]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: consolidate memory controller initialization
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
7a159cc9
JW
115/*
116 * Per memcg event counter is incremented at every pagein/pageout. With THP,
117 * it will be incremated by the number of pages. This counter is used for
118 * for trigger some periodic events. This is straightforward and better
119 * than using jiffies etc. to handle periodic memcg event.
120 */
121enum mem_cgroup_events_target {
122 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 123 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 124 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
125 MEM_CGROUP_NTARGETS,
126};
a0db00fc
KS
127#define THRESHOLDS_EVENTS_TARGET 128
128#define SOFTLIMIT_EVENTS_TARGET 1024
129#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 130
d52aa412 131struct mem_cgroup_stat_cpu {
7a159cc9 132 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 133 unsigned long events[MEMCG_NR_EVENTS];
13114716 134 unsigned long nr_page_events;
7a159cc9 135 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
136};
137
5ac8fb31
JW
138struct reclaim_iter {
139 struct mem_cgroup *position;
527a5ec9
JW
140 /* scan generation, increased every round-trip */
141 unsigned int generation;
142};
143
6d12e2d8
KH
144/*
145 * per-zone information in memory controller.
146 */
6d12e2d8 147struct mem_cgroup_per_zone {
6290df54 148 struct lruvec lruvec;
1eb49272 149 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 150
5ac8fb31 151 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 152
bb4cc1a8 153 struct rb_node tree_node; /* RB tree node */
3e32cb2e 154 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
155 /* the soft limit is exceeded*/
156 bool on_tree;
d79154bb 157 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 158 /* use container_of */
6d12e2d8 159};
6d12e2d8
KH
160
161struct mem_cgroup_per_node {
162 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
163};
164
bb4cc1a8
AM
165/*
166 * Cgroups above their limits are maintained in a RB-Tree, independent of
167 * their hierarchy representation
168 */
169
170struct mem_cgroup_tree_per_zone {
171 struct rb_root rb_root;
172 spinlock_t lock;
173};
174
175struct mem_cgroup_tree_per_node {
176 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
177};
178
179struct mem_cgroup_tree {
180 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
181};
182
183static struct mem_cgroup_tree soft_limit_tree __read_mostly;
184
2e72b634
KS
185struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
3e32cb2e 187 unsigned long threshold;
2e72b634
KS
188};
189
9490ff27 190/* For threshold */
2e72b634 191struct mem_cgroup_threshold_ary {
748dad36 192 /* An array index points to threshold just below or equal to usage. */
5407a562 193 int current_threshold;
2e72b634
KS
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198};
2c488db2
KS
199
200struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209};
210
9490ff27
KH
211/* for OOM */
212struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215};
2e72b634 216
79bd9814
TH
217/*
218 * cgroup_event represents events which userspace want to receive.
219 */
3bc942f3 220struct mem_cgroup_event {
79bd9814 221 /*
59b6f873 222 * memcg which the event belongs to.
79bd9814 223 */
59b6f873 224 struct mem_cgroup *memcg;
79bd9814
TH
225 /*
226 * eventfd to signal userspace about the event.
227 */
228 struct eventfd_ctx *eventfd;
229 /*
230 * Each of these stored in a list by the cgroup.
231 */
232 struct list_head list;
fba94807
TH
233 /*
234 * register_event() callback will be used to add new userspace
235 * waiter for changes related to this event. Use eventfd_signal()
236 * on eventfd to send notification to userspace.
237 */
59b6f873 238 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 239 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
240 /*
241 * unregister_event() callback will be called when userspace closes
242 * the eventfd or on cgroup removing. This callback must be set,
243 * if you want provide notification functionality.
244 */
59b6f873 245 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 246 struct eventfd_ctx *eventfd);
79bd9814
TH
247 /*
248 * All fields below needed to unregister event when
249 * userspace closes eventfd.
250 */
251 poll_table pt;
252 wait_queue_head_t *wqh;
253 wait_queue_t wait;
254 struct work_struct remove;
255};
256
c0ff4b85
R
257static void mem_cgroup_threshold(struct mem_cgroup *memcg);
258static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 259
8cdea7c0
BS
260/*
261 * The memory controller data structure. The memory controller controls both
262 * page cache and RSS per cgroup. We would eventually like to provide
263 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
264 * to help the administrator determine what knobs to tune.
265 *
266 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
267 * we hit the water mark. May be even add a low water mark, such that
268 * no reclaim occurs from a cgroup at it's low water mark, this is
269 * a feature that will be implemented much later in the future.
8cdea7c0
BS
270 */
271struct mem_cgroup {
272 struct cgroup_subsys_state css;
3e32cb2e
JW
273
274 /* Accounted resources */
275 struct page_counter memory;
276 struct page_counter memsw;
277 struct page_counter kmem;
278
241994ed
JW
279 /* Normal memory consumption range */
280 unsigned long low;
281 unsigned long high;
282
3e32cb2e 283 unsigned long soft_limit;
59927fb9 284
70ddf637
AV
285 /* vmpressure notifications */
286 struct vmpressure vmpressure;
287
2f7dd7a4
JW
288 /* css_online() has been completed */
289 int initialized;
290
18f59ea7
BS
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
79dfdacc
MH
295
296 bool oom_lock;
297 atomic_t under_oom;
3812c8c8 298 atomic_t oom_wakeups;
79dfdacc 299
1f4c025b 300 int swappiness;
3c11ecf4
KH
301 /* OOM-Killer disable */
302 int oom_kill_disable;
a7885eb8 303
2e72b634
KS
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
306
307 /* thresholds for memory usage. RCU-protected */
2c488db2 308 struct mem_cgroup_thresholds thresholds;
907860ed 309
2e72b634 310 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 312
9490ff27
KH
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
185efc0f 315
7dc74be0
DN
316 /*
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
319 */
f894ffa8 320 unsigned long move_charge_at_immigrate;
619d094b
KH
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
6de22619 324 atomic_t moving_account;
312734c0 325 /* taken only while moving_account > 0 */
6de22619
JW
326 spinlock_t move_lock;
327 struct task_struct *move_lock_task;
328 unsigned long move_lock_flags;
d52aa412 329 /*
c62b1a3b 330 * percpu counter.
d52aa412 331 */
3a7951b4 332 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
333 /*
334 * used when a cpu is offlined or other synchronizations
335 * See mem_cgroup_read_stat().
336 */
337 struct mem_cgroup_stat_cpu nocpu_base;
338 spinlock_t pcp_counter_lock;
d1a4c0b3 339
4bd2c1ee 340#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 341 struct cg_proto tcp_mem;
d1a4c0b3 342#endif
2633d7a0 343#if defined(CONFIG_MEMCG_KMEM)
2633d7a0
GC
344 /* Index in the kmem_cache->memcg_params->memcg_caches array */
345 int kmemcg_id;
346#endif
45cf7ebd
GC
347
348 int last_scanned_node;
349#if MAX_NUMNODES > 1
350 nodemask_t scan_nodes;
351 atomic_t numainfo_events;
352 atomic_t numainfo_updating;
353#endif
70ddf637 354
fba94807
TH
355 /* List of events which userspace want to receive */
356 struct list_head event_list;
357 spinlock_t event_list_lock;
358
54f72fe0
JW
359 struct mem_cgroup_per_node *nodeinfo[0];
360 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
361};
362
510fc4e1 363#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
364static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365{
900a38f0 366 return memcg->kmemcg_id >= 0;
7de37682 367}
510fc4e1
GC
368#endif
369
7dc74be0
DN
370/* Stuffs for move charges at task migration. */
371/*
1dfab5ab 372 * Types of charges to be moved.
7dc74be0 373 */
1dfab5ab
JW
374#define MOVE_ANON 0x1U
375#define MOVE_FILE 0x2U
376#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 377
4ffef5fe
DN
378/* "mc" and its members are protected by cgroup_mutex */
379static struct move_charge_struct {
b1dd693e 380 spinlock_t lock; /* for from, to */
4ffef5fe
DN
381 struct mem_cgroup *from;
382 struct mem_cgroup *to;
1dfab5ab 383 unsigned long flags;
4ffef5fe 384 unsigned long precharge;
854ffa8d 385 unsigned long moved_charge;
483c30b5 386 unsigned long moved_swap;
8033b97c
DN
387 struct task_struct *moving_task; /* a task moving charges */
388 wait_queue_head_t waitq; /* a waitq for other context */
389} mc = {
2bd9bb20 390 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
391 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
392};
4ffef5fe 393
4e416953
BS
394/*
395 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
396 * limit reclaim to prevent infinite loops, if they ever occur.
397 */
a0db00fc 398#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 399#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 400
217bc319
KH
401enum charge_type {
402 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 403 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 404 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 405 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
406 NR_CHARGE_TYPE,
407};
408
8c7c6e34 409/* for encoding cft->private value on file */
86ae53e1
GC
410enum res_type {
411 _MEM,
412 _MEMSWAP,
413 _OOM_TYPE,
510fc4e1 414 _KMEM,
86ae53e1
GC
415};
416
a0db00fc
KS
417#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
418#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 419#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
420/* Used for OOM nofiier */
421#define OOM_CONTROL (0)
8c7c6e34 422
0999821b
GC
423/*
424 * The memcg_create_mutex will be held whenever a new cgroup is created.
425 * As a consequence, any change that needs to protect against new child cgroups
426 * appearing has to hold it as well.
427 */
428static DEFINE_MUTEX(memcg_create_mutex);
429
b2145145
WL
430struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
431{
a7c6d554 432 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
433}
434
70ddf637
AV
435/* Some nice accessors for the vmpressure. */
436struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
437{
438 if (!memcg)
439 memcg = root_mem_cgroup;
440 return &memcg->vmpressure;
441}
442
443struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
444{
445 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
446}
447
7ffc0edc
MH
448static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
449{
450 return (memcg == root_mem_cgroup);
451}
452
4219b2da
LZ
453/*
454 * We restrict the id in the range of [1, 65535], so it can fit into
455 * an unsigned short.
456 */
457#define MEM_CGROUP_ID_MAX USHRT_MAX
458
34c00c31
LZ
459static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
460{
15a4c835 461 return memcg->css.id;
34c00c31
LZ
462}
463
464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465{
466 struct cgroup_subsys_state *css;
467
7d699ddb 468 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
469 return mem_cgroup_from_css(css);
470}
471
e1aab161 472/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 474
e1aab161
GC
475void sock_update_memcg(struct sock *sk)
476{
376be5ff 477 if (mem_cgroup_sockets_enabled) {
e1aab161 478 struct mem_cgroup *memcg;
3f134619 479 struct cg_proto *cg_proto;
e1aab161
GC
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
f3f511e1
GC
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 493 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
494 return;
495 }
496
e1aab161
GC
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
3f134619 499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 500 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
3f134619 503 sk->sk_cgrp = cg_proto;
e1aab161
GC
504 }
505 rcu_read_unlock();
506 }
507}
508EXPORT_SYMBOL(sock_update_memcg);
509
510void sock_release_memcg(struct sock *sk)
511{
376be5ff 512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
5347e5ae 516 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
517 }
518}
d1a4c0b3
GC
519
520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521{
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
2e685cad 525 return &memcg->tcp_mem;
d1a4c0b3
GC
526}
527EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 528
3f134619
GC
529static void disarm_sock_keys(struct mem_cgroup *memcg)
530{
2e685cad 531 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
532 return;
533 static_key_slow_dec(&memcg_socket_limit_enabled);
534}
535#else
536static void disarm_sock_keys(struct mem_cgroup *memcg)
537{
538}
539#endif
540
a8964b9b 541#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
542/*
543 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
544 * The main reason for not using cgroup id for this:
545 * this works better in sparse environments, where we have a lot of memcgs,
546 * but only a few kmem-limited. Or also, if we have, for instance, 200
547 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
548 * 200 entry array for that.
55007d84
GC
549 *
550 * The current size of the caches array is stored in
551 * memcg_limited_groups_array_size. It will double each time we have to
552 * increase it.
553 */
554static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
555int memcg_limited_groups_array_size;
556
55007d84
GC
557/*
558 * MIN_SIZE is different than 1, because we would like to avoid going through
559 * the alloc/free process all the time. In a small machine, 4 kmem-limited
560 * cgroups is a reasonable guess. In the future, it could be a parameter or
561 * tunable, but that is strictly not necessary.
562 *
b8627835 563 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
564 * this constant directly from cgroup, but it is understandable that this is
565 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 566 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
567 * increase ours as well if it increases.
568 */
569#define MEMCG_CACHES_MIN_SIZE 4
b8627835 570#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 571
d7f25f8a
GC
572/*
573 * A lot of the calls to the cache allocation functions are expected to be
574 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
575 * conditional to this static branch, we'll have to allow modules that does
576 * kmem_cache_alloc and the such to see this symbol as well
577 */
a8964b9b 578struct static_key memcg_kmem_enabled_key;
d7f25f8a 579EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 580
f3bb3043
VD
581static void memcg_free_cache_id(int id);
582
a8964b9b
GC
583static void disarm_kmem_keys(struct mem_cgroup *memcg)
584{
55007d84 585 if (memcg_kmem_is_active(memcg)) {
a8964b9b 586 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 587 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 588 }
bea207c8
GC
589 /*
590 * This check can't live in kmem destruction function,
591 * since the charges will outlive the cgroup
592 */
3e32cb2e 593 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
594}
595#else
596static void disarm_kmem_keys(struct mem_cgroup *memcg)
597{
598}
599#endif /* CONFIG_MEMCG_KMEM */
600
601static void disarm_static_keys(struct mem_cgroup *memcg)
602{
603 disarm_sock_keys(memcg);
604 disarm_kmem_keys(memcg);
605}
606
f64c3f54 607static struct mem_cgroup_per_zone *
e231875b 608mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 609{
e231875b
JZ
610 int nid = zone_to_nid(zone);
611 int zid = zone_idx(zone);
612
54f72fe0 613 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
614}
615
c0ff4b85 616struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 617{
c0ff4b85 618 return &memcg->css;
d324236b
WF
619}
620
f64c3f54 621static struct mem_cgroup_per_zone *
e231875b 622mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 623{
97a6c37b
JW
624 int nid = page_to_nid(page);
625 int zid = page_zonenum(page);
f64c3f54 626
e231875b 627 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
628}
629
bb4cc1a8
AM
630static struct mem_cgroup_tree_per_zone *
631soft_limit_tree_node_zone(int nid, int zid)
632{
633 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
634}
635
636static struct mem_cgroup_tree_per_zone *
637soft_limit_tree_from_page(struct page *page)
638{
639 int nid = page_to_nid(page);
640 int zid = page_zonenum(page);
641
642 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
643}
644
cf2c8127
JW
645static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
646 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 647 unsigned long new_usage_in_excess)
bb4cc1a8
AM
648{
649 struct rb_node **p = &mctz->rb_root.rb_node;
650 struct rb_node *parent = NULL;
651 struct mem_cgroup_per_zone *mz_node;
652
653 if (mz->on_tree)
654 return;
655
656 mz->usage_in_excess = new_usage_in_excess;
657 if (!mz->usage_in_excess)
658 return;
659 while (*p) {
660 parent = *p;
661 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
662 tree_node);
663 if (mz->usage_in_excess < mz_node->usage_in_excess)
664 p = &(*p)->rb_left;
665 /*
666 * We can't avoid mem cgroups that are over their soft
667 * limit by the same amount
668 */
669 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
670 p = &(*p)->rb_right;
671 }
672 rb_link_node(&mz->tree_node, parent, p);
673 rb_insert_color(&mz->tree_node, &mctz->rb_root);
674 mz->on_tree = true;
675}
676
cf2c8127
JW
677static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
678 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
679{
680 if (!mz->on_tree)
681 return;
682 rb_erase(&mz->tree_node, &mctz->rb_root);
683 mz->on_tree = false;
684}
685
cf2c8127
JW
686static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
687 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 688{
0a31bc97
JW
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 692 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 693 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
694}
695
3e32cb2e
JW
696static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
697{
698 unsigned long nr_pages = page_counter_read(&memcg->memory);
699 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
700 unsigned long excess = 0;
701
702 if (nr_pages > soft_limit)
703 excess = nr_pages - soft_limit;
704
705 return excess;
706}
bb4cc1a8
AM
707
708static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
709{
3e32cb2e 710 unsigned long excess;
bb4cc1a8
AM
711 struct mem_cgroup_per_zone *mz;
712 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 713
e231875b 714 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
715 /*
716 * Necessary to update all ancestors when hierarchy is used.
717 * because their event counter is not touched.
718 */
719 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 720 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 721 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
722 /*
723 * We have to update the tree if mz is on RB-tree or
724 * mem is over its softlimit.
725 */
726 if (excess || mz->on_tree) {
0a31bc97
JW
727 unsigned long flags;
728
729 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
730 /* if on-tree, remove it */
731 if (mz->on_tree)
cf2c8127 732 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
733 /*
734 * Insert again. mz->usage_in_excess will be updated.
735 * If excess is 0, no tree ops.
736 */
cf2c8127 737 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 738 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
739 }
740 }
741}
742
743static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
744{
bb4cc1a8 745 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
746 struct mem_cgroup_per_zone *mz;
747 int nid, zid;
bb4cc1a8 748
e231875b
JZ
749 for_each_node(nid) {
750 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
751 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
752 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 753 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
754 }
755 }
756}
757
758static struct mem_cgroup_per_zone *
759__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
760{
761 struct rb_node *rightmost = NULL;
762 struct mem_cgroup_per_zone *mz;
763
764retry:
765 mz = NULL;
766 rightmost = rb_last(&mctz->rb_root);
767 if (!rightmost)
768 goto done; /* Nothing to reclaim from */
769
770 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
771 /*
772 * Remove the node now but someone else can add it back,
773 * we will to add it back at the end of reclaim to its correct
774 * position in the tree.
775 */
cf2c8127 776 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 777 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 778 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
779 goto retry;
780done:
781 return mz;
782}
783
784static struct mem_cgroup_per_zone *
785mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
786{
787 struct mem_cgroup_per_zone *mz;
788
0a31bc97 789 spin_lock_irq(&mctz->lock);
bb4cc1a8 790 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 791 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
792 return mz;
793}
794
711d3d2c
KH
795/*
796 * Implementation Note: reading percpu statistics for memcg.
797 *
798 * Both of vmstat[] and percpu_counter has threshold and do periodic
799 * synchronization to implement "quick" read. There are trade-off between
800 * reading cost and precision of value. Then, we may have a chance to implement
801 * a periodic synchronizion of counter in memcg's counter.
802 *
803 * But this _read() function is used for user interface now. The user accounts
804 * memory usage by memory cgroup and he _always_ requires exact value because
805 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
806 * have to visit all online cpus and make sum. So, for now, unnecessary
807 * synchronization is not implemented. (just implemented for cpu hotplug)
808 *
809 * If there are kernel internal actions which can make use of some not-exact
810 * value, and reading all cpu value can be performance bottleneck in some
811 * common workload, threashold and synchonization as vmstat[] should be
812 * implemented.
813 */
c0ff4b85 814static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 815 enum mem_cgroup_stat_index idx)
c62b1a3b 816{
7a159cc9 817 long val = 0;
c62b1a3b 818 int cpu;
c62b1a3b 819
711d3d2c
KH
820 get_online_cpus();
821 for_each_online_cpu(cpu)
c0ff4b85 822 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 823#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
824 spin_lock(&memcg->pcp_counter_lock);
825 val += memcg->nocpu_base.count[idx];
826 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
827#endif
828 put_online_cpus();
c62b1a3b
KH
829 return val;
830}
831
c0ff4b85 832static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
833 enum mem_cgroup_events_index idx)
834{
835 unsigned long val = 0;
836 int cpu;
837
9c567512 838 get_online_cpus();
e9f8974f 839 for_each_online_cpu(cpu)
c0ff4b85 840 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 841#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.events[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 845#endif
9c567512 846 put_online_cpus();
e9f8974f
JW
847 return val;
848}
849
c0ff4b85 850static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 851 struct page *page,
0a31bc97 852 int nr_pages)
d52aa412 853{
b2402857
KH
854 /*
855 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
856 * counted as CACHE even if it's on ANON LRU.
857 */
0a31bc97 858 if (PageAnon(page))
b2402857 859 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 860 nr_pages);
d52aa412 861 else
b2402857 862 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 863 nr_pages);
55e462b0 864
b070e65c
DR
865 if (PageTransHuge(page))
866 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
867 nr_pages);
868
e401f176
KH
869 /* pagein of a big page is an event. So, ignore page size */
870 if (nr_pages > 0)
c0ff4b85 871 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 872 else {
c0ff4b85 873 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
874 nr_pages = -nr_pages; /* for event */
875 }
e401f176 876
13114716 877 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
878}
879
e231875b 880unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
881{
882 struct mem_cgroup_per_zone *mz;
883
884 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
885 return mz->lru_size[lru];
886}
887
e231875b
JZ
888static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
889 int nid,
890 unsigned int lru_mask)
bb2a0de9 891{
e231875b 892 unsigned long nr = 0;
889976db
YH
893 int zid;
894
e231875b 895 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 896
e231875b
JZ
897 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
898 struct mem_cgroup_per_zone *mz;
899 enum lru_list lru;
900
901 for_each_lru(lru) {
902 if (!(BIT(lru) & lru_mask))
903 continue;
904 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
905 nr += mz->lru_size[lru];
906 }
907 }
908 return nr;
889976db 909}
bb2a0de9 910
c0ff4b85 911static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 912 unsigned int lru_mask)
6d12e2d8 913{
e231875b 914 unsigned long nr = 0;
889976db 915 int nid;
6d12e2d8 916
31aaea4a 917 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
918 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
919 return nr;
d52aa412
KH
920}
921
f53d7ce3
JW
922static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
923 enum mem_cgroup_events_target target)
7a159cc9
JW
924{
925 unsigned long val, next;
926
13114716 927 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 928 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 929 /* from time_after() in jiffies.h */
f53d7ce3
JW
930 if ((long)next - (long)val < 0) {
931 switch (target) {
932 case MEM_CGROUP_TARGET_THRESH:
933 next = val + THRESHOLDS_EVENTS_TARGET;
934 break;
bb4cc1a8
AM
935 case MEM_CGROUP_TARGET_SOFTLIMIT:
936 next = val + SOFTLIMIT_EVENTS_TARGET;
937 break;
f53d7ce3
JW
938 case MEM_CGROUP_TARGET_NUMAINFO:
939 next = val + NUMAINFO_EVENTS_TARGET;
940 break;
941 default:
942 break;
943 }
944 __this_cpu_write(memcg->stat->targets[target], next);
945 return true;
7a159cc9 946 }
f53d7ce3 947 return false;
d2265e6f
KH
948}
949
950/*
951 * Check events in order.
952 *
953 */
c0ff4b85 954static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
955{
956 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
957 if (unlikely(mem_cgroup_event_ratelimit(memcg,
958 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 959 bool do_softlimit;
82b3f2a7 960 bool do_numainfo __maybe_unused;
f53d7ce3 961
bb4cc1a8
AM
962 do_softlimit = mem_cgroup_event_ratelimit(memcg,
963 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
964#if MAX_NUMNODES > 1
965 do_numainfo = mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_NUMAINFO);
967#endif
c0ff4b85 968 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
969 if (unlikely(do_softlimit))
970 mem_cgroup_update_tree(memcg, page);
453a9bf3 971#if MAX_NUMNODES > 1
f53d7ce3 972 if (unlikely(do_numainfo))
c0ff4b85 973 atomic_inc(&memcg->numainfo_events);
453a9bf3 974#endif
0a31bc97 975 }
d2265e6f
KH
976}
977
cf475ad2 978struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 979{
31a78f23
BS
980 /*
981 * mm_update_next_owner() may clear mm->owner to NULL
982 * if it races with swapoff, page migration, etc.
983 * So this can be called with p == NULL.
984 */
985 if (unlikely(!p))
986 return NULL;
987
073219e9 988 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
989}
990
df381975 991static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 992{
c0ff4b85 993 struct mem_cgroup *memcg = NULL;
0b7f569e 994
54595fe2
KH
995 rcu_read_lock();
996 do {
6f6acb00
MH
997 /*
998 * Page cache insertions can happen withou an
999 * actual mm context, e.g. during disk probing
1000 * on boot, loopback IO, acct() writes etc.
1001 */
1002 if (unlikely(!mm))
df381975 1003 memcg = root_mem_cgroup;
6f6acb00
MH
1004 else {
1005 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1006 if (unlikely(!memcg))
1007 memcg = root_mem_cgroup;
1008 }
ec903c0c 1009 } while (!css_tryget_online(&memcg->css));
54595fe2 1010 rcu_read_unlock();
c0ff4b85 1011 return memcg;
54595fe2
KH
1012}
1013
5660048c
JW
1014/**
1015 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1016 * @root: hierarchy root
1017 * @prev: previously returned memcg, NULL on first invocation
1018 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1019 *
1020 * Returns references to children of the hierarchy below @root, or
1021 * @root itself, or %NULL after a full round-trip.
1022 *
1023 * Caller must pass the return value in @prev on subsequent
1024 * invocations for reference counting, or use mem_cgroup_iter_break()
1025 * to cancel a hierarchy walk before the round-trip is complete.
1026 *
1027 * Reclaimers can specify a zone and a priority level in @reclaim to
1028 * divide up the memcgs in the hierarchy among all concurrent
1029 * reclaimers operating on the same zone and priority.
1030 */
694fbc0f 1031struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1032 struct mem_cgroup *prev,
694fbc0f 1033 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1034{
5ac8fb31
JW
1035 struct reclaim_iter *uninitialized_var(iter);
1036 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1037 struct mem_cgroup *memcg = NULL;
5ac8fb31 1038 struct mem_cgroup *pos = NULL;
711d3d2c 1039
694fbc0f
AM
1040 if (mem_cgroup_disabled())
1041 return NULL;
5660048c 1042
9f3a0d09
JW
1043 if (!root)
1044 root = root_mem_cgroup;
7d74b06f 1045
9f3a0d09 1046 if (prev && !reclaim)
5ac8fb31 1047 pos = prev;
14067bb3 1048
9f3a0d09
JW
1049 if (!root->use_hierarchy && root != root_mem_cgroup) {
1050 if (prev)
5ac8fb31 1051 goto out;
694fbc0f 1052 return root;
9f3a0d09 1053 }
14067bb3 1054
542f85f9 1055 rcu_read_lock();
5f578161 1056
5ac8fb31
JW
1057 if (reclaim) {
1058 struct mem_cgroup_per_zone *mz;
1059
1060 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1061 iter = &mz->iter[reclaim->priority];
1062
1063 if (prev && reclaim->generation != iter->generation)
1064 goto out_unlock;
1065
1066 do {
1067 pos = ACCESS_ONCE(iter->position);
1068 /*
1069 * A racing update may change the position and
1070 * put the last reference, hence css_tryget(),
1071 * or retry to see the updated position.
1072 */
1073 } while (pos && !css_tryget(&pos->css));
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
b2052564 1103 if (css_tryget(css)) {
5ac8fb31
JW
1104 /*
1105 * Make sure the memcg is initialized:
1106 * mem_cgroup_css_online() orders the the
1107 * initialization against setting the flag.
1108 */
1109 if (smp_load_acquire(&memcg->initialized))
1110 break;
542f85f9 1111
5ac8fb31 1112 css_put(css);
527a5ec9 1113 }
9f3a0d09 1114
5ac8fb31 1115 memcg = NULL;
9f3a0d09 1116 }
5ac8fb31
JW
1117
1118 if (reclaim) {
1119 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1120 if (memcg)
1121 css_get(&memcg->css);
1122 if (pos)
1123 css_put(&pos->css);
1124 }
1125
1126 /*
1127 * pairs with css_tryget when dereferencing iter->position
1128 * above.
1129 */
1130 if (pos)
1131 css_put(&pos->css);
1132
1133 if (!memcg)
1134 iter->generation++;
1135 else if (!prev)
1136 reclaim->generation = iter->generation;
9f3a0d09 1137 }
5ac8fb31 1138
542f85f9
MH
1139out_unlock:
1140 rcu_read_unlock();
5ac8fb31 1141out:
c40046f3
MH
1142 if (prev && prev != root)
1143 css_put(&prev->css);
1144
9f3a0d09 1145 return memcg;
14067bb3 1146}
7d74b06f 1147
5660048c
JW
1148/**
1149 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1150 * @root: hierarchy root
1151 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1152 */
1153void mem_cgroup_iter_break(struct mem_cgroup *root,
1154 struct mem_cgroup *prev)
9f3a0d09
JW
1155{
1156 if (!root)
1157 root = root_mem_cgroup;
1158 if (prev && prev != root)
1159 css_put(&prev->css);
1160}
7d74b06f 1161
9f3a0d09
JW
1162/*
1163 * Iteration constructs for visiting all cgroups (under a tree). If
1164 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1165 * be used for reference counting.
1166 */
1167#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1168 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1169 iter != NULL; \
527a5ec9 1170 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1171
9f3a0d09 1172#define for_each_mem_cgroup(iter) \
527a5ec9 1173 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1174 iter != NULL; \
527a5ec9 1175 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1176
68ae564b 1177void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1178{
c0ff4b85 1179 struct mem_cgroup *memcg;
456f998e 1180
456f998e 1181 rcu_read_lock();
c0ff4b85
R
1182 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1183 if (unlikely(!memcg))
456f998e
YH
1184 goto out;
1185
1186 switch (idx) {
456f998e 1187 case PGFAULT:
0e574a93
JW
1188 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1189 break;
1190 case PGMAJFAULT:
1191 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1192 break;
1193 default:
1194 BUG();
1195 }
1196out:
1197 rcu_read_unlock();
1198}
68ae564b 1199EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1200
925b7673
JW
1201/**
1202 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1203 * @zone: zone of the wanted lruvec
fa9add64 1204 * @memcg: memcg of the wanted lruvec
925b7673
JW
1205 *
1206 * Returns the lru list vector holding pages for the given @zone and
1207 * @mem. This can be the global zone lruvec, if the memory controller
1208 * is disabled.
1209 */
1210struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1211 struct mem_cgroup *memcg)
1212{
1213 struct mem_cgroup_per_zone *mz;
bea8c150 1214 struct lruvec *lruvec;
925b7673 1215
bea8c150
HD
1216 if (mem_cgroup_disabled()) {
1217 lruvec = &zone->lruvec;
1218 goto out;
1219 }
925b7673 1220
e231875b 1221 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1222 lruvec = &mz->lruvec;
1223out:
1224 /*
1225 * Since a node can be onlined after the mem_cgroup was created,
1226 * we have to be prepared to initialize lruvec->zone here;
1227 * and if offlined then reonlined, we need to reinitialize it.
1228 */
1229 if (unlikely(lruvec->zone != zone))
1230 lruvec->zone = zone;
1231 return lruvec;
925b7673
JW
1232}
1233
925b7673 1234/**
dfe0e773 1235 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1236 * @page: the page
fa9add64 1237 * @zone: zone of the page
dfe0e773
JW
1238 *
1239 * This function is only safe when following the LRU page isolation
1240 * and putback protocol: the LRU lock must be held, and the page must
1241 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1242 */
fa9add64 1243struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1244{
08e552c6 1245 struct mem_cgroup_per_zone *mz;
925b7673 1246 struct mem_cgroup *memcg;
bea8c150 1247 struct lruvec *lruvec;
6d12e2d8 1248
bea8c150
HD
1249 if (mem_cgroup_disabled()) {
1250 lruvec = &zone->lruvec;
1251 goto out;
1252 }
925b7673 1253
1306a85a 1254 memcg = page->mem_cgroup;
7512102c 1255 /*
dfe0e773 1256 * Swapcache readahead pages are added to the LRU - and
29833315 1257 * possibly migrated - before they are charged.
7512102c 1258 */
29833315
JW
1259 if (!memcg)
1260 memcg = root_mem_cgroup;
7512102c 1261
e231875b 1262 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1263 lruvec = &mz->lruvec;
1264out:
1265 /*
1266 * Since a node can be onlined after the mem_cgroup was created,
1267 * we have to be prepared to initialize lruvec->zone here;
1268 * and if offlined then reonlined, we need to reinitialize it.
1269 */
1270 if (unlikely(lruvec->zone != zone))
1271 lruvec->zone = zone;
1272 return lruvec;
08e552c6 1273}
b69408e8 1274
925b7673 1275/**
fa9add64
HD
1276 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1277 * @lruvec: mem_cgroup per zone lru vector
1278 * @lru: index of lru list the page is sitting on
1279 * @nr_pages: positive when adding or negative when removing
925b7673 1280 *
fa9add64
HD
1281 * This function must be called when a page is added to or removed from an
1282 * lru list.
3f58a829 1283 */
fa9add64
HD
1284void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1285 int nr_pages)
3f58a829
MK
1286{
1287 struct mem_cgroup_per_zone *mz;
fa9add64 1288 unsigned long *lru_size;
3f58a829
MK
1289
1290 if (mem_cgroup_disabled())
1291 return;
1292
fa9add64
HD
1293 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1294 lru_size = mz->lru_size + lru;
1295 *lru_size += nr_pages;
1296 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1297}
544122e5 1298
2314b42d 1299bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1300{
2314b42d 1301 if (root == memcg)
91c63734 1302 return true;
2314b42d 1303 if (!root->use_hierarchy)
91c63734 1304 return false;
2314b42d 1305 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1306}
1307
2314b42d 1308bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1309{
2314b42d 1310 struct mem_cgroup *task_memcg;
158e0a2d 1311 struct task_struct *p;
ffbdccf5 1312 bool ret;
4c4a2214 1313
158e0a2d 1314 p = find_lock_task_mm(task);
de077d22 1315 if (p) {
2314b42d 1316 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1317 task_unlock(p);
1318 } else {
1319 /*
1320 * All threads may have already detached their mm's, but the oom
1321 * killer still needs to detect if they have already been oom
1322 * killed to prevent needlessly killing additional tasks.
1323 */
ffbdccf5 1324 rcu_read_lock();
2314b42d
JW
1325 task_memcg = mem_cgroup_from_task(task);
1326 css_get(&task_memcg->css);
ffbdccf5 1327 rcu_read_unlock();
de077d22 1328 }
2314b42d
JW
1329 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1330 css_put(&task_memcg->css);
4c4a2214
DR
1331 return ret;
1332}
1333
c56d5c7d 1334int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1335{
9b272977 1336 unsigned long inactive_ratio;
14797e23 1337 unsigned long inactive;
9b272977 1338 unsigned long active;
c772be93 1339 unsigned long gb;
14797e23 1340
4d7dcca2
HD
1341 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1342 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1343
c772be93
KM
1344 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1345 if (gb)
1346 inactive_ratio = int_sqrt(10 * gb);
1347 else
1348 inactive_ratio = 1;
1349
9b272977 1350 return inactive * inactive_ratio < active;
14797e23
KM
1351}
1352
90cbc250
VD
1353bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1354{
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357
1358 if (mem_cgroup_disabled())
1359 return true;
1360
1361 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1362 memcg = mz->memcg;
1363
1364 return !!(memcg->css.flags & CSS_ONLINE);
1365}
1366
3e32cb2e 1367#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1368 container_of(counter, struct mem_cgroup, member)
1369
19942822 1370/**
9d11ea9f 1371 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1372 * @memcg: the memory cgroup
19942822 1373 *
9d11ea9f 1374 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1375 * pages.
19942822 1376 */
c0ff4b85 1377static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1378{
3e32cb2e
JW
1379 unsigned long margin = 0;
1380 unsigned long count;
1381 unsigned long limit;
9d11ea9f 1382
3e32cb2e
JW
1383 count = page_counter_read(&memcg->memory);
1384 limit = ACCESS_ONCE(memcg->memory.limit);
1385 if (count < limit)
1386 margin = limit - count;
1387
1388 if (do_swap_account) {
1389 count = page_counter_read(&memcg->memsw);
1390 limit = ACCESS_ONCE(memcg->memsw.limit);
1391 if (count <= limit)
1392 margin = min(margin, limit - count);
1393 }
1394
1395 return margin;
19942822
JW
1396}
1397
1f4c025b 1398int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1399{
a7885eb8 1400 /* root ? */
14208b0e 1401 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1402 return vm_swappiness;
1403
bf1ff263 1404 return memcg->swappiness;
a7885eb8
KM
1405}
1406
32047e2a 1407/*
bdcbb659 1408 * A routine for checking "mem" is under move_account() or not.
32047e2a 1409 *
bdcbb659
QH
1410 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1411 * moving cgroups. This is for waiting at high-memory pressure
1412 * caused by "move".
32047e2a 1413 */
c0ff4b85 1414static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1415{
2bd9bb20
KH
1416 struct mem_cgroup *from;
1417 struct mem_cgroup *to;
4b534334 1418 bool ret = false;
2bd9bb20
KH
1419 /*
1420 * Unlike task_move routines, we access mc.to, mc.from not under
1421 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1422 */
1423 spin_lock(&mc.lock);
1424 from = mc.from;
1425 to = mc.to;
1426 if (!from)
1427 goto unlock;
3e92041d 1428
2314b42d
JW
1429 ret = mem_cgroup_is_descendant(from, memcg) ||
1430 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1431unlock:
1432 spin_unlock(&mc.lock);
4b534334
KH
1433 return ret;
1434}
1435
c0ff4b85 1436static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1437{
1438 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1439 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1440 DEFINE_WAIT(wait);
1441 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1442 /* moving charge context might have finished. */
1443 if (mc.moving_task)
1444 schedule();
1445 finish_wait(&mc.waitq, &wait);
1446 return true;
1447 }
1448 }
1449 return false;
1450}
1451
58cf188e 1452#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1453/**
58cf188e 1454 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1455 * @memcg: The memory cgroup that went over limit
1456 * @p: Task that is going to be killed
1457 *
1458 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1459 * enabled
1460 */
1461void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1462{
e61734c5 1463 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1464 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1465 struct mem_cgroup *iter;
1466 unsigned int i;
e222432b 1467
58cf188e 1468 if (!p)
e222432b
BS
1469 return;
1470
08088cb9 1471 mutex_lock(&oom_info_lock);
e222432b
BS
1472 rcu_read_lock();
1473
e61734c5
TH
1474 pr_info("Task in ");
1475 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1476 pr_cont(" killed as a result of limit of ");
e61734c5 1477 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1478 pr_cont("\n");
e222432b 1479
e222432b
BS
1480 rcu_read_unlock();
1481
3e32cb2e
JW
1482 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1483 K((u64)page_counter_read(&memcg->memory)),
1484 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1485 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1486 K((u64)page_counter_read(&memcg->memsw)),
1487 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1488 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->kmem)),
1490 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1491
1492 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1493 pr_info("Memory cgroup stats for ");
1494 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1495 pr_cont(":");
1496
1497 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1498 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1499 continue;
1500 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1501 K(mem_cgroup_read_stat(iter, i)));
1502 }
1503
1504 for (i = 0; i < NR_LRU_LISTS; i++)
1505 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1506 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1507
1508 pr_cont("\n");
1509 }
08088cb9 1510 mutex_unlock(&oom_info_lock);
e222432b
BS
1511}
1512
81d39c20
KH
1513/*
1514 * This function returns the number of memcg under hierarchy tree. Returns
1515 * 1(self count) if no children.
1516 */
c0ff4b85 1517static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1518{
1519 int num = 0;
7d74b06f
KH
1520 struct mem_cgroup *iter;
1521
c0ff4b85 1522 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1523 num++;
81d39c20
KH
1524 return num;
1525}
1526
a63d83f4
DR
1527/*
1528 * Return the memory (and swap, if configured) limit for a memcg.
1529 */
3e32cb2e 1530static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1531{
3e32cb2e 1532 unsigned long limit;
f3e8eb70 1533
3e32cb2e 1534 limit = memcg->memory.limit;
9a5a8f19 1535 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1536 unsigned long memsw_limit;
9a5a8f19 1537
3e32cb2e
JW
1538 memsw_limit = memcg->memsw.limit;
1539 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1540 }
9a5a8f19 1541 return limit;
a63d83f4
DR
1542}
1543
19965460
DR
1544static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1545 int order)
9cbb78bb
DR
1546{
1547 struct mem_cgroup *iter;
1548 unsigned long chosen_points = 0;
1549 unsigned long totalpages;
1550 unsigned int points = 0;
1551 struct task_struct *chosen = NULL;
1552
876aafbf 1553 /*
465adcf1
DR
1554 * If current has a pending SIGKILL or is exiting, then automatically
1555 * select it. The goal is to allow it to allocate so that it may
1556 * quickly exit and free its memory.
876aafbf 1557 */
d003f371 1558 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1559 mark_tsk_oom_victim(current);
876aafbf
DR
1560 return;
1561 }
1562
1563 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1564 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1565 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1566 struct css_task_iter it;
9cbb78bb
DR
1567 struct task_struct *task;
1568
72ec7029
TH
1569 css_task_iter_start(&iter->css, &it);
1570 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1571 switch (oom_scan_process_thread(task, totalpages, NULL,
1572 false)) {
1573 case OOM_SCAN_SELECT:
1574 if (chosen)
1575 put_task_struct(chosen);
1576 chosen = task;
1577 chosen_points = ULONG_MAX;
1578 get_task_struct(chosen);
1579 /* fall through */
1580 case OOM_SCAN_CONTINUE:
1581 continue;
1582 case OOM_SCAN_ABORT:
72ec7029 1583 css_task_iter_end(&it);
9cbb78bb
DR
1584 mem_cgroup_iter_break(memcg, iter);
1585 if (chosen)
1586 put_task_struct(chosen);
1587 return;
1588 case OOM_SCAN_OK:
1589 break;
1590 };
1591 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1592 if (!points || points < chosen_points)
1593 continue;
1594 /* Prefer thread group leaders for display purposes */
1595 if (points == chosen_points &&
1596 thread_group_leader(chosen))
1597 continue;
1598
1599 if (chosen)
1600 put_task_struct(chosen);
1601 chosen = task;
1602 chosen_points = points;
1603 get_task_struct(chosen);
9cbb78bb 1604 }
72ec7029 1605 css_task_iter_end(&it);
9cbb78bb
DR
1606 }
1607
1608 if (!chosen)
1609 return;
1610 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1611 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1612 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1613}
1614
ae6e71d3
MC
1615#if MAX_NUMNODES > 1
1616
4d0c066d
KH
1617/**
1618 * test_mem_cgroup_node_reclaimable
dad7557e 1619 * @memcg: the target memcg
4d0c066d
KH
1620 * @nid: the node ID to be checked.
1621 * @noswap : specify true here if the user wants flle only information.
1622 *
1623 * This function returns whether the specified memcg contains any
1624 * reclaimable pages on a node. Returns true if there are any reclaimable
1625 * pages in the node.
1626 */
c0ff4b85 1627static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1628 int nid, bool noswap)
1629{
c0ff4b85 1630 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1631 return true;
1632 if (noswap || !total_swap_pages)
1633 return false;
c0ff4b85 1634 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1635 return true;
1636 return false;
1637
1638}
889976db
YH
1639
1640/*
1641 * Always updating the nodemask is not very good - even if we have an empty
1642 * list or the wrong list here, we can start from some node and traverse all
1643 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1644 *
1645 */
c0ff4b85 1646static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1647{
1648 int nid;
453a9bf3
KH
1649 /*
1650 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1651 * pagein/pageout changes since the last update.
1652 */
c0ff4b85 1653 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1654 return;
c0ff4b85 1655 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1656 return;
1657
889976db 1658 /* make a nodemask where this memcg uses memory from */
31aaea4a 1659 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1660
31aaea4a 1661 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1662
c0ff4b85
R
1663 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1664 node_clear(nid, memcg->scan_nodes);
889976db 1665 }
453a9bf3 1666
c0ff4b85
R
1667 atomic_set(&memcg->numainfo_events, 0);
1668 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1669}
1670
1671/*
1672 * Selecting a node where we start reclaim from. Because what we need is just
1673 * reducing usage counter, start from anywhere is O,K. Considering
1674 * memory reclaim from current node, there are pros. and cons.
1675 *
1676 * Freeing memory from current node means freeing memory from a node which
1677 * we'll use or we've used. So, it may make LRU bad. And if several threads
1678 * hit limits, it will see a contention on a node. But freeing from remote
1679 * node means more costs for memory reclaim because of memory latency.
1680 *
1681 * Now, we use round-robin. Better algorithm is welcomed.
1682 */
c0ff4b85 1683int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1684{
1685 int node;
1686
c0ff4b85
R
1687 mem_cgroup_may_update_nodemask(memcg);
1688 node = memcg->last_scanned_node;
889976db 1689
c0ff4b85 1690 node = next_node(node, memcg->scan_nodes);
889976db 1691 if (node == MAX_NUMNODES)
c0ff4b85 1692 node = first_node(memcg->scan_nodes);
889976db
YH
1693 /*
1694 * We call this when we hit limit, not when pages are added to LRU.
1695 * No LRU may hold pages because all pages are UNEVICTABLE or
1696 * memcg is too small and all pages are not on LRU. In that case,
1697 * we use curret node.
1698 */
1699 if (unlikely(node == MAX_NUMNODES))
1700 node = numa_node_id();
1701
c0ff4b85 1702 memcg->last_scanned_node = node;
889976db
YH
1703 return node;
1704}
889976db 1705#else
c0ff4b85 1706int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1707{
1708 return 0;
1709}
1710#endif
1711
0608f43d
AM
1712static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1713 struct zone *zone,
1714 gfp_t gfp_mask,
1715 unsigned long *total_scanned)
1716{
1717 struct mem_cgroup *victim = NULL;
1718 int total = 0;
1719 int loop = 0;
1720 unsigned long excess;
1721 unsigned long nr_scanned;
1722 struct mem_cgroup_reclaim_cookie reclaim = {
1723 .zone = zone,
1724 .priority = 0,
1725 };
1726
3e32cb2e 1727 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1728
1729 while (1) {
1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731 if (!victim) {
1732 loop++;
1733 if (loop >= 2) {
1734 /*
1735 * If we have not been able to reclaim
1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy
1738 */
1739 if (!total)
1740 break;
1741 /*
1742 * We want to do more targeted reclaim.
1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup
1746 */
1747 if (total >= (excess >> 2) ||
1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 break;
1750 }
1751 continue;
1752 }
0608f43d
AM
1753 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1754 zone, &nr_scanned);
1755 *total_scanned += nr_scanned;
3e32cb2e 1756 if (!soft_limit_excess(root_memcg))
0608f43d 1757 break;
6d61ef40 1758 }
0608f43d
AM
1759 mem_cgroup_iter_break(root_memcg, victim);
1760 return total;
6d61ef40
BS
1761}
1762
0056f4e6
JW
1763#ifdef CONFIG_LOCKDEP
1764static struct lockdep_map memcg_oom_lock_dep_map = {
1765 .name = "memcg_oom_lock",
1766};
1767#endif
1768
fb2a6fc5
JW
1769static DEFINE_SPINLOCK(memcg_oom_lock);
1770
867578cb
KH
1771/*
1772 * Check OOM-Killer is already running under our hierarchy.
1773 * If someone is running, return false.
1774 */
fb2a6fc5 1775static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1776{
79dfdacc 1777 struct mem_cgroup *iter, *failed = NULL;
a636b327 1778
fb2a6fc5
JW
1779 spin_lock(&memcg_oom_lock);
1780
9f3a0d09 1781 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1782 if (iter->oom_lock) {
79dfdacc
MH
1783 /*
1784 * this subtree of our hierarchy is already locked
1785 * so we cannot give a lock.
1786 */
79dfdacc 1787 failed = iter;
9f3a0d09
JW
1788 mem_cgroup_iter_break(memcg, iter);
1789 break;
23751be0
JW
1790 } else
1791 iter->oom_lock = true;
7d74b06f 1792 }
867578cb 1793
fb2a6fc5
JW
1794 if (failed) {
1795 /*
1796 * OK, we failed to lock the whole subtree so we have
1797 * to clean up what we set up to the failing subtree
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg) {
1800 if (iter == failed) {
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 }
1804 iter->oom_lock = false;
79dfdacc 1805 }
0056f4e6
JW
1806 } else
1807 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1808
1809 spin_unlock(&memcg_oom_lock);
1810
1811 return !failed;
a636b327 1812}
0b7f569e 1813
fb2a6fc5 1814static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1815{
7d74b06f
KH
1816 struct mem_cgroup *iter;
1817
fb2a6fc5 1818 spin_lock(&memcg_oom_lock);
0056f4e6 1819 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1820 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1821 iter->oom_lock = false;
fb2a6fc5 1822 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1823}
1824
c0ff4b85 1825static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1826{
1827 struct mem_cgroup *iter;
1828
c0ff4b85 1829 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1830 atomic_inc(&iter->under_oom);
1831}
1832
c0ff4b85 1833static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1834{
1835 struct mem_cgroup *iter;
1836
867578cb
KH
1837 /*
1838 * When a new child is created while the hierarchy is under oom,
1839 * mem_cgroup_oom_lock() may not be called. We have to use
1840 * atomic_add_unless() here.
1841 */
c0ff4b85 1842 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1843 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1844}
1845
867578cb
KH
1846static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1847
dc98df5a 1848struct oom_wait_info {
d79154bb 1849 struct mem_cgroup *memcg;
dc98df5a
KH
1850 wait_queue_t wait;
1851};
1852
1853static int memcg_oom_wake_function(wait_queue_t *wait,
1854 unsigned mode, int sync, void *arg)
1855{
d79154bb
HD
1856 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1857 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1858 struct oom_wait_info *oom_wait_info;
1859
1860 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1861 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1862
2314b42d
JW
1863 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1864 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1865 return 0;
dc98df5a
KH
1866 return autoremove_wake_function(wait, mode, sync, arg);
1867}
1868
c0ff4b85 1869static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1870{
3812c8c8 1871 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1872 /* for filtering, pass "memcg" as argument. */
1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1874}
1875
c0ff4b85 1876static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1877{
c0ff4b85
R
1878 if (memcg && atomic_read(&memcg->under_oom))
1879 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1880}
1881
3812c8c8 1882static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1883{
3812c8c8
JW
1884 if (!current->memcg_oom.may_oom)
1885 return;
867578cb 1886 /*
49426420
JW
1887 * We are in the middle of the charge context here, so we
1888 * don't want to block when potentially sitting on a callstack
1889 * that holds all kinds of filesystem and mm locks.
1890 *
1891 * Also, the caller may handle a failed allocation gracefully
1892 * (like optional page cache readahead) and so an OOM killer
1893 * invocation might not even be necessary.
1894 *
1895 * That's why we don't do anything here except remember the
1896 * OOM context and then deal with it at the end of the page
1897 * fault when the stack is unwound, the locks are released,
1898 * and when we know whether the fault was overall successful.
867578cb 1899 */
49426420
JW
1900 css_get(&memcg->css);
1901 current->memcg_oom.memcg = memcg;
1902 current->memcg_oom.gfp_mask = mask;
1903 current->memcg_oom.order = order;
3812c8c8
JW
1904}
1905
1906/**
1907 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1908 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1909 *
49426420
JW
1910 * This has to be called at the end of a page fault if the memcg OOM
1911 * handler was enabled.
3812c8c8 1912 *
49426420 1913 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1914 * sleep on a waitqueue until the userspace task resolves the
1915 * situation. Sleeping directly in the charge context with all kinds
1916 * of locks held is not a good idea, instead we remember an OOM state
1917 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1918 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1919 *
1920 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1921 * completed, %false otherwise.
3812c8c8 1922 */
49426420 1923bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1924{
49426420 1925 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1926 struct oom_wait_info owait;
49426420 1927 bool locked;
3812c8c8
JW
1928
1929 /* OOM is global, do not handle */
3812c8c8 1930 if (!memcg)
49426420 1931 return false;
3812c8c8 1932
c32b3cbe 1933 if (!handle || oom_killer_disabled)
49426420 1934 goto cleanup;
3812c8c8
JW
1935
1936 owait.memcg = memcg;
1937 owait.wait.flags = 0;
1938 owait.wait.func = memcg_oom_wake_function;
1939 owait.wait.private = current;
1940 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1941
3812c8c8 1942 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1943 mem_cgroup_mark_under_oom(memcg);
1944
1945 locked = mem_cgroup_oom_trylock(memcg);
1946
1947 if (locked)
1948 mem_cgroup_oom_notify(memcg);
1949
1950 if (locked && !memcg->oom_kill_disable) {
1951 mem_cgroup_unmark_under_oom(memcg);
1952 finish_wait(&memcg_oom_waitq, &owait.wait);
1953 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1954 current->memcg_oom.order);
1955 } else {
3812c8c8 1956 schedule();
49426420
JW
1957 mem_cgroup_unmark_under_oom(memcg);
1958 finish_wait(&memcg_oom_waitq, &owait.wait);
1959 }
1960
1961 if (locked) {
fb2a6fc5
JW
1962 mem_cgroup_oom_unlock(memcg);
1963 /*
1964 * There is no guarantee that an OOM-lock contender
1965 * sees the wakeups triggered by the OOM kill
1966 * uncharges. Wake any sleepers explicitely.
1967 */
1968 memcg_oom_recover(memcg);
1969 }
49426420
JW
1970cleanup:
1971 current->memcg_oom.memcg = NULL;
3812c8c8 1972 css_put(&memcg->css);
867578cb 1973 return true;
0b7f569e
KH
1974}
1975
d7365e78
JW
1976/**
1977 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1978 * @page: page that is going to change accounted state
32047e2a 1979 *
d7365e78
JW
1980 * This function must mark the beginning of an accounted page state
1981 * change to prevent double accounting when the page is concurrently
1982 * being moved to another memcg:
32047e2a 1983 *
6de22619 1984 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1985 * if (TestClearPageState(page))
1986 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1987 * mem_cgroup_end_page_stat(memcg);
d69b042f 1988 */
6de22619 1989struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1990{
1991 struct mem_cgroup *memcg;
6de22619 1992 unsigned long flags;
89c06bd5 1993
6de22619
JW
1994 /*
1995 * The RCU lock is held throughout the transaction. The fast
1996 * path can get away without acquiring the memcg->move_lock
1997 * because page moving starts with an RCU grace period.
1998 *
1999 * The RCU lock also protects the memcg from being freed when
2000 * the page state that is going to change is the only thing
2001 * preventing the page from being uncharged.
2002 * E.g. end-writeback clearing PageWriteback(), which allows
2003 * migration to go ahead and uncharge the page before the
2004 * account transaction might be complete.
2005 */
d7365e78
JW
2006 rcu_read_lock();
2007
2008 if (mem_cgroup_disabled())
2009 return NULL;
89c06bd5 2010again:
1306a85a 2011 memcg = page->mem_cgroup;
29833315 2012 if (unlikely(!memcg))
d7365e78
JW
2013 return NULL;
2014
bdcbb659 2015 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2016 return memcg;
89c06bd5 2017
6de22619 2018 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2019 if (memcg != page->mem_cgroup) {
6de22619 2020 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2021 goto again;
2022 }
6de22619
JW
2023
2024 /*
2025 * When charge migration first begins, we can have locked and
2026 * unlocked page stat updates happening concurrently. Track
2027 * the task who has the lock for mem_cgroup_end_page_stat().
2028 */
2029 memcg->move_lock_task = current;
2030 memcg->move_lock_flags = flags;
d7365e78
JW
2031
2032 return memcg;
89c06bd5
KH
2033}
2034
d7365e78
JW
2035/**
2036 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2037 * @memcg: the memcg that was accounted against
d7365e78 2038 */
6de22619 2039void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2040{
6de22619
JW
2041 if (memcg && memcg->move_lock_task == current) {
2042 unsigned long flags = memcg->move_lock_flags;
2043
2044 memcg->move_lock_task = NULL;
2045 memcg->move_lock_flags = 0;
2046
2047 spin_unlock_irqrestore(&memcg->move_lock, flags);
2048 }
89c06bd5 2049
d7365e78 2050 rcu_read_unlock();
89c06bd5
KH
2051}
2052
d7365e78
JW
2053/**
2054 * mem_cgroup_update_page_stat - update page state statistics
2055 * @memcg: memcg to account against
2056 * @idx: page state item to account
2057 * @val: number of pages (positive or negative)
2058 *
2059 * See mem_cgroup_begin_page_stat() for locking requirements.
2060 */
2061void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2062 enum mem_cgroup_stat_index idx, int val)
d69b042f 2063{
658b72c5 2064 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2065
d7365e78
JW
2066 if (memcg)
2067 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2068}
26174efd 2069
cdec2e42
KH
2070/*
2071 * size of first charge trial. "32" comes from vmscan.c's magic value.
2072 * TODO: maybe necessary to use big numbers in big irons.
2073 */
7ec99d62 2074#define CHARGE_BATCH 32U
cdec2e42
KH
2075struct memcg_stock_pcp {
2076 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2077 unsigned int nr_pages;
cdec2e42 2078 struct work_struct work;
26fe6168 2079 unsigned long flags;
a0db00fc 2080#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2081};
2082static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2083static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2084
a0956d54
SS
2085/**
2086 * consume_stock: Try to consume stocked charge on this cpu.
2087 * @memcg: memcg to consume from.
2088 * @nr_pages: how many pages to charge.
2089 *
2090 * The charges will only happen if @memcg matches the current cpu's memcg
2091 * stock, and at least @nr_pages are available in that stock. Failure to
2092 * service an allocation will refill the stock.
2093 *
2094 * returns true if successful, false otherwise.
cdec2e42 2095 */
a0956d54 2096static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2097{
2098 struct memcg_stock_pcp *stock;
3e32cb2e 2099 bool ret = false;
cdec2e42 2100
a0956d54 2101 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2102 return ret;
a0956d54 2103
cdec2e42 2104 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2105 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2106 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2107 ret = true;
2108 }
cdec2e42
KH
2109 put_cpu_var(memcg_stock);
2110 return ret;
2111}
2112
2113/*
3e32cb2e 2114 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2115 */
2116static void drain_stock(struct memcg_stock_pcp *stock)
2117{
2118 struct mem_cgroup *old = stock->cached;
2119
11c9ea4e 2120 if (stock->nr_pages) {
3e32cb2e 2121 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2122 if (do_swap_account)
3e32cb2e 2123 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2124 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2125 stock->nr_pages = 0;
cdec2e42
KH
2126 }
2127 stock->cached = NULL;
cdec2e42
KH
2128}
2129
2130/*
2131 * This must be called under preempt disabled or must be called by
2132 * a thread which is pinned to local cpu.
2133 */
2134static void drain_local_stock(struct work_struct *dummy)
2135{
7c8e0181 2136 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2137 drain_stock(stock);
26fe6168 2138 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2139}
2140
2141/*
3e32cb2e 2142 * Cache charges(val) to local per_cpu area.
320cc51d 2143 * This will be consumed by consume_stock() function, later.
cdec2e42 2144 */
c0ff4b85 2145static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2146{
2147 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2148
c0ff4b85 2149 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2150 drain_stock(stock);
c0ff4b85 2151 stock->cached = memcg;
cdec2e42 2152 }
11c9ea4e 2153 stock->nr_pages += nr_pages;
cdec2e42
KH
2154 put_cpu_var(memcg_stock);
2155}
2156
2157/*
c0ff4b85 2158 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2159 * of the hierarchy under it.
cdec2e42 2160 */
6d3d6aa2 2161static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2162{
26fe6168 2163 int cpu, curcpu;
d38144b7 2164
6d3d6aa2
JW
2165 /* If someone's already draining, avoid adding running more workers. */
2166 if (!mutex_trylock(&percpu_charge_mutex))
2167 return;
cdec2e42 2168 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2169 get_online_cpus();
5af12d0e 2170 curcpu = get_cpu();
cdec2e42
KH
2171 for_each_online_cpu(cpu) {
2172 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2173 struct mem_cgroup *memcg;
26fe6168 2174
c0ff4b85
R
2175 memcg = stock->cached;
2176 if (!memcg || !stock->nr_pages)
26fe6168 2177 continue;
2314b42d 2178 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2179 continue;
d1a05b69
MH
2180 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2181 if (cpu == curcpu)
2182 drain_local_stock(&stock->work);
2183 else
2184 schedule_work_on(cpu, &stock->work);
2185 }
cdec2e42 2186 }
5af12d0e 2187 put_cpu();
f894ffa8 2188 put_online_cpus();
9f50fad6 2189 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2190}
2191
711d3d2c
KH
2192/*
2193 * This function drains percpu counter value from DEAD cpu and
2194 * move it to local cpu. Note that this function can be preempted.
2195 */
c0ff4b85 2196static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2197{
2198 int i;
2199
c0ff4b85 2200 spin_lock(&memcg->pcp_counter_lock);
6104621d 2201 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2202 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2203
c0ff4b85
R
2204 per_cpu(memcg->stat->count[i], cpu) = 0;
2205 memcg->nocpu_base.count[i] += x;
711d3d2c 2206 }
e9f8974f 2207 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2208 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2209
c0ff4b85
R
2210 per_cpu(memcg->stat->events[i], cpu) = 0;
2211 memcg->nocpu_base.events[i] += x;
e9f8974f 2212 }
c0ff4b85 2213 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2214}
2215
0db0628d 2216static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2217 unsigned long action,
2218 void *hcpu)
2219{
2220 int cpu = (unsigned long)hcpu;
2221 struct memcg_stock_pcp *stock;
711d3d2c 2222 struct mem_cgroup *iter;
cdec2e42 2223
619d094b 2224 if (action == CPU_ONLINE)
1489ebad 2225 return NOTIFY_OK;
1489ebad 2226
d833049b 2227 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2228 return NOTIFY_OK;
711d3d2c 2229
9f3a0d09 2230 for_each_mem_cgroup(iter)
711d3d2c
KH
2231 mem_cgroup_drain_pcp_counter(iter, cpu);
2232
cdec2e42
KH
2233 stock = &per_cpu(memcg_stock, cpu);
2234 drain_stock(stock);
2235 return NOTIFY_OK;
2236}
2237
00501b53
JW
2238static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2239 unsigned int nr_pages)
8a9f3ccd 2240{
7ec99d62 2241 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2242 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2243 struct mem_cgroup *mem_over_limit;
3e32cb2e 2244 struct page_counter *counter;
6539cc05 2245 unsigned long nr_reclaimed;
b70a2a21
JW
2246 bool may_swap = true;
2247 bool drained = false;
05b84301 2248 int ret = 0;
a636b327 2249
ce00a967
JW
2250 if (mem_cgroup_is_root(memcg))
2251 goto done;
6539cc05 2252retry:
b6b6cc72
MH
2253 if (consume_stock(memcg, nr_pages))
2254 goto done;
8a9f3ccd 2255
3fbe7244 2256 if (!do_swap_account ||
3e32cb2e
JW
2257 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2258 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2259 goto done_restock;
3fbe7244 2260 if (do_swap_account)
3e32cb2e
JW
2261 page_counter_uncharge(&memcg->memsw, batch);
2262 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2263 } else {
3e32cb2e 2264 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2265 may_swap = false;
3fbe7244 2266 }
7a81b88c 2267
6539cc05
JW
2268 if (batch > nr_pages) {
2269 batch = nr_pages;
2270 goto retry;
2271 }
6d61ef40 2272
06b078fc
JW
2273 /*
2274 * Unlike in global OOM situations, memcg is not in a physical
2275 * memory shortage. Allow dying and OOM-killed tasks to
2276 * bypass the last charges so that they can exit quickly and
2277 * free their memory.
2278 */
2279 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2280 fatal_signal_pending(current) ||
2281 current->flags & PF_EXITING))
2282 goto bypass;
2283
2284 if (unlikely(task_in_memcg_oom(current)))
2285 goto nomem;
2286
6539cc05
JW
2287 if (!(gfp_mask & __GFP_WAIT))
2288 goto nomem;
4b534334 2289
241994ed
JW
2290 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2291
b70a2a21
JW
2292 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2293 gfp_mask, may_swap);
6539cc05 2294
61e02c74 2295 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2296 goto retry;
28c34c29 2297
b70a2a21 2298 if (!drained) {
6d3d6aa2 2299 drain_all_stock(mem_over_limit);
b70a2a21
JW
2300 drained = true;
2301 goto retry;
2302 }
2303
28c34c29
JW
2304 if (gfp_mask & __GFP_NORETRY)
2305 goto nomem;
6539cc05
JW
2306 /*
2307 * Even though the limit is exceeded at this point, reclaim
2308 * may have been able to free some pages. Retry the charge
2309 * before killing the task.
2310 *
2311 * Only for regular pages, though: huge pages are rather
2312 * unlikely to succeed so close to the limit, and we fall back
2313 * to regular pages anyway in case of failure.
2314 */
61e02c74 2315 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2316 goto retry;
2317 /*
2318 * At task move, charge accounts can be doubly counted. So, it's
2319 * better to wait until the end of task_move if something is going on.
2320 */
2321 if (mem_cgroup_wait_acct_move(mem_over_limit))
2322 goto retry;
2323
9b130619
JW
2324 if (nr_retries--)
2325 goto retry;
2326
06b078fc
JW
2327 if (gfp_mask & __GFP_NOFAIL)
2328 goto bypass;
2329
6539cc05
JW
2330 if (fatal_signal_pending(current))
2331 goto bypass;
2332
241994ed
JW
2333 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2334
61e02c74 2335 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2336nomem:
6d1fdc48 2337 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2338 return -ENOMEM;
867578cb 2339bypass:
ce00a967 2340 return -EINTR;
6539cc05
JW
2341
2342done_restock:
e8ea14cc 2343 css_get_many(&memcg->css, batch);
6539cc05
JW
2344 if (batch > nr_pages)
2345 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2346 /*
2347 * If the hierarchy is above the normal consumption range,
2348 * make the charging task trim their excess contribution.
2349 */
2350 do {
2351 if (page_counter_read(&memcg->memory) <= memcg->high)
2352 continue;
2353 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2354 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2355 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2356done:
05b84301 2357 return ret;
7a81b88c 2358}
8a9f3ccd 2359
00501b53 2360static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2361{
ce00a967
JW
2362 if (mem_cgroup_is_root(memcg))
2363 return;
2364
3e32cb2e 2365 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2366 if (do_swap_account)
3e32cb2e 2367 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2368
e8ea14cc 2369 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2370}
2371
a3b2d692
KH
2372/*
2373 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2374 * rcu_read_lock(). The caller is responsible for calling
2375 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2376 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2377 */
2378static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2379{
a3b2d692
KH
2380 /* ID 0 is unused ID */
2381 if (!id)
2382 return NULL;
34c00c31 2383 return mem_cgroup_from_id(id);
a3b2d692
KH
2384}
2385
0a31bc97
JW
2386/*
2387 * try_get_mem_cgroup_from_page - look up page's memcg association
2388 * @page: the page
2389 *
2390 * Look up, get a css reference, and return the memcg that owns @page.
2391 *
2392 * The page must be locked to prevent racing with swap-in and page
2393 * cache charges. If coming from an unlocked page table, the caller
2394 * must ensure the page is on the LRU or this can race with charging.
2395 */
e42d9d5d 2396struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2397{
29833315 2398 struct mem_cgroup *memcg;
a3b2d692 2399 unsigned short id;
b5a84319
KH
2400 swp_entry_t ent;
2401
309381fe 2402 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2403
1306a85a 2404 memcg = page->mem_cgroup;
29833315
JW
2405 if (memcg) {
2406 if (!css_tryget_online(&memcg->css))
c0ff4b85 2407 memcg = NULL;
e42d9d5d 2408 } else if (PageSwapCache(page)) {
3c776e64 2409 ent.val = page_private(page);
9fb4b7cc 2410 id = lookup_swap_cgroup_id(ent);
a3b2d692 2411 rcu_read_lock();
c0ff4b85 2412 memcg = mem_cgroup_lookup(id);
ec903c0c 2413 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2414 memcg = NULL;
a3b2d692 2415 rcu_read_unlock();
3c776e64 2416 }
c0ff4b85 2417 return memcg;
b5a84319
KH
2418}
2419
0a31bc97
JW
2420static void lock_page_lru(struct page *page, int *isolated)
2421{
2422 struct zone *zone = page_zone(page);
2423
2424 spin_lock_irq(&zone->lru_lock);
2425 if (PageLRU(page)) {
2426 struct lruvec *lruvec;
2427
2428 lruvec = mem_cgroup_page_lruvec(page, zone);
2429 ClearPageLRU(page);
2430 del_page_from_lru_list(page, lruvec, page_lru(page));
2431 *isolated = 1;
2432 } else
2433 *isolated = 0;
2434}
2435
2436static void unlock_page_lru(struct page *page, int isolated)
2437{
2438 struct zone *zone = page_zone(page);
2439
2440 if (isolated) {
2441 struct lruvec *lruvec;
2442
2443 lruvec = mem_cgroup_page_lruvec(page, zone);
2444 VM_BUG_ON_PAGE(PageLRU(page), page);
2445 SetPageLRU(page);
2446 add_page_to_lru_list(page, lruvec, page_lru(page));
2447 }
2448 spin_unlock_irq(&zone->lru_lock);
2449}
2450
00501b53 2451static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2452 bool lrucare)
7a81b88c 2453{
0a31bc97 2454 int isolated;
9ce70c02 2455
1306a85a 2456 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2457
2458 /*
2459 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2460 * may already be on some other mem_cgroup's LRU. Take care of it.
2461 */
0a31bc97
JW
2462 if (lrucare)
2463 lock_page_lru(page, &isolated);
9ce70c02 2464
0a31bc97
JW
2465 /*
2466 * Nobody should be changing or seriously looking at
1306a85a 2467 * page->mem_cgroup at this point:
0a31bc97
JW
2468 *
2469 * - the page is uncharged
2470 *
2471 * - the page is off-LRU
2472 *
2473 * - an anonymous fault has exclusive page access, except for
2474 * a locked page table
2475 *
2476 * - a page cache insertion, a swapin fault, or a migration
2477 * have the page locked
2478 */
1306a85a 2479 page->mem_cgroup = memcg;
9ce70c02 2480
0a31bc97
JW
2481 if (lrucare)
2482 unlock_page_lru(page, isolated);
7a81b88c 2483}
66e1707b 2484
7ae1e1d0 2485#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2486int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2487 unsigned long nr_pages)
7ae1e1d0 2488{
3e32cb2e 2489 struct page_counter *counter;
7ae1e1d0 2490 int ret = 0;
7ae1e1d0 2491
3e32cb2e
JW
2492 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2493 if (ret < 0)
7ae1e1d0
GC
2494 return ret;
2495
3e32cb2e 2496 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2497 if (ret == -EINTR) {
2498 /*
00501b53
JW
2499 * try_charge() chose to bypass to root due to OOM kill or
2500 * fatal signal. Since our only options are to either fail
2501 * the allocation or charge it to this cgroup, do it as a
2502 * temporary condition. But we can't fail. From a kmem/slab
2503 * perspective, the cache has already been selected, by
2504 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2505 * our minds.
2506 *
2507 * This condition will only trigger if the task entered
00501b53
JW
2508 * memcg_charge_kmem in a sane state, but was OOM-killed
2509 * during try_charge() above. Tasks that were already dying
2510 * when the allocation triggers should have been already
7ae1e1d0
GC
2511 * directed to the root cgroup in memcontrol.h
2512 */
3e32cb2e 2513 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2514 if (do_swap_account)
3e32cb2e 2515 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2516 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2517 ret = 0;
2518 } else if (ret)
3e32cb2e 2519 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2520
2521 return ret;
2522}
2523
dbf22eb6 2524void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2525{
3e32cb2e 2526 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2527 if (do_swap_account)
3e32cb2e 2528 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2529
64f21993 2530 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2531
e8ea14cc 2532 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2533}
2534
2633d7a0
GC
2535/*
2536 * helper for acessing a memcg's index. It will be used as an index in the
2537 * child cache array in kmem_cache, and also to derive its name. This function
2538 * will return -1 when this is not a kmem-limited memcg.
2539 */
2540int memcg_cache_id(struct mem_cgroup *memcg)
2541{
2542 return memcg ? memcg->kmemcg_id : -1;
2543}
2544
f3bb3043 2545static int memcg_alloc_cache_id(void)
55007d84 2546{
f3bb3043
VD
2547 int id, size;
2548 int err;
2549
2550 id = ida_simple_get(&kmem_limited_groups,
2551 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2552 if (id < 0)
2553 return id;
55007d84 2554
f3bb3043
VD
2555 if (id < memcg_limited_groups_array_size)
2556 return id;
2557
2558 /*
2559 * There's no space for the new id in memcg_caches arrays,
2560 * so we have to grow them.
2561 */
2562
2563 size = 2 * (id + 1);
55007d84
GC
2564 if (size < MEMCG_CACHES_MIN_SIZE)
2565 size = MEMCG_CACHES_MIN_SIZE;
2566 else if (size > MEMCG_CACHES_MAX_SIZE)
2567 size = MEMCG_CACHES_MAX_SIZE;
2568
f3bb3043 2569 err = memcg_update_all_caches(size);
f3bb3043
VD
2570 if (err) {
2571 ida_simple_remove(&kmem_limited_groups, id);
2572 return err;
2573 }
2574 return id;
2575}
2576
2577static void memcg_free_cache_id(int id)
2578{
2579 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2580}
2581
2582/*
2583 * We should update the current array size iff all caches updates succeed. This
2584 * can only be done from the slab side. The slab mutex needs to be held when
2585 * calling this.
2586 */
2587void memcg_update_array_size(int num)
2588{
f3bb3043 2589 memcg_limited_groups_array_size = num;
55007d84
GC
2590}
2591
d5b3cf71 2592struct memcg_kmem_cache_create_work {
5722d094
VD
2593 struct mem_cgroup *memcg;
2594 struct kmem_cache *cachep;
2595 struct work_struct work;
2596};
2597
d5b3cf71 2598static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2599{
d5b3cf71
VD
2600 struct memcg_kmem_cache_create_work *cw =
2601 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2602 struct mem_cgroup *memcg = cw->memcg;
2603 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2604
d5b3cf71 2605 memcg_create_kmem_cache(memcg, cachep);
bd673145 2606
5722d094 2607 css_put(&memcg->css);
d7f25f8a
GC
2608 kfree(cw);
2609}
2610
2611/*
2612 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2613 */
d5b3cf71
VD
2614static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2615 struct kmem_cache *cachep)
d7f25f8a 2616{
d5b3cf71 2617 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2618
776ed0f0 2619 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2620 if (!cw)
d7f25f8a 2621 return;
8135be5a
VD
2622
2623 css_get(&memcg->css);
d7f25f8a
GC
2624
2625 cw->memcg = memcg;
2626 cw->cachep = cachep;
d5b3cf71 2627 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2628
d7f25f8a
GC
2629 schedule_work(&cw->work);
2630}
2631
d5b3cf71
VD
2632static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2633 struct kmem_cache *cachep)
0e9d92f2
GC
2634{
2635 /*
2636 * We need to stop accounting when we kmalloc, because if the
2637 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2638 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2639 *
2640 * However, it is better to enclose the whole function. Depending on
2641 * the debugging options enabled, INIT_WORK(), for instance, can
2642 * trigger an allocation. This too, will make us recurse. Because at
2643 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2644 * the safest choice is to do it like this, wrapping the whole function.
2645 */
6f185c29 2646 current->memcg_kmem_skip_account = 1;
d5b3cf71 2647 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2648 current->memcg_kmem_skip_account = 0;
0e9d92f2 2649}
c67a8a68 2650
d7f25f8a
GC
2651/*
2652 * Return the kmem_cache we're supposed to use for a slab allocation.
2653 * We try to use the current memcg's version of the cache.
2654 *
2655 * If the cache does not exist yet, if we are the first user of it,
2656 * we either create it immediately, if possible, or create it asynchronously
2657 * in a workqueue.
2658 * In the latter case, we will let the current allocation go through with
2659 * the original cache.
2660 *
2661 * Can't be called in interrupt context or from kernel threads.
2662 * This function needs to be called with rcu_read_lock() held.
2663 */
056b7cce 2664struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2665{
2666 struct mem_cgroup *memcg;
959c8963 2667 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2668
2669 VM_BUG_ON(!cachep->memcg_params);
2670 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2671
9d100c5e 2672 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2673 return cachep;
2674
8135be5a 2675 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2676 if (!memcg_kmem_is_active(memcg))
ca0dde97 2677 goto out;
d7f25f8a 2678
959c8963 2679 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2680 if (likely(memcg_cachep))
2681 return memcg_cachep;
ca0dde97
LZ
2682
2683 /*
2684 * If we are in a safe context (can wait, and not in interrupt
2685 * context), we could be be predictable and return right away.
2686 * This would guarantee that the allocation being performed
2687 * already belongs in the new cache.
2688 *
2689 * However, there are some clashes that can arrive from locking.
2690 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2691 * memcg_create_kmem_cache, this means no further allocation
2692 * could happen with the slab_mutex held. So it's better to
2693 * defer everything.
ca0dde97 2694 */
d5b3cf71 2695 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2696out:
8135be5a 2697 css_put(&memcg->css);
ca0dde97 2698 return cachep;
d7f25f8a 2699}
d7f25f8a 2700
8135be5a
VD
2701void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2702{
2703 if (!is_root_cache(cachep))
2704 css_put(&cachep->memcg_params->memcg->css);
2705}
2706
7ae1e1d0
GC
2707/*
2708 * We need to verify if the allocation against current->mm->owner's memcg is
2709 * possible for the given order. But the page is not allocated yet, so we'll
2710 * need a further commit step to do the final arrangements.
2711 *
2712 * It is possible for the task to switch cgroups in this mean time, so at
2713 * commit time, we can't rely on task conversion any longer. We'll then use
2714 * the handle argument to return to the caller which cgroup we should commit
2715 * against. We could also return the memcg directly and avoid the pointer
2716 * passing, but a boolean return value gives better semantics considering
2717 * the compiled-out case as well.
2718 *
2719 * Returning true means the allocation is possible.
2720 */
2721bool
2722__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2723{
2724 struct mem_cgroup *memcg;
2725 int ret;
2726
2727 *_memcg = NULL;
6d42c232 2728
df381975 2729 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2730
cf2b8fbf 2731 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2732 css_put(&memcg->css);
2733 return true;
2734 }
2735
3e32cb2e 2736 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2737 if (!ret)
2738 *_memcg = memcg;
7ae1e1d0
GC
2739
2740 css_put(&memcg->css);
2741 return (ret == 0);
2742}
2743
2744void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2745 int order)
2746{
7ae1e1d0
GC
2747 VM_BUG_ON(mem_cgroup_is_root(memcg));
2748
2749 /* The page allocation failed. Revert */
2750 if (!page) {
3e32cb2e 2751 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2752 return;
2753 }
1306a85a 2754 page->mem_cgroup = memcg;
7ae1e1d0
GC
2755}
2756
2757void __memcg_kmem_uncharge_pages(struct page *page, int order)
2758{
1306a85a 2759 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2760
7ae1e1d0
GC
2761 if (!memcg)
2762 return;
2763
309381fe 2764 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2765
3e32cb2e 2766 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2767 page->mem_cgroup = NULL;
7ae1e1d0
GC
2768}
2769#endif /* CONFIG_MEMCG_KMEM */
2770
ca3e0214
KH
2771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2772
ca3e0214
KH
2773/*
2774 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2775 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2776 * charge/uncharge will be never happen and move_account() is done under
2777 * compound_lock(), so we don't have to take care of races.
ca3e0214 2778 */
e94c8a9c 2779void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2780{
e94c8a9c 2781 int i;
ca3e0214 2782
3d37c4a9
KH
2783 if (mem_cgroup_disabled())
2784 return;
b070e65c 2785
29833315 2786 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2787 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2788
1306a85a 2789 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2790 HPAGE_PMD_NR);
ca3e0214 2791}
12d27107 2792#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2793
f817ed48 2794/**
de3638d9 2795 * mem_cgroup_move_account - move account of the page
5564e88b 2796 * @page: the page
7ec99d62 2797 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2798 * @from: mem_cgroup which the page is moved from.
2799 * @to: mem_cgroup which the page is moved to. @from != @to.
2800 *
2801 * The caller must confirm following.
08e552c6 2802 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2803 * - compound_lock is held when nr_pages > 1
f817ed48 2804 *
2f3479b1
KH
2805 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2806 * from old cgroup.
f817ed48 2807 */
7ec99d62
JW
2808static int mem_cgroup_move_account(struct page *page,
2809 unsigned int nr_pages,
7ec99d62 2810 struct mem_cgroup *from,
2f3479b1 2811 struct mem_cgroup *to)
f817ed48 2812{
de3638d9
JW
2813 unsigned long flags;
2814 int ret;
987eba66 2815
f817ed48 2816 VM_BUG_ON(from == to);
309381fe 2817 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2818 /*
2819 * The page is isolated from LRU. So, collapse function
2820 * will not handle this page. But page splitting can happen.
2821 * Do this check under compound_page_lock(). The caller should
2822 * hold it.
2823 */
2824 ret = -EBUSY;
7ec99d62 2825 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2826 goto out;
2827
0a31bc97 2828 /*
1306a85a 2829 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2830 * of its source page while we change it: page migration takes
2831 * both pages off the LRU, but page cache replacement doesn't.
2832 */
2833 if (!trylock_page(page))
2834 goto out;
de3638d9
JW
2835
2836 ret = -EINVAL;
1306a85a 2837 if (page->mem_cgroup != from)
0a31bc97 2838 goto out_unlock;
de3638d9 2839
354a4783 2840 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2841
0a31bc97 2842 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2843 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2844 nr_pages);
2845 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2846 nr_pages);
2847 }
3ea67d06 2848
59d1d256
JW
2849 if (PageWriteback(page)) {
2850 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2851 nr_pages);
2852 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2853 nr_pages);
2854 }
3ea67d06 2855
0a31bc97 2856 /*
1306a85a 2857 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2858 * is referenced, charged, and isolated - we can't race with
2859 * uncharging, charging, migration, or LRU putback.
2860 */
d69b042f 2861
854ffa8d 2862 /* caller should have done css_get */
1306a85a 2863 page->mem_cgroup = to;
354a4783
JW
2864 spin_unlock_irqrestore(&from->move_lock, flags);
2865
de3638d9 2866 ret = 0;
0a31bc97
JW
2867
2868 local_irq_disable();
2869 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2870 memcg_check_events(to, page);
0a31bc97 2871 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2872 memcg_check_events(from, page);
0a31bc97
JW
2873 local_irq_enable();
2874out_unlock:
2875 unlock_page(page);
de3638d9 2876out:
f817ed48
KH
2877 return ret;
2878}
2879
c255a458 2880#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2881static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2882 bool charge)
d13d1443 2883{
0a31bc97
JW
2884 int val = (charge) ? 1 : -1;
2885 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2886}
02491447
DN
2887
2888/**
2889 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2890 * @entry: swap entry to be moved
2891 * @from: mem_cgroup which the entry is moved from
2892 * @to: mem_cgroup which the entry is moved to
2893 *
2894 * It succeeds only when the swap_cgroup's record for this entry is the same
2895 * as the mem_cgroup's id of @from.
2896 *
2897 * Returns 0 on success, -EINVAL on failure.
2898 *
3e32cb2e 2899 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2900 * both res and memsw, and called css_get().
2901 */
2902static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2903 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2904{
2905 unsigned short old_id, new_id;
2906
34c00c31
LZ
2907 old_id = mem_cgroup_id(from);
2908 new_id = mem_cgroup_id(to);
02491447
DN
2909
2910 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2911 mem_cgroup_swap_statistics(from, false);
483c30b5 2912 mem_cgroup_swap_statistics(to, true);
02491447
DN
2913 return 0;
2914 }
2915 return -EINVAL;
2916}
2917#else
2918static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2919 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2920{
2921 return -EINVAL;
2922}
8c7c6e34 2923#endif
d13d1443 2924
3e32cb2e 2925static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2926
d38d2a75 2927static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2928 unsigned long limit)
628f4235 2929{
3e32cb2e
JW
2930 unsigned long curusage;
2931 unsigned long oldusage;
2932 bool enlarge = false;
81d39c20 2933 int retry_count;
3e32cb2e 2934 int ret;
81d39c20
KH
2935
2936 /*
2937 * For keeping hierarchical_reclaim simple, how long we should retry
2938 * is depends on callers. We set our retry-count to be function
2939 * of # of children which we should visit in this loop.
2940 */
3e32cb2e
JW
2941 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2942 mem_cgroup_count_children(memcg);
81d39c20 2943
3e32cb2e 2944 oldusage = page_counter_read(&memcg->memory);
628f4235 2945
3e32cb2e 2946 do {
628f4235
KH
2947 if (signal_pending(current)) {
2948 ret = -EINTR;
2949 break;
2950 }
3e32cb2e
JW
2951
2952 mutex_lock(&memcg_limit_mutex);
2953 if (limit > memcg->memsw.limit) {
2954 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2955 ret = -EINVAL;
628f4235
KH
2956 break;
2957 }
3e32cb2e
JW
2958 if (limit > memcg->memory.limit)
2959 enlarge = true;
2960 ret = page_counter_limit(&memcg->memory, limit);
2961 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2962
2963 if (!ret)
2964 break;
2965
b70a2a21
JW
2966 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2967
3e32cb2e 2968 curusage = page_counter_read(&memcg->memory);
81d39c20 2969 /* Usage is reduced ? */
f894ffa8 2970 if (curusage >= oldusage)
81d39c20
KH
2971 retry_count--;
2972 else
2973 oldusage = curusage;
3e32cb2e
JW
2974 } while (retry_count);
2975
3c11ecf4
KH
2976 if (!ret && enlarge)
2977 memcg_oom_recover(memcg);
14797e23 2978
8c7c6e34
KH
2979 return ret;
2980}
2981
338c8431 2982static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2983 unsigned long limit)
8c7c6e34 2984{
3e32cb2e
JW
2985 unsigned long curusage;
2986 unsigned long oldusage;
2987 bool enlarge = false;
81d39c20 2988 int retry_count;
3e32cb2e 2989 int ret;
8c7c6e34 2990
81d39c20 2991 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2992 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2993 mem_cgroup_count_children(memcg);
2994
2995 oldusage = page_counter_read(&memcg->memsw);
2996
2997 do {
8c7c6e34
KH
2998 if (signal_pending(current)) {
2999 ret = -EINTR;
3000 break;
3001 }
3e32cb2e
JW
3002
3003 mutex_lock(&memcg_limit_mutex);
3004 if (limit < memcg->memory.limit) {
3005 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3006 ret = -EINVAL;
8c7c6e34
KH
3007 break;
3008 }
3e32cb2e
JW
3009 if (limit > memcg->memsw.limit)
3010 enlarge = true;
3011 ret = page_counter_limit(&memcg->memsw, limit);
3012 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3013
3014 if (!ret)
3015 break;
3016
b70a2a21
JW
3017 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3018
3e32cb2e 3019 curusage = page_counter_read(&memcg->memsw);
81d39c20 3020 /* Usage is reduced ? */
8c7c6e34 3021 if (curusage >= oldusage)
628f4235 3022 retry_count--;
81d39c20
KH
3023 else
3024 oldusage = curusage;
3e32cb2e
JW
3025 } while (retry_count);
3026
3c11ecf4
KH
3027 if (!ret && enlarge)
3028 memcg_oom_recover(memcg);
3e32cb2e 3029
628f4235
KH
3030 return ret;
3031}
3032
0608f43d
AM
3033unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3034 gfp_t gfp_mask,
3035 unsigned long *total_scanned)
3036{
3037 unsigned long nr_reclaimed = 0;
3038 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3039 unsigned long reclaimed;
3040 int loop = 0;
3041 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3042 unsigned long excess;
0608f43d
AM
3043 unsigned long nr_scanned;
3044
3045 if (order > 0)
3046 return 0;
3047
3048 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3049 /*
3050 * This loop can run a while, specially if mem_cgroup's continuously
3051 * keep exceeding their soft limit and putting the system under
3052 * pressure
3053 */
3054 do {
3055 if (next_mz)
3056 mz = next_mz;
3057 else
3058 mz = mem_cgroup_largest_soft_limit_node(mctz);
3059 if (!mz)
3060 break;
3061
3062 nr_scanned = 0;
3063 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3064 gfp_mask, &nr_scanned);
3065 nr_reclaimed += reclaimed;
3066 *total_scanned += nr_scanned;
0a31bc97 3067 spin_lock_irq(&mctz->lock);
bc2f2e7f 3068 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3069
3070 /*
3071 * If we failed to reclaim anything from this memory cgroup
3072 * it is time to move on to the next cgroup
3073 */
3074 next_mz = NULL;
bc2f2e7f
VD
3075 if (!reclaimed)
3076 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3077
3e32cb2e 3078 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3079 /*
3080 * One school of thought says that we should not add
3081 * back the node to the tree if reclaim returns 0.
3082 * But our reclaim could return 0, simply because due
3083 * to priority we are exposing a smaller subset of
3084 * memory to reclaim from. Consider this as a longer
3085 * term TODO.
3086 */
3087 /* If excess == 0, no tree ops */
cf2c8127 3088 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3089 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3090 css_put(&mz->memcg->css);
3091 loop++;
3092 /*
3093 * Could not reclaim anything and there are no more
3094 * mem cgroups to try or we seem to be looping without
3095 * reclaiming anything.
3096 */
3097 if (!nr_reclaimed &&
3098 (next_mz == NULL ||
3099 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3100 break;
3101 } while (!nr_reclaimed);
3102 if (next_mz)
3103 css_put(&next_mz->memcg->css);
3104 return nr_reclaimed;
3105}
3106
ea280e7b
TH
3107/*
3108 * Test whether @memcg has children, dead or alive. Note that this
3109 * function doesn't care whether @memcg has use_hierarchy enabled and
3110 * returns %true if there are child csses according to the cgroup
3111 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3112 */
b5f99b53
GC
3113static inline bool memcg_has_children(struct mem_cgroup *memcg)
3114{
ea280e7b
TH
3115 bool ret;
3116
696ac172 3117 /*
ea280e7b
TH
3118 * The lock does not prevent addition or deletion of children, but
3119 * it prevents a new child from being initialized based on this
3120 * parent in css_online(), so it's enough to decide whether
3121 * hierarchically inherited attributes can still be changed or not.
696ac172 3122 */
ea280e7b
TH
3123 lockdep_assert_held(&memcg_create_mutex);
3124
3125 rcu_read_lock();
3126 ret = css_next_child(NULL, &memcg->css);
3127 rcu_read_unlock();
3128 return ret;
b5f99b53
GC
3129}
3130
c26251f9
MH
3131/*
3132 * Reclaims as many pages from the given memcg as possible and moves
3133 * the rest to the parent.
3134 *
3135 * Caller is responsible for holding css reference for memcg.
3136 */
3137static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3138{
3139 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3140
c1e862c1
KH
3141 /* we call try-to-free pages for make this cgroup empty */
3142 lru_add_drain_all();
f817ed48 3143 /* try to free all pages in this cgroup */
3e32cb2e 3144 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3145 int progress;
c1e862c1 3146
c26251f9
MH
3147 if (signal_pending(current))
3148 return -EINTR;
3149
b70a2a21
JW
3150 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3151 GFP_KERNEL, true);
c1e862c1 3152 if (!progress) {
f817ed48 3153 nr_retries--;
c1e862c1 3154 /* maybe some writeback is necessary */
8aa7e847 3155 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3156 }
f817ed48
KH
3157
3158 }
ab5196c2
MH
3159
3160 return 0;
cc847582
KH
3161}
3162
6770c64e
TH
3163static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3164 char *buf, size_t nbytes,
3165 loff_t off)
c1e862c1 3166{
6770c64e 3167 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3168
d8423011
MH
3169 if (mem_cgroup_is_root(memcg))
3170 return -EINVAL;
6770c64e 3171 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3172}
3173
182446d0
TH
3174static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3175 struct cftype *cft)
18f59ea7 3176{
182446d0 3177 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3178}
3179
182446d0
TH
3180static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3181 struct cftype *cft, u64 val)
18f59ea7
BS
3182{
3183 int retval = 0;
182446d0 3184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3185 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3186
0999821b 3187 mutex_lock(&memcg_create_mutex);
567fb435
GC
3188
3189 if (memcg->use_hierarchy == val)
3190 goto out;
3191
18f59ea7 3192 /*
af901ca1 3193 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3194 * in the child subtrees. If it is unset, then the change can
3195 * occur, provided the current cgroup has no children.
3196 *
3197 * For the root cgroup, parent_mem is NULL, we allow value to be
3198 * set if there are no children.
3199 */
c0ff4b85 3200 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3201 (val == 1 || val == 0)) {
ea280e7b 3202 if (!memcg_has_children(memcg))
c0ff4b85 3203 memcg->use_hierarchy = val;
18f59ea7
BS
3204 else
3205 retval = -EBUSY;
3206 } else
3207 retval = -EINVAL;
567fb435
GC
3208
3209out:
0999821b 3210 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3211
3212 return retval;
3213}
3214
3e32cb2e
JW
3215static unsigned long tree_stat(struct mem_cgroup *memcg,
3216 enum mem_cgroup_stat_index idx)
ce00a967
JW
3217{
3218 struct mem_cgroup *iter;
3219 long val = 0;
3220
3221 /* Per-cpu values can be negative, use a signed accumulator */
3222 for_each_mem_cgroup_tree(iter, memcg)
3223 val += mem_cgroup_read_stat(iter, idx);
3224
3225 if (val < 0) /* race ? */
3226 val = 0;
3227 return val;
3228}
3229
3230static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3231{
3232 u64 val;
3233
3e32cb2e
JW
3234 if (mem_cgroup_is_root(memcg)) {
3235 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3236 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3237 if (swap)
3238 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3239 } else {
ce00a967 3240 if (!swap)
3e32cb2e 3241 val = page_counter_read(&memcg->memory);
ce00a967 3242 else
3e32cb2e 3243 val = page_counter_read(&memcg->memsw);
ce00a967 3244 }
ce00a967
JW
3245 return val << PAGE_SHIFT;
3246}
3247
3e32cb2e
JW
3248enum {
3249 RES_USAGE,
3250 RES_LIMIT,
3251 RES_MAX_USAGE,
3252 RES_FAILCNT,
3253 RES_SOFT_LIMIT,
3254};
ce00a967 3255
791badbd 3256static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3257 struct cftype *cft)
8cdea7c0 3258{
182446d0 3259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3260 struct page_counter *counter;
af36f906 3261
3e32cb2e 3262 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3263 case _MEM:
3e32cb2e
JW
3264 counter = &memcg->memory;
3265 break;
8c7c6e34 3266 case _MEMSWAP:
3e32cb2e
JW
3267 counter = &memcg->memsw;
3268 break;
510fc4e1 3269 case _KMEM:
3e32cb2e 3270 counter = &memcg->kmem;
510fc4e1 3271 break;
8c7c6e34
KH
3272 default:
3273 BUG();
8c7c6e34 3274 }
3e32cb2e
JW
3275
3276 switch (MEMFILE_ATTR(cft->private)) {
3277 case RES_USAGE:
3278 if (counter == &memcg->memory)
3279 return mem_cgroup_usage(memcg, false);
3280 if (counter == &memcg->memsw)
3281 return mem_cgroup_usage(memcg, true);
3282 return (u64)page_counter_read(counter) * PAGE_SIZE;
3283 case RES_LIMIT:
3284 return (u64)counter->limit * PAGE_SIZE;
3285 case RES_MAX_USAGE:
3286 return (u64)counter->watermark * PAGE_SIZE;
3287 case RES_FAILCNT:
3288 return counter->failcnt;
3289 case RES_SOFT_LIMIT:
3290 return (u64)memcg->soft_limit * PAGE_SIZE;
3291 default:
3292 BUG();
3293 }
8cdea7c0 3294}
510fc4e1 3295
510fc4e1 3296#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3297static int memcg_activate_kmem(struct mem_cgroup *memcg,
3298 unsigned long nr_pages)
d6441637
VD
3299{
3300 int err = 0;
3301 int memcg_id;
3302
3303 if (memcg_kmem_is_active(memcg))
3304 return 0;
3305
510fc4e1
GC
3306 /*
3307 * For simplicity, we won't allow this to be disabled. It also can't
3308 * be changed if the cgroup has children already, or if tasks had
3309 * already joined.
3310 *
3311 * If tasks join before we set the limit, a person looking at
3312 * kmem.usage_in_bytes will have no way to determine when it took
3313 * place, which makes the value quite meaningless.
3314 *
3315 * After it first became limited, changes in the value of the limit are
3316 * of course permitted.
510fc4e1 3317 */
0999821b 3318 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3319 if (cgroup_has_tasks(memcg->css.cgroup) ||
3320 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3321 err = -EBUSY;
3322 mutex_unlock(&memcg_create_mutex);
3323 if (err)
3324 goto out;
510fc4e1 3325
f3bb3043 3326 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3327 if (memcg_id < 0) {
3328 err = memcg_id;
3329 goto out;
3330 }
3331
d6441637 3332 /*
900a38f0
VD
3333 * We couldn't have accounted to this cgroup, because it hasn't got
3334 * activated yet, so this should succeed.
d6441637 3335 */
3e32cb2e 3336 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3337 VM_BUG_ON(err);
3338
3339 static_key_slow_inc(&memcg_kmem_enabled_key);
3340 /*
900a38f0
VD
3341 * A memory cgroup is considered kmem-active as soon as it gets
3342 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3343 * guarantee no one starts accounting before all call sites are
3344 * patched.
3345 */
900a38f0 3346 memcg->kmemcg_id = memcg_id;
510fc4e1 3347out:
d6441637 3348 return err;
d6441637
VD
3349}
3350
d6441637 3351static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3352 unsigned long limit)
d6441637
VD
3353{
3354 int ret;
3355
3e32cb2e 3356 mutex_lock(&memcg_limit_mutex);
d6441637 3357 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3358 ret = memcg_activate_kmem(memcg, limit);
d6441637 3359 else
3e32cb2e
JW
3360 ret = page_counter_limit(&memcg->kmem, limit);
3361 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3362 return ret;
3363}
3364
55007d84 3365static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3366{
55007d84 3367 int ret = 0;
510fc4e1 3368 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3369
d6441637
VD
3370 if (!parent)
3371 return 0;
55007d84 3372
8c0145b6 3373 mutex_lock(&memcg_limit_mutex);
55007d84 3374 /*
d6441637
VD
3375 * If the parent cgroup is not kmem-active now, it cannot be activated
3376 * after this point, because it has at least one child already.
55007d84 3377 */
d6441637 3378 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3379 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3380 mutex_unlock(&memcg_limit_mutex);
55007d84 3381 return ret;
510fc4e1 3382}
d6441637
VD
3383#else
3384static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3385 unsigned long limit)
d6441637
VD
3386{
3387 return -EINVAL;
3388}
6d043990 3389#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3390
628f4235
KH
3391/*
3392 * The user of this function is...
3393 * RES_LIMIT.
3394 */
451af504
TH
3395static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3396 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3397{
451af504 3398 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3399 unsigned long nr_pages;
628f4235
KH
3400 int ret;
3401
451af504 3402 buf = strstrip(buf);
650c5e56 3403 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3404 if (ret)
3405 return ret;
af36f906 3406
3e32cb2e 3407 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3408 case RES_LIMIT:
4b3bde4c
BS
3409 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3410 ret = -EINVAL;
3411 break;
3412 }
3e32cb2e
JW
3413 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3414 case _MEM:
3415 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3416 break;
3e32cb2e
JW
3417 case _MEMSWAP:
3418 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3419 break;
3e32cb2e
JW
3420 case _KMEM:
3421 ret = memcg_update_kmem_limit(memcg, nr_pages);
3422 break;
3423 }
296c81d8 3424 break;
3e32cb2e
JW
3425 case RES_SOFT_LIMIT:
3426 memcg->soft_limit = nr_pages;
3427 ret = 0;
628f4235
KH
3428 break;
3429 }
451af504 3430 return ret ?: nbytes;
8cdea7c0
BS
3431}
3432
6770c64e
TH
3433static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3434 size_t nbytes, loff_t off)
c84872e1 3435{
6770c64e 3436 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3437 struct page_counter *counter;
c84872e1 3438
3e32cb2e
JW
3439 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3440 case _MEM:
3441 counter = &memcg->memory;
3442 break;
3443 case _MEMSWAP:
3444 counter = &memcg->memsw;
3445 break;
3446 case _KMEM:
3447 counter = &memcg->kmem;
3448 break;
3449 default:
3450 BUG();
3451 }
af36f906 3452
3e32cb2e 3453 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3454 case RES_MAX_USAGE:
3e32cb2e 3455 page_counter_reset_watermark(counter);
29f2a4da
PE
3456 break;
3457 case RES_FAILCNT:
3e32cb2e 3458 counter->failcnt = 0;
29f2a4da 3459 break;
3e32cb2e
JW
3460 default:
3461 BUG();
29f2a4da 3462 }
f64c3f54 3463
6770c64e 3464 return nbytes;
c84872e1
PE
3465}
3466
182446d0 3467static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3468 struct cftype *cft)
3469{
182446d0 3470 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3471}
3472
02491447 3473#ifdef CONFIG_MMU
182446d0 3474static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3475 struct cftype *cft, u64 val)
3476{
182446d0 3477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3478
1dfab5ab 3479 if (val & ~MOVE_MASK)
7dc74be0 3480 return -EINVAL;
ee5e8472 3481
7dc74be0 3482 /*
ee5e8472
GC
3483 * No kind of locking is needed in here, because ->can_attach() will
3484 * check this value once in the beginning of the process, and then carry
3485 * on with stale data. This means that changes to this value will only
3486 * affect task migrations starting after the change.
7dc74be0 3487 */
c0ff4b85 3488 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3489 return 0;
3490}
02491447 3491#else
182446d0 3492static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3493 struct cftype *cft, u64 val)
3494{
3495 return -ENOSYS;
3496}
3497#endif
7dc74be0 3498
406eb0c9 3499#ifdef CONFIG_NUMA
2da8ca82 3500static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3501{
25485de6
GT
3502 struct numa_stat {
3503 const char *name;
3504 unsigned int lru_mask;
3505 };
3506
3507 static const struct numa_stat stats[] = {
3508 { "total", LRU_ALL },
3509 { "file", LRU_ALL_FILE },
3510 { "anon", LRU_ALL_ANON },
3511 { "unevictable", BIT(LRU_UNEVICTABLE) },
3512 };
3513 const struct numa_stat *stat;
406eb0c9 3514 int nid;
25485de6 3515 unsigned long nr;
2da8ca82 3516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3517
25485de6
GT
3518 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3519 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3520 seq_printf(m, "%s=%lu", stat->name, nr);
3521 for_each_node_state(nid, N_MEMORY) {
3522 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3523 stat->lru_mask);
3524 seq_printf(m, " N%d=%lu", nid, nr);
3525 }
3526 seq_putc(m, '\n');
406eb0c9 3527 }
406eb0c9 3528
071aee13
YH
3529 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3530 struct mem_cgroup *iter;
3531
3532 nr = 0;
3533 for_each_mem_cgroup_tree(iter, memcg)
3534 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3535 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3536 for_each_node_state(nid, N_MEMORY) {
3537 nr = 0;
3538 for_each_mem_cgroup_tree(iter, memcg)
3539 nr += mem_cgroup_node_nr_lru_pages(
3540 iter, nid, stat->lru_mask);
3541 seq_printf(m, " N%d=%lu", nid, nr);
3542 }
3543 seq_putc(m, '\n');
406eb0c9 3544 }
406eb0c9 3545
406eb0c9
YH
3546 return 0;
3547}
3548#endif /* CONFIG_NUMA */
3549
2da8ca82 3550static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3551{
2da8ca82 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3553 unsigned long memory, memsw;
af7c4b0e
JW
3554 struct mem_cgroup *mi;
3555 unsigned int i;
406eb0c9 3556
0ca44b14
GT
3557 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3558 MEM_CGROUP_STAT_NSTATS);
3559 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3560 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3561 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3562
af7c4b0e 3563 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3564 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3565 continue;
af7c4b0e
JW
3566 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3567 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3568 }
7b854121 3569
af7c4b0e
JW
3570 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3571 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3572 mem_cgroup_read_events(memcg, i));
3573
3574 for (i = 0; i < NR_LRU_LISTS; i++)
3575 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3576 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3577
14067bb3 3578 /* Hierarchical information */
3e32cb2e
JW
3579 memory = memsw = PAGE_COUNTER_MAX;
3580 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3581 memory = min(memory, mi->memory.limit);
3582 memsw = min(memsw, mi->memsw.limit);
fee7b548 3583 }
3e32cb2e
JW
3584 seq_printf(m, "hierarchical_memory_limit %llu\n",
3585 (u64)memory * PAGE_SIZE);
3586 if (do_swap_account)
3587 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3588 (u64)memsw * PAGE_SIZE);
7f016ee8 3589
af7c4b0e
JW
3590 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3591 long long val = 0;
3592
bff6bb83 3593 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3594 continue;
af7c4b0e
JW
3595 for_each_mem_cgroup_tree(mi, memcg)
3596 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3597 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3598 }
3599
3600 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3601 unsigned long long val = 0;
3602
3603 for_each_mem_cgroup_tree(mi, memcg)
3604 val += mem_cgroup_read_events(mi, i);
3605 seq_printf(m, "total_%s %llu\n",
3606 mem_cgroup_events_names[i], val);
3607 }
3608
3609 for (i = 0; i < NR_LRU_LISTS; i++) {
3610 unsigned long long val = 0;
3611
3612 for_each_mem_cgroup_tree(mi, memcg)
3613 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3614 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3615 }
14067bb3 3616
7f016ee8 3617#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3618 {
3619 int nid, zid;
3620 struct mem_cgroup_per_zone *mz;
89abfab1 3621 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3622 unsigned long recent_rotated[2] = {0, 0};
3623 unsigned long recent_scanned[2] = {0, 0};
3624
3625 for_each_online_node(nid)
3626 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3627 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3628 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3629
89abfab1
HD
3630 recent_rotated[0] += rstat->recent_rotated[0];
3631 recent_rotated[1] += rstat->recent_rotated[1];
3632 recent_scanned[0] += rstat->recent_scanned[0];
3633 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3634 }
78ccf5b5
JW
3635 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3636 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3637 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3638 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3639 }
3640#endif
3641
d2ceb9b7
KH
3642 return 0;
3643}
3644
182446d0
TH
3645static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3646 struct cftype *cft)
a7885eb8 3647{
182446d0 3648 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3649
1f4c025b 3650 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3651}
3652
182446d0
TH
3653static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3654 struct cftype *cft, u64 val)
a7885eb8 3655{
182446d0 3656 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3657
3dae7fec 3658 if (val > 100)
a7885eb8
KM
3659 return -EINVAL;
3660
14208b0e 3661 if (css->parent)
3dae7fec
JW
3662 memcg->swappiness = val;
3663 else
3664 vm_swappiness = val;
068b38c1 3665
a7885eb8
KM
3666 return 0;
3667}
3668
2e72b634
KS
3669static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3670{
3671 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3672 unsigned long usage;
2e72b634
KS
3673 int i;
3674
3675 rcu_read_lock();
3676 if (!swap)
2c488db2 3677 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3678 else
2c488db2 3679 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3680
3681 if (!t)
3682 goto unlock;
3683
ce00a967 3684 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3685
3686 /*
748dad36 3687 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3688 * If it's not true, a threshold was crossed after last
3689 * call of __mem_cgroup_threshold().
3690 */
5407a562 3691 i = t->current_threshold;
2e72b634
KS
3692
3693 /*
3694 * Iterate backward over array of thresholds starting from
3695 * current_threshold and check if a threshold is crossed.
3696 * If none of thresholds below usage is crossed, we read
3697 * only one element of the array here.
3698 */
3699 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3700 eventfd_signal(t->entries[i].eventfd, 1);
3701
3702 /* i = current_threshold + 1 */
3703 i++;
3704
3705 /*
3706 * Iterate forward over array of thresholds starting from
3707 * current_threshold+1 and check if a threshold is crossed.
3708 * If none of thresholds above usage is crossed, we read
3709 * only one element of the array here.
3710 */
3711 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3712 eventfd_signal(t->entries[i].eventfd, 1);
3713
3714 /* Update current_threshold */
5407a562 3715 t->current_threshold = i - 1;
2e72b634
KS
3716unlock:
3717 rcu_read_unlock();
3718}
3719
3720static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3721{
ad4ca5f4
KS
3722 while (memcg) {
3723 __mem_cgroup_threshold(memcg, false);
3724 if (do_swap_account)
3725 __mem_cgroup_threshold(memcg, true);
3726
3727 memcg = parent_mem_cgroup(memcg);
3728 }
2e72b634
KS
3729}
3730
3731static int compare_thresholds(const void *a, const void *b)
3732{
3733 const struct mem_cgroup_threshold *_a = a;
3734 const struct mem_cgroup_threshold *_b = b;
3735
2bff24a3
GT
3736 if (_a->threshold > _b->threshold)
3737 return 1;
3738
3739 if (_a->threshold < _b->threshold)
3740 return -1;
3741
3742 return 0;
2e72b634
KS
3743}
3744
c0ff4b85 3745static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3746{
3747 struct mem_cgroup_eventfd_list *ev;
3748
2bcf2e92
MH
3749 spin_lock(&memcg_oom_lock);
3750
c0ff4b85 3751 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3752 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3753
3754 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3755 return 0;
3756}
3757
c0ff4b85 3758static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3759{
7d74b06f
KH
3760 struct mem_cgroup *iter;
3761
c0ff4b85 3762 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3763 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3764}
3765
59b6f873 3766static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3767 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3768{
2c488db2
KS
3769 struct mem_cgroup_thresholds *thresholds;
3770 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3771 unsigned long threshold;
3772 unsigned long usage;
2c488db2 3773 int i, size, ret;
2e72b634 3774
650c5e56 3775 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3776 if (ret)
3777 return ret;
3778
3779 mutex_lock(&memcg->thresholds_lock);
2c488db2 3780
05b84301 3781 if (type == _MEM) {
2c488db2 3782 thresholds = &memcg->thresholds;
ce00a967 3783 usage = mem_cgroup_usage(memcg, false);
05b84301 3784 } else if (type == _MEMSWAP) {
2c488db2 3785 thresholds = &memcg->memsw_thresholds;
ce00a967 3786 usage = mem_cgroup_usage(memcg, true);
05b84301 3787 } else
2e72b634
KS
3788 BUG();
3789
2e72b634 3790 /* Check if a threshold crossed before adding a new one */
2c488db2 3791 if (thresholds->primary)
2e72b634
KS
3792 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3793
2c488db2 3794 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3795
3796 /* Allocate memory for new array of thresholds */
2c488db2 3797 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3798 GFP_KERNEL);
2c488db2 3799 if (!new) {
2e72b634
KS
3800 ret = -ENOMEM;
3801 goto unlock;
3802 }
2c488db2 3803 new->size = size;
2e72b634
KS
3804
3805 /* Copy thresholds (if any) to new array */
2c488db2
KS
3806 if (thresholds->primary) {
3807 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3808 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3809 }
3810
2e72b634 3811 /* Add new threshold */
2c488db2
KS
3812 new->entries[size - 1].eventfd = eventfd;
3813 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3814
3815 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3816 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3817 compare_thresholds, NULL);
3818
3819 /* Find current threshold */
2c488db2 3820 new->current_threshold = -1;
2e72b634 3821 for (i = 0; i < size; i++) {
748dad36 3822 if (new->entries[i].threshold <= usage) {
2e72b634 3823 /*
2c488db2
KS
3824 * new->current_threshold will not be used until
3825 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3826 * it here.
3827 */
2c488db2 3828 ++new->current_threshold;
748dad36
SZ
3829 } else
3830 break;
2e72b634
KS
3831 }
3832
2c488db2
KS
3833 /* Free old spare buffer and save old primary buffer as spare */
3834 kfree(thresholds->spare);
3835 thresholds->spare = thresholds->primary;
3836
3837 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3838
907860ed 3839 /* To be sure that nobody uses thresholds */
2e72b634
KS
3840 synchronize_rcu();
3841
2e72b634
KS
3842unlock:
3843 mutex_unlock(&memcg->thresholds_lock);
3844
3845 return ret;
3846}
3847
59b6f873 3848static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3849 struct eventfd_ctx *eventfd, const char *args)
3850{
59b6f873 3851 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3852}
3853
59b6f873 3854static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3855 struct eventfd_ctx *eventfd, const char *args)
3856{
59b6f873 3857 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3858}
3859
59b6f873 3860static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3861 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3862{
2c488db2
KS
3863 struct mem_cgroup_thresholds *thresholds;
3864 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3865 unsigned long usage;
2c488db2 3866 int i, j, size;
2e72b634
KS
3867
3868 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3869
3870 if (type == _MEM) {
2c488db2 3871 thresholds = &memcg->thresholds;
ce00a967 3872 usage = mem_cgroup_usage(memcg, false);
05b84301 3873 } else if (type == _MEMSWAP) {
2c488db2 3874 thresholds = &memcg->memsw_thresholds;
ce00a967 3875 usage = mem_cgroup_usage(memcg, true);
05b84301 3876 } else
2e72b634
KS
3877 BUG();
3878
371528ca
AV
3879 if (!thresholds->primary)
3880 goto unlock;
3881
2e72b634
KS
3882 /* Check if a threshold crossed before removing */
3883 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3884
3885 /* Calculate new number of threshold */
2c488db2
KS
3886 size = 0;
3887 for (i = 0; i < thresholds->primary->size; i++) {
3888 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3889 size++;
3890 }
3891
2c488db2 3892 new = thresholds->spare;
907860ed 3893
2e72b634
KS
3894 /* Set thresholds array to NULL if we don't have thresholds */
3895 if (!size) {
2c488db2
KS
3896 kfree(new);
3897 new = NULL;
907860ed 3898 goto swap_buffers;
2e72b634
KS
3899 }
3900
2c488db2 3901 new->size = size;
2e72b634
KS
3902
3903 /* Copy thresholds and find current threshold */
2c488db2
KS
3904 new->current_threshold = -1;
3905 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3906 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3907 continue;
3908
2c488db2 3909 new->entries[j] = thresholds->primary->entries[i];
748dad36 3910 if (new->entries[j].threshold <= usage) {
2e72b634 3911 /*
2c488db2 3912 * new->current_threshold will not be used
2e72b634
KS
3913 * until rcu_assign_pointer(), so it's safe to increment
3914 * it here.
3915 */
2c488db2 3916 ++new->current_threshold;
2e72b634
KS
3917 }
3918 j++;
3919 }
3920
907860ed 3921swap_buffers:
2c488db2
KS
3922 /* Swap primary and spare array */
3923 thresholds->spare = thresholds->primary;
8c757763
SZ
3924 /* If all events are unregistered, free the spare array */
3925 if (!new) {
3926 kfree(thresholds->spare);
3927 thresholds->spare = NULL;
3928 }
3929
2c488db2 3930 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3931
907860ed 3932 /* To be sure that nobody uses thresholds */
2e72b634 3933 synchronize_rcu();
371528ca 3934unlock:
2e72b634 3935 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3936}
c1e862c1 3937
59b6f873 3938static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3939 struct eventfd_ctx *eventfd)
3940{
59b6f873 3941 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3942}
3943
59b6f873 3944static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3945 struct eventfd_ctx *eventfd)
3946{
59b6f873 3947 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3948}
3949
59b6f873 3950static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3951 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3952{
9490ff27 3953 struct mem_cgroup_eventfd_list *event;
9490ff27 3954
9490ff27
KH
3955 event = kmalloc(sizeof(*event), GFP_KERNEL);
3956 if (!event)
3957 return -ENOMEM;
3958
1af8efe9 3959 spin_lock(&memcg_oom_lock);
9490ff27
KH
3960
3961 event->eventfd = eventfd;
3962 list_add(&event->list, &memcg->oom_notify);
3963
3964 /* already in OOM ? */
79dfdacc 3965 if (atomic_read(&memcg->under_oom))
9490ff27 3966 eventfd_signal(eventfd, 1);
1af8efe9 3967 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3968
3969 return 0;
3970}
3971
59b6f873 3972static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3973 struct eventfd_ctx *eventfd)
9490ff27 3974{
9490ff27 3975 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3976
1af8efe9 3977 spin_lock(&memcg_oom_lock);
9490ff27 3978
c0ff4b85 3979 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3980 if (ev->eventfd == eventfd) {
3981 list_del(&ev->list);
3982 kfree(ev);
3983 }
3984 }
3985
1af8efe9 3986 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3987}
3988
2da8ca82 3989static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3990{
2da8ca82 3991 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3992
791badbd
TH
3993 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3994 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3995 return 0;
3996}
3997
182446d0 3998static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3999 struct cftype *cft, u64 val)
4000{
182446d0 4001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4002
4003 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4004 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4005 return -EINVAL;
4006
c0ff4b85 4007 memcg->oom_kill_disable = val;
4d845ebf 4008 if (!val)
c0ff4b85 4009 memcg_oom_recover(memcg);
3dae7fec 4010
3c11ecf4
KH
4011 return 0;
4012}
4013
c255a458 4014#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4015static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4016{
55007d84
GC
4017 int ret;
4018
55007d84
GC
4019 ret = memcg_propagate_kmem(memcg);
4020 if (ret)
4021 return ret;
2633d7a0 4022
1d62e436 4023 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4024}
e5671dfa 4025
10d5ebf4 4026static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4027{
d5b3cf71 4028 memcg_destroy_kmem_caches(memcg);
1d62e436 4029 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4030}
e5671dfa 4031#else
cbe128e3 4032static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4033{
4034 return 0;
4035}
d1a4c0b3 4036
10d5ebf4
LZ
4037static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4038{
4039}
e5671dfa
GC
4040#endif
4041
3bc942f3
TH
4042/*
4043 * DO NOT USE IN NEW FILES.
4044 *
4045 * "cgroup.event_control" implementation.
4046 *
4047 * This is way over-engineered. It tries to support fully configurable
4048 * events for each user. Such level of flexibility is completely
4049 * unnecessary especially in the light of the planned unified hierarchy.
4050 *
4051 * Please deprecate this and replace with something simpler if at all
4052 * possible.
4053 */
4054
79bd9814
TH
4055/*
4056 * Unregister event and free resources.
4057 *
4058 * Gets called from workqueue.
4059 */
3bc942f3 4060static void memcg_event_remove(struct work_struct *work)
79bd9814 4061{
3bc942f3
TH
4062 struct mem_cgroup_event *event =
4063 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4064 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4065
4066 remove_wait_queue(event->wqh, &event->wait);
4067
59b6f873 4068 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4069
4070 /* Notify userspace the event is going away. */
4071 eventfd_signal(event->eventfd, 1);
4072
4073 eventfd_ctx_put(event->eventfd);
4074 kfree(event);
59b6f873 4075 css_put(&memcg->css);
79bd9814
TH
4076}
4077
4078/*
4079 * Gets called on POLLHUP on eventfd when user closes it.
4080 *
4081 * Called with wqh->lock held and interrupts disabled.
4082 */
3bc942f3
TH
4083static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4084 int sync, void *key)
79bd9814 4085{
3bc942f3
TH
4086 struct mem_cgroup_event *event =
4087 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4088 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4089 unsigned long flags = (unsigned long)key;
4090
4091 if (flags & POLLHUP) {
4092 /*
4093 * If the event has been detached at cgroup removal, we
4094 * can simply return knowing the other side will cleanup
4095 * for us.
4096 *
4097 * We can't race against event freeing since the other
4098 * side will require wqh->lock via remove_wait_queue(),
4099 * which we hold.
4100 */
fba94807 4101 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4102 if (!list_empty(&event->list)) {
4103 list_del_init(&event->list);
4104 /*
4105 * We are in atomic context, but cgroup_event_remove()
4106 * may sleep, so we have to call it in workqueue.
4107 */
4108 schedule_work(&event->remove);
4109 }
fba94807 4110 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4111 }
4112
4113 return 0;
4114}
4115
3bc942f3 4116static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4117 wait_queue_head_t *wqh, poll_table *pt)
4118{
3bc942f3
TH
4119 struct mem_cgroup_event *event =
4120 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4121
4122 event->wqh = wqh;
4123 add_wait_queue(wqh, &event->wait);
4124}
4125
4126/*
3bc942f3
TH
4127 * DO NOT USE IN NEW FILES.
4128 *
79bd9814
TH
4129 * Parse input and register new cgroup event handler.
4130 *
4131 * Input must be in format '<event_fd> <control_fd> <args>'.
4132 * Interpretation of args is defined by control file implementation.
4133 */
451af504
TH
4134static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4135 char *buf, size_t nbytes, loff_t off)
79bd9814 4136{
451af504 4137 struct cgroup_subsys_state *css = of_css(of);
fba94807 4138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4139 struct mem_cgroup_event *event;
79bd9814
TH
4140 struct cgroup_subsys_state *cfile_css;
4141 unsigned int efd, cfd;
4142 struct fd efile;
4143 struct fd cfile;
fba94807 4144 const char *name;
79bd9814
TH
4145 char *endp;
4146 int ret;
4147
451af504
TH
4148 buf = strstrip(buf);
4149
4150 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4151 if (*endp != ' ')
4152 return -EINVAL;
451af504 4153 buf = endp + 1;
79bd9814 4154
451af504 4155 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4156 if ((*endp != ' ') && (*endp != '\0'))
4157 return -EINVAL;
451af504 4158 buf = endp + 1;
79bd9814
TH
4159
4160 event = kzalloc(sizeof(*event), GFP_KERNEL);
4161 if (!event)
4162 return -ENOMEM;
4163
59b6f873 4164 event->memcg = memcg;
79bd9814 4165 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4166 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4167 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4168 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4169
4170 efile = fdget(efd);
4171 if (!efile.file) {
4172 ret = -EBADF;
4173 goto out_kfree;
4174 }
4175
4176 event->eventfd = eventfd_ctx_fileget(efile.file);
4177 if (IS_ERR(event->eventfd)) {
4178 ret = PTR_ERR(event->eventfd);
4179 goto out_put_efile;
4180 }
4181
4182 cfile = fdget(cfd);
4183 if (!cfile.file) {
4184 ret = -EBADF;
4185 goto out_put_eventfd;
4186 }
4187
4188 /* the process need read permission on control file */
4189 /* AV: shouldn't we check that it's been opened for read instead? */
4190 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4191 if (ret < 0)
4192 goto out_put_cfile;
4193
fba94807
TH
4194 /*
4195 * Determine the event callbacks and set them in @event. This used
4196 * to be done via struct cftype but cgroup core no longer knows
4197 * about these events. The following is crude but the whole thing
4198 * is for compatibility anyway.
3bc942f3
TH
4199 *
4200 * DO NOT ADD NEW FILES.
fba94807 4201 */
b583043e 4202 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4203
4204 if (!strcmp(name, "memory.usage_in_bytes")) {
4205 event->register_event = mem_cgroup_usage_register_event;
4206 event->unregister_event = mem_cgroup_usage_unregister_event;
4207 } else if (!strcmp(name, "memory.oom_control")) {
4208 event->register_event = mem_cgroup_oom_register_event;
4209 event->unregister_event = mem_cgroup_oom_unregister_event;
4210 } else if (!strcmp(name, "memory.pressure_level")) {
4211 event->register_event = vmpressure_register_event;
4212 event->unregister_event = vmpressure_unregister_event;
4213 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4214 event->register_event = memsw_cgroup_usage_register_event;
4215 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4216 } else {
4217 ret = -EINVAL;
4218 goto out_put_cfile;
4219 }
4220
79bd9814 4221 /*
b5557c4c
TH
4222 * Verify @cfile should belong to @css. Also, remaining events are
4223 * automatically removed on cgroup destruction but the removal is
4224 * asynchronous, so take an extra ref on @css.
79bd9814 4225 */
b583043e 4226 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4227 &memory_cgrp_subsys);
79bd9814 4228 ret = -EINVAL;
5a17f543 4229 if (IS_ERR(cfile_css))
79bd9814 4230 goto out_put_cfile;
5a17f543
TH
4231 if (cfile_css != css) {
4232 css_put(cfile_css);
79bd9814 4233 goto out_put_cfile;
5a17f543 4234 }
79bd9814 4235
451af504 4236 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4237 if (ret)
4238 goto out_put_css;
4239
4240 efile.file->f_op->poll(efile.file, &event->pt);
4241
fba94807
TH
4242 spin_lock(&memcg->event_list_lock);
4243 list_add(&event->list, &memcg->event_list);
4244 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4245
4246 fdput(cfile);
4247 fdput(efile);
4248
451af504 4249 return nbytes;
79bd9814
TH
4250
4251out_put_css:
b5557c4c 4252 css_put(css);
79bd9814
TH
4253out_put_cfile:
4254 fdput(cfile);
4255out_put_eventfd:
4256 eventfd_ctx_put(event->eventfd);
4257out_put_efile:
4258 fdput(efile);
4259out_kfree:
4260 kfree(event);
4261
4262 return ret;
4263}
4264
241994ed 4265static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4266 {
0eea1030 4267 .name = "usage_in_bytes",
8c7c6e34 4268 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4269 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4270 },
c84872e1
PE
4271 {
4272 .name = "max_usage_in_bytes",
8c7c6e34 4273 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4274 .write = mem_cgroup_reset,
791badbd 4275 .read_u64 = mem_cgroup_read_u64,
c84872e1 4276 },
8cdea7c0 4277 {
0eea1030 4278 .name = "limit_in_bytes",
8c7c6e34 4279 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4280 .write = mem_cgroup_write,
791badbd 4281 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4282 },
296c81d8
BS
4283 {
4284 .name = "soft_limit_in_bytes",
4285 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4286 .write = mem_cgroup_write,
791badbd 4287 .read_u64 = mem_cgroup_read_u64,
296c81d8 4288 },
8cdea7c0
BS
4289 {
4290 .name = "failcnt",
8c7c6e34 4291 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4292 .write = mem_cgroup_reset,
791badbd 4293 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4294 },
d2ceb9b7
KH
4295 {
4296 .name = "stat",
2da8ca82 4297 .seq_show = memcg_stat_show,
d2ceb9b7 4298 },
c1e862c1
KH
4299 {
4300 .name = "force_empty",
6770c64e 4301 .write = mem_cgroup_force_empty_write,
c1e862c1 4302 },
18f59ea7
BS
4303 {
4304 .name = "use_hierarchy",
4305 .write_u64 = mem_cgroup_hierarchy_write,
4306 .read_u64 = mem_cgroup_hierarchy_read,
4307 },
79bd9814 4308 {
3bc942f3 4309 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4310 .write = memcg_write_event_control,
79bd9814
TH
4311 .flags = CFTYPE_NO_PREFIX,
4312 .mode = S_IWUGO,
4313 },
a7885eb8
KM
4314 {
4315 .name = "swappiness",
4316 .read_u64 = mem_cgroup_swappiness_read,
4317 .write_u64 = mem_cgroup_swappiness_write,
4318 },
7dc74be0
DN
4319 {
4320 .name = "move_charge_at_immigrate",
4321 .read_u64 = mem_cgroup_move_charge_read,
4322 .write_u64 = mem_cgroup_move_charge_write,
4323 },
9490ff27
KH
4324 {
4325 .name = "oom_control",
2da8ca82 4326 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4327 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4328 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4329 },
70ddf637
AV
4330 {
4331 .name = "pressure_level",
70ddf637 4332 },
406eb0c9
YH
4333#ifdef CONFIG_NUMA
4334 {
4335 .name = "numa_stat",
2da8ca82 4336 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4337 },
4338#endif
510fc4e1
GC
4339#ifdef CONFIG_MEMCG_KMEM
4340 {
4341 .name = "kmem.limit_in_bytes",
4342 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4343 .write = mem_cgroup_write,
791badbd 4344 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4345 },
4346 {
4347 .name = "kmem.usage_in_bytes",
4348 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4349 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4350 },
4351 {
4352 .name = "kmem.failcnt",
4353 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4354 .write = mem_cgroup_reset,
791badbd 4355 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4356 },
4357 {
4358 .name = "kmem.max_usage_in_bytes",
4359 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4360 .write = mem_cgroup_reset,
791badbd 4361 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4362 },
749c5415
GC
4363#ifdef CONFIG_SLABINFO
4364 {
4365 .name = "kmem.slabinfo",
b047501c
VD
4366 .seq_start = slab_start,
4367 .seq_next = slab_next,
4368 .seq_stop = slab_stop,
4369 .seq_show = memcg_slab_show,
749c5415
GC
4370 },
4371#endif
8c7c6e34 4372#endif
6bc10349 4373 { }, /* terminate */
af36f906 4374};
8c7c6e34 4375
2d11085e
MH
4376#ifdef CONFIG_MEMCG_SWAP
4377static struct cftype memsw_cgroup_files[] = {
4378 {
4379 .name = "memsw.usage_in_bytes",
4380 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4381 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4382 },
4383 {
4384 .name = "memsw.max_usage_in_bytes",
4385 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4386 .write = mem_cgroup_reset,
791badbd 4387 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4388 },
4389 {
4390 .name = "memsw.limit_in_bytes",
4391 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4392 .write = mem_cgroup_write,
791badbd 4393 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4394 },
4395 {
4396 .name = "memsw.failcnt",
4397 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4398 .write = mem_cgroup_reset,
791badbd 4399 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4400 },
4401 { }, /* terminate */
4402};
4403#endif
c0ff4b85 4404static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4405{
4406 struct mem_cgroup_per_node *pn;
1ecaab2b 4407 struct mem_cgroup_per_zone *mz;
41e3355d 4408 int zone, tmp = node;
1ecaab2b
KH
4409 /*
4410 * This routine is called against possible nodes.
4411 * But it's BUG to call kmalloc() against offline node.
4412 *
4413 * TODO: this routine can waste much memory for nodes which will
4414 * never be onlined. It's better to use memory hotplug callback
4415 * function.
4416 */
41e3355d
KH
4417 if (!node_state(node, N_NORMAL_MEMORY))
4418 tmp = -1;
17295c88 4419 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4420 if (!pn)
4421 return 1;
1ecaab2b 4422
1ecaab2b
KH
4423 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4424 mz = &pn->zoneinfo[zone];
bea8c150 4425 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4426 mz->usage_in_excess = 0;
4427 mz->on_tree = false;
d79154bb 4428 mz->memcg = memcg;
1ecaab2b 4429 }
54f72fe0 4430 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4431 return 0;
4432}
4433
c0ff4b85 4434static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4435{
54f72fe0 4436 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4437}
4438
33327948
KH
4439static struct mem_cgroup *mem_cgroup_alloc(void)
4440{
d79154bb 4441 struct mem_cgroup *memcg;
8ff69e2c 4442 size_t size;
33327948 4443
8ff69e2c
VD
4444 size = sizeof(struct mem_cgroup);
4445 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4446
8ff69e2c 4447 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4448 if (!memcg)
e7bbcdf3
DC
4449 return NULL;
4450
d79154bb
HD
4451 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4452 if (!memcg->stat)
d2e61b8d 4453 goto out_free;
d79154bb
HD
4454 spin_lock_init(&memcg->pcp_counter_lock);
4455 return memcg;
d2e61b8d
DC
4456
4457out_free:
8ff69e2c 4458 kfree(memcg);
d2e61b8d 4459 return NULL;
33327948
KH
4460}
4461
59927fb9 4462/*
c8b2a36f
GC
4463 * At destroying mem_cgroup, references from swap_cgroup can remain.
4464 * (scanning all at force_empty is too costly...)
4465 *
4466 * Instead of clearing all references at force_empty, we remember
4467 * the number of reference from swap_cgroup and free mem_cgroup when
4468 * it goes down to 0.
4469 *
4470 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4471 */
c8b2a36f
GC
4472
4473static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4474{
c8b2a36f 4475 int node;
59927fb9 4476
bb4cc1a8 4477 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4478
4479 for_each_node(node)
4480 free_mem_cgroup_per_zone_info(memcg, node);
4481
4482 free_percpu(memcg->stat);
4483
a8964b9b 4484 disarm_static_keys(memcg);
8ff69e2c 4485 kfree(memcg);
59927fb9 4486}
3afe36b1 4487
7bcc1bb1
DN
4488/*
4489 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4490 */
e1aab161 4491struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4492{
3e32cb2e 4493 if (!memcg->memory.parent)
7bcc1bb1 4494 return NULL;
3e32cb2e 4495 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4496}
e1aab161 4497EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4498
0eb253e2 4499static struct cgroup_subsys_state * __ref
eb95419b 4500mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4501{
d142e3e6 4502 struct mem_cgroup *memcg;
04046e1a 4503 long error = -ENOMEM;
6d12e2d8 4504 int node;
8cdea7c0 4505
c0ff4b85
R
4506 memcg = mem_cgroup_alloc();
4507 if (!memcg)
04046e1a 4508 return ERR_PTR(error);
78fb7466 4509
3ed28fa1 4510 for_each_node(node)
c0ff4b85 4511 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4512 goto free_out;
f64c3f54 4513
c077719b 4514 /* root ? */
eb95419b 4515 if (parent_css == NULL) {
a41c58a6 4516 root_mem_cgroup = memcg;
3e32cb2e 4517 page_counter_init(&memcg->memory, NULL);
241994ed 4518 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4519 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4520 page_counter_init(&memcg->memsw, NULL);
4521 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4522 }
28dbc4b6 4523
d142e3e6
GC
4524 memcg->last_scanned_node = MAX_NUMNODES;
4525 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4526 memcg->move_charge_at_immigrate = 0;
4527 mutex_init(&memcg->thresholds_lock);
4528 spin_lock_init(&memcg->move_lock);
70ddf637 4529 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4530 INIT_LIST_HEAD(&memcg->event_list);
4531 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4532#ifdef CONFIG_MEMCG_KMEM
4533 memcg->kmemcg_id = -1;
900a38f0 4534#endif
d142e3e6
GC
4535
4536 return &memcg->css;
4537
4538free_out:
4539 __mem_cgroup_free(memcg);
4540 return ERR_PTR(error);
4541}
4542
4543static int
eb95419b 4544mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4545{
eb95419b 4546 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4547 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4548 int ret;
d142e3e6 4549
15a4c835 4550 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4551 return -ENOSPC;
4552
63876986 4553 if (!parent)
d142e3e6
GC
4554 return 0;
4555
0999821b 4556 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4557
4558 memcg->use_hierarchy = parent->use_hierarchy;
4559 memcg->oom_kill_disable = parent->oom_kill_disable;
4560 memcg->swappiness = mem_cgroup_swappiness(parent);
4561
4562 if (parent->use_hierarchy) {
3e32cb2e 4563 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4564 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4565 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4566 page_counter_init(&memcg->memsw, &parent->memsw);
4567 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4568
7bcc1bb1 4569 /*
8d76a979
LZ
4570 * No need to take a reference to the parent because cgroup
4571 * core guarantees its existence.
7bcc1bb1 4572 */
18f59ea7 4573 } else {
3e32cb2e 4574 page_counter_init(&memcg->memory, NULL);
241994ed 4575 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4576 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4577 page_counter_init(&memcg->memsw, NULL);
4578 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4579 /*
4580 * Deeper hierachy with use_hierarchy == false doesn't make
4581 * much sense so let cgroup subsystem know about this
4582 * unfortunate state in our controller.
4583 */
d142e3e6 4584 if (parent != root_mem_cgroup)
073219e9 4585 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4586 }
0999821b 4587 mutex_unlock(&memcg_create_mutex);
d6441637 4588
2f7dd7a4
JW
4589 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4590 if (ret)
4591 return ret;
4592
4593 /*
4594 * Make sure the memcg is initialized: mem_cgroup_iter()
4595 * orders reading memcg->initialized against its callers
4596 * reading the memcg members.
4597 */
4598 smp_store_release(&memcg->initialized, 1);
4599
4600 return 0;
8cdea7c0
BS
4601}
4602
eb95419b 4603static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4604{
eb95419b 4605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4606 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4607
4608 /*
4609 * Unregister events and notify userspace.
4610 * Notify userspace about cgroup removing only after rmdir of cgroup
4611 * directory to avoid race between userspace and kernelspace.
4612 */
fba94807
TH
4613 spin_lock(&memcg->event_list_lock);
4614 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4615 list_del_init(&event->list);
4616 schedule_work(&event->remove);
4617 }
fba94807 4618 spin_unlock(&memcg->event_list_lock);
ec64f515 4619
33cb876e 4620 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4621}
4622
eb95419b 4623static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4624{
eb95419b 4625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4626
10d5ebf4 4627 memcg_destroy_kmem(memcg);
465939a1 4628 __mem_cgroup_free(memcg);
8cdea7c0
BS
4629}
4630
1ced953b
TH
4631/**
4632 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4633 * @css: the target css
4634 *
4635 * Reset the states of the mem_cgroup associated with @css. This is
4636 * invoked when the userland requests disabling on the default hierarchy
4637 * but the memcg is pinned through dependency. The memcg should stop
4638 * applying policies and should revert to the vanilla state as it may be
4639 * made visible again.
4640 *
4641 * The current implementation only resets the essential configurations.
4642 * This needs to be expanded to cover all the visible parts.
4643 */
4644static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4645{
4646 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4647
3e32cb2e
JW
4648 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4649 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4650 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4651 memcg->low = 0;
4652 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4653 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4654}
4655
02491447 4656#ifdef CONFIG_MMU
7dc74be0 4657/* Handlers for move charge at task migration. */
854ffa8d 4658static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4659{
05b84301 4660 int ret;
9476db97
JW
4661
4662 /* Try a single bulk charge without reclaim first */
00501b53 4663 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4664 if (!ret) {
854ffa8d 4665 mc.precharge += count;
854ffa8d
DN
4666 return ret;
4667 }
692e7c45 4668 if (ret == -EINTR) {
00501b53 4669 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4670 return ret;
4671 }
9476db97
JW
4672
4673 /* Try charges one by one with reclaim */
854ffa8d 4674 while (count--) {
00501b53 4675 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4676 /*
4677 * In case of failure, any residual charges against
4678 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4679 * later on. However, cancel any charges that are
4680 * bypassed to root right away or they'll be lost.
9476db97 4681 */
692e7c45 4682 if (ret == -EINTR)
00501b53 4683 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4684 if (ret)
38c5d72f 4685 return ret;
854ffa8d 4686 mc.precharge++;
9476db97 4687 cond_resched();
854ffa8d 4688 }
9476db97 4689 return 0;
4ffef5fe
DN
4690}
4691
4692/**
8d32ff84 4693 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4694 * @vma: the vma the pte to be checked belongs
4695 * @addr: the address corresponding to the pte to be checked
4696 * @ptent: the pte to be checked
02491447 4697 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4698 *
4699 * Returns
4700 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4701 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4702 * move charge. if @target is not NULL, the page is stored in target->page
4703 * with extra refcnt got(Callers should handle it).
02491447
DN
4704 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4705 * target for charge migration. if @target is not NULL, the entry is stored
4706 * in target->ent.
4ffef5fe
DN
4707 *
4708 * Called with pte lock held.
4709 */
4ffef5fe
DN
4710union mc_target {
4711 struct page *page;
02491447 4712 swp_entry_t ent;
4ffef5fe
DN
4713};
4714
4ffef5fe 4715enum mc_target_type {
8d32ff84 4716 MC_TARGET_NONE = 0,
4ffef5fe 4717 MC_TARGET_PAGE,
02491447 4718 MC_TARGET_SWAP,
4ffef5fe
DN
4719};
4720
90254a65
DN
4721static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4722 unsigned long addr, pte_t ptent)
4ffef5fe 4723{
90254a65 4724 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4725
90254a65
DN
4726 if (!page || !page_mapped(page))
4727 return NULL;
4728 if (PageAnon(page)) {
1dfab5ab 4729 if (!(mc.flags & MOVE_ANON))
90254a65 4730 return NULL;
1dfab5ab
JW
4731 } else {
4732 if (!(mc.flags & MOVE_FILE))
4733 return NULL;
4734 }
90254a65
DN
4735 if (!get_page_unless_zero(page))
4736 return NULL;
4737
4738 return page;
4739}
4740
4b91355e 4741#ifdef CONFIG_SWAP
90254a65
DN
4742static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4743 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4744{
90254a65
DN
4745 struct page *page = NULL;
4746 swp_entry_t ent = pte_to_swp_entry(ptent);
4747
1dfab5ab 4748 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4749 return NULL;
4b91355e
KH
4750 /*
4751 * Because lookup_swap_cache() updates some statistics counter,
4752 * we call find_get_page() with swapper_space directly.
4753 */
33806f06 4754 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4755 if (do_swap_account)
4756 entry->val = ent.val;
4757
4758 return page;
4759}
4b91355e
KH
4760#else
4761static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4762 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4763{
4764 return NULL;
4765}
4766#endif
90254a65 4767
87946a72
DN
4768static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4769 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4770{
4771 struct page *page = NULL;
87946a72
DN
4772 struct address_space *mapping;
4773 pgoff_t pgoff;
4774
4775 if (!vma->vm_file) /* anonymous vma */
4776 return NULL;
1dfab5ab 4777 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4778 return NULL;
4779
87946a72 4780 mapping = vma->vm_file->f_mapping;
0661a336 4781 pgoff = linear_page_index(vma, addr);
87946a72
DN
4782
4783 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4784#ifdef CONFIG_SWAP
4785 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4786 if (shmem_mapping(mapping)) {
4787 page = find_get_entry(mapping, pgoff);
4788 if (radix_tree_exceptional_entry(page)) {
4789 swp_entry_t swp = radix_to_swp_entry(page);
4790 if (do_swap_account)
4791 *entry = swp;
4792 page = find_get_page(swap_address_space(swp), swp.val);
4793 }
4794 } else
4795 page = find_get_page(mapping, pgoff);
4796#else
4797 page = find_get_page(mapping, pgoff);
aa3b1895 4798#endif
87946a72
DN
4799 return page;
4800}
4801
8d32ff84 4802static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4803 unsigned long addr, pte_t ptent, union mc_target *target)
4804{
4805 struct page *page = NULL;
8d32ff84 4806 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4807 swp_entry_t ent = { .val = 0 };
4808
4809 if (pte_present(ptent))
4810 page = mc_handle_present_pte(vma, addr, ptent);
4811 else if (is_swap_pte(ptent))
4812 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4813 else if (pte_none(ptent))
87946a72 4814 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4815
4816 if (!page && !ent.val)
8d32ff84 4817 return ret;
02491447 4818 if (page) {
02491447 4819 /*
0a31bc97 4820 * Do only loose check w/o serialization.
1306a85a 4821 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4822 * not under LRU exclusion.
02491447 4823 */
1306a85a 4824 if (page->mem_cgroup == mc.from) {
02491447
DN
4825 ret = MC_TARGET_PAGE;
4826 if (target)
4827 target->page = page;
4828 }
4829 if (!ret || !target)
4830 put_page(page);
4831 }
90254a65
DN
4832 /* There is a swap entry and a page doesn't exist or isn't charged */
4833 if (ent.val && !ret &&
34c00c31 4834 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4835 ret = MC_TARGET_SWAP;
4836 if (target)
4837 target->ent = ent;
4ffef5fe 4838 }
4ffef5fe
DN
4839 return ret;
4840}
4841
12724850
NH
4842#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4843/*
4844 * We don't consider swapping or file mapped pages because THP does not
4845 * support them for now.
4846 * Caller should make sure that pmd_trans_huge(pmd) is true.
4847 */
4848static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4849 unsigned long addr, pmd_t pmd, union mc_target *target)
4850{
4851 struct page *page = NULL;
12724850
NH
4852 enum mc_target_type ret = MC_TARGET_NONE;
4853
4854 page = pmd_page(pmd);
309381fe 4855 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4856 if (!(mc.flags & MOVE_ANON))
12724850 4857 return ret;
1306a85a 4858 if (page->mem_cgroup == mc.from) {
12724850
NH
4859 ret = MC_TARGET_PAGE;
4860 if (target) {
4861 get_page(page);
4862 target->page = page;
4863 }
4864 }
4865 return ret;
4866}
4867#else
4868static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4869 unsigned long addr, pmd_t pmd, union mc_target *target)
4870{
4871 return MC_TARGET_NONE;
4872}
4873#endif
4874
4ffef5fe
DN
4875static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4876 unsigned long addr, unsigned long end,
4877 struct mm_walk *walk)
4878{
4879 struct vm_area_struct *vma = walk->private;
4880 pte_t *pte;
4881 spinlock_t *ptl;
4882
bf929152 4883 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4884 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4885 mc.precharge += HPAGE_PMD_NR;
bf929152 4886 spin_unlock(ptl);
1a5a9906 4887 return 0;
12724850 4888 }
03319327 4889
45f83cef
AA
4890 if (pmd_trans_unstable(pmd))
4891 return 0;
4ffef5fe
DN
4892 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4893 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4894 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4895 mc.precharge++; /* increment precharge temporarily */
4896 pte_unmap_unlock(pte - 1, ptl);
4897 cond_resched();
4898
7dc74be0
DN
4899 return 0;
4900}
4901
4ffef5fe
DN
4902static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4903{
4904 unsigned long precharge;
4905 struct vm_area_struct *vma;
4906
dfe076b0 4907 down_read(&mm->mmap_sem);
4ffef5fe
DN
4908 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4909 struct mm_walk mem_cgroup_count_precharge_walk = {
4910 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4911 .mm = mm,
4912 .private = vma,
4913 };
4914 if (is_vm_hugetlb_page(vma))
4915 continue;
4ffef5fe
DN
4916 walk_page_range(vma->vm_start, vma->vm_end,
4917 &mem_cgroup_count_precharge_walk);
4918 }
dfe076b0 4919 up_read(&mm->mmap_sem);
4ffef5fe
DN
4920
4921 precharge = mc.precharge;
4922 mc.precharge = 0;
4923
4924 return precharge;
4925}
4926
4ffef5fe
DN
4927static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4928{
dfe076b0
DN
4929 unsigned long precharge = mem_cgroup_count_precharge(mm);
4930
4931 VM_BUG_ON(mc.moving_task);
4932 mc.moving_task = current;
4933 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4934}
4935
dfe076b0
DN
4936/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4937static void __mem_cgroup_clear_mc(void)
4ffef5fe 4938{
2bd9bb20
KH
4939 struct mem_cgroup *from = mc.from;
4940 struct mem_cgroup *to = mc.to;
4941
4ffef5fe 4942 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4943 if (mc.precharge) {
00501b53 4944 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4945 mc.precharge = 0;
4946 }
4947 /*
4948 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4949 * we must uncharge here.
4950 */
4951 if (mc.moved_charge) {
00501b53 4952 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4953 mc.moved_charge = 0;
4ffef5fe 4954 }
483c30b5
DN
4955 /* we must fixup refcnts and charges */
4956 if (mc.moved_swap) {
483c30b5 4957 /* uncharge swap account from the old cgroup */
ce00a967 4958 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4959 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4960
05b84301 4961 /*
3e32cb2e
JW
4962 * we charged both to->memory and to->memsw, so we
4963 * should uncharge to->memory.
05b84301 4964 */
ce00a967 4965 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4966 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4967
e8ea14cc 4968 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4969
4050377b 4970 /* we've already done css_get(mc.to) */
483c30b5
DN
4971 mc.moved_swap = 0;
4972 }
dfe076b0
DN
4973 memcg_oom_recover(from);
4974 memcg_oom_recover(to);
4975 wake_up_all(&mc.waitq);
4976}
4977
4978static void mem_cgroup_clear_mc(void)
4979{
dfe076b0
DN
4980 /*
4981 * we must clear moving_task before waking up waiters at the end of
4982 * task migration.
4983 */
4984 mc.moving_task = NULL;
4985 __mem_cgroup_clear_mc();
2bd9bb20 4986 spin_lock(&mc.lock);
4ffef5fe
DN
4987 mc.from = NULL;
4988 mc.to = NULL;
2bd9bb20 4989 spin_unlock(&mc.lock);
4ffef5fe
DN
4990}
4991
eb95419b 4992static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4993 struct cgroup_taskset *tset)
7dc74be0 4994{
2f7ee569 4995 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 4996 int ret = 0;
eb95419b 4997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 4998 unsigned long move_flags;
7dc74be0 4999
ee5e8472
GC
5000 /*
5001 * We are now commited to this value whatever it is. Changes in this
5002 * tunable will only affect upcoming migrations, not the current one.
5003 * So we need to save it, and keep it going.
5004 */
1dfab5ab
JW
5005 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5006 if (move_flags) {
7dc74be0
DN
5007 struct mm_struct *mm;
5008 struct mem_cgroup *from = mem_cgroup_from_task(p);
5009
c0ff4b85 5010 VM_BUG_ON(from == memcg);
7dc74be0
DN
5011
5012 mm = get_task_mm(p);
5013 if (!mm)
5014 return 0;
7dc74be0 5015 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5016 if (mm->owner == p) {
5017 VM_BUG_ON(mc.from);
5018 VM_BUG_ON(mc.to);
5019 VM_BUG_ON(mc.precharge);
854ffa8d 5020 VM_BUG_ON(mc.moved_charge);
483c30b5 5021 VM_BUG_ON(mc.moved_swap);
247b1447 5022
2bd9bb20 5023 spin_lock(&mc.lock);
4ffef5fe 5024 mc.from = from;
c0ff4b85 5025 mc.to = memcg;
1dfab5ab 5026 mc.flags = move_flags;
2bd9bb20 5027 spin_unlock(&mc.lock);
dfe076b0 5028 /* We set mc.moving_task later */
4ffef5fe
DN
5029
5030 ret = mem_cgroup_precharge_mc(mm);
5031 if (ret)
5032 mem_cgroup_clear_mc();
dfe076b0
DN
5033 }
5034 mmput(mm);
7dc74be0
DN
5035 }
5036 return ret;
5037}
5038
eb95419b 5039static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5040 struct cgroup_taskset *tset)
7dc74be0 5041{
4e2f245d
JW
5042 if (mc.to)
5043 mem_cgroup_clear_mc();
7dc74be0
DN
5044}
5045
4ffef5fe
DN
5046static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5047 unsigned long addr, unsigned long end,
5048 struct mm_walk *walk)
7dc74be0 5049{
4ffef5fe
DN
5050 int ret = 0;
5051 struct vm_area_struct *vma = walk->private;
5052 pte_t *pte;
5053 spinlock_t *ptl;
12724850
NH
5054 enum mc_target_type target_type;
5055 union mc_target target;
5056 struct page *page;
4ffef5fe 5057
12724850
NH
5058 /*
5059 * We don't take compound_lock() here but no race with splitting thp
5060 * happens because:
5061 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5062 * under splitting, which means there's no concurrent thp split,
5063 * - if another thread runs into split_huge_page() just after we
5064 * entered this if-block, the thread must wait for page table lock
5065 * to be unlocked in __split_huge_page_splitting(), where the main
5066 * part of thp split is not executed yet.
5067 */
bf929152 5068 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5069 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5070 spin_unlock(ptl);
12724850
NH
5071 return 0;
5072 }
5073 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5074 if (target_type == MC_TARGET_PAGE) {
5075 page = target.page;
5076 if (!isolate_lru_page(page)) {
12724850 5077 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5078 mc.from, mc.to)) {
12724850
NH
5079 mc.precharge -= HPAGE_PMD_NR;
5080 mc.moved_charge += HPAGE_PMD_NR;
5081 }
5082 putback_lru_page(page);
5083 }
5084 put_page(page);
5085 }
bf929152 5086 spin_unlock(ptl);
1a5a9906 5087 return 0;
12724850
NH
5088 }
5089
45f83cef
AA
5090 if (pmd_trans_unstable(pmd))
5091 return 0;
4ffef5fe
DN
5092retry:
5093 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5094 for (; addr != end; addr += PAGE_SIZE) {
5095 pte_t ptent = *(pte++);
02491447 5096 swp_entry_t ent;
4ffef5fe
DN
5097
5098 if (!mc.precharge)
5099 break;
5100
8d32ff84 5101 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5102 case MC_TARGET_PAGE:
5103 page = target.page;
5104 if (isolate_lru_page(page))
5105 goto put;
1306a85a 5106 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5107 mc.precharge--;
854ffa8d
DN
5108 /* we uncharge from mc.from later. */
5109 mc.moved_charge++;
4ffef5fe
DN
5110 }
5111 putback_lru_page(page);
8d32ff84 5112put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5113 put_page(page);
5114 break;
02491447
DN
5115 case MC_TARGET_SWAP:
5116 ent = target.ent;
e91cbb42 5117 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5118 mc.precharge--;
483c30b5
DN
5119 /* we fixup refcnts and charges later. */
5120 mc.moved_swap++;
5121 }
02491447 5122 break;
4ffef5fe
DN
5123 default:
5124 break;
5125 }
5126 }
5127 pte_unmap_unlock(pte - 1, ptl);
5128 cond_resched();
5129
5130 if (addr != end) {
5131 /*
5132 * We have consumed all precharges we got in can_attach().
5133 * We try charge one by one, but don't do any additional
5134 * charges to mc.to if we have failed in charge once in attach()
5135 * phase.
5136 */
854ffa8d 5137 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5138 if (!ret)
5139 goto retry;
5140 }
5141
5142 return ret;
5143}
5144
5145static void mem_cgroup_move_charge(struct mm_struct *mm)
5146{
5147 struct vm_area_struct *vma;
5148
5149 lru_add_drain_all();
312722cb
JW
5150 /*
5151 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5152 * move_lock while we're moving its pages to another memcg.
5153 * Then wait for already started RCU-only updates to finish.
5154 */
5155 atomic_inc(&mc.from->moving_account);
5156 synchronize_rcu();
dfe076b0
DN
5157retry:
5158 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5159 /*
5160 * Someone who are holding the mmap_sem might be waiting in
5161 * waitq. So we cancel all extra charges, wake up all waiters,
5162 * and retry. Because we cancel precharges, we might not be able
5163 * to move enough charges, but moving charge is a best-effort
5164 * feature anyway, so it wouldn't be a big problem.
5165 */
5166 __mem_cgroup_clear_mc();
5167 cond_resched();
5168 goto retry;
5169 }
4ffef5fe
DN
5170 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5171 int ret;
5172 struct mm_walk mem_cgroup_move_charge_walk = {
5173 .pmd_entry = mem_cgroup_move_charge_pte_range,
5174 .mm = mm,
5175 .private = vma,
5176 };
5177 if (is_vm_hugetlb_page(vma))
5178 continue;
4ffef5fe
DN
5179 ret = walk_page_range(vma->vm_start, vma->vm_end,
5180 &mem_cgroup_move_charge_walk);
5181 if (ret)
5182 /*
5183 * means we have consumed all precharges and failed in
5184 * doing additional charge. Just abandon here.
5185 */
5186 break;
5187 }
dfe076b0 5188 up_read(&mm->mmap_sem);
312722cb 5189 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5190}
5191
eb95419b 5192static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5193 struct cgroup_taskset *tset)
67e465a7 5194{
2f7ee569 5195 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5196 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5197
dfe076b0 5198 if (mm) {
a433658c
KM
5199 if (mc.to)
5200 mem_cgroup_move_charge(mm);
dfe076b0
DN
5201 mmput(mm);
5202 }
a433658c
KM
5203 if (mc.to)
5204 mem_cgroup_clear_mc();
67e465a7 5205}
5cfb80a7 5206#else /* !CONFIG_MMU */
eb95419b 5207static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5208 struct cgroup_taskset *tset)
5cfb80a7
DN
5209{
5210 return 0;
5211}
eb95419b 5212static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5213 struct cgroup_taskset *tset)
5cfb80a7
DN
5214{
5215}
eb95419b 5216static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5217 struct cgroup_taskset *tset)
5cfb80a7
DN
5218{
5219}
5220#endif
67e465a7 5221
f00baae7
TH
5222/*
5223 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5224 * to verify whether we're attached to the default hierarchy on each mount
5225 * attempt.
f00baae7 5226 */
eb95419b 5227static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5228{
5229 /*
aa6ec29b 5230 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5231 * guarantees that @root doesn't have any children, so turning it
5232 * on for the root memcg is enough.
5233 */
aa6ec29b 5234 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5235 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5236}
5237
241994ed
JW
5238static u64 memory_current_read(struct cgroup_subsys_state *css,
5239 struct cftype *cft)
5240{
5241 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5242}
5243
5244static int memory_low_show(struct seq_file *m, void *v)
5245{
5246 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5247 unsigned long low = ACCESS_ONCE(memcg->low);
5248
5249 if (low == PAGE_COUNTER_MAX)
5250 seq_puts(m, "infinity\n");
5251 else
5252 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5253
5254 return 0;
5255}
5256
5257static ssize_t memory_low_write(struct kernfs_open_file *of,
5258 char *buf, size_t nbytes, loff_t off)
5259{
5260 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5261 unsigned long low;
5262 int err;
5263
5264 buf = strstrip(buf);
5265 err = page_counter_memparse(buf, "infinity", &low);
5266 if (err)
5267 return err;
5268
5269 memcg->low = low;
5270
5271 return nbytes;
5272}
5273
5274static int memory_high_show(struct seq_file *m, void *v)
5275{
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5277 unsigned long high = ACCESS_ONCE(memcg->high);
5278
5279 if (high == PAGE_COUNTER_MAX)
5280 seq_puts(m, "infinity\n");
5281 else
5282 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5283
5284 return 0;
5285}
5286
5287static ssize_t memory_high_write(struct kernfs_open_file *of,
5288 char *buf, size_t nbytes, loff_t off)
5289{
5290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5291 unsigned long high;
5292 int err;
5293
5294 buf = strstrip(buf);
5295 err = page_counter_memparse(buf, "infinity", &high);
5296 if (err)
5297 return err;
5298
5299 memcg->high = high;
5300
5301 return nbytes;
5302}
5303
5304static int memory_max_show(struct seq_file *m, void *v)
5305{
5306 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5307 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5308
5309 if (max == PAGE_COUNTER_MAX)
5310 seq_puts(m, "infinity\n");
5311 else
5312 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5313
5314 return 0;
5315}
5316
5317static ssize_t memory_max_write(struct kernfs_open_file *of,
5318 char *buf, size_t nbytes, loff_t off)
5319{
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5321 unsigned long max;
5322 int err;
5323
5324 buf = strstrip(buf);
5325 err = page_counter_memparse(buf, "infinity", &max);
5326 if (err)
5327 return err;
5328
5329 err = mem_cgroup_resize_limit(memcg, max);
5330 if (err)
5331 return err;
5332
5333 return nbytes;
5334}
5335
5336static int memory_events_show(struct seq_file *m, void *v)
5337{
5338 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5339
5340 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5341 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5342 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5343 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5344
5345 return 0;
5346}
5347
5348static struct cftype memory_files[] = {
5349 {
5350 .name = "current",
5351 .read_u64 = memory_current_read,
5352 },
5353 {
5354 .name = "low",
5355 .flags = CFTYPE_NOT_ON_ROOT,
5356 .seq_show = memory_low_show,
5357 .write = memory_low_write,
5358 },
5359 {
5360 .name = "high",
5361 .flags = CFTYPE_NOT_ON_ROOT,
5362 .seq_show = memory_high_show,
5363 .write = memory_high_write,
5364 },
5365 {
5366 .name = "max",
5367 .flags = CFTYPE_NOT_ON_ROOT,
5368 .seq_show = memory_max_show,
5369 .write = memory_max_write,
5370 },
5371 {
5372 .name = "events",
5373 .flags = CFTYPE_NOT_ON_ROOT,
5374 .seq_show = memory_events_show,
5375 },
5376 { } /* terminate */
5377};
5378
073219e9 5379struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5380 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5381 .css_online = mem_cgroup_css_online,
92fb9748
TH
5382 .css_offline = mem_cgroup_css_offline,
5383 .css_free = mem_cgroup_css_free,
1ced953b 5384 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5385 .can_attach = mem_cgroup_can_attach,
5386 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5387 .attach = mem_cgroup_move_task,
f00baae7 5388 .bind = mem_cgroup_bind,
241994ed
JW
5389 .dfl_cftypes = memory_files,
5390 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5391 .early_init = 0,
8cdea7c0 5392};
c077719b 5393
c255a458 5394#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5395static int __init enable_swap_account(char *s)
5396{
a2c8990a 5397 if (!strcmp(s, "1"))
a42c390c 5398 really_do_swap_account = 1;
a2c8990a 5399 else if (!strcmp(s, "0"))
a42c390c
MH
5400 really_do_swap_account = 0;
5401 return 1;
5402}
a2c8990a 5403__setup("swapaccount=", enable_swap_account);
c077719b 5404
2d11085e
MH
5405static void __init memsw_file_init(void)
5406{
2cf669a5
TH
5407 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5408 memsw_cgroup_files));
6acc8b02
MH
5409}
5410
5411static void __init enable_swap_cgroup(void)
5412{
5413 if (!mem_cgroup_disabled() && really_do_swap_account) {
5414 do_swap_account = 1;
5415 memsw_file_init();
5416 }
2d11085e 5417}
6acc8b02 5418
2d11085e 5419#else
6acc8b02 5420static void __init enable_swap_cgroup(void)
2d11085e
MH
5421{
5422}
c077719b 5423#endif
2d11085e 5424
241994ed
JW
5425/**
5426 * mem_cgroup_events - count memory events against a cgroup
5427 * @memcg: the memory cgroup
5428 * @idx: the event index
5429 * @nr: the number of events to account for
5430 */
5431void mem_cgroup_events(struct mem_cgroup *memcg,
5432 enum mem_cgroup_events_index idx,
5433 unsigned int nr)
5434{
5435 this_cpu_add(memcg->stat->events[idx], nr);
5436}
5437
5438/**
5439 * mem_cgroup_low - check if memory consumption is below the normal range
5440 * @root: the highest ancestor to consider
5441 * @memcg: the memory cgroup to check
5442 *
5443 * Returns %true if memory consumption of @memcg, and that of all
5444 * configurable ancestors up to @root, is below the normal range.
5445 */
5446bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5447{
5448 if (mem_cgroup_disabled())
5449 return false;
5450
5451 /*
5452 * The toplevel group doesn't have a configurable range, so
5453 * it's never low when looked at directly, and it is not
5454 * considered an ancestor when assessing the hierarchy.
5455 */
5456
5457 if (memcg == root_mem_cgroup)
5458 return false;
5459
5460 if (page_counter_read(&memcg->memory) > memcg->low)
5461 return false;
5462
5463 while (memcg != root) {
5464 memcg = parent_mem_cgroup(memcg);
5465
5466 if (memcg == root_mem_cgroup)
5467 break;
5468
5469 if (page_counter_read(&memcg->memory) > memcg->low)
5470 return false;
5471 }
5472 return true;
5473}
5474
0a31bc97
JW
5475#ifdef CONFIG_MEMCG_SWAP
5476/**
5477 * mem_cgroup_swapout - transfer a memsw charge to swap
5478 * @page: page whose memsw charge to transfer
5479 * @entry: swap entry to move the charge to
5480 *
5481 * Transfer the memsw charge of @page to @entry.
5482 */
5483void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5484{
7bdd143c 5485 struct mem_cgroup *memcg;
0a31bc97
JW
5486 unsigned short oldid;
5487
5488 VM_BUG_ON_PAGE(PageLRU(page), page);
5489 VM_BUG_ON_PAGE(page_count(page), page);
5490
5491 if (!do_swap_account)
5492 return;
5493
1306a85a 5494 memcg = page->mem_cgroup;
0a31bc97
JW
5495
5496 /* Readahead page, never charged */
29833315 5497 if (!memcg)
0a31bc97
JW
5498 return;
5499
7bdd143c 5500 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5501 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5502 mem_cgroup_swap_statistics(memcg, true);
5503
1306a85a 5504 page->mem_cgroup = NULL;
0a31bc97 5505
7bdd143c
JW
5506 if (!mem_cgroup_is_root(memcg))
5507 page_counter_uncharge(&memcg->memory, 1);
5508
5509 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5510 VM_BUG_ON(!irqs_disabled());
0a31bc97 5511
7bdd143c
JW
5512 mem_cgroup_charge_statistics(memcg, page, -1);
5513 memcg_check_events(memcg, page);
0a31bc97
JW
5514}
5515
5516/**
5517 * mem_cgroup_uncharge_swap - uncharge a swap entry
5518 * @entry: swap entry to uncharge
5519 *
5520 * Drop the memsw charge associated with @entry.
5521 */
5522void mem_cgroup_uncharge_swap(swp_entry_t entry)
5523{
5524 struct mem_cgroup *memcg;
5525 unsigned short id;
5526
5527 if (!do_swap_account)
5528 return;
5529
5530 id = swap_cgroup_record(entry, 0);
5531 rcu_read_lock();
5532 memcg = mem_cgroup_lookup(id);
5533 if (memcg) {
ce00a967 5534 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5535 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5536 mem_cgroup_swap_statistics(memcg, false);
5537 css_put(&memcg->css);
5538 }
5539 rcu_read_unlock();
5540}
5541#endif
5542
00501b53
JW
5543/**
5544 * mem_cgroup_try_charge - try charging a page
5545 * @page: page to charge
5546 * @mm: mm context of the victim
5547 * @gfp_mask: reclaim mode
5548 * @memcgp: charged memcg return
5549 *
5550 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5551 * pages according to @gfp_mask if necessary.
5552 *
5553 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5554 * Otherwise, an error code is returned.
5555 *
5556 * After page->mapping has been set up, the caller must finalize the
5557 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5558 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5559 */
5560int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5561 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5562{
5563 struct mem_cgroup *memcg = NULL;
5564 unsigned int nr_pages = 1;
5565 int ret = 0;
5566
5567 if (mem_cgroup_disabled())
5568 goto out;
5569
5570 if (PageSwapCache(page)) {
00501b53
JW
5571 /*
5572 * Every swap fault against a single page tries to charge the
5573 * page, bail as early as possible. shmem_unuse() encounters
5574 * already charged pages, too. The USED bit is protected by
5575 * the page lock, which serializes swap cache removal, which
5576 * in turn serializes uncharging.
5577 */
1306a85a 5578 if (page->mem_cgroup)
00501b53
JW
5579 goto out;
5580 }
5581
5582 if (PageTransHuge(page)) {
5583 nr_pages <<= compound_order(page);
5584 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5585 }
5586
5587 if (do_swap_account && PageSwapCache(page))
5588 memcg = try_get_mem_cgroup_from_page(page);
5589 if (!memcg)
5590 memcg = get_mem_cgroup_from_mm(mm);
5591
5592 ret = try_charge(memcg, gfp_mask, nr_pages);
5593
5594 css_put(&memcg->css);
5595
5596 if (ret == -EINTR) {
5597 memcg = root_mem_cgroup;
5598 ret = 0;
5599 }
5600out:
5601 *memcgp = memcg;
5602 return ret;
5603}
5604
5605/**
5606 * mem_cgroup_commit_charge - commit a page charge
5607 * @page: page to charge
5608 * @memcg: memcg to charge the page to
5609 * @lrucare: page might be on LRU already
5610 *
5611 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5612 * after page->mapping has been set up. This must happen atomically
5613 * as part of the page instantiation, i.e. under the page table lock
5614 * for anonymous pages, under the page lock for page and swap cache.
5615 *
5616 * In addition, the page must not be on the LRU during the commit, to
5617 * prevent racing with task migration. If it might be, use @lrucare.
5618 *
5619 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5620 */
5621void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5622 bool lrucare)
5623{
5624 unsigned int nr_pages = 1;
5625
5626 VM_BUG_ON_PAGE(!page->mapping, page);
5627 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5628
5629 if (mem_cgroup_disabled())
5630 return;
5631 /*
5632 * Swap faults will attempt to charge the same page multiple
5633 * times. But reuse_swap_page() might have removed the page
5634 * from swapcache already, so we can't check PageSwapCache().
5635 */
5636 if (!memcg)
5637 return;
5638
6abb5a86
JW
5639 commit_charge(page, memcg, lrucare);
5640
00501b53
JW
5641 if (PageTransHuge(page)) {
5642 nr_pages <<= compound_order(page);
5643 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5644 }
5645
6abb5a86
JW
5646 local_irq_disable();
5647 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5648 memcg_check_events(memcg, page);
5649 local_irq_enable();
00501b53
JW
5650
5651 if (do_swap_account && PageSwapCache(page)) {
5652 swp_entry_t entry = { .val = page_private(page) };
5653 /*
5654 * The swap entry might not get freed for a long time,
5655 * let's not wait for it. The page already received a
5656 * memory+swap charge, drop the swap entry duplicate.
5657 */
5658 mem_cgroup_uncharge_swap(entry);
5659 }
5660}
5661
5662/**
5663 * mem_cgroup_cancel_charge - cancel a page charge
5664 * @page: page to charge
5665 * @memcg: memcg to charge the page to
5666 *
5667 * Cancel a charge transaction started by mem_cgroup_try_charge().
5668 */
5669void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5670{
5671 unsigned int nr_pages = 1;
5672
5673 if (mem_cgroup_disabled())
5674 return;
5675 /*
5676 * Swap faults will attempt to charge the same page multiple
5677 * times. But reuse_swap_page() might have removed the page
5678 * from swapcache already, so we can't check PageSwapCache().
5679 */
5680 if (!memcg)
5681 return;
5682
5683 if (PageTransHuge(page)) {
5684 nr_pages <<= compound_order(page);
5685 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5686 }
5687
5688 cancel_charge(memcg, nr_pages);
5689}
5690
747db954 5691static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5692 unsigned long nr_anon, unsigned long nr_file,
5693 unsigned long nr_huge, struct page *dummy_page)
5694{
18eca2e6 5695 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5696 unsigned long flags;
5697
ce00a967 5698 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5699 page_counter_uncharge(&memcg->memory, nr_pages);
5700 if (do_swap_account)
5701 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5702 memcg_oom_recover(memcg);
5703 }
747db954
JW
5704
5705 local_irq_save(flags);
5706 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5707 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5708 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5709 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5710 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5711 memcg_check_events(memcg, dummy_page);
5712 local_irq_restore(flags);
e8ea14cc
JW
5713
5714 if (!mem_cgroup_is_root(memcg))
18eca2e6 5715 css_put_many(&memcg->css, nr_pages);
747db954
JW
5716}
5717
5718static void uncharge_list(struct list_head *page_list)
5719{
5720 struct mem_cgroup *memcg = NULL;
747db954
JW
5721 unsigned long nr_anon = 0;
5722 unsigned long nr_file = 0;
5723 unsigned long nr_huge = 0;
5724 unsigned long pgpgout = 0;
747db954
JW
5725 struct list_head *next;
5726 struct page *page;
5727
5728 next = page_list->next;
5729 do {
5730 unsigned int nr_pages = 1;
747db954
JW
5731
5732 page = list_entry(next, struct page, lru);
5733 next = page->lru.next;
5734
5735 VM_BUG_ON_PAGE(PageLRU(page), page);
5736 VM_BUG_ON_PAGE(page_count(page), page);
5737
1306a85a 5738 if (!page->mem_cgroup)
747db954
JW
5739 continue;
5740
5741 /*
5742 * Nobody should be changing or seriously looking at
1306a85a 5743 * page->mem_cgroup at this point, we have fully
29833315 5744 * exclusive access to the page.
747db954
JW
5745 */
5746
1306a85a 5747 if (memcg != page->mem_cgroup) {
747db954 5748 if (memcg) {
18eca2e6
JW
5749 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5750 nr_huge, page);
5751 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5752 }
1306a85a 5753 memcg = page->mem_cgroup;
747db954
JW
5754 }
5755
5756 if (PageTransHuge(page)) {
5757 nr_pages <<= compound_order(page);
5758 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5759 nr_huge += nr_pages;
5760 }
5761
5762 if (PageAnon(page))
5763 nr_anon += nr_pages;
5764 else
5765 nr_file += nr_pages;
5766
1306a85a 5767 page->mem_cgroup = NULL;
747db954
JW
5768
5769 pgpgout++;
5770 } while (next != page_list);
5771
5772 if (memcg)
18eca2e6
JW
5773 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5774 nr_huge, page);
747db954
JW
5775}
5776
0a31bc97
JW
5777/**
5778 * mem_cgroup_uncharge - uncharge a page
5779 * @page: page to uncharge
5780 *
5781 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5782 * mem_cgroup_commit_charge().
5783 */
5784void mem_cgroup_uncharge(struct page *page)
5785{
0a31bc97
JW
5786 if (mem_cgroup_disabled())
5787 return;
5788
747db954 5789 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5790 if (!page->mem_cgroup)
0a31bc97
JW
5791 return;
5792
747db954
JW
5793 INIT_LIST_HEAD(&page->lru);
5794 uncharge_list(&page->lru);
5795}
0a31bc97 5796
747db954
JW
5797/**
5798 * mem_cgroup_uncharge_list - uncharge a list of page
5799 * @page_list: list of pages to uncharge
5800 *
5801 * Uncharge a list of pages previously charged with
5802 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5803 */
5804void mem_cgroup_uncharge_list(struct list_head *page_list)
5805{
5806 if (mem_cgroup_disabled())
5807 return;
0a31bc97 5808
747db954
JW
5809 if (!list_empty(page_list))
5810 uncharge_list(page_list);
0a31bc97
JW
5811}
5812
5813/**
5814 * mem_cgroup_migrate - migrate a charge to another page
5815 * @oldpage: currently charged page
5816 * @newpage: page to transfer the charge to
f5e03a49 5817 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5818 *
5819 * Migrate the charge from @oldpage to @newpage.
5820 *
5821 * Both pages must be locked, @newpage->mapping must be set up.
5822 */
5823void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5824 bool lrucare)
5825{
29833315 5826 struct mem_cgroup *memcg;
0a31bc97
JW
5827 int isolated;
5828
5829 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5830 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5831 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5832 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5833 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5834 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5835 newpage);
0a31bc97
JW
5836
5837 if (mem_cgroup_disabled())
5838 return;
5839
5840 /* Page cache replacement: new page already charged? */
1306a85a 5841 if (newpage->mem_cgroup)
0a31bc97
JW
5842 return;
5843
7d5e3245
JW
5844 /*
5845 * Swapcache readahead pages can get migrated before being
5846 * charged, and migration from compaction can happen to an
5847 * uncharged page when the PFN walker finds a page that
5848 * reclaim just put back on the LRU but has not released yet.
5849 */
1306a85a 5850 memcg = oldpage->mem_cgroup;
29833315 5851 if (!memcg)
0a31bc97
JW
5852 return;
5853
0a31bc97
JW
5854 if (lrucare)
5855 lock_page_lru(oldpage, &isolated);
5856
1306a85a 5857 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5858
5859 if (lrucare)
5860 unlock_page_lru(oldpage, isolated);
5861
29833315 5862 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5863}
5864
2d11085e 5865/*
1081312f
MH
5866 * subsys_initcall() for memory controller.
5867 *
5868 * Some parts like hotcpu_notifier() have to be initialized from this context
5869 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5870 * everything that doesn't depend on a specific mem_cgroup structure should
5871 * be initialized from here.
2d11085e
MH
5872 */
5873static int __init mem_cgroup_init(void)
5874{
95a045f6
JW
5875 int cpu, node;
5876
2d11085e 5877 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5878
5879 for_each_possible_cpu(cpu)
5880 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5881 drain_local_stock);
5882
5883 for_each_node(node) {
5884 struct mem_cgroup_tree_per_node *rtpn;
5885 int zone;
5886
5887 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5888 node_online(node) ? node : NUMA_NO_NODE);
5889
5890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5891 struct mem_cgroup_tree_per_zone *rtpz;
5892
5893 rtpz = &rtpn->rb_tree_per_zone[zone];
5894 rtpz->rb_root = RB_ROOT;
5895 spin_lock_init(&rtpz->lock);
5896 }
5897 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5898 }
5899
6acc8b02 5900 enable_swap_cgroup();
95a045f6 5901
2d11085e
MH
5902 return 0;
5903}
5904subsys_initcall(mem_cgroup_init);