]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: fix possible NULL deref while traversing memcg_slab_caches list
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
5f578161
MH
152 unsigned long last_dead_count;
153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
388};
389
a8964b9b
GC
390/* We account when limit is on, but only after call sites are patched */
391#define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
393
394#ifdef CONFIG_MEMCG_KMEM
395static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396{
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
7de37682
GC
399
400static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401{
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403}
404
a8964b9b
GC
405static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406{
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408}
409
55007d84
GC
410static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411{
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413}
414
7de37682
GC
415static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416{
10d5ebf4
LZ
417 /*
418 * Our caller must use css_get() first, because memcg_uncharge_kmem()
419 * will call css_put() if it sees the memcg is dead.
420 */
421 smp_wmb();
7de37682
GC
422 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
423 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
424}
425
426static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
427{
428 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
429 &memcg->kmem_account_flags);
430}
510fc4e1
GC
431#endif
432
7dc74be0
DN
433/* Stuffs for move charges at task migration. */
434/*
ee5e8472
GC
435 * Types of charges to be moved. "move_charge_at_immitgrate" and
436 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
437 */
438enum move_type {
4ffef5fe 439 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 440 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
441 NR_MOVE_TYPE,
442};
443
4ffef5fe
DN
444/* "mc" and its members are protected by cgroup_mutex */
445static struct move_charge_struct {
b1dd693e 446 spinlock_t lock; /* for from, to */
4ffef5fe
DN
447 struct mem_cgroup *from;
448 struct mem_cgroup *to;
ee5e8472 449 unsigned long immigrate_flags;
4ffef5fe 450 unsigned long precharge;
854ffa8d 451 unsigned long moved_charge;
483c30b5 452 unsigned long moved_swap;
8033b97c
DN
453 struct task_struct *moving_task; /* a task moving charges */
454 wait_queue_head_t waitq; /* a waitq for other context */
455} mc = {
2bd9bb20 456 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
457 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
458};
4ffef5fe 459
90254a65
DN
460static bool move_anon(void)
461{
ee5e8472 462 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
463}
464
87946a72
DN
465static bool move_file(void)
466{
ee5e8472 467 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
468}
469
4e416953
BS
470/*
471 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
472 * limit reclaim to prevent infinite loops, if they ever occur.
473 */
a0db00fc 474#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 475#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 476
217bc319
KH
477enum charge_type {
478 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 479 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 480 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 481 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
482 NR_CHARGE_TYPE,
483};
484
8c7c6e34 485/* for encoding cft->private value on file */
86ae53e1
GC
486enum res_type {
487 _MEM,
488 _MEMSWAP,
489 _OOM_TYPE,
510fc4e1 490 _KMEM,
86ae53e1
GC
491};
492
a0db00fc
KS
493#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
494#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 495#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
496/* Used for OOM nofiier */
497#define OOM_CONTROL (0)
8c7c6e34 498
75822b44
BS
499/*
500 * Reclaim flags for mem_cgroup_hierarchical_reclaim
501 */
502#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
503#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
504#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
505#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
506
0999821b
GC
507/*
508 * The memcg_create_mutex will be held whenever a new cgroup is created.
509 * As a consequence, any change that needs to protect against new child cgroups
510 * appearing has to hold it as well.
511 */
512static DEFINE_MUTEX(memcg_create_mutex);
513
b2145145
WL
514struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
515{
a7c6d554 516 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
517}
518
70ddf637
AV
519/* Some nice accessors for the vmpressure. */
520struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
521{
522 if (!memcg)
523 memcg = root_mem_cgroup;
524 return &memcg->vmpressure;
525}
526
527struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
528{
529 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
530}
531
7ffc0edc
MH
532static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533{
534 return (memcg == root_mem_cgroup);
535}
536
4219b2da
LZ
537/*
538 * We restrict the id in the range of [1, 65535], so it can fit into
539 * an unsigned short.
540 */
541#define MEM_CGROUP_ID_MAX USHRT_MAX
542
34c00c31
LZ
543static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
544{
545 /*
546 * The ID of the root cgroup is 0, but memcg treat 0 as an
547 * invalid ID, so we return (cgroup_id + 1).
548 */
549 return memcg->css.cgroup->id + 1;
550}
551
552static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
553{
554 struct cgroup_subsys_state *css;
555
556 css = css_from_id(id - 1, &mem_cgroup_subsys);
557 return mem_cgroup_from_css(css);
558}
559
e1aab161 560/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 561#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 562
e1aab161
GC
563void sock_update_memcg(struct sock *sk)
564{
376be5ff 565 if (mem_cgroup_sockets_enabled) {
e1aab161 566 struct mem_cgroup *memcg;
3f134619 567 struct cg_proto *cg_proto;
e1aab161
GC
568
569 BUG_ON(!sk->sk_prot->proto_cgroup);
570
f3f511e1
GC
571 /* Socket cloning can throw us here with sk_cgrp already
572 * filled. It won't however, necessarily happen from
573 * process context. So the test for root memcg given
574 * the current task's memcg won't help us in this case.
575 *
576 * Respecting the original socket's memcg is a better
577 * decision in this case.
578 */
579 if (sk->sk_cgrp) {
580 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 581 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
582 return;
583 }
584
e1aab161
GC
585 rcu_read_lock();
586 memcg = mem_cgroup_from_task(current);
3f134619 587 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
588 if (!mem_cgroup_is_root(memcg) &&
589 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 590 sk->sk_cgrp = cg_proto;
e1aab161
GC
591 }
592 rcu_read_unlock();
593 }
594}
595EXPORT_SYMBOL(sock_update_memcg);
596
597void sock_release_memcg(struct sock *sk)
598{
376be5ff 599 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
600 struct mem_cgroup *memcg;
601 WARN_ON(!sk->sk_cgrp->memcg);
602 memcg = sk->sk_cgrp->memcg;
5347e5ae 603 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
604 }
605}
d1a4c0b3
GC
606
607struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
608{
609 if (!memcg || mem_cgroup_is_root(memcg))
610 return NULL;
611
2e685cad 612 return &memcg->tcp_mem;
d1a4c0b3
GC
613}
614EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 615
3f134619
GC
616static void disarm_sock_keys(struct mem_cgroup *memcg)
617{
2e685cad 618 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
619 return;
620 static_key_slow_dec(&memcg_socket_limit_enabled);
621}
622#else
623static void disarm_sock_keys(struct mem_cgroup *memcg)
624{
625}
626#endif
627
a8964b9b 628#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
629/*
630 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
631 * The main reason for not using cgroup id for this:
632 * this works better in sparse environments, where we have a lot of memcgs,
633 * but only a few kmem-limited. Or also, if we have, for instance, 200
634 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
635 * 200 entry array for that.
55007d84
GC
636 *
637 * The current size of the caches array is stored in
638 * memcg_limited_groups_array_size. It will double each time we have to
639 * increase it.
640 */
641static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
642int memcg_limited_groups_array_size;
643
55007d84
GC
644/*
645 * MIN_SIZE is different than 1, because we would like to avoid going through
646 * the alloc/free process all the time. In a small machine, 4 kmem-limited
647 * cgroups is a reasonable guess. In the future, it could be a parameter or
648 * tunable, but that is strictly not necessary.
649 *
b8627835 650 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
651 * this constant directly from cgroup, but it is understandable that this is
652 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 653 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
654 * increase ours as well if it increases.
655 */
656#define MEMCG_CACHES_MIN_SIZE 4
b8627835 657#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 658
d7f25f8a
GC
659/*
660 * A lot of the calls to the cache allocation functions are expected to be
661 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
662 * conditional to this static branch, we'll have to allow modules that does
663 * kmem_cache_alloc and the such to see this symbol as well
664 */
a8964b9b 665struct static_key memcg_kmem_enabled_key;
d7f25f8a 666EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
667
668static void disarm_kmem_keys(struct mem_cgroup *memcg)
669{
55007d84 670 if (memcg_kmem_is_active(memcg)) {
a8964b9b 671 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
672 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
673 }
bea207c8
GC
674 /*
675 * This check can't live in kmem destruction function,
676 * since the charges will outlive the cgroup
677 */
678 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
679}
680#else
681static void disarm_kmem_keys(struct mem_cgroup *memcg)
682{
683}
684#endif /* CONFIG_MEMCG_KMEM */
685
686static void disarm_static_keys(struct mem_cgroup *memcg)
687{
688 disarm_sock_keys(memcg);
689 disarm_kmem_keys(memcg);
690}
691
c0ff4b85 692static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 693
f64c3f54 694static struct mem_cgroup_per_zone *
c0ff4b85 695mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 696{
45cf7ebd 697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
699}
700
c0ff4b85 701struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 702{
c0ff4b85 703 return &memcg->css;
d324236b
WF
704}
705
f64c3f54 706static struct mem_cgroup_per_zone *
c0ff4b85 707page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 708{
97a6c37b
JW
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
f64c3f54 711
c0ff4b85 712 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
713}
714
bb4cc1a8
AM
715static struct mem_cgroup_tree_per_zone *
716soft_limit_tree_node_zone(int nid, int zid)
717{
718 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
719}
720
721static struct mem_cgroup_tree_per_zone *
722soft_limit_tree_from_page(struct page *page)
723{
724 int nid = page_to_nid(page);
725 int zid = page_zonenum(page);
726
727 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728}
729
730static void
731__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz,
734 unsigned long long new_usage_in_excess)
735{
736 struct rb_node **p = &mctz->rb_root.rb_node;
737 struct rb_node *parent = NULL;
738 struct mem_cgroup_per_zone *mz_node;
739
740 if (mz->on_tree)
741 return;
742
743 mz->usage_in_excess = new_usage_in_excess;
744 if (!mz->usage_in_excess)
745 return;
746 while (*p) {
747 parent = *p;
748 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
749 tree_node);
750 if (mz->usage_in_excess < mz_node->usage_in_excess)
751 p = &(*p)->rb_left;
752 /*
753 * We can't avoid mem cgroups that are over their soft
754 * limit by the same amount
755 */
756 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
757 p = &(*p)->rb_right;
758 }
759 rb_link_node(&mz->tree_node, parent, p);
760 rb_insert_color(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = true;
762}
763
764static void
765__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768{
769 if (!mz->on_tree)
770 return;
771 rb_erase(&mz->tree_node, &mctz->rb_root);
772 mz->on_tree = false;
773}
774
775static void
776mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
777 struct mem_cgroup_per_zone *mz,
778 struct mem_cgroup_tree_per_zone *mctz)
779{
780 spin_lock(&mctz->lock);
781 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 spin_unlock(&mctz->lock);
783}
784
785
786static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
787{
788 unsigned long long excess;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791 int nid = page_to_nid(page);
792 int zid = page_zonenum(page);
793 mctz = soft_limit_tree_from_page(page);
794
795 /*
796 * Necessary to update all ancestors when hierarchy is used.
797 * because their event counter is not touched.
798 */
799 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
800 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
801 excess = res_counter_soft_limit_excess(&memcg->res);
802 /*
803 * We have to update the tree if mz is on RB-tree or
804 * mem is over its softlimit.
805 */
806 if (excess || mz->on_tree) {
807 spin_lock(&mctz->lock);
808 /* if on-tree, remove it */
809 if (mz->on_tree)
810 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 /*
812 * Insert again. mz->usage_in_excess will be updated.
813 * If excess is 0, no tree ops.
814 */
815 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
816 spin_unlock(&mctz->lock);
817 }
818 }
819}
820
821static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
822{
823 int node, zone;
824 struct mem_cgroup_per_zone *mz;
825 struct mem_cgroup_tree_per_zone *mctz;
826
827 for_each_node(node) {
828 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
829 mz = mem_cgroup_zoneinfo(memcg, node, zone);
830 mctz = soft_limit_tree_node_zone(node, zone);
831 mem_cgroup_remove_exceeded(memcg, mz, mctz);
832 }
833 }
834}
835
836static struct mem_cgroup_per_zone *
837__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
838{
839 struct rb_node *rightmost = NULL;
840 struct mem_cgroup_per_zone *mz;
841
842retry:
843 mz = NULL;
844 rightmost = rb_last(&mctz->rb_root);
845 if (!rightmost)
846 goto done; /* Nothing to reclaim from */
847
848 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
849 /*
850 * Remove the node now but someone else can add it back,
851 * we will to add it back at the end of reclaim to its correct
852 * position in the tree.
853 */
854 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
855 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
856 !css_tryget(&mz->memcg->css))
857 goto retry;
858done:
859 return mz;
860}
861
862static struct mem_cgroup_per_zone *
863mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
864{
865 struct mem_cgroup_per_zone *mz;
866
867 spin_lock(&mctz->lock);
868 mz = __mem_cgroup_largest_soft_limit_node(mctz);
869 spin_unlock(&mctz->lock);
870 return mz;
871}
872
711d3d2c
KH
873/*
874 * Implementation Note: reading percpu statistics for memcg.
875 *
876 * Both of vmstat[] and percpu_counter has threshold and do periodic
877 * synchronization to implement "quick" read. There are trade-off between
878 * reading cost and precision of value. Then, we may have a chance to implement
879 * a periodic synchronizion of counter in memcg's counter.
880 *
881 * But this _read() function is used for user interface now. The user accounts
882 * memory usage by memory cgroup and he _always_ requires exact value because
883 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
884 * have to visit all online cpus and make sum. So, for now, unnecessary
885 * synchronization is not implemented. (just implemented for cpu hotplug)
886 *
887 * If there are kernel internal actions which can make use of some not-exact
888 * value, and reading all cpu value can be performance bottleneck in some
889 * common workload, threashold and synchonization as vmstat[] should be
890 * implemented.
891 */
c0ff4b85 892static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 893 enum mem_cgroup_stat_index idx)
c62b1a3b 894{
7a159cc9 895 long val = 0;
c62b1a3b 896 int cpu;
c62b1a3b 897
711d3d2c
KH
898 get_online_cpus();
899 for_each_online_cpu(cpu)
c0ff4b85 900 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 901#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.count[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
905#endif
906 put_online_cpus();
c62b1a3b
KH
907 return val;
908}
909
c0ff4b85 910static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
911 bool charge)
912{
913 int val = (charge) ? 1 : -1;
bff6bb83 914 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
915}
916
c0ff4b85 917static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
918 enum mem_cgroup_events_index idx)
919{
920 unsigned long val = 0;
921 int cpu;
922
9c567512 923 get_online_cpus();
e9f8974f 924 for_each_online_cpu(cpu)
c0ff4b85 925 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 926#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
927 spin_lock(&memcg->pcp_counter_lock);
928 val += memcg->nocpu_base.events[idx];
929 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 930#endif
9c567512 931 put_online_cpus();
e9f8974f
JW
932 return val;
933}
934
c0ff4b85 935static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 936 struct page *page,
b2402857 937 bool anon, int nr_pages)
d52aa412 938{
c62b1a3b
KH
939 preempt_disable();
940
b2402857
KH
941 /*
942 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
943 * counted as CACHE even if it's on ANON LRU.
944 */
945 if (anon)
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 947 nr_pages);
d52aa412 948 else
b2402857 949 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 950 nr_pages);
55e462b0 951
b070e65c
DR
952 if (PageTransHuge(page))
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
954 nr_pages);
955
e401f176
KH
956 /* pagein of a big page is an event. So, ignore page size */
957 if (nr_pages > 0)
c0ff4b85 958 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 959 else {
c0ff4b85 960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
961 nr_pages = -nr_pages; /* for event */
962 }
e401f176 963
13114716 964 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 965
c62b1a3b 966 preempt_enable();
6d12e2d8
KH
967}
968
bb2a0de9 969unsigned long
4d7dcca2 970mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
971{
972 struct mem_cgroup_per_zone *mz;
973
974 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
975 return mz->lru_size[lru];
976}
977
978static unsigned long
c0ff4b85 979mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 980 unsigned int lru_mask)
889976db
YH
981{
982 struct mem_cgroup_per_zone *mz;
f156ab93 983 enum lru_list lru;
bb2a0de9
KH
984 unsigned long ret = 0;
985
c0ff4b85 986 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 987
f156ab93
HD
988 for_each_lru(lru) {
989 if (BIT(lru) & lru_mask)
990 ret += mz->lru_size[lru];
bb2a0de9
KH
991 }
992 return ret;
993}
994
995static unsigned long
c0ff4b85 996mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
997 int nid, unsigned int lru_mask)
998{
889976db
YH
999 u64 total = 0;
1000 int zid;
1001
bb2a0de9 1002 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
1003 total += mem_cgroup_zone_nr_lru_pages(memcg,
1004 nid, zid, lru_mask);
bb2a0de9 1005
889976db
YH
1006 return total;
1007}
bb2a0de9 1008
c0ff4b85 1009static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 1010 unsigned int lru_mask)
6d12e2d8 1011{
889976db 1012 int nid;
6d12e2d8
KH
1013 u64 total = 0;
1014
31aaea4a 1015 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1016 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1017 return total;
d52aa412
KH
1018}
1019
f53d7ce3
JW
1020static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1021 enum mem_cgroup_events_target target)
7a159cc9
JW
1022{
1023 unsigned long val, next;
1024
13114716 1025 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1026 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1027 /* from time_after() in jiffies.h */
f53d7ce3
JW
1028 if ((long)next - (long)val < 0) {
1029 switch (target) {
1030 case MEM_CGROUP_TARGET_THRESH:
1031 next = val + THRESHOLDS_EVENTS_TARGET;
1032 break;
bb4cc1a8
AM
1033 case MEM_CGROUP_TARGET_SOFTLIMIT:
1034 next = val + SOFTLIMIT_EVENTS_TARGET;
1035 break;
f53d7ce3
JW
1036 case MEM_CGROUP_TARGET_NUMAINFO:
1037 next = val + NUMAINFO_EVENTS_TARGET;
1038 break;
1039 default:
1040 break;
1041 }
1042 __this_cpu_write(memcg->stat->targets[target], next);
1043 return true;
7a159cc9 1044 }
f53d7ce3 1045 return false;
d2265e6f
KH
1046}
1047
1048/*
1049 * Check events in order.
1050 *
1051 */
c0ff4b85 1052static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1053{
4799401f 1054 preempt_disable();
d2265e6f 1055 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1056 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1057 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1058 bool do_softlimit;
82b3f2a7 1059 bool do_numainfo __maybe_unused;
f53d7ce3 1060
bb4cc1a8
AM
1061 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1062 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1063#if MAX_NUMNODES > 1
1064 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1065 MEM_CGROUP_TARGET_NUMAINFO);
1066#endif
1067 preempt_enable();
1068
c0ff4b85 1069 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1070 if (unlikely(do_softlimit))
1071 mem_cgroup_update_tree(memcg, page);
453a9bf3 1072#if MAX_NUMNODES > 1
f53d7ce3 1073 if (unlikely(do_numainfo))
c0ff4b85 1074 atomic_inc(&memcg->numainfo_events);
453a9bf3 1075#endif
f53d7ce3
JW
1076 } else
1077 preempt_enable();
d2265e6f
KH
1078}
1079
cf475ad2 1080struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1081{
31a78f23
BS
1082 /*
1083 * mm_update_next_owner() may clear mm->owner to NULL
1084 * if it races with swapoff, page migration, etc.
1085 * So this can be called with p == NULL.
1086 */
1087 if (unlikely(!p))
1088 return NULL;
1089
8af01f56 1090 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1091}
1092
a433658c 1093struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1094{
c0ff4b85 1095 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1096
1097 if (!mm)
1098 return NULL;
54595fe2
KH
1099 /*
1100 * Because we have no locks, mm->owner's may be being moved to other
1101 * cgroup. We use css_tryget() here even if this looks
1102 * pessimistic (rather than adding locks here).
1103 */
1104 rcu_read_lock();
1105 do {
c0ff4b85
R
1106 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 if (unlikely(!memcg))
54595fe2 1108 break;
c0ff4b85 1109 } while (!css_tryget(&memcg->css));
54595fe2 1110 rcu_read_unlock();
c0ff4b85 1111 return memcg;
54595fe2
KH
1112}
1113
16248d8f
MH
1114/*
1115 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1116 * ref. count) or NULL if the whole root's subtree has been visited.
1117 *
1118 * helper function to be used by mem_cgroup_iter
1119 */
1120static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1121 struct mem_cgroup *last_visited)
16248d8f 1122{
492eb21b 1123 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1124
bd8815a6 1125 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1126skip_node:
492eb21b 1127 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1128
1129 /*
1130 * Even if we found a group we have to make sure it is
1131 * alive. css && !memcg means that the groups should be
1132 * skipped and we should continue the tree walk.
1133 * last_visited css is safe to use because it is
1134 * protected by css_get and the tree walk is rcu safe.
1135 */
492eb21b
TH
1136 if (next_css) {
1137 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1138
694fbc0f
AM
1139 if (css_tryget(&mem->css))
1140 return mem;
1141 else {
492eb21b 1142 prev_css = next_css;
16248d8f
MH
1143 goto skip_node;
1144 }
1145 }
1146
1147 return NULL;
1148}
1149
519ebea3
JW
1150static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1151{
1152 /*
1153 * When a group in the hierarchy below root is destroyed, the
1154 * hierarchy iterator can no longer be trusted since it might
1155 * have pointed to the destroyed group. Invalidate it.
1156 */
1157 atomic_inc(&root->dead_count);
1158}
1159
1160static struct mem_cgroup *
1161mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *root,
1163 int *sequence)
1164{
1165 struct mem_cgroup *position = NULL;
1166 /*
1167 * A cgroup destruction happens in two stages: offlining and
1168 * release. They are separated by a RCU grace period.
1169 *
1170 * If the iterator is valid, we may still race with an
1171 * offlining. The RCU lock ensures the object won't be
1172 * released, tryget will fail if we lost the race.
1173 */
1174 *sequence = atomic_read(&root->dead_count);
1175 if (iter->last_dead_count == *sequence) {
1176 smp_rmb();
1177 position = iter->last_visited;
1178 if (position && !css_tryget(&position->css))
1179 position = NULL;
1180 }
1181 return position;
1182}
1183
1184static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1185 struct mem_cgroup *last_visited,
1186 struct mem_cgroup *new_position,
1187 int sequence)
1188{
1189 if (last_visited)
1190 css_put(&last_visited->css);
1191 /*
1192 * We store the sequence count from the time @last_visited was
1193 * loaded successfully instead of rereading it here so that we
1194 * don't lose destruction events in between. We could have
1195 * raced with the destruction of @new_position after all.
1196 */
1197 iter->last_visited = new_position;
1198 smp_wmb();
1199 iter->last_dead_count = sequence;
1200}
1201
5660048c
JW
1202/**
1203 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1204 * @root: hierarchy root
1205 * @prev: previously returned memcg, NULL on first invocation
1206 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1207 *
1208 * Returns references to children of the hierarchy below @root, or
1209 * @root itself, or %NULL after a full round-trip.
1210 *
1211 * Caller must pass the return value in @prev on subsequent
1212 * invocations for reference counting, or use mem_cgroup_iter_break()
1213 * to cancel a hierarchy walk before the round-trip is complete.
1214 *
1215 * Reclaimers can specify a zone and a priority level in @reclaim to
1216 * divide up the memcgs in the hierarchy among all concurrent
1217 * reclaimers operating on the same zone and priority.
1218 */
694fbc0f 1219struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1220 struct mem_cgroup *prev,
694fbc0f 1221 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1222{
9f3a0d09 1223 struct mem_cgroup *memcg = NULL;
542f85f9 1224 struct mem_cgroup *last_visited = NULL;
711d3d2c 1225
694fbc0f
AM
1226 if (mem_cgroup_disabled())
1227 return NULL;
5660048c 1228
9f3a0d09
JW
1229 if (!root)
1230 root = root_mem_cgroup;
7d74b06f 1231
9f3a0d09 1232 if (prev && !reclaim)
542f85f9 1233 last_visited = prev;
14067bb3 1234
9f3a0d09
JW
1235 if (!root->use_hierarchy && root != root_mem_cgroup) {
1236 if (prev)
c40046f3 1237 goto out_css_put;
694fbc0f 1238 return root;
9f3a0d09 1239 }
14067bb3 1240
542f85f9 1241 rcu_read_lock();
9f3a0d09 1242 while (!memcg) {
527a5ec9 1243 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1244 int uninitialized_var(seq);
711d3d2c 1245
527a5ec9
JW
1246 if (reclaim) {
1247 int nid = zone_to_nid(reclaim->zone);
1248 int zid = zone_idx(reclaim->zone);
1249 struct mem_cgroup_per_zone *mz;
1250
1251 mz = mem_cgroup_zoneinfo(root, nid, zid);
1252 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1253 if (prev && reclaim->generation != iter->generation) {
5f578161 1254 iter->last_visited = NULL;
542f85f9
MH
1255 goto out_unlock;
1256 }
5f578161 1257
519ebea3 1258 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1259 }
7d74b06f 1260
694fbc0f 1261 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1262
527a5ec9 1263 if (reclaim) {
519ebea3 1264 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1265
19f39402 1266 if (!memcg)
527a5ec9
JW
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
9f3a0d09 1271
694fbc0f 1272 if (prev && !memcg)
542f85f9 1273 goto out_unlock;
9f3a0d09 1274 }
542f85f9
MH
1275out_unlock:
1276 rcu_read_unlock();
c40046f3
MH
1277out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
9f3a0d09 1281 return memcg;
14067bb3 1282}
7d74b06f 1283
5660048c
JW
1284/**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
9f3a0d09
JW
1291{
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296}
7d74b06f 1297
9f3a0d09
JW
1298/*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1305 iter != NULL; \
527a5ec9 1306 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1307
9f3a0d09 1308#define for_each_mem_cgroup(iter) \
527a5ec9 1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1310 iter != NULL; \
527a5ec9 1311 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1312
68ae564b 1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1314{
c0ff4b85 1315 struct mem_cgroup *memcg;
456f998e 1316
456f998e 1317 rcu_read_lock();
c0ff4b85
R
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
456f998e
YH
1320 goto out;
1321
1322 switch (idx) {
456f998e 1323 case PGFAULT:
0e574a93
JW
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1328 break;
1329 default:
1330 BUG();
1331 }
1332out:
1333 rcu_read_unlock();
1334}
68ae564b 1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1336
925b7673
JW
1337/**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
fa9add64 1340 * @memcg: memcg of the wanted lruvec
925b7673
JW
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348{
1349 struct mem_cgroup_per_zone *mz;
bea8c150 1350 struct lruvec *lruvec;
925b7673 1351
bea8c150
HD
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
925b7673
JW
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1358 lruvec = &mz->lruvec;
1359out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
925b7673
JW
1368}
1369
08e552c6
KH
1370/*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
4f98a2fe 1383
925b7673 1384/**
fa9add64 1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1386 * @page: the page
fa9add64 1387 * @zone: zone of the page
925b7673 1388 */
fa9add64 1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1390{
08e552c6 1391 struct mem_cgroup_per_zone *mz;
925b7673
JW
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
bea8c150 1394 struct lruvec *lruvec;
6d12e2d8 1395
bea8c150
HD
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
925b7673 1400
08e552c6 1401 pc = lookup_page_cgroup(page);
38c5d72f 1402 memcg = pc->mem_cgroup;
7512102c
HD
1403
1404 /*
fa9add64 1405 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
fa9add64 1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
925b7673 1416 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1417 lruvec = &mz->lruvec;
1418out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
08e552c6 1427}
b69408e8 1428
925b7673 1429/**
fa9add64
HD
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
925b7673 1434 *
fa9add64
HD
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
3f58a829 1437 */
fa9add64
HD
1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
3f58a829
MK
1440{
1441 struct mem_cgroup_per_zone *mz;
fa9add64 1442 unsigned long *lru_size;
3f58a829
MK
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
fa9add64
HD
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1451}
544122e5 1452
3e92041d 1453/*
c0ff4b85 1454 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1455 * hierarchy subtree
1456 */
c3ac9a8a
JW
1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
3e92041d 1459{
91c63734
JW
1460 if (root_memcg == memcg)
1461 return true;
3a981f48 1462 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1463 return false;
b47f77b5 1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1465}
1466
1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469{
1470 bool ret;
1471
91c63734 1472 rcu_read_lock();
c3ac9a8a 1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1474 rcu_read_unlock();
1475 return ret;
3e92041d
MH
1476}
1477
ffbdccf5
DR
1478bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
4c4a2214 1480{
0b7f569e 1481 struct mem_cgroup *curr = NULL;
158e0a2d 1482 struct task_struct *p;
ffbdccf5 1483 bool ret;
4c4a2214 1484
158e0a2d 1485 p = find_lock_task_mm(task);
de077d22
DR
1486 if (p) {
1487 curr = try_get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
ffbdccf5 1495 rcu_read_lock();
de077d22
DR
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
ffbdccf5 1499 rcu_read_unlock();
de077d22 1500 }
0b7f569e 1501 if (!curr)
ffbdccf5 1502 return false;
d31f56db 1503 /*
c0ff4b85 1504 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1505 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1506 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1507 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1508 */
c0ff4b85 1509 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1510 css_put(&curr->css);
4c4a2214
DR
1511 return ret;
1512}
1513
c56d5c7d 1514int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1515{
9b272977 1516 unsigned long inactive_ratio;
14797e23 1517 unsigned long inactive;
9b272977 1518 unsigned long active;
c772be93 1519 unsigned long gb;
14797e23 1520
4d7dcca2
HD
1521 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1522 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1523
c772be93
KM
1524 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1525 if (gb)
1526 inactive_ratio = int_sqrt(10 * gb);
1527 else
1528 inactive_ratio = 1;
1529
9b272977 1530 return inactive * inactive_ratio < active;
14797e23
KM
1531}
1532
6d61ef40
BS
1533#define mem_cgroup_from_res_counter(counter, member) \
1534 container_of(counter, struct mem_cgroup, member)
1535
19942822 1536/**
9d11ea9f 1537 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1538 * @memcg: the memory cgroup
19942822 1539 *
9d11ea9f 1540 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1541 * pages.
19942822 1542 */
c0ff4b85 1543static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1544{
9d11ea9f
JW
1545 unsigned long long margin;
1546
c0ff4b85 1547 margin = res_counter_margin(&memcg->res);
9d11ea9f 1548 if (do_swap_account)
c0ff4b85 1549 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1550 return margin >> PAGE_SHIFT;
19942822
JW
1551}
1552
1f4c025b 1553int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1554{
a7885eb8 1555 /* root ? */
63876986 1556 if (!css_parent(&memcg->css))
a7885eb8
KM
1557 return vm_swappiness;
1558
bf1ff263 1559 return memcg->swappiness;
a7885eb8
KM
1560}
1561
619d094b
KH
1562/*
1563 * memcg->moving_account is used for checking possibility that some thread is
1564 * calling move_account(). When a thread on CPU-A starts moving pages under
1565 * a memcg, other threads should check memcg->moving_account under
1566 * rcu_read_lock(), like this:
1567 *
1568 * CPU-A CPU-B
1569 * rcu_read_lock()
1570 * memcg->moving_account+1 if (memcg->mocing_account)
1571 * take heavy locks.
1572 * synchronize_rcu() update something.
1573 * rcu_read_unlock()
1574 * start move here.
1575 */
4331f7d3
KH
1576
1577/* for quick checking without looking up memcg */
1578atomic_t memcg_moving __read_mostly;
1579
c0ff4b85 1580static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1581{
4331f7d3 1582 atomic_inc(&memcg_moving);
619d094b 1583 atomic_inc(&memcg->moving_account);
32047e2a
KH
1584 synchronize_rcu();
1585}
1586
c0ff4b85 1587static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1588{
619d094b
KH
1589 /*
1590 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1591 * We check NULL in callee rather than caller.
1592 */
4331f7d3
KH
1593 if (memcg) {
1594 atomic_dec(&memcg_moving);
619d094b 1595 atomic_dec(&memcg->moving_account);
4331f7d3 1596 }
32047e2a 1597}
619d094b 1598
32047e2a
KH
1599/*
1600 * 2 routines for checking "mem" is under move_account() or not.
1601 *
13fd1dd9
AM
1602 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1603 * is used for avoiding races in accounting. If true,
32047e2a
KH
1604 * pc->mem_cgroup may be overwritten.
1605 *
1606 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1607 * under hierarchy of moving cgroups. This is for
1608 * waiting at hith-memory prressure caused by "move".
1609 */
1610
13fd1dd9 1611static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1612{
1613 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1614 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1615}
4b534334 1616
c0ff4b85 1617static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1618{
2bd9bb20
KH
1619 struct mem_cgroup *from;
1620 struct mem_cgroup *to;
4b534334 1621 bool ret = false;
2bd9bb20
KH
1622 /*
1623 * Unlike task_move routines, we access mc.to, mc.from not under
1624 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1625 */
1626 spin_lock(&mc.lock);
1627 from = mc.from;
1628 to = mc.to;
1629 if (!from)
1630 goto unlock;
3e92041d 1631
c0ff4b85
R
1632 ret = mem_cgroup_same_or_subtree(memcg, from)
1633 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1634unlock:
1635 spin_unlock(&mc.lock);
4b534334
KH
1636 return ret;
1637}
1638
c0ff4b85 1639static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1640{
1641 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1642 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1643 DEFINE_WAIT(wait);
1644 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1645 /* moving charge context might have finished. */
1646 if (mc.moving_task)
1647 schedule();
1648 finish_wait(&mc.waitq, &wait);
1649 return true;
1650 }
1651 }
1652 return false;
1653}
1654
312734c0
KH
1655/*
1656 * Take this lock when
1657 * - a code tries to modify page's memcg while it's USED.
1658 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1659 * see mem_cgroup_stolen(), too.
312734c0
KH
1660 */
1661static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1662 unsigned long *flags)
1663{
1664 spin_lock_irqsave(&memcg->move_lock, *flags);
1665}
1666
1667static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1668 unsigned long *flags)
1669{
1670 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1671}
1672
58cf188e 1673#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1674/**
58cf188e 1675 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1676 * @memcg: The memory cgroup that went over limit
1677 * @p: Task that is going to be killed
1678 *
1679 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1680 * enabled
1681 */
1682void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1683{
e222432b 1684 /*
947b3dd1
MH
1685 * protects memcg_name and makes sure that parallel ooms do not
1686 * interleave
e222432b 1687 */
947b3dd1
MH
1688 static DEFINE_SPINLOCK(oom_info_lock);
1689 struct cgroup *task_cgrp;
1690 struct cgroup *mem_cgrp;
e222432b
BS
1691 static char memcg_name[PATH_MAX];
1692 int ret;
58cf188e
SZ
1693 struct mem_cgroup *iter;
1694 unsigned int i;
e222432b 1695
58cf188e 1696 if (!p)
e222432b
BS
1697 return;
1698
947b3dd1 1699 spin_lock(&oom_info_lock);
e222432b
BS
1700 rcu_read_lock();
1701
1702 mem_cgrp = memcg->css.cgroup;
1703 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1704
1705 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1706 if (ret < 0) {
1707 /*
1708 * Unfortunately, we are unable to convert to a useful name
1709 * But we'll still print out the usage information
1710 */
1711 rcu_read_unlock();
1712 goto done;
1713 }
1714 rcu_read_unlock();
1715
d045197f 1716 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1720 if (ret < 0) {
1721 rcu_read_unlock();
1722 goto done;
1723 }
1724 rcu_read_unlock();
1725
1726 /*
1727 * Continues from above, so we don't need an KERN_ level
1728 */
d045197f 1729 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1730done:
1731
d045197f 1732 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1733 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1736 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1737 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1740 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1741 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1742 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1743 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1744
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 pr_info("Memory cgroup stats");
1747
1748 rcu_read_lock();
1749 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1750 if (!ret)
1751 pr_cont(" for %s", memcg_name);
1752 rcu_read_unlock();
1753 pr_cont(":");
1754
1755 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1757 continue;
1758 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1759 K(mem_cgroup_read_stat(iter, i)));
1760 }
1761
1762 for (i = 0; i < NR_LRU_LISTS; i++)
1763 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1764 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1765
1766 pr_cont("\n");
1767 }
947b3dd1 1768 spin_unlock(&oom_info_lock);
e222432b
BS
1769}
1770
81d39c20
KH
1771/*
1772 * This function returns the number of memcg under hierarchy tree. Returns
1773 * 1(self count) if no children.
1774 */
c0ff4b85 1775static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1776{
1777 int num = 0;
7d74b06f
KH
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1781 num++;
81d39c20
KH
1782 return num;
1783}
1784
a63d83f4
DR
1785/*
1786 * Return the memory (and swap, if configured) limit for a memcg.
1787 */
9cbb78bb 1788static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1789{
1790 u64 limit;
a63d83f4 1791
f3e8eb70 1792 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1793
a63d83f4 1794 /*
9a5a8f19 1795 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1796 */
9a5a8f19
MH
1797 if (mem_cgroup_swappiness(memcg)) {
1798 u64 memsw;
1799
1800 limit += total_swap_pages << PAGE_SHIFT;
1801 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1802
1803 /*
1804 * If memsw is finite and limits the amount of swap space
1805 * available to this memcg, return that limit.
1806 */
1807 limit = min(limit, memsw);
1808 }
1809
1810 return limit;
a63d83f4
DR
1811}
1812
19965460
DR
1813static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1814 int order)
9cbb78bb
DR
1815{
1816 struct mem_cgroup *iter;
1817 unsigned long chosen_points = 0;
1818 unsigned long totalpages;
1819 unsigned int points = 0;
1820 struct task_struct *chosen = NULL;
1821
876aafbf 1822 /*
465adcf1
DR
1823 * If current has a pending SIGKILL or is exiting, then automatically
1824 * select it. The goal is to allow it to allocate so that it may
1825 * quickly exit and free its memory.
876aafbf 1826 */
465adcf1 1827 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1828 set_thread_flag(TIF_MEMDIE);
1829 return;
1830 }
1831
1832 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1833 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1834 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1835 struct css_task_iter it;
9cbb78bb
DR
1836 struct task_struct *task;
1837
72ec7029
TH
1838 css_task_iter_start(&iter->css, &it);
1839 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1840 switch (oom_scan_process_thread(task, totalpages, NULL,
1841 false)) {
1842 case OOM_SCAN_SELECT:
1843 if (chosen)
1844 put_task_struct(chosen);
1845 chosen = task;
1846 chosen_points = ULONG_MAX;
1847 get_task_struct(chosen);
1848 /* fall through */
1849 case OOM_SCAN_CONTINUE:
1850 continue;
1851 case OOM_SCAN_ABORT:
72ec7029 1852 css_task_iter_end(&it);
9cbb78bb
DR
1853 mem_cgroup_iter_break(memcg, iter);
1854 if (chosen)
1855 put_task_struct(chosen);
1856 return;
1857 case OOM_SCAN_OK:
1858 break;
1859 };
1860 points = oom_badness(task, memcg, NULL, totalpages);
1861 if (points > chosen_points) {
1862 if (chosen)
1863 put_task_struct(chosen);
1864 chosen = task;
1865 chosen_points = points;
1866 get_task_struct(chosen);
1867 }
1868 }
72ec7029 1869 css_task_iter_end(&it);
9cbb78bb
DR
1870 }
1871
1872 if (!chosen)
1873 return;
1874 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1875 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1876 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1877}
1878
5660048c
JW
1879static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1880 gfp_t gfp_mask,
1881 unsigned long flags)
1882{
1883 unsigned long total = 0;
1884 bool noswap = false;
1885 int loop;
1886
1887 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1888 noswap = true;
1889 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1890 noswap = true;
1891
1892 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1893 if (loop)
1894 drain_all_stock_async(memcg);
1895 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1896 /*
1897 * Allow limit shrinkers, which are triggered directly
1898 * by userspace, to catch signals and stop reclaim
1899 * after minimal progress, regardless of the margin.
1900 */
1901 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1902 break;
1903 if (mem_cgroup_margin(memcg))
1904 break;
1905 /*
1906 * If nothing was reclaimed after two attempts, there
1907 * may be no reclaimable pages in this hierarchy.
1908 */
1909 if (loop && !total)
1910 break;
1911 }
1912 return total;
1913}
1914
4d0c066d
KH
1915/**
1916 * test_mem_cgroup_node_reclaimable
dad7557e 1917 * @memcg: the target memcg
4d0c066d
KH
1918 * @nid: the node ID to be checked.
1919 * @noswap : specify true here if the user wants flle only information.
1920 *
1921 * This function returns whether the specified memcg contains any
1922 * reclaimable pages on a node. Returns true if there are any reclaimable
1923 * pages in the node.
1924 */
c0ff4b85 1925static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1926 int nid, bool noswap)
1927{
c0ff4b85 1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1929 return true;
1930 if (noswap || !total_swap_pages)
1931 return false;
c0ff4b85 1932 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1933 return true;
1934 return false;
1935
1936}
bb4cc1a8 1937#if MAX_NUMNODES > 1
889976db
YH
1938
1939/*
1940 * Always updating the nodemask is not very good - even if we have an empty
1941 * list or the wrong list here, we can start from some node and traverse all
1942 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1943 *
1944 */
c0ff4b85 1945static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1946{
1947 int nid;
453a9bf3
KH
1948 /*
1949 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1950 * pagein/pageout changes since the last update.
1951 */
c0ff4b85 1952 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1953 return;
c0ff4b85 1954 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1955 return;
1956
889976db 1957 /* make a nodemask where this memcg uses memory from */
31aaea4a 1958 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1959
31aaea4a 1960 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1961
c0ff4b85
R
1962 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1963 node_clear(nid, memcg->scan_nodes);
889976db 1964 }
453a9bf3 1965
c0ff4b85
R
1966 atomic_set(&memcg->numainfo_events, 0);
1967 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1968}
1969
1970/*
1971 * Selecting a node where we start reclaim from. Because what we need is just
1972 * reducing usage counter, start from anywhere is O,K. Considering
1973 * memory reclaim from current node, there are pros. and cons.
1974 *
1975 * Freeing memory from current node means freeing memory from a node which
1976 * we'll use or we've used. So, it may make LRU bad. And if several threads
1977 * hit limits, it will see a contention on a node. But freeing from remote
1978 * node means more costs for memory reclaim because of memory latency.
1979 *
1980 * Now, we use round-robin. Better algorithm is welcomed.
1981 */
c0ff4b85 1982int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1983{
1984 int node;
1985
c0ff4b85
R
1986 mem_cgroup_may_update_nodemask(memcg);
1987 node = memcg->last_scanned_node;
889976db 1988
c0ff4b85 1989 node = next_node(node, memcg->scan_nodes);
889976db 1990 if (node == MAX_NUMNODES)
c0ff4b85 1991 node = first_node(memcg->scan_nodes);
889976db
YH
1992 /*
1993 * We call this when we hit limit, not when pages are added to LRU.
1994 * No LRU may hold pages because all pages are UNEVICTABLE or
1995 * memcg is too small and all pages are not on LRU. In that case,
1996 * we use curret node.
1997 */
1998 if (unlikely(node == MAX_NUMNODES))
1999 node = numa_node_id();
2000
c0ff4b85 2001 memcg->last_scanned_node = node;
889976db
YH
2002 return node;
2003}
2004
bb4cc1a8
AM
2005/*
2006 * Check all nodes whether it contains reclaimable pages or not.
2007 * For quick scan, we make use of scan_nodes. This will allow us to skip
2008 * unused nodes. But scan_nodes is lazily updated and may not cotain
2009 * enough new information. We need to do double check.
2010 */
2011static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012{
2013 int nid;
2014
2015 /*
2016 * quick check...making use of scan_node.
2017 * We can skip unused nodes.
2018 */
2019 if (!nodes_empty(memcg->scan_nodes)) {
2020 for (nid = first_node(memcg->scan_nodes);
2021 nid < MAX_NUMNODES;
2022 nid = next_node(nid, memcg->scan_nodes)) {
2023
2024 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2025 return true;
2026 }
2027 }
2028 /*
2029 * Check rest of nodes.
2030 */
2031 for_each_node_state(nid, N_MEMORY) {
2032 if (node_isset(nid, memcg->scan_nodes))
2033 continue;
2034 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2035 return true;
2036 }
2037 return false;
2038}
2039
889976db 2040#else
c0ff4b85 2041int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2042{
2043 return 0;
2044}
4d0c066d 2045
bb4cc1a8
AM
2046static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2047{
2048 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2049}
889976db
YH
2050#endif
2051
0608f43d
AM
2052static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2053 struct zone *zone,
2054 gfp_t gfp_mask,
2055 unsigned long *total_scanned)
2056{
2057 struct mem_cgroup *victim = NULL;
2058 int total = 0;
2059 int loop = 0;
2060 unsigned long excess;
2061 unsigned long nr_scanned;
2062 struct mem_cgroup_reclaim_cookie reclaim = {
2063 .zone = zone,
2064 .priority = 0,
2065 };
2066
2067 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2068
2069 while (1) {
2070 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2071 if (!victim) {
2072 loop++;
2073 if (loop >= 2) {
2074 /*
2075 * If we have not been able to reclaim
2076 * anything, it might because there are
2077 * no reclaimable pages under this hierarchy
2078 */
2079 if (!total)
2080 break;
2081 /*
2082 * We want to do more targeted reclaim.
2083 * excess >> 2 is not to excessive so as to
2084 * reclaim too much, nor too less that we keep
2085 * coming back to reclaim from this cgroup
2086 */
2087 if (total >= (excess >> 2) ||
2088 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2089 break;
2090 }
2091 continue;
2092 }
2093 if (!mem_cgroup_reclaimable(victim, false))
2094 continue;
2095 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2096 zone, &nr_scanned);
2097 *total_scanned += nr_scanned;
2098 if (!res_counter_soft_limit_excess(&root_memcg->res))
2099 break;
6d61ef40 2100 }
0608f43d
AM
2101 mem_cgroup_iter_break(root_memcg, victim);
2102 return total;
6d61ef40
BS
2103}
2104
0056f4e6
JW
2105#ifdef CONFIG_LOCKDEP
2106static struct lockdep_map memcg_oom_lock_dep_map = {
2107 .name = "memcg_oom_lock",
2108};
2109#endif
2110
fb2a6fc5
JW
2111static DEFINE_SPINLOCK(memcg_oom_lock);
2112
867578cb
KH
2113/*
2114 * Check OOM-Killer is already running under our hierarchy.
2115 * If someone is running, return false.
2116 */
fb2a6fc5 2117static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2118{
79dfdacc 2119 struct mem_cgroup *iter, *failed = NULL;
a636b327 2120
fb2a6fc5
JW
2121 spin_lock(&memcg_oom_lock);
2122
9f3a0d09 2123 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2124 if (iter->oom_lock) {
79dfdacc
MH
2125 /*
2126 * this subtree of our hierarchy is already locked
2127 * so we cannot give a lock.
2128 */
79dfdacc 2129 failed = iter;
9f3a0d09
JW
2130 mem_cgroup_iter_break(memcg, iter);
2131 break;
23751be0
JW
2132 } else
2133 iter->oom_lock = true;
7d74b06f 2134 }
867578cb 2135
fb2a6fc5
JW
2136 if (failed) {
2137 /*
2138 * OK, we failed to lock the whole subtree so we have
2139 * to clean up what we set up to the failing subtree
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg) {
2142 if (iter == failed) {
2143 mem_cgroup_iter_break(memcg, iter);
2144 break;
2145 }
2146 iter->oom_lock = false;
79dfdacc 2147 }
0056f4e6
JW
2148 } else
2149 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2150
2151 spin_unlock(&memcg_oom_lock);
2152
2153 return !failed;
a636b327 2154}
0b7f569e 2155
fb2a6fc5 2156static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2157{
7d74b06f
KH
2158 struct mem_cgroup *iter;
2159
fb2a6fc5 2160 spin_lock(&memcg_oom_lock);
0056f4e6 2161 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2162 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2163 iter->oom_lock = false;
fb2a6fc5 2164 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2165}
2166
c0ff4b85 2167static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2168{
2169 struct mem_cgroup *iter;
2170
c0ff4b85 2171 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2172 atomic_inc(&iter->under_oom);
2173}
2174
c0ff4b85 2175static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2176{
2177 struct mem_cgroup *iter;
2178
867578cb
KH
2179 /*
2180 * When a new child is created while the hierarchy is under oom,
2181 * mem_cgroup_oom_lock() may not be called. We have to use
2182 * atomic_add_unless() here.
2183 */
c0ff4b85 2184 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2185 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2186}
2187
867578cb
KH
2188static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2189
dc98df5a 2190struct oom_wait_info {
d79154bb 2191 struct mem_cgroup *memcg;
dc98df5a
KH
2192 wait_queue_t wait;
2193};
2194
2195static int memcg_oom_wake_function(wait_queue_t *wait,
2196 unsigned mode, int sync, void *arg)
2197{
d79154bb
HD
2198 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2199 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2200 struct oom_wait_info *oom_wait_info;
2201
2202 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2203 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2204
dc98df5a 2205 /*
d79154bb 2206 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2207 * Then we can use css_is_ancestor without taking care of RCU.
2208 */
c0ff4b85
R
2209 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2210 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2211 return 0;
dc98df5a
KH
2212 return autoremove_wake_function(wait, mode, sync, arg);
2213}
2214
c0ff4b85 2215static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2216{
3812c8c8 2217 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2218 /* for filtering, pass "memcg" as argument. */
2219 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2220}
2221
c0ff4b85 2222static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2223{
c0ff4b85
R
2224 if (memcg && atomic_read(&memcg->under_oom))
2225 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2226}
2227
3812c8c8 2228static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2229{
3812c8c8
JW
2230 if (!current->memcg_oom.may_oom)
2231 return;
867578cb 2232 /*
49426420
JW
2233 * We are in the middle of the charge context here, so we
2234 * don't want to block when potentially sitting on a callstack
2235 * that holds all kinds of filesystem and mm locks.
2236 *
2237 * Also, the caller may handle a failed allocation gracefully
2238 * (like optional page cache readahead) and so an OOM killer
2239 * invocation might not even be necessary.
2240 *
2241 * That's why we don't do anything here except remember the
2242 * OOM context and then deal with it at the end of the page
2243 * fault when the stack is unwound, the locks are released,
2244 * and when we know whether the fault was overall successful.
867578cb 2245 */
49426420
JW
2246 css_get(&memcg->css);
2247 current->memcg_oom.memcg = memcg;
2248 current->memcg_oom.gfp_mask = mask;
2249 current->memcg_oom.order = order;
3812c8c8
JW
2250}
2251
2252/**
2253 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2254 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2255 *
49426420
JW
2256 * This has to be called at the end of a page fault if the memcg OOM
2257 * handler was enabled.
3812c8c8 2258 *
49426420 2259 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2260 * sleep on a waitqueue until the userspace task resolves the
2261 * situation. Sleeping directly in the charge context with all kinds
2262 * of locks held is not a good idea, instead we remember an OOM state
2263 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2264 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2265 *
2266 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2267 * completed, %false otherwise.
3812c8c8 2268 */
49426420 2269bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2270{
49426420 2271 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2272 struct oom_wait_info owait;
49426420 2273 bool locked;
3812c8c8
JW
2274
2275 /* OOM is global, do not handle */
3812c8c8 2276 if (!memcg)
49426420 2277 return false;
3812c8c8 2278
49426420
JW
2279 if (!handle)
2280 goto cleanup;
3812c8c8
JW
2281
2282 owait.memcg = memcg;
2283 owait.wait.flags = 0;
2284 owait.wait.func = memcg_oom_wake_function;
2285 owait.wait.private = current;
2286 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2287
3812c8c8 2288 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2289 mem_cgroup_mark_under_oom(memcg);
2290
2291 locked = mem_cgroup_oom_trylock(memcg);
2292
2293 if (locked)
2294 mem_cgroup_oom_notify(memcg);
2295
2296 if (locked && !memcg->oom_kill_disable) {
2297 mem_cgroup_unmark_under_oom(memcg);
2298 finish_wait(&memcg_oom_waitq, &owait.wait);
2299 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2300 current->memcg_oom.order);
2301 } else {
3812c8c8 2302 schedule();
49426420
JW
2303 mem_cgroup_unmark_under_oom(memcg);
2304 finish_wait(&memcg_oom_waitq, &owait.wait);
2305 }
2306
2307 if (locked) {
fb2a6fc5
JW
2308 mem_cgroup_oom_unlock(memcg);
2309 /*
2310 * There is no guarantee that an OOM-lock contender
2311 * sees the wakeups triggered by the OOM kill
2312 * uncharges. Wake any sleepers explicitely.
2313 */
2314 memcg_oom_recover(memcg);
2315 }
49426420
JW
2316cleanup:
2317 current->memcg_oom.memcg = NULL;
3812c8c8 2318 css_put(&memcg->css);
867578cb 2319 return true;
0b7f569e
KH
2320}
2321
d69b042f
BS
2322/*
2323 * Currently used to update mapped file statistics, but the routine can be
2324 * generalized to update other statistics as well.
32047e2a
KH
2325 *
2326 * Notes: Race condition
2327 *
2328 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2329 * it tends to be costly. But considering some conditions, we doesn't need
2330 * to do so _always_.
2331 *
2332 * Considering "charge", lock_page_cgroup() is not required because all
2333 * file-stat operations happen after a page is attached to radix-tree. There
2334 * are no race with "charge".
2335 *
2336 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2337 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2338 * if there are race with "uncharge". Statistics itself is properly handled
2339 * by flags.
2340 *
2341 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2342 * small, we check mm->moving_account and detect there are possibility of race
2343 * If there is, we take a lock.
d69b042f 2344 */
26174efd 2345
89c06bd5
KH
2346void __mem_cgroup_begin_update_page_stat(struct page *page,
2347 bool *locked, unsigned long *flags)
2348{
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc;
2351
2352 pc = lookup_page_cgroup(page);
2353again:
2354 memcg = pc->mem_cgroup;
2355 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2356 return;
2357 /*
2358 * If this memory cgroup is not under account moving, we don't
da92c47d 2359 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2360 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2361 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2362 */
13fd1dd9 2363 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2364 return;
2365
2366 move_lock_mem_cgroup(memcg, flags);
2367 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2368 move_unlock_mem_cgroup(memcg, flags);
2369 goto again;
2370 }
2371 *locked = true;
2372}
2373
2374void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2375{
2376 struct page_cgroup *pc = lookup_page_cgroup(page);
2377
2378 /*
2379 * It's guaranteed that pc->mem_cgroup never changes while
2380 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2381 * should take move_lock_mem_cgroup().
89c06bd5
KH
2382 */
2383 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2384}
2385
2a7106f2 2386void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2387 enum mem_cgroup_stat_index idx, int val)
d69b042f 2388{
c0ff4b85 2389 struct mem_cgroup *memcg;
32047e2a 2390 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2391 unsigned long uninitialized_var(flags);
d69b042f 2392
cfa44946 2393 if (mem_cgroup_disabled())
d69b042f 2394 return;
89c06bd5 2395
658b72c5 2396 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2397 memcg = pc->mem_cgroup;
2398 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2399 return;
26174efd 2400
c0ff4b85 2401 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2402}
26174efd 2403
cdec2e42
KH
2404/*
2405 * size of first charge trial. "32" comes from vmscan.c's magic value.
2406 * TODO: maybe necessary to use big numbers in big irons.
2407 */
7ec99d62 2408#define CHARGE_BATCH 32U
cdec2e42
KH
2409struct memcg_stock_pcp {
2410 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2411 unsigned int nr_pages;
cdec2e42 2412 struct work_struct work;
26fe6168 2413 unsigned long flags;
a0db00fc 2414#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2415};
2416static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2417static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2418
a0956d54
SS
2419/**
2420 * consume_stock: Try to consume stocked charge on this cpu.
2421 * @memcg: memcg to consume from.
2422 * @nr_pages: how many pages to charge.
2423 *
2424 * The charges will only happen if @memcg matches the current cpu's memcg
2425 * stock, and at least @nr_pages are available in that stock. Failure to
2426 * service an allocation will refill the stock.
2427 *
2428 * returns true if successful, false otherwise.
cdec2e42 2429 */
a0956d54 2430static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2431{
2432 struct memcg_stock_pcp *stock;
2433 bool ret = true;
2434
a0956d54
SS
2435 if (nr_pages > CHARGE_BATCH)
2436 return false;
2437
cdec2e42 2438 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2439 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2440 stock->nr_pages -= nr_pages;
cdec2e42
KH
2441 else /* need to call res_counter_charge */
2442 ret = false;
2443 put_cpu_var(memcg_stock);
2444 return ret;
2445}
2446
2447/*
2448 * Returns stocks cached in percpu to res_counter and reset cached information.
2449 */
2450static void drain_stock(struct memcg_stock_pcp *stock)
2451{
2452 struct mem_cgroup *old = stock->cached;
2453
11c9ea4e
JW
2454 if (stock->nr_pages) {
2455 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&old->res, bytes);
cdec2e42 2458 if (do_swap_account)
11c9ea4e
JW
2459 res_counter_uncharge(&old->memsw, bytes);
2460 stock->nr_pages = 0;
cdec2e42
KH
2461 }
2462 stock->cached = NULL;
cdec2e42
KH
2463}
2464
2465/*
2466 * This must be called under preempt disabled or must be called by
2467 * a thread which is pinned to local cpu.
2468 */
2469static void drain_local_stock(struct work_struct *dummy)
2470{
2471 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2472 drain_stock(stock);
26fe6168 2473 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2474}
2475
e4777496
MH
2476static void __init memcg_stock_init(void)
2477{
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 struct memcg_stock_pcp *stock =
2482 &per_cpu(memcg_stock, cpu);
2483 INIT_WORK(&stock->work, drain_local_stock);
2484 }
2485}
2486
cdec2e42
KH
2487/*
2488 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2489 * This will be consumed by consume_stock() function, later.
cdec2e42 2490 */
c0ff4b85 2491static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2492{
2493 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2494
c0ff4b85 2495 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2496 drain_stock(stock);
c0ff4b85 2497 stock->cached = memcg;
cdec2e42 2498 }
11c9ea4e 2499 stock->nr_pages += nr_pages;
cdec2e42
KH
2500 put_cpu_var(memcg_stock);
2501}
2502
2503/*
c0ff4b85 2504 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2505 * of the hierarchy under it. sync flag says whether we should block
2506 * until the work is done.
cdec2e42 2507 */
c0ff4b85 2508static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2509{
26fe6168 2510 int cpu, curcpu;
d38144b7 2511
cdec2e42 2512 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2513 get_online_cpus();
5af12d0e 2514 curcpu = get_cpu();
cdec2e42
KH
2515 for_each_online_cpu(cpu) {
2516 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2517 struct mem_cgroup *memcg;
26fe6168 2518
c0ff4b85
R
2519 memcg = stock->cached;
2520 if (!memcg || !stock->nr_pages)
26fe6168 2521 continue;
c0ff4b85 2522 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2523 continue;
d1a05b69
MH
2524 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2525 if (cpu == curcpu)
2526 drain_local_stock(&stock->work);
2527 else
2528 schedule_work_on(cpu, &stock->work);
2529 }
cdec2e42 2530 }
5af12d0e 2531 put_cpu();
d38144b7
MH
2532
2533 if (!sync)
2534 goto out;
2535
2536 for_each_online_cpu(cpu) {
2537 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2538 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2539 flush_work(&stock->work);
2540 }
2541out:
f894ffa8 2542 put_online_cpus();
d38144b7
MH
2543}
2544
2545/*
2546 * Tries to drain stocked charges in other cpus. This function is asynchronous
2547 * and just put a work per cpu for draining localy on each cpu. Caller can
2548 * expects some charges will be back to res_counter later but cannot wait for
2549 * it.
2550 */
c0ff4b85 2551static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2552{
9f50fad6
MH
2553 /*
2554 * If someone calls draining, avoid adding more kworker runs.
2555 */
2556 if (!mutex_trylock(&percpu_charge_mutex))
2557 return;
c0ff4b85 2558 drain_all_stock(root_memcg, false);
9f50fad6 2559 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2560}
2561
2562/* This is a synchronous drain interface. */
c0ff4b85 2563static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2564{
2565 /* called when force_empty is called */
9f50fad6 2566 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2567 drain_all_stock(root_memcg, true);
9f50fad6 2568 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2569}
2570
711d3d2c
KH
2571/*
2572 * This function drains percpu counter value from DEAD cpu and
2573 * move it to local cpu. Note that this function can be preempted.
2574 */
c0ff4b85 2575static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2576{
2577 int i;
2578
c0ff4b85 2579 spin_lock(&memcg->pcp_counter_lock);
6104621d 2580 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2581 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2582
c0ff4b85
R
2583 per_cpu(memcg->stat->count[i], cpu) = 0;
2584 memcg->nocpu_base.count[i] += x;
711d3d2c 2585 }
e9f8974f 2586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2587 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2588
c0ff4b85
R
2589 per_cpu(memcg->stat->events[i], cpu) = 0;
2590 memcg->nocpu_base.events[i] += x;
e9f8974f 2591 }
c0ff4b85 2592 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2593}
2594
0db0628d 2595static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2596 unsigned long action,
2597 void *hcpu)
2598{
2599 int cpu = (unsigned long)hcpu;
2600 struct memcg_stock_pcp *stock;
711d3d2c 2601 struct mem_cgroup *iter;
cdec2e42 2602
619d094b 2603 if (action == CPU_ONLINE)
1489ebad 2604 return NOTIFY_OK;
1489ebad 2605
d833049b 2606 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2607 return NOTIFY_OK;
711d3d2c 2608
9f3a0d09 2609 for_each_mem_cgroup(iter)
711d3d2c
KH
2610 mem_cgroup_drain_pcp_counter(iter, cpu);
2611
cdec2e42
KH
2612 stock = &per_cpu(memcg_stock, cpu);
2613 drain_stock(stock);
2614 return NOTIFY_OK;
2615}
2616
4b534334
KH
2617
2618/* See __mem_cgroup_try_charge() for details */
2619enum {
2620 CHARGE_OK, /* success */
2621 CHARGE_RETRY, /* need to retry but retry is not bad */
2622 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2623 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2624};
2625
c0ff4b85 2626static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2627 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2628 bool invoke_oom)
4b534334 2629{
7ec99d62 2630 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2631 struct mem_cgroup *mem_over_limit;
2632 struct res_counter *fail_res;
2633 unsigned long flags = 0;
2634 int ret;
2635
c0ff4b85 2636 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2637
2638 if (likely(!ret)) {
2639 if (!do_swap_account)
2640 return CHARGE_OK;
c0ff4b85 2641 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2642 if (likely(!ret))
2643 return CHARGE_OK;
2644
c0ff4b85 2645 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2646 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2647 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2648 } else
2649 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2650 /*
9221edb7
JW
2651 * Never reclaim on behalf of optional batching, retry with a
2652 * single page instead.
2653 */
4c9c5359 2654 if (nr_pages > min_pages)
4b534334
KH
2655 return CHARGE_RETRY;
2656
2657 if (!(gfp_mask & __GFP_WAIT))
2658 return CHARGE_WOULDBLOCK;
2659
4c9c5359
SS
2660 if (gfp_mask & __GFP_NORETRY)
2661 return CHARGE_NOMEM;
2662
5660048c 2663 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2664 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2665 return CHARGE_RETRY;
4b534334 2666 /*
19942822
JW
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
4b534334 2674 */
4c9c5359 2675 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2676 return CHARGE_RETRY;
2677
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 return CHARGE_RETRY;
2684
3812c8c8
JW
2685 if (invoke_oom)
2686 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2687
3812c8c8 2688 return CHARGE_NOMEM;
4b534334
KH
2689}
2690
f817ed48 2691/*
38c5d72f
KH
2692 * __mem_cgroup_try_charge() does
2693 * 1. detect memcg to be charged against from passed *mm and *ptr,
2694 * 2. update res_counter
2695 * 3. call memory reclaim if necessary.
2696 *
2697 * In some special case, if the task is fatal, fatal_signal_pending() or
2698 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2699 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2700 * as possible without any hazards. 2: all pages should have a valid
2701 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2702 * pointer, that is treated as a charge to root_mem_cgroup.
2703 *
2704 * So __mem_cgroup_try_charge() will return
2705 * 0 ... on success, filling *ptr with a valid memcg pointer.
2706 * -ENOMEM ... charge failure because of resource limits.
2707 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2708 *
2709 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2710 * the oom-killer can be invoked.
8a9f3ccd 2711 */
f817ed48 2712static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2713 gfp_t gfp_mask,
7ec99d62 2714 unsigned int nr_pages,
c0ff4b85 2715 struct mem_cgroup **ptr,
7ec99d62 2716 bool oom)
8a9f3ccd 2717{
7ec99d62 2718 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2719 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2720 struct mem_cgroup *memcg = NULL;
4b534334 2721 int ret;
a636b327 2722
867578cb
KH
2723 /*
2724 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2725 * in system level. So, allow to go ahead dying process in addition to
2726 * MEMDIE process.
2727 */
2728 if (unlikely(test_thread_flag(TIF_MEMDIE)
2729 || fatal_signal_pending(current)))
2730 goto bypass;
a636b327 2731
49426420 2732 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2733 goto nomem;
49426420 2734
a0d8b00a
JW
2735 if (gfp_mask & __GFP_NOFAIL)
2736 oom = false;
2737
8a9f3ccd 2738 /*
3be91277
HD
2739 * We always charge the cgroup the mm_struct belongs to.
2740 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2741 * thread group leader migrates. It's possible that mm is not
24467cac 2742 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2743 */
c0ff4b85 2744 if (!*ptr && !mm)
38c5d72f 2745 *ptr = root_mem_cgroup;
f75ca962 2746again:
c0ff4b85
R
2747 if (*ptr) { /* css should be a valid one */
2748 memcg = *ptr;
c0ff4b85 2749 if (mem_cgroup_is_root(memcg))
f75ca962 2750 goto done;
a0956d54 2751 if (consume_stock(memcg, nr_pages))
f75ca962 2752 goto done;
c0ff4b85 2753 css_get(&memcg->css);
4b534334 2754 } else {
f75ca962 2755 struct task_struct *p;
54595fe2 2756
f75ca962
KH
2757 rcu_read_lock();
2758 p = rcu_dereference(mm->owner);
f75ca962 2759 /*
ebb76ce1 2760 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2761 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2762 * race with swapoff. Then, we have small risk of mis-accouning.
2763 * But such kind of mis-account by race always happens because
2764 * we don't have cgroup_mutex(). It's overkill and we allo that
2765 * small race, here.
2766 * (*) swapoff at el will charge against mm-struct not against
2767 * task-struct. So, mm->owner can be NULL.
f75ca962 2768 */
c0ff4b85 2769 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2770 if (!memcg)
2771 memcg = root_mem_cgroup;
2772 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2773 rcu_read_unlock();
2774 goto done;
2775 }
a0956d54 2776 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2777 /*
2778 * It seems dagerous to access memcg without css_get().
2779 * But considering how consume_stok works, it's not
2780 * necessary. If consume_stock success, some charges
2781 * from this memcg are cached on this cpu. So, we
2782 * don't need to call css_get()/css_tryget() before
2783 * calling consume_stock().
2784 */
2785 rcu_read_unlock();
2786 goto done;
2787 }
2788 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2789 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2790 rcu_read_unlock();
2791 goto again;
2792 }
2793 rcu_read_unlock();
2794 }
8a9f3ccd 2795
4b534334 2796 do {
3812c8c8 2797 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2798
4b534334 2799 /* If killed, bypass charge */
f75ca962 2800 if (fatal_signal_pending(current)) {
c0ff4b85 2801 css_put(&memcg->css);
4b534334 2802 goto bypass;
f75ca962 2803 }
6d61ef40 2804
3812c8c8
JW
2805 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2806 nr_pages, invoke_oom);
4b534334
KH
2807 switch (ret) {
2808 case CHARGE_OK:
2809 break;
2810 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2811 batch = nr_pages;
c0ff4b85
R
2812 css_put(&memcg->css);
2813 memcg = NULL;
f75ca962 2814 goto again;
4b534334 2815 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2816 css_put(&memcg->css);
4b534334
KH
2817 goto nomem;
2818 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2819 if (!oom || invoke_oom) {
c0ff4b85 2820 css_put(&memcg->css);
867578cb 2821 goto nomem;
f75ca962 2822 }
4b534334
KH
2823 nr_oom_retries--;
2824 break;
66e1707b 2825 }
4b534334
KH
2826 } while (ret != CHARGE_OK);
2827
7ec99d62 2828 if (batch > nr_pages)
c0ff4b85
R
2829 refill_stock(memcg, batch - nr_pages);
2830 css_put(&memcg->css);
0c3e73e8 2831done:
c0ff4b85 2832 *ptr = memcg;
7a81b88c
KH
2833 return 0;
2834nomem:
3168ecbe
JW
2835 if (!(gfp_mask & __GFP_NOFAIL)) {
2836 *ptr = NULL;
2837 return -ENOMEM;
2838 }
867578cb 2839bypass:
38c5d72f
KH
2840 *ptr = root_mem_cgroup;
2841 return -EINTR;
7a81b88c 2842}
8a9f3ccd 2843
a3032a2c
DN
2844/*
2845 * Somemtimes we have to undo a charge we got by try_charge().
2846 * This function is for that and do uncharge, put css's refcnt.
2847 * gotten by try_charge().
2848 */
c0ff4b85 2849static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2850 unsigned int nr_pages)
a3032a2c 2851{
c0ff4b85 2852 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
c0ff4b85 2855 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2856 if (do_swap_account)
c0ff4b85 2857 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2858 }
854ffa8d
DN
2859}
2860
d01dd17f
KH
2861/*
2862 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2863 * This is useful when moving usage to parent cgroup.
2864 */
2865static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867{
2868 unsigned long bytes = nr_pages * PAGE_SIZE;
2869
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
2873 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2874 if (do_swap_account)
2875 res_counter_uncharge_until(&memcg->memsw,
2876 memcg->memsw.parent, bytes);
2877}
2878
a3b2d692
KH
2879/*
2880 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2881 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2882 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2883 * called against removed memcg.)
a3b2d692
KH
2884 */
2885static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2886{
a3b2d692
KH
2887 /* ID 0 is unused ID */
2888 if (!id)
2889 return NULL;
34c00c31 2890 return mem_cgroup_from_id(id);
a3b2d692
KH
2891}
2892
e42d9d5d 2893struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2894{
c0ff4b85 2895 struct mem_cgroup *memcg = NULL;
3c776e64 2896 struct page_cgroup *pc;
a3b2d692 2897 unsigned short id;
b5a84319
KH
2898 swp_entry_t ent;
2899
309381fe 2900 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2901
3c776e64 2902 pc = lookup_page_cgroup(page);
c0bd3f63 2903 lock_page_cgroup(pc);
a3b2d692 2904 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2905 memcg = pc->mem_cgroup;
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
e42d9d5d 2908 } else if (PageSwapCache(page)) {
3c776e64 2909 ent.val = page_private(page);
9fb4b7cc 2910 id = lookup_swap_cgroup_id(ent);
a3b2d692 2911 rcu_read_lock();
c0ff4b85
R
2912 memcg = mem_cgroup_lookup(id);
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
a3b2d692 2915 rcu_read_unlock();
3c776e64 2916 }
c0bd3f63 2917 unlock_page_cgroup(pc);
c0ff4b85 2918 return memcg;
b5a84319
KH
2919}
2920
c0ff4b85 2921static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2922 struct page *page,
7ec99d62 2923 unsigned int nr_pages,
9ce70c02
HD
2924 enum charge_type ctype,
2925 bool lrucare)
7a81b88c 2926{
ce587e65 2927 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2928 struct zone *uninitialized_var(zone);
fa9add64 2929 struct lruvec *lruvec;
9ce70c02 2930 bool was_on_lru = false;
b2402857 2931 bool anon;
9ce70c02 2932
ca3e0214 2933 lock_page_cgroup(pc);
309381fe 2934 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2935 /*
2936 * we don't need page_cgroup_lock about tail pages, becase they are not
2937 * accessed by any other context at this point.
2938 */
9ce70c02
HD
2939
2940 /*
2941 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2942 * may already be on some other mem_cgroup's LRU. Take care of it.
2943 */
2944 if (lrucare) {
2945 zone = page_zone(page);
2946 spin_lock_irq(&zone->lru_lock);
2947 if (PageLRU(page)) {
fa9add64 2948 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2949 ClearPageLRU(page);
fa9add64 2950 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2951 was_on_lru = true;
2952 }
2953 }
2954
c0ff4b85 2955 pc->mem_cgroup = memcg;
261fb61a
KH
2956 /*
2957 * We access a page_cgroup asynchronously without lock_page_cgroup().
2958 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2959 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2960 * before USED bit, we need memory barrier here.
2961 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2962 */
08e552c6 2963 smp_wmb();
b2402857 2964 SetPageCgroupUsed(pc);
3be91277 2965
9ce70c02
HD
2966 if (lrucare) {
2967 if (was_on_lru) {
fa9add64 2968 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2969 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2970 SetPageLRU(page);
fa9add64 2971 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2972 }
2973 spin_unlock_irq(&zone->lru_lock);
2974 }
2975
41326c17 2976 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2977 anon = true;
2978 else
2979 anon = false;
2980
b070e65c 2981 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2982 unlock_page_cgroup(pc);
9ce70c02 2983
430e4863 2984 /*
bb4cc1a8
AM
2985 * "charge_statistics" updated event counter. Then, check it.
2986 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2987 * if they exceeds softlimit.
430e4863 2988 */
c0ff4b85 2989 memcg_check_events(memcg, page);
7a81b88c 2990}
66e1707b 2991
7cf27982
GC
2992static DEFINE_MUTEX(set_limit_mutex);
2993
7ae1e1d0
GC
2994#ifdef CONFIG_MEMCG_KMEM
2995static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2996{
2997 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
1c98dd90
VD
2998 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
2999 KMEM_ACCOUNTED_MASK;
7ae1e1d0
GC
3000}
3001
1f458cbf
GC
3002/*
3003 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3004 * in the memcg_cache_params struct.
3005 */
3006static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3007{
3008 struct kmem_cache *cachep;
3009
3010 VM_BUG_ON(p->is_root_cache);
3011 cachep = p->root_cache;
7a67d7ab 3012 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3013}
3014
749c5415 3015#ifdef CONFIG_SLABINFO
2da8ca82 3016static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3017{
2da8ca82 3018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3019 struct memcg_cache_params *params;
3020
3021 if (!memcg_can_account_kmem(memcg))
3022 return -EIO;
3023
3024 print_slabinfo_header(m);
3025
3026 mutex_lock(&memcg->slab_caches_mutex);
3027 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3028 cache_show(memcg_params_to_cache(params), m);
3029 mutex_unlock(&memcg->slab_caches_mutex);
3030
3031 return 0;
3032}
3033#endif
3034
7ae1e1d0
GC
3035static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3036{
3037 struct res_counter *fail_res;
3038 struct mem_cgroup *_memcg;
3039 int ret = 0;
7ae1e1d0
GC
3040
3041 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3042 if (ret)
3043 return ret;
3044
7ae1e1d0
GC
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3047 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074}
3075
3076static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077{
7ae1e1d0
GC
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
10d5ebf4
LZ
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
7de37682 3094 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3095 css_put(&memcg->css);
7ae1e1d0
GC
3096}
3097
2633d7a0
GC
3098/*
3099 * helper for acessing a memcg's index. It will be used as an index in the
3100 * child cache array in kmem_cache, and also to derive its name. This function
3101 * will return -1 when this is not a kmem-limited memcg.
3102 */
3103int memcg_cache_id(struct mem_cgroup *memcg)
3104{
3105 return memcg ? memcg->kmemcg_id : -1;
3106}
3107
55007d84
GC
3108/*
3109 * This ends up being protected by the set_limit mutex, during normal
3110 * operation, because that is its main call site.
3111 *
3112 * But when we create a new cache, we can call this as well if its parent
3113 * is kmem-limited. That will have to hold set_limit_mutex as well.
3114 */
2753b35b 3115static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
55007d84
GC
3116{
3117 int num, ret;
3118
3119 num = ida_simple_get(&kmem_limited_groups,
3120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3121 if (num < 0)
3122 return num;
3123 /*
3124 * After this point, kmem_accounted (that we test atomically in
3125 * the beginning of this conditional), is no longer 0. This
3126 * guarantees only one process will set the following boolean
3127 * to true. We don't need test_and_set because we're protected
3128 * by the set_limit_mutex anyway.
3129 */
3130 memcg_kmem_set_activated(memcg);
3131
3132 ret = memcg_update_all_caches(num+1);
3133 if (ret) {
3134 ida_simple_remove(&kmem_limited_groups, num);
3135 memcg_kmem_clear_activated(memcg);
3136 return ret;
3137 }
3138
3139 memcg->kmemcg_id = num;
3140 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3141 mutex_init(&memcg->slab_caches_mutex);
3142 return 0;
3143}
3144
3145static size_t memcg_caches_array_size(int num_groups)
3146{
3147 ssize_t size;
3148 if (num_groups <= 0)
3149 return 0;
3150
3151 size = 2 * num_groups;
3152 if (size < MEMCG_CACHES_MIN_SIZE)
3153 size = MEMCG_CACHES_MIN_SIZE;
3154 else if (size > MEMCG_CACHES_MAX_SIZE)
3155 size = MEMCG_CACHES_MAX_SIZE;
3156
3157 return size;
3158}
3159
3160/*
3161 * We should update the current array size iff all caches updates succeed. This
3162 * can only be done from the slab side. The slab mutex needs to be held when
3163 * calling this.
3164 */
3165void memcg_update_array_size(int num)
3166{
3167 if (num > memcg_limited_groups_array_size)
3168 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3169}
3170
15cf17d2
KK
3171static void kmem_cache_destroy_work_func(struct work_struct *w);
3172
55007d84
GC
3173int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3174{
3175 struct memcg_cache_params *cur_params = s->memcg_params;
3176
f35c3a8e 3177 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3178
3179 if (num_groups > memcg_limited_groups_array_size) {
3180 int i;
3181 ssize_t size = memcg_caches_array_size(num_groups);
3182
3183 size *= sizeof(void *);
90c7a79c 3184 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3185
3186 s->memcg_params = kzalloc(size, GFP_KERNEL);
3187 if (!s->memcg_params) {
3188 s->memcg_params = cur_params;
3189 return -ENOMEM;
3190 }
3191
3192 s->memcg_params->is_root_cache = true;
3193
3194 /*
3195 * There is the chance it will be bigger than
3196 * memcg_limited_groups_array_size, if we failed an allocation
3197 * in a cache, in which case all caches updated before it, will
3198 * have a bigger array.
3199 *
3200 * But if that is the case, the data after
3201 * memcg_limited_groups_array_size is certainly unused
3202 */
3203 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3204 if (!cur_params->memcg_caches[i])
3205 continue;
3206 s->memcg_params->memcg_caches[i] =
3207 cur_params->memcg_caches[i];
3208 }
3209
3210 /*
3211 * Ideally, we would wait until all caches succeed, and only
3212 * then free the old one. But this is not worth the extra
3213 * pointer per-cache we'd have to have for this.
3214 *
3215 * It is not a big deal if some caches are left with a size
3216 * bigger than the others. And all updates will reset this
3217 * anyway.
3218 */
3219 kfree(cur_params);
3220 }
3221 return 0;
3222}
3223
363a044f
VD
3224int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3225 struct kmem_cache *root_cache)
2633d7a0 3226{
90c7a79c 3227 size_t size;
2633d7a0
GC
3228
3229 if (!memcg_kmem_enabled())
3230 return 0;
3231
90c7a79c
AV
3232 if (!memcg) {
3233 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3234 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3235 } else
3236 size = sizeof(struct memcg_cache_params);
55007d84 3237
2633d7a0
GC
3238 s->memcg_params = kzalloc(size, GFP_KERNEL);
3239 if (!s->memcg_params)
3240 return -ENOMEM;
3241
943a451a 3242 if (memcg) {
2633d7a0 3243 s->memcg_params->memcg = memcg;
943a451a 3244 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3245 INIT_WORK(&s->memcg_params->destroy,
3246 kmem_cache_destroy_work_func);
4ba902b5
GC
3247 } else
3248 s->memcg_params->is_root_cache = true;
3249
2633d7a0
GC
3250 return 0;
3251}
3252
363a044f
VD
3253void memcg_free_cache_params(struct kmem_cache *s)
3254{
3255 kfree(s->memcg_params);
3256}
3257
1aa13254 3258void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3259{
d7f25f8a
GC
3260 struct kmem_cache *root;
3261 struct mem_cgroup *memcg;
3262 int id;
3263
1aa13254
VD
3264 if (is_root_cache(s))
3265 return;
3266
3267 root = s->memcg_params->root_cache;
3268 memcg = s->memcg_params->memcg;
3269 id = memcg_cache_id(memcg);
3270
3271 css_get(&memcg->css);
3272
1aa13254 3273
d7f25f8a 3274 /*
959c8963
VD
3275 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3276 * barrier here to ensure nobody will see the kmem_cache partially
3277 * initialized.
d7f25f8a 3278 */
959c8963
VD
3279 smp_wmb();
3280
96403da2
VD
3281 /*
3282 * Initialize the pointer to this cache in its parent's memcg_params
3283 * before adding it to the memcg_slab_caches list, otherwise we can
3284 * fail to convert memcg_params_to_cache() while traversing the list.
3285 */
959c8963 3286 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3287
3288 mutex_lock(&memcg->slab_caches_mutex);
3289 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3290 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3291}
d7f25f8a 3292
1aa13254
VD
3293void memcg_unregister_cache(struct kmem_cache *s)
3294{
3295 struct kmem_cache *root;
3296 struct mem_cgroup *memcg;
3297 int id;
3298
3299 if (is_root_cache(s))
3300 return;
d7f25f8a 3301
d7f25f8a 3302 root = s->memcg_params->root_cache;
96403da2
VD
3303 memcg = s->memcg_params->memcg;
3304 id = memcg_cache_id(memcg);
d7f25f8a
GC
3305
3306 mutex_lock(&memcg->slab_caches_mutex);
3307 list_del(&s->memcg_params->list);
3308 mutex_unlock(&memcg->slab_caches_mutex);
3309
96403da2
VD
3310 /*
3311 * Clear the pointer to this cache in its parent's memcg_params only
3312 * after removing it from the memcg_slab_caches list, otherwise we can
3313 * fail to convert memcg_params_to_cache() while traversing the list.
3314 */
3315 root->memcg_params->memcg_caches[id] = NULL;
3316
20f05310 3317 css_put(&memcg->css);
2633d7a0
GC
3318}
3319
0e9d92f2
GC
3320/*
3321 * During the creation a new cache, we need to disable our accounting mechanism
3322 * altogether. This is true even if we are not creating, but rather just
3323 * enqueing new caches to be created.
3324 *
3325 * This is because that process will trigger allocations; some visible, like
3326 * explicit kmallocs to auxiliary data structures, name strings and internal
3327 * cache structures; some well concealed, like INIT_WORK() that can allocate
3328 * objects during debug.
3329 *
3330 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3331 * to it. This may not be a bounded recursion: since the first cache creation
3332 * failed to complete (waiting on the allocation), we'll just try to create the
3333 * cache again, failing at the same point.
3334 *
3335 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3336 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3337 * inside the following two functions.
3338 */
3339static inline void memcg_stop_kmem_account(void)
3340{
3341 VM_BUG_ON(!current->mm);
3342 current->memcg_kmem_skip_account++;
3343}
3344
3345static inline void memcg_resume_kmem_account(void)
3346{
3347 VM_BUG_ON(!current->mm);
3348 current->memcg_kmem_skip_account--;
3349}
3350
1f458cbf
GC
3351static void kmem_cache_destroy_work_func(struct work_struct *w)
3352{
3353 struct kmem_cache *cachep;
3354 struct memcg_cache_params *p;
3355
3356 p = container_of(w, struct memcg_cache_params, destroy);
3357
3358 cachep = memcg_params_to_cache(p);
3359
22933152
GC
3360 /*
3361 * If we get down to 0 after shrink, we could delete right away.
3362 * However, memcg_release_pages() already puts us back in the workqueue
3363 * in that case. If we proceed deleting, we'll get a dangling
3364 * reference, and removing the object from the workqueue in that case
3365 * is unnecessary complication. We are not a fast path.
3366 *
3367 * Note that this case is fundamentally different from racing with
3368 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3369 * kmem_cache_shrink, not only we would be reinserting a dead cache
3370 * into the queue, but doing so from inside the worker racing to
3371 * destroy it.
3372 *
3373 * So if we aren't down to zero, we'll just schedule a worker and try
3374 * again
3375 */
3376 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3377 kmem_cache_shrink(cachep);
3378 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3379 return;
3380 } else
1f458cbf
GC
3381 kmem_cache_destroy(cachep);
3382}
3383
3384void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3385{
3386 if (!cachep->memcg_params->dead)
3387 return;
3388
22933152
GC
3389 /*
3390 * There are many ways in which we can get here.
3391 *
3392 * We can get to a memory-pressure situation while the delayed work is
3393 * still pending to run. The vmscan shrinkers can then release all
3394 * cache memory and get us to destruction. If this is the case, we'll
3395 * be executed twice, which is a bug (the second time will execute over
3396 * bogus data). In this case, cancelling the work should be fine.
3397 *
3398 * But we can also get here from the worker itself, if
3399 * kmem_cache_shrink is enough to shake all the remaining objects and
3400 * get the page count to 0. In this case, we'll deadlock if we try to
3401 * cancel the work (the worker runs with an internal lock held, which
3402 * is the same lock we would hold for cancel_work_sync().)
3403 *
3404 * Since we can't possibly know who got us here, just refrain from
3405 * running if there is already work pending
3406 */
3407 if (work_pending(&cachep->memcg_params->destroy))
3408 return;
1f458cbf
GC
3409 /*
3410 * We have to defer the actual destroying to a workqueue, because
3411 * we might currently be in a context that cannot sleep.
3412 */
3413 schedule_work(&cachep->memcg_params->destroy);
3414}
3415
d9c10ddd
MH
3416/*
3417 * This lock protects updaters, not readers. We want readers to be as fast as
3418 * they can, and they will either see NULL or a valid cache value. Our model
3419 * allow them to see NULL, in which case the root memcg will be selected.
3420 *
3421 * We need this lock because multiple allocations to the same cache from a non
3422 * will span more than one worker. Only one of them can create the cache.
3423 */
3424static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3425
d9c10ddd
MH
3426/*
3427 * Called with memcg_cache_mutex held
3428 */
d7f25f8a
GC
3429static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3430 struct kmem_cache *s)
3431{
d7f25f8a 3432 struct kmem_cache *new;
d9c10ddd 3433 static char *tmp_name = NULL;
d7f25f8a 3434
d9c10ddd
MH
3435 lockdep_assert_held(&memcg_cache_mutex);
3436
3437 /*
3438 * kmem_cache_create_memcg duplicates the given name and
3439 * cgroup_name for this name requires RCU context.
3440 * This static temporary buffer is used to prevent from
3441 * pointless shortliving allocation.
3442 */
3443 if (!tmp_name) {
3444 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3445 if (!tmp_name)
3446 return NULL;
3447 }
3448
3449 rcu_read_lock();
3450 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3451 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3452 rcu_read_unlock();
d7f25f8a 3453
d9c10ddd 3454 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3455 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3456
d79923fa
GC
3457 if (new)
3458 new->allocflags |= __GFP_KMEMCG;
3459
d7f25f8a
GC
3460 return new;
3461}
3462
d7f25f8a
GC
3463static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3464 struct kmem_cache *cachep)
3465{
3466 struct kmem_cache *new_cachep;
3467 int idx;
3468
3469 BUG_ON(!memcg_can_account_kmem(memcg));
3470
3471 idx = memcg_cache_id(memcg);
3472
3473 mutex_lock(&memcg_cache_mutex);
7a67d7ab 3474 new_cachep = cache_from_memcg_idx(cachep, idx);
1aa13254 3475 if (new_cachep)
d7f25f8a
GC
3476 goto out;
3477
3478 new_cachep = kmem_cache_dup(memcg, cachep);
1aa13254 3479 if (new_cachep == NULL)
d7f25f8a 3480 new_cachep = cachep;
d7f25f8a 3481
d7f25f8a
GC
3482out:
3483 mutex_unlock(&memcg_cache_mutex);
3484 return new_cachep;
3485}
3486
7cf27982
GC
3487void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3488{
3489 struct kmem_cache *c;
3490 int i;
3491
3492 if (!s->memcg_params)
3493 return;
3494 if (!s->memcg_params->is_root_cache)
3495 return;
3496
3497 /*
3498 * If the cache is being destroyed, we trust that there is no one else
3499 * requesting objects from it. Even if there are, the sanity checks in
3500 * kmem_cache_destroy should caught this ill-case.
3501 *
3502 * Still, we don't want anyone else freeing memcg_caches under our
3503 * noses, which can happen if a new memcg comes to life. As usual,
3504 * we'll take the set_limit_mutex to protect ourselves against this.
3505 */
3506 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3507 for_each_memcg_cache_index(i) {
3508 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3509 if (!c)
3510 continue;
3511
3512 /*
3513 * We will now manually delete the caches, so to avoid races
3514 * we need to cancel all pending destruction workers and
3515 * proceed with destruction ourselves.
3516 *
3517 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3518 * and that could spawn the workers again: it is likely that
3519 * the cache still have active pages until this very moment.
3520 * This would lead us back to mem_cgroup_destroy_cache.
3521 *
3522 * But that will not execute at all if the "dead" flag is not
3523 * set, so flip it down to guarantee we are in control.
3524 */
3525 c->memcg_params->dead = false;
22933152 3526 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3527 kmem_cache_destroy(c);
3528 }
3529 mutex_unlock(&set_limit_mutex);
3530}
3531
d7f25f8a
GC
3532struct create_work {
3533 struct mem_cgroup *memcg;
3534 struct kmem_cache *cachep;
3535 struct work_struct work;
3536};
3537
1f458cbf
GC
3538static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3539{
3540 struct kmem_cache *cachep;
3541 struct memcg_cache_params *params;
3542
3543 if (!memcg_kmem_is_active(memcg))
3544 return;
3545
3546 mutex_lock(&memcg->slab_caches_mutex);
3547 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3548 cachep = memcg_params_to_cache(params);
3549 cachep->memcg_params->dead = true;
1f458cbf
GC
3550 schedule_work(&cachep->memcg_params->destroy);
3551 }
3552 mutex_unlock(&memcg->slab_caches_mutex);
3553}
3554
d7f25f8a
GC
3555static void memcg_create_cache_work_func(struct work_struct *w)
3556{
3557 struct create_work *cw;
3558
3559 cw = container_of(w, struct create_work, work);
3560 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3561 css_put(&cw->memcg->css);
d7f25f8a
GC
3562 kfree(cw);
3563}
3564
3565/*
3566 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3567 */
0e9d92f2
GC
3568static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3569 struct kmem_cache *cachep)
d7f25f8a
GC
3570{
3571 struct create_work *cw;
3572
3573 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3574 if (cw == NULL) {
3575 css_put(&memcg->css);
d7f25f8a
GC
3576 return;
3577 }
3578
3579 cw->memcg = memcg;
3580 cw->cachep = cachep;
3581
3582 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3583 schedule_work(&cw->work);
3584}
3585
0e9d92f2
GC
3586static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3587 struct kmem_cache *cachep)
3588{
3589 /*
3590 * We need to stop accounting when we kmalloc, because if the
3591 * corresponding kmalloc cache is not yet created, the first allocation
3592 * in __memcg_create_cache_enqueue will recurse.
3593 *
3594 * However, it is better to enclose the whole function. Depending on
3595 * the debugging options enabled, INIT_WORK(), for instance, can
3596 * trigger an allocation. This too, will make us recurse. Because at
3597 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3598 * the safest choice is to do it like this, wrapping the whole function.
3599 */
3600 memcg_stop_kmem_account();
3601 __memcg_create_cache_enqueue(memcg, cachep);
3602 memcg_resume_kmem_account();
3603}
d7f25f8a
GC
3604/*
3605 * Return the kmem_cache we're supposed to use for a slab allocation.
3606 * We try to use the current memcg's version of the cache.
3607 *
3608 * If the cache does not exist yet, if we are the first user of it,
3609 * we either create it immediately, if possible, or create it asynchronously
3610 * in a workqueue.
3611 * In the latter case, we will let the current allocation go through with
3612 * the original cache.
3613 *
3614 * Can't be called in interrupt context or from kernel threads.
3615 * This function needs to be called with rcu_read_lock() held.
3616 */
3617struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3618 gfp_t gfp)
3619{
3620 struct mem_cgroup *memcg;
959c8963 3621 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3622
3623 VM_BUG_ON(!cachep->memcg_params);
3624 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3625
0e9d92f2
GC
3626 if (!current->mm || current->memcg_kmem_skip_account)
3627 return cachep;
3628
d7f25f8a
GC
3629 rcu_read_lock();
3630 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3631
3632 if (!memcg_can_account_kmem(memcg))
ca0dde97 3633 goto out;
d7f25f8a 3634
959c8963
VD
3635 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3636 if (likely(memcg_cachep)) {
3637 cachep = memcg_cachep;
ca0dde97 3638 goto out;
d7f25f8a
GC
3639 }
3640
ca0dde97
LZ
3641 /* The corresponding put will be done in the workqueue. */
3642 if (!css_tryget(&memcg->css))
3643 goto out;
3644 rcu_read_unlock();
3645
3646 /*
3647 * If we are in a safe context (can wait, and not in interrupt
3648 * context), we could be be predictable and return right away.
3649 * This would guarantee that the allocation being performed
3650 * already belongs in the new cache.
3651 *
3652 * However, there are some clashes that can arrive from locking.
3653 * For instance, because we acquire the slab_mutex while doing
3654 * kmem_cache_dup, this means no further allocation could happen
3655 * with the slab_mutex held.
3656 *
3657 * Also, because cache creation issue get_online_cpus(), this
3658 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3659 * that ends up reversed during cpu hotplug. (cpuset allocates
3660 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3661 * better to defer everything.
3662 */
3663 memcg_create_cache_enqueue(memcg, cachep);
3664 return cachep;
3665out:
3666 rcu_read_unlock();
3667 return cachep;
d7f25f8a
GC
3668}
3669EXPORT_SYMBOL(__memcg_kmem_get_cache);
3670
7ae1e1d0
GC
3671/*
3672 * We need to verify if the allocation against current->mm->owner's memcg is
3673 * possible for the given order. But the page is not allocated yet, so we'll
3674 * need a further commit step to do the final arrangements.
3675 *
3676 * It is possible for the task to switch cgroups in this mean time, so at
3677 * commit time, we can't rely on task conversion any longer. We'll then use
3678 * the handle argument to return to the caller which cgroup we should commit
3679 * against. We could also return the memcg directly and avoid the pointer
3680 * passing, but a boolean return value gives better semantics considering
3681 * the compiled-out case as well.
3682 *
3683 * Returning true means the allocation is possible.
3684 */
3685bool
3686__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3687{
3688 struct mem_cgroup *memcg;
3689 int ret;
3690
3691 *_memcg = NULL;
6d42c232
GC
3692
3693 /*
3694 * Disabling accounting is only relevant for some specific memcg
3695 * internal allocations. Therefore we would initially not have such
3696 * check here, since direct calls to the page allocator that are marked
3697 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3698 * concerned with cache allocations, and by having this test at
3699 * memcg_kmem_get_cache, we are already able to relay the allocation to
3700 * the root cache and bypass the memcg cache altogether.
3701 *
3702 * There is one exception, though: the SLUB allocator does not create
3703 * large order caches, but rather service large kmallocs directly from
3704 * the page allocator. Therefore, the following sequence when backed by
3705 * the SLUB allocator:
3706 *
f894ffa8
AM
3707 * memcg_stop_kmem_account();
3708 * kmalloc(<large_number>)
3709 * memcg_resume_kmem_account();
6d42c232
GC
3710 *
3711 * would effectively ignore the fact that we should skip accounting,
3712 * since it will drive us directly to this function without passing
3713 * through the cache selector memcg_kmem_get_cache. Such large
3714 * allocations are extremely rare but can happen, for instance, for the
3715 * cache arrays. We bring this test here.
3716 */
3717 if (!current->mm || current->memcg_kmem_skip_account)
3718 return true;
3719
7ae1e1d0
GC
3720 memcg = try_get_mem_cgroup_from_mm(current->mm);
3721
3722 /*
3723 * very rare case described in mem_cgroup_from_task. Unfortunately there
3724 * isn't much we can do without complicating this too much, and it would
3725 * be gfp-dependent anyway. Just let it go
3726 */
3727 if (unlikely(!memcg))
3728 return true;
3729
3730 if (!memcg_can_account_kmem(memcg)) {
3731 css_put(&memcg->css);
3732 return true;
3733 }
3734
7ae1e1d0
GC
3735 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3736 if (!ret)
3737 *_memcg = memcg;
7ae1e1d0
GC
3738
3739 css_put(&memcg->css);
3740 return (ret == 0);
3741}
3742
3743void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3744 int order)
3745{
3746 struct page_cgroup *pc;
3747
3748 VM_BUG_ON(mem_cgroup_is_root(memcg));
3749
3750 /* The page allocation failed. Revert */
3751 if (!page) {
3752 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3753 return;
3754 }
3755
3756 pc = lookup_page_cgroup(page);
3757 lock_page_cgroup(pc);
3758 pc->mem_cgroup = memcg;
3759 SetPageCgroupUsed(pc);
3760 unlock_page_cgroup(pc);
3761}
3762
3763void __memcg_kmem_uncharge_pages(struct page *page, int order)
3764{
3765 struct mem_cgroup *memcg = NULL;
3766 struct page_cgroup *pc;
3767
3768
3769 pc = lookup_page_cgroup(page);
3770 /*
3771 * Fast unlocked return. Theoretically might have changed, have to
3772 * check again after locking.
3773 */
3774 if (!PageCgroupUsed(pc))
3775 return;
3776
3777 lock_page_cgroup(pc);
3778 if (PageCgroupUsed(pc)) {
3779 memcg = pc->mem_cgroup;
3780 ClearPageCgroupUsed(pc);
3781 }
3782 unlock_page_cgroup(pc);
3783
3784 /*
3785 * We trust that only if there is a memcg associated with the page, it
3786 * is a valid allocation
3787 */
3788 if (!memcg)
3789 return;
3790
309381fe 3791 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3792 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3793}
1f458cbf
GC
3794#else
3795static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3796{
3797}
7ae1e1d0
GC
3798#endif /* CONFIG_MEMCG_KMEM */
3799
ca3e0214
KH
3800#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3801
a0db00fc 3802#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3803/*
3804 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3805 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3806 * charge/uncharge will be never happen and move_account() is done under
3807 * compound_lock(), so we don't have to take care of races.
ca3e0214 3808 */
e94c8a9c 3809void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3810{
3811 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3812 struct page_cgroup *pc;
b070e65c 3813 struct mem_cgroup *memcg;
e94c8a9c 3814 int i;
ca3e0214 3815
3d37c4a9
KH
3816 if (mem_cgroup_disabled())
3817 return;
b070e65c
DR
3818
3819 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3820 for (i = 1; i < HPAGE_PMD_NR; i++) {
3821 pc = head_pc + i;
b070e65c 3822 pc->mem_cgroup = memcg;
e94c8a9c 3823 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3824 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3825 }
b070e65c
DR
3826 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3827 HPAGE_PMD_NR);
ca3e0214 3828}
12d27107 3829#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3830
3ea67d06
SZ
3831static inline
3832void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3833 struct mem_cgroup *to,
3834 unsigned int nr_pages,
3835 enum mem_cgroup_stat_index idx)
3836{
3837 /* Update stat data for mem_cgroup */
3838 preempt_disable();
5e8cfc3c 3839 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3840 __this_cpu_add(to->stat->count[idx], nr_pages);
3841 preempt_enable();
3842}
3843
f817ed48 3844/**
de3638d9 3845 * mem_cgroup_move_account - move account of the page
5564e88b 3846 * @page: the page
7ec99d62 3847 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3848 * @pc: page_cgroup of the page.
3849 * @from: mem_cgroup which the page is moved from.
3850 * @to: mem_cgroup which the page is moved to. @from != @to.
3851 *
3852 * The caller must confirm following.
08e552c6 3853 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3854 * - compound_lock is held when nr_pages > 1
f817ed48 3855 *
2f3479b1
KH
3856 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3857 * from old cgroup.
f817ed48 3858 */
7ec99d62
JW
3859static int mem_cgroup_move_account(struct page *page,
3860 unsigned int nr_pages,
3861 struct page_cgroup *pc,
3862 struct mem_cgroup *from,
2f3479b1 3863 struct mem_cgroup *to)
f817ed48 3864{
de3638d9
JW
3865 unsigned long flags;
3866 int ret;
b2402857 3867 bool anon = PageAnon(page);
987eba66 3868
f817ed48 3869 VM_BUG_ON(from == to);
309381fe 3870 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3871 /*
3872 * The page is isolated from LRU. So, collapse function
3873 * will not handle this page. But page splitting can happen.
3874 * Do this check under compound_page_lock(). The caller should
3875 * hold it.
3876 */
3877 ret = -EBUSY;
7ec99d62 3878 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3879 goto out;
3880
3881 lock_page_cgroup(pc);
3882
3883 ret = -EINVAL;
3884 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3885 goto unlock;
3886
312734c0 3887 move_lock_mem_cgroup(from, &flags);
f817ed48 3888
3ea67d06
SZ
3889 if (!anon && page_mapped(page))
3890 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3891 MEM_CGROUP_STAT_FILE_MAPPED);
3892
3893 if (PageWriteback(page))
3894 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3895 MEM_CGROUP_STAT_WRITEBACK);
3896
b070e65c 3897 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3898
854ffa8d 3899 /* caller should have done css_get */
08e552c6 3900 pc->mem_cgroup = to;
b070e65c 3901 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3902 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3903 ret = 0;
3904unlock:
57f9fd7d 3905 unlock_page_cgroup(pc);
d2265e6f
KH
3906 /*
3907 * check events
3908 */
5564e88b
JW
3909 memcg_check_events(to, page);
3910 memcg_check_events(from, page);
de3638d9 3911out:
f817ed48
KH
3912 return ret;
3913}
3914
2ef37d3f
MH
3915/**
3916 * mem_cgroup_move_parent - moves page to the parent group
3917 * @page: the page to move
3918 * @pc: page_cgroup of the page
3919 * @child: page's cgroup
3920 *
3921 * move charges to its parent or the root cgroup if the group has no
3922 * parent (aka use_hierarchy==0).
3923 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3924 * mem_cgroup_move_account fails) the failure is always temporary and
3925 * it signals a race with a page removal/uncharge or migration. In the
3926 * first case the page is on the way out and it will vanish from the LRU
3927 * on the next attempt and the call should be retried later.
3928 * Isolation from the LRU fails only if page has been isolated from
3929 * the LRU since we looked at it and that usually means either global
3930 * reclaim or migration going on. The page will either get back to the
3931 * LRU or vanish.
3932 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3933 * (!PageCgroupUsed) or moved to a different group. The page will
3934 * disappear in the next attempt.
f817ed48 3935 */
5564e88b
JW
3936static int mem_cgroup_move_parent(struct page *page,
3937 struct page_cgroup *pc,
6068bf01 3938 struct mem_cgroup *child)
f817ed48 3939{
f817ed48 3940 struct mem_cgroup *parent;
7ec99d62 3941 unsigned int nr_pages;
4be4489f 3942 unsigned long uninitialized_var(flags);
f817ed48
KH
3943 int ret;
3944
d8423011 3945 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3946
57f9fd7d
DN
3947 ret = -EBUSY;
3948 if (!get_page_unless_zero(page))
3949 goto out;
3950 if (isolate_lru_page(page))
3951 goto put;
52dbb905 3952
7ec99d62 3953 nr_pages = hpage_nr_pages(page);
08e552c6 3954
cc926f78
KH
3955 parent = parent_mem_cgroup(child);
3956 /*
3957 * If no parent, move charges to root cgroup.
3958 */
3959 if (!parent)
3960 parent = root_mem_cgroup;
f817ed48 3961
2ef37d3f 3962 if (nr_pages > 1) {
309381fe 3963 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3964 flags = compound_lock_irqsave(page);
2ef37d3f 3965 }
987eba66 3966
cc926f78 3967 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3968 pc, child, parent);
cc926f78
KH
3969 if (!ret)
3970 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3971
7ec99d62 3972 if (nr_pages > 1)
987eba66 3973 compound_unlock_irqrestore(page, flags);
08e552c6 3974 putback_lru_page(page);
57f9fd7d 3975put:
40d58138 3976 put_page(page);
57f9fd7d 3977out:
f817ed48
KH
3978 return ret;
3979}
3980
7a81b88c
KH
3981/*
3982 * Charge the memory controller for page usage.
3983 * Return
3984 * 0 if the charge was successful
3985 * < 0 if the cgroup is over its limit
3986 */
3987static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3988 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3989{
c0ff4b85 3990 struct mem_cgroup *memcg = NULL;
7ec99d62 3991 unsigned int nr_pages = 1;
8493ae43 3992 bool oom = true;
7a81b88c 3993 int ret;
ec168510 3994
37c2ac78 3995 if (PageTransHuge(page)) {
7ec99d62 3996 nr_pages <<= compound_order(page);
309381fe 3997 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3998 /*
3999 * Never OOM-kill a process for a huge page. The
4000 * fault handler will fall back to regular pages.
4001 */
4002 oom = false;
37c2ac78 4003 }
7a81b88c 4004
c0ff4b85 4005 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 4006 if (ret == -ENOMEM)
7a81b88c 4007 return ret;
ce587e65 4008 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 4009 return 0;
8a9f3ccd
BS
4010}
4011
7a81b88c
KH
4012int mem_cgroup_newpage_charge(struct page *page,
4013 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 4014{
f8d66542 4015 if (mem_cgroup_disabled())
cede86ac 4016 return 0;
309381fe
SL
4017 VM_BUG_ON_PAGE(page_mapped(page), page);
4018 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 4019 VM_BUG_ON(!mm);
217bc319 4020 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 4021 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4022}
4023
54595fe2
KH
4024/*
4025 * While swap-in, try_charge -> commit or cancel, the page is locked.
4026 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4027 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4028 * "commit()" or removed by "cancel()"
4029 */
0435a2fd
JW
4030static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4031 struct page *page,
4032 gfp_t mask,
4033 struct mem_cgroup **memcgp)
8c7c6e34 4034{
c0ff4b85 4035 struct mem_cgroup *memcg;
90deb788 4036 struct page_cgroup *pc;
54595fe2 4037 int ret;
8c7c6e34 4038
90deb788
JW
4039 pc = lookup_page_cgroup(page);
4040 /*
4041 * Every swap fault against a single page tries to charge the
4042 * page, bail as early as possible. shmem_unuse() encounters
4043 * already charged pages, too. The USED bit is protected by
4044 * the page lock, which serializes swap cache removal, which
4045 * in turn serializes uncharging.
4046 */
4047 if (PageCgroupUsed(pc))
4048 return 0;
8c7c6e34
KH
4049 if (!do_swap_account)
4050 goto charge_cur_mm;
c0ff4b85
R
4051 memcg = try_get_mem_cgroup_from_page(page);
4052 if (!memcg)
54595fe2 4053 goto charge_cur_mm;
72835c86
JW
4054 *memcgp = memcg;
4055 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4056 css_put(&memcg->css);
38c5d72f
KH
4057 if (ret == -EINTR)
4058 ret = 0;
54595fe2 4059 return ret;
8c7c6e34 4060charge_cur_mm:
38c5d72f
KH
4061 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4062 if (ret == -EINTR)
4063 ret = 0;
4064 return ret;
8c7c6e34
KH
4065}
4066
0435a2fd
JW
4067int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4068 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4069{
4070 *memcgp = NULL;
4071 if (mem_cgroup_disabled())
4072 return 0;
bdf4f4d2
JW
4073 /*
4074 * A racing thread's fault, or swapoff, may have already
4075 * updated the pte, and even removed page from swap cache: in
4076 * those cases unuse_pte()'s pte_same() test will fail; but
4077 * there's also a KSM case which does need to charge the page.
4078 */
4079 if (!PageSwapCache(page)) {
4080 int ret;
4081
4082 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4083 if (ret == -EINTR)
4084 ret = 0;
4085 return ret;
4086 }
0435a2fd
JW
4087 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4088}
4089
827a03d2
JW
4090void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4091{
4092 if (mem_cgroup_disabled())
4093 return;
4094 if (!memcg)
4095 return;
4096 __mem_cgroup_cancel_charge(memcg, 1);
4097}
4098
83aae4c7 4099static void
72835c86 4100__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4101 enum charge_type ctype)
7a81b88c 4102{
f8d66542 4103 if (mem_cgroup_disabled())
7a81b88c 4104 return;
72835c86 4105 if (!memcg)
7a81b88c 4106 return;
5a6475a4 4107
ce587e65 4108 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4109 /*
4110 * Now swap is on-memory. This means this page may be
4111 * counted both as mem and swap....double count.
03f3c433
KH
4112 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4113 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4114 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4115 */
03f3c433 4116 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4117 swp_entry_t ent = {.val = page_private(page)};
86493009 4118 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4119 }
7a81b88c
KH
4120}
4121
72835c86
JW
4122void mem_cgroup_commit_charge_swapin(struct page *page,
4123 struct mem_cgroup *memcg)
83aae4c7 4124{
72835c86 4125 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4126 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4127}
4128
827a03d2
JW
4129int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4130 gfp_t gfp_mask)
7a81b88c 4131{
827a03d2
JW
4132 struct mem_cgroup *memcg = NULL;
4133 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4134 int ret;
4135
f8d66542 4136 if (mem_cgroup_disabled())
827a03d2
JW
4137 return 0;
4138 if (PageCompound(page))
4139 return 0;
4140
827a03d2
JW
4141 if (!PageSwapCache(page))
4142 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4143 else { /* page is swapcache/shmem */
0435a2fd
JW
4144 ret = __mem_cgroup_try_charge_swapin(mm, page,
4145 gfp_mask, &memcg);
827a03d2
JW
4146 if (!ret)
4147 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4148 }
4149 return ret;
7a81b88c
KH
4150}
4151
c0ff4b85 4152static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4153 unsigned int nr_pages,
4154 const enum charge_type ctype)
569b846d
KH
4155{
4156 struct memcg_batch_info *batch = NULL;
4157 bool uncharge_memsw = true;
7ec99d62 4158
569b846d
KH
4159 /* If swapout, usage of swap doesn't decrease */
4160 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4161 uncharge_memsw = false;
569b846d
KH
4162
4163 batch = &current->memcg_batch;
4164 /*
4165 * In usual, we do css_get() when we remember memcg pointer.
4166 * But in this case, we keep res->usage until end of a series of
4167 * uncharges. Then, it's ok to ignore memcg's refcnt.
4168 */
4169 if (!batch->memcg)
c0ff4b85 4170 batch->memcg = memcg;
3c11ecf4
KH
4171 /*
4172 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4173 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4174 * the same cgroup and we have chance to coalesce uncharges.
4175 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4176 * because we want to do uncharge as soon as possible.
4177 */
4178
4179 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4180 goto direct_uncharge;
4181
7ec99d62 4182 if (nr_pages > 1)
ec168510
AA
4183 goto direct_uncharge;
4184
569b846d
KH
4185 /*
4186 * In typical case, batch->memcg == mem. This means we can
4187 * merge a series of uncharges to an uncharge of res_counter.
4188 * If not, we uncharge res_counter ony by one.
4189 */
c0ff4b85 4190 if (batch->memcg != memcg)
569b846d
KH
4191 goto direct_uncharge;
4192 /* remember freed charge and uncharge it later */
7ffd4ca7 4193 batch->nr_pages++;
569b846d 4194 if (uncharge_memsw)
7ffd4ca7 4195 batch->memsw_nr_pages++;
569b846d
KH
4196 return;
4197direct_uncharge:
c0ff4b85 4198 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4199 if (uncharge_memsw)
c0ff4b85
R
4200 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4201 if (unlikely(batch->memcg != memcg))
4202 memcg_oom_recover(memcg);
569b846d 4203}
7a81b88c 4204
8a9f3ccd 4205/*
69029cd5 4206 * uncharge if !page_mapped(page)
8a9f3ccd 4207 */
8c7c6e34 4208static struct mem_cgroup *
0030f535
JW
4209__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4210 bool end_migration)
8a9f3ccd 4211{
c0ff4b85 4212 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4213 unsigned int nr_pages = 1;
4214 struct page_cgroup *pc;
b2402857 4215 bool anon;
8a9f3ccd 4216
f8d66542 4217 if (mem_cgroup_disabled())
8c7c6e34 4218 return NULL;
4077960e 4219
37c2ac78 4220 if (PageTransHuge(page)) {
7ec99d62 4221 nr_pages <<= compound_order(page);
309381fe 4222 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4223 }
8697d331 4224 /*
3c541e14 4225 * Check if our page_cgroup is valid
8697d331 4226 */
52d4b9ac 4227 pc = lookup_page_cgroup(page);
cfa44946 4228 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4229 return NULL;
b9c565d5 4230
52d4b9ac 4231 lock_page_cgroup(pc);
d13d1443 4232
c0ff4b85 4233 memcg = pc->mem_cgroup;
8c7c6e34 4234
d13d1443
KH
4235 if (!PageCgroupUsed(pc))
4236 goto unlock_out;
4237
b2402857
KH
4238 anon = PageAnon(page);
4239
d13d1443 4240 switch (ctype) {
41326c17 4241 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4242 /*
4243 * Generally PageAnon tells if it's the anon statistics to be
4244 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4245 * used before page reached the stage of being marked PageAnon.
4246 */
b2402857
KH
4247 anon = true;
4248 /* fallthrough */
8a9478ca 4249 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4250 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4251 if (page_mapped(page))
4252 goto unlock_out;
4253 /*
4254 * Pages under migration may not be uncharged. But
4255 * end_migration() /must/ be the one uncharging the
4256 * unused post-migration page and so it has to call
4257 * here with the migration bit still set. See the
4258 * res_counter handling below.
4259 */
4260 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4261 goto unlock_out;
4262 break;
4263 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4264 if (!PageAnon(page)) { /* Shared memory */
4265 if (page->mapping && !page_is_file_cache(page))
4266 goto unlock_out;
4267 } else if (page_mapped(page)) /* Anon */
4268 goto unlock_out;
4269 break;
4270 default:
4271 break;
52d4b9ac 4272 }
d13d1443 4273
b070e65c 4274 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4275
52d4b9ac 4276 ClearPageCgroupUsed(pc);
544122e5
KH
4277 /*
4278 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4279 * freed from LRU. This is safe because uncharged page is expected not
4280 * to be reused (freed soon). Exception is SwapCache, it's handled by
4281 * special functions.
4282 */
b9c565d5 4283
52d4b9ac 4284 unlock_page_cgroup(pc);
f75ca962 4285 /*
c0ff4b85 4286 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4287 * will never be freed, so it's safe to call css_get().
f75ca962 4288 */
c0ff4b85 4289 memcg_check_events(memcg, page);
f75ca962 4290 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4291 mem_cgroup_swap_statistics(memcg, true);
4050377b 4292 css_get(&memcg->css);
f75ca962 4293 }
0030f535
JW
4294 /*
4295 * Migration does not charge the res_counter for the
4296 * replacement page, so leave it alone when phasing out the
4297 * page that is unused after the migration.
4298 */
4299 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4300 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4301
c0ff4b85 4302 return memcg;
d13d1443
KH
4303
4304unlock_out:
4305 unlock_page_cgroup(pc);
8c7c6e34 4306 return NULL;
3c541e14
BS
4307}
4308
69029cd5
KH
4309void mem_cgroup_uncharge_page(struct page *page)
4310{
52d4b9ac
KH
4311 /* early check. */
4312 if (page_mapped(page))
4313 return;
309381fe 4314 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4315 /*
4316 * If the page is in swap cache, uncharge should be deferred
4317 * to the swap path, which also properly accounts swap usage
4318 * and handles memcg lifetime.
4319 *
4320 * Note that this check is not stable and reclaim may add the
4321 * page to swap cache at any time after this. However, if the
4322 * page is not in swap cache by the time page->mapcount hits
4323 * 0, there won't be any page table references to the swap
4324 * slot, and reclaim will free it and not actually write the
4325 * page to disk.
4326 */
0c59b89c
JW
4327 if (PageSwapCache(page))
4328 return;
0030f535 4329 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4330}
4331
4332void mem_cgroup_uncharge_cache_page(struct page *page)
4333{
309381fe
SL
4334 VM_BUG_ON_PAGE(page_mapped(page), page);
4335 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4336 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4337}
4338
569b846d
KH
4339/*
4340 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4341 * In that cases, pages are freed continuously and we can expect pages
4342 * are in the same memcg. All these calls itself limits the number of
4343 * pages freed at once, then uncharge_start/end() is called properly.
4344 * This may be called prural(2) times in a context,
4345 */
4346
4347void mem_cgroup_uncharge_start(void)
4348{
4349 current->memcg_batch.do_batch++;
4350 /* We can do nest. */
4351 if (current->memcg_batch.do_batch == 1) {
4352 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4353 current->memcg_batch.nr_pages = 0;
4354 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4355 }
4356}
4357
4358void mem_cgroup_uncharge_end(void)
4359{
4360 struct memcg_batch_info *batch = &current->memcg_batch;
4361
4362 if (!batch->do_batch)
4363 return;
4364
4365 batch->do_batch--;
4366 if (batch->do_batch) /* If stacked, do nothing. */
4367 return;
4368
4369 if (!batch->memcg)
4370 return;
4371 /*
4372 * This "batch->memcg" is valid without any css_get/put etc...
4373 * bacause we hide charges behind us.
4374 */
7ffd4ca7
JW
4375 if (batch->nr_pages)
4376 res_counter_uncharge(&batch->memcg->res,
4377 batch->nr_pages * PAGE_SIZE);
4378 if (batch->memsw_nr_pages)
4379 res_counter_uncharge(&batch->memcg->memsw,
4380 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4381 memcg_oom_recover(batch->memcg);
569b846d
KH
4382 /* forget this pointer (for sanity check) */
4383 batch->memcg = NULL;
4384}
4385
e767e056 4386#ifdef CONFIG_SWAP
8c7c6e34 4387/*
e767e056 4388 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4389 * memcg information is recorded to swap_cgroup of "ent"
4390 */
8a9478ca
KH
4391void
4392mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4393{
4394 struct mem_cgroup *memcg;
8a9478ca
KH
4395 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4396
4397 if (!swapout) /* this was a swap cache but the swap is unused ! */
4398 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4399
0030f535 4400 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4401
f75ca962
KH
4402 /*
4403 * record memcg information, if swapout && memcg != NULL,
4050377b 4404 * css_get() was called in uncharge().
f75ca962
KH
4405 */
4406 if (do_swap_account && swapout && memcg)
34c00c31 4407 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4408}
e767e056 4409#endif
8c7c6e34 4410
c255a458 4411#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4412/*
4413 * called from swap_entry_free(). remove record in swap_cgroup and
4414 * uncharge "memsw" account.
4415 */
4416void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4417{
8c7c6e34 4418 struct mem_cgroup *memcg;
a3b2d692 4419 unsigned short id;
8c7c6e34
KH
4420
4421 if (!do_swap_account)
4422 return;
4423
a3b2d692
KH
4424 id = swap_cgroup_record(ent, 0);
4425 rcu_read_lock();
4426 memcg = mem_cgroup_lookup(id);
8c7c6e34 4427 if (memcg) {
a3b2d692
KH
4428 /*
4429 * We uncharge this because swap is freed.
4430 * This memcg can be obsolete one. We avoid calling css_tryget
4431 */
0c3e73e8 4432 if (!mem_cgroup_is_root(memcg))
4e649152 4433 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4434 mem_cgroup_swap_statistics(memcg, false);
4050377b 4435 css_put(&memcg->css);
8c7c6e34 4436 }
a3b2d692 4437 rcu_read_unlock();
d13d1443 4438}
02491447
DN
4439
4440/**
4441 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4442 * @entry: swap entry to be moved
4443 * @from: mem_cgroup which the entry is moved from
4444 * @to: mem_cgroup which the entry is moved to
4445 *
4446 * It succeeds only when the swap_cgroup's record for this entry is the same
4447 * as the mem_cgroup's id of @from.
4448 *
4449 * Returns 0 on success, -EINVAL on failure.
4450 *
4451 * The caller must have charged to @to, IOW, called res_counter_charge() about
4452 * both res and memsw, and called css_get().
4453 */
4454static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4455 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4456{
4457 unsigned short old_id, new_id;
4458
34c00c31
LZ
4459 old_id = mem_cgroup_id(from);
4460 new_id = mem_cgroup_id(to);
02491447
DN
4461
4462 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4463 mem_cgroup_swap_statistics(from, false);
483c30b5 4464 mem_cgroup_swap_statistics(to, true);
02491447 4465 /*
483c30b5
DN
4466 * This function is only called from task migration context now.
4467 * It postpones res_counter and refcount handling till the end
4468 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4469 * improvement. But we cannot postpone css_get(to) because if
4470 * the process that has been moved to @to does swap-in, the
4471 * refcount of @to might be decreased to 0.
4472 *
4473 * We are in attach() phase, so the cgroup is guaranteed to be
4474 * alive, so we can just call css_get().
02491447 4475 */
4050377b 4476 css_get(&to->css);
02491447
DN
4477 return 0;
4478 }
4479 return -EINVAL;
4480}
4481#else
4482static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4483 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4484{
4485 return -EINVAL;
4486}
8c7c6e34 4487#endif
d13d1443 4488
ae41be37 4489/*
01b1ae63
KH
4490 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4491 * page belongs to.
ae41be37 4492 */
0030f535
JW
4493void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4494 struct mem_cgroup **memcgp)
ae41be37 4495{
c0ff4b85 4496 struct mem_cgroup *memcg = NULL;
b32967ff 4497 unsigned int nr_pages = 1;
7ec99d62 4498 struct page_cgroup *pc;
ac39cf8c 4499 enum charge_type ctype;
8869b8f6 4500
72835c86 4501 *memcgp = NULL;
56039efa 4502
f8d66542 4503 if (mem_cgroup_disabled())
0030f535 4504 return;
4077960e 4505
b32967ff
MG
4506 if (PageTransHuge(page))
4507 nr_pages <<= compound_order(page);
4508
52d4b9ac
KH
4509 pc = lookup_page_cgroup(page);
4510 lock_page_cgroup(pc);
4511 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4512 memcg = pc->mem_cgroup;
4513 css_get(&memcg->css);
ac39cf8c
AM
4514 /*
4515 * At migrating an anonymous page, its mapcount goes down
4516 * to 0 and uncharge() will be called. But, even if it's fully
4517 * unmapped, migration may fail and this page has to be
4518 * charged again. We set MIGRATION flag here and delay uncharge
4519 * until end_migration() is called
4520 *
4521 * Corner Case Thinking
4522 * A)
4523 * When the old page was mapped as Anon and it's unmap-and-freed
4524 * while migration was ongoing.
4525 * If unmap finds the old page, uncharge() of it will be delayed
4526 * until end_migration(). If unmap finds a new page, it's
4527 * uncharged when it make mapcount to be 1->0. If unmap code
4528 * finds swap_migration_entry, the new page will not be mapped
4529 * and end_migration() will find it(mapcount==0).
4530 *
4531 * B)
4532 * When the old page was mapped but migraion fails, the kernel
4533 * remaps it. A charge for it is kept by MIGRATION flag even
4534 * if mapcount goes down to 0. We can do remap successfully
4535 * without charging it again.
4536 *
4537 * C)
4538 * The "old" page is under lock_page() until the end of
4539 * migration, so, the old page itself will not be swapped-out.
4540 * If the new page is swapped out before end_migraton, our
4541 * hook to usual swap-out path will catch the event.
4542 */
4543 if (PageAnon(page))
4544 SetPageCgroupMigration(pc);
e8589cc1 4545 }
52d4b9ac 4546 unlock_page_cgroup(pc);
ac39cf8c
AM
4547 /*
4548 * If the page is not charged at this point,
4549 * we return here.
4550 */
c0ff4b85 4551 if (!memcg)
0030f535 4552 return;
01b1ae63 4553
72835c86 4554 *memcgp = memcg;
ac39cf8c
AM
4555 /*
4556 * We charge new page before it's used/mapped. So, even if unlock_page()
4557 * is called before end_migration, we can catch all events on this new
4558 * page. In the case new page is migrated but not remapped, new page's
4559 * mapcount will be finally 0 and we call uncharge in end_migration().
4560 */
ac39cf8c 4561 if (PageAnon(page))
41326c17 4562 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4563 else
62ba7442 4564 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4565 /*
4566 * The page is committed to the memcg, but it's not actually
4567 * charged to the res_counter since we plan on replacing the
4568 * old one and only one page is going to be left afterwards.
4569 */
b32967ff 4570 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4571}
8869b8f6 4572
69029cd5 4573/* remove redundant charge if migration failed*/
c0ff4b85 4574void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4575 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4576{
ac39cf8c 4577 struct page *used, *unused;
01b1ae63 4578 struct page_cgroup *pc;
b2402857 4579 bool anon;
01b1ae63 4580
c0ff4b85 4581 if (!memcg)
01b1ae63 4582 return;
b25ed609 4583
50de1dd9 4584 if (!migration_ok) {
ac39cf8c
AM
4585 used = oldpage;
4586 unused = newpage;
01b1ae63 4587 } else {
ac39cf8c 4588 used = newpage;
01b1ae63
KH
4589 unused = oldpage;
4590 }
0030f535 4591 anon = PageAnon(used);
7d188958
JW
4592 __mem_cgroup_uncharge_common(unused,
4593 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4594 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4595 true);
0030f535 4596 css_put(&memcg->css);
69029cd5 4597 /*
ac39cf8c
AM
4598 * We disallowed uncharge of pages under migration because mapcount
4599 * of the page goes down to zero, temporarly.
4600 * Clear the flag and check the page should be charged.
01b1ae63 4601 */
ac39cf8c
AM
4602 pc = lookup_page_cgroup(oldpage);
4603 lock_page_cgroup(pc);
4604 ClearPageCgroupMigration(pc);
4605 unlock_page_cgroup(pc);
ac39cf8c 4606
01b1ae63 4607 /*
ac39cf8c
AM
4608 * If a page is a file cache, radix-tree replacement is very atomic
4609 * and we can skip this check. When it was an Anon page, its mapcount
4610 * goes down to 0. But because we added MIGRATION flage, it's not
4611 * uncharged yet. There are several case but page->mapcount check
4612 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4613 * check. (see prepare_charge() also)
69029cd5 4614 */
b2402857 4615 if (anon)
ac39cf8c 4616 mem_cgroup_uncharge_page(used);
ae41be37 4617}
78fb7466 4618
ab936cbc
KH
4619/*
4620 * At replace page cache, newpage is not under any memcg but it's on
4621 * LRU. So, this function doesn't touch res_counter but handles LRU
4622 * in correct way. Both pages are locked so we cannot race with uncharge.
4623 */
4624void mem_cgroup_replace_page_cache(struct page *oldpage,
4625 struct page *newpage)
4626{
bde05d1c 4627 struct mem_cgroup *memcg = NULL;
ab936cbc 4628 struct page_cgroup *pc;
ab936cbc 4629 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4630
4631 if (mem_cgroup_disabled())
4632 return;
4633
4634 pc = lookup_page_cgroup(oldpage);
4635 /* fix accounting on old pages */
4636 lock_page_cgroup(pc);
bde05d1c
HD
4637 if (PageCgroupUsed(pc)) {
4638 memcg = pc->mem_cgroup;
b070e65c 4639 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4640 ClearPageCgroupUsed(pc);
4641 }
ab936cbc
KH
4642 unlock_page_cgroup(pc);
4643
bde05d1c
HD
4644 /*
4645 * When called from shmem_replace_page(), in some cases the
4646 * oldpage has already been charged, and in some cases not.
4647 */
4648 if (!memcg)
4649 return;
ab936cbc
KH
4650 /*
4651 * Even if newpage->mapping was NULL before starting replacement,
4652 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4653 * LRU while we overwrite pc->mem_cgroup.
4654 */
ce587e65 4655 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4656}
4657
f212ad7c
DN
4658#ifdef CONFIG_DEBUG_VM
4659static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4660{
4661 struct page_cgroup *pc;
4662
4663 pc = lookup_page_cgroup(page);
cfa44946
JW
4664 /*
4665 * Can be NULL while feeding pages into the page allocator for
4666 * the first time, i.e. during boot or memory hotplug;
4667 * or when mem_cgroup_disabled().
4668 */
f212ad7c
DN
4669 if (likely(pc) && PageCgroupUsed(pc))
4670 return pc;
4671 return NULL;
4672}
4673
4674bool mem_cgroup_bad_page_check(struct page *page)
4675{
4676 if (mem_cgroup_disabled())
4677 return false;
4678
4679 return lookup_page_cgroup_used(page) != NULL;
4680}
4681
4682void mem_cgroup_print_bad_page(struct page *page)
4683{
4684 struct page_cgroup *pc;
4685
4686 pc = lookup_page_cgroup_used(page);
4687 if (pc) {
d045197f
AM
4688 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4689 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4690 }
4691}
4692#endif
4693
d38d2a75 4694static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4695 unsigned long long val)
628f4235 4696{
81d39c20 4697 int retry_count;
3c11ecf4 4698 u64 memswlimit, memlimit;
628f4235 4699 int ret = 0;
81d39c20
KH
4700 int children = mem_cgroup_count_children(memcg);
4701 u64 curusage, oldusage;
3c11ecf4 4702 int enlarge;
81d39c20
KH
4703
4704 /*
4705 * For keeping hierarchical_reclaim simple, how long we should retry
4706 * is depends on callers. We set our retry-count to be function
4707 * of # of children which we should visit in this loop.
4708 */
4709 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4710
4711 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4712
3c11ecf4 4713 enlarge = 0;
8c7c6e34 4714 while (retry_count) {
628f4235
KH
4715 if (signal_pending(current)) {
4716 ret = -EINTR;
4717 break;
4718 }
8c7c6e34
KH
4719 /*
4720 * Rather than hide all in some function, I do this in
4721 * open coded manner. You see what this really does.
aaad153e 4722 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4723 */
4724 mutex_lock(&set_limit_mutex);
4725 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4726 if (memswlimit < val) {
4727 ret = -EINVAL;
4728 mutex_unlock(&set_limit_mutex);
628f4235
KH
4729 break;
4730 }
3c11ecf4
KH
4731
4732 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4733 if (memlimit < val)
4734 enlarge = 1;
4735
8c7c6e34 4736 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4737 if (!ret) {
4738 if (memswlimit == val)
4739 memcg->memsw_is_minimum = true;
4740 else
4741 memcg->memsw_is_minimum = false;
4742 }
8c7c6e34
KH
4743 mutex_unlock(&set_limit_mutex);
4744
4745 if (!ret)
4746 break;
4747
5660048c
JW
4748 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4749 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4750 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4751 /* Usage is reduced ? */
f894ffa8 4752 if (curusage >= oldusage)
81d39c20
KH
4753 retry_count--;
4754 else
4755 oldusage = curusage;
8c7c6e34 4756 }
3c11ecf4
KH
4757 if (!ret && enlarge)
4758 memcg_oom_recover(memcg);
14797e23 4759
8c7c6e34
KH
4760 return ret;
4761}
4762
338c8431
LZ
4763static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4764 unsigned long long val)
8c7c6e34 4765{
81d39c20 4766 int retry_count;
3c11ecf4 4767 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4768 int children = mem_cgroup_count_children(memcg);
4769 int ret = -EBUSY;
3c11ecf4 4770 int enlarge = 0;
8c7c6e34 4771
81d39c20 4772 /* see mem_cgroup_resize_res_limit */
f894ffa8 4773 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4774 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4775 while (retry_count) {
4776 if (signal_pending(current)) {
4777 ret = -EINTR;
4778 break;
4779 }
4780 /*
4781 * Rather than hide all in some function, I do this in
4782 * open coded manner. You see what this really does.
aaad153e 4783 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4784 */
4785 mutex_lock(&set_limit_mutex);
4786 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4787 if (memlimit > val) {
4788 ret = -EINVAL;
4789 mutex_unlock(&set_limit_mutex);
4790 break;
4791 }
3c11ecf4
KH
4792 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4793 if (memswlimit < val)
4794 enlarge = 1;
8c7c6e34 4795 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4796 if (!ret) {
4797 if (memlimit == val)
4798 memcg->memsw_is_minimum = true;
4799 else
4800 memcg->memsw_is_minimum = false;
4801 }
8c7c6e34
KH
4802 mutex_unlock(&set_limit_mutex);
4803
4804 if (!ret)
4805 break;
4806
5660048c
JW
4807 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4808 MEM_CGROUP_RECLAIM_NOSWAP |
4809 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4810 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4811 /* Usage is reduced ? */
8c7c6e34 4812 if (curusage >= oldusage)
628f4235 4813 retry_count--;
81d39c20
KH
4814 else
4815 oldusage = curusage;
628f4235 4816 }
3c11ecf4
KH
4817 if (!ret && enlarge)
4818 memcg_oom_recover(memcg);
628f4235
KH
4819 return ret;
4820}
4821
0608f43d
AM
4822unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4823 gfp_t gfp_mask,
4824 unsigned long *total_scanned)
4825{
4826 unsigned long nr_reclaimed = 0;
4827 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4828 unsigned long reclaimed;
4829 int loop = 0;
4830 struct mem_cgroup_tree_per_zone *mctz;
4831 unsigned long long excess;
4832 unsigned long nr_scanned;
4833
4834 if (order > 0)
4835 return 0;
4836
4837 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4838 /*
4839 * This loop can run a while, specially if mem_cgroup's continuously
4840 * keep exceeding their soft limit and putting the system under
4841 * pressure
4842 */
4843 do {
4844 if (next_mz)
4845 mz = next_mz;
4846 else
4847 mz = mem_cgroup_largest_soft_limit_node(mctz);
4848 if (!mz)
4849 break;
4850
4851 nr_scanned = 0;
4852 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4853 gfp_mask, &nr_scanned);
4854 nr_reclaimed += reclaimed;
4855 *total_scanned += nr_scanned;
4856 spin_lock(&mctz->lock);
4857
4858 /*
4859 * If we failed to reclaim anything from this memory cgroup
4860 * it is time to move on to the next cgroup
4861 */
4862 next_mz = NULL;
4863 if (!reclaimed) {
4864 do {
4865 /*
4866 * Loop until we find yet another one.
4867 *
4868 * By the time we get the soft_limit lock
4869 * again, someone might have aded the
4870 * group back on the RB tree. Iterate to
4871 * make sure we get a different mem.
4872 * mem_cgroup_largest_soft_limit_node returns
4873 * NULL if no other cgroup is present on
4874 * the tree
4875 */
4876 next_mz =
4877 __mem_cgroup_largest_soft_limit_node(mctz);
4878 if (next_mz == mz)
4879 css_put(&next_mz->memcg->css);
4880 else /* next_mz == NULL or other memcg */
4881 break;
4882 } while (1);
4883 }
4884 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4885 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4886 /*
4887 * One school of thought says that we should not add
4888 * back the node to the tree if reclaim returns 0.
4889 * But our reclaim could return 0, simply because due
4890 * to priority we are exposing a smaller subset of
4891 * memory to reclaim from. Consider this as a longer
4892 * term TODO.
4893 */
4894 /* If excess == 0, no tree ops */
4895 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4896 spin_unlock(&mctz->lock);
4897 css_put(&mz->memcg->css);
4898 loop++;
4899 /*
4900 * Could not reclaim anything and there are no more
4901 * mem cgroups to try or we seem to be looping without
4902 * reclaiming anything.
4903 */
4904 if (!nr_reclaimed &&
4905 (next_mz == NULL ||
4906 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4907 break;
4908 } while (!nr_reclaimed);
4909 if (next_mz)
4910 css_put(&next_mz->memcg->css);
4911 return nr_reclaimed;
4912}
4913
2ef37d3f
MH
4914/**
4915 * mem_cgroup_force_empty_list - clears LRU of a group
4916 * @memcg: group to clear
4917 * @node: NUMA node
4918 * @zid: zone id
4919 * @lru: lru to to clear
4920 *
3c935d18 4921 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4922 * reclaim the pages page themselves - pages are moved to the parent (or root)
4923 * group.
cc847582 4924 */
2ef37d3f 4925static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4926 int node, int zid, enum lru_list lru)
cc847582 4927{
bea8c150 4928 struct lruvec *lruvec;
2ef37d3f 4929 unsigned long flags;
072c56c1 4930 struct list_head *list;
925b7673
JW
4931 struct page *busy;
4932 struct zone *zone;
072c56c1 4933
08e552c6 4934 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4935 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4936 list = &lruvec->lists[lru];
cc847582 4937
f817ed48 4938 busy = NULL;
2ef37d3f 4939 do {
925b7673 4940 struct page_cgroup *pc;
5564e88b
JW
4941 struct page *page;
4942
08e552c6 4943 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4944 if (list_empty(list)) {
08e552c6 4945 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4946 break;
f817ed48 4947 }
925b7673
JW
4948 page = list_entry(list->prev, struct page, lru);
4949 if (busy == page) {
4950 list_move(&page->lru, list);
648bcc77 4951 busy = NULL;
08e552c6 4952 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4953 continue;
4954 }
08e552c6 4955 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4956
925b7673 4957 pc = lookup_page_cgroup(page);
5564e88b 4958
3c935d18 4959 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4960 /* found lock contention or "pc" is obsolete. */
925b7673 4961 busy = page;
f817ed48
KH
4962 cond_resched();
4963 } else
4964 busy = NULL;
2ef37d3f 4965 } while (!list_empty(list));
cc847582
KH
4966}
4967
4968/*
c26251f9
MH
4969 * make mem_cgroup's charge to be 0 if there is no task by moving
4970 * all the charges and pages to the parent.
cc847582 4971 * This enables deleting this mem_cgroup.
c26251f9
MH
4972 *
4973 * Caller is responsible for holding css reference on the memcg.
cc847582 4974 */
ab5196c2 4975static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4976{
c26251f9 4977 int node, zid;
bea207c8 4978 u64 usage;
f817ed48 4979
fce66477 4980 do {
52d4b9ac
KH
4981 /* This is for making all *used* pages to be on LRU. */
4982 lru_add_drain_all();
c0ff4b85 4983 drain_all_stock_sync(memcg);
c0ff4b85 4984 mem_cgroup_start_move(memcg);
31aaea4a 4985 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4987 enum lru_list lru;
4988 for_each_lru(lru) {
2ef37d3f 4989 mem_cgroup_force_empty_list(memcg,
f156ab93 4990 node, zid, lru);
f817ed48 4991 }
1ecaab2b 4992 }
f817ed48 4993 }
c0ff4b85
R
4994 mem_cgroup_end_move(memcg);
4995 memcg_oom_recover(memcg);
52d4b9ac 4996 cond_resched();
f817ed48 4997
2ef37d3f 4998 /*
bea207c8
GC
4999 * Kernel memory may not necessarily be trackable to a specific
5000 * process. So they are not migrated, and therefore we can't
5001 * expect their value to drop to 0 here.
5002 * Having res filled up with kmem only is enough.
5003 *
2ef37d3f
MH
5004 * This is a safety check because mem_cgroup_force_empty_list
5005 * could have raced with mem_cgroup_replace_page_cache callers
5006 * so the lru seemed empty but the page could have been added
5007 * right after the check. RES_USAGE should be safe as we always
5008 * charge before adding to the LRU.
5009 */
bea207c8
GC
5010 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5011 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5012 } while (usage > 0);
c26251f9
MH
5013}
5014
b5f99b53
GC
5015static inline bool memcg_has_children(struct mem_cgroup *memcg)
5016{
696ac172
JW
5017 lockdep_assert_held(&memcg_create_mutex);
5018 /*
5019 * The lock does not prevent addition or deletion to the list
5020 * of children, but it prevents a new child from being
5021 * initialized based on this parent in css_online(), so it's
5022 * enough to decide whether hierarchically inherited
5023 * attributes can still be changed or not.
5024 */
5025 return memcg->use_hierarchy &&
5026 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5027}
5028
c26251f9
MH
5029/*
5030 * Reclaims as many pages from the given memcg as possible and moves
5031 * the rest to the parent.
5032 *
5033 * Caller is responsible for holding css reference for memcg.
5034 */
5035static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5036{
5037 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5038 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5039
c1e862c1 5040 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5041 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5042 return -EBUSY;
5043
c1e862c1
KH
5044 /* we call try-to-free pages for make this cgroup empty */
5045 lru_add_drain_all();
f817ed48 5046 /* try to free all pages in this cgroup */
569530fb 5047 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5048 int progress;
c1e862c1 5049
c26251f9
MH
5050 if (signal_pending(current))
5051 return -EINTR;
5052
c0ff4b85 5053 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5054 false);
c1e862c1 5055 if (!progress) {
f817ed48 5056 nr_retries--;
c1e862c1 5057 /* maybe some writeback is necessary */
8aa7e847 5058 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5059 }
f817ed48
KH
5060
5061 }
08e552c6 5062 lru_add_drain();
ab5196c2
MH
5063 mem_cgroup_reparent_charges(memcg);
5064
5065 return 0;
cc847582
KH
5066}
5067
182446d0
TH
5068static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5069 unsigned int event)
c1e862c1 5070{
182446d0 5071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5072
d8423011
MH
5073 if (mem_cgroup_is_root(memcg))
5074 return -EINVAL;
c33bd835 5075 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5076}
5077
182446d0
TH
5078static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5079 struct cftype *cft)
18f59ea7 5080{
182446d0 5081 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5082}
5083
182446d0
TH
5084static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5085 struct cftype *cft, u64 val)
18f59ea7
BS
5086{
5087 int retval = 0;
182446d0 5088 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5089 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5090
0999821b 5091 mutex_lock(&memcg_create_mutex);
567fb435
GC
5092
5093 if (memcg->use_hierarchy == val)
5094 goto out;
5095
18f59ea7 5096 /*
af901ca1 5097 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5098 * in the child subtrees. If it is unset, then the change can
5099 * occur, provided the current cgroup has no children.
5100 *
5101 * For the root cgroup, parent_mem is NULL, we allow value to be
5102 * set if there are no children.
5103 */
c0ff4b85 5104 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5105 (val == 1 || val == 0)) {
696ac172 5106 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5107 memcg->use_hierarchy = val;
18f59ea7
BS
5108 else
5109 retval = -EBUSY;
5110 } else
5111 retval = -EINVAL;
567fb435
GC
5112
5113out:
0999821b 5114 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5115
5116 return retval;
5117}
5118
0c3e73e8 5119
c0ff4b85 5120static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5121 enum mem_cgroup_stat_index idx)
0c3e73e8 5122{
7d74b06f 5123 struct mem_cgroup *iter;
7a159cc9 5124 long val = 0;
0c3e73e8 5125
7a159cc9 5126 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5127 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5128 val += mem_cgroup_read_stat(iter, idx);
5129
5130 if (val < 0) /* race ? */
5131 val = 0;
5132 return val;
0c3e73e8
BS
5133}
5134
c0ff4b85 5135static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5136{
7d74b06f 5137 u64 val;
104f3928 5138
c0ff4b85 5139 if (!mem_cgroup_is_root(memcg)) {
104f3928 5140 if (!swap)
65c64ce8 5141 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5142 else
65c64ce8 5143 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5144 }
5145
b070e65c
DR
5146 /*
5147 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5148 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5149 */
c0ff4b85
R
5150 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5151 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5152
7d74b06f 5153 if (swap)
bff6bb83 5154 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5155
5156 return val << PAGE_SHIFT;
5157}
5158
791badbd
TH
5159static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5160 struct cftype *cft)
8cdea7c0 5161{
182446d0 5162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5163 u64 val;
791badbd 5164 int name;
86ae53e1 5165 enum res_type type;
8c7c6e34
KH
5166
5167 type = MEMFILE_TYPE(cft->private);
5168 name = MEMFILE_ATTR(cft->private);
af36f906 5169
8c7c6e34
KH
5170 switch (type) {
5171 case _MEM:
104f3928 5172 if (name == RES_USAGE)
c0ff4b85 5173 val = mem_cgroup_usage(memcg, false);
104f3928 5174 else
c0ff4b85 5175 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5176 break;
5177 case _MEMSWAP:
104f3928 5178 if (name == RES_USAGE)
c0ff4b85 5179 val = mem_cgroup_usage(memcg, true);
104f3928 5180 else
c0ff4b85 5181 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5182 break;
510fc4e1
GC
5183 case _KMEM:
5184 val = res_counter_read_u64(&memcg->kmem, name);
5185 break;
8c7c6e34
KH
5186 default:
5187 BUG();
8c7c6e34 5188 }
af36f906 5189
791badbd 5190 return val;
8cdea7c0 5191}
510fc4e1 5192
182446d0 5193static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5194{
5195 int ret = -EINVAL;
5196#ifdef CONFIG_MEMCG_KMEM
182446d0 5197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5198 /*
5199 * For simplicity, we won't allow this to be disabled. It also can't
5200 * be changed if the cgroup has children already, or if tasks had
5201 * already joined.
5202 *
5203 * If tasks join before we set the limit, a person looking at
5204 * kmem.usage_in_bytes will have no way to determine when it took
5205 * place, which makes the value quite meaningless.
5206 *
5207 * After it first became limited, changes in the value of the limit are
5208 * of course permitted.
510fc4e1 5209 */
0999821b 5210 mutex_lock(&memcg_create_mutex);
510fc4e1 5211 mutex_lock(&set_limit_mutex);
6de5a8bf 5212 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5213 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5214 ret = -EBUSY;
5215 goto out;
5216 }
5217 ret = res_counter_set_limit(&memcg->kmem, val);
5218 VM_BUG_ON(ret);
5219
55007d84
GC
5220 ret = memcg_update_cache_sizes(memcg);
5221 if (ret) {
6de5a8bf 5222 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5223 goto out;
5224 }
692e89ab
GC
5225 static_key_slow_inc(&memcg_kmem_enabled_key);
5226 /*
5227 * setting the active bit after the inc will guarantee no one
5228 * starts accounting before all call sites are patched
5229 */
5230 memcg_kmem_set_active(memcg);
510fc4e1
GC
5231 } else
5232 ret = res_counter_set_limit(&memcg->kmem, val);
5233out:
5234 mutex_unlock(&set_limit_mutex);
0999821b 5235 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5236#endif
5237 return ret;
5238}
5239
6d043990 5240#ifdef CONFIG_MEMCG_KMEM
55007d84 5241static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5242{
55007d84 5243 int ret = 0;
510fc4e1
GC
5244 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5245 if (!parent)
55007d84
GC
5246 goto out;
5247
510fc4e1 5248 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5249 /*
5250 * When that happen, we need to disable the static branch only on those
5251 * memcgs that enabled it. To achieve this, we would be forced to
5252 * complicate the code by keeping track of which memcgs were the ones
5253 * that actually enabled limits, and which ones got it from its
5254 * parents.
5255 *
5256 * It is a lot simpler just to do static_key_slow_inc() on every child
5257 * that is accounted.
5258 */
55007d84
GC
5259 if (!memcg_kmem_is_active(memcg))
5260 goto out;
5261
5262 /*
10d5ebf4
LZ
5263 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5264 * memcg is active already. If the later initialization fails then the
5265 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5266 */
55007d84
GC
5267 static_key_slow_inc(&memcg_kmem_enabled_key);
5268
5269 mutex_lock(&set_limit_mutex);
425c598d 5270 memcg_stop_kmem_account();
55007d84 5271 ret = memcg_update_cache_sizes(memcg);
425c598d 5272 memcg_resume_kmem_account();
55007d84 5273 mutex_unlock(&set_limit_mutex);
55007d84
GC
5274out:
5275 return ret;
510fc4e1 5276}
6d043990 5277#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5278
628f4235
KH
5279/*
5280 * The user of this function is...
5281 * RES_LIMIT.
5282 */
182446d0 5283static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5284 const char *buffer)
8cdea7c0 5285{
182446d0 5286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5287 enum res_type type;
5288 int name;
628f4235
KH
5289 unsigned long long val;
5290 int ret;
5291
8c7c6e34
KH
5292 type = MEMFILE_TYPE(cft->private);
5293 name = MEMFILE_ATTR(cft->private);
af36f906 5294
8c7c6e34 5295 switch (name) {
628f4235 5296 case RES_LIMIT:
4b3bde4c
BS
5297 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5298 ret = -EINVAL;
5299 break;
5300 }
628f4235
KH
5301 /* This function does all necessary parse...reuse it */
5302 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5303 if (ret)
5304 break;
5305 if (type == _MEM)
628f4235 5306 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5307 else if (type == _MEMSWAP)
8c7c6e34 5308 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5309 else if (type == _KMEM)
182446d0 5310 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5311 else
5312 return -EINVAL;
628f4235 5313 break;
296c81d8
BS
5314 case RES_SOFT_LIMIT:
5315 ret = res_counter_memparse_write_strategy(buffer, &val);
5316 if (ret)
5317 break;
5318 /*
5319 * For memsw, soft limits are hard to implement in terms
5320 * of semantics, for now, we support soft limits for
5321 * control without swap
5322 */
5323 if (type == _MEM)
5324 ret = res_counter_set_soft_limit(&memcg->res, val);
5325 else
5326 ret = -EINVAL;
5327 break;
628f4235
KH
5328 default:
5329 ret = -EINVAL; /* should be BUG() ? */
5330 break;
5331 }
5332 return ret;
8cdea7c0
BS
5333}
5334
fee7b548
KH
5335static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5336 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5337{
fee7b548
KH
5338 unsigned long long min_limit, min_memsw_limit, tmp;
5339
5340 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5341 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5342 if (!memcg->use_hierarchy)
5343 goto out;
5344
63876986
TH
5345 while (css_parent(&memcg->css)) {
5346 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5347 if (!memcg->use_hierarchy)
5348 break;
5349 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5350 min_limit = min(min_limit, tmp);
5351 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5352 min_memsw_limit = min(min_memsw_limit, tmp);
5353 }
5354out:
5355 *mem_limit = min_limit;
5356 *memsw_limit = min_memsw_limit;
fee7b548
KH
5357}
5358
182446d0 5359static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5360{
182446d0 5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5362 int name;
5363 enum res_type type;
c84872e1 5364
8c7c6e34
KH
5365 type = MEMFILE_TYPE(event);
5366 name = MEMFILE_ATTR(event);
af36f906 5367
8c7c6e34 5368 switch (name) {
29f2a4da 5369 case RES_MAX_USAGE:
8c7c6e34 5370 if (type == _MEM)
c0ff4b85 5371 res_counter_reset_max(&memcg->res);
510fc4e1 5372 else if (type == _MEMSWAP)
c0ff4b85 5373 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5374 else if (type == _KMEM)
5375 res_counter_reset_max(&memcg->kmem);
5376 else
5377 return -EINVAL;
29f2a4da
PE
5378 break;
5379 case RES_FAILCNT:
8c7c6e34 5380 if (type == _MEM)
c0ff4b85 5381 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5382 else if (type == _MEMSWAP)
c0ff4b85 5383 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5384 else if (type == _KMEM)
5385 res_counter_reset_failcnt(&memcg->kmem);
5386 else
5387 return -EINVAL;
29f2a4da
PE
5388 break;
5389 }
f64c3f54 5390
85cc59db 5391 return 0;
c84872e1
PE
5392}
5393
182446d0 5394static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5395 struct cftype *cft)
5396{
182446d0 5397 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5398}
5399
02491447 5400#ifdef CONFIG_MMU
182446d0 5401static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5402 struct cftype *cft, u64 val)
5403{
182446d0 5404 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5405
5406 if (val >= (1 << NR_MOVE_TYPE))
5407 return -EINVAL;
ee5e8472 5408
7dc74be0 5409 /*
ee5e8472
GC
5410 * No kind of locking is needed in here, because ->can_attach() will
5411 * check this value once in the beginning of the process, and then carry
5412 * on with stale data. This means that changes to this value will only
5413 * affect task migrations starting after the change.
7dc74be0 5414 */
c0ff4b85 5415 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5416 return 0;
5417}
02491447 5418#else
182446d0 5419static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5420 struct cftype *cft, u64 val)
5421{
5422 return -ENOSYS;
5423}
5424#endif
7dc74be0 5425
406eb0c9 5426#ifdef CONFIG_NUMA
2da8ca82 5427static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5428{
25485de6
GT
5429 struct numa_stat {
5430 const char *name;
5431 unsigned int lru_mask;
5432 };
5433
5434 static const struct numa_stat stats[] = {
5435 { "total", LRU_ALL },
5436 { "file", LRU_ALL_FILE },
5437 { "anon", LRU_ALL_ANON },
5438 { "unevictable", BIT(LRU_UNEVICTABLE) },
5439 };
5440 const struct numa_stat *stat;
406eb0c9 5441 int nid;
25485de6 5442 unsigned long nr;
2da8ca82 5443 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5444
25485de6
GT
5445 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5446 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5447 seq_printf(m, "%s=%lu", stat->name, nr);
5448 for_each_node_state(nid, N_MEMORY) {
5449 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5450 stat->lru_mask);
5451 seq_printf(m, " N%d=%lu", nid, nr);
5452 }
5453 seq_putc(m, '\n');
406eb0c9 5454 }
406eb0c9 5455
071aee13
YH
5456 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5457 struct mem_cgroup *iter;
5458
5459 nr = 0;
5460 for_each_mem_cgroup_tree(iter, memcg)
5461 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5462 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5463 for_each_node_state(nid, N_MEMORY) {
5464 nr = 0;
5465 for_each_mem_cgroup_tree(iter, memcg)
5466 nr += mem_cgroup_node_nr_lru_pages(
5467 iter, nid, stat->lru_mask);
5468 seq_printf(m, " N%d=%lu", nid, nr);
5469 }
5470 seq_putc(m, '\n');
406eb0c9 5471 }
406eb0c9 5472
406eb0c9
YH
5473 return 0;
5474}
5475#endif /* CONFIG_NUMA */
5476
af7c4b0e
JW
5477static inline void mem_cgroup_lru_names_not_uptodate(void)
5478{
5479 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5480}
5481
2da8ca82 5482static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5483{
2da8ca82 5484 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5485 struct mem_cgroup *mi;
5486 unsigned int i;
406eb0c9 5487
af7c4b0e 5488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5489 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5490 continue;
af7c4b0e
JW
5491 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5492 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5493 }
7b854121 5494
af7c4b0e
JW
5495 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5496 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5497 mem_cgroup_read_events(memcg, i));
5498
5499 for (i = 0; i < NR_LRU_LISTS; i++)
5500 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5501 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5502
14067bb3 5503 /* Hierarchical information */
fee7b548
KH
5504 {
5505 unsigned long long limit, memsw_limit;
d79154bb 5506 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5507 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5508 if (do_swap_account)
78ccf5b5
JW
5509 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5510 memsw_limit);
fee7b548 5511 }
7f016ee8 5512
af7c4b0e
JW
5513 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5514 long long val = 0;
5515
bff6bb83 5516 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5517 continue;
af7c4b0e
JW
5518 for_each_mem_cgroup_tree(mi, memcg)
5519 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5520 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5521 }
5522
5523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5524 unsigned long long val = 0;
5525
5526 for_each_mem_cgroup_tree(mi, memcg)
5527 val += mem_cgroup_read_events(mi, i);
5528 seq_printf(m, "total_%s %llu\n",
5529 mem_cgroup_events_names[i], val);
5530 }
5531
5532 for (i = 0; i < NR_LRU_LISTS; i++) {
5533 unsigned long long val = 0;
5534
5535 for_each_mem_cgroup_tree(mi, memcg)
5536 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5537 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5538 }
14067bb3 5539
7f016ee8 5540#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5541 {
5542 int nid, zid;
5543 struct mem_cgroup_per_zone *mz;
89abfab1 5544 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5545 unsigned long recent_rotated[2] = {0, 0};
5546 unsigned long recent_scanned[2] = {0, 0};
5547
5548 for_each_online_node(nid)
5549 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5550 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5551 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5552
89abfab1
HD
5553 recent_rotated[0] += rstat->recent_rotated[0];
5554 recent_rotated[1] += rstat->recent_rotated[1];
5555 recent_scanned[0] += rstat->recent_scanned[0];
5556 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5557 }
78ccf5b5
JW
5558 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5559 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5560 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5561 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5562 }
5563#endif
5564
d2ceb9b7
KH
5565 return 0;
5566}
5567
182446d0
TH
5568static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5569 struct cftype *cft)
a7885eb8 5570{
182446d0 5571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5572
1f4c025b 5573 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5574}
5575
182446d0
TH
5576static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5577 struct cftype *cft, u64 val)
a7885eb8 5578{
182446d0 5579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5580 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5581
63876986 5582 if (val > 100 || !parent)
a7885eb8
KM
5583 return -EINVAL;
5584
0999821b 5585 mutex_lock(&memcg_create_mutex);
068b38c1 5586
a7885eb8 5587 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5588 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5589 mutex_unlock(&memcg_create_mutex);
a7885eb8 5590 return -EINVAL;
068b38c1 5591 }
a7885eb8 5592
a7885eb8 5593 memcg->swappiness = val;
a7885eb8 5594
0999821b 5595 mutex_unlock(&memcg_create_mutex);
068b38c1 5596
a7885eb8
KM
5597 return 0;
5598}
5599
2e72b634
KS
5600static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5601{
5602 struct mem_cgroup_threshold_ary *t;
5603 u64 usage;
5604 int i;
5605
5606 rcu_read_lock();
5607 if (!swap)
2c488db2 5608 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5609 else
2c488db2 5610 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5611
5612 if (!t)
5613 goto unlock;
5614
5615 usage = mem_cgroup_usage(memcg, swap);
5616
5617 /*
748dad36 5618 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5619 * If it's not true, a threshold was crossed after last
5620 * call of __mem_cgroup_threshold().
5621 */
5407a562 5622 i = t->current_threshold;
2e72b634
KS
5623
5624 /*
5625 * Iterate backward over array of thresholds starting from
5626 * current_threshold and check if a threshold is crossed.
5627 * If none of thresholds below usage is crossed, we read
5628 * only one element of the array here.
5629 */
5630 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5631 eventfd_signal(t->entries[i].eventfd, 1);
5632
5633 /* i = current_threshold + 1 */
5634 i++;
5635
5636 /*
5637 * Iterate forward over array of thresholds starting from
5638 * current_threshold+1 and check if a threshold is crossed.
5639 * If none of thresholds above usage is crossed, we read
5640 * only one element of the array here.
5641 */
5642 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5643 eventfd_signal(t->entries[i].eventfd, 1);
5644
5645 /* Update current_threshold */
5407a562 5646 t->current_threshold = i - 1;
2e72b634
KS
5647unlock:
5648 rcu_read_unlock();
5649}
5650
5651static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5652{
ad4ca5f4
KS
5653 while (memcg) {
5654 __mem_cgroup_threshold(memcg, false);
5655 if (do_swap_account)
5656 __mem_cgroup_threshold(memcg, true);
5657
5658 memcg = parent_mem_cgroup(memcg);
5659 }
2e72b634
KS
5660}
5661
5662static int compare_thresholds(const void *a, const void *b)
5663{
5664 const struct mem_cgroup_threshold *_a = a;
5665 const struct mem_cgroup_threshold *_b = b;
5666
2bff24a3
GT
5667 if (_a->threshold > _b->threshold)
5668 return 1;
5669
5670 if (_a->threshold < _b->threshold)
5671 return -1;
5672
5673 return 0;
2e72b634
KS
5674}
5675
c0ff4b85 5676static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5677{
5678 struct mem_cgroup_eventfd_list *ev;
5679
c0ff4b85 5680 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5681 eventfd_signal(ev->eventfd, 1);
5682 return 0;
5683}
5684
c0ff4b85 5685static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5686{
7d74b06f
KH
5687 struct mem_cgroup *iter;
5688
c0ff4b85 5689 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5690 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5691}
5692
59b6f873 5693static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5694 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5695{
2c488db2
KS
5696 struct mem_cgroup_thresholds *thresholds;
5697 struct mem_cgroup_threshold_ary *new;
2e72b634 5698 u64 threshold, usage;
2c488db2 5699 int i, size, ret;
2e72b634
KS
5700
5701 ret = res_counter_memparse_write_strategy(args, &threshold);
5702 if (ret)
5703 return ret;
5704
5705 mutex_lock(&memcg->thresholds_lock);
2c488db2 5706
2e72b634 5707 if (type == _MEM)
2c488db2 5708 thresholds = &memcg->thresholds;
2e72b634 5709 else if (type == _MEMSWAP)
2c488db2 5710 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5711 else
5712 BUG();
5713
5714 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5715
5716 /* Check if a threshold crossed before adding a new one */
2c488db2 5717 if (thresholds->primary)
2e72b634
KS
5718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5719
2c488db2 5720 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5721
5722 /* Allocate memory for new array of thresholds */
2c488db2 5723 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5724 GFP_KERNEL);
2c488db2 5725 if (!new) {
2e72b634
KS
5726 ret = -ENOMEM;
5727 goto unlock;
5728 }
2c488db2 5729 new->size = size;
2e72b634
KS
5730
5731 /* Copy thresholds (if any) to new array */
2c488db2
KS
5732 if (thresholds->primary) {
5733 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5734 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5735 }
5736
2e72b634 5737 /* Add new threshold */
2c488db2
KS
5738 new->entries[size - 1].eventfd = eventfd;
5739 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5740
5741 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5742 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5743 compare_thresholds, NULL);
5744
5745 /* Find current threshold */
2c488db2 5746 new->current_threshold = -1;
2e72b634 5747 for (i = 0; i < size; i++) {
748dad36 5748 if (new->entries[i].threshold <= usage) {
2e72b634 5749 /*
2c488db2
KS
5750 * new->current_threshold will not be used until
5751 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5752 * it here.
5753 */
2c488db2 5754 ++new->current_threshold;
748dad36
SZ
5755 } else
5756 break;
2e72b634
KS
5757 }
5758
2c488db2
KS
5759 /* Free old spare buffer and save old primary buffer as spare */
5760 kfree(thresholds->spare);
5761 thresholds->spare = thresholds->primary;
5762
5763 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5764
907860ed 5765 /* To be sure that nobody uses thresholds */
2e72b634
KS
5766 synchronize_rcu();
5767
2e72b634
KS
5768unlock:
5769 mutex_unlock(&memcg->thresholds_lock);
5770
5771 return ret;
5772}
5773
59b6f873 5774static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5775 struct eventfd_ctx *eventfd, const char *args)
5776{
59b6f873 5777 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5778}
5779
59b6f873 5780static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5781 struct eventfd_ctx *eventfd, const char *args)
5782{
59b6f873 5783 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5784}
5785
59b6f873 5786static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5787 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5788{
2c488db2
KS
5789 struct mem_cgroup_thresholds *thresholds;
5790 struct mem_cgroup_threshold_ary *new;
2e72b634 5791 u64 usage;
2c488db2 5792 int i, j, size;
2e72b634
KS
5793
5794 mutex_lock(&memcg->thresholds_lock);
5795 if (type == _MEM)
2c488db2 5796 thresholds = &memcg->thresholds;
2e72b634 5797 else if (type == _MEMSWAP)
2c488db2 5798 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5799 else
5800 BUG();
5801
371528ca
AV
5802 if (!thresholds->primary)
5803 goto unlock;
5804
2e72b634
KS
5805 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5806
5807 /* Check if a threshold crossed before removing */
5808 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5809
5810 /* Calculate new number of threshold */
2c488db2
KS
5811 size = 0;
5812 for (i = 0; i < thresholds->primary->size; i++) {
5813 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5814 size++;
5815 }
5816
2c488db2 5817 new = thresholds->spare;
907860ed 5818
2e72b634
KS
5819 /* Set thresholds array to NULL if we don't have thresholds */
5820 if (!size) {
2c488db2
KS
5821 kfree(new);
5822 new = NULL;
907860ed 5823 goto swap_buffers;
2e72b634
KS
5824 }
5825
2c488db2 5826 new->size = size;
2e72b634
KS
5827
5828 /* Copy thresholds and find current threshold */
2c488db2
KS
5829 new->current_threshold = -1;
5830 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5831 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5832 continue;
5833
2c488db2 5834 new->entries[j] = thresholds->primary->entries[i];
748dad36 5835 if (new->entries[j].threshold <= usage) {
2e72b634 5836 /*
2c488db2 5837 * new->current_threshold will not be used
2e72b634
KS
5838 * until rcu_assign_pointer(), so it's safe to increment
5839 * it here.
5840 */
2c488db2 5841 ++new->current_threshold;
2e72b634
KS
5842 }
5843 j++;
5844 }
5845
907860ed 5846swap_buffers:
2c488db2
KS
5847 /* Swap primary and spare array */
5848 thresholds->spare = thresholds->primary;
8c757763
SZ
5849 /* If all events are unregistered, free the spare array */
5850 if (!new) {
5851 kfree(thresholds->spare);
5852 thresholds->spare = NULL;
5853 }
5854
2c488db2 5855 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5856
907860ed 5857 /* To be sure that nobody uses thresholds */
2e72b634 5858 synchronize_rcu();
371528ca 5859unlock:
2e72b634 5860 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5861}
c1e862c1 5862
59b6f873 5863static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5864 struct eventfd_ctx *eventfd)
5865{
59b6f873 5866 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5867}
5868
59b6f873 5869static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5870 struct eventfd_ctx *eventfd)
5871{
59b6f873 5872 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5873}
5874
59b6f873 5875static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5876 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5877{
9490ff27 5878 struct mem_cgroup_eventfd_list *event;
9490ff27 5879
9490ff27
KH
5880 event = kmalloc(sizeof(*event), GFP_KERNEL);
5881 if (!event)
5882 return -ENOMEM;
5883
1af8efe9 5884 spin_lock(&memcg_oom_lock);
9490ff27
KH
5885
5886 event->eventfd = eventfd;
5887 list_add(&event->list, &memcg->oom_notify);
5888
5889 /* already in OOM ? */
79dfdacc 5890 if (atomic_read(&memcg->under_oom))
9490ff27 5891 eventfd_signal(eventfd, 1);
1af8efe9 5892 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5893
5894 return 0;
5895}
5896
59b6f873 5897static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5898 struct eventfd_ctx *eventfd)
9490ff27 5899{
9490ff27 5900 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5901
1af8efe9 5902 spin_lock(&memcg_oom_lock);
9490ff27 5903
c0ff4b85 5904 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5905 if (ev->eventfd == eventfd) {
5906 list_del(&ev->list);
5907 kfree(ev);
5908 }
5909 }
5910
1af8efe9 5911 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5912}
5913
2da8ca82 5914static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5915{
2da8ca82 5916 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5917
791badbd
TH
5918 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5919 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5920 return 0;
5921}
5922
182446d0 5923static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5924 struct cftype *cft, u64 val)
5925{
182446d0 5926 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5927 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5928
5929 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5930 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5931 return -EINVAL;
5932
0999821b 5933 mutex_lock(&memcg_create_mutex);
3c11ecf4 5934 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5935 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5936 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5937 return -EINVAL;
5938 }
c0ff4b85 5939 memcg->oom_kill_disable = val;
4d845ebf 5940 if (!val)
c0ff4b85 5941 memcg_oom_recover(memcg);
0999821b 5942 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5943 return 0;
5944}
5945
c255a458 5946#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5947static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5948{
55007d84
GC
5949 int ret;
5950
2633d7a0 5951 memcg->kmemcg_id = -1;
55007d84
GC
5952 ret = memcg_propagate_kmem(memcg);
5953 if (ret)
5954 return ret;
2633d7a0 5955
1d62e436 5956 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5957}
e5671dfa 5958
10d5ebf4 5959static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5960{
1d62e436 5961 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5962}
5963
5964static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5965{
5966 if (!memcg_kmem_is_active(memcg))
5967 return;
5968
5969 /*
5970 * kmem charges can outlive the cgroup. In the case of slab
5971 * pages, for instance, a page contain objects from various
5972 * processes. As we prevent from taking a reference for every
5973 * such allocation we have to be careful when doing uncharge
5974 * (see memcg_uncharge_kmem) and here during offlining.
5975 *
5976 * The idea is that that only the _last_ uncharge which sees
5977 * the dead memcg will drop the last reference. An additional
5978 * reference is taken here before the group is marked dead
5979 * which is then paired with css_put during uncharge resp. here.
5980 *
5981 * Although this might sound strange as this path is called from
5982 * css_offline() when the referencemight have dropped down to 0
5983 * and shouldn't be incremented anymore (css_tryget would fail)
5984 * we do not have other options because of the kmem allocations
5985 * lifetime.
5986 */
5987 css_get(&memcg->css);
7de37682
GC
5988
5989 memcg_kmem_mark_dead(memcg);
5990
5991 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5992 return;
5993
7de37682 5994 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5995 css_put(&memcg->css);
d1a4c0b3 5996}
e5671dfa 5997#else
cbe128e3 5998static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5999{
6000 return 0;
6001}
d1a4c0b3 6002
10d5ebf4
LZ
6003static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6004{
6005}
6006
6007static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
6008{
6009}
e5671dfa
GC
6010#endif
6011
3bc942f3
TH
6012/*
6013 * DO NOT USE IN NEW FILES.
6014 *
6015 * "cgroup.event_control" implementation.
6016 *
6017 * This is way over-engineered. It tries to support fully configurable
6018 * events for each user. Such level of flexibility is completely
6019 * unnecessary especially in the light of the planned unified hierarchy.
6020 *
6021 * Please deprecate this and replace with something simpler if at all
6022 * possible.
6023 */
6024
79bd9814
TH
6025/*
6026 * Unregister event and free resources.
6027 *
6028 * Gets called from workqueue.
6029 */
3bc942f3 6030static void memcg_event_remove(struct work_struct *work)
79bd9814 6031{
3bc942f3
TH
6032 struct mem_cgroup_event *event =
6033 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6034 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6035
6036 remove_wait_queue(event->wqh, &event->wait);
6037
59b6f873 6038 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6039
6040 /* Notify userspace the event is going away. */
6041 eventfd_signal(event->eventfd, 1);
6042
6043 eventfd_ctx_put(event->eventfd);
6044 kfree(event);
59b6f873 6045 css_put(&memcg->css);
79bd9814
TH
6046}
6047
6048/*
6049 * Gets called on POLLHUP on eventfd when user closes it.
6050 *
6051 * Called with wqh->lock held and interrupts disabled.
6052 */
3bc942f3
TH
6053static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6054 int sync, void *key)
79bd9814 6055{
3bc942f3
TH
6056 struct mem_cgroup_event *event =
6057 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6058 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6059 unsigned long flags = (unsigned long)key;
6060
6061 if (flags & POLLHUP) {
6062 /*
6063 * If the event has been detached at cgroup removal, we
6064 * can simply return knowing the other side will cleanup
6065 * for us.
6066 *
6067 * We can't race against event freeing since the other
6068 * side will require wqh->lock via remove_wait_queue(),
6069 * which we hold.
6070 */
fba94807 6071 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6072 if (!list_empty(&event->list)) {
6073 list_del_init(&event->list);
6074 /*
6075 * We are in atomic context, but cgroup_event_remove()
6076 * may sleep, so we have to call it in workqueue.
6077 */
6078 schedule_work(&event->remove);
6079 }
fba94807 6080 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6081 }
6082
6083 return 0;
6084}
6085
3bc942f3 6086static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6087 wait_queue_head_t *wqh, poll_table *pt)
6088{
3bc942f3
TH
6089 struct mem_cgroup_event *event =
6090 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6091
6092 event->wqh = wqh;
6093 add_wait_queue(wqh, &event->wait);
6094}
6095
6096/*
3bc942f3
TH
6097 * DO NOT USE IN NEW FILES.
6098 *
79bd9814
TH
6099 * Parse input and register new cgroup event handler.
6100 *
6101 * Input must be in format '<event_fd> <control_fd> <args>'.
6102 * Interpretation of args is defined by control file implementation.
6103 */
3bc942f3
TH
6104static int memcg_write_event_control(struct cgroup_subsys_state *css,
6105 struct cftype *cft, const char *buffer)
79bd9814 6106{
fba94807 6107 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6108 struct mem_cgroup_event *event;
79bd9814
TH
6109 struct cgroup_subsys_state *cfile_css;
6110 unsigned int efd, cfd;
6111 struct fd efile;
6112 struct fd cfile;
fba94807 6113 const char *name;
79bd9814
TH
6114 char *endp;
6115 int ret;
6116
6117 efd = simple_strtoul(buffer, &endp, 10);
6118 if (*endp != ' ')
6119 return -EINVAL;
6120 buffer = endp + 1;
6121
6122 cfd = simple_strtoul(buffer, &endp, 10);
6123 if ((*endp != ' ') && (*endp != '\0'))
6124 return -EINVAL;
6125 buffer = endp + 1;
6126
6127 event = kzalloc(sizeof(*event), GFP_KERNEL);
6128 if (!event)
6129 return -ENOMEM;
6130
59b6f873 6131 event->memcg = memcg;
79bd9814 6132 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6133 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6134 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6135 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6136
6137 efile = fdget(efd);
6138 if (!efile.file) {
6139 ret = -EBADF;
6140 goto out_kfree;
6141 }
6142
6143 event->eventfd = eventfd_ctx_fileget(efile.file);
6144 if (IS_ERR(event->eventfd)) {
6145 ret = PTR_ERR(event->eventfd);
6146 goto out_put_efile;
6147 }
6148
6149 cfile = fdget(cfd);
6150 if (!cfile.file) {
6151 ret = -EBADF;
6152 goto out_put_eventfd;
6153 }
6154
6155 /* the process need read permission on control file */
6156 /* AV: shouldn't we check that it's been opened for read instead? */
6157 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6158 if (ret < 0)
6159 goto out_put_cfile;
6160
fba94807
TH
6161 /*
6162 * Determine the event callbacks and set them in @event. This used
6163 * to be done via struct cftype but cgroup core no longer knows
6164 * about these events. The following is crude but the whole thing
6165 * is for compatibility anyway.
3bc942f3
TH
6166 *
6167 * DO NOT ADD NEW FILES.
fba94807
TH
6168 */
6169 name = cfile.file->f_dentry->d_name.name;
6170
6171 if (!strcmp(name, "memory.usage_in_bytes")) {
6172 event->register_event = mem_cgroup_usage_register_event;
6173 event->unregister_event = mem_cgroup_usage_unregister_event;
6174 } else if (!strcmp(name, "memory.oom_control")) {
6175 event->register_event = mem_cgroup_oom_register_event;
6176 event->unregister_event = mem_cgroup_oom_unregister_event;
6177 } else if (!strcmp(name, "memory.pressure_level")) {
6178 event->register_event = vmpressure_register_event;
6179 event->unregister_event = vmpressure_unregister_event;
6180 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6181 event->register_event = memsw_cgroup_usage_register_event;
6182 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6183 } else {
6184 ret = -EINVAL;
6185 goto out_put_cfile;
6186 }
6187
79bd9814 6188 /*
b5557c4c
TH
6189 * Verify @cfile should belong to @css. Also, remaining events are
6190 * automatically removed on cgroup destruction but the removal is
6191 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6192 */
6193 rcu_read_lock();
6194
6195 ret = -EINVAL;
b5557c4c
TH
6196 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6197 &mem_cgroup_subsys);
6198 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6199 ret = 0;
6200
6201 rcu_read_unlock();
6202 if (ret)
6203 goto out_put_cfile;
6204
59b6f873 6205 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6206 if (ret)
6207 goto out_put_css;
6208
6209 efile.file->f_op->poll(efile.file, &event->pt);
6210
fba94807
TH
6211 spin_lock(&memcg->event_list_lock);
6212 list_add(&event->list, &memcg->event_list);
6213 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6214
6215 fdput(cfile);
6216 fdput(efile);
6217
6218 return 0;
6219
6220out_put_css:
b5557c4c 6221 css_put(css);
79bd9814
TH
6222out_put_cfile:
6223 fdput(cfile);
6224out_put_eventfd:
6225 eventfd_ctx_put(event->eventfd);
6226out_put_efile:
6227 fdput(efile);
6228out_kfree:
6229 kfree(event);
6230
6231 return ret;
6232}
6233
8cdea7c0
BS
6234static struct cftype mem_cgroup_files[] = {
6235 {
0eea1030 6236 .name = "usage_in_bytes",
8c7c6e34 6237 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6238 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6239 },
c84872e1
PE
6240 {
6241 .name = "max_usage_in_bytes",
8c7c6e34 6242 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6243 .trigger = mem_cgroup_reset,
791badbd 6244 .read_u64 = mem_cgroup_read_u64,
c84872e1 6245 },
8cdea7c0 6246 {
0eea1030 6247 .name = "limit_in_bytes",
8c7c6e34 6248 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6249 .write_string = mem_cgroup_write,
791badbd 6250 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6251 },
296c81d8
BS
6252 {
6253 .name = "soft_limit_in_bytes",
6254 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6255 .write_string = mem_cgroup_write,
791badbd 6256 .read_u64 = mem_cgroup_read_u64,
296c81d8 6257 },
8cdea7c0
BS
6258 {
6259 .name = "failcnt",
8c7c6e34 6260 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6261 .trigger = mem_cgroup_reset,
791badbd 6262 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6263 },
d2ceb9b7
KH
6264 {
6265 .name = "stat",
2da8ca82 6266 .seq_show = memcg_stat_show,
d2ceb9b7 6267 },
c1e862c1
KH
6268 {
6269 .name = "force_empty",
6270 .trigger = mem_cgroup_force_empty_write,
6271 },
18f59ea7
BS
6272 {
6273 .name = "use_hierarchy",
f00baae7 6274 .flags = CFTYPE_INSANE,
18f59ea7
BS
6275 .write_u64 = mem_cgroup_hierarchy_write,
6276 .read_u64 = mem_cgroup_hierarchy_read,
6277 },
79bd9814 6278 {
3bc942f3
TH
6279 .name = "cgroup.event_control", /* XXX: for compat */
6280 .write_string = memcg_write_event_control,
79bd9814
TH
6281 .flags = CFTYPE_NO_PREFIX,
6282 .mode = S_IWUGO,
6283 },
a7885eb8
KM
6284 {
6285 .name = "swappiness",
6286 .read_u64 = mem_cgroup_swappiness_read,
6287 .write_u64 = mem_cgroup_swappiness_write,
6288 },
7dc74be0
DN
6289 {
6290 .name = "move_charge_at_immigrate",
6291 .read_u64 = mem_cgroup_move_charge_read,
6292 .write_u64 = mem_cgroup_move_charge_write,
6293 },
9490ff27
KH
6294 {
6295 .name = "oom_control",
2da8ca82 6296 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6297 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6298 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6299 },
70ddf637
AV
6300 {
6301 .name = "pressure_level",
70ddf637 6302 },
406eb0c9
YH
6303#ifdef CONFIG_NUMA
6304 {
6305 .name = "numa_stat",
2da8ca82 6306 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6307 },
6308#endif
510fc4e1
GC
6309#ifdef CONFIG_MEMCG_KMEM
6310 {
6311 .name = "kmem.limit_in_bytes",
6312 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6313 .write_string = mem_cgroup_write,
791badbd 6314 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6315 },
6316 {
6317 .name = "kmem.usage_in_bytes",
6318 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6319 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6320 },
6321 {
6322 .name = "kmem.failcnt",
6323 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6324 .trigger = mem_cgroup_reset,
791badbd 6325 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6326 },
6327 {
6328 .name = "kmem.max_usage_in_bytes",
6329 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6330 .trigger = mem_cgroup_reset,
791badbd 6331 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6332 },
749c5415
GC
6333#ifdef CONFIG_SLABINFO
6334 {
6335 .name = "kmem.slabinfo",
2da8ca82 6336 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6337 },
6338#endif
8c7c6e34 6339#endif
6bc10349 6340 { }, /* terminate */
af36f906 6341};
8c7c6e34 6342
2d11085e
MH
6343#ifdef CONFIG_MEMCG_SWAP
6344static struct cftype memsw_cgroup_files[] = {
6345 {
6346 .name = "memsw.usage_in_bytes",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6348 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6349 },
6350 {
6351 .name = "memsw.max_usage_in_bytes",
6352 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6353 .trigger = mem_cgroup_reset,
791badbd 6354 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6355 },
6356 {
6357 .name = "memsw.limit_in_bytes",
6358 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6359 .write_string = mem_cgroup_write,
791badbd 6360 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6361 },
6362 {
6363 .name = "memsw.failcnt",
6364 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6365 .trigger = mem_cgroup_reset,
791badbd 6366 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6367 },
6368 { }, /* terminate */
6369};
6370#endif
c0ff4b85 6371static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6372{
6373 struct mem_cgroup_per_node *pn;
1ecaab2b 6374 struct mem_cgroup_per_zone *mz;
41e3355d 6375 int zone, tmp = node;
1ecaab2b
KH
6376 /*
6377 * This routine is called against possible nodes.
6378 * But it's BUG to call kmalloc() against offline node.
6379 *
6380 * TODO: this routine can waste much memory for nodes which will
6381 * never be onlined. It's better to use memory hotplug callback
6382 * function.
6383 */
41e3355d
KH
6384 if (!node_state(node, N_NORMAL_MEMORY))
6385 tmp = -1;
17295c88 6386 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6387 if (!pn)
6388 return 1;
1ecaab2b 6389
1ecaab2b
KH
6390 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6391 mz = &pn->zoneinfo[zone];
bea8c150 6392 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6393 mz->usage_in_excess = 0;
6394 mz->on_tree = false;
d79154bb 6395 mz->memcg = memcg;
1ecaab2b 6396 }
54f72fe0 6397 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6398 return 0;
6399}
6400
c0ff4b85 6401static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6402{
54f72fe0 6403 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6404}
6405
33327948
KH
6406static struct mem_cgroup *mem_cgroup_alloc(void)
6407{
d79154bb 6408 struct mem_cgroup *memcg;
8ff69e2c 6409 size_t size;
33327948 6410
8ff69e2c
VD
6411 size = sizeof(struct mem_cgroup);
6412 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6413
8ff69e2c 6414 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6415 if (!memcg)
e7bbcdf3
DC
6416 return NULL;
6417
d79154bb
HD
6418 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6419 if (!memcg->stat)
d2e61b8d 6420 goto out_free;
d79154bb
HD
6421 spin_lock_init(&memcg->pcp_counter_lock);
6422 return memcg;
d2e61b8d
DC
6423
6424out_free:
8ff69e2c 6425 kfree(memcg);
d2e61b8d 6426 return NULL;
33327948
KH
6427}
6428
59927fb9 6429/*
c8b2a36f
GC
6430 * At destroying mem_cgroup, references from swap_cgroup can remain.
6431 * (scanning all at force_empty is too costly...)
6432 *
6433 * Instead of clearing all references at force_empty, we remember
6434 * the number of reference from swap_cgroup and free mem_cgroup when
6435 * it goes down to 0.
6436 *
6437 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6438 */
c8b2a36f
GC
6439
6440static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6441{
c8b2a36f 6442 int node;
59927fb9 6443
bb4cc1a8 6444 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6445
6446 for_each_node(node)
6447 free_mem_cgroup_per_zone_info(memcg, node);
6448
6449 free_percpu(memcg->stat);
6450
3f134619
GC
6451 /*
6452 * We need to make sure that (at least for now), the jump label
6453 * destruction code runs outside of the cgroup lock. This is because
6454 * get_online_cpus(), which is called from the static_branch update,
6455 * can't be called inside the cgroup_lock. cpusets are the ones
6456 * enforcing this dependency, so if they ever change, we might as well.
6457 *
6458 * schedule_work() will guarantee this happens. Be careful if you need
6459 * to move this code around, and make sure it is outside
6460 * the cgroup_lock.
6461 */
a8964b9b 6462 disarm_static_keys(memcg);
8ff69e2c 6463 kfree(memcg);
59927fb9 6464}
3afe36b1 6465
7bcc1bb1
DN
6466/*
6467 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6468 */
e1aab161 6469struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6470{
c0ff4b85 6471 if (!memcg->res.parent)
7bcc1bb1 6472 return NULL;
c0ff4b85 6473 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6474}
e1aab161 6475EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6476
bb4cc1a8
AM
6477static void __init mem_cgroup_soft_limit_tree_init(void)
6478{
6479 struct mem_cgroup_tree_per_node *rtpn;
6480 struct mem_cgroup_tree_per_zone *rtpz;
6481 int tmp, node, zone;
6482
6483 for_each_node(node) {
6484 tmp = node;
6485 if (!node_state(node, N_NORMAL_MEMORY))
6486 tmp = -1;
6487 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6488 BUG_ON(!rtpn);
6489
6490 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6491
6492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6493 rtpz = &rtpn->rb_tree_per_zone[zone];
6494 rtpz->rb_root = RB_ROOT;
6495 spin_lock_init(&rtpz->lock);
6496 }
6497 }
6498}
6499
0eb253e2 6500static struct cgroup_subsys_state * __ref
eb95419b 6501mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6502{
d142e3e6 6503 struct mem_cgroup *memcg;
04046e1a 6504 long error = -ENOMEM;
6d12e2d8 6505 int node;
8cdea7c0 6506
c0ff4b85
R
6507 memcg = mem_cgroup_alloc();
6508 if (!memcg)
04046e1a 6509 return ERR_PTR(error);
78fb7466 6510
3ed28fa1 6511 for_each_node(node)
c0ff4b85 6512 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6513 goto free_out;
f64c3f54 6514
c077719b 6515 /* root ? */
eb95419b 6516 if (parent_css == NULL) {
a41c58a6 6517 root_mem_cgroup = memcg;
d142e3e6
GC
6518 res_counter_init(&memcg->res, NULL);
6519 res_counter_init(&memcg->memsw, NULL);
6520 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6521 }
28dbc4b6 6522
d142e3e6
GC
6523 memcg->last_scanned_node = MAX_NUMNODES;
6524 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6525 memcg->move_charge_at_immigrate = 0;
6526 mutex_init(&memcg->thresholds_lock);
6527 spin_lock_init(&memcg->move_lock);
70ddf637 6528 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6529 INIT_LIST_HEAD(&memcg->event_list);
6530 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6531
6532 return &memcg->css;
6533
6534free_out:
6535 __mem_cgroup_free(memcg);
6536 return ERR_PTR(error);
6537}
6538
6539static int
eb95419b 6540mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6541{
eb95419b
TH
6542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6543 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6544 int error = 0;
6545
4219b2da
LZ
6546 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6547 return -ENOSPC;
6548
63876986 6549 if (!parent)
d142e3e6
GC
6550 return 0;
6551
0999821b 6552 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6553
6554 memcg->use_hierarchy = parent->use_hierarchy;
6555 memcg->oom_kill_disable = parent->oom_kill_disable;
6556 memcg->swappiness = mem_cgroup_swappiness(parent);
6557
6558 if (parent->use_hierarchy) {
c0ff4b85
R
6559 res_counter_init(&memcg->res, &parent->res);
6560 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6561 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6562
7bcc1bb1 6563 /*
8d76a979
LZ
6564 * No need to take a reference to the parent because cgroup
6565 * core guarantees its existence.
7bcc1bb1 6566 */
18f59ea7 6567 } else {
c0ff4b85
R
6568 res_counter_init(&memcg->res, NULL);
6569 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6570 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6571 /*
6572 * Deeper hierachy with use_hierarchy == false doesn't make
6573 * much sense so let cgroup subsystem know about this
6574 * unfortunate state in our controller.
6575 */
d142e3e6 6576 if (parent != root_mem_cgroup)
8c7f6edb 6577 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6578 }
cbe128e3
GC
6579
6580 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6581 mutex_unlock(&memcg_create_mutex);
d142e3e6 6582 return error;
8cdea7c0
BS
6583}
6584
5f578161
MH
6585/*
6586 * Announce all parents that a group from their hierarchy is gone.
6587 */
6588static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6589{
6590 struct mem_cgroup *parent = memcg;
6591
6592 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6593 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6594
6595 /*
6596 * if the root memcg is not hierarchical we have to check it
6597 * explicitely.
6598 */
6599 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6600 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6601}
6602
eb95419b 6603static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6604{
eb95419b 6605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6606 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6607
6608 /*
6609 * Unregister events and notify userspace.
6610 * Notify userspace about cgroup removing only after rmdir of cgroup
6611 * directory to avoid race between userspace and kernelspace.
6612 */
fba94807
TH
6613 spin_lock(&memcg->event_list_lock);
6614 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6615 list_del_init(&event->list);
6616 schedule_work(&event->remove);
6617 }
fba94807 6618 spin_unlock(&memcg->event_list_lock);
ec64f515 6619
10d5ebf4
LZ
6620 kmem_cgroup_css_offline(memcg);
6621
5f578161 6622 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6623 mem_cgroup_reparent_charges(memcg);
1f458cbf 6624 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6625 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6626}
6627
eb95419b 6628static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6629{
eb95419b 6630 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6631 /*
6632 * XXX: css_offline() would be where we should reparent all
6633 * memory to prepare the cgroup for destruction. However,
6634 * memcg does not do css_tryget() and res_counter charging
6635 * under the same RCU lock region, which means that charging
6636 * could race with offlining. Offlining only happens to
6637 * cgroups with no tasks in them but charges can show up
6638 * without any tasks from the swapin path when the target
6639 * memcg is looked up from the swapout record and not from the
6640 * current task as it usually is. A race like this can leak
6641 * charges and put pages with stale cgroup pointers into
6642 * circulation:
6643 *
6644 * #0 #1
6645 * lookup_swap_cgroup_id()
6646 * rcu_read_lock()
6647 * mem_cgroup_lookup()
6648 * css_tryget()
6649 * rcu_read_unlock()
6650 * disable css_tryget()
6651 * call_rcu()
6652 * offline_css()
6653 * reparent_charges()
6654 * res_counter_charge()
6655 * css_put()
6656 * css_free()
6657 * pc->mem_cgroup = dead memcg
6658 * add page to lru
6659 *
6660 * The bulk of the charges are still moved in offline_css() to
6661 * avoid pinning a lot of pages in case a long-term reference
6662 * like a swapout record is deferring the css_free() to long
6663 * after offlining. But this makes sure we catch any charges
6664 * made after offlining:
6665 */
6666 mem_cgroup_reparent_charges(memcg);
c268e994 6667
10d5ebf4 6668 memcg_destroy_kmem(memcg);
465939a1 6669 __mem_cgroup_free(memcg);
8cdea7c0
BS
6670}
6671
02491447 6672#ifdef CONFIG_MMU
7dc74be0 6673/* Handlers for move charge at task migration. */
854ffa8d
DN
6674#define PRECHARGE_COUNT_AT_ONCE 256
6675static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6676{
854ffa8d
DN
6677 int ret = 0;
6678 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6679 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6680
c0ff4b85 6681 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6682 mc.precharge += count;
6683 /* we don't need css_get for root */
6684 return ret;
6685 }
6686 /* try to charge at once */
6687 if (count > 1) {
6688 struct res_counter *dummy;
6689 /*
c0ff4b85 6690 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6691 * by cgroup_lock_live_cgroup() that it is not removed and we
6692 * are still under the same cgroup_mutex. So we can postpone
6693 * css_get().
6694 */
c0ff4b85 6695 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6696 goto one_by_one;
c0ff4b85 6697 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6698 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6699 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6700 goto one_by_one;
6701 }
6702 mc.precharge += count;
854ffa8d
DN
6703 return ret;
6704 }
6705one_by_one:
6706 /* fall back to one by one charge */
6707 while (count--) {
6708 if (signal_pending(current)) {
6709 ret = -EINTR;
6710 break;
6711 }
6712 if (!batch_count--) {
6713 batch_count = PRECHARGE_COUNT_AT_ONCE;
6714 cond_resched();
6715 }
c0ff4b85
R
6716 ret = __mem_cgroup_try_charge(NULL,
6717 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6718 if (ret)
854ffa8d 6719 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6720 return ret;
854ffa8d
DN
6721 mc.precharge++;
6722 }
4ffef5fe
DN
6723 return ret;
6724}
6725
6726/**
8d32ff84 6727 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6728 * @vma: the vma the pte to be checked belongs
6729 * @addr: the address corresponding to the pte to be checked
6730 * @ptent: the pte to be checked
02491447 6731 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6732 *
6733 * Returns
6734 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6735 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6736 * move charge. if @target is not NULL, the page is stored in target->page
6737 * with extra refcnt got(Callers should handle it).
02491447
DN
6738 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6739 * target for charge migration. if @target is not NULL, the entry is stored
6740 * in target->ent.
4ffef5fe
DN
6741 *
6742 * Called with pte lock held.
6743 */
4ffef5fe
DN
6744union mc_target {
6745 struct page *page;
02491447 6746 swp_entry_t ent;
4ffef5fe
DN
6747};
6748
4ffef5fe 6749enum mc_target_type {
8d32ff84 6750 MC_TARGET_NONE = 0,
4ffef5fe 6751 MC_TARGET_PAGE,
02491447 6752 MC_TARGET_SWAP,
4ffef5fe
DN
6753};
6754
90254a65
DN
6755static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6756 unsigned long addr, pte_t ptent)
4ffef5fe 6757{
90254a65 6758 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6759
90254a65
DN
6760 if (!page || !page_mapped(page))
6761 return NULL;
6762 if (PageAnon(page)) {
6763 /* we don't move shared anon */
4b91355e 6764 if (!move_anon())
90254a65 6765 return NULL;
87946a72
DN
6766 } else if (!move_file())
6767 /* we ignore mapcount for file pages */
90254a65
DN
6768 return NULL;
6769 if (!get_page_unless_zero(page))
6770 return NULL;
6771
6772 return page;
6773}
6774
4b91355e 6775#ifdef CONFIG_SWAP
90254a65
DN
6776static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6777 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6778{
90254a65
DN
6779 struct page *page = NULL;
6780 swp_entry_t ent = pte_to_swp_entry(ptent);
6781
6782 if (!move_anon() || non_swap_entry(ent))
6783 return NULL;
4b91355e
KH
6784 /*
6785 * Because lookup_swap_cache() updates some statistics counter,
6786 * we call find_get_page() with swapper_space directly.
6787 */
33806f06 6788 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6789 if (do_swap_account)
6790 entry->val = ent.val;
6791
6792 return page;
6793}
4b91355e
KH
6794#else
6795static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6796 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6797{
6798 return NULL;
6799}
6800#endif
90254a65 6801
87946a72
DN
6802static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6803 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6804{
6805 struct page *page = NULL;
87946a72
DN
6806 struct address_space *mapping;
6807 pgoff_t pgoff;
6808
6809 if (!vma->vm_file) /* anonymous vma */
6810 return NULL;
6811 if (!move_file())
6812 return NULL;
6813
87946a72
DN
6814 mapping = vma->vm_file->f_mapping;
6815 if (pte_none(ptent))
6816 pgoff = linear_page_index(vma, addr);
6817 else /* pte_file(ptent) is true */
6818 pgoff = pte_to_pgoff(ptent);
6819
6820 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6821 page = find_get_page(mapping, pgoff);
6822
6823#ifdef CONFIG_SWAP
6824 /* shmem/tmpfs may report page out on swap: account for that too. */
6825 if (radix_tree_exceptional_entry(page)) {
6826 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6827 if (do_swap_account)
aa3b1895 6828 *entry = swap;
33806f06 6829 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6830 }
aa3b1895 6831#endif
87946a72
DN
6832 return page;
6833}
6834
8d32ff84 6835static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6836 unsigned long addr, pte_t ptent, union mc_target *target)
6837{
6838 struct page *page = NULL;
6839 struct page_cgroup *pc;
8d32ff84 6840 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6841 swp_entry_t ent = { .val = 0 };
6842
6843 if (pte_present(ptent))
6844 page = mc_handle_present_pte(vma, addr, ptent);
6845 else if (is_swap_pte(ptent))
6846 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6847 else if (pte_none(ptent) || pte_file(ptent))
6848 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6849
6850 if (!page && !ent.val)
8d32ff84 6851 return ret;
02491447
DN
6852 if (page) {
6853 pc = lookup_page_cgroup(page);
6854 /*
6855 * Do only loose check w/o page_cgroup lock.
6856 * mem_cgroup_move_account() checks the pc is valid or not under
6857 * the lock.
6858 */
6859 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6860 ret = MC_TARGET_PAGE;
6861 if (target)
6862 target->page = page;
6863 }
6864 if (!ret || !target)
6865 put_page(page);
6866 }
90254a65
DN
6867 /* There is a swap entry and a page doesn't exist or isn't charged */
6868 if (ent.val && !ret &&
34c00c31 6869 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6870 ret = MC_TARGET_SWAP;
6871 if (target)
6872 target->ent = ent;
4ffef5fe 6873 }
4ffef5fe
DN
6874 return ret;
6875}
6876
12724850
NH
6877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6878/*
6879 * We don't consider swapping or file mapped pages because THP does not
6880 * support them for now.
6881 * Caller should make sure that pmd_trans_huge(pmd) is true.
6882 */
6883static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6884 unsigned long addr, pmd_t pmd, union mc_target *target)
6885{
6886 struct page *page = NULL;
6887 struct page_cgroup *pc;
6888 enum mc_target_type ret = MC_TARGET_NONE;
6889
6890 page = pmd_page(pmd);
309381fe 6891 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6892 if (!move_anon())
6893 return ret;
6894 pc = lookup_page_cgroup(page);
6895 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6896 ret = MC_TARGET_PAGE;
6897 if (target) {
6898 get_page(page);
6899 target->page = page;
6900 }
6901 }
6902 return ret;
6903}
6904#else
6905static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6906 unsigned long addr, pmd_t pmd, union mc_target *target)
6907{
6908 return MC_TARGET_NONE;
6909}
6910#endif
6911
4ffef5fe
DN
6912static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6913 unsigned long addr, unsigned long end,
6914 struct mm_walk *walk)
6915{
6916 struct vm_area_struct *vma = walk->private;
6917 pte_t *pte;
6918 spinlock_t *ptl;
6919
bf929152 6920 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6921 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6922 mc.precharge += HPAGE_PMD_NR;
bf929152 6923 spin_unlock(ptl);
1a5a9906 6924 return 0;
12724850 6925 }
03319327 6926
45f83cef
AA
6927 if (pmd_trans_unstable(pmd))
6928 return 0;
4ffef5fe
DN
6929 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6930 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6931 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6932 mc.precharge++; /* increment precharge temporarily */
6933 pte_unmap_unlock(pte - 1, ptl);
6934 cond_resched();
6935
7dc74be0
DN
6936 return 0;
6937}
6938
4ffef5fe
DN
6939static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6940{
6941 unsigned long precharge;
6942 struct vm_area_struct *vma;
6943
dfe076b0 6944 down_read(&mm->mmap_sem);
4ffef5fe
DN
6945 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6946 struct mm_walk mem_cgroup_count_precharge_walk = {
6947 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6948 .mm = mm,
6949 .private = vma,
6950 };
6951 if (is_vm_hugetlb_page(vma))
6952 continue;
4ffef5fe
DN
6953 walk_page_range(vma->vm_start, vma->vm_end,
6954 &mem_cgroup_count_precharge_walk);
6955 }
dfe076b0 6956 up_read(&mm->mmap_sem);
4ffef5fe
DN
6957
6958 precharge = mc.precharge;
6959 mc.precharge = 0;
6960
6961 return precharge;
6962}
6963
4ffef5fe
DN
6964static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6965{
dfe076b0
DN
6966 unsigned long precharge = mem_cgroup_count_precharge(mm);
6967
6968 VM_BUG_ON(mc.moving_task);
6969 mc.moving_task = current;
6970 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6971}
6972
dfe076b0
DN
6973/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6974static void __mem_cgroup_clear_mc(void)
4ffef5fe 6975{
2bd9bb20
KH
6976 struct mem_cgroup *from = mc.from;
6977 struct mem_cgroup *to = mc.to;
4050377b 6978 int i;
2bd9bb20 6979
4ffef5fe 6980 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6981 if (mc.precharge) {
6982 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6983 mc.precharge = 0;
6984 }
6985 /*
6986 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6987 * we must uncharge here.
6988 */
6989 if (mc.moved_charge) {
6990 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6991 mc.moved_charge = 0;
4ffef5fe 6992 }
483c30b5
DN
6993 /* we must fixup refcnts and charges */
6994 if (mc.moved_swap) {
483c30b5
DN
6995 /* uncharge swap account from the old cgroup */
6996 if (!mem_cgroup_is_root(mc.from))
6997 res_counter_uncharge(&mc.from->memsw,
6998 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6999
7000 for (i = 0; i < mc.moved_swap; i++)
7001 css_put(&mc.from->css);
483c30b5
DN
7002
7003 if (!mem_cgroup_is_root(mc.to)) {
7004 /*
7005 * we charged both to->res and to->memsw, so we should
7006 * uncharge to->res.
7007 */
7008 res_counter_uncharge(&mc.to->res,
7009 PAGE_SIZE * mc.moved_swap);
483c30b5 7010 }
4050377b 7011 /* we've already done css_get(mc.to) */
483c30b5
DN
7012 mc.moved_swap = 0;
7013 }
dfe076b0
DN
7014 memcg_oom_recover(from);
7015 memcg_oom_recover(to);
7016 wake_up_all(&mc.waitq);
7017}
7018
7019static void mem_cgroup_clear_mc(void)
7020{
7021 struct mem_cgroup *from = mc.from;
7022
7023 /*
7024 * we must clear moving_task before waking up waiters at the end of
7025 * task migration.
7026 */
7027 mc.moving_task = NULL;
7028 __mem_cgroup_clear_mc();
2bd9bb20 7029 spin_lock(&mc.lock);
4ffef5fe
DN
7030 mc.from = NULL;
7031 mc.to = NULL;
2bd9bb20 7032 spin_unlock(&mc.lock);
32047e2a 7033 mem_cgroup_end_move(from);
4ffef5fe
DN
7034}
7035
eb95419b 7036static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7037 struct cgroup_taskset *tset)
7dc74be0 7038{
2f7ee569 7039 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7040 int ret = 0;
eb95419b 7041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7042 unsigned long move_charge_at_immigrate;
7dc74be0 7043
ee5e8472
GC
7044 /*
7045 * We are now commited to this value whatever it is. Changes in this
7046 * tunable will only affect upcoming migrations, not the current one.
7047 * So we need to save it, and keep it going.
7048 */
7049 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7050 if (move_charge_at_immigrate) {
7dc74be0
DN
7051 struct mm_struct *mm;
7052 struct mem_cgroup *from = mem_cgroup_from_task(p);
7053
c0ff4b85 7054 VM_BUG_ON(from == memcg);
7dc74be0
DN
7055
7056 mm = get_task_mm(p);
7057 if (!mm)
7058 return 0;
7dc74be0 7059 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7060 if (mm->owner == p) {
7061 VM_BUG_ON(mc.from);
7062 VM_BUG_ON(mc.to);
7063 VM_BUG_ON(mc.precharge);
854ffa8d 7064 VM_BUG_ON(mc.moved_charge);
483c30b5 7065 VM_BUG_ON(mc.moved_swap);
32047e2a 7066 mem_cgroup_start_move(from);
2bd9bb20 7067 spin_lock(&mc.lock);
4ffef5fe 7068 mc.from = from;
c0ff4b85 7069 mc.to = memcg;
ee5e8472 7070 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7071 spin_unlock(&mc.lock);
dfe076b0 7072 /* We set mc.moving_task later */
4ffef5fe
DN
7073
7074 ret = mem_cgroup_precharge_mc(mm);
7075 if (ret)
7076 mem_cgroup_clear_mc();
dfe076b0
DN
7077 }
7078 mmput(mm);
7dc74be0
DN
7079 }
7080 return ret;
7081}
7082
eb95419b 7083static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7084 struct cgroup_taskset *tset)
7dc74be0 7085{
4ffef5fe 7086 mem_cgroup_clear_mc();
7dc74be0
DN
7087}
7088
4ffef5fe
DN
7089static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7090 unsigned long addr, unsigned long end,
7091 struct mm_walk *walk)
7dc74be0 7092{
4ffef5fe
DN
7093 int ret = 0;
7094 struct vm_area_struct *vma = walk->private;
7095 pte_t *pte;
7096 spinlock_t *ptl;
12724850
NH
7097 enum mc_target_type target_type;
7098 union mc_target target;
7099 struct page *page;
7100 struct page_cgroup *pc;
4ffef5fe 7101
12724850
NH
7102 /*
7103 * We don't take compound_lock() here but no race with splitting thp
7104 * happens because:
7105 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7106 * under splitting, which means there's no concurrent thp split,
7107 * - if another thread runs into split_huge_page() just after we
7108 * entered this if-block, the thread must wait for page table lock
7109 * to be unlocked in __split_huge_page_splitting(), where the main
7110 * part of thp split is not executed yet.
7111 */
bf929152 7112 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7113 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7114 spin_unlock(ptl);
12724850
NH
7115 return 0;
7116 }
7117 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7118 if (target_type == MC_TARGET_PAGE) {
7119 page = target.page;
7120 if (!isolate_lru_page(page)) {
7121 pc = lookup_page_cgroup(page);
7122 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7123 pc, mc.from, mc.to)) {
12724850
NH
7124 mc.precharge -= HPAGE_PMD_NR;
7125 mc.moved_charge += HPAGE_PMD_NR;
7126 }
7127 putback_lru_page(page);
7128 }
7129 put_page(page);
7130 }
bf929152 7131 spin_unlock(ptl);
1a5a9906 7132 return 0;
12724850
NH
7133 }
7134
45f83cef
AA
7135 if (pmd_trans_unstable(pmd))
7136 return 0;
4ffef5fe
DN
7137retry:
7138 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7139 for (; addr != end; addr += PAGE_SIZE) {
7140 pte_t ptent = *(pte++);
02491447 7141 swp_entry_t ent;
4ffef5fe
DN
7142
7143 if (!mc.precharge)
7144 break;
7145
8d32ff84 7146 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7147 case MC_TARGET_PAGE:
7148 page = target.page;
7149 if (isolate_lru_page(page))
7150 goto put;
7151 pc = lookup_page_cgroup(page);
7ec99d62 7152 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7153 mc.from, mc.to)) {
4ffef5fe 7154 mc.precharge--;
854ffa8d
DN
7155 /* we uncharge from mc.from later. */
7156 mc.moved_charge++;
4ffef5fe
DN
7157 }
7158 putback_lru_page(page);
8d32ff84 7159put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7160 put_page(page);
7161 break;
02491447
DN
7162 case MC_TARGET_SWAP:
7163 ent = target.ent;
e91cbb42 7164 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7165 mc.precharge--;
483c30b5
DN
7166 /* we fixup refcnts and charges later. */
7167 mc.moved_swap++;
7168 }
02491447 7169 break;
4ffef5fe
DN
7170 default:
7171 break;
7172 }
7173 }
7174 pte_unmap_unlock(pte - 1, ptl);
7175 cond_resched();
7176
7177 if (addr != end) {
7178 /*
7179 * We have consumed all precharges we got in can_attach().
7180 * We try charge one by one, but don't do any additional
7181 * charges to mc.to if we have failed in charge once in attach()
7182 * phase.
7183 */
854ffa8d 7184 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7185 if (!ret)
7186 goto retry;
7187 }
7188
7189 return ret;
7190}
7191
7192static void mem_cgroup_move_charge(struct mm_struct *mm)
7193{
7194 struct vm_area_struct *vma;
7195
7196 lru_add_drain_all();
dfe076b0
DN
7197retry:
7198 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7199 /*
7200 * Someone who are holding the mmap_sem might be waiting in
7201 * waitq. So we cancel all extra charges, wake up all waiters,
7202 * and retry. Because we cancel precharges, we might not be able
7203 * to move enough charges, but moving charge is a best-effort
7204 * feature anyway, so it wouldn't be a big problem.
7205 */
7206 __mem_cgroup_clear_mc();
7207 cond_resched();
7208 goto retry;
7209 }
4ffef5fe
DN
7210 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7211 int ret;
7212 struct mm_walk mem_cgroup_move_charge_walk = {
7213 .pmd_entry = mem_cgroup_move_charge_pte_range,
7214 .mm = mm,
7215 .private = vma,
7216 };
7217 if (is_vm_hugetlb_page(vma))
7218 continue;
4ffef5fe
DN
7219 ret = walk_page_range(vma->vm_start, vma->vm_end,
7220 &mem_cgroup_move_charge_walk);
7221 if (ret)
7222 /*
7223 * means we have consumed all precharges and failed in
7224 * doing additional charge. Just abandon here.
7225 */
7226 break;
7227 }
dfe076b0 7228 up_read(&mm->mmap_sem);
7dc74be0
DN
7229}
7230
eb95419b 7231static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7232 struct cgroup_taskset *tset)
67e465a7 7233{
2f7ee569 7234 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7235 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7236
dfe076b0 7237 if (mm) {
a433658c
KM
7238 if (mc.to)
7239 mem_cgroup_move_charge(mm);
dfe076b0
DN
7240 mmput(mm);
7241 }
a433658c
KM
7242 if (mc.to)
7243 mem_cgroup_clear_mc();
67e465a7 7244}
5cfb80a7 7245#else /* !CONFIG_MMU */
eb95419b 7246static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7247 struct cgroup_taskset *tset)
5cfb80a7
DN
7248{
7249 return 0;
7250}
eb95419b 7251static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7252 struct cgroup_taskset *tset)
5cfb80a7
DN
7253{
7254}
eb95419b 7255static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7256 struct cgroup_taskset *tset)
5cfb80a7
DN
7257{
7258}
7259#endif
67e465a7 7260
f00baae7
TH
7261/*
7262 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7263 * to verify sane_behavior flag on each mount attempt.
7264 */
eb95419b 7265static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7266{
7267 /*
7268 * use_hierarchy is forced with sane_behavior. cgroup core
7269 * guarantees that @root doesn't have any children, so turning it
7270 * on for the root memcg is enough.
7271 */
eb95419b
TH
7272 if (cgroup_sane_behavior(root_css->cgroup))
7273 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7274}
7275
8cdea7c0
BS
7276struct cgroup_subsys mem_cgroup_subsys = {
7277 .name = "memory",
7278 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7279 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7280 .css_online = mem_cgroup_css_online,
92fb9748
TH
7281 .css_offline = mem_cgroup_css_offline,
7282 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7283 .can_attach = mem_cgroup_can_attach,
7284 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7285 .attach = mem_cgroup_move_task,
f00baae7 7286 .bind = mem_cgroup_bind,
6bc10349 7287 .base_cftypes = mem_cgroup_files,
6d12e2d8 7288 .early_init = 0,
8cdea7c0 7289};
c077719b 7290
c255a458 7291#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7292static int __init enable_swap_account(char *s)
7293{
a2c8990a 7294 if (!strcmp(s, "1"))
a42c390c 7295 really_do_swap_account = 1;
a2c8990a 7296 else if (!strcmp(s, "0"))
a42c390c
MH
7297 really_do_swap_account = 0;
7298 return 1;
7299}
a2c8990a 7300__setup("swapaccount=", enable_swap_account);
c077719b 7301
2d11085e
MH
7302static void __init memsw_file_init(void)
7303{
6acc8b02
MH
7304 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7305}
7306
7307static void __init enable_swap_cgroup(void)
7308{
7309 if (!mem_cgroup_disabled() && really_do_swap_account) {
7310 do_swap_account = 1;
7311 memsw_file_init();
7312 }
2d11085e 7313}
6acc8b02 7314
2d11085e 7315#else
6acc8b02 7316static void __init enable_swap_cgroup(void)
2d11085e
MH
7317{
7318}
c077719b 7319#endif
2d11085e
MH
7320
7321/*
1081312f
MH
7322 * subsys_initcall() for memory controller.
7323 *
7324 * Some parts like hotcpu_notifier() have to be initialized from this context
7325 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7326 * everything that doesn't depend on a specific mem_cgroup structure should
7327 * be initialized from here.
2d11085e
MH
7328 */
7329static int __init mem_cgroup_init(void)
7330{
7331 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7332 enable_swap_cgroup();
bb4cc1a8 7333 mem_cgroup_soft_limit_tree_init();
e4777496 7334 memcg_stock_init();
2d11085e
MH
7335 return 0;
7336}
7337subsys_initcall(mem_cgroup_init);