mc_target_type target_type;
5488 union mc_target target;
5489 struct page *page;
5490 struct page_cgroup *pc;
4ffef5fe 5491
12724850
NH
5492 /*
5493 * We don't take compound_lock() here but no race with splitting thp
5494 * happens because:
5495 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5496 * under splitting, which means there's no concurrent thp split,
5497 * - if another thread runs into split_huge_page() just after we
5498 * entered this if-block, the thread must wait for page table lock
5499 * to be unlocked in __split_huge_page_splitting(), where the main
5500 * part of thp split is not executed yet.
5501 */
5502 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5503 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5504 spin_unlock(&vma->vm_mm->page_table_lock);
5505 return 0;
5506 }
5507 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5508 if (target_type == MC_TARGET_PAGE) {
5509 page = target.page;
5510 if (!isolate_lru_page(page)) {
5511 pc = lookup_page_cgroup(page);
5512 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5513 pc, mc.from, mc.to)) {
12724850
NH
5514 mc.precharge -= HPAGE_PMD_NR;
5515 mc.moved_charge += HPAGE_PMD_NR;
5516 }
5517 putback_lru_page(page);
5518 }
5519 put_page(page);
5520 }
5521 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5522 return 0;
12724850
NH
5523 }
5524
45f83cef
AA
5525 if (pmd_trans_unstable(pmd))
5526 return 0;
4ffef5fe
DN
5527retry:
5528 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5529 for (; addr != end; addr += PAGE_SIZE) {
5530 pte_t ptent = *(pte++);
02491447 5531 swp_entry_t ent;
4ffef5fe
DN
5532
5533 if (!mc.precharge)
5534 break;
5535
8d32ff84 5536 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5537 case MC_TARGET_PAGE:
5538 page = target.page;
5539 if (isolate_lru_page(page))
5540 goto put;
5541 pc = lookup_page_cgroup(page);
7ec99d62 5542 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5543 mc.from, mc.to)) {
4ffef5fe 5544 mc.precharge--;
854ffa8d
DN
5545 /* we uncharge from mc.from later. */
5546 mc.moved_charge++;
4ffef5fe
DN
5547 }
5548 putback_lru_page(page);
8d32ff84 5549put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5550 put_page(page);
5551 break;
02491447
DN
5552 case MC_TARGET_SWAP:
5553 ent = target.ent;
e91cbb42 5554 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5555 mc.precharge--;
483c30b5
DN
5556 /* we fixup refcnts and charges later. */
5557 mc.moved_swap++;
5558 }
02491447 5559 break;
4ffef5fe
DN
5560 default:
5561 break;
5562 }
5563 }
5564 pte_unmap_unlock(pte - 1, ptl);
5565 cond_resched();
5566
5567 if (addr != end) {
5568 /*
5569 * We have consumed all precharges we got in can_attach().
5570 * We try charge one by one, but don't do any additional
5571 * charges to mc.to if we have failed in charge once in attach()
5572 * phase.
5573 */
854ffa8d 5574 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5575 if (!ret)
5576 goto retry;
5577 }
5578
5579 return ret;
5580}
5581
5582static void mem_cgroup_move_charge(struct mm_struct *mm)
5583{
5584 struct vm_area_struct *vma;
5585
5586 lru_add_drain_all();
dfe076b0
DN
5587retry:
5588 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5589 /*
5590 * Someone who are holding the mmap_sem might be waiting in
5591 * waitq. So we cancel all extra charges, wake up all waiters,
5592 * and retry. Because we cancel precharges, we might not be able
5593 * to move enough charges, but moving charge is a best-effort
5594 * feature anyway, so it wouldn't be a big problem.
5595 */
5596 __mem_cgroup_clear_mc();
5597 cond_resched();
5598 goto retry;
5599 }
4ffef5fe
DN
5600 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5601 int ret;
5602 struct mm_walk mem_cgroup_move_charge_walk = {
5603 .pmd_entry = mem_cgroup_move_charge_pte_range,
5604 .mm = mm,
5605 .private = vma,
5606 };
5607 if (is_vm_hugetlb_page(vma))
5608 continue;
4ffef5fe
DN
5609 ret = walk_page_range(vma->vm_start, vma->vm_end,
5610 &mem_cgroup_move_charge_walk);
5611 if (ret)
5612 /*
5613 * means we have consumed all precharges and failed in
5614 * doing additional charge. Just abandon here.
5615 */
5616 break;
5617 }
dfe076b0 5618 up_read(&mm->mmap_sem);
7dc74be0
DN
5619}
5620
761b3ef5
LZ
5621static void mem_cgroup_move_task(struct cgroup *cont,
5622 struct cgroup_taskset *tset)
67e465a7 5623{
2f7ee569 5624 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5625 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5626
dfe076b0 5627 if (mm) {
a433658c
KM
5628 if (mc.to)
5629 mem_cgroup_move_charge(mm);
dfe076b0
DN
5630 mmput(mm);
5631 }
a433658c
KM
5632 if (mc.to)
5633 mem_cgroup_clear_mc();
67e465a7 5634}
5cfb80a7 5635#else /* !CONFIG_MMU */
761b3ef5
LZ
5636static int mem_cgroup_can_attach(struct cgroup *cgroup,
5637 struct cgroup_taskset *tset)
5cfb80a7
DN
5638{
5639 return 0;
5640}
761b3ef5
LZ
5641static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5642 struct cgroup_taskset *tset)
5cfb80a7
DN
5643{
5644}
761b3ef5
LZ
5645static void mem_cgroup_move_task(struct cgroup *cont,
5646 struct cgroup_taskset *tset)
5cfb80a7
DN
5647{
5648}
5649#endif
67e465a7 5650
8cdea7c0
BS
5651struct cgroup_subsys mem_cgroup_subsys = {
5652 .name = "memory",
5653 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
5654 .css_alloc = mem_cgroup_css_alloc,
5655 .css_offline = mem_cgroup_css_offline,
5656 .css_free = mem_cgroup_css_free,
7dc74be0
DN
5657 .can_attach = mem_cgroup_can_attach,
5658 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5659 .attach = mem_cgroup_move_task,
6bc10349 5660 .base_cftypes = mem_cgroup_files,
6d12e2d8 5661 .early_init = 0,
04046e1a 5662 .use_id = 1,
8cdea7c0 5663};
c077719b 5664
c255a458 5665#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5666static int __init enable_swap_account(char *s)
5667{
5668 /* consider enabled if no parameter or 1 is given */
a2c8990a 5669 if (!strcmp(s, "1"))
a42c390c 5670 really_do_swap_account = 1;
a2c8990a 5671 else if (!strcmp(s, "0"))
a42c390c
MH
5672 really_do_swap_account = 0;
5673 return 1;
5674}
a2c8990a 5675__setup("swapaccount=", enable_swap_account);
c077719b 5676
c077719b 5677#endif