]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
cgroup: unexport cgroup_css()
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
465939a1
LZ
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
59927fb9 270
510fc4e1
GC
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
18f59ea7
BS
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
510fc4e1 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
280
281 bool oom_lock;
282 atomic_t under_oom;
283
1f4c025b 284 int swappiness;
3c11ecf4
KH
285 /* OOM-Killer disable */
286 int oom_kill_disable;
a7885eb8 287
22a668d7
KH
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
2e72b634
KS
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
2c488db2 295 struct mem_cgroup_thresholds thresholds;
907860ed 296
2e72b634 297 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 298 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 299
9490ff27
KH
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
185efc0f 302
7dc74be0
DN
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
619d094b
KH
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312734c0
KH
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
d52aa412 314 /*
c62b1a3b 315 * percpu counter.
d52aa412 316 */
3a7951b4 317 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
d1a4c0b3 324
5f578161 325 atomic_t dead_count;
4bd2c1ee 326#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
327 struct tcp_memcontrol tcp_mem;
328#endif
2633d7a0
GC
329#if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336#endif
45cf7ebd
GC
337
338 int last_scanned_node;
339#if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343#endif
70ddf637 344
54f72fe0
JW
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
347};
348
45cf7ebd
GC
349static size_t memcg_size(void)
350{
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353}
354
510fc4e1
GC
355/* internal only representation about the status of kmem accounting. */
356enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
360};
361
a8964b9b
GC
362/* We account when limit is on, but only after call sites are patched */
363#define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
365
366#ifdef CONFIG_MEMCG_KMEM
367static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368{
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370}
7de37682
GC
371
372static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373{
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375}
376
a8964b9b
GC
377static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378{
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380}
381
55007d84
GC
382static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383{
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385}
386
7de37682
GC
387static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388{
10d5ebf4
LZ
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
7de37682
GC
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396}
397
398static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399{
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402}
510fc4e1
GC
403#endif
404
7dc74be0
DN
405/* Stuffs for move charges at task migration. */
406/*
ee5e8472
GC
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
409 */
410enum move_type {
4ffef5fe 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
413 NR_MOVE_TYPE,
414};
415
4ffef5fe
DN
416/* "mc" and its members are protected by cgroup_mutex */
417static struct move_charge_struct {
b1dd693e 418 spinlock_t lock; /* for from, to */
4ffef5fe
DN
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
ee5e8472 421 unsigned long immigrate_flags;
4ffef5fe 422 unsigned long precharge;
854ffa8d 423 unsigned long moved_charge;
483c30b5 424 unsigned long moved_swap;
8033b97c
DN
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427} mc = {
2bd9bb20 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430};
4ffef5fe 431
90254a65
DN
432static bool move_anon(void)
433{
ee5e8472 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
435}
436
87946a72
DN
437static bool move_file(void)
438{
ee5e8472 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
440}
441
4e416953
BS
442/*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
a0db00fc
KS
446#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 448
217bc319
KH
449enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 451 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
454 NR_CHARGE_TYPE,
455};
456
8c7c6e34 457/* for encoding cft->private value on file */
86ae53e1
GC
458enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
510fc4e1 462 _KMEM,
86ae53e1
GC
463};
464
a0db00fc
KS
465#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 467#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
468/* Used for OOM nofiier */
469#define OOM_CONTROL (0)
8c7c6e34 470
75822b44
BS
471/*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
0999821b
GC
479/*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484static DEFINE_MUTEX(memcg_create_mutex);
485
b2145145
WL
486struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487{
a7c6d554 488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
489}
490
70ddf637
AV
491/* Some nice accessors for the vmpressure. */
492struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493{
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497}
498
499struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500{
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502}
503
504struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505{
506 return &mem_cgroup_from_css(css)->vmpressure;
507}
508
7ffc0edc
MH
509static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510{
511 return (memcg == root_mem_cgroup);
512}
513
e1aab161 514/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 515#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 516
e1aab161
GC
517void sock_update_memcg(struct sock *sk)
518{
376be5ff 519 if (mem_cgroup_sockets_enabled) {
e1aab161 520 struct mem_cgroup *memcg;
3f134619 521 struct cg_proto *cg_proto;
e1aab161
GC
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
f3f511e1
GC
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 535 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
536 return;
537 }
538
e1aab161
GC
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
3f134619 541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 544 sk->sk_cgrp = cg_proto;
e1aab161
GC
545 }
546 rcu_read_unlock();
547 }
548}
549EXPORT_SYMBOL(sock_update_memcg);
550
551void sock_release_memcg(struct sock *sk)
552{
376be5ff 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
5347e5ae 557 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
558 }
559}
d1a4c0b3
GC
560
561struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562{
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567}
568EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 569
3f134619
GC
570static void disarm_sock_keys(struct mem_cgroup *memcg)
571{
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575}
576#else
577static void disarm_sock_keys(struct mem_cgroup *memcg)
578{
579}
580#endif
581
a8964b9b 582#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
583/*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
601int memcg_limited_groups_array_size;
602
55007d84
GC
603/*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615#define MEMCG_CACHES_MIN_SIZE 4
616#define MEMCG_CACHES_MAX_SIZE 65535
617
d7f25f8a
GC
618/*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
a8964b9b 624struct static_key memcg_kmem_enabled_key;
d7f25f8a 625EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
626
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
55007d84 629 if (memcg_kmem_is_active(memcg)) {
a8964b9b 630 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
bea207c8
GC
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
638}
639#else
640static void disarm_kmem_keys(struct mem_cgroup *memcg)
641{
642}
643#endif /* CONFIG_MEMCG_KMEM */
644
645static void disarm_static_keys(struct mem_cgroup *memcg)
646{
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649}
650
c0ff4b85 651static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 652
f64c3f54 653static struct mem_cgroup_per_zone *
c0ff4b85 654mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 655{
45cf7ebd 656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
c0ff4b85 660struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 661{
c0ff4b85 662 return &memcg->css;
d324236b
WF
663}
664
f64c3f54 665static struct mem_cgroup_per_zone *
c0ff4b85 666page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 667{
97a6c37b
JW
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
f64c3f54 670
c0ff4b85 671 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
672}
673
674static struct mem_cgroup_tree_per_zone *
675soft_limit_tree_node_zone(int nid, int zid)
676{
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678}
679
680static struct mem_cgroup_tree_per_zone *
681soft_limit_tree_from_page(struct page *page)
682{
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687}
688
689static void
c0ff4b85 690__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 691 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
f64c3f54
BS
694{
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
ef8745c1
KH
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
f64c3f54
BS
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
4e416953
BS
721}
722
723static void
c0ff4b85 724__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727{
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732}
733
f64c3f54 734static void
c0ff4b85 735mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738{
739 spin_lock(&mctz->lock);
c0ff4b85 740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
741 spin_unlock(&mctz->lock);
742}
743
f64c3f54 744
c0ff4b85 745static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 746{
ef8745c1 747 unsigned long long excess;
f64c3f54
BS
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
f64c3f54
BS
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
4e649152
KH
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
f64c3f54 757 */
c0ff4b85
R
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
ef8745c1 765 if (excess || mz->on_tree) {
4e649152
KH
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
c0ff4b85 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 770 /*
ef8745c1
KH
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
4e649152 773 */
c0ff4b85 774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
775 spin_unlock(&mctz->lock);
776 }
f64c3f54
BS
777 }
778}
779
c0ff4b85 780static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
781{
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
3ed28fa1 786 for_each_node(node) {
f64c3f54 787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 789 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
791 }
792 }
793}
794
4e416953
BS
795static struct mem_cgroup_per_zone *
796__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797{
798 struct rb_node *rightmost = NULL;
26251eaf 799 struct mem_cgroup_per_zone *mz;
4e416953
BS
800
801retry:
26251eaf 802 mz = NULL;
4e416953
BS
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
d79154bb
HD
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
4e416953
BS
816 goto retry;
817done:
818 return mz;
819}
820
821static struct mem_cgroup_per_zone *
822mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830}
831
711d3d2c
KH
832/*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
c0ff4b85 851static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 852 enum mem_cgroup_stat_index idx)
c62b1a3b 853{
7a159cc9 854 long val = 0;
c62b1a3b 855 int cpu;
c62b1a3b 856
711d3d2c
KH
857 get_online_cpus();
858 for_each_online_cpu(cpu)
c0ff4b85 859 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 860#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
864#endif
865 put_online_cpus();
c62b1a3b
KH
866 return val;
867}
868
c0ff4b85 869static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
870 bool charge)
871{
872 int val = (charge) ? 1 : -1;
bff6bb83 873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
874}
875
c0ff4b85 876static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
877 enum mem_cgroup_events_index idx)
878{
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
c0ff4b85 883 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 884#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
888#endif
889 return val;
890}
891
c0ff4b85 892static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 893 struct page *page,
b2402857 894 bool anon, int nr_pages)
d52aa412 895{
c62b1a3b
KH
896 preempt_disable();
897
b2402857
KH
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 904 nr_pages);
d52aa412 905 else
b2402857 906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 907 nr_pages);
55e462b0 908
b070e65c
DR
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
e401f176
KH
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
c0ff4b85 915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 916 else {
c0ff4b85 917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
918 nr_pages = -nr_pages; /* for event */
919 }
e401f176 920
13114716 921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 922
c62b1a3b 923 preempt_enable();
6d12e2d8
KH
924}
925
bb2a0de9 926unsigned long
4d7dcca2 927mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
928{
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933}
934
935static unsigned long
c0ff4b85 936mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 937 unsigned int lru_mask)
889976db
YH
938{
939 struct mem_cgroup_per_zone *mz;
f156ab93 940 enum lru_list lru;
bb2a0de9
KH
941 unsigned long ret = 0;
942
c0ff4b85 943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 944
f156ab93
HD
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
bb2a0de9
KH
948 }
949 return ret;
950}
951
952static unsigned long
c0ff4b85 953mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
954 int nid, unsigned int lru_mask)
955{
889976db
YH
956 u64 total = 0;
957 int zid;
958
bb2a0de9 959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
bb2a0de9 962
889976db
YH
963 return total;
964}
bb2a0de9 965
c0ff4b85 966static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 967 unsigned int lru_mask)
6d12e2d8 968{
889976db 969 int nid;
6d12e2d8
KH
970 u64 total = 0;
971
31aaea4a 972 for_each_node_state(nid, N_MEMORY)
c0ff4b85 973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 974 return total;
d52aa412
KH
975}
976
f53d7ce3
JW
977static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
7a159cc9
JW
979{
980 unsigned long val, next;
981
13114716 982 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 983 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 984 /* from time_after() in jiffies.h */
f53d7ce3
JW
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
7a159cc9 1001 }
f53d7ce3 1002 return false;
d2265e6f
KH
1003}
1004
1005/*
1006 * Check events in order.
1007 *
1008 */
c0ff4b85 1009static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1010{
4799401f 1011 preempt_disable();
d2265e6f 1012 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020#if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023#endif
1024 preempt_enable();
1025
c0ff4b85 1026 mem_cgroup_threshold(memcg);
f53d7ce3 1027 if (unlikely(do_softlimit))
c0ff4b85 1028 mem_cgroup_update_tree(memcg, page);
453a9bf3 1029#if MAX_NUMNODES > 1
f53d7ce3 1030 if (unlikely(do_numainfo))
c0ff4b85 1031 atomic_inc(&memcg->numainfo_events);
453a9bf3 1032#endif
f53d7ce3
JW
1033 } else
1034 preempt_enable();
d2265e6f
KH
1035}
1036
cf475ad2 1037struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1038{
31a78f23
BS
1039 /*
1040 * mm_update_next_owner() may clear mm->owner to NULL
1041 * if it races with swapoff, page migration, etc.
1042 * So this can be called with p == NULL.
1043 */
1044 if (unlikely(!p))
1045 return NULL;
1046
8af01f56 1047 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1048}
1049
a433658c 1050struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1051{
c0ff4b85 1052 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1053
1054 if (!mm)
1055 return NULL;
54595fe2
KH
1056 /*
1057 * Because we have no locks, mm->owner's may be being moved to other
1058 * cgroup. We use css_tryget() here even if this looks
1059 * pessimistic (rather than adding locks here).
1060 */
1061 rcu_read_lock();
1062 do {
c0ff4b85
R
1063 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1064 if (unlikely(!memcg))
54595fe2 1065 break;
c0ff4b85 1066 } while (!css_tryget(&memcg->css));
54595fe2 1067 rcu_read_unlock();
c0ff4b85 1068 return memcg;
54595fe2
KH
1069}
1070
16248d8f
MH
1071/*
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1074 *
1075 * helper function to be used by mem_cgroup_iter
1076 */
1077static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 struct mem_cgroup *last_visited)
1079{
492eb21b 1080 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f
MH
1081
1082 /*
1083 * Root is not visited by cgroup iterators so it needs an
1084 * explicit visit.
1085 */
1086 if (!last_visited)
1087 return root;
1088
492eb21b 1089 prev_css = (last_visited == root) ? NULL : &last_visited->css;
16248d8f 1090skip_node:
492eb21b 1091 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1092
1093 /*
1094 * Even if we found a group we have to make sure it is
1095 * alive. css && !memcg means that the groups should be
1096 * skipped and we should continue the tree walk.
1097 * last_visited css is safe to use because it is
1098 * protected by css_get and the tree walk is rcu safe.
1099 */
492eb21b
TH
1100 if (next_css) {
1101 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1102
16248d8f
MH
1103 if (css_tryget(&mem->css))
1104 return mem;
1105 else {
492eb21b 1106 prev_css = next_css;
16248d8f
MH
1107 goto skip_node;
1108 }
1109 }
1110
1111 return NULL;
1112}
1113
519ebea3
JW
1114static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1115{
1116 /*
1117 * When a group in the hierarchy below root is destroyed, the
1118 * hierarchy iterator can no longer be trusted since it might
1119 * have pointed to the destroyed group. Invalidate it.
1120 */
1121 atomic_inc(&root->dead_count);
1122}
1123
1124static struct mem_cgroup *
1125mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1126 struct mem_cgroup *root,
1127 int *sequence)
1128{
1129 struct mem_cgroup *position = NULL;
1130 /*
1131 * A cgroup destruction happens in two stages: offlining and
1132 * release. They are separated by a RCU grace period.
1133 *
1134 * If the iterator is valid, we may still race with an
1135 * offlining. The RCU lock ensures the object won't be
1136 * released, tryget will fail if we lost the race.
1137 */
1138 *sequence = atomic_read(&root->dead_count);
1139 if (iter->last_dead_count == *sequence) {
1140 smp_rmb();
1141 position = iter->last_visited;
1142 if (position && !css_tryget(&position->css))
1143 position = NULL;
1144 }
1145 return position;
1146}
1147
1148static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1149 struct mem_cgroup *last_visited,
1150 struct mem_cgroup *new_position,
1151 int sequence)
1152{
1153 if (last_visited)
1154 css_put(&last_visited->css);
1155 /*
1156 * We store the sequence count from the time @last_visited was
1157 * loaded successfully instead of rereading it here so that we
1158 * don't lose destruction events in between. We could have
1159 * raced with the destruction of @new_position after all.
1160 */
1161 iter->last_visited = new_position;
1162 smp_wmb();
1163 iter->last_dead_count = sequence;
1164}
1165
5660048c
JW
1166/**
1167 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1168 * @root: hierarchy root
1169 * @prev: previously returned memcg, NULL on first invocation
1170 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1171 *
1172 * Returns references to children of the hierarchy below @root, or
1173 * @root itself, or %NULL after a full round-trip.
1174 *
1175 * Caller must pass the return value in @prev on subsequent
1176 * invocations for reference counting, or use mem_cgroup_iter_break()
1177 * to cancel a hierarchy walk before the round-trip is complete.
1178 *
1179 * Reclaimers can specify a zone and a priority level in @reclaim to
1180 * divide up the memcgs in the hierarchy among all concurrent
1181 * reclaimers operating on the same zone and priority.
1182 */
1183struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1184 struct mem_cgroup *prev,
1185 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1186{
9f3a0d09 1187 struct mem_cgroup *memcg = NULL;
542f85f9 1188 struct mem_cgroup *last_visited = NULL;
711d3d2c 1189
5660048c
JW
1190 if (mem_cgroup_disabled())
1191 return NULL;
1192
9f3a0d09
JW
1193 if (!root)
1194 root = root_mem_cgroup;
7d74b06f 1195
9f3a0d09 1196 if (prev && !reclaim)
542f85f9 1197 last_visited = prev;
14067bb3 1198
9f3a0d09
JW
1199 if (!root->use_hierarchy && root != root_mem_cgroup) {
1200 if (prev)
c40046f3 1201 goto out_css_put;
9f3a0d09
JW
1202 return root;
1203 }
14067bb3 1204
542f85f9 1205 rcu_read_lock();
9f3a0d09 1206 while (!memcg) {
527a5ec9 1207 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1208 int uninitialized_var(seq);
711d3d2c 1209
527a5ec9
JW
1210 if (reclaim) {
1211 int nid = zone_to_nid(reclaim->zone);
1212 int zid = zone_idx(reclaim->zone);
1213 struct mem_cgroup_per_zone *mz;
1214
1215 mz = mem_cgroup_zoneinfo(root, nid, zid);
1216 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1217 if (prev && reclaim->generation != iter->generation) {
5f578161 1218 iter->last_visited = NULL;
542f85f9
MH
1219 goto out_unlock;
1220 }
5f578161 1221
519ebea3 1222 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1223 }
7d74b06f 1224
16248d8f 1225 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1226
527a5ec9 1227 if (reclaim) {
519ebea3 1228 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1229
19f39402 1230 if (!memcg)
527a5ec9
JW
1231 iter->generation++;
1232 else if (!prev && memcg)
1233 reclaim->generation = iter->generation;
1234 }
9f3a0d09 1235
19f39402 1236 if (prev && !memcg)
542f85f9 1237 goto out_unlock;
9f3a0d09 1238 }
542f85f9
MH
1239out_unlock:
1240 rcu_read_unlock();
c40046f3
MH
1241out_css_put:
1242 if (prev && prev != root)
1243 css_put(&prev->css);
1244
9f3a0d09 1245 return memcg;
14067bb3 1246}
7d74b06f 1247
5660048c
JW
1248/**
1249 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1250 * @root: hierarchy root
1251 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1252 */
1253void mem_cgroup_iter_break(struct mem_cgroup *root,
1254 struct mem_cgroup *prev)
9f3a0d09
JW
1255{
1256 if (!root)
1257 root = root_mem_cgroup;
1258 if (prev && prev != root)
1259 css_put(&prev->css);
1260}
7d74b06f 1261
9f3a0d09
JW
1262/*
1263 * Iteration constructs for visiting all cgroups (under a tree). If
1264 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1265 * be used for reference counting.
1266 */
1267#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1268 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1269 iter != NULL; \
527a5ec9 1270 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1271
9f3a0d09 1272#define for_each_mem_cgroup(iter) \
527a5ec9 1273 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1274 iter != NULL; \
527a5ec9 1275 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1276
68ae564b 1277void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1278{
c0ff4b85 1279 struct mem_cgroup *memcg;
456f998e 1280
456f998e 1281 rcu_read_lock();
c0ff4b85
R
1282 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1283 if (unlikely(!memcg))
456f998e
YH
1284 goto out;
1285
1286 switch (idx) {
456f998e 1287 case PGFAULT:
0e574a93
JW
1288 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1289 break;
1290 case PGMAJFAULT:
1291 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1292 break;
1293 default:
1294 BUG();
1295 }
1296out:
1297 rcu_read_unlock();
1298}
68ae564b 1299EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1300
925b7673
JW
1301/**
1302 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1303 * @zone: zone of the wanted lruvec
fa9add64 1304 * @memcg: memcg of the wanted lruvec
925b7673
JW
1305 *
1306 * Returns the lru list vector holding pages for the given @zone and
1307 * @mem. This can be the global zone lruvec, if the memory controller
1308 * is disabled.
1309 */
1310struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1311 struct mem_cgroup *memcg)
1312{
1313 struct mem_cgroup_per_zone *mz;
bea8c150 1314 struct lruvec *lruvec;
925b7673 1315
bea8c150
HD
1316 if (mem_cgroup_disabled()) {
1317 lruvec = &zone->lruvec;
1318 goto out;
1319 }
925b7673
JW
1320
1321 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1322 lruvec = &mz->lruvec;
1323out:
1324 /*
1325 * Since a node can be onlined after the mem_cgroup was created,
1326 * we have to be prepared to initialize lruvec->zone here;
1327 * and if offlined then reonlined, we need to reinitialize it.
1328 */
1329 if (unlikely(lruvec->zone != zone))
1330 lruvec->zone = zone;
1331 return lruvec;
925b7673
JW
1332}
1333
08e552c6
KH
1334/*
1335 * Following LRU functions are allowed to be used without PCG_LOCK.
1336 * Operations are called by routine of global LRU independently from memcg.
1337 * What we have to take care of here is validness of pc->mem_cgroup.
1338 *
1339 * Changes to pc->mem_cgroup happens when
1340 * 1. charge
1341 * 2. moving account
1342 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1343 * It is added to LRU before charge.
1344 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1345 * When moving account, the page is not on LRU. It's isolated.
1346 */
4f98a2fe 1347
925b7673 1348/**
fa9add64 1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1350 * @page: the page
fa9add64 1351 * @zone: zone of the page
925b7673 1352 */
fa9add64 1353struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1354{
08e552c6 1355 struct mem_cgroup_per_zone *mz;
925b7673
JW
1356 struct mem_cgroup *memcg;
1357 struct page_cgroup *pc;
bea8c150 1358 struct lruvec *lruvec;
6d12e2d8 1359
bea8c150
HD
1360 if (mem_cgroup_disabled()) {
1361 lruvec = &zone->lruvec;
1362 goto out;
1363 }
925b7673 1364
08e552c6 1365 pc = lookup_page_cgroup(page);
38c5d72f 1366 memcg = pc->mem_cgroup;
7512102c
HD
1367
1368 /*
fa9add64 1369 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1370 * an uncharged page off lru does nothing to secure
1371 * its former mem_cgroup from sudden removal.
1372 *
1373 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 * under page_cgroup lock: between them, they make all uses
1375 * of pc->mem_cgroup safe.
1376 */
fa9add64 1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1378 pc->mem_cgroup = memcg = root_mem_cgroup;
1379
925b7673 1380 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1381 lruvec = &mz->lruvec;
1382out:
1383 /*
1384 * Since a node can be onlined after the mem_cgroup was created,
1385 * we have to be prepared to initialize lruvec->zone here;
1386 * and if offlined then reonlined, we need to reinitialize it.
1387 */
1388 if (unlikely(lruvec->zone != zone))
1389 lruvec->zone = zone;
1390 return lruvec;
08e552c6 1391}
b69408e8 1392
925b7673 1393/**
fa9add64
HD
1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395 * @lruvec: mem_cgroup per zone lru vector
1396 * @lru: index of lru list the page is sitting on
1397 * @nr_pages: positive when adding or negative when removing
925b7673 1398 *
fa9add64
HD
1399 * This function must be called when a page is added to or removed from an
1400 * lru list.
3f58a829 1401 */
fa9add64
HD
1402void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int nr_pages)
3f58a829
MK
1404{
1405 struct mem_cgroup_per_zone *mz;
fa9add64 1406 unsigned long *lru_size;
3f58a829
MK
1407
1408 if (mem_cgroup_disabled())
1409 return;
1410
fa9add64
HD
1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 lru_size = mz->lru_size + lru;
1413 *lru_size += nr_pages;
1414 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1415}
544122e5 1416
3e92041d 1417/*
c0ff4b85 1418 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1419 * hierarchy subtree
1420 */
c3ac9a8a
JW
1421bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 struct mem_cgroup *memcg)
3e92041d 1423{
91c63734
JW
1424 if (root_memcg == memcg)
1425 return true;
3a981f48 1426 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1427 return false;
c3ac9a8a
JW
1428 return css_is_ancestor(&memcg->css, &root_memcg->css);
1429}
1430
1431static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
1433{
1434 bool ret;
1435
91c63734 1436 rcu_read_lock();
c3ac9a8a 1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1438 rcu_read_unlock();
1439 return ret;
3e92041d
MH
1440}
1441
ffbdccf5
DR
1442bool task_in_mem_cgroup(struct task_struct *task,
1443 const struct mem_cgroup *memcg)
4c4a2214 1444{
0b7f569e 1445 struct mem_cgroup *curr = NULL;
158e0a2d 1446 struct task_struct *p;
ffbdccf5 1447 bool ret;
4c4a2214 1448
158e0a2d 1449 p = find_lock_task_mm(task);
de077d22
DR
1450 if (p) {
1451 curr = try_get_mem_cgroup_from_mm(p->mm);
1452 task_unlock(p);
1453 } else {
1454 /*
1455 * All threads may have already detached their mm's, but the oom
1456 * killer still needs to detect if they have already been oom
1457 * killed to prevent needlessly killing additional tasks.
1458 */
ffbdccf5 1459 rcu_read_lock();
de077d22
DR
1460 curr = mem_cgroup_from_task(task);
1461 if (curr)
1462 css_get(&curr->css);
ffbdccf5 1463 rcu_read_unlock();
de077d22 1464 }
0b7f569e 1465 if (!curr)
ffbdccf5 1466 return false;
d31f56db 1467 /*
c0ff4b85 1468 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1469 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1470 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1471 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1472 */
c0ff4b85 1473 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1474 css_put(&curr->css);
4c4a2214
DR
1475 return ret;
1476}
1477
c56d5c7d 1478int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1479{
9b272977 1480 unsigned long inactive_ratio;
14797e23 1481 unsigned long inactive;
9b272977 1482 unsigned long active;
c772be93 1483 unsigned long gb;
14797e23 1484
4d7dcca2
HD
1485 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1486 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1487
c772be93
KM
1488 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1489 if (gb)
1490 inactive_ratio = int_sqrt(10 * gb);
1491 else
1492 inactive_ratio = 1;
1493
9b272977 1494 return inactive * inactive_ratio < active;
14797e23
KM
1495}
1496
6d61ef40
BS
1497#define mem_cgroup_from_res_counter(counter, member) \
1498 container_of(counter, struct mem_cgroup, member)
1499
19942822 1500/**
9d11ea9f 1501 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1502 * @memcg: the memory cgroup
19942822 1503 *
9d11ea9f 1504 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1505 * pages.
19942822 1506 */
c0ff4b85 1507static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1508{
9d11ea9f
JW
1509 unsigned long long margin;
1510
c0ff4b85 1511 margin = res_counter_margin(&memcg->res);
9d11ea9f 1512 if (do_swap_account)
c0ff4b85 1513 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1514 return margin >> PAGE_SHIFT;
19942822
JW
1515}
1516
1f4c025b 1517int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1518{
a7885eb8 1519 /* root ? */
63876986 1520 if (!css_parent(&memcg->css))
a7885eb8
KM
1521 return vm_swappiness;
1522
bf1ff263 1523 return memcg->swappiness;
a7885eb8
KM
1524}
1525
619d094b
KH
1526/*
1527 * memcg->moving_account is used for checking possibility that some thread is
1528 * calling move_account(). When a thread on CPU-A starts moving pages under
1529 * a memcg, other threads should check memcg->moving_account under
1530 * rcu_read_lock(), like this:
1531 *
1532 * CPU-A CPU-B
1533 * rcu_read_lock()
1534 * memcg->moving_account+1 if (memcg->mocing_account)
1535 * take heavy locks.
1536 * synchronize_rcu() update something.
1537 * rcu_read_unlock()
1538 * start move here.
1539 */
4331f7d3
KH
1540
1541/* for quick checking without looking up memcg */
1542atomic_t memcg_moving __read_mostly;
1543
c0ff4b85 1544static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1545{
4331f7d3 1546 atomic_inc(&memcg_moving);
619d094b 1547 atomic_inc(&memcg->moving_account);
32047e2a
KH
1548 synchronize_rcu();
1549}
1550
c0ff4b85 1551static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1552{
619d094b
KH
1553 /*
1554 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1555 * We check NULL in callee rather than caller.
1556 */
4331f7d3
KH
1557 if (memcg) {
1558 atomic_dec(&memcg_moving);
619d094b 1559 atomic_dec(&memcg->moving_account);
4331f7d3 1560 }
32047e2a 1561}
619d094b 1562
32047e2a
KH
1563/*
1564 * 2 routines for checking "mem" is under move_account() or not.
1565 *
13fd1dd9
AM
1566 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1567 * is used for avoiding races in accounting. If true,
32047e2a
KH
1568 * pc->mem_cgroup may be overwritten.
1569 *
1570 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1571 * under hierarchy of moving cgroups. This is for
1572 * waiting at hith-memory prressure caused by "move".
1573 */
1574
13fd1dd9 1575static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1576{
1577 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1578 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1579}
4b534334 1580
c0ff4b85 1581static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1582{
2bd9bb20
KH
1583 struct mem_cgroup *from;
1584 struct mem_cgroup *to;
4b534334 1585 bool ret = false;
2bd9bb20
KH
1586 /*
1587 * Unlike task_move routines, we access mc.to, mc.from not under
1588 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1589 */
1590 spin_lock(&mc.lock);
1591 from = mc.from;
1592 to = mc.to;
1593 if (!from)
1594 goto unlock;
3e92041d 1595
c0ff4b85
R
1596 ret = mem_cgroup_same_or_subtree(memcg, from)
1597 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1598unlock:
1599 spin_unlock(&mc.lock);
4b534334
KH
1600 return ret;
1601}
1602
c0ff4b85 1603static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1604{
1605 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1606 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1607 DEFINE_WAIT(wait);
1608 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1609 /* moving charge context might have finished. */
1610 if (mc.moving_task)
1611 schedule();
1612 finish_wait(&mc.waitq, &wait);
1613 return true;
1614 }
1615 }
1616 return false;
1617}
1618
312734c0
KH
1619/*
1620 * Take this lock when
1621 * - a code tries to modify page's memcg while it's USED.
1622 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1623 * see mem_cgroup_stolen(), too.
312734c0
KH
1624 */
1625static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1626 unsigned long *flags)
1627{
1628 spin_lock_irqsave(&memcg->move_lock, *flags);
1629}
1630
1631static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1632 unsigned long *flags)
1633{
1634 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1635}
1636
58cf188e 1637#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1638/**
58cf188e 1639 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1640 * @memcg: The memory cgroup that went over limit
1641 * @p: Task that is going to be killed
1642 *
1643 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1644 * enabled
1645 */
1646void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1647{
1648 struct cgroup *task_cgrp;
1649 struct cgroup *mem_cgrp;
1650 /*
1651 * Need a buffer in BSS, can't rely on allocations. The code relies
1652 * on the assumption that OOM is serialized for memory controller.
1653 * If this assumption is broken, revisit this code.
1654 */
1655 static char memcg_name[PATH_MAX];
1656 int ret;
58cf188e
SZ
1657 struct mem_cgroup *iter;
1658 unsigned int i;
e222432b 1659
58cf188e 1660 if (!p)
e222432b
BS
1661 return;
1662
e222432b
BS
1663 rcu_read_lock();
1664
1665 mem_cgrp = memcg->css.cgroup;
1666 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1667
1668 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1669 if (ret < 0) {
1670 /*
1671 * Unfortunately, we are unable to convert to a useful name
1672 * But we'll still print out the usage information
1673 */
1674 rcu_read_unlock();
1675 goto done;
1676 }
1677 rcu_read_unlock();
1678
d045197f 1679 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1680
1681 rcu_read_lock();
1682 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1683 if (ret < 0) {
1684 rcu_read_unlock();
1685 goto done;
1686 }
1687 rcu_read_unlock();
1688
1689 /*
1690 * Continues from above, so we don't need an KERN_ level
1691 */
d045197f 1692 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1693done:
1694
d045197f 1695 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1696 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1697 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1698 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1699 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1700 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1701 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1702 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1703 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1704 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1705 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1706 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1707
1708 for_each_mem_cgroup_tree(iter, memcg) {
1709 pr_info("Memory cgroup stats");
1710
1711 rcu_read_lock();
1712 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1713 if (!ret)
1714 pr_cont(" for %s", memcg_name);
1715 rcu_read_unlock();
1716 pr_cont(":");
1717
1718 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1719 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1720 continue;
1721 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1722 K(mem_cgroup_read_stat(iter, i)));
1723 }
1724
1725 for (i = 0; i < NR_LRU_LISTS; i++)
1726 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1727 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1728
1729 pr_cont("\n");
1730 }
e222432b
BS
1731}
1732
81d39c20
KH
1733/*
1734 * This function returns the number of memcg under hierarchy tree. Returns
1735 * 1(self count) if no children.
1736 */
c0ff4b85 1737static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1738{
1739 int num = 0;
7d74b06f
KH
1740 struct mem_cgroup *iter;
1741
c0ff4b85 1742 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1743 num++;
81d39c20
KH
1744 return num;
1745}
1746
a63d83f4
DR
1747/*
1748 * Return the memory (and swap, if configured) limit for a memcg.
1749 */
9cbb78bb 1750static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1751{
1752 u64 limit;
a63d83f4 1753
f3e8eb70 1754 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1755
a63d83f4 1756 /*
9a5a8f19 1757 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1758 */
9a5a8f19
MH
1759 if (mem_cgroup_swappiness(memcg)) {
1760 u64 memsw;
1761
1762 limit += total_swap_pages << PAGE_SHIFT;
1763 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1764
1765 /*
1766 * If memsw is finite and limits the amount of swap space
1767 * available to this memcg, return that limit.
1768 */
1769 limit = min(limit, memsw);
1770 }
1771
1772 return limit;
a63d83f4
DR
1773}
1774
19965460
DR
1775static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1776 int order)
9cbb78bb
DR
1777{
1778 struct mem_cgroup *iter;
1779 unsigned long chosen_points = 0;
1780 unsigned long totalpages;
1781 unsigned int points = 0;
1782 struct task_struct *chosen = NULL;
1783
876aafbf 1784 /*
465adcf1
DR
1785 * If current has a pending SIGKILL or is exiting, then automatically
1786 * select it. The goal is to allow it to allocate so that it may
1787 * quickly exit and free its memory.
876aafbf 1788 */
465adcf1 1789 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1790 set_thread_flag(TIF_MEMDIE);
1791 return;
1792 }
1793
1794 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1795 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1796 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1797 struct css_task_iter it;
9cbb78bb
DR
1798 struct task_struct *task;
1799
72ec7029
TH
1800 css_task_iter_start(&iter->css, &it);
1801 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1802 switch (oom_scan_process_thread(task, totalpages, NULL,
1803 false)) {
1804 case OOM_SCAN_SELECT:
1805 if (chosen)
1806 put_task_struct(chosen);
1807 chosen = task;
1808 chosen_points = ULONG_MAX;
1809 get_task_struct(chosen);
1810 /* fall through */
1811 case OOM_SCAN_CONTINUE:
1812 continue;
1813 case OOM_SCAN_ABORT:
72ec7029 1814 css_task_iter_end(&it);
9cbb78bb
DR
1815 mem_cgroup_iter_break(memcg, iter);
1816 if (chosen)
1817 put_task_struct(chosen);
1818 return;
1819 case OOM_SCAN_OK:
1820 break;
1821 };
1822 points = oom_badness(task, memcg, NULL, totalpages);
1823 if (points > chosen_points) {
1824 if (chosen)
1825 put_task_struct(chosen);
1826 chosen = task;
1827 chosen_points = points;
1828 get_task_struct(chosen);
1829 }
1830 }
72ec7029 1831 css_task_iter_end(&it);
9cbb78bb
DR
1832 }
1833
1834 if (!chosen)
1835 return;
1836 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1837 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1838 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1839}
1840
5660048c
JW
1841static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1842 gfp_t gfp_mask,
1843 unsigned long flags)
1844{
1845 unsigned long total = 0;
1846 bool noswap = false;
1847 int loop;
1848
1849 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1850 noswap = true;
1851 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1852 noswap = true;
1853
1854 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1855 if (loop)
1856 drain_all_stock_async(memcg);
1857 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1858 /*
1859 * Allow limit shrinkers, which are triggered directly
1860 * by userspace, to catch signals and stop reclaim
1861 * after minimal progress, regardless of the margin.
1862 */
1863 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1864 break;
1865 if (mem_cgroup_margin(memcg))
1866 break;
1867 /*
1868 * If nothing was reclaimed after two attempts, there
1869 * may be no reclaimable pages in this hierarchy.
1870 */
1871 if (loop && !total)
1872 break;
1873 }
1874 return total;
1875}
1876
4d0c066d
KH
1877/**
1878 * test_mem_cgroup_node_reclaimable
dad7557e 1879 * @memcg: the target memcg
4d0c066d
KH
1880 * @nid: the node ID to be checked.
1881 * @noswap : specify true here if the user wants flle only information.
1882 *
1883 * This function returns whether the specified memcg contains any
1884 * reclaimable pages on a node. Returns true if there are any reclaimable
1885 * pages in the node.
1886 */
c0ff4b85 1887static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1888 int nid, bool noswap)
1889{
c0ff4b85 1890 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1891 return true;
1892 if (noswap || !total_swap_pages)
1893 return false;
c0ff4b85 1894 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1895 return true;
1896 return false;
1897
1898}
889976db
YH
1899#if MAX_NUMNODES > 1
1900
1901/*
1902 * Always updating the nodemask is not very good - even if we have an empty
1903 * list or the wrong list here, we can start from some node and traverse all
1904 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1905 *
1906 */
c0ff4b85 1907static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1908{
1909 int nid;
453a9bf3
KH
1910 /*
1911 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1912 * pagein/pageout changes since the last update.
1913 */
c0ff4b85 1914 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1915 return;
c0ff4b85 1916 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1917 return;
1918
889976db 1919 /* make a nodemask where this memcg uses memory from */
31aaea4a 1920 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1921
31aaea4a 1922 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1923
c0ff4b85
R
1924 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1925 node_clear(nid, memcg->scan_nodes);
889976db 1926 }
453a9bf3 1927
c0ff4b85
R
1928 atomic_set(&memcg->numainfo_events, 0);
1929 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1930}
1931
1932/*
1933 * Selecting a node where we start reclaim from. Because what we need is just
1934 * reducing usage counter, start from anywhere is O,K. Considering
1935 * memory reclaim from current node, there are pros. and cons.
1936 *
1937 * Freeing memory from current node means freeing memory from a node which
1938 * we'll use or we've used. So, it may make LRU bad. And if several threads
1939 * hit limits, it will see a contention on a node. But freeing from remote
1940 * node means more costs for memory reclaim because of memory latency.
1941 *
1942 * Now, we use round-robin. Better algorithm is welcomed.
1943 */
c0ff4b85 1944int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1945{
1946 int node;
1947
c0ff4b85
R
1948 mem_cgroup_may_update_nodemask(memcg);
1949 node = memcg->last_scanned_node;
889976db 1950
c0ff4b85 1951 node = next_node(node, memcg->scan_nodes);
889976db 1952 if (node == MAX_NUMNODES)
c0ff4b85 1953 node = first_node(memcg->scan_nodes);
889976db
YH
1954 /*
1955 * We call this when we hit limit, not when pages are added to LRU.
1956 * No LRU may hold pages because all pages are UNEVICTABLE or
1957 * memcg is too small and all pages are not on LRU. In that case,
1958 * we use curret node.
1959 */
1960 if (unlikely(node == MAX_NUMNODES))
1961 node = numa_node_id();
1962
c0ff4b85 1963 memcg->last_scanned_node = node;
889976db
YH
1964 return node;
1965}
1966
4d0c066d
KH
1967/*
1968 * Check all nodes whether it contains reclaimable pages or not.
1969 * For quick scan, we make use of scan_nodes. This will allow us to skip
1970 * unused nodes. But scan_nodes is lazily updated and may not cotain
1971 * enough new information. We need to do double check.
1972 */
6bbda35c 1973static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1974{
1975 int nid;
1976
1977 /*
1978 * quick check...making use of scan_node.
1979 * We can skip unused nodes.
1980 */
c0ff4b85
R
1981 if (!nodes_empty(memcg->scan_nodes)) {
1982 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1983 nid < MAX_NUMNODES;
c0ff4b85 1984 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1985
c0ff4b85 1986 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1987 return true;
1988 }
1989 }
1990 /*
1991 * Check rest of nodes.
1992 */
31aaea4a 1993 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1994 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1995 continue;
c0ff4b85 1996 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1997 return true;
1998 }
1999 return false;
2000}
2001
889976db 2002#else
c0ff4b85 2003int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2004{
2005 return 0;
2006}
4d0c066d 2007
6bbda35c 2008static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2009{
c0ff4b85 2010 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2011}
889976db
YH
2012#endif
2013
5660048c
JW
2014static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2015 struct zone *zone,
2016 gfp_t gfp_mask,
2017 unsigned long *total_scanned)
6d61ef40 2018{
9f3a0d09 2019 struct mem_cgroup *victim = NULL;
5660048c 2020 int total = 0;
04046e1a 2021 int loop = 0;
9d11ea9f 2022 unsigned long excess;
185efc0f 2023 unsigned long nr_scanned;
527a5ec9
JW
2024 struct mem_cgroup_reclaim_cookie reclaim = {
2025 .zone = zone,
2026 .priority = 0,
2027 };
9d11ea9f 2028
c0ff4b85 2029 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2030
4e416953 2031 while (1) {
527a5ec9 2032 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2033 if (!victim) {
04046e1a 2034 loop++;
4e416953
BS
2035 if (loop >= 2) {
2036 /*
2037 * If we have not been able to reclaim
2038 * anything, it might because there are
2039 * no reclaimable pages under this hierarchy
2040 */
5660048c 2041 if (!total)
4e416953 2042 break;
4e416953 2043 /*
25985edc 2044 * We want to do more targeted reclaim.
4e416953
BS
2045 * excess >> 2 is not to excessive so as to
2046 * reclaim too much, nor too less that we keep
2047 * coming back to reclaim from this cgroup
2048 */
2049 if (total >= (excess >> 2) ||
9f3a0d09 2050 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2051 break;
4e416953 2052 }
9f3a0d09 2053 continue;
4e416953 2054 }
5660048c 2055 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2056 continue;
5660048c
JW
2057 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2058 zone, &nr_scanned);
2059 *total_scanned += nr_scanned;
2060 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2061 break;
6d61ef40 2062 }
9f3a0d09 2063 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2064 return total;
6d61ef40
BS
2065}
2066
867578cb
KH
2067/*
2068 * Check OOM-Killer is already running under our hierarchy.
2069 * If someone is running, return false.
1af8efe9 2070 * Has to be called with memcg_oom_lock
867578cb 2071 */
c0ff4b85 2072static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2073{
79dfdacc 2074 struct mem_cgroup *iter, *failed = NULL;
a636b327 2075
9f3a0d09 2076 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2077 if (iter->oom_lock) {
79dfdacc
MH
2078 /*
2079 * this subtree of our hierarchy is already locked
2080 * so we cannot give a lock.
2081 */
79dfdacc 2082 failed = iter;
9f3a0d09
JW
2083 mem_cgroup_iter_break(memcg, iter);
2084 break;
23751be0
JW
2085 } else
2086 iter->oom_lock = true;
7d74b06f 2087 }
867578cb 2088
79dfdacc 2089 if (!failed)
23751be0 2090 return true;
79dfdacc
MH
2091
2092 /*
2093 * OK, we failed to lock the whole subtree so we have to clean up
2094 * what we set up to the failing subtree
2095 */
9f3a0d09 2096 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2097 if (iter == failed) {
9f3a0d09
JW
2098 mem_cgroup_iter_break(memcg, iter);
2099 break;
79dfdacc
MH
2100 }
2101 iter->oom_lock = false;
2102 }
23751be0 2103 return false;
a636b327 2104}
0b7f569e 2105
79dfdacc 2106/*
1af8efe9 2107 * Has to be called with memcg_oom_lock
79dfdacc 2108 */
c0ff4b85 2109static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2110{
7d74b06f
KH
2111 struct mem_cgroup *iter;
2112
c0ff4b85 2113 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2114 iter->oom_lock = false;
2115 return 0;
2116}
2117
c0ff4b85 2118static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2119{
2120 struct mem_cgroup *iter;
2121
c0ff4b85 2122 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2123 atomic_inc(&iter->under_oom);
2124}
2125
c0ff4b85 2126static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2127{
2128 struct mem_cgroup *iter;
2129
867578cb
KH
2130 /*
2131 * When a new child is created while the hierarchy is under oom,
2132 * mem_cgroup_oom_lock() may not be called. We have to use
2133 * atomic_add_unless() here.
2134 */
c0ff4b85 2135 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2136 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2137}
2138
1af8efe9 2139static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2140static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2141
dc98df5a 2142struct oom_wait_info {
d79154bb 2143 struct mem_cgroup *memcg;
dc98df5a
KH
2144 wait_queue_t wait;
2145};
2146
2147static int memcg_oom_wake_function(wait_queue_t *wait,
2148 unsigned mode, int sync, void *arg)
2149{
d79154bb
HD
2150 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2151 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2152 struct oom_wait_info *oom_wait_info;
2153
2154 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2155 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2156
dc98df5a 2157 /*
d79154bb 2158 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2159 * Then we can use css_is_ancestor without taking care of RCU.
2160 */
c0ff4b85
R
2161 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2162 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2163 return 0;
dc98df5a
KH
2164 return autoremove_wake_function(wait, mode, sync, arg);
2165}
2166
c0ff4b85 2167static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2168{
c0ff4b85
R
2169 /* for filtering, pass "memcg" as argument. */
2170 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2171}
2172
c0ff4b85 2173static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2174{
c0ff4b85
R
2175 if (memcg && atomic_read(&memcg->under_oom))
2176 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2177}
2178
867578cb
KH
2179/*
2180 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2181 */
6bbda35c
KS
2182static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2183 int order)
0b7f569e 2184{
dc98df5a 2185 struct oom_wait_info owait;
3c11ecf4 2186 bool locked, need_to_kill;
867578cb 2187
d79154bb 2188 owait.memcg = memcg;
dc98df5a
KH
2189 owait.wait.flags = 0;
2190 owait.wait.func = memcg_oom_wake_function;
2191 owait.wait.private = current;
2192 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2193 need_to_kill = true;
c0ff4b85 2194 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2195
c0ff4b85 2196 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2197 spin_lock(&memcg_oom_lock);
c0ff4b85 2198 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2199 /*
2200 * Even if signal_pending(), we can't quit charge() loop without
2201 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2202 * under OOM is always welcomed, use TASK_KILLABLE here.
2203 */
3c11ecf4 2204 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2205 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2206 need_to_kill = false;
2207 if (locked)
c0ff4b85 2208 mem_cgroup_oom_notify(memcg);
1af8efe9 2209 spin_unlock(&memcg_oom_lock);
867578cb 2210
3c11ecf4
KH
2211 if (need_to_kill) {
2212 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2213 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2214 } else {
867578cb 2215 schedule();
dc98df5a 2216 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2217 }
1af8efe9 2218 spin_lock(&memcg_oom_lock);
79dfdacc 2219 if (locked)
c0ff4b85
R
2220 mem_cgroup_oom_unlock(memcg);
2221 memcg_wakeup_oom(memcg);
1af8efe9 2222 spin_unlock(&memcg_oom_lock);
867578cb 2223
c0ff4b85 2224 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2225
867578cb
KH
2226 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2227 return false;
2228 /* Give chance to dying process */
715a5ee8 2229 schedule_timeout_uninterruptible(1);
867578cb 2230 return true;
0b7f569e
KH
2231}
2232
d69b042f
BS
2233/*
2234 * Currently used to update mapped file statistics, but the routine can be
2235 * generalized to update other statistics as well.
32047e2a
KH
2236 *
2237 * Notes: Race condition
2238 *
2239 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2240 * it tends to be costly. But considering some conditions, we doesn't need
2241 * to do so _always_.
2242 *
2243 * Considering "charge", lock_page_cgroup() is not required because all
2244 * file-stat operations happen after a page is attached to radix-tree. There
2245 * are no race with "charge".
2246 *
2247 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2248 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2249 * if there are race with "uncharge". Statistics itself is properly handled
2250 * by flags.
2251 *
2252 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2253 * small, we check mm->moving_account and detect there are possibility of race
2254 * If there is, we take a lock.
d69b042f 2255 */
26174efd 2256
89c06bd5
KH
2257void __mem_cgroup_begin_update_page_stat(struct page *page,
2258 bool *locked, unsigned long *flags)
2259{
2260 struct mem_cgroup *memcg;
2261 struct page_cgroup *pc;
2262
2263 pc = lookup_page_cgroup(page);
2264again:
2265 memcg = pc->mem_cgroup;
2266 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2267 return;
2268 /*
2269 * If this memory cgroup is not under account moving, we don't
da92c47d 2270 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2271 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2272 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2273 */
13fd1dd9 2274 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2275 return;
2276
2277 move_lock_mem_cgroup(memcg, flags);
2278 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2279 move_unlock_mem_cgroup(memcg, flags);
2280 goto again;
2281 }
2282 *locked = true;
2283}
2284
2285void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2286{
2287 struct page_cgroup *pc = lookup_page_cgroup(page);
2288
2289 /*
2290 * It's guaranteed that pc->mem_cgroup never changes while
2291 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2292 * should take move_lock_mem_cgroup().
89c06bd5
KH
2293 */
2294 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2295}
2296
2a7106f2
GT
2297void mem_cgroup_update_page_stat(struct page *page,
2298 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2299{
c0ff4b85 2300 struct mem_cgroup *memcg;
32047e2a 2301 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2302 unsigned long uninitialized_var(flags);
d69b042f 2303
cfa44946 2304 if (mem_cgroup_disabled())
d69b042f 2305 return;
89c06bd5 2306
c0ff4b85
R
2307 memcg = pc->mem_cgroup;
2308 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2309 return;
26174efd 2310
26174efd 2311 switch (idx) {
2a7106f2 2312 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2313 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2314 break;
2315 default:
2316 BUG();
8725d541 2317 }
d69b042f 2318
c0ff4b85 2319 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2320}
26174efd 2321
cdec2e42
KH
2322/*
2323 * size of first charge trial. "32" comes from vmscan.c's magic value.
2324 * TODO: maybe necessary to use big numbers in big irons.
2325 */
7ec99d62 2326#define CHARGE_BATCH 32U
cdec2e42
KH
2327struct memcg_stock_pcp {
2328 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2329 unsigned int nr_pages;
cdec2e42 2330 struct work_struct work;
26fe6168 2331 unsigned long flags;
a0db00fc 2332#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2333};
2334static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2335static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2336
a0956d54
SS
2337/**
2338 * consume_stock: Try to consume stocked charge on this cpu.
2339 * @memcg: memcg to consume from.
2340 * @nr_pages: how many pages to charge.
2341 *
2342 * The charges will only happen if @memcg matches the current cpu's memcg
2343 * stock, and at least @nr_pages are available in that stock. Failure to
2344 * service an allocation will refill the stock.
2345 *
2346 * returns true if successful, false otherwise.
cdec2e42 2347 */
a0956d54 2348static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2349{
2350 struct memcg_stock_pcp *stock;
2351 bool ret = true;
2352
a0956d54
SS
2353 if (nr_pages > CHARGE_BATCH)
2354 return false;
2355
cdec2e42 2356 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2357 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2358 stock->nr_pages -= nr_pages;
cdec2e42
KH
2359 else /* need to call res_counter_charge */
2360 ret = false;
2361 put_cpu_var(memcg_stock);
2362 return ret;
2363}
2364
2365/*
2366 * Returns stocks cached in percpu to res_counter and reset cached information.
2367 */
2368static void drain_stock(struct memcg_stock_pcp *stock)
2369{
2370 struct mem_cgroup *old = stock->cached;
2371
11c9ea4e
JW
2372 if (stock->nr_pages) {
2373 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2374
2375 res_counter_uncharge(&old->res, bytes);
cdec2e42 2376 if (do_swap_account)
11c9ea4e
JW
2377 res_counter_uncharge(&old->memsw, bytes);
2378 stock->nr_pages = 0;
cdec2e42
KH
2379 }
2380 stock->cached = NULL;
cdec2e42
KH
2381}
2382
2383/*
2384 * This must be called under preempt disabled or must be called by
2385 * a thread which is pinned to local cpu.
2386 */
2387static void drain_local_stock(struct work_struct *dummy)
2388{
2389 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2390 drain_stock(stock);
26fe6168 2391 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2392}
2393
e4777496
MH
2394static void __init memcg_stock_init(void)
2395{
2396 int cpu;
2397
2398 for_each_possible_cpu(cpu) {
2399 struct memcg_stock_pcp *stock =
2400 &per_cpu(memcg_stock, cpu);
2401 INIT_WORK(&stock->work, drain_local_stock);
2402 }
2403}
2404
cdec2e42
KH
2405/*
2406 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2407 * This will be consumed by consume_stock() function, later.
cdec2e42 2408 */
c0ff4b85 2409static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2410{
2411 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2412
c0ff4b85 2413 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2414 drain_stock(stock);
c0ff4b85 2415 stock->cached = memcg;
cdec2e42 2416 }
11c9ea4e 2417 stock->nr_pages += nr_pages;
cdec2e42
KH
2418 put_cpu_var(memcg_stock);
2419}
2420
2421/*
c0ff4b85 2422 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2423 * of the hierarchy under it. sync flag says whether we should block
2424 * until the work is done.
cdec2e42 2425 */
c0ff4b85 2426static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2427{
26fe6168 2428 int cpu, curcpu;
d38144b7 2429
cdec2e42 2430 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2431 get_online_cpus();
5af12d0e 2432 curcpu = get_cpu();
cdec2e42
KH
2433 for_each_online_cpu(cpu) {
2434 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2435 struct mem_cgroup *memcg;
26fe6168 2436
c0ff4b85
R
2437 memcg = stock->cached;
2438 if (!memcg || !stock->nr_pages)
26fe6168 2439 continue;
c0ff4b85 2440 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2441 continue;
d1a05b69
MH
2442 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2443 if (cpu == curcpu)
2444 drain_local_stock(&stock->work);
2445 else
2446 schedule_work_on(cpu, &stock->work);
2447 }
cdec2e42 2448 }
5af12d0e 2449 put_cpu();
d38144b7
MH
2450
2451 if (!sync)
2452 goto out;
2453
2454 for_each_online_cpu(cpu) {
2455 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2456 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2457 flush_work(&stock->work);
2458 }
2459out:
cdec2e42 2460 put_online_cpus();
d38144b7
MH
2461}
2462
2463/*
2464 * Tries to drain stocked charges in other cpus. This function is asynchronous
2465 * and just put a work per cpu for draining localy on each cpu. Caller can
2466 * expects some charges will be back to res_counter later but cannot wait for
2467 * it.
2468 */
c0ff4b85 2469static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2470{
9f50fad6
MH
2471 /*
2472 * If someone calls draining, avoid adding more kworker runs.
2473 */
2474 if (!mutex_trylock(&percpu_charge_mutex))
2475 return;
c0ff4b85 2476 drain_all_stock(root_memcg, false);
9f50fad6 2477 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2478}
2479
2480/* This is a synchronous drain interface. */
c0ff4b85 2481static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2482{
2483 /* called when force_empty is called */
9f50fad6 2484 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2485 drain_all_stock(root_memcg, true);
9f50fad6 2486 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2487}
2488
711d3d2c
KH
2489/*
2490 * This function drains percpu counter value from DEAD cpu and
2491 * move it to local cpu. Note that this function can be preempted.
2492 */
c0ff4b85 2493static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2494{
2495 int i;
2496
c0ff4b85 2497 spin_lock(&memcg->pcp_counter_lock);
6104621d 2498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2499 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2500
c0ff4b85
R
2501 per_cpu(memcg->stat->count[i], cpu) = 0;
2502 memcg->nocpu_base.count[i] += x;
711d3d2c 2503 }
e9f8974f 2504 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2505 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2506
c0ff4b85
R
2507 per_cpu(memcg->stat->events[i], cpu) = 0;
2508 memcg->nocpu_base.events[i] += x;
e9f8974f 2509 }
c0ff4b85 2510 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2511}
2512
2513static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2514 unsigned long action,
2515 void *hcpu)
2516{
2517 int cpu = (unsigned long)hcpu;
2518 struct memcg_stock_pcp *stock;
711d3d2c 2519 struct mem_cgroup *iter;
cdec2e42 2520
619d094b 2521 if (action == CPU_ONLINE)
1489ebad 2522 return NOTIFY_OK;
1489ebad 2523
d833049b 2524 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2525 return NOTIFY_OK;
711d3d2c 2526
9f3a0d09 2527 for_each_mem_cgroup(iter)
711d3d2c
KH
2528 mem_cgroup_drain_pcp_counter(iter, cpu);
2529
cdec2e42
KH
2530 stock = &per_cpu(memcg_stock, cpu);
2531 drain_stock(stock);
2532 return NOTIFY_OK;
2533}
2534
4b534334
KH
2535
2536/* See __mem_cgroup_try_charge() for details */
2537enum {
2538 CHARGE_OK, /* success */
2539 CHARGE_RETRY, /* need to retry but retry is not bad */
2540 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2541 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2542 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2543};
2544
c0ff4b85 2545static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2546 unsigned int nr_pages, unsigned int min_pages,
2547 bool oom_check)
4b534334 2548{
7ec99d62 2549 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2550 struct mem_cgroup *mem_over_limit;
2551 struct res_counter *fail_res;
2552 unsigned long flags = 0;
2553 int ret;
2554
c0ff4b85 2555 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2556
2557 if (likely(!ret)) {
2558 if (!do_swap_account)
2559 return CHARGE_OK;
c0ff4b85 2560 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2561 if (likely(!ret))
2562 return CHARGE_OK;
2563
c0ff4b85 2564 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2565 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2566 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2567 } else
2568 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2569 /*
9221edb7
JW
2570 * Never reclaim on behalf of optional batching, retry with a
2571 * single page instead.
2572 */
4c9c5359 2573 if (nr_pages > min_pages)
4b534334
KH
2574 return CHARGE_RETRY;
2575
2576 if (!(gfp_mask & __GFP_WAIT))
2577 return CHARGE_WOULDBLOCK;
2578
4c9c5359
SS
2579 if (gfp_mask & __GFP_NORETRY)
2580 return CHARGE_NOMEM;
2581
5660048c 2582 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2583 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2584 return CHARGE_RETRY;
4b534334 2585 /*
19942822
JW
2586 * Even though the limit is exceeded at this point, reclaim
2587 * may have been able to free some pages. Retry the charge
2588 * before killing the task.
2589 *
2590 * Only for regular pages, though: huge pages are rather
2591 * unlikely to succeed so close to the limit, and we fall back
2592 * to regular pages anyway in case of failure.
4b534334 2593 */
4c9c5359 2594 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2595 return CHARGE_RETRY;
2596
2597 /*
2598 * At task move, charge accounts can be doubly counted. So, it's
2599 * better to wait until the end of task_move if something is going on.
2600 */
2601 if (mem_cgroup_wait_acct_move(mem_over_limit))
2602 return CHARGE_RETRY;
2603
2604 /* If we don't need to call oom-killer at el, return immediately */
2605 if (!oom_check)
2606 return CHARGE_NOMEM;
2607 /* check OOM */
e845e199 2608 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2609 return CHARGE_OOM_DIE;
2610
2611 return CHARGE_RETRY;
2612}
2613
f817ed48 2614/*
38c5d72f
KH
2615 * __mem_cgroup_try_charge() does
2616 * 1. detect memcg to be charged against from passed *mm and *ptr,
2617 * 2. update res_counter
2618 * 3. call memory reclaim if necessary.
2619 *
2620 * In some special case, if the task is fatal, fatal_signal_pending() or
2621 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2622 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2623 * as possible without any hazards. 2: all pages should have a valid
2624 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2625 * pointer, that is treated as a charge to root_mem_cgroup.
2626 *
2627 * So __mem_cgroup_try_charge() will return
2628 * 0 ... on success, filling *ptr with a valid memcg pointer.
2629 * -ENOMEM ... charge failure because of resource limits.
2630 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2631 *
2632 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2633 * the oom-killer can be invoked.
8a9f3ccd 2634 */
f817ed48 2635static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2636 gfp_t gfp_mask,
7ec99d62 2637 unsigned int nr_pages,
c0ff4b85 2638 struct mem_cgroup **ptr,
7ec99d62 2639 bool oom)
8a9f3ccd 2640{
7ec99d62 2641 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2642 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2643 struct mem_cgroup *memcg = NULL;
4b534334 2644 int ret;
a636b327 2645
867578cb
KH
2646 /*
2647 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2648 * in system level. So, allow to go ahead dying process in addition to
2649 * MEMDIE process.
2650 */
2651 if (unlikely(test_thread_flag(TIF_MEMDIE)
2652 || fatal_signal_pending(current)))
2653 goto bypass;
a636b327 2654
8a9f3ccd 2655 /*
3be91277
HD
2656 * We always charge the cgroup the mm_struct belongs to.
2657 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2658 * thread group leader migrates. It's possible that mm is not
24467cac 2659 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2660 */
c0ff4b85 2661 if (!*ptr && !mm)
38c5d72f 2662 *ptr = root_mem_cgroup;
f75ca962 2663again:
c0ff4b85
R
2664 if (*ptr) { /* css should be a valid one */
2665 memcg = *ptr;
c0ff4b85 2666 if (mem_cgroup_is_root(memcg))
f75ca962 2667 goto done;
a0956d54 2668 if (consume_stock(memcg, nr_pages))
f75ca962 2669 goto done;
c0ff4b85 2670 css_get(&memcg->css);
4b534334 2671 } else {
f75ca962 2672 struct task_struct *p;
54595fe2 2673
f75ca962
KH
2674 rcu_read_lock();
2675 p = rcu_dereference(mm->owner);
f75ca962 2676 /*
ebb76ce1 2677 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2678 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2679 * race with swapoff. Then, we have small risk of mis-accouning.
2680 * But such kind of mis-account by race always happens because
2681 * we don't have cgroup_mutex(). It's overkill and we allo that
2682 * small race, here.
2683 * (*) swapoff at el will charge against mm-struct not against
2684 * task-struct. So, mm->owner can be NULL.
f75ca962 2685 */
c0ff4b85 2686 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2687 if (!memcg)
2688 memcg = root_mem_cgroup;
2689 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2690 rcu_read_unlock();
2691 goto done;
2692 }
a0956d54 2693 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2694 /*
2695 * It seems dagerous to access memcg without css_get().
2696 * But considering how consume_stok works, it's not
2697 * necessary. If consume_stock success, some charges
2698 * from this memcg are cached on this cpu. So, we
2699 * don't need to call css_get()/css_tryget() before
2700 * calling consume_stock().
2701 */
2702 rcu_read_unlock();
2703 goto done;
2704 }
2705 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2706 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2707 rcu_read_unlock();
2708 goto again;
2709 }
2710 rcu_read_unlock();
2711 }
8a9f3ccd 2712
4b534334
KH
2713 do {
2714 bool oom_check;
7a81b88c 2715
4b534334 2716 /* If killed, bypass charge */
f75ca962 2717 if (fatal_signal_pending(current)) {
c0ff4b85 2718 css_put(&memcg->css);
4b534334 2719 goto bypass;
f75ca962 2720 }
6d61ef40 2721
4b534334
KH
2722 oom_check = false;
2723 if (oom && !nr_oom_retries) {
2724 oom_check = true;
2725 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2726 }
66e1707b 2727
4c9c5359
SS
2728 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2729 oom_check);
4b534334
KH
2730 switch (ret) {
2731 case CHARGE_OK:
2732 break;
2733 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2734 batch = nr_pages;
c0ff4b85
R
2735 css_put(&memcg->css);
2736 memcg = NULL;
f75ca962 2737 goto again;
4b534334 2738 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2739 css_put(&memcg->css);
4b534334
KH
2740 goto nomem;
2741 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2742 if (!oom) {
c0ff4b85 2743 css_put(&memcg->css);
867578cb 2744 goto nomem;
f75ca962 2745 }
4b534334
KH
2746 /* If oom, we never return -ENOMEM */
2747 nr_oom_retries--;
2748 break;
2749 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2750 css_put(&memcg->css);
867578cb 2751 goto bypass;
66e1707b 2752 }
4b534334
KH
2753 } while (ret != CHARGE_OK);
2754
7ec99d62 2755 if (batch > nr_pages)
c0ff4b85
R
2756 refill_stock(memcg, batch - nr_pages);
2757 css_put(&memcg->css);
0c3e73e8 2758done:
c0ff4b85 2759 *ptr = memcg;
7a81b88c
KH
2760 return 0;
2761nomem:
c0ff4b85 2762 *ptr = NULL;
7a81b88c 2763 return -ENOMEM;
867578cb 2764bypass:
38c5d72f
KH
2765 *ptr = root_mem_cgroup;
2766 return -EINTR;
7a81b88c 2767}
8a9f3ccd 2768
a3032a2c
DN
2769/*
2770 * Somemtimes we have to undo a charge we got by try_charge().
2771 * This function is for that and do uncharge, put css's refcnt.
2772 * gotten by try_charge().
2773 */
c0ff4b85 2774static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2775 unsigned int nr_pages)
a3032a2c 2776{
c0ff4b85 2777 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2778 unsigned long bytes = nr_pages * PAGE_SIZE;
2779
c0ff4b85 2780 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2781 if (do_swap_account)
c0ff4b85 2782 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2783 }
854ffa8d
DN
2784}
2785
d01dd17f
KH
2786/*
2787 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2788 * This is useful when moving usage to parent cgroup.
2789 */
2790static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2791 unsigned int nr_pages)
2792{
2793 unsigned long bytes = nr_pages * PAGE_SIZE;
2794
2795 if (mem_cgroup_is_root(memcg))
2796 return;
2797
2798 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2799 if (do_swap_account)
2800 res_counter_uncharge_until(&memcg->memsw,
2801 memcg->memsw.parent, bytes);
2802}
2803
a3b2d692
KH
2804/*
2805 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2806 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2807 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2808 * called against removed memcg.)
a3b2d692
KH
2809 */
2810static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2811{
2812 struct cgroup_subsys_state *css;
2813
2814 /* ID 0 is unused ID */
2815 if (!id)
2816 return NULL;
2817 css = css_lookup(&mem_cgroup_subsys, id);
2818 if (!css)
2819 return NULL;
b2145145 2820 return mem_cgroup_from_css(css);
a3b2d692
KH
2821}
2822
e42d9d5d 2823struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2824{
c0ff4b85 2825 struct mem_cgroup *memcg = NULL;
3c776e64 2826 struct page_cgroup *pc;
a3b2d692 2827 unsigned short id;
b5a84319
KH
2828 swp_entry_t ent;
2829
3c776e64
DN
2830 VM_BUG_ON(!PageLocked(page));
2831
3c776e64 2832 pc = lookup_page_cgroup(page);
c0bd3f63 2833 lock_page_cgroup(pc);
a3b2d692 2834 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2835 memcg = pc->mem_cgroup;
2836 if (memcg && !css_tryget(&memcg->css))
2837 memcg = NULL;
e42d9d5d 2838 } else if (PageSwapCache(page)) {
3c776e64 2839 ent.val = page_private(page);
9fb4b7cc 2840 id = lookup_swap_cgroup_id(ent);
a3b2d692 2841 rcu_read_lock();
c0ff4b85
R
2842 memcg = mem_cgroup_lookup(id);
2843 if (memcg && !css_tryget(&memcg->css))
2844 memcg = NULL;
a3b2d692 2845 rcu_read_unlock();
3c776e64 2846 }
c0bd3f63 2847 unlock_page_cgroup(pc);
c0ff4b85 2848 return memcg;
b5a84319
KH
2849}
2850
c0ff4b85 2851static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2852 struct page *page,
7ec99d62 2853 unsigned int nr_pages,
9ce70c02
HD
2854 enum charge_type ctype,
2855 bool lrucare)
7a81b88c 2856{
ce587e65 2857 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2858 struct zone *uninitialized_var(zone);
fa9add64 2859 struct lruvec *lruvec;
9ce70c02 2860 bool was_on_lru = false;
b2402857 2861 bool anon;
9ce70c02 2862
ca3e0214 2863 lock_page_cgroup(pc);
90deb788 2864 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2865 /*
2866 * we don't need page_cgroup_lock about tail pages, becase they are not
2867 * accessed by any other context at this point.
2868 */
9ce70c02
HD
2869
2870 /*
2871 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2872 * may already be on some other mem_cgroup's LRU. Take care of it.
2873 */
2874 if (lrucare) {
2875 zone = page_zone(page);
2876 spin_lock_irq(&zone->lru_lock);
2877 if (PageLRU(page)) {
fa9add64 2878 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2879 ClearPageLRU(page);
fa9add64 2880 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2881 was_on_lru = true;
2882 }
2883 }
2884
c0ff4b85 2885 pc->mem_cgroup = memcg;
261fb61a
KH
2886 /*
2887 * We access a page_cgroup asynchronously without lock_page_cgroup().
2888 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2889 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2890 * before USED bit, we need memory barrier here.
2891 * See mem_cgroup_add_lru_list(), etc.
2892 */
08e552c6 2893 smp_wmb();
b2402857 2894 SetPageCgroupUsed(pc);
3be91277 2895
9ce70c02
HD
2896 if (lrucare) {
2897 if (was_on_lru) {
fa9add64 2898 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2899 VM_BUG_ON(PageLRU(page));
2900 SetPageLRU(page);
fa9add64 2901 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2902 }
2903 spin_unlock_irq(&zone->lru_lock);
2904 }
2905
41326c17 2906 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2907 anon = true;
2908 else
2909 anon = false;
2910
b070e65c 2911 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2912 unlock_page_cgroup(pc);
9ce70c02 2913
430e4863
KH
2914 /*
2915 * "charge_statistics" updated event counter. Then, check it.
2916 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2917 * if they exceeds softlimit.
2918 */
c0ff4b85 2919 memcg_check_events(memcg, page);
7a81b88c 2920}
66e1707b 2921
7cf27982
GC
2922static DEFINE_MUTEX(set_limit_mutex);
2923
7ae1e1d0
GC
2924#ifdef CONFIG_MEMCG_KMEM
2925static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2926{
2927 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2928 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2929}
2930
1f458cbf
GC
2931/*
2932 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2933 * in the memcg_cache_params struct.
2934 */
2935static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2936{
2937 struct kmem_cache *cachep;
2938
2939 VM_BUG_ON(p->is_root_cache);
2940 cachep = p->root_cache;
2941 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2942}
2943
749c5415 2944#ifdef CONFIG_SLABINFO
182446d0
TH
2945static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2946 struct cftype *cft, struct seq_file *m)
749c5415 2947{
182446d0 2948 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2949 struct memcg_cache_params *params;
2950
2951 if (!memcg_can_account_kmem(memcg))
2952 return -EIO;
2953
2954 print_slabinfo_header(m);
2955
2956 mutex_lock(&memcg->slab_caches_mutex);
2957 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2958 cache_show(memcg_params_to_cache(params), m);
2959 mutex_unlock(&memcg->slab_caches_mutex);
2960
2961 return 0;
2962}
2963#endif
2964
7ae1e1d0
GC
2965static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2966{
2967 struct res_counter *fail_res;
2968 struct mem_cgroup *_memcg;
2969 int ret = 0;
2970 bool may_oom;
2971
2972 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2973 if (ret)
2974 return ret;
2975
2976 /*
2977 * Conditions under which we can wait for the oom_killer. Those are
2978 * the same conditions tested by the core page allocator
2979 */
2980 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2981
2982 _memcg = memcg;
2983 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2984 &_memcg, may_oom);
2985
2986 if (ret == -EINTR) {
2987 /*
2988 * __mem_cgroup_try_charge() chosed to bypass to root due to
2989 * OOM kill or fatal signal. Since our only options are to
2990 * either fail the allocation or charge it to this cgroup, do
2991 * it as a temporary condition. But we can't fail. From a
2992 * kmem/slab perspective, the cache has already been selected,
2993 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2994 * our minds.
2995 *
2996 * This condition will only trigger if the task entered
2997 * memcg_charge_kmem in a sane state, but was OOM-killed during
2998 * __mem_cgroup_try_charge() above. Tasks that were already
2999 * dying when the allocation triggers should have been already
3000 * directed to the root cgroup in memcontrol.h
3001 */
3002 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3003 if (do_swap_account)
3004 res_counter_charge_nofail(&memcg->memsw, size,
3005 &fail_res);
3006 ret = 0;
3007 } else if (ret)
3008 res_counter_uncharge(&memcg->kmem, size);
3009
3010 return ret;
3011}
3012
3013static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3014{
7ae1e1d0
GC
3015 res_counter_uncharge(&memcg->res, size);
3016 if (do_swap_account)
3017 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3018
3019 /* Not down to 0 */
3020 if (res_counter_uncharge(&memcg->kmem, size))
3021 return;
3022
10d5ebf4
LZ
3023 /*
3024 * Releases a reference taken in kmem_cgroup_css_offline in case
3025 * this last uncharge is racing with the offlining code or it is
3026 * outliving the memcg existence.
3027 *
3028 * The memory barrier imposed by test&clear is paired with the
3029 * explicit one in memcg_kmem_mark_dead().
3030 */
7de37682 3031 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3032 css_put(&memcg->css);
7ae1e1d0
GC
3033}
3034
2633d7a0
GC
3035void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3036{
3037 if (!memcg)
3038 return;
3039
3040 mutex_lock(&memcg->slab_caches_mutex);
3041 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3042 mutex_unlock(&memcg->slab_caches_mutex);
3043}
3044
3045/*
3046 * helper for acessing a memcg's index. It will be used as an index in the
3047 * child cache array in kmem_cache, and also to derive its name. This function
3048 * will return -1 when this is not a kmem-limited memcg.
3049 */
3050int memcg_cache_id(struct mem_cgroup *memcg)
3051{
3052 return memcg ? memcg->kmemcg_id : -1;
3053}
3054
55007d84
GC
3055/*
3056 * This ends up being protected by the set_limit mutex, during normal
3057 * operation, because that is its main call site.
3058 *
3059 * But when we create a new cache, we can call this as well if its parent
3060 * is kmem-limited. That will have to hold set_limit_mutex as well.
3061 */
3062int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3063{
3064 int num, ret;
3065
3066 num = ida_simple_get(&kmem_limited_groups,
3067 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3068 if (num < 0)
3069 return num;
3070 /*
3071 * After this point, kmem_accounted (that we test atomically in
3072 * the beginning of this conditional), is no longer 0. This
3073 * guarantees only one process will set the following boolean
3074 * to true. We don't need test_and_set because we're protected
3075 * by the set_limit_mutex anyway.
3076 */
3077 memcg_kmem_set_activated(memcg);
3078
3079 ret = memcg_update_all_caches(num+1);
3080 if (ret) {
3081 ida_simple_remove(&kmem_limited_groups, num);
3082 memcg_kmem_clear_activated(memcg);
3083 return ret;
3084 }
3085
3086 memcg->kmemcg_id = num;
3087 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3088 mutex_init(&memcg->slab_caches_mutex);
3089 return 0;
3090}
3091
3092static size_t memcg_caches_array_size(int num_groups)
3093{
3094 ssize_t size;
3095 if (num_groups <= 0)
3096 return 0;
3097
3098 size = 2 * num_groups;
3099 if (size < MEMCG_CACHES_MIN_SIZE)
3100 size = MEMCG_CACHES_MIN_SIZE;
3101 else if (size > MEMCG_CACHES_MAX_SIZE)
3102 size = MEMCG_CACHES_MAX_SIZE;
3103
3104 return size;
3105}
3106
3107/*
3108 * We should update the current array size iff all caches updates succeed. This
3109 * can only be done from the slab side. The slab mutex needs to be held when
3110 * calling this.
3111 */
3112void memcg_update_array_size(int num)
3113{
3114 if (num > memcg_limited_groups_array_size)
3115 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3116}
3117
15cf17d2
KK
3118static void kmem_cache_destroy_work_func(struct work_struct *w);
3119
55007d84
GC
3120int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3121{
3122 struct memcg_cache_params *cur_params = s->memcg_params;
3123
3124 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3125
3126 if (num_groups > memcg_limited_groups_array_size) {
3127 int i;
3128 ssize_t size = memcg_caches_array_size(num_groups);
3129
3130 size *= sizeof(void *);
3131 size += sizeof(struct memcg_cache_params);
3132
3133 s->memcg_params = kzalloc(size, GFP_KERNEL);
3134 if (!s->memcg_params) {
3135 s->memcg_params = cur_params;
3136 return -ENOMEM;
3137 }
3138
3139 s->memcg_params->is_root_cache = true;
3140
3141 /*
3142 * There is the chance it will be bigger than
3143 * memcg_limited_groups_array_size, if we failed an allocation
3144 * in a cache, in which case all caches updated before it, will
3145 * have a bigger array.
3146 *
3147 * But if that is the case, the data after
3148 * memcg_limited_groups_array_size is certainly unused
3149 */
3150 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 if (!cur_params->memcg_caches[i])
3152 continue;
3153 s->memcg_params->memcg_caches[i] =
3154 cur_params->memcg_caches[i];
3155 }
3156
3157 /*
3158 * Ideally, we would wait until all caches succeed, and only
3159 * then free the old one. But this is not worth the extra
3160 * pointer per-cache we'd have to have for this.
3161 *
3162 * It is not a big deal if some caches are left with a size
3163 * bigger than the others. And all updates will reset this
3164 * anyway.
3165 */
3166 kfree(cur_params);
3167 }
3168 return 0;
3169}
3170
943a451a
GC
3171int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 struct kmem_cache *root_cache)
2633d7a0
GC
3173{
3174 size_t size = sizeof(struct memcg_cache_params);
3175
3176 if (!memcg_kmem_enabled())
3177 return 0;
3178
55007d84
GC
3179 if (!memcg)
3180 size += memcg_limited_groups_array_size * sizeof(void *);
3181
2633d7a0
GC
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params)
3184 return -ENOMEM;
3185
15cf17d2
KK
3186 INIT_WORK(&s->memcg_params->destroy,
3187 kmem_cache_destroy_work_func);
943a451a 3188 if (memcg) {
2633d7a0 3189 s->memcg_params->memcg = memcg;
943a451a 3190 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3191 } else
3192 s->memcg_params->is_root_cache = true;
3193
2633d7a0
GC
3194 return 0;
3195}
3196
3197void memcg_release_cache(struct kmem_cache *s)
3198{
d7f25f8a
GC
3199 struct kmem_cache *root;
3200 struct mem_cgroup *memcg;
3201 int id;
3202
3203 /*
3204 * This happens, for instance, when a root cache goes away before we
3205 * add any memcg.
3206 */
3207 if (!s->memcg_params)
3208 return;
3209
3210 if (s->memcg_params->is_root_cache)
3211 goto out;
3212
3213 memcg = s->memcg_params->memcg;
3214 id = memcg_cache_id(memcg);
3215
3216 root = s->memcg_params->root_cache;
3217 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3218
3219 mutex_lock(&memcg->slab_caches_mutex);
3220 list_del(&s->memcg_params->list);
3221 mutex_unlock(&memcg->slab_caches_mutex);
3222
20f05310 3223 css_put(&memcg->css);
d7f25f8a 3224out:
2633d7a0
GC
3225 kfree(s->memcg_params);
3226}
3227
0e9d92f2
GC
3228/*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247static inline void memcg_stop_kmem_account(void)
3248{
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251}
3252
3253static inline void memcg_resume_kmem_account(void)
3254{
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257}
3258
1f458cbf
GC
3259static void kmem_cache_destroy_work_func(struct work_struct *w)
3260{
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
22933152
GC
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 kmem_cache_shrink(cachep);
3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 return;
3288 } else
1f458cbf
GC
3289 kmem_cache_destroy(cachep);
3290}
3291
3292void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293{
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
22933152
GC
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
1f458cbf
GC
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322}
3323
d9c10ddd
MH
3324/*
3325 * This lock protects updaters, not readers. We want readers to be as fast as
3326 * they can, and they will either see NULL or a valid cache value. Our model
3327 * allow them to see NULL, in which case the root memcg will be selected.
3328 *
3329 * We need this lock because multiple allocations to the same cache from a non
3330 * will span more than one worker. Only one of them can create the cache.
3331 */
3332static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3333
d9c10ddd
MH
3334/*
3335 * Called with memcg_cache_mutex held
3336 */
d7f25f8a
GC
3337static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3338 struct kmem_cache *s)
3339{
d7f25f8a 3340 struct kmem_cache *new;
d9c10ddd 3341 static char *tmp_name = NULL;
d7f25f8a 3342
d9c10ddd
MH
3343 lockdep_assert_held(&memcg_cache_mutex);
3344
3345 /*
3346 * kmem_cache_create_memcg duplicates the given name and
3347 * cgroup_name for this name requires RCU context.
3348 * This static temporary buffer is used to prevent from
3349 * pointless shortliving allocation.
3350 */
3351 if (!tmp_name) {
3352 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3353 if (!tmp_name)
3354 return NULL;
3355 }
3356
3357 rcu_read_lock();
3358 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3359 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3360 rcu_read_unlock();
d7f25f8a 3361
d9c10ddd 3362 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3363 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3364
d79923fa
GC
3365 if (new)
3366 new->allocflags |= __GFP_KMEMCG;
3367
d7f25f8a
GC
3368 return new;
3369}
3370
d7f25f8a
GC
3371static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3372 struct kmem_cache *cachep)
3373{
3374 struct kmem_cache *new_cachep;
3375 int idx;
3376
3377 BUG_ON(!memcg_can_account_kmem(memcg));
3378
3379 idx = memcg_cache_id(memcg);
3380
3381 mutex_lock(&memcg_cache_mutex);
3382 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3383 if (new_cachep) {
3384 css_put(&memcg->css);
d7f25f8a 3385 goto out;
20f05310 3386 }
d7f25f8a
GC
3387
3388 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3389 if (new_cachep == NULL) {
3390 new_cachep = cachep;
20f05310 3391 css_put(&memcg->css);
d7f25f8a
GC
3392 goto out;
3393 }
3394
1f458cbf 3395 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3396
3397 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3398 /*
3399 * the readers won't lock, make sure everybody sees the updated value,
3400 * so they won't put stuff in the queue again for no reason
3401 */
3402 wmb();
3403out:
3404 mutex_unlock(&memcg_cache_mutex);
3405 return new_cachep;
3406}
3407
7cf27982
GC
3408void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3409{
3410 struct kmem_cache *c;
3411 int i;
3412
3413 if (!s->memcg_params)
3414 return;
3415 if (!s->memcg_params->is_root_cache)
3416 return;
3417
3418 /*
3419 * If the cache is being destroyed, we trust that there is no one else
3420 * requesting objects from it. Even if there are, the sanity checks in
3421 * kmem_cache_destroy should caught this ill-case.
3422 *
3423 * Still, we don't want anyone else freeing memcg_caches under our
3424 * noses, which can happen if a new memcg comes to life. As usual,
3425 * we'll take the set_limit_mutex to protect ourselves against this.
3426 */
3427 mutex_lock(&set_limit_mutex);
3428 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3429 c = s->memcg_params->memcg_caches[i];
3430 if (!c)
3431 continue;
3432
3433 /*
3434 * We will now manually delete the caches, so to avoid races
3435 * we need to cancel all pending destruction workers and
3436 * proceed with destruction ourselves.
3437 *
3438 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3439 * and that could spawn the workers again: it is likely that
3440 * the cache still have active pages until this very moment.
3441 * This would lead us back to mem_cgroup_destroy_cache.
3442 *
3443 * But that will not execute at all if the "dead" flag is not
3444 * set, so flip it down to guarantee we are in control.
3445 */
3446 c->memcg_params->dead = false;
22933152 3447 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3448 kmem_cache_destroy(c);
3449 }
3450 mutex_unlock(&set_limit_mutex);
3451}
3452
d7f25f8a
GC
3453struct create_work {
3454 struct mem_cgroup *memcg;
3455 struct kmem_cache *cachep;
3456 struct work_struct work;
3457};
3458
1f458cbf
GC
3459static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3460{
3461 struct kmem_cache *cachep;
3462 struct memcg_cache_params *params;
3463
3464 if (!memcg_kmem_is_active(memcg))
3465 return;
3466
3467 mutex_lock(&memcg->slab_caches_mutex);
3468 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3469 cachep = memcg_params_to_cache(params);
3470 cachep->memcg_params->dead = true;
1f458cbf
GC
3471 schedule_work(&cachep->memcg_params->destroy);
3472 }
3473 mutex_unlock(&memcg->slab_caches_mutex);
3474}
3475
d7f25f8a
GC
3476static void memcg_create_cache_work_func(struct work_struct *w)
3477{
3478 struct create_work *cw;
3479
3480 cw = container_of(w, struct create_work, work);
3481 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3482 kfree(cw);
3483}
3484
3485/*
3486 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3487 */
0e9d92f2
GC
3488static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3489 struct kmem_cache *cachep)
d7f25f8a
GC
3490{
3491 struct create_work *cw;
3492
3493 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3494 if (cw == NULL) {
3495 css_put(&memcg->css);
d7f25f8a
GC
3496 return;
3497 }
3498
3499 cw->memcg = memcg;
3500 cw->cachep = cachep;
3501
3502 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3503 schedule_work(&cw->work);
3504}
3505
0e9d92f2
GC
3506static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3507 struct kmem_cache *cachep)
3508{
3509 /*
3510 * We need to stop accounting when we kmalloc, because if the
3511 * corresponding kmalloc cache is not yet created, the first allocation
3512 * in __memcg_create_cache_enqueue will recurse.
3513 *
3514 * However, it is better to enclose the whole function. Depending on
3515 * the debugging options enabled, INIT_WORK(), for instance, can
3516 * trigger an allocation. This too, will make us recurse. Because at
3517 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3518 * the safest choice is to do it like this, wrapping the whole function.
3519 */
3520 memcg_stop_kmem_account();
3521 __memcg_create_cache_enqueue(memcg, cachep);
3522 memcg_resume_kmem_account();
3523}
d7f25f8a
GC
3524/*
3525 * Return the kmem_cache we're supposed to use for a slab allocation.
3526 * We try to use the current memcg's version of the cache.
3527 *
3528 * If the cache does not exist yet, if we are the first user of it,
3529 * we either create it immediately, if possible, or create it asynchronously
3530 * in a workqueue.
3531 * In the latter case, we will let the current allocation go through with
3532 * the original cache.
3533 *
3534 * Can't be called in interrupt context or from kernel threads.
3535 * This function needs to be called with rcu_read_lock() held.
3536 */
3537struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3538 gfp_t gfp)
3539{
3540 struct mem_cgroup *memcg;
3541 int idx;
3542
3543 VM_BUG_ON(!cachep->memcg_params);
3544 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3545
0e9d92f2
GC
3546 if (!current->mm || current->memcg_kmem_skip_account)
3547 return cachep;
3548
d7f25f8a
GC
3549 rcu_read_lock();
3550 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3551
3552 if (!memcg_can_account_kmem(memcg))
ca0dde97 3553 goto out;
d7f25f8a
GC
3554
3555 idx = memcg_cache_id(memcg);
3556
3557 /*
3558 * barrier to mare sure we're always seeing the up to date value. The
3559 * code updating memcg_caches will issue a write barrier to match this.
3560 */
3561 read_barrier_depends();
ca0dde97
LZ
3562 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3563 cachep = cachep->memcg_params->memcg_caches[idx];
3564 goto out;
d7f25f8a
GC
3565 }
3566
ca0dde97
LZ
3567 /* The corresponding put will be done in the workqueue. */
3568 if (!css_tryget(&memcg->css))
3569 goto out;
3570 rcu_read_unlock();
3571
3572 /*
3573 * If we are in a safe context (can wait, and not in interrupt
3574 * context), we could be be predictable and return right away.
3575 * This would guarantee that the allocation being performed
3576 * already belongs in the new cache.
3577 *
3578 * However, there are some clashes that can arrive from locking.
3579 * For instance, because we acquire the slab_mutex while doing
3580 * kmem_cache_dup, this means no further allocation could happen
3581 * with the slab_mutex held.
3582 *
3583 * Also, because cache creation issue get_online_cpus(), this
3584 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3585 * that ends up reversed during cpu hotplug. (cpuset allocates
3586 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3587 * better to defer everything.
3588 */
3589 memcg_create_cache_enqueue(memcg, cachep);
3590 return cachep;
3591out:
3592 rcu_read_unlock();
3593 return cachep;
d7f25f8a
GC
3594}
3595EXPORT_SYMBOL(__memcg_kmem_get_cache);
3596
7ae1e1d0
GC
3597/*
3598 * We need to verify if the allocation against current->mm->owner's memcg is
3599 * possible for the given order. But the page is not allocated yet, so we'll
3600 * need a further commit step to do the final arrangements.
3601 *
3602 * It is possible for the task to switch cgroups in this mean time, so at
3603 * commit time, we can't rely on task conversion any longer. We'll then use
3604 * the handle argument to return to the caller which cgroup we should commit
3605 * against. We could also return the memcg directly and avoid the pointer
3606 * passing, but a boolean return value gives better semantics considering
3607 * the compiled-out case as well.
3608 *
3609 * Returning true means the allocation is possible.
3610 */
3611bool
3612__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3613{
3614 struct mem_cgroup *memcg;
3615 int ret;
3616
3617 *_memcg = NULL;
6d42c232
GC
3618
3619 /*
3620 * Disabling accounting is only relevant for some specific memcg
3621 * internal allocations. Therefore we would initially not have such
3622 * check here, since direct calls to the page allocator that are marked
3623 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3624 * concerned with cache allocations, and by having this test at
3625 * memcg_kmem_get_cache, we are already able to relay the allocation to
3626 * the root cache and bypass the memcg cache altogether.
3627 *
3628 * There is one exception, though: the SLUB allocator does not create
3629 * large order caches, but rather service large kmallocs directly from
3630 * the page allocator. Therefore, the following sequence when backed by
3631 * the SLUB allocator:
3632 *
3633 * memcg_stop_kmem_account();
3634 * kmalloc(<large_number>)
3635 * memcg_resume_kmem_account();
3636 *
3637 * would effectively ignore the fact that we should skip accounting,
3638 * since it will drive us directly to this function without passing
3639 * through the cache selector memcg_kmem_get_cache. Such large
3640 * allocations are extremely rare but can happen, for instance, for the
3641 * cache arrays. We bring this test here.
3642 */
3643 if (!current->mm || current->memcg_kmem_skip_account)
3644 return true;
3645
7ae1e1d0
GC
3646 memcg = try_get_mem_cgroup_from_mm(current->mm);
3647
3648 /*
3649 * very rare case described in mem_cgroup_from_task. Unfortunately there
3650 * isn't much we can do without complicating this too much, and it would
3651 * be gfp-dependent anyway. Just let it go
3652 */
3653 if (unlikely(!memcg))
3654 return true;
3655
3656 if (!memcg_can_account_kmem(memcg)) {
3657 css_put(&memcg->css);
3658 return true;
3659 }
3660
7ae1e1d0
GC
3661 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3662 if (!ret)
3663 *_memcg = memcg;
7ae1e1d0
GC
3664
3665 css_put(&memcg->css);
3666 return (ret == 0);
3667}
3668
3669void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3670 int order)
3671{
3672 struct page_cgroup *pc;
3673
3674 VM_BUG_ON(mem_cgroup_is_root(memcg));
3675
3676 /* The page allocation failed. Revert */
3677 if (!page) {
3678 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3679 return;
3680 }
3681
3682 pc = lookup_page_cgroup(page);
3683 lock_page_cgroup(pc);
3684 pc->mem_cgroup = memcg;
3685 SetPageCgroupUsed(pc);
3686 unlock_page_cgroup(pc);
3687}
3688
3689void __memcg_kmem_uncharge_pages(struct page *page, int order)
3690{
3691 struct mem_cgroup *memcg = NULL;
3692 struct page_cgroup *pc;
3693
3694
3695 pc = lookup_page_cgroup(page);
3696 /*
3697 * Fast unlocked return. Theoretically might have changed, have to
3698 * check again after locking.
3699 */
3700 if (!PageCgroupUsed(pc))
3701 return;
3702
3703 lock_page_cgroup(pc);
3704 if (PageCgroupUsed(pc)) {
3705 memcg = pc->mem_cgroup;
3706 ClearPageCgroupUsed(pc);
3707 }
3708 unlock_page_cgroup(pc);
3709
3710 /*
3711 * We trust that only if there is a memcg associated with the page, it
3712 * is a valid allocation
3713 */
3714 if (!memcg)
3715 return;
3716
3717 VM_BUG_ON(mem_cgroup_is_root(memcg));
3718 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3719}
1f458cbf
GC
3720#else
3721static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3722{
3723}
7ae1e1d0
GC
3724#endif /* CONFIG_MEMCG_KMEM */
3725
ca3e0214
KH
3726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3727
a0db00fc 3728#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3729/*
3730 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3731 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3732 * charge/uncharge will be never happen and move_account() is done under
3733 * compound_lock(), so we don't have to take care of races.
ca3e0214 3734 */
e94c8a9c 3735void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3736{
3737 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3738 struct page_cgroup *pc;
b070e65c 3739 struct mem_cgroup *memcg;
e94c8a9c 3740 int i;
ca3e0214 3741
3d37c4a9
KH
3742 if (mem_cgroup_disabled())
3743 return;
b070e65c
DR
3744
3745 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3746 for (i = 1; i < HPAGE_PMD_NR; i++) {
3747 pc = head_pc + i;
b070e65c 3748 pc->mem_cgroup = memcg;
e94c8a9c 3749 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3750 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3751 }
b070e65c
DR
3752 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3753 HPAGE_PMD_NR);
ca3e0214 3754}
12d27107 3755#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3756
f817ed48 3757/**
de3638d9 3758 * mem_cgroup_move_account - move account of the page
5564e88b 3759 * @page: the page
7ec99d62 3760 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3761 * @pc: page_cgroup of the page.
3762 * @from: mem_cgroup which the page is moved from.
3763 * @to: mem_cgroup which the page is moved to. @from != @to.
3764 *
3765 * The caller must confirm following.
08e552c6 3766 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3767 * - compound_lock is held when nr_pages > 1
f817ed48 3768 *
2f3479b1
KH
3769 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3770 * from old cgroup.
f817ed48 3771 */
7ec99d62
JW
3772static int mem_cgroup_move_account(struct page *page,
3773 unsigned int nr_pages,
3774 struct page_cgroup *pc,
3775 struct mem_cgroup *from,
2f3479b1 3776 struct mem_cgroup *to)
f817ed48 3777{
de3638d9
JW
3778 unsigned long flags;
3779 int ret;
b2402857 3780 bool anon = PageAnon(page);
987eba66 3781
f817ed48 3782 VM_BUG_ON(from == to);
5564e88b 3783 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3784 /*
3785 * The page is isolated from LRU. So, collapse function
3786 * will not handle this page. But page splitting can happen.
3787 * Do this check under compound_page_lock(). The caller should
3788 * hold it.
3789 */
3790 ret = -EBUSY;
7ec99d62 3791 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3792 goto out;
3793
3794 lock_page_cgroup(pc);
3795
3796 ret = -EINVAL;
3797 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3798 goto unlock;
3799
312734c0 3800 move_lock_mem_cgroup(from, &flags);
f817ed48 3801
2ff76f11 3802 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3803 /* Update mapped_file data for mem_cgroup */
3804 preempt_disable();
3805 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3806 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3807 preempt_enable();
d69b042f 3808 }
b070e65c 3809 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3810
854ffa8d 3811 /* caller should have done css_get */
08e552c6 3812 pc->mem_cgroup = to;
b070e65c 3813 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3814 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3815 ret = 0;
3816unlock:
57f9fd7d 3817 unlock_page_cgroup(pc);
d2265e6f
KH
3818 /*
3819 * check events
3820 */
5564e88b
JW
3821 memcg_check_events(to, page);
3822 memcg_check_events(from, page);
de3638d9 3823out:
f817ed48
KH
3824 return ret;
3825}
3826
2ef37d3f
MH
3827/**
3828 * mem_cgroup_move_parent - moves page to the parent group
3829 * @page: the page to move
3830 * @pc: page_cgroup of the page
3831 * @child: page's cgroup
3832 *
3833 * move charges to its parent or the root cgroup if the group has no
3834 * parent (aka use_hierarchy==0).
3835 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3836 * mem_cgroup_move_account fails) the failure is always temporary and
3837 * it signals a race with a page removal/uncharge or migration. In the
3838 * first case the page is on the way out and it will vanish from the LRU
3839 * on the next attempt and the call should be retried later.
3840 * Isolation from the LRU fails only if page has been isolated from
3841 * the LRU since we looked at it and that usually means either global
3842 * reclaim or migration going on. The page will either get back to the
3843 * LRU or vanish.
3844 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3845 * (!PageCgroupUsed) or moved to a different group. The page will
3846 * disappear in the next attempt.
f817ed48 3847 */
5564e88b
JW
3848static int mem_cgroup_move_parent(struct page *page,
3849 struct page_cgroup *pc,
6068bf01 3850 struct mem_cgroup *child)
f817ed48 3851{
f817ed48 3852 struct mem_cgroup *parent;
7ec99d62 3853 unsigned int nr_pages;
4be4489f 3854 unsigned long uninitialized_var(flags);
f817ed48
KH
3855 int ret;
3856
d8423011 3857 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3858
57f9fd7d
DN
3859 ret = -EBUSY;
3860 if (!get_page_unless_zero(page))
3861 goto out;
3862 if (isolate_lru_page(page))
3863 goto put;
52dbb905 3864
7ec99d62 3865 nr_pages = hpage_nr_pages(page);
08e552c6 3866
cc926f78
KH
3867 parent = parent_mem_cgroup(child);
3868 /*
3869 * If no parent, move charges to root cgroup.
3870 */
3871 if (!parent)
3872 parent = root_mem_cgroup;
f817ed48 3873
2ef37d3f
MH
3874 if (nr_pages > 1) {
3875 VM_BUG_ON(!PageTransHuge(page));
987eba66 3876 flags = compound_lock_irqsave(page);
2ef37d3f 3877 }
987eba66 3878
cc926f78 3879 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3880 pc, child, parent);
cc926f78
KH
3881 if (!ret)
3882 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3883
7ec99d62 3884 if (nr_pages > 1)
987eba66 3885 compound_unlock_irqrestore(page, flags);
08e552c6 3886 putback_lru_page(page);
57f9fd7d 3887put:
40d58138 3888 put_page(page);
57f9fd7d 3889out:
f817ed48
KH
3890 return ret;
3891}
3892
7a81b88c
KH
3893/*
3894 * Charge the memory controller for page usage.
3895 * Return
3896 * 0 if the charge was successful
3897 * < 0 if the cgroup is over its limit
3898 */
3899static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3900 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3901{
c0ff4b85 3902 struct mem_cgroup *memcg = NULL;
7ec99d62 3903 unsigned int nr_pages = 1;
8493ae43 3904 bool oom = true;
7a81b88c 3905 int ret;
ec168510 3906
37c2ac78 3907 if (PageTransHuge(page)) {
7ec99d62 3908 nr_pages <<= compound_order(page);
37c2ac78 3909 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3910 /*
3911 * Never OOM-kill a process for a huge page. The
3912 * fault handler will fall back to regular pages.
3913 */
3914 oom = false;
37c2ac78 3915 }
7a81b88c 3916
c0ff4b85 3917 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3918 if (ret == -ENOMEM)
7a81b88c 3919 return ret;
ce587e65 3920 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3921 return 0;
8a9f3ccd
BS
3922}
3923
7a81b88c
KH
3924int mem_cgroup_newpage_charge(struct page *page,
3925 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3926{
f8d66542 3927 if (mem_cgroup_disabled())
cede86ac 3928 return 0;
7a0524cf
JW
3929 VM_BUG_ON(page_mapped(page));
3930 VM_BUG_ON(page->mapping && !PageAnon(page));
3931 VM_BUG_ON(!mm);
217bc319 3932 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3933 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3934}
3935
54595fe2
KH
3936/*
3937 * While swap-in, try_charge -> commit or cancel, the page is locked.
3938 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3939 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3940 * "commit()" or removed by "cancel()"
3941 */
0435a2fd
JW
3942static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3943 struct page *page,
3944 gfp_t mask,
3945 struct mem_cgroup **memcgp)
8c7c6e34 3946{
c0ff4b85 3947 struct mem_cgroup *memcg;
90deb788 3948 struct page_cgroup *pc;
54595fe2 3949 int ret;
8c7c6e34 3950
90deb788
JW
3951 pc = lookup_page_cgroup(page);
3952 /*
3953 * Every swap fault against a single page tries to charge the
3954 * page, bail as early as possible. shmem_unuse() encounters
3955 * already charged pages, too. The USED bit is protected by
3956 * the page lock, which serializes swap cache removal, which
3957 * in turn serializes uncharging.
3958 */
3959 if (PageCgroupUsed(pc))
3960 return 0;
8c7c6e34
KH
3961 if (!do_swap_account)
3962 goto charge_cur_mm;
c0ff4b85
R
3963 memcg = try_get_mem_cgroup_from_page(page);
3964 if (!memcg)
54595fe2 3965 goto charge_cur_mm;
72835c86
JW
3966 *memcgp = memcg;
3967 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3968 css_put(&memcg->css);
38c5d72f
KH
3969 if (ret == -EINTR)
3970 ret = 0;
54595fe2 3971 return ret;
8c7c6e34 3972charge_cur_mm:
38c5d72f
KH
3973 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3974 if (ret == -EINTR)
3975 ret = 0;
3976 return ret;
8c7c6e34
KH
3977}
3978
0435a2fd
JW
3979int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3980 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3981{
3982 *memcgp = NULL;
3983 if (mem_cgroup_disabled())
3984 return 0;
bdf4f4d2
JW
3985 /*
3986 * A racing thread's fault, or swapoff, may have already
3987 * updated the pte, and even removed page from swap cache: in
3988 * those cases unuse_pte()'s pte_same() test will fail; but
3989 * there's also a KSM case which does need to charge the page.
3990 */
3991 if (!PageSwapCache(page)) {
3992 int ret;
3993
3994 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3995 if (ret == -EINTR)
3996 ret = 0;
3997 return ret;
3998 }
0435a2fd
JW
3999 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4000}
4001
827a03d2
JW
4002void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4003{
4004 if (mem_cgroup_disabled())
4005 return;
4006 if (!memcg)
4007 return;
4008 __mem_cgroup_cancel_charge(memcg, 1);
4009}
4010
83aae4c7 4011static void
72835c86 4012__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4013 enum charge_type ctype)
7a81b88c 4014{
f8d66542 4015 if (mem_cgroup_disabled())
7a81b88c 4016 return;
72835c86 4017 if (!memcg)
7a81b88c 4018 return;
5a6475a4 4019
ce587e65 4020 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4021 /*
4022 * Now swap is on-memory. This means this page may be
4023 * counted both as mem and swap....double count.
03f3c433
KH
4024 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4025 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4026 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4027 */
03f3c433 4028 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4029 swp_entry_t ent = {.val = page_private(page)};
86493009 4030 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4031 }
7a81b88c
KH
4032}
4033
72835c86
JW
4034void mem_cgroup_commit_charge_swapin(struct page *page,
4035 struct mem_cgroup *memcg)
83aae4c7 4036{
72835c86 4037 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4038 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4039}
4040
827a03d2
JW
4041int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4042 gfp_t gfp_mask)
7a81b88c 4043{
827a03d2
JW
4044 struct mem_cgroup *memcg = NULL;
4045 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4046 int ret;
4047
f8d66542 4048 if (mem_cgroup_disabled())
827a03d2
JW
4049 return 0;
4050 if (PageCompound(page))
4051 return 0;
4052
827a03d2
JW
4053 if (!PageSwapCache(page))
4054 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4055 else { /* page is swapcache/shmem */
0435a2fd
JW
4056 ret = __mem_cgroup_try_charge_swapin(mm, page,
4057 gfp_mask, &memcg);
827a03d2
JW
4058 if (!ret)
4059 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4060 }
4061 return ret;
7a81b88c
KH
4062}
4063
c0ff4b85 4064static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4065 unsigned int nr_pages,
4066 const enum charge_type ctype)
569b846d
KH
4067{
4068 struct memcg_batch_info *batch = NULL;
4069 bool uncharge_memsw = true;
7ec99d62 4070
569b846d
KH
4071 /* If swapout, usage of swap doesn't decrease */
4072 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4073 uncharge_memsw = false;
569b846d
KH
4074
4075 batch = &current->memcg_batch;
4076 /*
4077 * In usual, we do css_get() when we remember memcg pointer.
4078 * But in this case, we keep res->usage until end of a series of
4079 * uncharges. Then, it's ok to ignore memcg's refcnt.
4080 */
4081 if (!batch->memcg)
c0ff4b85 4082 batch->memcg = memcg;
3c11ecf4
KH
4083 /*
4084 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4085 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4086 * the same cgroup and we have chance to coalesce uncharges.
4087 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4088 * because we want to do uncharge as soon as possible.
4089 */
4090
4091 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4092 goto direct_uncharge;
4093
7ec99d62 4094 if (nr_pages > 1)
ec168510
AA
4095 goto direct_uncharge;
4096
569b846d
KH
4097 /*
4098 * In typical case, batch->memcg == mem. This means we can
4099 * merge a series of uncharges to an uncharge of res_counter.
4100 * If not, we uncharge res_counter ony by one.
4101 */
c0ff4b85 4102 if (batch->memcg != memcg)
569b846d
KH
4103 goto direct_uncharge;
4104 /* remember freed charge and uncharge it later */
7ffd4ca7 4105 batch->nr_pages++;
569b846d 4106 if (uncharge_memsw)
7ffd4ca7 4107 batch->memsw_nr_pages++;
569b846d
KH
4108 return;
4109direct_uncharge:
c0ff4b85 4110 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4111 if (uncharge_memsw)
c0ff4b85
R
4112 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4113 if (unlikely(batch->memcg != memcg))
4114 memcg_oom_recover(memcg);
569b846d 4115}
7a81b88c 4116
8a9f3ccd 4117/*
69029cd5 4118 * uncharge if !page_mapped(page)
8a9f3ccd 4119 */
8c7c6e34 4120static struct mem_cgroup *
0030f535
JW
4121__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4122 bool end_migration)
8a9f3ccd 4123{
c0ff4b85 4124 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4125 unsigned int nr_pages = 1;
4126 struct page_cgroup *pc;
b2402857 4127 bool anon;
8a9f3ccd 4128
f8d66542 4129 if (mem_cgroup_disabled())
8c7c6e34 4130 return NULL;
4077960e 4131
37c2ac78 4132 if (PageTransHuge(page)) {
7ec99d62 4133 nr_pages <<= compound_order(page);
37c2ac78
AA
4134 VM_BUG_ON(!PageTransHuge(page));
4135 }
8697d331 4136 /*
3c541e14 4137 * Check if our page_cgroup is valid
8697d331 4138 */
52d4b9ac 4139 pc = lookup_page_cgroup(page);
cfa44946 4140 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4141 return NULL;
b9c565d5 4142
52d4b9ac 4143 lock_page_cgroup(pc);
d13d1443 4144
c0ff4b85 4145 memcg = pc->mem_cgroup;
8c7c6e34 4146
d13d1443
KH
4147 if (!PageCgroupUsed(pc))
4148 goto unlock_out;
4149
b2402857
KH
4150 anon = PageAnon(page);
4151
d13d1443 4152 switch (ctype) {
41326c17 4153 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4154 /*
4155 * Generally PageAnon tells if it's the anon statistics to be
4156 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4157 * used before page reached the stage of being marked PageAnon.
4158 */
b2402857
KH
4159 anon = true;
4160 /* fallthrough */
8a9478ca 4161 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4162 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4163 if (page_mapped(page))
4164 goto unlock_out;
4165 /*
4166 * Pages under migration may not be uncharged. But
4167 * end_migration() /must/ be the one uncharging the
4168 * unused post-migration page and so it has to call
4169 * here with the migration bit still set. See the
4170 * res_counter handling below.
4171 */
4172 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4173 goto unlock_out;
4174 break;
4175 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4176 if (!PageAnon(page)) { /* Shared memory */
4177 if (page->mapping && !page_is_file_cache(page))
4178 goto unlock_out;
4179 } else if (page_mapped(page)) /* Anon */
4180 goto unlock_out;
4181 break;
4182 default:
4183 break;
52d4b9ac 4184 }
d13d1443 4185
b070e65c 4186 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4187
52d4b9ac 4188 ClearPageCgroupUsed(pc);
544122e5
KH
4189 /*
4190 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4191 * freed from LRU. This is safe because uncharged page is expected not
4192 * to be reused (freed soon). Exception is SwapCache, it's handled by
4193 * special functions.
4194 */
b9c565d5 4195
52d4b9ac 4196 unlock_page_cgroup(pc);
f75ca962 4197 /*
c0ff4b85 4198 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4199 * will never be freed, so it's safe to call css_get().
f75ca962 4200 */
c0ff4b85 4201 memcg_check_events(memcg, page);
f75ca962 4202 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4203 mem_cgroup_swap_statistics(memcg, true);
4050377b 4204 css_get(&memcg->css);
f75ca962 4205 }
0030f535
JW
4206 /*
4207 * Migration does not charge the res_counter for the
4208 * replacement page, so leave it alone when phasing out the
4209 * page that is unused after the migration.
4210 */
4211 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4212 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4213
c0ff4b85 4214 return memcg;
d13d1443
KH
4215
4216unlock_out:
4217 unlock_page_cgroup(pc);
8c7c6e34 4218 return NULL;
3c541e14
BS
4219}
4220
69029cd5
KH
4221void mem_cgroup_uncharge_page(struct page *page)
4222{
52d4b9ac
KH
4223 /* early check. */
4224 if (page_mapped(page))
4225 return;
40f23a21 4226 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4227 /*
4228 * If the page is in swap cache, uncharge should be deferred
4229 * to the swap path, which also properly accounts swap usage
4230 * and handles memcg lifetime.
4231 *
4232 * Note that this check is not stable and reclaim may add the
4233 * page to swap cache at any time after this. However, if the
4234 * page is not in swap cache by the time page->mapcount hits
4235 * 0, there won't be any page table references to the swap
4236 * slot, and reclaim will free it and not actually write the
4237 * page to disk.
4238 */
0c59b89c
JW
4239 if (PageSwapCache(page))
4240 return;
0030f535 4241 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4242}
4243
4244void mem_cgroup_uncharge_cache_page(struct page *page)
4245{
4246 VM_BUG_ON(page_mapped(page));
b7abea96 4247 VM_BUG_ON(page->mapping);
0030f535 4248 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4249}
4250
569b846d
KH
4251/*
4252 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4253 * In that cases, pages are freed continuously and we can expect pages
4254 * are in the same memcg. All these calls itself limits the number of
4255 * pages freed at once, then uncharge_start/end() is called properly.
4256 * This may be called prural(2) times in a context,
4257 */
4258
4259void mem_cgroup_uncharge_start(void)
4260{
4261 current->memcg_batch.do_batch++;
4262 /* We can do nest. */
4263 if (current->memcg_batch.do_batch == 1) {
4264 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4265 current->memcg_batch.nr_pages = 0;
4266 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4267 }
4268}
4269
4270void mem_cgroup_uncharge_end(void)
4271{
4272 struct memcg_batch_info *batch = &current->memcg_batch;
4273
4274 if (!batch->do_batch)
4275 return;
4276
4277 batch->do_batch--;
4278 if (batch->do_batch) /* If stacked, do nothing. */
4279 return;
4280
4281 if (!batch->memcg)
4282 return;
4283 /*
4284 * This "batch->memcg" is valid without any css_get/put etc...
4285 * bacause we hide charges behind us.
4286 */
7ffd4ca7
JW
4287 if (batch->nr_pages)
4288 res_counter_uncharge(&batch->memcg->res,
4289 batch->nr_pages * PAGE_SIZE);
4290 if (batch->memsw_nr_pages)
4291 res_counter_uncharge(&batch->memcg->memsw,
4292 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4293 memcg_oom_recover(batch->memcg);
569b846d
KH
4294 /* forget this pointer (for sanity check) */
4295 batch->memcg = NULL;
4296}
4297
e767e056 4298#ifdef CONFIG_SWAP
8c7c6e34 4299/*
e767e056 4300 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4301 * memcg information is recorded to swap_cgroup of "ent"
4302 */
8a9478ca
KH
4303void
4304mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4305{
4306 struct mem_cgroup *memcg;
8a9478ca
KH
4307 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4308
4309 if (!swapout) /* this was a swap cache but the swap is unused ! */
4310 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4311
0030f535 4312 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4313
f75ca962
KH
4314 /*
4315 * record memcg information, if swapout && memcg != NULL,
4050377b 4316 * css_get() was called in uncharge().
f75ca962
KH
4317 */
4318 if (do_swap_account && swapout && memcg)
a3b2d692 4319 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4320}
e767e056 4321#endif
8c7c6e34 4322
c255a458 4323#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4324/*
4325 * called from swap_entry_free(). remove record in swap_cgroup and
4326 * uncharge "memsw" account.
4327 */
4328void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4329{
8c7c6e34 4330 struct mem_cgroup *memcg;
a3b2d692 4331 unsigned short id;
8c7c6e34
KH
4332
4333 if (!do_swap_account)
4334 return;
4335
a3b2d692
KH
4336 id = swap_cgroup_record(ent, 0);
4337 rcu_read_lock();
4338 memcg = mem_cgroup_lookup(id);
8c7c6e34 4339 if (memcg) {
a3b2d692
KH
4340 /*
4341 * We uncharge this because swap is freed.
4342 * This memcg can be obsolete one. We avoid calling css_tryget
4343 */
0c3e73e8 4344 if (!mem_cgroup_is_root(memcg))
4e649152 4345 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4346 mem_cgroup_swap_statistics(memcg, false);
4050377b 4347 css_put(&memcg->css);
8c7c6e34 4348 }
a3b2d692 4349 rcu_read_unlock();
d13d1443 4350}
02491447
DN
4351
4352/**
4353 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4354 * @entry: swap entry to be moved
4355 * @from: mem_cgroup which the entry is moved from
4356 * @to: mem_cgroup which the entry is moved to
4357 *
4358 * It succeeds only when the swap_cgroup's record for this entry is the same
4359 * as the mem_cgroup's id of @from.
4360 *
4361 * Returns 0 on success, -EINVAL on failure.
4362 *
4363 * The caller must have charged to @to, IOW, called res_counter_charge() about
4364 * both res and memsw, and called css_get().
4365 */
4366static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4367 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4368{
4369 unsigned short old_id, new_id;
4370
4371 old_id = css_id(&from->css);
4372 new_id = css_id(&to->css);
4373
4374 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4375 mem_cgroup_swap_statistics(from, false);
483c30b5 4376 mem_cgroup_swap_statistics(to, true);
02491447 4377 /*
483c30b5
DN
4378 * This function is only called from task migration context now.
4379 * It postpones res_counter and refcount handling till the end
4380 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4381 * improvement. But we cannot postpone css_get(to) because if
4382 * the process that has been moved to @to does swap-in, the
4383 * refcount of @to might be decreased to 0.
4384 *
4385 * We are in attach() phase, so the cgroup is guaranteed to be
4386 * alive, so we can just call css_get().
02491447 4387 */
4050377b 4388 css_get(&to->css);
02491447
DN
4389 return 0;
4390 }
4391 return -EINVAL;
4392}
4393#else
4394static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4395 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4396{
4397 return -EINVAL;
4398}
8c7c6e34 4399#endif
d13d1443 4400
ae41be37 4401/*
01b1ae63
KH
4402 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4403 * page belongs to.
ae41be37 4404 */
0030f535
JW
4405void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4406 struct mem_cgroup **memcgp)
ae41be37 4407{
c0ff4b85 4408 struct mem_cgroup *memcg = NULL;
b32967ff 4409 unsigned int nr_pages = 1;
7ec99d62 4410 struct page_cgroup *pc;
ac39cf8c 4411 enum charge_type ctype;
8869b8f6 4412
72835c86 4413 *memcgp = NULL;
56039efa 4414
f8d66542 4415 if (mem_cgroup_disabled())
0030f535 4416 return;
4077960e 4417
b32967ff
MG
4418 if (PageTransHuge(page))
4419 nr_pages <<= compound_order(page);
4420
52d4b9ac
KH
4421 pc = lookup_page_cgroup(page);
4422 lock_page_cgroup(pc);
4423 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4424 memcg = pc->mem_cgroup;
4425 css_get(&memcg->css);
ac39cf8c
AM
4426 /*
4427 * At migrating an anonymous page, its mapcount goes down
4428 * to 0 and uncharge() will be called. But, even if it's fully
4429 * unmapped, migration may fail and this page has to be
4430 * charged again. We set MIGRATION flag here and delay uncharge
4431 * until end_migration() is called
4432 *
4433 * Corner Case Thinking
4434 * A)
4435 * When the old page was mapped as Anon and it's unmap-and-freed
4436 * while migration was ongoing.
4437 * If unmap finds the old page, uncharge() of it will be delayed
4438 * until end_migration(). If unmap finds a new page, it's
4439 * uncharged when it make mapcount to be 1->0. If unmap code
4440 * finds swap_migration_entry, the new page will not be mapped
4441 * and end_migration() will find it(mapcount==0).
4442 *
4443 * B)
4444 * When the old page was mapped but migraion fails, the kernel
4445 * remaps it. A charge for it is kept by MIGRATION flag even
4446 * if mapcount goes down to 0. We can do remap successfully
4447 * without charging it again.
4448 *
4449 * C)
4450 * The "old" page is under lock_page() until the end of
4451 * migration, so, the old page itself will not be swapped-out.
4452 * If the new page is swapped out before end_migraton, our
4453 * hook to usual swap-out path will catch the event.
4454 */
4455 if (PageAnon(page))
4456 SetPageCgroupMigration(pc);
e8589cc1 4457 }
52d4b9ac 4458 unlock_page_cgroup(pc);
ac39cf8c
AM
4459 /*
4460 * If the page is not charged at this point,
4461 * we return here.
4462 */
c0ff4b85 4463 if (!memcg)
0030f535 4464 return;
01b1ae63 4465
72835c86 4466 *memcgp = memcg;
ac39cf8c
AM
4467 /*
4468 * We charge new page before it's used/mapped. So, even if unlock_page()
4469 * is called before end_migration, we can catch all events on this new
4470 * page. In the case new page is migrated but not remapped, new page's
4471 * mapcount will be finally 0 and we call uncharge in end_migration().
4472 */
ac39cf8c 4473 if (PageAnon(page))
41326c17 4474 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4475 else
62ba7442 4476 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4477 /*
4478 * The page is committed to the memcg, but it's not actually
4479 * charged to the res_counter since we plan on replacing the
4480 * old one and only one page is going to be left afterwards.
4481 */
b32967ff 4482 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4483}
8869b8f6 4484
69029cd5 4485/* remove redundant charge if migration failed*/
c0ff4b85 4486void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4487 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4488{
ac39cf8c 4489 struct page *used, *unused;
01b1ae63 4490 struct page_cgroup *pc;
b2402857 4491 bool anon;
01b1ae63 4492
c0ff4b85 4493 if (!memcg)
01b1ae63 4494 return;
b25ed609 4495
50de1dd9 4496 if (!migration_ok) {
ac39cf8c
AM
4497 used = oldpage;
4498 unused = newpage;
01b1ae63 4499 } else {
ac39cf8c 4500 used = newpage;
01b1ae63
KH
4501 unused = oldpage;
4502 }
0030f535 4503 anon = PageAnon(used);
7d188958
JW
4504 __mem_cgroup_uncharge_common(unused,
4505 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4506 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4507 true);
0030f535 4508 css_put(&memcg->css);
69029cd5 4509 /*
ac39cf8c
AM
4510 * We disallowed uncharge of pages under migration because mapcount
4511 * of the page goes down to zero, temporarly.
4512 * Clear the flag and check the page should be charged.
01b1ae63 4513 */
ac39cf8c
AM
4514 pc = lookup_page_cgroup(oldpage);
4515 lock_page_cgroup(pc);
4516 ClearPageCgroupMigration(pc);
4517 unlock_page_cgroup(pc);
ac39cf8c 4518
01b1ae63 4519 /*
ac39cf8c
AM
4520 * If a page is a file cache, radix-tree replacement is very atomic
4521 * and we can skip this check. When it was an Anon page, its mapcount
4522 * goes down to 0. But because we added MIGRATION flage, it's not
4523 * uncharged yet. There are several case but page->mapcount check
4524 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4525 * check. (see prepare_charge() also)
69029cd5 4526 */
b2402857 4527 if (anon)
ac39cf8c 4528 mem_cgroup_uncharge_page(used);
ae41be37 4529}
78fb7466 4530
ab936cbc
KH
4531/*
4532 * At replace page cache, newpage is not under any memcg but it's on
4533 * LRU. So, this function doesn't touch res_counter but handles LRU
4534 * in correct way. Both pages are locked so we cannot race with uncharge.
4535 */
4536void mem_cgroup_replace_page_cache(struct page *oldpage,
4537 struct page *newpage)
4538{
bde05d1c 4539 struct mem_cgroup *memcg = NULL;
ab936cbc 4540 struct page_cgroup *pc;
ab936cbc 4541 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4542
4543 if (mem_cgroup_disabled())
4544 return;
4545
4546 pc = lookup_page_cgroup(oldpage);
4547 /* fix accounting on old pages */
4548 lock_page_cgroup(pc);
bde05d1c
HD
4549 if (PageCgroupUsed(pc)) {
4550 memcg = pc->mem_cgroup;
b070e65c 4551 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4552 ClearPageCgroupUsed(pc);
4553 }
ab936cbc
KH
4554 unlock_page_cgroup(pc);
4555
bde05d1c
HD
4556 /*
4557 * When called from shmem_replace_page(), in some cases the
4558 * oldpage has already been charged, and in some cases not.
4559 */
4560 if (!memcg)
4561 return;
ab936cbc
KH
4562 /*
4563 * Even if newpage->mapping was NULL before starting replacement,
4564 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4565 * LRU while we overwrite pc->mem_cgroup.
4566 */
ce587e65 4567 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4568}
4569
f212ad7c
DN
4570#ifdef CONFIG_DEBUG_VM
4571static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4572{
4573 struct page_cgroup *pc;
4574
4575 pc = lookup_page_cgroup(page);
cfa44946
JW
4576 /*
4577 * Can be NULL while feeding pages into the page allocator for
4578 * the first time, i.e. during boot or memory hotplug;
4579 * or when mem_cgroup_disabled().
4580 */
f212ad7c
DN
4581 if (likely(pc) && PageCgroupUsed(pc))
4582 return pc;
4583 return NULL;
4584}
4585
4586bool mem_cgroup_bad_page_check(struct page *page)
4587{
4588 if (mem_cgroup_disabled())
4589 return false;
4590
4591 return lookup_page_cgroup_used(page) != NULL;
4592}
4593
4594void mem_cgroup_print_bad_page(struct page *page)
4595{
4596 struct page_cgroup *pc;
4597
4598 pc = lookup_page_cgroup_used(page);
4599 if (pc) {
d045197f
AM
4600 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4601 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4602 }
4603}
4604#endif
4605
d38d2a75 4606static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4607 unsigned long long val)
628f4235 4608{
81d39c20 4609 int retry_count;
3c11ecf4 4610 u64 memswlimit, memlimit;
628f4235 4611 int ret = 0;
81d39c20
KH
4612 int children = mem_cgroup_count_children(memcg);
4613 u64 curusage, oldusage;
3c11ecf4 4614 int enlarge;
81d39c20
KH
4615
4616 /*
4617 * For keeping hierarchical_reclaim simple, how long we should retry
4618 * is depends on callers. We set our retry-count to be function
4619 * of # of children which we should visit in this loop.
4620 */
4621 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4622
4623 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4624
3c11ecf4 4625 enlarge = 0;
8c7c6e34 4626 while (retry_count) {
628f4235
KH
4627 if (signal_pending(current)) {
4628 ret = -EINTR;
4629 break;
4630 }
8c7c6e34
KH
4631 /*
4632 * Rather than hide all in some function, I do this in
4633 * open coded manner. You see what this really does.
aaad153e 4634 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4635 */
4636 mutex_lock(&set_limit_mutex);
4637 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4638 if (memswlimit < val) {
4639 ret = -EINVAL;
4640 mutex_unlock(&set_limit_mutex);
628f4235
KH
4641 break;
4642 }
3c11ecf4
KH
4643
4644 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4645 if (memlimit < val)
4646 enlarge = 1;
4647
8c7c6e34 4648 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4649 if (!ret) {
4650 if (memswlimit == val)
4651 memcg->memsw_is_minimum = true;
4652 else
4653 memcg->memsw_is_minimum = false;
4654 }
8c7c6e34
KH
4655 mutex_unlock(&set_limit_mutex);
4656
4657 if (!ret)
4658 break;
4659
5660048c
JW
4660 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4661 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4662 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4663 /* Usage is reduced ? */
4664 if (curusage >= oldusage)
4665 retry_count--;
4666 else
4667 oldusage = curusage;
8c7c6e34 4668 }
3c11ecf4
KH
4669 if (!ret && enlarge)
4670 memcg_oom_recover(memcg);
14797e23 4671
8c7c6e34
KH
4672 return ret;
4673}
4674
338c8431
LZ
4675static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4676 unsigned long long val)
8c7c6e34 4677{
81d39c20 4678 int retry_count;
3c11ecf4 4679 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4680 int children = mem_cgroup_count_children(memcg);
4681 int ret = -EBUSY;
3c11ecf4 4682 int enlarge = 0;
8c7c6e34 4683
81d39c20
KH
4684 /* see mem_cgroup_resize_res_limit */
4685 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4686 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4687 while (retry_count) {
4688 if (signal_pending(current)) {
4689 ret = -EINTR;
4690 break;
4691 }
4692 /*
4693 * Rather than hide all in some function, I do this in
4694 * open coded manner. You see what this really does.
aaad153e 4695 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4696 */
4697 mutex_lock(&set_limit_mutex);
4698 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4699 if (memlimit > val) {
4700 ret = -EINVAL;
4701 mutex_unlock(&set_limit_mutex);
4702 break;
4703 }
3c11ecf4
KH
4704 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4705 if (memswlimit < val)
4706 enlarge = 1;
8c7c6e34 4707 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4708 if (!ret) {
4709 if (memlimit == val)
4710 memcg->memsw_is_minimum = true;
4711 else
4712 memcg->memsw_is_minimum = false;
4713 }
8c7c6e34
KH
4714 mutex_unlock(&set_limit_mutex);
4715
4716 if (!ret)
4717 break;
4718
5660048c
JW
4719 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4720 MEM_CGROUP_RECLAIM_NOSWAP |
4721 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4722 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4723 /* Usage is reduced ? */
8c7c6e34 4724 if (curusage >= oldusage)
628f4235 4725 retry_count--;
81d39c20
KH
4726 else
4727 oldusage = curusage;
628f4235 4728 }
3c11ecf4
KH
4729 if (!ret && enlarge)
4730 memcg_oom_recover(memcg);
628f4235
KH
4731 return ret;
4732}
4733
4e416953 4734unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4735 gfp_t gfp_mask,
4736 unsigned long *total_scanned)
4e416953
BS
4737{
4738 unsigned long nr_reclaimed = 0;
4739 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4740 unsigned long reclaimed;
4741 int loop = 0;
4742 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4743 unsigned long long excess;
0ae5e89c 4744 unsigned long nr_scanned;
4e416953
BS
4745
4746 if (order > 0)
4747 return 0;
4748
00918b6a 4749 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4750 /*
4751 * This loop can run a while, specially if mem_cgroup's continuously
4752 * keep exceeding their soft limit and putting the system under
4753 * pressure
4754 */
4755 do {
4756 if (next_mz)
4757 mz = next_mz;
4758 else
4759 mz = mem_cgroup_largest_soft_limit_node(mctz);
4760 if (!mz)
4761 break;
4762
0ae5e89c 4763 nr_scanned = 0;
d79154bb 4764 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4765 gfp_mask, &nr_scanned);
4e416953 4766 nr_reclaimed += reclaimed;
0ae5e89c 4767 *total_scanned += nr_scanned;
4e416953
BS
4768 spin_lock(&mctz->lock);
4769
4770 /*
4771 * If we failed to reclaim anything from this memory cgroup
4772 * it is time to move on to the next cgroup
4773 */
4774 next_mz = NULL;
4775 if (!reclaimed) {
4776 do {
4777 /*
4778 * Loop until we find yet another one.
4779 *
4780 * By the time we get the soft_limit lock
4781 * again, someone might have aded the
4782 * group back on the RB tree. Iterate to
4783 * make sure we get a different mem.
4784 * mem_cgroup_largest_soft_limit_node returns
4785 * NULL if no other cgroup is present on
4786 * the tree
4787 */
4788 next_mz =
4789 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4790 if (next_mz == mz)
d79154bb 4791 css_put(&next_mz->memcg->css);
39cc98f1 4792 else /* next_mz == NULL or other memcg */
4e416953
BS
4793 break;
4794 } while (1);
4795 }
d79154bb
HD
4796 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4797 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4798 /*
4799 * One school of thought says that we should not add
4800 * back the node to the tree if reclaim returns 0.
4801 * But our reclaim could return 0, simply because due
4802 * to priority we are exposing a smaller subset of
4803 * memory to reclaim from. Consider this as a longer
4804 * term TODO.
4805 */
ef8745c1 4806 /* If excess == 0, no tree ops */
d79154bb 4807 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4808 spin_unlock(&mctz->lock);
d79154bb 4809 css_put(&mz->memcg->css);
4e416953
BS
4810 loop++;
4811 /*
4812 * Could not reclaim anything and there are no more
4813 * mem cgroups to try or we seem to be looping without
4814 * reclaiming anything.
4815 */
4816 if (!nr_reclaimed &&
4817 (next_mz == NULL ||
4818 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4819 break;
4820 } while (!nr_reclaimed);
4821 if (next_mz)
d79154bb 4822 css_put(&next_mz->memcg->css);
4e416953
BS
4823 return nr_reclaimed;
4824}
4825
2ef37d3f
MH
4826/**
4827 * mem_cgroup_force_empty_list - clears LRU of a group
4828 * @memcg: group to clear
4829 * @node: NUMA node
4830 * @zid: zone id
4831 * @lru: lru to to clear
4832 *
3c935d18 4833 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4834 * reclaim the pages page themselves - pages are moved to the parent (or root)
4835 * group.
cc847582 4836 */
2ef37d3f 4837static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4838 int node, int zid, enum lru_list lru)
cc847582 4839{
bea8c150 4840 struct lruvec *lruvec;
2ef37d3f 4841 unsigned long flags;
072c56c1 4842 struct list_head *list;
925b7673
JW
4843 struct page *busy;
4844 struct zone *zone;
072c56c1 4845
08e552c6 4846 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4847 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4848 list = &lruvec->lists[lru];
cc847582 4849
f817ed48 4850 busy = NULL;
2ef37d3f 4851 do {
925b7673 4852 struct page_cgroup *pc;
5564e88b
JW
4853 struct page *page;
4854
08e552c6 4855 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4856 if (list_empty(list)) {
08e552c6 4857 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4858 break;
f817ed48 4859 }
925b7673
JW
4860 page = list_entry(list->prev, struct page, lru);
4861 if (busy == page) {
4862 list_move(&page->lru, list);
648bcc77 4863 busy = NULL;
08e552c6 4864 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4865 continue;
4866 }
08e552c6 4867 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4868
925b7673 4869 pc = lookup_page_cgroup(page);
5564e88b 4870
3c935d18 4871 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4872 /* found lock contention or "pc" is obsolete. */
925b7673 4873 busy = page;
f817ed48
KH
4874 cond_resched();
4875 } else
4876 busy = NULL;
2ef37d3f 4877 } while (!list_empty(list));
cc847582
KH
4878}
4879
4880/*
c26251f9
MH
4881 * make mem_cgroup's charge to be 0 if there is no task by moving
4882 * all the charges and pages to the parent.
cc847582 4883 * This enables deleting this mem_cgroup.
c26251f9
MH
4884 *
4885 * Caller is responsible for holding css reference on the memcg.
cc847582 4886 */
ab5196c2 4887static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4888{
c26251f9 4889 int node, zid;
bea207c8 4890 u64 usage;
f817ed48 4891
fce66477 4892 do {
52d4b9ac
KH
4893 /* This is for making all *used* pages to be on LRU. */
4894 lru_add_drain_all();
c0ff4b85 4895 drain_all_stock_sync(memcg);
c0ff4b85 4896 mem_cgroup_start_move(memcg);
31aaea4a 4897 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4898 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4899 enum lru_list lru;
4900 for_each_lru(lru) {
2ef37d3f 4901 mem_cgroup_force_empty_list(memcg,
f156ab93 4902 node, zid, lru);
f817ed48 4903 }
1ecaab2b 4904 }
f817ed48 4905 }
c0ff4b85
R
4906 mem_cgroup_end_move(memcg);
4907 memcg_oom_recover(memcg);
52d4b9ac 4908 cond_resched();
f817ed48 4909
2ef37d3f 4910 /*
bea207c8
GC
4911 * Kernel memory may not necessarily be trackable to a specific
4912 * process. So they are not migrated, and therefore we can't
4913 * expect their value to drop to 0 here.
4914 * Having res filled up with kmem only is enough.
4915 *
2ef37d3f
MH
4916 * This is a safety check because mem_cgroup_force_empty_list
4917 * could have raced with mem_cgroup_replace_page_cache callers
4918 * so the lru seemed empty but the page could have been added
4919 * right after the check. RES_USAGE should be safe as we always
4920 * charge before adding to the LRU.
4921 */
bea207c8
GC
4922 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4923 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4924 } while (usage > 0);
c26251f9
MH
4925}
4926
b5f99b53
GC
4927/*
4928 * This mainly exists for tests during the setting of set of use_hierarchy.
4929 * Since this is the very setting we are changing, the current hierarchy value
4930 * is meaningless
4931 */
4932static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4933{
492eb21b 4934 struct cgroup_subsys_state *pos;
b5f99b53
GC
4935
4936 /* bounce at first found */
492eb21b 4937 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4938 return true;
4939 return false;
4940}
4941
4942/*
0999821b
GC
4943 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4944 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4945 * from mem_cgroup_count_children(), in the sense that we don't really care how
4946 * many children we have; we only need to know if we have any. It also counts
4947 * any memcg without hierarchy as infertile.
4948 */
4949static inline bool memcg_has_children(struct mem_cgroup *memcg)
4950{
4951 return memcg->use_hierarchy && __memcg_has_children(memcg);
4952}
4953
c26251f9
MH
4954/*
4955 * Reclaims as many pages from the given memcg as possible and moves
4956 * the rest to the parent.
4957 *
4958 * Caller is responsible for holding css reference for memcg.
4959 */
4960static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4961{
4962 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4963 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4964
c1e862c1 4965 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4966 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4967 return -EBUSY;
4968
c1e862c1
KH
4969 /* we call try-to-free pages for make this cgroup empty */
4970 lru_add_drain_all();
f817ed48 4971 /* try to free all pages in this cgroup */
569530fb 4972 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4973 int progress;
c1e862c1 4974
c26251f9
MH
4975 if (signal_pending(current))
4976 return -EINTR;
4977
c0ff4b85 4978 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4979 false);
c1e862c1 4980 if (!progress) {
f817ed48 4981 nr_retries--;
c1e862c1 4982 /* maybe some writeback is necessary */
8aa7e847 4983 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4984 }
f817ed48
KH
4985
4986 }
08e552c6 4987 lru_add_drain();
ab5196c2
MH
4988 mem_cgroup_reparent_charges(memcg);
4989
4990 return 0;
cc847582
KH
4991}
4992
182446d0
TH
4993static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4994 unsigned int event)
c1e862c1 4995{
182446d0 4996 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9
MH
4997 int ret;
4998
d8423011
MH
4999 if (mem_cgroup_is_root(memcg))
5000 return -EINVAL;
c26251f9
MH
5001 css_get(&memcg->css);
5002 ret = mem_cgroup_force_empty(memcg);
5003 css_put(&memcg->css);
5004
5005 return ret;
c1e862c1
KH
5006}
5007
5008
182446d0
TH
5009static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5010 struct cftype *cft)
18f59ea7 5011{
182446d0 5012 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5013}
5014
182446d0
TH
5015static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5016 struct cftype *cft, u64 val)
18f59ea7
BS
5017{
5018 int retval = 0;
182446d0 5019 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5020 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5021
0999821b 5022 mutex_lock(&memcg_create_mutex);
567fb435
GC
5023
5024 if (memcg->use_hierarchy == val)
5025 goto out;
5026
18f59ea7 5027 /*
af901ca1 5028 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5029 * in the child subtrees. If it is unset, then the change can
5030 * occur, provided the current cgroup has no children.
5031 *
5032 * For the root cgroup, parent_mem is NULL, we allow value to be
5033 * set if there are no children.
5034 */
c0ff4b85 5035 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5036 (val == 1 || val == 0)) {
b5f99b53 5037 if (!__memcg_has_children(memcg))
c0ff4b85 5038 memcg->use_hierarchy = val;
18f59ea7
BS
5039 else
5040 retval = -EBUSY;
5041 } else
5042 retval = -EINVAL;
567fb435
GC
5043
5044out:
0999821b 5045 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5046
5047 return retval;
5048}
5049
0c3e73e8 5050
c0ff4b85 5051static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5052 enum mem_cgroup_stat_index idx)
0c3e73e8 5053{
7d74b06f 5054 struct mem_cgroup *iter;
7a159cc9 5055 long val = 0;
0c3e73e8 5056
7a159cc9 5057 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5058 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5059 val += mem_cgroup_read_stat(iter, idx);
5060
5061 if (val < 0) /* race ? */
5062 val = 0;
5063 return val;
0c3e73e8
BS
5064}
5065
c0ff4b85 5066static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5067{
7d74b06f 5068 u64 val;
104f3928 5069
c0ff4b85 5070 if (!mem_cgroup_is_root(memcg)) {
104f3928 5071 if (!swap)
65c64ce8 5072 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5073 else
65c64ce8 5074 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5075 }
5076
b070e65c
DR
5077 /*
5078 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5079 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5080 */
c0ff4b85
R
5081 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5082 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5083
7d74b06f 5084 if (swap)
bff6bb83 5085 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5086
5087 return val << PAGE_SHIFT;
5088}
5089
182446d0
TH
5090static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5091 struct cftype *cft, struct file *file,
5092 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5093{
182446d0 5094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5095 char str[64];
104f3928 5096 u64 val;
86ae53e1
GC
5097 int name, len;
5098 enum res_type type;
8c7c6e34
KH
5099
5100 type = MEMFILE_TYPE(cft->private);
5101 name = MEMFILE_ATTR(cft->private);
af36f906 5102
8c7c6e34
KH
5103 switch (type) {
5104 case _MEM:
104f3928 5105 if (name == RES_USAGE)
c0ff4b85 5106 val = mem_cgroup_usage(memcg, false);
104f3928 5107 else
c0ff4b85 5108 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5109 break;
5110 case _MEMSWAP:
104f3928 5111 if (name == RES_USAGE)
c0ff4b85 5112 val = mem_cgroup_usage(memcg, true);
104f3928 5113 else
c0ff4b85 5114 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5115 break;
510fc4e1
GC
5116 case _KMEM:
5117 val = res_counter_read_u64(&memcg->kmem, name);
5118 break;
8c7c6e34
KH
5119 default:
5120 BUG();
8c7c6e34 5121 }
af36f906
TH
5122
5123 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5124 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5125}
510fc4e1 5126
182446d0 5127static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5128{
5129 int ret = -EINVAL;
5130#ifdef CONFIG_MEMCG_KMEM
182446d0 5131 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5132 /*
5133 * For simplicity, we won't allow this to be disabled. It also can't
5134 * be changed if the cgroup has children already, or if tasks had
5135 * already joined.
5136 *
5137 * If tasks join before we set the limit, a person looking at
5138 * kmem.usage_in_bytes will have no way to determine when it took
5139 * place, which makes the value quite meaningless.
5140 *
5141 * After it first became limited, changes in the value of the limit are
5142 * of course permitted.
510fc4e1 5143 */
0999821b 5144 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5145 mutex_lock(&set_limit_mutex);
5146 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
182446d0 5147 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5148 ret = -EBUSY;
5149 goto out;
5150 }
5151 ret = res_counter_set_limit(&memcg->kmem, val);
5152 VM_BUG_ON(ret);
5153
55007d84
GC
5154 ret = memcg_update_cache_sizes(memcg);
5155 if (ret) {
5156 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5157 goto out;
5158 }
692e89ab
GC
5159 static_key_slow_inc(&memcg_kmem_enabled_key);
5160 /*
5161 * setting the active bit after the inc will guarantee no one
5162 * starts accounting before all call sites are patched
5163 */
5164 memcg_kmem_set_active(memcg);
510fc4e1
GC
5165 } else
5166 ret = res_counter_set_limit(&memcg->kmem, val);
5167out:
5168 mutex_unlock(&set_limit_mutex);
0999821b 5169 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5170#endif
5171 return ret;
5172}
5173
6d043990 5174#ifdef CONFIG_MEMCG_KMEM
55007d84 5175static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5176{
55007d84 5177 int ret = 0;
510fc4e1
GC
5178 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5179 if (!parent)
55007d84
GC
5180 goto out;
5181
510fc4e1 5182 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5183 /*
5184 * When that happen, we need to disable the static branch only on those
5185 * memcgs that enabled it. To achieve this, we would be forced to
5186 * complicate the code by keeping track of which memcgs were the ones
5187 * that actually enabled limits, and which ones got it from its
5188 * parents.
5189 *
5190 * It is a lot simpler just to do static_key_slow_inc() on every child
5191 * that is accounted.
5192 */
55007d84
GC
5193 if (!memcg_kmem_is_active(memcg))
5194 goto out;
5195
5196 /*
10d5ebf4
LZ
5197 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5198 * memcg is active already. If the later initialization fails then the
5199 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5200 */
55007d84
GC
5201 static_key_slow_inc(&memcg_kmem_enabled_key);
5202
5203 mutex_lock(&set_limit_mutex);
425c598d 5204 memcg_stop_kmem_account();
55007d84 5205 ret = memcg_update_cache_sizes(memcg);
425c598d 5206 memcg_resume_kmem_account();
55007d84 5207 mutex_unlock(&set_limit_mutex);
55007d84
GC
5208out:
5209 return ret;
510fc4e1 5210}
6d043990 5211#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5212
628f4235
KH
5213/*
5214 * The user of this function is...
5215 * RES_LIMIT.
5216 */
182446d0 5217static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5218 const char *buffer)
8cdea7c0 5219{
182446d0 5220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5221 enum res_type type;
5222 int name;
628f4235
KH
5223 unsigned long long val;
5224 int ret;
5225
8c7c6e34
KH
5226 type = MEMFILE_TYPE(cft->private);
5227 name = MEMFILE_ATTR(cft->private);
af36f906 5228
8c7c6e34 5229 switch (name) {
628f4235 5230 case RES_LIMIT:
4b3bde4c
BS
5231 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5232 ret = -EINVAL;
5233 break;
5234 }
628f4235
KH
5235 /* This function does all necessary parse...reuse it */
5236 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5237 if (ret)
5238 break;
5239 if (type == _MEM)
628f4235 5240 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5241 else if (type == _MEMSWAP)
8c7c6e34 5242 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5243 else if (type == _KMEM)
182446d0 5244 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5245 else
5246 return -EINVAL;
628f4235 5247 break;
296c81d8
BS
5248 case RES_SOFT_LIMIT:
5249 ret = res_counter_memparse_write_strategy(buffer, &val);
5250 if (ret)
5251 break;
5252 /*
5253 * For memsw, soft limits are hard to implement in terms
5254 * of semantics, for now, we support soft limits for
5255 * control without swap
5256 */
5257 if (type == _MEM)
5258 ret = res_counter_set_soft_limit(&memcg->res, val);
5259 else
5260 ret = -EINVAL;
5261 break;
628f4235
KH
5262 default:
5263 ret = -EINVAL; /* should be BUG() ? */
5264 break;
5265 }
5266 return ret;
8cdea7c0
BS
5267}
5268
fee7b548
KH
5269static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5270 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5271{
fee7b548
KH
5272 unsigned long long min_limit, min_memsw_limit, tmp;
5273
5274 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5275 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5276 if (!memcg->use_hierarchy)
5277 goto out;
5278
63876986
TH
5279 while (css_parent(&memcg->css)) {
5280 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5281 if (!memcg->use_hierarchy)
5282 break;
5283 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5284 min_limit = min(min_limit, tmp);
5285 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5286 min_memsw_limit = min(min_memsw_limit, tmp);
5287 }
5288out:
5289 *mem_limit = min_limit;
5290 *memsw_limit = min_memsw_limit;
fee7b548
KH
5291}
5292
182446d0 5293static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5294{
182446d0 5295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5296 int name;
5297 enum res_type type;
c84872e1 5298
8c7c6e34
KH
5299 type = MEMFILE_TYPE(event);
5300 name = MEMFILE_ATTR(event);
af36f906 5301
8c7c6e34 5302 switch (name) {
29f2a4da 5303 case RES_MAX_USAGE:
8c7c6e34 5304 if (type == _MEM)
c0ff4b85 5305 res_counter_reset_max(&memcg->res);
510fc4e1 5306 else if (type == _MEMSWAP)
c0ff4b85 5307 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5308 else if (type == _KMEM)
5309 res_counter_reset_max(&memcg->kmem);
5310 else
5311 return -EINVAL;
29f2a4da
PE
5312 break;
5313 case RES_FAILCNT:
8c7c6e34 5314 if (type == _MEM)
c0ff4b85 5315 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5316 else if (type == _MEMSWAP)
c0ff4b85 5317 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5318 else if (type == _KMEM)
5319 res_counter_reset_failcnt(&memcg->kmem);
5320 else
5321 return -EINVAL;
29f2a4da
PE
5322 break;
5323 }
f64c3f54 5324
85cc59db 5325 return 0;
c84872e1
PE
5326}
5327
182446d0 5328static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5329 struct cftype *cft)
5330{
182446d0 5331 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5332}
5333
02491447 5334#ifdef CONFIG_MMU
182446d0 5335static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5336 struct cftype *cft, u64 val)
5337{
182446d0 5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5339
5340 if (val >= (1 << NR_MOVE_TYPE))
5341 return -EINVAL;
ee5e8472 5342
7dc74be0 5343 /*
ee5e8472
GC
5344 * No kind of locking is needed in here, because ->can_attach() will
5345 * check this value once in the beginning of the process, and then carry
5346 * on with stale data. This means that changes to this value will only
5347 * affect task migrations starting after the change.
7dc74be0 5348 */
c0ff4b85 5349 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5350 return 0;
5351}
02491447 5352#else
182446d0 5353static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5354 struct cftype *cft, u64 val)
5355{
5356 return -ENOSYS;
5357}
5358#endif
7dc74be0 5359
406eb0c9 5360#ifdef CONFIG_NUMA
182446d0
TH
5361static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5362 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5363{
5364 int nid;
5365 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5366 unsigned long node_nr;
182446d0 5367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5368
d79154bb 5369 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5370 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5371 for_each_node_state(nid, N_MEMORY) {
d79154bb 5372 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5373 seq_printf(m, " N%d=%lu", nid, node_nr);
5374 }
5375 seq_putc(m, '\n');
5376
d79154bb 5377 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5378 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5379 for_each_node_state(nid, N_MEMORY) {
d79154bb 5380 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5381 LRU_ALL_FILE);
406eb0c9
YH
5382 seq_printf(m, " N%d=%lu", nid, node_nr);
5383 }
5384 seq_putc(m, '\n');
5385
d79154bb 5386 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5387 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5388 for_each_node_state(nid, N_MEMORY) {
d79154bb 5389 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5390 LRU_ALL_ANON);
406eb0c9
YH
5391 seq_printf(m, " N%d=%lu", nid, node_nr);
5392 }
5393 seq_putc(m, '\n');
5394
d79154bb 5395 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5396 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5397 for_each_node_state(nid, N_MEMORY) {
d79154bb 5398 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5399 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5400 seq_printf(m, " N%d=%lu", nid, node_nr);
5401 }
5402 seq_putc(m, '\n');
5403 return 0;
5404}
5405#endif /* CONFIG_NUMA */
5406
af7c4b0e
JW
5407static inline void mem_cgroup_lru_names_not_uptodate(void)
5408{
5409 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5410}
5411
182446d0 5412static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5413 struct seq_file *m)
d2ceb9b7 5414{
182446d0 5415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5416 struct mem_cgroup *mi;
5417 unsigned int i;
406eb0c9 5418
af7c4b0e 5419 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5420 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5421 continue;
af7c4b0e
JW
5422 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5423 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5424 }
7b854121 5425
af7c4b0e
JW
5426 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5427 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5428 mem_cgroup_read_events(memcg, i));
5429
5430 for (i = 0; i < NR_LRU_LISTS; i++)
5431 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5432 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5433
14067bb3 5434 /* Hierarchical information */
fee7b548
KH
5435 {
5436 unsigned long long limit, memsw_limit;
d79154bb 5437 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5438 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5439 if (do_swap_account)
78ccf5b5
JW
5440 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5441 memsw_limit);
fee7b548 5442 }
7f016ee8 5443
af7c4b0e
JW
5444 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5445 long long val = 0;
5446
bff6bb83 5447 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5448 continue;
af7c4b0e
JW
5449 for_each_mem_cgroup_tree(mi, memcg)
5450 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5451 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5452 }
5453
5454 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5455 unsigned long long val = 0;
5456
5457 for_each_mem_cgroup_tree(mi, memcg)
5458 val += mem_cgroup_read_events(mi, i);
5459 seq_printf(m, "total_%s %llu\n",
5460 mem_cgroup_events_names[i], val);
5461 }
5462
5463 for (i = 0; i < NR_LRU_LISTS; i++) {
5464 unsigned long long val = 0;
5465
5466 for_each_mem_cgroup_tree(mi, memcg)
5467 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5468 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5469 }
14067bb3 5470
7f016ee8 5471#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5472 {
5473 int nid, zid;
5474 struct mem_cgroup_per_zone *mz;
89abfab1 5475 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5476 unsigned long recent_rotated[2] = {0, 0};
5477 unsigned long recent_scanned[2] = {0, 0};
5478
5479 for_each_online_node(nid)
5480 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5481 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5482 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5483
89abfab1
HD
5484 recent_rotated[0] += rstat->recent_rotated[0];
5485 recent_rotated[1] += rstat->recent_rotated[1];
5486 recent_scanned[0] += rstat->recent_scanned[0];
5487 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5488 }
78ccf5b5
JW
5489 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5490 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5491 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5492 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5493 }
5494#endif
5495
d2ceb9b7
KH
5496 return 0;
5497}
5498
182446d0
TH
5499static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5500 struct cftype *cft)
a7885eb8 5501{
182446d0 5502 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5503
1f4c025b 5504 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5505}
5506
182446d0
TH
5507static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5508 struct cftype *cft, u64 val)
a7885eb8 5509{
182446d0 5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5511 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5512
63876986 5513 if (val > 100 || !parent)
a7885eb8
KM
5514 return -EINVAL;
5515
0999821b 5516 mutex_lock(&memcg_create_mutex);
068b38c1 5517
a7885eb8 5518 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5519 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5520 mutex_unlock(&memcg_create_mutex);
a7885eb8 5521 return -EINVAL;
068b38c1 5522 }
a7885eb8 5523
a7885eb8 5524 memcg->swappiness = val;
a7885eb8 5525
0999821b 5526 mutex_unlock(&memcg_create_mutex);
068b38c1 5527
a7885eb8
KM
5528 return 0;
5529}
5530
2e72b634
KS
5531static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5532{
5533 struct mem_cgroup_threshold_ary *t;
5534 u64 usage;
5535 int i;
5536
5537 rcu_read_lock();
5538 if (!swap)
2c488db2 5539 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5540 else
2c488db2 5541 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5542
5543 if (!t)
5544 goto unlock;
5545
5546 usage = mem_cgroup_usage(memcg, swap);
5547
5548 /*
748dad36 5549 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5550 * If it's not true, a threshold was crossed after last
5551 * call of __mem_cgroup_threshold().
5552 */
5407a562 5553 i = t->current_threshold;
2e72b634
KS
5554
5555 /*
5556 * Iterate backward over array of thresholds starting from
5557 * current_threshold and check if a threshold is crossed.
5558 * If none of thresholds below usage is crossed, we read
5559 * only one element of the array here.
5560 */
5561 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5562 eventfd_signal(t->entries[i].eventfd, 1);
5563
5564 /* i = current_threshold + 1 */
5565 i++;
5566
5567 /*
5568 * Iterate forward over array of thresholds starting from
5569 * current_threshold+1 and check if a threshold is crossed.
5570 * If none of thresholds above usage is crossed, we read
5571 * only one element of the array here.
5572 */
5573 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5574 eventfd_signal(t->entries[i].eventfd, 1);
5575
5576 /* Update current_threshold */
5407a562 5577 t->current_threshold = i - 1;
2e72b634
KS
5578unlock:
5579 rcu_read_unlock();
5580}
5581
5582static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5583{
ad4ca5f4
KS
5584 while (memcg) {
5585 __mem_cgroup_threshold(memcg, false);
5586 if (do_swap_account)
5587 __mem_cgroup_threshold(memcg, true);
5588
5589 memcg = parent_mem_cgroup(memcg);
5590 }
2e72b634
KS
5591}
5592
5593static int compare_thresholds(const void *a, const void *b)
5594{
5595 const struct mem_cgroup_threshold *_a = a;
5596 const struct mem_cgroup_threshold *_b = b;
5597
5598 return _a->threshold - _b->threshold;
5599}
5600
c0ff4b85 5601static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5602{
5603 struct mem_cgroup_eventfd_list *ev;
5604
c0ff4b85 5605 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5606 eventfd_signal(ev->eventfd, 1);
5607 return 0;
5608}
5609
c0ff4b85 5610static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5611{
7d74b06f
KH
5612 struct mem_cgroup *iter;
5613
c0ff4b85 5614 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5615 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5616}
5617
81eeaf04 5618static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5619 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5620{
81eeaf04 5621 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5622 struct mem_cgroup_thresholds *thresholds;
5623 struct mem_cgroup_threshold_ary *new;
86ae53e1 5624 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5625 u64 threshold, usage;
2c488db2 5626 int i, size, ret;
2e72b634
KS
5627
5628 ret = res_counter_memparse_write_strategy(args, &threshold);
5629 if (ret)
5630 return ret;
5631
5632 mutex_lock(&memcg->thresholds_lock);
2c488db2 5633
2e72b634 5634 if (type == _MEM)
2c488db2 5635 thresholds = &memcg->thresholds;
2e72b634 5636 else if (type == _MEMSWAP)
2c488db2 5637 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5638 else
5639 BUG();
5640
5641 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5642
5643 /* Check if a threshold crossed before adding a new one */
2c488db2 5644 if (thresholds->primary)
2e72b634
KS
5645 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5646
2c488db2 5647 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5648
5649 /* Allocate memory for new array of thresholds */
2c488db2 5650 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5651 GFP_KERNEL);
2c488db2 5652 if (!new) {
2e72b634
KS
5653 ret = -ENOMEM;
5654 goto unlock;
5655 }
2c488db2 5656 new->size = size;
2e72b634
KS
5657
5658 /* Copy thresholds (if any) to new array */
2c488db2
KS
5659 if (thresholds->primary) {
5660 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5661 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5662 }
5663
2e72b634 5664 /* Add new threshold */
2c488db2
KS
5665 new->entries[size - 1].eventfd = eventfd;
5666 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5667
5668 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5669 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5670 compare_thresholds, NULL);
5671
5672 /* Find current threshold */
2c488db2 5673 new->current_threshold = -1;
2e72b634 5674 for (i = 0; i < size; i++) {
748dad36 5675 if (new->entries[i].threshold <= usage) {
2e72b634 5676 /*
2c488db2
KS
5677 * new->current_threshold will not be used until
5678 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5679 * it here.
5680 */
2c488db2 5681 ++new->current_threshold;
748dad36
SZ
5682 } else
5683 break;
2e72b634
KS
5684 }
5685
2c488db2
KS
5686 /* Free old spare buffer and save old primary buffer as spare */
5687 kfree(thresholds->spare);
5688 thresholds->spare = thresholds->primary;
5689
5690 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5691
907860ed 5692 /* To be sure that nobody uses thresholds */
2e72b634
KS
5693 synchronize_rcu();
5694
2e72b634
KS
5695unlock:
5696 mutex_unlock(&memcg->thresholds_lock);
5697
5698 return ret;
5699}
5700
81eeaf04 5701static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5702 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5703{
81eeaf04 5704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5705 struct mem_cgroup_thresholds *thresholds;
5706 struct mem_cgroup_threshold_ary *new;
86ae53e1 5707 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5708 u64 usage;
2c488db2 5709 int i, j, size;
2e72b634
KS
5710
5711 mutex_lock(&memcg->thresholds_lock);
5712 if (type == _MEM)
2c488db2 5713 thresholds = &memcg->thresholds;
2e72b634 5714 else if (type == _MEMSWAP)
2c488db2 5715 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5716 else
5717 BUG();
5718
371528ca
AV
5719 if (!thresholds->primary)
5720 goto unlock;
5721
2e72b634
KS
5722 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5723
5724 /* Check if a threshold crossed before removing */
5725 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5726
5727 /* Calculate new number of threshold */
2c488db2
KS
5728 size = 0;
5729 for (i = 0; i < thresholds->primary->size; i++) {
5730 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5731 size++;
5732 }
5733
2c488db2 5734 new = thresholds->spare;
907860ed 5735
2e72b634
KS
5736 /* Set thresholds array to NULL if we don't have thresholds */
5737 if (!size) {
2c488db2
KS
5738 kfree(new);
5739 new = NULL;
907860ed 5740 goto swap_buffers;
2e72b634
KS
5741 }
5742
2c488db2 5743 new->size = size;
2e72b634
KS
5744
5745 /* Copy thresholds and find current threshold */
2c488db2
KS
5746 new->current_threshold = -1;
5747 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5748 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5749 continue;
5750
2c488db2 5751 new->entries[j] = thresholds->primary->entries[i];
748dad36 5752 if (new->entries[j].threshold <= usage) {
2e72b634 5753 /*
2c488db2 5754 * new->current_threshold will not be used
2e72b634
KS
5755 * until rcu_assign_pointer(), so it's safe to increment
5756 * it here.
5757 */
2c488db2 5758 ++new->current_threshold;
2e72b634
KS
5759 }
5760 j++;
5761 }
5762
907860ed 5763swap_buffers:
2c488db2
KS
5764 /* Swap primary and spare array */
5765 thresholds->spare = thresholds->primary;
8c757763
SZ
5766 /* If all events are unregistered, free the spare array */
5767 if (!new) {
5768 kfree(thresholds->spare);
5769 thresholds->spare = NULL;
5770 }
5771
2c488db2 5772 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5773
907860ed 5774 /* To be sure that nobody uses thresholds */
2e72b634 5775 synchronize_rcu();
371528ca 5776unlock:
2e72b634 5777 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5778}
c1e862c1 5779
81eeaf04 5780static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5781 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5782{
81eeaf04 5783 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5784 struct mem_cgroup_eventfd_list *event;
86ae53e1 5785 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5786
5787 BUG_ON(type != _OOM_TYPE);
5788 event = kmalloc(sizeof(*event), GFP_KERNEL);
5789 if (!event)
5790 return -ENOMEM;
5791
1af8efe9 5792 spin_lock(&memcg_oom_lock);
9490ff27
KH
5793
5794 event->eventfd = eventfd;
5795 list_add(&event->list, &memcg->oom_notify);
5796
5797 /* already in OOM ? */
79dfdacc 5798 if (atomic_read(&memcg->under_oom))
9490ff27 5799 eventfd_signal(eventfd, 1);
1af8efe9 5800 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5801
5802 return 0;
5803}
5804
81eeaf04 5805static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5806 struct cftype *cft, struct eventfd_ctx *eventfd)
5807{
81eeaf04 5808 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5809 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5810 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5811
5812 BUG_ON(type != _OOM_TYPE);
5813
1af8efe9 5814 spin_lock(&memcg_oom_lock);
9490ff27 5815
c0ff4b85 5816 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5817 if (ev->eventfd == eventfd) {
5818 list_del(&ev->list);
5819 kfree(ev);
5820 }
5821 }
5822
1af8efe9 5823 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5824}
5825
182446d0 5826static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5827 struct cftype *cft, struct cgroup_map_cb *cb)
5828{
182446d0 5829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5830
c0ff4b85 5831 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5832
c0ff4b85 5833 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5834 cb->fill(cb, "under_oom", 1);
5835 else
5836 cb->fill(cb, "under_oom", 0);
5837 return 0;
5838}
5839
182446d0 5840static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5841 struct cftype *cft, u64 val)
5842{
182446d0 5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5844 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5845
5846 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5847 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5848 return -EINVAL;
5849
0999821b 5850 mutex_lock(&memcg_create_mutex);
3c11ecf4 5851 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5852 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5853 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5854 return -EINVAL;
5855 }
c0ff4b85 5856 memcg->oom_kill_disable = val;
4d845ebf 5857 if (!val)
c0ff4b85 5858 memcg_oom_recover(memcg);
0999821b 5859 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5860 return 0;
5861}
5862
c255a458 5863#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5864static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5865{
55007d84
GC
5866 int ret;
5867
2633d7a0 5868 memcg->kmemcg_id = -1;
55007d84
GC
5869 ret = memcg_propagate_kmem(memcg);
5870 if (ret)
5871 return ret;
2633d7a0 5872
1d62e436 5873 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5874}
e5671dfa 5875
10d5ebf4 5876static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5877{
1d62e436 5878 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5879}
5880
5881static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5882{
5883 if (!memcg_kmem_is_active(memcg))
5884 return;
5885
5886 /*
5887 * kmem charges can outlive the cgroup. In the case of slab
5888 * pages, for instance, a page contain objects from various
5889 * processes. As we prevent from taking a reference for every
5890 * such allocation we have to be careful when doing uncharge
5891 * (see memcg_uncharge_kmem) and here during offlining.
5892 *
5893 * The idea is that that only the _last_ uncharge which sees
5894 * the dead memcg will drop the last reference. An additional
5895 * reference is taken here before the group is marked dead
5896 * which is then paired with css_put during uncharge resp. here.
5897 *
5898 * Although this might sound strange as this path is called from
5899 * css_offline() when the referencemight have dropped down to 0
5900 * and shouldn't be incremented anymore (css_tryget would fail)
5901 * we do not have other options because of the kmem allocations
5902 * lifetime.
5903 */
5904 css_get(&memcg->css);
7de37682
GC
5905
5906 memcg_kmem_mark_dead(memcg);
5907
5908 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5909 return;
5910
7de37682 5911 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5912 css_put(&memcg->css);
d1a4c0b3 5913}
e5671dfa 5914#else
cbe128e3 5915static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5916{
5917 return 0;
5918}
d1a4c0b3 5919
10d5ebf4
LZ
5920static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5921{
5922}
5923
5924static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5925{
5926}
e5671dfa
GC
5927#endif
5928
8cdea7c0
BS
5929static struct cftype mem_cgroup_files[] = {
5930 {
0eea1030 5931 .name = "usage_in_bytes",
8c7c6e34 5932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5933 .read = mem_cgroup_read,
9490ff27
KH
5934 .register_event = mem_cgroup_usage_register_event,
5935 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5936 },
c84872e1
PE
5937 {
5938 .name = "max_usage_in_bytes",
8c7c6e34 5939 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5940 .trigger = mem_cgroup_reset,
af36f906 5941 .read = mem_cgroup_read,
c84872e1 5942 },
8cdea7c0 5943 {
0eea1030 5944 .name = "limit_in_bytes",
8c7c6e34 5945 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5946 .write_string = mem_cgroup_write,
af36f906 5947 .read = mem_cgroup_read,
8cdea7c0 5948 },
296c81d8
BS
5949 {
5950 .name = "soft_limit_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5952 .write_string = mem_cgroup_write,
af36f906 5953 .read = mem_cgroup_read,
296c81d8 5954 },
8cdea7c0
BS
5955 {
5956 .name = "failcnt",
8c7c6e34 5957 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5958 .trigger = mem_cgroup_reset,
af36f906 5959 .read = mem_cgroup_read,
8cdea7c0 5960 },
d2ceb9b7
KH
5961 {
5962 .name = "stat",
ab215884 5963 .read_seq_string = memcg_stat_show,
d2ceb9b7 5964 },
c1e862c1
KH
5965 {
5966 .name = "force_empty",
5967 .trigger = mem_cgroup_force_empty_write,
5968 },
18f59ea7
BS
5969 {
5970 .name = "use_hierarchy",
f00baae7 5971 .flags = CFTYPE_INSANE,
18f59ea7
BS
5972 .write_u64 = mem_cgroup_hierarchy_write,
5973 .read_u64 = mem_cgroup_hierarchy_read,
5974 },
a7885eb8
KM
5975 {
5976 .name = "swappiness",
5977 .read_u64 = mem_cgroup_swappiness_read,
5978 .write_u64 = mem_cgroup_swappiness_write,
5979 },
7dc74be0
DN
5980 {
5981 .name = "move_charge_at_immigrate",
5982 .read_u64 = mem_cgroup_move_charge_read,
5983 .write_u64 = mem_cgroup_move_charge_write,
5984 },
9490ff27
KH
5985 {
5986 .name = "oom_control",
3c11ecf4
KH
5987 .read_map = mem_cgroup_oom_control_read,
5988 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5989 .register_event = mem_cgroup_oom_register_event,
5990 .unregister_event = mem_cgroup_oom_unregister_event,
5991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5992 },
70ddf637
AV
5993 {
5994 .name = "pressure_level",
5995 .register_event = vmpressure_register_event,
5996 .unregister_event = vmpressure_unregister_event,
5997 },
406eb0c9
YH
5998#ifdef CONFIG_NUMA
5999 {
6000 .name = "numa_stat",
ab215884 6001 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6002 },
6003#endif
510fc4e1
GC
6004#ifdef CONFIG_MEMCG_KMEM
6005 {
6006 .name = "kmem.limit_in_bytes",
6007 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6008 .write_string = mem_cgroup_write,
6009 .read = mem_cgroup_read,
6010 },
6011 {
6012 .name = "kmem.usage_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6014 .read = mem_cgroup_read,
6015 },
6016 {
6017 .name = "kmem.failcnt",
6018 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6019 .trigger = mem_cgroup_reset,
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.max_usage_in_bytes",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
749c5415
GC
6028#ifdef CONFIG_SLABINFO
6029 {
6030 .name = "kmem.slabinfo",
6031 .read_seq_string = mem_cgroup_slabinfo_read,
6032 },
6033#endif
8c7c6e34 6034#endif
6bc10349 6035 { }, /* terminate */
af36f906 6036};
8c7c6e34 6037
2d11085e
MH
6038#ifdef CONFIG_MEMCG_SWAP
6039static struct cftype memsw_cgroup_files[] = {
6040 {
6041 .name = "memsw.usage_in_bytes",
6042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6043 .read = mem_cgroup_read,
6044 .register_event = mem_cgroup_usage_register_event,
6045 .unregister_event = mem_cgroup_usage_unregister_event,
6046 },
6047 {
6048 .name = "memsw.max_usage_in_bytes",
6049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6050 .trigger = mem_cgroup_reset,
6051 .read = mem_cgroup_read,
6052 },
6053 {
6054 .name = "memsw.limit_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6056 .write_string = mem_cgroup_write,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.failcnt",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6062 .trigger = mem_cgroup_reset,
6063 .read = mem_cgroup_read,
6064 },
6065 { }, /* terminate */
6066};
6067#endif
c0ff4b85 6068static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6069{
6070 struct mem_cgroup_per_node *pn;
1ecaab2b 6071 struct mem_cgroup_per_zone *mz;
41e3355d 6072 int zone, tmp = node;
1ecaab2b
KH
6073 /*
6074 * This routine is called against possible nodes.
6075 * But it's BUG to call kmalloc() against offline node.
6076 *
6077 * TODO: this routine can waste much memory for nodes which will
6078 * never be onlined. It's better to use memory hotplug callback
6079 * function.
6080 */
41e3355d
KH
6081 if (!node_state(node, N_NORMAL_MEMORY))
6082 tmp = -1;
17295c88 6083 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6084 if (!pn)
6085 return 1;
1ecaab2b 6086
1ecaab2b
KH
6087 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6088 mz = &pn->zoneinfo[zone];
bea8c150 6089 lruvec_init(&mz->lruvec);
f64c3f54 6090 mz->usage_in_excess = 0;
4e416953 6091 mz->on_tree = false;
d79154bb 6092 mz->memcg = memcg;
1ecaab2b 6093 }
54f72fe0 6094 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6095 return 0;
6096}
6097
c0ff4b85 6098static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6099{
54f72fe0 6100 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6101}
6102
33327948
KH
6103static struct mem_cgroup *mem_cgroup_alloc(void)
6104{
d79154bb 6105 struct mem_cgroup *memcg;
45cf7ebd 6106 size_t size = memcg_size();
33327948 6107
45cf7ebd 6108 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6109 if (size < PAGE_SIZE)
d79154bb 6110 memcg = kzalloc(size, GFP_KERNEL);
33327948 6111 else
d79154bb 6112 memcg = vzalloc(size);
33327948 6113
d79154bb 6114 if (!memcg)
e7bbcdf3
DC
6115 return NULL;
6116
d79154bb
HD
6117 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6118 if (!memcg->stat)
d2e61b8d 6119 goto out_free;
d79154bb
HD
6120 spin_lock_init(&memcg->pcp_counter_lock);
6121 return memcg;
d2e61b8d
DC
6122
6123out_free:
6124 if (size < PAGE_SIZE)
d79154bb 6125 kfree(memcg);
d2e61b8d 6126 else
d79154bb 6127 vfree(memcg);
d2e61b8d 6128 return NULL;
33327948
KH
6129}
6130
59927fb9 6131/*
c8b2a36f
GC
6132 * At destroying mem_cgroup, references from swap_cgroup can remain.
6133 * (scanning all at force_empty is too costly...)
6134 *
6135 * Instead of clearing all references at force_empty, we remember
6136 * the number of reference from swap_cgroup and free mem_cgroup when
6137 * it goes down to 0.
6138 *
6139 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6140 */
c8b2a36f
GC
6141
6142static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6143{
c8b2a36f 6144 int node;
45cf7ebd 6145 size_t size = memcg_size();
59927fb9 6146
c8b2a36f
GC
6147 mem_cgroup_remove_from_trees(memcg);
6148 free_css_id(&mem_cgroup_subsys, &memcg->css);
6149
6150 for_each_node(node)
6151 free_mem_cgroup_per_zone_info(memcg, node);
6152
6153 free_percpu(memcg->stat);
6154
3f134619
GC
6155 /*
6156 * We need to make sure that (at least for now), the jump label
6157 * destruction code runs outside of the cgroup lock. This is because
6158 * get_online_cpus(), which is called from the static_branch update,
6159 * can't be called inside the cgroup_lock. cpusets are the ones
6160 * enforcing this dependency, so if they ever change, we might as well.
6161 *
6162 * schedule_work() will guarantee this happens. Be careful if you need
6163 * to move this code around, and make sure it is outside
6164 * the cgroup_lock.
6165 */
a8964b9b 6166 disarm_static_keys(memcg);
3afe36b1
GC
6167 if (size < PAGE_SIZE)
6168 kfree(memcg);
6169 else
6170 vfree(memcg);
59927fb9 6171}
3afe36b1 6172
7bcc1bb1
DN
6173/*
6174 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6175 */
e1aab161 6176struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6177{
c0ff4b85 6178 if (!memcg->res.parent)
7bcc1bb1 6179 return NULL;
c0ff4b85 6180 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6181}
e1aab161 6182EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6183
8787a1df 6184static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6185{
6186 struct mem_cgroup_tree_per_node *rtpn;
6187 struct mem_cgroup_tree_per_zone *rtpz;
6188 int tmp, node, zone;
6189
3ed28fa1 6190 for_each_node(node) {
f64c3f54
BS
6191 tmp = node;
6192 if (!node_state(node, N_NORMAL_MEMORY))
6193 tmp = -1;
6194 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6195 BUG_ON(!rtpn);
f64c3f54
BS
6196
6197 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6198
6199 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6200 rtpz = &rtpn->rb_tree_per_zone[zone];
6201 rtpz->rb_root = RB_ROOT;
6202 spin_lock_init(&rtpz->lock);
6203 }
6204 }
f64c3f54
BS
6205}
6206
0eb253e2 6207static struct cgroup_subsys_state * __ref
eb95419b 6208mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6209{
d142e3e6 6210 struct mem_cgroup *memcg;
04046e1a 6211 long error = -ENOMEM;
6d12e2d8 6212 int node;
8cdea7c0 6213
c0ff4b85
R
6214 memcg = mem_cgroup_alloc();
6215 if (!memcg)
04046e1a 6216 return ERR_PTR(error);
78fb7466 6217
3ed28fa1 6218 for_each_node(node)
c0ff4b85 6219 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6220 goto free_out;
f64c3f54 6221
c077719b 6222 /* root ? */
eb95419b 6223 if (parent_css == NULL) {
a41c58a6 6224 root_mem_cgroup = memcg;
d142e3e6
GC
6225 res_counter_init(&memcg->res, NULL);
6226 res_counter_init(&memcg->memsw, NULL);
6227 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6228 }
28dbc4b6 6229
d142e3e6
GC
6230 memcg->last_scanned_node = MAX_NUMNODES;
6231 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6232 memcg->move_charge_at_immigrate = 0;
6233 mutex_init(&memcg->thresholds_lock);
6234 spin_lock_init(&memcg->move_lock);
70ddf637 6235 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6236
6237 return &memcg->css;
6238
6239free_out:
6240 __mem_cgroup_free(memcg);
6241 return ERR_PTR(error);
6242}
6243
6244static int
eb95419b 6245mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6246{
eb95419b
TH
6247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6248 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6249 int error = 0;
6250
63876986 6251 if (!parent)
d142e3e6
GC
6252 return 0;
6253
0999821b 6254 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6255
6256 memcg->use_hierarchy = parent->use_hierarchy;
6257 memcg->oom_kill_disable = parent->oom_kill_disable;
6258 memcg->swappiness = mem_cgroup_swappiness(parent);
6259
6260 if (parent->use_hierarchy) {
c0ff4b85
R
6261 res_counter_init(&memcg->res, &parent->res);
6262 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6263 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6264
7bcc1bb1 6265 /*
8d76a979
LZ
6266 * No need to take a reference to the parent because cgroup
6267 * core guarantees its existence.
7bcc1bb1 6268 */
18f59ea7 6269 } else {
c0ff4b85
R
6270 res_counter_init(&memcg->res, NULL);
6271 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6272 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6273 /*
6274 * Deeper hierachy with use_hierarchy == false doesn't make
6275 * much sense so let cgroup subsystem know about this
6276 * unfortunate state in our controller.
6277 */
d142e3e6 6278 if (parent != root_mem_cgroup)
8c7f6edb 6279 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6280 }
cbe128e3
GC
6281
6282 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6283 mutex_unlock(&memcg_create_mutex);
d142e3e6 6284 return error;
8cdea7c0
BS
6285}
6286
5f578161
MH
6287/*
6288 * Announce all parents that a group from their hierarchy is gone.
6289 */
6290static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6291{
6292 struct mem_cgroup *parent = memcg;
6293
6294 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6295 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6296
6297 /*
6298 * if the root memcg is not hierarchical we have to check it
6299 * explicitely.
6300 */
6301 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6302 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6303}
6304
eb95419b 6305static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6306{
eb95419b 6307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6308
10d5ebf4
LZ
6309 kmem_cgroup_css_offline(memcg);
6310
5f578161 6311 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6312 mem_cgroup_reparent_charges(memcg);
1f458cbf 6313 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6314}
6315
eb95419b 6316static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6317{
eb95419b 6318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6319
10d5ebf4 6320 memcg_destroy_kmem(memcg);
465939a1 6321 __mem_cgroup_free(memcg);
8cdea7c0
BS
6322}
6323
02491447 6324#ifdef CONFIG_MMU
7dc74be0 6325/* Handlers for move charge at task migration. */
854ffa8d
DN
6326#define PRECHARGE_COUNT_AT_ONCE 256
6327static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6328{
854ffa8d
DN
6329 int ret = 0;
6330 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6331 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6332
c0ff4b85 6333 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6334 mc.precharge += count;
6335 /* we don't need css_get for root */
6336 return ret;
6337 }
6338 /* try to charge at once */
6339 if (count > 1) {
6340 struct res_counter *dummy;
6341 /*
c0ff4b85 6342 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6343 * by cgroup_lock_live_cgroup() that it is not removed and we
6344 * are still under the same cgroup_mutex. So we can postpone
6345 * css_get().
6346 */
c0ff4b85 6347 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6348 goto one_by_one;
c0ff4b85 6349 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6350 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6351 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6352 goto one_by_one;
6353 }
6354 mc.precharge += count;
854ffa8d
DN
6355 return ret;
6356 }
6357one_by_one:
6358 /* fall back to one by one charge */
6359 while (count--) {
6360 if (signal_pending(current)) {
6361 ret = -EINTR;
6362 break;
6363 }
6364 if (!batch_count--) {
6365 batch_count = PRECHARGE_COUNT_AT_ONCE;
6366 cond_resched();
6367 }
c0ff4b85
R
6368 ret = __mem_cgroup_try_charge(NULL,
6369 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6370 if (ret)
854ffa8d 6371 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6372 return ret;
854ffa8d
DN
6373 mc.precharge++;
6374 }
4ffef5fe
DN
6375 return ret;
6376}
6377
6378/**
8d32ff84 6379 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6380 * @vma: the vma the pte to be checked belongs
6381 * @addr: the address corresponding to the pte to be checked
6382 * @ptent: the pte to be checked
02491447 6383 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6384 *
6385 * Returns
6386 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6387 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6388 * move charge. if @target is not NULL, the page is stored in target->page
6389 * with extra refcnt got(Callers should handle it).
02491447
DN
6390 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6391 * target for charge migration. if @target is not NULL, the entry is stored
6392 * in target->ent.
4ffef5fe
DN
6393 *
6394 * Called with pte lock held.
6395 */
4ffef5fe
DN
6396union mc_target {
6397 struct page *page;
02491447 6398 swp_entry_t ent;
4ffef5fe
DN
6399};
6400
4ffef5fe 6401enum mc_target_type {
8d32ff84 6402 MC_TARGET_NONE = 0,
4ffef5fe 6403 MC_TARGET_PAGE,
02491447 6404 MC_TARGET_SWAP,
4ffef5fe
DN
6405};
6406
90254a65
DN
6407static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6408 unsigned long addr, pte_t ptent)
4ffef5fe 6409{
90254a65 6410 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6411
90254a65
DN
6412 if (!page || !page_mapped(page))
6413 return NULL;
6414 if (PageAnon(page)) {
6415 /* we don't move shared anon */
4b91355e 6416 if (!move_anon())
90254a65 6417 return NULL;
87946a72
DN
6418 } else if (!move_file())
6419 /* we ignore mapcount for file pages */
90254a65
DN
6420 return NULL;
6421 if (!get_page_unless_zero(page))
6422 return NULL;
6423
6424 return page;
6425}
6426
4b91355e 6427#ifdef CONFIG_SWAP
90254a65
DN
6428static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6429 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6430{
90254a65
DN
6431 struct page *page = NULL;
6432 swp_entry_t ent = pte_to_swp_entry(ptent);
6433
6434 if (!move_anon() || non_swap_entry(ent))
6435 return NULL;
4b91355e
KH
6436 /*
6437 * Because lookup_swap_cache() updates some statistics counter,
6438 * we call find_get_page() with swapper_space directly.
6439 */
33806f06 6440 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6441 if (do_swap_account)
6442 entry->val = ent.val;
6443
6444 return page;
6445}
4b91355e
KH
6446#else
6447static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6448 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6449{
6450 return NULL;
6451}
6452#endif
90254a65 6453
87946a72
DN
6454static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6455 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6456{
6457 struct page *page = NULL;
87946a72
DN
6458 struct address_space *mapping;
6459 pgoff_t pgoff;
6460
6461 if (!vma->vm_file) /* anonymous vma */
6462 return NULL;
6463 if (!move_file())
6464 return NULL;
6465
87946a72
DN
6466 mapping = vma->vm_file->f_mapping;
6467 if (pte_none(ptent))
6468 pgoff = linear_page_index(vma, addr);
6469 else /* pte_file(ptent) is true */
6470 pgoff = pte_to_pgoff(ptent);
6471
6472 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6473 page = find_get_page(mapping, pgoff);
6474
6475#ifdef CONFIG_SWAP
6476 /* shmem/tmpfs may report page out on swap: account for that too. */
6477 if (radix_tree_exceptional_entry(page)) {
6478 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6479 if (do_swap_account)
aa3b1895 6480 *entry = swap;
33806f06 6481 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6482 }
aa3b1895 6483#endif
87946a72
DN
6484 return page;
6485}
6486
8d32ff84 6487static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6488 unsigned long addr, pte_t ptent, union mc_target *target)
6489{
6490 struct page *page = NULL;
6491 struct page_cgroup *pc;
8d32ff84 6492 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6493 swp_entry_t ent = { .val = 0 };
6494
6495 if (pte_present(ptent))
6496 page = mc_handle_present_pte(vma, addr, ptent);
6497 else if (is_swap_pte(ptent))
6498 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6499 else if (pte_none(ptent) || pte_file(ptent))
6500 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6501
6502 if (!page && !ent.val)
8d32ff84 6503 return ret;
02491447
DN
6504 if (page) {
6505 pc = lookup_page_cgroup(page);
6506 /*
6507 * Do only loose check w/o page_cgroup lock.
6508 * mem_cgroup_move_account() checks the pc is valid or not under
6509 * the lock.
6510 */
6511 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6512 ret = MC_TARGET_PAGE;
6513 if (target)
6514 target->page = page;
6515 }
6516 if (!ret || !target)
6517 put_page(page);
6518 }
90254a65
DN
6519 /* There is a swap entry and a page doesn't exist or isn't charged */
6520 if (ent.val && !ret &&
9fb4b7cc 6521 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6522 ret = MC_TARGET_SWAP;
6523 if (target)
6524 target->ent = ent;
4ffef5fe 6525 }
4ffef5fe
DN
6526 return ret;
6527}
6528
12724850
NH
6529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6530/*
6531 * We don't consider swapping or file mapped pages because THP does not
6532 * support them for now.
6533 * Caller should make sure that pmd_trans_huge(pmd) is true.
6534 */
6535static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6536 unsigned long addr, pmd_t pmd, union mc_target *target)
6537{
6538 struct page *page = NULL;
6539 struct page_cgroup *pc;
6540 enum mc_target_type ret = MC_TARGET_NONE;
6541
6542 page = pmd_page(pmd);
6543 VM_BUG_ON(!page || !PageHead(page));
6544 if (!move_anon())
6545 return ret;
6546 pc = lookup_page_cgroup(page);
6547 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6548 ret = MC_TARGET_PAGE;
6549 if (target) {
6550 get_page(page);
6551 target->page = page;
6552 }
6553 }
6554 return ret;
6555}
6556#else
6557static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6558 unsigned long addr, pmd_t pmd, union mc_target *target)
6559{
6560 return MC_TARGET_NONE;
6561}
6562#endif
6563
4ffef5fe
DN
6564static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6565 unsigned long addr, unsigned long end,
6566 struct mm_walk *walk)
6567{
6568 struct vm_area_struct *vma = walk->private;
6569 pte_t *pte;
6570 spinlock_t *ptl;
6571
12724850
NH
6572 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6574 mc.precharge += HPAGE_PMD_NR;
6575 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6576 return 0;
12724850 6577 }
03319327 6578
45f83cef
AA
6579 if (pmd_trans_unstable(pmd))
6580 return 0;
4ffef5fe
DN
6581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6582 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6583 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6584 mc.precharge++; /* increment precharge temporarily */
6585 pte_unmap_unlock(pte - 1, ptl);
6586 cond_resched();
6587
7dc74be0
DN
6588 return 0;
6589}
6590
4ffef5fe
DN
6591static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6592{
6593 unsigned long precharge;
6594 struct vm_area_struct *vma;
6595
dfe076b0 6596 down_read(&mm->mmap_sem);
4ffef5fe
DN
6597 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6598 struct mm_walk mem_cgroup_count_precharge_walk = {
6599 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6600 .mm = mm,
6601 .private = vma,
6602 };
6603 if (is_vm_hugetlb_page(vma))
6604 continue;
4ffef5fe
DN
6605 walk_page_range(vma->vm_start, vma->vm_end,
6606 &mem_cgroup_count_precharge_walk);
6607 }
dfe076b0 6608 up_read(&mm->mmap_sem);
4ffef5fe
DN
6609
6610 precharge = mc.precharge;
6611 mc.precharge = 0;
6612
6613 return precharge;
6614}
6615
4ffef5fe
DN
6616static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6617{
dfe076b0
DN
6618 unsigned long precharge = mem_cgroup_count_precharge(mm);
6619
6620 VM_BUG_ON(mc.moving_task);
6621 mc.moving_task = current;
6622 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6623}
6624
dfe076b0
DN
6625/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6626static void __mem_cgroup_clear_mc(void)
4ffef5fe 6627{
2bd9bb20
KH
6628 struct mem_cgroup *from = mc.from;
6629 struct mem_cgroup *to = mc.to;
4050377b 6630 int i;
2bd9bb20 6631
4ffef5fe 6632 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6633 if (mc.precharge) {
6634 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6635 mc.precharge = 0;
6636 }
6637 /*
6638 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6639 * we must uncharge here.
6640 */
6641 if (mc.moved_charge) {
6642 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6643 mc.moved_charge = 0;
4ffef5fe 6644 }
483c30b5
DN
6645 /* we must fixup refcnts and charges */
6646 if (mc.moved_swap) {
483c30b5
DN
6647 /* uncharge swap account from the old cgroup */
6648 if (!mem_cgroup_is_root(mc.from))
6649 res_counter_uncharge(&mc.from->memsw,
6650 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6651
6652 for (i = 0; i < mc.moved_swap; i++)
6653 css_put(&mc.from->css);
483c30b5
DN
6654
6655 if (!mem_cgroup_is_root(mc.to)) {
6656 /*
6657 * we charged both to->res and to->memsw, so we should
6658 * uncharge to->res.
6659 */
6660 res_counter_uncharge(&mc.to->res,
6661 PAGE_SIZE * mc.moved_swap);
483c30b5 6662 }
4050377b 6663 /* we've already done css_get(mc.to) */
483c30b5
DN
6664 mc.moved_swap = 0;
6665 }
dfe076b0
DN
6666 memcg_oom_recover(from);
6667 memcg_oom_recover(to);
6668 wake_up_all(&mc.waitq);
6669}
6670
6671static void mem_cgroup_clear_mc(void)
6672{
6673 struct mem_cgroup *from = mc.from;
6674
6675 /*
6676 * we must clear moving_task before waking up waiters at the end of
6677 * task migration.
6678 */
6679 mc.moving_task = NULL;
6680 __mem_cgroup_clear_mc();
2bd9bb20 6681 spin_lock(&mc.lock);
4ffef5fe
DN
6682 mc.from = NULL;
6683 mc.to = NULL;
2bd9bb20 6684 spin_unlock(&mc.lock);
32047e2a 6685 mem_cgroup_end_move(from);
4ffef5fe
DN
6686}
6687
eb95419b 6688static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6689 struct cgroup_taskset *tset)
7dc74be0 6690{
2f7ee569 6691 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6692 int ret = 0;
eb95419b 6693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6694 unsigned long move_charge_at_immigrate;
7dc74be0 6695
ee5e8472
GC
6696 /*
6697 * We are now commited to this value whatever it is. Changes in this
6698 * tunable will only affect upcoming migrations, not the current one.
6699 * So we need to save it, and keep it going.
6700 */
6701 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6702 if (move_charge_at_immigrate) {
7dc74be0
DN
6703 struct mm_struct *mm;
6704 struct mem_cgroup *from = mem_cgroup_from_task(p);
6705
c0ff4b85 6706 VM_BUG_ON(from == memcg);
7dc74be0
DN
6707
6708 mm = get_task_mm(p);
6709 if (!mm)
6710 return 0;
7dc74be0 6711 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6712 if (mm->owner == p) {
6713 VM_BUG_ON(mc.from);
6714 VM_BUG_ON(mc.to);
6715 VM_BUG_ON(mc.precharge);
854ffa8d 6716 VM_BUG_ON(mc.moved_charge);
483c30b5 6717 VM_BUG_ON(mc.moved_swap);
32047e2a 6718 mem_cgroup_start_move(from);
2bd9bb20 6719 spin_lock(&mc.lock);
4ffef5fe 6720 mc.from = from;
c0ff4b85 6721 mc.to = memcg;
ee5e8472 6722 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6723 spin_unlock(&mc.lock);
dfe076b0 6724 /* We set mc.moving_task later */
4ffef5fe
DN
6725
6726 ret = mem_cgroup_precharge_mc(mm);
6727 if (ret)
6728 mem_cgroup_clear_mc();
dfe076b0
DN
6729 }
6730 mmput(mm);
7dc74be0
DN
6731 }
6732 return ret;
6733}
6734
eb95419b 6735static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6736 struct cgroup_taskset *tset)
7dc74be0 6737{
4ffef5fe 6738 mem_cgroup_clear_mc();
7dc74be0
DN
6739}
6740
4ffef5fe
DN
6741static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6742 unsigned long addr, unsigned long end,
6743 struct mm_walk *walk)
7dc74be0 6744{
4ffef5fe
DN
6745 int ret = 0;
6746 struct vm_area_struct *vma = walk->private;
6747 pte_t *pte;
6748 spinlock_t *ptl;
12724850
NH
6749 enum mc_target_type target_type;
6750 union mc_target target;
6751 struct page *page;
6752 struct page_cgroup *pc;
4ffef5fe 6753
12724850
NH
6754 /*
6755 * We don't take compound_lock() here but no race with splitting thp
6756 * happens because:
6757 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6758 * under splitting, which means there's no concurrent thp split,
6759 * - if another thread runs into split_huge_page() just after we
6760 * entered this if-block, the thread must wait for page table lock
6761 * to be unlocked in __split_huge_page_splitting(), where the main
6762 * part of thp split is not executed yet.
6763 */
6764 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6765 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6766 spin_unlock(&vma->vm_mm->page_table_lock);
6767 return 0;
6768 }
6769 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6770 if (target_type == MC_TARGET_PAGE) {
6771 page = target.page;
6772 if (!isolate_lru_page(page)) {
6773 pc = lookup_page_cgroup(page);
6774 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6775 pc, mc.from, mc.to)) {
12724850
NH
6776 mc.precharge -= HPAGE_PMD_NR;
6777 mc.moved_charge += HPAGE_PMD_NR;
6778 }
6779 putback_lru_page(page);
6780 }
6781 put_page(page);
6782 }
6783 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6784 return 0;
12724850
NH
6785 }
6786
45f83cef
AA
6787 if (pmd_trans_unstable(pmd))
6788 return 0;
4ffef5fe
DN
6789retry:
6790 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6791 for (; addr != end; addr += PAGE_SIZE) {
6792 pte_t ptent = *(pte++);
02491447 6793 swp_entry_t ent;
4ffef5fe
DN
6794
6795 if (!mc.precharge)
6796 break;
6797
8d32ff84 6798 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6799 case MC_TARGET_PAGE:
6800 page = target.page;
6801 if (isolate_lru_page(page))
6802 goto put;
6803 pc = lookup_page_cgroup(page);
7ec99d62 6804 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6805 mc.from, mc.to)) {
4ffef5fe 6806 mc.precharge--;
854ffa8d
DN
6807 /* we uncharge from mc.from later. */
6808 mc.moved_charge++;
4ffef5fe
DN
6809 }
6810 putback_lru_page(page);
8d32ff84 6811put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6812 put_page(page);
6813 break;
02491447
DN
6814 case MC_TARGET_SWAP:
6815 ent = target.ent;
e91cbb42 6816 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6817 mc.precharge--;
483c30b5
DN
6818 /* we fixup refcnts and charges later. */
6819 mc.moved_swap++;
6820 }
02491447 6821 break;
4ffef5fe
DN
6822 default:
6823 break;
6824 }
6825 }
6826 pte_unmap_unlock(pte - 1, ptl);
6827 cond_resched();
6828
6829 if (addr != end) {
6830 /*
6831 * We have consumed all precharges we got in can_attach().
6832 * We try charge one by one, but don't do any additional
6833 * charges to mc.to if we have failed in charge once in attach()
6834 * phase.
6835 */
854ffa8d 6836 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6837 if (!ret)
6838 goto retry;
6839 }
6840
6841 return ret;
6842}
6843
6844static void mem_cgroup_move_charge(struct mm_struct *mm)
6845{
6846 struct vm_area_struct *vma;
6847
6848 lru_add_drain_all();
dfe076b0
DN
6849retry:
6850 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6851 /*
6852 * Someone who are holding the mmap_sem might be waiting in
6853 * waitq. So we cancel all extra charges, wake up all waiters,
6854 * and retry. Because we cancel precharges, we might not be able
6855 * to move enough charges, but moving charge is a best-effort
6856 * feature anyway, so it wouldn't be a big problem.
6857 */
6858 __mem_cgroup_clear_mc();
6859 cond_resched();
6860 goto retry;
6861 }
4ffef5fe
DN
6862 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6863 int ret;
6864 struct mm_walk mem_cgroup_move_charge_walk = {
6865 .pmd_entry = mem_cgroup_move_charge_pte_range,
6866 .mm = mm,
6867 .private = vma,
6868 };
6869 if (is_vm_hugetlb_page(vma))
6870 continue;
4ffef5fe
DN
6871 ret = walk_page_range(vma->vm_start, vma->vm_end,
6872 &mem_cgroup_move_charge_walk);
6873 if (ret)
6874 /*
6875 * means we have consumed all precharges and failed in
6876 * doing additional charge. Just abandon here.
6877 */
6878 break;
6879 }
dfe076b0 6880 up_read(&mm->mmap_sem);
7dc74be0
DN
6881}
6882
eb95419b 6883static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6884 struct cgroup_taskset *tset)
67e465a7 6885{
2f7ee569 6886 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6887 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6888
dfe076b0 6889 if (mm) {
a433658c
KM
6890 if (mc.to)
6891 mem_cgroup_move_charge(mm);
dfe076b0
DN
6892 mmput(mm);
6893 }
a433658c
KM
6894 if (mc.to)
6895 mem_cgroup_clear_mc();
67e465a7 6896}
5cfb80a7 6897#else /* !CONFIG_MMU */
eb95419b 6898static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6899 struct cgroup_taskset *tset)
5cfb80a7
DN
6900{
6901 return 0;
6902}
eb95419b 6903static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6904 struct cgroup_taskset *tset)
5cfb80a7
DN
6905{
6906}
eb95419b 6907static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6908 struct cgroup_taskset *tset)
5cfb80a7
DN
6909{
6910}
6911#endif
67e465a7 6912
f00baae7
TH
6913/*
6914 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6915 * to verify sane_behavior flag on each mount attempt.
6916 */
eb95419b 6917static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6918{
6919 /*
6920 * use_hierarchy is forced with sane_behavior. cgroup core
6921 * guarantees that @root doesn't have any children, so turning it
6922 * on for the root memcg is enough.
6923 */
eb95419b
TH
6924 if (cgroup_sane_behavior(root_css->cgroup))
6925 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6926}
6927
8cdea7c0
BS
6928struct cgroup_subsys mem_cgroup_subsys = {
6929 .name = "memory",
6930 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6931 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6932 .css_online = mem_cgroup_css_online,
92fb9748
TH
6933 .css_offline = mem_cgroup_css_offline,
6934 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6935 .can_attach = mem_cgroup_can_attach,
6936 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6937 .attach = mem_cgroup_move_task,
f00baae7 6938 .bind = mem_cgroup_bind,
6bc10349 6939 .base_cftypes = mem_cgroup_files,
6d12e2d8 6940 .early_init = 0,
04046e1a 6941 .use_id = 1,
8cdea7c0 6942};
c077719b 6943
c255a458 6944#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6945static int __init enable_swap_account(char *s)
6946{
6947 /* consider enabled if no parameter or 1 is given */
a2c8990a 6948 if (!strcmp(s, "1"))
a42c390c 6949 really_do_swap_account = 1;
a2c8990a 6950 else if (!strcmp(s, "0"))
a42c390c
MH
6951 really_do_swap_account = 0;
6952 return 1;
6953}
a2c8990a 6954__setup("swapaccount=", enable_swap_account);
c077719b 6955
2d11085e
MH
6956static void __init memsw_file_init(void)
6957{
6acc8b02
MH
6958 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6959}
6960
6961static void __init enable_swap_cgroup(void)
6962{
6963 if (!mem_cgroup_disabled() && really_do_swap_account) {
6964 do_swap_account = 1;
6965 memsw_file_init();
6966 }
2d11085e 6967}
6acc8b02 6968
2d11085e 6969#else
6acc8b02 6970static void __init enable_swap_cgroup(void)
2d11085e
MH
6971{
6972}
c077719b 6973#endif
2d11085e
MH
6974
6975/*
1081312f
MH
6976 * subsys_initcall() for memory controller.
6977 *
6978 * Some parts like hotcpu_notifier() have to be initialized from this context
6979 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6980 * everything that doesn't depend on a specific mem_cgroup structure should
6981 * be initialized from here.
2d11085e
MH
6982 */
6983static int __init mem_cgroup_init(void)
6984{
6985 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6986 enable_swap_cgroup();
8787a1df 6987 mem_cgroup_soft_limit_tree_init();
e4777496 6988 memcg_stock_init();
2d11085e
MH
6989 return 0;
6990}
6991subsys_initcall(mem_cgroup_init);