]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
kernel: cgroup: push rcu read locking from css_is_ancestor() to callsite
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
3e2f41f1 141 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
d79154bb 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 147 /* use container_of */
6d12e2d8 148};
6d12e2d8
KH
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
2e72b634
KS
178struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181};
182
9490ff27 183/* For threshold */
2e72b634
KS
184struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
5407a562 186 int current_threshold;
2e72b634
KS
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191};
2c488db2
KS
192
193struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202};
203
9490ff27
KH
204/* for OOM */
205struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208};
2e72b634 209
c0ff4b85
R
210static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 212
8cdea7c0
BS
213/*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
8cdea7c0
BS
223 */
224struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
59927fb9
HD
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
78fb7466
PE
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
78fb7466 257 */
6d12e2d8 258 struct mem_cgroup_lru_info info;
889976db
YH
259 int last_scanned_node;
260#if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
453a9bf3
KH
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
889976db 264#endif
18f59ea7
BS
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
79dfdacc
MH
269
270 bool oom_lock;
271 atomic_t under_oom;
272
8c7c6e34 273 atomic_t refcnt;
14797e23 274
1f4c025b 275 int swappiness;
3c11ecf4
KH
276 /* OOM-Killer disable */
277 int oom_kill_disable;
a7885eb8 278
22a668d7
KH
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
2e72b634
KS
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
2c488db2 286 struct mem_cgroup_thresholds thresholds;
907860ed 287
2e72b634 288 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 289 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 290
9490ff27
KH
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
185efc0f 293
7dc74be0
DN
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
619d094b
KH
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
312734c0
KH
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
d52aa412 305 /*
c62b1a3b 306 * percpu counter.
d52aa412 307 */
c62b1a3b 308 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
315
316#ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318#endif
8cdea7c0
BS
319};
320
7dc74be0
DN
321/* Stuffs for move charges at task migration. */
322/*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326enum move_type {
4ffef5fe 327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
329 NR_MOVE_TYPE,
330};
331
4ffef5fe
DN
332/* "mc" and its members are protected by cgroup_mutex */
333static struct move_charge_struct {
b1dd693e 334 spinlock_t lock; /* for from, to */
4ffef5fe
DN
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
854ffa8d 338 unsigned long moved_charge;
483c30b5 339 unsigned long moved_swap;
8033b97c
DN
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342} mc = {
2bd9bb20 343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345};
4ffef5fe 346
90254a65
DN
347static bool move_anon(void)
348{
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351}
352
87946a72
DN
353static bool move_file(void)
354{
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357}
358
4e416953
BS
359/*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
217bc319
KH
366enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
373 NR_CHARGE_TYPE,
374};
375
8c7c6e34 376/* for encoding cft->private value on file */
65c64ce8
GC
377#define _MEM (0)
378#define _MEMSWAP (1)
379#define _OOM_TYPE (2)
8c7c6e34
KH
380#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
383/* Used for OOM nofiier */
384#define OOM_CONTROL (0)
8c7c6e34 385
75822b44
BS
386/*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
c0ff4b85
R
394static void mem_cgroup_get(struct mem_cgroup *memcg);
395static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
396
397/* Writing them here to avoid exposing memcg's inner layout */
398#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 399#include <net/sock.h>
d1a4c0b3 400#include <net/ip.h>
e1aab161
GC
401
402static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403void sock_update_memcg(struct sock *sk)
404{
376be5ff 405 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
f3f511e1
GC
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
e1aab161
GC
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432}
433EXPORT_SYMBOL(sock_update_memcg);
434
435void sock_release_memcg(struct sock *sk)
436{
376be5ff 437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443}
d1a4c0b3 444
319d3b9c 445#ifdef CONFIG_INET
d1a4c0b3
GC
446struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447{
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452}
453EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
454#endif /* CONFIG_INET */
455#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
c0ff4b85 457static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 458
f64c3f54 459static struct mem_cgroup_per_zone *
c0ff4b85 460mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 461{
c0ff4b85 462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
463}
464
c0ff4b85 465struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 466{
c0ff4b85 467 return &memcg->css;
d324236b
WF
468}
469
f64c3f54 470static struct mem_cgroup_per_zone *
c0ff4b85 471page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 472{
97a6c37b
JW
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
f64c3f54 475
c0ff4b85 476 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
477}
478
479static struct mem_cgroup_tree_per_zone *
480soft_limit_tree_node_zone(int nid, int zid)
481{
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483}
484
485static struct mem_cgroup_tree_per_zone *
486soft_limit_tree_from_page(struct page *page)
487{
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492}
493
494static void
c0ff4b85 495__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 496 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
f64c3f54
BS
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
ef8745c1
KH
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
f64c3f54
BS
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
4e416953
BS
526}
527
528static void
c0ff4b85 529__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532{
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537}
538
f64c3f54 539static void
c0ff4b85 540mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543{
544 spin_lock(&mctz->lock);
c0ff4b85 545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
546 spin_unlock(&mctz->lock);
547}
548
f64c3f54 549
c0ff4b85 550static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 551{
ef8745c1 552 unsigned long long excess;
f64c3f54
BS
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
f64c3f54
BS
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
4e649152
KH
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
f64c3f54 562 */
c0ff4b85
R
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
ef8745c1 570 if (excess || mz->on_tree) {
4e649152
KH
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
c0ff4b85 574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 575 /*
ef8745c1
KH
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
4e649152 578 */
c0ff4b85 579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
580 spin_unlock(&mctz->lock);
581 }
f64c3f54
BS
582 }
583}
584
c0ff4b85 585static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
586{
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
3ed28fa1 591 for_each_node(node) {
f64c3f54 592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 594 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
596 }
597 }
598}
599
4e416953
BS
600static struct mem_cgroup_per_zone *
601__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602{
603 struct rb_node *rightmost = NULL;
26251eaf 604 struct mem_cgroup_per_zone *mz;
4e416953
BS
605
606retry:
26251eaf 607 mz = NULL;
4e416953
BS
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
d79154bb
HD
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
4e416953
BS
621 goto retry;
622done:
623 return mz;
624}
625
626static struct mem_cgroup_per_zone *
627mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635}
636
711d3d2c
KH
637/*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
c0ff4b85 656static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 657 enum mem_cgroup_stat_index idx)
c62b1a3b 658{
7a159cc9 659 long val = 0;
c62b1a3b 660 int cpu;
c62b1a3b 661
711d3d2c
KH
662 get_online_cpus();
663 for_each_online_cpu(cpu)
c0ff4b85 664 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 665#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
669#endif
670 put_online_cpus();
c62b1a3b
KH
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
675 bool charge)
676{
677 int val = (charge) ? 1 : -1;
c0ff4b85 678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
679}
680
c0ff4b85 681static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
682 enum mem_cgroup_events_index idx)
683{
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
c0ff4b85 688 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 689#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
693#endif
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 698 bool anon, int nr_pages)
d52aa412 699{
c62b1a3b
KH
700 preempt_disable();
701
b2402857
KH
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 708 nr_pages);
d52aa412 709 else
b2402857 710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 711 nr_pages);
55e462b0 712
e401f176
KH
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
c0ff4b85 715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 716 else {
c0ff4b85 717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
718 nr_pages = -nr_pages; /* for event */
719 }
e401f176 720
c0ff4b85 721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 722
c62b1a3b 723 preempt_enable();
6d12e2d8
KH
724}
725
bb2a0de9 726unsigned long
c0ff4b85 727mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 728 unsigned int lru_mask)
889976db
YH
729{
730 struct mem_cgroup_per_zone *mz;
f156ab93 731 enum lru_list lru;
bb2a0de9
KH
732 unsigned long ret = 0;
733
c0ff4b85 734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 735
f156ab93
HD
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
bb2a0de9
KH
739 }
740 return ret;
741}
742
743static unsigned long
c0ff4b85 744mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
745 int nid, unsigned int lru_mask)
746{
889976db
YH
747 u64 total = 0;
748 int zid;
749
bb2a0de9 750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
bb2a0de9 753
889976db
YH
754 return total;
755}
bb2a0de9 756
c0ff4b85 757static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 758 unsigned int lru_mask)
6d12e2d8 759{
889976db 760 int nid;
6d12e2d8
KH
761 u64 total = 0;
762
bb2a0de9 763 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 765 return total;
d52aa412
KH
766}
767
f53d7ce3
JW
768static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
7a159cc9
JW
770{
771 unsigned long val, next;
772
4799401f
SR
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 775 /* from time_after() in jiffies.h */
f53d7ce3
JW
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
7a159cc9 792 }
f53d7ce3 793 return false;
d2265e6f
KH
794}
795
796/*
797 * Check events in order.
798 *
799 */
c0ff4b85 800static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 801{
4799401f 802 preempt_disable();
d2265e6f 803 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
f53d7ce3
JW
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811#if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814#endif
815 preempt_enable();
816
c0ff4b85 817 mem_cgroup_threshold(memcg);
f53d7ce3 818 if (unlikely(do_softlimit))
c0ff4b85 819 mem_cgroup_update_tree(memcg, page);
453a9bf3 820#if MAX_NUMNODES > 1
f53d7ce3 821 if (unlikely(do_numainfo))
c0ff4b85 822 atomic_inc(&memcg->numainfo_events);
453a9bf3 823#endif
f53d7ce3
JW
824 } else
825 preempt_enable();
d2265e6f
KH
826}
827
d1a4c0b3 828struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
829{
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833}
834
cf475ad2 835struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 836{
31a78f23
BS
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
78fb7466
PE
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847}
848
a433658c 849struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 850{
c0ff4b85 851 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
852
853 if (!mm)
854 return NULL;
54595fe2
KH
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
c0ff4b85
R
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
54595fe2 864 break;
c0ff4b85 865 } while (!css_tryget(&memcg->css));
54595fe2 866 rcu_read_unlock();
c0ff4b85 867 return memcg;
54595fe2
KH
868}
869
5660048c
JW
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 890{
9f3a0d09
JW
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
711d3d2c 893
5660048c
JW
894 if (mem_cgroup_disabled())
895 return NULL;
896
9f3a0d09
JW
897 if (!root)
898 root = root_mem_cgroup;
7d74b06f 899
9f3a0d09
JW
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
14067bb3 902
9f3a0d09
JW
903 if (prev && prev != root)
904 css_put(&prev->css);
14067bb3 905
9f3a0d09
JW
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
14067bb3 911
9f3a0d09 912 while (!memcg) {
527a5ec9 913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 914 struct cgroup_subsys_state *css;
711d3d2c 915
527a5ec9
JW
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
7d74b06f 927
9f3a0d09
JW
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
14067bb3 936 rcu_read_unlock();
14067bb3 937
527a5ec9
JW
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
9f3a0d09
JW
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
14067bb3 950}
7d74b06f 951
5660048c
JW
952/**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
9f3a0d09
JW
959{
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964}
7d74b06f 965
9f3a0d09
JW
966/*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 973 iter != NULL; \
527a5ec9 974 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 975
9f3a0d09 976#define for_each_mem_cgroup(iter) \
527a5ec9 977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 978 iter != NULL; \
527a5ec9 979 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 980
c0ff4b85 981static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 982{
c0ff4b85 983 return (memcg == root_mem_cgroup);
4b3bde4c
BS
984}
985
456f998e
YH
986void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987{
c0ff4b85 988 struct mem_cgroup *memcg;
456f998e
YH
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
c0ff4b85
R
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
456f998e
YH
996 goto out;
997
998 switch (idx) {
456f998e 999 case PGFAULT:
0e574a93
JW
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1004 break;
1005 default:
1006 BUG();
1007 }
1008out:
1009 rcu_read_unlock();
1010}
1011EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
925b7673
JW
1013/**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032}
1033
08e552c6
KH
1034/*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
4f98a2fe 1047
925b7673
JW
1048/**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
08e552c6 1062{
08e552c6 1063 struct mem_cgroup_per_zone *mz;
925b7673
JW
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
6d12e2d8 1066
f8d66542 1067 if (mem_cgroup_disabled())
925b7673
JW
1068 return &zone->lruvec;
1069
08e552c6 1070 pc = lookup_page_cgroup(page);
38c5d72f 1071 memcg = pc->mem_cgroup;
7512102c
HD
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
925b7673
JW
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1eb49272 1087 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1088 return &mz->lruvec;
08e552c6 1089}
b69408e8 1090
925b7673
JW
1091/**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
3f58a829 1100 */
925b7673 1101void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
925b7673 1104 struct mem_cgroup *memcg;
3f58a829 1105 struct page_cgroup *pc;
3f58a829
MK
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
38c5d72f
KH
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
925b7673
JW
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1117}
1118
925b7673 1119void mem_cgroup_lru_del(struct page *page)
08e552c6 1120{
925b7673 1121 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1122}
1123
925b7673
JW
1124/**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
66e1707b 1142{
925b7673
JW
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1146}
544122e5 1147
3e92041d 1148/*
c0ff4b85 1149 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1150 * hierarchy subtree
1151 */
c0ff4b85
R
1152static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
3e92041d 1154{
91c63734 1155 bool ret;
3e92041d 1156
91c63734
JW
1157 if (root_memcg == memcg)
1158 return true;
1159 if (!root_memcg->use_hierarchy)
1160 return false;
1161 rcu_read_lock();
1162 ret = css_is_ancestor(&memcg->css, &root_memcg->css);
1163 rcu_read_unlock();
1164 return ret;
3e92041d
MH
1165}
1166
c0ff4b85 1167int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1168{
1169 int ret;
0b7f569e 1170 struct mem_cgroup *curr = NULL;
158e0a2d 1171 struct task_struct *p;
4c4a2214 1172
158e0a2d 1173 p = find_lock_task_mm(task);
de077d22
DR
1174 if (p) {
1175 curr = try_get_mem_cgroup_from_mm(p->mm);
1176 task_unlock(p);
1177 } else {
1178 /*
1179 * All threads may have already detached their mm's, but the oom
1180 * killer still needs to detect if they have already been oom
1181 * killed to prevent needlessly killing additional tasks.
1182 */
1183 task_lock(task);
1184 curr = mem_cgroup_from_task(task);
1185 if (curr)
1186 css_get(&curr->css);
1187 task_unlock(task);
1188 }
0b7f569e
KH
1189 if (!curr)
1190 return 0;
d31f56db 1191 /*
c0ff4b85 1192 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1193 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1194 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1195 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1196 */
c0ff4b85 1197 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1198 css_put(&curr->css);
4c4a2214
DR
1199 return ret;
1200}
1201
9b272977 1202int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1203{
9b272977
JW
1204 unsigned long inactive_ratio;
1205 int nid = zone_to_nid(zone);
1206 int zid = zone_idx(zone);
14797e23 1207 unsigned long inactive;
9b272977 1208 unsigned long active;
c772be93 1209 unsigned long gb;
14797e23 1210
9b272977
JW
1211 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1212 BIT(LRU_INACTIVE_ANON));
1213 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1214 BIT(LRU_ACTIVE_ANON));
14797e23 1215
c772be93
KM
1216 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1217 if (gb)
1218 inactive_ratio = int_sqrt(10 * gb);
1219 else
1220 inactive_ratio = 1;
1221
9b272977 1222 return inactive * inactive_ratio < active;
14797e23
KM
1223}
1224
9b272977 1225int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1226{
1227 unsigned long active;
1228 unsigned long inactive;
9b272977
JW
1229 int zid = zone_idx(zone);
1230 int nid = zone_to_nid(zone);
56e49d21 1231
9b272977
JW
1232 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1233 BIT(LRU_INACTIVE_FILE));
1234 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1235 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1236
1237 return (active > inactive);
1238}
1239
3e2f41f1
KM
1240struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1241 struct zone *zone)
1242{
13d7e3a2 1243 int nid = zone_to_nid(zone);
3e2f41f1
KM
1244 int zid = zone_idx(zone);
1245 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1246
1247 return &mz->reclaim_stat;
1248}
1249
1250struct zone_reclaim_stat *
1251mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1252{
1253 struct page_cgroup *pc;
1254 struct mem_cgroup_per_zone *mz;
1255
1256 if (mem_cgroup_disabled())
1257 return NULL;
1258
1259 pc = lookup_page_cgroup(page);
bd112db8
DN
1260 if (!PageCgroupUsed(pc))
1261 return NULL;
713735b4
JW
1262 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1263 smp_rmb();
97a6c37b 1264 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1265 return &mz->reclaim_stat;
1266}
1267
6d61ef40
BS
1268#define mem_cgroup_from_res_counter(counter, member) \
1269 container_of(counter, struct mem_cgroup, member)
1270
19942822 1271/**
9d11ea9f
JW
1272 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1273 * @mem: the memory cgroup
19942822 1274 *
9d11ea9f 1275 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1276 * pages.
19942822 1277 */
c0ff4b85 1278static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1279{
9d11ea9f
JW
1280 unsigned long long margin;
1281
c0ff4b85 1282 margin = res_counter_margin(&memcg->res);
9d11ea9f 1283 if (do_swap_account)
c0ff4b85 1284 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1285 return margin >> PAGE_SHIFT;
19942822
JW
1286}
1287
1f4c025b 1288int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1289{
1290 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1291
1292 /* root ? */
1293 if (cgrp->parent == NULL)
1294 return vm_swappiness;
1295
bf1ff263 1296 return memcg->swappiness;
a7885eb8
KM
1297}
1298
619d094b
KH
1299/*
1300 * memcg->moving_account is used for checking possibility that some thread is
1301 * calling move_account(). When a thread on CPU-A starts moving pages under
1302 * a memcg, other threads should check memcg->moving_account under
1303 * rcu_read_lock(), like this:
1304 *
1305 * CPU-A CPU-B
1306 * rcu_read_lock()
1307 * memcg->moving_account+1 if (memcg->mocing_account)
1308 * take heavy locks.
1309 * synchronize_rcu() update something.
1310 * rcu_read_unlock()
1311 * start move here.
1312 */
4331f7d3
KH
1313
1314/* for quick checking without looking up memcg */
1315atomic_t memcg_moving __read_mostly;
1316
c0ff4b85 1317static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1318{
4331f7d3 1319 atomic_inc(&memcg_moving);
619d094b 1320 atomic_inc(&memcg->moving_account);
32047e2a
KH
1321 synchronize_rcu();
1322}
1323
c0ff4b85 1324static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1325{
619d094b
KH
1326 /*
1327 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1328 * We check NULL in callee rather than caller.
1329 */
4331f7d3
KH
1330 if (memcg) {
1331 atomic_dec(&memcg_moving);
619d094b 1332 atomic_dec(&memcg->moving_account);
4331f7d3 1333 }
32047e2a 1334}
619d094b 1335
32047e2a
KH
1336/*
1337 * 2 routines for checking "mem" is under move_account() or not.
1338 *
13fd1dd9
AM
1339 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1340 * is used for avoiding races in accounting. If true,
32047e2a
KH
1341 * pc->mem_cgroup may be overwritten.
1342 *
1343 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1344 * under hierarchy of moving cgroups. This is for
1345 * waiting at hith-memory prressure caused by "move".
1346 */
1347
13fd1dd9 1348static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1349{
1350 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1351 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1352}
4b534334 1353
c0ff4b85 1354static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1355{
2bd9bb20
KH
1356 struct mem_cgroup *from;
1357 struct mem_cgroup *to;
4b534334 1358 bool ret = false;
2bd9bb20
KH
1359 /*
1360 * Unlike task_move routines, we access mc.to, mc.from not under
1361 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1362 */
1363 spin_lock(&mc.lock);
1364 from = mc.from;
1365 to = mc.to;
1366 if (!from)
1367 goto unlock;
3e92041d 1368
c0ff4b85
R
1369 ret = mem_cgroup_same_or_subtree(memcg, from)
1370 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1371unlock:
1372 spin_unlock(&mc.lock);
4b534334
KH
1373 return ret;
1374}
1375
c0ff4b85 1376static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1377{
1378 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1379 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1380 DEFINE_WAIT(wait);
1381 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1382 /* moving charge context might have finished. */
1383 if (mc.moving_task)
1384 schedule();
1385 finish_wait(&mc.waitq, &wait);
1386 return true;
1387 }
1388 }
1389 return false;
1390}
1391
312734c0
KH
1392/*
1393 * Take this lock when
1394 * - a code tries to modify page's memcg while it's USED.
1395 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1396 * see mem_cgroup_stolen(), too.
312734c0
KH
1397 */
1398static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1399 unsigned long *flags)
1400{
1401 spin_lock_irqsave(&memcg->move_lock, *flags);
1402}
1403
1404static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1405 unsigned long *flags)
1406{
1407 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1408}
1409
e222432b 1410/**
6a6135b6 1411 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1412 * @memcg: The memory cgroup that went over limit
1413 * @p: Task that is going to be killed
1414 *
1415 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1416 * enabled
1417 */
1418void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1419{
1420 struct cgroup *task_cgrp;
1421 struct cgroup *mem_cgrp;
1422 /*
1423 * Need a buffer in BSS, can't rely on allocations. The code relies
1424 * on the assumption that OOM is serialized for memory controller.
1425 * If this assumption is broken, revisit this code.
1426 */
1427 static char memcg_name[PATH_MAX];
1428 int ret;
1429
d31f56db 1430 if (!memcg || !p)
e222432b
BS
1431 return;
1432
e222432b
BS
1433 rcu_read_lock();
1434
1435 mem_cgrp = memcg->css.cgroup;
1436 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1437
1438 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1439 if (ret < 0) {
1440 /*
1441 * Unfortunately, we are unable to convert to a useful name
1442 * But we'll still print out the usage information
1443 */
1444 rcu_read_unlock();
1445 goto done;
1446 }
1447 rcu_read_unlock();
1448
1449 printk(KERN_INFO "Task in %s killed", memcg_name);
1450
1451 rcu_read_lock();
1452 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1453 if (ret < 0) {
1454 rcu_read_unlock();
1455 goto done;
1456 }
1457 rcu_read_unlock();
1458
1459 /*
1460 * Continues from above, so we don't need an KERN_ level
1461 */
1462 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1463done:
1464
1465 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1466 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1467 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1468 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1469 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1470 "failcnt %llu\n",
1471 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1472 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1473 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1474}
1475
81d39c20
KH
1476/*
1477 * This function returns the number of memcg under hierarchy tree. Returns
1478 * 1(self count) if no children.
1479 */
c0ff4b85 1480static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1481{
1482 int num = 0;
7d74b06f
KH
1483 struct mem_cgroup *iter;
1484
c0ff4b85 1485 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1486 num++;
81d39c20
KH
1487 return num;
1488}
1489
a63d83f4
DR
1490/*
1491 * Return the memory (and swap, if configured) limit for a memcg.
1492 */
1493u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1494{
1495 u64 limit;
1496 u64 memsw;
1497
f3e8eb70
JW
1498 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1499 limit += total_swap_pages << PAGE_SHIFT;
1500
a63d83f4
DR
1501 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1502 /*
1503 * If memsw is finite and limits the amount of swap space available
1504 * to this memcg, return that limit.
1505 */
1506 return min(limit, memsw);
1507}
1508
5660048c
JW
1509static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1510 gfp_t gfp_mask,
1511 unsigned long flags)
1512{
1513 unsigned long total = 0;
1514 bool noswap = false;
1515 int loop;
1516
1517 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1518 noswap = true;
1519 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1520 noswap = true;
1521
1522 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1523 if (loop)
1524 drain_all_stock_async(memcg);
1525 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1526 /*
1527 * Allow limit shrinkers, which are triggered directly
1528 * by userspace, to catch signals and stop reclaim
1529 * after minimal progress, regardless of the margin.
1530 */
1531 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1532 break;
1533 if (mem_cgroup_margin(memcg))
1534 break;
1535 /*
1536 * If nothing was reclaimed after two attempts, there
1537 * may be no reclaimable pages in this hierarchy.
1538 */
1539 if (loop && !total)
1540 break;
1541 }
1542 return total;
1543}
1544
4d0c066d
KH
1545/**
1546 * test_mem_cgroup_node_reclaimable
1547 * @mem: the target memcg
1548 * @nid: the node ID to be checked.
1549 * @noswap : specify true here if the user wants flle only information.
1550 *
1551 * This function returns whether the specified memcg contains any
1552 * reclaimable pages on a node. Returns true if there are any reclaimable
1553 * pages in the node.
1554 */
c0ff4b85 1555static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1556 int nid, bool noswap)
1557{
c0ff4b85 1558 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1559 return true;
1560 if (noswap || !total_swap_pages)
1561 return false;
c0ff4b85 1562 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1563 return true;
1564 return false;
1565
1566}
889976db
YH
1567#if MAX_NUMNODES > 1
1568
1569/*
1570 * Always updating the nodemask is not very good - even if we have an empty
1571 * list or the wrong list here, we can start from some node and traverse all
1572 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1573 *
1574 */
c0ff4b85 1575static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1576{
1577 int nid;
453a9bf3
KH
1578 /*
1579 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1580 * pagein/pageout changes since the last update.
1581 */
c0ff4b85 1582 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1583 return;
c0ff4b85 1584 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1585 return;
1586
889976db 1587 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1588 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1589
1590 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1591
c0ff4b85
R
1592 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1593 node_clear(nid, memcg->scan_nodes);
889976db 1594 }
453a9bf3 1595
c0ff4b85
R
1596 atomic_set(&memcg->numainfo_events, 0);
1597 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1598}
1599
1600/*
1601 * Selecting a node where we start reclaim from. Because what we need is just
1602 * reducing usage counter, start from anywhere is O,K. Considering
1603 * memory reclaim from current node, there are pros. and cons.
1604 *
1605 * Freeing memory from current node means freeing memory from a node which
1606 * we'll use or we've used. So, it may make LRU bad. And if several threads
1607 * hit limits, it will see a contention on a node. But freeing from remote
1608 * node means more costs for memory reclaim because of memory latency.
1609 *
1610 * Now, we use round-robin. Better algorithm is welcomed.
1611 */
c0ff4b85 1612int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1613{
1614 int node;
1615
c0ff4b85
R
1616 mem_cgroup_may_update_nodemask(memcg);
1617 node = memcg->last_scanned_node;
889976db 1618
c0ff4b85 1619 node = next_node(node, memcg->scan_nodes);
889976db 1620 if (node == MAX_NUMNODES)
c0ff4b85 1621 node = first_node(memcg->scan_nodes);
889976db
YH
1622 /*
1623 * We call this when we hit limit, not when pages are added to LRU.
1624 * No LRU may hold pages because all pages are UNEVICTABLE or
1625 * memcg is too small and all pages are not on LRU. In that case,
1626 * we use curret node.
1627 */
1628 if (unlikely(node == MAX_NUMNODES))
1629 node = numa_node_id();
1630
c0ff4b85 1631 memcg->last_scanned_node = node;
889976db
YH
1632 return node;
1633}
1634
4d0c066d
KH
1635/*
1636 * Check all nodes whether it contains reclaimable pages or not.
1637 * For quick scan, we make use of scan_nodes. This will allow us to skip
1638 * unused nodes. But scan_nodes is lazily updated and may not cotain
1639 * enough new information. We need to do double check.
1640 */
c0ff4b85 1641bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1642{
1643 int nid;
1644
1645 /*
1646 * quick check...making use of scan_node.
1647 * We can skip unused nodes.
1648 */
c0ff4b85
R
1649 if (!nodes_empty(memcg->scan_nodes)) {
1650 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1651 nid < MAX_NUMNODES;
c0ff4b85 1652 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1653
c0ff4b85 1654 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1655 return true;
1656 }
1657 }
1658 /*
1659 * Check rest of nodes.
1660 */
1661 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1662 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1663 continue;
c0ff4b85 1664 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1665 return true;
1666 }
1667 return false;
1668}
1669
889976db 1670#else
c0ff4b85 1671int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1672{
1673 return 0;
1674}
4d0c066d 1675
c0ff4b85 1676bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1677{
c0ff4b85 1678 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1679}
889976db
YH
1680#endif
1681
5660048c
JW
1682static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1683 struct zone *zone,
1684 gfp_t gfp_mask,
1685 unsigned long *total_scanned)
6d61ef40 1686{
9f3a0d09 1687 struct mem_cgroup *victim = NULL;
5660048c 1688 int total = 0;
04046e1a 1689 int loop = 0;
9d11ea9f 1690 unsigned long excess;
185efc0f 1691 unsigned long nr_scanned;
527a5ec9
JW
1692 struct mem_cgroup_reclaim_cookie reclaim = {
1693 .zone = zone,
1694 .priority = 0,
1695 };
9d11ea9f 1696
c0ff4b85 1697 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1698
4e416953 1699 while (1) {
527a5ec9 1700 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1701 if (!victim) {
04046e1a 1702 loop++;
4e416953
BS
1703 if (loop >= 2) {
1704 /*
1705 * If we have not been able to reclaim
1706 * anything, it might because there are
1707 * no reclaimable pages under this hierarchy
1708 */
5660048c 1709 if (!total)
4e416953 1710 break;
4e416953 1711 /*
25985edc 1712 * We want to do more targeted reclaim.
4e416953
BS
1713 * excess >> 2 is not to excessive so as to
1714 * reclaim too much, nor too less that we keep
1715 * coming back to reclaim from this cgroup
1716 */
1717 if (total >= (excess >> 2) ||
9f3a0d09 1718 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1719 break;
4e416953 1720 }
9f3a0d09 1721 continue;
4e416953 1722 }
5660048c 1723 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1724 continue;
5660048c
JW
1725 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1726 zone, &nr_scanned);
1727 *total_scanned += nr_scanned;
1728 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1729 break;
6d61ef40 1730 }
9f3a0d09 1731 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1732 return total;
6d61ef40
BS
1733}
1734
867578cb
KH
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1af8efe9 1738 * Has to be called with memcg_oom_lock
867578cb 1739 */
c0ff4b85 1740static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1741{
79dfdacc 1742 struct mem_cgroup *iter, *failed = NULL;
a636b327 1743
9f3a0d09 1744 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1745 if (iter->oom_lock) {
79dfdacc
MH
1746 /*
1747 * this subtree of our hierarchy is already locked
1748 * so we cannot give a lock.
1749 */
79dfdacc 1750 failed = iter;
9f3a0d09
JW
1751 mem_cgroup_iter_break(memcg, iter);
1752 break;
23751be0
JW
1753 } else
1754 iter->oom_lock = true;
7d74b06f 1755 }
867578cb 1756
79dfdacc 1757 if (!failed)
23751be0 1758 return true;
79dfdacc
MH
1759
1760 /*
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1763 */
9f3a0d09 1764 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1765 if (iter == failed) {
9f3a0d09
JW
1766 mem_cgroup_iter_break(memcg, iter);
1767 break;
79dfdacc
MH
1768 }
1769 iter->oom_lock = false;
1770 }
23751be0 1771 return false;
a636b327 1772}
0b7f569e 1773
79dfdacc 1774/*
1af8efe9 1775 * Has to be called with memcg_oom_lock
79dfdacc 1776 */
c0ff4b85 1777static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1778{
7d74b06f
KH
1779 struct mem_cgroup *iter;
1780
c0ff4b85 1781 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1782 iter->oom_lock = false;
1783 return 0;
1784}
1785
c0ff4b85 1786static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1787{
1788 struct mem_cgroup *iter;
1789
c0ff4b85 1790 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1791 atomic_inc(&iter->under_oom);
1792}
1793
c0ff4b85 1794static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1795{
1796 struct mem_cgroup *iter;
1797
867578cb
KH
1798 /*
1799 * When a new child is created while the hierarchy is under oom,
1800 * mem_cgroup_oom_lock() may not be called. We have to use
1801 * atomic_add_unless() here.
1802 */
c0ff4b85 1803 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1804 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1805}
1806
1af8efe9 1807static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1808static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1809
dc98df5a 1810struct oom_wait_info {
d79154bb 1811 struct mem_cgroup *memcg;
dc98df5a
KH
1812 wait_queue_t wait;
1813};
1814
1815static int memcg_oom_wake_function(wait_queue_t *wait,
1816 unsigned mode, int sync, void *arg)
1817{
d79154bb
HD
1818 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1819 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1820 struct oom_wait_info *oom_wait_info;
1821
1822 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1823 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1824
dc98df5a 1825 /*
d79154bb 1826 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1827 * Then we can use css_is_ancestor without taking care of RCU.
1828 */
c0ff4b85
R
1829 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1830 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1831 return 0;
dc98df5a
KH
1832 return autoremove_wake_function(wait, mode, sync, arg);
1833}
1834
c0ff4b85 1835static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1836{
c0ff4b85
R
1837 /* for filtering, pass "memcg" as argument. */
1838 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1839}
1840
c0ff4b85 1841static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1842{
c0ff4b85
R
1843 if (memcg && atomic_read(&memcg->under_oom))
1844 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1845}
1846
867578cb
KH
1847/*
1848 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1849 */
e845e199 1850bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1851{
dc98df5a 1852 struct oom_wait_info owait;
3c11ecf4 1853 bool locked, need_to_kill;
867578cb 1854
d79154bb 1855 owait.memcg = memcg;
dc98df5a
KH
1856 owait.wait.flags = 0;
1857 owait.wait.func = memcg_oom_wake_function;
1858 owait.wait.private = current;
1859 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1860 need_to_kill = true;
c0ff4b85 1861 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1862
c0ff4b85 1863 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1864 spin_lock(&memcg_oom_lock);
c0ff4b85 1865 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1866 /*
1867 * Even if signal_pending(), we can't quit charge() loop without
1868 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1869 * under OOM is always welcomed, use TASK_KILLABLE here.
1870 */
3c11ecf4 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1872 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1873 need_to_kill = false;
1874 if (locked)
c0ff4b85 1875 mem_cgroup_oom_notify(memcg);
1af8efe9 1876 spin_unlock(&memcg_oom_lock);
867578cb 1877
3c11ecf4
KH
1878 if (need_to_kill) {
1879 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1880 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1881 } else {
867578cb 1882 schedule();
dc98df5a 1883 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1884 }
1af8efe9 1885 spin_lock(&memcg_oom_lock);
79dfdacc 1886 if (locked)
c0ff4b85
R
1887 mem_cgroup_oom_unlock(memcg);
1888 memcg_wakeup_oom(memcg);
1af8efe9 1889 spin_unlock(&memcg_oom_lock);
867578cb 1890
c0ff4b85 1891 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1892
867578cb
KH
1893 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1894 return false;
1895 /* Give chance to dying process */
715a5ee8 1896 schedule_timeout_uninterruptible(1);
867578cb 1897 return true;
0b7f569e
KH
1898}
1899
d69b042f
BS
1900/*
1901 * Currently used to update mapped file statistics, but the routine can be
1902 * generalized to update other statistics as well.
32047e2a
KH
1903 *
1904 * Notes: Race condition
1905 *
1906 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1907 * it tends to be costly. But considering some conditions, we doesn't need
1908 * to do so _always_.
1909 *
1910 * Considering "charge", lock_page_cgroup() is not required because all
1911 * file-stat operations happen after a page is attached to radix-tree. There
1912 * are no race with "charge".
1913 *
1914 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1915 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1916 * if there are race with "uncharge". Statistics itself is properly handled
1917 * by flags.
1918 *
1919 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1920 * small, we check mm->moving_account and detect there are possibility of race
1921 * If there is, we take a lock.
d69b042f 1922 */
26174efd 1923
89c06bd5
KH
1924void __mem_cgroup_begin_update_page_stat(struct page *page,
1925 bool *locked, unsigned long *flags)
1926{
1927 struct mem_cgroup *memcg;
1928 struct page_cgroup *pc;
1929
1930 pc = lookup_page_cgroup(page);
1931again:
1932 memcg = pc->mem_cgroup;
1933 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1934 return;
1935 /*
1936 * If this memory cgroup is not under account moving, we don't
1937 * need to take move_lock_page_cgroup(). Because we already hold
1938 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1939 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1940 */
13fd1dd9 1941 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1942 return;
1943
1944 move_lock_mem_cgroup(memcg, flags);
1945 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1946 move_unlock_mem_cgroup(memcg, flags);
1947 goto again;
1948 }
1949 *locked = true;
1950}
1951
1952void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1953{
1954 struct page_cgroup *pc = lookup_page_cgroup(page);
1955
1956 /*
1957 * It's guaranteed that pc->mem_cgroup never changes while
1958 * lock is held because a routine modifies pc->mem_cgroup
1959 * should take move_lock_page_cgroup().
1960 */
1961 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1962}
1963
2a7106f2
GT
1964void mem_cgroup_update_page_stat(struct page *page,
1965 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1966{
c0ff4b85 1967 struct mem_cgroup *memcg;
32047e2a 1968 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1969 unsigned long uninitialized_var(flags);
d69b042f 1970
cfa44946 1971 if (mem_cgroup_disabled())
d69b042f 1972 return;
89c06bd5 1973
c0ff4b85
R
1974 memcg = pc->mem_cgroup;
1975 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1976 return;
26174efd 1977
26174efd 1978 switch (idx) {
2a7106f2 1979 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1980 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1981 break;
1982 default:
1983 BUG();
8725d541 1984 }
d69b042f 1985
c0ff4b85 1986 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1987}
26174efd 1988
cdec2e42
KH
1989/*
1990 * size of first charge trial. "32" comes from vmscan.c's magic value.
1991 * TODO: maybe necessary to use big numbers in big irons.
1992 */
7ec99d62 1993#define CHARGE_BATCH 32U
cdec2e42
KH
1994struct memcg_stock_pcp {
1995 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1996 unsigned int nr_pages;
cdec2e42 1997 struct work_struct work;
26fe6168
KH
1998 unsigned long flags;
1999#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2000};
2001static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2002static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2003
2004/*
11c9ea4e 2005 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2006 * from local stock and true is returned. If the stock is 0 or charges from a
2007 * cgroup which is not current target, returns false. This stock will be
2008 * refilled.
2009 */
c0ff4b85 2010static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2011{
2012 struct memcg_stock_pcp *stock;
2013 bool ret = true;
2014
2015 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2016 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2017 stock->nr_pages--;
cdec2e42
KH
2018 else /* need to call res_counter_charge */
2019 ret = false;
2020 put_cpu_var(memcg_stock);
2021 return ret;
2022}
2023
2024/*
2025 * Returns stocks cached in percpu to res_counter and reset cached information.
2026 */
2027static void drain_stock(struct memcg_stock_pcp *stock)
2028{
2029 struct mem_cgroup *old = stock->cached;
2030
11c9ea4e
JW
2031 if (stock->nr_pages) {
2032 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2033
2034 res_counter_uncharge(&old->res, bytes);
cdec2e42 2035 if (do_swap_account)
11c9ea4e
JW
2036 res_counter_uncharge(&old->memsw, bytes);
2037 stock->nr_pages = 0;
cdec2e42
KH
2038 }
2039 stock->cached = NULL;
cdec2e42
KH
2040}
2041
2042/*
2043 * This must be called under preempt disabled or must be called by
2044 * a thread which is pinned to local cpu.
2045 */
2046static void drain_local_stock(struct work_struct *dummy)
2047{
2048 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2049 drain_stock(stock);
26fe6168 2050 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2051}
2052
2053/*
2054 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2055 * This will be consumed by consume_stock() function, later.
cdec2e42 2056 */
c0ff4b85 2057static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2058{
2059 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2060
c0ff4b85 2061 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2062 drain_stock(stock);
c0ff4b85 2063 stock->cached = memcg;
cdec2e42 2064 }
11c9ea4e 2065 stock->nr_pages += nr_pages;
cdec2e42
KH
2066 put_cpu_var(memcg_stock);
2067}
2068
2069/*
c0ff4b85 2070 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2071 * of the hierarchy under it. sync flag says whether we should block
2072 * until the work is done.
cdec2e42 2073 */
c0ff4b85 2074static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2075{
26fe6168 2076 int cpu, curcpu;
d38144b7 2077
cdec2e42 2078 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2079 get_online_cpus();
5af12d0e 2080 curcpu = get_cpu();
cdec2e42
KH
2081 for_each_online_cpu(cpu) {
2082 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2083 struct mem_cgroup *memcg;
26fe6168 2084
c0ff4b85
R
2085 memcg = stock->cached;
2086 if (!memcg || !stock->nr_pages)
26fe6168 2087 continue;
c0ff4b85 2088 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2089 continue;
d1a05b69
MH
2090 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2091 if (cpu == curcpu)
2092 drain_local_stock(&stock->work);
2093 else
2094 schedule_work_on(cpu, &stock->work);
2095 }
cdec2e42 2096 }
5af12d0e 2097 put_cpu();
d38144b7
MH
2098
2099 if (!sync)
2100 goto out;
2101
2102 for_each_online_cpu(cpu) {
2103 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2104 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2105 flush_work(&stock->work);
2106 }
2107out:
cdec2e42 2108 put_online_cpus();
d38144b7
MH
2109}
2110
2111/*
2112 * Tries to drain stocked charges in other cpus. This function is asynchronous
2113 * and just put a work per cpu for draining localy on each cpu. Caller can
2114 * expects some charges will be back to res_counter later but cannot wait for
2115 * it.
2116 */
c0ff4b85 2117static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2118{
9f50fad6
MH
2119 /*
2120 * If someone calls draining, avoid adding more kworker runs.
2121 */
2122 if (!mutex_trylock(&percpu_charge_mutex))
2123 return;
c0ff4b85 2124 drain_all_stock(root_memcg, false);
9f50fad6 2125 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2126}
2127
2128/* This is a synchronous drain interface. */
c0ff4b85 2129static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2130{
2131 /* called when force_empty is called */
9f50fad6 2132 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2133 drain_all_stock(root_memcg, true);
9f50fad6 2134 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2135}
2136
711d3d2c
KH
2137/*
2138 * This function drains percpu counter value from DEAD cpu and
2139 * move it to local cpu. Note that this function can be preempted.
2140 */
c0ff4b85 2141static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2142{
2143 int i;
2144
c0ff4b85 2145 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2146 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2147 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2148
c0ff4b85
R
2149 per_cpu(memcg->stat->count[i], cpu) = 0;
2150 memcg->nocpu_base.count[i] += x;
711d3d2c 2151 }
e9f8974f 2152 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2153 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2154
c0ff4b85
R
2155 per_cpu(memcg->stat->events[i], cpu) = 0;
2156 memcg->nocpu_base.events[i] += x;
e9f8974f 2157 }
c0ff4b85 2158 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2159}
2160
2161static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2162 unsigned long action,
2163 void *hcpu)
2164{
2165 int cpu = (unsigned long)hcpu;
2166 struct memcg_stock_pcp *stock;
711d3d2c 2167 struct mem_cgroup *iter;
cdec2e42 2168
619d094b 2169 if (action == CPU_ONLINE)
1489ebad 2170 return NOTIFY_OK;
1489ebad 2171
d833049b 2172 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2173 return NOTIFY_OK;
711d3d2c 2174
9f3a0d09 2175 for_each_mem_cgroup(iter)
711d3d2c
KH
2176 mem_cgroup_drain_pcp_counter(iter, cpu);
2177
cdec2e42
KH
2178 stock = &per_cpu(memcg_stock, cpu);
2179 drain_stock(stock);
2180 return NOTIFY_OK;
2181}
2182
4b534334
KH
2183
2184/* See __mem_cgroup_try_charge() for details */
2185enum {
2186 CHARGE_OK, /* success */
2187 CHARGE_RETRY, /* need to retry but retry is not bad */
2188 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2189 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2190 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2191};
2192
c0ff4b85 2193static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2194 unsigned int nr_pages, bool oom_check)
4b534334 2195{
7ec99d62 2196 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2197 struct mem_cgroup *mem_over_limit;
2198 struct res_counter *fail_res;
2199 unsigned long flags = 0;
2200 int ret;
2201
c0ff4b85 2202 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2203
2204 if (likely(!ret)) {
2205 if (!do_swap_account)
2206 return CHARGE_OK;
c0ff4b85 2207 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2208 if (likely(!ret))
2209 return CHARGE_OK;
2210
c0ff4b85 2211 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2213 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2214 } else
2215 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2216 /*
7ec99d62
JW
2217 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2218 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2219 *
2220 * Never reclaim on behalf of optional batching, retry with a
2221 * single page instead.
2222 */
7ec99d62 2223 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2224 return CHARGE_RETRY;
2225
2226 if (!(gfp_mask & __GFP_WAIT))
2227 return CHARGE_WOULDBLOCK;
2228
5660048c 2229 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2230 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2231 return CHARGE_RETRY;
4b534334 2232 /*
19942822
JW
2233 * Even though the limit is exceeded at this point, reclaim
2234 * may have been able to free some pages. Retry the charge
2235 * before killing the task.
2236 *
2237 * Only for regular pages, though: huge pages are rather
2238 * unlikely to succeed so close to the limit, and we fall back
2239 * to regular pages anyway in case of failure.
4b534334 2240 */
7ec99d62 2241 if (nr_pages == 1 && ret)
4b534334
KH
2242 return CHARGE_RETRY;
2243
2244 /*
2245 * At task move, charge accounts can be doubly counted. So, it's
2246 * better to wait until the end of task_move if something is going on.
2247 */
2248 if (mem_cgroup_wait_acct_move(mem_over_limit))
2249 return CHARGE_RETRY;
2250
2251 /* If we don't need to call oom-killer at el, return immediately */
2252 if (!oom_check)
2253 return CHARGE_NOMEM;
2254 /* check OOM */
e845e199 2255 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2256 return CHARGE_OOM_DIE;
2257
2258 return CHARGE_RETRY;
2259}
2260
f817ed48 2261/*
38c5d72f
KH
2262 * __mem_cgroup_try_charge() does
2263 * 1. detect memcg to be charged against from passed *mm and *ptr,
2264 * 2. update res_counter
2265 * 3. call memory reclaim if necessary.
2266 *
2267 * In some special case, if the task is fatal, fatal_signal_pending() or
2268 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2269 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2270 * as possible without any hazards. 2: all pages should have a valid
2271 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2272 * pointer, that is treated as a charge to root_mem_cgroup.
2273 *
2274 * So __mem_cgroup_try_charge() will return
2275 * 0 ... on success, filling *ptr with a valid memcg pointer.
2276 * -ENOMEM ... charge failure because of resource limits.
2277 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2278 *
2279 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2280 * the oom-killer can be invoked.
8a9f3ccd 2281 */
f817ed48 2282static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2283 gfp_t gfp_mask,
7ec99d62 2284 unsigned int nr_pages,
c0ff4b85 2285 struct mem_cgroup **ptr,
7ec99d62 2286 bool oom)
8a9f3ccd 2287{
7ec99d62 2288 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2289 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2290 struct mem_cgroup *memcg = NULL;
4b534334 2291 int ret;
a636b327 2292
867578cb
KH
2293 /*
2294 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2295 * in system level. So, allow to go ahead dying process in addition to
2296 * MEMDIE process.
2297 */
2298 if (unlikely(test_thread_flag(TIF_MEMDIE)
2299 || fatal_signal_pending(current)))
2300 goto bypass;
a636b327 2301
8a9f3ccd 2302 /*
3be91277
HD
2303 * We always charge the cgroup the mm_struct belongs to.
2304 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2305 * thread group leader migrates. It's possible that mm is not
2306 * set, if so charge the init_mm (happens for pagecache usage).
2307 */
c0ff4b85 2308 if (!*ptr && !mm)
38c5d72f 2309 *ptr = root_mem_cgroup;
f75ca962 2310again:
c0ff4b85
R
2311 if (*ptr) { /* css should be a valid one */
2312 memcg = *ptr;
2313 VM_BUG_ON(css_is_removed(&memcg->css));
2314 if (mem_cgroup_is_root(memcg))
f75ca962 2315 goto done;
c0ff4b85 2316 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2317 goto done;
c0ff4b85 2318 css_get(&memcg->css);
4b534334 2319 } else {
f75ca962 2320 struct task_struct *p;
54595fe2 2321
f75ca962
KH
2322 rcu_read_lock();
2323 p = rcu_dereference(mm->owner);
f75ca962 2324 /*
ebb76ce1 2325 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2326 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2327 * race with swapoff. Then, we have small risk of mis-accouning.
2328 * But such kind of mis-account by race always happens because
2329 * we don't have cgroup_mutex(). It's overkill and we allo that
2330 * small race, here.
2331 * (*) swapoff at el will charge against mm-struct not against
2332 * task-struct. So, mm->owner can be NULL.
f75ca962 2333 */
c0ff4b85 2334 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2335 if (!memcg)
2336 memcg = root_mem_cgroup;
2337 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2338 rcu_read_unlock();
2339 goto done;
2340 }
c0ff4b85 2341 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2342 /*
2343 * It seems dagerous to access memcg without css_get().
2344 * But considering how consume_stok works, it's not
2345 * necessary. If consume_stock success, some charges
2346 * from this memcg are cached on this cpu. So, we
2347 * don't need to call css_get()/css_tryget() before
2348 * calling consume_stock().
2349 */
2350 rcu_read_unlock();
2351 goto done;
2352 }
2353 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2354 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2355 rcu_read_unlock();
2356 goto again;
2357 }
2358 rcu_read_unlock();
2359 }
8a9f3ccd 2360
4b534334
KH
2361 do {
2362 bool oom_check;
7a81b88c 2363
4b534334 2364 /* If killed, bypass charge */
f75ca962 2365 if (fatal_signal_pending(current)) {
c0ff4b85 2366 css_put(&memcg->css);
4b534334 2367 goto bypass;
f75ca962 2368 }
6d61ef40 2369
4b534334
KH
2370 oom_check = false;
2371 if (oom && !nr_oom_retries) {
2372 oom_check = true;
2373 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2374 }
66e1707b 2375
c0ff4b85 2376 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2377 switch (ret) {
2378 case CHARGE_OK:
2379 break;
2380 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2381 batch = nr_pages;
c0ff4b85
R
2382 css_put(&memcg->css);
2383 memcg = NULL;
f75ca962 2384 goto again;
4b534334 2385 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2386 css_put(&memcg->css);
4b534334
KH
2387 goto nomem;
2388 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2389 if (!oom) {
c0ff4b85 2390 css_put(&memcg->css);
867578cb 2391 goto nomem;
f75ca962 2392 }
4b534334
KH
2393 /* If oom, we never return -ENOMEM */
2394 nr_oom_retries--;
2395 break;
2396 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2397 css_put(&memcg->css);
867578cb 2398 goto bypass;
66e1707b 2399 }
4b534334
KH
2400 } while (ret != CHARGE_OK);
2401
7ec99d62 2402 if (batch > nr_pages)
c0ff4b85
R
2403 refill_stock(memcg, batch - nr_pages);
2404 css_put(&memcg->css);
0c3e73e8 2405done:
c0ff4b85 2406 *ptr = memcg;
7a81b88c
KH
2407 return 0;
2408nomem:
c0ff4b85 2409 *ptr = NULL;
7a81b88c 2410 return -ENOMEM;
867578cb 2411bypass:
38c5d72f
KH
2412 *ptr = root_mem_cgroup;
2413 return -EINTR;
7a81b88c 2414}
8a9f3ccd 2415
a3032a2c
DN
2416/*
2417 * Somemtimes we have to undo a charge we got by try_charge().
2418 * This function is for that and do uncharge, put css's refcnt.
2419 * gotten by try_charge().
2420 */
c0ff4b85 2421static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2422 unsigned int nr_pages)
a3032a2c 2423{
c0ff4b85 2424 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2425 unsigned long bytes = nr_pages * PAGE_SIZE;
2426
c0ff4b85 2427 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2428 if (do_swap_account)
c0ff4b85 2429 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2430 }
854ffa8d
DN
2431}
2432
a3b2d692
KH
2433/*
2434 * A helper function to get mem_cgroup from ID. must be called under
2435 * rcu_read_lock(). The caller must check css_is_removed() or some if
2436 * it's concern. (dropping refcnt from swap can be called against removed
2437 * memcg.)
2438 */
2439static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2440{
2441 struct cgroup_subsys_state *css;
2442
2443 /* ID 0 is unused ID */
2444 if (!id)
2445 return NULL;
2446 css = css_lookup(&mem_cgroup_subsys, id);
2447 if (!css)
2448 return NULL;
2449 return container_of(css, struct mem_cgroup, css);
2450}
2451
e42d9d5d 2452struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2453{
c0ff4b85 2454 struct mem_cgroup *memcg = NULL;
3c776e64 2455 struct page_cgroup *pc;
a3b2d692 2456 unsigned short id;
b5a84319
KH
2457 swp_entry_t ent;
2458
3c776e64
DN
2459 VM_BUG_ON(!PageLocked(page));
2460
3c776e64 2461 pc = lookup_page_cgroup(page);
c0bd3f63 2462 lock_page_cgroup(pc);
a3b2d692 2463 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2464 memcg = pc->mem_cgroup;
2465 if (memcg && !css_tryget(&memcg->css))
2466 memcg = NULL;
e42d9d5d 2467 } else if (PageSwapCache(page)) {
3c776e64 2468 ent.val = page_private(page);
9fb4b7cc 2469 id = lookup_swap_cgroup_id(ent);
a3b2d692 2470 rcu_read_lock();
c0ff4b85
R
2471 memcg = mem_cgroup_lookup(id);
2472 if (memcg && !css_tryget(&memcg->css))
2473 memcg = NULL;
a3b2d692 2474 rcu_read_unlock();
3c776e64 2475 }
c0bd3f63 2476 unlock_page_cgroup(pc);
c0ff4b85 2477 return memcg;
b5a84319
KH
2478}
2479
c0ff4b85 2480static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2481 struct page *page,
7ec99d62 2482 unsigned int nr_pages,
9ce70c02
HD
2483 enum charge_type ctype,
2484 bool lrucare)
7a81b88c 2485{
ce587e65 2486 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2487 struct zone *uninitialized_var(zone);
2488 bool was_on_lru = false;
b2402857 2489 bool anon;
9ce70c02 2490
ca3e0214
KH
2491 lock_page_cgroup(pc);
2492 if (unlikely(PageCgroupUsed(pc))) {
2493 unlock_page_cgroup(pc);
c0ff4b85 2494 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2495 return;
2496 }
2497 /*
2498 * we don't need page_cgroup_lock about tail pages, becase they are not
2499 * accessed by any other context at this point.
2500 */
9ce70c02
HD
2501
2502 /*
2503 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2504 * may already be on some other mem_cgroup's LRU. Take care of it.
2505 */
2506 if (lrucare) {
2507 zone = page_zone(page);
2508 spin_lock_irq(&zone->lru_lock);
2509 if (PageLRU(page)) {
2510 ClearPageLRU(page);
2511 del_page_from_lru_list(zone, page, page_lru(page));
2512 was_on_lru = true;
2513 }
2514 }
2515
c0ff4b85 2516 pc->mem_cgroup = memcg;
261fb61a
KH
2517 /*
2518 * We access a page_cgroup asynchronously without lock_page_cgroup().
2519 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2520 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2521 * before USED bit, we need memory barrier here.
2522 * See mem_cgroup_add_lru_list(), etc.
2523 */
08e552c6 2524 smp_wmb();
b2402857 2525 SetPageCgroupUsed(pc);
3be91277 2526
9ce70c02
HD
2527 if (lrucare) {
2528 if (was_on_lru) {
2529 VM_BUG_ON(PageLRU(page));
2530 SetPageLRU(page);
2531 add_page_to_lru_list(zone, page, page_lru(page));
2532 }
2533 spin_unlock_irq(&zone->lru_lock);
2534 }
2535
b2402857
KH
2536 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2537 anon = true;
2538 else
2539 anon = false;
2540
2541 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2542 unlock_page_cgroup(pc);
9ce70c02 2543
430e4863
KH
2544 /*
2545 * "charge_statistics" updated event counter. Then, check it.
2546 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2547 * if they exceeds softlimit.
2548 */
c0ff4b85 2549 memcg_check_events(memcg, page);
7a81b88c 2550}
66e1707b 2551
ca3e0214
KH
2552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2553
312734c0 2554#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2555/*
2556 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2557 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2558 * charge/uncharge will be never happen and move_account() is done under
2559 * compound_lock(), so we don't have to take care of races.
ca3e0214 2560 */
e94c8a9c 2561void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2562{
2563 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2564 struct page_cgroup *pc;
2565 int i;
ca3e0214 2566
3d37c4a9
KH
2567 if (mem_cgroup_disabled())
2568 return;
e94c8a9c
KH
2569 for (i = 1; i < HPAGE_PMD_NR; i++) {
2570 pc = head_pc + i;
2571 pc->mem_cgroup = head_pc->mem_cgroup;
2572 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2573 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2574 }
ca3e0214 2575}
12d27107 2576#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2577
f817ed48 2578/**
de3638d9 2579 * mem_cgroup_move_account - move account of the page
5564e88b 2580 * @page: the page
7ec99d62 2581 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2582 * @pc: page_cgroup of the page.
2583 * @from: mem_cgroup which the page is moved from.
2584 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2585 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2586 *
2587 * The caller must confirm following.
08e552c6 2588 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2589 * - compound_lock is held when nr_pages > 1
f817ed48 2590 *
854ffa8d 2591 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2592 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2593 * true, this function does "uncharge" from old cgroup, but it doesn't if
2594 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2595 */
7ec99d62
JW
2596static int mem_cgroup_move_account(struct page *page,
2597 unsigned int nr_pages,
2598 struct page_cgroup *pc,
2599 struct mem_cgroup *from,
2600 struct mem_cgroup *to,
2601 bool uncharge)
f817ed48 2602{
de3638d9
JW
2603 unsigned long flags;
2604 int ret;
b2402857 2605 bool anon = PageAnon(page);
987eba66 2606
f817ed48 2607 VM_BUG_ON(from == to);
5564e88b 2608 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2609 /*
2610 * The page is isolated from LRU. So, collapse function
2611 * will not handle this page. But page splitting can happen.
2612 * Do this check under compound_page_lock(). The caller should
2613 * hold it.
2614 */
2615 ret = -EBUSY;
7ec99d62 2616 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2617 goto out;
2618
2619 lock_page_cgroup(pc);
2620
2621 ret = -EINVAL;
2622 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623 goto unlock;
2624
312734c0 2625 move_lock_mem_cgroup(from, &flags);
f817ed48 2626
2ff76f11 2627 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2628 /* Update mapped_file data for mem_cgroup */
2629 preempt_disable();
2630 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632 preempt_enable();
d69b042f 2633 }
b2402857 2634 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2635 if (uncharge)
2636 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2637 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2638
854ffa8d 2639 /* caller should have done css_get */
08e552c6 2640 pc->mem_cgroup = to;
b2402857 2641 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2642 /*
2643 * We charges against "to" which may not have any tasks. Then, "to"
2644 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2645 * this function is just force_empty() and move charge, so it's
25985edc 2646 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2647 * status here.
88703267 2648 */
312734c0 2649 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2650 ret = 0;
2651unlock:
57f9fd7d 2652 unlock_page_cgroup(pc);
d2265e6f
KH
2653 /*
2654 * check events
2655 */
5564e88b
JW
2656 memcg_check_events(to, page);
2657 memcg_check_events(from, page);
de3638d9 2658out:
f817ed48
KH
2659 return ret;
2660}
2661
2662/*
2663 * move charges to its parent.
2664 */
2665
5564e88b
JW
2666static int mem_cgroup_move_parent(struct page *page,
2667 struct page_cgroup *pc,
f817ed48
KH
2668 struct mem_cgroup *child,
2669 gfp_t gfp_mask)
2670{
2671 struct cgroup *cg = child->css.cgroup;
2672 struct cgroup *pcg = cg->parent;
2673 struct mem_cgroup *parent;
7ec99d62 2674 unsigned int nr_pages;
4be4489f 2675 unsigned long uninitialized_var(flags);
f817ed48
KH
2676 int ret;
2677
2678 /* Is ROOT ? */
2679 if (!pcg)
2680 return -EINVAL;
2681
57f9fd7d
DN
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
52dbb905 2687
7ec99d62 2688 nr_pages = hpage_nr_pages(page);
08e552c6 2689
f817ed48 2690 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2691 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2692 if (ret)
57f9fd7d 2693 goto put_back;
f817ed48 2694
7ec99d62 2695 if (nr_pages > 1)
987eba66
KH
2696 flags = compound_lock_irqsave(page);
2697
7ec99d62 2698 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2699 if (ret)
7ec99d62 2700 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2701
7ec99d62 2702 if (nr_pages > 1)
987eba66 2703 compound_unlock_irqrestore(page, flags);
8dba474f 2704put_back:
08e552c6 2705 putback_lru_page(page);
57f9fd7d 2706put:
40d58138 2707 put_page(page);
57f9fd7d 2708out:
f817ed48
KH
2709 return ret;
2710}
2711
7a81b88c
KH
2712/*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2719 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2720{
c0ff4b85 2721 struct mem_cgroup *memcg = NULL;
7ec99d62 2722 unsigned int nr_pages = 1;
8493ae43 2723 bool oom = true;
7a81b88c 2724 int ret;
ec168510 2725
37c2ac78 2726 if (PageTransHuge(page)) {
7ec99d62 2727 nr_pages <<= compound_order(page);
37c2ac78 2728 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2729 /*
2730 * Never OOM-kill a process for a huge page. The
2731 * fault handler will fall back to regular pages.
2732 */
2733 oom = false;
37c2ac78 2734 }
7a81b88c 2735
c0ff4b85 2736 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2737 if (ret == -ENOMEM)
7a81b88c 2738 return ret;
ce587e65 2739 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2740 return 0;
8a9f3ccd
BS
2741}
2742
7a81b88c
KH
2743int mem_cgroup_newpage_charge(struct page *page,
2744 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2745{
f8d66542 2746 if (mem_cgroup_disabled())
cede86ac 2747 return 0;
7a0524cf
JW
2748 VM_BUG_ON(page_mapped(page));
2749 VM_BUG_ON(page->mapping && !PageAnon(page));
2750 VM_BUG_ON(!mm);
217bc319 2751 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2752 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2753}
2754
83aae4c7
DN
2755static void
2756__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2757 enum charge_type ctype);
2758
e1a1cd59
BS
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
8697d331 2761{
c0ff4b85 2762 struct mem_cgroup *memcg = NULL;
dc67d504 2763 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2764 int ret;
2765
f8d66542 2766 if (mem_cgroup_disabled())
cede86ac 2767 return 0;
52d4b9ac
KH
2768 if (PageCompound(page))
2769 return 0;
accf163e 2770
73045c47 2771 if (unlikely(!mm))
8697d331 2772 mm = &init_mm;
dc67d504
KH
2773 if (!page_is_file_cache(page))
2774 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2775
38c5d72f 2776 if (!PageSwapCache(page))
dc67d504 2777 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2778 else { /* page is swapcache/shmem */
c0ff4b85 2779 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2780 if (!ret)
dc67d504
KH
2781 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2782 }
b5a84319 2783 return ret;
e8589cc1
KH
2784}
2785
54595fe2
KH
2786/*
2787 * While swap-in, try_charge -> commit or cancel, the page is locked.
2788 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2789 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2790 * "commit()" or removed by "cancel()"
2791 */
8c7c6e34
KH
2792int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2793 struct page *page,
72835c86 2794 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2795{
c0ff4b85 2796 struct mem_cgroup *memcg;
54595fe2 2797 int ret;
8c7c6e34 2798
72835c86 2799 *memcgp = NULL;
56039efa 2800
f8d66542 2801 if (mem_cgroup_disabled())
8c7c6e34
KH
2802 return 0;
2803
2804 if (!do_swap_account)
2805 goto charge_cur_mm;
8c7c6e34
KH
2806 /*
2807 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2808 * the pte, and even removed page from swap cache: in those cases
2809 * do_swap_page()'s pte_same() test will fail; but there's also a
2810 * KSM case which does need to charge the page.
8c7c6e34
KH
2811 */
2812 if (!PageSwapCache(page))
407f9c8b 2813 goto charge_cur_mm;
c0ff4b85
R
2814 memcg = try_get_mem_cgroup_from_page(page);
2815 if (!memcg)
54595fe2 2816 goto charge_cur_mm;
72835c86
JW
2817 *memcgp = memcg;
2818 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2819 css_put(&memcg->css);
38c5d72f
KH
2820 if (ret == -EINTR)
2821 ret = 0;
54595fe2 2822 return ret;
8c7c6e34
KH
2823charge_cur_mm:
2824 if (unlikely(!mm))
2825 mm = &init_mm;
38c5d72f
KH
2826 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2827 if (ret == -EINTR)
2828 ret = 0;
2829 return ret;
8c7c6e34
KH
2830}
2831
83aae4c7 2832static void
72835c86 2833__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2834 enum charge_type ctype)
7a81b88c 2835{
f8d66542 2836 if (mem_cgroup_disabled())
7a81b88c 2837 return;
72835c86 2838 if (!memcg)
7a81b88c 2839 return;
72835c86 2840 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2841
ce587e65 2842 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2843 /*
2844 * Now swap is on-memory. This means this page may be
2845 * counted both as mem and swap....double count.
03f3c433
KH
2846 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2847 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2848 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2849 */
03f3c433 2850 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2851 swp_entry_t ent = {.val = page_private(page)};
72835c86 2852 struct mem_cgroup *swap_memcg;
a3b2d692 2853 unsigned short id;
a3b2d692
KH
2854
2855 id = swap_cgroup_record(ent, 0);
2856 rcu_read_lock();
72835c86
JW
2857 swap_memcg = mem_cgroup_lookup(id);
2858 if (swap_memcg) {
a3b2d692
KH
2859 /*
2860 * This recorded memcg can be obsolete one. So, avoid
2861 * calling css_tryget
2862 */
72835c86
JW
2863 if (!mem_cgroup_is_root(swap_memcg))
2864 res_counter_uncharge(&swap_memcg->memsw,
2865 PAGE_SIZE);
2866 mem_cgroup_swap_statistics(swap_memcg, false);
2867 mem_cgroup_put(swap_memcg);
8c7c6e34 2868 }
a3b2d692 2869 rcu_read_unlock();
8c7c6e34 2870 }
88703267
KH
2871 /*
2872 * At swapin, we may charge account against cgroup which has no tasks.
2873 * So, rmdir()->pre_destroy() can be called while we do this charge.
2874 * In that case, we need to call pre_destroy() again. check it here.
2875 */
72835c86 2876 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2877}
2878
72835c86
JW
2879void mem_cgroup_commit_charge_swapin(struct page *page,
2880 struct mem_cgroup *memcg)
83aae4c7 2881{
72835c86
JW
2882 __mem_cgroup_commit_charge_swapin(page, memcg,
2883 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2884}
2885
c0ff4b85 2886void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2887{
f8d66542 2888 if (mem_cgroup_disabled())
7a81b88c 2889 return;
c0ff4b85 2890 if (!memcg)
7a81b88c 2891 return;
c0ff4b85 2892 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2893}
2894
c0ff4b85 2895static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2896 unsigned int nr_pages,
2897 const enum charge_type ctype)
569b846d
KH
2898{
2899 struct memcg_batch_info *batch = NULL;
2900 bool uncharge_memsw = true;
7ec99d62 2901
569b846d
KH
2902 /* If swapout, usage of swap doesn't decrease */
2903 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2904 uncharge_memsw = false;
569b846d
KH
2905
2906 batch = &current->memcg_batch;
2907 /*
2908 * In usual, we do css_get() when we remember memcg pointer.
2909 * But in this case, we keep res->usage until end of a series of
2910 * uncharges. Then, it's ok to ignore memcg's refcnt.
2911 */
2912 if (!batch->memcg)
c0ff4b85 2913 batch->memcg = memcg;
3c11ecf4
KH
2914 /*
2915 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2916 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2917 * the same cgroup and we have chance to coalesce uncharges.
2918 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2919 * because we want to do uncharge as soon as possible.
2920 */
2921
2922 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2923 goto direct_uncharge;
2924
7ec99d62 2925 if (nr_pages > 1)
ec168510
AA
2926 goto direct_uncharge;
2927
569b846d
KH
2928 /*
2929 * In typical case, batch->memcg == mem. This means we can
2930 * merge a series of uncharges to an uncharge of res_counter.
2931 * If not, we uncharge res_counter ony by one.
2932 */
c0ff4b85 2933 if (batch->memcg != memcg)
569b846d
KH
2934 goto direct_uncharge;
2935 /* remember freed charge and uncharge it later */
7ffd4ca7 2936 batch->nr_pages++;
569b846d 2937 if (uncharge_memsw)
7ffd4ca7 2938 batch->memsw_nr_pages++;
569b846d
KH
2939 return;
2940direct_uncharge:
c0ff4b85 2941 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2942 if (uncharge_memsw)
c0ff4b85
R
2943 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2944 if (unlikely(batch->memcg != memcg))
2945 memcg_oom_recover(memcg);
569b846d 2946}
7a81b88c 2947
8a9f3ccd 2948/*
69029cd5 2949 * uncharge if !page_mapped(page)
8a9f3ccd 2950 */
8c7c6e34 2951static struct mem_cgroup *
69029cd5 2952__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2953{
c0ff4b85 2954 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2955 unsigned int nr_pages = 1;
2956 struct page_cgroup *pc;
b2402857 2957 bool anon;
8a9f3ccd 2958
f8d66542 2959 if (mem_cgroup_disabled())
8c7c6e34 2960 return NULL;
4077960e 2961
d13d1443 2962 if (PageSwapCache(page))
8c7c6e34 2963 return NULL;
d13d1443 2964
37c2ac78 2965 if (PageTransHuge(page)) {
7ec99d62 2966 nr_pages <<= compound_order(page);
37c2ac78
AA
2967 VM_BUG_ON(!PageTransHuge(page));
2968 }
8697d331 2969 /*
3c541e14 2970 * Check if our page_cgroup is valid
8697d331 2971 */
52d4b9ac 2972 pc = lookup_page_cgroup(page);
cfa44946 2973 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2974 return NULL;
b9c565d5 2975
52d4b9ac 2976 lock_page_cgroup(pc);
d13d1443 2977
c0ff4b85 2978 memcg = pc->mem_cgroup;
8c7c6e34 2979
d13d1443
KH
2980 if (!PageCgroupUsed(pc))
2981 goto unlock_out;
2982
b2402857
KH
2983 anon = PageAnon(page);
2984
d13d1443
KH
2985 switch (ctype) {
2986 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2987 /*
2988 * Generally PageAnon tells if it's the anon statistics to be
2989 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2990 * used before page reached the stage of being marked PageAnon.
2991 */
b2402857
KH
2992 anon = true;
2993 /* fallthrough */
8a9478ca 2994 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2995 /* See mem_cgroup_prepare_migration() */
2996 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2997 goto unlock_out;
2998 break;
2999 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3000 if (!PageAnon(page)) { /* Shared memory */
3001 if (page->mapping && !page_is_file_cache(page))
3002 goto unlock_out;
3003 } else if (page_mapped(page)) /* Anon */
3004 goto unlock_out;
3005 break;
3006 default:
3007 break;
52d4b9ac 3008 }
d13d1443 3009
b2402857 3010 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3011
52d4b9ac 3012 ClearPageCgroupUsed(pc);
544122e5
KH
3013 /*
3014 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3015 * freed from LRU. This is safe because uncharged page is expected not
3016 * to be reused (freed soon). Exception is SwapCache, it's handled by
3017 * special functions.
3018 */
b9c565d5 3019
52d4b9ac 3020 unlock_page_cgroup(pc);
f75ca962 3021 /*
c0ff4b85 3022 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3023 * will never be freed.
3024 */
c0ff4b85 3025 memcg_check_events(memcg, page);
f75ca962 3026 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3027 mem_cgroup_swap_statistics(memcg, true);
3028 mem_cgroup_get(memcg);
f75ca962 3029 }
c0ff4b85
R
3030 if (!mem_cgroup_is_root(memcg))
3031 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3032
c0ff4b85 3033 return memcg;
d13d1443
KH
3034
3035unlock_out:
3036 unlock_page_cgroup(pc);
8c7c6e34 3037 return NULL;
3c541e14
BS
3038}
3039
69029cd5
KH
3040void mem_cgroup_uncharge_page(struct page *page)
3041{
52d4b9ac
KH
3042 /* early check. */
3043 if (page_mapped(page))
3044 return;
40f23a21 3045 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3046 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3047}
3048
3049void mem_cgroup_uncharge_cache_page(struct page *page)
3050{
3051 VM_BUG_ON(page_mapped(page));
b7abea96 3052 VM_BUG_ON(page->mapping);
69029cd5
KH
3053 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3054}
3055
569b846d
KH
3056/*
3057 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3058 * In that cases, pages are freed continuously and we can expect pages
3059 * are in the same memcg. All these calls itself limits the number of
3060 * pages freed at once, then uncharge_start/end() is called properly.
3061 * This may be called prural(2) times in a context,
3062 */
3063
3064void mem_cgroup_uncharge_start(void)
3065{
3066 current->memcg_batch.do_batch++;
3067 /* We can do nest. */
3068 if (current->memcg_batch.do_batch == 1) {
3069 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3070 current->memcg_batch.nr_pages = 0;
3071 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3072 }
3073}
3074
3075void mem_cgroup_uncharge_end(void)
3076{
3077 struct memcg_batch_info *batch = &current->memcg_batch;
3078
3079 if (!batch->do_batch)
3080 return;
3081
3082 batch->do_batch--;
3083 if (batch->do_batch) /* If stacked, do nothing. */
3084 return;
3085
3086 if (!batch->memcg)
3087 return;
3088 /*
3089 * This "batch->memcg" is valid without any css_get/put etc...
3090 * bacause we hide charges behind us.
3091 */
7ffd4ca7
JW
3092 if (batch->nr_pages)
3093 res_counter_uncharge(&batch->memcg->res,
3094 batch->nr_pages * PAGE_SIZE);
3095 if (batch->memsw_nr_pages)
3096 res_counter_uncharge(&batch->memcg->memsw,
3097 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3098 memcg_oom_recover(batch->memcg);
569b846d
KH
3099 /* forget this pointer (for sanity check) */
3100 batch->memcg = NULL;
3101}
3102
e767e056 3103#ifdef CONFIG_SWAP
8c7c6e34 3104/*
e767e056 3105 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3106 * memcg information is recorded to swap_cgroup of "ent"
3107 */
8a9478ca
KH
3108void
3109mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3110{
3111 struct mem_cgroup *memcg;
8a9478ca
KH
3112 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3113
3114 if (!swapout) /* this was a swap cache but the swap is unused ! */
3115 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3116
3117 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3118
f75ca962
KH
3119 /*
3120 * record memcg information, if swapout && memcg != NULL,
3121 * mem_cgroup_get() was called in uncharge().
3122 */
3123 if (do_swap_account && swapout && memcg)
a3b2d692 3124 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3125}
e767e056 3126#endif
8c7c6e34
KH
3127
3128#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3129/*
3130 * called from swap_entry_free(). remove record in swap_cgroup and
3131 * uncharge "memsw" account.
3132 */
3133void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3134{
8c7c6e34 3135 struct mem_cgroup *memcg;
a3b2d692 3136 unsigned short id;
8c7c6e34
KH
3137
3138 if (!do_swap_account)
3139 return;
3140
a3b2d692
KH
3141 id = swap_cgroup_record(ent, 0);
3142 rcu_read_lock();
3143 memcg = mem_cgroup_lookup(id);
8c7c6e34 3144 if (memcg) {
a3b2d692
KH
3145 /*
3146 * We uncharge this because swap is freed.
3147 * This memcg can be obsolete one. We avoid calling css_tryget
3148 */
0c3e73e8 3149 if (!mem_cgroup_is_root(memcg))
4e649152 3150 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3151 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3152 mem_cgroup_put(memcg);
3153 }
a3b2d692 3154 rcu_read_unlock();
d13d1443 3155}
02491447
DN
3156
3157/**
3158 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3159 * @entry: swap entry to be moved
3160 * @from: mem_cgroup which the entry is moved from
3161 * @to: mem_cgroup which the entry is moved to
483c30b5 3162 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3163 *
3164 * It succeeds only when the swap_cgroup's record for this entry is the same
3165 * as the mem_cgroup's id of @from.
3166 *
3167 * Returns 0 on success, -EINVAL on failure.
3168 *
3169 * The caller must have charged to @to, IOW, called res_counter_charge() about
3170 * both res and memsw, and called css_get().
3171 */
3172static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3173 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3174{
3175 unsigned short old_id, new_id;
3176
3177 old_id = css_id(&from->css);
3178 new_id = css_id(&to->css);
3179
3180 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3181 mem_cgroup_swap_statistics(from, false);
483c30b5 3182 mem_cgroup_swap_statistics(to, true);
02491447 3183 /*
483c30b5
DN
3184 * This function is only called from task migration context now.
3185 * It postpones res_counter and refcount handling till the end
3186 * of task migration(mem_cgroup_clear_mc()) for performance
3187 * improvement. But we cannot postpone mem_cgroup_get(to)
3188 * because if the process that has been moved to @to does
3189 * swap-in, the refcount of @to might be decreased to 0.
02491447 3190 */
02491447 3191 mem_cgroup_get(to);
483c30b5
DN
3192 if (need_fixup) {
3193 if (!mem_cgroup_is_root(from))
3194 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3195 mem_cgroup_put(from);
3196 /*
3197 * we charged both to->res and to->memsw, so we should
3198 * uncharge to->res.
3199 */
3200 if (!mem_cgroup_is_root(to))
3201 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3202 }
02491447
DN
3203 return 0;
3204 }
3205 return -EINVAL;
3206}
3207#else
3208static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3209 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3210{
3211 return -EINVAL;
3212}
8c7c6e34 3213#endif
d13d1443 3214
ae41be37 3215/*
01b1ae63
KH
3216 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3217 * page belongs to.
ae41be37 3218 */
ac39cf8c 3219int mem_cgroup_prepare_migration(struct page *page,
72835c86 3220 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3221{
c0ff4b85 3222 struct mem_cgroup *memcg = NULL;
7ec99d62 3223 struct page_cgroup *pc;
ac39cf8c 3224 enum charge_type ctype;
e8589cc1 3225 int ret = 0;
8869b8f6 3226
72835c86 3227 *memcgp = NULL;
56039efa 3228
ec168510 3229 VM_BUG_ON(PageTransHuge(page));
f8d66542 3230 if (mem_cgroup_disabled())
4077960e
BS
3231 return 0;
3232
52d4b9ac
KH
3233 pc = lookup_page_cgroup(page);
3234 lock_page_cgroup(pc);
3235 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3236 memcg = pc->mem_cgroup;
3237 css_get(&memcg->css);
ac39cf8c
AM
3238 /*
3239 * At migrating an anonymous page, its mapcount goes down
3240 * to 0 and uncharge() will be called. But, even if it's fully
3241 * unmapped, migration may fail and this page has to be
3242 * charged again. We set MIGRATION flag here and delay uncharge
3243 * until end_migration() is called
3244 *
3245 * Corner Case Thinking
3246 * A)
3247 * When the old page was mapped as Anon and it's unmap-and-freed
3248 * while migration was ongoing.
3249 * If unmap finds the old page, uncharge() of it will be delayed
3250 * until end_migration(). If unmap finds a new page, it's
3251 * uncharged when it make mapcount to be 1->0. If unmap code
3252 * finds swap_migration_entry, the new page will not be mapped
3253 * and end_migration() will find it(mapcount==0).
3254 *
3255 * B)
3256 * When the old page was mapped but migraion fails, the kernel
3257 * remaps it. A charge for it is kept by MIGRATION flag even
3258 * if mapcount goes down to 0. We can do remap successfully
3259 * without charging it again.
3260 *
3261 * C)
3262 * The "old" page is under lock_page() until the end of
3263 * migration, so, the old page itself will not be swapped-out.
3264 * If the new page is swapped out before end_migraton, our
3265 * hook to usual swap-out path will catch the event.
3266 */
3267 if (PageAnon(page))
3268 SetPageCgroupMigration(pc);
e8589cc1 3269 }
52d4b9ac 3270 unlock_page_cgroup(pc);
ac39cf8c
AM
3271 /*
3272 * If the page is not charged at this point,
3273 * we return here.
3274 */
c0ff4b85 3275 if (!memcg)
ac39cf8c 3276 return 0;
01b1ae63 3277
72835c86
JW
3278 *memcgp = memcg;
3279 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3280 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3281 if (ret) {
ac39cf8c
AM
3282 if (PageAnon(page)) {
3283 lock_page_cgroup(pc);
3284 ClearPageCgroupMigration(pc);
3285 unlock_page_cgroup(pc);
3286 /*
3287 * The old page may be fully unmapped while we kept it.
3288 */
3289 mem_cgroup_uncharge_page(page);
3290 }
38c5d72f 3291 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3292 return -ENOMEM;
e8589cc1 3293 }
ac39cf8c
AM
3294 /*
3295 * We charge new page before it's used/mapped. So, even if unlock_page()
3296 * is called before end_migration, we can catch all events on this new
3297 * page. In the case new page is migrated but not remapped, new page's
3298 * mapcount will be finally 0 and we call uncharge in end_migration().
3299 */
ac39cf8c
AM
3300 if (PageAnon(page))
3301 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3302 else if (page_is_file_cache(page))
3303 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3304 else
3305 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3306 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3307 return ret;
ae41be37 3308}
8869b8f6 3309
69029cd5 3310/* remove redundant charge if migration failed*/
c0ff4b85 3311void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3312 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3313{
ac39cf8c 3314 struct page *used, *unused;
01b1ae63 3315 struct page_cgroup *pc;
b2402857 3316 bool anon;
01b1ae63 3317
c0ff4b85 3318 if (!memcg)
01b1ae63 3319 return;
ac39cf8c 3320 /* blocks rmdir() */
c0ff4b85 3321 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3322 if (!migration_ok) {
ac39cf8c
AM
3323 used = oldpage;
3324 unused = newpage;
01b1ae63 3325 } else {
ac39cf8c 3326 used = newpage;
01b1ae63
KH
3327 unused = oldpage;
3328 }
69029cd5 3329 /*
ac39cf8c
AM
3330 * We disallowed uncharge of pages under migration because mapcount
3331 * of the page goes down to zero, temporarly.
3332 * Clear the flag and check the page should be charged.
01b1ae63 3333 */
ac39cf8c
AM
3334 pc = lookup_page_cgroup(oldpage);
3335 lock_page_cgroup(pc);
3336 ClearPageCgroupMigration(pc);
3337 unlock_page_cgroup(pc);
b2402857
KH
3338 anon = PageAnon(used);
3339 __mem_cgroup_uncharge_common(unused,
3340 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3341 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3342
01b1ae63 3343 /*
ac39cf8c
AM
3344 * If a page is a file cache, radix-tree replacement is very atomic
3345 * and we can skip this check. When it was an Anon page, its mapcount
3346 * goes down to 0. But because we added MIGRATION flage, it's not
3347 * uncharged yet. There are several case but page->mapcount check
3348 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3349 * check. (see prepare_charge() also)
69029cd5 3350 */
b2402857 3351 if (anon)
ac39cf8c 3352 mem_cgroup_uncharge_page(used);
88703267 3353 /*
ac39cf8c
AM
3354 * At migration, we may charge account against cgroup which has no
3355 * tasks.
88703267
KH
3356 * So, rmdir()->pre_destroy() can be called while we do this charge.
3357 * In that case, we need to call pre_destroy() again. check it here.
3358 */
c0ff4b85 3359 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3360}
78fb7466 3361
ab936cbc
KH
3362/*
3363 * At replace page cache, newpage is not under any memcg but it's on
3364 * LRU. So, this function doesn't touch res_counter but handles LRU
3365 * in correct way. Both pages are locked so we cannot race with uncharge.
3366 */
3367void mem_cgroup_replace_page_cache(struct page *oldpage,
3368 struct page *newpage)
3369{
3370 struct mem_cgroup *memcg;
3371 struct page_cgroup *pc;
ab936cbc 3372 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3373
3374 if (mem_cgroup_disabled())
3375 return;
3376
3377 pc = lookup_page_cgroup(oldpage);
3378 /* fix accounting on old pages */
3379 lock_page_cgroup(pc);
3380 memcg = pc->mem_cgroup;
b2402857 3381 mem_cgroup_charge_statistics(memcg, false, -1);
ab936cbc
KH
3382 ClearPageCgroupUsed(pc);
3383 unlock_page_cgroup(pc);
3384
3385 if (PageSwapBacked(oldpage))
3386 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3387
ab936cbc
KH
3388 /*
3389 * Even if newpage->mapping was NULL before starting replacement,
3390 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3391 * LRU while we overwrite pc->mem_cgroup.
3392 */
ce587e65 3393 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3394}
3395
f212ad7c
DN
3396#ifdef CONFIG_DEBUG_VM
3397static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3398{
3399 struct page_cgroup *pc;
3400
3401 pc = lookup_page_cgroup(page);
cfa44946
JW
3402 /*
3403 * Can be NULL while feeding pages into the page allocator for
3404 * the first time, i.e. during boot or memory hotplug;
3405 * or when mem_cgroup_disabled().
3406 */
f212ad7c
DN
3407 if (likely(pc) && PageCgroupUsed(pc))
3408 return pc;
3409 return NULL;
3410}
3411
3412bool mem_cgroup_bad_page_check(struct page *page)
3413{
3414 if (mem_cgroup_disabled())
3415 return false;
3416
3417 return lookup_page_cgroup_used(page) != NULL;
3418}
3419
3420void mem_cgroup_print_bad_page(struct page *page)
3421{
3422 struct page_cgroup *pc;
3423
3424 pc = lookup_page_cgroup_used(page);
3425 if (pc) {
90b3feae 3426 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3427 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3428 }
3429}
3430#endif
3431
8c7c6e34
KH
3432static DEFINE_MUTEX(set_limit_mutex);
3433
d38d2a75 3434static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3435 unsigned long long val)
628f4235 3436{
81d39c20 3437 int retry_count;
3c11ecf4 3438 u64 memswlimit, memlimit;
628f4235 3439 int ret = 0;
81d39c20
KH
3440 int children = mem_cgroup_count_children(memcg);
3441 u64 curusage, oldusage;
3c11ecf4 3442 int enlarge;
81d39c20
KH
3443
3444 /*
3445 * For keeping hierarchical_reclaim simple, how long we should retry
3446 * is depends on callers. We set our retry-count to be function
3447 * of # of children which we should visit in this loop.
3448 */
3449 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3450
3451 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3452
3c11ecf4 3453 enlarge = 0;
8c7c6e34 3454 while (retry_count) {
628f4235
KH
3455 if (signal_pending(current)) {
3456 ret = -EINTR;
3457 break;
3458 }
8c7c6e34
KH
3459 /*
3460 * Rather than hide all in some function, I do this in
3461 * open coded manner. You see what this really does.
c0ff4b85 3462 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3463 */
3464 mutex_lock(&set_limit_mutex);
3465 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3466 if (memswlimit < val) {
3467 ret = -EINVAL;
3468 mutex_unlock(&set_limit_mutex);
628f4235
KH
3469 break;
3470 }
3c11ecf4
KH
3471
3472 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3473 if (memlimit < val)
3474 enlarge = 1;
3475
8c7c6e34 3476 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3477 if (!ret) {
3478 if (memswlimit == val)
3479 memcg->memsw_is_minimum = true;
3480 else
3481 memcg->memsw_is_minimum = false;
3482 }
8c7c6e34
KH
3483 mutex_unlock(&set_limit_mutex);
3484
3485 if (!ret)
3486 break;
3487
5660048c
JW
3488 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3489 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3490 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3491 /* Usage is reduced ? */
3492 if (curusage >= oldusage)
3493 retry_count--;
3494 else
3495 oldusage = curusage;
8c7c6e34 3496 }
3c11ecf4
KH
3497 if (!ret && enlarge)
3498 memcg_oom_recover(memcg);
14797e23 3499
8c7c6e34
KH
3500 return ret;
3501}
3502
338c8431
LZ
3503static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3504 unsigned long long val)
8c7c6e34 3505{
81d39c20 3506 int retry_count;
3c11ecf4 3507 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3508 int children = mem_cgroup_count_children(memcg);
3509 int ret = -EBUSY;
3c11ecf4 3510 int enlarge = 0;
8c7c6e34 3511
81d39c20
KH
3512 /* see mem_cgroup_resize_res_limit */
3513 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3514 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3515 while (retry_count) {
3516 if (signal_pending(current)) {
3517 ret = -EINTR;
3518 break;
3519 }
3520 /*
3521 * Rather than hide all in some function, I do this in
3522 * open coded manner. You see what this really does.
c0ff4b85 3523 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3524 */
3525 mutex_lock(&set_limit_mutex);
3526 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3527 if (memlimit > val) {
3528 ret = -EINVAL;
3529 mutex_unlock(&set_limit_mutex);
3530 break;
3531 }
3c11ecf4
KH
3532 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3533 if (memswlimit < val)
3534 enlarge = 1;
8c7c6e34 3535 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3536 if (!ret) {
3537 if (memlimit == val)
3538 memcg->memsw_is_minimum = true;
3539 else
3540 memcg->memsw_is_minimum = false;
3541 }
8c7c6e34
KH
3542 mutex_unlock(&set_limit_mutex);
3543
3544 if (!ret)
3545 break;
3546
5660048c
JW
3547 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3548 MEM_CGROUP_RECLAIM_NOSWAP |
3549 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3550 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3551 /* Usage is reduced ? */
8c7c6e34 3552 if (curusage >= oldusage)
628f4235 3553 retry_count--;
81d39c20
KH
3554 else
3555 oldusage = curusage;
628f4235 3556 }
3c11ecf4
KH
3557 if (!ret && enlarge)
3558 memcg_oom_recover(memcg);
628f4235
KH
3559 return ret;
3560}
3561
4e416953 3562unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3563 gfp_t gfp_mask,
3564 unsigned long *total_scanned)
4e416953
BS
3565{
3566 unsigned long nr_reclaimed = 0;
3567 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3568 unsigned long reclaimed;
3569 int loop = 0;
3570 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3571 unsigned long long excess;
0ae5e89c 3572 unsigned long nr_scanned;
4e416953
BS
3573
3574 if (order > 0)
3575 return 0;
3576
00918b6a 3577 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3578 /*
3579 * This loop can run a while, specially if mem_cgroup's continuously
3580 * keep exceeding their soft limit and putting the system under
3581 * pressure
3582 */
3583 do {
3584 if (next_mz)
3585 mz = next_mz;
3586 else
3587 mz = mem_cgroup_largest_soft_limit_node(mctz);
3588 if (!mz)
3589 break;
3590
0ae5e89c 3591 nr_scanned = 0;
d79154bb 3592 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3593 gfp_mask, &nr_scanned);
4e416953 3594 nr_reclaimed += reclaimed;
0ae5e89c 3595 *total_scanned += nr_scanned;
4e416953
BS
3596 spin_lock(&mctz->lock);
3597
3598 /*
3599 * If we failed to reclaim anything from this memory cgroup
3600 * it is time to move on to the next cgroup
3601 */
3602 next_mz = NULL;
3603 if (!reclaimed) {
3604 do {
3605 /*
3606 * Loop until we find yet another one.
3607 *
3608 * By the time we get the soft_limit lock
3609 * again, someone might have aded the
3610 * group back on the RB tree. Iterate to
3611 * make sure we get a different mem.
3612 * mem_cgroup_largest_soft_limit_node returns
3613 * NULL if no other cgroup is present on
3614 * the tree
3615 */
3616 next_mz =
3617 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3618 if (next_mz == mz)
d79154bb 3619 css_put(&next_mz->memcg->css);
39cc98f1 3620 else /* next_mz == NULL or other memcg */
4e416953
BS
3621 break;
3622 } while (1);
3623 }
d79154bb
HD
3624 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3625 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3626 /*
3627 * One school of thought says that we should not add
3628 * back the node to the tree if reclaim returns 0.
3629 * But our reclaim could return 0, simply because due
3630 * to priority we are exposing a smaller subset of
3631 * memory to reclaim from. Consider this as a longer
3632 * term TODO.
3633 */
ef8745c1 3634 /* If excess == 0, no tree ops */
d79154bb 3635 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3636 spin_unlock(&mctz->lock);
d79154bb 3637 css_put(&mz->memcg->css);
4e416953
BS
3638 loop++;
3639 /*
3640 * Could not reclaim anything and there are no more
3641 * mem cgroups to try or we seem to be looping without
3642 * reclaiming anything.
3643 */
3644 if (!nr_reclaimed &&
3645 (next_mz == NULL ||
3646 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3647 break;
3648 } while (!nr_reclaimed);
3649 if (next_mz)
d79154bb 3650 css_put(&next_mz->memcg->css);
4e416953
BS
3651 return nr_reclaimed;
3652}
3653
cc847582
KH
3654/*
3655 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3656 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3657 */
c0ff4b85 3658static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3659 int node, int zid, enum lru_list lru)
cc847582 3660{
08e552c6 3661 struct mem_cgroup_per_zone *mz;
08e552c6 3662 unsigned long flags, loop;
072c56c1 3663 struct list_head *list;
925b7673
JW
3664 struct page *busy;
3665 struct zone *zone;
f817ed48 3666 int ret = 0;
072c56c1 3667
08e552c6 3668 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3669 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3670 list = &mz->lruvec.lists[lru];
cc847582 3671
1eb49272 3672 loop = mz->lru_size[lru];
f817ed48
KH
3673 /* give some margin against EBUSY etc...*/
3674 loop += 256;
3675 busy = NULL;
3676 while (loop--) {
925b7673 3677 struct page_cgroup *pc;
5564e88b
JW
3678 struct page *page;
3679
f817ed48 3680 ret = 0;
08e552c6 3681 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3682 if (list_empty(list)) {
08e552c6 3683 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3684 break;
f817ed48 3685 }
925b7673
JW
3686 page = list_entry(list->prev, struct page, lru);
3687 if (busy == page) {
3688 list_move(&page->lru, list);
648bcc77 3689 busy = NULL;
08e552c6 3690 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3691 continue;
3692 }
08e552c6 3693 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3694
925b7673 3695 pc = lookup_page_cgroup(page);
5564e88b 3696
c0ff4b85 3697 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3698 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3699 break;
f817ed48
KH
3700
3701 if (ret == -EBUSY || ret == -EINVAL) {
3702 /* found lock contention or "pc" is obsolete. */
925b7673 3703 busy = page;
f817ed48
KH
3704 cond_resched();
3705 } else
3706 busy = NULL;
cc847582 3707 }
08e552c6 3708
f817ed48
KH
3709 if (!ret && !list_empty(list))
3710 return -EBUSY;
3711 return ret;
cc847582
KH
3712}
3713
3714/*
3715 * make mem_cgroup's charge to be 0 if there is no task.
3716 * This enables deleting this mem_cgroup.
3717 */
c0ff4b85 3718static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3719{
f817ed48
KH
3720 int ret;
3721 int node, zid, shrink;
3722 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3723 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3724
c0ff4b85 3725 css_get(&memcg->css);
f817ed48
KH
3726
3727 shrink = 0;
c1e862c1
KH
3728 /* should free all ? */
3729 if (free_all)
3730 goto try_to_free;
f817ed48 3731move_account:
fce66477 3732 do {
f817ed48 3733 ret = -EBUSY;
c1e862c1
KH
3734 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3735 goto out;
3736 ret = -EINTR;
3737 if (signal_pending(current))
cc847582 3738 goto out;
52d4b9ac
KH
3739 /* This is for making all *used* pages to be on LRU. */
3740 lru_add_drain_all();
c0ff4b85 3741 drain_all_stock_sync(memcg);
f817ed48 3742 ret = 0;
c0ff4b85 3743 mem_cgroup_start_move(memcg);
299b4eaa 3744 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3745 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3746 enum lru_list lru;
3747 for_each_lru(lru) {
c0ff4b85 3748 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3749 node, zid, lru);
f817ed48
KH
3750 if (ret)
3751 break;
3752 }
1ecaab2b 3753 }
f817ed48
KH
3754 if (ret)
3755 break;
3756 }
c0ff4b85
R
3757 mem_cgroup_end_move(memcg);
3758 memcg_oom_recover(memcg);
f817ed48
KH
3759 /* it seems parent cgroup doesn't have enough mem */
3760 if (ret == -ENOMEM)
3761 goto try_to_free;
52d4b9ac 3762 cond_resched();
fce66477 3763 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3764 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3765out:
c0ff4b85 3766 css_put(&memcg->css);
cc847582 3767 return ret;
f817ed48
KH
3768
3769try_to_free:
c1e862c1
KH
3770 /* returns EBUSY if there is a task or if we come here twice. */
3771 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3772 ret = -EBUSY;
3773 goto out;
3774 }
c1e862c1
KH
3775 /* we call try-to-free pages for make this cgroup empty */
3776 lru_add_drain_all();
f817ed48
KH
3777 /* try to free all pages in this cgroup */
3778 shrink = 1;
569530fb 3779 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3780 int progress;
c1e862c1
KH
3781
3782 if (signal_pending(current)) {
3783 ret = -EINTR;
3784 goto out;
3785 }
c0ff4b85 3786 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3787 false);
c1e862c1 3788 if (!progress) {
f817ed48 3789 nr_retries--;
c1e862c1 3790 /* maybe some writeback is necessary */
8aa7e847 3791 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3792 }
f817ed48
KH
3793
3794 }
08e552c6 3795 lru_add_drain();
f817ed48 3796 /* try move_account...there may be some *locked* pages. */
fce66477 3797 goto move_account;
cc847582
KH
3798}
3799
c1e862c1
KH
3800int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3801{
3802 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3803}
3804
3805
18f59ea7
BS
3806static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3807{
3808 return mem_cgroup_from_cont(cont)->use_hierarchy;
3809}
3810
3811static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3812 u64 val)
3813{
3814 int retval = 0;
c0ff4b85 3815 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3816 struct cgroup *parent = cont->parent;
c0ff4b85 3817 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3818
3819 if (parent)
c0ff4b85 3820 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3821
3822 cgroup_lock();
3823 /*
af901ca1 3824 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3825 * in the child subtrees. If it is unset, then the change can
3826 * occur, provided the current cgroup has no children.
3827 *
3828 * For the root cgroup, parent_mem is NULL, we allow value to be
3829 * set if there are no children.
3830 */
c0ff4b85 3831 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3832 (val == 1 || val == 0)) {
3833 if (list_empty(&cont->children))
c0ff4b85 3834 memcg->use_hierarchy = val;
18f59ea7
BS
3835 else
3836 retval = -EBUSY;
3837 } else
3838 retval = -EINVAL;
3839 cgroup_unlock();
3840
3841 return retval;
3842}
3843
0c3e73e8 3844
c0ff4b85 3845static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3846 enum mem_cgroup_stat_index idx)
0c3e73e8 3847{
7d74b06f 3848 struct mem_cgroup *iter;
7a159cc9 3849 long val = 0;
0c3e73e8 3850
7a159cc9 3851 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3852 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3853 val += mem_cgroup_read_stat(iter, idx);
3854
3855 if (val < 0) /* race ? */
3856 val = 0;
3857 return val;
0c3e73e8
BS
3858}
3859
c0ff4b85 3860static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3861{
7d74b06f 3862 u64 val;
104f3928 3863
c0ff4b85 3864 if (!mem_cgroup_is_root(memcg)) {
104f3928 3865 if (!swap)
65c64ce8 3866 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3867 else
65c64ce8 3868 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3869 }
3870
c0ff4b85
R
3871 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3872 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3873
7d74b06f 3874 if (swap)
c0ff4b85 3875 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3876
3877 return val << PAGE_SHIFT;
3878}
3879
af36f906
TH
3880static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3881 struct file *file, char __user *buf,
3882 size_t nbytes, loff_t *ppos)
8cdea7c0 3883{
c0ff4b85 3884 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3885 char str[64];
104f3928 3886 u64 val;
af36f906 3887 int type, name, len;
8c7c6e34
KH
3888
3889 type = MEMFILE_TYPE(cft->private);
3890 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3891
3892 if (!do_swap_account && type == _MEMSWAP)
3893 return -EOPNOTSUPP;
3894
8c7c6e34
KH
3895 switch (type) {
3896 case _MEM:
104f3928 3897 if (name == RES_USAGE)
c0ff4b85 3898 val = mem_cgroup_usage(memcg, false);
104f3928 3899 else
c0ff4b85 3900 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3901 break;
3902 case _MEMSWAP:
104f3928 3903 if (name == RES_USAGE)
c0ff4b85 3904 val = mem_cgroup_usage(memcg, true);
104f3928 3905 else
c0ff4b85 3906 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3907 break;
3908 default:
3909 BUG();
8c7c6e34 3910 }
af36f906
TH
3911
3912 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3913 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3914}
628f4235
KH
3915/*
3916 * The user of this function is...
3917 * RES_LIMIT.
3918 */
856c13aa
PM
3919static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3920 const char *buffer)
8cdea7c0 3921{
628f4235 3922 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3923 int type, name;
628f4235
KH
3924 unsigned long long val;
3925 int ret;
3926
8c7c6e34
KH
3927 type = MEMFILE_TYPE(cft->private);
3928 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3929
3930 if (!do_swap_account && type == _MEMSWAP)
3931 return -EOPNOTSUPP;
3932
8c7c6e34 3933 switch (name) {
628f4235 3934 case RES_LIMIT:
4b3bde4c
BS
3935 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3936 ret = -EINVAL;
3937 break;
3938 }
628f4235
KH
3939 /* This function does all necessary parse...reuse it */
3940 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3941 if (ret)
3942 break;
3943 if (type == _MEM)
628f4235 3944 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3945 else
3946 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3947 break;
296c81d8
BS
3948 case RES_SOFT_LIMIT:
3949 ret = res_counter_memparse_write_strategy(buffer, &val);
3950 if (ret)
3951 break;
3952 /*
3953 * For memsw, soft limits are hard to implement in terms
3954 * of semantics, for now, we support soft limits for
3955 * control without swap
3956 */
3957 if (type == _MEM)
3958 ret = res_counter_set_soft_limit(&memcg->res, val);
3959 else
3960 ret = -EINVAL;
3961 break;
628f4235
KH
3962 default:
3963 ret = -EINVAL; /* should be BUG() ? */
3964 break;
3965 }
3966 return ret;
8cdea7c0
BS
3967}
3968
fee7b548
KH
3969static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3970 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3971{
3972 struct cgroup *cgroup;
3973 unsigned long long min_limit, min_memsw_limit, tmp;
3974
3975 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3976 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3977 cgroup = memcg->css.cgroup;
3978 if (!memcg->use_hierarchy)
3979 goto out;
3980
3981 while (cgroup->parent) {
3982 cgroup = cgroup->parent;
3983 memcg = mem_cgroup_from_cont(cgroup);
3984 if (!memcg->use_hierarchy)
3985 break;
3986 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3987 min_limit = min(min_limit, tmp);
3988 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3989 min_memsw_limit = min(min_memsw_limit, tmp);
3990 }
3991out:
3992 *mem_limit = min_limit;
3993 *memsw_limit = min_memsw_limit;
fee7b548
KH
3994}
3995
29f2a4da 3996static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3997{
af36f906 3998 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3999 int type, name;
c84872e1 4000
8c7c6e34
KH
4001 type = MEMFILE_TYPE(event);
4002 name = MEMFILE_ATTR(event);
af36f906
TH
4003
4004 if (!do_swap_account && type == _MEMSWAP)
4005 return -EOPNOTSUPP;
4006
8c7c6e34 4007 switch (name) {
29f2a4da 4008 case RES_MAX_USAGE:
8c7c6e34 4009 if (type == _MEM)
c0ff4b85 4010 res_counter_reset_max(&memcg->res);
8c7c6e34 4011 else
c0ff4b85 4012 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4013 break;
4014 case RES_FAILCNT:
8c7c6e34 4015 if (type == _MEM)
c0ff4b85 4016 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4017 else
c0ff4b85 4018 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4019 break;
4020 }
f64c3f54 4021
85cc59db 4022 return 0;
c84872e1
PE
4023}
4024
7dc74be0
DN
4025static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4026 struct cftype *cft)
4027{
4028 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4029}
4030
02491447 4031#ifdef CONFIG_MMU
7dc74be0
DN
4032static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4033 struct cftype *cft, u64 val)
4034{
c0ff4b85 4035 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4036
4037 if (val >= (1 << NR_MOVE_TYPE))
4038 return -EINVAL;
4039 /*
4040 * We check this value several times in both in can_attach() and
4041 * attach(), so we need cgroup lock to prevent this value from being
4042 * inconsistent.
4043 */
4044 cgroup_lock();
c0ff4b85 4045 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4046 cgroup_unlock();
4047
4048 return 0;
4049}
02491447
DN
4050#else
4051static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4052 struct cftype *cft, u64 val)
4053{
4054 return -ENOSYS;
4055}
4056#endif
7dc74be0 4057
14067bb3
KH
4058
4059/* For read statistics */
4060enum {
4061 MCS_CACHE,
4062 MCS_RSS,
d8046582 4063 MCS_FILE_MAPPED,
14067bb3
KH
4064 MCS_PGPGIN,
4065 MCS_PGPGOUT,
1dd3a273 4066 MCS_SWAP,
456f998e
YH
4067 MCS_PGFAULT,
4068 MCS_PGMAJFAULT,
14067bb3
KH
4069 MCS_INACTIVE_ANON,
4070 MCS_ACTIVE_ANON,
4071 MCS_INACTIVE_FILE,
4072 MCS_ACTIVE_FILE,
4073 MCS_UNEVICTABLE,
4074 NR_MCS_STAT,
4075};
4076
4077struct mcs_total_stat {
4078 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4079};
4080
14067bb3
KH
4081struct {
4082 char *local_name;
4083 char *total_name;
4084} memcg_stat_strings[NR_MCS_STAT] = {
4085 {"cache", "total_cache"},
4086 {"rss", "total_rss"},
d69b042f 4087 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4088 {"pgpgin", "total_pgpgin"},
4089 {"pgpgout", "total_pgpgout"},
1dd3a273 4090 {"swap", "total_swap"},
456f998e
YH
4091 {"pgfault", "total_pgfault"},
4092 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4093 {"inactive_anon", "total_inactive_anon"},
4094 {"active_anon", "total_active_anon"},
4095 {"inactive_file", "total_inactive_file"},
4096 {"active_file", "total_active_file"},
4097 {"unevictable", "total_unevictable"}
4098};
4099
4100
7d74b06f 4101static void
c0ff4b85 4102mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4103{
14067bb3
KH
4104 s64 val;
4105
4106 /* per cpu stat */
c0ff4b85 4107 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4108 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4109 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4110 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4111 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4112 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4113 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4114 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4115 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4116 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4117 if (do_swap_account) {
c0ff4b85 4118 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4119 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4120 }
c0ff4b85 4121 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4122 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4123 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4124 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4125
4126 /* per zone stat */
c0ff4b85 4127 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4128 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4129 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4130 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4131 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4132 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4133 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4134 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4135 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4136 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4137}
4138
4139static void
c0ff4b85 4140mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4141{
7d74b06f
KH
4142 struct mem_cgroup *iter;
4143
c0ff4b85 4144 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4145 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4146}
4147
406eb0c9
YH
4148#ifdef CONFIG_NUMA
4149static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4150{
4151 int nid;
4152 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4153 unsigned long node_nr;
4154 struct cgroup *cont = m->private;
d79154bb 4155 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4156
d79154bb 4157 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4158 seq_printf(m, "total=%lu", total_nr);
4159 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4160 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4161 seq_printf(m, " N%d=%lu", nid, node_nr);
4162 }
4163 seq_putc(m, '\n');
4164
d79154bb 4165 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4166 seq_printf(m, "file=%lu", file_nr);
4167 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4168 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4169 LRU_ALL_FILE);
406eb0c9
YH
4170 seq_printf(m, " N%d=%lu", nid, node_nr);
4171 }
4172 seq_putc(m, '\n');
4173
d79154bb 4174 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4175 seq_printf(m, "anon=%lu", anon_nr);
4176 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4177 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4178 LRU_ALL_ANON);
406eb0c9
YH
4179 seq_printf(m, " N%d=%lu", nid, node_nr);
4180 }
4181 seq_putc(m, '\n');
4182
d79154bb 4183 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4184 seq_printf(m, "unevictable=%lu", unevictable_nr);
4185 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4186 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4187 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4188 seq_printf(m, " N%d=%lu", nid, node_nr);
4189 }
4190 seq_putc(m, '\n');
4191 return 0;
4192}
4193#endif /* CONFIG_NUMA */
4194
c64745cf
PM
4195static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4196 struct cgroup_map_cb *cb)
d2ceb9b7 4197{
d79154bb 4198 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4199 struct mcs_total_stat mystat;
d2ceb9b7
KH
4200 int i;
4201
14067bb3 4202 memset(&mystat, 0, sizeof(mystat));
d79154bb 4203 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4204
406eb0c9 4205
1dd3a273
DN
4206 for (i = 0; i < NR_MCS_STAT; i++) {
4207 if (i == MCS_SWAP && !do_swap_account)
4208 continue;
14067bb3 4209 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4210 }
7b854121 4211
14067bb3 4212 /* Hierarchical information */
fee7b548
KH
4213 {
4214 unsigned long long limit, memsw_limit;
d79154bb 4215 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4216 cb->fill(cb, "hierarchical_memory_limit", limit);
4217 if (do_swap_account)
4218 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4219 }
7f016ee8 4220
14067bb3 4221 memset(&mystat, 0, sizeof(mystat));
d79154bb 4222 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4223 for (i = 0; i < NR_MCS_STAT; i++) {
4224 if (i == MCS_SWAP && !do_swap_account)
4225 continue;
14067bb3 4226 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4227 }
14067bb3 4228
7f016ee8 4229#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4230 {
4231 int nid, zid;
4232 struct mem_cgroup_per_zone *mz;
4233 unsigned long recent_rotated[2] = {0, 0};
4234 unsigned long recent_scanned[2] = {0, 0};
4235
4236 for_each_online_node(nid)
4237 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4238 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
7f016ee8
KM
4239
4240 recent_rotated[0] +=
4241 mz->reclaim_stat.recent_rotated[0];
4242 recent_rotated[1] +=
4243 mz->reclaim_stat.recent_rotated[1];
4244 recent_scanned[0] +=
4245 mz->reclaim_stat.recent_scanned[0];
4246 recent_scanned[1] +=
4247 mz->reclaim_stat.recent_scanned[1];
4248 }
4249 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4250 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4251 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4252 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4253 }
4254#endif
4255
d2ceb9b7
KH
4256 return 0;
4257}
4258
a7885eb8
KM
4259static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4260{
4261 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4262
1f4c025b 4263 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4264}
4265
4266static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4267 u64 val)
4268{
4269 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4270 struct mem_cgroup *parent;
068b38c1 4271
a7885eb8
KM
4272 if (val > 100)
4273 return -EINVAL;
4274
4275 if (cgrp->parent == NULL)
4276 return -EINVAL;
4277
4278 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4279
4280 cgroup_lock();
4281
a7885eb8
KM
4282 /* If under hierarchy, only empty-root can set this value */
4283 if ((parent->use_hierarchy) ||
068b38c1
LZ
4284 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4285 cgroup_unlock();
a7885eb8 4286 return -EINVAL;
068b38c1 4287 }
a7885eb8 4288
a7885eb8 4289 memcg->swappiness = val;
a7885eb8 4290
068b38c1
LZ
4291 cgroup_unlock();
4292
a7885eb8
KM
4293 return 0;
4294}
4295
2e72b634
KS
4296static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4297{
4298 struct mem_cgroup_threshold_ary *t;
4299 u64 usage;
4300 int i;
4301
4302 rcu_read_lock();
4303 if (!swap)
2c488db2 4304 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4305 else
2c488db2 4306 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4307
4308 if (!t)
4309 goto unlock;
4310
4311 usage = mem_cgroup_usage(memcg, swap);
4312
4313 /*
4314 * current_threshold points to threshold just below usage.
4315 * If it's not true, a threshold was crossed after last
4316 * call of __mem_cgroup_threshold().
4317 */
5407a562 4318 i = t->current_threshold;
2e72b634
KS
4319
4320 /*
4321 * Iterate backward over array of thresholds starting from
4322 * current_threshold and check if a threshold is crossed.
4323 * If none of thresholds below usage is crossed, we read
4324 * only one element of the array here.
4325 */
4326 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4327 eventfd_signal(t->entries[i].eventfd, 1);
4328
4329 /* i = current_threshold + 1 */
4330 i++;
4331
4332 /*
4333 * Iterate forward over array of thresholds starting from
4334 * current_threshold+1 and check if a threshold is crossed.
4335 * If none of thresholds above usage is crossed, we read
4336 * only one element of the array here.
4337 */
4338 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4339 eventfd_signal(t->entries[i].eventfd, 1);
4340
4341 /* Update current_threshold */
5407a562 4342 t->current_threshold = i - 1;
2e72b634
KS
4343unlock:
4344 rcu_read_unlock();
4345}
4346
4347static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4348{
ad4ca5f4
KS
4349 while (memcg) {
4350 __mem_cgroup_threshold(memcg, false);
4351 if (do_swap_account)
4352 __mem_cgroup_threshold(memcg, true);
4353
4354 memcg = parent_mem_cgroup(memcg);
4355 }
2e72b634
KS
4356}
4357
4358static int compare_thresholds(const void *a, const void *b)
4359{
4360 const struct mem_cgroup_threshold *_a = a;
4361 const struct mem_cgroup_threshold *_b = b;
4362
4363 return _a->threshold - _b->threshold;
4364}
4365
c0ff4b85 4366static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4367{
4368 struct mem_cgroup_eventfd_list *ev;
4369
c0ff4b85 4370 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4371 eventfd_signal(ev->eventfd, 1);
4372 return 0;
4373}
4374
c0ff4b85 4375static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4376{
7d74b06f
KH
4377 struct mem_cgroup *iter;
4378
c0ff4b85 4379 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4380 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4381}
4382
4383static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4384 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4385{
4386 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4387 struct mem_cgroup_thresholds *thresholds;
4388 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4389 int type = MEMFILE_TYPE(cft->private);
4390 u64 threshold, usage;
2c488db2 4391 int i, size, ret;
2e72b634
KS
4392
4393 ret = res_counter_memparse_write_strategy(args, &threshold);
4394 if (ret)
4395 return ret;
4396
4397 mutex_lock(&memcg->thresholds_lock);
2c488db2 4398
2e72b634 4399 if (type == _MEM)
2c488db2 4400 thresholds = &memcg->thresholds;
2e72b634 4401 else if (type == _MEMSWAP)
2c488db2 4402 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4403 else
4404 BUG();
4405
4406 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4407
4408 /* Check if a threshold crossed before adding a new one */
2c488db2 4409 if (thresholds->primary)
2e72b634
KS
4410 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4411
2c488db2 4412 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4413
4414 /* Allocate memory for new array of thresholds */
2c488db2 4415 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4416 GFP_KERNEL);
2c488db2 4417 if (!new) {
2e72b634
KS
4418 ret = -ENOMEM;
4419 goto unlock;
4420 }
2c488db2 4421 new->size = size;
2e72b634
KS
4422
4423 /* Copy thresholds (if any) to new array */
2c488db2
KS
4424 if (thresholds->primary) {
4425 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4426 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4427 }
4428
2e72b634 4429 /* Add new threshold */
2c488db2
KS
4430 new->entries[size - 1].eventfd = eventfd;
4431 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4432
4433 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4434 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4435 compare_thresholds, NULL);
4436
4437 /* Find current threshold */
2c488db2 4438 new->current_threshold = -1;
2e72b634 4439 for (i = 0; i < size; i++) {
2c488db2 4440 if (new->entries[i].threshold < usage) {
2e72b634 4441 /*
2c488db2
KS
4442 * new->current_threshold will not be used until
4443 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4444 * it here.
4445 */
2c488db2 4446 ++new->current_threshold;
2e72b634
KS
4447 }
4448 }
4449
2c488db2
KS
4450 /* Free old spare buffer and save old primary buffer as spare */
4451 kfree(thresholds->spare);
4452 thresholds->spare = thresholds->primary;
4453
4454 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4455
907860ed 4456 /* To be sure that nobody uses thresholds */
2e72b634
KS
4457 synchronize_rcu();
4458
2e72b634
KS
4459unlock:
4460 mutex_unlock(&memcg->thresholds_lock);
4461
4462 return ret;
4463}
4464
907860ed 4465static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4466 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4467{
4468 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4469 struct mem_cgroup_thresholds *thresholds;
4470 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4471 int type = MEMFILE_TYPE(cft->private);
4472 u64 usage;
2c488db2 4473 int i, j, size;
2e72b634
KS
4474
4475 mutex_lock(&memcg->thresholds_lock);
4476 if (type == _MEM)
2c488db2 4477 thresholds = &memcg->thresholds;
2e72b634 4478 else if (type == _MEMSWAP)
2c488db2 4479 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4480 else
4481 BUG();
4482
371528ca
AV
4483 if (!thresholds->primary)
4484 goto unlock;
4485
2e72b634
KS
4486 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4487
4488 /* Check if a threshold crossed before removing */
4489 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4490
4491 /* Calculate new number of threshold */
2c488db2
KS
4492 size = 0;
4493 for (i = 0; i < thresholds->primary->size; i++) {
4494 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4495 size++;
4496 }
4497
2c488db2 4498 new = thresholds->spare;
907860ed 4499
2e72b634
KS
4500 /* Set thresholds array to NULL if we don't have thresholds */
4501 if (!size) {
2c488db2
KS
4502 kfree(new);
4503 new = NULL;
907860ed 4504 goto swap_buffers;
2e72b634
KS
4505 }
4506
2c488db2 4507 new->size = size;
2e72b634
KS
4508
4509 /* Copy thresholds and find current threshold */
2c488db2
KS
4510 new->current_threshold = -1;
4511 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4512 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4513 continue;
4514
2c488db2
KS
4515 new->entries[j] = thresholds->primary->entries[i];
4516 if (new->entries[j].threshold < usage) {
2e72b634 4517 /*
2c488db2 4518 * new->current_threshold will not be used
2e72b634
KS
4519 * until rcu_assign_pointer(), so it's safe to increment
4520 * it here.
4521 */
2c488db2 4522 ++new->current_threshold;
2e72b634
KS
4523 }
4524 j++;
4525 }
4526
907860ed 4527swap_buffers:
2c488db2
KS
4528 /* Swap primary and spare array */
4529 thresholds->spare = thresholds->primary;
8c757763
SZ
4530 /* If all events are unregistered, free the spare array */
4531 if (!new) {
4532 kfree(thresholds->spare);
4533 thresholds->spare = NULL;
4534 }
4535
2c488db2 4536 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4537
907860ed 4538 /* To be sure that nobody uses thresholds */
2e72b634 4539 synchronize_rcu();
371528ca 4540unlock:
2e72b634 4541 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4542}
c1e862c1 4543
9490ff27
KH
4544static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4545 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4546{
4547 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4548 struct mem_cgroup_eventfd_list *event;
4549 int type = MEMFILE_TYPE(cft->private);
4550
4551 BUG_ON(type != _OOM_TYPE);
4552 event = kmalloc(sizeof(*event), GFP_KERNEL);
4553 if (!event)
4554 return -ENOMEM;
4555
1af8efe9 4556 spin_lock(&memcg_oom_lock);
9490ff27
KH
4557
4558 event->eventfd = eventfd;
4559 list_add(&event->list, &memcg->oom_notify);
4560
4561 /* already in OOM ? */
79dfdacc 4562 if (atomic_read(&memcg->under_oom))
9490ff27 4563 eventfd_signal(eventfd, 1);
1af8efe9 4564 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4565
4566 return 0;
4567}
4568
907860ed 4569static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4570 struct cftype *cft, struct eventfd_ctx *eventfd)
4571{
c0ff4b85 4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4573 struct mem_cgroup_eventfd_list *ev, *tmp;
4574 int type = MEMFILE_TYPE(cft->private);
4575
4576 BUG_ON(type != _OOM_TYPE);
4577
1af8efe9 4578 spin_lock(&memcg_oom_lock);
9490ff27 4579
c0ff4b85 4580 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4581 if (ev->eventfd == eventfd) {
4582 list_del(&ev->list);
4583 kfree(ev);
4584 }
4585 }
4586
1af8efe9 4587 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4588}
4589
3c11ecf4
KH
4590static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4591 struct cftype *cft, struct cgroup_map_cb *cb)
4592{
c0ff4b85 4593 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4594
c0ff4b85 4595 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4596
c0ff4b85 4597 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4598 cb->fill(cb, "under_oom", 1);
4599 else
4600 cb->fill(cb, "under_oom", 0);
4601 return 0;
4602}
4603
3c11ecf4
KH
4604static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4605 struct cftype *cft, u64 val)
4606{
c0ff4b85 4607 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4608 struct mem_cgroup *parent;
4609
4610 /* cannot set to root cgroup and only 0 and 1 are allowed */
4611 if (!cgrp->parent || !((val == 0) || (val == 1)))
4612 return -EINVAL;
4613
4614 parent = mem_cgroup_from_cont(cgrp->parent);
4615
4616 cgroup_lock();
4617 /* oom-kill-disable is a flag for subhierarchy. */
4618 if ((parent->use_hierarchy) ||
c0ff4b85 4619 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4620 cgroup_unlock();
4621 return -EINVAL;
4622 }
c0ff4b85 4623 memcg->oom_kill_disable = val;
4d845ebf 4624 if (!val)
c0ff4b85 4625 memcg_oom_recover(memcg);
3c11ecf4
KH
4626 cgroup_unlock();
4627 return 0;
4628}
4629
406eb0c9
YH
4630#ifdef CONFIG_NUMA
4631static const struct file_operations mem_control_numa_stat_file_operations = {
4632 .read = seq_read,
4633 .llseek = seq_lseek,
4634 .release = single_release,
4635};
4636
4637static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4638{
4639 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4640
4641 file->f_op = &mem_control_numa_stat_file_operations;
4642 return single_open(file, mem_control_numa_stat_show, cont);
4643}
4644#endif /* CONFIG_NUMA */
4645
e5671dfa 4646#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4647static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4648{
1d62e436 4649 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4650};
4651
1d62e436 4652static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4653{
1d62e436 4654 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4655}
e5671dfa 4656#else
cbe128e3 4657static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4658{
4659 return 0;
4660}
d1a4c0b3 4661
1d62e436 4662static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4663{
4664}
e5671dfa
GC
4665#endif
4666
8cdea7c0
BS
4667static struct cftype mem_cgroup_files[] = {
4668 {
0eea1030 4669 .name = "usage_in_bytes",
8c7c6e34 4670 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4671 .read = mem_cgroup_read,
9490ff27
KH
4672 .register_event = mem_cgroup_usage_register_event,
4673 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4674 },
c84872e1
PE
4675 {
4676 .name = "max_usage_in_bytes",
8c7c6e34 4677 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4678 .trigger = mem_cgroup_reset,
af36f906 4679 .read = mem_cgroup_read,
c84872e1 4680 },
8cdea7c0 4681 {
0eea1030 4682 .name = "limit_in_bytes",
8c7c6e34 4683 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4684 .write_string = mem_cgroup_write,
af36f906 4685 .read = mem_cgroup_read,
8cdea7c0 4686 },
296c81d8
BS
4687 {
4688 .name = "soft_limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4690 .write_string = mem_cgroup_write,
af36f906 4691 .read = mem_cgroup_read,
296c81d8 4692 },
8cdea7c0
BS
4693 {
4694 .name = "failcnt",
8c7c6e34 4695 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4696 .trigger = mem_cgroup_reset,
af36f906 4697 .read = mem_cgroup_read,
8cdea7c0 4698 },
d2ceb9b7
KH
4699 {
4700 .name = "stat",
c64745cf 4701 .read_map = mem_control_stat_show,
d2ceb9b7 4702 },
c1e862c1
KH
4703 {
4704 .name = "force_empty",
4705 .trigger = mem_cgroup_force_empty_write,
4706 },
18f59ea7
BS
4707 {
4708 .name = "use_hierarchy",
4709 .write_u64 = mem_cgroup_hierarchy_write,
4710 .read_u64 = mem_cgroup_hierarchy_read,
4711 },
a7885eb8
KM
4712 {
4713 .name = "swappiness",
4714 .read_u64 = mem_cgroup_swappiness_read,
4715 .write_u64 = mem_cgroup_swappiness_write,
4716 },
7dc74be0
DN
4717 {
4718 .name = "move_charge_at_immigrate",
4719 .read_u64 = mem_cgroup_move_charge_read,
4720 .write_u64 = mem_cgroup_move_charge_write,
4721 },
9490ff27
KH
4722 {
4723 .name = "oom_control",
3c11ecf4
KH
4724 .read_map = mem_cgroup_oom_control_read,
4725 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4726 .register_event = mem_cgroup_oom_register_event,
4727 .unregister_event = mem_cgroup_oom_unregister_event,
4728 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4729 },
406eb0c9
YH
4730#ifdef CONFIG_NUMA
4731 {
4732 .name = "numa_stat",
4733 .open = mem_control_numa_stat_open,
89577127 4734 .mode = S_IRUGO,
406eb0c9
YH
4735 },
4736#endif
8c7c6e34 4737#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4738 {
4739 .name = "memsw.usage_in_bytes",
4740 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4741 .read = mem_cgroup_read,
9490ff27
KH
4742 .register_event = mem_cgroup_usage_register_event,
4743 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4744 },
4745 {
4746 .name = "memsw.max_usage_in_bytes",
4747 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4748 .trigger = mem_cgroup_reset,
af36f906 4749 .read = mem_cgroup_read,
8c7c6e34
KH
4750 },
4751 {
4752 .name = "memsw.limit_in_bytes",
4753 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4754 .write_string = mem_cgroup_write,
af36f906 4755 .read = mem_cgroup_read,
8c7c6e34
KH
4756 },
4757 {
4758 .name = "memsw.failcnt",
4759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4760 .trigger = mem_cgroup_reset,
af36f906 4761 .read = mem_cgroup_read,
8c7c6e34 4762 },
8c7c6e34 4763#endif
6bc10349 4764 { }, /* terminate */
af36f906 4765};
8c7c6e34 4766
c0ff4b85 4767static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4768{
4769 struct mem_cgroup_per_node *pn;
1ecaab2b 4770 struct mem_cgroup_per_zone *mz;
f156ab93 4771 enum lru_list lru;
41e3355d 4772 int zone, tmp = node;
1ecaab2b
KH
4773 /*
4774 * This routine is called against possible nodes.
4775 * But it's BUG to call kmalloc() against offline node.
4776 *
4777 * TODO: this routine can waste much memory for nodes which will
4778 * never be onlined. It's better to use memory hotplug callback
4779 * function.
4780 */
41e3355d
KH
4781 if (!node_state(node, N_NORMAL_MEMORY))
4782 tmp = -1;
17295c88 4783 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4784 if (!pn)
4785 return 1;
1ecaab2b 4786
1ecaab2b
KH
4787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4788 mz = &pn->zoneinfo[zone];
f156ab93
HD
4789 for_each_lru(lru)
4790 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4791 mz->usage_in_excess = 0;
4e416953 4792 mz->on_tree = false;
d79154bb 4793 mz->memcg = memcg;
1ecaab2b 4794 }
0a619e58 4795 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4796 return 0;
4797}
4798
c0ff4b85 4799static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4800{
c0ff4b85 4801 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4802}
4803
33327948
KH
4804static struct mem_cgroup *mem_cgroup_alloc(void)
4805{
d79154bb 4806 struct mem_cgroup *memcg;
c62b1a3b 4807 int size = sizeof(struct mem_cgroup);
33327948 4808
c62b1a3b 4809 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4810 if (size < PAGE_SIZE)
d79154bb 4811 memcg = kzalloc(size, GFP_KERNEL);
33327948 4812 else
d79154bb 4813 memcg = vzalloc(size);
33327948 4814
d79154bb 4815 if (!memcg)
e7bbcdf3
DC
4816 return NULL;
4817
d79154bb
HD
4818 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4819 if (!memcg->stat)
d2e61b8d 4820 goto out_free;
d79154bb
HD
4821 spin_lock_init(&memcg->pcp_counter_lock);
4822 return memcg;
d2e61b8d
DC
4823
4824out_free:
4825 if (size < PAGE_SIZE)
d79154bb 4826 kfree(memcg);
d2e61b8d 4827 else
d79154bb 4828 vfree(memcg);
d2e61b8d 4829 return NULL;
33327948
KH
4830}
4831
59927fb9
HD
4832/*
4833 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4834 * but in process context. The work_freeing structure is overlaid
4835 * on the rcu_freeing structure, which itself is overlaid on memsw.
4836 */
4837static void vfree_work(struct work_struct *work)
4838{
4839 struct mem_cgroup *memcg;
4840
4841 memcg = container_of(work, struct mem_cgroup, work_freeing);
4842 vfree(memcg);
4843}
4844static void vfree_rcu(struct rcu_head *rcu_head)
4845{
4846 struct mem_cgroup *memcg;
4847
4848 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4849 INIT_WORK(&memcg->work_freeing, vfree_work);
4850 schedule_work(&memcg->work_freeing);
4851}
4852
8c7c6e34
KH
4853/*
4854 * At destroying mem_cgroup, references from swap_cgroup can remain.
4855 * (scanning all at force_empty is too costly...)
4856 *
4857 * Instead of clearing all references at force_empty, we remember
4858 * the number of reference from swap_cgroup and free mem_cgroup when
4859 * it goes down to 0.
4860 *
8c7c6e34
KH
4861 * Removal of cgroup itself succeeds regardless of refs from swap.
4862 */
4863
c0ff4b85 4864static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4865{
08e552c6
KH
4866 int node;
4867
c0ff4b85
R
4868 mem_cgroup_remove_from_trees(memcg);
4869 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4870
3ed28fa1 4871 for_each_node(node)
c0ff4b85 4872 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4873
c0ff4b85 4874 free_percpu(memcg->stat);
c62b1a3b 4875 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4876 kfree_rcu(memcg, rcu_freeing);
33327948 4877 else
59927fb9 4878 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4879}
4880
c0ff4b85 4881static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4882{
c0ff4b85 4883 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4884}
4885
c0ff4b85 4886static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4887{
c0ff4b85
R
4888 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4889 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4890 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4891 if (parent)
4892 mem_cgroup_put(parent);
4893 }
8c7c6e34
KH
4894}
4895
c0ff4b85 4896static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4897{
c0ff4b85 4898 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4899}
4900
7bcc1bb1
DN
4901/*
4902 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4903 */
e1aab161 4904struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4905{
c0ff4b85 4906 if (!memcg->res.parent)
7bcc1bb1 4907 return NULL;
c0ff4b85 4908 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4909}
e1aab161 4910EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4911
c077719b
KH
4912#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4913static void __init enable_swap_cgroup(void)
4914{
f8d66542 4915 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4916 do_swap_account = 1;
4917}
4918#else
4919static void __init enable_swap_cgroup(void)
4920{
4921}
4922#endif
4923
f64c3f54
BS
4924static int mem_cgroup_soft_limit_tree_init(void)
4925{
4926 struct mem_cgroup_tree_per_node *rtpn;
4927 struct mem_cgroup_tree_per_zone *rtpz;
4928 int tmp, node, zone;
4929
3ed28fa1 4930 for_each_node(node) {
f64c3f54
BS
4931 tmp = node;
4932 if (!node_state(node, N_NORMAL_MEMORY))
4933 tmp = -1;
4934 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4935 if (!rtpn)
c3cecc68 4936 goto err_cleanup;
f64c3f54
BS
4937
4938 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4939
4940 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4941 rtpz = &rtpn->rb_tree_per_zone[zone];
4942 rtpz->rb_root = RB_ROOT;
4943 spin_lock_init(&rtpz->lock);
4944 }
4945 }
4946 return 0;
c3cecc68
MH
4947
4948err_cleanup:
3ed28fa1 4949 for_each_node(node) {
c3cecc68
MH
4950 if (!soft_limit_tree.rb_tree_per_node[node])
4951 break;
4952 kfree(soft_limit_tree.rb_tree_per_node[node]);
4953 soft_limit_tree.rb_tree_per_node[node] = NULL;
4954 }
4955 return 1;
4956
f64c3f54
BS
4957}
4958
0eb253e2 4959static struct cgroup_subsys_state * __ref
761b3ef5 4960mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4961{
c0ff4b85 4962 struct mem_cgroup *memcg, *parent;
04046e1a 4963 long error = -ENOMEM;
6d12e2d8 4964 int node;
8cdea7c0 4965
c0ff4b85
R
4966 memcg = mem_cgroup_alloc();
4967 if (!memcg)
04046e1a 4968 return ERR_PTR(error);
78fb7466 4969
3ed28fa1 4970 for_each_node(node)
c0ff4b85 4971 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4972 goto free_out;
f64c3f54 4973
c077719b 4974 /* root ? */
28dbc4b6 4975 if (cont->parent == NULL) {
cdec2e42 4976 int cpu;
c077719b 4977 enable_swap_cgroup();
28dbc4b6 4978 parent = NULL;
f64c3f54
BS
4979 if (mem_cgroup_soft_limit_tree_init())
4980 goto free_out;
a41c58a6 4981 root_mem_cgroup = memcg;
cdec2e42
KH
4982 for_each_possible_cpu(cpu) {
4983 struct memcg_stock_pcp *stock =
4984 &per_cpu(memcg_stock, cpu);
4985 INIT_WORK(&stock->work, drain_local_stock);
4986 }
711d3d2c 4987 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4988 } else {
28dbc4b6 4989 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4990 memcg->use_hierarchy = parent->use_hierarchy;
4991 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4992 }
28dbc4b6 4993
18f59ea7 4994 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4995 res_counter_init(&memcg->res, &parent->res);
4996 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4997 /*
4998 * We increment refcnt of the parent to ensure that we can
4999 * safely access it on res_counter_charge/uncharge.
5000 * This refcnt will be decremented when freeing this
5001 * mem_cgroup(see mem_cgroup_put).
5002 */
5003 mem_cgroup_get(parent);
18f59ea7 5004 } else {
c0ff4b85
R
5005 res_counter_init(&memcg->res, NULL);
5006 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5007 }
c0ff4b85
R
5008 memcg->last_scanned_node = MAX_NUMNODES;
5009 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5010
a7885eb8 5011 if (parent)
c0ff4b85
R
5012 memcg->swappiness = mem_cgroup_swappiness(parent);
5013 atomic_set(&memcg->refcnt, 1);
5014 memcg->move_charge_at_immigrate = 0;
5015 mutex_init(&memcg->thresholds_lock);
312734c0 5016 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5017
5018 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5019 if (error) {
5020 /*
5021 * We call put now because our (and parent's) refcnts
5022 * are already in place. mem_cgroup_put() will internally
5023 * call __mem_cgroup_free, so return directly
5024 */
5025 mem_cgroup_put(memcg);
5026 return ERR_PTR(error);
5027 }
c0ff4b85 5028 return &memcg->css;
6d12e2d8 5029free_out:
c0ff4b85 5030 __mem_cgroup_free(memcg);
04046e1a 5031 return ERR_PTR(error);
8cdea7c0
BS
5032}
5033
761b3ef5 5034static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5035{
c0ff4b85 5036 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5037
c0ff4b85 5038 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5039}
5040
761b3ef5 5041static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5042{
c0ff4b85 5043 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5044
1d62e436 5045 kmem_cgroup_destroy(memcg);
d1a4c0b3 5046
c0ff4b85 5047 mem_cgroup_put(memcg);
8cdea7c0
BS
5048}
5049
02491447 5050#ifdef CONFIG_MMU
7dc74be0 5051/* Handlers for move charge at task migration. */
854ffa8d
DN
5052#define PRECHARGE_COUNT_AT_ONCE 256
5053static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5054{
854ffa8d
DN
5055 int ret = 0;
5056 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5057 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5058
c0ff4b85 5059 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5060 mc.precharge += count;
5061 /* we don't need css_get for root */
5062 return ret;
5063 }
5064 /* try to charge at once */
5065 if (count > 1) {
5066 struct res_counter *dummy;
5067 /*
c0ff4b85 5068 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5069 * by cgroup_lock_live_cgroup() that it is not removed and we
5070 * are still under the same cgroup_mutex. So we can postpone
5071 * css_get().
5072 */
c0ff4b85 5073 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5074 goto one_by_one;
c0ff4b85 5075 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5076 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5077 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5078 goto one_by_one;
5079 }
5080 mc.precharge += count;
854ffa8d
DN
5081 return ret;
5082 }
5083one_by_one:
5084 /* fall back to one by one charge */
5085 while (count--) {
5086 if (signal_pending(current)) {
5087 ret = -EINTR;
5088 break;
5089 }
5090 if (!batch_count--) {
5091 batch_count = PRECHARGE_COUNT_AT_ONCE;
5092 cond_resched();
5093 }
c0ff4b85
R
5094 ret = __mem_cgroup_try_charge(NULL,
5095 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5096 if (ret)
854ffa8d 5097 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5098 return ret;
854ffa8d
DN
5099 mc.precharge++;
5100 }
4ffef5fe
DN
5101 return ret;
5102}
5103
5104/**
8d32ff84 5105 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5106 * @vma: the vma the pte to be checked belongs
5107 * @addr: the address corresponding to the pte to be checked
5108 * @ptent: the pte to be checked
02491447 5109 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5110 *
5111 * Returns
5112 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5113 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5114 * move charge. if @target is not NULL, the page is stored in target->page
5115 * with extra refcnt got(Callers should handle it).
02491447
DN
5116 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5117 * target for charge migration. if @target is not NULL, the entry is stored
5118 * in target->ent.
4ffef5fe
DN
5119 *
5120 * Called with pte lock held.
5121 */
4ffef5fe
DN
5122union mc_target {
5123 struct page *page;
02491447 5124 swp_entry_t ent;
4ffef5fe
DN
5125};
5126
4ffef5fe 5127enum mc_target_type {
8d32ff84 5128 MC_TARGET_NONE = 0,
4ffef5fe 5129 MC_TARGET_PAGE,
02491447 5130 MC_TARGET_SWAP,
4ffef5fe
DN
5131};
5132
90254a65
DN
5133static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent)
4ffef5fe 5135{
90254a65 5136 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5137
90254a65
DN
5138 if (!page || !page_mapped(page))
5139 return NULL;
5140 if (PageAnon(page)) {
5141 /* we don't move shared anon */
be22aece 5142 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5143 return NULL;
87946a72
DN
5144 } else if (!move_file())
5145 /* we ignore mapcount for file pages */
90254a65
DN
5146 return NULL;
5147 if (!get_page_unless_zero(page))
5148 return NULL;
5149
5150 return page;
5151}
5152
5153static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5154 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5155{
5156 int usage_count;
5157 struct page *page = NULL;
5158 swp_entry_t ent = pte_to_swp_entry(ptent);
5159
5160 if (!move_anon() || non_swap_entry(ent))
5161 return NULL;
5162 usage_count = mem_cgroup_count_swap_user(ent, &page);
5163 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5164 if (page)
5165 put_page(page);
90254a65 5166 return NULL;
02491447 5167 }
90254a65
DN
5168 if (do_swap_account)
5169 entry->val = ent.val;
5170
5171 return page;
5172}
5173
87946a72
DN
5174static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5175 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5176{
5177 struct page *page = NULL;
5178 struct inode *inode;
5179 struct address_space *mapping;
5180 pgoff_t pgoff;
5181
5182 if (!vma->vm_file) /* anonymous vma */
5183 return NULL;
5184 if (!move_file())
5185 return NULL;
5186
5187 inode = vma->vm_file->f_path.dentry->d_inode;
5188 mapping = vma->vm_file->f_mapping;
5189 if (pte_none(ptent))
5190 pgoff = linear_page_index(vma, addr);
5191 else /* pte_file(ptent) is true */
5192 pgoff = pte_to_pgoff(ptent);
5193
5194 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5195 page = find_get_page(mapping, pgoff);
5196
5197#ifdef CONFIG_SWAP
5198 /* shmem/tmpfs may report page out on swap: account for that too. */
5199 if (radix_tree_exceptional_entry(page)) {
5200 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5201 if (do_swap_account)
aa3b1895
HD
5202 *entry = swap;
5203 page = find_get_page(&swapper_space, swap.val);
87946a72 5204 }
aa3b1895 5205#endif
87946a72
DN
5206 return page;
5207}
5208
8d32ff84 5209static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5210 unsigned long addr, pte_t ptent, union mc_target *target)
5211{
5212 struct page *page = NULL;
5213 struct page_cgroup *pc;
8d32ff84 5214 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5215 swp_entry_t ent = { .val = 0 };
5216
5217 if (pte_present(ptent))
5218 page = mc_handle_present_pte(vma, addr, ptent);
5219 else if (is_swap_pte(ptent))
5220 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5221 else if (pte_none(ptent) || pte_file(ptent))
5222 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5223
5224 if (!page && !ent.val)
8d32ff84 5225 return ret;
02491447
DN
5226 if (page) {
5227 pc = lookup_page_cgroup(page);
5228 /*
5229 * Do only loose check w/o page_cgroup lock.
5230 * mem_cgroup_move_account() checks the pc is valid or not under
5231 * the lock.
5232 */
5233 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5234 ret = MC_TARGET_PAGE;
5235 if (target)
5236 target->page = page;
5237 }
5238 if (!ret || !target)
5239 put_page(page);
5240 }
90254a65
DN
5241 /* There is a swap entry and a page doesn't exist or isn't charged */
5242 if (ent.val && !ret &&
9fb4b7cc 5243 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5244 ret = MC_TARGET_SWAP;
5245 if (target)
5246 target->ent = ent;
4ffef5fe 5247 }
4ffef5fe
DN
5248 return ret;
5249}
5250
12724850
NH
5251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5252/*
5253 * We don't consider swapping or file mapped pages because THP does not
5254 * support them for now.
5255 * Caller should make sure that pmd_trans_huge(pmd) is true.
5256 */
5257static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5258 unsigned long addr, pmd_t pmd, union mc_target *target)
5259{
5260 struct page *page = NULL;
5261 struct page_cgroup *pc;
5262 enum mc_target_type ret = MC_TARGET_NONE;
5263
5264 page = pmd_page(pmd);
5265 VM_BUG_ON(!page || !PageHead(page));
5266 if (!move_anon())
5267 return ret;
5268 pc = lookup_page_cgroup(page);
5269 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5270 ret = MC_TARGET_PAGE;
5271 if (target) {
5272 get_page(page);
5273 target->page = page;
5274 }
5275 }
5276 return ret;
5277}
5278#else
5279static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5280 unsigned long addr, pmd_t pmd, union mc_target *target)
5281{
5282 return MC_TARGET_NONE;
5283}
5284#endif
5285
4ffef5fe
DN
5286static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5287 unsigned long addr, unsigned long end,
5288 struct mm_walk *walk)
5289{
5290 struct vm_area_struct *vma = walk->private;
5291 pte_t *pte;
5292 spinlock_t *ptl;
5293
12724850
NH
5294 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5295 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5296 mc.precharge += HPAGE_PMD_NR;
5297 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5298 return 0;
12724850 5299 }
03319327 5300
45f83cef
AA
5301 if (pmd_trans_unstable(pmd))
5302 return 0;
4ffef5fe
DN
5303 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5304 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5305 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5306 mc.precharge++; /* increment precharge temporarily */
5307 pte_unmap_unlock(pte - 1, ptl);
5308 cond_resched();
5309
7dc74be0
DN
5310 return 0;
5311}
5312
4ffef5fe
DN
5313static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5314{
5315 unsigned long precharge;
5316 struct vm_area_struct *vma;
5317
dfe076b0 5318 down_read(&mm->mmap_sem);
4ffef5fe
DN
5319 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5320 struct mm_walk mem_cgroup_count_precharge_walk = {
5321 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5322 .mm = mm,
5323 .private = vma,
5324 };
5325 if (is_vm_hugetlb_page(vma))
5326 continue;
4ffef5fe
DN
5327 walk_page_range(vma->vm_start, vma->vm_end,
5328 &mem_cgroup_count_precharge_walk);
5329 }
dfe076b0 5330 up_read(&mm->mmap_sem);
4ffef5fe
DN
5331
5332 precharge = mc.precharge;
5333 mc.precharge = 0;
5334
5335 return precharge;
5336}
5337
4ffef5fe
DN
5338static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5339{
dfe076b0
DN
5340 unsigned long precharge = mem_cgroup_count_precharge(mm);
5341
5342 VM_BUG_ON(mc.moving_task);
5343 mc.moving_task = current;
5344 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5345}
5346
dfe076b0
DN
5347/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5348static void __mem_cgroup_clear_mc(void)
4ffef5fe 5349{
2bd9bb20
KH
5350 struct mem_cgroup *from = mc.from;
5351 struct mem_cgroup *to = mc.to;
5352
4ffef5fe 5353 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5354 if (mc.precharge) {
5355 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5356 mc.precharge = 0;
5357 }
5358 /*
5359 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5360 * we must uncharge here.
5361 */
5362 if (mc.moved_charge) {
5363 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5364 mc.moved_charge = 0;
4ffef5fe 5365 }
483c30b5
DN
5366 /* we must fixup refcnts and charges */
5367 if (mc.moved_swap) {
483c30b5
DN
5368 /* uncharge swap account from the old cgroup */
5369 if (!mem_cgroup_is_root(mc.from))
5370 res_counter_uncharge(&mc.from->memsw,
5371 PAGE_SIZE * mc.moved_swap);
5372 __mem_cgroup_put(mc.from, mc.moved_swap);
5373
5374 if (!mem_cgroup_is_root(mc.to)) {
5375 /*
5376 * we charged both to->res and to->memsw, so we should
5377 * uncharge to->res.
5378 */
5379 res_counter_uncharge(&mc.to->res,
5380 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5381 }
5382 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5383 mc.moved_swap = 0;
5384 }
dfe076b0
DN
5385 memcg_oom_recover(from);
5386 memcg_oom_recover(to);
5387 wake_up_all(&mc.waitq);
5388}
5389
5390static void mem_cgroup_clear_mc(void)
5391{
5392 struct mem_cgroup *from = mc.from;
5393
5394 /*
5395 * we must clear moving_task before waking up waiters at the end of
5396 * task migration.
5397 */
5398 mc.moving_task = NULL;
5399 __mem_cgroup_clear_mc();
2bd9bb20 5400 spin_lock(&mc.lock);
4ffef5fe
DN
5401 mc.from = NULL;
5402 mc.to = NULL;
2bd9bb20 5403 spin_unlock(&mc.lock);
32047e2a 5404 mem_cgroup_end_move(from);
4ffef5fe
DN
5405}
5406
761b3ef5
LZ
5407static int mem_cgroup_can_attach(struct cgroup *cgroup,
5408 struct cgroup_taskset *tset)
7dc74be0 5409{
2f7ee569 5410 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5411 int ret = 0;
c0ff4b85 5412 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5413
c0ff4b85 5414 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5415 struct mm_struct *mm;
5416 struct mem_cgroup *from = mem_cgroup_from_task(p);
5417
c0ff4b85 5418 VM_BUG_ON(from == memcg);
7dc74be0
DN
5419
5420 mm = get_task_mm(p);
5421 if (!mm)
5422 return 0;
7dc74be0 5423 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5424 if (mm->owner == p) {
5425 VM_BUG_ON(mc.from);
5426 VM_BUG_ON(mc.to);
5427 VM_BUG_ON(mc.precharge);
854ffa8d 5428 VM_BUG_ON(mc.moved_charge);
483c30b5 5429 VM_BUG_ON(mc.moved_swap);
32047e2a 5430 mem_cgroup_start_move(from);
2bd9bb20 5431 spin_lock(&mc.lock);
4ffef5fe 5432 mc.from = from;
c0ff4b85 5433 mc.to = memcg;
2bd9bb20 5434 spin_unlock(&mc.lock);
dfe076b0 5435 /* We set mc.moving_task later */
4ffef5fe
DN
5436
5437 ret = mem_cgroup_precharge_mc(mm);
5438 if (ret)
5439 mem_cgroup_clear_mc();
dfe076b0
DN
5440 }
5441 mmput(mm);
7dc74be0
DN
5442 }
5443 return ret;
5444}
5445
761b3ef5
LZ
5446static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5447 struct cgroup_taskset *tset)
7dc74be0 5448{
4ffef5fe 5449 mem_cgroup_clear_mc();
7dc74be0
DN
5450}
5451
4ffef5fe
DN
5452static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5453 unsigned long addr, unsigned long end,
5454 struct mm_walk *walk)
7dc74be0 5455{
4ffef5fe
DN
5456 int ret = 0;
5457 struct vm_area_struct *vma = walk->private;
5458 pte_t *pte;
5459 spinlock_t *ptl;
12724850
NH
5460 enum mc_target_type target_type;
5461 union mc_target target;
5462 struct page *page;
5463 struct page_cgroup *pc;
4ffef5fe 5464
12724850
NH
5465 /*
5466 * We don't take compound_lock() here but no race with splitting thp
5467 * happens because:
5468 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5469 * under splitting, which means there's no concurrent thp split,
5470 * - if another thread runs into split_huge_page() just after we
5471 * entered this if-block, the thread must wait for page table lock
5472 * to be unlocked in __split_huge_page_splitting(), where the main
5473 * part of thp split is not executed yet.
5474 */
5475 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5476 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5477 spin_unlock(&vma->vm_mm->page_table_lock);
5478 return 0;
5479 }
5480 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5481 if (target_type == MC_TARGET_PAGE) {
5482 page = target.page;
5483 if (!isolate_lru_page(page)) {
5484 pc = lookup_page_cgroup(page);
5485 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5486 pc, mc.from, mc.to,
5487 false)) {
5488 mc.precharge -= HPAGE_PMD_NR;
5489 mc.moved_charge += HPAGE_PMD_NR;
5490 }
5491 putback_lru_page(page);
5492 }
5493 put_page(page);
5494 }
5495 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5496 return 0;
12724850
NH
5497 }
5498
45f83cef
AA
5499 if (pmd_trans_unstable(pmd))
5500 return 0;
4ffef5fe
DN
5501retry:
5502 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5503 for (; addr != end; addr += PAGE_SIZE) {
5504 pte_t ptent = *(pte++);
02491447 5505 swp_entry_t ent;
4ffef5fe
DN
5506
5507 if (!mc.precharge)
5508 break;
5509
8d32ff84 5510 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5511 case MC_TARGET_PAGE:
5512 page = target.page;
5513 if (isolate_lru_page(page))
5514 goto put;
5515 pc = lookup_page_cgroup(page);
7ec99d62
JW
5516 if (!mem_cgroup_move_account(page, 1, pc,
5517 mc.from, mc.to, false)) {
4ffef5fe 5518 mc.precharge--;
854ffa8d
DN
5519 /* we uncharge from mc.from later. */
5520 mc.moved_charge++;
4ffef5fe
DN
5521 }
5522 putback_lru_page(page);
8d32ff84 5523put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5524 put_page(page);
5525 break;
02491447
DN
5526 case MC_TARGET_SWAP:
5527 ent = target.ent;
483c30b5
DN
5528 if (!mem_cgroup_move_swap_account(ent,
5529 mc.from, mc.to, false)) {
02491447 5530 mc.precharge--;
483c30b5
DN
5531 /* we fixup refcnts and charges later. */
5532 mc.moved_swap++;
5533 }
02491447 5534 break;
4ffef5fe
DN
5535 default:
5536 break;
5537 }
5538 }
5539 pte_unmap_unlock(pte - 1, ptl);
5540 cond_resched();
5541
5542 if (addr != end) {
5543 /*
5544 * We have consumed all precharges we got in can_attach().
5545 * We try charge one by one, but don't do any additional
5546 * charges to mc.to if we have failed in charge once in attach()
5547 * phase.
5548 */
854ffa8d 5549 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5550 if (!ret)
5551 goto retry;
5552 }
5553
5554 return ret;
5555}
5556
5557static void mem_cgroup_move_charge(struct mm_struct *mm)
5558{
5559 struct vm_area_struct *vma;
5560
5561 lru_add_drain_all();
dfe076b0
DN
5562retry:
5563 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5564 /*
5565 * Someone who are holding the mmap_sem might be waiting in
5566 * waitq. So we cancel all extra charges, wake up all waiters,
5567 * and retry. Because we cancel precharges, we might not be able
5568 * to move enough charges, but moving charge is a best-effort
5569 * feature anyway, so it wouldn't be a big problem.
5570 */
5571 __mem_cgroup_clear_mc();
5572 cond_resched();
5573 goto retry;
5574 }
4ffef5fe
DN
5575 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5576 int ret;
5577 struct mm_walk mem_cgroup_move_charge_walk = {
5578 .pmd_entry = mem_cgroup_move_charge_pte_range,
5579 .mm = mm,
5580 .private = vma,
5581 };
5582 if (is_vm_hugetlb_page(vma))
5583 continue;
4ffef5fe
DN
5584 ret = walk_page_range(vma->vm_start, vma->vm_end,
5585 &mem_cgroup_move_charge_walk);
5586 if (ret)
5587 /*
5588 * means we have consumed all precharges and failed in
5589 * doing additional charge. Just abandon here.
5590 */
5591 break;
5592 }
dfe076b0 5593 up_read(&mm->mmap_sem);
7dc74be0
DN
5594}
5595
761b3ef5
LZ
5596static void mem_cgroup_move_task(struct cgroup *cont,
5597 struct cgroup_taskset *tset)
67e465a7 5598{
2f7ee569 5599 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5600 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5601
dfe076b0 5602 if (mm) {
a433658c
KM
5603 if (mc.to)
5604 mem_cgroup_move_charge(mm);
dfe076b0
DN
5605 mmput(mm);
5606 }
a433658c
KM
5607 if (mc.to)
5608 mem_cgroup_clear_mc();
67e465a7 5609}
5cfb80a7 5610#else /* !CONFIG_MMU */
761b3ef5
LZ
5611static int mem_cgroup_can_attach(struct cgroup *cgroup,
5612 struct cgroup_taskset *tset)
5cfb80a7
DN
5613{
5614 return 0;
5615}
761b3ef5
LZ
5616static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5617 struct cgroup_taskset *tset)
5cfb80a7
DN
5618{
5619}
761b3ef5
LZ
5620static void mem_cgroup_move_task(struct cgroup *cont,
5621 struct cgroup_taskset *tset)
5cfb80a7
DN
5622{
5623}
5624#endif
67e465a7 5625
8cdea7c0
BS
5626struct cgroup_subsys mem_cgroup_subsys = {
5627 .name = "memory",
5628 .subsys_id = mem_cgroup_subsys_id,
5629 .create = mem_cgroup_create,
df878fb0 5630 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5631 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5632 .can_attach = mem_cgroup_can_attach,
5633 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5634 .attach = mem_cgroup_move_task,
6bc10349 5635 .base_cftypes = mem_cgroup_files,
6d12e2d8 5636 .early_init = 0,
04046e1a 5637 .use_id = 1,
48ddbe19 5638 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5639};
c077719b
KH
5640
5641#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5642static int __init enable_swap_account(char *s)
5643{
5644 /* consider enabled if no parameter or 1 is given */
a2c8990a 5645 if (!strcmp(s, "1"))
a42c390c 5646 really_do_swap_account = 1;
a2c8990a 5647 else if (!strcmp(s, "0"))
a42c390c
MH
5648 really_do_swap_account = 0;
5649 return 1;
5650}
a2c8990a 5651__setup("swapaccount=", enable_swap_account);
c077719b 5652
c077719b 5653#endif