]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/memcontrol.c
memcg: don't need to get a reference to the parent
[mirror_ubuntu-eoan-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
59927fb9
HD
266 union {
267 /*
268 * the counter to account for mem+swap usage.
269 */
270 struct res_counter memsw;
271
272 /*
273 * rcu_freeing is used only when freeing struct mem_cgroup,
274 * so put it into a union to avoid wasting more memory.
275 * It must be disjoint from the css field. It could be
276 * in a union with the res field, but res plays a much
277 * larger part in mem_cgroup life than memsw, and might
278 * be of interest, even at time of free, when debugging.
279 * So share rcu_head with the less interesting memsw.
280 */
281 struct rcu_head rcu_freeing;
282 /*
3afe36b1
GC
283 * We also need some space for a worker in deferred freeing.
284 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
285 */
286 struct work_struct work_freeing;
287 };
288
510fc4e1
GC
289 /*
290 * the counter to account for kernel memory usage.
291 */
292 struct res_counter kmem;
18f59ea7
BS
293 /*
294 * Should the accounting and control be hierarchical, per subtree?
295 */
296 bool use_hierarchy;
510fc4e1 297 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
298
299 bool oom_lock;
300 atomic_t under_oom;
301
8c7c6e34 302 atomic_t refcnt;
14797e23 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
22a668d7
KH
308 /* set when res.limit == memsw.limit */
309 bool memsw_is_minimum;
310
2e72b634
KS
311 /* protect arrays of thresholds */
312 struct mutex thresholds_lock;
313
314 /* thresholds for memory usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds thresholds;
907860ed 316
2e72b634 317 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 318 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 319
9490ff27
KH
320 /* For oom notifier event fd */
321 struct list_head oom_notify;
185efc0f 322
7dc74be0
DN
323 /*
324 * Should we move charges of a task when a task is moved into this
325 * mem_cgroup ? And what type of charges should we move ?
326 */
327 unsigned long move_charge_at_immigrate;
619d094b
KH
328 /*
329 * set > 0 if pages under this cgroup are moving to other cgroup.
330 */
331 atomic_t moving_account;
312734c0
KH
332 /* taken only while moving_account > 0 */
333 spinlock_t move_lock;
d52aa412 334 /*
c62b1a3b 335 * percpu counter.
d52aa412 336 */
3a7951b4 337 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
338 /*
339 * used when a cpu is offlined or other synchronizations
340 * See mem_cgroup_read_stat().
341 */
342 struct mem_cgroup_stat_cpu nocpu_base;
343 spinlock_t pcp_counter_lock;
d1a4c0b3 344
5f578161 345 atomic_t dead_count;
4bd2c1ee 346#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
347 struct tcp_memcontrol tcp_mem;
348#endif
2633d7a0
GC
349#if defined(CONFIG_MEMCG_KMEM)
350 /* analogous to slab_common's slab_caches list. per-memcg */
351 struct list_head memcg_slab_caches;
352 /* Not a spinlock, we can take a lot of time walking the list */
353 struct mutex slab_caches_mutex;
354 /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 int kmemcg_id;
356#endif
45cf7ebd
GC
357
358 int last_scanned_node;
359#if MAX_NUMNODES > 1
360 nodemask_t scan_nodes;
361 atomic_t numainfo_events;
362 atomic_t numainfo_updating;
363#endif
70ddf637 364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
45cf7ebd
GC
369static size_t memcg_size(void)
370{
371 return sizeof(struct mem_cgroup) +
372 nr_node_ids * sizeof(struct mem_cgroup_per_node);
373}
374
510fc4e1
GC
375/* internal only representation about the status of kmem accounting. */
376enum {
377 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 378 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
380};
381
a8964b9b
GC
382/* We account when limit is on, but only after call sites are patched */
383#define KMEM_ACCOUNTED_MASK \
384 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
385
386#ifdef CONFIG_MEMCG_KMEM
387static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388{
389 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390}
7de37682
GC
391
392static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393{
394 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395}
396
a8964b9b
GC
397static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398{
399 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400}
401
55007d84
GC
402static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403{
404 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405}
406
7de37682
GC
407static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408{
10d5ebf4
LZ
409 /*
410 * Our caller must use css_get() first, because memcg_uncharge_kmem()
411 * will call css_put() if it sees the memcg is dead.
412 */
413 smp_wmb();
7de37682
GC
414 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
415 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
416}
417
418static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
419{
420 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
421 &memcg->kmem_account_flags);
422}
510fc4e1
GC
423#endif
424
7dc74be0
DN
425/* Stuffs for move charges at task migration. */
426/*
ee5e8472
GC
427 * Types of charges to be moved. "move_charge_at_immitgrate" and
428 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
429 */
430enum move_type {
4ffef5fe 431 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 432 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
433 NR_MOVE_TYPE,
434};
435
4ffef5fe
DN
436/* "mc" and its members are protected by cgroup_mutex */
437static struct move_charge_struct {
b1dd693e 438 spinlock_t lock; /* for from, to */
4ffef5fe
DN
439 struct mem_cgroup *from;
440 struct mem_cgroup *to;
ee5e8472 441 unsigned long immigrate_flags;
4ffef5fe 442 unsigned long precharge;
854ffa8d 443 unsigned long moved_charge;
483c30b5 444 unsigned long moved_swap;
8033b97c
DN
445 struct task_struct *moving_task; /* a task moving charges */
446 wait_queue_head_t waitq; /* a waitq for other context */
447} mc = {
2bd9bb20 448 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
449 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
450};
4ffef5fe 451
90254a65
DN
452static bool move_anon(void)
453{
ee5e8472 454 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
455}
456
87946a72
DN
457static bool move_file(void)
458{
ee5e8472 459 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
460}
461
4e416953
BS
462/*
463 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
464 * limit reclaim to prevent infinite loops, if they ever occur.
465 */
a0db00fc
KS
466#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
467#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 468
217bc319
KH
469enum charge_type {
470 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 471 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 472 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 473 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
474 NR_CHARGE_TYPE,
475};
476
8c7c6e34 477/* for encoding cft->private value on file */
86ae53e1
GC
478enum res_type {
479 _MEM,
480 _MEMSWAP,
481 _OOM_TYPE,
510fc4e1 482 _KMEM,
86ae53e1
GC
483};
484
a0db00fc
KS
485#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
486#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 487#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
488/* Used for OOM nofiier */
489#define OOM_CONTROL (0)
8c7c6e34 490
75822b44
BS
491/*
492 * Reclaim flags for mem_cgroup_hierarchical_reclaim
493 */
494#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
495#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
496#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
497#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
498
0999821b
GC
499/*
500 * The memcg_create_mutex will be held whenever a new cgroup is created.
501 * As a consequence, any change that needs to protect against new child cgroups
502 * appearing has to hold it as well.
503 */
504static DEFINE_MUTEX(memcg_create_mutex);
505
c0ff4b85 506static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 507
b2145145
WL
508static inline
509struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
510{
511 return container_of(s, struct mem_cgroup, css);
512}
513
70ddf637
AV
514/* Some nice accessors for the vmpressure. */
515struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
516{
517 if (!memcg)
518 memcg = root_mem_cgroup;
519 return &memcg->vmpressure;
520}
521
522struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
523{
524 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
525}
526
527struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
528{
529 return &mem_cgroup_from_css(css)->vmpressure;
530}
531
7ffc0edc
MH
532static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533{
534 return (memcg == root_mem_cgroup);
535}
536
e1aab161 537/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 538#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 539
e1aab161
GC
540void sock_update_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled) {
e1aab161 543 struct mem_cgroup *memcg;
3f134619 544 struct cg_proto *cg_proto;
e1aab161
GC
545
546 BUG_ON(!sk->sk_prot->proto_cgroup);
547
f3f511e1
GC
548 /* Socket cloning can throw us here with sk_cgrp already
549 * filled. It won't however, necessarily happen from
550 * process context. So the test for root memcg given
551 * the current task's memcg won't help us in this case.
552 *
553 * Respecting the original socket's memcg is a better
554 * decision in this case.
555 */
556 if (sk->sk_cgrp) {
557 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 558 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
559 return;
560 }
561
e1aab161
GC
562 rcu_read_lock();
563 memcg = mem_cgroup_from_task(current);
3f134619 564 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
565 if (!mem_cgroup_is_root(memcg) &&
566 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 567 sk->sk_cgrp = cg_proto;
e1aab161
GC
568 }
569 rcu_read_unlock();
570 }
571}
572EXPORT_SYMBOL(sock_update_memcg);
573
574void sock_release_memcg(struct sock *sk)
575{
376be5ff 576 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
577 struct mem_cgroup *memcg;
578 WARN_ON(!sk->sk_cgrp->memcg);
579 memcg = sk->sk_cgrp->memcg;
5347e5ae 580 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
581 }
582}
d1a4c0b3
GC
583
584struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
585{
586 if (!memcg || mem_cgroup_is_root(memcg))
587 return NULL;
588
589 return &memcg->tcp_mem.cg_proto;
590}
591EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 592
3f134619
GC
593static void disarm_sock_keys(struct mem_cgroup *memcg)
594{
595 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
596 return;
597 static_key_slow_dec(&memcg_socket_limit_enabled);
598}
599#else
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
602}
603#endif
604
a8964b9b 605#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
606/*
607 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
608 * There are two main reasons for not using the css_id for this:
609 * 1) this works better in sparse environments, where we have a lot of memcgs,
610 * but only a few kmem-limited. Or also, if we have, for instance, 200
611 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
612 * 200 entry array for that.
613 *
614 * 2) In order not to violate the cgroup API, we would like to do all memory
615 * allocation in ->create(). At that point, we haven't yet allocated the
616 * css_id. Having a separate index prevents us from messing with the cgroup
617 * core for this
618 *
619 * The current size of the caches array is stored in
620 * memcg_limited_groups_array_size. It will double each time we have to
621 * increase it.
622 */
623static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
624int memcg_limited_groups_array_size;
625
55007d84
GC
626/*
627 * MIN_SIZE is different than 1, because we would like to avoid going through
628 * the alloc/free process all the time. In a small machine, 4 kmem-limited
629 * cgroups is a reasonable guess. In the future, it could be a parameter or
630 * tunable, but that is strictly not necessary.
631 *
632 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
633 * this constant directly from cgroup, but it is understandable that this is
634 * better kept as an internal representation in cgroup.c. In any case, the
635 * css_id space is not getting any smaller, and we don't have to necessarily
636 * increase ours as well if it increases.
637 */
638#define MEMCG_CACHES_MIN_SIZE 4
639#define MEMCG_CACHES_MAX_SIZE 65535
640
d7f25f8a
GC
641/*
642 * A lot of the calls to the cache allocation functions are expected to be
643 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
644 * conditional to this static branch, we'll have to allow modules that does
645 * kmem_cache_alloc and the such to see this symbol as well
646 */
a8964b9b 647struct static_key memcg_kmem_enabled_key;
d7f25f8a 648EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
649
650static void disarm_kmem_keys(struct mem_cgroup *memcg)
651{
55007d84 652 if (memcg_kmem_is_active(memcg)) {
a8964b9b 653 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
654 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
655 }
bea207c8
GC
656 /*
657 * This check can't live in kmem destruction function,
658 * since the charges will outlive the cgroup
659 */
660 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
661}
662#else
663static void disarm_kmem_keys(struct mem_cgroup *memcg)
664{
665}
666#endif /* CONFIG_MEMCG_KMEM */
667
668static void disarm_static_keys(struct mem_cgroup *memcg)
669{
670 disarm_sock_keys(memcg);
671 disarm_kmem_keys(memcg);
672}
673
c0ff4b85 674static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 675
f64c3f54 676static struct mem_cgroup_per_zone *
c0ff4b85 677mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 678{
45cf7ebd 679 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 680 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
681}
682
c0ff4b85 683struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 684{
c0ff4b85 685 return &memcg->css;
d324236b
WF
686}
687
f64c3f54 688static struct mem_cgroup_per_zone *
c0ff4b85 689page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 690{
97a6c37b
JW
691 int nid = page_to_nid(page);
692 int zid = page_zonenum(page);
f64c3f54 693
c0ff4b85 694 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
695}
696
697static struct mem_cgroup_tree_per_zone *
698soft_limit_tree_node_zone(int nid, int zid)
699{
700 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
701}
702
703static struct mem_cgroup_tree_per_zone *
704soft_limit_tree_from_page(struct page *page)
705{
706 int nid = page_to_nid(page);
707 int zid = page_zonenum(page);
708
709 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
710}
711
712static void
c0ff4b85 713__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 714 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
715 struct mem_cgroup_tree_per_zone *mctz,
716 unsigned long long new_usage_in_excess)
f64c3f54
BS
717{
718 struct rb_node **p = &mctz->rb_root.rb_node;
719 struct rb_node *parent = NULL;
720 struct mem_cgroup_per_zone *mz_node;
721
722 if (mz->on_tree)
723 return;
724
ef8745c1
KH
725 mz->usage_in_excess = new_usage_in_excess;
726 if (!mz->usage_in_excess)
727 return;
f64c3f54
BS
728 while (*p) {
729 parent = *p;
730 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
731 tree_node);
732 if (mz->usage_in_excess < mz_node->usage_in_excess)
733 p = &(*p)->rb_left;
734 /*
735 * We can't avoid mem cgroups that are over their soft
736 * limit by the same amount
737 */
738 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
739 p = &(*p)->rb_right;
740 }
741 rb_link_node(&mz->tree_node, parent, p);
742 rb_insert_color(&mz->tree_node, &mctz->rb_root);
743 mz->on_tree = true;
4e416953
BS
744}
745
746static void
c0ff4b85 747__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
748 struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
750{
751 if (!mz->on_tree)
752 return;
753 rb_erase(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = false;
755}
756
f64c3f54 757static void
c0ff4b85 758mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
759 struct mem_cgroup_per_zone *mz,
760 struct mem_cgroup_tree_per_zone *mctz)
761{
762 spin_lock(&mctz->lock);
c0ff4b85 763 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
764 spin_unlock(&mctz->lock);
765}
766
f64c3f54 767
c0ff4b85 768static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 769{
ef8745c1 770 unsigned long long excess;
f64c3f54
BS
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
773 int nid = page_to_nid(page);
774 int zid = page_zonenum(page);
f64c3f54
BS
775 mctz = soft_limit_tree_from_page(page);
776
777 /*
4e649152
KH
778 * Necessary to update all ancestors when hierarchy is used.
779 * because their event counter is not touched.
f64c3f54 780 */
c0ff4b85
R
781 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
782 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
783 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
784 /*
785 * We have to update the tree if mz is on RB-tree or
786 * mem is over its softlimit.
787 */
ef8745c1 788 if (excess || mz->on_tree) {
4e649152
KH
789 spin_lock(&mctz->lock);
790 /* if on-tree, remove it */
791 if (mz->on_tree)
c0ff4b85 792 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 793 /*
ef8745c1
KH
794 * Insert again. mz->usage_in_excess will be updated.
795 * If excess is 0, no tree ops.
4e649152 796 */
c0ff4b85 797 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
798 spin_unlock(&mctz->lock);
799 }
f64c3f54
BS
800 }
801}
802
c0ff4b85 803static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
804{
805 int node, zone;
806 struct mem_cgroup_per_zone *mz;
807 struct mem_cgroup_tree_per_zone *mctz;
808
3ed28fa1 809 for_each_node(node) {
f64c3f54 810 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 811 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 812 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 813 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
814 }
815 }
816}
817
4e416953
BS
818static struct mem_cgroup_per_zone *
819__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
820{
821 struct rb_node *rightmost = NULL;
26251eaf 822 struct mem_cgroup_per_zone *mz;
4e416953
BS
823
824retry:
26251eaf 825 mz = NULL;
4e416953
BS
826 rightmost = rb_last(&mctz->rb_root);
827 if (!rightmost)
828 goto done; /* Nothing to reclaim from */
829
830 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
831 /*
832 * Remove the node now but someone else can add it back,
833 * we will to add it back at the end of reclaim to its correct
834 * position in the tree.
835 */
d79154bb
HD
836 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
837 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
838 !css_tryget(&mz->memcg->css))
4e416953
BS
839 goto retry;
840done:
841 return mz;
842}
843
844static struct mem_cgroup_per_zone *
845mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
846{
847 struct mem_cgroup_per_zone *mz;
848
849 spin_lock(&mctz->lock);
850 mz = __mem_cgroup_largest_soft_limit_node(mctz);
851 spin_unlock(&mctz->lock);
852 return mz;
853}
854
711d3d2c
KH
855/*
856 * Implementation Note: reading percpu statistics for memcg.
857 *
858 * Both of vmstat[] and percpu_counter has threshold and do periodic
859 * synchronization to implement "quick" read. There are trade-off between
860 * reading cost and precision of value. Then, we may have a chance to implement
861 * a periodic synchronizion of counter in memcg's counter.
862 *
863 * But this _read() function is used for user interface now. The user accounts
864 * memory usage by memory cgroup and he _always_ requires exact value because
865 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
866 * have to visit all online cpus and make sum. So, for now, unnecessary
867 * synchronization is not implemented. (just implemented for cpu hotplug)
868 *
869 * If there are kernel internal actions which can make use of some not-exact
870 * value, and reading all cpu value can be performance bottleneck in some
871 * common workload, threashold and synchonization as vmstat[] should be
872 * implemented.
873 */
c0ff4b85 874static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 875 enum mem_cgroup_stat_index idx)
c62b1a3b 876{
7a159cc9 877 long val = 0;
c62b1a3b 878 int cpu;
c62b1a3b 879
711d3d2c
KH
880 get_online_cpus();
881 for_each_online_cpu(cpu)
c0ff4b85 882 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 883#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
884 spin_lock(&memcg->pcp_counter_lock);
885 val += memcg->nocpu_base.count[idx];
886 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
887#endif
888 put_online_cpus();
c62b1a3b
KH
889 return val;
890}
891
c0ff4b85 892static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
893 bool charge)
894{
895 int val = (charge) ? 1 : -1;
bff6bb83 896 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
897}
898
c0ff4b85 899static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
900 enum mem_cgroup_events_index idx)
901{
902 unsigned long val = 0;
903 int cpu;
904
905 for_each_online_cpu(cpu)
c0ff4b85 906 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 907#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
908 spin_lock(&memcg->pcp_counter_lock);
909 val += memcg->nocpu_base.events[idx];
910 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
911#endif
912 return val;
913}
914
c0ff4b85 915static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 916 struct page *page,
b2402857 917 bool anon, int nr_pages)
d52aa412 918{
c62b1a3b
KH
919 preempt_disable();
920
b2402857
KH
921 /*
922 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
923 * counted as CACHE even if it's on ANON LRU.
924 */
925 if (anon)
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 927 nr_pages);
d52aa412 928 else
b2402857 929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 930 nr_pages);
55e462b0 931
b070e65c
DR
932 if (PageTransHuge(page))
933 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
934 nr_pages);
935
e401f176
KH
936 /* pagein of a big page is an event. So, ignore page size */
937 if (nr_pages > 0)
c0ff4b85 938 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 939 else {
c0ff4b85 940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
941 nr_pages = -nr_pages; /* for event */
942 }
e401f176 943
13114716 944 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 945
c62b1a3b 946 preempt_enable();
6d12e2d8
KH
947}
948
bb2a0de9 949unsigned long
4d7dcca2 950mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
951{
952 struct mem_cgroup_per_zone *mz;
953
954 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
955 return mz->lru_size[lru];
956}
957
958static unsigned long
c0ff4b85 959mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 960 unsigned int lru_mask)
889976db
YH
961{
962 struct mem_cgroup_per_zone *mz;
f156ab93 963 enum lru_list lru;
bb2a0de9
KH
964 unsigned long ret = 0;
965
c0ff4b85 966 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 967
f156ab93
HD
968 for_each_lru(lru) {
969 if (BIT(lru) & lru_mask)
970 ret += mz->lru_size[lru];
bb2a0de9
KH
971 }
972 return ret;
973}
974
975static unsigned long
c0ff4b85 976mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
977 int nid, unsigned int lru_mask)
978{
889976db
YH
979 u64 total = 0;
980 int zid;
981
bb2a0de9 982 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
983 total += mem_cgroup_zone_nr_lru_pages(memcg,
984 nid, zid, lru_mask);
bb2a0de9 985
889976db
YH
986 return total;
987}
bb2a0de9 988
c0ff4b85 989static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 990 unsigned int lru_mask)
6d12e2d8 991{
889976db 992 int nid;
6d12e2d8
KH
993 u64 total = 0;
994
31aaea4a 995 for_each_node_state(nid, N_MEMORY)
c0ff4b85 996 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 997 return total;
d52aa412
KH
998}
999
f53d7ce3
JW
1000static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1001 enum mem_cgroup_events_target target)
7a159cc9
JW
1002{
1003 unsigned long val, next;
1004
13114716 1005 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1006 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1007 /* from time_after() in jiffies.h */
f53d7ce3
JW
1008 if ((long)next - (long)val < 0) {
1009 switch (target) {
1010 case MEM_CGROUP_TARGET_THRESH:
1011 next = val + THRESHOLDS_EVENTS_TARGET;
1012 break;
1013 case MEM_CGROUP_TARGET_SOFTLIMIT:
1014 next = val + SOFTLIMIT_EVENTS_TARGET;
1015 break;
1016 case MEM_CGROUP_TARGET_NUMAINFO:
1017 next = val + NUMAINFO_EVENTS_TARGET;
1018 break;
1019 default:
1020 break;
1021 }
1022 __this_cpu_write(memcg->stat->targets[target], next);
1023 return true;
7a159cc9 1024 }
f53d7ce3 1025 return false;
d2265e6f
KH
1026}
1027
1028/*
1029 * Check events in order.
1030 *
1031 */
c0ff4b85 1032static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1033{
4799401f 1034 preempt_disable();
d2265e6f 1035 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1036 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1037 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1038 bool do_softlimit;
1039 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1040
1041 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_SOFTLIMIT);
1043#if MAX_NUMNODES > 1
1044 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1045 MEM_CGROUP_TARGET_NUMAINFO);
1046#endif
1047 preempt_enable();
1048
c0ff4b85 1049 mem_cgroup_threshold(memcg);
f53d7ce3 1050 if (unlikely(do_softlimit))
c0ff4b85 1051 mem_cgroup_update_tree(memcg, page);
453a9bf3 1052#if MAX_NUMNODES > 1
f53d7ce3 1053 if (unlikely(do_numainfo))
c0ff4b85 1054 atomic_inc(&memcg->numainfo_events);
453a9bf3 1055#endif
f53d7ce3
JW
1056 } else
1057 preempt_enable();
d2265e6f
KH
1058}
1059
d1a4c0b3 1060struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1061{
b2145145
WL
1062 return mem_cgroup_from_css(
1063 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1064}
1065
cf475ad2 1066struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1067{
31a78f23
BS
1068 /*
1069 * mm_update_next_owner() may clear mm->owner to NULL
1070 * if it races with swapoff, page migration, etc.
1071 * So this can be called with p == NULL.
1072 */
1073 if (unlikely(!p))
1074 return NULL;
1075
b2145145 1076 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1077}
1078
a433658c 1079struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1080{
c0ff4b85 1081 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1082
1083 if (!mm)
1084 return NULL;
54595fe2
KH
1085 /*
1086 * Because we have no locks, mm->owner's may be being moved to other
1087 * cgroup. We use css_tryget() here even if this looks
1088 * pessimistic (rather than adding locks here).
1089 */
1090 rcu_read_lock();
1091 do {
c0ff4b85
R
1092 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1093 if (unlikely(!memcg))
54595fe2 1094 break;
c0ff4b85 1095 } while (!css_tryget(&memcg->css));
54595fe2 1096 rcu_read_unlock();
c0ff4b85 1097 return memcg;
54595fe2
KH
1098}
1099
16248d8f
MH
1100/*
1101 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1102 * ref. count) or NULL if the whole root's subtree has been visited.
1103 *
1104 * helper function to be used by mem_cgroup_iter
1105 */
1106static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1107 struct mem_cgroup *last_visited)
1108{
1109 struct cgroup *prev_cgroup, *next_cgroup;
1110
1111 /*
1112 * Root is not visited by cgroup iterators so it needs an
1113 * explicit visit.
1114 */
1115 if (!last_visited)
1116 return root;
1117
1118 prev_cgroup = (last_visited == root) ? NULL
1119 : last_visited->css.cgroup;
1120skip_node:
1121 next_cgroup = cgroup_next_descendant_pre(
1122 prev_cgroup, root->css.cgroup);
1123
1124 /*
1125 * Even if we found a group we have to make sure it is
1126 * alive. css && !memcg means that the groups should be
1127 * skipped and we should continue the tree walk.
1128 * last_visited css is safe to use because it is
1129 * protected by css_get and the tree walk is rcu safe.
1130 */
1131 if (next_cgroup) {
1132 struct mem_cgroup *mem = mem_cgroup_from_cont(
1133 next_cgroup);
1134 if (css_tryget(&mem->css))
1135 return mem;
1136 else {
1137 prev_cgroup = next_cgroup;
1138 goto skip_node;
1139 }
1140 }
1141
1142 return NULL;
1143}
1144
519ebea3
JW
1145static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1146{
1147 /*
1148 * When a group in the hierarchy below root is destroyed, the
1149 * hierarchy iterator can no longer be trusted since it might
1150 * have pointed to the destroyed group. Invalidate it.
1151 */
1152 atomic_inc(&root->dead_count);
1153}
1154
1155static struct mem_cgroup *
1156mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *root,
1158 int *sequence)
1159{
1160 struct mem_cgroup *position = NULL;
1161 /*
1162 * A cgroup destruction happens in two stages: offlining and
1163 * release. They are separated by a RCU grace period.
1164 *
1165 * If the iterator is valid, we may still race with an
1166 * offlining. The RCU lock ensures the object won't be
1167 * released, tryget will fail if we lost the race.
1168 */
1169 *sequence = atomic_read(&root->dead_count);
1170 if (iter->last_dead_count == *sequence) {
1171 smp_rmb();
1172 position = iter->last_visited;
1173 if (position && !css_tryget(&position->css))
1174 position = NULL;
1175 }
1176 return position;
1177}
1178
1179static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1180 struct mem_cgroup *last_visited,
1181 struct mem_cgroup *new_position,
1182 int sequence)
1183{
1184 if (last_visited)
1185 css_put(&last_visited->css);
1186 /*
1187 * We store the sequence count from the time @last_visited was
1188 * loaded successfully instead of rereading it here so that we
1189 * don't lose destruction events in between. We could have
1190 * raced with the destruction of @new_position after all.
1191 */
1192 iter->last_visited = new_position;
1193 smp_wmb();
1194 iter->last_dead_count = sequence;
1195}
1196
5660048c
JW
1197/**
1198 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1199 * @root: hierarchy root
1200 * @prev: previously returned memcg, NULL on first invocation
1201 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1202 *
1203 * Returns references to children of the hierarchy below @root, or
1204 * @root itself, or %NULL after a full round-trip.
1205 *
1206 * Caller must pass the return value in @prev on subsequent
1207 * invocations for reference counting, or use mem_cgroup_iter_break()
1208 * to cancel a hierarchy walk before the round-trip is complete.
1209 *
1210 * Reclaimers can specify a zone and a priority level in @reclaim to
1211 * divide up the memcgs in the hierarchy among all concurrent
1212 * reclaimers operating on the same zone and priority.
1213 */
1214struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1215 struct mem_cgroup *prev,
1216 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1217{
9f3a0d09 1218 struct mem_cgroup *memcg = NULL;
542f85f9 1219 struct mem_cgroup *last_visited = NULL;
711d3d2c 1220
5660048c
JW
1221 if (mem_cgroup_disabled())
1222 return NULL;
1223
9f3a0d09
JW
1224 if (!root)
1225 root = root_mem_cgroup;
7d74b06f 1226
9f3a0d09 1227 if (prev && !reclaim)
542f85f9 1228 last_visited = prev;
14067bb3 1229
9f3a0d09
JW
1230 if (!root->use_hierarchy && root != root_mem_cgroup) {
1231 if (prev)
c40046f3 1232 goto out_css_put;
9f3a0d09
JW
1233 return root;
1234 }
14067bb3 1235
542f85f9 1236 rcu_read_lock();
9f3a0d09 1237 while (!memcg) {
527a5ec9 1238 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1239 int uninitialized_var(seq);
711d3d2c 1240
527a5ec9
JW
1241 if (reclaim) {
1242 int nid = zone_to_nid(reclaim->zone);
1243 int zid = zone_idx(reclaim->zone);
1244 struct mem_cgroup_per_zone *mz;
1245
1246 mz = mem_cgroup_zoneinfo(root, nid, zid);
1247 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1248 if (prev && reclaim->generation != iter->generation) {
5f578161 1249 iter->last_visited = NULL;
542f85f9
MH
1250 goto out_unlock;
1251 }
5f578161 1252
519ebea3 1253 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1254 }
7d74b06f 1255
16248d8f 1256 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1257
527a5ec9 1258 if (reclaim) {
519ebea3 1259 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1260
19f39402 1261 if (!memcg)
527a5ec9
JW
1262 iter->generation++;
1263 else if (!prev && memcg)
1264 reclaim->generation = iter->generation;
1265 }
9f3a0d09 1266
19f39402 1267 if (prev && !memcg)
542f85f9 1268 goto out_unlock;
9f3a0d09 1269 }
542f85f9
MH
1270out_unlock:
1271 rcu_read_unlock();
c40046f3
MH
1272out_css_put:
1273 if (prev && prev != root)
1274 css_put(&prev->css);
1275
9f3a0d09 1276 return memcg;
14067bb3 1277}
7d74b06f 1278
5660048c
JW
1279/**
1280 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1281 * @root: hierarchy root
1282 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1283 */
1284void mem_cgroup_iter_break(struct mem_cgroup *root,
1285 struct mem_cgroup *prev)
9f3a0d09
JW
1286{
1287 if (!root)
1288 root = root_mem_cgroup;
1289 if (prev && prev != root)
1290 css_put(&prev->css);
1291}
7d74b06f 1292
9f3a0d09
JW
1293/*
1294 * Iteration constructs for visiting all cgroups (under a tree). If
1295 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1296 * be used for reference counting.
1297 */
1298#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1299 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1300 iter != NULL; \
527a5ec9 1301 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1302
9f3a0d09 1303#define for_each_mem_cgroup(iter) \
527a5ec9 1304 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1305 iter != NULL; \
527a5ec9 1306 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1307
68ae564b 1308void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1309{
c0ff4b85 1310 struct mem_cgroup *memcg;
456f998e 1311
456f998e 1312 rcu_read_lock();
c0ff4b85
R
1313 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1314 if (unlikely(!memcg))
456f998e
YH
1315 goto out;
1316
1317 switch (idx) {
456f998e 1318 case PGFAULT:
0e574a93
JW
1319 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1320 break;
1321 case PGMAJFAULT:
1322 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1323 break;
1324 default:
1325 BUG();
1326 }
1327out:
1328 rcu_read_unlock();
1329}
68ae564b 1330EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1331
925b7673
JW
1332/**
1333 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1334 * @zone: zone of the wanted lruvec
fa9add64 1335 * @memcg: memcg of the wanted lruvec
925b7673
JW
1336 *
1337 * Returns the lru list vector holding pages for the given @zone and
1338 * @mem. This can be the global zone lruvec, if the memory controller
1339 * is disabled.
1340 */
1341struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1342 struct mem_cgroup *memcg)
1343{
1344 struct mem_cgroup_per_zone *mz;
bea8c150 1345 struct lruvec *lruvec;
925b7673 1346
bea8c150
HD
1347 if (mem_cgroup_disabled()) {
1348 lruvec = &zone->lruvec;
1349 goto out;
1350 }
925b7673
JW
1351
1352 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1353 lruvec = &mz->lruvec;
1354out:
1355 /*
1356 * Since a node can be onlined after the mem_cgroup was created,
1357 * we have to be prepared to initialize lruvec->zone here;
1358 * and if offlined then reonlined, we need to reinitialize it.
1359 */
1360 if (unlikely(lruvec->zone != zone))
1361 lruvec->zone = zone;
1362 return lruvec;
925b7673
JW
1363}
1364
08e552c6
KH
1365/*
1366 * Following LRU functions are allowed to be used without PCG_LOCK.
1367 * Operations are called by routine of global LRU independently from memcg.
1368 * What we have to take care of here is validness of pc->mem_cgroup.
1369 *
1370 * Changes to pc->mem_cgroup happens when
1371 * 1. charge
1372 * 2. moving account
1373 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1374 * It is added to LRU before charge.
1375 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1376 * When moving account, the page is not on LRU. It's isolated.
1377 */
4f98a2fe 1378
925b7673 1379/**
fa9add64 1380 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1381 * @page: the page
fa9add64 1382 * @zone: zone of the page
925b7673 1383 */
fa9add64 1384struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1385{
08e552c6 1386 struct mem_cgroup_per_zone *mz;
925b7673
JW
1387 struct mem_cgroup *memcg;
1388 struct page_cgroup *pc;
bea8c150 1389 struct lruvec *lruvec;
6d12e2d8 1390
bea8c150
HD
1391 if (mem_cgroup_disabled()) {
1392 lruvec = &zone->lruvec;
1393 goto out;
1394 }
925b7673 1395
08e552c6 1396 pc = lookup_page_cgroup(page);
38c5d72f 1397 memcg = pc->mem_cgroup;
7512102c
HD
1398
1399 /*
fa9add64 1400 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1401 * an uncharged page off lru does nothing to secure
1402 * its former mem_cgroup from sudden removal.
1403 *
1404 * Our caller holds lru_lock, and PageCgroupUsed is updated
1405 * under page_cgroup lock: between them, they make all uses
1406 * of pc->mem_cgroup safe.
1407 */
fa9add64 1408 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1409 pc->mem_cgroup = memcg = root_mem_cgroup;
1410
925b7673 1411 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1412 lruvec = &mz->lruvec;
1413out:
1414 /*
1415 * Since a node can be onlined after the mem_cgroup was created,
1416 * we have to be prepared to initialize lruvec->zone here;
1417 * and if offlined then reonlined, we need to reinitialize it.
1418 */
1419 if (unlikely(lruvec->zone != zone))
1420 lruvec->zone = zone;
1421 return lruvec;
08e552c6 1422}
b69408e8 1423
925b7673 1424/**
fa9add64
HD
1425 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1426 * @lruvec: mem_cgroup per zone lru vector
1427 * @lru: index of lru list the page is sitting on
1428 * @nr_pages: positive when adding or negative when removing
925b7673 1429 *
fa9add64
HD
1430 * This function must be called when a page is added to or removed from an
1431 * lru list.
3f58a829 1432 */
fa9add64
HD
1433void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1434 int nr_pages)
3f58a829
MK
1435{
1436 struct mem_cgroup_per_zone *mz;
fa9add64 1437 unsigned long *lru_size;
3f58a829
MK
1438
1439 if (mem_cgroup_disabled())
1440 return;
1441
fa9add64
HD
1442 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1443 lru_size = mz->lru_size + lru;
1444 *lru_size += nr_pages;
1445 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1446}
544122e5 1447
3e92041d 1448/*
c0ff4b85 1449 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1450 * hierarchy subtree
1451 */
c3ac9a8a
JW
1452bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1453 struct mem_cgroup *memcg)
3e92041d 1454{
91c63734
JW
1455 if (root_memcg == memcg)
1456 return true;
3a981f48 1457 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1458 return false;
c3ac9a8a
JW
1459 return css_is_ancestor(&memcg->css, &root_memcg->css);
1460}
1461
1462static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1463 struct mem_cgroup *memcg)
1464{
1465 bool ret;
1466
91c63734 1467 rcu_read_lock();
c3ac9a8a 1468 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1469 rcu_read_unlock();
1470 return ret;
3e92041d
MH
1471}
1472
ffbdccf5
DR
1473bool task_in_mem_cgroup(struct task_struct *task,
1474 const struct mem_cgroup *memcg)
4c4a2214 1475{
0b7f569e 1476 struct mem_cgroup *curr = NULL;
158e0a2d 1477 struct task_struct *p;
ffbdccf5 1478 bool ret;
4c4a2214 1479
158e0a2d 1480 p = find_lock_task_mm(task);
de077d22
DR
1481 if (p) {
1482 curr = try_get_mem_cgroup_from_mm(p->mm);
1483 task_unlock(p);
1484 } else {
1485 /*
1486 * All threads may have already detached their mm's, but the oom
1487 * killer still needs to detect if they have already been oom
1488 * killed to prevent needlessly killing additional tasks.
1489 */
ffbdccf5 1490 rcu_read_lock();
de077d22
DR
1491 curr = mem_cgroup_from_task(task);
1492 if (curr)
1493 css_get(&curr->css);
ffbdccf5 1494 rcu_read_unlock();
de077d22 1495 }
0b7f569e 1496 if (!curr)
ffbdccf5 1497 return false;
d31f56db 1498 /*
c0ff4b85 1499 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1500 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1501 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1502 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1503 */
c0ff4b85 1504 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1505 css_put(&curr->css);
4c4a2214
DR
1506 return ret;
1507}
1508
c56d5c7d 1509int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1510{
9b272977 1511 unsigned long inactive_ratio;
14797e23 1512 unsigned long inactive;
9b272977 1513 unsigned long active;
c772be93 1514 unsigned long gb;
14797e23 1515
4d7dcca2
HD
1516 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1517 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1518
c772be93
KM
1519 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1520 if (gb)
1521 inactive_ratio = int_sqrt(10 * gb);
1522 else
1523 inactive_ratio = 1;
1524
9b272977 1525 return inactive * inactive_ratio < active;
14797e23
KM
1526}
1527
6d61ef40
BS
1528#define mem_cgroup_from_res_counter(counter, member) \
1529 container_of(counter, struct mem_cgroup, member)
1530
19942822 1531/**
9d11ea9f 1532 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1533 * @memcg: the memory cgroup
19942822 1534 *
9d11ea9f 1535 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1536 * pages.
19942822 1537 */
c0ff4b85 1538static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1539{
9d11ea9f
JW
1540 unsigned long long margin;
1541
c0ff4b85 1542 margin = res_counter_margin(&memcg->res);
9d11ea9f 1543 if (do_swap_account)
c0ff4b85 1544 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1545 return margin >> PAGE_SHIFT;
19942822
JW
1546}
1547
1f4c025b 1548int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1549{
1550 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1551
1552 /* root ? */
1553 if (cgrp->parent == NULL)
1554 return vm_swappiness;
1555
bf1ff263 1556 return memcg->swappiness;
a7885eb8
KM
1557}
1558
619d094b
KH
1559/*
1560 * memcg->moving_account is used for checking possibility that some thread is
1561 * calling move_account(). When a thread on CPU-A starts moving pages under
1562 * a memcg, other threads should check memcg->moving_account under
1563 * rcu_read_lock(), like this:
1564 *
1565 * CPU-A CPU-B
1566 * rcu_read_lock()
1567 * memcg->moving_account+1 if (memcg->mocing_account)
1568 * take heavy locks.
1569 * synchronize_rcu() update something.
1570 * rcu_read_unlock()
1571 * start move here.
1572 */
4331f7d3
KH
1573
1574/* for quick checking without looking up memcg */
1575atomic_t memcg_moving __read_mostly;
1576
c0ff4b85 1577static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1578{
4331f7d3 1579 atomic_inc(&memcg_moving);
619d094b 1580 atomic_inc(&memcg->moving_account);
32047e2a
KH
1581 synchronize_rcu();
1582}
1583
c0ff4b85 1584static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1585{
619d094b
KH
1586 /*
1587 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1588 * We check NULL in callee rather than caller.
1589 */
4331f7d3
KH
1590 if (memcg) {
1591 atomic_dec(&memcg_moving);
619d094b 1592 atomic_dec(&memcg->moving_account);
4331f7d3 1593 }
32047e2a 1594}
619d094b 1595
32047e2a
KH
1596/*
1597 * 2 routines for checking "mem" is under move_account() or not.
1598 *
13fd1dd9
AM
1599 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1600 * is used for avoiding races in accounting. If true,
32047e2a
KH
1601 * pc->mem_cgroup may be overwritten.
1602 *
1603 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1604 * under hierarchy of moving cgroups. This is for
1605 * waiting at hith-memory prressure caused by "move".
1606 */
1607
13fd1dd9 1608static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1609{
1610 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1611 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1612}
4b534334 1613
c0ff4b85 1614static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1615{
2bd9bb20
KH
1616 struct mem_cgroup *from;
1617 struct mem_cgroup *to;
4b534334 1618 bool ret = false;
2bd9bb20
KH
1619 /*
1620 * Unlike task_move routines, we access mc.to, mc.from not under
1621 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1622 */
1623 spin_lock(&mc.lock);
1624 from = mc.from;
1625 to = mc.to;
1626 if (!from)
1627 goto unlock;
3e92041d 1628
c0ff4b85
R
1629 ret = mem_cgroup_same_or_subtree(memcg, from)
1630 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1631unlock:
1632 spin_unlock(&mc.lock);
4b534334
KH
1633 return ret;
1634}
1635
c0ff4b85 1636static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1637{
1638 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1639 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1640 DEFINE_WAIT(wait);
1641 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1642 /* moving charge context might have finished. */
1643 if (mc.moving_task)
1644 schedule();
1645 finish_wait(&mc.waitq, &wait);
1646 return true;
1647 }
1648 }
1649 return false;
1650}
1651
312734c0
KH
1652/*
1653 * Take this lock when
1654 * - a code tries to modify page's memcg while it's USED.
1655 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1656 * see mem_cgroup_stolen(), too.
312734c0
KH
1657 */
1658static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1659 unsigned long *flags)
1660{
1661 spin_lock_irqsave(&memcg->move_lock, *flags);
1662}
1663
1664static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1665 unsigned long *flags)
1666{
1667 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1668}
1669
58cf188e 1670#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1671/**
58cf188e 1672 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1673 * @memcg: The memory cgroup that went over limit
1674 * @p: Task that is going to be killed
1675 *
1676 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1677 * enabled
1678 */
1679void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1680{
1681 struct cgroup *task_cgrp;
1682 struct cgroup *mem_cgrp;
1683 /*
1684 * Need a buffer in BSS, can't rely on allocations. The code relies
1685 * on the assumption that OOM is serialized for memory controller.
1686 * If this assumption is broken, revisit this code.
1687 */
1688 static char memcg_name[PATH_MAX];
1689 int ret;
58cf188e
SZ
1690 struct mem_cgroup *iter;
1691 unsigned int i;
e222432b 1692
58cf188e 1693 if (!p)
e222432b
BS
1694 return;
1695
e222432b
BS
1696 rcu_read_lock();
1697
1698 mem_cgrp = memcg->css.cgroup;
1699 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1700
1701 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1702 if (ret < 0) {
1703 /*
1704 * Unfortunately, we are unable to convert to a useful name
1705 * But we'll still print out the usage information
1706 */
1707 rcu_read_unlock();
1708 goto done;
1709 }
1710 rcu_read_unlock();
1711
d045197f 1712 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1713
1714 rcu_read_lock();
1715 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1716 if (ret < 0) {
1717 rcu_read_unlock();
1718 goto done;
1719 }
1720 rcu_read_unlock();
1721
1722 /*
1723 * Continues from above, so we don't need an KERN_ level
1724 */
d045197f 1725 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1726done:
1727
d045197f 1728 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1729 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1730 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1731 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1732 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1733 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1736 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1737 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1740
1741 for_each_mem_cgroup_tree(iter, memcg) {
1742 pr_info("Memory cgroup stats");
1743
1744 rcu_read_lock();
1745 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1746 if (!ret)
1747 pr_cont(" for %s", memcg_name);
1748 rcu_read_unlock();
1749 pr_cont(":");
1750
1751 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1752 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1753 continue;
1754 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1755 K(mem_cgroup_read_stat(iter, i)));
1756 }
1757
1758 for (i = 0; i < NR_LRU_LISTS; i++)
1759 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1760 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1761
1762 pr_cont("\n");
1763 }
e222432b
BS
1764}
1765
81d39c20
KH
1766/*
1767 * This function returns the number of memcg under hierarchy tree. Returns
1768 * 1(self count) if no children.
1769 */
c0ff4b85 1770static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1771{
1772 int num = 0;
7d74b06f
KH
1773 struct mem_cgroup *iter;
1774
c0ff4b85 1775 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1776 num++;
81d39c20
KH
1777 return num;
1778}
1779
a63d83f4
DR
1780/*
1781 * Return the memory (and swap, if configured) limit for a memcg.
1782 */
9cbb78bb 1783static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1784{
1785 u64 limit;
a63d83f4 1786
f3e8eb70 1787 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1788
a63d83f4 1789 /*
9a5a8f19 1790 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1791 */
9a5a8f19
MH
1792 if (mem_cgroup_swappiness(memcg)) {
1793 u64 memsw;
1794
1795 limit += total_swap_pages << PAGE_SHIFT;
1796 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1797
1798 /*
1799 * If memsw is finite and limits the amount of swap space
1800 * available to this memcg, return that limit.
1801 */
1802 limit = min(limit, memsw);
1803 }
1804
1805 return limit;
a63d83f4
DR
1806}
1807
19965460
DR
1808static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1809 int order)
9cbb78bb
DR
1810{
1811 struct mem_cgroup *iter;
1812 unsigned long chosen_points = 0;
1813 unsigned long totalpages;
1814 unsigned int points = 0;
1815 struct task_struct *chosen = NULL;
1816
876aafbf 1817 /*
465adcf1
DR
1818 * If current has a pending SIGKILL or is exiting, then automatically
1819 * select it. The goal is to allow it to allocate so that it may
1820 * quickly exit and free its memory.
876aafbf 1821 */
465adcf1 1822 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1823 set_thread_flag(TIF_MEMDIE);
1824 return;
1825 }
1826
1827 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1828 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1829 for_each_mem_cgroup_tree(iter, memcg) {
1830 struct cgroup *cgroup = iter->css.cgroup;
1831 struct cgroup_iter it;
1832 struct task_struct *task;
1833
1834 cgroup_iter_start(cgroup, &it);
1835 while ((task = cgroup_iter_next(cgroup, &it))) {
1836 switch (oom_scan_process_thread(task, totalpages, NULL,
1837 false)) {
1838 case OOM_SCAN_SELECT:
1839 if (chosen)
1840 put_task_struct(chosen);
1841 chosen = task;
1842 chosen_points = ULONG_MAX;
1843 get_task_struct(chosen);
1844 /* fall through */
1845 case OOM_SCAN_CONTINUE:
1846 continue;
1847 case OOM_SCAN_ABORT:
1848 cgroup_iter_end(cgroup, &it);
1849 mem_cgroup_iter_break(memcg, iter);
1850 if (chosen)
1851 put_task_struct(chosen);
1852 return;
1853 case OOM_SCAN_OK:
1854 break;
1855 };
1856 points = oom_badness(task, memcg, NULL, totalpages);
1857 if (points > chosen_points) {
1858 if (chosen)
1859 put_task_struct(chosen);
1860 chosen = task;
1861 chosen_points = points;
1862 get_task_struct(chosen);
1863 }
1864 }
1865 cgroup_iter_end(cgroup, &it);
1866 }
1867
1868 if (!chosen)
1869 return;
1870 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1871 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1872 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1873}
1874
5660048c
JW
1875static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1876 gfp_t gfp_mask,
1877 unsigned long flags)
1878{
1879 unsigned long total = 0;
1880 bool noswap = false;
1881 int loop;
1882
1883 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1884 noswap = true;
1885 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1886 noswap = true;
1887
1888 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1889 if (loop)
1890 drain_all_stock_async(memcg);
1891 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1892 /*
1893 * Allow limit shrinkers, which are triggered directly
1894 * by userspace, to catch signals and stop reclaim
1895 * after minimal progress, regardless of the margin.
1896 */
1897 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1898 break;
1899 if (mem_cgroup_margin(memcg))
1900 break;
1901 /*
1902 * If nothing was reclaimed after two attempts, there
1903 * may be no reclaimable pages in this hierarchy.
1904 */
1905 if (loop && !total)
1906 break;
1907 }
1908 return total;
1909}
1910
4d0c066d
KH
1911/**
1912 * test_mem_cgroup_node_reclaimable
dad7557e 1913 * @memcg: the target memcg
4d0c066d
KH
1914 * @nid: the node ID to be checked.
1915 * @noswap : specify true here if the user wants flle only information.
1916 *
1917 * This function returns whether the specified memcg contains any
1918 * reclaimable pages on a node. Returns true if there are any reclaimable
1919 * pages in the node.
1920 */
c0ff4b85 1921static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1922 int nid, bool noswap)
1923{
c0ff4b85 1924 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1925 return true;
1926 if (noswap || !total_swap_pages)
1927 return false;
c0ff4b85 1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1929 return true;
1930 return false;
1931
1932}
889976db
YH
1933#if MAX_NUMNODES > 1
1934
1935/*
1936 * Always updating the nodemask is not very good - even if we have an empty
1937 * list or the wrong list here, we can start from some node and traverse all
1938 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1939 *
1940 */
c0ff4b85 1941static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1942{
1943 int nid;
453a9bf3
KH
1944 /*
1945 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1946 * pagein/pageout changes since the last update.
1947 */
c0ff4b85 1948 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1949 return;
c0ff4b85 1950 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1951 return;
1952
889976db 1953 /* make a nodemask where this memcg uses memory from */
31aaea4a 1954 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1955
31aaea4a 1956 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1957
c0ff4b85
R
1958 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1959 node_clear(nid, memcg->scan_nodes);
889976db 1960 }
453a9bf3 1961
c0ff4b85
R
1962 atomic_set(&memcg->numainfo_events, 0);
1963 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1964}
1965
1966/*
1967 * Selecting a node where we start reclaim from. Because what we need is just
1968 * reducing usage counter, start from anywhere is O,K. Considering
1969 * memory reclaim from current node, there are pros. and cons.
1970 *
1971 * Freeing memory from current node means freeing memory from a node which
1972 * we'll use or we've used. So, it may make LRU bad. And if several threads
1973 * hit limits, it will see a contention on a node. But freeing from remote
1974 * node means more costs for memory reclaim because of memory latency.
1975 *
1976 * Now, we use round-robin. Better algorithm is welcomed.
1977 */
c0ff4b85 1978int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1979{
1980 int node;
1981
c0ff4b85
R
1982 mem_cgroup_may_update_nodemask(memcg);
1983 node = memcg->last_scanned_node;
889976db 1984
c0ff4b85 1985 node = next_node(node, memcg->scan_nodes);
889976db 1986 if (node == MAX_NUMNODES)
c0ff4b85 1987 node = first_node(memcg->scan_nodes);
889976db
YH
1988 /*
1989 * We call this when we hit limit, not when pages are added to LRU.
1990 * No LRU may hold pages because all pages are UNEVICTABLE or
1991 * memcg is too small and all pages are not on LRU. In that case,
1992 * we use curret node.
1993 */
1994 if (unlikely(node == MAX_NUMNODES))
1995 node = numa_node_id();
1996
c0ff4b85 1997 memcg->last_scanned_node = node;
889976db
YH
1998 return node;
1999}
2000
4d0c066d
KH
2001/*
2002 * Check all nodes whether it contains reclaimable pages or not.
2003 * For quick scan, we make use of scan_nodes. This will allow us to skip
2004 * unused nodes. But scan_nodes is lazily updated and may not cotain
2005 * enough new information. We need to do double check.
2006 */
6bbda35c 2007static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
2008{
2009 int nid;
2010
2011 /*
2012 * quick check...making use of scan_node.
2013 * We can skip unused nodes.
2014 */
c0ff4b85
R
2015 if (!nodes_empty(memcg->scan_nodes)) {
2016 for (nid = first_node(memcg->scan_nodes);
4d0c066d 2017 nid < MAX_NUMNODES;
c0ff4b85 2018 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 2019
c0ff4b85 2020 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2021 return true;
2022 }
2023 }
2024 /*
2025 * Check rest of nodes.
2026 */
31aaea4a 2027 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2028 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2029 continue;
c0ff4b85 2030 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2031 return true;
2032 }
2033 return false;
2034}
2035
889976db 2036#else
c0ff4b85 2037int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2038{
2039 return 0;
2040}
4d0c066d 2041
6bbda35c 2042static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2043{
c0ff4b85 2044 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2045}
889976db
YH
2046#endif
2047
5660048c
JW
2048static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2049 struct zone *zone,
2050 gfp_t gfp_mask,
2051 unsigned long *total_scanned)
6d61ef40 2052{
9f3a0d09 2053 struct mem_cgroup *victim = NULL;
5660048c 2054 int total = 0;
04046e1a 2055 int loop = 0;
9d11ea9f 2056 unsigned long excess;
185efc0f 2057 unsigned long nr_scanned;
527a5ec9
JW
2058 struct mem_cgroup_reclaim_cookie reclaim = {
2059 .zone = zone,
2060 .priority = 0,
2061 };
9d11ea9f 2062
c0ff4b85 2063 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2064
4e416953 2065 while (1) {
527a5ec9 2066 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2067 if (!victim) {
04046e1a 2068 loop++;
4e416953
BS
2069 if (loop >= 2) {
2070 /*
2071 * If we have not been able to reclaim
2072 * anything, it might because there are
2073 * no reclaimable pages under this hierarchy
2074 */
5660048c 2075 if (!total)
4e416953 2076 break;
4e416953 2077 /*
25985edc 2078 * We want to do more targeted reclaim.
4e416953
BS
2079 * excess >> 2 is not to excessive so as to
2080 * reclaim too much, nor too less that we keep
2081 * coming back to reclaim from this cgroup
2082 */
2083 if (total >= (excess >> 2) ||
9f3a0d09 2084 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2085 break;
4e416953 2086 }
9f3a0d09 2087 continue;
4e416953 2088 }
5660048c 2089 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2090 continue;
5660048c
JW
2091 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2092 zone, &nr_scanned);
2093 *total_scanned += nr_scanned;
2094 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2095 break;
6d61ef40 2096 }
9f3a0d09 2097 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2098 return total;
6d61ef40
BS
2099}
2100
867578cb
KH
2101/*
2102 * Check OOM-Killer is already running under our hierarchy.
2103 * If someone is running, return false.
1af8efe9 2104 * Has to be called with memcg_oom_lock
867578cb 2105 */
c0ff4b85 2106static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2107{
79dfdacc 2108 struct mem_cgroup *iter, *failed = NULL;
a636b327 2109
9f3a0d09 2110 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2111 if (iter->oom_lock) {
79dfdacc
MH
2112 /*
2113 * this subtree of our hierarchy is already locked
2114 * so we cannot give a lock.
2115 */
79dfdacc 2116 failed = iter;
9f3a0d09
JW
2117 mem_cgroup_iter_break(memcg, iter);
2118 break;
23751be0
JW
2119 } else
2120 iter->oom_lock = true;
7d74b06f 2121 }
867578cb 2122
79dfdacc 2123 if (!failed)
23751be0 2124 return true;
79dfdacc
MH
2125
2126 /*
2127 * OK, we failed to lock the whole subtree so we have to clean up
2128 * what we set up to the failing subtree
2129 */
9f3a0d09 2130 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2131 if (iter == failed) {
9f3a0d09
JW
2132 mem_cgroup_iter_break(memcg, iter);
2133 break;
79dfdacc
MH
2134 }
2135 iter->oom_lock = false;
2136 }
23751be0 2137 return false;
a636b327 2138}
0b7f569e 2139
79dfdacc 2140/*
1af8efe9 2141 * Has to be called with memcg_oom_lock
79dfdacc 2142 */
c0ff4b85 2143static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2144{
7d74b06f
KH
2145 struct mem_cgroup *iter;
2146
c0ff4b85 2147 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2148 iter->oom_lock = false;
2149 return 0;
2150}
2151
c0ff4b85 2152static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2153{
2154 struct mem_cgroup *iter;
2155
c0ff4b85 2156 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2157 atomic_inc(&iter->under_oom);
2158}
2159
c0ff4b85 2160static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2161{
2162 struct mem_cgroup *iter;
2163
867578cb
KH
2164 /*
2165 * When a new child is created while the hierarchy is under oom,
2166 * mem_cgroup_oom_lock() may not be called. We have to use
2167 * atomic_add_unless() here.
2168 */
c0ff4b85 2169 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2170 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2171}
2172
1af8efe9 2173static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2174static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2175
dc98df5a 2176struct oom_wait_info {
d79154bb 2177 struct mem_cgroup *memcg;
dc98df5a
KH
2178 wait_queue_t wait;
2179};
2180
2181static int memcg_oom_wake_function(wait_queue_t *wait,
2182 unsigned mode, int sync, void *arg)
2183{
d79154bb
HD
2184 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2185 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2186 struct oom_wait_info *oom_wait_info;
2187
2188 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2189 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2190
dc98df5a 2191 /*
d79154bb 2192 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2193 * Then we can use css_is_ancestor without taking care of RCU.
2194 */
c0ff4b85
R
2195 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2196 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2197 return 0;
dc98df5a
KH
2198 return autoremove_wake_function(wait, mode, sync, arg);
2199}
2200
c0ff4b85 2201static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2202{
c0ff4b85
R
2203 /* for filtering, pass "memcg" as argument. */
2204 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2205}
2206
c0ff4b85 2207static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2208{
c0ff4b85
R
2209 if (memcg && atomic_read(&memcg->under_oom))
2210 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2211}
2212
867578cb
KH
2213/*
2214 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2215 */
6bbda35c
KS
2216static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2217 int order)
0b7f569e 2218{
dc98df5a 2219 struct oom_wait_info owait;
3c11ecf4 2220 bool locked, need_to_kill;
867578cb 2221
d79154bb 2222 owait.memcg = memcg;
dc98df5a
KH
2223 owait.wait.flags = 0;
2224 owait.wait.func = memcg_oom_wake_function;
2225 owait.wait.private = current;
2226 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2227 need_to_kill = true;
c0ff4b85 2228 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2229
c0ff4b85 2230 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2231 spin_lock(&memcg_oom_lock);
c0ff4b85 2232 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2233 /*
2234 * Even if signal_pending(), we can't quit charge() loop without
2235 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2236 * under OOM is always welcomed, use TASK_KILLABLE here.
2237 */
3c11ecf4 2238 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2239 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2240 need_to_kill = false;
2241 if (locked)
c0ff4b85 2242 mem_cgroup_oom_notify(memcg);
1af8efe9 2243 spin_unlock(&memcg_oom_lock);
867578cb 2244
3c11ecf4
KH
2245 if (need_to_kill) {
2246 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2247 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2248 } else {
867578cb 2249 schedule();
dc98df5a 2250 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2251 }
1af8efe9 2252 spin_lock(&memcg_oom_lock);
79dfdacc 2253 if (locked)
c0ff4b85
R
2254 mem_cgroup_oom_unlock(memcg);
2255 memcg_wakeup_oom(memcg);
1af8efe9 2256 spin_unlock(&memcg_oom_lock);
867578cb 2257
c0ff4b85 2258 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2259
867578cb
KH
2260 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2261 return false;
2262 /* Give chance to dying process */
715a5ee8 2263 schedule_timeout_uninterruptible(1);
867578cb 2264 return true;
0b7f569e
KH
2265}
2266
d69b042f
BS
2267/*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
32047e2a
KH
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
d69b042f 2289 */
26174efd 2290
89c06bd5
KH
2291void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 bool *locked, unsigned long *flags)
2293{
2294 struct mem_cgroup *memcg;
2295 struct page_cgroup *pc;
2296
2297 pc = lookup_page_cgroup(page);
2298again:
2299 memcg = pc->mem_cgroup;
2300 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 return;
2302 /*
2303 * If this memory cgroup is not under account moving, we don't
da92c47d 2304 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2305 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2306 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2307 */
13fd1dd9 2308 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317}
2318
2319void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320{
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2326 * should take move_lock_mem_cgroup().
89c06bd5
KH
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329}
2330
2a7106f2
GT
2331void mem_cgroup_update_page_stat(struct page *page,
2332 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2333{
c0ff4b85 2334 struct mem_cgroup *memcg;
32047e2a 2335 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2336 unsigned long uninitialized_var(flags);
d69b042f 2337
cfa44946 2338 if (mem_cgroup_disabled())
d69b042f 2339 return;
89c06bd5 2340
c0ff4b85
R
2341 memcg = pc->mem_cgroup;
2342 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2343 return;
26174efd 2344
26174efd 2345 switch (idx) {
2a7106f2 2346 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2347 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2348 break;
2349 default:
2350 BUG();
8725d541 2351 }
d69b042f 2352
c0ff4b85 2353 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2354}
26174efd 2355
cdec2e42
KH
2356/*
2357 * size of first charge trial. "32" comes from vmscan.c's magic value.
2358 * TODO: maybe necessary to use big numbers in big irons.
2359 */
7ec99d62 2360#define CHARGE_BATCH 32U
cdec2e42
KH
2361struct memcg_stock_pcp {
2362 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2363 unsigned int nr_pages;
cdec2e42 2364 struct work_struct work;
26fe6168 2365 unsigned long flags;
a0db00fc 2366#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2367};
2368static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2369static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2370
a0956d54
SS
2371/**
2372 * consume_stock: Try to consume stocked charge on this cpu.
2373 * @memcg: memcg to consume from.
2374 * @nr_pages: how many pages to charge.
2375 *
2376 * The charges will only happen if @memcg matches the current cpu's memcg
2377 * stock, and at least @nr_pages are available in that stock. Failure to
2378 * service an allocation will refill the stock.
2379 *
2380 * returns true if successful, false otherwise.
cdec2e42 2381 */
a0956d54 2382static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2383{
2384 struct memcg_stock_pcp *stock;
2385 bool ret = true;
2386
a0956d54
SS
2387 if (nr_pages > CHARGE_BATCH)
2388 return false;
2389
cdec2e42 2390 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2391 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2392 stock->nr_pages -= nr_pages;
cdec2e42
KH
2393 else /* need to call res_counter_charge */
2394 ret = false;
2395 put_cpu_var(memcg_stock);
2396 return ret;
2397}
2398
2399/*
2400 * Returns stocks cached in percpu to res_counter and reset cached information.
2401 */
2402static void drain_stock(struct memcg_stock_pcp *stock)
2403{
2404 struct mem_cgroup *old = stock->cached;
2405
11c9ea4e
JW
2406 if (stock->nr_pages) {
2407 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2408
2409 res_counter_uncharge(&old->res, bytes);
cdec2e42 2410 if (do_swap_account)
11c9ea4e
JW
2411 res_counter_uncharge(&old->memsw, bytes);
2412 stock->nr_pages = 0;
cdec2e42
KH
2413 }
2414 stock->cached = NULL;
cdec2e42
KH
2415}
2416
2417/*
2418 * This must be called under preempt disabled or must be called by
2419 * a thread which is pinned to local cpu.
2420 */
2421static void drain_local_stock(struct work_struct *dummy)
2422{
2423 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2424 drain_stock(stock);
26fe6168 2425 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2426}
2427
e4777496
MH
2428static void __init memcg_stock_init(void)
2429{
2430 int cpu;
2431
2432 for_each_possible_cpu(cpu) {
2433 struct memcg_stock_pcp *stock =
2434 &per_cpu(memcg_stock, cpu);
2435 INIT_WORK(&stock->work, drain_local_stock);
2436 }
2437}
2438
cdec2e42
KH
2439/*
2440 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2441 * This will be consumed by consume_stock() function, later.
cdec2e42 2442 */
c0ff4b85 2443static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2444{
2445 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2446
c0ff4b85 2447 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2448 drain_stock(stock);
c0ff4b85 2449 stock->cached = memcg;
cdec2e42 2450 }
11c9ea4e 2451 stock->nr_pages += nr_pages;
cdec2e42
KH
2452 put_cpu_var(memcg_stock);
2453}
2454
2455/*
c0ff4b85 2456 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2457 * of the hierarchy under it. sync flag says whether we should block
2458 * until the work is done.
cdec2e42 2459 */
c0ff4b85 2460static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2461{
26fe6168 2462 int cpu, curcpu;
d38144b7 2463
cdec2e42 2464 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2465 get_online_cpus();
5af12d0e 2466 curcpu = get_cpu();
cdec2e42
KH
2467 for_each_online_cpu(cpu) {
2468 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2469 struct mem_cgroup *memcg;
26fe6168 2470
c0ff4b85
R
2471 memcg = stock->cached;
2472 if (!memcg || !stock->nr_pages)
26fe6168 2473 continue;
c0ff4b85 2474 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2475 continue;
d1a05b69
MH
2476 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2477 if (cpu == curcpu)
2478 drain_local_stock(&stock->work);
2479 else
2480 schedule_work_on(cpu, &stock->work);
2481 }
cdec2e42 2482 }
5af12d0e 2483 put_cpu();
d38144b7
MH
2484
2485 if (!sync)
2486 goto out;
2487
2488 for_each_online_cpu(cpu) {
2489 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2490 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2491 flush_work(&stock->work);
2492 }
2493out:
cdec2e42 2494 put_online_cpus();
d38144b7
MH
2495}
2496
2497/*
2498 * Tries to drain stocked charges in other cpus. This function is asynchronous
2499 * and just put a work per cpu for draining localy on each cpu. Caller can
2500 * expects some charges will be back to res_counter later but cannot wait for
2501 * it.
2502 */
c0ff4b85 2503static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2504{
9f50fad6
MH
2505 /*
2506 * If someone calls draining, avoid adding more kworker runs.
2507 */
2508 if (!mutex_trylock(&percpu_charge_mutex))
2509 return;
c0ff4b85 2510 drain_all_stock(root_memcg, false);
9f50fad6 2511 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2512}
2513
2514/* This is a synchronous drain interface. */
c0ff4b85 2515static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2516{
2517 /* called when force_empty is called */
9f50fad6 2518 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2519 drain_all_stock(root_memcg, true);
9f50fad6 2520 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2521}
2522
711d3d2c
KH
2523/*
2524 * This function drains percpu counter value from DEAD cpu and
2525 * move it to local cpu. Note that this function can be preempted.
2526 */
c0ff4b85 2527static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2528{
2529 int i;
2530
c0ff4b85 2531 spin_lock(&memcg->pcp_counter_lock);
6104621d 2532 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2533 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2534
c0ff4b85
R
2535 per_cpu(memcg->stat->count[i], cpu) = 0;
2536 memcg->nocpu_base.count[i] += x;
711d3d2c 2537 }
e9f8974f 2538 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2539 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2540
c0ff4b85
R
2541 per_cpu(memcg->stat->events[i], cpu) = 0;
2542 memcg->nocpu_base.events[i] += x;
e9f8974f 2543 }
c0ff4b85 2544 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2545}
2546
2547static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2548 unsigned long action,
2549 void *hcpu)
2550{
2551 int cpu = (unsigned long)hcpu;
2552 struct memcg_stock_pcp *stock;
711d3d2c 2553 struct mem_cgroup *iter;
cdec2e42 2554
619d094b 2555 if (action == CPU_ONLINE)
1489ebad 2556 return NOTIFY_OK;
1489ebad 2557
d833049b 2558 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2559 return NOTIFY_OK;
711d3d2c 2560
9f3a0d09 2561 for_each_mem_cgroup(iter)
711d3d2c
KH
2562 mem_cgroup_drain_pcp_counter(iter, cpu);
2563
cdec2e42
KH
2564 stock = &per_cpu(memcg_stock, cpu);
2565 drain_stock(stock);
2566 return NOTIFY_OK;
2567}
2568
4b534334
KH
2569
2570/* See __mem_cgroup_try_charge() for details */
2571enum {
2572 CHARGE_OK, /* success */
2573 CHARGE_RETRY, /* need to retry but retry is not bad */
2574 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2575 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2576 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2577};
2578
c0ff4b85 2579static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2580 unsigned int nr_pages, unsigned int min_pages,
2581 bool oom_check)
4b534334 2582{
7ec99d62 2583 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2584 struct mem_cgroup *mem_over_limit;
2585 struct res_counter *fail_res;
2586 unsigned long flags = 0;
2587 int ret;
2588
c0ff4b85 2589 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2590
2591 if (likely(!ret)) {
2592 if (!do_swap_account)
2593 return CHARGE_OK;
c0ff4b85 2594 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2595 if (likely(!ret))
2596 return CHARGE_OK;
2597
c0ff4b85 2598 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2599 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2600 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2601 } else
2602 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2603 /*
9221edb7
JW
2604 * Never reclaim on behalf of optional batching, retry with a
2605 * single page instead.
2606 */
4c9c5359 2607 if (nr_pages > min_pages)
4b534334
KH
2608 return CHARGE_RETRY;
2609
2610 if (!(gfp_mask & __GFP_WAIT))
2611 return CHARGE_WOULDBLOCK;
2612
4c9c5359
SS
2613 if (gfp_mask & __GFP_NORETRY)
2614 return CHARGE_NOMEM;
2615
5660048c 2616 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2617 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2618 return CHARGE_RETRY;
4b534334 2619 /*
19942822
JW
2620 * Even though the limit is exceeded at this point, reclaim
2621 * may have been able to free some pages. Retry the charge
2622 * before killing the task.
2623 *
2624 * Only for regular pages, though: huge pages are rather
2625 * unlikely to succeed so close to the limit, and we fall back
2626 * to regular pages anyway in case of failure.
4b534334 2627 */
4c9c5359 2628 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2629 return CHARGE_RETRY;
2630
2631 /*
2632 * At task move, charge accounts can be doubly counted. So, it's
2633 * better to wait until the end of task_move if something is going on.
2634 */
2635 if (mem_cgroup_wait_acct_move(mem_over_limit))
2636 return CHARGE_RETRY;
2637
2638 /* If we don't need to call oom-killer at el, return immediately */
2639 if (!oom_check)
2640 return CHARGE_NOMEM;
2641 /* check OOM */
e845e199 2642 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2643 return CHARGE_OOM_DIE;
2644
2645 return CHARGE_RETRY;
2646}
2647
f817ed48 2648/*
38c5d72f
KH
2649 * __mem_cgroup_try_charge() does
2650 * 1. detect memcg to be charged against from passed *mm and *ptr,
2651 * 2. update res_counter
2652 * 3. call memory reclaim if necessary.
2653 *
2654 * In some special case, if the task is fatal, fatal_signal_pending() or
2655 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2656 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2657 * as possible without any hazards. 2: all pages should have a valid
2658 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2659 * pointer, that is treated as a charge to root_mem_cgroup.
2660 *
2661 * So __mem_cgroup_try_charge() will return
2662 * 0 ... on success, filling *ptr with a valid memcg pointer.
2663 * -ENOMEM ... charge failure because of resource limits.
2664 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2665 *
2666 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2667 * the oom-killer can be invoked.
8a9f3ccd 2668 */
f817ed48 2669static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2670 gfp_t gfp_mask,
7ec99d62 2671 unsigned int nr_pages,
c0ff4b85 2672 struct mem_cgroup **ptr,
7ec99d62 2673 bool oom)
8a9f3ccd 2674{
7ec99d62 2675 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2676 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2677 struct mem_cgroup *memcg = NULL;
4b534334 2678 int ret;
a636b327 2679
867578cb
KH
2680 /*
2681 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2682 * in system level. So, allow to go ahead dying process in addition to
2683 * MEMDIE process.
2684 */
2685 if (unlikely(test_thread_flag(TIF_MEMDIE)
2686 || fatal_signal_pending(current)))
2687 goto bypass;
a636b327 2688
8a9f3ccd 2689 /*
3be91277
HD
2690 * We always charge the cgroup the mm_struct belongs to.
2691 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2692 * thread group leader migrates. It's possible that mm is not
24467cac 2693 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2694 */
c0ff4b85 2695 if (!*ptr && !mm)
38c5d72f 2696 *ptr = root_mem_cgroup;
f75ca962 2697again:
c0ff4b85
R
2698 if (*ptr) { /* css should be a valid one */
2699 memcg = *ptr;
c0ff4b85 2700 if (mem_cgroup_is_root(memcg))
f75ca962 2701 goto done;
a0956d54 2702 if (consume_stock(memcg, nr_pages))
f75ca962 2703 goto done;
c0ff4b85 2704 css_get(&memcg->css);
4b534334 2705 } else {
f75ca962 2706 struct task_struct *p;
54595fe2 2707
f75ca962
KH
2708 rcu_read_lock();
2709 p = rcu_dereference(mm->owner);
f75ca962 2710 /*
ebb76ce1 2711 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2712 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2713 * race with swapoff. Then, we have small risk of mis-accouning.
2714 * But such kind of mis-account by race always happens because
2715 * we don't have cgroup_mutex(). It's overkill and we allo that
2716 * small race, here.
2717 * (*) swapoff at el will charge against mm-struct not against
2718 * task-struct. So, mm->owner can be NULL.
f75ca962 2719 */
c0ff4b85 2720 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2721 if (!memcg)
2722 memcg = root_mem_cgroup;
2723 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2724 rcu_read_unlock();
2725 goto done;
2726 }
a0956d54 2727 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2728 /*
2729 * It seems dagerous to access memcg without css_get().
2730 * But considering how consume_stok works, it's not
2731 * necessary. If consume_stock success, some charges
2732 * from this memcg are cached on this cpu. So, we
2733 * don't need to call css_get()/css_tryget() before
2734 * calling consume_stock().
2735 */
2736 rcu_read_unlock();
2737 goto done;
2738 }
2739 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2740 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2741 rcu_read_unlock();
2742 goto again;
2743 }
2744 rcu_read_unlock();
2745 }
8a9f3ccd 2746
4b534334
KH
2747 do {
2748 bool oom_check;
7a81b88c 2749
4b534334 2750 /* If killed, bypass charge */
f75ca962 2751 if (fatal_signal_pending(current)) {
c0ff4b85 2752 css_put(&memcg->css);
4b534334 2753 goto bypass;
f75ca962 2754 }
6d61ef40 2755
4b534334
KH
2756 oom_check = false;
2757 if (oom && !nr_oom_retries) {
2758 oom_check = true;
2759 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2760 }
66e1707b 2761
4c9c5359
SS
2762 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2763 oom_check);
4b534334
KH
2764 switch (ret) {
2765 case CHARGE_OK:
2766 break;
2767 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2768 batch = nr_pages;
c0ff4b85
R
2769 css_put(&memcg->css);
2770 memcg = NULL;
f75ca962 2771 goto again;
4b534334 2772 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2773 css_put(&memcg->css);
4b534334
KH
2774 goto nomem;
2775 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2776 if (!oom) {
c0ff4b85 2777 css_put(&memcg->css);
867578cb 2778 goto nomem;
f75ca962 2779 }
4b534334
KH
2780 /* If oom, we never return -ENOMEM */
2781 nr_oom_retries--;
2782 break;
2783 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2784 css_put(&memcg->css);
867578cb 2785 goto bypass;
66e1707b 2786 }
4b534334
KH
2787 } while (ret != CHARGE_OK);
2788
7ec99d62 2789 if (batch > nr_pages)
c0ff4b85
R
2790 refill_stock(memcg, batch - nr_pages);
2791 css_put(&memcg->css);
0c3e73e8 2792done:
c0ff4b85 2793 *ptr = memcg;
7a81b88c
KH
2794 return 0;
2795nomem:
c0ff4b85 2796 *ptr = NULL;
7a81b88c 2797 return -ENOMEM;
867578cb 2798bypass:
38c5d72f
KH
2799 *ptr = root_mem_cgroup;
2800 return -EINTR;
7a81b88c 2801}
8a9f3ccd 2802
a3032a2c
DN
2803/*
2804 * Somemtimes we have to undo a charge we got by try_charge().
2805 * This function is for that and do uncharge, put css's refcnt.
2806 * gotten by try_charge().
2807 */
c0ff4b85 2808static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2809 unsigned int nr_pages)
a3032a2c 2810{
c0ff4b85 2811 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2812 unsigned long bytes = nr_pages * PAGE_SIZE;
2813
c0ff4b85 2814 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2815 if (do_swap_account)
c0ff4b85 2816 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2817 }
854ffa8d
DN
2818}
2819
d01dd17f
KH
2820/*
2821 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2822 * This is useful when moving usage to parent cgroup.
2823 */
2824static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2825 unsigned int nr_pages)
2826{
2827 unsigned long bytes = nr_pages * PAGE_SIZE;
2828
2829 if (mem_cgroup_is_root(memcg))
2830 return;
2831
2832 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2833 if (do_swap_account)
2834 res_counter_uncharge_until(&memcg->memsw,
2835 memcg->memsw.parent, bytes);
2836}
2837
a3b2d692
KH
2838/*
2839 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2840 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2841 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2842 * called against removed memcg.)
a3b2d692
KH
2843 */
2844static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2845{
2846 struct cgroup_subsys_state *css;
2847
2848 /* ID 0 is unused ID */
2849 if (!id)
2850 return NULL;
2851 css = css_lookup(&mem_cgroup_subsys, id);
2852 if (!css)
2853 return NULL;
b2145145 2854 return mem_cgroup_from_css(css);
a3b2d692
KH
2855}
2856
e42d9d5d 2857struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2858{
c0ff4b85 2859 struct mem_cgroup *memcg = NULL;
3c776e64 2860 struct page_cgroup *pc;
a3b2d692 2861 unsigned short id;
b5a84319
KH
2862 swp_entry_t ent;
2863
3c776e64
DN
2864 VM_BUG_ON(!PageLocked(page));
2865
3c776e64 2866 pc = lookup_page_cgroup(page);
c0bd3f63 2867 lock_page_cgroup(pc);
a3b2d692 2868 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2869 memcg = pc->mem_cgroup;
2870 if (memcg && !css_tryget(&memcg->css))
2871 memcg = NULL;
e42d9d5d 2872 } else if (PageSwapCache(page)) {
3c776e64 2873 ent.val = page_private(page);
9fb4b7cc 2874 id = lookup_swap_cgroup_id(ent);
a3b2d692 2875 rcu_read_lock();
c0ff4b85
R
2876 memcg = mem_cgroup_lookup(id);
2877 if (memcg && !css_tryget(&memcg->css))
2878 memcg = NULL;
a3b2d692 2879 rcu_read_unlock();
3c776e64 2880 }
c0bd3f63 2881 unlock_page_cgroup(pc);
c0ff4b85 2882 return memcg;
b5a84319
KH
2883}
2884
c0ff4b85 2885static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2886 struct page *page,
7ec99d62 2887 unsigned int nr_pages,
9ce70c02
HD
2888 enum charge_type ctype,
2889 bool lrucare)
7a81b88c 2890{
ce587e65 2891 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2892 struct zone *uninitialized_var(zone);
fa9add64 2893 struct lruvec *lruvec;
9ce70c02 2894 bool was_on_lru = false;
b2402857 2895 bool anon;
9ce70c02 2896
ca3e0214 2897 lock_page_cgroup(pc);
90deb788 2898 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2899 /*
2900 * we don't need page_cgroup_lock about tail pages, becase they are not
2901 * accessed by any other context at this point.
2902 */
9ce70c02
HD
2903
2904 /*
2905 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2906 * may already be on some other mem_cgroup's LRU. Take care of it.
2907 */
2908 if (lrucare) {
2909 zone = page_zone(page);
2910 spin_lock_irq(&zone->lru_lock);
2911 if (PageLRU(page)) {
fa9add64 2912 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2913 ClearPageLRU(page);
fa9add64 2914 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2915 was_on_lru = true;
2916 }
2917 }
2918
c0ff4b85 2919 pc->mem_cgroup = memcg;
261fb61a
KH
2920 /*
2921 * We access a page_cgroup asynchronously without lock_page_cgroup().
2922 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2923 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2924 * before USED bit, we need memory barrier here.
2925 * See mem_cgroup_add_lru_list(), etc.
2926 */
08e552c6 2927 smp_wmb();
b2402857 2928 SetPageCgroupUsed(pc);
3be91277 2929
9ce70c02
HD
2930 if (lrucare) {
2931 if (was_on_lru) {
fa9add64 2932 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2933 VM_BUG_ON(PageLRU(page));
2934 SetPageLRU(page);
fa9add64 2935 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2936 }
2937 spin_unlock_irq(&zone->lru_lock);
2938 }
2939
41326c17 2940 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2941 anon = true;
2942 else
2943 anon = false;
2944
b070e65c 2945 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2946 unlock_page_cgroup(pc);
9ce70c02 2947
430e4863
KH
2948 /*
2949 * "charge_statistics" updated event counter. Then, check it.
2950 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2951 * if they exceeds softlimit.
2952 */
c0ff4b85 2953 memcg_check_events(memcg, page);
7a81b88c 2954}
66e1707b 2955
7cf27982
GC
2956static DEFINE_MUTEX(set_limit_mutex);
2957
7ae1e1d0
GC
2958#ifdef CONFIG_MEMCG_KMEM
2959static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2960{
2961 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2962 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2963}
2964
1f458cbf
GC
2965/*
2966 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2967 * in the memcg_cache_params struct.
2968 */
2969static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2970{
2971 struct kmem_cache *cachep;
2972
2973 VM_BUG_ON(p->is_root_cache);
2974 cachep = p->root_cache;
2975 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2976}
2977
749c5415
GC
2978#ifdef CONFIG_SLABINFO
2979static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2980 struct seq_file *m)
2981{
2982 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2983 struct memcg_cache_params *params;
2984
2985 if (!memcg_can_account_kmem(memcg))
2986 return -EIO;
2987
2988 print_slabinfo_header(m);
2989
2990 mutex_lock(&memcg->slab_caches_mutex);
2991 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2992 cache_show(memcg_params_to_cache(params), m);
2993 mutex_unlock(&memcg->slab_caches_mutex);
2994
2995 return 0;
2996}
2997#endif
2998
7ae1e1d0
GC
2999static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3000{
3001 struct res_counter *fail_res;
3002 struct mem_cgroup *_memcg;
3003 int ret = 0;
3004 bool may_oom;
3005
3006 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3007 if (ret)
3008 return ret;
3009
3010 /*
3011 * Conditions under which we can wait for the oom_killer. Those are
3012 * the same conditions tested by the core page allocator
3013 */
3014 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3015
3016 _memcg = memcg;
3017 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3018 &_memcg, may_oom);
3019
3020 if (ret == -EINTR) {
3021 /*
3022 * __mem_cgroup_try_charge() chosed to bypass to root due to
3023 * OOM kill or fatal signal. Since our only options are to
3024 * either fail the allocation or charge it to this cgroup, do
3025 * it as a temporary condition. But we can't fail. From a
3026 * kmem/slab perspective, the cache has already been selected,
3027 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3028 * our minds.
3029 *
3030 * This condition will only trigger if the task entered
3031 * memcg_charge_kmem in a sane state, but was OOM-killed during
3032 * __mem_cgroup_try_charge() above. Tasks that were already
3033 * dying when the allocation triggers should have been already
3034 * directed to the root cgroup in memcontrol.h
3035 */
3036 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3037 if (do_swap_account)
3038 res_counter_charge_nofail(&memcg->memsw, size,
3039 &fail_res);
3040 ret = 0;
3041 } else if (ret)
3042 res_counter_uncharge(&memcg->kmem, size);
3043
3044 return ret;
3045}
3046
3047static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3048{
7ae1e1d0
GC
3049 res_counter_uncharge(&memcg->res, size);
3050 if (do_swap_account)
3051 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3052
3053 /* Not down to 0 */
3054 if (res_counter_uncharge(&memcg->kmem, size))
3055 return;
3056
10d5ebf4
LZ
3057 /*
3058 * Releases a reference taken in kmem_cgroup_css_offline in case
3059 * this last uncharge is racing with the offlining code or it is
3060 * outliving the memcg existence.
3061 *
3062 * The memory barrier imposed by test&clear is paired with the
3063 * explicit one in memcg_kmem_mark_dead().
3064 */
7de37682 3065 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3066 css_put(&memcg->css);
7ae1e1d0
GC
3067}
3068
2633d7a0
GC
3069void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3070{
3071 if (!memcg)
3072 return;
3073
3074 mutex_lock(&memcg->slab_caches_mutex);
3075 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3076 mutex_unlock(&memcg->slab_caches_mutex);
3077}
3078
3079/*
3080 * helper for acessing a memcg's index. It will be used as an index in the
3081 * child cache array in kmem_cache, and also to derive its name. This function
3082 * will return -1 when this is not a kmem-limited memcg.
3083 */
3084int memcg_cache_id(struct mem_cgroup *memcg)
3085{
3086 return memcg ? memcg->kmemcg_id : -1;
3087}
3088
55007d84
GC
3089/*
3090 * This ends up being protected by the set_limit mutex, during normal
3091 * operation, because that is its main call site.
3092 *
3093 * But when we create a new cache, we can call this as well if its parent
3094 * is kmem-limited. That will have to hold set_limit_mutex as well.
3095 */
3096int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3097{
3098 int num, ret;
3099
3100 num = ida_simple_get(&kmem_limited_groups,
3101 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3102 if (num < 0)
3103 return num;
3104 /*
3105 * After this point, kmem_accounted (that we test atomically in
3106 * the beginning of this conditional), is no longer 0. This
3107 * guarantees only one process will set the following boolean
3108 * to true. We don't need test_and_set because we're protected
3109 * by the set_limit_mutex anyway.
3110 */
3111 memcg_kmem_set_activated(memcg);
3112
3113 ret = memcg_update_all_caches(num+1);
3114 if (ret) {
3115 ida_simple_remove(&kmem_limited_groups, num);
3116 memcg_kmem_clear_activated(memcg);
3117 return ret;
3118 }
3119
3120 memcg->kmemcg_id = num;
3121 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3122 mutex_init(&memcg->slab_caches_mutex);
3123 return 0;
3124}
3125
3126static size_t memcg_caches_array_size(int num_groups)
3127{
3128 ssize_t size;
3129 if (num_groups <= 0)
3130 return 0;
3131
3132 size = 2 * num_groups;
3133 if (size < MEMCG_CACHES_MIN_SIZE)
3134 size = MEMCG_CACHES_MIN_SIZE;
3135 else if (size > MEMCG_CACHES_MAX_SIZE)
3136 size = MEMCG_CACHES_MAX_SIZE;
3137
3138 return size;
3139}
3140
3141/*
3142 * We should update the current array size iff all caches updates succeed. This
3143 * can only be done from the slab side. The slab mutex needs to be held when
3144 * calling this.
3145 */
3146void memcg_update_array_size(int num)
3147{
3148 if (num > memcg_limited_groups_array_size)
3149 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3150}
3151
15cf17d2
KK
3152static void kmem_cache_destroy_work_func(struct work_struct *w);
3153
55007d84
GC
3154int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3155{
3156 struct memcg_cache_params *cur_params = s->memcg_params;
3157
3158 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3159
3160 if (num_groups > memcg_limited_groups_array_size) {
3161 int i;
3162 ssize_t size = memcg_caches_array_size(num_groups);
3163
3164 size *= sizeof(void *);
3165 size += sizeof(struct memcg_cache_params);
3166
3167 s->memcg_params = kzalloc(size, GFP_KERNEL);
3168 if (!s->memcg_params) {
3169 s->memcg_params = cur_params;
3170 return -ENOMEM;
3171 }
3172
3173 s->memcg_params->is_root_cache = true;
3174
3175 /*
3176 * There is the chance it will be bigger than
3177 * memcg_limited_groups_array_size, if we failed an allocation
3178 * in a cache, in which case all caches updated before it, will
3179 * have a bigger array.
3180 *
3181 * But if that is the case, the data after
3182 * memcg_limited_groups_array_size is certainly unused
3183 */
3184 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3185 if (!cur_params->memcg_caches[i])
3186 continue;
3187 s->memcg_params->memcg_caches[i] =
3188 cur_params->memcg_caches[i];
3189 }
3190
3191 /*
3192 * Ideally, we would wait until all caches succeed, and only
3193 * then free the old one. But this is not worth the extra
3194 * pointer per-cache we'd have to have for this.
3195 *
3196 * It is not a big deal if some caches are left with a size
3197 * bigger than the others. And all updates will reset this
3198 * anyway.
3199 */
3200 kfree(cur_params);
3201 }
3202 return 0;
3203}
3204
943a451a
GC
3205int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3206 struct kmem_cache *root_cache)
2633d7a0
GC
3207{
3208 size_t size = sizeof(struct memcg_cache_params);
3209
3210 if (!memcg_kmem_enabled())
3211 return 0;
3212
55007d84
GC
3213 if (!memcg)
3214 size += memcg_limited_groups_array_size * sizeof(void *);
3215
2633d7a0
GC
3216 s->memcg_params = kzalloc(size, GFP_KERNEL);
3217 if (!s->memcg_params)
3218 return -ENOMEM;
3219
15cf17d2
KK
3220 INIT_WORK(&s->memcg_params->destroy,
3221 kmem_cache_destroy_work_func);
943a451a 3222 if (memcg) {
2633d7a0 3223 s->memcg_params->memcg = memcg;
943a451a 3224 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3225 } else
3226 s->memcg_params->is_root_cache = true;
3227
2633d7a0
GC
3228 return 0;
3229}
3230
3231void memcg_release_cache(struct kmem_cache *s)
3232{
d7f25f8a
GC
3233 struct kmem_cache *root;
3234 struct mem_cgroup *memcg;
3235 int id;
3236
3237 /*
3238 * This happens, for instance, when a root cache goes away before we
3239 * add any memcg.
3240 */
3241 if (!s->memcg_params)
3242 return;
3243
3244 if (s->memcg_params->is_root_cache)
3245 goto out;
3246
3247 memcg = s->memcg_params->memcg;
3248 id = memcg_cache_id(memcg);
3249
3250 root = s->memcg_params->root_cache;
3251 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3252
3253 mutex_lock(&memcg->slab_caches_mutex);
3254 list_del(&s->memcg_params->list);
3255 mutex_unlock(&memcg->slab_caches_mutex);
3256
20f05310 3257 css_put(&memcg->css);
d7f25f8a 3258out:
2633d7a0
GC
3259 kfree(s->memcg_params);
3260}
3261
0e9d92f2
GC
3262/*
3263 * During the creation a new cache, we need to disable our accounting mechanism
3264 * altogether. This is true even if we are not creating, but rather just
3265 * enqueing new caches to be created.
3266 *
3267 * This is because that process will trigger allocations; some visible, like
3268 * explicit kmallocs to auxiliary data structures, name strings and internal
3269 * cache structures; some well concealed, like INIT_WORK() that can allocate
3270 * objects during debug.
3271 *
3272 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3273 * to it. This may not be a bounded recursion: since the first cache creation
3274 * failed to complete (waiting on the allocation), we'll just try to create the
3275 * cache again, failing at the same point.
3276 *
3277 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3278 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3279 * inside the following two functions.
3280 */
3281static inline void memcg_stop_kmem_account(void)
3282{
3283 VM_BUG_ON(!current->mm);
3284 current->memcg_kmem_skip_account++;
3285}
3286
3287static inline void memcg_resume_kmem_account(void)
3288{
3289 VM_BUG_ON(!current->mm);
3290 current->memcg_kmem_skip_account--;
3291}
3292
1f458cbf
GC
3293static void kmem_cache_destroy_work_func(struct work_struct *w)
3294{
3295 struct kmem_cache *cachep;
3296 struct memcg_cache_params *p;
3297
3298 p = container_of(w, struct memcg_cache_params, destroy);
3299
3300 cachep = memcg_params_to_cache(p);
3301
22933152
GC
3302 /*
3303 * If we get down to 0 after shrink, we could delete right away.
3304 * However, memcg_release_pages() already puts us back in the workqueue
3305 * in that case. If we proceed deleting, we'll get a dangling
3306 * reference, and removing the object from the workqueue in that case
3307 * is unnecessary complication. We are not a fast path.
3308 *
3309 * Note that this case is fundamentally different from racing with
3310 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3311 * kmem_cache_shrink, not only we would be reinserting a dead cache
3312 * into the queue, but doing so from inside the worker racing to
3313 * destroy it.
3314 *
3315 * So if we aren't down to zero, we'll just schedule a worker and try
3316 * again
3317 */
3318 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3319 kmem_cache_shrink(cachep);
3320 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3321 return;
3322 } else
1f458cbf
GC
3323 kmem_cache_destroy(cachep);
3324}
3325
3326void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3327{
3328 if (!cachep->memcg_params->dead)
3329 return;
3330
22933152
GC
3331 /*
3332 * There are many ways in which we can get here.
3333 *
3334 * We can get to a memory-pressure situation while the delayed work is
3335 * still pending to run. The vmscan shrinkers can then release all
3336 * cache memory and get us to destruction. If this is the case, we'll
3337 * be executed twice, which is a bug (the second time will execute over
3338 * bogus data). In this case, cancelling the work should be fine.
3339 *
3340 * But we can also get here from the worker itself, if
3341 * kmem_cache_shrink is enough to shake all the remaining objects and
3342 * get the page count to 0. In this case, we'll deadlock if we try to
3343 * cancel the work (the worker runs with an internal lock held, which
3344 * is the same lock we would hold for cancel_work_sync().)
3345 *
3346 * Since we can't possibly know who got us here, just refrain from
3347 * running if there is already work pending
3348 */
3349 if (work_pending(&cachep->memcg_params->destroy))
3350 return;
1f458cbf
GC
3351 /*
3352 * We have to defer the actual destroying to a workqueue, because
3353 * we might currently be in a context that cannot sleep.
3354 */
3355 schedule_work(&cachep->memcg_params->destroy);
3356}
3357
d9c10ddd
MH
3358/*
3359 * This lock protects updaters, not readers. We want readers to be as fast as
3360 * they can, and they will either see NULL or a valid cache value. Our model
3361 * allow them to see NULL, in which case the root memcg will be selected.
3362 *
3363 * We need this lock because multiple allocations to the same cache from a non
3364 * will span more than one worker. Only one of them can create the cache.
3365 */
3366static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3367
d9c10ddd
MH
3368/*
3369 * Called with memcg_cache_mutex held
3370 */
d7f25f8a
GC
3371static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3372 struct kmem_cache *s)
3373{
d7f25f8a 3374 struct kmem_cache *new;
d9c10ddd 3375 static char *tmp_name = NULL;
d7f25f8a 3376
d9c10ddd
MH
3377 lockdep_assert_held(&memcg_cache_mutex);
3378
3379 /*
3380 * kmem_cache_create_memcg duplicates the given name and
3381 * cgroup_name for this name requires RCU context.
3382 * This static temporary buffer is used to prevent from
3383 * pointless shortliving allocation.
3384 */
3385 if (!tmp_name) {
3386 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3387 if (!tmp_name)
3388 return NULL;
3389 }
3390
3391 rcu_read_lock();
3392 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3393 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3394 rcu_read_unlock();
d7f25f8a 3395
d9c10ddd 3396 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3397 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3398
d79923fa
GC
3399 if (new)
3400 new->allocflags |= __GFP_KMEMCG;
3401
d7f25f8a
GC
3402 return new;
3403}
3404
d7f25f8a
GC
3405static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3406 struct kmem_cache *cachep)
3407{
3408 struct kmem_cache *new_cachep;
3409 int idx;
3410
3411 BUG_ON(!memcg_can_account_kmem(memcg));
3412
3413 idx = memcg_cache_id(memcg);
3414
3415 mutex_lock(&memcg_cache_mutex);
3416 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3417 if (new_cachep) {
3418 css_put(&memcg->css);
d7f25f8a 3419 goto out;
20f05310 3420 }
d7f25f8a
GC
3421
3422 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3423 if (new_cachep == NULL) {
3424 new_cachep = cachep;
20f05310 3425 css_put(&memcg->css);
d7f25f8a
GC
3426 goto out;
3427 }
3428
1f458cbf 3429 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3430
3431 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3432 /*
3433 * the readers won't lock, make sure everybody sees the updated value,
3434 * so they won't put stuff in the queue again for no reason
3435 */
3436 wmb();
3437out:
3438 mutex_unlock(&memcg_cache_mutex);
3439 return new_cachep;
3440}
3441
7cf27982
GC
3442void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3443{
3444 struct kmem_cache *c;
3445 int i;
3446
3447 if (!s->memcg_params)
3448 return;
3449 if (!s->memcg_params->is_root_cache)
3450 return;
3451
3452 /*
3453 * If the cache is being destroyed, we trust that there is no one else
3454 * requesting objects from it. Even if there are, the sanity checks in
3455 * kmem_cache_destroy should caught this ill-case.
3456 *
3457 * Still, we don't want anyone else freeing memcg_caches under our
3458 * noses, which can happen if a new memcg comes to life. As usual,
3459 * we'll take the set_limit_mutex to protect ourselves against this.
3460 */
3461 mutex_lock(&set_limit_mutex);
3462 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3463 c = s->memcg_params->memcg_caches[i];
3464 if (!c)
3465 continue;
3466
3467 /*
3468 * We will now manually delete the caches, so to avoid races
3469 * we need to cancel all pending destruction workers and
3470 * proceed with destruction ourselves.
3471 *
3472 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3473 * and that could spawn the workers again: it is likely that
3474 * the cache still have active pages until this very moment.
3475 * This would lead us back to mem_cgroup_destroy_cache.
3476 *
3477 * But that will not execute at all if the "dead" flag is not
3478 * set, so flip it down to guarantee we are in control.
3479 */
3480 c->memcg_params->dead = false;
22933152 3481 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3482 kmem_cache_destroy(c);
3483 }
3484 mutex_unlock(&set_limit_mutex);
3485}
3486
d7f25f8a
GC
3487struct create_work {
3488 struct mem_cgroup *memcg;
3489 struct kmem_cache *cachep;
3490 struct work_struct work;
3491};
3492
1f458cbf
GC
3493static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3494{
3495 struct kmem_cache *cachep;
3496 struct memcg_cache_params *params;
3497
3498 if (!memcg_kmem_is_active(memcg))
3499 return;
3500
3501 mutex_lock(&memcg->slab_caches_mutex);
3502 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3503 cachep = memcg_params_to_cache(params);
3504 cachep->memcg_params->dead = true;
1f458cbf
GC
3505 schedule_work(&cachep->memcg_params->destroy);
3506 }
3507 mutex_unlock(&memcg->slab_caches_mutex);
3508}
3509
d7f25f8a
GC
3510static void memcg_create_cache_work_func(struct work_struct *w)
3511{
3512 struct create_work *cw;
3513
3514 cw = container_of(w, struct create_work, work);
3515 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3516 kfree(cw);
3517}
3518
3519/*
3520 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3521 */
0e9d92f2
GC
3522static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3523 struct kmem_cache *cachep)
d7f25f8a
GC
3524{
3525 struct create_work *cw;
3526
3527 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3528 if (cw == NULL) {
3529 css_put(&memcg->css);
d7f25f8a
GC
3530 return;
3531 }
3532
3533 cw->memcg = memcg;
3534 cw->cachep = cachep;
3535
3536 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3537 schedule_work(&cw->work);
3538}
3539
0e9d92f2
GC
3540static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3541 struct kmem_cache *cachep)
3542{
3543 /*
3544 * We need to stop accounting when we kmalloc, because if the
3545 * corresponding kmalloc cache is not yet created, the first allocation
3546 * in __memcg_create_cache_enqueue will recurse.
3547 *
3548 * However, it is better to enclose the whole function. Depending on
3549 * the debugging options enabled, INIT_WORK(), for instance, can
3550 * trigger an allocation. This too, will make us recurse. Because at
3551 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3552 * the safest choice is to do it like this, wrapping the whole function.
3553 */
3554 memcg_stop_kmem_account();
3555 __memcg_create_cache_enqueue(memcg, cachep);
3556 memcg_resume_kmem_account();
3557}
d7f25f8a
GC
3558/*
3559 * Return the kmem_cache we're supposed to use for a slab allocation.
3560 * We try to use the current memcg's version of the cache.
3561 *
3562 * If the cache does not exist yet, if we are the first user of it,
3563 * we either create it immediately, if possible, or create it asynchronously
3564 * in a workqueue.
3565 * In the latter case, we will let the current allocation go through with
3566 * the original cache.
3567 *
3568 * Can't be called in interrupt context or from kernel threads.
3569 * This function needs to be called with rcu_read_lock() held.
3570 */
3571struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3572 gfp_t gfp)
3573{
3574 struct mem_cgroup *memcg;
3575 int idx;
3576
3577 VM_BUG_ON(!cachep->memcg_params);
3578 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3579
0e9d92f2
GC
3580 if (!current->mm || current->memcg_kmem_skip_account)
3581 return cachep;
3582
d7f25f8a
GC
3583 rcu_read_lock();
3584 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3585
3586 if (!memcg_can_account_kmem(memcg))
ca0dde97 3587 goto out;
d7f25f8a
GC
3588
3589 idx = memcg_cache_id(memcg);
3590
3591 /*
3592 * barrier to mare sure we're always seeing the up to date value. The
3593 * code updating memcg_caches will issue a write barrier to match this.
3594 */
3595 read_barrier_depends();
ca0dde97
LZ
3596 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3597 cachep = cachep->memcg_params->memcg_caches[idx];
3598 goto out;
d7f25f8a
GC
3599 }
3600
ca0dde97
LZ
3601 /* The corresponding put will be done in the workqueue. */
3602 if (!css_tryget(&memcg->css))
3603 goto out;
3604 rcu_read_unlock();
3605
3606 /*
3607 * If we are in a safe context (can wait, and not in interrupt
3608 * context), we could be be predictable and return right away.
3609 * This would guarantee that the allocation being performed
3610 * already belongs in the new cache.
3611 *
3612 * However, there are some clashes that can arrive from locking.
3613 * For instance, because we acquire the slab_mutex while doing
3614 * kmem_cache_dup, this means no further allocation could happen
3615 * with the slab_mutex held.
3616 *
3617 * Also, because cache creation issue get_online_cpus(), this
3618 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3619 * that ends up reversed during cpu hotplug. (cpuset allocates
3620 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3621 * better to defer everything.
3622 */
3623 memcg_create_cache_enqueue(memcg, cachep);
3624 return cachep;
3625out:
3626 rcu_read_unlock();
3627 return cachep;
d7f25f8a
GC
3628}
3629EXPORT_SYMBOL(__memcg_kmem_get_cache);
3630
7ae1e1d0
GC
3631/*
3632 * We need to verify if the allocation against current->mm->owner's memcg is
3633 * possible for the given order. But the page is not allocated yet, so we'll
3634 * need a further commit step to do the final arrangements.
3635 *
3636 * It is possible for the task to switch cgroups in this mean time, so at
3637 * commit time, we can't rely on task conversion any longer. We'll then use
3638 * the handle argument to return to the caller which cgroup we should commit
3639 * against. We could also return the memcg directly and avoid the pointer
3640 * passing, but a boolean return value gives better semantics considering
3641 * the compiled-out case as well.
3642 *
3643 * Returning true means the allocation is possible.
3644 */
3645bool
3646__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3647{
3648 struct mem_cgroup *memcg;
3649 int ret;
3650
3651 *_memcg = NULL;
6d42c232
GC
3652
3653 /*
3654 * Disabling accounting is only relevant for some specific memcg
3655 * internal allocations. Therefore we would initially not have such
3656 * check here, since direct calls to the page allocator that are marked
3657 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3658 * concerned with cache allocations, and by having this test at
3659 * memcg_kmem_get_cache, we are already able to relay the allocation to
3660 * the root cache and bypass the memcg cache altogether.
3661 *
3662 * There is one exception, though: the SLUB allocator does not create
3663 * large order caches, but rather service large kmallocs directly from
3664 * the page allocator. Therefore, the following sequence when backed by
3665 * the SLUB allocator:
3666 *
3667 * memcg_stop_kmem_account();
3668 * kmalloc(<large_number>)
3669 * memcg_resume_kmem_account();
3670 *
3671 * would effectively ignore the fact that we should skip accounting,
3672 * since it will drive us directly to this function without passing
3673 * through the cache selector memcg_kmem_get_cache. Such large
3674 * allocations are extremely rare but can happen, for instance, for the
3675 * cache arrays. We bring this test here.
3676 */
3677 if (!current->mm || current->memcg_kmem_skip_account)
3678 return true;
3679
7ae1e1d0
GC
3680 memcg = try_get_mem_cgroup_from_mm(current->mm);
3681
3682 /*
3683 * very rare case described in mem_cgroup_from_task. Unfortunately there
3684 * isn't much we can do without complicating this too much, and it would
3685 * be gfp-dependent anyway. Just let it go
3686 */
3687 if (unlikely(!memcg))
3688 return true;
3689
3690 if (!memcg_can_account_kmem(memcg)) {
3691 css_put(&memcg->css);
3692 return true;
3693 }
3694
7ae1e1d0
GC
3695 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3696 if (!ret)
3697 *_memcg = memcg;
7ae1e1d0
GC
3698
3699 css_put(&memcg->css);
3700 return (ret == 0);
3701}
3702
3703void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3704 int order)
3705{
3706 struct page_cgroup *pc;
3707
3708 VM_BUG_ON(mem_cgroup_is_root(memcg));
3709
3710 /* The page allocation failed. Revert */
3711 if (!page) {
3712 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3713 return;
3714 }
3715
3716 pc = lookup_page_cgroup(page);
3717 lock_page_cgroup(pc);
3718 pc->mem_cgroup = memcg;
3719 SetPageCgroupUsed(pc);
3720 unlock_page_cgroup(pc);
3721}
3722
3723void __memcg_kmem_uncharge_pages(struct page *page, int order)
3724{
3725 struct mem_cgroup *memcg = NULL;
3726 struct page_cgroup *pc;
3727
3728
3729 pc = lookup_page_cgroup(page);
3730 /*
3731 * Fast unlocked return. Theoretically might have changed, have to
3732 * check again after locking.
3733 */
3734 if (!PageCgroupUsed(pc))
3735 return;
3736
3737 lock_page_cgroup(pc);
3738 if (PageCgroupUsed(pc)) {
3739 memcg = pc->mem_cgroup;
3740 ClearPageCgroupUsed(pc);
3741 }
3742 unlock_page_cgroup(pc);
3743
3744 /*
3745 * We trust that only if there is a memcg associated with the page, it
3746 * is a valid allocation
3747 */
3748 if (!memcg)
3749 return;
3750
3751 VM_BUG_ON(mem_cgroup_is_root(memcg));
3752 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3753}
1f458cbf
GC
3754#else
3755static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3756{
3757}
7ae1e1d0
GC
3758#endif /* CONFIG_MEMCG_KMEM */
3759
ca3e0214
KH
3760#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3761
a0db00fc 3762#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3763/*
3764 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3765 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3766 * charge/uncharge will be never happen and move_account() is done under
3767 * compound_lock(), so we don't have to take care of races.
ca3e0214 3768 */
e94c8a9c 3769void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3770{
3771 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3772 struct page_cgroup *pc;
b070e65c 3773 struct mem_cgroup *memcg;
e94c8a9c 3774 int i;
ca3e0214 3775
3d37c4a9
KH
3776 if (mem_cgroup_disabled())
3777 return;
b070e65c
DR
3778
3779 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3780 for (i = 1; i < HPAGE_PMD_NR; i++) {
3781 pc = head_pc + i;
b070e65c 3782 pc->mem_cgroup = memcg;
e94c8a9c 3783 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3784 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3785 }
b070e65c
DR
3786 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3787 HPAGE_PMD_NR);
ca3e0214 3788}
12d27107 3789#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3790
f817ed48 3791/**
de3638d9 3792 * mem_cgroup_move_account - move account of the page
5564e88b 3793 * @page: the page
7ec99d62 3794 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3795 * @pc: page_cgroup of the page.
3796 * @from: mem_cgroup which the page is moved from.
3797 * @to: mem_cgroup which the page is moved to. @from != @to.
3798 *
3799 * The caller must confirm following.
08e552c6 3800 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3801 * - compound_lock is held when nr_pages > 1
f817ed48 3802 *
2f3479b1
KH
3803 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3804 * from old cgroup.
f817ed48 3805 */
7ec99d62
JW
3806static int mem_cgroup_move_account(struct page *page,
3807 unsigned int nr_pages,
3808 struct page_cgroup *pc,
3809 struct mem_cgroup *from,
2f3479b1 3810 struct mem_cgroup *to)
f817ed48 3811{
de3638d9
JW
3812 unsigned long flags;
3813 int ret;
b2402857 3814 bool anon = PageAnon(page);
987eba66 3815
f817ed48 3816 VM_BUG_ON(from == to);
5564e88b 3817 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3818 /*
3819 * The page is isolated from LRU. So, collapse function
3820 * will not handle this page. But page splitting can happen.
3821 * Do this check under compound_page_lock(). The caller should
3822 * hold it.
3823 */
3824 ret = -EBUSY;
7ec99d62 3825 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3826 goto out;
3827
3828 lock_page_cgroup(pc);
3829
3830 ret = -EINVAL;
3831 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3832 goto unlock;
3833
312734c0 3834 move_lock_mem_cgroup(from, &flags);
f817ed48 3835
2ff76f11 3836 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3837 /* Update mapped_file data for mem_cgroup */
3838 preempt_disable();
3839 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3840 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3841 preempt_enable();
d69b042f 3842 }
b070e65c 3843 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3844
854ffa8d 3845 /* caller should have done css_get */
08e552c6 3846 pc->mem_cgroup = to;
b070e65c 3847 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3848 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3849 ret = 0;
3850unlock:
57f9fd7d 3851 unlock_page_cgroup(pc);
d2265e6f
KH
3852 /*
3853 * check events
3854 */
5564e88b
JW
3855 memcg_check_events(to, page);
3856 memcg_check_events(from, page);
de3638d9 3857out:
f817ed48
KH
3858 return ret;
3859}
3860
2ef37d3f
MH
3861/**
3862 * mem_cgroup_move_parent - moves page to the parent group
3863 * @page: the page to move
3864 * @pc: page_cgroup of the page
3865 * @child: page's cgroup
3866 *
3867 * move charges to its parent or the root cgroup if the group has no
3868 * parent (aka use_hierarchy==0).
3869 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3870 * mem_cgroup_move_account fails) the failure is always temporary and
3871 * it signals a race with a page removal/uncharge or migration. In the
3872 * first case the page is on the way out and it will vanish from the LRU
3873 * on the next attempt and the call should be retried later.
3874 * Isolation from the LRU fails only if page has been isolated from
3875 * the LRU since we looked at it and that usually means either global
3876 * reclaim or migration going on. The page will either get back to the
3877 * LRU or vanish.
3878 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3879 * (!PageCgroupUsed) or moved to a different group. The page will
3880 * disappear in the next attempt.
f817ed48 3881 */
5564e88b
JW
3882static int mem_cgroup_move_parent(struct page *page,
3883 struct page_cgroup *pc,
6068bf01 3884 struct mem_cgroup *child)
f817ed48 3885{
f817ed48 3886 struct mem_cgroup *parent;
7ec99d62 3887 unsigned int nr_pages;
4be4489f 3888 unsigned long uninitialized_var(flags);
f817ed48
KH
3889 int ret;
3890
d8423011 3891 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3892
57f9fd7d
DN
3893 ret = -EBUSY;
3894 if (!get_page_unless_zero(page))
3895 goto out;
3896 if (isolate_lru_page(page))
3897 goto put;
52dbb905 3898
7ec99d62 3899 nr_pages = hpage_nr_pages(page);
08e552c6 3900
cc926f78
KH
3901 parent = parent_mem_cgroup(child);
3902 /*
3903 * If no parent, move charges to root cgroup.
3904 */
3905 if (!parent)
3906 parent = root_mem_cgroup;
f817ed48 3907
2ef37d3f
MH
3908 if (nr_pages > 1) {
3909 VM_BUG_ON(!PageTransHuge(page));
987eba66 3910 flags = compound_lock_irqsave(page);
2ef37d3f 3911 }
987eba66 3912
cc926f78 3913 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3914 pc, child, parent);
cc926f78
KH
3915 if (!ret)
3916 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3917
7ec99d62 3918 if (nr_pages > 1)
987eba66 3919 compound_unlock_irqrestore(page, flags);
08e552c6 3920 putback_lru_page(page);
57f9fd7d 3921put:
40d58138 3922 put_page(page);
57f9fd7d 3923out:
f817ed48
KH
3924 return ret;
3925}
3926
7a81b88c
KH
3927/*
3928 * Charge the memory controller for page usage.
3929 * Return
3930 * 0 if the charge was successful
3931 * < 0 if the cgroup is over its limit
3932 */
3933static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3934 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3935{
c0ff4b85 3936 struct mem_cgroup *memcg = NULL;
7ec99d62 3937 unsigned int nr_pages = 1;
8493ae43 3938 bool oom = true;
7a81b88c 3939 int ret;
ec168510 3940
37c2ac78 3941 if (PageTransHuge(page)) {
7ec99d62 3942 nr_pages <<= compound_order(page);
37c2ac78 3943 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3944 /*
3945 * Never OOM-kill a process for a huge page. The
3946 * fault handler will fall back to regular pages.
3947 */
3948 oom = false;
37c2ac78 3949 }
7a81b88c 3950
c0ff4b85 3951 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3952 if (ret == -ENOMEM)
7a81b88c 3953 return ret;
ce587e65 3954 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3955 return 0;
8a9f3ccd
BS
3956}
3957
7a81b88c
KH
3958int mem_cgroup_newpage_charge(struct page *page,
3959 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3960{
f8d66542 3961 if (mem_cgroup_disabled())
cede86ac 3962 return 0;
7a0524cf
JW
3963 VM_BUG_ON(page_mapped(page));
3964 VM_BUG_ON(page->mapping && !PageAnon(page));
3965 VM_BUG_ON(!mm);
217bc319 3966 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3967 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3968}
3969
54595fe2
KH
3970/*
3971 * While swap-in, try_charge -> commit or cancel, the page is locked.
3972 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3973 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3974 * "commit()" or removed by "cancel()"
3975 */
0435a2fd
JW
3976static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3977 struct page *page,
3978 gfp_t mask,
3979 struct mem_cgroup **memcgp)
8c7c6e34 3980{
c0ff4b85 3981 struct mem_cgroup *memcg;
90deb788 3982 struct page_cgroup *pc;
54595fe2 3983 int ret;
8c7c6e34 3984
90deb788
JW
3985 pc = lookup_page_cgroup(page);
3986 /*
3987 * Every swap fault against a single page tries to charge the
3988 * page, bail as early as possible. shmem_unuse() encounters
3989 * already charged pages, too. The USED bit is protected by
3990 * the page lock, which serializes swap cache removal, which
3991 * in turn serializes uncharging.
3992 */
3993 if (PageCgroupUsed(pc))
3994 return 0;
8c7c6e34
KH
3995 if (!do_swap_account)
3996 goto charge_cur_mm;
c0ff4b85
R
3997 memcg = try_get_mem_cgroup_from_page(page);
3998 if (!memcg)
54595fe2 3999 goto charge_cur_mm;
72835c86
JW
4000 *memcgp = memcg;
4001 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4002 css_put(&memcg->css);
38c5d72f
KH
4003 if (ret == -EINTR)
4004 ret = 0;
54595fe2 4005 return ret;
8c7c6e34 4006charge_cur_mm:
38c5d72f
KH
4007 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4008 if (ret == -EINTR)
4009 ret = 0;
4010 return ret;
8c7c6e34
KH
4011}
4012
0435a2fd
JW
4013int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4014 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4015{
4016 *memcgp = NULL;
4017 if (mem_cgroup_disabled())
4018 return 0;
bdf4f4d2
JW
4019 /*
4020 * A racing thread's fault, or swapoff, may have already
4021 * updated the pte, and even removed page from swap cache: in
4022 * those cases unuse_pte()'s pte_same() test will fail; but
4023 * there's also a KSM case which does need to charge the page.
4024 */
4025 if (!PageSwapCache(page)) {
4026 int ret;
4027
4028 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4029 if (ret == -EINTR)
4030 ret = 0;
4031 return ret;
4032 }
0435a2fd
JW
4033 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4034}
4035
827a03d2
JW
4036void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4037{
4038 if (mem_cgroup_disabled())
4039 return;
4040 if (!memcg)
4041 return;
4042 __mem_cgroup_cancel_charge(memcg, 1);
4043}
4044
83aae4c7 4045static void
72835c86 4046__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4047 enum charge_type ctype)
7a81b88c 4048{
f8d66542 4049 if (mem_cgroup_disabled())
7a81b88c 4050 return;
72835c86 4051 if (!memcg)
7a81b88c 4052 return;
5a6475a4 4053
ce587e65 4054 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4055 /*
4056 * Now swap is on-memory. This means this page may be
4057 * counted both as mem and swap....double count.
03f3c433
KH
4058 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4059 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4060 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4061 */
03f3c433 4062 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4063 swp_entry_t ent = {.val = page_private(page)};
86493009 4064 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4065 }
7a81b88c
KH
4066}
4067
72835c86
JW
4068void mem_cgroup_commit_charge_swapin(struct page *page,
4069 struct mem_cgroup *memcg)
83aae4c7 4070{
72835c86 4071 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4072 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4073}
4074
827a03d2
JW
4075int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4076 gfp_t gfp_mask)
7a81b88c 4077{
827a03d2
JW
4078 struct mem_cgroup *memcg = NULL;
4079 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4080 int ret;
4081
f8d66542 4082 if (mem_cgroup_disabled())
827a03d2
JW
4083 return 0;
4084 if (PageCompound(page))
4085 return 0;
4086
827a03d2
JW
4087 if (!PageSwapCache(page))
4088 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4089 else { /* page is swapcache/shmem */
0435a2fd
JW
4090 ret = __mem_cgroup_try_charge_swapin(mm, page,
4091 gfp_mask, &memcg);
827a03d2
JW
4092 if (!ret)
4093 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4094 }
4095 return ret;
7a81b88c
KH
4096}
4097
c0ff4b85 4098static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4099 unsigned int nr_pages,
4100 const enum charge_type ctype)
569b846d
KH
4101{
4102 struct memcg_batch_info *batch = NULL;
4103 bool uncharge_memsw = true;
7ec99d62 4104
569b846d
KH
4105 /* If swapout, usage of swap doesn't decrease */
4106 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4107 uncharge_memsw = false;
569b846d
KH
4108
4109 batch = &current->memcg_batch;
4110 /*
4111 * In usual, we do css_get() when we remember memcg pointer.
4112 * But in this case, we keep res->usage until end of a series of
4113 * uncharges. Then, it's ok to ignore memcg's refcnt.
4114 */
4115 if (!batch->memcg)
c0ff4b85 4116 batch->memcg = memcg;
3c11ecf4
KH
4117 /*
4118 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4119 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4120 * the same cgroup and we have chance to coalesce uncharges.
4121 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4122 * because we want to do uncharge as soon as possible.
4123 */
4124
4125 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4126 goto direct_uncharge;
4127
7ec99d62 4128 if (nr_pages > 1)
ec168510
AA
4129 goto direct_uncharge;
4130
569b846d
KH
4131 /*
4132 * In typical case, batch->memcg == mem. This means we can
4133 * merge a series of uncharges to an uncharge of res_counter.
4134 * If not, we uncharge res_counter ony by one.
4135 */
c0ff4b85 4136 if (batch->memcg != memcg)
569b846d
KH
4137 goto direct_uncharge;
4138 /* remember freed charge and uncharge it later */
7ffd4ca7 4139 batch->nr_pages++;
569b846d 4140 if (uncharge_memsw)
7ffd4ca7 4141 batch->memsw_nr_pages++;
569b846d
KH
4142 return;
4143direct_uncharge:
c0ff4b85 4144 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4145 if (uncharge_memsw)
c0ff4b85
R
4146 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4147 if (unlikely(batch->memcg != memcg))
4148 memcg_oom_recover(memcg);
569b846d 4149}
7a81b88c 4150
8a9f3ccd 4151/*
69029cd5 4152 * uncharge if !page_mapped(page)
8a9f3ccd 4153 */
8c7c6e34 4154static struct mem_cgroup *
0030f535
JW
4155__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4156 bool end_migration)
8a9f3ccd 4157{
c0ff4b85 4158 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4159 unsigned int nr_pages = 1;
4160 struct page_cgroup *pc;
b2402857 4161 bool anon;
8a9f3ccd 4162
f8d66542 4163 if (mem_cgroup_disabled())
8c7c6e34 4164 return NULL;
4077960e 4165
37c2ac78 4166 if (PageTransHuge(page)) {
7ec99d62 4167 nr_pages <<= compound_order(page);
37c2ac78
AA
4168 VM_BUG_ON(!PageTransHuge(page));
4169 }
8697d331 4170 /*
3c541e14 4171 * Check if our page_cgroup is valid
8697d331 4172 */
52d4b9ac 4173 pc = lookup_page_cgroup(page);
cfa44946 4174 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4175 return NULL;
b9c565d5 4176
52d4b9ac 4177 lock_page_cgroup(pc);
d13d1443 4178
c0ff4b85 4179 memcg = pc->mem_cgroup;
8c7c6e34 4180
d13d1443
KH
4181 if (!PageCgroupUsed(pc))
4182 goto unlock_out;
4183
b2402857
KH
4184 anon = PageAnon(page);
4185
d13d1443 4186 switch (ctype) {
41326c17 4187 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4188 /*
4189 * Generally PageAnon tells if it's the anon statistics to be
4190 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4191 * used before page reached the stage of being marked PageAnon.
4192 */
b2402857
KH
4193 anon = true;
4194 /* fallthrough */
8a9478ca 4195 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4196 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4197 if (page_mapped(page))
4198 goto unlock_out;
4199 /*
4200 * Pages under migration may not be uncharged. But
4201 * end_migration() /must/ be the one uncharging the
4202 * unused post-migration page and so it has to call
4203 * here with the migration bit still set. See the
4204 * res_counter handling below.
4205 */
4206 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4207 goto unlock_out;
4208 break;
4209 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4210 if (!PageAnon(page)) { /* Shared memory */
4211 if (page->mapping && !page_is_file_cache(page))
4212 goto unlock_out;
4213 } else if (page_mapped(page)) /* Anon */
4214 goto unlock_out;
4215 break;
4216 default:
4217 break;
52d4b9ac 4218 }
d13d1443 4219
b070e65c 4220 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4221
52d4b9ac 4222 ClearPageCgroupUsed(pc);
544122e5
KH
4223 /*
4224 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4225 * freed from LRU. This is safe because uncharged page is expected not
4226 * to be reused (freed soon). Exception is SwapCache, it's handled by
4227 * special functions.
4228 */
b9c565d5 4229
52d4b9ac 4230 unlock_page_cgroup(pc);
f75ca962 4231 /*
c0ff4b85 4232 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4233 * will never be freed, so it's safe to call css_get().
f75ca962 4234 */
c0ff4b85 4235 memcg_check_events(memcg, page);
f75ca962 4236 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4237 mem_cgroup_swap_statistics(memcg, true);
4050377b 4238 css_get(&memcg->css);
f75ca962 4239 }
0030f535
JW
4240 /*
4241 * Migration does not charge the res_counter for the
4242 * replacement page, so leave it alone when phasing out the
4243 * page that is unused after the migration.
4244 */
4245 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4246 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4247
c0ff4b85 4248 return memcg;
d13d1443
KH
4249
4250unlock_out:
4251 unlock_page_cgroup(pc);
8c7c6e34 4252 return NULL;
3c541e14
BS
4253}
4254
69029cd5
KH
4255void mem_cgroup_uncharge_page(struct page *page)
4256{
52d4b9ac
KH
4257 /* early check. */
4258 if (page_mapped(page))
4259 return;
40f23a21 4260 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4261 /*
4262 * If the page is in swap cache, uncharge should be deferred
4263 * to the swap path, which also properly accounts swap usage
4264 * and handles memcg lifetime.
4265 *
4266 * Note that this check is not stable and reclaim may add the
4267 * page to swap cache at any time after this. However, if the
4268 * page is not in swap cache by the time page->mapcount hits
4269 * 0, there won't be any page table references to the swap
4270 * slot, and reclaim will free it and not actually write the
4271 * page to disk.
4272 */
0c59b89c
JW
4273 if (PageSwapCache(page))
4274 return;
0030f535 4275 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4276}
4277
4278void mem_cgroup_uncharge_cache_page(struct page *page)
4279{
4280 VM_BUG_ON(page_mapped(page));
b7abea96 4281 VM_BUG_ON(page->mapping);
0030f535 4282 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4283}
4284
569b846d
KH
4285/*
4286 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4287 * In that cases, pages are freed continuously and we can expect pages
4288 * are in the same memcg. All these calls itself limits the number of
4289 * pages freed at once, then uncharge_start/end() is called properly.
4290 * This may be called prural(2) times in a context,
4291 */
4292
4293void mem_cgroup_uncharge_start(void)
4294{
4295 current->memcg_batch.do_batch++;
4296 /* We can do nest. */
4297 if (current->memcg_batch.do_batch == 1) {
4298 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4299 current->memcg_batch.nr_pages = 0;
4300 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4301 }
4302}
4303
4304void mem_cgroup_uncharge_end(void)
4305{
4306 struct memcg_batch_info *batch = &current->memcg_batch;
4307
4308 if (!batch->do_batch)
4309 return;
4310
4311 batch->do_batch--;
4312 if (batch->do_batch) /* If stacked, do nothing. */
4313 return;
4314
4315 if (!batch->memcg)
4316 return;
4317 /*
4318 * This "batch->memcg" is valid without any css_get/put etc...
4319 * bacause we hide charges behind us.
4320 */
7ffd4ca7
JW
4321 if (batch->nr_pages)
4322 res_counter_uncharge(&batch->memcg->res,
4323 batch->nr_pages * PAGE_SIZE);
4324 if (batch->memsw_nr_pages)
4325 res_counter_uncharge(&batch->memcg->memsw,
4326 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4327 memcg_oom_recover(batch->memcg);
569b846d
KH
4328 /* forget this pointer (for sanity check) */
4329 batch->memcg = NULL;
4330}
4331
e767e056 4332#ifdef CONFIG_SWAP
8c7c6e34 4333/*
e767e056 4334 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4335 * memcg information is recorded to swap_cgroup of "ent"
4336 */
8a9478ca
KH
4337void
4338mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4339{
4340 struct mem_cgroup *memcg;
8a9478ca
KH
4341 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4342
4343 if (!swapout) /* this was a swap cache but the swap is unused ! */
4344 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4345
0030f535 4346 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4347
f75ca962
KH
4348 /*
4349 * record memcg information, if swapout && memcg != NULL,
4050377b 4350 * css_get() was called in uncharge().
f75ca962
KH
4351 */
4352 if (do_swap_account && swapout && memcg)
a3b2d692 4353 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4354}
e767e056 4355#endif
8c7c6e34 4356
c255a458 4357#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4358/*
4359 * called from swap_entry_free(). remove record in swap_cgroup and
4360 * uncharge "memsw" account.
4361 */
4362void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4363{
8c7c6e34 4364 struct mem_cgroup *memcg;
a3b2d692 4365 unsigned short id;
8c7c6e34
KH
4366
4367 if (!do_swap_account)
4368 return;
4369
a3b2d692
KH
4370 id = swap_cgroup_record(ent, 0);
4371 rcu_read_lock();
4372 memcg = mem_cgroup_lookup(id);
8c7c6e34 4373 if (memcg) {
a3b2d692
KH
4374 /*
4375 * We uncharge this because swap is freed.
4376 * This memcg can be obsolete one. We avoid calling css_tryget
4377 */
0c3e73e8 4378 if (!mem_cgroup_is_root(memcg))
4e649152 4379 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4380 mem_cgroup_swap_statistics(memcg, false);
4050377b 4381 css_put(&memcg->css);
8c7c6e34 4382 }
a3b2d692 4383 rcu_read_unlock();
d13d1443 4384}
02491447
DN
4385
4386/**
4387 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4388 * @entry: swap entry to be moved
4389 * @from: mem_cgroup which the entry is moved from
4390 * @to: mem_cgroup which the entry is moved to
4391 *
4392 * It succeeds only when the swap_cgroup's record for this entry is the same
4393 * as the mem_cgroup's id of @from.
4394 *
4395 * Returns 0 on success, -EINVAL on failure.
4396 *
4397 * The caller must have charged to @to, IOW, called res_counter_charge() about
4398 * both res and memsw, and called css_get().
4399 */
4400static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4401 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4402{
4403 unsigned short old_id, new_id;
4404
4405 old_id = css_id(&from->css);
4406 new_id = css_id(&to->css);
4407
4408 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4409 mem_cgroup_swap_statistics(from, false);
483c30b5 4410 mem_cgroup_swap_statistics(to, true);
02491447 4411 /*
483c30b5
DN
4412 * This function is only called from task migration context now.
4413 * It postpones res_counter and refcount handling till the end
4414 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4415 * improvement. But we cannot postpone css_get(to) because if
4416 * the process that has been moved to @to does swap-in, the
4417 * refcount of @to might be decreased to 0.
4418 *
4419 * We are in attach() phase, so the cgroup is guaranteed to be
4420 * alive, so we can just call css_get().
02491447 4421 */
4050377b 4422 css_get(&to->css);
02491447
DN
4423 return 0;
4424 }
4425 return -EINVAL;
4426}
4427#else
4428static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4429 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4430{
4431 return -EINVAL;
4432}
8c7c6e34 4433#endif
d13d1443 4434
ae41be37 4435/*
01b1ae63
KH
4436 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4437 * page belongs to.
ae41be37 4438 */
0030f535
JW
4439void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4440 struct mem_cgroup **memcgp)
ae41be37 4441{
c0ff4b85 4442 struct mem_cgroup *memcg = NULL;
b32967ff 4443 unsigned int nr_pages = 1;
7ec99d62 4444 struct page_cgroup *pc;
ac39cf8c 4445 enum charge_type ctype;
8869b8f6 4446
72835c86 4447 *memcgp = NULL;
56039efa 4448
f8d66542 4449 if (mem_cgroup_disabled())
0030f535 4450 return;
4077960e 4451
b32967ff
MG
4452 if (PageTransHuge(page))
4453 nr_pages <<= compound_order(page);
4454
52d4b9ac
KH
4455 pc = lookup_page_cgroup(page);
4456 lock_page_cgroup(pc);
4457 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4458 memcg = pc->mem_cgroup;
4459 css_get(&memcg->css);
ac39cf8c
AM
4460 /*
4461 * At migrating an anonymous page, its mapcount goes down
4462 * to 0 and uncharge() will be called. But, even if it's fully
4463 * unmapped, migration may fail and this page has to be
4464 * charged again. We set MIGRATION flag here and delay uncharge
4465 * until end_migration() is called
4466 *
4467 * Corner Case Thinking
4468 * A)
4469 * When the old page was mapped as Anon and it's unmap-and-freed
4470 * while migration was ongoing.
4471 * If unmap finds the old page, uncharge() of it will be delayed
4472 * until end_migration(). If unmap finds a new page, it's
4473 * uncharged when it make mapcount to be 1->0. If unmap code
4474 * finds swap_migration_entry, the new page will not be mapped
4475 * and end_migration() will find it(mapcount==0).
4476 *
4477 * B)
4478 * When the old page was mapped but migraion fails, the kernel
4479 * remaps it. A charge for it is kept by MIGRATION flag even
4480 * if mapcount goes down to 0. We can do remap successfully
4481 * without charging it again.
4482 *
4483 * C)
4484 * The "old" page is under lock_page() until the end of
4485 * migration, so, the old page itself will not be swapped-out.
4486 * If the new page is swapped out before end_migraton, our
4487 * hook to usual swap-out path will catch the event.
4488 */
4489 if (PageAnon(page))
4490 SetPageCgroupMigration(pc);
e8589cc1 4491 }
52d4b9ac 4492 unlock_page_cgroup(pc);
ac39cf8c
AM
4493 /*
4494 * If the page is not charged at this point,
4495 * we return here.
4496 */
c0ff4b85 4497 if (!memcg)
0030f535 4498 return;
01b1ae63 4499
72835c86 4500 *memcgp = memcg;
ac39cf8c
AM
4501 /*
4502 * We charge new page before it's used/mapped. So, even if unlock_page()
4503 * is called before end_migration, we can catch all events on this new
4504 * page. In the case new page is migrated but not remapped, new page's
4505 * mapcount will be finally 0 and we call uncharge in end_migration().
4506 */
ac39cf8c 4507 if (PageAnon(page))
41326c17 4508 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4509 else
62ba7442 4510 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4511 /*
4512 * The page is committed to the memcg, but it's not actually
4513 * charged to the res_counter since we plan on replacing the
4514 * old one and only one page is going to be left afterwards.
4515 */
b32967ff 4516 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4517}
8869b8f6 4518
69029cd5 4519/* remove redundant charge if migration failed*/
c0ff4b85 4520void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4521 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4522{
ac39cf8c 4523 struct page *used, *unused;
01b1ae63 4524 struct page_cgroup *pc;
b2402857 4525 bool anon;
01b1ae63 4526
c0ff4b85 4527 if (!memcg)
01b1ae63 4528 return;
b25ed609 4529
50de1dd9 4530 if (!migration_ok) {
ac39cf8c
AM
4531 used = oldpage;
4532 unused = newpage;
01b1ae63 4533 } else {
ac39cf8c 4534 used = newpage;
01b1ae63
KH
4535 unused = oldpage;
4536 }
0030f535 4537 anon = PageAnon(used);
7d188958
JW
4538 __mem_cgroup_uncharge_common(unused,
4539 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4540 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4541 true);
0030f535 4542 css_put(&memcg->css);
69029cd5 4543 /*
ac39cf8c
AM
4544 * We disallowed uncharge of pages under migration because mapcount
4545 * of the page goes down to zero, temporarly.
4546 * Clear the flag and check the page should be charged.
01b1ae63 4547 */
ac39cf8c
AM
4548 pc = lookup_page_cgroup(oldpage);
4549 lock_page_cgroup(pc);
4550 ClearPageCgroupMigration(pc);
4551 unlock_page_cgroup(pc);
ac39cf8c 4552
01b1ae63 4553 /*
ac39cf8c
AM
4554 * If a page is a file cache, radix-tree replacement is very atomic
4555 * and we can skip this check. When it was an Anon page, its mapcount
4556 * goes down to 0. But because we added MIGRATION flage, it's not
4557 * uncharged yet. There are several case but page->mapcount check
4558 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4559 * check. (see prepare_charge() also)
69029cd5 4560 */
b2402857 4561 if (anon)
ac39cf8c 4562 mem_cgroup_uncharge_page(used);
ae41be37 4563}
78fb7466 4564
ab936cbc
KH
4565/*
4566 * At replace page cache, newpage is not under any memcg but it's on
4567 * LRU. So, this function doesn't touch res_counter but handles LRU
4568 * in correct way. Both pages are locked so we cannot race with uncharge.
4569 */
4570void mem_cgroup_replace_page_cache(struct page *oldpage,
4571 struct page *newpage)
4572{
bde05d1c 4573 struct mem_cgroup *memcg = NULL;
ab936cbc 4574 struct page_cgroup *pc;
ab936cbc 4575 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4576
4577 if (mem_cgroup_disabled())
4578 return;
4579
4580 pc = lookup_page_cgroup(oldpage);
4581 /* fix accounting on old pages */
4582 lock_page_cgroup(pc);
bde05d1c
HD
4583 if (PageCgroupUsed(pc)) {
4584 memcg = pc->mem_cgroup;
b070e65c 4585 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4586 ClearPageCgroupUsed(pc);
4587 }
ab936cbc
KH
4588 unlock_page_cgroup(pc);
4589
bde05d1c
HD
4590 /*
4591 * When called from shmem_replace_page(), in some cases the
4592 * oldpage has already been charged, and in some cases not.
4593 */
4594 if (!memcg)
4595 return;
ab936cbc
KH
4596 /*
4597 * Even if newpage->mapping was NULL before starting replacement,
4598 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4599 * LRU while we overwrite pc->mem_cgroup.
4600 */
ce587e65 4601 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4602}
4603
f212ad7c
DN
4604#ifdef CONFIG_DEBUG_VM
4605static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4606{
4607 struct page_cgroup *pc;
4608
4609 pc = lookup_page_cgroup(page);
cfa44946
JW
4610 /*
4611 * Can be NULL while feeding pages into the page allocator for
4612 * the first time, i.e. during boot or memory hotplug;
4613 * or when mem_cgroup_disabled().
4614 */
f212ad7c
DN
4615 if (likely(pc) && PageCgroupUsed(pc))
4616 return pc;
4617 return NULL;
4618}
4619
4620bool mem_cgroup_bad_page_check(struct page *page)
4621{
4622 if (mem_cgroup_disabled())
4623 return false;
4624
4625 return lookup_page_cgroup_used(page) != NULL;
4626}
4627
4628void mem_cgroup_print_bad_page(struct page *page)
4629{
4630 struct page_cgroup *pc;
4631
4632 pc = lookup_page_cgroup_used(page);
4633 if (pc) {
d045197f
AM
4634 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4635 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4636 }
4637}
4638#endif
4639
d38d2a75 4640static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4641 unsigned long long val)
628f4235 4642{
81d39c20 4643 int retry_count;
3c11ecf4 4644 u64 memswlimit, memlimit;
628f4235 4645 int ret = 0;
81d39c20
KH
4646 int children = mem_cgroup_count_children(memcg);
4647 u64 curusage, oldusage;
3c11ecf4 4648 int enlarge;
81d39c20
KH
4649
4650 /*
4651 * For keeping hierarchical_reclaim simple, how long we should retry
4652 * is depends on callers. We set our retry-count to be function
4653 * of # of children which we should visit in this loop.
4654 */
4655 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4656
4657 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4658
3c11ecf4 4659 enlarge = 0;
8c7c6e34 4660 while (retry_count) {
628f4235
KH
4661 if (signal_pending(current)) {
4662 ret = -EINTR;
4663 break;
4664 }
8c7c6e34
KH
4665 /*
4666 * Rather than hide all in some function, I do this in
4667 * open coded manner. You see what this really does.
aaad153e 4668 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4669 */
4670 mutex_lock(&set_limit_mutex);
4671 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4672 if (memswlimit < val) {
4673 ret = -EINVAL;
4674 mutex_unlock(&set_limit_mutex);
628f4235
KH
4675 break;
4676 }
3c11ecf4
KH
4677
4678 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4679 if (memlimit < val)
4680 enlarge = 1;
4681
8c7c6e34 4682 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4683 if (!ret) {
4684 if (memswlimit == val)
4685 memcg->memsw_is_minimum = true;
4686 else
4687 memcg->memsw_is_minimum = false;
4688 }
8c7c6e34
KH
4689 mutex_unlock(&set_limit_mutex);
4690
4691 if (!ret)
4692 break;
4693
5660048c
JW
4694 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4695 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4696 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4697 /* Usage is reduced ? */
4698 if (curusage >= oldusage)
4699 retry_count--;
4700 else
4701 oldusage = curusage;
8c7c6e34 4702 }
3c11ecf4
KH
4703 if (!ret && enlarge)
4704 memcg_oom_recover(memcg);
14797e23 4705
8c7c6e34
KH
4706 return ret;
4707}
4708
338c8431
LZ
4709static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4710 unsigned long long val)
8c7c6e34 4711{
81d39c20 4712 int retry_count;
3c11ecf4 4713 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4714 int children = mem_cgroup_count_children(memcg);
4715 int ret = -EBUSY;
3c11ecf4 4716 int enlarge = 0;
8c7c6e34 4717
81d39c20
KH
4718 /* see mem_cgroup_resize_res_limit */
4719 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4720 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4721 while (retry_count) {
4722 if (signal_pending(current)) {
4723 ret = -EINTR;
4724 break;
4725 }
4726 /*
4727 * Rather than hide all in some function, I do this in
4728 * open coded manner. You see what this really does.
aaad153e 4729 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4730 */
4731 mutex_lock(&set_limit_mutex);
4732 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4733 if (memlimit > val) {
4734 ret = -EINVAL;
4735 mutex_unlock(&set_limit_mutex);
4736 break;
4737 }
3c11ecf4
KH
4738 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4739 if (memswlimit < val)
4740 enlarge = 1;
8c7c6e34 4741 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4742 if (!ret) {
4743 if (memlimit == val)
4744 memcg->memsw_is_minimum = true;
4745 else
4746 memcg->memsw_is_minimum = false;
4747 }
8c7c6e34
KH
4748 mutex_unlock(&set_limit_mutex);
4749
4750 if (!ret)
4751 break;
4752
5660048c
JW
4753 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4754 MEM_CGROUP_RECLAIM_NOSWAP |
4755 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4756 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4757 /* Usage is reduced ? */
8c7c6e34 4758 if (curusage >= oldusage)
628f4235 4759 retry_count--;
81d39c20
KH
4760 else
4761 oldusage = curusage;
628f4235 4762 }
3c11ecf4
KH
4763 if (!ret && enlarge)
4764 memcg_oom_recover(memcg);
628f4235
KH
4765 return ret;
4766}
4767
4e416953 4768unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4769 gfp_t gfp_mask,
4770 unsigned long *total_scanned)
4e416953
BS
4771{
4772 unsigned long nr_reclaimed = 0;
4773 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4774 unsigned long reclaimed;
4775 int loop = 0;
4776 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4777 unsigned long long excess;
0ae5e89c 4778 unsigned long nr_scanned;
4e416953
BS
4779
4780 if (order > 0)
4781 return 0;
4782
00918b6a 4783 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4784 /*
4785 * This loop can run a while, specially if mem_cgroup's continuously
4786 * keep exceeding their soft limit and putting the system under
4787 * pressure
4788 */
4789 do {
4790 if (next_mz)
4791 mz = next_mz;
4792 else
4793 mz = mem_cgroup_largest_soft_limit_node(mctz);
4794 if (!mz)
4795 break;
4796
0ae5e89c 4797 nr_scanned = 0;
d79154bb 4798 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4799 gfp_mask, &nr_scanned);
4e416953 4800 nr_reclaimed += reclaimed;
0ae5e89c 4801 *total_scanned += nr_scanned;
4e416953
BS
4802 spin_lock(&mctz->lock);
4803
4804 /*
4805 * If we failed to reclaim anything from this memory cgroup
4806 * it is time to move on to the next cgroup
4807 */
4808 next_mz = NULL;
4809 if (!reclaimed) {
4810 do {
4811 /*
4812 * Loop until we find yet another one.
4813 *
4814 * By the time we get the soft_limit lock
4815 * again, someone might have aded the
4816 * group back on the RB tree. Iterate to
4817 * make sure we get a different mem.
4818 * mem_cgroup_largest_soft_limit_node returns
4819 * NULL if no other cgroup is present on
4820 * the tree
4821 */
4822 next_mz =
4823 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4824 if (next_mz == mz)
d79154bb 4825 css_put(&next_mz->memcg->css);
39cc98f1 4826 else /* next_mz == NULL or other memcg */
4e416953
BS
4827 break;
4828 } while (1);
4829 }
d79154bb
HD
4830 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4831 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4832 /*
4833 * One school of thought says that we should not add
4834 * back the node to the tree if reclaim returns 0.
4835 * But our reclaim could return 0, simply because due
4836 * to priority we are exposing a smaller subset of
4837 * memory to reclaim from. Consider this as a longer
4838 * term TODO.
4839 */
ef8745c1 4840 /* If excess == 0, no tree ops */
d79154bb 4841 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4842 spin_unlock(&mctz->lock);
d79154bb 4843 css_put(&mz->memcg->css);
4e416953
BS
4844 loop++;
4845 /*
4846 * Could not reclaim anything and there are no more
4847 * mem cgroups to try or we seem to be looping without
4848 * reclaiming anything.
4849 */
4850 if (!nr_reclaimed &&
4851 (next_mz == NULL ||
4852 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4853 break;
4854 } while (!nr_reclaimed);
4855 if (next_mz)
d79154bb 4856 css_put(&next_mz->memcg->css);
4e416953
BS
4857 return nr_reclaimed;
4858}
4859
2ef37d3f
MH
4860/**
4861 * mem_cgroup_force_empty_list - clears LRU of a group
4862 * @memcg: group to clear
4863 * @node: NUMA node
4864 * @zid: zone id
4865 * @lru: lru to to clear
4866 *
3c935d18 4867 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4868 * reclaim the pages page themselves - pages are moved to the parent (or root)
4869 * group.
cc847582 4870 */
2ef37d3f 4871static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4872 int node, int zid, enum lru_list lru)
cc847582 4873{
bea8c150 4874 struct lruvec *lruvec;
2ef37d3f 4875 unsigned long flags;
072c56c1 4876 struct list_head *list;
925b7673
JW
4877 struct page *busy;
4878 struct zone *zone;
072c56c1 4879
08e552c6 4880 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4881 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4882 list = &lruvec->lists[lru];
cc847582 4883
f817ed48 4884 busy = NULL;
2ef37d3f 4885 do {
925b7673 4886 struct page_cgroup *pc;
5564e88b
JW
4887 struct page *page;
4888
08e552c6 4889 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4890 if (list_empty(list)) {
08e552c6 4891 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4892 break;
f817ed48 4893 }
925b7673
JW
4894 page = list_entry(list->prev, struct page, lru);
4895 if (busy == page) {
4896 list_move(&page->lru, list);
648bcc77 4897 busy = NULL;
08e552c6 4898 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4899 continue;
4900 }
08e552c6 4901 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4902
925b7673 4903 pc = lookup_page_cgroup(page);
5564e88b 4904
3c935d18 4905 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4906 /* found lock contention or "pc" is obsolete. */
925b7673 4907 busy = page;
f817ed48
KH
4908 cond_resched();
4909 } else
4910 busy = NULL;
2ef37d3f 4911 } while (!list_empty(list));
cc847582
KH
4912}
4913
4914/*
c26251f9
MH
4915 * make mem_cgroup's charge to be 0 if there is no task by moving
4916 * all the charges and pages to the parent.
cc847582 4917 * This enables deleting this mem_cgroup.
c26251f9
MH
4918 *
4919 * Caller is responsible for holding css reference on the memcg.
cc847582 4920 */
ab5196c2 4921static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4922{
c26251f9 4923 int node, zid;
bea207c8 4924 u64 usage;
f817ed48 4925
fce66477 4926 do {
52d4b9ac
KH
4927 /* This is for making all *used* pages to be on LRU. */
4928 lru_add_drain_all();
c0ff4b85 4929 drain_all_stock_sync(memcg);
c0ff4b85 4930 mem_cgroup_start_move(memcg);
31aaea4a 4931 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4932 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4933 enum lru_list lru;
4934 for_each_lru(lru) {
2ef37d3f 4935 mem_cgroup_force_empty_list(memcg,
f156ab93 4936 node, zid, lru);
f817ed48 4937 }
1ecaab2b 4938 }
f817ed48 4939 }
c0ff4b85
R
4940 mem_cgroup_end_move(memcg);
4941 memcg_oom_recover(memcg);
52d4b9ac 4942 cond_resched();
f817ed48 4943
2ef37d3f 4944 /*
bea207c8
GC
4945 * Kernel memory may not necessarily be trackable to a specific
4946 * process. So they are not migrated, and therefore we can't
4947 * expect their value to drop to 0 here.
4948 * Having res filled up with kmem only is enough.
4949 *
2ef37d3f
MH
4950 * This is a safety check because mem_cgroup_force_empty_list
4951 * could have raced with mem_cgroup_replace_page_cache callers
4952 * so the lru seemed empty but the page could have been added
4953 * right after the check. RES_USAGE should be safe as we always
4954 * charge before adding to the LRU.
4955 */
bea207c8
GC
4956 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4957 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4958 } while (usage > 0);
c26251f9
MH
4959}
4960
b5f99b53
GC
4961/*
4962 * This mainly exists for tests during the setting of set of use_hierarchy.
4963 * Since this is the very setting we are changing, the current hierarchy value
4964 * is meaningless
4965 */
4966static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4967{
4968 struct cgroup *pos;
4969
4970 /* bounce at first found */
4971 cgroup_for_each_child(pos, memcg->css.cgroup)
4972 return true;
4973 return false;
4974}
4975
4976/*
0999821b
GC
4977 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4978 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4979 * from mem_cgroup_count_children(), in the sense that we don't really care how
4980 * many children we have; we only need to know if we have any. It also counts
4981 * any memcg without hierarchy as infertile.
4982 */
4983static inline bool memcg_has_children(struct mem_cgroup *memcg)
4984{
4985 return memcg->use_hierarchy && __memcg_has_children(memcg);
4986}
4987
c26251f9
MH
4988/*
4989 * Reclaims as many pages from the given memcg as possible and moves
4990 * the rest to the parent.
4991 *
4992 * Caller is responsible for holding css reference for memcg.
4993 */
4994static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4995{
4996 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4997 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4998
c1e862c1 4999 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5000 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5001 return -EBUSY;
5002
c1e862c1
KH
5003 /* we call try-to-free pages for make this cgroup empty */
5004 lru_add_drain_all();
f817ed48 5005 /* try to free all pages in this cgroup */
569530fb 5006 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5007 int progress;
c1e862c1 5008
c26251f9
MH
5009 if (signal_pending(current))
5010 return -EINTR;
5011
c0ff4b85 5012 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5013 false);
c1e862c1 5014 if (!progress) {
f817ed48 5015 nr_retries--;
c1e862c1 5016 /* maybe some writeback is necessary */
8aa7e847 5017 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5018 }
f817ed48
KH
5019
5020 }
08e552c6 5021 lru_add_drain();
ab5196c2
MH
5022 mem_cgroup_reparent_charges(memcg);
5023
5024 return 0;
cc847582
KH
5025}
5026
6bbda35c 5027static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 5028{
c26251f9
MH
5029 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5030 int ret;
5031
d8423011
MH
5032 if (mem_cgroup_is_root(memcg))
5033 return -EINVAL;
c26251f9
MH
5034 css_get(&memcg->css);
5035 ret = mem_cgroup_force_empty(memcg);
5036 css_put(&memcg->css);
5037
5038 return ret;
c1e862c1
KH
5039}
5040
5041
18f59ea7
BS
5042static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5043{
5044 return mem_cgroup_from_cont(cont)->use_hierarchy;
5045}
5046
5047static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5048 u64 val)
5049{
5050 int retval = 0;
c0ff4b85 5051 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 5052 struct cgroup *parent = cont->parent;
c0ff4b85 5053 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
5054
5055 if (parent)
c0ff4b85 5056 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 5057
0999821b 5058 mutex_lock(&memcg_create_mutex);
567fb435
GC
5059
5060 if (memcg->use_hierarchy == val)
5061 goto out;
5062
18f59ea7 5063 /*
af901ca1 5064 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5065 * in the child subtrees. If it is unset, then the change can
5066 * occur, provided the current cgroup has no children.
5067 *
5068 * For the root cgroup, parent_mem is NULL, we allow value to be
5069 * set if there are no children.
5070 */
c0ff4b85 5071 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5072 (val == 1 || val == 0)) {
b5f99b53 5073 if (!__memcg_has_children(memcg))
c0ff4b85 5074 memcg->use_hierarchy = val;
18f59ea7
BS
5075 else
5076 retval = -EBUSY;
5077 } else
5078 retval = -EINVAL;
567fb435
GC
5079
5080out:
0999821b 5081 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5082
5083 return retval;
5084}
5085
0c3e73e8 5086
c0ff4b85 5087static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5088 enum mem_cgroup_stat_index idx)
0c3e73e8 5089{
7d74b06f 5090 struct mem_cgroup *iter;
7a159cc9 5091 long val = 0;
0c3e73e8 5092
7a159cc9 5093 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5094 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5095 val += mem_cgroup_read_stat(iter, idx);
5096
5097 if (val < 0) /* race ? */
5098 val = 0;
5099 return val;
0c3e73e8
BS
5100}
5101
c0ff4b85 5102static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5103{
7d74b06f 5104 u64 val;
104f3928 5105
c0ff4b85 5106 if (!mem_cgroup_is_root(memcg)) {
104f3928 5107 if (!swap)
65c64ce8 5108 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5109 else
65c64ce8 5110 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5111 }
5112
b070e65c
DR
5113 /*
5114 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5115 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5116 */
c0ff4b85
R
5117 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5118 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5119
7d74b06f 5120 if (swap)
bff6bb83 5121 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5122
5123 return val << PAGE_SHIFT;
5124}
5125
af36f906
TH
5126static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5127 struct file *file, char __user *buf,
5128 size_t nbytes, loff_t *ppos)
8cdea7c0 5129{
c0ff4b85 5130 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5131 char str[64];
104f3928 5132 u64 val;
86ae53e1
GC
5133 int name, len;
5134 enum res_type type;
8c7c6e34
KH
5135
5136 type = MEMFILE_TYPE(cft->private);
5137 name = MEMFILE_ATTR(cft->private);
af36f906 5138
8c7c6e34
KH
5139 switch (type) {
5140 case _MEM:
104f3928 5141 if (name == RES_USAGE)
c0ff4b85 5142 val = mem_cgroup_usage(memcg, false);
104f3928 5143 else
c0ff4b85 5144 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5145 break;
5146 case _MEMSWAP:
104f3928 5147 if (name == RES_USAGE)
c0ff4b85 5148 val = mem_cgroup_usage(memcg, true);
104f3928 5149 else
c0ff4b85 5150 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5151 break;
510fc4e1
GC
5152 case _KMEM:
5153 val = res_counter_read_u64(&memcg->kmem, name);
5154 break;
8c7c6e34
KH
5155 default:
5156 BUG();
8c7c6e34 5157 }
af36f906
TH
5158
5159 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5160 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5161}
510fc4e1
GC
5162
5163static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5164{
5165 int ret = -EINVAL;
5166#ifdef CONFIG_MEMCG_KMEM
5167 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5168 /*
5169 * For simplicity, we won't allow this to be disabled. It also can't
5170 * be changed if the cgroup has children already, or if tasks had
5171 * already joined.
5172 *
5173 * If tasks join before we set the limit, a person looking at
5174 * kmem.usage_in_bytes will have no way to determine when it took
5175 * place, which makes the value quite meaningless.
5176 *
5177 * After it first became limited, changes in the value of the limit are
5178 * of course permitted.
510fc4e1 5179 */
0999821b 5180 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5181 mutex_lock(&set_limit_mutex);
5182 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5183 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5184 ret = -EBUSY;
5185 goto out;
5186 }
5187 ret = res_counter_set_limit(&memcg->kmem, val);
5188 VM_BUG_ON(ret);
5189
55007d84
GC
5190 ret = memcg_update_cache_sizes(memcg);
5191 if (ret) {
5192 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5193 goto out;
5194 }
692e89ab
GC
5195 static_key_slow_inc(&memcg_kmem_enabled_key);
5196 /*
5197 * setting the active bit after the inc will guarantee no one
5198 * starts accounting before all call sites are patched
5199 */
5200 memcg_kmem_set_active(memcg);
510fc4e1
GC
5201 } else
5202 ret = res_counter_set_limit(&memcg->kmem, val);
5203out:
5204 mutex_unlock(&set_limit_mutex);
0999821b 5205 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5206#endif
5207 return ret;
5208}
5209
6d043990 5210#ifdef CONFIG_MEMCG_KMEM
55007d84 5211static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5212{
55007d84 5213 int ret = 0;
510fc4e1
GC
5214 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5215 if (!parent)
55007d84
GC
5216 goto out;
5217
510fc4e1 5218 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5219 /*
5220 * When that happen, we need to disable the static branch only on those
5221 * memcgs that enabled it. To achieve this, we would be forced to
5222 * complicate the code by keeping track of which memcgs were the ones
5223 * that actually enabled limits, and which ones got it from its
5224 * parents.
5225 *
5226 * It is a lot simpler just to do static_key_slow_inc() on every child
5227 * that is accounted.
5228 */
55007d84
GC
5229 if (!memcg_kmem_is_active(memcg))
5230 goto out;
5231
5232 /*
10d5ebf4
LZ
5233 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5234 * memcg is active already. If the later initialization fails then the
5235 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5236 */
55007d84
GC
5237 static_key_slow_inc(&memcg_kmem_enabled_key);
5238
5239 mutex_lock(&set_limit_mutex);
425c598d 5240 memcg_stop_kmem_account();
55007d84 5241 ret = memcg_update_cache_sizes(memcg);
425c598d 5242 memcg_resume_kmem_account();
55007d84 5243 mutex_unlock(&set_limit_mutex);
55007d84
GC
5244out:
5245 return ret;
510fc4e1 5246}
6d043990 5247#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5248
628f4235
KH
5249/*
5250 * The user of this function is...
5251 * RES_LIMIT.
5252 */
856c13aa
PM
5253static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5254 const char *buffer)
8cdea7c0 5255{
628f4235 5256 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5257 enum res_type type;
5258 int name;
628f4235
KH
5259 unsigned long long val;
5260 int ret;
5261
8c7c6e34
KH
5262 type = MEMFILE_TYPE(cft->private);
5263 name = MEMFILE_ATTR(cft->private);
af36f906 5264
8c7c6e34 5265 switch (name) {
628f4235 5266 case RES_LIMIT:
4b3bde4c
BS
5267 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5268 ret = -EINVAL;
5269 break;
5270 }
628f4235
KH
5271 /* This function does all necessary parse...reuse it */
5272 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5273 if (ret)
5274 break;
5275 if (type == _MEM)
628f4235 5276 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5277 else if (type == _MEMSWAP)
8c7c6e34 5278 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5279 else if (type == _KMEM)
5280 ret = memcg_update_kmem_limit(cont, val);
5281 else
5282 return -EINVAL;
628f4235 5283 break;
296c81d8
BS
5284 case RES_SOFT_LIMIT:
5285 ret = res_counter_memparse_write_strategy(buffer, &val);
5286 if (ret)
5287 break;
5288 /*
5289 * For memsw, soft limits are hard to implement in terms
5290 * of semantics, for now, we support soft limits for
5291 * control without swap
5292 */
5293 if (type == _MEM)
5294 ret = res_counter_set_soft_limit(&memcg->res, val);
5295 else
5296 ret = -EINVAL;
5297 break;
628f4235
KH
5298 default:
5299 ret = -EINVAL; /* should be BUG() ? */
5300 break;
5301 }
5302 return ret;
8cdea7c0
BS
5303}
5304
fee7b548
KH
5305static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5306 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5307{
5308 struct cgroup *cgroup;
5309 unsigned long long min_limit, min_memsw_limit, tmp;
5310
5311 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5312 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5313 cgroup = memcg->css.cgroup;
5314 if (!memcg->use_hierarchy)
5315 goto out;
5316
5317 while (cgroup->parent) {
5318 cgroup = cgroup->parent;
5319 memcg = mem_cgroup_from_cont(cgroup);
5320 if (!memcg->use_hierarchy)
5321 break;
5322 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5323 min_limit = min(min_limit, tmp);
5324 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5325 min_memsw_limit = min(min_memsw_limit, tmp);
5326 }
5327out:
5328 *mem_limit = min_limit;
5329 *memsw_limit = min_memsw_limit;
fee7b548
KH
5330}
5331
29f2a4da 5332static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5333{
af36f906 5334 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5335 int name;
5336 enum res_type type;
c84872e1 5337
8c7c6e34
KH
5338 type = MEMFILE_TYPE(event);
5339 name = MEMFILE_ATTR(event);
af36f906 5340
8c7c6e34 5341 switch (name) {
29f2a4da 5342 case RES_MAX_USAGE:
8c7c6e34 5343 if (type == _MEM)
c0ff4b85 5344 res_counter_reset_max(&memcg->res);
510fc4e1 5345 else if (type == _MEMSWAP)
c0ff4b85 5346 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5347 else if (type == _KMEM)
5348 res_counter_reset_max(&memcg->kmem);
5349 else
5350 return -EINVAL;
29f2a4da
PE
5351 break;
5352 case RES_FAILCNT:
8c7c6e34 5353 if (type == _MEM)
c0ff4b85 5354 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5355 else if (type == _MEMSWAP)
c0ff4b85 5356 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5357 else if (type == _KMEM)
5358 res_counter_reset_failcnt(&memcg->kmem);
5359 else
5360 return -EINVAL;
29f2a4da
PE
5361 break;
5362 }
f64c3f54 5363
85cc59db 5364 return 0;
c84872e1
PE
5365}
5366
7dc74be0
DN
5367static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5368 struct cftype *cft)
5369{
5370 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5371}
5372
02491447 5373#ifdef CONFIG_MMU
7dc74be0
DN
5374static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5375 struct cftype *cft, u64 val)
5376{
c0ff4b85 5377 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5378
5379 if (val >= (1 << NR_MOVE_TYPE))
5380 return -EINVAL;
ee5e8472 5381
7dc74be0 5382 /*
ee5e8472
GC
5383 * No kind of locking is needed in here, because ->can_attach() will
5384 * check this value once in the beginning of the process, and then carry
5385 * on with stale data. This means that changes to this value will only
5386 * affect task migrations starting after the change.
7dc74be0 5387 */
c0ff4b85 5388 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5389 return 0;
5390}
02491447
DN
5391#else
5392static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5393 struct cftype *cft, u64 val)
5394{
5395 return -ENOSYS;
5396}
5397#endif
7dc74be0 5398
406eb0c9 5399#ifdef CONFIG_NUMA
ab215884 5400static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5401 struct seq_file *m)
406eb0c9
YH
5402{
5403 int nid;
5404 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5405 unsigned long node_nr;
d79154bb 5406 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5407
d79154bb 5408 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5409 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5410 for_each_node_state(nid, N_MEMORY) {
d79154bb 5411 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5412 seq_printf(m, " N%d=%lu", nid, node_nr);
5413 }
5414 seq_putc(m, '\n');
5415
d79154bb 5416 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5417 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5418 for_each_node_state(nid, N_MEMORY) {
d79154bb 5419 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5420 LRU_ALL_FILE);
406eb0c9
YH
5421 seq_printf(m, " N%d=%lu", nid, node_nr);
5422 }
5423 seq_putc(m, '\n');
5424
d79154bb 5425 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5426 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5427 for_each_node_state(nid, N_MEMORY) {
d79154bb 5428 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5429 LRU_ALL_ANON);
406eb0c9
YH
5430 seq_printf(m, " N%d=%lu", nid, node_nr);
5431 }
5432 seq_putc(m, '\n');
5433
d79154bb 5434 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5435 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5436 for_each_node_state(nid, N_MEMORY) {
d79154bb 5437 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5438 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5439 seq_printf(m, " N%d=%lu", nid, node_nr);
5440 }
5441 seq_putc(m, '\n');
5442 return 0;
5443}
5444#endif /* CONFIG_NUMA */
5445
af7c4b0e
JW
5446static inline void mem_cgroup_lru_names_not_uptodate(void)
5447{
5448 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5449}
5450
ab215884 5451static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5452 struct seq_file *m)
d2ceb9b7 5453{
d79154bb 5454 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5455 struct mem_cgroup *mi;
5456 unsigned int i;
406eb0c9 5457
af7c4b0e 5458 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5459 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5460 continue;
af7c4b0e
JW
5461 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5462 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5463 }
7b854121 5464
af7c4b0e
JW
5465 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5466 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5467 mem_cgroup_read_events(memcg, i));
5468
5469 for (i = 0; i < NR_LRU_LISTS; i++)
5470 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5471 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5472
14067bb3 5473 /* Hierarchical information */
fee7b548
KH
5474 {
5475 unsigned long long limit, memsw_limit;
d79154bb 5476 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5477 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5478 if (do_swap_account)
78ccf5b5
JW
5479 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5480 memsw_limit);
fee7b548 5481 }
7f016ee8 5482
af7c4b0e
JW
5483 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5484 long long val = 0;
5485
bff6bb83 5486 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5487 continue;
af7c4b0e
JW
5488 for_each_mem_cgroup_tree(mi, memcg)
5489 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5490 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5491 }
5492
5493 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5494 unsigned long long val = 0;
5495
5496 for_each_mem_cgroup_tree(mi, memcg)
5497 val += mem_cgroup_read_events(mi, i);
5498 seq_printf(m, "total_%s %llu\n",
5499 mem_cgroup_events_names[i], val);
5500 }
5501
5502 for (i = 0; i < NR_LRU_LISTS; i++) {
5503 unsigned long long val = 0;
5504
5505 for_each_mem_cgroup_tree(mi, memcg)
5506 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5507 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5508 }
14067bb3 5509
7f016ee8 5510#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5511 {
5512 int nid, zid;
5513 struct mem_cgroup_per_zone *mz;
89abfab1 5514 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5515 unsigned long recent_rotated[2] = {0, 0};
5516 unsigned long recent_scanned[2] = {0, 0};
5517
5518 for_each_online_node(nid)
5519 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5520 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5521 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5522
89abfab1
HD
5523 recent_rotated[0] += rstat->recent_rotated[0];
5524 recent_rotated[1] += rstat->recent_rotated[1];
5525 recent_scanned[0] += rstat->recent_scanned[0];
5526 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5527 }
78ccf5b5
JW
5528 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5529 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5530 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5531 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5532 }
5533#endif
5534
d2ceb9b7
KH
5535 return 0;
5536}
5537
a7885eb8
KM
5538static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5539{
5540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5541
1f4c025b 5542 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5543}
5544
5545static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5546 u64 val)
5547{
5548 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5549 struct mem_cgroup *parent;
068b38c1 5550
a7885eb8
KM
5551 if (val > 100)
5552 return -EINVAL;
5553
5554 if (cgrp->parent == NULL)
5555 return -EINVAL;
5556
5557 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5558
0999821b 5559 mutex_lock(&memcg_create_mutex);
068b38c1 5560
a7885eb8 5561 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5562 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5563 mutex_unlock(&memcg_create_mutex);
a7885eb8 5564 return -EINVAL;
068b38c1 5565 }
a7885eb8 5566
a7885eb8 5567 memcg->swappiness = val;
a7885eb8 5568
0999821b 5569 mutex_unlock(&memcg_create_mutex);
068b38c1 5570
a7885eb8
KM
5571 return 0;
5572}
5573
2e72b634
KS
5574static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5575{
5576 struct mem_cgroup_threshold_ary *t;
5577 u64 usage;
5578 int i;
5579
5580 rcu_read_lock();
5581 if (!swap)
2c488db2 5582 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5583 else
2c488db2 5584 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5585
5586 if (!t)
5587 goto unlock;
5588
5589 usage = mem_cgroup_usage(memcg, swap);
5590
5591 /*
748dad36 5592 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5593 * If it's not true, a threshold was crossed after last
5594 * call of __mem_cgroup_threshold().
5595 */
5407a562 5596 i = t->current_threshold;
2e72b634
KS
5597
5598 /*
5599 * Iterate backward over array of thresholds starting from
5600 * current_threshold and check if a threshold is crossed.
5601 * If none of thresholds below usage is crossed, we read
5602 * only one element of the array here.
5603 */
5604 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5605 eventfd_signal(t->entries[i].eventfd, 1);
5606
5607 /* i = current_threshold + 1 */
5608 i++;
5609
5610 /*
5611 * Iterate forward over array of thresholds starting from
5612 * current_threshold+1 and check if a threshold is crossed.
5613 * If none of thresholds above usage is crossed, we read
5614 * only one element of the array here.
5615 */
5616 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5617 eventfd_signal(t->entries[i].eventfd, 1);
5618
5619 /* Update current_threshold */
5407a562 5620 t->current_threshold = i - 1;
2e72b634
KS
5621unlock:
5622 rcu_read_unlock();
5623}
5624
5625static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5626{
ad4ca5f4
KS
5627 while (memcg) {
5628 __mem_cgroup_threshold(memcg, false);
5629 if (do_swap_account)
5630 __mem_cgroup_threshold(memcg, true);
5631
5632 memcg = parent_mem_cgroup(memcg);
5633 }
2e72b634
KS
5634}
5635
5636static int compare_thresholds(const void *a, const void *b)
5637{
5638 const struct mem_cgroup_threshold *_a = a;
5639 const struct mem_cgroup_threshold *_b = b;
5640
5641 return _a->threshold - _b->threshold;
5642}
5643
c0ff4b85 5644static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5645{
5646 struct mem_cgroup_eventfd_list *ev;
5647
c0ff4b85 5648 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5649 eventfd_signal(ev->eventfd, 1);
5650 return 0;
5651}
5652
c0ff4b85 5653static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5654{
7d74b06f
KH
5655 struct mem_cgroup *iter;
5656
c0ff4b85 5657 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5658 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5659}
5660
5661static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5662 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5663{
5664 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5665 struct mem_cgroup_thresholds *thresholds;
5666 struct mem_cgroup_threshold_ary *new;
86ae53e1 5667 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5668 u64 threshold, usage;
2c488db2 5669 int i, size, ret;
2e72b634
KS
5670
5671 ret = res_counter_memparse_write_strategy(args, &threshold);
5672 if (ret)
5673 return ret;
5674
5675 mutex_lock(&memcg->thresholds_lock);
2c488db2 5676
2e72b634 5677 if (type == _MEM)
2c488db2 5678 thresholds = &memcg->thresholds;
2e72b634 5679 else if (type == _MEMSWAP)
2c488db2 5680 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5681 else
5682 BUG();
5683
5684 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5685
5686 /* Check if a threshold crossed before adding a new one */
2c488db2 5687 if (thresholds->primary)
2e72b634
KS
5688 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5689
2c488db2 5690 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5691
5692 /* Allocate memory for new array of thresholds */
2c488db2 5693 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5694 GFP_KERNEL);
2c488db2 5695 if (!new) {
2e72b634
KS
5696 ret = -ENOMEM;
5697 goto unlock;
5698 }
2c488db2 5699 new->size = size;
2e72b634
KS
5700
5701 /* Copy thresholds (if any) to new array */
2c488db2
KS
5702 if (thresholds->primary) {
5703 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5704 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5705 }
5706
2e72b634 5707 /* Add new threshold */
2c488db2
KS
5708 new->entries[size - 1].eventfd = eventfd;
5709 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5710
5711 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5712 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5713 compare_thresholds, NULL);
5714
5715 /* Find current threshold */
2c488db2 5716 new->current_threshold = -1;
2e72b634 5717 for (i = 0; i < size; i++) {
748dad36 5718 if (new->entries[i].threshold <= usage) {
2e72b634 5719 /*
2c488db2
KS
5720 * new->current_threshold will not be used until
5721 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5722 * it here.
5723 */
2c488db2 5724 ++new->current_threshold;
748dad36
SZ
5725 } else
5726 break;
2e72b634
KS
5727 }
5728
2c488db2
KS
5729 /* Free old spare buffer and save old primary buffer as spare */
5730 kfree(thresholds->spare);
5731 thresholds->spare = thresholds->primary;
5732
5733 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5734
907860ed 5735 /* To be sure that nobody uses thresholds */
2e72b634
KS
5736 synchronize_rcu();
5737
2e72b634
KS
5738unlock:
5739 mutex_unlock(&memcg->thresholds_lock);
5740
5741 return ret;
5742}
5743
907860ed 5744static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5745 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5746{
5747 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5748 struct mem_cgroup_thresholds *thresholds;
5749 struct mem_cgroup_threshold_ary *new;
86ae53e1 5750 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5751 u64 usage;
2c488db2 5752 int i, j, size;
2e72b634
KS
5753
5754 mutex_lock(&memcg->thresholds_lock);
5755 if (type == _MEM)
2c488db2 5756 thresholds = &memcg->thresholds;
2e72b634 5757 else if (type == _MEMSWAP)
2c488db2 5758 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5759 else
5760 BUG();
5761
371528ca
AV
5762 if (!thresholds->primary)
5763 goto unlock;
5764
2e72b634
KS
5765 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5766
5767 /* Check if a threshold crossed before removing */
5768 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5769
5770 /* Calculate new number of threshold */
2c488db2
KS
5771 size = 0;
5772 for (i = 0; i < thresholds->primary->size; i++) {
5773 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5774 size++;
5775 }
5776
2c488db2 5777 new = thresholds->spare;
907860ed 5778
2e72b634
KS
5779 /* Set thresholds array to NULL if we don't have thresholds */
5780 if (!size) {
2c488db2
KS
5781 kfree(new);
5782 new = NULL;
907860ed 5783 goto swap_buffers;
2e72b634
KS
5784 }
5785
2c488db2 5786 new->size = size;
2e72b634
KS
5787
5788 /* Copy thresholds and find current threshold */
2c488db2
KS
5789 new->current_threshold = -1;
5790 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5791 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5792 continue;
5793
2c488db2 5794 new->entries[j] = thresholds->primary->entries[i];
748dad36 5795 if (new->entries[j].threshold <= usage) {
2e72b634 5796 /*
2c488db2 5797 * new->current_threshold will not be used
2e72b634
KS
5798 * until rcu_assign_pointer(), so it's safe to increment
5799 * it here.
5800 */
2c488db2 5801 ++new->current_threshold;
2e72b634
KS
5802 }
5803 j++;
5804 }
5805
907860ed 5806swap_buffers:
2c488db2
KS
5807 /* Swap primary and spare array */
5808 thresholds->spare = thresholds->primary;
8c757763
SZ
5809 /* If all events are unregistered, free the spare array */
5810 if (!new) {
5811 kfree(thresholds->spare);
5812 thresholds->spare = NULL;
5813 }
5814
2c488db2 5815 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5816
907860ed 5817 /* To be sure that nobody uses thresholds */
2e72b634 5818 synchronize_rcu();
371528ca 5819unlock:
2e72b634 5820 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5821}
c1e862c1 5822
9490ff27
KH
5823static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5824 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5825{
5826 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5827 struct mem_cgroup_eventfd_list *event;
86ae53e1 5828 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5829
5830 BUG_ON(type != _OOM_TYPE);
5831 event = kmalloc(sizeof(*event), GFP_KERNEL);
5832 if (!event)
5833 return -ENOMEM;
5834
1af8efe9 5835 spin_lock(&memcg_oom_lock);
9490ff27
KH
5836
5837 event->eventfd = eventfd;
5838 list_add(&event->list, &memcg->oom_notify);
5839
5840 /* already in OOM ? */
79dfdacc 5841 if (atomic_read(&memcg->under_oom))
9490ff27 5842 eventfd_signal(eventfd, 1);
1af8efe9 5843 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5844
5845 return 0;
5846}
5847
907860ed 5848static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5849 struct cftype *cft, struct eventfd_ctx *eventfd)
5850{
c0ff4b85 5851 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5852 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5853 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5854
5855 BUG_ON(type != _OOM_TYPE);
5856
1af8efe9 5857 spin_lock(&memcg_oom_lock);
9490ff27 5858
c0ff4b85 5859 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5860 if (ev->eventfd == eventfd) {
5861 list_del(&ev->list);
5862 kfree(ev);
5863 }
5864 }
5865
1af8efe9 5866 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5867}
5868
3c11ecf4
KH
5869static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5870 struct cftype *cft, struct cgroup_map_cb *cb)
5871{
c0ff4b85 5872 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5873
c0ff4b85 5874 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5875
c0ff4b85 5876 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5877 cb->fill(cb, "under_oom", 1);
5878 else
5879 cb->fill(cb, "under_oom", 0);
5880 return 0;
5881}
5882
3c11ecf4
KH
5883static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5884 struct cftype *cft, u64 val)
5885{
c0ff4b85 5886 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5887 struct mem_cgroup *parent;
5888
5889 /* cannot set to root cgroup and only 0 and 1 are allowed */
5890 if (!cgrp->parent || !((val == 0) || (val == 1)))
5891 return -EINVAL;
5892
5893 parent = mem_cgroup_from_cont(cgrp->parent);
5894
0999821b 5895 mutex_lock(&memcg_create_mutex);
3c11ecf4 5896 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5897 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5898 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5899 return -EINVAL;
5900 }
c0ff4b85 5901 memcg->oom_kill_disable = val;
4d845ebf 5902 if (!val)
c0ff4b85 5903 memcg_oom_recover(memcg);
0999821b 5904 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5905 return 0;
5906}
5907
c255a458 5908#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5909static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5910{
55007d84
GC
5911 int ret;
5912
2633d7a0 5913 memcg->kmemcg_id = -1;
55007d84
GC
5914 ret = memcg_propagate_kmem(memcg);
5915 if (ret)
5916 return ret;
2633d7a0 5917
1d62e436 5918 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5919}
e5671dfa 5920
10d5ebf4 5921static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5922{
1d62e436 5923 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5924}
5925
5926static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5927{
5928 if (!memcg_kmem_is_active(memcg))
5929 return;
5930
5931 /*
5932 * kmem charges can outlive the cgroup. In the case of slab
5933 * pages, for instance, a page contain objects from various
5934 * processes. As we prevent from taking a reference for every
5935 * such allocation we have to be careful when doing uncharge
5936 * (see memcg_uncharge_kmem) and here during offlining.
5937 *
5938 * The idea is that that only the _last_ uncharge which sees
5939 * the dead memcg will drop the last reference. An additional
5940 * reference is taken here before the group is marked dead
5941 * which is then paired with css_put during uncharge resp. here.
5942 *
5943 * Although this might sound strange as this path is called from
5944 * css_offline() when the referencemight have dropped down to 0
5945 * and shouldn't be incremented anymore (css_tryget would fail)
5946 * we do not have other options because of the kmem allocations
5947 * lifetime.
5948 */
5949 css_get(&memcg->css);
7de37682
GC
5950
5951 memcg_kmem_mark_dead(memcg);
5952
5953 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5954 return;
5955
7de37682 5956 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5957 css_put(&memcg->css);
d1a4c0b3 5958}
e5671dfa 5959#else
cbe128e3 5960static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5961{
5962 return 0;
5963}
d1a4c0b3 5964
10d5ebf4
LZ
5965static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5966{
5967}
5968
5969static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5970{
5971}
e5671dfa
GC
5972#endif
5973
8cdea7c0
BS
5974static struct cftype mem_cgroup_files[] = {
5975 {
0eea1030 5976 .name = "usage_in_bytes",
8c7c6e34 5977 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5978 .read = mem_cgroup_read,
9490ff27
KH
5979 .register_event = mem_cgroup_usage_register_event,
5980 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5981 },
c84872e1
PE
5982 {
5983 .name = "max_usage_in_bytes",
8c7c6e34 5984 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5985 .trigger = mem_cgroup_reset,
af36f906 5986 .read = mem_cgroup_read,
c84872e1 5987 },
8cdea7c0 5988 {
0eea1030 5989 .name = "limit_in_bytes",
8c7c6e34 5990 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5991 .write_string = mem_cgroup_write,
af36f906 5992 .read = mem_cgroup_read,
8cdea7c0 5993 },
296c81d8
BS
5994 {
5995 .name = "soft_limit_in_bytes",
5996 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5997 .write_string = mem_cgroup_write,
af36f906 5998 .read = mem_cgroup_read,
296c81d8 5999 },
8cdea7c0
BS
6000 {
6001 .name = "failcnt",
8c7c6e34 6002 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6003 .trigger = mem_cgroup_reset,
af36f906 6004 .read = mem_cgroup_read,
8cdea7c0 6005 },
d2ceb9b7
KH
6006 {
6007 .name = "stat",
ab215884 6008 .read_seq_string = memcg_stat_show,
d2ceb9b7 6009 },
c1e862c1
KH
6010 {
6011 .name = "force_empty",
6012 .trigger = mem_cgroup_force_empty_write,
6013 },
18f59ea7
BS
6014 {
6015 .name = "use_hierarchy",
f00baae7 6016 .flags = CFTYPE_INSANE,
18f59ea7
BS
6017 .write_u64 = mem_cgroup_hierarchy_write,
6018 .read_u64 = mem_cgroup_hierarchy_read,
6019 },
a7885eb8
KM
6020 {
6021 .name = "swappiness",
6022 .read_u64 = mem_cgroup_swappiness_read,
6023 .write_u64 = mem_cgroup_swappiness_write,
6024 },
7dc74be0
DN
6025 {
6026 .name = "move_charge_at_immigrate",
6027 .read_u64 = mem_cgroup_move_charge_read,
6028 .write_u64 = mem_cgroup_move_charge_write,
6029 },
9490ff27
KH
6030 {
6031 .name = "oom_control",
3c11ecf4
KH
6032 .read_map = mem_cgroup_oom_control_read,
6033 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6034 .register_event = mem_cgroup_oom_register_event,
6035 .unregister_event = mem_cgroup_oom_unregister_event,
6036 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6037 },
70ddf637
AV
6038 {
6039 .name = "pressure_level",
6040 .register_event = vmpressure_register_event,
6041 .unregister_event = vmpressure_unregister_event,
6042 },
406eb0c9
YH
6043#ifdef CONFIG_NUMA
6044 {
6045 .name = "numa_stat",
ab215884 6046 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6047 },
6048#endif
510fc4e1
GC
6049#ifdef CONFIG_MEMCG_KMEM
6050 {
6051 .name = "kmem.limit_in_bytes",
6052 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6053 .write_string = mem_cgroup_write,
6054 .read = mem_cgroup_read,
6055 },
6056 {
6057 .name = "kmem.usage_in_bytes",
6058 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6059 .read = mem_cgroup_read,
6060 },
6061 {
6062 .name = "kmem.failcnt",
6063 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6064 .trigger = mem_cgroup_reset,
6065 .read = mem_cgroup_read,
6066 },
6067 {
6068 .name = "kmem.max_usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6070 .trigger = mem_cgroup_reset,
6071 .read = mem_cgroup_read,
6072 },
749c5415
GC
6073#ifdef CONFIG_SLABINFO
6074 {
6075 .name = "kmem.slabinfo",
6076 .read_seq_string = mem_cgroup_slabinfo_read,
6077 },
6078#endif
8c7c6e34 6079#endif
6bc10349 6080 { }, /* terminate */
af36f906 6081};
8c7c6e34 6082
2d11085e
MH
6083#ifdef CONFIG_MEMCG_SWAP
6084static struct cftype memsw_cgroup_files[] = {
6085 {
6086 .name = "memsw.usage_in_bytes",
6087 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6088 .read = mem_cgroup_read,
6089 .register_event = mem_cgroup_usage_register_event,
6090 .unregister_event = mem_cgroup_usage_unregister_event,
6091 },
6092 {
6093 .name = "memsw.max_usage_in_bytes",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6095 .trigger = mem_cgroup_reset,
6096 .read = mem_cgroup_read,
6097 },
6098 {
6099 .name = "memsw.limit_in_bytes",
6100 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6101 .write_string = mem_cgroup_write,
6102 .read = mem_cgroup_read,
6103 },
6104 {
6105 .name = "memsw.failcnt",
6106 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6107 .trigger = mem_cgroup_reset,
6108 .read = mem_cgroup_read,
6109 },
6110 { }, /* terminate */
6111};
6112#endif
c0ff4b85 6113static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6114{
6115 struct mem_cgroup_per_node *pn;
1ecaab2b 6116 struct mem_cgroup_per_zone *mz;
41e3355d 6117 int zone, tmp = node;
1ecaab2b
KH
6118 /*
6119 * This routine is called against possible nodes.
6120 * But it's BUG to call kmalloc() against offline node.
6121 *
6122 * TODO: this routine can waste much memory for nodes which will
6123 * never be onlined. It's better to use memory hotplug callback
6124 * function.
6125 */
41e3355d
KH
6126 if (!node_state(node, N_NORMAL_MEMORY))
6127 tmp = -1;
17295c88 6128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6129 if (!pn)
6130 return 1;
1ecaab2b 6131
1ecaab2b
KH
6132 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6133 mz = &pn->zoneinfo[zone];
bea8c150 6134 lruvec_init(&mz->lruvec);
f64c3f54 6135 mz->usage_in_excess = 0;
4e416953 6136 mz->on_tree = false;
d79154bb 6137 mz->memcg = memcg;
1ecaab2b 6138 }
54f72fe0 6139 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6140 return 0;
6141}
6142
c0ff4b85 6143static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6144{
54f72fe0 6145 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6146}
6147
33327948
KH
6148static struct mem_cgroup *mem_cgroup_alloc(void)
6149{
d79154bb 6150 struct mem_cgroup *memcg;
45cf7ebd 6151 size_t size = memcg_size();
33327948 6152
45cf7ebd 6153 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6154 if (size < PAGE_SIZE)
d79154bb 6155 memcg = kzalloc(size, GFP_KERNEL);
33327948 6156 else
d79154bb 6157 memcg = vzalloc(size);
33327948 6158
d79154bb 6159 if (!memcg)
e7bbcdf3
DC
6160 return NULL;
6161
d79154bb
HD
6162 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6163 if (!memcg->stat)
d2e61b8d 6164 goto out_free;
d79154bb
HD
6165 spin_lock_init(&memcg->pcp_counter_lock);
6166 return memcg;
d2e61b8d
DC
6167
6168out_free:
6169 if (size < PAGE_SIZE)
d79154bb 6170 kfree(memcg);
d2e61b8d 6171 else
d79154bb 6172 vfree(memcg);
d2e61b8d 6173 return NULL;
33327948
KH
6174}
6175
59927fb9 6176/*
c8b2a36f
GC
6177 * At destroying mem_cgroup, references from swap_cgroup can remain.
6178 * (scanning all at force_empty is too costly...)
6179 *
6180 * Instead of clearing all references at force_empty, we remember
6181 * the number of reference from swap_cgroup and free mem_cgroup when
6182 * it goes down to 0.
6183 *
6184 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6185 */
c8b2a36f
GC
6186
6187static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6188{
c8b2a36f 6189 int node;
45cf7ebd 6190 size_t size = memcg_size();
59927fb9 6191
c8b2a36f
GC
6192 mem_cgroup_remove_from_trees(memcg);
6193 free_css_id(&mem_cgroup_subsys, &memcg->css);
6194
6195 for_each_node(node)
6196 free_mem_cgroup_per_zone_info(memcg, node);
6197
6198 free_percpu(memcg->stat);
6199
3f134619
GC
6200 /*
6201 * We need to make sure that (at least for now), the jump label
6202 * destruction code runs outside of the cgroup lock. This is because
6203 * get_online_cpus(), which is called from the static_branch update,
6204 * can't be called inside the cgroup_lock. cpusets are the ones
6205 * enforcing this dependency, so if they ever change, we might as well.
6206 *
6207 * schedule_work() will guarantee this happens. Be careful if you need
6208 * to move this code around, and make sure it is outside
6209 * the cgroup_lock.
6210 */
a8964b9b 6211 disarm_static_keys(memcg);
3afe36b1
GC
6212 if (size < PAGE_SIZE)
6213 kfree(memcg);
6214 else
6215 vfree(memcg);
59927fb9 6216}
3afe36b1 6217
59927fb9 6218
8c7c6e34 6219/*
c8b2a36f
GC
6220 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6221 * but in process context. The work_freeing structure is overlaid
6222 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6223 */
c8b2a36f 6224static void free_work(struct work_struct *work)
33327948 6225{
c8b2a36f 6226 struct mem_cgroup *memcg;
08e552c6 6227
c8b2a36f
GC
6228 memcg = container_of(work, struct mem_cgroup, work_freeing);
6229 __mem_cgroup_free(memcg);
6230}
04046e1a 6231
c8b2a36f
GC
6232static void free_rcu(struct rcu_head *rcu_head)
6233{
6234 struct mem_cgroup *memcg;
08e552c6 6235
c8b2a36f
GC
6236 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6237 INIT_WORK(&memcg->work_freeing, free_work);
6238 schedule_work(&memcg->work_freeing);
33327948
KH
6239}
6240
c0ff4b85 6241static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6242{
8d76a979 6243 if (atomic_sub_and_test(count, &memcg->refcnt))
c8b2a36f 6244 call_rcu(&memcg->rcu_freeing, free_rcu);
8c7c6e34
KH
6245}
6246
c0ff4b85 6247static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6248{
c0ff4b85 6249 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6250}
6251
7bcc1bb1
DN
6252/*
6253 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6254 */
e1aab161 6255struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6256{
c0ff4b85 6257 if (!memcg->res.parent)
7bcc1bb1 6258 return NULL;
c0ff4b85 6259 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6260}
e1aab161 6261EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6262
8787a1df 6263static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6264{
6265 struct mem_cgroup_tree_per_node *rtpn;
6266 struct mem_cgroup_tree_per_zone *rtpz;
6267 int tmp, node, zone;
6268
3ed28fa1 6269 for_each_node(node) {
f64c3f54
BS
6270 tmp = node;
6271 if (!node_state(node, N_NORMAL_MEMORY))
6272 tmp = -1;
6273 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6274 BUG_ON(!rtpn);
f64c3f54
BS
6275
6276 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6277
6278 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6279 rtpz = &rtpn->rb_tree_per_zone[zone];
6280 rtpz->rb_root = RB_ROOT;
6281 spin_lock_init(&rtpz->lock);
6282 }
6283 }
f64c3f54
BS
6284}
6285
0eb253e2 6286static struct cgroup_subsys_state * __ref
92fb9748 6287mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6288{
d142e3e6 6289 struct mem_cgroup *memcg;
04046e1a 6290 long error = -ENOMEM;
6d12e2d8 6291 int node;
8cdea7c0 6292
c0ff4b85
R
6293 memcg = mem_cgroup_alloc();
6294 if (!memcg)
04046e1a 6295 return ERR_PTR(error);
78fb7466 6296
3ed28fa1 6297 for_each_node(node)
c0ff4b85 6298 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6299 goto free_out;
f64c3f54 6300
c077719b 6301 /* root ? */
28dbc4b6 6302 if (cont->parent == NULL) {
a41c58a6 6303 root_mem_cgroup = memcg;
d142e3e6
GC
6304 res_counter_init(&memcg->res, NULL);
6305 res_counter_init(&memcg->memsw, NULL);
6306 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6307 }
28dbc4b6 6308
d142e3e6
GC
6309 memcg->last_scanned_node = MAX_NUMNODES;
6310 INIT_LIST_HEAD(&memcg->oom_notify);
6311 atomic_set(&memcg->refcnt, 1);
6312 memcg->move_charge_at_immigrate = 0;
6313 mutex_init(&memcg->thresholds_lock);
6314 spin_lock_init(&memcg->move_lock);
70ddf637 6315 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6316
6317 return &memcg->css;
6318
6319free_out:
6320 __mem_cgroup_free(memcg);
6321 return ERR_PTR(error);
6322}
6323
6324static int
6325mem_cgroup_css_online(struct cgroup *cont)
6326{
6327 struct mem_cgroup *memcg, *parent;
6328 int error = 0;
6329
6330 if (!cont->parent)
6331 return 0;
6332
0999821b 6333 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6334 memcg = mem_cgroup_from_cont(cont);
6335 parent = mem_cgroup_from_cont(cont->parent);
6336
6337 memcg->use_hierarchy = parent->use_hierarchy;
6338 memcg->oom_kill_disable = parent->oom_kill_disable;
6339 memcg->swappiness = mem_cgroup_swappiness(parent);
6340
6341 if (parent->use_hierarchy) {
c0ff4b85
R
6342 res_counter_init(&memcg->res, &parent->res);
6343 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6344 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6345
7bcc1bb1 6346 /*
8d76a979
LZ
6347 * No need to take a reference to the parent because cgroup
6348 * core guarantees its existence.
7bcc1bb1 6349 */
18f59ea7 6350 } else {
c0ff4b85
R
6351 res_counter_init(&memcg->res, NULL);
6352 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6353 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6354 /*
6355 * Deeper hierachy with use_hierarchy == false doesn't make
6356 * much sense so let cgroup subsystem know about this
6357 * unfortunate state in our controller.
6358 */
d142e3e6 6359 if (parent != root_mem_cgroup)
8c7f6edb 6360 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6361 }
cbe128e3
GC
6362
6363 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6364 mutex_unlock(&memcg_create_mutex);
d142e3e6 6365 return error;
8cdea7c0
BS
6366}
6367
5f578161
MH
6368/*
6369 * Announce all parents that a group from their hierarchy is gone.
6370 */
6371static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6372{
6373 struct mem_cgroup *parent = memcg;
6374
6375 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6376 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6377
6378 /*
6379 * if the root memcg is not hierarchical we have to check it
6380 * explicitely.
6381 */
6382 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6383 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6384}
6385
92fb9748 6386static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6387{
c0ff4b85 6388 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6389
10d5ebf4
LZ
6390 kmem_cgroup_css_offline(memcg);
6391
5f578161 6392 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6393 mem_cgroup_reparent_charges(memcg);
1f458cbf 6394 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6395}
6396
92fb9748 6397static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6398{
c0ff4b85 6399 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6400
10d5ebf4
LZ
6401 memcg_destroy_kmem(memcg);
6402 __mem_cgroup_free(memcg);
8cdea7c0
BS
6403}
6404
02491447 6405#ifdef CONFIG_MMU
7dc74be0 6406/* Handlers for move charge at task migration. */
854ffa8d
DN
6407#define PRECHARGE_COUNT_AT_ONCE 256
6408static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6409{
854ffa8d
DN
6410 int ret = 0;
6411 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6412 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6413
c0ff4b85 6414 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6415 mc.precharge += count;
6416 /* we don't need css_get for root */
6417 return ret;
6418 }
6419 /* try to charge at once */
6420 if (count > 1) {
6421 struct res_counter *dummy;
6422 /*
c0ff4b85 6423 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6424 * by cgroup_lock_live_cgroup() that it is not removed and we
6425 * are still under the same cgroup_mutex. So we can postpone
6426 * css_get().
6427 */
c0ff4b85 6428 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6429 goto one_by_one;
c0ff4b85 6430 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6431 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6432 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6433 goto one_by_one;
6434 }
6435 mc.precharge += count;
854ffa8d
DN
6436 return ret;
6437 }
6438one_by_one:
6439 /* fall back to one by one charge */
6440 while (count--) {
6441 if (signal_pending(current)) {
6442 ret = -EINTR;
6443 break;
6444 }
6445 if (!batch_count--) {
6446 batch_count = PRECHARGE_COUNT_AT_ONCE;
6447 cond_resched();
6448 }
c0ff4b85
R
6449 ret = __mem_cgroup_try_charge(NULL,
6450 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6451 if (ret)
854ffa8d 6452 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6453 return ret;
854ffa8d
DN
6454 mc.precharge++;
6455 }
4ffef5fe
DN
6456 return ret;
6457}
6458
6459/**
8d32ff84 6460 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6461 * @vma: the vma the pte to be checked belongs
6462 * @addr: the address corresponding to the pte to be checked
6463 * @ptent: the pte to be checked
02491447 6464 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6465 *
6466 * Returns
6467 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6468 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6469 * move charge. if @target is not NULL, the page is stored in target->page
6470 * with extra refcnt got(Callers should handle it).
02491447
DN
6471 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6472 * target for charge migration. if @target is not NULL, the entry is stored
6473 * in target->ent.
4ffef5fe
DN
6474 *
6475 * Called with pte lock held.
6476 */
4ffef5fe
DN
6477union mc_target {
6478 struct page *page;
02491447 6479 swp_entry_t ent;
4ffef5fe
DN
6480};
6481
4ffef5fe 6482enum mc_target_type {
8d32ff84 6483 MC_TARGET_NONE = 0,
4ffef5fe 6484 MC_TARGET_PAGE,
02491447 6485 MC_TARGET_SWAP,
4ffef5fe
DN
6486};
6487
90254a65
DN
6488static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6489 unsigned long addr, pte_t ptent)
4ffef5fe 6490{
90254a65 6491 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6492
90254a65
DN
6493 if (!page || !page_mapped(page))
6494 return NULL;
6495 if (PageAnon(page)) {
6496 /* we don't move shared anon */
4b91355e 6497 if (!move_anon())
90254a65 6498 return NULL;
87946a72
DN
6499 } else if (!move_file())
6500 /* we ignore mapcount for file pages */
90254a65
DN
6501 return NULL;
6502 if (!get_page_unless_zero(page))
6503 return NULL;
6504
6505 return page;
6506}
6507
4b91355e 6508#ifdef CONFIG_SWAP
90254a65
DN
6509static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6510 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6511{
90254a65
DN
6512 struct page *page = NULL;
6513 swp_entry_t ent = pte_to_swp_entry(ptent);
6514
6515 if (!move_anon() || non_swap_entry(ent))
6516 return NULL;
4b91355e
KH
6517 /*
6518 * Because lookup_swap_cache() updates some statistics counter,
6519 * we call find_get_page() with swapper_space directly.
6520 */
33806f06 6521 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6522 if (do_swap_account)
6523 entry->val = ent.val;
6524
6525 return page;
6526}
4b91355e
KH
6527#else
6528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6530{
6531 return NULL;
6532}
6533#endif
90254a65 6534
87946a72
DN
6535static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6536 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6537{
6538 struct page *page = NULL;
87946a72
DN
6539 struct address_space *mapping;
6540 pgoff_t pgoff;
6541
6542 if (!vma->vm_file) /* anonymous vma */
6543 return NULL;
6544 if (!move_file())
6545 return NULL;
6546
87946a72
DN
6547 mapping = vma->vm_file->f_mapping;
6548 if (pte_none(ptent))
6549 pgoff = linear_page_index(vma, addr);
6550 else /* pte_file(ptent) is true */
6551 pgoff = pte_to_pgoff(ptent);
6552
6553 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6554 page = find_get_page(mapping, pgoff);
6555
6556#ifdef CONFIG_SWAP
6557 /* shmem/tmpfs may report page out on swap: account for that too. */
6558 if (radix_tree_exceptional_entry(page)) {
6559 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6560 if (do_swap_account)
aa3b1895 6561 *entry = swap;
33806f06 6562 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6563 }
aa3b1895 6564#endif
87946a72
DN
6565 return page;
6566}
6567
8d32ff84 6568static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6569 unsigned long addr, pte_t ptent, union mc_target *target)
6570{
6571 struct page *page = NULL;
6572 struct page_cgroup *pc;
8d32ff84 6573 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6574 swp_entry_t ent = { .val = 0 };
6575
6576 if (pte_present(ptent))
6577 page = mc_handle_present_pte(vma, addr, ptent);
6578 else if (is_swap_pte(ptent))
6579 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6580 else if (pte_none(ptent) || pte_file(ptent))
6581 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6582
6583 if (!page && !ent.val)
8d32ff84 6584 return ret;
02491447
DN
6585 if (page) {
6586 pc = lookup_page_cgroup(page);
6587 /*
6588 * Do only loose check w/o page_cgroup lock.
6589 * mem_cgroup_move_account() checks the pc is valid or not under
6590 * the lock.
6591 */
6592 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6593 ret = MC_TARGET_PAGE;
6594 if (target)
6595 target->page = page;
6596 }
6597 if (!ret || !target)
6598 put_page(page);
6599 }
90254a65
DN
6600 /* There is a swap entry and a page doesn't exist or isn't charged */
6601 if (ent.val && !ret &&
9fb4b7cc 6602 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6603 ret = MC_TARGET_SWAP;
6604 if (target)
6605 target->ent = ent;
4ffef5fe 6606 }
4ffef5fe
DN
6607 return ret;
6608}
6609
12724850
NH
6610#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6611/*
6612 * We don't consider swapping or file mapped pages because THP does not
6613 * support them for now.
6614 * Caller should make sure that pmd_trans_huge(pmd) is true.
6615 */
6616static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6617 unsigned long addr, pmd_t pmd, union mc_target *target)
6618{
6619 struct page *page = NULL;
6620 struct page_cgroup *pc;
6621 enum mc_target_type ret = MC_TARGET_NONE;
6622
6623 page = pmd_page(pmd);
6624 VM_BUG_ON(!page || !PageHead(page));
6625 if (!move_anon())
6626 return ret;
6627 pc = lookup_page_cgroup(page);
6628 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6629 ret = MC_TARGET_PAGE;
6630 if (target) {
6631 get_page(page);
6632 target->page = page;
6633 }
6634 }
6635 return ret;
6636}
6637#else
6638static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6639 unsigned long addr, pmd_t pmd, union mc_target *target)
6640{
6641 return MC_TARGET_NONE;
6642}
6643#endif
6644
4ffef5fe
DN
6645static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6646 unsigned long addr, unsigned long end,
6647 struct mm_walk *walk)
6648{
6649 struct vm_area_struct *vma = walk->private;
6650 pte_t *pte;
6651 spinlock_t *ptl;
6652
12724850
NH
6653 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6654 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6655 mc.precharge += HPAGE_PMD_NR;
6656 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6657 return 0;
12724850 6658 }
03319327 6659
45f83cef
AA
6660 if (pmd_trans_unstable(pmd))
6661 return 0;
4ffef5fe
DN
6662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6663 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6664 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6665 mc.precharge++; /* increment precharge temporarily */
6666 pte_unmap_unlock(pte - 1, ptl);
6667 cond_resched();
6668
7dc74be0
DN
6669 return 0;
6670}
6671
4ffef5fe
DN
6672static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6673{
6674 unsigned long precharge;
6675 struct vm_area_struct *vma;
6676
dfe076b0 6677 down_read(&mm->mmap_sem);
4ffef5fe
DN
6678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6679 struct mm_walk mem_cgroup_count_precharge_walk = {
6680 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6681 .mm = mm,
6682 .private = vma,
6683 };
6684 if (is_vm_hugetlb_page(vma))
6685 continue;
4ffef5fe
DN
6686 walk_page_range(vma->vm_start, vma->vm_end,
6687 &mem_cgroup_count_precharge_walk);
6688 }
dfe076b0 6689 up_read(&mm->mmap_sem);
4ffef5fe
DN
6690
6691 precharge = mc.precharge;
6692 mc.precharge = 0;
6693
6694 return precharge;
6695}
6696
4ffef5fe
DN
6697static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6698{
dfe076b0
DN
6699 unsigned long precharge = mem_cgroup_count_precharge(mm);
6700
6701 VM_BUG_ON(mc.moving_task);
6702 mc.moving_task = current;
6703 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6704}
6705
dfe076b0
DN
6706/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6707static void __mem_cgroup_clear_mc(void)
4ffef5fe 6708{
2bd9bb20
KH
6709 struct mem_cgroup *from = mc.from;
6710 struct mem_cgroup *to = mc.to;
4050377b 6711 int i;
2bd9bb20 6712
4ffef5fe 6713 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6714 if (mc.precharge) {
6715 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6716 mc.precharge = 0;
6717 }
6718 /*
6719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6720 * we must uncharge here.
6721 */
6722 if (mc.moved_charge) {
6723 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6724 mc.moved_charge = 0;
4ffef5fe 6725 }
483c30b5
DN
6726 /* we must fixup refcnts and charges */
6727 if (mc.moved_swap) {
483c30b5
DN
6728 /* uncharge swap account from the old cgroup */
6729 if (!mem_cgroup_is_root(mc.from))
6730 res_counter_uncharge(&mc.from->memsw,
6731 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6732
6733 for (i = 0; i < mc.moved_swap; i++)
6734 css_put(&mc.from->css);
483c30b5
DN
6735
6736 if (!mem_cgroup_is_root(mc.to)) {
6737 /*
6738 * we charged both to->res and to->memsw, so we should
6739 * uncharge to->res.
6740 */
6741 res_counter_uncharge(&mc.to->res,
6742 PAGE_SIZE * mc.moved_swap);
483c30b5 6743 }
4050377b 6744 /* we've already done css_get(mc.to) */
483c30b5
DN
6745 mc.moved_swap = 0;
6746 }
dfe076b0
DN
6747 memcg_oom_recover(from);
6748 memcg_oom_recover(to);
6749 wake_up_all(&mc.waitq);
6750}
6751
6752static void mem_cgroup_clear_mc(void)
6753{
6754 struct mem_cgroup *from = mc.from;
6755
6756 /*
6757 * we must clear moving_task before waking up waiters at the end of
6758 * task migration.
6759 */
6760 mc.moving_task = NULL;
6761 __mem_cgroup_clear_mc();
2bd9bb20 6762 spin_lock(&mc.lock);
4ffef5fe
DN
6763 mc.from = NULL;
6764 mc.to = NULL;
2bd9bb20 6765 spin_unlock(&mc.lock);
32047e2a 6766 mem_cgroup_end_move(from);
4ffef5fe
DN
6767}
6768
761b3ef5
LZ
6769static int mem_cgroup_can_attach(struct cgroup *cgroup,
6770 struct cgroup_taskset *tset)
7dc74be0 6771{
2f7ee569 6772 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6773 int ret = 0;
c0ff4b85 6774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6775 unsigned long move_charge_at_immigrate;
7dc74be0 6776
ee5e8472
GC
6777 /*
6778 * We are now commited to this value whatever it is. Changes in this
6779 * tunable will only affect upcoming migrations, not the current one.
6780 * So we need to save it, and keep it going.
6781 */
6782 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6783 if (move_charge_at_immigrate) {
7dc74be0
DN
6784 struct mm_struct *mm;
6785 struct mem_cgroup *from = mem_cgroup_from_task(p);
6786
c0ff4b85 6787 VM_BUG_ON(from == memcg);
7dc74be0
DN
6788
6789 mm = get_task_mm(p);
6790 if (!mm)
6791 return 0;
7dc74be0 6792 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6793 if (mm->owner == p) {
6794 VM_BUG_ON(mc.from);
6795 VM_BUG_ON(mc.to);
6796 VM_BUG_ON(mc.precharge);
854ffa8d 6797 VM_BUG_ON(mc.moved_charge);
483c30b5 6798 VM_BUG_ON(mc.moved_swap);
32047e2a 6799 mem_cgroup_start_move(from);
2bd9bb20 6800 spin_lock(&mc.lock);
4ffef5fe 6801 mc.from = from;
c0ff4b85 6802 mc.to = memcg;
ee5e8472 6803 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6804 spin_unlock(&mc.lock);
dfe076b0 6805 /* We set mc.moving_task later */
4ffef5fe
DN
6806
6807 ret = mem_cgroup_precharge_mc(mm);
6808 if (ret)
6809 mem_cgroup_clear_mc();
dfe076b0
DN
6810 }
6811 mmput(mm);
7dc74be0
DN
6812 }
6813 return ret;
6814}
6815
761b3ef5
LZ
6816static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6817 struct cgroup_taskset *tset)
7dc74be0 6818{
4ffef5fe 6819 mem_cgroup_clear_mc();
7dc74be0
DN
6820}
6821
4ffef5fe
DN
6822static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6823 unsigned long addr, unsigned long end,
6824 struct mm_walk *walk)
7dc74be0 6825{
4ffef5fe
DN
6826 int ret = 0;
6827 struct vm_area_struct *vma = walk->private;
6828 pte_t *pte;
6829 spinlock_t *ptl;
12724850
NH
6830 enum mc_target_type target_type;
6831 union mc_target target;
6832 struct page *page;
6833 struct page_cgroup *pc;
4ffef5fe 6834
12724850
NH
6835 /*
6836 * We don't take compound_lock() here but no race with splitting thp
6837 * happens because:
6838 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6839 * under splitting, which means there's no concurrent thp split,
6840 * - if another thread runs into split_huge_page() just after we
6841 * entered this if-block, the thread must wait for page table lock
6842 * to be unlocked in __split_huge_page_splitting(), where the main
6843 * part of thp split is not executed yet.
6844 */
6845 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6846 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6847 spin_unlock(&vma->vm_mm->page_table_lock);
6848 return 0;
6849 }
6850 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6851 if (target_type == MC_TARGET_PAGE) {
6852 page = target.page;
6853 if (!isolate_lru_page(page)) {
6854 pc = lookup_page_cgroup(page);
6855 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6856 pc, mc.from, mc.to)) {
12724850
NH
6857 mc.precharge -= HPAGE_PMD_NR;
6858 mc.moved_charge += HPAGE_PMD_NR;
6859 }
6860 putback_lru_page(page);
6861 }
6862 put_page(page);
6863 }
6864 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6865 return 0;
12724850
NH
6866 }
6867
45f83cef
AA
6868 if (pmd_trans_unstable(pmd))
6869 return 0;
4ffef5fe
DN
6870retry:
6871 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6872 for (; addr != end; addr += PAGE_SIZE) {
6873 pte_t ptent = *(pte++);
02491447 6874 swp_entry_t ent;
4ffef5fe
DN
6875
6876 if (!mc.precharge)
6877 break;
6878
8d32ff84 6879 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6880 case MC_TARGET_PAGE:
6881 page = target.page;
6882 if (isolate_lru_page(page))
6883 goto put;
6884 pc = lookup_page_cgroup(page);
7ec99d62 6885 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6886 mc.from, mc.to)) {
4ffef5fe 6887 mc.precharge--;
854ffa8d
DN
6888 /* we uncharge from mc.from later. */
6889 mc.moved_charge++;
4ffef5fe
DN
6890 }
6891 putback_lru_page(page);
8d32ff84 6892put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6893 put_page(page);
6894 break;
02491447
DN
6895 case MC_TARGET_SWAP:
6896 ent = target.ent;
e91cbb42 6897 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6898 mc.precharge--;
483c30b5
DN
6899 /* we fixup refcnts and charges later. */
6900 mc.moved_swap++;
6901 }
02491447 6902 break;
4ffef5fe
DN
6903 default:
6904 break;
6905 }
6906 }
6907 pte_unmap_unlock(pte - 1, ptl);
6908 cond_resched();
6909
6910 if (addr != end) {
6911 /*
6912 * We have consumed all precharges we got in can_attach().
6913 * We try charge one by one, but don't do any additional
6914 * charges to mc.to if we have failed in charge once in attach()
6915 * phase.
6916 */
854ffa8d 6917 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6918 if (!ret)
6919 goto retry;
6920 }
6921
6922 return ret;
6923}
6924
6925static void mem_cgroup_move_charge(struct mm_struct *mm)
6926{
6927 struct vm_area_struct *vma;
6928
6929 lru_add_drain_all();
dfe076b0
DN
6930retry:
6931 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6932 /*
6933 * Someone who are holding the mmap_sem might be waiting in
6934 * waitq. So we cancel all extra charges, wake up all waiters,
6935 * and retry. Because we cancel precharges, we might not be able
6936 * to move enough charges, but moving charge is a best-effort
6937 * feature anyway, so it wouldn't be a big problem.
6938 */
6939 __mem_cgroup_clear_mc();
6940 cond_resched();
6941 goto retry;
6942 }
4ffef5fe
DN
6943 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6944 int ret;
6945 struct mm_walk mem_cgroup_move_charge_walk = {
6946 .pmd_entry = mem_cgroup_move_charge_pte_range,
6947 .mm = mm,
6948 .private = vma,
6949 };
6950 if (is_vm_hugetlb_page(vma))
6951 continue;
4ffef5fe
DN
6952 ret = walk_page_range(vma->vm_start, vma->vm_end,
6953 &mem_cgroup_move_charge_walk);
6954 if (ret)
6955 /*
6956 * means we have consumed all precharges and failed in
6957 * doing additional charge. Just abandon here.
6958 */
6959 break;
6960 }
dfe076b0 6961 up_read(&mm->mmap_sem);
7dc74be0
DN
6962}
6963
761b3ef5
LZ
6964static void mem_cgroup_move_task(struct cgroup *cont,
6965 struct cgroup_taskset *tset)
67e465a7 6966{
2f7ee569 6967 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6968 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6969
dfe076b0 6970 if (mm) {
a433658c
KM
6971 if (mc.to)
6972 mem_cgroup_move_charge(mm);
dfe076b0
DN
6973 mmput(mm);
6974 }
a433658c
KM
6975 if (mc.to)
6976 mem_cgroup_clear_mc();
67e465a7 6977}
5cfb80a7 6978#else /* !CONFIG_MMU */
761b3ef5
LZ
6979static int mem_cgroup_can_attach(struct cgroup *cgroup,
6980 struct cgroup_taskset *tset)
5cfb80a7
DN
6981{
6982 return 0;
6983}
761b3ef5
LZ
6984static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6985 struct cgroup_taskset *tset)
5cfb80a7
DN
6986{
6987}
761b3ef5
LZ
6988static void mem_cgroup_move_task(struct cgroup *cont,
6989 struct cgroup_taskset *tset)
5cfb80a7
DN
6990{
6991}
6992#endif
67e465a7 6993
f00baae7
TH
6994/*
6995 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6996 * to verify sane_behavior flag on each mount attempt.
6997 */
6998static void mem_cgroup_bind(struct cgroup *root)
6999{
7000 /*
7001 * use_hierarchy is forced with sane_behavior. cgroup core
7002 * guarantees that @root doesn't have any children, so turning it
7003 * on for the root memcg is enough.
7004 */
7005 if (cgroup_sane_behavior(root))
7006 mem_cgroup_from_cont(root)->use_hierarchy = true;
7007}
7008
8cdea7c0
BS
7009struct cgroup_subsys mem_cgroup_subsys = {
7010 .name = "memory",
7011 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7012 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7013 .css_online = mem_cgroup_css_online,
92fb9748
TH
7014 .css_offline = mem_cgroup_css_offline,
7015 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7016 .can_attach = mem_cgroup_can_attach,
7017 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7018 .attach = mem_cgroup_move_task,
f00baae7 7019 .bind = mem_cgroup_bind,
6bc10349 7020 .base_cftypes = mem_cgroup_files,
6d12e2d8 7021 .early_init = 0,
04046e1a 7022 .use_id = 1,
8cdea7c0 7023};
c077719b 7024
c255a458 7025#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7026static int __init enable_swap_account(char *s)
7027{
7028 /* consider enabled if no parameter or 1 is given */
a2c8990a 7029 if (!strcmp(s, "1"))
a42c390c 7030 really_do_swap_account = 1;
a2c8990a 7031 else if (!strcmp(s, "0"))
a42c390c
MH
7032 really_do_swap_account = 0;
7033 return 1;
7034}
a2c8990a 7035__setup("swapaccount=", enable_swap_account);
c077719b 7036
2d11085e
MH
7037static void __init memsw_file_init(void)
7038{
6acc8b02
MH
7039 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7040}
7041
7042static void __init enable_swap_cgroup(void)
7043{
7044 if (!mem_cgroup_disabled() && really_do_swap_account) {
7045 do_swap_account = 1;
7046 memsw_file_init();
7047 }
2d11085e 7048}
6acc8b02 7049
2d11085e 7050#else
6acc8b02 7051static void __init enable_swap_cgroup(void)
2d11085e
MH
7052{
7053}
c077719b 7054#endif
2d11085e
MH
7055
7056/*
1081312f
MH
7057 * subsys_initcall() for memory controller.
7058 *
7059 * Some parts like hotcpu_notifier() have to be initialized from this context
7060 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7061 * everything that doesn't depend on a specific mem_cgroup structure should
7062 * be initialized from here.
2d11085e
MH
7063 */
7064static int __init mem_cgroup_init(void)
7065{
7066 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7067 enable_swap_cgroup();
8787a1df 7068 mem_cgroup_soft_limit_tree_init();
e4777496 7069 memcg_stock_init();
2d11085e
MH
7070 return 0;
7071}
7072subsys_initcall(mem_cgroup_init);