]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm/memcontrol: remove redundant NULL check
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
c1a660de
RG
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
55007d84 353/*
9855609b 354 * This will be used as a shrinker list's index.
b8627835
LZ
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
55007d84 360 *
dbcf73e2
VD
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
55007d84 363 */
dbcf73e2
VD
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
749c5415 366
05257a1a
VD
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
55007d84
GC
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
b8627835 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
b8627835 393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 394
d7f25f8a
GC
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
272911a4 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
ef12947c 401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 402EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 403#endif
17cc4dfe 404
0a4465d3
KT
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
417 int nid;
418
419 lockdep_assert_held(&memcg_shrinker_map_mutex);
420
421 for_each_node(nid) {
422 old = rcu_dereference_protected(
423 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
424 /* Not yet online memcg */
425 if (!old)
426 return 0;
427
86daf94e 428 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
429 if (!new)
430 return -ENOMEM;
431
432 /* Set all old bits, clear all new bits */
433 memset(new->map, (int)0xff, old_size);
434 memset((void *)new->map + old_size, 0, size - old_size);
435
436 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
437 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 }
439
440 return 0;
441}
442
443static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
444{
445 struct mem_cgroup_per_node *pn;
446 struct memcg_shrinker_map *map;
447 int nid;
448
449 if (mem_cgroup_is_root(memcg))
450 return;
451
452 for_each_node(nid) {
453 pn = mem_cgroup_nodeinfo(memcg, nid);
454 map = rcu_dereference_protected(pn->shrinker_map, true);
8a260162 455 kvfree(map);
0a4465d3
KT
456 rcu_assign_pointer(pn->shrinker_map, NULL);
457 }
458}
459
460static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461{
462 struct memcg_shrinker_map *map;
463 int nid, size, ret = 0;
464
465 if (mem_cgroup_is_root(memcg))
466 return 0;
467
468 mutex_lock(&memcg_shrinker_map_mutex);
469 size = memcg_shrinker_map_size;
470 for_each_node(nid) {
86daf94e 471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
472 if (!map) {
473 memcg_free_shrinker_maps(memcg);
474 ret = -ENOMEM;
475 break;
476 }
477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 }
479 mutex_unlock(&memcg_shrinker_map_mutex);
480
481 return ret;
482}
483
484int memcg_expand_shrinker_maps(int new_id)
485{
486 int size, old_size, ret = 0;
487 struct mem_cgroup *memcg;
488
489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 old_size = memcg_shrinker_map_size;
491 if (size <= old_size)
492 return 0;
493
494 mutex_lock(&memcg_shrinker_map_mutex);
495 if (!root_mem_cgroup)
496 goto unlock;
497
498 for_each_mem_cgroup(memcg) {
499 if (mem_cgroup_is_root(memcg))
500 continue;
501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
502 if (ret) {
503 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 504 goto unlock;
75866af6 505 }
0a4465d3
KT
506 }
507unlock:
508 if (!ret)
509 memcg_shrinker_map_size = size;
510 mutex_unlock(&memcg_shrinker_map_mutex);
511 return ret;
512}
fae91d6d
KT
513
514void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515{
516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 struct memcg_shrinker_map *map;
518
519 rcu_read_lock();
520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
521 /* Pairs with smp mb in shrink_slab() */
522 smp_mb__before_atomic();
fae91d6d
KT
523 set_bit(shrinker_id, map->map);
524 rcu_read_unlock();
525 }
526}
527
ad7fa852
TH
528/**
529 * mem_cgroup_css_from_page - css of the memcg associated with a page
530 * @page: page of interest
531 *
532 * If memcg is bound to the default hierarchy, css of the memcg associated
533 * with @page is returned. The returned css remains associated with @page
534 * until it is released.
535 *
536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537 * is returned.
ad7fa852
TH
538 */
539struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540{
541 struct mem_cgroup *memcg;
542
bcfe06bf 543 memcg = page_memcg(page);
ad7fa852 544
9e10a130 545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
546 memcg = root_mem_cgroup;
547
ad7fa852
TH
548 return &memcg->css;
549}
550
2fc04524
VD
551/**
552 * page_cgroup_ino - return inode number of the memcg a page is charged to
553 * @page: the page
554 *
555 * Look up the closest online ancestor of the memory cgroup @page is charged to
556 * and return its inode number or 0 if @page is not charged to any cgroup. It
557 * is safe to call this function without holding a reference to @page.
558 *
559 * Note, this function is inherently racy, because there is nothing to prevent
560 * the cgroup inode from getting torn down and potentially reallocated a moment
561 * after page_cgroup_ino() returns, so it only should be used by callers that
562 * do not care (such as procfs interfaces).
563 */
564ino_t page_cgroup_ino(struct page *page)
565{
566 struct mem_cgroup *memcg;
567 unsigned long ino = 0;
568
569 rcu_read_lock();
bcfe06bf 570 memcg = page_memcg_check(page);
286e04b8 571
2fc04524
VD
572 while (memcg && !(memcg->css.flags & CSS_ONLINE))
573 memcg = parent_mem_cgroup(memcg);
574 if (memcg)
575 ino = cgroup_ino(memcg->css.cgroup);
576 rcu_read_unlock();
577 return ino;
578}
579
ef8f2327
MG
580static struct mem_cgroup_per_node *
581mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
97a6c37b 583 int nid = page_to_nid(page);
f64c3f54 584
ef8f2327 585 return memcg->nodeinfo[nid];
f64c3f54
BS
586}
587
ef8f2327
MG
588static struct mem_cgroup_tree_per_node *
589soft_limit_tree_node(int nid)
bb4cc1a8 590{
ef8f2327 591 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
592}
593
ef8f2327 594static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
595soft_limit_tree_from_page(struct page *page)
596{
597 int nid = page_to_nid(page);
bb4cc1a8 598
ef8f2327 599 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
600}
601
ef8f2327
MG
602static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
603 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 604 unsigned long new_usage_in_excess)
bb4cc1a8
AM
605{
606 struct rb_node **p = &mctz->rb_root.rb_node;
607 struct rb_node *parent = NULL;
ef8f2327 608 struct mem_cgroup_per_node *mz_node;
fa90b2fd 609 bool rightmost = true;
bb4cc1a8
AM
610
611 if (mz->on_tree)
612 return;
613
614 mz->usage_in_excess = new_usage_in_excess;
615 if (!mz->usage_in_excess)
616 return;
617 while (*p) {
618 parent = *p;
ef8f2327 619 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 620 tree_node);
fa90b2fd 621 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 622 p = &(*p)->rb_left;
fa90b2fd 623 rightmost = false;
378876b0 624 } else {
bb4cc1a8 625 p = &(*p)->rb_right;
378876b0 626 }
bb4cc1a8 627 }
fa90b2fd
DB
628
629 if (rightmost)
630 mctz->rb_rightmost = &mz->tree_node;
631
bb4cc1a8
AM
632 rb_link_node(&mz->tree_node, parent, p);
633 rb_insert_color(&mz->tree_node, &mctz->rb_root);
634 mz->on_tree = true;
635}
636
ef8f2327
MG
637static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
638 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
639{
640 if (!mz->on_tree)
641 return;
fa90b2fd
DB
642
643 if (&mz->tree_node == mctz->rb_rightmost)
644 mctz->rb_rightmost = rb_prev(&mz->tree_node);
645
bb4cc1a8
AM
646 rb_erase(&mz->tree_node, &mctz->rb_root);
647 mz->on_tree = false;
648}
649
ef8f2327
MG
650static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
651 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 652{
0a31bc97
JW
653 unsigned long flags;
654
655 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 656 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 657 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
658}
659
3e32cb2e
JW
660static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
661{
662 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 663 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
664 unsigned long excess = 0;
665
666 if (nr_pages > soft_limit)
667 excess = nr_pages - soft_limit;
668
669 return excess;
670}
bb4cc1a8
AM
671
672static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
673{
3e32cb2e 674 unsigned long excess;
ef8f2327
MG
675 struct mem_cgroup_per_node *mz;
676 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 677
e231875b 678 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
679 if (!mctz)
680 return;
bb4cc1a8
AM
681 /*
682 * Necessary to update all ancestors when hierarchy is used.
683 * because their event counter is not touched.
684 */
685 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 686 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 687 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
688 /*
689 * We have to update the tree if mz is on RB-tree or
690 * mem is over its softlimit.
691 */
692 if (excess || mz->on_tree) {
0a31bc97
JW
693 unsigned long flags;
694
695 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
696 /* if on-tree, remove it */
697 if (mz->on_tree)
cf2c8127 698 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
699 /*
700 * Insert again. mz->usage_in_excess will be updated.
701 * If excess is 0, no tree ops.
702 */
cf2c8127 703 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 704 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
705 }
706 }
707}
708
709static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
710{
ef8f2327
MG
711 struct mem_cgroup_tree_per_node *mctz;
712 struct mem_cgroup_per_node *mz;
713 int nid;
bb4cc1a8 714
e231875b 715 for_each_node(nid) {
ef8f2327
MG
716 mz = mem_cgroup_nodeinfo(memcg, nid);
717 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
718 if (mctz)
719 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
720 }
721}
722
ef8f2327
MG
723static struct mem_cgroup_per_node *
724__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 725{
ef8f2327 726 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
727
728retry:
729 mz = NULL;
fa90b2fd 730 if (!mctz->rb_rightmost)
bb4cc1a8
AM
731 goto done; /* Nothing to reclaim from */
732
fa90b2fd
DB
733 mz = rb_entry(mctz->rb_rightmost,
734 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
735 /*
736 * Remove the node now but someone else can add it back,
737 * we will to add it back at the end of reclaim to its correct
738 * position in the tree.
739 */
cf2c8127 740 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 741 if (!soft_limit_excess(mz->memcg) ||
8965aa28 742 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
743 goto retry;
744done:
745 return mz;
746}
747
ef8f2327
MG
748static struct mem_cgroup_per_node *
749mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 750{
ef8f2327 751 struct mem_cgroup_per_node *mz;
bb4cc1a8 752
0a31bc97 753 spin_lock_irq(&mctz->lock);
bb4cc1a8 754 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 755 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
756 return mz;
757}
758
db9adbcb
JW
759/**
760 * __mod_memcg_state - update cgroup memory statistics
761 * @memcg: the memory cgroup
762 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
763 * @val: delta to add to the counter, can be negative
764 */
765void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
766{
ea426c2a 767 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
768
769 if (mem_cgroup_disabled())
770 return;
771
772616b0 772 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
773 threshold <<= PAGE_SHIFT;
774
db9adbcb 775 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 776 if (unlikely(abs(x) > threshold)) {
42a30035
JW
777 struct mem_cgroup *mi;
778
766a4c19
YS
779 /*
780 * Batch local counters to keep them in sync with
781 * the hierarchical ones.
782 */
783 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
784 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
785 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
786 x = 0;
787 }
788 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
789}
790
42a30035
JW
791static struct mem_cgroup_per_node *
792parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
793{
794 struct mem_cgroup *parent;
795
796 parent = parent_mem_cgroup(pn->memcg);
797 if (!parent)
798 return NULL;
799 return mem_cgroup_nodeinfo(parent, nid);
800}
801
eedc4e5a
RG
802void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
803 int val)
db9adbcb
JW
804{
805 struct mem_cgroup_per_node *pn;
42a30035 806 struct mem_cgroup *memcg;
ea426c2a 807 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 808
db9adbcb 809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 810 memcg = pn->memcg;
db9adbcb
JW
811
812 /* Update memcg */
42a30035 813 __mod_memcg_state(memcg, idx, val);
db9adbcb 814
b4c46484
RG
815 /* Update lruvec */
816 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
817
ea426c2a
RG
818 if (vmstat_item_in_bytes(idx))
819 threshold <<= PAGE_SHIFT;
820
db9adbcb 821 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 822 if (unlikely(abs(x) > threshold)) {
eedc4e5a 823 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
824 struct mem_cgroup_per_node *pi;
825
42a30035
JW
826 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
827 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
828 x = 0;
829 }
830 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
831}
832
eedc4e5a
RG
833/**
834 * __mod_lruvec_state - update lruvec memory statistics
835 * @lruvec: the lruvec
836 * @idx: the stat item
837 * @val: delta to add to the counter, can be negative
838 *
839 * The lruvec is the intersection of the NUMA node and a cgroup. This
840 * function updates the all three counters that are affected by a
841 * change of state at this level: per-node, per-cgroup, per-lruvec.
842 */
843void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
844 int val)
845{
846 /* Update node */
847 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
848
849 /* Update memcg and lruvec */
850 if (!mem_cgroup_disabled())
851 __mod_memcg_lruvec_state(lruvec, idx, val);
852}
853
c47d5032
SB
854void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
855 int val)
856{
857 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 858 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
859 pg_data_t *pgdat = page_pgdat(page);
860 struct lruvec *lruvec;
861
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 863 if (!memcg) {
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
869 __mod_lruvec_state(lruvec, idx, val);
870}
f0c0c115 871EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 872
da3ceeff 873void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 874{
4f103c63 875 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
876 struct mem_cgroup *memcg;
877 struct lruvec *lruvec;
878
879 rcu_read_lock();
4f103c63 880 memcg = mem_cgroup_from_obj(p);
ec9f0238 881
8faeb1ff
MS
882 /*
883 * Untracked pages have no memcg, no lruvec. Update only the
884 * node. If we reparent the slab objects to the root memcg,
885 * when we free the slab object, we need to update the per-memcg
886 * vmstats to keep it correct for the root memcg.
887 */
888 if (!memcg) {
ec9f0238
RG
889 __mod_node_page_state(pgdat, idx, val);
890 } else {
867e5e1d 891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
892 __mod_lruvec_state(lruvec, idx, val);
893 }
894 rcu_read_unlock();
895}
896
db9adbcb
JW
897/**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
903void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905{
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
913 struct mem_cgroup *mi;
914
766a4c19
YS
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925}
926
42a30035 927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 928{
871789d4 929 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
930}
931
42a30035
JW
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
815744d7
JW
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
42a30035
JW
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
3fba69a5 944 int nr_pages)
d52aa412 945{
e401f176
KH
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
c9019e9b 948 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 949 else {
c9019e9b 950 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
951 nr_pages = -nr_pages; /* for event */
952 }
e401f176 953
871789d4 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
955}
956
f53d7ce3
JW
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
7a159cc9
JW
959{
960 unsigned long val, next;
961
871789d4
CD
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 964 /* from time_after() in jiffies.h */
6a1a8b80 965 if ((long)(next - val) < 0) {
f53d7ce3
JW
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
bb4cc1a8
AM
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
f53d7ce3
JW
973 default:
974 break;
975 }
871789d4 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
f53d7ce3 992
bb4cc1a8
AM
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 995 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
0a31bc97 998 }
d2265e6f
KH
999}
1000
cf475ad2 1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1002{
31a78f23
BS
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
073219e9 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1012}
33398cf2 1013EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1014
d46eb14b
SB
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
d46eb14b
SB
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
0b7f569e 1029
54595fe2
KH
1030 rcu_read_lock();
1031 do {
6f6acb00
MH
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
df381975 1038 memcg = root_mem_cgroup;
6f6acb00
MH
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
f745c6f5
SB
1050/**
1051 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1052 * @page: page from which memcg should be extracted.
1053 *
1054 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1055 * root_mem_cgroup is returned.
1056 */
1057struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1058{
bcfe06bf 1059 struct mem_cgroup *memcg = page_memcg(page);
f745c6f5
SB
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 rcu_read_lock();
8965aa28
SB
1065 /* Page should not get uncharged and freed memcg under us. */
1066 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1067 memcg = root_mem_cgroup;
1068 rcu_read_unlock();
1069 return memcg;
1070}
1071EXPORT_SYMBOL(get_mem_cgroup_from_page);
1072
37d5985c 1073static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1074{
37d5985c
RG
1075 if (in_interrupt())
1076 return this_cpu_read(int_active_memcg);
1077 else
1078 return current->active_memcg;
1079}
279c3393 1080
37d5985c
RG
1081static __always_inline struct mem_cgroup *get_active_memcg(void)
1082{
1083 struct mem_cgroup *memcg;
d46eb14b 1084
37d5985c
RG
1085 rcu_read_lock();
1086 memcg = active_memcg();
1087 if (memcg) {
8965aa28 1088 /* current->active_memcg must hold a ref. */
37d5985c 1089 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1090 memcg = root_mem_cgroup;
1091 else
d46eb14b 1092 memcg = current->active_memcg;
d46eb14b 1093 }
37d5985c
RG
1094 rcu_read_unlock();
1095
1096 return memcg;
1097}
1098
4127c650
RG
1099static __always_inline bool memcg_kmem_bypass(void)
1100{
1101 /* Allow remote memcg charging from any context. */
1102 if (unlikely(active_memcg()))
1103 return false;
1104
1105 /* Memcg to charge can't be determined. */
1106 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1107 return true;
1108
1109 return false;
1110}
1111
37d5985c
RG
1112/**
1113 * If active memcg is set, do not fallback to current->mm->memcg.
1114 */
1115static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1116{
1117 if (memcg_kmem_bypass())
1118 return NULL;
1119
1120 if (unlikely(active_memcg()))
1121 return get_active_memcg();
1122
d46eb14b
SB
1123 return get_mem_cgroup_from_mm(current->mm);
1124}
54595fe2 1125
5660048c
JW
1126/**
1127 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1128 * @root: hierarchy root
1129 * @prev: previously returned memcg, NULL on first invocation
1130 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1131 *
1132 * Returns references to children of the hierarchy below @root, or
1133 * @root itself, or %NULL after a full round-trip.
1134 *
1135 * Caller must pass the return value in @prev on subsequent
1136 * invocations for reference counting, or use mem_cgroup_iter_break()
1137 * to cancel a hierarchy walk before the round-trip is complete.
1138 *
05bdc520
ML
1139 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1140 * in the hierarchy among all concurrent reclaimers operating on the
1141 * same node.
5660048c 1142 */
694fbc0f 1143struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1144 struct mem_cgroup *prev,
694fbc0f 1145 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1146{
3f649ab7 1147 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1148 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1149 struct mem_cgroup *memcg = NULL;
5ac8fb31 1150 struct mem_cgroup *pos = NULL;
711d3d2c 1151
694fbc0f
AM
1152 if (mem_cgroup_disabled())
1153 return NULL;
5660048c 1154
9f3a0d09
JW
1155 if (!root)
1156 root = root_mem_cgroup;
7d74b06f 1157
9f3a0d09 1158 if (prev && !reclaim)
5ac8fb31 1159 pos = prev;
14067bb3 1160
542f85f9 1161 rcu_read_lock();
5f578161 1162
5ac8fb31 1163 if (reclaim) {
ef8f2327 1164 struct mem_cgroup_per_node *mz;
5ac8fb31 1165
ef8f2327 1166 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1167 iter = &mz->iter;
5ac8fb31
JW
1168
1169 if (prev && reclaim->generation != iter->generation)
1170 goto out_unlock;
1171
6df38689 1172 while (1) {
4db0c3c2 1173 pos = READ_ONCE(iter->position);
6df38689
VD
1174 if (!pos || css_tryget(&pos->css))
1175 break;
5ac8fb31 1176 /*
6df38689
VD
1177 * css reference reached zero, so iter->position will
1178 * be cleared by ->css_released. However, we should not
1179 * rely on this happening soon, because ->css_released
1180 * is called from a work queue, and by busy-waiting we
1181 * might block it. So we clear iter->position right
1182 * away.
5ac8fb31 1183 */
6df38689
VD
1184 (void)cmpxchg(&iter->position, pos, NULL);
1185 }
5ac8fb31
JW
1186 }
1187
1188 if (pos)
1189 css = &pos->css;
1190
1191 for (;;) {
1192 css = css_next_descendant_pre(css, &root->css);
1193 if (!css) {
1194 /*
1195 * Reclaimers share the hierarchy walk, and a
1196 * new one might jump in right at the end of
1197 * the hierarchy - make sure they see at least
1198 * one group and restart from the beginning.
1199 */
1200 if (!prev)
1201 continue;
1202 break;
527a5ec9 1203 }
7d74b06f 1204
5ac8fb31
JW
1205 /*
1206 * Verify the css and acquire a reference. The root
1207 * is provided by the caller, so we know it's alive
1208 * and kicking, and don't take an extra reference.
1209 */
1210 memcg = mem_cgroup_from_css(css);
14067bb3 1211
5ac8fb31
JW
1212 if (css == &root->css)
1213 break;
14067bb3 1214
0b8f73e1
JW
1215 if (css_tryget(css))
1216 break;
9f3a0d09 1217
5ac8fb31 1218 memcg = NULL;
9f3a0d09 1219 }
5ac8fb31
JW
1220
1221 if (reclaim) {
5ac8fb31 1222 /*
6df38689
VD
1223 * The position could have already been updated by a competing
1224 * thread, so check that the value hasn't changed since we read
1225 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1226 */
6df38689
VD
1227 (void)cmpxchg(&iter->position, pos, memcg);
1228
5ac8fb31
JW
1229 if (pos)
1230 css_put(&pos->css);
1231
1232 if (!memcg)
1233 iter->generation++;
1234 else if (!prev)
1235 reclaim->generation = iter->generation;
9f3a0d09 1236 }
5ac8fb31 1237
542f85f9
MH
1238out_unlock:
1239 rcu_read_unlock();
c40046f3
MH
1240 if (prev && prev != root)
1241 css_put(&prev->css);
1242
9f3a0d09 1243 return memcg;
14067bb3 1244}
7d74b06f 1245
5660048c
JW
1246/**
1247 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1248 * @root: hierarchy root
1249 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1250 */
1251void mem_cgroup_iter_break(struct mem_cgroup *root,
1252 struct mem_cgroup *prev)
9f3a0d09
JW
1253{
1254 if (!root)
1255 root = root_mem_cgroup;
1256 if (prev && prev != root)
1257 css_put(&prev->css);
1258}
7d74b06f 1259
54a83d6b
MC
1260static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1261 struct mem_cgroup *dead_memcg)
6df38689 1262{
6df38689 1263 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1264 struct mem_cgroup_per_node *mz;
1265 int nid;
6df38689 1266
54a83d6b
MC
1267 for_each_node(nid) {
1268 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1269 iter = &mz->iter;
1270 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1271 }
1272}
1273
54a83d6b
MC
1274static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1275{
1276 struct mem_cgroup *memcg = dead_memcg;
1277 struct mem_cgroup *last;
1278
1279 do {
1280 __invalidate_reclaim_iterators(memcg, dead_memcg);
1281 last = memcg;
1282 } while ((memcg = parent_mem_cgroup(memcg)));
1283
1284 /*
1285 * When cgruop1 non-hierarchy mode is used,
1286 * parent_mem_cgroup() does not walk all the way up to the
1287 * cgroup root (root_mem_cgroup). So we have to handle
1288 * dead_memcg from cgroup root separately.
1289 */
1290 if (last != root_mem_cgroup)
1291 __invalidate_reclaim_iterators(root_mem_cgroup,
1292 dead_memcg);
1293}
1294
7c5f64f8
VD
1295/**
1296 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1297 * @memcg: hierarchy root
1298 * @fn: function to call for each task
1299 * @arg: argument passed to @fn
1300 *
1301 * This function iterates over tasks attached to @memcg or to any of its
1302 * descendants and calls @fn for each task. If @fn returns a non-zero
1303 * value, the function breaks the iteration loop and returns the value.
1304 * Otherwise, it will iterate over all tasks and return 0.
1305 *
1306 * This function must not be called for the root memory cgroup.
1307 */
1308int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1309 int (*fn)(struct task_struct *, void *), void *arg)
1310{
1311 struct mem_cgroup *iter;
1312 int ret = 0;
1313
1314 BUG_ON(memcg == root_mem_cgroup);
1315
1316 for_each_mem_cgroup_tree(iter, memcg) {
1317 struct css_task_iter it;
1318 struct task_struct *task;
1319
f168a9a5 1320 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1321 while (!ret && (task = css_task_iter_next(&it)))
1322 ret = fn(task, arg);
1323 css_task_iter_end(&it);
1324 if (ret) {
1325 mem_cgroup_iter_break(memcg, iter);
1326 break;
1327 }
1328 }
1329 return ret;
1330}
1331
6168d0da
AS
1332#ifdef CONFIG_DEBUG_VM
1333void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1334{
1335 struct mem_cgroup *memcg;
1336
1337 if (mem_cgroup_disabled())
1338 return;
1339
1340 memcg = page_memcg(page);
1341
1342 if (!memcg)
1343 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1344 else
1345 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1346}
1347#endif
1348
6168d0da
AS
1349/**
1350 * lock_page_lruvec - lock and return lruvec for a given page.
1351 * @page: the page
1352 *
d7e3aba5
AS
1353 * These functions are safe to use under any of the following conditions:
1354 * - page locked
1355 * - PageLRU cleared
1356 * - lock_page_memcg()
1357 * - page->_refcount is zero
6168d0da
AS
1358 */
1359struct lruvec *lock_page_lruvec(struct page *page)
1360{
1361 struct lruvec *lruvec;
1362 struct pglist_data *pgdat = page_pgdat(page);
1363
6168d0da
AS
1364 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1365 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1366
1367 lruvec_memcg_debug(lruvec, page);
1368
1369 return lruvec;
1370}
1371
1372struct lruvec *lock_page_lruvec_irq(struct page *page)
1373{
1374 struct lruvec *lruvec;
1375 struct pglist_data *pgdat = page_pgdat(page);
1376
6168d0da
AS
1377 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1378 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1379
1380 lruvec_memcg_debug(lruvec, page);
1381
1382 return lruvec;
1383}
1384
1385struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1386{
1387 struct lruvec *lruvec;
1388 struct pglist_data *pgdat = page_pgdat(page);
1389
6168d0da
AS
1390 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1391 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1392
1393 lruvec_memcg_debug(lruvec, page);
1394
1395 return lruvec;
1396}
1397
925b7673 1398/**
fa9add64
HD
1399 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1400 * @lruvec: mem_cgroup per zone lru vector
1401 * @lru: index of lru list the page is sitting on
b4536f0c 1402 * @zid: zone id of the accounted pages
fa9add64 1403 * @nr_pages: positive when adding or negative when removing
925b7673 1404 *
ca707239
HD
1405 * This function must be called under lru_lock, just before a page is added
1406 * to or just after a page is removed from an lru list (that ordering being
1407 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1408 */
fa9add64 1409void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1410 int zid, int nr_pages)
3f58a829 1411{
ef8f2327 1412 struct mem_cgroup_per_node *mz;
fa9add64 1413 unsigned long *lru_size;
ca707239 1414 long size;
3f58a829
MK
1415
1416 if (mem_cgroup_disabled())
1417 return;
1418
ef8f2327 1419 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1420 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1421
1422 if (nr_pages < 0)
1423 *lru_size += nr_pages;
1424
1425 size = *lru_size;
b4536f0c
MH
1426 if (WARN_ONCE(size < 0,
1427 "%s(%p, %d, %d): lru_size %ld\n",
1428 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1429 VM_BUG_ON(1);
1430 *lru_size = 0;
1431 }
1432
1433 if (nr_pages > 0)
1434 *lru_size += nr_pages;
08e552c6 1435}
544122e5 1436
19942822 1437/**
9d11ea9f 1438 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1439 * @memcg: the memory cgroup
19942822 1440 *
9d11ea9f 1441 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1442 * pages.
19942822 1443 */
c0ff4b85 1444static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1445{
3e32cb2e
JW
1446 unsigned long margin = 0;
1447 unsigned long count;
1448 unsigned long limit;
9d11ea9f 1449
3e32cb2e 1450 count = page_counter_read(&memcg->memory);
bbec2e15 1451 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1452 if (count < limit)
1453 margin = limit - count;
1454
7941d214 1455 if (do_memsw_account()) {
3e32cb2e 1456 count = page_counter_read(&memcg->memsw);
bbec2e15 1457 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1458 if (count < limit)
3e32cb2e 1459 margin = min(margin, limit - count);
cbedbac3
LR
1460 else
1461 margin = 0;
3e32cb2e
JW
1462 }
1463
1464 return margin;
19942822
JW
1465}
1466
32047e2a 1467/*
bdcbb659 1468 * A routine for checking "mem" is under move_account() or not.
32047e2a 1469 *
bdcbb659
QH
1470 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1471 * moving cgroups. This is for waiting at high-memory pressure
1472 * caused by "move".
32047e2a 1473 */
c0ff4b85 1474static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1475{
2bd9bb20
KH
1476 struct mem_cgroup *from;
1477 struct mem_cgroup *to;
4b534334 1478 bool ret = false;
2bd9bb20
KH
1479 /*
1480 * Unlike task_move routines, we access mc.to, mc.from not under
1481 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1482 */
1483 spin_lock(&mc.lock);
1484 from = mc.from;
1485 to = mc.to;
1486 if (!from)
1487 goto unlock;
3e92041d 1488
2314b42d
JW
1489 ret = mem_cgroup_is_descendant(from, memcg) ||
1490 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1491unlock:
1492 spin_unlock(&mc.lock);
4b534334
KH
1493 return ret;
1494}
1495
c0ff4b85 1496static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1497{
1498 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1499 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1500 DEFINE_WAIT(wait);
1501 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1502 /* moving charge context might have finished. */
1503 if (mc.moving_task)
1504 schedule();
1505 finish_wait(&mc.waitq, &wait);
1506 return true;
1507 }
1508 }
1509 return false;
1510}
1511
5f9a4f4a
MS
1512struct memory_stat {
1513 const char *name;
5f9a4f4a
MS
1514 unsigned int idx;
1515};
1516
57b2847d 1517static const struct memory_stat memory_stats[] = {
fff66b79
MS
1518 { "anon", NR_ANON_MAPPED },
1519 { "file", NR_FILE_PAGES },
1520 { "kernel_stack", NR_KERNEL_STACK_KB },
1521 { "pagetables", NR_PAGETABLE },
1522 { "percpu", MEMCG_PERCPU_B },
1523 { "sock", MEMCG_SOCK },
1524 { "shmem", NR_SHMEM },
1525 { "file_mapped", NR_FILE_MAPPED },
1526 { "file_dirty", NR_FILE_DIRTY },
1527 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1528#ifdef CONFIG_SWAP
1529 { "swapcached", NR_SWAPCACHE },
1530#endif
5f9a4f4a 1531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1532 { "anon_thp", NR_ANON_THPS },
1533 { "file_thp", NR_FILE_THPS },
1534 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1535#endif
fff66b79
MS
1536 { "inactive_anon", NR_INACTIVE_ANON },
1537 { "active_anon", NR_ACTIVE_ANON },
1538 { "inactive_file", NR_INACTIVE_FILE },
1539 { "active_file", NR_ACTIVE_FILE },
1540 { "unevictable", NR_UNEVICTABLE },
1541 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1542 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1543
1544 /* The memory events */
fff66b79
MS
1545 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1546 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1547 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1548 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1549 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1550 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1551 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1552};
1553
fff66b79
MS
1554/* Translate stat items to the correct unit for memory.stat output */
1555static int memcg_page_state_unit(int item)
1556{
1557 switch (item) {
1558 case MEMCG_PERCPU_B:
1559 case NR_SLAB_RECLAIMABLE_B:
1560 case NR_SLAB_UNRECLAIMABLE_B:
1561 case WORKINGSET_REFAULT_ANON:
1562 case WORKINGSET_REFAULT_FILE:
1563 case WORKINGSET_ACTIVATE_ANON:
1564 case WORKINGSET_ACTIVATE_FILE:
1565 case WORKINGSET_RESTORE_ANON:
1566 case WORKINGSET_RESTORE_FILE:
1567 case WORKINGSET_NODERECLAIM:
1568 return 1;
1569 case NR_KERNEL_STACK_KB:
1570 return SZ_1K;
1571 default:
1572 return PAGE_SIZE;
1573 }
1574}
1575
1576static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1577 int item)
1578{
1579 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1580}
1581
c8713d0b
JW
1582static char *memory_stat_format(struct mem_cgroup *memcg)
1583{
1584 struct seq_buf s;
1585 int i;
71cd3113 1586
c8713d0b
JW
1587 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1588 if (!s.buffer)
1589 return NULL;
1590
1591 /*
1592 * Provide statistics on the state of the memory subsystem as
1593 * well as cumulative event counters that show past behavior.
1594 *
1595 * This list is ordered following a combination of these gradients:
1596 * 1) generic big picture -> specifics and details
1597 * 2) reflecting userspace activity -> reflecting kernel heuristics
1598 *
1599 * Current memory state:
1600 */
1601
5f9a4f4a
MS
1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 u64 size;
c8713d0b 1604
fff66b79 1605 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1606 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1607
5f9a4f4a 1608 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1609 size += memcg_page_state_output(memcg,
1610 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1611 seq_buf_printf(&s, "slab %llu\n", size);
1612 }
1613 }
c8713d0b
JW
1614
1615 /* Accumulated memory events */
1616
ebc5d83d
KK
1617 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1618 memcg_events(memcg, PGFAULT));
1619 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1620 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1621 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1622 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1623 seq_buf_printf(&s, "pgscan %lu\n",
1624 memcg_events(memcg, PGSCAN_KSWAPD) +
1625 memcg_events(memcg, PGSCAN_DIRECT));
1626 seq_buf_printf(&s, "pgsteal %lu\n",
1627 memcg_events(memcg, PGSTEAL_KSWAPD) +
1628 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1629 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1630 memcg_events(memcg, PGACTIVATE));
1631 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1632 memcg_events(memcg, PGDEACTIVATE));
1633 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1634 memcg_events(memcg, PGLAZYFREE));
1635 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1636 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1637
1638#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1639 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1640 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1641 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1642 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1643#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1644
1645 /* The above should easily fit into one page */
1646 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1647
1648 return s.buffer;
1649}
71cd3113 1650
58cf188e 1651#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1652/**
f0c867d9 1653 * mem_cgroup_print_oom_context: Print OOM information relevant to
1654 * memory controller.
e222432b
BS
1655 * @memcg: The memory cgroup that went over limit
1656 * @p: Task that is going to be killed
1657 *
1658 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659 * enabled
1660 */
f0c867d9 1661void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1662{
e222432b
BS
1663 rcu_read_lock();
1664
f0c867d9 1665 if (memcg) {
1666 pr_cont(",oom_memcg=");
1667 pr_cont_cgroup_path(memcg->css.cgroup);
1668 } else
1669 pr_cont(",global_oom");
2415b9f5 1670 if (p) {
f0c867d9 1671 pr_cont(",task_memcg=");
2415b9f5 1672 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1673 }
e222432b 1674 rcu_read_unlock();
f0c867d9 1675}
1676
1677/**
1678 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1679 * memory controller.
1680 * @memcg: The memory cgroup that went over limit
1681 */
1682void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1683{
c8713d0b 1684 char *buf;
e222432b 1685
3e32cb2e
JW
1686 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1687 K((u64)page_counter_read(&memcg->memory)),
15b42562 1688 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1690 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1691 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1692 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1693 else {
1694 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->memsw)),
1696 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1697 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1698 K((u64)page_counter_read(&memcg->kmem)),
1699 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1700 }
c8713d0b
JW
1701
1702 pr_info("Memory cgroup stats for ");
1703 pr_cont_cgroup_path(memcg->css.cgroup);
1704 pr_cont(":");
1705 buf = memory_stat_format(memcg);
1706 if (!buf)
1707 return;
1708 pr_info("%s", buf);
1709 kfree(buf);
e222432b
BS
1710}
1711
a63d83f4
DR
1712/*
1713 * Return the memory (and swap, if configured) limit for a memcg.
1714 */
bbec2e15 1715unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1716{
8d387a5f
WL
1717 unsigned long max = READ_ONCE(memcg->memory.max);
1718
1719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1720 if (mem_cgroup_swappiness(memcg))
1721 max += min(READ_ONCE(memcg->swap.max),
1722 (unsigned long)total_swap_pages);
1723 } else { /* v1 */
1724 if (mem_cgroup_swappiness(memcg)) {
1725 /* Calculate swap excess capacity from memsw limit */
1726 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1727
1728 max += min(swap, (unsigned long)total_swap_pages);
1729 }
9a5a8f19 1730 }
bbec2e15 1731 return max;
a63d83f4
DR
1732}
1733
9783aa99
CD
1734unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1735{
1736 return page_counter_read(&memcg->memory);
1737}
1738
b6e6edcf 1739static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1740 int order)
9cbb78bb 1741{
6e0fc46d
DR
1742 struct oom_control oc = {
1743 .zonelist = NULL,
1744 .nodemask = NULL,
2a966b77 1745 .memcg = memcg,
6e0fc46d
DR
1746 .gfp_mask = gfp_mask,
1747 .order = order,
6e0fc46d 1748 };
1378b37d 1749 bool ret = true;
9cbb78bb 1750
7775face
TH
1751 if (mutex_lock_killable(&oom_lock))
1752 return true;
1378b37d
YS
1753
1754 if (mem_cgroup_margin(memcg) >= (1 << order))
1755 goto unlock;
1756
7775face
TH
1757 /*
1758 * A few threads which were not waiting at mutex_lock_killable() can
1759 * fail to bail out. Therefore, check again after holding oom_lock.
1760 */
1761 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1762
1763unlock:
dc56401f 1764 mutex_unlock(&oom_lock);
7c5f64f8 1765 return ret;
9cbb78bb
DR
1766}
1767
0608f43d 1768static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1769 pg_data_t *pgdat,
0608f43d
AM
1770 gfp_t gfp_mask,
1771 unsigned long *total_scanned)
1772{
1773 struct mem_cgroup *victim = NULL;
1774 int total = 0;
1775 int loop = 0;
1776 unsigned long excess;
1777 unsigned long nr_scanned;
1778 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1779 .pgdat = pgdat,
0608f43d
AM
1780 };
1781
3e32cb2e 1782 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1783
1784 while (1) {
1785 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1786 if (!victim) {
1787 loop++;
1788 if (loop >= 2) {
1789 /*
1790 * If we have not been able to reclaim
1791 * anything, it might because there are
1792 * no reclaimable pages under this hierarchy
1793 */
1794 if (!total)
1795 break;
1796 /*
1797 * We want to do more targeted reclaim.
1798 * excess >> 2 is not to excessive so as to
1799 * reclaim too much, nor too less that we keep
1800 * coming back to reclaim from this cgroup
1801 */
1802 if (total >= (excess >> 2) ||
1803 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1804 break;
1805 }
1806 continue;
1807 }
a9dd0a83 1808 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1809 pgdat, &nr_scanned);
0608f43d 1810 *total_scanned += nr_scanned;
3e32cb2e 1811 if (!soft_limit_excess(root_memcg))
0608f43d 1812 break;
6d61ef40 1813 }
0608f43d
AM
1814 mem_cgroup_iter_break(root_memcg, victim);
1815 return total;
6d61ef40
BS
1816}
1817
0056f4e6
JW
1818#ifdef CONFIG_LOCKDEP
1819static struct lockdep_map memcg_oom_lock_dep_map = {
1820 .name = "memcg_oom_lock",
1821};
1822#endif
1823
fb2a6fc5
JW
1824static DEFINE_SPINLOCK(memcg_oom_lock);
1825
867578cb
KH
1826/*
1827 * Check OOM-Killer is already running under our hierarchy.
1828 * If someone is running, return false.
1829 */
fb2a6fc5 1830static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1831{
79dfdacc 1832 struct mem_cgroup *iter, *failed = NULL;
a636b327 1833
fb2a6fc5
JW
1834 spin_lock(&memcg_oom_lock);
1835
9f3a0d09 1836 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1837 if (iter->oom_lock) {
79dfdacc
MH
1838 /*
1839 * this subtree of our hierarchy is already locked
1840 * so we cannot give a lock.
1841 */
79dfdacc 1842 failed = iter;
9f3a0d09
JW
1843 mem_cgroup_iter_break(memcg, iter);
1844 break;
23751be0
JW
1845 } else
1846 iter->oom_lock = true;
7d74b06f 1847 }
867578cb 1848
fb2a6fc5
JW
1849 if (failed) {
1850 /*
1851 * OK, we failed to lock the whole subtree so we have
1852 * to clean up what we set up to the failing subtree
1853 */
1854 for_each_mem_cgroup_tree(iter, memcg) {
1855 if (iter == failed) {
1856 mem_cgroup_iter_break(memcg, iter);
1857 break;
1858 }
1859 iter->oom_lock = false;
79dfdacc 1860 }
0056f4e6
JW
1861 } else
1862 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1863
1864 spin_unlock(&memcg_oom_lock);
1865
1866 return !failed;
a636b327 1867}
0b7f569e 1868
fb2a6fc5 1869static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1870{
7d74b06f
KH
1871 struct mem_cgroup *iter;
1872
fb2a6fc5 1873 spin_lock(&memcg_oom_lock);
5facae4f 1874 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1875 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1876 iter->oom_lock = false;
fb2a6fc5 1877 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1878}
1879
c0ff4b85 1880static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1881{
1882 struct mem_cgroup *iter;
1883
c2b42d3c 1884 spin_lock(&memcg_oom_lock);
c0ff4b85 1885 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1886 iter->under_oom++;
1887 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1888}
1889
c0ff4b85 1890static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1891{
1892 struct mem_cgroup *iter;
1893
867578cb 1894 /*
7a52d4d8
ML
1895 * Be careful about under_oom underflows becase a child memcg
1896 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1897 */
c2b42d3c 1898 spin_lock(&memcg_oom_lock);
c0ff4b85 1899 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1900 if (iter->under_oom > 0)
1901 iter->under_oom--;
1902 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1903}
1904
867578cb
KH
1905static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1906
dc98df5a 1907struct oom_wait_info {
d79154bb 1908 struct mem_cgroup *memcg;
ac6424b9 1909 wait_queue_entry_t wait;
dc98df5a
KH
1910};
1911
ac6424b9 1912static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1913 unsigned mode, int sync, void *arg)
1914{
d79154bb
HD
1915 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1916 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1917 struct oom_wait_info *oom_wait_info;
1918
1919 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1920 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1921
2314b42d
JW
1922 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1923 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1924 return 0;
dc98df5a
KH
1925 return autoremove_wake_function(wait, mode, sync, arg);
1926}
1927
c0ff4b85 1928static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1929{
c2b42d3c
TH
1930 /*
1931 * For the following lockless ->under_oom test, the only required
1932 * guarantee is that it must see the state asserted by an OOM when
1933 * this function is called as a result of userland actions
1934 * triggered by the notification of the OOM. This is trivially
1935 * achieved by invoking mem_cgroup_mark_under_oom() before
1936 * triggering notification.
1937 */
1938 if (memcg && memcg->under_oom)
f4b90b70 1939 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1940}
1941
29ef680a
MH
1942enum oom_status {
1943 OOM_SUCCESS,
1944 OOM_FAILED,
1945 OOM_ASYNC,
1946 OOM_SKIPPED
1947};
1948
1949static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1950{
7056d3a3
MH
1951 enum oom_status ret;
1952 bool locked;
1953
29ef680a
MH
1954 if (order > PAGE_ALLOC_COSTLY_ORDER)
1955 return OOM_SKIPPED;
1956
7a1adfdd
RG
1957 memcg_memory_event(memcg, MEMCG_OOM);
1958
867578cb 1959 /*
49426420
JW
1960 * We are in the middle of the charge context here, so we
1961 * don't want to block when potentially sitting on a callstack
1962 * that holds all kinds of filesystem and mm locks.
1963 *
29ef680a
MH
1964 * cgroup1 allows disabling the OOM killer and waiting for outside
1965 * handling until the charge can succeed; remember the context and put
1966 * the task to sleep at the end of the page fault when all locks are
1967 * released.
49426420 1968 *
29ef680a
MH
1969 * On the other hand, in-kernel OOM killer allows for an async victim
1970 * memory reclaim (oom_reaper) and that means that we are not solely
1971 * relying on the oom victim to make a forward progress and we can
1972 * invoke the oom killer here.
1973 *
1974 * Please note that mem_cgroup_out_of_memory might fail to find a
1975 * victim and then we have to bail out from the charge path.
867578cb 1976 */
29ef680a
MH
1977 if (memcg->oom_kill_disable) {
1978 if (!current->in_user_fault)
1979 return OOM_SKIPPED;
1980 css_get(&memcg->css);
1981 current->memcg_in_oom = memcg;
1982 current->memcg_oom_gfp_mask = mask;
1983 current->memcg_oom_order = order;
1984
1985 return OOM_ASYNC;
1986 }
1987
7056d3a3
MH
1988 mem_cgroup_mark_under_oom(memcg);
1989
1990 locked = mem_cgroup_oom_trylock(memcg);
1991
1992 if (locked)
1993 mem_cgroup_oom_notify(memcg);
1994
1995 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1996 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1997 ret = OOM_SUCCESS;
1998 else
1999 ret = OOM_FAILED;
2000
2001 if (locked)
2002 mem_cgroup_oom_unlock(memcg);
29ef680a 2003
7056d3a3 2004 return ret;
3812c8c8
JW
2005}
2006
2007/**
2008 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2009 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2010 *
49426420
JW
2011 * This has to be called at the end of a page fault if the memcg OOM
2012 * handler was enabled.
3812c8c8 2013 *
49426420 2014 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2015 * sleep on a waitqueue until the userspace task resolves the
2016 * situation. Sleeping directly in the charge context with all kinds
2017 * of locks held is not a good idea, instead we remember an OOM state
2018 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2019 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2020 *
2021 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2022 * completed, %false otherwise.
3812c8c8 2023 */
49426420 2024bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2025{
626ebc41 2026 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2027 struct oom_wait_info owait;
49426420 2028 bool locked;
3812c8c8
JW
2029
2030 /* OOM is global, do not handle */
3812c8c8 2031 if (!memcg)
49426420 2032 return false;
3812c8c8 2033
7c5f64f8 2034 if (!handle)
49426420 2035 goto cleanup;
3812c8c8
JW
2036
2037 owait.memcg = memcg;
2038 owait.wait.flags = 0;
2039 owait.wait.func = memcg_oom_wake_function;
2040 owait.wait.private = current;
2055da97 2041 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2042
3812c8c8 2043 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2044 mem_cgroup_mark_under_oom(memcg);
2045
2046 locked = mem_cgroup_oom_trylock(memcg);
2047
2048 if (locked)
2049 mem_cgroup_oom_notify(memcg);
2050
2051 if (locked && !memcg->oom_kill_disable) {
2052 mem_cgroup_unmark_under_oom(memcg);
2053 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2054 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2055 current->memcg_oom_order);
49426420 2056 } else {
3812c8c8 2057 schedule();
49426420
JW
2058 mem_cgroup_unmark_under_oom(memcg);
2059 finish_wait(&memcg_oom_waitq, &owait.wait);
2060 }
2061
2062 if (locked) {
fb2a6fc5
JW
2063 mem_cgroup_oom_unlock(memcg);
2064 /*
2065 * There is no guarantee that an OOM-lock contender
2066 * sees the wakeups triggered by the OOM kill
2067 * uncharges. Wake any sleepers explicitely.
2068 */
2069 memcg_oom_recover(memcg);
2070 }
49426420 2071cleanup:
626ebc41 2072 current->memcg_in_oom = NULL;
3812c8c8 2073 css_put(&memcg->css);
867578cb 2074 return true;
0b7f569e
KH
2075}
2076
3d8b38eb
RG
2077/**
2078 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2079 * @victim: task to be killed by the OOM killer
2080 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2081 *
2082 * Returns a pointer to a memory cgroup, which has to be cleaned up
2083 * by killing all belonging OOM-killable tasks.
2084 *
2085 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2086 */
2087struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2088 struct mem_cgroup *oom_domain)
2089{
2090 struct mem_cgroup *oom_group = NULL;
2091 struct mem_cgroup *memcg;
2092
2093 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2094 return NULL;
2095
2096 if (!oom_domain)
2097 oom_domain = root_mem_cgroup;
2098
2099 rcu_read_lock();
2100
2101 memcg = mem_cgroup_from_task(victim);
2102 if (memcg == root_mem_cgroup)
2103 goto out;
2104
48fe267c
RG
2105 /*
2106 * If the victim task has been asynchronously moved to a different
2107 * memory cgroup, we might end up killing tasks outside oom_domain.
2108 * In this case it's better to ignore memory.group.oom.
2109 */
2110 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2111 goto out;
2112
3d8b38eb
RG
2113 /*
2114 * Traverse the memory cgroup hierarchy from the victim task's
2115 * cgroup up to the OOMing cgroup (or root) to find the
2116 * highest-level memory cgroup with oom.group set.
2117 */
2118 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2119 if (memcg->oom_group)
2120 oom_group = memcg;
2121
2122 if (memcg == oom_domain)
2123 break;
2124 }
2125
2126 if (oom_group)
2127 css_get(&oom_group->css);
2128out:
2129 rcu_read_unlock();
2130
2131 return oom_group;
2132}
2133
2134void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2135{
2136 pr_info("Tasks in ");
2137 pr_cont_cgroup_path(memcg->css.cgroup);
2138 pr_cont(" are going to be killed due to memory.oom.group set\n");
2139}
2140
d7365e78 2141/**
bcfe06bf 2142 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2143 * @page: the page
32047e2a 2144 *
81f8c3a4 2145 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2146 * another cgroup.
2147 *
2148 * It ensures lifetime of the returned memcg. Caller is responsible
2149 * for the lifetime of the page; __unlock_page_memcg() is available
2150 * when @page might get freed inside the locked section.
d69b042f 2151 */
739f79fc 2152struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2153{
9da7b521 2154 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2155 struct mem_cgroup *memcg;
6de22619 2156 unsigned long flags;
89c06bd5 2157
6de22619
JW
2158 /*
2159 * The RCU lock is held throughout the transaction. The fast
2160 * path can get away without acquiring the memcg->move_lock
2161 * because page moving starts with an RCU grace period.
739f79fc
JW
2162 *
2163 * The RCU lock also protects the memcg from being freed when
2164 * the page state that is going to change is the only thing
2165 * preventing the page itself from being freed. E.g. writeback
2166 * doesn't hold a page reference and relies on PG_writeback to
2167 * keep off truncation, migration and so forth.
2168 */
d7365e78
JW
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
739f79fc 2172 return NULL;
89c06bd5 2173again:
bcfe06bf 2174 memcg = page_memcg(head);
29833315 2175 if (unlikely(!memcg))
739f79fc 2176 return NULL;
d7365e78 2177
20ad50d6
AS
2178#ifdef CONFIG_PROVE_LOCKING
2179 local_irq_save(flags);
2180 might_lock(&memcg->move_lock);
2181 local_irq_restore(flags);
2182#endif
2183
bdcbb659 2184 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2185 return memcg;
89c06bd5 2186
6de22619 2187 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2188 if (memcg != page_memcg(head)) {
6de22619 2189 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2190 goto again;
2191 }
6de22619
JW
2192
2193 /*
2194 * When charge migration first begins, we can have locked and
2195 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2196 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2197 */
2198 memcg->move_lock_task = current;
2199 memcg->move_lock_flags = flags;
d7365e78 2200
739f79fc 2201 return memcg;
89c06bd5 2202}
81f8c3a4 2203EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2204
d7365e78 2205/**
739f79fc
JW
2206 * __unlock_page_memcg - unlock and unpin a memcg
2207 * @memcg: the memcg
2208 *
2209 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2210 */
739f79fc 2211void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2212{
6de22619
JW
2213 if (memcg && memcg->move_lock_task == current) {
2214 unsigned long flags = memcg->move_lock_flags;
2215
2216 memcg->move_lock_task = NULL;
2217 memcg->move_lock_flags = 0;
2218
2219 spin_unlock_irqrestore(&memcg->move_lock, flags);
2220 }
89c06bd5 2221
d7365e78 2222 rcu_read_unlock();
89c06bd5 2223}
739f79fc
JW
2224
2225/**
bcfe06bf 2226 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2227 * @page: the page
2228 */
2229void unlock_page_memcg(struct page *page)
2230{
9da7b521
JW
2231 struct page *head = compound_head(page);
2232
bcfe06bf 2233 __unlock_page_memcg(page_memcg(head));
739f79fc 2234}
81f8c3a4 2235EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2236
cdec2e42
KH
2237struct memcg_stock_pcp {
2238 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2239 unsigned int nr_pages;
bf4f0599
RG
2240
2241#ifdef CONFIG_MEMCG_KMEM
2242 struct obj_cgroup *cached_objcg;
2243 unsigned int nr_bytes;
2244#endif
2245
cdec2e42 2246 struct work_struct work;
26fe6168 2247 unsigned long flags;
a0db00fc 2248#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2249};
2250static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2251static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2252
bf4f0599
RG
2253#ifdef CONFIG_MEMCG_KMEM
2254static void drain_obj_stock(struct memcg_stock_pcp *stock);
2255static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2256 struct mem_cgroup *root_memcg);
2257
2258#else
2259static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2260{
2261}
2262static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2263 struct mem_cgroup *root_memcg)
2264{
2265 return false;
2266}
2267#endif
2268
a0956d54
SS
2269/**
2270 * consume_stock: Try to consume stocked charge on this cpu.
2271 * @memcg: memcg to consume from.
2272 * @nr_pages: how many pages to charge.
2273 *
2274 * The charges will only happen if @memcg matches the current cpu's memcg
2275 * stock, and at least @nr_pages are available in that stock. Failure to
2276 * service an allocation will refill the stock.
2277 *
2278 * returns true if successful, false otherwise.
cdec2e42 2279 */
a0956d54 2280static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2281{
2282 struct memcg_stock_pcp *stock;
db2ba40c 2283 unsigned long flags;
3e32cb2e 2284 bool ret = false;
cdec2e42 2285
a983b5eb 2286 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2287 return ret;
a0956d54 2288
db2ba40c
JW
2289 local_irq_save(flags);
2290
2291 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2292 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2293 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2294 ret = true;
2295 }
db2ba40c
JW
2296
2297 local_irq_restore(flags);
2298
cdec2e42
KH
2299 return ret;
2300}
2301
2302/*
3e32cb2e 2303 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2304 */
2305static void drain_stock(struct memcg_stock_pcp *stock)
2306{
2307 struct mem_cgroup *old = stock->cached;
2308
1a3e1f40
JW
2309 if (!old)
2310 return;
2311
11c9ea4e 2312 if (stock->nr_pages) {
3e32cb2e 2313 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2314 if (do_memsw_account())
3e32cb2e 2315 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2316 stock->nr_pages = 0;
cdec2e42 2317 }
1a3e1f40
JW
2318
2319 css_put(&old->css);
cdec2e42 2320 stock->cached = NULL;
cdec2e42
KH
2321}
2322
cdec2e42
KH
2323static void drain_local_stock(struct work_struct *dummy)
2324{
db2ba40c
JW
2325 struct memcg_stock_pcp *stock;
2326 unsigned long flags;
2327
72f0184c
MH
2328 /*
2329 * The only protection from memory hotplug vs. drain_stock races is
2330 * that we always operate on local CPU stock here with IRQ disabled
2331 */
db2ba40c
JW
2332 local_irq_save(flags);
2333
2334 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2335 drain_obj_stock(stock);
cdec2e42 2336 drain_stock(stock);
26fe6168 2337 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2338
2339 local_irq_restore(flags);
cdec2e42
KH
2340}
2341
2342/*
3e32cb2e 2343 * Cache charges(val) to local per_cpu area.
320cc51d 2344 * This will be consumed by consume_stock() function, later.
cdec2e42 2345 */
c0ff4b85 2346static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2347{
db2ba40c
JW
2348 struct memcg_stock_pcp *stock;
2349 unsigned long flags;
2350
2351 local_irq_save(flags);
cdec2e42 2352
db2ba40c 2353 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2354 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2355 drain_stock(stock);
1a3e1f40 2356 css_get(&memcg->css);
c0ff4b85 2357 stock->cached = memcg;
cdec2e42 2358 }
11c9ea4e 2359 stock->nr_pages += nr_pages;
db2ba40c 2360
a983b5eb 2361 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2362 drain_stock(stock);
2363
db2ba40c 2364 local_irq_restore(flags);
cdec2e42
KH
2365}
2366
2367/*
c0ff4b85 2368 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2369 * of the hierarchy under it.
cdec2e42 2370 */
6d3d6aa2 2371static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2372{
26fe6168 2373 int cpu, curcpu;
d38144b7 2374
6d3d6aa2
JW
2375 /* If someone's already draining, avoid adding running more workers. */
2376 if (!mutex_trylock(&percpu_charge_mutex))
2377 return;
72f0184c
MH
2378 /*
2379 * Notify other cpus that system-wide "drain" is running
2380 * We do not care about races with the cpu hotplug because cpu down
2381 * as well as workers from this path always operate on the local
2382 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2383 */
5af12d0e 2384 curcpu = get_cpu();
cdec2e42
KH
2385 for_each_online_cpu(cpu) {
2386 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2387 struct mem_cgroup *memcg;
e1a366be 2388 bool flush = false;
26fe6168 2389
e1a366be 2390 rcu_read_lock();
c0ff4b85 2391 memcg = stock->cached;
e1a366be
RG
2392 if (memcg && stock->nr_pages &&
2393 mem_cgroup_is_descendant(memcg, root_memcg))
2394 flush = true;
bf4f0599
RG
2395 if (obj_stock_flush_required(stock, root_memcg))
2396 flush = true;
e1a366be
RG
2397 rcu_read_unlock();
2398
2399 if (flush &&
2400 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2401 if (cpu == curcpu)
2402 drain_local_stock(&stock->work);
2403 else
2404 schedule_work_on(cpu, &stock->work);
2405 }
cdec2e42 2406 }
5af12d0e 2407 put_cpu();
9f50fad6 2408 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2409}
2410
308167fc 2411static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2412{
cdec2e42 2413 struct memcg_stock_pcp *stock;
42a30035 2414 struct mem_cgroup *memcg, *mi;
cdec2e42 2415
cdec2e42
KH
2416 stock = &per_cpu(memcg_stock, cpu);
2417 drain_stock(stock);
a983b5eb
JW
2418
2419 for_each_mem_cgroup(memcg) {
2420 int i;
2421
2422 for (i = 0; i < MEMCG_NR_STAT; i++) {
2423 int nid;
2424 long x;
2425
871789d4 2426 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2427 if (x)
42a30035
JW
2428 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2429 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2430
2431 if (i >= NR_VM_NODE_STAT_ITEMS)
2432 continue;
2433
2434 for_each_node(nid) {
2435 struct mem_cgroup_per_node *pn;
2436
2437 pn = mem_cgroup_nodeinfo(memcg, nid);
2438 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2439 if (x)
42a30035
JW
2440 do {
2441 atomic_long_add(x, &pn->lruvec_stat[i]);
2442 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2443 }
2444 }
2445
e27be240 2446 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2447 long x;
2448
871789d4 2449 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2450 if (x)
42a30035
JW
2451 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2452 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2453 }
2454 }
2455
308167fc 2456 return 0;
cdec2e42
KH
2457}
2458
b3ff9291
CD
2459static unsigned long reclaim_high(struct mem_cgroup *memcg,
2460 unsigned int nr_pages,
2461 gfp_t gfp_mask)
f7e1cb6e 2462{
b3ff9291
CD
2463 unsigned long nr_reclaimed = 0;
2464
f7e1cb6e 2465 do {
e22c6ed9
JW
2466 unsigned long pflags;
2467
d1663a90
JK
2468 if (page_counter_read(&memcg->memory) <=
2469 READ_ONCE(memcg->memory.high))
f7e1cb6e 2470 continue;
e22c6ed9 2471
e27be240 2472 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2473
2474 psi_memstall_enter(&pflags);
b3ff9291
CD
2475 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2476 gfp_mask, true);
e22c6ed9 2477 psi_memstall_leave(&pflags);
4bf17307
CD
2478 } while ((memcg = parent_mem_cgroup(memcg)) &&
2479 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2480
2481 return nr_reclaimed;
f7e1cb6e
JW
2482}
2483
2484static void high_work_func(struct work_struct *work)
2485{
2486 struct mem_cgroup *memcg;
2487
2488 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2489 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2490}
2491
0e4b01df
CD
2492/*
2493 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2494 * enough to still cause a significant slowdown in most cases, while still
2495 * allowing diagnostics and tracing to proceed without becoming stuck.
2496 */
2497#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2498
2499/*
2500 * When calculating the delay, we use these either side of the exponentiation to
2501 * maintain precision and scale to a reasonable number of jiffies (see the table
2502 * below.
2503 *
2504 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2505 * overage ratio to a delay.
ac5ddd0f 2506 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2507 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2508 * to produce a reasonable delay curve.
2509 *
2510 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2511 * reasonable delay curve compared to precision-adjusted overage, not
2512 * penalising heavily at first, but still making sure that growth beyond the
2513 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2514 * example, with a high of 100 megabytes:
2515 *
2516 * +-------+------------------------+
2517 * | usage | time to allocate in ms |
2518 * +-------+------------------------+
2519 * | 100M | 0 |
2520 * | 101M | 6 |
2521 * | 102M | 25 |
2522 * | 103M | 57 |
2523 * | 104M | 102 |
2524 * | 105M | 159 |
2525 * | 106M | 230 |
2526 * | 107M | 313 |
2527 * | 108M | 409 |
2528 * | 109M | 518 |
2529 * | 110M | 639 |
2530 * | 111M | 774 |
2531 * | 112M | 921 |
2532 * | 113M | 1081 |
2533 * | 114M | 1254 |
2534 * | 115M | 1439 |
2535 * | 116M | 1638 |
2536 * | 117M | 1849 |
2537 * | 118M | 2000 |
2538 * | 119M | 2000 |
2539 * | 120M | 2000 |
2540 * +-------+------------------------+
2541 */
2542 #define MEMCG_DELAY_PRECISION_SHIFT 20
2543 #define MEMCG_DELAY_SCALING_SHIFT 14
2544
8a5dbc65 2545static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2546{
8a5dbc65 2547 u64 overage;
b23afb93 2548
8a5dbc65
JK
2549 if (usage <= high)
2550 return 0;
e26733e0 2551
8a5dbc65
JK
2552 /*
2553 * Prevent division by 0 in overage calculation by acting as if
2554 * it was a threshold of 1 page
2555 */
2556 high = max(high, 1UL);
9b8b1754 2557
8a5dbc65
JK
2558 overage = usage - high;
2559 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2560 return div64_u64(overage, high);
2561}
e26733e0 2562
8a5dbc65
JK
2563static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2564{
2565 u64 overage, max_overage = 0;
e26733e0 2566
8a5dbc65
JK
2567 do {
2568 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2569 READ_ONCE(memcg->memory.high));
8a5dbc65 2570 max_overage = max(overage, max_overage);
e26733e0
CD
2571 } while ((memcg = parent_mem_cgroup(memcg)) &&
2572 !mem_cgroup_is_root(memcg));
2573
8a5dbc65
JK
2574 return max_overage;
2575}
2576
4b82ab4f
JK
2577static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2578{
2579 u64 overage, max_overage = 0;
2580
2581 do {
2582 overage = calculate_overage(page_counter_read(&memcg->swap),
2583 READ_ONCE(memcg->swap.high));
2584 if (overage)
2585 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2586 max_overage = max(overage, max_overage);
2587 } while ((memcg = parent_mem_cgroup(memcg)) &&
2588 !mem_cgroup_is_root(memcg));
2589
2590 return max_overage;
2591}
2592
8a5dbc65
JK
2593/*
2594 * Get the number of jiffies that we should penalise a mischievous cgroup which
2595 * is exceeding its memory.high by checking both it and its ancestors.
2596 */
2597static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2598 unsigned int nr_pages,
2599 u64 max_overage)
2600{
2601 unsigned long penalty_jiffies;
2602
e26733e0
CD
2603 if (!max_overage)
2604 return 0;
0e4b01df
CD
2605
2606 /*
0e4b01df
CD
2607 * We use overage compared to memory.high to calculate the number of
2608 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2609 * fairly lenient on small overages, and increasingly harsh when the
2610 * memcg in question makes it clear that it has no intention of stopping
2611 * its crazy behaviour, so we exponentially increase the delay based on
2612 * overage amount.
2613 */
e26733e0
CD
2614 penalty_jiffies = max_overage * max_overage * HZ;
2615 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2616 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2617
2618 /*
2619 * Factor in the task's own contribution to the overage, such that four
2620 * N-sized allocations are throttled approximately the same as one
2621 * 4N-sized allocation.
2622 *
2623 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2624 * larger the current charge patch is than that.
2625 */
ff144e69 2626 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2627}
2628
2629/*
2630 * Scheduled by try_charge() to be executed from the userland return path
2631 * and reclaims memory over the high limit.
2632 */
2633void mem_cgroup_handle_over_high(void)
2634{
2635 unsigned long penalty_jiffies;
2636 unsigned long pflags;
b3ff9291 2637 unsigned long nr_reclaimed;
e26733e0 2638 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2639 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2640 struct mem_cgroup *memcg;
b3ff9291 2641 bool in_retry = false;
e26733e0
CD
2642
2643 if (likely(!nr_pages))
2644 return;
2645
2646 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2647 current->memcg_nr_pages_over_high = 0;
2648
b3ff9291
CD
2649retry_reclaim:
2650 /*
2651 * The allocating task should reclaim at least the batch size, but for
2652 * subsequent retries we only want to do what's necessary to prevent oom
2653 * or breaching resource isolation.
2654 *
2655 * This is distinct from memory.max or page allocator behaviour because
2656 * memory.high is currently batched, whereas memory.max and the page
2657 * allocator run every time an allocation is made.
2658 */
2659 nr_reclaimed = reclaim_high(memcg,
2660 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2661 GFP_KERNEL);
2662
e26733e0
CD
2663 /*
2664 * memory.high is breached and reclaim is unable to keep up. Throttle
2665 * allocators proactively to slow down excessive growth.
2666 */
8a5dbc65
JK
2667 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2668 mem_find_max_overage(memcg));
0e4b01df 2669
4b82ab4f
JK
2670 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2671 swap_find_max_overage(memcg));
2672
ff144e69
JK
2673 /*
2674 * Clamp the max delay per usermode return so as to still keep the
2675 * application moving forwards and also permit diagnostics, albeit
2676 * extremely slowly.
2677 */
2678 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2679
0e4b01df
CD
2680 /*
2681 * Don't sleep if the amount of jiffies this memcg owes us is so low
2682 * that it's not even worth doing, in an attempt to be nice to those who
2683 * go only a small amount over their memory.high value and maybe haven't
2684 * been aggressively reclaimed enough yet.
2685 */
2686 if (penalty_jiffies <= HZ / 100)
2687 goto out;
2688
b3ff9291
CD
2689 /*
2690 * If reclaim is making forward progress but we're still over
2691 * memory.high, we want to encourage that rather than doing allocator
2692 * throttling.
2693 */
2694 if (nr_reclaimed || nr_retries--) {
2695 in_retry = true;
2696 goto retry_reclaim;
2697 }
2698
0e4b01df
CD
2699 /*
2700 * If we exit early, we're guaranteed to die (since
2701 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2702 * need to account for any ill-begotten jiffies to pay them off later.
2703 */
2704 psi_memstall_enter(&pflags);
2705 schedule_timeout_killable(penalty_jiffies);
2706 psi_memstall_leave(&pflags);
2707
2708out:
2709 css_put(&memcg->css);
b23afb93
TH
2710}
2711
00501b53
JW
2712static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2713 unsigned int nr_pages)
8a9f3ccd 2714{
a983b5eb 2715 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2716 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2717 struct mem_cgroup *mem_over_limit;
3e32cb2e 2718 struct page_counter *counter;
e22c6ed9 2719 enum oom_status oom_status;
6539cc05 2720 unsigned long nr_reclaimed;
b70a2a21
JW
2721 bool may_swap = true;
2722 bool drained = false;
e22c6ed9 2723 unsigned long pflags;
a636b327 2724
ce00a967 2725 if (mem_cgroup_is_root(memcg))
10d53c74 2726 return 0;
6539cc05 2727retry:
b6b6cc72 2728 if (consume_stock(memcg, nr_pages))
10d53c74 2729 return 0;
8a9f3ccd 2730
7941d214 2731 if (!do_memsw_account() ||
6071ca52
JW
2732 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2733 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2734 goto done_restock;
7941d214 2735 if (do_memsw_account())
3e32cb2e
JW
2736 page_counter_uncharge(&memcg->memsw, batch);
2737 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2738 } else {
3e32cb2e 2739 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2740 may_swap = false;
3fbe7244 2741 }
7a81b88c 2742
6539cc05
JW
2743 if (batch > nr_pages) {
2744 batch = nr_pages;
2745 goto retry;
2746 }
6d61ef40 2747
869712fd
JW
2748 /*
2749 * Memcg doesn't have a dedicated reserve for atomic
2750 * allocations. But like the global atomic pool, we need to
2751 * put the burden of reclaim on regular allocation requests
2752 * and let these go through as privileged allocations.
2753 */
2754 if (gfp_mask & __GFP_ATOMIC)
2755 goto force;
2756
06b078fc
JW
2757 /*
2758 * Unlike in global OOM situations, memcg is not in a physical
2759 * memory shortage. Allow dying and OOM-killed tasks to
2760 * bypass the last charges so that they can exit quickly and
2761 * free their memory.
2762 */
7775face 2763 if (unlikely(should_force_charge()))
10d53c74 2764 goto force;
06b078fc 2765
89a28483
JW
2766 /*
2767 * Prevent unbounded recursion when reclaim operations need to
2768 * allocate memory. This might exceed the limits temporarily,
2769 * but we prefer facilitating memory reclaim and getting back
2770 * under the limit over triggering OOM kills in these cases.
2771 */
2772 if (unlikely(current->flags & PF_MEMALLOC))
2773 goto force;
2774
06b078fc
JW
2775 if (unlikely(task_in_memcg_oom(current)))
2776 goto nomem;
2777
d0164adc 2778 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2779 goto nomem;
4b534334 2780
e27be240 2781 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2782
e22c6ed9 2783 psi_memstall_enter(&pflags);
b70a2a21
JW
2784 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2785 gfp_mask, may_swap);
e22c6ed9 2786 psi_memstall_leave(&pflags);
6539cc05 2787
61e02c74 2788 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2789 goto retry;
28c34c29 2790
b70a2a21 2791 if (!drained) {
6d3d6aa2 2792 drain_all_stock(mem_over_limit);
b70a2a21
JW
2793 drained = true;
2794 goto retry;
2795 }
2796
28c34c29
JW
2797 if (gfp_mask & __GFP_NORETRY)
2798 goto nomem;
6539cc05
JW
2799 /*
2800 * Even though the limit is exceeded at this point, reclaim
2801 * may have been able to free some pages. Retry the charge
2802 * before killing the task.
2803 *
2804 * Only for regular pages, though: huge pages are rather
2805 * unlikely to succeed so close to the limit, and we fall back
2806 * to regular pages anyway in case of failure.
2807 */
61e02c74 2808 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2809 goto retry;
2810 /*
2811 * At task move, charge accounts can be doubly counted. So, it's
2812 * better to wait until the end of task_move if something is going on.
2813 */
2814 if (mem_cgroup_wait_acct_move(mem_over_limit))
2815 goto retry;
2816
9b130619
JW
2817 if (nr_retries--)
2818 goto retry;
2819
38d38493 2820 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2821 goto nomem;
2822
06b078fc 2823 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2824 goto force;
06b078fc 2825
6539cc05 2826 if (fatal_signal_pending(current))
10d53c74 2827 goto force;
6539cc05 2828
29ef680a
MH
2829 /*
2830 * keep retrying as long as the memcg oom killer is able to make
2831 * a forward progress or bypass the charge if the oom killer
2832 * couldn't make any progress.
2833 */
2834 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2835 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2836 switch (oom_status) {
2837 case OOM_SUCCESS:
d977aa93 2838 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2839 goto retry;
2840 case OOM_FAILED:
2841 goto force;
2842 default:
2843 goto nomem;
2844 }
7a81b88c 2845nomem:
6d1fdc48 2846 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2847 return -ENOMEM;
10d53c74
TH
2848force:
2849 /*
2850 * The allocation either can't fail or will lead to more memory
2851 * being freed very soon. Allow memory usage go over the limit
2852 * temporarily by force charging it.
2853 */
2854 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2855 if (do_memsw_account())
10d53c74 2856 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2857
2858 return 0;
6539cc05
JW
2859
2860done_restock:
2861 if (batch > nr_pages)
2862 refill_stock(memcg, batch - nr_pages);
b23afb93 2863
241994ed 2864 /*
b23afb93
TH
2865 * If the hierarchy is above the normal consumption range, schedule
2866 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2867 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2868 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2869 * not recorded as it most likely matches current's and won't
2870 * change in the meantime. As high limit is checked again before
2871 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2872 */
2873 do {
4b82ab4f
JK
2874 bool mem_high, swap_high;
2875
2876 mem_high = page_counter_read(&memcg->memory) >
2877 READ_ONCE(memcg->memory.high);
2878 swap_high = page_counter_read(&memcg->swap) >
2879 READ_ONCE(memcg->swap.high);
2880
2881 /* Don't bother a random interrupted task */
2882 if (in_interrupt()) {
2883 if (mem_high) {
f7e1cb6e
JW
2884 schedule_work(&memcg->high_work);
2885 break;
2886 }
4b82ab4f
JK
2887 continue;
2888 }
2889
2890 if (mem_high || swap_high) {
2891 /*
2892 * The allocating tasks in this cgroup will need to do
2893 * reclaim or be throttled to prevent further growth
2894 * of the memory or swap footprints.
2895 *
2896 * Target some best-effort fairness between the tasks,
2897 * and distribute reclaim work and delay penalties
2898 * based on how much each task is actually allocating.
2899 */
9516a18a 2900 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2901 set_notify_resume(current);
2902 break;
2903 }
241994ed 2904 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2905
2906 return 0;
7a81b88c 2907}
8a9f3ccd 2908
f0e45fb4 2909#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2910static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2911{
ce00a967
JW
2912 if (mem_cgroup_is_root(memcg))
2913 return;
2914
3e32cb2e 2915 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2916 if (do_memsw_account())
3e32cb2e 2917 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2918}
f0e45fb4 2919#endif
d01dd17f 2920
d9eb1ea2 2921static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2922{
bcfe06bf 2923 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2924 /*
a5eb011a 2925 * Any of the following ensures page's memcg stability:
0a31bc97 2926 *
a0b5b414
JW
2927 * - the page lock
2928 * - LRU isolation
2929 * - lock_page_memcg()
2930 * - exclusive reference
0a31bc97 2931 */
bcfe06bf 2932 page->memcg_data = (unsigned long)memcg;
7a81b88c 2933}
66e1707b 2934
84c07d11 2935#ifdef CONFIG_MEMCG_KMEM
10befea9 2936int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2937 gfp_t gfp, bool new_page)
10befea9
RG
2938{
2939 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2940 unsigned long memcg_data;
10befea9
RG
2941 void *vec;
2942
2943 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2944 page_to_nid(page));
2945 if (!vec)
2946 return -ENOMEM;
2947
2e9bd483
RG
2948 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2949 if (new_page) {
2950 /*
2951 * If the slab page is brand new and nobody can yet access
2952 * it's memcg_data, no synchronization is required and
2953 * memcg_data can be simply assigned.
2954 */
2955 page->memcg_data = memcg_data;
2956 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2957 /*
2958 * If the slab page is already in use, somebody can allocate
2959 * and assign obj_cgroups in parallel. In this case the existing
2960 * objcg vector should be reused.
2961 */
10befea9 2962 kfree(vec);
2e9bd483
RG
2963 return 0;
2964 }
10befea9 2965
2e9bd483 2966 kmemleak_not_leak(vec);
10befea9
RG
2967 return 0;
2968}
2969
8380ce47
RG
2970/*
2971 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2972 *
bcfe06bf
RG
2973 * A passed kernel object can be a slab object or a generic kernel page, so
2974 * different mechanisms for getting the memory cgroup pointer should be used.
2975 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2976 * can not know for sure how the kernel object is implemented.
2977 * mem_cgroup_from_obj() can be safely used in such cases.
2978 *
8380ce47
RG
2979 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2980 * cgroup_mutex, etc.
2981 */
2982struct mem_cgroup *mem_cgroup_from_obj(void *p)
2983{
2984 struct page *page;
2985
2986 if (mem_cgroup_disabled())
2987 return NULL;
2988
2989 page = virt_to_head_page(p);
2990
2991 /*
9855609b
RG
2992 * Slab objects are accounted individually, not per-page.
2993 * Memcg membership data for each individual object is saved in
2994 * the page->obj_cgroups.
8380ce47 2995 */
270c6a71 2996 if (page_objcgs_check(page)) {
9855609b
RG
2997 struct obj_cgroup *objcg;
2998 unsigned int off;
2999
3000 off = obj_to_index(page->slab_cache, page, p);
270c6a71 3001 objcg = page_objcgs(page)[off];
10befea9
RG
3002 if (objcg)
3003 return obj_cgroup_memcg(objcg);
3004
3005 return NULL;
9855609b 3006 }
8380ce47 3007
bcfe06bf
RG
3008 /*
3009 * page_memcg_check() is used here, because page_has_obj_cgroups()
3010 * check above could fail because the object cgroups vector wasn't set
3011 * at that moment, but it can be set concurrently.
3012 * page_memcg_check(page) will guarantee that a proper memory
3013 * cgroup pointer or NULL will be returned.
3014 */
3015 return page_memcg_check(page);
8380ce47
RG
3016}
3017
bf4f0599
RG
3018__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3019{
3020 struct obj_cgroup *objcg = NULL;
3021 struct mem_cgroup *memcg;
3022
279c3393
RG
3023 if (memcg_kmem_bypass())
3024 return NULL;
3025
bf4f0599 3026 rcu_read_lock();
37d5985c
RG
3027 if (unlikely(active_memcg()))
3028 memcg = active_memcg();
bf4f0599
RG
3029 else
3030 memcg = mem_cgroup_from_task(current);
3031
3032 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3033 objcg = rcu_dereference(memcg->objcg);
3034 if (objcg && obj_cgroup_tryget(objcg))
3035 break;
2f7659a3 3036 objcg = NULL;
bf4f0599
RG
3037 }
3038 rcu_read_unlock();
3039
3040 return objcg;
3041}
3042
f3bb3043 3043static int memcg_alloc_cache_id(void)
55007d84 3044{
f3bb3043
VD
3045 int id, size;
3046 int err;
3047
dbcf73e2 3048 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3049 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3050 if (id < 0)
3051 return id;
55007d84 3052
dbcf73e2 3053 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3054 return id;
3055
3056 /*
3057 * There's no space for the new id in memcg_caches arrays,
3058 * so we have to grow them.
3059 */
05257a1a 3060 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3061
3062 size = 2 * (id + 1);
55007d84
GC
3063 if (size < MEMCG_CACHES_MIN_SIZE)
3064 size = MEMCG_CACHES_MIN_SIZE;
3065 else if (size > MEMCG_CACHES_MAX_SIZE)
3066 size = MEMCG_CACHES_MAX_SIZE;
3067
9855609b 3068 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3069 if (!err)
3070 memcg_nr_cache_ids = size;
3071
3072 up_write(&memcg_cache_ids_sem);
3073
f3bb3043 3074 if (err) {
dbcf73e2 3075 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3076 return err;
3077 }
3078 return id;
3079}
3080
3081static void memcg_free_cache_id(int id)
3082{
dbcf73e2 3083 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3084}
3085
45264778 3086/**
4b13f64d 3087 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3088 * @memcg: memory cgroup to charge
45264778 3089 * @gfp: reclaim mode
92d0510c 3090 * @nr_pages: number of pages to charge
45264778
VD
3091 *
3092 * Returns 0 on success, an error code on failure.
3093 */
c1a660de
RG
3094static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3095 unsigned int nr_pages)
7ae1e1d0 3096{
f3ccb2c4 3097 struct page_counter *counter;
7ae1e1d0
GC
3098 int ret;
3099
f3ccb2c4 3100 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3101 if (ret)
f3ccb2c4 3102 return ret;
52c29b04
JW
3103
3104 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3105 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3106
3107 /*
3108 * Enforce __GFP_NOFAIL allocation because callers are not
3109 * prepared to see failures and likely do not have any failure
3110 * handling code.
3111 */
3112 if (gfp & __GFP_NOFAIL) {
3113 page_counter_charge(&memcg->kmem, nr_pages);
3114 return 0;
3115 }
52c29b04
JW
3116 cancel_charge(memcg, nr_pages);
3117 return -ENOMEM;
7ae1e1d0 3118 }
f3ccb2c4 3119 return 0;
7ae1e1d0
GC
3120}
3121
4b13f64d
RG
3122/**
3123 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3124 * @memcg: memcg to uncharge
3125 * @nr_pages: number of pages to uncharge
3126 */
c1a660de 3127static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
4b13f64d
RG
3128{
3129 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3130 page_counter_uncharge(&memcg->kmem, nr_pages);
3131
3de7d4f2 3132 refill_stock(memcg, nr_pages);
4b13f64d
RG
3133}
3134
45264778 3135/**
f4b00eab 3136 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3137 * @page: page to charge
3138 * @gfp: reclaim mode
3139 * @order: allocation order
3140 *
3141 * Returns 0 on success, an error code on failure.
3142 */
f4b00eab 3143int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3144{
f3ccb2c4 3145 struct mem_cgroup *memcg;
fcff7d7e 3146 int ret = 0;
7ae1e1d0 3147
d46eb14b 3148 memcg = get_mem_cgroup_from_current();
279c3393 3149 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3150 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3151 if (!ret) {
18b2db3b
RG
3152 page->memcg_data = (unsigned long)memcg |
3153 MEMCG_DATA_KMEM;
1a3e1f40 3154 return 0;
4d96ba35 3155 }
279c3393 3156 css_put(&memcg->css);
c4159a75 3157 }
d05e83a6 3158 return ret;
7ae1e1d0 3159}
49a18eae 3160
45264778 3161/**
f4b00eab 3162 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3163 * @page: page to uncharge
3164 * @order: allocation order
3165 */
f4b00eab 3166void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3167{
bcfe06bf 3168 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3169 unsigned int nr_pages = 1 << order;
7ae1e1d0 3170
7ae1e1d0
GC
3171 if (!memcg)
3172 return;
3173
309381fe 3174 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3175 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3176 page->memcg_data = 0;
1a3e1f40 3177 css_put(&memcg->css);
60d3fd32 3178}
bf4f0599
RG
3179
3180static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3181{
3182 struct memcg_stock_pcp *stock;
3183 unsigned long flags;
3184 bool ret = false;
3185
3186 local_irq_save(flags);
3187
3188 stock = this_cpu_ptr(&memcg_stock);
3189 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3190 stock->nr_bytes -= nr_bytes;
3191 ret = true;
3192 }
3193
3194 local_irq_restore(flags);
3195
3196 return ret;
3197}
3198
3199static void drain_obj_stock(struct memcg_stock_pcp *stock)
3200{
3201 struct obj_cgroup *old = stock->cached_objcg;
3202
3203 if (!old)
3204 return;
3205
3206 if (stock->nr_bytes) {
3207 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3208 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3209
3210 if (nr_pages) {
3211 rcu_read_lock();
3212 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3213 rcu_read_unlock();
3214 }
3215
3216 /*
3217 * The leftover is flushed to the centralized per-memcg value.
3218 * On the next attempt to refill obj stock it will be moved
3219 * to a per-cpu stock (probably, on an other CPU), see
3220 * refill_obj_stock().
3221 *
3222 * How often it's flushed is a trade-off between the memory
3223 * limit enforcement accuracy and potential CPU contention,
3224 * so it might be changed in the future.
3225 */
3226 atomic_add(nr_bytes, &old->nr_charged_bytes);
3227 stock->nr_bytes = 0;
3228 }
3229
3230 obj_cgroup_put(old);
3231 stock->cached_objcg = NULL;
3232}
3233
3234static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3235 struct mem_cgroup *root_memcg)
3236{
3237 struct mem_cgroup *memcg;
3238
3239 if (stock->cached_objcg) {
3240 memcg = obj_cgroup_memcg(stock->cached_objcg);
3241 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3242 return true;
3243 }
3244
3245 return false;
3246}
3247
3248static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3249{
3250 struct memcg_stock_pcp *stock;
3251 unsigned long flags;
3252
3253 local_irq_save(flags);
3254
3255 stock = this_cpu_ptr(&memcg_stock);
3256 if (stock->cached_objcg != objcg) { /* reset if necessary */
3257 drain_obj_stock(stock);
3258 obj_cgroup_get(objcg);
3259 stock->cached_objcg = objcg;
3260 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3261 }
3262 stock->nr_bytes += nr_bytes;
3263
3264 if (stock->nr_bytes > PAGE_SIZE)
3265 drain_obj_stock(stock);
3266
3267 local_irq_restore(flags);
3268}
3269
3270int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3271{
3272 struct mem_cgroup *memcg;
3273 unsigned int nr_pages, nr_bytes;
3274 int ret;
3275
3276 if (consume_obj_stock(objcg, size))
3277 return 0;
3278
3279 /*
3280 * In theory, memcg->nr_charged_bytes can have enough
3281 * pre-charged bytes to satisfy the allocation. However,
3282 * flushing memcg->nr_charged_bytes requires two atomic
3283 * operations, and memcg->nr_charged_bytes can't be big,
3284 * so it's better to ignore it and try grab some new pages.
3285 * memcg->nr_charged_bytes will be flushed in
3286 * refill_obj_stock(), called from this function or
3287 * independently later.
3288 */
3289 rcu_read_lock();
eefbfa7f 3290retry:
bf4f0599 3291 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3292 if (unlikely(!css_tryget(&memcg->css)))
3293 goto retry;
bf4f0599
RG
3294 rcu_read_unlock();
3295
3296 nr_pages = size >> PAGE_SHIFT;
3297 nr_bytes = size & (PAGE_SIZE - 1);
3298
3299 if (nr_bytes)
3300 nr_pages += 1;
3301
3302 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3303 if (!ret && nr_bytes)
3304 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3305
3306 css_put(&memcg->css);
3307 return ret;
3308}
3309
3310void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3311{
3312 refill_obj_stock(objcg, size);
3313}
3314
84c07d11 3315#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3316
ca3e0214 3317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ca3e0214 3318/*
6168d0da 3319 * Because page_memcg(head) is not set on compound tails, set it now.
ca3e0214 3320 */
e94c8a9c 3321void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3322{
bcfe06bf 3323 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3324 int i;
ca3e0214 3325
3d37c4a9
KH
3326 if (mem_cgroup_disabled())
3327 return;
b070e65c 3328
1a3e1f40
JW
3329 for (i = 1; i < HPAGE_PMD_NR; i++) {
3330 css_get(&memcg->css);
bcfe06bf 3331 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3332 }
ca3e0214 3333}
12d27107 3334#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3335
c255a458 3336#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3337/**
3338 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3339 * @entry: swap entry to be moved
3340 * @from: mem_cgroup which the entry is moved from
3341 * @to: mem_cgroup which the entry is moved to
3342 *
3343 * It succeeds only when the swap_cgroup's record for this entry is the same
3344 * as the mem_cgroup's id of @from.
3345 *
3346 * Returns 0 on success, -EINVAL on failure.
3347 *
3e32cb2e 3348 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3349 * both res and memsw, and called css_get().
3350 */
3351static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3352 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3353{
3354 unsigned short old_id, new_id;
3355
34c00c31
LZ
3356 old_id = mem_cgroup_id(from);
3357 new_id = mem_cgroup_id(to);
02491447
DN
3358
3359 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3360 mod_memcg_state(from, MEMCG_SWAP, -1);
3361 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3362 return 0;
3363 }
3364 return -EINVAL;
3365}
3366#else
3367static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3368 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3369{
3370 return -EINVAL;
3371}
8c7c6e34 3372#endif
d13d1443 3373
bbec2e15 3374static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3375
bbec2e15
RG
3376static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3377 unsigned long max, bool memsw)
628f4235 3378{
3e32cb2e 3379 bool enlarge = false;
bb4a7ea2 3380 bool drained = false;
3e32cb2e 3381 int ret;
c054a78c
YZ
3382 bool limits_invariant;
3383 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3384
3e32cb2e 3385 do {
628f4235
KH
3386 if (signal_pending(current)) {
3387 ret = -EINTR;
3388 break;
3389 }
3e32cb2e 3390
bbec2e15 3391 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3392 /*
3393 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3394 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3395 */
15b42562 3396 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3397 max <= memcg->memsw.max;
c054a78c 3398 if (!limits_invariant) {
bbec2e15 3399 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3400 ret = -EINVAL;
8c7c6e34
KH
3401 break;
3402 }
bbec2e15 3403 if (max > counter->max)
3e32cb2e 3404 enlarge = true;
bbec2e15
RG
3405 ret = page_counter_set_max(counter, max);
3406 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3407
3408 if (!ret)
3409 break;
3410
bb4a7ea2
SB
3411 if (!drained) {
3412 drain_all_stock(memcg);
3413 drained = true;
3414 continue;
3415 }
3416
1ab5c056
AR
3417 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3418 GFP_KERNEL, !memsw)) {
3419 ret = -EBUSY;
3420 break;
3421 }
3422 } while (true);
3e32cb2e 3423
3c11ecf4
KH
3424 if (!ret && enlarge)
3425 memcg_oom_recover(memcg);
3e32cb2e 3426
628f4235
KH
3427 return ret;
3428}
3429
ef8f2327 3430unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3431 gfp_t gfp_mask,
3432 unsigned long *total_scanned)
3433{
3434 unsigned long nr_reclaimed = 0;
ef8f2327 3435 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3436 unsigned long reclaimed;
3437 int loop = 0;
ef8f2327 3438 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3439 unsigned long excess;
0608f43d
AM
3440 unsigned long nr_scanned;
3441
3442 if (order > 0)
3443 return 0;
3444
ef8f2327 3445 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3446
3447 /*
3448 * Do not even bother to check the largest node if the root
3449 * is empty. Do it lockless to prevent lock bouncing. Races
3450 * are acceptable as soft limit is best effort anyway.
3451 */
bfc7228b 3452 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3453 return 0;
3454
0608f43d
AM
3455 /*
3456 * This loop can run a while, specially if mem_cgroup's continuously
3457 * keep exceeding their soft limit and putting the system under
3458 * pressure
3459 */
3460 do {
3461 if (next_mz)
3462 mz = next_mz;
3463 else
3464 mz = mem_cgroup_largest_soft_limit_node(mctz);
3465 if (!mz)
3466 break;
3467
3468 nr_scanned = 0;
ef8f2327 3469 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3470 gfp_mask, &nr_scanned);
3471 nr_reclaimed += reclaimed;
3472 *total_scanned += nr_scanned;
0a31bc97 3473 spin_lock_irq(&mctz->lock);
bc2f2e7f 3474 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3475
3476 /*
3477 * If we failed to reclaim anything from this memory cgroup
3478 * it is time to move on to the next cgroup
3479 */
3480 next_mz = NULL;
bc2f2e7f
VD
3481 if (!reclaimed)
3482 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3483
3e32cb2e 3484 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3485 /*
3486 * One school of thought says that we should not add
3487 * back the node to the tree if reclaim returns 0.
3488 * But our reclaim could return 0, simply because due
3489 * to priority we are exposing a smaller subset of
3490 * memory to reclaim from. Consider this as a longer
3491 * term TODO.
3492 */
3493 /* If excess == 0, no tree ops */
cf2c8127 3494 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3495 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3496 css_put(&mz->memcg->css);
3497 loop++;
3498 /*
3499 * Could not reclaim anything and there are no more
3500 * mem cgroups to try or we seem to be looping without
3501 * reclaiming anything.
3502 */
3503 if (!nr_reclaimed &&
3504 (next_mz == NULL ||
3505 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3506 break;
3507 } while (!nr_reclaimed);
3508 if (next_mz)
3509 css_put(&next_mz->memcg->css);
3510 return nr_reclaimed;
3511}
3512
c26251f9 3513/*
51038171 3514 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3515 *
3516 * Caller is responsible for holding css reference for memcg.
3517 */
3518static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3519{
d977aa93 3520 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3521
c1e862c1
KH
3522 /* we call try-to-free pages for make this cgroup empty */
3523 lru_add_drain_all();
d12c60f6
JS
3524
3525 drain_all_stock(memcg);
3526
f817ed48 3527 /* try to free all pages in this cgroup */
3e32cb2e 3528 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3529 int progress;
c1e862c1 3530
c26251f9
MH
3531 if (signal_pending(current))
3532 return -EINTR;
3533
b70a2a21
JW
3534 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3535 GFP_KERNEL, true);
c1e862c1 3536 if (!progress) {
f817ed48 3537 nr_retries--;
c1e862c1 3538 /* maybe some writeback is necessary */
8aa7e847 3539 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3540 }
f817ed48
KH
3541
3542 }
ab5196c2
MH
3543
3544 return 0;
cc847582
KH
3545}
3546
6770c64e
TH
3547static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3548 char *buf, size_t nbytes,
3549 loff_t off)
c1e862c1 3550{
6770c64e 3551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3552
d8423011
MH
3553 if (mem_cgroup_is_root(memcg))
3554 return -EINVAL;
6770c64e 3555 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3556}
3557
182446d0
TH
3558static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3559 struct cftype *cft)
18f59ea7 3560{
bef8620c 3561 return 1;
18f59ea7
BS
3562}
3563
182446d0
TH
3564static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3565 struct cftype *cft, u64 val)
18f59ea7 3566{
bef8620c 3567 if (val == 1)
0b8f73e1 3568 return 0;
567fb435 3569
bef8620c
RG
3570 pr_warn_once("Non-hierarchical mode is deprecated. "
3571 "Please report your usecase to linux-mm@kvack.org if you "
3572 "depend on this functionality.\n");
567fb435 3573
bef8620c 3574 return -EINVAL;
18f59ea7
BS
3575}
3576
6f646156 3577static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3578{
42a30035 3579 unsigned long val;
ce00a967 3580
3e32cb2e 3581 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3582 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3583 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3584 if (swap)
3585 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3586 } else {
ce00a967 3587 if (!swap)
3e32cb2e 3588 val = page_counter_read(&memcg->memory);
ce00a967 3589 else
3e32cb2e 3590 val = page_counter_read(&memcg->memsw);
ce00a967 3591 }
c12176d3 3592 return val;
ce00a967
JW
3593}
3594
3e32cb2e
JW
3595enum {
3596 RES_USAGE,
3597 RES_LIMIT,
3598 RES_MAX_USAGE,
3599 RES_FAILCNT,
3600 RES_SOFT_LIMIT,
3601};
ce00a967 3602
791badbd 3603static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3604 struct cftype *cft)
8cdea7c0 3605{
182446d0 3606 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3607 struct page_counter *counter;
af36f906 3608
3e32cb2e 3609 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3610 case _MEM:
3e32cb2e
JW
3611 counter = &memcg->memory;
3612 break;
8c7c6e34 3613 case _MEMSWAP:
3e32cb2e
JW
3614 counter = &memcg->memsw;
3615 break;
510fc4e1 3616 case _KMEM:
3e32cb2e 3617 counter = &memcg->kmem;
510fc4e1 3618 break;
d55f90bf 3619 case _TCP:
0db15298 3620 counter = &memcg->tcpmem;
d55f90bf 3621 break;
8c7c6e34
KH
3622 default:
3623 BUG();
8c7c6e34 3624 }
3e32cb2e
JW
3625
3626 switch (MEMFILE_ATTR(cft->private)) {
3627 case RES_USAGE:
3628 if (counter == &memcg->memory)
c12176d3 3629 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3630 if (counter == &memcg->memsw)
c12176d3 3631 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3632 return (u64)page_counter_read(counter) * PAGE_SIZE;
3633 case RES_LIMIT:
bbec2e15 3634 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3635 case RES_MAX_USAGE:
3636 return (u64)counter->watermark * PAGE_SIZE;
3637 case RES_FAILCNT:
3638 return counter->failcnt;
3639 case RES_SOFT_LIMIT:
3640 return (u64)memcg->soft_limit * PAGE_SIZE;
3641 default:
3642 BUG();
3643 }
8cdea7c0 3644}
510fc4e1 3645
4a87e2a2 3646static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3647{
4a87e2a2 3648 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3649 struct mem_cgroup *mi;
3650 int node, cpu, i;
c350a99e
RG
3651
3652 for_each_online_cpu(cpu)
4a87e2a2 3653 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3654 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3655
3656 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3657 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3658 atomic_long_add(stat[i], &mi->vmstats[i]);
3659
3660 for_each_node(node) {
3661 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3662 struct mem_cgroup_per_node *pi;
3663
4a87e2a2 3664 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3665 stat[i] = 0;
3666
3667 for_each_online_cpu(cpu)
4a87e2a2 3668 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3669 stat[i] += per_cpu(
3670 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3671
3672 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3673 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3674 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3675 }
3676}
3677
bb65f89b
RG
3678static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3679{
3680 unsigned long events[NR_VM_EVENT_ITEMS];
3681 struct mem_cgroup *mi;
3682 int cpu, i;
3683
3684 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3685 events[i] = 0;
3686
3687 for_each_online_cpu(cpu)
3688 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3689 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3690 cpu);
bb65f89b
RG
3691
3692 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3693 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3694 atomic_long_add(events[i], &mi->vmevents[i]);
3695}
3696
84c07d11 3697#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3698static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3699{
bf4f0599 3700 struct obj_cgroup *objcg;
d6441637
VD
3701 int memcg_id;
3702
b313aeee
VD
3703 if (cgroup_memory_nokmem)
3704 return 0;
3705
2a4db7eb 3706 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3707 BUG_ON(memcg->kmem_state);
d6441637 3708
f3bb3043 3709 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3710 if (memcg_id < 0)
3711 return memcg_id;
d6441637 3712
bf4f0599
RG
3713 objcg = obj_cgroup_alloc();
3714 if (!objcg) {
3715 memcg_free_cache_id(memcg_id);
3716 return -ENOMEM;
3717 }
3718 objcg->memcg = memcg;
3719 rcu_assign_pointer(memcg->objcg, objcg);
3720
d648bcc7
RG
3721 static_branch_enable(&memcg_kmem_enabled_key);
3722
900a38f0 3723 memcg->kmemcg_id = memcg_id;
567e9ab2 3724 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3725
3726 return 0;
d6441637
VD
3727}
3728
8e0a8912
JW
3729static void memcg_offline_kmem(struct mem_cgroup *memcg)
3730{
3731 struct cgroup_subsys_state *css;
3732 struct mem_cgroup *parent, *child;
3733 int kmemcg_id;
3734
3735 if (memcg->kmem_state != KMEM_ONLINE)
3736 return;
9855609b 3737
8e0a8912
JW
3738 memcg->kmem_state = KMEM_ALLOCATED;
3739
8e0a8912
JW
3740 parent = parent_mem_cgroup(memcg);
3741 if (!parent)
3742 parent = root_mem_cgroup;
3743
bf4f0599 3744 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3745
3746 kmemcg_id = memcg->kmemcg_id;
3747 BUG_ON(kmemcg_id < 0);
3748
8e0a8912
JW
3749 /*
3750 * Change kmemcg_id of this cgroup and all its descendants to the
3751 * parent's id, and then move all entries from this cgroup's list_lrus
3752 * to ones of the parent. After we have finished, all list_lrus
3753 * corresponding to this cgroup are guaranteed to remain empty. The
3754 * ordering is imposed by list_lru_node->lock taken by
3755 * memcg_drain_all_list_lrus().
3756 */
3a06bb78 3757 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3758 css_for_each_descendant_pre(css, &memcg->css) {
3759 child = mem_cgroup_from_css(css);
3760 BUG_ON(child->kmemcg_id != kmemcg_id);
3761 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3762 }
3a06bb78
TH
3763 rcu_read_unlock();
3764
9bec5c35 3765 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3766
3767 memcg_free_cache_id(kmemcg_id);
3768}
3769
3770static void memcg_free_kmem(struct mem_cgroup *memcg)
3771{
0b8f73e1
JW
3772 /* css_alloc() failed, offlining didn't happen */
3773 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3774 memcg_offline_kmem(memcg);
8e0a8912 3775}
d6441637 3776#else
0b8f73e1 3777static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3778{
3779 return 0;
3780}
3781static void memcg_offline_kmem(struct mem_cgroup *memcg)
3782{
3783}
3784static void memcg_free_kmem(struct mem_cgroup *memcg)
3785{
3786}
84c07d11 3787#endif /* CONFIG_MEMCG_KMEM */
127424c8 3788
bbec2e15
RG
3789static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3790 unsigned long max)
d6441637 3791{
b313aeee 3792 int ret;
127424c8 3793
bbec2e15
RG
3794 mutex_lock(&memcg_max_mutex);
3795 ret = page_counter_set_max(&memcg->kmem, max);
3796 mutex_unlock(&memcg_max_mutex);
127424c8 3797 return ret;
d6441637 3798}
510fc4e1 3799
bbec2e15 3800static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3801{
3802 int ret;
3803
bbec2e15 3804 mutex_lock(&memcg_max_mutex);
d55f90bf 3805
bbec2e15 3806 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3807 if (ret)
3808 goto out;
3809
0db15298 3810 if (!memcg->tcpmem_active) {
d55f90bf
VD
3811 /*
3812 * The active flag needs to be written after the static_key
3813 * update. This is what guarantees that the socket activation
2d758073
JW
3814 * function is the last one to run. See mem_cgroup_sk_alloc()
3815 * for details, and note that we don't mark any socket as
3816 * belonging to this memcg until that flag is up.
d55f90bf
VD
3817 *
3818 * We need to do this, because static_keys will span multiple
3819 * sites, but we can't control their order. If we mark a socket
3820 * as accounted, but the accounting functions are not patched in
3821 * yet, we'll lose accounting.
3822 *
2d758073 3823 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3824 * because when this value change, the code to process it is not
3825 * patched in yet.
3826 */
3827 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3828 memcg->tcpmem_active = true;
d55f90bf
VD
3829 }
3830out:
bbec2e15 3831 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3832 return ret;
3833}
d55f90bf 3834
628f4235
KH
3835/*
3836 * The user of this function is...
3837 * RES_LIMIT.
3838 */
451af504
TH
3839static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3840 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3841{
451af504 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3843 unsigned long nr_pages;
628f4235
KH
3844 int ret;
3845
451af504 3846 buf = strstrip(buf);
650c5e56 3847 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3848 if (ret)
3849 return ret;
af36f906 3850
3e32cb2e 3851 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3852 case RES_LIMIT:
4b3bde4c
BS
3853 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3854 ret = -EINVAL;
3855 break;
3856 }
3e32cb2e
JW
3857 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3858 case _MEM:
bbec2e15 3859 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3860 break;
3e32cb2e 3861 case _MEMSWAP:
bbec2e15 3862 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3863 break;
3e32cb2e 3864 case _KMEM:
0158115f
MH
3865 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3866 "Please report your usecase to linux-mm@kvack.org if you "
3867 "depend on this functionality.\n");
bbec2e15 3868 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3869 break;
d55f90bf 3870 case _TCP:
bbec2e15 3871 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3872 break;
3e32cb2e 3873 }
296c81d8 3874 break;
3e32cb2e
JW
3875 case RES_SOFT_LIMIT:
3876 memcg->soft_limit = nr_pages;
3877 ret = 0;
628f4235
KH
3878 break;
3879 }
451af504 3880 return ret ?: nbytes;
8cdea7c0
BS
3881}
3882
6770c64e
TH
3883static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3884 size_t nbytes, loff_t off)
c84872e1 3885{
6770c64e 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3887 struct page_counter *counter;
c84872e1 3888
3e32cb2e
JW
3889 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3890 case _MEM:
3891 counter = &memcg->memory;
3892 break;
3893 case _MEMSWAP:
3894 counter = &memcg->memsw;
3895 break;
3896 case _KMEM:
3897 counter = &memcg->kmem;
3898 break;
d55f90bf 3899 case _TCP:
0db15298 3900 counter = &memcg->tcpmem;
d55f90bf 3901 break;
3e32cb2e
JW
3902 default:
3903 BUG();
3904 }
af36f906 3905
3e32cb2e 3906 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3907 case RES_MAX_USAGE:
3e32cb2e 3908 page_counter_reset_watermark(counter);
29f2a4da
PE
3909 break;
3910 case RES_FAILCNT:
3e32cb2e 3911 counter->failcnt = 0;
29f2a4da 3912 break;
3e32cb2e
JW
3913 default:
3914 BUG();
29f2a4da 3915 }
f64c3f54 3916
6770c64e 3917 return nbytes;
c84872e1
PE
3918}
3919
182446d0 3920static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3921 struct cftype *cft)
3922{
182446d0 3923 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3924}
3925
02491447 3926#ifdef CONFIG_MMU
182446d0 3927static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3928 struct cftype *cft, u64 val)
3929{
182446d0 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3931
1dfab5ab 3932 if (val & ~MOVE_MASK)
7dc74be0 3933 return -EINVAL;
ee5e8472 3934
7dc74be0 3935 /*
ee5e8472
GC
3936 * No kind of locking is needed in here, because ->can_attach() will
3937 * check this value once in the beginning of the process, and then carry
3938 * on with stale data. This means that changes to this value will only
3939 * affect task migrations starting after the change.
7dc74be0 3940 */
c0ff4b85 3941 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3942 return 0;
3943}
02491447 3944#else
182446d0 3945static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3946 struct cftype *cft, u64 val)
3947{
3948 return -ENOSYS;
3949}
3950#endif
7dc74be0 3951
406eb0c9 3952#ifdef CONFIG_NUMA
113b7dfd
JW
3953
3954#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3955#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3956#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3957
3958static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3959 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3960{
867e5e1d 3961 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3962 unsigned long nr = 0;
3963 enum lru_list lru;
3964
3965 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3966
3967 for_each_lru(lru) {
3968 if (!(BIT(lru) & lru_mask))
3969 continue;
dd8657b6
SB
3970 if (tree)
3971 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3972 else
3973 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3974 }
3975 return nr;
3976}
3977
3978static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3979 unsigned int lru_mask,
3980 bool tree)
113b7dfd
JW
3981{
3982 unsigned long nr = 0;
3983 enum lru_list lru;
3984
3985 for_each_lru(lru) {
3986 if (!(BIT(lru) & lru_mask))
3987 continue;
dd8657b6
SB
3988 if (tree)
3989 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3990 else
3991 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3992 }
3993 return nr;
3994}
3995
2da8ca82 3996static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3997{
25485de6
GT
3998 struct numa_stat {
3999 const char *name;
4000 unsigned int lru_mask;
4001 };
4002
4003 static const struct numa_stat stats[] = {
4004 { "total", LRU_ALL },
4005 { "file", LRU_ALL_FILE },
4006 { "anon", LRU_ALL_ANON },
4007 { "unevictable", BIT(LRU_UNEVICTABLE) },
4008 };
4009 const struct numa_stat *stat;
406eb0c9 4010 int nid;
aa9694bb 4011 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4012
25485de6 4013 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4014 seq_printf(m, "%s=%lu", stat->name,
4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4016 false));
4017 for_each_node_state(nid, N_MEMORY)
4018 seq_printf(m, " N%d=%lu", nid,
4019 mem_cgroup_node_nr_lru_pages(memcg, nid,
4020 stat->lru_mask, false));
25485de6 4021 seq_putc(m, '\n');
406eb0c9 4022 }
406eb0c9 4023
071aee13 4024 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4025
4026 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4027 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4028 true));
4029 for_each_node_state(nid, N_MEMORY)
4030 seq_printf(m, " N%d=%lu", nid,
4031 mem_cgroup_node_nr_lru_pages(memcg, nid,
4032 stat->lru_mask, true));
071aee13 4033 seq_putc(m, '\n');
406eb0c9 4034 }
406eb0c9 4035
406eb0c9
YH
4036 return 0;
4037}
4038#endif /* CONFIG_NUMA */
4039
c8713d0b 4040static const unsigned int memcg1_stats[] = {
0d1c2072 4041 NR_FILE_PAGES,
be5d0a74 4042 NR_ANON_MAPPED,
468c3982
JW
4043#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4044 NR_ANON_THPS,
4045#endif
c8713d0b
JW
4046 NR_SHMEM,
4047 NR_FILE_MAPPED,
4048 NR_FILE_DIRTY,
4049 NR_WRITEBACK,
4050 MEMCG_SWAP,
4051};
4052
4053static const char *const memcg1_stat_names[] = {
4054 "cache",
4055 "rss",
468c3982 4056#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4057 "rss_huge",
468c3982 4058#endif
c8713d0b
JW
4059 "shmem",
4060 "mapped_file",
4061 "dirty",
4062 "writeback",
4063 "swap",
4064};
4065
df0e53d0 4066/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4067static const unsigned int memcg1_events[] = {
df0e53d0
JW
4068 PGPGIN,
4069 PGPGOUT,
4070 PGFAULT,
4071 PGMAJFAULT,
4072};
4073
2da8ca82 4074static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4075{
aa9694bb 4076 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4077 unsigned long memory, memsw;
af7c4b0e
JW
4078 struct mem_cgroup *mi;
4079 unsigned int i;
406eb0c9 4080
71cd3113 4081 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4082
71cd3113 4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4084 unsigned long nr;
4085
71cd3113 4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4087 continue;
468c3982 4088 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4089 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4090 }
7b854121 4091
df0e53d0 4092 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4093 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4094 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4095
4096 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4097 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4098 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4099 PAGE_SIZE);
af7c4b0e 4100
14067bb3 4101 /* Hierarchical information */
3e32cb2e
JW
4102 memory = memsw = PAGE_COUNTER_MAX;
4103 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4104 memory = min(memory, READ_ONCE(mi->memory.max));
4105 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4106 }
3e32cb2e
JW
4107 seq_printf(m, "hierarchical_memory_limit %llu\n",
4108 (u64)memory * PAGE_SIZE);
7941d214 4109 if (do_memsw_account())
3e32cb2e
JW
4110 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4111 (u64)memsw * PAGE_SIZE);
7f016ee8 4112
8de7ecc6 4113 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4114 unsigned long nr;
4115
71cd3113 4116 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4117 continue;
7de2e9f1 4118 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4119 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4120 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4121 }
4122
8de7ecc6 4123 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4124 seq_printf(m, "total_%s %llu\n",
4125 vm_event_name(memcg1_events[i]),
dd923990 4126 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4127
8de7ecc6 4128 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4129 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4130 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4131 PAGE_SIZE);
14067bb3 4132
7f016ee8 4133#ifdef CONFIG_DEBUG_VM
7f016ee8 4134 {
ef8f2327
MG
4135 pg_data_t *pgdat;
4136 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4137 unsigned long anon_cost = 0;
4138 unsigned long file_cost = 0;
7f016ee8 4139
ef8f2327
MG
4140 for_each_online_pgdat(pgdat) {
4141 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4142
1431d4d1
JW
4143 anon_cost += mz->lruvec.anon_cost;
4144 file_cost += mz->lruvec.file_cost;
ef8f2327 4145 }
1431d4d1
JW
4146 seq_printf(m, "anon_cost %lu\n", anon_cost);
4147 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4148 }
4149#endif
4150
d2ceb9b7
KH
4151 return 0;
4152}
4153
182446d0
TH
4154static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4155 struct cftype *cft)
a7885eb8 4156{
182446d0 4157 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4158
1f4c025b 4159 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4160}
4161
182446d0
TH
4162static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4163 struct cftype *cft, u64 val)
a7885eb8 4164{
182446d0 4165 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4166
3dae7fec 4167 if (val > 100)
a7885eb8
KM
4168 return -EINVAL;
4169
14208b0e 4170 if (css->parent)
3dae7fec
JW
4171 memcg->swappiness = val;
4172 else
4173 vm_swappiness = val;
068b38c1 4174
a7885eb8
KM
4175 return 0;
4176}
4177
2e72b634
KS
4178static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4179{
4180 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4181 unsigned long usage;
2e72b634
KS
4182 int i;
4183
4184 rcu_read_lock();
4185 if (!swap)
2c488db2 4186 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4187 else
2c488db2 4188 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4189
4190 if (!t)
4191 goto unlock;
4192
ce00a967 4193 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4194
4195 /*
748dad36 4196 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4197 * If it's not true, a threshold was crossed after last
4198 * call of __mem_cgroup_threshold().
4199 */
5407a562 4200 i = t->current_threshold;
2e72b634
KS
4201
4202 /*
4203 * Iterate backward over array of thresholds starting from
4204 * current_threshold and check if a threshold is crossed.
4205 * If none of thresholds below usage is crossed, we read
4206 * only one element of the array here.
4207 */
4208 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4209 eventfd_signal(t->entries[i].eventfd, 1);
4210
4211 /* i = current_threshold + 1 */
4212 i++;
4213
4214 /*
4215 * Iterate forward over array of thresholds starting from
4216 * current_threshold+1 and check if a threshold is crossed.
4217 * If none of thresholds above usage is crossed, we read
4218 * only one element of the array here.
4219 */
4220 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4221 eventfd_signal(t->entries[i].eventfd, 1);
4222
4223 /* Update current_threshold */
5407a562 4224 t->current_threshold = i - 1;
2e72b634
KS
4225unlock:
4226 rcu_read_unlock();
4227}
4228
4229static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4230{
ad4ca5f4
KS
4231 while (memcg) {
4232 __mem_cgroup_threshold(memcg, false);
7941d214 4233 if (do_memsw_account())
ad4ca5f4
KS
4234 __mem_cgroup_threshold(memcg, true);
4235
4236 memcg = parent_mem_cgroup(memcg);
4237 }
2e72b634
KS
4238}
4239
4240static int compare_thresholds(const void *a, const void *b)
4241{
4242 const struct mem_cgroup_threshold *_a = a;
4243 const struct mem_cgroup_threshold *_b = b;
4244
2bff24a3
GT
4245 if (_a->threshold > _b->threshold)
4246 return 1;
4247
4248 if (_a->threshold < _b->threshold)
4249 return -1;
4250
4251 return 0;
2e72b634
KS
4252}
4253
c0ff4b85 4254static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4255{
4256 struct mem_cgroup_eventfd_list *ev;
4257
2bcf2e92
MH
4258 spin_lock(&memcg_oom_lock);
4259
c0ff4b85 4260 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4261 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4262
4263 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4264 return 0;
4265}
4266
c0ff4b85 4267static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4268{
7d74b06f
KH
4269 struct mem_cgroup *iter;
4270
c0ff4b85 4271 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4272 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4273}
4274
59b6f873 4275static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4276 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4277{
2c488db2
KS
4278 struct mem_cgroup_thresholds *thresholds;
4279 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4280 unsigned long threshold;
4281 unsigned long usage;
2c488db2 4282 int i, size, ret;
2e72b634 4283
650c5e56 4284 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4285 if (ret)
4286 return ret;
4287
4288 mutex_lock(&memcg->thresholds_lock);
2c488db2 4289
05b84301 4290 if (type == _MEM) {
2c488db2 4291 thresholds = &memcg->thresholds;
ce00a967 4292 usage = mem_cgroup_usage(memcg, false);
05b84301 4293 } else if (type == _MEMSWAP) {
2c488db2 4294 thresholds = &memcg->memsw_thresholds;
ce00a967 4295 usage = mem_cgroup_usage(memcg, true);
05b84301 4296 } else
2e72b634
KS
4297 BUG();
4298
2e72b634 4299 /* Check if a threshold crossed before adding a new one */
2c488db2 4300 if (thresholds->primary)
2e72b634
KS
4301 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4302
2c488db2 4303 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4304
4305 /* Allocate memory for new array of thresholds */
67b8046f 4306 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4307 if (!new) {
2e72b634
KS
4308 ret = -ENOMEM;
4309 goto unlock;
4310 }
2c488db2 4311 new->size = size;
2e72b634
KS
4312
4313 /* Copy thresholds (if any) to new array */
e90342e6
GS
4314 if (thresholds->primary)
4315 memcpy(new->entries, thresholds->primary->entries,
4316 flex_array_size(new, entries, size - 1));
2c488db2 4317
2e72b634 4318 /* Add new threshold */
2c488db2
KS
4319 new->entries[size - 1].eventfd = eventfd;
4320 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4321
4322 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4323 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4324 compare_thresholds, NULL);
4325
4326 /* Find current threshold */
2c488db2 4327 new->current_threshold = -1;
2e72b634 4328 for (i = 0; i < size; i++) {
748dad36 4329 if (new->entries[i].threshold <= usage) {
2e72b634 4330 /*
2c488db2
KS
4331 * new->current_threshold will not be used until
4332 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4333 * it here.
4334 */
2c488db2 4335 ++new->current_threshold;
748dad36
SZ
4336 } else
4337 break;
2e72b634
KS
4338 }
4339
2c488db2
KS
4340 /* Free old spare buffer and save old primary buffer as spare */
4341 kfree(thresholds->spare);
4342 thresholds->spare = thresholds->primary;
4343
4344 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4345
907860ed 4346 /* To be sure that nobody uses thresholds */
2e72b634
KS
4347 synchronize_rcu();
4348
2e72b634
KS
4349unlock:
4350 mutex_unlock(&memcg->thresholds_lock);
4351
4352 return ret;
4353}
4354
59b6f873 4355static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
59b6f873 4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4359}
4360
59b6f873 4361static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4362 struct eventfd_ctx *eventfd, const char *args)
4363{
59b6f873 4364 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4365}
4366
59b6f873 4367static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4368 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4369{
2c488db2
KS
4370 struct mem_cgroup_thresholds *thresholds;
4371 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4372 unsigned long usage;
7d36665a 4373 int i, j, size, entries;
2e72b634
KS
4374
4375 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4376
4377 if (type == _MEM) {
2c488db2 4378 thresholds = &memcg->thresholds;
ce00a967 4379 usage = mem_cgroup_usage(memcg, false);
05b84301 4380 } else if (type == _MEMSWAP) {
2c488db2 4381 thresholds = &memcg->memsw_thresholds;
ce00a967 4382 usage = mem_cgroup_usage(memcg, true);
05b84301 4383 } else
2e72b634
KS
4384 BUG();
4385
371528ca
AV
4386 if (!thresholds->primary)
4387 goto unlock;
4388
2e72b634
KS
4389 /* Check if a threshold crossed before removing */
4390 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4391
4392 /* Calculate new number of threshold */
7d36665a 4393 size = entries = 0;
2c488db2
KS
4394 for (i = 0; i < thresholds->primary->size; i++) {
4395 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4396 size++;
7d36665a
CX
4397 else
4398 entries++;
2e72b634
KS
4399 }
4400
2c488db2 4401 new = thresholds->spare;
907860ed 4402
7d36665a
CX
4403 /* If no items related to eventfd have been cleared, nothing to do */
4404 if (!entries)
4405 goto unlock;
4406
2e72b634
KS
4407 /* Set thresholds array to NULL if we don't have thresholds */
4408 if (!size) {
2c488db2
KS
4409 kfree(new);
4410 new = NULL;
907860ed 4411 goto swap_buffers;
2e72b634
KS
4412 }
4413
2c488db2 4414 new->size = size;
2e72b634
KS
4415
4416 /* Copy thresholds and find current threshold */
2c488db2
KS
4417 new->current_threshold = -1;
4418 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4419 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4420 continue;
4421
2c488db2 4422 new->entries[j] = thresholds->primary->entries[i];
748dad36 4423 if (new->entries[j].threshold <= usage) {
2e72b634 4424 /*
2c488db2 4425 * new->current_threshold will not be used
2e72b634
KS
4426 * until rcu_assign_pointer(), so it's safe to increment
4427 * it here.
4428 */
2c488db2 4429 ++new->current_threshold;
2e72b634
KS
4430 }
4431 j++;
4432 }
4433
907860ed 4434swap_buffers:
2c488db2
KS
4435 /* Swap primary and spare array */
4436 thresholds->spare = thresholds->primary;
8c757763 4437
2c488db2 4438 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4439
907860ed 4440 /* To be sure that nobody uses thresholds */
2e72b634 4441 synchronize_rcu();
6611d8d7
MC
4442
4443 /* If all events are unregistered, free the spare array */
4444 if (!new) {
4445 kfree(thresholds->spare);
4446 thresholds->spare = NULL;
4447 }
371528ca 4448unlock:
2e72b634 4449 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4450}
c1e862c1 4451
59b6f873 4452static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4453 struct eventfd_ctx *eventfd)
4454{
59b6f873 4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4456}
4457
59b6f873 4458static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4459 struct eventfd_ctx *eventfd)
4460{
59b6f873 4461 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4462}
4463
59b6f873 4464static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4465 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4466{
9490ff27 4467 struct mem_cgroup_eventfd_list *event;
9490ff27 4468
9490ff27
KH
4469 event = kmalloc(sizeof(*event), GFP_KERNEL);
4470 if (!event)
4471 return -ENOMEM;
4472
1af8efe9 4473 spin_lock(&memcg_oom_lock);
9490ff27
KH
4474
4475 event->eventfd = eventfd;
4476 list_add(&event->list, &memcg->oom_notify);
4477
4478 /* already in OOM ? */
c2b42d3c 4479 if (memcg->under_oom)
9490ff27 4480 eventfd_signal(eventfd, 1);
1af8efe9 4481 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4482
4483 return 0;
4484}
4485
59b6f873 4486static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4487 struct eventfd_ctx *eventfd)
9490ff27 4488{
9490ff27 4489 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4490
1af8efe9 4491 spin_lock(&memcg_oom_lock);
9490ff27 4492
c0ff4b85 4493 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4494 if (ev->eventfd == eventfd) {
4495 list_del(&ev->list);
4496 kfree(ev);
4497 }
4498 }
4499
1af8efe9 4500 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4501}
4502
2da8ca82 4503static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4504{
aa9694bb 4505 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4506
791badbd 4507 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4508 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4509 seq_printf(sf, "oom_kill %lu\n",
4510 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4511 return 0;
4512}
4513
182446d0 4514static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4515 struct cftype *cft, u64 val)
4516{
182446d0 4517 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4518
4519 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4520 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4521 return -EINVAL;
4522
c0ff4b85 4523 memcg->oom_kill_disable = val;
4d845ebf 4524 if (!val)
c0ff4b85 4525 memcg_oom_recover(memcg);
3dae7fec 4526
3c11ecf4
KH
4527 return 0;
4528}
4529
52ebea74
TH
4530#ifdef CONFIG_CGROUP_WRITEBACK
4531
3a8e9ac8
TH
4532#include <trace/events/writeback.h>
4533
841710aa
TH
4534static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4535{
4536 return wb_domain_init(&memcg->cgwb_domain, gfp);
4537}
4538
4539static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4540{
4541 wb_domain_exit(&memcg->cgwb_domain);
4542}
4543
2529bb3a
TH
4544static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545{
4546 wb_domain_size_changed(&memcg->cgwb_domain);
4547}
4548
841710aa
TH
4549struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4550{
4551 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4552
4553 if (!memcg->css.parent)
4554 return NULL;
4555
4556 return &memcg->cgwb_domain;
4557}
4558
0b3d6e6f
GT
4559/*
4560 * idx can be of type enum memcg_stat_item or node_stat_item.
4561 * Keep in sync with memcg_exact_page().
4562 */
4563static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4564{
871789d4 4565 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4566 int cpu;
4567
4568 for_each_online_cpu(cpu)
871789d4 4569 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4570 if (x < 0)
4571 x = 0;
4572 return x;
4573}
4574
c2aa723a
TH
4575/**
4576 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4577 * @wb: bdi_writeback in question
c5edf9cd
TH
4578 * @pfilepages: out parameter for number of file pages
4579 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4580 * @pdirty: out parameter for number of dirty pages
4581 * @pwriteback: out parameter for number of pages under writeback
4582 *
c5edf9cd
TH
4583 * Determine the numbers of file, headroom, dirty, and writeback pages in
4584 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4585 * is a bit more involved.
c2aa723a 4586 *
c5edf9cd
TH
4587 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4588 * headroom is calculated as the lowest headroom of itself and the
4589 * ancestors. Note that this doesn't consider the actual amount of
4590 * available memory in the system. The caller should further cap
4591 * *@pheadroom accordingly.
c2aa723a 4592 */
c5edf9cd
TH
4593void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4594 unsigned long *pheadroom, unsigned long *pdirty,
4595 unsigned long *pwriteback)
c2aa723a
TH
4596{
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4598 struct mem_cgroup *parent;
c2aa723a 4599
0b3d6e6f 4600 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4601
0b3d6e6f 4602 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4603 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4604 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4605 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4606
c2aa723a 4607 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4608 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4609 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4610 unsigned long used = page_counter_read(&memcg->memory);
4611
c5edf9cd 4612 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4613 memcg = parent;
4614 }
c2aa723a
TH
4615}
4616
97b27821
TH
4617/*
4618 * Foreign dirty flushing
4619 *
4620 * There's an inherent mismatch between memcg and writeback. The former
4621 * trackes ownership per-page while the latter per-inode. This was a
4622 * deliberate design decision because honoring per-page ownership in the
4623 * writeback path is complicated, may lead to higher CPU and IO overheads
4624 * and deemed unnecessary given that write-sharing an inode across
4625 * different cgroups isn't a common use-case.
4626 *
4627 * Combined with inode majority-writer ownership switching, this works well
4628 * enough in most cases but there are some pathological cases. For
4629 * example, let's say there are two cgroups A and B which keep writing to
4630 * different but confined parts of the same inode. B owns the inode and
4631 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4632 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4633 * triggering background writeback. A will be slowed down without a way to
4634 * make writeback of the dirty pages happen.
4635 *
4636 * Conditions like the above can lead to a cgroup getting repatedly and
4637 * severely throttled after making some progress after each
4638 * dirty_expire_interval while the underyling IO device is almost
4639 * completely idle.
4640 *
4641 * Solving this problem completely requires matching the ownership tracking
4642 * granularities between memcg and writeback in either direction. However,
4643 * the more egregious behaviors can be avoided by simply remembering the
4644 * most recent foreign dirtying events and initiating remote flushes on
4645 * them when local writeback isn't enough to keep the memory clean enough.
4646 *
4647 * The following two functions implement such mechanism. When a foreign
4648 * page - a page whose memcg and writeback ownerships don't match - is
4649 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4650 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4651 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4652 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4653 * foreign bdi_writebacks which haven't expired. Both the numbers of
4654 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4655 * limited to MEMCG_CGWB_FRN_CNT.
4656 *
4657 * The mechanism only remembers IDs and doesn't hold any object references.
4658 * As being wrong occasionally doesn't matter, updates and accesses to the
4659 * records are lockless and racy.
4660 */
4661void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4662 struct bdi_writeback *wb)
4663{
bcfe06bf 4664 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4665 struct memcg_cgwb_frn *frn;
4666 u64 now = get_jiffies_64();
4667 u64 oldest_at = now;
4668 int oldest = -1;
4669 int i;
4670
3a8e9ac8
TH
4671 trace_track_foreign_dirty(page, wb);
4672
97b27821
TH
4673 /*
4674 * Pick the slot to use. If there is already a slot for @wb, keep
4675 * using it. If not replace the oldest one which isn't being
4676 * written out.
4677 */
4678 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4679 frn = &memcg->cgwb_frn[i];
4680 if (frn->bdi_id == wb->bdi->id &&
4681 frn->memcg_id == wb->memcg_css->id)
4682 break;
4683 if (time_before64(frn->at, oldest_at) &&
4684 atomic_read(&frn->done.cnt) == 1) {
4685 oldest = i;
4686 oldest_at = frn->at;
4687 }
4688 }
4689
4690 if (i < MEMCG_CGWB_FRN_CNT) {
4691 /*
4692 * Re-using an existing one. Update timestamp lazily to
4693 * avoid making the cacheline hot. We want them to be
4694 * reasonably up-to-date and significantly shorter than
4695 * dirty_expire_interval as that's what expires the record.
4696 * Use the shorter of 1s and dirty_expire_interval / 8.
4697 */
4698 unsigned long update_intv =
4699 min_t(unsigned long, HZ,
4700 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4701
4702 if (time_before64(frn->at, now - update_intv))
4703 frn->at = now;
4704 } else if (oldest >= 0) {
4705 /* replace the oldest free one */
4706 frn = &memcg->cgwb_frn[oldest];
4707 frn->bdi_id = wb->bdi->id;
4708 frn->memcg_id = wb->memcg_css->id;
4709 frn->at = now;
4710 }
4711}
4712
4713/* issue foreign writeback flushes for recorded foreign dirtying events */
4714void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4715{
4716 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4717 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4718 u64 now = jiffies_64;
4719 int i;
4720
4721 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4722 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4723
4724 /*
4725 * If the record is older than dirty_expire_interval,
4726 * writeback on it has already started. No need to kick it
4727 * off again. Also, don't start a new one if there's
4728 * already one in flight.
4729 */
4730 if (time_after64(frn->at, now - intv) &&
4731 atomic_read(&frn->done.cnt) == 1) {
4732 frn->at = 0;
3a8e9ac8 4733 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4734 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4735 WB_REASON_FOREIGN_FLUSH,
4736 &frn->done);
4737 }
4738 }
4739}
4740
841710aa
TH
4741#else /* CONFIG_CGROUP_WRITEBACK */
4742
4743static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4744{
4745 return 0;
4746}
4747
4748static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4749{
4750}
4751
2529bb3a
TH
4752static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4753{
4754}
4755
52ebea74
TH
4756#endif /* CONFIG_CGROUP_WRITEBACK */
4757
3bc942f3
TH
4758/*
4759 * DO NOT USE IN NEW FILES.
4760 *
4761 * "cgroup.event_control" implementation.
4762 *
4763 * This is way over-engineered. It tries to support fully configurable
4764 * events for each user. Such level of flexibility is completely
4765 * unnecessary especially in the light of the planned unified hierarchy.
4766 *
4767 * Please deprecate this and replace with something simpler if at all
4768 * possible.
4769 */
4770
79bd9814
TH
4771/*
4772 * Unregister event and free resources.
4773 *
4774 * Gets called from workqueue.
4775 */
3bc942f3 4776static void memcg_event_remove(struct work_struct *work)
79bd9814 4777{
3bc942f3
TH
4778 struct mem_cgroup_event *event =
4779 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4780 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4781
4782 remove_wait_queue(event->wqh, &event->wait);
4783
59b6f873 4784 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4785
4786 /* Notify userspace the event is going away. */
4787 eventfd_signal(event->eventfd, 1);
4788
4789 eventfd_ctx_put(event->eventfd);
4790 kfree(event);
59b6f873 4791 css_put(&memcg->css);
79bd9814
TH
4792}
4793
4794/*
a9a08845 4795 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4796 *
4797 * Called with wqh->lock held and interrupts disabled.
4798 */
ac6424b9 4799static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4800 int sync, void *key)
79bd9814 4801{
3bc942f3
TH
4802 struct mem_cgroup_event *event =
4803 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4804 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4805 __poll_t flags = key_to_poll(key);
79bd9814 4806
a9a08845 4807 if (flags & EPOLLHUP) {
79bd9814
TH
4808 /*
4809 * If the event has been detached at cgroup removal, we
4810 * can simply return knowing the other side will cleanup
4811 * for us.
4812 *
4813 * We can't race against event freeing since the other
4814 * side will require wqh->lock via remove_wait_queue(),
4815 * which we hold.
4816 */
fba94807 4817 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4818 if (!list_empty(&event->list)) {
4819 list_del_init(&event->list);
4820 /*
4821 * We are in atomic context, but cgroup_event_remove()
4822 * may sleep, so we have to call it in workqueue.
4823 */
4824 schedule_work(&event->remove);
4825 }
fba94807 4826 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4827 }
4828
4829 return 0;
4830}
4831
3bc942f3 4832static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4833 wait_queue_head_t *wqh, poll_table *pt)
4834{
3bc942f3
TH
4835 struct mem_cgroup_event *event =
4836 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4837
4838 event->wqh = wqh;
4839 add_wait_queue(wqh, &event->wait);
4840}
4841
4842/*
3bc942f3
TH
4843 * DO NOT USE IN NEW FILES.
4844 *
79bd9814
TH
4845 * Parse input and register new cgroup event handler.
4846 *
4847 * Input must be in format '<event_fd> <control_fd> <args>'.
4848 * Interpretation of args is defined by control file implementation.
4849 */
451af504
TH
4850static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4851 char *buf, size_t nbytes, loff_t off)
79bd9814 4852{
451af504 4853 struct cgroup_subsys_state *css = of_css(of);
fba94807 4854 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4855 struct mem_cgroup_event *event;
79bd9814
TH
4856 struct cgroup_subsys_state *cfile_css;
4857 unsigned int efd, cfd;
4858 struct fd efile;
4859 struct fd cfile;
fba94807 4860 const char *name;
79bd9814
TH
4861 char *endp;
4862 int ret;
4863
451af504
TH
4864 buf = strstrip(buf);
4865
4866 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4867 if (*endp != ' ')
4868 return -EINVAL;
451af504 4869 buf = endp + 1;
79bd9814 4870
451af504 4871 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4872 if ((*endp != ' ') && (*endp != '\0'))
4873 return -EINVAL;
451af504 4874 buf = endp + 1;
79bd9814
TH
4875
4876 event = kzalloc(sizeof(*event), GFP_KERNEL);
4877 if (!event)
4878 return -ENOMEM;
4879
59b6f873 4880 event->memcg = memcg;
79bd9814 4881 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4882 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4883 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4884 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4885
4886 efile = fdget(efd);
4887 if (!efile.file) {
4888 ret = -EBADF;
4889 goto out_kfree;
4890 }
4891
4892 event->eventfd = eventfd_ctx_fileget(efile.file);
4893 if (IS_ERR(event->eventfd)) {
4894 ret = PTR_ERR(event->eventfd);
4895 goto out_put_efile;
4896 }
4897
4898 cfile = fdget(cfd);
4899 if (!cfile.file) {
4900 ret = -EBADF;
4901 goto out_put_eventfd;
4902 }
4903
4904 /* the process need read permission on control file */
4905 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4906 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4907 if (ret < 0)
4908 goto out_put_cfile;
4909
fba94807
TH
4910 /*
4911 * Determine the event callbacks and set them in @event. This used
4912 * to be done via struct cftype but cgroup core no longer knows
4913 * about these events. The following is crude but the whole thing
4914 * is for compatibility anyway.
3bc942f3
TH
4915 *
4916 * DO NOT ADD NEW FILES.
fba94807 4917 */
b583043e 4918 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4919
4920 if (!strcmp(name, "memory.usage_in_bytes")) {
4921 event->register_event = mem_cgroup_usage_register_event;
4922 event->unregister_event = mem_cgroup_usage_unregister_event;
4923 } else if (!strcmp(name, "memory.oom_control")) {
4924 event->register_event = mem_cgroup_oom_register_event;
4925 event->unregister_event = mem_cgroup_oom_unregister_event;
4926 } else if (!strcmp(name, "memory.pressure_level")) {
4927 event->register_event = vmpressure_register_event;
4928 event->unregister_event = vmpressure_unregister_event;
4929 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4930 event->register_event = memsw_cgroup_usage_register_event;
4931 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4932 } else {
4933 ret = -EINVAL;
4934 goto out_put_cfile;
4935 }
4936
79bd9814 4937 /*
b5557c4c
TH
4938 * Verify @cfile should belong to @css. Also, remaining events are
4939 * automatically removed on cgroup destruction but the removal is
4940 * asynchronous, so take an extra ref on @css.
79bd9814 4941 */
b583043e 4942 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4943 &memory_cgrp_subsys);
79bd9814 4944 ret = -EINVAL;
5a17f543 4945 if (IS_ERR(cfile_css))
79bd9814 4946 goto out_put_cfile;
5a17f543
TH
4947 if (cfile_css != css) {
4948 css_put(cfile_css);
79bd9814 4949 goto out_put_cfile;
5a17f543 4950 }
79bd9814 4951
451af504 4952 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4953 if (ret)
4954 goto out_put_css;
4955
9965ed17 4956 vfs_poll(efile.file, &event->pt);
79bd9814 4957
fba94807
TH
4958 spin_lock(&memcg->event_list_lock);
4959 list_add(&event->list, &memcg->event_list);
4960 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4961
4962 fdput(cfile);
4963 fdput(efile);
4964
451af504 4965 return nbytes;
79bd9814
TH
4966
4967out_put_css:
b5557c4c 4968 css_put(css);
79bd9814
TH
4969out_put_cfile:
4970 fdput(cfile);
4971out_put_eventfd:
4972 eventfd_ctx_put(event->eventfd);
4973out_put_efile:
4974 fdput(efile);
4975out_kfree:
4976 kfree(event);
4977
4978 return ret;
4979}
4980
241994ed 4981static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4982 {
0eea1030 4983 .name = "usage_in_bytes",
8c7c6e34 4984 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4985 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4986 },
c84872e1
PE
4987 {
4988 .name = "max_usage_in_bytes",
8c7c6e34 4989 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4990 .write = mem_cgroup_reset,
791badbd 4991 .read_u64 = mem_cgroup_read_u64,
c84872e1 4992 },
8cdea7c0 4993 {
0eea1030 4994 .name = "limit_in_bytes",
8c7c6e34 4995 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4996 .write = mem_cgroup_write,
791badbd 4997 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4998 },
296c81d8
BS
4999 {
5000 .name = "soft_limit_in_bytes",
5001 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5002 .write = mem_cgroup_write,
791badbd 5003 .read_u64 = mem_cgroup_read_u64,
296c81d8 5004 },
8cdea7c0
BS
5005 {
5006 .name = "failcnt",
8c7c6e34 5007 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5008 .write = mem_cgroup_reset,
791badbd 5009 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5010 },
d2ceb9b7
KH
5011 {
5012 .name = "stat",
2da8ca82 5013 .seq_show = memcg_stat_show,
d2ceb9b7 5014 },
c1e862c1
KH
5015 {
5016 .name = "force_empty",
6770c64e 5017 .write = mem_cgroup_force_empty_write,
c1e862c1 5018 },
18f59ea7
BS
5019 {
5020 .name = "use_hierarchy",
5021 .write_u64 = mem_cgroup_hierarchy_write,
5022 .read_u64 = mem_cgroup_hierarchy_read,
5023 },
79bd9814 5024 {
3bc942f3 5025 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5026 .write = memcg_write_event_control,
7dbdb199 5027 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5028 },
a7885eb8
KM
5029 {
5030 .name = "swappiness",
5031 .read_u64 = mem_cgroup_swappiness_read,
5032 .write_u64 = mem_cgroup_swappiness_write,
5033 },
7dc74be0
DN
5034 {
5035 .name = "move_charge_at_immigrate",
5036 .read_u64 = mem_cgroup_move_charge_read,
5037 .write_u64 = mem_cgroup_move_charge_write,
5038 },
9490ff27
KH
5039 {
5040 .name = "oom_control",
2da8ca82 5041 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5042 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5043 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5044 },
70ddf637
AV
5045 {
5046 .name = "pressure_level",
70ddf637 5047 },
406eb0c9
YH
5048#ifdef CONFIG_NUMA
5049 {
5050 .name = "numa_stat",
2da8ca82 5051 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5052 },
5053#endif
510fc4e1
GC
5054 {
5055 .name = "kmem.limit_in_bytes",
5056 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5057 .write = mem_cgroup_write,
791badbd 5058 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5059 },
5060 {
5061 .name = "kmem.usage_in_bytes",
5062 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5063 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5064 },
5065 {
5066 .name = "kmem.failcnt",
5067 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5068 .write = mem_cgroup_reset,
791badbd 5069 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5070 },
5071 {
5072 .name = "kmem.max_usage_in_bytes",
5073 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5074 .write = mem_cgroup_reset,
791badbd 5075 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5076 },
a87425a3
YS
5077#if defined(CONFIG_MEMCG_KMEM) && \
5078 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5079 {
5080 .name = "kmem.slabinfo",
b047501c 5081 .seq_show = memcg_slab_show,
749c5415
GC
5082 },
5083#endif
d55f90bf
VD
5084 {
5085 .name = "kmem.tcp.limit_in_bytes",
5086 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5087 .write = mem_cgroup_write,
5088 .read_u64 = mem_cgroup_read_u64,
5089 },
5090 {
5091 .name = "kmem.tcp.usage_in_bytes",
5092 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5093 .read_u64 = mem_cgroup_read_u64,
5094 },
5095 {
5096 .name = "kmem.tcp.failcnt",
5097 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5098 .write = mem_cgroup_reset,
5099 .read_u64 = mem_cgroup_read_u64,
5100 },
5101 {
5102 .name = "kmem.tcp.max_usage_in_bytes",
5103 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5104 .write = mem_cgroup_reset,
5105 .read_u64 = mem_cgroup_read_u64,
5106 },
6bc10349 5107 { }, /* terminate */
af36f906 5108};
8c7c6e34 5109
73f576c0
JW
5110/*
5111 * Private memory cgroup IDR
5112 *
5113 * Swap-out records and page cache shadow entries need to store memcg
5114 * references in constrained space, so we maintain an ID space that is
5115 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5116 * memory-controlled cgroups to 64k.
5117 *
b8f2935f 5118 * However, there usually are many references to the offline CSS after
73f576c0
JW
5119 * the cgroup has been destroyed, such as page cache or reclaimable
5120 * slab objects, that don't need to hang on to the ID. We want to keep
5121 * those dead CSS from occupying IDs, or we might quickly exhaust the
5122 * relatively small ID space and prevent the creation of new cgroups
5123 * even when there are much fewer than 64k cgroups - possibly none.
5124 *
5125 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5126 * be freed and recycled when it's no longer needed, which is usually
5127 * when the CSS is offlined.
5128 *
5129 * The only exception to that are records of swapped out tmpfs/shmem
5130 * pages that need to be attributed to live ancestors on swapin. But
5131 * those references are manageable from userspace.
5132 */
5133
5134static DEFINE_IDR(mem_cgroup_idr);
5135
7e97de0b
KT
5136static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5137{
5138 if (memcg->id.id > 0) {
5139 idr_remove(&mem_cgroup_idr, memcg->id.id);
5140 memcg->id.id = 0;
5141 }
5142}
5143
c1514c0a
VF
5144static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5145 unsigned int n)
73f576c0 5146{
1c2d479a 5147 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5148}
5149
615d66c3 5150static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5151{
1c2d479a 5152 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5153 mem_cgroup_id_remove(memcg);
73f576c0
JW
5154
5155 /* Memcg ID pins CSS */
5156 css_put(&memcg->css);
5157 }
5158}
5159
615d66c3
VD
5160static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5161{
5162 mem_cgroup_id_put_many(memcg, 1);
5163}
5164
73f576c0
JW
5165/**
5166 * mem_cgroup_from_id - look up a memcg from a memcg id
5167 * @id: the memcg id to look up
5168 *
5169 * Caller must hold rcu_read_lock().
5170 */
5171struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5172{
5173 WARN_ON_ONCE(!rcu_read_lock_held());
5174 return idr_find(&mem_cgroup_idr, id);
5175}
5176
ef8f2327 5177static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5178{
5179 struct mem_cgroup_per_node *pn;
ef8f2327 5180 int tmp = node;
1ecaab2b
KH
5181 /*
5182 * This routine is called against possible nodes.
5183 * But it's BUG to call kmalloc() against offline node.
5184 *
5185 * TODO: this routine can waste much memory for nodes which will
5186 * never be onlined. It's better to use memory hotplug callback
5187 * function.
5188 */
41e3355d
KH
5189 if (!node_state(node, N_NORMAL_MEMORY))
5190 tmp = -1;
17295c88 5191 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5192 if (!pn)
5193 return 1;
1ecaab2b 5194
3e38e0aa
RG
5195 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5196 GFP_KERNEL_ACCOUNT);
815744d7
JW
5197 if (!pn->lruvec_stat_local) {
5198 kfree(pn);
5199 return 1;
5200 }
5201
f3344adf 5202 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5203 GFP_KERNEL_ACCOUNT);
a983b5eb 5204 if (!pn->lruvec_stat_cpu) {
815744d7 5205 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5206 kfree(pn);
5207 return 1;
5208 }
5209
ef8f2327
MG
5210 lruvec_init(&pn->lruvec);
5211 pn->usage_in_excess = 0;
5212 pn->on_tree = false;
5213 pn->memcg = memcg;
5214
54f72fe0 5215 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5216 return 0;
5217}
5218
ef8f2327 5219static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5220{
00f3ca2c
JW
5221 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5222
4eaf431f
MH
5223 if (!pn)
5224 return;
5225
a983b5eb 5226 free_percpu(pn->lruvec_stat_cpu);
815744d7 5227 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5228 kfree(pn);
1ecaab2b
KH
5229}
5230
40e952f9 5231static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5232{
c8b2a36f 5233 int node;
59927fb9 5234
c8b2a36f 5235 for_each_node(node)
ef8f2327 5236 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5237 free_percpu(memcg->vmstats_percpu);
815744d7 5238 free_percpu(memcg->vmstats_local);
8ff69e2c 5239 kfree(memcg);
59927fb9 5240}
3afe36b1 5241
40e952f9
TE
5242static void mem_cgroup_free(struct mem_cgroup *memcg)
5243{
5244 memcg_wb_domain_exit(memcg);
7961eee3
SB
5245 /*
5246 * Flush percpu vmstats and vmevents to guarantee the value correctness
5247 * on parent's and all ancestor levels.
5248 */
4a87e2a2 5249 memcg_flush_percpu_vmstats(memcg);
7961eee3 5250 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5251 __mem_cgroup_free(memcg);
5252}
5253
0b8f73e1 5254static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5255{
d142e3e6 5256 struct mem_cgroup *memcg;
b9726c26 5257 unsigned int size;
6d12e2d8 5258 int node;
97b27821 5259 int __maybe_unused i;
11d67612 5260 long error = -ENOMEM;
8cdea7c0 5261
0b8f73e1
JW
5262 size = sizeof(struct mem_cgroup);
5263 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5264
5265 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5266 if (!memcg)
11d67612 5267 return ERR_PTR(error);
0b8f73e1 5268
73f576c0
JW
5269 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5270 1, MEM_CGROUP_ID_MAX,
5271 GFP_KERNEL);
11d67612
YS
5272 if (memcg->id.id < 0) {
5273 error = memcg->id.id;
73f576c0 5274 goto fail;
11d67612 5275 }
73f576c0 5276
3e38e0aa
RG
5277 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5278 GFP_KERNEL_ACCOUNT);
815744d7
JW
5279 if (!memcg->vmstats_local)
5280 goto fail;
5281
3e38e0aa
RG
5282 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5283 GFP_KERNEL_ACCOUNT);
871789d4 5284 if (!memcg->vmstats_percpu)
0b8f73e1 5285 goto fail;
78fb7466 5286
3ed28fa1 5287 for_each_node(node)
ef8f2327 5288 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5289 goto fail;
f64c3f54 5290
0b8f73e1
JW
5291 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5292 goto fail;
28dbc4b6 5293
f7e1cb6e 5294 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5295 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5296 mutex_init(&memcg->thresholds_lock);
5297 spin_lock_init(&memcg->move_lock);
70ddf637 5298 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5299 INIT_LIST_HEAD(&memcg->event_list);
5300 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5301 memcg->socket_pressure = jiffies;
84c07d11 5302#ifdef CONFIG_MEMCG_KMEM
900a38f0 5303 memcg->kmemcg_id = -1;
bf4f0599 5304 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5305#endif
52ebea74
TH
5306#ifdef CONFIG_CGROUP_WRITEBACK
5307 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5308 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5309 memcg->cgwb_frn[i].done =
5310 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5311#endif
5312#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5313 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5314 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5315 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5316#endif
73f576c0 5317 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5318 return memcg;
5319fail:
7e97de0b 5320 mem_cgroup_id_remove(memcg);
40e952f9 5321 __mem_cgroup_free(memcg);
11d67612 5322 return ERR_PTR(error);
d142e3e6
GC
5323}
5324
0b8f73e1
JW
5325static struct cgroup_subsys_state * __ref
5326mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5327{
0b8f73e1 5328 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5329 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5330 long error = -ENOMEM;
d142e3e6 5331
b87d8cef 5332 old_memcg = set_active_memcg(parent);
0b8f73e1 5333 memcg = mem_cgroup_alloc();
b87d8cef 5334 set_active_memcg(old_memcg);
11d67612
YS
5335 if (IS_ERR(memcg))
5336 return ERR_CAST(memcg);
d142e3e6 5337
d1663a90 5338 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5339 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5340 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5341 if (parent) {
5342 memcg->swappiness = mem_cgroup_swappiness(parent);
5343 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5344
3e32cb2e 5345 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5346 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5347 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5348 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5349 } else {
bef8620c
RG
5350 page_counter_init(&memcg->memory, NULL);
5351 page_counter_init(&memcg->swap, NULL);
5352 page_counter_init(&memcg->kmem, NULL);
5353 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5354
0b8f73e1
JW
5355 root_mem_cgroup = memcg;
5356 return &memcg->css;
5357 }
5358
bef8620c 5359 /* The following stuff does not apply to the root */
b313aeee 5360 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5361 if (error)
5362 goto fail;
127424c8 5363
f7e1cb6e 5364 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5365 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5366
0b8f73e1
JW
5367 return &memcg->css;
5368fail:
7e97de0b 5369 mem_cgroup_id_remove(memcg);
0b8f73e1 5370 mem_cgroup_free(memcg);
11d67612 5371 return ERR_PTR(error);
0b8f73e1
JW
5372}
5373
73f576c0 5374static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5375{
58fa2a55
VD
5376 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5377
0a4465d3
KT
5378 /*
5379 * A memcg must be visible for memcg_expand_shrinker_maps()
5380 * by the time the maps are allocated. So, we allocate maps
5381 * here, when for_each_mem_cgroup() can't skip it.
5382 */
5383 if (memcg_alloc_shrinker_maps(memcg)) {
5384 mem_cgroup_id_remove(memcg);
5385 return -ENOMEM;
5386 }
5387
73f576c0 5388 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5389 refcount_set(&memcg->id.ref, 1);
73f576c0 5390 css_get(css);
2f7dd7a4 5391 return 0;
8cdea7c0
BS
5392}
5393
eb95419b 5394static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5395{
eb95419b 5396 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5397 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5398
5399 /*
5400 * Unregister events and notify userspace.
5401 * Notify userspace about cgroup removing only after rmdir of cgroup
5402 * directory to avoid race between userspace and kernelspace.
5403 */
fba94807
TH
5404 spin_lock(&memcg->event_list_lock);
5405 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5406 list_del_init(&event->list);
5407 schedule_work(&event->remove);
5408 }
fba94807 5409 spin_unlock(&memcg->event_list_lock);
ec64f515 5410
bf8d5d52 5411 page_counter_set_min(&memcg->memory, 0);
23067153 5412 page_counter_set_low(&memcg->memory, 0);
63677c74 5413
567e9ab2 5414 memcg_offline_kmem(memcg);
52ebea74 5415 wb_memcg_offline(memcg);
73f576c0 5416
591edfb1
RG
5417 drain_all_stock(memcg);
5418
73f576c0 5419 mem_cgroup_id_put(memcg);
df878fb0
KH
5420}
5421
6df38689
VD
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426 invalidate_reclaim_iterators(memcg);
5427}
5428
eb95419b 5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5430{
eb95419b 5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5432 int __maybe_unused i;
c268e994 5433
97b27821
TH
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
f7e1cb6e 5438 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5439 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5440
0db15298 5441 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5442 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5443
0b8f73e1
JW
5444 vmpressure_cleanup(&memcg->vmpressure);
5445 cancel_work_sync(&memcg->high_work);
5446 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5447 memcg_free_shrinker_maps(memcg);
d886f4e4 5448 memcg_free_kmem(memcg);
0b8f73e1 5449 mem_cgroup_free(memcg);
8cdea7c0
BS
5450}
5451
1ced953b
TH
5452/**
5453 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5454 * @css: the target css
5455 *
5456 * Reset the states of the mem_cgroup associated with @css. This is
5457 * invoked when the userland requests disabling on the default hierarchy
5458 * but the memcg is pinned through dependency. The memcg should stop
5459 * applying policies and should revert to the vanilla state as it may be
5460 * made visible again.
5461 *
5462 * The current implementation only resets the essential configurations.
5463 * This needs to be expanded to cover all the visible parts.
5464 */
5465static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5466{
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5468
bbec2e15
RG
5469 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5470 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5471 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5472 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5473 page_counter_set_min(&memcg->memory, 0);
23067153 5474 page_counter_set_low(&memcg->memory, 0);
d1663a90 5475 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5476 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5477 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5478 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5479}
5480
02491447 5481#ifdef CONFIG_MMU
7dc74be0 5482/* Handlers for move charge at task migration. */
854ffa8d 5483static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5484{
05b84301 5485 int ret;
9476db97 5486
d0164adc
MG
5487 /* Try a single bulk charge without reclaim first, kswapd may wake */
5488 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5489 if (!ret) {
854ffa8d 5490 mc.precharge += count;
854ffa8d
DN
5491 return ret;
5492 }
9476db97 5493
3674534b 5494 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5495 while (count--) {
3674534b 5496 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5497 if (ret)
38c5d72f 5498 return ret;
854ffa8d 5499 mc.precharge++;
9476db97 5500 cond_resched();
854ffa8d 5501 }
9476db97 5502 return 0;
4ffef5fe
DN
5503}
5504
4ffef5fe
DN
5505union mc_target {
5506 struct page *page;
02491447 5507 swp_entry_t ent;
4ffef5fe
DN
5508};
5509
4ffef5fe 5510enum mc_target_type {
8d32ff84 5511 MC_TARGET_NONE = 0,
4ffef5fe 5512 MC_TARGET_PAGE,
02491447 5513 MC_TARGET_SWAP,
c733a828 5514 MC_TARGET_DEVICE,
4ffef5fe
DN
5515};
5516
90254a65
DN
5517static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5518 unsigned long addr, pte_t ptent)
4ffef5fe 5519{
25b2995a 5520 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5521
90254a65
DN
5522 if (!page || !page_mapped(page))
5523 return NULL;
5524 if (PageAnon(page)) {
1dfab5ab 5525 if (!(mc.flags & MOVE_ANON))
90254a65 5526 return NULL;
1dfab5ab
JW
5527 } else {
5528 if (!(mc.flags & MOVE_FILE))
5529 return NULL;
5530 }
90254a65
DN
5531 if (!get_page_unless_zero(page))
5532 return NULL;
5533
5534 return page;
5535}
5536
c733a828 5537#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5538static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5539 pte_t ptent, swp_entry_t *entry)
90254a65 5540{
90254a65
DN
5541 struct page *page = NULL;
5542 swp_entry_t ent = pte_to_swp_entry(ptent);
5543
9a137153 5544 if (!(mc.flags & MOVE_ANON))
90254a65 5545 return NULL;
c733a828
JG
5546
5547 /*
5548 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5549 * a device and because they are not accessible by CPU they are store
5550 * as special swap entry in the CPU page table.
5551 */
5552 if (is_device_private_entry(ent)) {
5553 page = device_private_entry_to_page(ent);
5554 /*
5555 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5556 * a refcount of 1 when free (unlike normal page)
5557 */
5558 if (!page_ref_add_unless(page, 1, 1))
5559 return NULL;
5560 return page;
5561 }
5562
9a137153
RC
5563 if (non_swap_entry(ent))
5564 return NULL;
5565
4b91355e
KH
5566 /*
5567 * Because lookup_swap_cache() updates some statistics counter,
5568 * we call find_get_page() with swapper_space directly.
5569 */
f6ab1f7f 5570 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5571 entry->val = ent.val;
90254a65
DN
5572
5573 return page;
5574}
4b91355e
KH
5575#else
5576static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5577 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5578{
5579 return NULL;
5580}
5581#endif
90254a65 5582
87946a72
DN
5583static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5584 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5585{
87946a72
DN
5586 if (!vma->vm_file) /* anonymous vma */
5587 return NULL;
1dfab5ab 5588 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5589 return NULL;
5590
87946a72 5591 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5592 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5593 return find_get_incore_page(vma->vm_file->f_mapping,
5594 linear_page_index(vma, addr));
87946a72
DN
5595}
5596
b1b0deab
CG
5597/**
5598 * mem_cgroup_move_account - move account of the page
5599 * @page: the page
25843c2b 5600 * @compound: charge the page as compound or small page
b1b0deab
CG
5601 * @from: mem_cgroup which the page is moved from.
5602 * @to: mem_cgroup which the page is moved to. @from != @to.
5603 *
3ac808fd 5604 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5605 *
5606 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5607 * from old cgroup.
5608 */
5609static int mem_cgroup_move_account(struct page *page,
f627c2f5 5610 bool compound,
b1b0deab
CG
5611 struct mem_cgroup *from,
5612 struct mem_cgroup *to)
5613{
ae8af438
KK
5614 struct lruvec *from_vec, *to_vec;
5615 struct pglist_data *pgdat;
6c357848 5616 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5617 int ret;
5618
5619 VM_BUG_ON(from == to);
5620 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5621 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5622
5623 /*
6a93ca8f 5624 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5625 * page's memory cgroup of its source page while we change it.
b1b0deab 5626 */
f627c2f5 5627 ret = -EBUSY;
b1b0deab
CG
5628 if (!trylock_page(page))
5629 goto out;
5630
5631 ret = -EINVAL;
bcfe06bf 5632 if (page_memcg(page) != from)
b1b0deab
CG
5633 goto out_unlock;
5634
ae8af438 5635 pgdat = page_pgdat(page);
867e5e1d
JW
5636 from_vec = mem_cgroup_lruvec(from, pgdat);
5637 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5638
abb242f5 5639 lock_page_memcg(page);
b1b0deab 5640
be5d0a74
JW
5641 if (PageAnon(page)) {
5642 if (page_mapped(page)) {
5643 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5645 if (PageTransHuge(page)) {
69473e5d
MS
5646 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5647 -nr_pages);
5648 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5649 nr_pages);
468c3982 5650 }
be5d0a74
JW
5651 }
5652 } else {
0d1c2072
JW
5653 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5654 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5655
5656 if (PageSwapBacked(page)) {
5657 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5658 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5659 }
5660
49e50d27
JW
5661 if (page_mapped(page)) {
5662 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5663 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5664 }
b1b0deab 5665
49e50d27
JW
5666 if (PageDirty(page)) {
5667 struct address_space *mapping = page_mapping(page);
c4843a75 5668
f56753ac 5669 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5670 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5671 -nr_pages);
5672 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5673 nr_pages);
5674 }
c4843a75
GT
5675 }
5676 }
5677
b1b0deab 5678 if (PageWriteback(page)) {
ae8af438
KK
5679 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5680 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5681 }
5682
5683 /*
abb242f5
JW
5684 * All state has been migrated, let's switch to the new memcg.
5685 *
bcfe06bf 5686 * It is safe to change page's memcg here because the page
abb242f5
JW
5687 * is referenced, charged, isolated, and locked: we can't race
5688 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5689 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5690 *
5691 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5692 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5693 * new memcg that isn't locked, the above state can change
5694 * concurrently again. Make sure we're truly done with it.
b1b0deab 5695 */
abb242f5 5696 smp_mb();
b1b0deab 5697
1a3e1f40
JW
5698 css_get(&to->css);
5699 css_put(&from->css);
5700
bcfe06bf 5701 page->memcg_data = (unsigned long)to;
87eaceb3 5702
abb242f5 5703 __unlock_page_memcg(from);
b1b0deab
CG
5704
5705 ret = 0;
5706
5707 local_irq_disable();
3fba69a5 5708 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5709 memcg_check_events(to, page);
3fba69a5 5710 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5711 memcg_check_events(from, page);
5712 local_irq_enable();
5713out_unlock:
5714 unlock_page(page);
5715out:
5716 return ret;
5717}
5718
7cf7806c
LR
5719/**
5720 * get_mctgt_type - get target type of moving charge
5721 * @vma: the vma the pte to be checked belongs
5722 * @addr: the address corresponding to the pte to be checked
5723 * @ptent: the pte to be checked
5724 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5725 *
5726 * Returns
5727 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5728 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5729 * move charge. if @target is not NULL, the page is stored in target->page
5730 * with extra refcnt got(Callers should handle it).
5731 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5732 * target for charge migration. if @target is not NULL, the entry is stored
5733 * in target->ent.
25b2995a
CH
5734 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5735 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5736 * For now we such page is charge like a regular page would be as for all
5737 * intent and purposes it is just special memory taking the place of a
5738 * regular page.
c733a828
JG
5739 *
5740 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5741 *
5742 * Called with pte lock held.
5743 */
5744
8d32ff84 5745static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5746 unsigned long addr, pte_t ptent, union mc_target *target)
5747{
5748 struct page *page = NULL;
8d32ff84 5749 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5750 swp_entry_t ent = { .val = 0 };
5751
5752 if (pte_present(ptent))
5753 page = mc_handle_present_pte(vma, addr, ptent);
5754 else if (is_swap_pte(ptent))
48406ef8 5755 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5756 else if (pte_none(ptent))
87946a72 5757 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5758
5759 if (!page && !ent.val)
8d32ff84 5760 return ret;
02491447 5761 if (page) {
02491447 5762 /*
0a31bc97 5763 * Do only loose check w/o serialization.
1306a85a 5764 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5765 * not under LRU exclusion.
02491447 5766 */
bcfe06bf 5767 if (page_memcg(page) == mc.from) {
02491447 5768 ret = MC_TARGET_PAGE;
25b2995a 5769 if (is_device_private_page(page))
c733a828 5770 ret = MC_TARGET_DEVICE;
02491447
DN
5771 if (target)
5772 target->page = page;
5773 }
5774 if (!ret || !target)
5775 put_page(page);
5776 }
3e14a57b
HY
5777 /*
5778 * There is a swap entry and a page doesn't exist or isn't charged.
5779 * But we cannot move a tail-page in a THP.
5780 */
5781 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5782 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5783 ret = MC_TARGET_SWAP;
5784 if (target)
5785 target->ent = ent;
4ffef5fe 5786 }
4ffef5fe
DN
5787 return ret;
5788}
5789
12724850
NH
5790#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5791/*
d6810d73
HY
5792 * We don't consider PMD mapped swapping or file mapped pages because THP does
5793 * not support them for now.
12724850
NH
5794 * Caller should make sure that pmd_trans_huge(pmd) is true.
5795 */
5796static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5797 unsigned long addr, pmd_t pmd, union mc_target *target)
5798{
5799 struct page *page = NULL;
12724850
NH
5800 enum mc_target_type ret = MC_TARGET_NONE;
5801
84c3fc4e
ZY
5802 if (unlikely(is_swap_pmd(pmd))) {
5803 VM_BUG_ON(thp_migration_supported() &&
5804 !is_pmd_migration_entry(pmd));
5805 return ret;
5806 }
12724850 5807 page = pmd_page(pmd);
309381fe 5808 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5809 if (!(mc.flags & MOVE_ANON))
12724850 5810 return ret;
bcfe06bf 5811 if (page_memcg(page) == mc.from) {
12724850
NH
5812 ret = MC_TARGET_PAGE;
5813 if (target) {
5814 get_page(page);
5815 target->page = page;
5816 }
5817 }
5818 return ret;
5819}
5820#else
5821static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5822 unsigned long addr, pmd_t pmd, union mc_target *target)
5823{
5824 return MC_TARGET_NONE;
5825}
5826#endif
5827
4ffef5fe
DN
5828static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5829 unsigned long addr, unsigned long end,
5830 struct mm_walk *walk)
5831{
26bcd64a 5832 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5833 pte_t *pte;
5834 spinlock_t *ptl;
5835
b6ec57f4
KS
5836 ptl = pmd_trans_huge_lock(pmd, vma);
5837 if (ptl) {
c733a828
JG
5838 /*
5839 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5840 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5841 * this might change.
c733a828 5842 */
12724850
NH
5843 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5844 mc.precharge += HPAGE_PMD_NR;
bf929152 5845 spin_unlock(ptl);
1a5a9906 5846 return 0;
12724850 5847 }
03319327 5848
45f83cef
AA
5849 if (pmd_trans_unstable(pmd))
5850 return 0;
4ffef5fe
DN
5851 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5852 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5853 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5854 mc.precharge++; /* increment precharge temporarily */
5855 pte_unmap_unlock(pte - 1, ptl);
5856 cond_resched();
5857
7dc74be0
DN
5858 return 0;
5859}
5860
7b86ac33
CH
5861static const struct mm_walk_ops precharge_walk_ops = {
5862 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5863};
5864
4ffef5fe
DN
5865static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5866{
5867 unsigned long precharge;
4ffef5fe 5868
d8ed45c5 5869 mmap_read_lock(mm);
7b86ac33 5870 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5871 mmap_read_unlock(mm);
4ffef5fe
DN
5872
5873 precharge = mc.precharge;
5874 mc.precharge = 0;
5875
5876 return precharge;
5877}
5878
4ffef5fe
DN
5879static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5880{
dfe076b0
DN
5881 unsigned long precharge = mem_cgroup_count_precharge(mm);
5882
5883 VM_BUG_ON(mc.moving_task);
5884 mc.moving_task = current;
5885 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5886}
5887
dfe076b0
DN
5888/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5889static void __mem_cgroup_clear_mc(void)
4ffef5fe 5890{
2bd9bb20
KH
5891 struct mem_cgroup *from = mc.from;
5892 struct mem_cgroup *to = mc.to;
5893
4ffef5fe 5894 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5895 if (mc.precharge) {
00501b53 5896 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5897 mc.precharge = 0;
5898 }
5899 /*
5900 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5901 * we must uncharge here.
5902 */
5903 if (mc.moved_charge) {
00501b53 5904 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5905 mc.moved_charge = 0;
4ffef5fe 5906 }
483c30b5
DN
5907 /* we must fixup refcnts and charges */
5908 if (mc.moved_swap) {
483c30b5 5909 /* uncharge swap account from the old cgroup */
ce00a967 5910 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5911 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5912
615d66c3
VD
5913 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5914
05b84301 5915 /*
3e32cb2e
JW
5916 * we charged both to->memory and to->memsw, so we
5917 * should uncharge to->memory.
05b84301 5918 */
ce00a967 5919 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5920 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5921
483c30b5
DN
5922 mc.moved_swap = 0;
5923 }
dfe076b0
DN
5924 memcg_oom_recover(from);
5925 memcg_oom_recover(to);
5926 wake_up_all(&mc.waitq);
5927}
5928
5929static void mem_cgroup_clear_mc(void)
5930{
264a0ae1
TH
5931 struct mm_struct *mm = mc.mm;
5932
dfe076b0
DN
5933 /*
5934 * we must clear moving_task before waking up waiters at the end of
5935 * task migration.
5936 */
5937 mc.moving_task = NULL;
5938 __mem_cgroup_clear_mc();
2bd9bb20 5939 spin_lock(&mc.lock);
4ffef5fe
DN
5940 mc.from = NULL;
5941 mc.to = NULL;
264a0ae1 5942 mc.mm = NULL;
2bd9bb20 5943 spin_unlock(&mc.lock);
264a0ae1
TH
5944
5945 mmput(mm);
4ffef5fe
DN
5946}
5947
1f7dd3e5 5948static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5949{
1f7dd3e5 5950 struct cgroup_subsys_state *css;
eed67d75 5951 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5952 struct mem_cgroup *from;
4530eddb 5953 struct task_struct *leader, *p;
9f2115f9 5954 struct mm_struct *mm;
1dfab5ab 5955 unsigned long move_flags;
9f2115f9 5956 int ret = 0;
7dc74be0 5957
1f7dd3e5
TH
5958 /* charge immigration isn't supported on the default hierarchy */
5959 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5960 return 0;
5961
4530eddb
TH
5962 /*
5963 * Multi-process migrations only happen on the default hierarchy
5964 * where charge immigration is not used. Perform charge
5965 * immigration if @tset contains a leader and whine if there are
5966 * multiple.
5967 */
5968 p = NULL;
1f7dd3e5 5969 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5970 WARN_ON_ONCE(p);
5971 p = leader;
1f7dd3e5 5972 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5973 }
5974 if (!p)
5975 return 0;
5976
1f7dd3e5
TH
5977 /*
5978 * We are now commited to this value whatever it is. Changes in this
5979 * tunable will only affect upcoming migrations, not the current one.
5980 * So we need to save it, and keep it going.
5981 */
5982 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5983 if (!move_flags)
5984 return 0;
5985
9f2115f9
TH
5986 from = mem_cgroup_from_task(p);
5987
5988 VM_BUG_ON(from == memcg);
5989
5990 mm = get_task_mm(p);
5991 if (!mm)
5992 return 0;
5993 /* We move charges only when we move a owner of the mm */
5994 if (mm->owner == p) {
5995 VM_BUG_ON(mc.from);
5996 VM_BUG_ON(mc.to);
5997 VM_BUG_ON(mc.precharge);
5998 VM_BUG_ON(mc.moved_charge);
5999 VM_BUG_ON(mc.moved_swap);
6000
6001 spin_lock(&mc.lock);
264a0ae1 6002 mc.mm = mm;
9f2115f9
TH
6003 mc.from = from;
6004 mc.to = memcg;
6005 mc.flags = move_flags;
6006 spin_unlock(&mc.lock);
6007 /* We set mc.moving_task later */
6008
6009 ret = mem_cgroup_precharge_mc(mm);
6010 if (ret)
6011 mem_cgroup_clear_mc();
264a0ae1
TH
6012 } else {
6013 mmput(mm);
7dc74be0
DN
6014 }
6015 return ret;
6016}
6017
1f7dd3e5 6018static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6019{
4e2f245d
JW
6020 if (mc.to)
6021 mem_cgroup_clear_mc();
7dc74be0
DN
6022}
6023
4ffef5fe
DN
6024static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6025 unsigned long addr, unsigned long end,
6026 struct mm_walk *walk)
7dc74be0 6027{
4ffef5fe 6028 int ret = 0;
26bcd64a 6029 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6030 pte_t *pte;
6031 spinlock_t *ptl;
12724850
NH
6032 enum mc_target_type target_type;
6033 union mc_target target;
6034 struct page *page;
4ffef5fe 6035
b6ec57f4
KS
6036 ptl = pmd_trans_huge_lock(pmd, vma);
6037 if (ptl) {
62ade86a 6038 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6039 spin_unlock(ptl);
12724850
NH
6040 return 0;
6041 }
6042 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6043 if (target_type == MC_TARGET_PAGE) {
6044 page = target.page;
6045 if (!isolate_lru_page(page)) {
f627c2f5 6046 if (!mem_cgroup_move_account(page, true,
1306a85a 6047 mc.from, mc.to)) {
12724850
NH
6048 mc.precharge -= HPAGE_PMD_NR;
6049 mc.moved_charge += HPAGE_PMD_NR;
6050 }
6051 putback_lru_page(page);
6052 }
6053 put_page(page);
c733a828
JG
6054 } else if (target_type == MC_TARGET_DEVICE) {
6055 page = target.page;
6056 if (!mem_cgroup_move_account(page, true,
6057 mc.from, mc.to)) {
6058 mc.precharge -= HPAGE_PMD_NR;
6059 mc.moved_charge += HPAGE_PMD_NR;
6060 }
6061 put_page(page);
12724850 6062 }
bf929152 6063 spin_unlock(ptl);
1a5a9906 6064 return 0;
12724850
NH
6065 }
6066
45f83cef
AA
6067 if (pmd_trans_unstable(pmd))
6068 return 0;
4ffef5fe
DN
6069retry:
6070 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6071 for (; addr != end; addr += PAGE_SIZE) {
6072 pte_t ptent = *(pte++);
c733a828 6073 bool device = false;
02491447 6074 swp_entry_t ent;
4ffef5fe
DN
6075
6076 if (!mc.precharge)
6077 break;
6078
8d32ff84 6079 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6080 case MC_TARGET_DEVICE:
6081 device = true;
e4a9bc58 6082 fallthrough;
4ffef5fe
DN
6083 case MC_TARGET_PAGE:
6084 page = target.page;
53f9263b
KS
6085 /*
6086 * We can have a part of the split pmd here. Moving it
6087 * can be done but it would be too convoluted so simply
6088 * ignore such a partial THP and keep it in original
6089 * memcg. There should be somebody mapping the head.
6090 */
6091 if (PageTransCompound(page))
6092 goto put;
c733a828 6093 if (!device && isolate_lru_page(page))
4ffef5fe 6094 goto put;
f627c2f5
KS
6095 if (!mem_cgroup_move_account(page, false,
6096 mc.from, mc.to)) {
4ffef5fe 6097 mc.precharge--;
854ffa8d
DN
6098 /* we uncharge from mc.from later. */
6099 mc.moved_charge++;
4ffef5fe 6100 }
c733a828
JG
6101 if (!device)
6102 putback_lru_page(page);
8d32ff84 6103put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6104 put_page(page);
6105 break;
02491447
DN
6106 case MC_TARGET_SWAP:
6107 ent = target.ent;
e91cbb42 6108 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6109 mc.precharge--;
8d22a935
HD
6110 mem_cgroup_id_get_many(mc.to, 1);
6111 /* we fixup other refcnts and charges later. */
483c30b5
DN
6112 mc.moved_swap++;
6113 }
02491447 6114 break;
4ffef5fe
DN
6115 default:
6116 break;
6117 }
6118 }
6119 pte_unmap_unlock(pte - 1, ptl);
6120 cond_resched();
6121
6122 if (addr != end) {
6123 /*
6124 * We have consumed all precharges we got in can_attach().
6125 * We try charge one by one, but don't do any additional
6126 * charges to mc.to if we have failed in charge once in attach()
6127 * phase.
6128 */
854ffa8d 6129 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6130 if (!ret)
6131 goto retry;
6132 }
6133
6134 return ret;
6135}
6136
7b86ac33
CH
6137static const struct mm_walk_ops charge_walk_ops = {
6138 .pmd_entry = mem_cgroup_move_charge_pte_range,
6139};
6140
264a0ae1 6141static void mem_cgroup_move_charge(void)
4ffef5fe 6142{
4ffef5fe 6143 lru_add_drain_all();
312722cb 6144 /*
81f8c3a4
JW
6145 * Signal lock_page_memcg() to take the memcg's move_lock
6146 * while we're moving its pages to another memcg. Then wait
6147 * for already started RCU-only updates to finish.
312722cb
JW
6148 */
6149 atomic_inc(&mc.from->moving_account);
6150 synchronize_rcu();
dfe076b0 6151retry:
d8ed45c5 6152 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6153 /*
c1e8d7c6 6154 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6155 * waitq. So we cancel all extra charges, wake up all waiters,
6156 * and retry. Because we cancel precharges, we might not be able
6157 * to move enough charges, but moving charge is a best-effort
6158 * feature anyway, so it wouldn't be a big problem.
6159 */
6160 __mem_cgroup_clear_mc();
6161 cond_resched();
6162 goto retry;
6163 }
26bcd64a
NH
6164 /*
6165 * When we have consumed all precharges and failed in doing
6166 * additional charge, the page walk just aborts.
6167 */
7b86ac33
CH
6168 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6169 NULL);
0247f3f4 6170
d8ed45c5 6171 mmap_read_unlock(mc.mm);
312722cb 6172 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6173}
6174
264a0ae1 6175static void mem_cgroup_move_task(void)
67e465a7 6176{
264a0ae1
TH
6177 if (mc.to) {
6178 mem_cgroup_move_charge();
a433658c 6179 mem_cgroup_clear_mc();
264a0ae1 6180 }
67e465a7 6181}
5cfb80a7 6182#else /* !CONFIG_MMU */
1f7dd3e5 6183static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6184{
6185 return 0;
6186}
1f7dd3e5 6187static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6188{
6189}
264a0ae1 6190static void mem_cgroup_move_task(void)
5cfb80a7
DN
6191{
6192}
6193#endif
67e465a7 6194
677dc973
CD
6195static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6196{
6197 if (value == PAGE_COUNTER_MAX)
6198 seq_puts(m, "max\n");
6199 else
6200 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6201
6202 return 0;
6203}
6204
241994ed
JW
6205static u64 memory_current_read(struct cgroup_subsys_state *css,
6206 struct cftype *cft)
6207{
f5fc3c5d
JW
6208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6209
6210 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6211}
6212
bf8d5d52
RG
6213static int memory_min_show(struct seq_file *m, void *v)
6214{
677dc973
CD
6215 return seq_puts_memcg_tunable(m,
6216 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6217}
6218
6219static ssize_t memory_min_write(struct kernfs_open_file *of,
6220 char *buf, size_t nbytes, loff_t off)
6221{
6222 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6223 unsigned long min;
6224 int err;
6225
6226 buf = strstrip(buf);
6227 err = page_counter_memparse(buf, "max", &min);
6228 if (err)
6229 return err;
6230
6231 page_counter_set_min(&memcg->memory, min);
6232
6233 return nbytes;
6234}
6235
241994ed
JW
6236static int memory_low_show(struct seq_file *m, void *v)
6237{
677dc973
CD
6238 return seq_puts_memcg_tunable(m,
6239 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6240}
6241
6242static ssize_t memory_low_write(struct kernfs_open_file *of,
6243 char *buf, size_t nbytes, loff_t off)
6244{
6245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6246 unsigned long low;
6247 int err;
6248
6249 buf = strstrip(buf);
d2973697 6250 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6251 if (err)
6252 return err;
6253
23067153 6254 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6255
6256 return nbytes;
6257}
6258
6259static int memory_high_show(struct seq_file *m, void *v)
6260{
d1663a90
JK
6261 return seq_puts_memcg_tunable(m,
6262 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6263}
6264
6265static ssize_t memory_high_write(struct kernfs_open_file *of,
6266 char *buf, size_t nbytes, loff_t off)
6267{
6268 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6269 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6270 bool drained = false;
241994ed
JW
6271 unsigned long high;
6272 int err;
6273
6274 buf = strstrip(buf);
d2973697 6275 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6276 if (err)
6277 return err;
6278
e82553c1
JW
6279 page_counter_set_high(&memcg->memory, high);
6280
8c8c383c
JW
6281 for (;;) {
6282 unsigned long nr_pages = page_counter_read(&memcg->memory);
6283 unsigned long reclaimed;
6284
6285 if (nr_pages <= high)
6286 break;
6287
6288 if (signal_pending(current))
6289 break;
6290
6291 if (!drained) {
6292 drain_all_stock(memcg);
6293 drained = true;
6294 continue;
6295 }
6296
6297 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6298 GFP_KERNEL, true);
6299
6300 if (!reclaimed && !nr_retries--)
6301 break;
6302 }
588083bb 6303
19ce33ac 6304 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6305 return nbytes;
6306}
6307
6308static int memory_max_show(struct seq_file *m, void *v)
6309{
677dc973
CD
6310 return seq_puts_memcg_tunable(m,
6311 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6312}
6313
6314static ssize_t memory_max_write(struct kernfs_open_file *of,
6315 char *buf, size_t nbytes, loff_t off)
6316{
6317 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6318 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6319 bool drained = false;
241994ed
JW
6320 unsigned long max;
6321 int err;
6322
6323 buf = strstrip(buf);
d2973697 6324 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6325 if (err)
6326 return err;
6327
bbec2e15 6328 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6329
6330 for (;;) {
6331 unsigned long nr_pages = page_counter_read(&memcg->memory);
6332
6333 if (nr_pages <= max)
6334 break;
6335
7249c9f0 6336 if (signal_pending(current))
b6e6edcf 6337 break;
b6e6edcf
JW
6338
6339 if (!drained) {
6340 drain_all_stock(memcg);
6341 drained = true;
6342 continue;
6343 }
6344
6345 if (nr_reclaims) {
6346 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6347 GFP_KERNEL, true))
6348 nr_reclaims--;
6349 continue;
6350 }
6351
e27be240 6352 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6353 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6354 break;
6355 }
241994ed 6356
2529bb3a 6357 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6358 return nbytes;
6359}
6360
1e577f97
SB
6361static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6362{
6363 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6364 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6365 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6366 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6367 seq_printf(m, "oom_kill %lu\n",
6368 atomic_long_read(&events[MEMCG_OOM_KILL]));
6369}
6370
241994ed
JW
6371static int memory_events_show(struct seq_file *m, void *v)
6372{
aa9694bb 6373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6374
1e577f97
SB
6375 __memory_events_show(m, memcg->memory_events);
6376 return 0;
6377}
6378
6379static int memory_events_local_show(struct seq_file *m, void *v)
6380{
6381 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6382
1e577f97 6383 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6384 return 0;
6385}
6386
587d9f72
JW
6387static int memory_stat_show(struct seq_file *m, void *v)
6388{
aa9694bb 6389 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6390 char *buf;
1ff9e6e1 6391
c8713d0b
JW
6392 buf = memory_stat_format(memcg);
6393 if (!buf)
6394 return -ENOMEM;
6395 seq_puts(m, buf);
6396 kfree(buf);
587d9f72
JW
6397 return 0;
6398}
6399
5f9a4f4a 6400#ifdef CONFIG_NUMA
fff66b79
MS
6401static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6402 int item)
6403{
6404 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6405}
6406
5f9a4f4a
MS
6407static int memory_numa_stat_show(struct seq_file *m, void *v)
6408{
6409 int i;
6410 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6411
6412 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6413 int nid;
6414
6415 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6416 continue;
6417
6418 seq_printf(m, "%s", memory_stats[i].name);
6419 for_each_node_state(nid, N_MEMORY) {
6420 u64 size;
6421 struct lruvec *lruvec;
6422
6423 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6424 size = lruvec_page_state_output(lruvec,
6425 memory_stats[i].idx);
5f9a4f4a
MS
6426 seq_printf(m, " N%d=%llu", nid, size);
6427 }
6428 seq_putc(m, '\n');
6429 }
6430
6431 return 0;
6432}
6433#endif
6434
3d8b38eb
RG
6435static int memory_oom_group_show(struct seq_file *m, void *v)
6436{
aa9694bb 6437 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6438
6439 seq_printf(m, "%d\n", memcg->oom_group);
6440
6441 return 0;
6442}
6443
6444static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6445 char *buf, size_t nbytes, loff_t off)
6446{
6447 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6448 int ret, oom_group;
6449
6450 buf = strstrip(buf);
6451 if (!buf)
6452 return -EINVAL;
6453
6454 ret = kstrtoint(buf, 0, &oom_group);
6455 if (ret)
6456 return ret;
6457
6458 if (oom_group != 0 && oom_group != 1)
6459 return -EINVAL;
6460
6461 memcg->oom_group = oom_group;
6462
6463 return nbytes;
6464}
6465
241994ed
JW
6466static struct cftype memory_files[] = {
6467 {
6468 .name = "current",
f5fc3c5d 6469 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6470 .read_u64 = memory_current_read,
6471 },
bf8d5d52
RG
6472 {
6473 .name = "min",
6474 .flags = CFTYPE_NOT_ON_ROOT,
6475 .seq_show = memory_min_show,
6476 .write = memory_min_write,
6477 },
241994ed
JW
6478 {
6479 .name = "low",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .seq_show = memory_low_show,
6482 .write = memory_low_write,
6483 },
6484 {
6485 .name = "high",
6486 .flags = CFTYPE_NOT_ON_ROOT,
6487 .seq_show = memory_high_show,
6488 .write = memory_high_write,
6489 },
6490 {
6491 .name = "max",
6492 .flags = CFTYPE_NOT_ON_ROOT,
6493 .seq_show = memory_max_show,
6494 .write = memory_max_write,
6495 },
6496 {
6497 .name = "events",
6498 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6499 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6500 .seq_show = memory_events_show,
6501 },
1e577f97
SB
6502 {
6503 .name = "events.local",
6504 .flags = CFTYPE_NOT_ON_ROOT,
6505 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6506 .seq_show = memory_events_local_show,
6507 },
587d9f72
JW
6508 {
6509 .name = "stat",
587d9f72
JW
6510 .seq_show = memory_stat_show,
6511 },
5f9a4f4a
MS
6512#ifdef CONFIG_NUMA
6513 {
6514 .name = "numa_stat",
6515 .seq_show = memory_numa_stat_show,
6516 },
6517#endif
3d8b38eb
RG
6518 {
6519 .name = "oom.group",
6520 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6521 .seq_show = memory_oom_group_show,
6522 .write = memory_oom_group_write,
6523 },
241994ed
JW
6524 { } /* terminate */
6525};
6526
073219e9 6527struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6528 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6529 .css_online = mem_cgroup_css_online,
92fb9748 6530 .css_offline = mem_cgroup_css_offline,
6df38689 6531 .css_released = mem_cgroup_css_released,
92fb9748 6532 .css_free = mem_cgroup_css_free,
1ced953b 6533 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6534 .can_attach = mem_cgroup_can_attach,
6535 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6536 .post_attach = mem_cgroup_move_task,
241994ed
JW
6537 .dfl_cftypes = memory_files,
6538 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6539 .early_init = 0,
8cdea7c0 6540};
c077719b 6541
bc50bcc6
JW
6542/*
6543 * This function calculates an individual cgroup's effective
6544 * protection which is derived from its own memory.min/low, its
6545 * parent's and siblings' settings, as well as the actual memory
6546 * distribution in the tree.
6547 *
6548 * The following rules apply to the effective protection values:
6549 *
6550 * 1. At the first level of reclaim, effective protection is equal to
6551 * the declared protection in memory.min and memory.low.
6552 *
6553 * 2. To enable safe delegation of the protection configuration, at
6554 * subsequent levels the effective protection is capped to the
6555 * parent's effective protection.
6556 *
6557 * 3. To make complex and dynamic subtrees easier to configure, the
6558 * user is allowed to overcommit the declared protection at a given
6559 * level. If that is the case, the parent's effective protection is
6560 * distributed to the children in proportion to how much protection
6561 * they have declared and how much of it they are utilizing.
6562 *
6563 * This makes distribution proportional, but also work-conserving:
6564 * if one cgroup claims much more protection than it uses memory,
6565 * the unused remainder is available to its siblings.
6566 *
6567 * 4. Conversely, when the declared protection is undercommitted at a
6568 * given level, the distribution of the larger parental protection
6569 * budget is NOT proportional. A cgroup's protection from a sibling
6570 * is capped to its own memory.min/low setting.
6571 *
8a931f80
JW
6572 * 5. However, to allow protecting recursive subtrees from each other
6573 * without having to declare each individual cgroup's fixed share
6574 * of the ancestor's claim to protection, any unutilized -
6575 * "floating" - protection from up the tree is distributed in
6576 * proportion to each cgroup's *usage*. This makes the protection
6577 * neutral wrt sibling cgroups and lets them compete freely over
6578 * the shared parental protection budget, but it protects the
6579 * subtree as a whole from neighboring subtrees.
6580 *
6581 * Note that 4. and 5. are not in conflict: 4. is about protecting
6582 * against immediate siblings whereas 5. is about protecting against
6583 * neighboring subtrees.
bc50bcc6
JW
6584 */
6585static unsigned long effective_protection(unsigned long usage,
8a931f80 6586 unsigned long parent_usage,
bc50bcc6
JW
6587 unsigned long setting,
6588 unsigned long parent_effective,
6589 unsigned long siblings_protected)
6590{
6591 unsigned long protected;
8a931f80 6592 unsigned long ep;
bc50bcc6
JW
6593
6594 protected = min(usage, setting);
6595 /*
6596 * If all cgroups at this level combined claim and use more
6597 * protection then what the parent affords them, distribute
6598 * shares in proportion to utilization.
6599 *
6600 * We are using actual utilization rather than the statically
6601 * claimed protection in order to be work-conserving: claimed
6602 * but unused protection is available to siblings that would
6603 * otherwise get a smaller chunk than what they claimed.
6604 */
6605 if (siblings_protected > parent_effective)
6606 return protected * parent_effective / siblings_protected;
6607
6608 /*
6609 * Ok, utilized protection of all children is within what the
6610 * parent affords them, so we know whatever this child claims
6611 * and utilizes is effectively protected.
6612 *
6613 * If there is unprotected usage beyond this value, reclaim
6614 * will apply pressure in proportion to that amount.
6615 *
6616 * If there is unutilized protection, the cgroup will be fully
6617 * shielded from reclaim, but we do return a smaller value for
6618 * protection than what the group could enjoy in theory. This
6619 * is okay. With the overcommit distribution above, effective
6620 * protection is always dependent on how memory is actually
6621 * consumed among the siblings anyway.
6622 */
8a931f80
JW
6623 ep = protected;
6624
6625 /*
6626 * If the children aren't claiming (all of) the protection
6627 * afforded to them by the parent, distribute the remainder in
6628 * proportion to the (unprotected) memory of each cgroup. That
6629 * way, cgroups that aren't explicitly prioritized wrt each
6630 * other compete freely over the allowance, but they are
6631 * collectively protected from neighboring trees.
6632 *
6633 * We're using unprotected memory for the weight so that if
6634 * some cgroups DO claim explicit protection, we don't protect
6635 * the same bytes twice.
cd324edc
JW
6636 *
6637 * Check both usage and parent_usage against the respective
6638 * protected values. One should imply the other, but they
6639 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6640 */
6641 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6642 return ep;
cd324edc
JW
6643 if (parent_effective > siblings_protected &&
6644 parent_usage > siblings_protected &&
6645 usage > protected) {
8a931f80
JW
6646 unsigned long unclaimed;
6647
6648 unclaimed = parent_effective - siblings_protected;
6649 unclaimed *= usage - protected;
6650 unclaimed /= parent_usage - siblings_protected;
6651
6652 ep += unclaimed;
6653 }
6654
6655 return ep;
bc50bcc6
JW
6656}
6657
241994ed 6658/**
bf8d5d52 6659 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6660 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6661 * @memcg: the memory cgroup to check
6662 *
23067153
RG
6663 * WARNING: This function is not stateless! It can only be used as part
6664 * of a top-down tree iteration, not for isolated queries.
241994ed 6665 */
45c7f7e1
CD
6666void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6667 struct mem_cgroup *memcg)
241994ed 6668{
8a931f80 6669 unsigned long usage, parent_usage;
23067153
RG
6670 struct mem_cgroup *parent;
6671
241994ed 6672 if (mem_cgroup_disabled())
45c7f7e1 6673 return;
241994ed 6674
34c81057
SC
6675 if (!root)
6676 root = root_mem_cgroup;
22f7496f
YS
6677
6678 /*
6679 * Effective values of the reclaim targets are ignored so they
6680 * can be stale. Have a look at mem_cgroup_protection for more
6681 * details.
6682 * TODO: calculation should be more robust so that we do not need
6683 * that special casing.
6684 */
34c81057 6685 if (memcg == root)
45c7f7e1 6686 return;
241994ed 6687
23067153 6688 usage = page_counter_read(&memcg->memory);
bf8d5d52 6689 if (!usage)
45c7f7e1 6690 return;
bf8d5d52 6691
bf8d5d52 6692 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6693 /* No parent means a non-hierarchical mode on v1 memcg */
6694 if (!parent)
45c7f7e1 6695 return;
df2a4196 6696
bc50bcc6 6697 if (parent == root) {
c3d53200 6698 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6699 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6700 return;
bf8d5d52
RG
6701 }
6702
8a931f80
JW
6703 parent_usage = page_counter_read(&parent->memory);
6704
b3a7822e 6705 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6706 READ_ONCE(memcg->memory.min),
6707 READ_ONCE(parent->memory.emin),
b3a7822e 6708 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6709
b3a7822e 6710 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6711 READ_ONCE(memcg->memory.low),
6712 READ_ONCE(parent->memory.elow),
b3a7822e 6713 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6714}
6715
00501b53 6716/**
f0e45fb4 6717 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6718 * @page: page to charge
6719 * @mm: mm context of the victim
6720 * @gfp_mask: reclaim mode
00501b53
JW
6721 *
6722 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6723 * pages according to @gfp_mask if necessary.
6724 *
f0e45fb4 6725 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6726 */
d9eb1ea2 6727int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6728{
6c357848 6729 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6730 struct mem_cgroup *memcg = NULL;
00501b53
JW
6731 int ret = 0;
6732
6733 if (mem_cgroup_disabled())
6734 goto out;
6735
6736 if (PageSwapCache(page)) {
2d1c4980
JW
6737 swp_entry_t ent = { .val = page_private(page), };
6738 unsigned short id;
6739
00501b53
JW
6740 /*
6741 * Every swap fault against a single page tries to charge the
6742 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6743 * already charged pages, too. page and memcg binding is
6744 * protected by the page lock, which serializes swap cache
6745 * removal, which in turn serializes uncharging.
00501b53 6746 */
e993d905 6747 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6748 if (page_memcg(compound_head(page)))
00501b53 6749 goto out;
e993d905 6750
2d1c4980
JW
6751 id = lookup_swap_cgroup_id(ent);
6752 rcu_read_lock();
6753 memcg = mem_cgroup_from_id(id);
6754 if (memcg && !css_tryget_online(&memcg->css))
6755 memcg = NULL;
6756 rcu_read_unlock();
00501b53
JW
6757 }
6758
00501b53
JW
6759 if (!memcg)
6760 memcg = get_mem_cgroup_from_mm(mm);
6761
6762 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6763 if (ret)
6764 goto out_put;
00501b53 6765
1a3e1f40 6766 css_get(&memcg->css);
d9eb1ea2 6767 commit_charge(page, memcg);
6abb5a86 6768
6abb5a86 6769 local_irq_disable();
3fba69a5 6770 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6771 memcg_check_events(memcg, page);
6772 local_irq_enable();
00501b53 6773
2d1c4980 6774 if (PageSwapCache(page)) {
00501b53
JW
6775 swp_entry_t entry = { .val = page_private(page) };
6776 /*
6777 * The swap entry might not get freed for a long time,
6778 * let's not wait for it. The page already received a
6779 * memory+swap charge, drop the swap entry duplicate.
6780 */
38d8b4e6 6781 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6782 }
00501b53 6783
f0e45fb4
JW
6784out_put:
6785 css_put(&memcg->css);
6786out:
6787 return ret;
3fea5a49
JW
6788}
6789
a9d5adee
JG
6790struct uncharge_gather {
6791 struct mem_cgroup *memcg;
9f762dbe 6792 unsigned long nr_pages;
a9d5adee 6793 unsigned long pgpgout;
a9d5adee 6794 unsigned long nr_kmem;
a9d5adee
JG
6795 struct page *dummy_page;
6796};
6797
6798static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6799{
a9d5adee
JG
6800 memset(ug, 0, sizeof(*ug));
6801}
6802
6803static void uncharge_batch(const struct uncharge_gather *ug)
6804{
747db954
JW
6805 unsigned long flags;
6806
a9d5adee 6807 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6808 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6809 if (do_memsw_account())
9f762dbe 6810 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6811 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6812 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6813 memcg_oom_recover(ug->memcg);
ce00a967 6814 }
747db954
JW
6815
6816 local_irq_save(flags);
c9019e9b 6817 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6818 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6819 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6820 local_irq_restore(flags);
f1796544
MH
6821
6822 /* drop reference from uncharge_page */
6823 css_put(&ug->memcg->css);
a9d5adee
JG
6824}
6825
6826static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6827{
9f762dbe
JW
6828 unsigned long nr_pages;
6829
a9d5adee 6830 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6831
bcfe06bf 6832 if (!page_memcg(page))
a9d5adee
JG
6833 return;
6834
6835 /*
6836 * Nobody should be changing or seriously looking at
bcfe06bf 6837 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6838 * exclusive access to the page.
6839 */
6840
bcfe06bf 6841 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6842 if (ug->memcg) {
6843 uncharge_batch(ug);
6844 uncharge_gather_clear(ug);
6845 }
bcfe06bf 6846 ug->memcg = page_memcg(page);
f1796544
MH
6847
6848 /* pairs with css_put in uncharge_batch */
6849 css_get(&ug->memcg->css);
a9d5adee
JG
6850 }
6851
9f762dbe
JW
6852 nr_pages = compound_nr(page);
6853 ug->nr_pages += nr_pages;
a9d5adee 6854
18b2db3b 6855 if (PageMemcgKmem(page))
9f762dbe 6856 ug->nr_kmem += nr_pages;
18b2db3b
RG
6857 else
6858 ug->pgpgout++;
a9d5adee
JG
6859
6860 ug->dummy_page = page;
bcfe06bf 6861 page->memcg_data = 0;
1a3e1f40 6862 css_put(&ug->memcg->css);
747db954
JW
6863}
6864
6865static void uncharge_list(struct list_head *page_list)
6866{
a9d5adee 6867 struct uncharge_gather ug;
747db954 6868 struct list_head *next;
a9d5adee
JG
6869
6870 uncharge_gather_clear(&ug);
747db954 6871
8b592656
JW
6872 /*
6873 * Note that the list can be a single page->lru; hence the
6874 * do-while loop instead of a simple list_for_each_entry().
6875 */
747db954
JW
6876 next = page_list->next;
6877 do {
a9d5adee
JG
6878 struct page *page;
6879
747db954
JW
6880 page = list_entry(next, struct page, lru);
6881 next = page->lru.next;
6882
a9d5adee 6883 uncharge_page(page, &ug);
747db954
JW
6884 } while (next != page_list);
6885
a9d5adee
JG
6886 if (ug.memcg)
6887 uncharge_batch(&ug);
747db954
JW
6888}
6889
0a31bc97
JW
6890/**
6891 * mem_cgroup_uncharge - uncharge a page
6892 * @page: page to uncharge
6893 *
f0e45fb4 6894 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6895 */
6896void mem_cgroup_uncharge(struct page *page)
6897{
a9d5adee
JG
6898 struct uncharge_gather ug;
6899
0a31bc97
JW
6900 if (mem_cgroup_disabled())
6901 return;
6902
747db954 6903 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6904 if (!page_memcg(page))
0a31bc97
JW
6905 return;
6906
a9d5adee
JG
6907 uncharge_gather_clear(&ug);
6908 uncharge_page(page, &ug);
6909 uncharge_batch(&ug);
747db954 6910}
0a31bc97 6911
747db954
JW
6912/**
6913 * mem_cgroup_uncharge_list - uncharge a list of page
6914 * @page_list: list of pages to uncharge
6915 *
6916 * Uncharge a list of pages previously charged with
f0e45fb4 6917 * mem_cgroup_charge().
747db954
JW
6918 */
6919void mem_cgroup_uncharge_list(struct list_head *page_list)
6920{
6921 if (mem_cgroup_disabled())
6922 return;
0a31bc97 6923
747db954
JW
6924 if (!list_empty(page_list))
6925 uncharge_list(page_list);
0a31bc97
JW
6926}
6927
6928/**
6a93ca8f
JW
6929 * mem_cgroup_migrate - charge a page's replacement
6930 * @oldpage: currently circulating page
6931 * @newpage: replacement page
0a31bc97 6932 *
6a93ca8f
JW
6933 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6934 * be uncharged upon free.
0a31bc97
JW
6935 *
6936 * Both pages must be locked, @newpage->mapping must be set up.
6937 */
6a93ca8f 6938void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6939{
29833315 6940 struct mem_cgroup *memcg;
44b7a8d3 6941 unsigned int nr_pages;
d93c4130 6942 unsigned long flags;
0a31bc97
JW
6943
6944 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6945 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6946 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6947 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6948 newpage);
0a31bc97
JW
6949
6950 if (mem_cgroup_disabled())
6951 return;
6952
6953 /* Page cache replacement: new page already charged? */
bcfe06bf 6954 if (page_memcg(newpage))
0a31bc97
JW
6955 return;
6956
bcfe06bf 6957 memcg = page_memcg(oldpage);
a4055888 6958 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6959 if (!memcg)
0a31bc97
JW
6960 return;
6961
44b7a8d3 6962 /* Force-charge the new page. The old one will be freed soon */
6c357848 6963 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6964
6965 page_counter_charge(&memcg->memory, nr_pages);
6966 if (do_memsw_account())
6967 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6968
1a3e1f40 6969 css_get(&memcg->css);
d9eb1ea2 6970 commit_charge(newpage, memcg);
44b7a8d3 6971
d93c4130 6972 local_irq_save(flags);
3fba69a5 6973 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6974 memcg_check_events(memcg, newpage);
d93c4130 6975 local_irq_restore(flags);
0a31bc97
JW
6976}
6977
ef12947c 6978DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6979EXPORT_SYMBOL(memcg_sockets_enabled_key);
6980
2d758073 6981void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6982{
6983 struct mem_cgroup *memcg;
6984
2d758073
JW
6985 if (!mem_cgroup_sockets_enabled)
6986 return;
6987
e876ecc6
SB
6988 /* Do not associate the sock with unrelated interrupted task's memcg. */
6989 if (in_interrupt())
6990 return;
6991
11092087
JW
6992 rcu_read_lock();
6993 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6994 if (memcg == root_mem_cgroup)
6995 goto out;
0db15298 6996 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6997 goto out;
8965aa28 6998 if (css_tryget(&memcg->css))
11092087 6999 sk->sk_memcg = memcg;
f7e1cb6e 7000out:
11092087
JW
7001 rcu_read_unlock();
7002}
11092087 7003
2d758073 7004void mem_cgroup_sk_free(struct sock *sk)
11092087 7005{
2d758073
JW
7006 if (sk->sk_memcg)
7007 css_put(&sk->sk_memcg->css);
11092087
JW
7008}
7009
7010/**
7011 * mem_cgroup_charge_skmem - charge socket memory
7012 * @memcg: memcg to charge
7013 * @nr_pages: number of pages to charge
7014 *
7015 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7016 * @memcg's configured limit, %false if the charge had to be forced.
7017 */
7018bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7019{
f7e1cb6e 7020 gfp_t gfp_mask = GFP_KERNEL;
11092087 7021
f7e1cb6e 7022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7023 struct page_counter *fail;
f7e1cb6e 7024
0db15298
JW
7025 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7026 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7027 return true;
7028 }
0db15298
JW
7029 page_counter_charge(&memcg->tcpmem, nr_pages);
7030 memcg->tcpmem_pressure = 1;
f7e1cb6e 7031 return false;
11092087 7032 }
d886f4e4 7033
f7e1cb6e
JW
7034 /* Don't block in the packet receive path */
7035 if (in_softirq())
7036 gfp_mask = GFP_NOWAIT;
7037
c9019e9b 7038 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7039
f7e1cb6e
JW
7040 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7041 return true;
7042
7043 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7044 return false;
7045}
7046
7047/**
7048 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7049 * @memcg: memcg to uncharge
7050 * @nr_pages: number of pages to uncharge
11092087
JW
7051 */
7052void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7053{
f7e1cb6e 7054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7055 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7056 return;
7057 }
d886f4e4 7058
c9019e9b 7059 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7060
475d0487 7061 refill_stock(memcg, nr_pages);
11092087
JW
7062}
7063
f7e1cb6e
JW
7064static int __init cgroup_memory(char *s)
7065{
7066 char *token;
7067
7068 while ((token = strsep(&s, ",")) != NULL) {
7069 if (!*token)
7070 continue;
7071 if (!strcmp(token, "nosocket"))
7072 cgroup_memory_nosocket = true;
04823c83
VD
7073 if (!strcmp(token, "nokmem"))
7074 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7075 }
7076 return 0;
7077}
7078__setup("cgroup.memory=", cgroup_memory);
11092087 7079
2d11085e 7080/*
1081312f
MH
7081 * subsys_initcall() for memory controller.
7082 *
308167fc
SAS
7083 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7084 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7085 * basically everything that doesn't depend on a specific mem_cgroup structure
7086 * should be initialized from here.
2d11085e
MH
7087 */
7088static int __init mem_cgroup_init(void)
7089{
95a045f6
JW
7090 int cpu, node;
7091
f3344adf
MS
7092 /*
7093 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7094 * used for per-memcg-per-cpu caching of per-node statistics. In order
7095 * to work fine, we should make sure that the overfill threshold can't
7096 * exceed S32_MAX / PAGE_SIZE.
7097 */
7098 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7099
308167fc
SAS
7100 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7101 memcg_hotplug_cpu_dead);
95a045f6
JW
7102
7103 for_each_possible_cpu(cpu)
7104 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7105 drain_local_stock);
7106
7107 for_each_node(node) {
7108 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7109
7110 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7111 node_online(node) ? node : NUMA_NO_NODE);
7112
ef8f2327 7113 rtpn->rb_root = RB_ROOT;
fa90b2fd 7114 rtpn->rb_rightmost = NULL;
ef8f2327 7115 spin_lock_init(&rtpn->lock);
95a045f6
JW
7116 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7117 }
7118
2d11085e
MH
7119 return 0;
7120}
7121subsys_initcall(mem_cgroup_init);
21afa38e
JW
7122
7123#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7124static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7125{
1c2d479a 7126 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7127 /*
7128 * The root cgroup cannot be destroyed, so it's refcount must
7129 * always be >= 1.
7130 */
7131 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7132 VM_BUG_ON(1);
7133 break;
7134 }
7135 memcg = parent_mem_cgroup(memcg);
7136 if (!memcg)
7137 memcg = root_mem_cgroup;
7138 }
7139 return memcg;
7140}
7141
21afa38e
JW
7142/**
7143 * mem_cgroup_swapout - transfer a memsw charge to swap
7144 * @page: page whose memsw charge to transfer
7145 * @entry: swap entry to move the charge to
7146 *
7147 * Transfer the memsw charge of @page to @entry.
7148 */
7149void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7150{
1f47b61f 7151 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7152 unsigned int nr_entries;
21afa38e
JW
7153 unsigned short oldid;
7154
7155 VM_BUG_ON_PAGE(PageLRU(page), page);
7156 VM_BUG_ON_PAGE(page_count(page), page);
7157
76358ab5
AS
7158 if (mem_cgroup_disabled())
7159 return;
7160
2d1c4980 7161 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7162 return;
7163
bcfe06bf 7164 memcg = page_memcg(page);
21afa38e 7165
a4055888 7166 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7167 if (!memcg)
7168 return;
7169
1f47b61f
VD
7170 /*
7171 * In case the memcg owning these pages has been offlined and doesn't
7172 * have an ID allocated to it anymore, charge the closest online
7173 * ancestor for the swap instead and transfer the memory+swap charge.
7174 */
7175 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7176 nr_entries = thp_nr_pages(page);
d6810d73
HY
7177 /* Get references for the tail pages, too */
7178 if (nr_entries > 1)
7179 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7180 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7181 nr_entries);
21afa38e 7182 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7183 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7184
bcfe06bf 7185 page->memcg_data = 0;
21afa38e
JW
7186
7187 if (!mem_cgroup_is_root(memcg))
d6810d73 7188 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7189
2d1c4980 7190 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7191 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7192 page_counter_charge(&swap_memcg->memsw, nr_entries);
7193 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7194 }
7195
ce9ce665
SAS
7196 /*
7197 * Interrupts should be disabled here because the caller holds the
b93b0163 7198 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7199 * important here to have the interrupts disabled because it is the
b93b0163 7200 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7201 */
7202 VM_BUG_ON(!irqs_disabled());
3fba69a5 7203 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7204 memcg_check_events(memcg, page);
73f576c0 7205
1a3e1f40 7206 css_put(&memcg->css);
21afa38e
JW
7207}
7208
38d8b4e6
HY
7209/**
7210 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7211 * @page: page being added to swap
7212 * @entry: swap entry to charge
7213 *
38d8b4e6 7214 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7215 *
7216 * Returns 0 on success, -ENOMEM on failure.
7217 */
7218int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7219{
6c357848 7220 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7221 struct page_counter *counter;
38d8b4e6 7222 struct mem_cgroup *memcg;
37e84351
VD
7223 unsigned short oldid;
7224
76358ab5
AS
7225 if (mem_cgroup_disabled())
7226 return 0;
7227
2d1c4980 7228 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7229 return 0;
7230
bcfe06bf 7231 memcg = page_memcg(page);
37e84351 7232
a4055888 7233 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7234 if (!memcg)
7235 return 0;
7236
f3a53a3a
TH
7237 if (!entry.val) {
7238 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7239 return 0;
f3a53a3a 7240 }
bb98f2c5 7241
1f47b61f
VD
7242 memcg = mem_cgroup_id_get_online(memcg);
7243
2d1c4980 7244 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7245 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7246 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7247 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7248 mem_cgroup_id_put(memcg);
37e84351 7249 return -ENOMEM;
1f47b61f 7250 }
37e84351 7251
38d8b4e6
HY
7252 /* Get references for the tail pages, too */
7253 if (nr_pages > 1)
7254 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7255 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7256 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7257 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7258
37e84351
VD
7259 return 0;
7260}
7261
21afa38e 7262/**
38d8b4e6 7263 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7264 * @entry: swap entry to uncharge
38d8b4e6 7265 * @nr_pages: the amount of swap space to uncharge
21afa38e 7266 */
38d8b4e6 7267void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7268{
7269 struct mem_cgroup *memcg;
7270 unsigned short id;
7271
38d8b4e6 7272 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7273 rcu_read_lock();
adbe427b 7274 memcg = mem_cgroup_from_id(id);
21afa38e 7275 if (memcg) {
2d1c4980 7276 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7278 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7279 else
38d8b4e6 7280 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7281 }
c9019e9b 7282 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7283 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7284 }
7285 rcu_read_unlock();
7286}
7287
d8b38438
VD
7288long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7289{
7290 long nr_swap_pages = get_nr_swap_pages();
7291
eccb52e7 7292 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7293 return nr_swap_pages;
7294 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7295 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7296 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7297 page_counter_read(&memcg->swap));
7298 return nr_swap_pages;
7299}
7300
5ccc5aba
VD
7301bool mem_cgroup_swap_full(struct page *page)
7302{
7303 struct mem_cgroup *memcg;
7304
7305 VM_BUG_ON_PAGE(!PageLocked(page), page);
7306
7307 if (vm_swap_full())
7308 return true;
eccb52e7 7309 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7310 return false;
7311
bcfe06bf 7312 memcg = page_memcg(page);
5ccc5aba
VD
7313 if (!memcg)
7314 return false;
7315
4b82ab4f
JK
7316 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7317 unsigned long usage = page_counter_read(&memcg->swap);
7318
7319 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7320 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7321 return true;
4b82ab4f 7322 }
5ccc5aba
VD
7323
7324 return false;
7325}
7326
eccb52e7 7327static int __init setup_swap_account(char *s)
21afa38e
JW
7328{
7329 if (!strcmp(s, "1"))
5ab92901 7330 cgroup_memory_noswap = false;
21afa38e 7331 else if (!strcmp(s, "0"))
5ab92901 7332 cgroup_memory_noswap = true;
21afa38e
JW
7333 return 1;
7334}
eccb52e7 7335__setup("swapaccount=", setup_swap_account);
21afa38e 7336
37e84351
VD
7337static u64 swap_current_read(struct cgroup_subsys_state *css,
7338 struct cftype *cft)
7339{
7340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7341
7342 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7343}
7344
4b82ab4f
JK
7345static int swap_high_show(struct seq_file *m, void *v)
7346{
7347 return seq_puts_memcg_tunable(m,
7348 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7349}
7350
7351static ssize_t swap_high_write(struct kernfs_open_file *of,
7352 char *buf, size_t nbytes, loff_t off)
7353{
7354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7355 unsigned long high;
7356 int err;
7357
7358 buf = strstrip(buf);
7359 err = page_counter_memparse(buf, "max", &high);
7360 if (err)
7361 return err;
7362
7363 page_counter_set_high(&memcg->swap, high);
7364
7365 return nbytes;
7366}
7367
37e84351
VD
7368static int swap_max_show(struct seq_file *m, void *v)
7369{
677dc973
CD
7370 return seq_puts_memcg_tunable(m,
7371 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7372}
7373
7374static ssize_t swap_max_write(struct kernfs_open_file *of,
7375 char *buf, size_t nbytes, loff_t off)
7376{
7377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7378 unsigned long max;
7379 int err;
7380
7381 buf = strstrip(buf);
7382 err = page_counter_memparse(buf, "max", &max);
7383 if (err)
7384 return err;
7385
be09102b 7386 xchg(&memcg->swap.max, max);
37e84351
VD
7387
7388 return nbytes;
7389}
7390
f3a53a3a
TH
7391static int swap_events_show(struct seq_file *m, void *v)
7392{
aa9694bb 7393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7394
4b82ab4f
JK
7395 seq_printf(m, "high %lu\n",
7396 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7397 seq_printf(m, "max %lu\n",
7398 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7399 seq_printf(m, "fail %lu\n",
7400 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7401
7402 return 0;
7403}
7404
37e84351
VD
7405static struct cftype swap_files[] = {
7406 {
7407 .name = "swap.current",
7408 .flags = CFTYPE_NOT_ON_ROOT,
7409 .read_u64 = swap_current_read,
7410 },
4b82ab4f
JK
7411 {
7412 .name = "swap.high",
7413 .flags = CFTYPE_NOT_ON_ROOT,
7414 .seq_show = swap_high_show,
7415 .write = swap_high_write,
7416 },
37e84351
VD
7417 {
7418 .name = "swap.max",
7419 .flags = CFTYPE_NOT_ON_ROOT,
7420 .seq_show = swap_max_show,
7421 .write = swap_max_write,
7422 },
f3a53a3a
TH
7423 {
7424 .name = "swap.events",
7425 .flags = CFTYPE_NOT_ON_ROOT,
7426 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7427 .seq_show = swap_events_show,
7428 },
37e84351
VD
7429 { } /* terminate */
7430};
7431
eccb52e7 7432static struct cftype memsw_files[] = {
21afa38e
JW
7433 {
7434 .name = "memsw.usage_in_bytes",
7435 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7436 .read_u64 = mem_cgroup_read_u64,
7437 },
7438 {
7439 .name = "memsw.max_usage_in_bytes",
7440 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7441 .write = mem_cgroup_reset,
7442 .read_u64 = mem_cgroup_read_u64,
7443 },
7444 {
7445 .name = "memsw.limit_in_bytes",
7446 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7447 .write = mem_cgroup_write,
7448 .read_u64 = mem_cgroup_read_u64,
7449 },
7450 {
7451 .name = "memsw.failcnt",
7452 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7453 .write = mem_cgroup_reset,
7454 .read_u64 = mem_cgroup_read_u64,
7455 },
7456 { }, /* terminate */
7457};
7458
82ff165c
BS
7459/*
7460 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7461 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7462 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7463 * boot parameter. This may result in premature OOPS inside
7464 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7465 */
21afa38e
JW
7466static int __init mem_cgroup_swap_init(void)
7467{
2d1c4980
JW
7468 /* No memory control -> no swap control */
7469 if (mem_cgroup_disabled())
7470 cgroup_memory_noswap = true;
7471
7472 if (cgroup_memory_noswap)
eccb52e7
JW
7473 return 0;
7474
7475 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7476 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7477
21afa38e
JW
7478 return 0;
7479}
82ff165c 7480core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7481
7482#endif /* CONFIG_MEMCG_SWAP */