]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: Add folio_nid()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
e267992f 87bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
aa48e47e
SB
106/* memcg and lruvec stats flushing */
107static void flush_memcg_stats_dwork(struct work_struct *w);
108static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
aa48e47e
SB
109static DEFINE_SPINLOCK(stats_flush_lock);
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 113
bb4cc1a8
AM
114/*
115 * Cgroups above their limits are maintained in a RB-Tree, independent of
116 * their hierarchy representation
117 */
118
ef8f2327 119struct mem_cgroup_tree_per_node {
bb4cc1a8 120 struct rb_root rb_root;
fa90b2fd 121 struct rb_node *rb_rightmost;
bb4cc1a8
AM
122 spinlock_t lock;
123};
124
bb4cc1a8
AM
125struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127};
128
129static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
9490ff27
KH
131/* for OOM */
132struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135};
2e72b634 136
79bd9814
TH
137/*
138 * cgroup_event represents events which userspace want to receive.
139 */
3bc942f3 140struct mem_cgroup_event {
79bd9814 141 /*
59b6f873 142 * memcg which the event belongs to.
79bd9814 143 */
59b6f873 144 struct mem_cgroup *memcg;
79bd9814
TH
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
fba94807
TH
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
59b6f873 158 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 159 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
59b6f873 165 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 166 struct eventfd_ctx *eventfd);
79bd9814
TH
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
ac6424b9 173 wait_queue_entry_t wait;
79bd9814
TH
174 struct work_struct remove;
175};
176
c0ff4b85
R
177static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 179
7dc74be0
DN
180/* Stuffs for move charges at task migration. */
181/*
1dfab5ab 182 * Types of charges to be moved.
7dc74be0 183 */
1dfab5ab
JW
184#define MOVE_ANON 0x1U
185#define MOVE_FILE 0x2U
186#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 187
4ffef5fe
DN
188/* "mc" and its members are protected by cgroup_mutex */
189static struct move_charge_struct {
b1dd693e 190 spinlock_t lock; /* for from, to */
264a0ae1 191 struct mm_struct *mm;
4ffef5fe
DN
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
1dfab5ab 194 unsigned long flags;
4ffef5fe 195 unsigned long precharge;
854ffa8d 196 unsigned long moved_charge;
483c30b5 197 unsigned long moved_swap;
8033b97c
DN
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200} mc = {
2bd9bb20 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203};
4ffef5fe 204
4e416953
BS
205/*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
a0db00fc 209#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 210#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 211
8c7c6e34 212/* for encoding cft->private value on file */
86ae53e1
GC
213enum res_type {
214 _MEM,
215 _MEMSWAP,
216 _OOM_TYPE,
510fc4e1 217 _KMEM,
d55f90bf 218 _TCP,
86ae53e1
GC
219};
220
a0db00fc
KS
221#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
222#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 223#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 224/* Used for OOM notifier */
9490ff27 225#define OOM_CONTROL (0)
8c7c6e34 226
b05706f1
KT
227/*
228 * Iteration constructs for visiting all cgroups (under a tree). If
229 * loops are exited prematurely (break), mem_cgroup_iter_break() must
230 * be used for reference counting.
231 */
232#define for_each_mem_cgroup_tree(iter, root) \
233 for (iter = mem_cgroup_iter(root, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(root, iter, NULL))
236
237#define for_each_mem_cgroup(iter) \
238 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
239 iter != NULL; \
240 iter = mem_cgroup_iter(NULL, iter, NULL))
241
7775face
TH
242static inline bool should_force_charge(void)
243{
244 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
245 (current->flags & PF_EXITING);
246}
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
9647875b 256struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 257{
9647875b 258 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
259}
260
84c07d11 261#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
262extern spinlock_t css_set_lock;
263
4d5c8aed
RG
264bool mem_cgroup_kmem_disabled(void)
265{
266 return cgroup_memory_nokmem;
267}
268
f1286fae
MS
269static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
270 unsigned int nr_pages);
c1a660de 271
bf4f0599
RG
272static void obj_cgroup_release(struct percpu_ref *ref)
273{
274 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
275 unsigned int nr_bytes;
276 unsigned int nr_pages;
277 unsigned long flags;
278
279 /*
280 * At this point all allocated objects are freed, and
281 * objcg->nr_charged_bytes can't have an arbitrary byte value.
282 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
283 *
284 * The following sequence can lead to it:
285 * 1) CPU0: objcg == stock->cached_objcg
286 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
287 * PAGE_SIZE bytes are charged
288 * 3) CPU1: a process from another memcg is allocating something,
289 * the stock if flushed,
290 * objcg->nr_charged_bytes = PAGE_SIZE - 92
291 * 5) CPU0: we do release this object,
292 * 92 bytes are added to stock->nr_bytes
293 * 6) CPU0: stock is flushed,
294 * 92 bytes are added to objcg->nr_charged_bytes
295 *
296 * In the result, nr_charged_bytes == PAGE_SIZE.
297 * This page will be uncharged in obj_cgroup_release().
298 */
299 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
300 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
301 nr_pages = nr_bytes >> PAGE_SHIFT;
302
bf4f0599 303 if (nr_pages)
f1286fae 304 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
305
306 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 307 list_del(&objcg->list);
bf4f0599
RG
308 spin_unlock_irqrestore(&css_set_lock, flags);
309
310 percpu_ref_exit(ref);
311 kfree_rcu(objcg, rcu);
312}
313
314static struct obj_cgroup *obj_cgroup_alloc(void)
315{
316 struct obj_cgroup *objcg;
317 int ret;
318
319 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
320 if (!objcg)
321 return NULL;
322
323 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
324 GFP_KERNEL);
325 if (ret) {
326 kfree(objcg);
327 return NULL;
328 }
329 INIT_LIST_HEAD(&objcg->list);
330 return objcg;
331}
332
333static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
334 struct mem_cgroup *parent)
335{
336 struct obj_cgroup *objcg, *iter;
337
338 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
339
340 spin_lock_irq(&css_set_lock);
341
9838354e
MS
342 /* 1) Ready to reparent active objcg. */
343 list_add(&objcg->list, &memcg->objcg_list);
344 /* 2) Reparent active objcg and already reparented objcgs to parent. */
345 list_for_each_entry(iter, &memcg->objcg_list, list)
346 WRITE_ONCE(iter->memcg, parent);
347 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
348 list_splice(&memcg->objcg_list, &parent->objcg_list);
349
350 spin_unlock_irq(&css_set_lock);
351
352 percpu_ref_kill(&objcg->refcnt);
353}
354
55007d84 355/*
9855609b 356 * This will be used as a shrinker list's index.
b8627835
LZ
357 * The main reason for not using cgroup id for this:
358 * this works better in sparse environments, where we have a lot of memcgs,
359 * but only a few kmem-limited. Or also, if we have, for instance, 200
360 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
361 * 200 entry array for that.
55007d84 362 *
dbcf73e2
VD
363 * The current size of the caches array is stored in memcg_nr_cache_ids. It
364 * will double each time we have to increase it.
55007d84 365 */
dbcf73e2
VD
366static DEFINE_IDA(memcg_cache_ida);
367int memcg_nr_cache_ids;
749c5415 368
05257a1a
VD
369/* Protects memcg_nr_cache_ids */
370static DECLARE_RWSEM(memcg_cache_ids_sem);
371
372void memcg_get_cache_ids(void)
373{
374 down_read(&memcg_cache_ids_sem);
375}
376
377void memcg_put_cache_ids(void)
378{
379 up_read(&memcg_cache_ids_sem);
380}
381
55007d84
GC
382/*
383 * MIN_SIZE is different than 1, because we would like to avoid going through
384 * the alloc/free process all the time. In a small machine, 4 kmem-limited
385 * cgroups is a reasonable guess. In the future, it could be a parameter or
386 * tunable, but that is strictly not necessary.
387 *
b8627835 388 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
389 * this constant directly from cgroup, but it is understandable that this is
390 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 391 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
392 * increase ours as well if it increases.
393 */
394#define MEMCG_CACHES_MIN_SIZE 4
b8627835 395#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 396
d7f25f8a
GC
397/*
398 * A lot of the calls to the cache allocation functions are expected to be
272911a4 399 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
400 * conditional to this static branch, we'll have to allow modules that does
401 * kmem_cache_alloc and the such to see this symbol as well
402 */
ef12947c 403DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 404EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 405#endif
17cc4dfe 406
ad7fa852
TH
407/**
408 * mem_cgroup_css_from_page - css of the memcg associated with a page
409 * @page: page of interest
410 *
411 * If memcg is bound to the default hierarchy, css of the memcg associated
412 * with @page is returned. The returned css remains associated with @page
413 * until it is released.
414 *
415 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
416 * is returned.
ad7fa852
TH
417 */
418struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
419{
420 struct mem_cgroup *memcg;
421
bcfe06bf 422 memcg = page_memcg(page);
ad7fa852 423
9e10a130 424 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
425 memcg = root_mem_cgroup;
426
ad7fa852
TH
427 return &memcg->css;
428}
429
2fc04524
VD
430/**
431 * page_cgroup_ino - return inode number of the memcg a page is charged to
432 * @page: the page
433 *
434 * Look up the closest online ancestor of the memory cgroup @page is charged to
435 * and return its inode number or 0 if @page is not charged to any cgroup. It
436 * is safe to call this function without holding a reference to @page.
437 *
438 * Note, this function is inherently racy, because there is nothing to prevent
439 * the cgroup inode from getting torn down and potentially reallocated a moment
440 * after page_cgroup_ino() returns, so it only should be used by callers that
441 * do not care (such as procfs interfaces).
442 */
443ino_t page_cgroup_ino(struct page *page)
444{
445 struct mem_cgroup *memcg;
446 unsigned long ino = 0;
447
448 rcu_read_lock();
bcfe06bf 449 memcg = page_memcg_check(page);
286e04b8 450
2fc04524
VD
451 while (memcg && !(memcg->css.flags & CSS_ONLINE))
452 memcg = parent_mem_cgroup(memcg);
453 if (memcg)
454 ino = cgroup_ino(memcg->css.cgroup);
455 rcu_read_unlock();
456 return ino;
457}
458
ef8f2327
MG
459static struct mem_cgroup_per_node *
460mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 461{
97a6c37b 462 int nid = page_to_nid(page);
f64c3f54 463
ef8f2327 464 return memcg->nodeinfo[nid];
f64c3f54
BS
465}
466
ef8f2327
MG
467static struct mem_cgroup_tree_per_node *
468soft_limit_tree_node(int nid)
bb4cc1a8 469{
ef8f2327 470 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
471}
472
ef8f2327 473static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
474soft_limit_tree_from_page(struct page *page)
475{
476 int nid = page_to_nid(page);
bb4cc1a8 477
ef8f2327 478 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
479}
480
ef8f2327
MG
481static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
482 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 483 unsigned long new_usage_in_excess)
bb4cc1a8
AM
484{
485 struct rb_node **p = &mctz->rb_root.rb_node;
486 struct rb_node *parent = NULL;
ef8f2327 487 struct mem_cgroup_per_node *mz_node;
fa90b2fd 488 bool rightmost = true;
bb4cc1a8
AM
489
490 if (mz->on_tree)
491 return;
492
493 mz->usage_in_excess = new_usage_in_excess;
494 if (!mz->usage_in_excess)
495 return;
496 while (*p) {
497 parent = *p;
ef8f2327 498 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 499 tree_node);
fa90b2fd 500 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 501 p = &(*p)->rb_left;
fa90b2fd 502 rightmost = false;
378876b0 503 } else {
bb4cc1a8 504 p = &(*p)->rb_right;
378876b0 505 }
bb4cc1a8 506 }
fa90b2fd
DB
507
508 if (rightmost)
509 mctz->rb_rightmost = &mz->tree_node;
510
bb4cc1a8
AM
511 rb_link_node(&mz->tree_node, parent, p);
512 rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = true;
514}
515
ef8f2327
MG
516static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
517 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
518{
519 if (!mz->on_tree)
520 return;
fa90b2fd
DB
521
522 if (&mz->tree_node == mctz->rb_rightmost)
523 mctz->rb_rightmost = rb_prev(&mz->tree_node);
524
bb4cc1a8
AM
525 rb_erase(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = false;
527}
528
ef8f2327
MG
529static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
530 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 531{
0a31bc97
JW
532 unsigned long flags;
533
534 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 535 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 536 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
537}
538
3e32cb2e
JW
539static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
540{
541 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 542 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
543 unsigned long excess = 0;
544
545 if (nr_pages > soft_limit)
546 excess = nr_pages - soft_limit;
547
548 return excess;
549}
bb4cc1a8
AM
550
551static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
552{
3e32cb2e 553 unsigned long excess;
ef8f2327
MG
554 struct mem_cgroup_per_node *mz;
555 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 556
e231875b 557 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
558 if (!mctz)
559 return;
bb4cc1a8
AM
560 /*
561 * Necessary to update all ancestors when hierarchy is used.
562 * because their event counter is not touched.
563 */
564 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 565 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 566 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
567 /*
568 * We have to update the tree if mz is on RB-tree or
569 * mem is over its softlimit.
570 */
571 if (excess || mz->on_tree) {
0a31bc97
JW
572 unsigned long flags;
573
574 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
575 /* if on-tree, remove it */
576 if (mz->on_tree)
cf2c8127 577 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
578 /*
579 * Insert again. mz->usage_in_excess will be updated.
580 * If excess is 0, no tree ops.
581 */
cf2c8127 582 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584 }
585 }
586}
587
588static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
589{
ef8f2327
MG
590 struct mem_cgroup_tree_per_node *mctz;
591 struct mem_cgroup_per_node *mz;
592 int nid;
bb4cc1a8 593
e231875b 594 for_each_node(nid) {
a3747b53 595 mz = memcg->nodeinfo[nid];
ef8f2327 596 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
597 if (mctz)
598 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
599 }
600}
601
ef8f2327
MG
602static struct mem_cgroup_per_node *
603__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 604{
ef8f2327 605 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
606
607retry:
608 mz = NULL;
fa90b2fd 609 if (!mctz->rb_rightmost)
bb4cc1a8
AM
610 goto done; /* Nothing to reclaim from */
611
fa90b2fd
DB
612 mz = rb_entry(mctz->rb_rightmost,
613 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
614 /*
615 * Remove the node now but someone else can add it back,
616 * we will to add it back at the end of reclaim to its correct
617 * position in the tree.
618 */
cf2c8127 619 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 620 if (!soft_limit_excess(mz->memcg) ||
8965aa28 621 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
622 goto retry;
623done:
624 return mz;
625}
626
ef8f2327
MG
627static struct mem_cgroup_per_node *
628mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 629{
ef8f2327 630 struct mem_cgroup_per_node *mz;
bb4cc1a8 631
0a31bc97 632 spin_lock_irq(&mctz->lock);
bb4cc1a8 633 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 634 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
635 return mz;
636}
637
db9adbcb
JW
638/**
639 * __mod_memcg_state - update cgroup memory statistics
640 * @memcg: the memory cgroup
641 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
642 * @val: delta to add to the counter, can be negative
643 */
644void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
645{
db9adbcb
JW
646 if (mem_cgroup_disabled())
647 return;
648
2d146aa3
JW
649 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
650 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
651}
652
2d146aa3 653/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
654static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
655{
656 long x = 0;
657 int cpu;
658
659 for_each_possible_cpu(cpu)
2d146aa3 660 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
661#ifdef CONFIG_SMP
662 if (x < 0)
663 x = 0;
664#endif
665 return x;
666}
667
eedc4e5a
RG
668void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
669 int val)
db9adbcb
JW
670{
671 struct mem_cgroup_per_node *pn;
42a30035 672 struct mem_cgroup *memcg;
db9adbcb 673
db9adbcb 674 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 675 memcg = pn->memcg;
db9adbcb
JW
676
677 /* Update memcg */
42a30035 678 __mod_memcg_state(memcg, idx, val);
db9adbcb 679
b4c46484 680 /* Update lruvec */
7e1c0d6f 681 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
db9adbcb
JW
682}
683
eedc4e5a
RG
684/**
685 * __mod_lruvec_state - update lruvec memory statistics
686 * @lruvec: the lruvec
687 * @idx: the stat item
688 * @val: delta to add to the counter, can be negative
689 *
690 * The lruvec is the intersection of the NUMA node and a cgroup. This
691 * function updates the all three counters that are affected by a
692 * change of state at this level: per-node, per-cgroup, per-lruvec.
693 */
694void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
695 int val)
696{
697 /* Update node */
698 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
699
700 /* Update memcg and lruvec */
701 if (!mem_cgroup_disabled())
702 __mod_memcg_lruvec_state(lruvec, idx, val);
703}
704
c47d5032
SB
705void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
706 int val)
707{
708 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 709 struct mem_cgroup *memcg;
c47d5032
SB
710 pg_data_t *pgdat = page_pgdat(page);
711 struct lruvec *lruvec;
712
b4e0b68f
MS
713 rcu_read_lock();
714 memcg = page_memcg(head);
c47d5032 715 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 716 if (!memcg) {
b4e0b68f 717 rcu_read_unlock();
c47d5032
SB
718 __mod_node_page_state(pgdat, idx, val);
719 return;
720 }
721
d635a69d 722 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 723 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 724 rcu_read_unlock();
c47d5032 725}
f0c0c115 726EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 727
da3ceeff 728void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 729{
4f103c63 730 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
731 struct mem_cgroup *memcg;
732 struct lruvec *lruvec;
733
734 rcu_read_lock();
4f103c63 735 memcg = mem_cgroup_from_obj(p);
ec9f0238 736
8faeb1ff
MS
737 /*
738 * Untracked pages have no memcg, no lruvec. Update only the
739 * node. If we reparent the slab objects to the root memcg,
740 * when we free the slab object, we need to update the per-memcg
741 * vmstats to keep it correct for the root memcg.
742 */
743 if (!memcg) {
ec9f0238
RG
744 __mod_node_page_state(pgdat, idx, val);
745 } else {
867e5e1d 746 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
747 __mod_lruvec_state(lruvec, idx, val);
748 }
749 rcu_read_unlock();
750}
751
55927114
WL
752/*
753 * mod_objcg_mlstate() may be called with irq enabled, so
754 * mod_memcg_lruvec_state() should be used.
755 */
68ac5b3c
WL
756static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
757 struct pglist_data *pgdat,
758 enum node_stat_item idx, int nr)
fdbcb2a6
WL
759{
760 struct mem_cgroup *memcg;
761 struct lruvec *lruvec;
762
763 rcu_read_lock();
764 memcg = obj_cgroup_memcg(objcg);
765 lruvec = mem_cgroup_lruvec(memcg, pgdat);
55927114 766 mod_memcg_lruvec_state(lruvec, idx, nr);
fdbcb2a6
WL
767 rcu_read_unlock();
768}
769
db9adbcb
JW
770/**
771 * __count_memcg_events - account VM events in a cgroup
772 * @memcg: the memory cgroup
773 * @idx: the event item
f0953a1b 774 * @count: the number of events that occurred
db9adbcb
JW
775 */
776void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
777 unsigned long count)
778{
db9adbcb
JW
779 if (mem_cgroup_disabled())
780 return;
781
2d146aa3
JW
782 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
783 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
784}
785
42a30035 786static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 787{
2d146aa3 788 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
789}
790
42a30035
JW
791static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
792{
815744d7
JW
793 long x = 0;
794 int cpu;
795
796 for_each_possible_cpu(cpu)
2d146aa3 797 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 798 return x;
42a30035
JW
799}
800
c0ff4b85 801static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 802 struct page *page,
3fba69a5 803 int nr_pages)
d52aa412 804{
e401f176
KH
805 /* pagein of a big page is an event. So, ignore page size */
806 if (nr_pages > 0)
c9019e9b 807 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 808 else {
c9019e9b 809 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
810 nr_pages = -nr_pages; /* for event */
811 }
e401f176 812
871789d4 813 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
814}
815
f53d7ce3
JW
816static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
817 enum mem_cgroup_events_target target)
7a159cc9
JW
818{
819 unsigned long val, next;
820
871789d4
CD
821 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
822 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 823 /* from time_after() in jiffies.h */
6a1a8b80 824 if ((long)(next - val) < 0) {
f53d7ce3
JW
825 switch (target) {
826 case MEM_CGROUP_TARGET_THRESH:
827 next = val + THRESHOLDS_EVENTS_TARGET;
828 break;
bb4cc1a8
AM
829 case MEM_CGROUP_TARGET_SOFTLIMIT:
830 next = val + SOFTLIMIT_EVENTS_TARGET;
831 break;
f53d7ce3
JW
832 default:
833 break;
834 }
871789d4 835 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 836 return true;
7a159cc9 837 }
f53d7ce3 838 return false;
d2265e6f
KH
839}
840
841/*
842 * Check events in order.
843 *
844 */
c0ff4b85 845static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
846{
847 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
848 if (unlikely(mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 850 bool do_softlimit;
f53d7ce3 851
bb4cc1a8
AM
852 do_softlimit = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 854 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
855 if (unlikely(do_softlimit))
856 mem_cgroup_update_tree(memcg, page);
0a31bc97 857 }
d2265e6f
KH
858}
859
cf475ad2 860struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 861{
31a78f23
BS
862 /*
863 * mm_update_next_owner() may clear mm->owner to NULL
864 * if it races with swapoff, page migration, etc.
865 * So this can be called with p == NULL.
866 */
867 if (unlikely(!p))
868 return NULL;
869
073219e9 870 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 871}
33398cf2 872EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 873
04f94e3f
DS
874static __always_inline struct mem_cgroup *active_memcg(void)
875{
55a68c82 876 if (!in_task())
04f94e3f
DS
877 return this_cpu_read(int_active_memcg);
878 else
879 return current->active_memcg;
880}
881
d46eb14b
SB
882/**
883 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
884 * @mm: mm from which memcg should be extracted. It can be NULL.
885 *
04f94e3f
DS
886 * Obtain a reference on mm->memcg and returns it if successful. If mm
887 * is NULL, then the memcg is chosen as follows:
888 * 1) The active memcg, if set.
889 * 2) current->mm->memcg, if available
890 * 3) root memcg
891 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
892 */
893struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 894{
d46eb14b
SB
895 struct mem_cgroup *memcg;
896
897 if (mem_cgroup_disabled())
898 return NULL;
0b7f569e 899
2884b6b7
MS
900 /*
901 * Page cache insertions can happen without an
902 * actual mm context, e.g. during disk probing
903 * on boot, loopback IO, acct() writes etc.
904 *
905 * No need to css_get on root memcg as the reference
906 * counting is disabled on the root level in the
907 * cgroup core. See CSS_NO_REF.
908 */
04f94e3f
DS
909 if (unlikely(!mm)) {
910 memcg = active_memcg();
911 if (unlikely(memcg)) {
912 /* remote memcg must hold a ref */
913 css_get(&memcg->css);
914 return memcg;
915 }
916 mm = current->mm;
917 if (unlikely(!mm))
918 return root_mem_cgroup;
919 }
2884b6b7 920
54595fe2
KH
921 rcu_read_lock();
922 do {
2884b6b7
MS
923 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
924 if (unlikely(!memcg))
df381975 925 memcg = root_mem_cgroup;
00d484f3 926 } while (!css_tryget(&memcg->css));
54595fe2 927 rcu_read_unlock();
c0ff4b85 928 return memcg;
54595fe2 929}
d46eb14b
SB
930EXPORT_SYMBOL(get_mem_cgroup_from_mm);
931
4127c650
RG
932static __always_inline bool memcg_kmem_bypass(void)
933{
934 /* Allow remote memcg charging from any context. */
935 if (unlikely(active_memcg()))
936 return false;
937
938 /* Memcg to charge can't be determined. */
6126891c 939 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
940 return true;
941
942 return false;
943}
944
5660048c
JW
945/**
946 * mem_cgroup_iter - iterate over memory cgroup hierarchy
947 * @root: hierarchy root
948 * @prev: previously returned memcg, NULL on first invocation
949 * @reclaim: cookie for shared reclaim walks, NULL for full walks
950 *
951 * Returns references to children of the hierarchy below @root, or
952 * @root itself, or %NULL after a full round-trip.
953 *
954 * Caller must pass the return value in @prev on subsequent
955 * invocations for reference counting, or use mem_cgroup_iter_break()
956 * to cancel a hierarchy walk before the round-trip is complete.
957 *
05bdc520
ML
958 * Reclaimers can specify a node in @reclaim to divide up the memcgs
959 * in the hierarchy among all concurrent reclaimers operating on the
960 * same node.
5660048c 961 */
694fbc0f 962struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 963 struct mem_cgroup *prev,
694fbc0f 964 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 965{
3f649ab7 966 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 967 struct cgroup_subsys_state *css = NULL;
9f3a0d09 968 struct mem_cgroup *memcg = NULL;
5ac8fb31 969 struct mem_cgroup *pos = NULL;
711d3d2c 970
694fbc0f
AM
971 if (mem_cgroup_disabled())
972 return NULL;
5660048c 973
9f3a0d09
JW
974 if (!root)
975 root = root_mem_cgroup;
7d74b06f 976
9f3a0d09 977 if (prev && !reclaim)
5ac8fb31 978 pos = prev;
14067bb3 979
542f85f9 980 rcu_read_lock();
5f578161 981
5ac8fb31 982 if (reclaim) {
ef8f2327 983 struct mem_cgroup_per_node *mz;
5ac8fb31 984
a3747b53 985 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 986 iter = &mz->iter;
5ac8fb31
JW
987
988 if (prev && reclaim->generation != iter->generation)
989 goto out_unlock;
990
6df38689 991 while (1) {
4db0c3c2 992 pos = READ_ONCE(iter->position);
6df38689
VD
993 if (!pos || css_tryget(&pos->css))
994 break;
5ac8fb31 995 /*
6df38689
VD
996 * css reference reached zero, so iter->position will
997 * be cleared by ->css_released. However, we should not
998 * rely on this happening soon, because ->css_released
999 * is called from a work queue, and by busy-waiting we
1000 * might block it. So we clear iter->position right
1001 * away.
5ac8fb31 1002 */
6df38689
VD
1003 (void)cmpxchg(&iter->position, pos, NULL);
1004 }
5ac8fb31
JW
1005 }
1006
1007 if (pos)
1008 css = &pos->css;
1009
1010 for (;;) {
1011 css = css_next_descendant_pre(css, &root->css);
1012 if (!css) {
1013 /*
1014 * Reclaimers share the hierarchy walk, and a
1015 * new one might jump in right at the end of
1016 * the hierarchy - make sure they see at least
1017 * one group and restart from the beginning.
1018 */
1019 if (!prev)
1020 continue;
1021 break;
527a5ec9 1022 }
7d74b06f 1023
5ac8fb31
JW
1024 /*
1025 * Verify the css and acquire a reference. The root
1026 * is provided by the caller, so we know it's alive
1027 * and kicking, and don't take an extra reference.
1028 */
1029 memcg = mem_cgroup_from_css(css);
14067bb3 1030
5ac8fb31
JW
1031 if (css == &root->css)
1032 break;
14067bb3 1033
0b8f73e1
JW
1034 if (css_tryget(css))
1035 break;
9f3a0d09 1036
5ac8fb31 1037 memcg = NULL;
9f3a0d09 1038 }
5ac8fb31
JW
1039
1040 if (reclaim) {
5ac8fb31 1041 /*
6df38689
VD
1042 * The position could have already been updated by a competing
1043 * thread, so check that the value hasn't changed since we read
1044 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1045 */
6df38689
VD
1046 (void)cmpxchg(&iter->position, pos, memcg);
1047
5ac8fb31
JW
1048 if (pos)
1049 css_put(&pos->css);
1050
1051 if (!memcg)
1052 iter->generation++;
1053 else if (!prev)
1054 reclaim->generation = iter->generation;
9f3a0d09 1055 }
5ac8fb31 1056
542f85f9
MH
1057out_unlock:
1058 rcu_read_unlock();
c40046f3
MH
1059 if (prev && prev != root)
1060 css_put(&prev->css);
1061
9f3a0d09 1062 return memcg;
14067bb3 1063}
7d74b06f 1064
5660048c
JW
1065/**
1066 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1067 * @root: hierarchy root
1068 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1069 */
1070void mem_cgroup_iter_break(struct mem_cgroup *root,
1071 struct mem_cgroup *prev)
9f3a0d09
JW
1072{
1073 if (!root)
1074 root = root_mem_cgroup;
1075 if (prev && prev != root)
1076 css_put(&prev->css);
1077}
7d74b06f 1078
54a83d6b
MC
1079static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1080 struct mem_cgroup *dead_memcg)
6df38689 1081{
6df38689 1082 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1083 struct mem_cgroup_per_node *mz;
1084 int nid;
6df38689 1085
54a83d6b 1086 for_each_node(nid) {
a3747b53 1087 mz = from->nodeinfo[nid];
9da83f3f
YS
1088 iter = &mz->iter;
1089 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1090 }
1091}
1092
54a83d6b
MC
1093static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1094{
1095 struct mem_cgroup *memcg = dead_memcg;
1096 struct mem_cgroup *last;
1097
1098 do {
1099 __invalidate_reclaim_iterators(memcg, dead_memcg);
1100 last = memcg;
1101 } while ((memcg = parent_mem_cgroup(memcg)));
1102
1103 /*
1104 * When cgruop1 non-hierarchy mode is used,
1105 * parent_mem_cgroup() does not walk all the way up to the
1106 * cgroup root (root_mem_cgroup). So we have to handle
1107 * dead_memcg from cgroup root separately.
1108 */
1109 if (last != root_mem_cgroup)
1110 __invalidate_reclaim_iterators(root_mem_cgroup,
1111 dead_memcg);
1112}
1113
7c5f64f8
VD
1114/**
1115 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1116 * @memcg: hierarchy root
1117 * @fn: function to call for each task
1118 * @arg: argument passed to @fn
1119 *
1120 * This function iterates over tasks attached to @memcg or to any of its
1121 * descendants and calls @fn for each task. If @fn returns a non-zero
1122 * value, the function breaks the iteration loop and returns the value.
1123 * Otherwise, it will iterate over all tasks and return 0.
1124 *
1125 * This function must not be called for the root memory cgroup.
1126 */
1127int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1128 int (*fn)(struct task_struct *, void *), void *arg)
1129{
1130 struct mem_cgroup *iter;
1131 int ret = 0;
1132
1133 BUG_ON(memcg == root_mem_cgroup);
1134
1135 for_each_mem_cgroup_tree(iter, memcg) {
1136 struct css_task_iter it;
1137 struct task_struct *task;
1138
f168a9a5 1139 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1140 while (!ret && (task = css_task_iter_next(&it)))
1141 ret = fn(task, arg);
1142 css_task_iter_end(&it);
1143 if (ret) {
1144 mem_cgroup_iter_break(memcg, iter);
1145 break;
1146 }
1147 }
1148 return ret;
1149}
1150
6168d0da
AS
1151#ifdef CONFIG_DEBUG_VM
1152void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1153{
1154 struct mem_cgroup *memcg;
1155
1156 if (mem_cgroup_disabled())
1157 return;
1158
1159 memcg = page_memcg(page);
1160
1161 if (!memcg)
1162 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1163 else
1164 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1165}
1166#endif
1167
6168d0da
AS
1168/**
1169 * lock_page_lruvec - lock and return lruvec for a given page.
1170 * @page: the page
1171 *
d7e3aba5
AS
1172 * These functions are safe to use under any of the following conditions:
1173 * - page locked
1174 * - PageLRU cleared
1175 * - lock_page_memcg()
1176 * - page->_refcount is zero
6168d0da
AS
1177 */
1178struct lruvec *lock_page_lruvec(struct page *page)
1179{
1180 struct lruvec *lruvec;
6168d0da 1181
a984226f 1182 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1183 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1184
1185 lruvec_memcg_debug(lruvec, page);
1186
1187 return lruvec;
1188}
1189
1190struct lruvec *lock_page_lruvec_irq(struct page *page)
1191{
1192 struct lruvec *lruvec;
6168d0da 1193
a984226f 1194 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1195 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1196
1197 lruvec_memcg_debug(lruvec, page);
1198
1199 return lruvec;
1200}
1201
1202struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1203{
1204 struct lruvec *lruvec;
6168d0da 1205
a984226f 1206 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1207 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1208
1209 lruvec_memcg_debug(lruvec, page);
1210
1211 return lruvec;
1212}
1213
925b7673 1214/**
fa9add64
HD
1215 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1216 * @lruvec: mem_cgroup per zone lru vector
1217 * @lru: index of lru list the page is sitting on
b4536f0c 1218 * @zid: zone id of the accounted pages
fa9add64 1219 * @nr_pages: positive when adding or negative when removing
925b7673 1220 *
ca707239
HD
1221 * This function must be called under lru_lock, just before a page is added
1222 * to or just after a page is removed from an lru list (that ordering being
1223 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1224 */
fa9add64 1225void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1226 int zid, int nr_pages)
3f58a829 1227{
ef8f2327 1228 struct mem_cgroup_per_node *mz;
fa9add64 1229 unsigned long *lru_size;
ca707239 1230 long size;
3f58a829
MK
1231
1232 if (mem_cgroup_disabled())
1233 return;
1234
ef8f2327 1235 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1236 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1237
1238 if (nr_pages < 0)
1239 *lru_size += nr_pages;
1240
1241 size = *lru_size;
b4536f0c
MH
1242 if (WARN_ONCE(size < 0,
1243 "%s(%p, %d, %d): lru_size %ld\n",
1244 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1245 VM_BUG_ON(1);
1246 *lru_size = 0;
1247 }
1248
1249 if (nr_pages > 0)
1250 *lru_size += nr_pages;
08e552c6 1251}
544122e5 1252
19942822 1253/**
9d11ea9f 1254 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1255 * @memcg: the memory cgroup
19942822 1256 *
9d11ea9f 1257 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1258 * pages.
19942822 1259 */
c0ff4b85 1260static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1261{
3e32cb2e
JW
1262 unsigned long margin = 0;
1263 unsigned long count;
1264 unsigned long limit;
9d11ea9f 1265
3e32cb2e 1266 count = page_counter_read(&memcg->memory);
bbec2e15 1267 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1268 if (count < limit)
1269 margin = limit - count;
1270
7941d214 1271 if (do_memsw_account()) {
3e32cb2e 1272 count = page_counter_read(&memcg->memsw);
bbec2e15 1273 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1274 if (count < limit)
3e32cb2e 1275 margin = min(margin, limit - count);
cbedbac3
LR
1276 else
1277 margin = 0;
3e32cb2e
JW
1278 }
1279
1280 return margin;
19942822
JW
1281}
1282
32047e2a 1283/*
bdcbb659 1284 * A routine for checking "mem" is under move_account() or not.
32047e2a 1285 *
bdcbb659
QH
1286 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1287 * moving cgroups. This is for waiting at high-memory pressure
1288 * caused by "move".
32047e2a 1289 */
c0ff4b85 1290static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1291{
2bd9bb20
KH
1292 struct mem_cgroup *from;
1293 struct mem_cgroup *to;
4b534334 1294 bool ret = false;
2bd9bb20
KH
1295 /*
1296 * Unlike task_move routines, we access mc.to, mc.from not under
1297 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1298 */
1299 spin_lock(&mc.lock);
1300 from = mc.from;
1301 to = mc.to;
1302 if (!from)
1303 goto unlock;
3e92041d 1304
2314b42d
JW
1305 ret = mem_cgroup_is_descendant(from, memcg) ||
1306 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1307unlock:
1308 spin_unlock(&mc.lock);
4b534334
KH
1309 return ret;
1310}
1311
c0ff4b85 1312static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1313{
1314 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1315 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1316 DEFINE_WAIT(wait);
1317 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1318 /* moving charge context might have finished. */
1319 if (mc.moving_task)
1320 schedule();
1321 finish_wait(&mc.waitq, &wait);
1322 return true;
1323 }
1324 }
1325 return false;
1326}
1327
5f9a4f4a
MS
1328struct memory_stat {
1329 const char *name;
5f9a4f4a
MS
1330 unsigned int idx;
1331};
1332
57b2847d 1333static const struct memory_stat memory_stats[] = {
fff66b79
MS
1334 { "anon", NR_ANON_MAPPED },
1335 { "file", NR_FILE_PAGES },
1336 { "kernel_stack", NR_KERNEL_STACK_KB },
1337 { "pagetables", NR_PAGETABLE },
1338 { "percpu", MEMCG_PERCPU_B },
1339 { "sock", MEMCG_SOCK },
1340 { "shmem", NR_SHMEM },
1341 { "file_mapped", NR_FILE_MAPPED },
1342 { "file_dirty", NR_FILE_DIRTY },
1343 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1344#ifdef CONFIG_SWAP
1345 { "swapcached", NR_SWAPCACHE },
1346#endif
5f9a4f4a 1347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1348 { "anon_thp", NR_ANON_THPS },
1349 { "file_thp", NR_FILE_THPS },
1350 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1351#endif
fff66b79
MS
1352 { "inactive_anon", NR_INACTIVE_ANON },
1353 { "active_anon", NR_ACTIVE_ANON },
1354 { "inactive_file", NR_INACTIVE_FILE },
1355 { "active_file", NR_ACTIVE_FILE },
1356 { "unevictable", NR_UNEVICTABLE },
1357 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1358 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1359
1360 /* The memory events */
fff66b79
MS
1361 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1362 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1363 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1364 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1365 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1366 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1367 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1368};
1369
fff66b79
MS
1370/* Translate stat items to the correct unit for memory.stat output */
1371static int memcg_page_state_unit(int item)
1372{
1373 switch (item) {
1374 case MEMCG_PERCPU_B:
1375 case NR_SLAB_RECLAIMABLE_B:
1376 case NR_SLAB_UNRECLAIMABLE_B:
1377 case WORKINGSET_REFAULT_ANON:
1378 case WORKINGSET_REFAULT_FILE:
1379 case WORKINGSET_ACTIVATE_ANON:
1380 case WORKINGSET_ACTIVATE_FILE:
1381 case WORKINGSET_RESTORE_ANON:
1382 case WORKINGSET_RESTORE_FILE:
1383 case WORKINGSET_NODERECLAIM:
1384 return 1;
1385 case NR_KERNEL_STACK_KB:
1386 return SZ_1K;
1387 default:
1388 return PAGE_SIZE;
1389 }
1390}
1391
1392static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1393 int item)
1394{
1395 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1396}
1397
c8713d0b
JW
1398static char *memory_stat_format(struct mem_cgroup *memcg)
1399{
1400 struct seq_buf s;
1401 int i;
71cd3113 1402
c8713d0b
JW
1403 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1404 if (!s.buffer)
1405 return NULL;
1406
1407 /*
1408 * Provide statistics on the state of the memory subsystem as
1409 * well as cumulative event counters that show past behavior.
1410 *
1411 * This list is ordered following a combination of these gradients:
1412 * 1) generic big picture -> specifics and details
1413 * 2) reflecting userspace activity -> reflecting kernel heuristics
1414 *
1415 * Current memory state:
1416 */
2d146aa3 1417 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1418
5f9a4f4a
MS
1419 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1420 u64 size;
c8713d0b 1421
fff66b79 1422 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1423 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1424
5f9a4f4a 1425 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1426 size += memcg_page_state_output(memcg,
1427 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1428 seq_buf_printf(&s, "slab %llu\n", size);
1429 }
1430 }
c8713d0b
JW
1431
1432 /* Accumulated memory events */
1433
ebc5d83d
KK
1434 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1435 memcg_events(memcg, PGFAULT));
1436 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1437 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1438 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1439 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1440 seq_buf_printf(&s, "pgscan %lu\n",
1441 memcg_events(memcg, PGSCAN_KSWAPD) +
1442 memcg_events(memcg, PGSCAN_DIRECT));
1443 seq_buf_printf(&s, "pgsteal %lu\n",
1444 memcg_events(memcg, PGSTEAL_KSWAPD) +
1445 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1446 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1447 memcg_events(memcg, PGACTIVATE));
1448 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1449 memcg_events(memcg, PGDEACTIVATE));
1450 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1451 memcg_events(memcg, PGLAZYFREE));
1452 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1453 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1454
1455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1456 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1457 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1458 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1459 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1460#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1461
1462 /* The above should easily fit into one page */
1463 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1464
1465 return s.buffer;
1466}
71cd3113 1467
58cf188e 1468#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1469/**
f0c867d9 1470 * mem_cgroup_print_oom_context: Print OOM information relevant to
1471 * memory controller.
e222432b
BS
1472 * @memcg: The memory cgroup that went over limit
1473 * @p: Task that is going to be killed
1474 *
1475 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1476 * enabled
1477 */
f0c867d9 1478void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1479{
e222432b
BS
1480 rcu_read_lock();
1481
f0c867d9 1482 if (memcg) {
1483 pr_cont(",oom_memcg=");
1484 pr_cont_cgroup_path(memcg->css.cgroup);
1485 } else
1486 pr_cont(",global_oom");
2415b9f5 1487 if (p) {
f0c867d9 1488 pr_cont(",task_memcg=");
2415b9f5 1489 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1490 }
e222432b 1491 rcu_read_unlock();
f0c867d9 1492}
1493
1494/**
1495 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1496 * memory controller.
1497 * @memcg: The memory cgroup that went over limit
1498 */
1499void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1500{
c8713d0b 1501 char *buf;
e222432b 1502
3e32cb2e
JW
1503 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1504 K((u64)page_counter_read(&memcg->memory)),
15b42562 1505 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1506 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1507 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1508 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1509 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1510 else {
1511 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1512 K((u64)page_counter_read(&memcg->memsw)),
1513 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1514 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->kmem)),
1516 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1517 }
c8713d0b
JW
1518
1519 pr_info("Memory cgroup stats for ");
1520 pr_cont_cgroup_path(memcg->css.cgroup);
1521 pr_cont(":");
1522 buf = memory_stat_format(memcg);
1523 if (!buf)
1524 return;
1525 pr_info("%s", buf);
1526 kfree(buf);
e222432b
BS
1527}
1528
a63d83f4
DR
1529/*
1530 * Return the memory (and swap, if configured) limit for a memcg.
1531 */
bbec2e15 1532unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1533{
8d387a5f
WL
1534 unsigned long max = READ_ONCE(memcg->memory.max);
1535
1536 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1537 if (mem_cgroup_swappiness(memcg))
1538 max += min(READ_ONCE(memcg->swap.max),
1539 (unsigned long)total_swap_pages);
1540 } else { /* v1 */
1541 if (mem_cgroup_swappiness(memcg)) {
1542 /* Calculate swap excess capacity from memsw limit */
1543 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1544
1545 max += min(swap, (unsigned long)total_swap_pages);
1546 }
9a5a8f19 1547 }
bbec2e15 1548 return max;
a63d83f4
DR
1549}
1550
9783aa99
CD
1551unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1552{
1553 return page_counter_read(&memcg->memory);
1554}
1555
b6e6edcf 1556static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1557 int order)
9cbb78bb 1558{
6e0fc46d
DR
1559 struct oom_control oc = {
1560 .zonelist = NULL,
1561 .nodemask = NULL,
2a966b77 1562 .memcg = memcg,
6e0fc46d
DR
1563 .gfp_mask = gfp_mask,
1564 .order = order,
6e0fc46d 1565 };
1378b37d 1566 bool ret = true;
9cbb78bb 1567
7775face
TH
1568 if (mutex_lock_killable(&oom_lock))
1569 return true;
1378b37d
YS
1570
1571 if (mem_cgroup_margin(memcg) >= (1 << order))
1572 goto unlock;
1573
7775face
TH
1574 /*
1575 * A few threads which were not waiting at mutex_lock_killable() can
1576 * fail to bail out. Therefore, check again after holding oom_lock.
1577 */
1578 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1579
1580unlock:
dc56401f 1581 mutex_unlock(&oom_lock);
7c5f64f8 1582 return ret;
9cbb78bb
DR
1583}
1584
0608f43d 1585static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1586 pg_data_t *pgdat,
0608f43d
AM
1587 gfp_t gfp_mask,
1588 unsigned long *total_scanned)
1589{
1590 struct mem_cgroup *victim = NULL;
1591 int total = 0;
1592 int loop = 0;
1593 unsigned long excess;
1594 unsigned long nr_scanned;
1595 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1596 .pgdat = pgdat,
0608f43d
AM
1597 };
1598
3e32cb2e 1599 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1600
1601 while (1) {
1602 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1603 if (!victim) {
1604 loop++;
1605 if (loop >= 2) {
1606 /*
1607 * If we have not been able to reclaim
1608 * anything, it might because there are
1609 * no reclaimable pages under this hierarchy
1610 */
1611 if (!total)
1612 break;
1613 /*
1614 * We want to do more targeted reclaim.
1615 * excess >> 2 is not to excessive so as to
1616 * reclaim too much, nor too less that we keep
1617 * coming back to reclaim from this cgroup
1618 */
1619 if (total >= (excess >> 2) ||
1620 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1621 break;
1622 }
1623 continue;
1624 }
a9dd0a83 1625 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1626 pgdat, &nr_scanned);
0608f43d 1627 *total_scanned += nr_scanned;
3e32cb2e 1628 if (!soft_limit_excess(root_memcg))
0608f43d 1629 break;
6d61ef40 1630 }
0608f43d
AM
1631 mem_cgroup_iter_break(root_memcg, victim);
1632 return total;
6d61ef40
BS
1633}
1634
0056f4e6
JW
1635#ifdef CONFIG_LOCKDEP
1636static struct lockdep_map memcg_oom_lock_dep_map = {
1637 .name = "memcg_oom_lock",
1638};
1639#endif
1640
fb2a6fc5
JW
1641static DEFINE_SPINLOCK(memcg_oom_lock);
1642
867578cb
KH
1643/*
1644 * Check OOM-Killer is already running under our hierarchy.
1645 * If someone is running, return false.
1646 */
fb2a6fc5 1647static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1648{
79dfdacc 1649 struct mem_cgroup *iter, *failed = NULL;
a636b327 1650
fb2a6fc5
JW
1651 spin_lock(&memcg_oom_lock);
1652
9f3a0d09 1653 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1654 if (iter->oom_lock) {
79dfdacc
MH
1655 /*
1656 * this subtree of our hierarchy is already locked
1657 * so we cannot give a lock.
1658 */
79dfdacc 1659 failed = iter;
9f3a0d09
JW
1660 mem_cgroup_iter_break(memcg, iter);
1661 break;
23751be0
JW
1662 } else
1663 iter->oom_lock = true;
7d74b06f 1664 }
867578cb 1665
fb2a6fc5
JW
1666 if (failed) {
1667 /*
1668 * OK, we failed to lock the whole subtree so we have
1669 * to clean up what we set up to the failing subtree
1670 */
1671 for_each_mem_cgroup_tree(iter, memcg) {
1672 if (iter == failed) {
1673 mem_cgroup_iter_break(memcg, iter);
1674 break;
1675 }
1676 iter->oom_lock = false;
79dfdacc 1677 }
0056f4e6
JW
1678 } else
1679 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1680
1681 spin_unlock(&memcg_oom_lock);
1682
1683 return !failed;
a636b327 1684}
0b7f569e 1685
fb2a6fc5 1686static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1687{
7d74b06f
KH
1688 struct mem_cgroup *iter;
1689
fb2a6fc5 1690 spin_lock(&memcg_oom_lock);
5facae4f 1691 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1692 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1693 iter->oom_lock = false;
fb2a6fc5 1694 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1695}
1696
c0ff4b85 1697static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1698{
1699 struct mem_cgroup *iter;
1700
c2b42d3c 1701 spin_lock(&memcg_oom_lock);
c0ff4b85 1702 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1703 iter->under_oom++;
1704 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1705}
1706
c0ff4b85 1707static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1708{
1709 struct mem_cgroup *iter;
1710
867578cb 1711 /*
f0953a1b 1712 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1713 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1714 */
c2b42d3c 1715 spin_lock(&memcg_oom_lock);
c0ff4b85 1716 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1717 if (iter->under_oom > 0)
1718 iter->under_oom--;
1719 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1720}
1721
867578cb
KH
1722static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1723
dc98df5a 1724struct oom_wait_info {
d79154bb 1725 struct mem_cgroup *memcg;
ac6424b9 1726 wait_queue_entry_t wait;
dc98df5a
KH
1727};
1728
ac6424b9 1729static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1730 unsigned mode, int sync, void *arg)
1731{
d79154bb
HD
1732 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1733 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1734 struct oom_wait_info *oom_wait_info;
1735
1736 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1737 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1738
2314b42d
JW
1739 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1740 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1741 return 0;
dc98df5a
KH
1742 return autoremove_wake_function(wait, mode, sync, arg);
1743}
1744
c0ff4b85 1745static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1746{
c2b42d3c
TH
1747 /*
1748 * For the following lockless ->under_oom test, the only required
1749 * guarantee is that it must see the state asserted by an OOM when
1750 * this function is called as a result of userland actions
1751 * triggered by the notification of the OOM. This is trivially
1752 * achieved by invoking mem_cgroup_mark_under_oom() before
1753 * triggering notification.
1754 */
1755 if (memcg && memcg->under_oom)
f4b90b70 1756 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1757}
1758
29ef680a
MH
1759enum oom_status {
1760 OOM_SUCCESS,
1761 OOM_FAILED,
1762 OOM_ASYNC,
1763 OOM_SKIPPED
1764};
1765
1766static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1767{
7056d3a3
MH
1768 enum oom_status ret;
1769 bool locked;
1770
29ef680a
MH
1771 if (order > PAGE_ALLOC_COSTLY_ORDER)
1772 return OOM_SKIPPED;
1773
7a1adfdd
RG
1774 memcg_memory_event(memcg, MEMCG_OOM);
1775
867578cb 1776 /*
49426420
JW
1777 * We are in the middle of the charge context here, so we
1778 * don't want to block when potentially sitting on a callstack
1779 * that holds all kinds of filesystem and mm locks.
1780 *
29ef680a
MH
1781 * cgroup1 allows disabling the OOM killer and waiting for outside
1782 * handling until the charge can succeed; remember the context and put
1783 * the task to sleep at the end of the page fault when all locks are
1784 * released.
49426420 1785 *
29ef680a
MH
1786 * On the other hand, in-kernel OOM killer allows for an async victim
1787 * memory reclaim (oom_reaper) and that means that we are not solely
1788 * relying on the oom victim to make a forward progress and we can
1789 * invoke the oom killer here.
1790 *
1791 * Please note that mem_cgroup_out_of_memory might fail to find a
1792 * victim and then we have to bail out from the charge path.
867578cb 1793 */
29ef680a
MH
1794 if (memcg->oom_kill_disable) {
1795 if (!current->in_user_fault)
1796 return OOM_SKIPPED;
1797 css_get(&memcg->css);
1798 current->memcg_in_oom = memcg;
1799 current->memcg_oom_gfp_mask = mask;
1800 current->memcg_oom_order = order;
1801
1802 return OOM_ASYNC;
1803 }
1804
7056d3a3
MH
1805 mem_cgroup_mark_under_oom(memcg);
1806
1807 locked = mem_cgroup_oom_trylock(memcg);
1808
1809 if (locked)
1810 mem_cgroup_oom_notify(memcg);
1811
1812 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1813 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1814 ret = OOM_SUCCESS;
1815 else
1816 ret = OOM_FAILED;
1817
1818 if (locked)
1819 mem_cgroup_oom_unlock(memcg);
29ef680a 1820
7056d3a3 1821 return ret;
3812c8c8
JW
1822}
1823
1824/**
1825 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1826 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1827 *
49426420
JW
1828 * This has to be called at the end of a page fault if the memcg OOM
1829 * handler was enabled.
3812c8c8 1830 *
49426420 1831 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1832 * sleep on a waitqueue until the userspace task resolves the
1833 * situation. Sleeping directly in the charge context with all kinds
1834 * of locks held is not a good idea, instead we remember an OOM state
1835 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1836 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1837 *
1838 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1839 * completed, %false otherwise.
3812c8c8 1840 */
49426420 1841bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1842{
626ebc41 1843 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1844 struct oom_wait_info owait;
49426420 1845 bool locked;
3812c8c8
JW
1846
1847 /* OOM is global, do not handle */
3812c8c8 1848 if (!memcg)
49426420 1849 return false;
3812c8c8 1850
7c5f64f8 1851 if (!handle)
49426420 1852 goto cleanup;
3812c8c8
JW
1853
1854 owait.memcg = memcg;
1855 owait.wait.flags = 0;
1856 owait.wait.func = memcg_oom_wake_function;
1857 owait.wait.private = current;
2055da97 1858 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1859
3812c8c8 1860 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1861 mem_cgroup_mark_under_oom(memcg);
1862
1863 locked = mem_cgroup_oom_trylock(memcg);
1864
1865 if (locked)
1866 mem_cgroup_oom_notify(memcg);
1867
1868 if (locked && !memcg->oom_kill_disable) {
1869 mem_cgroup_unmark_under_oom(memcg);
1870 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1871 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1872 current->memcg_oom_order);
49426420 1873 } else {
3812c8c8 1874 schedule();
49426420
JW
1875 mem_cgroup_unmark_under_oom(memcg);
1876 finish_wait(&memcg_oom_waitq, &owait.wait);
1877 }
1878
1879 if (locked) {
fb2a6fc5
JW
1880 mem_cgroup_oom_unlock(memcg);
1881 /*
1882 * There is no guarantee that an OOM-lock contender
1883 * sees the wakeups triggered by the OOM kill
f0953a1b 1884 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1885 */
1886 memcg_oom_recover(memcg);
1887 }
49426420 1888cleanup:
626ebc41 1889 current->memcg_in_oom = NULL;
3812c8c8 1890 css_put(&memcg->css);
867578cb 1891 return true;
0b7f569e
KH
1892}
1893
3d8b38eb
RG
1894/**
1895 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1896 * @victim: task to be killed by the OOM killer
1897 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1898 *
1899 * Returns a pointer to a memory cgroup, which has to be cleaned up
1900 * by killing all belonging OOM-killable tasks.
1901 *
1902 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1903 */
1904struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1905 struct mem_cgroup *oom_domain)
1906{
1907 struct mem_cgroup *oom_group = NULL;
1908 struct mem_cgroup *memcg;
1909
1910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1911 return NULL;
1912
1913 if (!oom_domain)
1914 oom_domain = root_mem_cgroup;
1915
1916 rcu_read_lock();
1917
1918 memcg = mem_cgroup_from_task(victim);
1919 if (memcg == root_mem_cgroup)
1920 goto out;
1921
48fe267c
RG
1922 /*
1923 * If the victim task has been asynchronously moved to a different
1924 * memory cgroup, we might end up killing tasks outside oom_domain.
1925 * In this case it's better to ignore memory.group.oom.
1926 */
1927 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1928 goto out;
1929
3d8b38eb
RG
1930 /*
1931 * Traverse the memory cgroup hierarchy from the victim task's
1932 * cgroup up to the OOMing cgroup (or root) to find the
1933 * highest-level memory cgroup with oom.group set.
1934 */
1935 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1936 if (memcg->oom_group)
1937 oom_group = memcg;
1938
1939 if (memcg == oom_domain)
1940 break;
1941 }
1942
1943 if (oom_group)
1944 css_get(&oom_group->css);
1945out:
1946 rcu_read_unlock();
1947
1948 return oom_group;
1949}
1950
1951void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1952{
1953 pr_info("Tasks in ");
1954 pr_cont_cgroup_path(memcg->css.cgroup);
1955 pr_cont(" are going to be killed due to memory.oom.group set\n");
1956}
1957
d7365e78 1958/**
bcfe06bf 1959 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 1960 * @page: the page
32047e2a 1961 *
81f8c3a4 1962 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1963 * another cgroup.
1964 *
1c824a68
JW
1965 * It ensures lifetime of the locked memcg. Caller is responsible
1966 * for the lifetime of the page.
d69b042f 1967 */
1c824a68 1968void lock_page_memcg(struct page *page)
89c06bd5 1969{
9da7b521 1970 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1971 struct mem_cgroup *memcg;
6de22619 1972 unsigned long flags;
89c06bd5 1973
6de22619
JW
1974 /*
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
739f79fc 1978 */
d7365e78
JW
1979 rcu_read_lock();
1980
1981 if (mem_cgroup_disabled())
1c824a68 1982 return;
89c06bd5 1983again:
bcfe06bf 1984 memcg = page_memcg(head);
29833315 1985 if (unlikely(!memcg))
1c824a68 1986 return;
d7365e78 1987
20ad50d6
AS
1988#ifdef CONFIG_PROVE_LOCKING
1989 local_irq_save(flags);
1990 might_lock(&memcg->move_lock);
1991 local_irq_restore(flags);
1992#endif
1993
bdcbb659 1994 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 1995 return;
89c06bd5 1996
6de22619 1997 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 1998 if (memcg != page_memcg(head)) {
6de22619 1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2000 goto again;
2001 }
6de22619
JW
2002
2003 /*
1c824a68
JW
2004 * When charge migration first begins, we can have multiple
2005 * critical sections holding the fast-path RCU lock and one
2006 * holding the slowpath move_lock. Track the task who has the
2007 * move_lock for unlock_page_memcg().
6de22619
JW
2008 */
2009 memcg->move_lock_task = current;
2010 memcg->move_lock_flags = flags;
89c06bd5 2011}
81f8c3a4 2012EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2013
1c824a68 2014static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2015{
6de22619
JW
2016 if (memcg && memcg->move_lock_task == current) {
2017 unsigned long flags = memcg->move_lock_flags;
2018
2019 memcg->move_lock_task = NULL;
2020 memcg->move_lock_flags = 0;
2021
2022 spin_unlock_irqrestore(&memcg->move_lock, flags);
2023 }
89c06bd5 2024
d7365e78 2025 rcu_read_unlock();
89c06bd5 2026}
739f79fc
JW
2027
2028/**
bcfe06bf 2029 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2030 * @page: the page
2031 */
2032void unlock_page_memcg(struct page *page)
2033{
9da7b521
JW
2034 struct page *head = compound_head(page);
2035
bcfe06bf 2036 __unlock_page_memcg(page_memcg(head));
739f79fc 2037}
81f8c3a4 2038EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2039
55927114 2040struct obj_stock {
bf4f0599
RG
2041#ifdef CONFIG_MEMCG_KMEM
2042 struct obj_cgroup *cached_objcg;
68ac5b3c 2043 struct pglist_data *cached_pgdat;
bf4f0599 2044 unsigned int nr_bytes;
68ac5b3c
WL
2045 int nr_slab_reclaimable_b;
2046 int nr_slab_unreclaimable_b;
55927114
WL
2047#else
2048 int dummy[0];
bf4f0599 2049#endif
55927114
WL
2050};
2051
2052struct memcg_stock_pcp {
2053 struct mem_cgroup *cached; /* this never be root cgroup */
2054 unsigned int nr_pages;
2055 struct obj_stock task_obj;
2056 struct obj_stock irq_obj;
bf4f0599 2057
cdec2e42 2058 struct work_struct work;
26fe6168 2059 unsigned long flags;
a0db00fc 2060#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2061};
2062static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2063static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2064
bf4f0599 2065#ifdef CONFIG_MEMCG_KMEM
55927114 2066static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2067static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2068 struct mem_cgroup *root_memcg);
2069
2070#else
55927114 2071static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2072{
2073}
2074static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2075 struct mem_cgroup *root_memcg)
2076{
2077 return false;
2078}
2079#endif
2080
55927114
WL
2081/*
2082 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2083 * sequence used in this case to access content from object stock is slow.
2084 * To optimize for user context access, there are now two object stocks for
2085 * task context and interrupt context access respectively.
2086 *
2087 * The task context object stock can be accessed by disabling preemption only
2088 * which is cheap in non-preempt kernel. The interrupt context object stock
2089 * can only be accessed after disabling interrupt. User context code can
2090 * access interrupt object stock, but not vice versa.
2091 */
2092static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2093{
2094 struct memcg_stock_pcp *stock;
2095
2096 if (likely(in_task())) {
2097 *pflags = 0UL;
2098 preempt_disable();
2099 stock = this_cpu_ptr(&memcg_stock);
2100 return &stock->task_obj;
2101 }
2102
2103 local_irq_save(*pflags);
2104 stock = this_cpu_ptr(&memcg_stock);
2105 return &stock->irq_obj;
2106}
2107
2108static inline void put_obj_stock(unsigned long flags)
2109{
2110 if (likely(in_task()))
2111 preempt_enable();
2112 else
2113 local_irq_restore(flags);
2114}
2115
a0956d54
SS
2116/**
2117 * consume_stock: Try to consume stocked charge on this cpu.
2118 * @memcg: memcg to consume from.
2119 * @nr_pages: how many pages to charge.
2120 *
2121 * The charges will only happen if @memcg matches the current cpu's memcg
2122 * stock, and at least @nr_pages are available in that stock. Failure to
2123 * service an allocation will refill the stock.
2124 *
2125 * returns true if successful, false otherwise.
cdec2e42 2126 */
a0956d54 2127static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2128{
2129 struct memcg_stock_pcp *stock;
db2ba40c 2130 unsigned long flags;
3e32cb2e 2131 bool ret = false;
cdec2e42 2132
a983b5eb 2133 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2134 return ret;
a0956d54 2135
db2ba40c
JW
2136 local_irq_save(flags);
2137
2138 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2139 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2140 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2141 ret = true;
2142 }
db2ba40c
JW
2143
2144 local_irq_restore(flags);
2145
cdec2e42
KH
2146 return ret;
2147}
2148
2149/*
3e32cb2e 2150 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2151 */
2152static void drain_stock(struct memcg_stock_pcp *stock)
2153{
2154 struct mem_cgroup *old = stock->cached;
2155
1a3e1f40
JW
2156 if (!old)
2157 return;
2158
11c9ea4e 2159 if (stock->nr_pages) {
3e32cb2e 2160 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2161 if (do_memsw_account())
3e32cb2e 2162 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2163 stock->nr_pages = 0;
cdec2e42 2164 }
1a3e1f40
JW
2165
2166 css_put(&old->css);
cdec2e42 2167 stock->cached = NULL;
cdec2e42
KH
2168}
2169
cdec2e42
KH
2170static void drain_local_stock(struct work_struct *dummy)
2171{
db2ba40c
JW
2172 struct memcg_stock_pcp *stock;
2173 unsigned long flags;
2174
72f0184c 2175 /*
5c49cf9a
MH
2176 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2177 * drain_stock races is that we always operate on local CPU stock
2178 * here with IRQ disabled
72f0184c 2179 */
db2ba40c
JW
2180 local_irq_save(flags);
2181
2182 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2183 drain_obj_stock(&stock->irq_obj);
2184 if (in_task())
2185 drain_obj_stock(&stock->task_obj);
cdec2e42 2186 drain_stock(stock);
26fe6168 2187 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2188
2189 local_irq_restore(flags);
cdec2e42
KH
2190}
2191
2192/*
3e32cb2e 2193 * Cache charges(val) to local per_cpu area.
320cc51d 2194 * This will be consumed by consume_stock() function, later.
cdec2e42 2195 */
c0ff4b85 2196static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2197{
db2ba40c
JW
2198 struct memcg_stock_pcp *stock;
2199 unsigned long flags;
2200
2201 local_irq_save(flags);
cdec2e42 2202
db2ba40c 2203 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2204 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2205 drain_stock(stock);
1a3e1f40 2206 css_get(&memcg->css);
c0ff4b85 2207 stock->cached = memcg;
cdec2e42 2208 }
11c9ea4e 2209 stock->nr_pages += nr_pages;
db2ba40c 2210
a983b5eb 2211 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2212 drain_stock(stock);
2213
db2ba40c 2214 local_irq_restore(flags);
cdec2e42
KH
2215}
2216
2217/*
c0ff4b85 2218 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2219 * of the hierarchy under it.
cdec2e42 2220 */
6d3d6aa2 2221static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2222{
26fe6168 2223 int cpu, curcpu;
d38144b7 2224
6d3d6aa2
JW
2225 /* If someone's already draining, avoid adding running more workers. */
2226 if (!mutex_trylock(&percpu_charge_mutex))
2227 return;
72f0184c
MH
2228 /*
2229 * Notify other cpus that system-wide "drain" is running
2230 * We do not care about races with the cpu hotplug because cpu down
2231 * as well as workers from this path always operate on the local
2232 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2233 */
5af12d0e 2234 curcpu = get_cpu();
cdec2e42
KH
2235 for_each_online_cpu(cpu) {
2236 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2237 struct mem_cgroup *memcg;
e1a366be 2238 bool flush = false;
26fe6168 2239
e1a366be 2240 rcu_read_lock();
c0ff4b85 2241 memcg = stock->cached;
e1a366be
RG
2242 if (memcg && stock->nr_pages &&
2243 mem_cgroup_is_descendant(memcg, root_memcg))
2244 flush = true;
27fb0956 2245 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2246 flush = true;
e1a366be
RG
2247 rcu_read_unlock();
2248
2249 if (flush &&
2250 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2251 if (cpu == curcpu)
2252 drain_local_stock(&stock->work);
2253 else
2254 schedule_work_on(cpu, &stock->work);
2255 }
cdec2e42 2256 }
5af12d0e 2257 put_cpu();
9f50fad6 2258 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2259}
2260
2cd21c89
JW
2261static int memcg_hotplug_cpu_dead(unsigned int cpu)
2262{
2263 struct memcg_stock_pcp *stock;
a3d4c05a 2264
2cd21c89
JW
2265 stock = &per_cpu(memcg_stock, cpu);
2266 drain_stock(stock);
a3d4c05a 2267
308167fc 2268 return 0;
cdec2e42
KH
2269}
2270
b3ff9291
CD
2271static unsigned long reclaim_high(struct mem_cgroup *memcg,
2272 unsigned int nr_pages,
2273 gfp_t gfp_mask)
f7e1cb6e 2274{
b3ff9291
CD
2275 unsigned long nr_reclaimed = 0;
2276
f7e1cb6e 2277 do {
e22c6ed9
JW
2278 unsigned long pflags;
2279
d1663a90
JK
2280 if (page_counter_read(&memcg->memory) <=
2281 READ_ONCE(memcg->memory.high))
f7e1cb6e 2282 continue;
e22c6ed9 2283
e27be240 2284 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2285
2286 psi_memstall_enter(&pflags);
b3ff9291
CD
2287 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2288 gfp_mask, true);
e22c6ed9 2289 psi_memstall_leave(&pflags);
4bf17307
CD
2290 } while ((memcg = parent_mem_cgroup(memcg)) &&
2291 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2292
2293 return nr_reclaimed;
f7e1cb6e
JW
2294}
2295
2296static void high_work_func(struct work_struct *work)
2297{
2298 struct mem_cgroup *memcg;
2299
2300 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2301 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2302}
2303
0e4b01df
CD
2304/*
2305 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2306 * enough to still cause a significant slowdown in most cases, while still
2307 * allowing diagnostics and tracing to proceed without becoming stuck.
2308 */
2309#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2310
2311/*
2312 * When calculating the delay, we use these either side of the exponentiation to
2313 * maintain precision and scale to a reasonable number of jiffies (see the table
2314 * below.
2315 *
2316 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2317 * overage ratio to a delay.
ac5ddd0f 2318 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2319 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2320 * to produce a reasonable delay curve.
2321 *
2322 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2323 * reasonable delay curve compared to precision-adjusted overage, not
2324 * penalising heavily at first, but still making sure that growth beyond the
2325 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2326 * example, with a high of 100 megabytes:
2327 *
2328 * +-------+------------------------+
2329 * | usage | time to allocate in ms |
2330 * +-------+------------------------+
2331 * | 100M | 0 |
2332 * | 101M | 6 |
2333 * | 102M | 25 |
2334 * | 103M | 57 |
2335 * | 104M | 102 |
2336 * | 105M | 159 |
2337 * | 106M | 230 |
2338 * | 107M | 313 |
2339 * | 108M | 409 |
2340 * | 109M | 518 |
2341 * | 110M | 639 |
2342 * | 111M | 774 |
2343 * | 112M | 921 |
2344 * | 113M | 1081 |
2345 * | 114M | 1254 |
2346 * | 115M | 1439 |
2347 * | 116M | 1638 |
2348 * | 117M | 1849 |
2349 * | 118M | 2000 |
2350 * | 119M | 2000 |
2351 * | 120M | 2000 |
2352 * +-------+------------------------+
2353 */
2354 #define MEMCG_DELAY_PRECISION_SHIFT 20
2355 #define MEMCG_DELAY_SCALING_SHIFT 14
2356
8a5dbc65 2357static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2358{
8a5dbc65 2359 u64 overage;
b23afb93 2360
8a5dbc65
JK
2361 if (usage <= high)
2362 return 0;
e26733e0 2363
8a5dbc65
JK
2364 /*
2365 * Prevent division by 0 in overage calculation by acting as if
2366 * it was a threshold of 1 page
2367 */
2368 high = max(high, 1UL);
9b8b1754 2369
8a5dbc65
JK
2370 overage = usage - high;
2371 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2372 return div64_u64(overage, high);
2373}
e26733e0 2374
8a5dbc65
JK
2375static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2376{
2377 u64 overage, max_overage = 0;
e26733e0 2378
8a5dbc65
JK
2379 do {
2380 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2381 READ_ONCE(memcg->memory.high));
8a5dbc65 2382 max_overage = max(overage, max_overage);
e26733e0
CD
2383 } while ((memcg = parent_mem_cgroup(memcg)) &&
2384 !mem_cgroup_is_root(memcg));
2385
8a5dbc65
JK
2386 return max_overage;
2387}
2388
4b82ab4f
JK
2389static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2390{
2391 u64 overage, max_overage = 0;
2392
2393 do {
2394 overage = calculate_overage(page_counter_read(&memcg->swap),
2395 READ_ONCE(memcg->swap.high));
2396 if (overage)
2397 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2398 max_overage = max(overage, max_overage);
2399 } while ((memcg = parent_mem_cgroup(memcg)) &&
2400 !mem_cgroup_is_root(memcg));
2401
2402 return max_overage;
2403}
2404
8a5dbc65
JK
2405/*
2406 * Get the number of jiffies that we should penalise a mischievous cgroup which
2407 * is exceeding its memory.high by checking both it and its ancestors.
2408 */
2409static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2410 unsigned int nr_pages,
2411 u64 max_overage)
2412{
2413 unsigned long penalty_jiffies;
2414
e26733e0
CD
2415 if (!max_overage)
2416 return 0;
0e4b01df
CD
2417
2418 /*
0e4b01df
CD
2419 * We use overage compared to memory.high to calculate the number of
2420 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2421 * fairly lenient on small overages, and increasingly harsh when the
2422 * memcg in question makes it clear that it has no intention of stopping
2423 * its crazy behaviour, so we exponentially increase the delay based on
2424 * overage amount.
2425 */
e26733e0
CD
2426 penalty_jiffies = max_overage * max_overage * HZ;
2427 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2428 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2429
2430 /*
2431 * Factor in the task's own contribution to the overage, such that four
2432 * N-sized allocations are throttled approximately the same as one
2433 * 4N-sized allocation.
2434 *
2435 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2436 * larger the current charge patch is than that.
2437 */
ff144e69 2438 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2439}
2440
2441/*
2442 * Scheduled by try_charge() to be executed from the userland return path
2443 * and reclaims memory over the high limit.
2444 */
2445void mem_cgroup_handle_over_high(void)
2446{
2447 unsigned long penalty_jiffies;
2448 unsigned long pflags;
b3ff9291 2449 unsigned long nr_reclaimed;
e26733e0 2450 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2451 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2452 struct mem_cgroup *memcg;
b3ff9291 2453 bool in_retry = false;
e26733e0
CD
2454
2455 if (likely(!nr_pages))
2456 return;
2457
2458 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2459 current->memcg_nr_pages_over_high = 0;
2460
b3ff9291
CD
2461retry_reclaim:
2462 /*
2463 * The allocating task should reclaim at least the batch size, but for
2464 * subsequent retries we only want to do what's necessary to prevent oom
2465 * or breaching resource isolation.
2466 *
2467 * This is distinct from memory.max or page allocator behaviour because
2468 * memory.high is currently batched, whereas memory.max and the page
2469 * allocator run every time an allocation is made.
2470 */
2471 nr_reclaimed = reclaim_high(memcg,
2472 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2473 GFP_KERNEL);
2474
e26733e0
CD
2475 /*
2476 * memory.high is breached and reclaim is unable to keep up. Throttle
2477 * allocators proactively to slow down excessive growth.
2478 */
8a5dbc65
JK
2479 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2480 mem_find_max_overage(memcg));
0e4b01df 2481
4b82ab4f
JK
2482 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2483 swap_find_max_overage(memcg));
2484
ff144e69
JK
2485 /*
2486 * Clamp the max delay per usermode return so as to still keep the
2487 * application moving forwards and also permit diagnostics, albeit
2488 * extremely slowly.
2489 */
2490 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2491
0e4b01df
CD
2492 /*
2493 * Don't sleep if the amount of jiffies this memcg owes us is so low
2494 * that it's not even worth doing, in an attempt to be nice to those who
2495 * go only a small amount over their memory.high value and maybe haven't
2496 * been aggressively reclaimed enough yet.
2497 */
2498 if (penalty_jiffies <= HZ / 100)
2499 goto out;
2500
b3ff9291
CD
2501 /*
2502 * If reclaim is making forward progress but we're still over
2503 * memory.high, we want to encourage that rather than doing allocator
2504 * throttling.
2505 */
2506 if (nr_reclaimed || nr_retries--) {
2507 in_retry = true;
2508 goto retry_reclaim;
2509 }
2510
0e4b01df
CD
2511 /*
2512 * If we exit early, we're guaranteed to die (since
2513 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2514 * need to account for any ill-begotten jiffies to pay them off later.
2515 */
2516 psi_memstall_enter(&pflags);
2517 schedule_timeout_killable(penalty_jiffies);
2518 psi_memstall_leave(&pflags);
2519
2520out:
2521 css_put(&memcg->css);
b23afb93
TH
2522}
2523
c5c8b16b
MS
2524static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2525 unsigned int nr_pages)
8a9f3ccd 2526{
a983b5eb 2527 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2528 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2529 struct mem_cgroup *mem_over_limit;
3e32cb2e 2530 struct page_counter *counter;
e22c6ed9 2531 enum oom_status oom_status;
6539cc05 2532 unsigned long nr_reclaimed;
b70a2a21
JW
2533 bool may_swap = true;
2534 bool drained = false;
e22c6ed9 2535 unsigned long pflags;
a636b327 2536
6539cc05 2537retry:
b6b6cc72 2538 if (consume_stock(memcg, nr_pages))
10d53c74 2539 return 0;
8a9f3ccd 2540
7941d214 2541 if (!do_memsw_account() ||
6071ca52
JW
2542 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2543 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2544 goto done_restock;
7941d214 2545 if (do_memsw_account())
3e32cb2e
JW
2546 page_counter_uncharge(&memcg->memsw, batch);
2547 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2548 } else {
3e32cb2e 2549 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2550 may_swap = false;
3fbe7244 2551 }
7a81b88c 2552
6539cc05
JW
2553 if (batch > nr_pages) {
2554 batch = nr_pages;
2555 goto retry;
2556 }
6d61ef40 2557
869712fd
JW
2558 /*
2559 * Memcg doesn't have a dedicated reserve for atomic
2560 * allocations. But like the global atomic pool, we need to
2561 * put the burden of reclaim on regular allocation requests
2562 * and let these go through as privileged allocations.
2563 */
2564 if (gfp_mask & __GFP_ATOMIC)
2565 goto force;
2566
06b078fc
JW
2567 /*
2568 * Unlike in global OOM situations, memcg is not in a physical
2569 * memory shortage. Allow dying and OOM-killed tasks to
2570 * bypass the last charges so that they can exit quickly and
2571 * free their memory.
2572 */
7775face 2573 if (unlikely(should_force_charge()))
10d53c74 2574 goto force;
06b078fc 2575
89a28483
JW
2576 /*
2577 * Prevent unbounded recursion when reclaim operations need to
2578 * allocate memory. This might exceed the limits temporarily,
2579 * but we prefer facilitating memory reclaim and getting back
2580 * under the limit over triggering OOM kills in these cases.
2581 */
2582 if (unlikely(current->flags & PF_MEMALLOC))
2583 goto force;
2584
06b078fc
JW
2585 if (unlikely(task_in_memcg_oom(current)))
2586 goto nomem;
2587
d0164adc 2588 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2589 goto nomem;
4b534334 2590
e27be240 2591 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2592
e22c6ed9 2593 psi_memstall_enter(&pflags);
b70a2a21
JW
2594 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2595 gfp_mask, may_swap);
e22c6ed9 2596 psi_memstall_leave(&pflags);
6539cc05 2597
61e02c74 2598 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2599 goto retry;
28c34c29 2600
b70a2a21 2601 if (!drained) {
6d3d6aa2 2602 drain_all_stock(mem_over_limit);
b70a2a21
JW
2603 drained = true;
2604 goto retry;
2605 }
2606
28c34c29
JW
2607 if (gfp_mask & __GFP_NORETRY)
2608 goto nomem;
6539cc05
JW
2609 /*
2610 * Even though the limit is exceeded at this point, reclaim
2611 * may have been able to free some pages. Retry the charge
2612 * before killing the task.
2613 *
2614 * Only for regular pages, though: huge pages are rather
2615 * unlikely to succeed so close to the limit, and we fall back
2616 * to regular pages anyway in case of failure.
2617 */
61e02c74 2618 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2619 goto retry;
2620 /*
2621 * At task move, charge accounts can be doubly counted. So, it's
2622 * better to wait until the end of task_move if something is going on.
2623 */
2624 if (mem_cgroup_wait_acct_move(mem_over_limit))
2625 goto retry;
2626
9b130619
JW
2627 if (nr_retries--)
2628 goto retry;
2629
38d38493 2630 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2631 goto nomem;
2632
6539cc05 2633 if (fatal_signal_pending(current))
10d53c74 2634 goto force;
6539cc05 2635
29ef680a
MH
2636 /*
2637 * keep retrying as long as the memcg oom killer is able to make
2638 * a forward progress or bypass the charge if the oom killer
2639 * couldn't make any progress.
2640 */
2641 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2642 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2643 switch (oom_status) {
2644 case OOM_SUCCESS:
d977aa93 2645 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2646 goto retry;
2647 case OOM_FAILED:
2648 goto force;
2649 default:
2650 goto nomem;
2651 }
7a81b88c 2652nomem:
6d1fdc48 2653 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2654 return -ENOMEM;
10d53c74
TH
2655force:
2656 /*
2657 * The allocation either can't fail or will lead to more memory
2658 * being freed very soon. Allow memory usage go over the limit
2659 * temporarily by force charging it.
2660 */
2661 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2662 if (do_memsw_account())
10d53c74 2663 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2664
2665 return 0;
6539cc05
JW
2666
2667done_restock:
2668 if (batch > nr_pages)
2669 refill_stock(memcg, batch - nr_pages);
b23afb93 2670
241994ed 2671 /*
b23afb93
TH
2672 * If the hierarchy is above the normal consumption range, schedule
2673 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2674 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2675 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2676 * not recorded as it most likely matches current's and won't
2677 * change in the meantime. As high limit is checked again before
2678 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2679 */
2680 do {
4b82ab4f
JK
2681 bool mem_high, swap_high;
2682
2683 mem_high = page_counter_read(&memcg->memory) >
2684 READ_ONCE(memcg->memory.high);
2685 swap_high = page_counter_read(&memcg->swap) >
2686 READ_ONCE(memcg->swap.high);
2687
2688 /* Don't bother a random interrupted task */
2689 if (in_interrupt()) {
2690 if (mem_high) {
f7e1cb6e
JW
2691 schedule_work(&memcg->high_work);
2692 break;
2693 }
4b82ab4f
JK
2694 continue;
2695 }
2696
2697 if (mem_high || swap_high) {
2698 /*
2699 * The allocating tasks in this cgroup will need to do
2700 * reclaim or be throttled to prevent further growth
2701 * of the memory or swap footprints.
2702 *
2703 * Target some best-effort fairness between the tasks,
2704 * and distribute reclaim work and delay penalties
2705 * based on how much each task is actually allocating.
2706 */
9516a18a 2707 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2708 set_notify_resume(current);
2709 break;
2710 }
241994ed 2711 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2712
2713 return 0;
7a81b88c 2714}
8a9f3ccd 2715
c5c8b16b
MS
2716static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2717 unsigned int nr_pages)
2718{
2719 if (mem_cgroup_is_root(memcg))
2720 return 0;
2721
2722 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2723}
2724
f0e45fb4 2725#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2726static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2727{
ce00a967
JW
2728 if (mem_cgroup_is_root(memcg))
2729 return;
2730
3e32cb2e 2731 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2732 if (do_memsw_account())
3e32cb2e 2733 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2734}
f0e45fb4 2735#endif
d01dd17f 2736
d9eb1ea2 2737static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2738{
bcfe06bf 2739 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2740 /*
a5eb011a 2741 * Any of the following ensures page's memcg stability:
0a31bc97 2742 *
a0b5b414
JW
2743 * - the page lock
2744 * - LRU isolation
2745 * - lock_page_memcg()
2746 * - exclusive reference
0a31bc97 2747 */
bcfe06bf 2748 page->memcg_data = (unsigned long)memcg;
7a81b88c 2749}
66e1707b 2750
e74d2259
MS
2751static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2752{
2753 struct mem_cgroup *memcg;
2754
2755 rcu_read_lock();
2756retry:
2757 memcg = obj_cgroup_memcg(objcg);
2758 if (unlikely(!css_tryget(&memcg->css)))
2759 goto retry;
2760 rcu_read_unlock();
2761
2762 return memcg;
2763}
2764
84c07d11 2765#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2766/*
2767 * The allocated objcg pointers array is not accounted directly.
2768 * Moreover, it should not come from DMA buffer and is not readily
2769 * reclaimable. So those GFP bits should be masked off.
2770 */
2771#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2772
10befea9 2773int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2774 gfp_t gfp, bool new_page)
10befea9
RG
2775{
2776 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2777 unsigned long memcg_data;
10befea9
RG
2778 void *vec;
2779
41eb5df1 2780 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2781 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2782 page_to_nid(page));
2783 if (!vec)
2784 return -ENOMEM;
2785
2e9bd483
RG
2786 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2787 if (new_page) {
2788 /*
2789 * If the slab page is brand new and nobody can yet access
2790 * it's memcg_data, no synchronization is required and
2791 * memcg_data can be simply assigned.
2792 */
2793 page->memcg_data = memcg_data;
2794 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2795 /*
2796 * If the slab page is already in use, somebody can allocate
2797 * and assign obj_cgroups in parallel. In this case the existing
2798 * objcg vector should be reused.
2799 */
10befea9 2800 kfree(vec);
2e9bd483
RG
2801 return 0;
2802 }
10befea9 2803
2e9bd483 2804 kmemleak_not_leak(vec);
10befea9
RG
2805 return 0;
2806}
2807
8380ce47
RG
2808/*
2809 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2810 *
bcfe06bf
RG
2811 * A passed kernel object can be a slab object or a generic kernel page, so
2812 * different mechanisms for getting the memory cgroup pointer should be used.
2813 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2814 * can not know for sure how the kernel object is implemented.
2815 * mem_cgroup_from_obj() can be safely used in such cases.
2816 *
8380ce47
RG
2817 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2818 * cgroup_mutex, etc.
2819 */
2820struct mem_cgroup *mem_cgroup_from_obj(void *p)
2821{
2822 struct page *page;
2823
2824 if (mem_cgroup_disabled())
2825 return NULL;
2826
2827 page = virt_to_head_page(p);
2828
2829 /*
9855609b
RG
2830 * Slab objects are accounted individually, not per-page.
2831 * Memcg membership data for each individual object is saved in
2832 * the page->obj_cgroups.
8380ce47 2833 */
270c6a71 2834 if (page_objcgs_check(page)) {
9855609b
RG
2835 struct obj_cgroup *objcg;
2836 unsigned int off;
2837
2838 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2839 objcg = page_objcgs(page)[off];
10befea9
RG
2840 if (objcg)
2841 return obj_cgroup_memcg(objcg);
2842
2843 return NULL;
9855609b 2844 }
8380ce47 2845
bcfe06bf
RG
2846 /*
2847 * page_memcg_check() is used here, because page_has_obj_cgroups()
2848 * check above could fail because the object cgroups vector wasn't set
2849 * at that moment, but it can be set concurrently.
2850 * page_memcg_check(page) will guarantee that a proper memory
2851 * cgroup pointer or NULL will be returned.
2852 */
2853 return page_memcg_check(page);
8380ce47
RG
2854}
2855
bf4f0599
RG
2856__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2857{
2858 struct obj_cgroup *objcg = NULL;
2859 struct mem_cgroup *memcg;
2860
279c3393
RG
2861 if (memcg_kmem_bypass())
2862 return NULL;
2863
bf4f0599 2864 rcu_read_lock();
37d5985c
RG
2865 if (unlikely(active_memcg()))
2866 memcg = active_memcg();
bf4f0599
RG
2867 else
2868 memcg = mem_cgroup_from_task(current);
2869
2870 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2871 objcg = rcu_dereference(memcg->objcg);
2872 if (objcg && obj_cgroup_tryget(objcg))
2873 break;
2f7659a3 2874 objcg = NULL;
bf4f0599
RG
2875 }
2876 rcu_read_unlock();
2877
2878 return objcg;
2879}
2880
f3bb3043 2881static int memcg_alloc_cache_id(void)
55007d84 2882{
f3bb3043
VD
2883 int id, size;
2884 int err;
2885
dbcf73e2 2886 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2887 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2888 if (id < 0)
2889 return id;
55007d84 2890
dbcf73e2 2891 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2892 return id;
2893
2894 /*
2895 * There's no space for the new id in memcg_caches arrays,
2896 * so we have to grow them.
2897 */
05257a1a 2898 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2899
2900 size = 2 * (id + 1);
55007d84
GC
2901 if (size < MEMCG_CACHES_MIN_SIZE)
2902 size = MEMCG_CACHES_MIN_SIZE;
2903 else if (size > MEMCG_CACHES_MAX_SIZE)
2904 size = MEMCG_CACHES_MAX_SIZE;
2905
9855609b 2906 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2907 if (!err)
2908 memcg_nr_cache_ids = size;
2909
2910 up_write(&memcg_cache_ids_sem);
2911
f3bb3043 2912 if (err) {
dbcf73e2 2913 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2914 return err;
2915 }
2916 return id;
2917}
2918
2919static void memcg_free_cache_id(int id)
2920{
dbcf73e2 2921 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2922}
2923
f1286fae
MS
2924/*
2925 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2926 * @objcg: object cgroup to uncharge
2927 * @nr_pages: number of pages to uncharge
2928 */
e74d2259
MS
2929static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2930 unsigned int nr_pages)
2931{
2932 struct mem_cgroup *memcg;
2933
2934 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2935
f1286fae
MS
2936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2937 page_counter_uncharge(&memcg->kmem, nr_pages);
2938 refill_stock(memcg, nr_pages);
e74d2259 2939
e74d2259 2940 css_put(&memcg->css);
e74d2259
MS
2941}
2942
f1286fae
MS
2943/*
2944 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2945 * @objcg: object cgroup to charge
45264778 2946 * @gfp: reclaim mode
92d0510c 2947 * @nr_pages: number of pages to charge
45264778
VD
2948 *
2949 * Returns 0 on success, an error code on failure.
2950 */
f1286fae
MS
2951static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2952 unsigned int nr_pages)
7ae1e1d0 2953{
f3ccb2c4 2954 struct page_counter *counter;
f1286fae 2955 struct mem_cgroup *memcg;
7ae1e1d0
GC
2956 int ret;
2957
f1286fae
MS
2958 memcg = get_mem_cgroup_from_objcg(objcg);
2959
c5c8b16b 2960 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 2961 if (ret)
f1286fae 2962 goto out;
52c29b04
JW
2963
2964 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2965 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2966
2967 /*
2968 * Enforce __GFP_NOFAIL allocation because callers are not
2969 * prepared to see failures and likely do not have any failure
2970 * handling code.
2971 */
2972 if (gfp & __GFP_NOFAIL) {
2973 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae 2974 goto out;
e55d9d9b 2975 }
52c29b04 2976 cancel_charge(memcg, nr_pages);
f1286fae 2977 ret = -ENOMEM;
7ae1e1d0 2978 }
f1286fae
MS
2979out:
2980 css_put(&memcg->css);
4b13f64d 2981
f1286fae 2982 return ret;
4b13f64d
RG
2983}
2984
45264778 2985/**
f4b00eab 2986 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2987 * @page: page to charge
2988 * @gfp: reclaim mode
2989 * @order: allocation order
2990 *
2991 * Returns 0 on success, an error code on failure.
2992 */
f4b00eab 2993int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2994{
b4e0b68f 2995 struct obj_cgroup *objcg;
fcff7d7e 2996 int ret = 0;
7ae1e1d0 2997
b4e0b68f
MS
2998 objcg = get_obj_cgroup_from_current();
2999 if (objcg) {
3000 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3001 if (!ret) {
b4e0b68f 3002 page->memcg_data = (unsigned long)objcg |
18b2db3b 3003 MEMCG_DATA_KMEM;
1a3e1f40 3004 return 0;
4d96ba35 3005 }
b4e0b68f 3006 obj_cgroup_put(objcg);
c4159a75 3007 }
d05e83a6 3008 return ret;
7ae1e1d0 3009}
49a18eae 3010
45264778 3011/**
f4b00eab 3012 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3013 * @page: page to uncharge
3014 * @order: allocation order
3015 */
f4b00eab 3016void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3017{
b4e0b68f 3018 struct obj_cgroup *objcg;
f3ccb2c4 3019 unsigned int nr_pages = 1 << order;
7ae1e1d0 3020
b4e0b68f 3021 if (!PageMemcgKmem(page))
7ae1e1d0
GC
3022 return;
3023
b4e0b68f
MS
3024 objcg = __page_objcg(page);
3025 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3026 page->memcg_data = 0;
b4e0b68f 3027 obj_cgroup_put(objcg);
60d3fd32 3028}
bf4f0599 3029
68ac5b3c
WL
3030void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3031 enum node_stat_item idx, int nr)
3032{
68ac5b3c 3033 unsigned long flags;
55927114 3034 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3035 int *bytes;
3036
68ac5b3c
WL
3037 /*
3038 * Save vmstat data in stock and skip vmstat array update unless
3039 * accumulating over a page of vmstat data or when pgdat or idx
3040 * changes.
3041 */
3042 if (stock->cached_objcg != objcg) {
3043 drain_obj_stock(stock);
3044 obj_cgroup_get(objcg);
3045 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3046 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3047 stock->cached_objcg = objcg;
3048 stock->cached_pgdat = pgdat;
3049 } else if (stock->cached_pgdat != pgdat) {
3050 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3051 struct pglist_data *oldpg = stock->cached_pgdat;
3052
68ac5b3c 3053 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3054 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3055 stock->nr_slab_reclaimable_b);
3056 stock->nr_slab_reclaimable_b = 0;
3057 }
3058 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3059 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3060 stock->nr_slab_unreclaimable_b);
3061 stock->nr_slab_unreclaimable_b = 0;
3062 }
3063 stock->cached_pgdat = pgdat;
3064 }
3065
3066 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3067 : &stock->nr_slab_unreclaimable_b;
3068 /*
3069 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3070 * cached locally at least once before pushing it out.
3071 */
3072 if (!*bytes) {
3073 *bytes = nr;
3074 nr = 0;
3075 } else {
3076 *bytes += nr;
3077 if (abs(*bytes) > PAGE_SIZE) {
3078 nr = *bytes;
3079 *bytes = 0;
3080 } else {
3081 nr = 0;
3082 }
3083 }
3084 if (nr)
3085 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3086
55927114 3087 put_obj_stock(flags);
68ac5b3c
WL
3088}
3089
bf4f0599
RG
3090static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3091{
bf4f0599 3092 unsigned long flags;
55927114 3093 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3094 bool ret = false;
3095
bf4f0599
RG
3096 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3097 stock->nr_bytes -= nr_bytes;
3098 ret = true;
3099 }
3100
55927114 3101 put_obj_stock(flags);
bf4f0599
RG
3102
3103 return ret;
3104}
3105
55927114 3106static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3107{
3108 struct obj_cgroup *old = stock->cached_objcg;
3109
3110 if (!old)
3111 return;
3112
3113 if (stock->nr_bytes) {
3114 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3115 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3116
e74d2259
MS
3117 if (nr_pages)
3118 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3119
3120 /*
3121 * The leftover is flushed to the centralized per-memcg value.
3122 * On the next attempt to refill obj stock it will be moved
3123 * to a per-cpu stock (probably, on an other CPU), see
3124 * refill_obj_stock().
3125 *
3126 * How often it's flushed is a trade-off between the memory
3127 * limit enforcement accuracy and potential CPU contention,
3128 * so it might be changed in the future.
3129 */
3130 atomic_add(nr_bytes, &old->nr_charged_bytes);
3131 stock->nr_bytes = 0;
3132 }
3133
68ac5b3c
WL
3134 /*
3135 * Flush the vmstat data in current stock
3136 */
3137 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3138 if (stock->nr_slab_reclaimable_b) {
3139 mod_objcg_mlstate(old, stock->cached_pgdat,
3140 NR_SLAB_RECLAIMABLE_B,
3141 stock->nr_slab_reclaimable_b);
3142 stock->nr_slab_reclaimable_b = 0;
3143 }
3144 if (stock->nr_slab_unreclaimable_b) {
3145 mod_objcg_mlstate(old, stock->cached_pgdat,
3146 NR_SLAB_UNRECLAIMABLE_B,
3147 stock->nr_slab_unreclaimable_b);
3148 stock->nr_slab_unreclaimable_b = 0;
3149 }
3150 stock->cached_pgdat = NULL;
3151 }
3152
bf4f0599
RG
3153 obj_cgroup_put(old);
3154 stock->cached_objcg = NULL;
3155}
3156
3157static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3158 struct mem_cgroup *root_memcg)
3159{
3160 struct mem_cgroup *memcg;
3161
55927114
WL
3162 if (in_task() && stock->task_obj.cached_objcg) {
3163 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3164 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3165 return true;
3166 }
3167 if (stock->irq_obj.cached_objcg) {
3168 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3169 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3170 return true;
3171 }
3172
3173 return false;
3174}
3175
5387c904
WL
3176static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3177 bool allow_uncharge)
bf4f0599 3178{
bf4f0599 3179 unsigned long flags;
55927114 3180 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3181 unsigned int nr_pages = 0;
bf4f0599 3182
bf4f0599
RG
3183 if (stock->cached_objcg != objcg) { /* reset if necessary */
3184 drain_obj_stock(stock);
3185 obj_cgroup_get(objcg);
3186 stock->cached_objcg = objcg;
5387c904
WL
3187 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3188 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3189 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3190 }
3191 stock->nr_bytes += nr_bytes;
3192
5387c904
WL
3193 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3194 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3195 stock->nr_bytes &= (PAGE_SIZE - 1);
3196 }
bf4f0599 3197
55927114 3198 put_obj_stock(flags);
5387c904
WL
3199
3200 if (nr_pages)
3201 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3202}
3203
3204int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3205{
bf4f0599
RG
3206 unsigned int nr_pages, nr_bytes;
3207 int ret;
3208
3209 if (consume_obj_stock(objcg, size))
3210 return 0;
3211
3212 /*
5387c904 3213 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3214 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3215 * flushing objcg->nr_charged_bytes requires two atomic
3216 * operations, and objcg->nr_charged_bytes can't be big.
3217 * The shared objcg->nr_charged_bytes can also become a
3218 * performance bottleneck if all tasks of the same memcg are
3219 * trying to update it. So it's better to ignore it and try
3220 * grab some new pages. The stock's nr_bytes will be flushed to
3221 * objcg->nr_charged_bytes later on when objcg changes.
3222 *
3223 * The stock's nr_bytes may contain enough pre-charged bytes
3224 * to allow one less page from being charged, but we can't rely
3225 * on the pre-charged bytes not being changed outside of
3226 * consume_obj_stock() or refill_obj_stock(). So ignore those
3227 * pre-charged bytes as well when charging pages. To avoid a
3228 * page uncharge right after a page charge, we set the
3229 * allow_uncharge flag to false when calling refill_obj_stock()
3230 * to temporarily allow the pre-charged bytes to exceed the page
3231 * size limit. The maximum reachable value of the pre-charged
3232 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3233 * race.
bf4f0599 3234 */
bf4f0599
RG
3235 nr_pages = size >> PAGE_SHIFT;
3236 nr_bytes = size & (PAGE_SIZE - 1);
3237
3238 if (nr_bytes)
3239 nr_pages += 1;
3240
e74d2259 3241 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3242 if (!ret && nr_bytes)
5387c904 3243 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3244
bf4f0599
RG
3245 return ret;
3246}
3247
3248void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3249{
5387c904 3250 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3251}
3252
84c07d11 3253#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3254
ca3e0214 3255/*
be6c8982 3256 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3257 */
be6c8982 3258void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3259{
bcfe06bf 3260 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3261 int i;
ca3e0214 3262
be6c8982 3263 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3264 return;
b070e65c 3265
be6c8982
ZG
3266 for (i = 1; i < nr; i++)
3267 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3268
3269 if (PageMemcgKmem(head))
3270 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3271 else
3272 css_get_many(&memcg->css, nr - 1);
ca3e0214 3273}
ca3e0214 3274
c255a458 3275#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3276/**
3277 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3278 * @entry: swap entry to be moved
3279 * @from: mem_cgroup which the entry is moved from
3280 * @to: mem_cgroup which the entry is moved to
3281 *
3282 * It succeeds only when the swap_cgroup's record for this entry is the same
3283 * as the mem_cgroup's id of @from.
3284 *
3285 * Returns 0 on success, -EINVAL on failure.
3286 *
3e32cb2e 3287 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3288 * both res and memsw, and called css_get().
3289 */
3290static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3291 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3292{
3293 unsigned short old_id, new_id;
3294
34c00c31
LZ
3295 old_id = mem_cgroup_id(from);
3296 new_id = mem_cgroup_id(to);
02491447
DN
3297
3298 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3299 mod_memcg_state(from, MEMCG_SWAP, -1);
3300 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3301 return 0;
3302 }
3303 return -EINVAL;
3304}
3305#else
3306static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3307 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3308{
3309 return -EINVAL;
3310}
8c7c6e34 3311#endif
d13d1443 3312
bbec2e15 3313static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3314
bbec2e15
RG
3315static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3316 unsigned long max, bool memsw)
628f4235 3317{
3e32cb2e 3318 bool enlarge = false;
bb4a7ea2 3319 bool drained = false;
3e32cb2e 3320 int ret;
c054a78c
YZ
3321 bool limits_invariant;
3322 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3323
3e32cb2e 3324 do {
628f4235
KH
3325 if (signal_pending(current)) {
3326 ret = -EINTR;
3327 break;
3328 }
3e32cb2e 3329
bbec2e15 3330 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3331 /*
3332 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3333 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3334 */
15b42562 3335 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3336 max <= memcg->memsw.max;
c054a78c 3337 if (!limits_invariant) {
bbec2e15 3338 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3339 ret = -EINVAL;
8c7c6e34
KH
3340 break;
3341 }
bbec2e15 3342 if (max > counter->max)
3e32cb2e 3343 enlarge = true;
bbec2e15
RG
3344 ret = page_counter_set_max(counter, max);
3345 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3346
3347 if (!ret)
3348 break;
3349
bb4a7ea2
SB
3350 if (!drained) {
3351 drain_all_stock(memcg);
3352 drained = true;
3353 continue;
3354 }
3355
1ab5c056
AR
3356 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3357 GFP_KERNEL, !memsw)) {
3358 ret = -EBUSY;
3359 break;
3360 }
3361 } while (true);
3e32cb2e 3362
3c11ecf4
KH
3363 if (!ret && enlarge)
3364 memcg_oom_recover(memcg);
3e32cb2e 3365
628f4235
KH
3366 return ret;
3367}
3368
ef8f2327 3369unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3370 gfp_t gfp_mask,
3371 unsigned long *total_scanned)
3372{
3373 unsigned long nr_reclaimed = 0;
ef8f2327 3374 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3375 unsigned long reclaimed;
3376 int loop = 0;
ef8f2327 3377 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3378 unsigned long excess;
0608f43d
AM
3379 unsigned long nr_scanned;
3380
3381 if (order > 0)
3382 return 0;
3383
ef8f2327 3384 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3385
3386 /*
3387 * Do not even bother to check the largest node if the root
3388 * is empty. Do it lockless to prevent lock bouncing. Races
3389 * are acceptable as soft limit is best effort anyway.
3390 */
bfc7228b 3391 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3392 return 0;
3393
0608f43d
AM
3394 /*
3395 * This loop can run a while, specially if mem_cgroup's continuously
3396 * keep exceeding their soft limit and putting the system under
3397 * pressure
3398 */
3399 do {
3400 if (next_mz)
3401 mz = next_mz;
3402 else
3403 mz = mem_cgroup_largest_soft_limit_node(mctz);
3404 if (!mz)
3405 break;
3406
3407 nr_scanned = 0;
ef8f2327 3408 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3409 gfp_mask, &nr_scanned);
3410 nr_reclaimed += reclaimed;
3411 *total_scanned += nr_scanned;
0a31bc97 3412 spin_lock_irq(&mctz->lock);
bc2f2e7f 3413 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3414
3415 /*
3416 * If we failed to reclaim anything from this memory cgroup
3417 * it is time to move on to the next cgroup
3418 */
3419 next_mz = NULL;
bc2f2e7f
VD
3420 if (!reclaimed)
3421 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3422
3e32cb2e 3423 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3424 /*
3425 * One school of thought says that we should not add
3426 * back the node to the tree if reclaim returns 0.
3427 * But our reclaim could return 0, simply because due
3428 * to priority we are exposing a smaller subset of
3429 * memory to reclaim from. Consider this as a longer
3430 * term TODO.
3431 */
3432 /* If excess == 0, no tree ops */
cf2c8127 3433 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3434 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3435 css_put(&mz->memcg->css);
3436 loop++;
3437 /*
3438 * Could not reclaim anything and there are no more
3439 * mem cgroups to try or we seem to be looping without
3440 * reclaiming anything.
3441 */
3442 if (!nr_reclaimed &&
3443 (next_mz == NULL ||
3444 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3445 break;
3446 } while (!nr_reclaimed);
3447 if (next_mz)
3448 css_put(&next_mz->memcg->css);
3449 return nr_reclaimed;
3450}
3451
c26251f9 3452/*
51038171 3453 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3454 *
3455 * Caller is responsible for holding css reference for memcg.
3456 */
3457static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3458{
d977aa93 3459 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3460
c1e862c1
KH
3461 /* we call try-to-free pages for make this cgroup empty */
3462 lru_add_drain_all();
d12c60f6
JS
3463
3464 drain_all_stock(memcg);
3465
f817ed48 3466 /* try to free all pages in this cgroup */
3e32cb2e 3467 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3468 int progress;
c1e862c1 3469
c26251f9
MH
3470 if (signal_pending(current))
3471 return -EINTR;
3472
b70a2a21
JW
3473 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3474 GFP_KERNEL, true);
c1e862c1 3475 if (!progress) {
f817ed48 3476 nr_retries--;
c1e862c1 3477 /* maybe some writeback is necessary */
8aa7e847 3478 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3479 }
f817ed48
KH
3480
3481 }
ab5196c2
MH
3482
3483 return 0;
cc847582
KH
3484}
3485
6770c64e
TH
3486static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3487 char *buf, size_t nbytes,
3488 loff_t off)
c1e862c1 3489{
6770c64e 3490 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3491
d8423011
MH
3492 if (mem_cgroup_is_root(memcg))
3493 return -EINVAL;
6770c64e 3494 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3495}
3496
182446d0
TH
3497static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3498 struct cftype *cft)
18f59ea7 3499{
bef8620c 3500 return 1;
18f59ea7
BS
3501}
3502
182446d0
TH
3503static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3504 struct cftype *cft, u64 val)
18f59ea7 3505{
bef8620c 3506 if (val == 1)
0b8f73e1 3507 return 0;
567fb435 3508
bef8620c
RG
3509 pr_warn_once("Non-hierarchical mode is deprecated. "
3510 "Please report your usecase to linux-mm@kvack.org if you "
3511 "depend on this functionality.\n");
567fb435 3512
bef8620c 3513 return -EINVAL;
18f59ea7
BS
3514}
3515
6f646156 3516static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3517{
42a30035 3518 unsigned long val;
ce00a967 3519
3e32cb2e 3520 if (mem_cgroup_is_root(memcg)) {
30def935
JW
3521 /* mem_cgroup_threshold() calls here from irqsafe context */
3522 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
0d1c2072 3523 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3524 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3525 if (swap)
3526 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3527 } else {
ce00a967 3528 if (!swap)
3e32cb2e 3529 val = page_counter_read(&memcg->memory);
ce00a967 3530 else
3e32cb2e 3531 val = page_counter_read(&memcg->memsw);
ce00a967 3532 }
c12176d3 3533 return val;
ce00a967
JW
3534}
3535
3e32cb2e
JW
3536enum {
3537 RES_USAGE,
3538 RES_LIMIT,
3539 RES_MAX_USAGE,
3540 RES_FAILCNT,
3541 RES_SOFT_LIMIT,
3542};
ce00a967 3543
791badbd 3544static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3545 struct cftype *cft)
8cdea7c0 3546{
182446d0 3547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3548 struct page_counter *counter;
af36f906 3549
3e32cb2e 3550 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3551 case _MEM:
3e32cb2e
JW
3552 counter = &memcg->memory;
3553 break;
8c7c6e34 3554 case _MEMSWAP:
3e32cb2e
JW
3555 counter = &memcg->memsw;
3556 break;
510fc4e1 3557 case _KMEM:
3e32cb2e 3558 counter = &memcg->kmem;
510fc4e1 3559 break;
d55f90bf 3560 case _TCP:
0db15298 3561 counter = &memcg->tcpmem;
d55f90bf 3562 break;
8c7c6e34
KH
3563 default:
3564 BUG();
8c7c6e34 3565 }
3e32cb2e
JW
3566
3567 switch (MEMFILE_ATTR(cft->private)) {
3568 case RES_USAGE:
3569 if (counter == &memcg->memory)
c12176d3 3570 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3571 if (counter == &memcg->memsw)
c12176d3 3572 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3573 return (u64)page_counter_read(counter) * PAGE_SIZE;
3574 case RES_LIMIT:
bbec2e15 3575 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3576 case RES_MAX_USAGE:
3577 return (u64)counter->watermark * PAGE_SIZE;
3578 case RES_FAILCNT:
3579 return counter->failcnt;
3580 case RES_SOFT_LIMIT:
3581 return (u64)memcg->soft_limit * PAGE_SIZE;
3582 default:
3583 BUG();
3584 }
8cdea7c0 3585}
510fc4e1 3586
84c07d11 3587#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3588static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3589{
bf4f0599 3590 struct obj_cgroup *objcg;
d6441637
VD
3591 int memcg_id;
3592
b313aeee
VD
3593 if (cgroup_memory_nokmem)
3594 return 0;
3595
2a4db7eb 3596 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3597 BUG_ON(memcg->kmem_state);
d6441637 3598
f3bb3043 3599 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3600 if (memcg_id < 0)
3601 return memcg_id;
d6441637 3602
bf4f0599
RG
3603 objcg = obj_cgroup_alloc();
3604 if (!objcg) {
3605 memcg_free_cache_id(memcg_id);
3606 return -ENOMEM;
3607 }
3608 objcg->memcg = memcg;
3609 rcu_assign_pointer(memcg->objcg, objcg);
3610
d648bcc7
RG
3611 static_branch_enable(&memcg_kmem_enabled_key);
3612
900a38f0 3613 memcg->kmemcg_id = memcg_id;
567e9ab2 3614 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3615
3616 return 0;
d6441637
VD
3617}
3618
8e0a8912
JW
3619static void memcg_offline_kmem(struct mem_cgroup *memcg)
3620{
3621 struct cgroup_subsys_state *css;
3622 struct mem_cgroup *parent, *child;
3623 int kmemcg_id;
3624
3625 if (memcg->kmem_state != KMEM_ONLINE)
3626 return;
9855609b 3627
8e0a8912
JW
3628 memcg->kmem_state = KMEM_ALLOCATED;
3629
8e0a8912
JW
3630 parent = parent_mem_cgroup(memcg);
3631 if (!parent)
3632 parent = root_mem_cgroup;
3633
bf4f0599 3634 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3635
3636 kmemcg_id = memcg->kmemcg_id;
3637 BUG_ON(kmemcg_id < 0);
3638
8e0a8912
JW
3639 /*
3640 * Change kmemcg_id of this cgroup and all its descendants to the
3641 * parent's id, and then move all entries from this cgroup's list_lrus
3642 * to ones of the parent. After we have finished, all list_lrus
3643 * corresponding to this cgroup are guaranteed to remain empty. The
3644 * ordering is imposed by list_lru_node->lock taken by
3645 * memcg_drain_all_list_lrus().
3646 */
3a06bb78 3647 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3648 css_for_each_descendant_pre(css, &memcg->css) {
3649 child = mem_cgroup_from_css(css);
3650 BUG_ON(child->kmemcg_id != kmemcg_id);
3651 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3652 }
3a06bb78
TH
3653 rcu_read_unlock();
3654
9bec5c35 3655 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3656
3657 memcg_free_cache_id(kmemcg_id);
3658}
3659
3660static void memcg_free_kmem(struct mem_cgroup *memcg)
3661{
0b8f73e1
JW
3662 /* css_alloc() failed, offlining didn't happen */
3663 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3664 memcg_offline_kmem(memcg);
8e0a8912 3665}
d6441637 3666#else
0b8f73e1 3667static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3668{
3669 return 0;
3670}
3671static void memcg_offline_kmem(struct mem_cgroup *memcg)
3672{
3673}
3674static void memcg_free_kmem(struct mem_cgroup *memcg)
3675{
3676}
84c07d11 3677#endif /* CONFIG_MEMCG_KMEM */
127424c8 3678
bbec2e15
RG
3679static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3680 unsigned long max)
d6441637 3681{
b313aeee 3682 int ret;
127424c8 3683
bbec2e15
RG
3684 mutex_lock(&memcg_max_mutex);
3685 ret = page_counter_set_max(&memcg->kmem, max);
3686 mutex_unlock(&memcg_max_mutex);
127424c8 3687 return ret;
d6441637 3688}
510fc4e1 3689
bbec2e15 3690static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3691{
3692 int ret;
3693
bbec2e15 3694 mutex_lock(&memcg_max_mutex);
d55f90bf 3695
bbec2e15 3696 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3697 if (ret)
3698 goto out;
3699
0db15298 3700 if (!memcg->tcpmem_active) {
d55f90bf
VD
3701 /*
3702 * The active flag needs to be written after the static_key
3703 * update. This is what guarantees that the socket activation
2d758073
JW
3704 * function is the last one to run. See mem_cgroup_sk_alloc()
3705 * for details, and note that we don't mark any socket as
3706 * belonging to this memcg until that flag is up.
d55f90bf
VD
3707 *
3708 * We need to do this, because static_keys will span multiple
3709 * sites, but we can't control their order. If we mark a socket
3710 * as accounted, but the accounting functions are not patched in
3711 * yet, we'll lose accounting.
3712 *
2d758073 3713 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3714 * because when this value change, the code to process it is not
3715 * patched in yet.
3716 */
3717 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3718 memcg->tcpmem_active = true;
d55f90bf
VD
3719 }
3720out:
bbec2e15 3721 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3722 return ret;
3723}
d55f90bf 3724
628f4235
KH
3725/*
3726 * The user of this function is...
3727 * RES_LIMIT.
3728 */
451af504
TH
3729static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3730 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3731{
451af504 3732 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3733 unsigned long nr_pages;
628f4235
KH
3734 int ret;
3735
451af504 3736 buf = strstrip(buf);
650c5e56 3737 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3738 if (ret)
3739 return ret;
af36f906 3740
3e32cb2e 3741 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3742 case RES_LIMIT:
4b3bde4c
BS
3743 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3744 ret = -EINVAL;
3745 break;
3746 }
3e32cb2e
JW
3747 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3748 case _MEM:
bbec2e15 3749 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3750 break;
3e32cb2e 3751 case _MEMSWAP:
bbec2e15 3752 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3753 break;
3e32cb2e 3754 case _KMEM:
0158115f
MH
3755 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3756 "Please report your usecase to linux-mm@kvack.org if you "
3757 "depend on this functionality.\n");
bbec2e15 3758 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3759 break;
d55f90bf 3760 case _TCP:
bbec2e15 3761 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3762 break;
3e32cb2e 3763 }
296c81d8 3764 break;
3e32cb2e
JW
3765 case RES_SOFT_LIMIT:
3766 memcg->soft_limit = nr_pages;
3767 ret = 0;
628f4235
KH
3768 break;
3769 }
451af504 3770 return ret ?: nbytes;
8cdea7c0
BS
3771}
3772
6770c64e
TH
3773static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774 size_t nbytes, loff_t off)
c84872e1 3775{
6770c64e 3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3777 struct page_counter *counter;
c84872e1 3778
3e32cb2e
JW
3779 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780 case _MEM:
3781 counter = &memcg->memory;
3782 break;
3783 case _MEMSWAP:
3784 counter = &memcg->memsw;
3785 break;
3786 case _KMEM:
3787 counter = &memcg->kmem;
3788 break;
d55f90bf 3789 case _TCP:
0db15298 3790 counter = &memcg->tcpmem;
d55f90bf 3791 break;
3e32cb2e
JW
3792 default:
3793 BUG();
3794 }
af36f906 3795
3e32cb2e 3796 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3797 case RES_MAX_USAGE:
3e32cb2e 3798 page_counter_reset_watermark(counter);
29f2a4da
PE
3799 break;
3800 case RES_FAILCNT:
3e32cb2e 3801 counter->failcnt = 0;
29f2a4da 3802 break;
3e32cb2e
JW
3803 default:
3804 BUG();
29f2a4da 3805 }
f64c3f54 3806
6770c64e 3807 return nbytes;
c84872e1
PE
3808}
3809
182446d0 3810static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3811 struct cftype *cft)
3812{
182446d0 3813 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3814}
3815
02491447 3816#ifdef CONFIG_MMU
182446d0 3817static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3818 struct cftype *cft, u64 val)
3819{
182446d0 3820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3821
1dfab5ab 3822 if (val & ~MOVE_MASK)
7dc74be0 3823 return -EINVAL;
ee5e8472 3824
7dc74be0 3825 /*
ee5e8472
GC
3826 * No kind of locking is needed in here, because ->can_attach() will
3827 * check this value once in the beginning of the process, and then carry
3828 * on with stale data. This means that changes to this value will only
3829 * affect task migrations starting after the change.
7dc74be0 3830 */
c0ff4b85 3831 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3832 return 0;
3833}
02491447 3834#else
182446d0 3835static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3836 struct cftype *cft, u64 val)
3837{
3838 return -ENOSYS;
3839}
3840#endif
7dc74be0 3841
406eb0c9 3842#ifdef CONFIG_NUMA
113b7dfd
JW
3843
3844#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3847
3848static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3849 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3850{
867e5e1d 3851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3852 unsigned long nr = 0;
3853 enum lru_list lru;
3854
3855 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856
3857 for_each_lru(lru) {
3858 if (!(BIT(lru) & lru_mask))
3859 continue;
dd8657b6
SB
3860 if (tree)
3861 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862 else
3863 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3864 }
3865 return nr;
3866}
3867
3868static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3869 unsigned int lru_mask,
3870 bool tree)
113b7dfd
JW
3871{
3872 unsigned long nr = 0;
3873 enum lru_list lru;
3874
3875 for_each_lru(lru) {
3876 if (!(BIT(lru) & lru_mask))
3877 continue;
dd8657b6
SB
3878 if (tree)
3879 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880 else
3881 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3882 }
3883 return nr;
3884}
3885
2da8ca82 3886static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3887{
25485de6
GT
3888 struct numa_stat {
3889 const char *name;
3890 unsigned int lru_mask;
3891 };
3892
3893 static const struct numa_stat stats[] = {
3894 { "total", LRU_ALL },
3895 { "file", LRU_ALL_FILE },
3896 { "anon", LRU_ALL_ANON },
3897 { "unevictable", BIT(LRU_UNEVICTABLE) },
3898 };
3899 const struct numa_stat *stat;
406eb0c9 3900 int nid;
aa9694bb 3901 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3902
2d146aa3
JW
3903 cgroup_rstat_flush(memcg->css.cgroup);
3904
25485de6 3905 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3906 seq_printf(m, "%s=%lu", stat->name,
3907 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3908 false));
3909 for_each_node_state(nid, N_MEMORY)
3910 seq_printf(m, " N%d=%lu", nid,
3911 mem_cgroup_node_nr_lru_pages(memcg, nid,
3912 stat->lru_mask, false));
25485de6 3913 seq_putc(m, '\n');
406eb0c9 3914 }
406eb0c9 3915
071aee13 3916 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3917
3918 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3919 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3920 true));
3921 for_each_node_state(nid, N_MEMORY)
3922 seq_printf(m, " N%d=%lu", nid,
3923 mem_cgroup_node_nr_lru_pages(memcg, nid,
3924 stat->lru_mask, true));
071aee13 3925 seq_putc(m, '\n');
406eb0c9 3926 }
406eb0c9 3927
406eb0c9
YH
3928 return 0;
3929}
3930#endif /* CONFIG_NUMA */
3931
c8713d0b 3932static const unsigned int memcg1_stats[] = {
0d1c2072 3933 NR_FILE_PAGES,
be5d0a74 3934 NR_ANON_MAPPED,
468c3982
JW
3935#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 NR_ANON_THPS,
3937#endif
c8713d0b
JW
3938 NR_SHMEM,
3939 NR_FILE_MAPPED,
3940 NR_FILE_DIRTY,
3941 NR_WRITEBACK,
3942 MEMCG_SWAP,
3943};
3944
3945static const char *const memcg1_stat_names[] = {
3946 "cache",
3947 "rss",
468c3982 3948#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3949 "rss_huge",
468c3982 3950#endif
c8713d0b
JW
3951 "shmem",
3952 "mapped_file",
3953 "dirty",
3954 "writeback",
3955 "swap",
3956};
3957
df0e53d0 3958/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3959static const unsigned int memcg1_events[] = {
df0e53d0
JW
3960 PGPGIN,
3961 PGPGOUT,
3962 PGFAULT,
3963 PGMAJFAULT,
3964};
3965
2da8ca82 3966static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3967{
aa9694bb 3968 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3969 unsigned long memory, memsw;
af7c4b0e
JW
3970 struct mem_cgroup *mi;
3971 unsigned int i;
406eb0c9 3972
71cd3113 3973 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3974
2d146aa3
JW
3975 cgroup_rstat_flush(memcg->css.cgroup);
3976
71cd3113 3977 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3978 unsigned long nr;
3979
71cd3113 3980 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3981 continue;
468c3982 3982 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3983 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3984 }
7b854121 3985
df0e53d0 3986 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3987 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3988 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3989
3990 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3991 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3992 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3993 PAGE_SIZE);
af7c4b0e 3994
14067bb3 3995 /* Hierarchical information */
3e32cb2e
JW
3996 memory = memsw = PAGE_COUNTER_MAX;
3997 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3998 memory = min(memory, READ_ONCE(mi->memory.max));
3999 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4000 }
3e32cb2e
JW
4001 seq_printf(m, "hierarchical_memory_limit %llu\n",
4002 (u64)memory * PAGE_SIZE);
7941d214 4003 if (do_memsw_account())
3e32cb2e
JW
4004 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005 (u64)memsw * PAGE_SIZE);
7f016ee8 4006
8de7ecc6 4007 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4008 unsigned long nr;
4009
71cd3113 4010 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4011 continue;
7de2e9f1 4012 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4013 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4014 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4015 }
4016
8de7ecc6 4017 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4018 seq_printf(m, "total_%s %llu\n",
4019 vm_event_name(memcg1_events[i]),
dd923990 4020 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4021
8de7ecc6 4022 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4023 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4024 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4025 PAGE_SIZE);
14067bb3 4026
7f016ee8 4027#ifdef CONFIG_DEBUG_VM
7f016ee8 4028 {
ef8f2327
MG
4029 pg_data_t *pgdat;
4030 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4031 unsigned long anon_cost = 0;
4032 unsigned long file_cost = 0;
7f016ee8 4033
ef8f2327 4034 for_each_online_pgdat(pgdat) {
a3747b53 4035 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4036
1431d4d1
JW
4037 anon_cost += mz->lruvec.anon_cost;
4038 file_cost += mz->lruvec.file_cost;
ef8f2327 4039 }
1431d4d1
JW
4040 seq_printf(m, "anon_cost %lu\n", anon_cost);
4041 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4042 }
4043#endif
4044
d2ceb9b7
KH
4045 return 0;
4046}
4047
182446d0
TH
4048static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4049 struct cftype *cft)
a7885eb8 4050{
182446d0 4051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4052
1f4c025b 4053 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4054}
4055
182446d0
TH
4056static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4057 struct cftype *cft, u64 val)
a7885eb8 4058{
182446d0 4059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4060
37bc3cb9 4061 if (val > 200)
a7885eb8
KM
4062 return -EINVAL;
4063
a4792030 4064 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4065 memcg->swappiness = val;
4066 else
4067 vm_swappiness = val;
068b38c1 4068
a7885eb8
KM
4069 return 0;
4070}
4071
2e72b634
KS
4072static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4073{
4074 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4075 unsigned long usage;
2e72b634
KS
4076 int i;
4077
4078 rcu_read_lock();
4079 if (!swap)
2c488db2 4080 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4081 else
2c488db2 4082 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4083
4084 if (!t)
4085 goto unlock;
4086
ce00a967 4087 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4088
4089 /*
748dad36 4090 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4091 * If it's not true, a threshold was crossed after last
4092 * call of __mem_cgroup_threshold().
4093 */
5407a562 4094 i = t->current_threshold;
2e72b634
KS
4095
4096 /*
4097 * Iterate backward over array of thresholds starting from
4098 * current_threshold and check if a threshold is crossed.
4099 * If none of thresholds below usage is crossed, we read
4100 * only one element of the array here.
4101 */
4102 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4103 eventfd_signal(t->entries[i].eventfd, 1);
4104
4105 /* i = current_threshold + 1 */
4106 i++;
4107
4108 /*
4109 * Iterate forward over array of thresholds starting from
4110 * current_threshold+1 and check if a threshold is crossed.
4111 * If none of thresholds above usage is crossed, we read
4112 * only one element of the array here.
4113 */
4114 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4115 eventfd_signal(t->entries[i].eventfd, 1);
4116
4117 /* Update current_threshold */
5407a562 4118 t->current_threshold = i - 1;
2e72b634
KS
4119unlock:
4120 rcu_read_unlock();
4121}
4122
4123static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4124{
ad4ca5f4
KS
4125 while (memcg) {
4126 __mem_cgroup_threshold(memcg, false);
7941d214 4127 if (do_memsw_account())
ad4ca5f4
KS
4128 __mem_cgroup_threshold(memcg, true);
4129
4130 memcg = parent_mem_cgroup(memcg);
4131 }
2e72b634
KS
4132}
4133
4134static int compare_thresholds(const void *a, const void *b)
4135{
4136 const struct mem_cgroup_threshold *_a = a;
4137 const struct mem_cgroup_threshold *_b = b;
4138
2bff24a3
GT
4139 if (_a->threshold > _b->threshold)
4140 return 1;
4141
4142 if (_a->threshold < _b->threshold)
4143 return -1;
4144
4145 return 0;
2e72b634
KS
4146}
4147
c0ff4b85 4148static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4149{
4150 struct mem_cgroup_eventfd_list *ev;
4151
2bcf2e92
MH
4152 spin_lock(&memcg_oom_lock);
4153
c0ff4b85 4154 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4155 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4156
4157 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4158 return 0;
4159}
4160
c0ff4b85 4161static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4162{
7d74b06f
KH
4163 struct mem_cgroup *iter;
4164
c0ff4b85 4165 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4166 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4167}
4168
59b6f873 4169static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4170 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4171{
2c488db2
KS
4172 struct mem_cgroup_thresholds *thresholds;
4173 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4174 unsigned long threshold;
4175 unsigned long usage;
2c488db2 4176 int i, size, ret;
2e72b634 4177
650c5e56 4178 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4179 if (ret)
4180 return ret;
4181
4182 mutex_lock(&memcg->thresholds_lock);
2c488db2 4183
05b84301 4184 if (type == _MEM) {
2c488db2 4185 thresholds = &memcg->thresholds;
ce00a967 4186 usage = mem_cgroup_usage(memcg, false);
05b84301 4187 } else if (type == _MEMSWAP) {
2c488db2 4188 thresholds = &memcg->memsw_thresholds;
ce00a967 4189 usage = mem_cgroup_usage(memcg, true);
05b84301 4190 } else
2e72b634
KS
4191 BUG();
4192
2e72b634 4193 /* Check if a threshold crossed before adding a new one */
2c488db2 4194 if (thresholds->primary)
2e72b634
KS
4195 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4196
2c488db2 4197 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4198
4199 /* Allocate memory for new array of thresholds */
67b8046f 4200 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4201 if (!new) {
2e72b634
KS
4202 ret = -ENOMEM;
4203 goto unlock;
4204 }
2c488db2 4205 new->size = size;
2e72b634
KS
4206
4207 /* Copy thresholds (if any) to new array */
e90342e6
GS
4208 if (thresholds->primary)
4209 memcpy(new->entries, thresholds->primary->entries,
4210 flex_array_size(new, entries, size - 1));
2c488db2 4211
2e72b634 4212 /* Add new threshold */
2c488db2
KS
4213 new->entries[size - 1].eventfd = eventfd;
4214 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4215
4216 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4217 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4218 compare_thresholds, NULL);
4219
4220 /* Find current threshold */
2c488db2 4221 new->current_threshold = -1;
2e72b634 4222 for (i = 0; i < size; i++) {
748dad36 4223 if (new->entries[i].threshold <= usage) {
2e72b634 4224 /*
2c488db2
KS
4225 * new->current_threshold will not be used until
4226 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4227 * it here.
4228 */
2c488db2 4229 ++new->current_threshold;
748dad36
SZ
4230 } else
4231 break;
2e72b634
KS
4232 }
4233
2c488db2
KS
4234 /* Free old spare buffer and save old primary buffer as spare */
4235 kfree(thresholds->spare);
4236 thresholds->spare = thresholds->primary;
4237
4238 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4239
907860ed 4240 /* To be sure that nobody uses thresholds */
2e72b634
KS
4241 synchronize_rcu();
4242
2e72b634
KS
4243unlock:
4244 mutex_unlock(&memcg->thresholds_lock);
4245
4246 return ret;
4247}
4248
59b6f873 4249static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4250 struct eventfd_ctx *eventfd, const char *args)
4251{
59b6f873 4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4253}
4254
59b6f873 4255static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4256 struct eventfd_ctx *eventfd, const char *args)
4257{
59b6f873 4258 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4259}
4260
59b6f873 4261static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4262 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4263{
2c488db2
KS
4264 struct mem_cgroup_thresholds *thresholds;
4265 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4266 unsigned long usage;
7d36665a 4267 int i, j, size, entries;
2e72b634
KS
4268
4269 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4270
4271 if (type == _MEM) {
2c488db2 4272 thresholds = &memcg->thresholds;
ce00a967 4273 usage = mem_cgroup_usage(memcg, false);
05b84301 4274 } else if (type == _MEMSWAP) {
2c488db2 4275 thresholds = &memcg->memsw_thresholds;
ce00a967 4276 usage = mem_cgroup_usage(memcg, true);
05b84301 4277 } else
2e72b634
KS
4278 BUG();
4279
371528ca
AV
4280 if (!thresholds->primary)
4281 goto unlock;
4282
2e72b634
KS
4283 /* Check if a threshold crossed before removing */
4284 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4285
4286 /* Calculate new number of threshold */
7d36665a 4287 size = entries = 0;
2c488db2
KS
4288 for (i = 0; i < thresholds->primary->size; i++) {
4289 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4290 size++;
7d36665a
CX
4291 else
4292 entries++;
2e72b634
KS
4293 }
4294
2c488db2 4295 new = thresholds->spare;
907860ed 4296
7d36665a
CX
4297 /* If no items related to eventfd have been cleared, nothing to do */
4298 if (!entries)
4299 goto unlock;
4300
2e72b634
KS
4301 /* Set thresholds array to NULL if we don't have thresholds */
4302 if (!size) {
2c488db2
KS
4303 kfree(new);
4304 new = NULL;
907860ed 4305 goto swap_buffers;
2e72b634
KS
4306 }
4307
2c488db2 4308 new->size = size;
2e72b634
KS
4309
4310 /* Copy thresholds and find current threshold */
2c488db2
KS
4311 new->current_threshold = -1;
4312 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4313 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4314 continue;
4315
2c488db2 4316 new->entries[j] = thresholds->primary->entries[i];
748dad36 4317 if (new->entries[j].threshold <= usage) {
2e72b634 4318 /*
2c488db2 4319 * new->current_threshold will not be used
2e72b634
KS
4320 * until rcu_assign_pointer(), so it's safe to increment
4321 * it here.
4322 */
2c488db2 4323 ++new->current_threshold;
2e72b634
KS
4324 }
4325 j++;
4326 }
4327
907860ed 4328swap_buffers:
2c488db2
KS
4329 /* Swap primary and spare array */
4330 thresholds->spare = thresholds->primary;
8c757763 4331
2c488db2 4332 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4333
907860ed 4334 /* To be sure that nobody uses thresholds */
2e72b634 4335 synchronize_rcu();
6611d8d7
MC
4336
4337 /* If all events are unregistered, free the spare array */
4338 if (!new) {
4339 kfree(thresholds->spare);
4340 thresholds->spare = NULL;
4341 }
371528ca 4342unlock:
2e72b634 4343 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4344}
c1e862c1 4345
59b6f873 4346static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4347 struct eventfd_ctx *eventfd)
4348{
59b6f873 4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4350}
4351
59b6f873 4352static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4353 struct eventfd_ctx *eventfd)
4354{
59b6f873 4355 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4356}
4357
59b6f873 4358static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4359 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4360{
9490ff27 4361 struct mem_cgroup_eventfd_list *event;
9490ff27 4362
9490ff27
KH
4363 event = kmalloc(sizeof(*event), GFP_KERNEL);
4364 if (!event)
4365 return -ENOMEM;
4366
1af8efe9 4367 spin_lock(&memcg_oom_lock);
9490ff27
KH
4368
4369 event->eventfd = eventfd;
4370 list_add(&event->list, &memcg->oom_notify);
4371
4372 /* already in OOM ? */
c2b42d3c 4373 if (memcg->under_oom)
9490ff27 4374 eventfd_signal(eventfd, 1);
1af8efe9 4375 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4376
4377 return 0;
4378}
4379
59b6f873 4380static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4381 struct eventfd_ctx *eventfd)
9490ff27 4382{
9490ff27 4383 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4384
1af8efe9 4385 spin_lock(&memcg_oom_lock);
9490ff27 4386
c0ff4b85 4387 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4388 if (ev->eventfd == eventfd) {
4389 list_del(&ev->list);
4390 kfree(ev);
4391 }
4392 }
4393
1af8efe9 4394 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4395}
4396
2da8ca82 4397static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4398{
aa9694bb 4399 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4400
791badbd 4401 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4402 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4403 seq_printf(sf, "oom_kill %lu\n",
4404 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4405 return 0;
4406}
4407
182446d0 4408static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4409 struct cftype *cft, u64 val)
4410{
182446d0 4411 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4412
4413 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4414 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4415 return -EINVAL;
4416
c0ff4b85 4417 memcg->oom_kill_disable = val;
4d845ebf 4418 if (!val)
c0ff4b85 4419 memcg_oom_recover(memcg);
3dae7fec 4420
3c11ecf4
KH
4421 return 0;
4422}
4423
52ebea74
TH
4424#ifdef CONFIG_CGROUP_WRITEBACK
4425
3a8e9ac8
TH
4426#include <trace/events/writeback.h>
4427
841710aa
TH
4428static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4429{
4430 return wb_domain_init(&memcg->cgwb_domain, gfp);
4431}
4432
4433static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4434{
4435 wb_domain_exit(&memcg->cgwb_domain);
4436}
4437
2529bb3a
TH
4438static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4439{
4440 wb_domain_size_changed(&memcg->cgwb_domain);
4441}
4442
841710aa
TH
4443struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4444{
4445 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4446
4447 if (!memcg->css.parent)
4448 return NULL;
4449
4450 return &memcg->cgwb_domain;
4451}
4452
c2aa723a
TH
4453/**
4454 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4455 * @wb: bdi_writeback in question
c5edf9cd
TH
4456 * @pfilepages: out parameter for number of file pages
4457 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4458 * @pdirty: out parameter for number of dirty pages
4459 * @pwriteback: out parameter for number of pages under writeback
4460 *
c5edf9cd
TH
4461 * Determine the numbers of file, headroom, dirty, and writeback pages in
4462 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4463 * is a bit more involved.
c2aa723a 4464 *
c5edf9cd
TH
4465 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4466 * headroom is calculated as the lowest headroom of itself and the
4467 * ancestors. Note that this doesn't consider the actual amount of
4468 * available memory in the system. The caller should further cap
4469 * *@pheadroom accordingly.
c2aa723a 4470 */
c5edf9cd
TH
4471void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4472 unsigned long *pheadroom, unsigned long *pdirty,
4473 unsigned long *pwriteback)
c2aa723a
TH
4474{
4475 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4476 struct mem_cgroup *parent;
c2aa723a 4477
2d146aa3 4478 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4479
2d146aa3
JW
4480 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4481 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4482 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4483 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4484
2d146aa3 4485 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4486 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4487 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4488 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4489 unsigned long used = page_counter_read(&memcg->memory);
4490
c5edf9cd 4491 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4492 memcg = parent;
4493 }
c2aa723a
TH
4494}
4495
97b27821
TH
4496/*
4497 * Foreign dirty flushing
4498 *
4499 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4500 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4501 * deliberate design decision because honoring per-page ownership in the
4502 * writeback path is complicated, may lead to higher CPU and IO overheads
4503 * and deemed unnecessary given that write-sharing an inode across
4504 * different cgroups isn't a common use-case.
4505 *
4506 * Combined with inode majority-writer ownership switching, this works well
4507 * enough in most cases but there are some pathological cases. For
4508 * example, let's say there are two cgroups A and B which keep writing to
4509 * different but confined parts of the same inode. B owns the inode and
4510 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4511 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4512 * triggering background writeback. A will be slowed down without a way to
4513 * make writeback of the dirty pages happen.
4514 *
f0953a1b 4515 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4516 * severely throttled after making some progress after each
f0953a1b 4517 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4518 * completely idle.
4519 *
4520 * Solving this problem completely requires matching the ownership tracking
4521 * granularities between memcg and writeback in either direction. However,
4522 * the more egregious behaviors can be avoided by simply remembering the
4523 * most recent foreign dirtying events and initiating remote flushes on
4524 * them when local writeback isn't enough to keep the memory clean enough.
4525 *
4526 * The following two functions implement such mechanism. When a foreign
4527 * page - a page whose memcg and writeback ownerships don't match - is
4528 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4529 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4530 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4531 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4532 * foreign bdi_writebacks which haven't expired. Both the numbers of
4533 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4534 * limited to MEMCG_CGWB_FRN_CNT.
4535 *
4536 * The mechanism only remembers IDs and doesn't hold any object references.
4537 * As being wrong occasionally doesn't matter, updates and accesses to the
4538 * records are lockless and racy.
4539 */
4540void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4541 struct bdi_writeback *wb)
4542{
bcfe06bf 4543 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4544 struct memcg_cgwb_frn *frn;
4545 u64 now = get_jiffies_64();
4546 u64 oldest_at = now;
4547 int oldest = -1;
4548 int i;
4549
3a8e9ac8
TH
4550 trace_track_foreign_dirty(page, wb);
4551
97b27821
TH
4552 /*
4553 * Pick the slot to use. If there is already a slot for @wb, keep
4554 * using it. If not replace the oldest one which isn't being
4555 * written out.
4556 */
4557 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4558 frn = &memcg->cgwb_frn[i];
4559 if (frn->bdi_id == wb->bdi->id &&
4560 frn->memcg_id == wb->memcg_css->id)
4561 break;
4562 if (time_before64(frn->at, oldest_at) &&
4563 atomic_read(&frn->done.cnt) == 1) {
4564 oldest = i;
4565 oldest_at = frn->at;
4566 }
4567 }
4568
4569 if (i < MEMCG_CGWB_FRN_CNT) {
4570 /*
4571 * Re-using an existing one. Update timestamp lazily to
4572 * avoid making the cacheline hot. We want them to be
4573 * reasonably up-to-date and significantly shorter than
4574 * dirty_expire_interval as that's what expires the record.
4575 * Use the shorter of 1s and dirty_expire_interval / 8.
4576 */
4577 unsigned long update_intv =
4578 min_t(unsigned long, HZ,
4579 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4580
4581 if (time_before64(frn->at, now - update_intv))
4582 frn->at = now;
4583 } else if (oldest >= 0) {
4584 /* replace the oldest free one */
4585 frn = &memcg->cgwb_frn[oldest];
4586 frn->bdi_id = wb->bdi->id;
4587 frn->memcg_id = wb->memcg_css->id;
4588 frn->at = now;
4589 }
4590}
4591
4592/* issue foreign writeback flushes for recorded foreign dirtying events */
4593void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4594{
4595 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4596 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4597 u64 now = jiffies_64;
4598 int i;
4599
4600 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4601 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4602
4603 /*
4604 * If the record is older than dirty_expire_interval,
4605 * writeback on it has already started. No need to kick it
4606 * off again. Also, don't start a new one if there's
4607 * already one in flight.
4608 */
4609 if (time_after64(frn->at, now - intv) &&
4610 atomic_read(&frn->done.cnt) == 1) {
4611 frn->at = 0;
3a8e9ac8 4612 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4613 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4614 WB_REASON_FOREIGN_FLUSH,
4615 &frn->done);
4616 }
4617 }
4618}
4619
841710aa
TH
4620#else /* CONFIG_CGROUP_WRITEBACK */
4621
4622static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4623{
4624 return 0;
4625}
4626
4627static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4628{
4629}
4630
2529bb3a
TH
4631static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4632{
4633}
4634
52ebea74
TH
4635#endif /* CONFIG_CGROUP_WRITEBACK */
4636
3bc942f3
TH
4637/*
4638 * DO NOT USE IN NEW FILES.
4639 *
4640 * "cgroup.event_control" implementation.
4641 *
4642 * This is way over-engineered. It tries to support fully configurable
4643 * events for each user. Such level of flexibility is completely
4644 * unnecessary especially in the light of the planned unified hierarchy.
4645 *
4646 * Please deprecate this and replace with something simpler if at all
4647 * possible.
4648 */
4649
79bd9814
TH
4650/*
4651 * Unregister event and free resources.
4652 *
4653 * Gets called from workqueue.
4654 */
3bc942f3 4655static void memcg_event_remove(struct work_struct *work)
79bd9814 4656{
3bc942f3
TH
4657 struct mem_cgroup_event *event =
4658 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4659 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4660
4661 remove_wait_queue(event->wqh, &event->wait);
4662
59b6f873 4663 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4664
4665 /* Notify userspace the event is going away. */
4666 eventfd_signal(event->eventfd, 1);
4667
4668 eventfd_ctx_put(event->eventfd);
4669 kfree(event);
59b6f873 4670 css_put(&memcg->css);
79bd9814
TH
4671}
4672
4673/*
a9a08845 4674 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4675 *
4676 * Called with wqh->lock held and interrupts disabled.
4677 */
ac6424b9 4678static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4679 int sync, void *key)
79bd9814 4680{
3bc942f3
TH
4681 struct mem_cgroup_event *event =
4682 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4683 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4684 __poll_t flags = key_to_poll(key);
79bd9814 4685
a9a08845 4686 if (flags & EPOLLHUP) {
79bd9814
TH
4687 /*
4688 * If the event has been detached at cgroup removal, we
4689 * can simply return knowing the other side will cleanup
4690 * for us.
4691 *
4692 * We can't race against event freeing since the other
4693 * side will require wqh->lock via remove_wait_queue(),
4694 * which we hold.
4695 */
fba94807 4696 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4697 if (!list_empty(&event->list)) {
4698 list_del_init(&event->list);
4699 /*
4700 * We are in atomic context, but cgroup_event_remove()
4701 * may sleep, so we have to call it in workqueue.
4702 */
4703 schedule_work(&event->remove);
4704 }
fba94807 4705 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4706 }
4707
4708 return 0;
4709}
4710
3bc942f3 4711static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4712 wait_queue_head_t *wqh, poll_table *pt)
4713{
3bc942f3
TH
4714 struct mem_cgroup_event *event =
4715 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4716
4717 event->wqh = wqh;
4718 add_wait_queue(wqh, &event->wait);
4719}
4720
4721/*
3bc942f3
TH
4722 * DO NOT USE IN NEW FILES.
4723 *
79bd9814
TH
4724 * Parse input and register new cgroup event handler.
4725 *
4726 * Input must be in format '<event_fd> <control_fd> <args>'.
4727 * Interpretation of args is defined by control file implementation.
4728 */
451af504
TH
4729static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4730 char *buf, size_t nbytes, loff_t off)
79bd9814 4731{
451af504 4732 struct cgroup_subsys_state *css = of_css(of);
fba94807 4733 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4734 struct mem_cgroup_event *event;
79bd9814
TH
4735 struct cgroup_subsys_state *cfile_css;
4736 unsigned int efd, cfd;
4737 struct fd efile;
4738 struct fd cfile;
fba94807 4739 const char *name;
79bd9814
TH
4740 char *endp;
4741 int ret;
4742
451af504
TH
4743 buf = strstrip(buf);
4744
4745 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4746 if (*endp != ' ')
4747 return -EINVAL;
451af504 4748 buf = endp + 1;
79bd9814 4749
451af504 4750 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4751 if ((*endp != ' ') && (*endp != '\0'))
4752 return -EINVAL;
451af504 4753 buf = endp + 1;
79bd9814
TH
4754
4755 event = kzalloc(sizeof(*event), GFP_KERNEL);
4756 if (!event)
4757 return -ENOMEM;
4758
59b6f873 4759 event->memcg = memcg;
79bd9814 4760 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4761 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4762 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4763 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4764
4765 efile = fdget(efd);
4766 if (!efile.file) {
4767 ret = -EBADF;
4768 goto out_kfree;
4769 }
4770
4771 event->eventfd = eventfd_ctx_fileget(efile.file);
4772 if (IS_ERR(event->eventfd)) {
4773 ret = PTR_ERR(event->eventfd);
4774 goto out_put_efile;
4775 }
4776
4777 cfile = fdget(cfd);
4778 if (!cfile.file) {
4779 ret = -EBADF;
4780 goto out_put_eventfd;
4781 }
4782
4783 /* the process need read permission on control file */
4784 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4785 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4786 if (ret < 0)
4787 goto out_put_cfile;
4788
fba94807
TH
4789 /*
4790 * Determine the event callbacks and set them in @event. This used
4791 * to be done via struct cftype but cgroup core no longer knows
4792 * about these events. The following is crude but the whole thing
4793 * is for compatibility anyway.
3bc942f3
TH
4794 *
4795 * DO NOT ADD NEW FILES.
fba94807 4796 */
b583043e 4797 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4798
4799 if (!strcmp(name, "memory.usage_in_bytes")) {
4800 event->register_event = mem_cgroup_usage_register_event;
4801 event->unregister_event = mem_cgroup_usage_unregister_event;
4802 } else if (!strcmp(name, "memory.oom_control")) {
4803 event->register_event = mem_cgroup_oom_register_event;
4804 event->unregister_event = mem_cgroup_oom_unregister_event;
4805 } else if (!strcmp(name, "memory.pressure_level")) {
4806 event->register_event = vmpressure_register_event;
4807 event->unregister_event = vmpressure_unregister_event;
4808 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4809 event->register_event = memsw_cgroup_usage_register_event;
4810 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4811 } else {
4812 ret = -EINVAL;
4813 goto out_put_cfile;
4814 }
4815
79bd9814 4816 /*
b5557c4c
TH
4817 * Verify @cfile should belong to @css. Also, remaining events are
4818 * automatically removed on cgroup destruction but the removal is
4819 * asynchronous, so take an extra ref on @css.
79bd9814 4820 */
b583043e 4821 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4822 &memory_cgrp_subsys);
79bd9814 4823 ret = -EINVAL;
5a17f543 4824 if (IS_ERR(cfile_css))
79bd9814 4825 goto out_put_cfile;
5a17f543
TH
4826 if (cfile_css != css) {
4827 css_put(cfile_css);
79bd9814 4828 goto out_put_cfile;
5a17f543 4829 }
79bd9814 4830
451af504 4831 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4832 if (ret)
4833 goto out_put_css;
4834
9965ed17 4835 vfs_poll(efile.file, &event->pt);
79bd9814 4836
4ba9515d 4837 spin_lock_irq(&memcg->event_list_lock);
fba94807 4838 list_add(&event->list, &memcg->event_list);
4ba9515d 4839 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4840
4841 fdput(cfile);
4842 fdput(efile);
4843
451af504 4844 return nbytes;
79bd9814
TH
4845
4846out_put_css:
b5557c4c 4847 css_put(css);
79bd9814
TH
4848out_put_cfile:
4849 fdput(cfile);
4850out_put_eventfd:
4851 eventfd_ctx_put(event->eventfd);
4852out_put_efile:
4853 fdput(efile);
4854out_kfree:
4855 kfree(event);
4856
4857 return ret;
4858}
4859
241994ed 4860static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4861 {
0eea1030 4862 .name = "usage_in_bytes",
8c7c6e34 4863 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4864 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4865 },
c84872e1
PE
4866 {
4867 .name = "max_usage_in_bytes",
8c7c6e34 4868 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4869 .write = mem_cgroup_reset,
791badbd 4870 .read_u64 = mem_cgroup_read_u64,
c84872e1 4871 },
8cdea7c0 4872 {
0eea1030 4873 .name = "limit_in_bytes",
8c7c6e34 4874 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4875 .write = mem_cgroup_write,
791badbd 4876 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4877 },
296c81d8
BS
4878 {
4879 .name = "soft_limit_in_bytes",
4880 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4881 .write = mem_cgroup_write,
791badbd 4882 .read_u64 = mem_cgroup_read_u64,
296c81d8 4883 },
8cdea7c0
BS
4884 {
4885 .name = "failcnt",
8c7c6e34 4886 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4887 .write = mem_cgroup_reset,
791badbd 4888 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4889 },
d2ceb9b7
KH
4890 {
4891 .name = "stat",
2da8ca82 4892 .seq_show = memcg_stat_show,
d2ceb9b7 4893 },
c1e862c1
KH
4894 {
4895 .name = "force_empty",
6770c64e 4896 .write = mem_cgroup_force_empty_write,
c1e862c1 4897 },
18f59ea7
BS
4898 {
4899 .name = "use_hierarchy",
4900 .write_u64 = mem_cgroup_hierarchy_write,
4901 .read_u64 = mem_cgroup_hierarchy_read,
4902 },
79bd9814 4903 {
3bc942f3 4904 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4905 .write = memcg_write_event_control,
7dbdb199 4906 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4907 },
a7885eb8
KM
4908 {
4909 .name = "swappiness",
4910 .read_u64 = mem_cgroup_swappiness_read,
4911 .write_u64 = mem_cgroup_swappiness_write,
4912 },
7dc74be0
DN
4913 {
4914 .name = "move_charge_at_immigrate",
4915 .read_u64 = mem_cgroup_move_charge_read,
4916 .write_u64 = mem_cgroup_move_charge_write,
4917 },
9490ff27
KH
4918 {
4919 .name = "oom_control",
2da8ca82 4920 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4921 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4922 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4923 },
70ddf637
AV
4924 {
4925 .name = "pressure_level",
70ddf637 4926 },
406eb0c9
YH
4927#ifdef CONFIG_NUMA
4928 {
4929 .name = "numa_stat",
2da8ca82 4930 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4931 },
4932#endif
510fc4e1
GC
4933 {
4934 .name = "kmem.limit_in_bytes",
4935 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4936 .write = mem_cgroup_write,
791badbd 4937 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4938 },
4939 {
4940 .name = "kmem.usage_in_bytes",
4941 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4942 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4943 },
4944 {
4945 .name = "kmem.failcnt",
4946 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4947 .write = mem_cgroup_reset,
791badbd 4948 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4949 },
4950 {
4951 .name = "kmem.max_usage_in_bytes",
4952 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4953 .write = mem_cgroup_reset,
791badbd 4954 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4955 },
a87425a3
YS
4956#if defined(CONFIG_MEMCG_KMEM) && \
4957 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4958 {
4959 .name = "kmem.slabinfo",
b047501c 4960 .seq_show = memcg_slab_show,
749c5415
GC
4961 },
4962#endif
d55f90bf
VD
4963 {
4964 .name = "kmem.tcp.limit_in_bytes",
4965 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4966 .write = mem_cgroup_write,
4967 .read_u64 = mem_cgroup_read_u64,
4968 },
4969 {
4970 .name = "kmem.tcp.usage_in_bytes",
4971 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4972 .read_u64 = mem_cgroup_read_u64,
4973 },
4974 {
4975 .name = "kmem.tcp.failcnt",
4976 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4977 .write = mem_cgroup_reset,
4978 .read_u64 = mem_cgroup_read_u64,
4979 },
4980 {
4981 .name = "kmem.tcp.max_usage_in_bytes",
4982 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4983 .write = mem_cgroup_reset,
4984 .read_u64 = mem_cgroup_read_u64,
4985 },
6bc10349 4986 { }, /* terminate */
af36f906 4987};
8c7c6e34 4988
73f576c0
JW
4989/*
4990 * Private memory cgroup IDR
4991 *
4992 * Swap-out records and page cache shadow entries need to store memcg
4993 * references in constrained space, so we maintain an ID space that is
4994 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4995 * memory-controlled cgroups to 64k.
4996 *
b8f2935f 4997 * However, there usually are many references to the offline CSS after
73f576c0
JW
4998 * the cgroup has been destroyed, such as page cache or reclaimable
4999 * slab objects, that don't need to hang on to the ID. We want to keep
5000 * those dead CSS from occupying IDs, or we might quickly exhaust the
5001 * relatively small ID space and prevent the creation of new cgroups
5002 * even when there are much fewer than 64k cgroups - possibly none.
5003 *
5004 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5005 * be freed and recycled when it's no longer needed, which is usually
5006 * when the CSS is offlined.
5007 *
5008 * The only exception to that are records of swapped out tmpfs/shmem
5009 * pages that need to be attributed to live ancestors on swapin. But
5010 * those references are manageable from userspace.
5011 */
5012
5013static DEFINE_IDR(mem_cgroup_idr);
5014
7e97de0b
KT
5015static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5016{
5017 if (memcg->id.id > 0) {
5018 idr_remove(&mem_cgroup_idr, memcg->id.id);
5019 memcg->id.id = 0;
5020 }
5021}
5022
c1514c0a
VF
5023static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5024 unsigned int n)
73f576c0 5025{
1c2d479a 5026 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5027}
5028
615d66c3 5029static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5030{
1c2d479a 5031 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5032 mem_cgroup_id_remove(memcg);
73f576c0
JW
5033
5034 /* Memcg ID pins CSS */
5035 css_put(&memcg->css);
5036 }
5037}
5038
615d66c3
VD
5039static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5040{
5041 mem_cgroup_id_put_many(memcg, 1);
5042}
5043
73f576c0
JW
5044/**
5045 * mem_cgroup_from_id - look up a memcg from a memcg id
5046 * @id: the memcg id to look up
5047 *
5048 * Caller must hold rcu_read_lock().
5049 */
5050struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5051{
5052 WARN_ON_ONCE(!rcu_read_lock_held());
5053 return idr_find(&mem_cgroup_idr, id);
5054}
5055
ef8f2327 5056static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5057{
5058 struct mem_cgroup_per_node *pn;
ef8f2327 5059 int tmp = node;
1ecaab2b
KH
5060 /*
5061 * This routine is called against possible nodes.
5062 * But it's BUG to call kmalloc() against offline node.
5063 *
5064 * TODO: this routine can waste much memory for nodes which will
5065 * never be onlined. It's better to use memory hotplug callback
5066 * function.
5067 */
41e3355d
KH
5068 if (!node_state(node, N_NORMAL_MEMORY))
5069 tmp = -1;
17295c88 5070 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5071 if (!pn)
5072 return 1;
1ecaab2b 5073
7e1c0d6f
SB
5074 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5075 GFP_KERNEL_ACCOUNT);
5076 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5077 kfree(pn);
5078 return 1;
5079 }
5080
ef8f2327
MG
5081 lruvec_init(&pn->lruvec);
5082 pn->usage_in_excess = 0;
5083 pn->on_tree = false;
5084 pn->memcg = memcg;
5085
54f72fe0 5086 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5087 return 0;
5088}
5089
ef8f2327 5090static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5091{
00f3ca2c
JW
5092 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5093
4eaf431f
MH
5094 if (!pn)
5095 return;
5096
7e1c0d6f 5097 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5098 kfree(pn);
1ecaab2b
KH
5099}
5100
40e952f9 5101static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5102{
c8b2a36f 5103 int node;
59927fb9 5104
c8b2a36f 5105 for_each_node(node)
ef8f2327 5106 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5107 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5108 kfree(memcg);
59927fb9 5109}
3afe36b1 5110
40e952f9
TE
5111static void mem_cgroup_free(struct mem_cgroup *memcg)
5112{
5113 memcg_wb_domain_exit(memcg);
5114 __mem_cgroup_free(memcg);
5115}
5116
0b8f73e1 5117static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5118{
d142e3e6 5119 struct mem_cgroup *memcg;
b9726c26 5120 unsigned int size;
6d12e2d8 5121 int node;
97b27821 5122 int __maybe_unused i;
11d67612 5123 long error = -ENOMEM;
8cdea7c0 5124
0b8f73e1
JW
5125 size = sizeof(struct mem_cgroup);
5126 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5127
5128 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5129 if (!memcg)
11d67612 5130 return ERR_PTR(error);
0b8f73e1 5131
73f576c0
JW
5132 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5133 1, MEM_CGROUP_ID_MAX,
5134 GFP_KERNEL);
11d67612
YS
5135 if (memcg->id.id < 0) {
5136 error = memcg->id.id;
73f576c0 5137 goto fail;
11d67612 5138 }
73f576c0 5139
3e38e0aa
RG
5140 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5141 GFP_KERNEL_ACCOUNT);
871789d4 5142 if (!memcg->vmstats_percpu)
0b8f73e1 5143 goto fail;
78fb7466 5144
3ed28fa1 5145 for_each_node(node)
ef8f2327 5146 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5147 goto fail;
f64c3f54 5148
0b8f73e1
JW
5149 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5150 goto fail;
28dbc4b6 5151
f7e1cb6e 5152 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5153 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5154 mutex_init(&memcg->thresholds_lock);
5155 spin_lock_init(&memcg->move_lock);
70ddf637 5156 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5157 INIT_LIST_HEAD(&memcg->event_list);
5158 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5159 memcg->socket_pressure = jiffies;
84c07d11 5160#ifdef CONFIG_MEMCG_KMEM
900a38f0 5161 memcg->kmemcg_id = -1;
bf4f0599 5162 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5163#endif
52ebea74
TH
5164#ifdef CONFIG_CGROUP_WRITEBACK
5165 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5166 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5167 memcg->cgwb_frn[i].done =
5168 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5169#endif
5170#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5171 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5172 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5173 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5174#endif
73f576c0 5175 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5176 return memcg;
5177fail:
7e97de0b 5178 mem_cgroup_id_remove(memcg);
40e952f9 5179 __mem_cgroup_free(memcg);
11d67612 5180 return ERR_PTR(error);
d142e3e6
GC
5181}
5182
0b8f73e1
JW
5183static struct cgroup_subsys_state * __ref
5184mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5185{
0b8f73e1 5186 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5187 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5188 long error = -ENOMEM;
d142e3e6 5189
b87d8cef 5190 old_memcg = set_active_memcg(parent);
0b8f73e1 5191 memcg = mem_cgroup_alloc();
b87d8cef 5192 set_active_memcg(old_memcg);
11d67612
YS
5193 if (IS_ERR(memcg))
5194 return ERR_CAST(memcg);
d142e3e6 5195
d1663a90 5196 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5197 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5198 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5199 if (parent) {
5200 memcg->swappiness = mem_cgroup_swappiness(parent);
5201 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5202
3e32cb2e 5203 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5204 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5205 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5206 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5207 } else {
bef8620c
RG
5208 page_counter_init(&memcg->memory, NULL);
5209 page_counter_init(&memcg->swap, NULL);
5210 page_counter_init(&memcg->kmem, NULL);
5211 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5212
0b8f73e1
JW
5213 root_mem_cgroup = memcg;
5214 return &memcg->css;
5215 }
5216
bef8620c 5217 /* The following stuff does not apply to the root */
b313aeee 5218 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5219 if (error)
5220 goto fail;
127424c8 5221
f7e1cb6e 5222 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5223 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5224
0b8f73e1
JW
5225 return &memcg->css;
5226fail:
7e97de0b 5227 mem_cgroup_id_remove(memcg);
0b8f73e1 5228 mem_cgroup_free(memcg);
11d67612 5229 return ERR_PTR(error);
0b8f73e1
JW
5230}
5231
73f576c0 5232static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5233{
58fa2a55
VD
5234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5235
0a4465d3 5236 /*
e4262c4f 5237 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5238 * by the time the maps are allocated. So, we allocate maps
5239 * here, when for_each_mem_cgroup() can't skip it.
5240 */
e4262c4f 5241 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5242 mem_cgroup_id_remove(memcg);
5243 return -ENOMEM;
5244 }
5245
73f576c0 5246 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5247 refcount_set(&memcg->id.ref, 1);
73f576c0 5248 css_get(css);
aa48e47e
SB
5249
5250 if (unlikely(mem_cgroup_is_root(memcg)))
5251 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5252 2UL*HZ);
2f7dd7a4 5253 return 0;
8cdea7c0
BS
5254}
5255
eb95419b 5256static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5257{
eb95419b 5258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5259 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5260
5261 /*
5262 * Unregister events and notify userspace.
5263 * Notify userspace about cgroup removing only after rmdir of cgroup
5264 * directory to avoid race between userspace and kernelspace.
5265 */
4ba9515d 5266 spin_lock_irq(&memcg->event_list_lock);
fba94807 5267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5268 list_del_init(&event->list);
5269 schedule_work(&event->remove);
5270 }
4ba9515d 5271 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5272
bf8d5d52 5273 page_counter_set_min(&memcg->memory, 0);
23067153 5274 page_counter_set_low(&memcg->memory, 0);
63677c74 5275
567e9ab2 5276 memcg_offline_kmem(memcg);
a178015c 5277 reparent_shrinker_deferred(memcg);
52ebea74 5278 wb_memcg_offline(memcg);
73f576c0 5279
591edfb1
RG
5280 drain_all_stock(memcg);
5281
73f576c0 5282 mem_cgroup_id_put(memcg);
df878fb0
KH
5283}
5284
6df38689
VD
5285static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5286{
5287 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5288
5289 invalidate_reclaim_iterators(memcg);
5290}
5291
eb95419b 5292static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5293{
eb95419b 5294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5295 int __maybe_unused i;
c268e994 5296
97b27821
TH
5297#ifdef CONFIG_CGROUP_WRITEBACK
5298 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5299 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5300#endif
f7e1cb6e 5301 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5302 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5303
0db15298 5304 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5305 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5306
0b8f73e1
JW
5307 vmpressure_cleanup(&memcg->vmpressure);
5308 cancel_work_sync(&memcg->high_work);
5309 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5310 free_shrinker_info(memcg);
d886f4e4 5311 memcg_free_kmem(memcg);
0b8f73e1 5312 mem_cgroup_free(memcg);
8cdea7c0
BS
5313}
5314
1ced953b
TH
5315/**
5316 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5317 * @css: the target css
5318 *
5319 * Reset the states of the mem_cgroup associated with @css. This is
5320 * invoked when the userland requests disabling on the default hierarchy
5321 * but the memcg is pinned through dependency. The memcg should stop
5322 * applying policies and should revert to the vanilla state as it may be
5323 * made visible again.
5324 *
5325 * The current implementation only resets the essential configurations.
5326 * This needs to be expanded to cover all the visible parts.
5327 */
5328static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5329{
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5331
bbec2e15
RG
5332 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5333 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5334 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5335 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5336 page_counter_set_min(&memcg->memory, 0);
23067153 5337 page_counter_set_low(&memcg->memory, 0);
d1663a90 5338 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5339 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5340 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5341 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5342}
5343
aa48e47e
SB
5344void mem_cgroup_flush_stats(void)
5345{
5346 if (!spin_trylock(&stats_flush_lock))
5347 return;
5348
5349 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5350 spin_unlock(&stats_flush_lock);
5351}
5352
5353static void flush_memcg_stats_dwork(struct work_struct *w)
5354{
5355 mem_cgroup_flush_stats();
5356 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5357}
5358
2d146aa3
JW
5359static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5360{
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5363 struct memcg_vmstats_percpu *statc;
5364 long delta, v;
7e1c0d6f 5365 int i, nid;
2d146aa3
JW
5366
5367 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5368
5369 for (i = 0; i < MEMCG_NR_STAT; i++) {
5370 /*
5371 * Collect the aggregated propagation counts of groups
5372 * below us. We're in a per-cpu loop here and this is
5373 * a global counter, so the first cycle will get them.
5374 */
5375 delta = memcg->vmstats.state_pending[i];
5376 if (delta)
5377 memcg->vmstats.state_pending[i] = 0;
5378
5379 /* Add CPU changes on this level since the last flush */
5380 v = READ_ONCE(statc->state[i]);
5381 if (v != statc->state_prev[i]) {
5382 delta += v - statc->state_prev[i];
5383 statc->state_prev[i] = v;
5384 }
5385
5386 if (!delta)
5387 continue;
5388
5389 /* Aggregate counts on this level and propagate upwards */
5390 memcg->vmstats.state[i] += delta;
5391 if (parent)
5392 parent->vmstats.state_pending[i] += delta;
5393 }
5394
5395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5396 delta = memcg->vmstats.events_pending[i];
5397 if (delta)
5398 memcg->vmstats.events_pending[i] = 0;
5399
5400 v = READ_ONCE(statc->events[i]);
5401 if (v != statc->events_prev[i]) {
5402 delta += v - statc->events_prev[i];
5403 statc->events_prev[i] = v;
5404 }
5405
5406 if (!delta)
5407 continue;
5408
5409 memcg->vmstats.events[i] += delta;
5410 if (parent)
5411 parent->vmstats.events_pending[i] += delta;
5412 }
7e1c0d6f
SB
5413
5414 for_each_node_state(nid, N_MEMORY) {
5415 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5416 struct mem_cgroup_per_node *ppn = NULL;
5417 struct lruvec_stats_percpu *lstatc;
5418
5419 if (parent)
5420 ppn = parent->nodeinfo[nid];
5421
5422 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5423
5424 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5425 delta = pn->lruvec_stats.state_pending[i];
5426 if (delta)
5427 pn->lruvec_stats.state_pending[i] = 0;
5428
5429 v = READ_ONCE(lstatc->state[i]);
5430 if (v != lstatc->state_prev[i]) {
5431 delta += v - lstatc->state_prev[i];
5432 lstatc->state_prev[i] = v;
5433 }
5434
5435 if (!delta)
5436 continue;
5437
5438 pn->lruvec_stats.state[i] += delta;
5439 if (ppn)
5440 ppn->lruvec_stats.state_pending[i] += delta;
5441 }
5442 }
2d146aa3
JW
5443}
5444
02491447 5445#ifdef CONFIG_MMU
7dc74be0 5446/* Handlers for move charge at task migration. */
854ffa8d 5447static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5448{
05b84301 5449 int ret;
9476db97 5450
d0164adc
MG
5451 /* Try a single bulk charge without reclaim first, kswapd may wake */
5452 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5453 if (!ret) {
854ffa8d 5454 mc.precharge += count;
854ffa8d
DN
5455 return ret;
5456 }
9476db97 5457
3674534b 5458 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5459 while (count--) {
3674534b 5460 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5461 if (ret)
38c5d72f 5462 return ret;
854ffa8d 5463 mc.precharge++;
9476db97 5464 cond_resched();
854ffa8d 5465 }
9476db97 5466 return 0;
4ffef5fe
DN
5467}
5468
4ffef5fe
DN
5469union mc_target {
5470 struct page *page;
02491447 5471 swp_entry_t ent;
4ffef5fe
DN
5472};
5473
4ffef5fe 5474enum mc_target_type {
8d32ff84 5475 MC_TARGET_NONE = 0,
4ffef5fe 5476 MC_TARGET_PAGE,
02491447 5477 MC_TARGET_SWAP,
c733a828 5478 MC_TARGET_DEVICE,
4ffef5fe
DN
5479};
5480
90254a65
DN
5481static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5482 unsigned long addr, pte_t ptent)
4ffef5fe 5483{
25b2995a 5484 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5485
90254a65
DN
5486 if (!page || !page_mapped(page))
5487 return NULL;
5488 if (PageAnon(page)) {
1dfab5ab 5489 if (!(mc.flags & MOVE_ANON))
90254a65 5490 return NULL;
1dfab5ab
JW
5491 } else {
5492 if (!(mc.flags & MOVE_FILE))
5493 return NULL;
5494 }
90254a65
DN
5495 if (!get_page_unless_zero(page))
5496 return NULL;
5497
5498 return page;
5499}
5500
c733a828 5501#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5502static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5503 pte_t ptent, swp_entry_t *entry)
90254a65 5504{
90254a65
DN
5505 struct page *page = NULL;
5506 swp_entry_t ent = pte_to_swp_entry(ptent);
5507
9a137153 5508 if (!(mc.flags & MOVE_ANON))
90254a65 5509 return NULL;
c733a828
JG
5510
5511 /*
5512 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5513 * a device and because they are not accessible by CPU they are store
5514 * as special swap entry in the CPU page table.
5515 */
5516 if (is_device_private_entry(ent)) {
af5cdaf8 5517 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5518 /*
5519 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5520 * a refcount of 1 when free (unlike normal page)
5521 */
5522 if (!page_ref_add_unless(page, 1, 1))
5523 return NULL;
5524 return page;
5525 }
5526
9a137153
RC
5527 if (non_swap_entry(ent))
5528 return NULL;
5529
4b91355e
KH
5530 /*
5531 * Because lookup_swap_cache() updates some statistics counter,
5532 * we call find_get_page() with swapper_space directly.
5533 */
f6ab1f7f 5534 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5535 entry->val = ent.val;
90254a65
DN
5536
5537 return page;
5538}
4b91355e
KH
5539#else
5540static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5541 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5542{
5543 return NULL;
5544}
5545#endif
90254a65 5546
87946a72
DN
5547static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5548 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5549{
87946a72
DN
5550 if (!vma->vm_file) /* anonymous vma */
5551 return NULL;
1dfab5ab 5552 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5553 return NULL;
5554
87946a72 5555 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5556 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5557 return find_get_incore_page(vma->vm_file->f_mapping,
5558 linear_page_index(vma, addr));
87946a72
DN
5559}
5560
b1b0deab
CG
5561/**
5562 * mem_cgroup_move_account - move account of the page
5563 * @page: the page
25843c2b 5564 * @compound: charge the page as compound or small page
b1b0deab
CG
5565 * @from: mem_cgroup which the page is moved from.
5566 * @to: mem_cgroup which the page is moved to. @from != @to.
5567 *
3ac808fd 5568 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5569 *
5570 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5571 * from old cgroup.
5572 */
5573static int mem_cgroup_move_account(struct page *page,
f627c2f5 5574 bool compound,
b1b0deab
CG
5575 struct mem_cgroup *from,
5576 struct mem_cgroup *to)
5577{
ae8af438
KK
5578 struct lruvec *from_vec, *to_vec;
5579 struct pglist_data *pgdat;
6c357848 5580 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5581 int ret;
5582
5583 VM_BUG_ON(from == to);
5584 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5585 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5586
5587 /*
6a93ca8f 5588 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5589 * page's memory cgroup of its source page while we change it.
b1b0deab 5590 */
f627c2f5 5591 ret = -EBUSY;
b1b0deab
CG
5592 if (!trylock_page(page))
5593 goto out;
5594
5595 ret = -EINVAL;
bcfe06bf 5596 if (page_memcg(page) != from)
b1b0deab
CG
5597 goto out_unlock;
5598
ae8af438 5599 pgdat = page_pgdat(page);
867e5e1d
JW
5600 from_vec = mem_cgroup_lruvec(from, pgdat);
5601 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5602
abb242f5 5603 lock_page_memcg(page);
b1b0deab 5604
be5d0a74
JW
5605 if (PageAnon(page)) {
5606 if (page_mapped(page)) {
5607 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5608 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5609 if (PageTransHuge(page)) {
69473e5d
MS
5610 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5611 -nr_pages);
5612 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5613 nr_pages);
468c3982 5614 }
be5d0a74
JW
5615 }
5616 } else {
0d1c2072
JW
5617 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5619
5620 if (PageSwapBacked(page)) {
5621 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5622 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5623 }
5624
49e50d27
JW
5625 if (page_mapped(page)) {
5626 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5627 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5628 }
b1b0deab 5629
49e50d27
JW
5630 if (PageDirty(page)) {
5631 struct address_space *mapping = page_mapping(page);
c4843a75 5632
f56753ac 5633 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5634 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5635 -nr_pages);
5636 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5637 nr_pages);
5638 }
c4843a75
GT
5639 }
5640 }
5641
b1b0deab 5642 if (PageWriteback(page)) {
ae8af438
KK
5643 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5645 }
5646
5647 /*
abb242f5
JW
5648 * All state has been migrated, let's switch to the new memcg.
5649 *
bcfe06bf 5650 * It is safe to change page's memcg here because the page
abb242f5
JW
5651 * is referenced, charged, isolated, and locked: we can't race
5652 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5653 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5654 *
5655 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5656 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5657 * new memcg that isn't locked, the above state can change
5658 * concurrently again. Make sure we're truly done with it.
b1b0deab 5659 */
abb242f5 5660 smp_mb();
b1b0deab 5661
1a3e1f40
JW
5662 css_get(&to->css);
5663 css_put(&from->css);
5664
bcfe06bf 5665 page->memcg_data = (unsigned long)to;
87eaceb3 5666
abb242f5 5667 __unlock_page_memcg(from);
b1b0deab
CG
5668
5669 ret = 0;
5670
5671 local_irq_disable();
3fba69a5 5672 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5673 memcg_check_events(to, page);
3fba69a5 5674 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5675 memcg_check_events(from, page);
5676 local_irq_enable();
5677out_unlock:
5678 unlock_page(page);
5679out:
5680 return ret;
5681}
5682
7cf7806c
LR
5683/**
5684 * get_mctgt_type - get target type of moving charge
5685 * @vma: the vma the pte to be checked belongs
5686 * @addr: the address corresponding to the pte to be checked
5687 * @ptent: the pte to be checked
5688 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5689 *
5690 * Returns
5691 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5692 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5693 * move charge. if @target is not NULL, the page is stored in target->page
5694 * with extra refcnt got(Callers should handle it).
5695 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5696 * target for charge migration. if @target is not NULL, the entry is stored
5697 * in target->ent.
25b2995a
CH
5698 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5699 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5700 * For now we such page is charge like a regular page would be as for all
5701 * intent and purposes it is just special memory taking the place of a
5702 * regular page.
c733a828
JG
5703 *
5704 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5705 *
5706 * Called with pte lock held.
5707 */
5708
8d32ff84 5709static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5710 unsigned long addr, pte_t ptent, union mc_target *target)
5711{
5712 struct page *page = NULL;
8d32ff84 5713 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5714 swp_entry_t ent = { .val = 0 };
5715
5716 if (pte_present(ptent))
5717 page = mc_handle_present_pte(vma, addr, ptent);
5718 else if (is_swap_pte(ptent))
48406ef8 5719 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5720 else if (pte_none(ptent))
87946a72 5721 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5722
5723 if (!page && !ent.val)
8d32ff84 5724 return ret;
02491447 5725 if (page) {
02491447 5726 /*
0a31bc97 5727 * Do only loose check w/o serialization.
1306a85a 5728 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5729 * not under LRU exclusion.
02491447 5730 */
bcfe06bf 5731 if (page_memcg(page) == mc.from) {
02491447 5732 ret = MC_TARGET_PAGE;
25b2995a 5733 if (is_device_private_page(page))
c733a828 5734 ret = MC_TARGET_DEVICE;
02491447
DN
5735 if (target)
5736 target->page = page;
5737 }
5738 if (!ret || !target)
5739 put_page(page);
5740 }
3e14a57b
HY
5741 /*
5742 * There is a swap entry and a page doesn't exist or isn't charged.
5743 * But we cannot move a tail-page in a THP.
5744 */
5745 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5746 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5747 ret = MC_TARGET_SWAP;
5748 if (target)
5749 target->ent = ent;
4ffef5fe 5750 }
4ffef5fe
DN
5751 return ret;
5752}
5753
12724850
NH
5754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5755/*
d6810d73
HY
5756 * We don't consider PMD mapped swapping or file mapped pages because THP does
5757 * not support them for now.
12724850
NH
5758 * Caller should make sure that pmd_trans_huge(pmd) is true.
5759 */
5760static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5761 unsigned long addr, pmd_t pmd, union mc_target *target)
5762{
5763 struct page *page = NULL;
12724850
NH
5764 enum mc_target_type ret = MC_TARGET_NONE;
5765
84c3fc4e
ZY
5766 if (unlikely(is_swap_pmd(pmd))) {
5767 VM_BUG_ON(thp_migration_supported() &&
5768 !is_pmd_migration_entry(pmd));
5769 return ret;
5770 }
12724850 5771 page = pmd_page(pmd);
309381fe 5772 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5773 if (!(mc.flags & MOVE_ANON))
12724850 5774 return ret;
bcfe06bf 5775 if (page_memcg(page) == mc.from) {
12724850
NH
5776 ret = MC_TARGET_PAGE;
5777 if (target) {
5778 get_page(page);
5779 target->page = page;
5780 }
5781 }
5782 return ret;
5783}
5784#else
5785static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5786 unsigned long addr, pmd_t pmd, union mc_target *target)
5787{
5788 return MC_TARGET_NONE;
5789}
5790#endif
5791
4ffef5fe
DN
5792static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5793 unsigned long addr, unsigned long end,
5794 struct mm_walk *walk)
5795{
26bcd64a 5796 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5797 pte_t *pte;
5798 spinlock_t *ptl;
5799
b6ec57f4
KS
5800 ptl = pmd_trans_huge_lock(pmd, vma);
5801 if (ptl) {
c733a828
JG
5802 /*
5803 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5804 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5805 * this might change.
c733a828 5806 */
12724850
NH
5807 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5808 mc.precharge += HPAGE_PMD_NR;
bf929152 5809 spin_unlock(ptl);
1a5a9906 5810 return 0;
12724850 5811 }
03319327 5812
45f83cef
AA
5813 if (pmd_trans_unstable(pmd))
5814 return 0;
4ffef5fe
DN
5815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5816 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5817 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5818 mc.precharge++; /* increment precharge temporarily */
5819 pte_unmap_unlock(pte - 1, ptl);
5820 cond_resched();
5821
7dc74be0
DN
5822 return 0;
5823}
5824
7b86ac33
CH
5825static const struct mm_walk_ops precharge_walk_ops = {
5826 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5827};
5828
4ffef5fe
DN
5829static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5830{
5831 unsigned long precharge;
4ffef5fe 5832
d8ed45c5 5833 mmap_read_lock(mm);
7b86ac33 5834 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5835 mmap_read_unlock(mm);
4ffef5fe
DN
5836
5837 precharge = mc.precharge;
5838 mc.precharge = 0;
5839
5840 return precharge;
5841}
5842
4ffef5fe
DN
5843static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5844{
dfe076b0
DN
5845 unsigned long precharge = mem_cgroup_count_precharge(mm);
5846
5847 VM_BUG_ON(mc.moving_task);
5848 mc.moving_task = current;
5849 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5850}
5851
dfe076b0
DN
5852/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5853static void __mem_cgroup_clear_mc(void)
4ffef5fe 5854{
2bd9bb20
KH
5855 struct mem_cgroup *from = mc.from;
5856 struct mem_cgroup *to = mc.to;
5857
4ffef5fe 5858 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5859 if (mc.precharge) {
00501b53 5860 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5861 mc.precharge = 0;
5862 }
5863 /*
5864 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5865 * we must uncharge here.
5866 */
5867 if (mc.moved_charge) {
00501b53 5868 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5869 mc.moved_charge = 0;
4ffef5fe 5870 }
483c30b5
DN
5871 /* we must fixup refcnts and charges */
5872 if (mc.moved_swap) {
483c30b5 5873 /* uncharge swap account from the old cgroup */
ce00a967 5874 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5875 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5876
615d66c3
VD
5877 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5878
05b84301 5879 /*
3e32cb2e
JW
5880 * we charged both to->memory and to->memsw, so we
5881 * should uncharge to->memory.
05b84301 5882 */
ce00a967 5883 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5884 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5885
483c30b5
DN
5886 mc.moved_swap = 0;
5887 }
dfe076b0
DN
5888 memcg_oom_recover(from);
5889 memcg_oom_recover(to);
5890 wake_up_all(&mc.waitq);
5891}
5892
5893static void mem_cgroup_clear_mc(void)
5894{
264a0ae1
TH
5895 struct mm_struct *mm = mc.mm;
5896
dfe076b0
DN
5897 /*
5898 * we must clear moving_task before waking up waiters at the end of
5899 * task migration.
5900 */
5901 mc.moving_task = NULL;
5902 __mem_cgroup_clear_mc();
2bd9bb20 5903 spin_lock(&mc.lock);
4ffef5fe
DN
5904 mc.from = NULL;
5905 mc.to = NULL;
264a0ae1 5906 mc.mm = NULL;
2bd9bb20 5907 spin_unlock(&mc.lock);
264a0ae1
TH
5908
5909 mmput(mm);
4ffef5fe
DN
5910}
5911
1f7dd3e5 5912static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5913{
1f7dd3e5 5914 struct cgroup_subsys_state *css;
eed67d75 5915 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5916 struct mem_cgroup *from;
4530eddb 5917 struct task_struct *leader, *p;
9f2115f9 5918 struct mm_struct *mm;
1dfab5ab 5919 unsigned long move_flags;
9f2115f9 5920 int ret = 0;
7dc74be0 5921
1f7dd3e5
TH
5922 /* charge immigration isn't supported on the default hierarchy */
5923 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5924 return 0;
5925
4530eddb
TH
5926 /*
5927 * Multi-process migrations only happen on the default hierarchy
5928 * where charge immigration is not used. Perform charge
5929 * immigration if @tset contains a leader and whine if there are
5930 * multiple.
5931 */
5932 p = NULL;
1f7dd3e5 5933 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5934 WARN_ON_ONCE(p);
5935 p = leader;
1f7dd3e5 5936 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5937 }
5938 if (!p)
5939 return 0;
5940
1f7dd3e5 5941 /*
f0953a1b 5942 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5943 * tunable will only affect upcoming migrations, not the current one.
5944 * So we need to save it, and keep it going.
5945 */
5946 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5947 if (!move_flags)
5948 return 0;
5949
9f2115f9
TH
5950 from = mem_cgroup_from_task(p);
5951
5952 VM_BUG_ON(from == memcg);
5953
5954 mm = get_task_mm(p);
5955 if (!mm)
5956 return 0;
5957 /* We move charges only when we move a owner of the mm */
5958 if (mm->owner == p) {
5959 VM_BUG_ON(mc.from);
5960 VM_BUG_ON(mc.to);
5961 VM_BUG_ON(mc.precharge);
5962 VM_BUG_ON(mc.moved_charge);
5963 VM_BUG_ON(mc.moved_swap);
5964
5965 spin_lock(&mc.lock);
264a0ae1 5966 mc.mm = mm;
9f2115f9
TH
5967 mc.from = from;
5968 mc.to = memcg;
5969 mc.flags = move_flags;
5970 spin_unlock(&mc.lock);
5971 /* We set mc.moving_task later */
5972
5973 ret = mem_cgroup_precharge_mc(mm);
5974 if (ret)
5975 mem_cgroup_clear_mc();
264a0ae1
TH
5976 } else {
5977 mmput(mm);
7dc74be0
DN
5978 }
5979 return ret;
5980}
5981
1f7dd3e5 5982static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5983{
4e2f245d
JW
5984 if (mc.to)
5985 mem_cgroup_clear_mc();
7dc74be0
DN
5986}
5987
4ffef5fe
DN
5988static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5989 unsigned long addr, unsigned long end,
5990 struct mm_walk *walk)
7dc74be0 5991{
4ffef5fe 5992 int ret = 0;
26bcd64a 5993 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5994 pte_t *pte;
5995 spinlock_t *ptl;
12724850
NH
5996 enum mc_target_type target_type;
5997 union mc_target target;
5998 struct page *page;
4ffef5fe 5999
b6ec57f4
KS
6000 ptl = pmd_trans_huge_lock(pmd, vma);
6001 if (ptl) {
62ade86a 6002 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6003 spin_unlock(ptl);
12724850
NH
6004 return 0;
6005 }
6006 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6007 if (target_type == MC_TARGET_PAGE) {
6008 page = target.page;
6009 if (!isolate_lru_page(page)) {
f627c2f5 6010 if (!mem_cgroup_move_account(page, true,
1306a85a 6011 mc.from, mc.to)) {
12724850
NH
6012 mc.precharge -= HPAGE_PMD_NR;
6013 mc.moved_charge += HPAGE_PMD_NR;
6014 }
6015 putback_lru_page(page);
6016 }
6017 put_page(page);
c733a828
JG
6018 } else if (target_type == MC_TARGET_DEVICE) {
6019 page = target.page;
6020 if (!mem_cgroup_move_account(page, true,
6021 mc.from, mc.to)) {
6022 mc.precharge -= HPAGE_PMD_NR;
6023 mc.moved_charge += HPAGE_PMD_NR;
6024 }
6025 put_page(page);
12724850 6026 }
bf929152 6027 spin_unlock(ptl);
1a5a9906 6028 return 0;
12724850
NH
6029 }
6030
45f83cef
AA
6031 if (pmd_trans_unstable(pmd))
6032 return 0;
4ffef5fe
DN
6033retry:
6034 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6035 for (; addr != end; addr += PAGE_SIZE) {
6036 pte_t ptent = *(pte++);
c733a828 6037 bool device = false;
02491447 6038 swp_entry_t ent;
4ffef5fe
DN
6039
6040 if (!mc.precharge)
6041 break;
6042
8d32ff84 6043 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6044 case MC_TARGET_DEVICE:
6045 device = true;
e4a9bc58 6046 fallthrough;
4ffef5fe
DN
6047 case MC_TARGET_PAGE:
6048 page = target.page;
53f9263b
KS
6049 /*
6050 * We can have a part of the split pmd here. Moving it
6051 * can be done but it would be too convoluted so simply
6052 * ignore such a partial THP and keep it in original
6053 * memcg. There should be somebody mapping the head.
6054 */
6055 if (PageTransCompound(page))
6056 goto put;
c733a828 6057 if (!device && isolate_lru_page(page))
4ffef5fe 6058 goto put;
f627c2f5
KS
6059 if (!mem_cgroup_move_account(page, false,
6060 mc.from, mc.to)) {
4ffef5fe 6061 mc.precharge--;
854ffa8d
DN
6062 /* we uncharge from mc.from later. */
6063 mc.moved_charge++;
4ffef5fe 6064 }
c733a828
JG
6065 if (!device)
6066 putback_lru_page(page);
8d32ff84 6067put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6068 put_page(page);
6069 break;
02491447
DN
6070 case MC_TARGET_SWAP:
6071 ent = target.ent;
e91cbb42 6072 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6073 mc.precharge--;
8d22a935
HD
6074 mem_cgroup_id_get_many(mc.to, 1);
6075 /* we fixup other refcnts and charges later. */
483c30b5
DN
6076 mc.moved_swap++;
6077 }
02491447 6078 break;
4ffef5fe
DN
6079 default:
6080 break;
6081 }
6082 }
6083 pte_unmap_unlock(pte - 1, ptl);
6084 cond_resched();
6085
6086 if (addr != end) {
6087 /*
6088 * We have consumed all precharges we got in can_attach().
6089 * We try charge one by one, but don't do any additional
6090 * charges to mc.to if we have failed in charge once in attach()
6091 * phase.
6092 */
854ffa8d 6093 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6094 if (!ret)
6095 goto retry;
6096 }
6097
6098 return ret;
6099}
6100
7b86ac33
CH
6101static const struct mm_walk_ops charge_walk_ops = {
6102 .pmd_entry = mem_cgroup_move_charge_pte_range,
6103};
6104
264a0ae1 6105static void mem_cgroup_move_charge(void)
4ffef5fe 6106{
4ffef5fe 6107 lru_add_drain_all();
312722cb 6108 /*
81f8c3a4
JW
6109 * Signal lock_page_memcg() to take the memcg's move_lock
6110 * while we're moving its pages to another memcg. Then wait
6111 * for already started RCU-only updates to finish.
312722cb
JW
6112 */
6113 atomic_inc(&mc.from->moving_account);
6114 synchronize_rcu();
dfe076b0 6115retry:
d8ed45c5 6116 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6117 /*
c1e8d7c6 6118 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6119 * waitq. So we cancel all extra charges, wake up all waiters,
6120 * and retry. Because we cancel precharges, we might not be able
6121 * to move enough charges, but moving charge is a best-effort
6122 * feature anyway, so it wouldn't be a big problem.
6123 */
6124 __mem_cgroup_clear_mc();
6125 cond_resched();
6126 goto retry;
6127 }
26bcd64a
NH
6128 /*
6129 * When we have consumed all precharges and failed in doing
6130 * additional charge, the page walk just aborts.
6131 */
7b86ac33
CH
6132 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6133 NULL);
0247f3f4 6134
d8ed45c5 6135 mmap_read_unlock(mc.mm);
312722cb 6136 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6137}
6138
264a0ae1 6139static void mem_cgroup_move_task(void)
67e465a7 6140{
264a0ae1
TH
6141 if (mc.to) {
6142 mem_cgroup_move_charge();
a433658c 6143 mem_cgroup_clear_mc();
264a0ae1 6144 }
67e465a7 6145}
5cfb80a7 6146#else /* !CONFIG_MMU */
1f7dd3e5 6147static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6148{
6149 return 0;
6150}
1f7dd3e5 6151static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6152{
6153}
264a0ae1 6154static void mem_cgroup_move_task(void)
5cfb80a7
DN
6155{
6156}
6157#endif
67e465a7 6158
677dc973
CD
6159static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6160{
6161 if (value == PAGE_COUNTER_MAX)
6162 seq_puts(m, "max\n");
6163 else
6164 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6165
6166 return 0;
6167}
6168
241994ed
JW
6169static u64 memory_current_read(struct cgroup_subsys_state *css,
6170 struct cftype *cft)
6171{
f5fc3c5d
JW
6172 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6173
6174 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6175}
6176
bf8d5d52
RG
6177static int memory_min_show(struct seq_file *m, void *v)
6178{
677dc973
CD
6179 return seq_puts_memcg_tunable(m,
6180 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6181}
6182
6183static ssize_t memory_min_write(struct kernfs_open_file *of,
6184 char *buf, size_t nbytes, loff_t off)
6185{
6186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6187 unsigned long min;
6188 int err;
6189
6190 buf = strstrip(buf);
6191 err = page_counter_memparse(buf, "max", &min);
6192 if (err)
6193 return err;
6194
6195 page_counter_set_min(&memcg->memory, min);
6196
6197 return nbytes;
6198}
6199
241994ed
JW
6200static int memory_low_show(struct seq_file *m, void *v)
6201{
677dc973
CD
6202 return seq_puts_memcg_tunable(m,
6203 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6204}
6205
6206static ssize_t memory_low_write(struct kernfs_open_file *of,
6207 char *buf, size_t nbytes, loff_t off)
6208{
6209 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 unsigned long low;
6211 int err;
6212
6213 buf = strstrip(buf);
d2973697 6214 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6215 if (err)
6216 return err;
6217
23067153 6218 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6219
6220 return nbytes;
6221}
6222
6223static int memory_high_show(struct seq_file *m, void *v)
6224{
d1663a90
JK
6225 return seq_puts_memcg_tunable(m,
6226 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6227}
6228
6229static ssize_t memory_high_write(struct kernfs_open_file *of,
6230 char *buf, size_t nbytes, loff_t off)
6231{
6232 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6233 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6234 bool drained = false;
241994ed
JW
6235 unsigned long high;
6236 int err;
6237
6238 buf = strstrip(buf);
d2973697 6239 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6240 if (err)
6241 return err;
6242
e82553c1
JW
6243 page_counter_set_high(&memcg->memory, high);
6244
8c8c383c
JW
6245 for (;;) {
6246 unsigned long nr_pages = page_counter_read(&memcg->memory);
6247 unsigned long reclaimed;
6248
6249 if (nr_pages <= high)
6250 break;
6251
6252 if (signal_pending(current))
6253 break;
6254
6255 if (!drained) {
6256 drain_all_stock(memcg);
6257 drained = true;
6258 continue;
6259 }
6260
6261 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6262 GFP_KERNEL, true);
6263
6264 if (!reclaimed && !nr_retries--)
6265 break;
6266 }
588083bb 6267
19ce33ac 6268 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6269 return nbytes;
6270}
6271
6272static int memory_max_show(struct seq_file *m, void *v)
6273{
677dc973
CD
6274 return seq_puts_memcg_tunable(m,
6275 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6276}
6277
6278static ssize_t memory_max_write(struct kernfs_open_file *of,
6279 char *buf, size_t nbytes, loff_t off)
6280{
6281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6282 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6283 bool drained = false;
241994ed
JW
6284 unsigned long max;
6285 int err;
6286
6287 buf = strstrip(buf);
d2973697 6288 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6289 if (err)
6290 return err;
6291
bbec2e15 6292 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6293
6294 for (;;) {
6295 unsigned long nr_pages = page_counter_read(&memcg->memory);
6296
6297 if (nr_pages <= max)
6298 break;
6299
7249c9f0 6300 if (signal_pending(current))
b6e6edcf 6301 break;
b6e6edcf
JW
6302
6303 if (!drained) {
6304 drain_all_stock(memcg);
6305 drained = true;
6306 continue;
6307 }
6308
6309 if (nr_reclaims) {
6310 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6311 GFP_KERNEL, true))
6312 nr_reclaims--;
6313 continue;
6314 }
6315
e27be240 6316 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6317 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6318 break;
6319 }
241994ed 6320
2529bb3a 6321 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6322 return nbytes;
6323}
6324
1e577f97
SB
6325static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6326{
6327 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6328 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6329 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6330 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6331 seq_printf(m, "oom_kill %lu\n",
6332 atomic_long_read(&events[MEMCG_OOM_KILL]));
6333}
6334
241994ed
JW
6335static int memory_events_show(struct seq_file *m, void *v)
6336{
aa9694bb 6337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6338
1e577f97
SB
6339 __memory_events_show(m, memcg->memory_events);
6340 return 0;
6341}
6342
6343static int memory_events_local_show(struct seq_file *m, void *v)
6344{
6345 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6346
1e577f97 6347 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6348 return 0;
6349}
6350
587d9f72
JW
6351static int memory_stat_show(struct seq_file *m, void *v)
6352{
aa9694bb 6353 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6354 char *buf;
1ff9e6e1 6355
c8713d0b
JW
6356 buf = memory_stat_format(memcg);
6357 if (!buf)
6358 return -ENOMEM;
6359 seq_puts(m, buf);
6360 kfree(buf);
587d9f72
JW
6361 return 0;
6362}
6363
5f9a4f4a 6364#ifdef CONFIG_NUMA
fff66b79
MS
6365static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6366 int item)
6367{
6368 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6369}
6370
5f9a4f4a
MS
6371static int memory_numa_stat_show(struct seq_file *m, void *v)
6372{
6373 int i;
6374 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6375
7e1c0d6f
SB
6376 cgroup_rstat_flush(memcg->css.cgroup);
6377
5f9a4f4a
MS
6378 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6379 int nid;
6380
6381 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6382 continue;
6383
6384 seq_printf(m, "%s", memory_stats[i].name);
6385 for_each_node_state(nid, N_MEMORY) {
6386 u64 size;
6387 struct lruvec *lruvec;
6388
6389 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6390 size = lruvec_page_state_output(lruvec,
6391 memory_stats[i].idx);
5f9a4f4a
MS
6392 seq_printf(m, " N%d=%llu", nid, size);
6393 }
6394 seq_putc(m, '\n');
6395 }
6396
6397 return 0;
6398}
6399#endif
6400
3d8b38eb
RG
6401static int memory_oom_group_show(struct seq_file *m, void *v)
6402{
aa9694bb 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6404
6405 seq_printf(m, "%d\n", memcg->oom_group);
6406
6407 return 0;
6408}
6409
6410static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6411 char *buf, size_t nbytes, loff_t off)
6412{
6413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6414 int ret, oom_group;
6415
6416 buf = strstrip(buf);
6417 if (!buf)
6418 return -EINVAL;
6419
6420 ret = kstrtoint(buf, 0, &oom_group);
6421 if (ret)
6422 return ret;
6423
6424 if (oom_group != 0 && oom_group != 1)
6425 return -EINVAL;
6426
6427 memcg->oom_group = oom_group;
6428
6429 return nbytes;
6430}
6431
241994ed
JW
6432static struct cftype memory_files[] = {
6433 {
6434 .name = "current",
f5fc3c5d 6435 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6436 .read_u64 = memory_current_read,
6437 },
bf8d5d52
RG
6438 {
6439 .name = "min",
6440 .flags = CFTYPE_NOT_ON_ROOT,
6441 .seq_show = memory_min_show,
6442 .write = memory_min_write,
6443 },
241994ed
JW
6444 {
6445 .name = "low",
6446 .flags = CFTYPE_NOT_ON_ROOT,
6447 .seq_show = memory_low_show,
6448 .write = memory_low_write,
6449 },
6450 {
6451 .name = "high",
6452 .flags = CFTYPE_NOT_ON_ROOT,
6453 .seq_show = memory_high_show,
6454 .write = memory_high_write,
6455 },
6456 {
6457 .name = "max",
6458 .flags = CFTYPE_NOT_ON_ROOT,
6459 .seq_show = memory_max_show,
6460 .write = memory_max_write,
6461 },
6462 {
6463 .name = "events",
6464 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6465 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6466 .seq_show = memory_events_show,
6467 },
1e577f97
SB
6468 {
6469 .name = "events.local",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6472 .seq_show = memory_events_local_show,
6473 },
587d9f72
JW
6474 {
6475 .name = "stat",
587d9f72
JW
6476 .seq_show = memory_stat_show,
6477 },
5f9a4f4a
MS
6478#ifdef CONFIG_NUMA
6479 {
6480 .name = "numa_stat",
6481 .seq_show = memory_numa_stat_show,
6482 },
6483#endif
3d8b38eb
RG
6484 {
6485 .name = "oom.group",
6486 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6487 .seq_show = memory_oom_group_show,
6488 .write = memory_oom_group_write,
6489 },
241994ed
JW
6490 { } /* terminate */
6491};
6492
073219e9 6493struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6494 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6495 .css_online = mem_cgroup_css_online,
92fb9748 6496 .css_offline = mem_cgroup_css_offline,
6df38689 6497 .css_released = mem_cgroup_css_released,
92fb9748 6498 .css_free = mem_cgroup_css_free,
1ced953b 6499 .css_reset = mem_cgroup_css_reset,
2d146aa3 6500 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6501 .can_attach = mem_cgroup_can_attach,
6502 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6503 .post_attach = mem_cgroup_move_task,
241994ed
JW
6504 .dfl_cftypes = memory_files,
6505 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6506 .early_init = 0,
8cdea7c0 6507};
c077719b 6508
bc50bcc6
JW
6509/*
6510 * This function calculates an individual cgroup's effective
6511 * protection which is derived from its own memory.min/low, its
6512 * parent's and siblings' settings, as well as the actual memory
6513 * distribution in the tree.
6514 *
6515 * The following rules apply to the effective protection values:
6516 *
6517 * 1. At the first level of reclaim, effective protection is equal to
6518 * the declared protection in memory.min and memory.low.
6519 *
6520 * 2. To enable safe delegation of the protection configuration, at
6521 * subsequent levels the effective protection is capped to the
6522 * parent's effective protection.
6523 *
6524 * 3. To make complex and dynamic subtrees easier to configure, the
6525 * user is allowed to overcommit the declared protection at a given
6526 * level. If that is the case, the parent's effective protection is
6527 * distributed to the children in proportion to how much protection
6528 * they have declared and how much of it they are utilizing.
6529 *
6530 * This makes distribution proportional, but also work-conserving:
6531 * if one cgroup claims much more protection than it uses memory,
6532 * the unused remainder is available to its siblings.
6533 *
6534 * 4. Conversely, when the declared protection is undercommitted at a
6535 * given level, the distribution of the larger parental protection
6536 * budget is NOT proportional. A cgroup's protection from a sibling
6537 * is capped to its own memory.min/low setting.
6538 *
8a931f80
JW
6539 * 5. However, to allow protecting recursive subtrees from each other
6540 * without having to declare each individual cgroup's fixed share
6541 * of the ancestor's claim to protection, any unutilized -
6542 * "floating" - protection from up the tree is distributed in
6543 * proportion to each cgroup's *usage*. This makes the protection
6544 * neutral wrt sibling cgroups and lets them compete freely over
6545 * the shared parental protection budget, but it protects the
6546 * subtree as a whole from neighboring subtrees.
6547 *
6548 * Note that 4. and 5. are not in conflict: 4. is about protecting
6549 * against immediate siblings whereas 5. is about protecting against
6550 * neighboring subtrees.
bc50bcc6
JW
6551 */
6552static unsigned long effective_protection(unsigned long usage,
8a931f80 6553 unsigned long parent_usage,
bc50bcc6
JW
6554 unsigned long setting,
6555 unsigned long parent_effective,
6556 unsigned long siblings_protected)
6557{
6558 unsigned long protected;
8a931f80 6559 unsigned long ep;
bc50bcc6
JW
6560
6561 protected = min(usage, setting);
6562 /*
6563 * If all cgroups at this level combined claim and use more
6564 * protection then what the parent affords them, distribute
6565 * shares in proportion to utilization.
6566 *
6567 * We are using actual utilization rather than the statically
6568 * claimed protection in order to be work-conserving: claimed
6569 * but unused protection is available to siblings that would
6570 * otherwise get a smaller chunk than what they claimed.
6571 */
6572 if (siblings_protected > parent_effective)
6573 return protected * parent_effective / siblings_protected;
6574
6575 /*
6576 * Ok, utilized protection of all children is within what the
6577 * parent affords them, so we know whatever this child claims
6578 * and utilizes is effectively protected.
6579 *
6580 * If there is unprotected usage beyond this value, reclaim
6581 * will apply pressure in proportion to that amount.
6582 *
6583 * If there is unutilized protection, the cgroup will be fully
6584 * shielded from reclaim, but we do return a smaller value for
6585 * protection than what the group could enjoy in theory. This
6586 * is okay. With the overcommit distribution above, effective
6587 * protection is always dependent on how memory is actually
6588 * consumed among the siblings anyway.
6589 */
8a931f80
JW
6590 ep = protected;
6591
6592 /*
6593 * If the children aren't claiming (all of) the protection
6594 * afforded to them by the parent, distribute the remainder in
6595 * proportion to the (unprotected) memory of each cgroup. That
6596 * way, cgroups that aren't explicitly prioritized wrt each
6597 * other compete freely over the allowance, but they are
6598 * collectively protected from neighboring trees.
6599 *
6600 * We're using unprotected memory for the weight so that if
6601 * some cgroups DO claim explicit protection, we don't protect
6602 * the same bytes twice.
cd324edc
JW
6603 *
6604 * Check both usage and parent_usage against the respective
6605 * protected values. One should imply the other, but they
6606 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6607 */
6608 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6609 return ep;
cd324edc
JW
6610 if (parent_effective > siblings_protected &&
6611 parent_usage > siblings_protected &&
6612 usage > protected) {
8a931f80
JW
6613 unsigned long unclaimed;
6614
6615 unclaimed = parent_effective - siblings_protected;
6616 unclaimed *= usage - protected;
6617 unclaimed /= parent_usage - siblings_protected;
6618
6619 ep += unclaimed;
6620 }
6621
6622 return ep;
bc50bcc6
JW
6623}
6624
241994ed 6625/**
05395718 6626 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6627 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6628 * @memcg: the memory cgroup to check
6629 *
23067153
RG
6630 * WARNING: This function is not stateless! It can only be used as part
6631 * of a top-down tree iteration, not for isolated queries.
241994ed 6632 */
45c7f7e1
CD
6633void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6634 struct mem_cgroup *memcg)
241994ed 6635{
8a931f80 6636 unsigned long usage, parent_usage;
23067153
RG
6637 struct mem_cgroup *parent;
6638
241994ed 6639 if (mem_cgroup_disabled())
45c7f7e1 6640 return;
241994ed 6641
34c81057
SC
6642 if (!root)
6643 root = root_mem_cgroup;
22f7496f
YS
6644
6645 /*
6646 * Effective values of the reclaim targets are ignored so they
6647 * can be stale. Have a look at mem_cgroup_protection for more
6648 * details.
6649 * TODO: calculation should be more robust so that we do not need
6650 * that special casing.
6651 */
34c81057 6652 if (memcg == root)
45c7f7e1 6653 return;
241994ed 6654
23067153 6655 usage = page_counter_read(&memcg->memory);
bf8d5d52 6656 if (!usage)
45c7f7e1 6657 return;
bf8d5d52 6658
bf8d5d52 6659 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6660 /* No parent means a non-hierarchical mode on v1 memcg */
6661 if (!parent)
45c7f7e1 6662 return;
df2a4196 6663
bc50bcc6 6664 if (parent == root) {
c3d53200 6665 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6666 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6667 return;
bf8d5d52
RG
6668 }
6669
8a931f80
JW
6670 parent_usage = page_counter_read(&parent->memory);
6671
b3a7822e 6672 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6673 READ_ONCE(memcg->memory.min),
6674 READ_ONCE(parent->memory.emin),
b3a7822e 6675 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6676
b3a7822e 6677 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6678 READ_ONCE(memcg->memory.low),
6679 READ_ONCE(parent->memory.elow),
b3a7822e 6680 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6681}
6682
2c8d8f97 6683static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
0add0c77
SB
6684{
6685 unsigned int nr_pages = thp_nr_pages(page);
6686 int ret;
6687
6688 ret = try_charge(memcg, gfp, nr_pages);
6689 if (ret)
6690 goto out;
6691
6692 css_get(&memcg->css);
6693 commit_charge(page, memcg);
6694
6695 local_irq_disable();
6696 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6697 memcg_check_events(memcg, page);
6698 local_irq_enable();
6699out:
6700 return ret;
6701}
6702
00501b53 6703/**
2c8d8f97 6704 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6705 * @page: page to charge
6706 * @mm: mm context of the victim
6707 * @gfp_mask: reclaim mode
00501b53
JW
6708 *
6709 * Try to charge @page to the memcg that @mm belongs to, reclaiming
04f94e3f
DS
6710 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6711 * charge to the active memcg.
00501b53 6712 *
0add0c77
SB
6713 * Do not use this for pages allocated for swapin.
6714 *
f0e45fb4 6715 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6716 */
2c8d8f97
SB
6717int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6718 gfp_t gfp_mask)
00501b53 6719{
0add0c77
SB
6720 struct mem_cgroup *memcg;
6721 int ret;
00501b53 6722
0add0c77 6723 memcg = get_mem_cgroup_from_mm(mm);
2c8d8f97 6724 ret = charge_memcg(page, memcg, gfp_mask);
0add0c77 6725 css_put(&memcg->css);
2d1c4980 6726
0add0c77
SB
6727 return ret;
6728}
e993d905 6729
0add0c77
SB
6730/**
6731 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6732 * @page: page to charge
6733 * @mm: mm context of the victim
6734 * @gfp: reclaim mode
6735 * @entry: swap entry for which the page is allocated
6736 *
6737 * This function charges a page allocated for swapin. Please call this before
6738 * adding the page to the swapcache.
6739 *
6740 * Returns 0 on success. Otherwise, an error code is returned.
6741 */
6742int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6743 gfp_t gfp, swp_entry_t entry)
6744{
6745 struct mem_cgroup *memcg;
6746 unsigned short id;
6747 int ret;
00501b53 6748
0add0c77
SB
6749 if (mem_cgroup_disabled())
6750 return 0;
00501b53 6751
0add0c77
SB
6752 id = lookup_swap_cgroup_id(entry);
6753 rcu_read_lock();
6754 memcg = mem_cgroup_from_id(id);
6755 if (!memcg || !css_tryget_online(&memcg->css))
6756 memcg = get_mem_cgroup_from_mm(mm);
6757 rcu_read_unlock();
00501b53 6758
2c8d8f97 6759 ret = charge_memcg(page, memcg, gfp);
6abb5a86 6760
0add0c77
SB
6761 css_put(&memcg->css);
6762 return ret;
6763}
00501b53 6764
0add0c77
SB
6765/*
6766 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6767 * @entry: swap entry for which the page is charged
6768 *
6769 * Call this function after successfully adding the charged page to swapcache.
6770 *
6771 * Note: This function assumes the page for which swap slot is being uncharged
6772 * is order 0 page.
6773 */
6774void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6775{
cae3af62
MS
6776 /*
6777 * Cgroup1's unified memory+swap counter has been charged with the
6778 * new swapcache page, finish the transfer by uncharging the swap
6779 * slot. The swap slot would also get uncharged when it dies, but
6780 * it can stick around indefinitely and we'd count the page twice
6781 * the entire time.
6782 *
6783 * Cgroup2 has separate resource counters for memory and swap,
6784 * so this is a non-issue here. Memory and swap charge lifetimes
6785 * correspond 1:1 to page and swap slot lifetimes: we charge the
6786 * page to memory here, and uncharge swap when the slot is freed.
6787 */
0add0c77 6788 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6789 /*
6790 * The swap entry might not get freed for a long time,
6791 * let's not wait for it. The page already received a
6792 * memory+swap charge, drop the swap entry duplicate.
6793 */
0add0c77 6794 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6795 }
3fea5a49
JW
6796}
6797
a9d5adee
JG
6798struct uncharge_gather {
6799 struct mem_cgroup *memcg;
b4e0b68f 6800 unsigned long nr_memory;
a9d5adee 6801 unsigned long pgpgout;
a9d5adee 6802 unsigned long nr_kmem;
a9d5adee
JG
6803 struct page *dummy_page;
6804};
6805
6806static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6807{
a9d5adee
JG
6808 memset(ug, 0, sizeof(*ug));
6809}
6810
6811static void uncharge_batch(const struct uncharge_gather *ug)
6812{
747db954
JW
6813 unsigned long flags;
6814
b4e0b68f
MS
6815 if (ug->nr_memory) {
6816 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6817 if (do_memsw_account())
b4e0b68f 6818 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6819 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6820 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6821 memcg_oom_recover(ug->memcg);
ce00a967 6822 }
747db954
JW
6823
6824 local_irq_save(flags);
c9019e9b 6825 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6826 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6827 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6828 local_irq_restore(flags);
f1796544
MH
6829
6830 /* drop reference from uncharge_page */
6831 css_put(&ug->memcg->css);
a9d5adee
JG
6832}
6833
6834static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6835{
9f762dbe 6836 unsigned long nr_pages;
b4e0b68f
MS
6837 struct mem_cgroup *memcg;
6838 struct obj_cgroup *objcg;
55927114 6839 bool use_objcg = PageMemcgKmem(page);
9f762dbe 6840
a9d5adee 6841 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6842
a9d5adee
JG
6843 /*
6844 * Nobody should be changing or seriously looking at
b4e0b68f 6845 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6846 * exclusive access to the page.
6847 */
55927114 6848 if (use_objcg) {
b4e0b68f
MS
6849 objcg = __page_objcg(page);
6850 /*
6851 * This get matches the put at the end of the function and
6852 * kmem pages do not hold memcg references anymore.
6853 */
6854 memcg = get_mem_cgroup_from_objcg(objcg);
6855 } else {
6856 memcg = __page_memcg(page);
6857 }
a9d5adee 6858
b4e0b68f
MS
6859 if (!memcg)
6860 return;
6861
6862 if (ug->memcg != memcg) {
a9d5adee
JG
6863 if (ug->memcg) {
6864 uncharge_batch(ug);
6865 uncharge_gather_clear(ug);
6866 }
b4e0b68f 6867 ug->memcg = memcg;
7ab345a8 6868 ug->dummy_page = page;
f1796544
MH
6869
6870 /* pairs with css_put in uncharge_batch */
b4e0b68f 6871 css_get(&memcg->css);
a9d5adee
JG
6872 }
6873
9f762dbe 6874 nr_pages = compound_nr(page);
a9d5adee 6875
55927114 6876 if (use_objcg) {
b4e0b68f 6877 ug->nr_memory += nr_pages;
9f762dbe 6878 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6879
6880 page->memcg_data = 0;
6881 obj_cgroup_put(objcg);
6882 } else {
6883 /* LRU pages aren't accounted at the root level */
6884 if (!mem_cgroup_is_root(memcg))
6885 ug->nr_memory += nr_pages;
18b2db3b 6886 ug->pgpgout++;
a9d5adee 6887
b4e0b68f
MS
6888 page->memcg_data = 0;
6889 }
6890
6891 css_put(&memcg->css);
747db954
JW
6892}
6893
0a31bc97 6894/**
2c8d8f97 6895 * __mem_cgroup_uncharge - uncharge a page
0a31bc97
JW
6896 * @page: page to uncharge
6897 *
2c8d8f97 6898 * Uncharge a page previously charged with __mem_cgroup_charge().
0a31bc97 6899 */
2c8d8f97 6900void __mem_cgroup_uncharge(struct page *page)
0a31bc97 6901{
a9d5adee
JG
6902 struct uncharge_gather ug;
6903
747db954 6904 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6905 if (!page_memcg(page))
0a31bc97
JW
6906 return;
6907
a9d5adee
JG
6908 uncharge_gather_clear(&ug);
6909 uncharge_page(page, &ug);
6910 uncharge_batch(&ug);
747db954 6911}
0a31bc97 6912
747db954 6913/**
2c8d8f97 6914 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6915 * @page_list: list of pages to uncharge
6916 *
6917 * Uncharge a list of pages previously charged with
2c8d8f97 6918 * __mem_cgroup_charge().
747db954 6919 */
2c8d8f97 6920void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6921{
c41a40b6
MS
6922 struct uncharge_gather ug;
6923 struct page *page;
6924
c41a40b6
MS
6925 uncharge_gather_clear(&ug);
6926 list_for_each_entry(page, page_list, lru)
6927 uncharge_page(page, &ug);
6928 if (ug.memcg)
6929 uncharge_batch(&ug);
0a31bc97
JW
6930}
6931
6932/**
6a93ca8f
JW
6933 * mem_cgroup_migrate - charge a page's replacement
6934 * @oldpage: currently circulating page
6935 * @newpage: replacement page
0a31bc97 6936 *
6a93ca8f
JW
6937 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6938 * be uncharged upon free.
0a31bc97
JW
6939 *
6940 * Both pages must be locked, @newpage->mapping must be set up.
6941 */
6a93ca8f 6942void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6943{
29833315 6944 struct mem_cgroup *memcg;
44b7a8d3 6945 unsigned int nr_pages;
d93c4130 6946 unsigned long flags;
0a31bc97
JW
6947
6948 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6949 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6950 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6951 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6952 newpage);
0a31bc97
JW
6953
6954 if (mem_cgroup_disabled())
6955 return;
6956
6957 /* Page cache replacement: new page already charged? */
bcfe06bf 6958 if (page_memcg(newpage))
0a31bc97
JW
6959 return;
6960
bcfe06bf 6961 memcg = page_memcg(oldpage);
a4055888 6962 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6963 if (!memcg)
0a31bc97
JW
6964 return;
6965
44b7a8d3 6966 /* Force-charge the new page. The old one will be freed soon */
6c357848 6967 nr_pages = thp_nr_pages(newpage);
44b7a8d3 6968
8dc87c7d
MS
6969 if (!mem_cgroup_is_root(memcg)) {
6970 page_counter_charge(&memcg->memory, nr_pages);
6971 if (do_memsw_account())
6972 page_counter_charge(&memcg->memsw, nr_pages);
6973 }
0a31bc97 6974
1a3e1f40 6975 css_get(&memcg->css);
d9eb1ea2 6976 commit_charge(newpage, memcg);
44b7a8d3 6977
d93c4130 6978 local_irq_save(flags);
3fba69a5 6979 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6980 memcg_check_events(memcg, newpage);
d93c4130 6981 local_irq_restore(flags);
0a31bc97
JW
6982}
6983
ef12947c 6984DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6985EXPORT_SYMBOL(memcg_sockets_enabled_key);
6986
2d758073 6987void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6988{
6989 struct mem_cgroup *memcg;
6990
2d758073
JW
6991 if (!mem_cgroup_sockets_enabled)
6992 return;
6993
e876ecc6
SB
6994 /* Do not associate the sock with unrelated interrupted task's memcg. */
6995 if (in_interrupt())
6996 return;
6997
11092087
JW
6998 rcu_read_lock();
6999 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7000 if (memcg == root_mem_cgroup)
7001 goto out;
0db15298 7002 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7003 goto out;
8965aa28 7004 if (css_tryget(&memcg->css))
11092087 7005 sk->sk_memcg = memcg;
f7e1cb6e 7006out:
11092087
JW
7007 rcu_read_unlock();
7008}
11092087 7009
2d758073 7010void mem_cgroup_sk_free(struct sock *sk)
11092087 7011{
2d758073
JW
7012 if (sk->sk_memcg)
7013 css_put(&sk->sk_memcg->css);
11092087
JW
7014}
7015
7016/**
7017 * mem_cgroup_charge_skmem - charge socket memory
7018 * @memcg: memcg to charge
7019 * @nr_pages: number of pages to charge
4b1327be 7020 * @gfp_mask: reclaim mode
11092087
JW
7021 *
7022 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7023 * @memcg's configured limit, %false if it doesn't.
11092087 7024 */
4b1327be
WW
7025bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7026 gfp_t gfp_mask)
11092087 7027{
f7e1cb6e 7028 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7029 struct page_counter *fail;
f7e1cb6e 7030
0db15298
JW
7031 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7032 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7033 return true;
7034 }
0db15298 7035 memcg->tcpmem_pressure = 1;
4b1327be
WW
7036 if (gfp_mask & __GFP_NOFAIL) {
7037 page_counter_charge(&memcg->tcpmem, nr_pages);
7038 return true;
7039 }
f7e1cb6e 7040 return false;
11092087 7041 }
d886f4e4 7042
4b1327be
WW
7043 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7044 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7045 return true;
4b1327be 7046 }
f7e1cb6e 7047
11092087
JW
7048 return false;
7049}
7050
7051/**
7052 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7053 * @memcg: memcg to uncharge
7054 * @nr_pages: number of pages to uncharge
11092087
JW
7055 */
7056void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7057{
f7e1cb6e 7058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7059 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7060 return;
7061 }
d886f4e4 7062
c9019e9b 7063 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7064
475d0487 7065 refill_stock(memcg, nr_pages);
11092087
JW
7066}
7067
f7e1cb6e
JW
7068static int __init cgroup_memory(char *s)
7069{
7070 char *token;
7071
7072 while ((token = strsep(&s, ",")) != NULL) {
7073 if (!*token)
7074 continue;
7075 if (!strcmp(token, "nosocket"))
7076 cgroup_memory_nosocket = true;
04823c83
VD
7077 if (!strcmp(token, "nokmem"))
7078 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7079 }
7080 return 0;
7081}
7082__setup("cgroup.memory=", cgroup_memory);
11092087 7083
2d11085e 7084/*
1081312f
MH
7085 * subsys_initcall() for memory controller.
7086 *
308167fc
SAS
7087 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7088 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7089 * basically everything that doesn't depend on a specific mem_cgroup structure
7090 * should be initialized from here.
2d11085e
MH
7091 */
7092static int __init mem_cgroup_init(void)
7093{
95a045f6
JW
7094 int cpu, node;
7095
f3344adf
MS
7096 /*
7097 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7098 * used for per-memcg-per-cpu caching of per-node statistics. In order
7099 * to work fine, we should make sure that the overfill threshold can't
7100 * exceed S32_MAX / PAGE_SIZE.
7101 */
7102 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7103
308167fc
SAS
7104 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7105 memcg_hotplug_cpu_dead);
95a045f6
JW
7106
7107 for_each_possible_cpu(cpu)
7108 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7109 drain_local_stock);
7110
7111 for_each_node(node) {
7112 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7113
7114 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7115 node_online(node) ? node : NUMA_NO_NODE);
7116
ef8f2327 7117 rtpn->rb_root = RB_ROOT;
fa90b2fd 7118 rtpn->rb_rightmost = NULL;
ef8f2327 7119 spin_lock_init(&rtpn->lock);
95a045f6
JW
7120 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7121 }
7122
2d11085e
MH
7123 return 0;
7124}
7125subsys_initcall(mem_cgroup_init);
21afa38e
JW
7126
7127#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7128static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7129{
1c2d479a 7130 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7131 /*
7132 * The root cgroup cannot be destroyed, so it's refcount must
7133 * always be >= 1.
7134 */
7135 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7136 VM_BUG_ON(1);
7137 break;
7138 }
7139 memcg = parent_mem_cgroup(memcg);
7140 if (!memcg)
7141 memcg = root_mem_cgroup;
7142 }
7143 return memcg;
7144}
7145
21afa38e
JW
7146/**
7147 * mem_cgroup_swapout - transfer a memsw charge to swap
7148 * @page: page whose memsw charge to transfer
7149 * @entry: swap entry to move the charge to
7150 *
7151 * Transfer the memsw charge of @page to @entry.
7152 */
7153void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7154{
1f47b61f 7155 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7156 unsigned int nr_entries;
21afa38e
JW
7157 unsigned short oldid;
7158
7159 VM_BUG_ON_PAGE(PageLRU(page), page);
7160 VM_BUG_ON_PAGE(page_count(page), page);
7161
76358ab5
AS
7162 if (mem_cgroup_disabled())
7163 return;
7164
2d1c4980 7165 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7166 return;
7167
bcfe06bf 7168 memcg = page_memcg(page);
21afa38e 7169
a4055888 7170 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7171 if (!memcg)
7172 return;
7173
1f47b61f
VD
7174 /*
7175 * In case the memcg owning these pages has been offlined and doesn't
7176 * have an ID allocated to it anymore, charge the closest online
7177 * ancestor for the swap instead and transfer the memory+swap charge.
7178 */
7179 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7180 nr_entries = thp_nr_pages(page);
d6810d73
HY
7181 /* Get references for the tail pages, too */
7182 if (nr_entries > 1)
7183 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7184 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7185 nr_entries);
21afa38e 7186 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7187 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7188
bcfe06bf 7189 page->memcg_data = 0;
21afa38e
JW
7190
7191 if (!mem_cgroup_is_root(memcg))
d6810d73 7192 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7193
2d1c4980 7194 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7195 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7196 page_counter_charge(&swap_memcg->memsw, nr_entries);
7197 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7198 }
7199
ce9ce665
SAS
7200 /*
7201 * Interrupts should be disabled here because the caller holds the
b93b0163 7202 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7203 * important here to have the interrupts disabled because it is the
b93b0163 7204 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7205 */
7206 VM_BUG_ON(!irqs_disabled());
3fba69a5 7207 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7208 memcg_check_events(memcg, page);
73f576c0 7209
1a3e1f40 7210 css_put(&memcg->css);
21afa38e
JW
7211}
7212
38d8b4e6 7213/**
01c4b28c 7214 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7215 * @page: page being added to swap
7216 * @entry: swap entry to charge
7217 *
38d8b4e6 7218 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7219 *
7220 * Returns 0 on success, -ENOMEM on failure.
7221 */
01c4b28c 7222int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7223{
6c357848 7224 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7225 struct page_counter *counter;
38d8b4e6 7226 struct mem_cgroup *memcg;
37e84351
VD
7227 unsigned short oldid;
7228
2d1c4980 7229 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7230 return 0;
7231
bcfe06bf 7232 memcg = page_memcg(page);
37e84351 7233
a4055888 7234 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7235 if (!memcg)
7236 return 0;
7237
f3a53a3a
TH
7238 if (!entry.val) {
7239 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7240 return 0;
f3a53a3a 7241 }
bb98f2c5 7242
1f47b61f
VD
7243 memcg = mem_cgroup_id_get_online(memcg);
7244
2d1c4980 7245 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7246 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7247 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7248 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7249 mem_cgroup_id_put(memcg);
37e84351 7250 return -ENOMEM;
1f47b61f 7251 }
37e84351 7252
38d8b4e6
HY
7253 /* Get references for the tail pages, too */
7254 if (nr_pages > 1)
7255 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7256 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7257 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7258 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7259
37e84351
VD
7260 return 0;
7261}
7262
21afa38e 7263/**
01c4b28c 7264 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7265 * @entry: swap entry to uncharge
38d8b4e6 7266 * @nr_pages: the amount of swap space to uncharge
21afa38e 7267 */
01c4b28c 7268void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7269{
7270 struct mem_cgroup *memcg;
7271 unsigned short id;
7272
38d8b4e6 7273 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7274 rcu_read_lock();
adbe427b 7275 memcg = mem_cgroup_from_id(id);
21afa38e 7276 if (memcg) {
2d1c4980 7277 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7279 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7280 else
38d8b4e6 7281 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7282 }
c9019e9b 7283 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7284 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7285 }
7286 rcu_read_unlock();
7287}
7288
d8b38438
VD
7289long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7290{
7291 long nr_swap_pages = get_nr_swap_pages();
7292
eccb52e7 7293 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7294 return nr_swap_pages;
7295 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7296 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7297 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7298 page_counter_read(&memcg->swap));
7299 return nr_swap_pages;
7300}
7301
5ccc5aba
VD
7302bool mem_cgroup_swap_full(struct page *page)
7303{
7304 struct mem_cgroup *memcg;
7305
7306 VM_BUG_ON_PAGE(!PageLocked(page), page);
7307
7308 if (vm_swap_full())
7309 return true;
eccb52e7 7310 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7311 return false;
7312
bcfe06bf 7313 memcg = page_memcg(page);
5ccc5aba
VD
7314 if (!memcg)
7315 return false;
7316
4b82ab4f
JK
7317 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7318 unsigned long usage = page_counter_read(&memcg->swap);
7319
7320 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7321 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7322 return true;
4b82ab4f 7323 }
5ccc5aba
VD
7324
7325 return false;
7326}
7327
eccb52e7 7328static int __init setup_swap_account(char *s)
21afa38e
JW
7329{
7330 if (!strcmp(s, "1"))
5ab92901 7331 cgroup_memory_noswap = false;
21afa38e 7332 else if (!strcmp(s, "0"))
5ab92901 7333 cgroup_memory_noswap = true;
21afa38e
JW
7334 return 1;
7335}
eccb52e7 7336__setup("swapaccount=", setup_swap_account);
21afa38e 7337
37e84351
VD
7338static u64 swap_current_read(struct cgroup_subsys_state *css,
7339 struct cftype *cft)
7340{
7341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7342
7343 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7344}
7345
4b82ab4f
JK
7346static int swap_high_show(struct seq_file *m, void *v)
7347{
7348 return seq_puts_memcg_tunable(m,
7349 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7350}
7351
7352static ssize_t swap_high_write(struct kernfs_open_file *of,
7353 char *buf, size_t nbytes, loff_t off)
7354{
7355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7356 unsigned long high;
7357 int err;
7358
7359 buf = strstrip(buf);
7360 err = page_counter_memparse(buf, "max", &high);
7361 if (err)
7362 return err;
7363
7364 page_counter_set_high(&memcg->swap, high);
7365
7366 return nbytes;
7367}
7368
37e84351
VD
7369static int swap_max_show(struct seq_file *m, void *v)
7370{
677dc973
CD
7371 return seq_puts_memcg_tunable(m,
7372 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7373}
7374
7375static ssize_t swap_max_write(struct kernfs_open_file *of,
7376 char *buf, size_t nbytes, loff_t off)
7377{
7378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7379 unsigned long max;
7380 int err;
7381
7382 buf = strstrip(buf);
7383 err = page_counter_memparse(buf, "max", &max);
7384 if (err)
7385 return err;
7386
be09102b 7387 xchg(&memcg->swap.max, max);
37e84351
VD
7388
7389 return nbytes;
7390}
7391
f3a53a3a
TH
7392static int swap_events_show(struct seq_file *m, void *v)
7393{
aa9694bb 7394 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7395
4b82ab4f
JK
7396 seq_printf(m, "high %lu\n",
7397 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7398 seq_printf(m, "max %lu\n",
7399 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7400 seq_printf(m, "fail %lu\n",
7401 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7402
7403 return 0;
7404}
7405
37e84351
VD
7406static struct cftype swap_files[] = {
7407 {
7408 .name = "swap.current",
7409 .flags = CFTYPE_NOT_ON_ROOT,
7410 .read_u64 = swap_current_read,
7411 },
4b82ab4f
JK
7412 {
7413 .name = "swap.high",
7414 .flags = CFTYPE_NOT_ON_ROOT,
7415 .seq_show = swap_high_show,
7416 .write = swap_high_write,
7417 },
37e84351
VD
7418 {
7419 .name = "swap.max",
7420 .flags = CFTYPE_NOT_ON_ROOT,
7421 .seq_show = swap_max_show,
7422 .write = swap_max_write,
7423 },
f3a53a3a
TH
7424 {
7425 .name = "swap.events",
7426 .flags = CFTYPE_NOT_ON_ROOT,
7427 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7428 .seq_show = swap_events_show,
7429 },
37e84351
VD
7430 { } /* terminate */
7431};
7432
eccb52e7 7433static struct cftype memsw_files[] = {
21afa38e
JW
7434 {
7435 .name = "memsw.usage_in_bytes",
7436 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7437 .read_u64 = mem_cgroup_read_u64,
7438 },
7439 {
7440 .name = "memsw.max_usage_in_bytes",
7441 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7442 .write = mem_cgroup_reset,
7443 .read_u64 = mem_cgroup_read_u64,
7444 },
7445 {
7446 .name = "memsw.limit_in_bytes",
7447 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7448 .write = mem_cgroup_write,
7449 .read_u64 = mem_cgroup_read_u64,
7450 },
7451 {
7452 .name = "memsw.failcnt",
7453 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7454 .write = mem_cgroup_reset,
7455 .read_u64 = mem_cgroup_read_u64,
7456 },
7457 { }, /* terminate */
7458};
7459
82ff165c
BS
7460/*
7461 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7462 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7463 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7464 * boot parameter. This may result in premature OOPS inside
7465 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7466 */
21afa38e
JW
7467static int __init mem_cgroup_swap_init(void)
7468{
2d1c4980
JW
7469 /* No memory control -> no swap control */
7470 if (mem_cgroup_disabled())
7471 cgroup_memory_noswap = true;
7472
7473 if (cgroup_memory_noswap)
eccb52e7
JW
7474 return 0;
7475
7476 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7477 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7478
21afa38e
JW
7479 return 0;
7480}
82ff165c 7481core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7482
7483#endif /* CONFIG_MEMCG_SWAP */