]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memcontrol.c
memcg: writeback: use memcg->cgwb_list directly
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
7ffc0edc
MH
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
127424c8 254#ifndef CONFIG_SLOB
55007d84 255/*
f7ce3190 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
55007d84 262 *
dbcf73e2
VD
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
55007d84 265 */
dbcf73e2
VD
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
749c5415 268
05257a1a
VD
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
55007d84
GC
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
b8627835 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
b8627835 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 296
d7f25f8a
GC
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
ef12947c 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 305
17cc4dfe
TH
306struct workqueue_struct *memcg_kmem_cache_wq;
307
127424c8 308#endif /* !CONFIG_SLOB */
a8964b9b 309
ad7fa852
TH
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
ad7fa852
TH
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
ad7fa852
TH
325 memcg = page->mem_cgroup;
326
9e10a130 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
328 memcg = root_mem_cgroup;
329
ad7fa852
TH
330 return &memcg->css;
331}
332
2fc04524
VD
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
ef8f2327
MG
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 363{
97a6c37b 364 int nid = page_to_nid(page);
f64c3f54 365
ef8f2327 366 return memcg->nodeinfo[nid];
f64c3f54
BS
367}
368
ef8f2327
MG
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
bb4cc1a8 371{
ef8f2327 372 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
373}
374
ef8f2327 375static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
bb4cc1a8 379
ef8f2327 380 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
381}
382
ef8f2327
MG
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 385 unsigned long new_usage_in_excess)
bb4cc1a8
AM
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
ef8f2327 389 struct mem_cgroup_per_node *mz_node;
fa90b2fd 390 bool rightmost = true;
bb4cc1a8
AM
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
ef8f2327 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 401 tree_node);
fa90b2fd 402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 403 p = &(*p)->rb_left;
fa90b2fd
DB
404 rightmost = false;
405 }
406
bb4cc1a8
AM
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
fa90b2fd
DB
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
bb4cc1a8
AM
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
ef8f2327
MG
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
425{
426 if (!mz->on_tree)
427 return;
fa90b2fd
DB
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
bb4cc1a8
AM
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
465 if (!mctz)
466 return;
bb4cc1a8
AM
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 472 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 473 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
0a31bc97
JW
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
482 /* if on-tree, remove it */
483 if (mz->on_tree)
cf2c8127 484 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
cf2c8127 489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 490 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
ef8f2327
MG
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
bb4cc1a8 500
e231875b 501 for_each_node(nid) {
ef8f2327
MG
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 511{
ef8f2327 512 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
513
514retry:
515 mz = NULL;
fa90b2fd 516 if (!mctz->rb_rightmost)
bb4cc1a8
AM
517 goto done; /* Nothing to reclaim from */
518
fa90b2fd
DB
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
cf2c8127 526 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 527 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 528 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
529 goto retry;
530done:
531 return mz;
532}
533
ef8f2327
MG
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 536{
ef8f2327 537 struct mem_cgroup_per_node *mz;
bb4cc1a8 538
0a31bc97 539 spin_lock_irq(&mctz->lock);
bb4cc1a8 540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 541 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
542 return mz;
543}
544
ccda7f43 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 546 int event)
e9f8974f 547{
a983b5eb 548 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
549}
550
c0ff4b85 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 552 struct page *page,
f627c2f5 553 bool compound, int nr_pages)
d52aa412 554{
b2402857
KH
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
0a31bc97 559 if (PageAnon(page))
c9019e9b 560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 561 else {
c9019e9b 562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 563 if (PageSwapBacked(page))
c9019e9b 564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 565 }
55e462b0 566
f627c2f5
KS
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 570 }
b070e65c 571
e401f176
KH
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
c9019e9b 574 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 575 else {
c9019e9b 576 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
577 nr_pages = -nr_pages; /* for event */
578 }
e401f176 579
a983b5eb 580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
581}
582
0a6b76dd
VD
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
bb2a0de9 585{
b4536f0c 586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 587 unsigned long nr = 0;
ef8f2327 588 enum lru_list lru;
889976db 589
e231875b 590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 591
ef8f2327
MG
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
b4536f0c 595 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
596 }
597 return nr;
889976db 598}
bb2a0de9 599
c0ff4b85 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 601 unsigned int lru_mask)
6d12e2d8 602{
e231875b 603 unsigned long nr = 0;
889976db 604 int nid;
6d12e2d8 605
31aaea4a 606 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
d52aa412
KH
609}
610
f53d7ce3
JW
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
7a159cc9
JW
613{
614 unsigned long val, next;
615
a983b5eb
JW
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 618 /* from time_after() in jiffies.h */
6a1a8b80 619 if ((long)(next - val) < 0) {
f53d7ce3
JW
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
bb4cc1a8
AM
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
f53d7ce3
JW
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
a983b5eb 633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 634 return true;
7a159cc9 635 }
f53d7ce3 636 return false;
d2265e6f
KH
637}
638
639/*
640 * Check events in order.
641 *
642 */
c0ff4b85 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
644{
645 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 648 bool do_softlimit;
82b3f2a7 649 bool do_numainfo __maybe_unused;
f53d7ce3 650
bb4cc1a8
AM
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
c0ff4b85 657 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
453a9bf3 660#if MAX_NUMNODES > 1
f53d7ce3 661 if (unlikely(do_numainfo))
c0ff4b85 662 atomic_inc(&memcg->numainfo_events);
453a9bf3 663#endif
0a31bc97 664 }
d2265e6f
KH
665}
666
cf475ad2 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 668{
31a78f23
BS
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
073219e9 677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 678}
33398cf2 679EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 680
df381975 681static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 682{
c0ff4b85 683 struct mem_cgroup *memcg = NULL;
0b7f569e 684
54595fe2
KH
685 rcu_read_lock();
686 do {
6f6acb00
MH
687 /*
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
691 */
692 if (unlikely(!mm))
df381975 693 memcg = root_mem_cgroup;
6f6acb00
MH
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
698 }
ec903c0c 699 } while (!css_tryget_online(&memcg->css));
54595fe2 700 rcu_read_unlock();
c0ff4b85 701 return memcg;
54595fe2
KH
702}
703
5660048c
JW
704/**
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
709 *
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
712 *
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
716 *
b213b54f 717 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 718 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 719 * reclaimers operating on the same node and priority.
5660048c 720 */
694fbc0f 721struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 722 struct mem_cgroup *prev,
694fbc0f 723 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 724{
33398cf2 725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 726 struct cgroup_subsys_state *css = NULL;
9f3a0d09 727 struct mem_cgroup *memcg = NULL;
5ac8fb31 728 struct mem_cgroup *pos = NULL;
711d3d2c 729
694fbc0f
AM
730 if (mem_cgroup_disabled())
731 return NULL;
5660048c 732
9f3a0d09
JW
733 if (!root)
734 root = root_mem_cgroup;
7d74b06f 735
9f3a0d09 736 if (prev && !reclaim)
5ac8fb31 737 pos = prev;
14067bb3 738
9f3a0d09
JW
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
5ac8fb31 741 goto out;
694fbc0f 742 return root;
9f3a0d09 743 }
14067bb3 744
542f85f9 745 rcu_read_lock();
5f578161 746
5ac8fb31 747 if (reclaim) {
ef8f2327 748 struct mem_cgroup_per_node *mz;
5ac8fb31 749
ef8f2327 750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
751 iter = &mz->iter[reclaim->priority];
752
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
755
6df38689 756 while (1) {
4db0c3c2 757 pos = READ_ONCE(iter->position);
6df38689
VD
758 if (!pos || css_tryget(&pos->css))
759 break;
5ac8fb31 760 /*
6df38689
VD
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
5ac8fb31 767 */
6df38689
VD
768 (void)cmpxchg(&iter->position, pos, NULL);
769 }
5ac8fb31
JW
770 }
771
772 if (pos)
773 css = &pos->css;
774
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
778 /*
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
783 */
784 if (!prev)
785 continue;
786 break;
527a5ec9 787 }
7d74b06f 788
5ac8fb31
JW
789 /*
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
793 */
794 memcg = mem_cgroup_from_css(css);
14067bb3 795
5ac8fb31
JW
796 if (css == &root->css)
797 break;
14067bb3 798
0b8f73e1
JW
799 if (css_tryget(css))
800 break;
9f3a0d09 801
5ac8fb31 802 memcg = NULL;
9f3a0d09 803 }
5ac8fb31
JW
804
805 if (reclaim) {
5ac8fb31 806 /*
6df38689
VD
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, memcg);
812
5ac8fb31
JW
813 if (pos)
814 css_put(&pos->css);
815
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
9f3a0d09 820 }
5ac8fb31 821
542f85f9
MH
822out_unlock:
823 rcu_read_unlock();
5ac8fb31 824out:
c40046f3
MH
825 if (prev && prev != root)
826 css_put(&prev->css);
827
9f3a0d09 828 return memcg;
14067bb3 829}
7d74b06f 830
5660048c
JW
831/**
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835 */
836void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
9f3a0d09
JW
838{
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
843}
7d74b06f 844
6df38689
VD
845static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846{
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
849 struct mem_cgroup_per_node *mz;
850 int nid;
6df38689
VD
851 int i;
852
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
ef8f2327
MG
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
6df38689
VD
860 }
861 }
862 }
863}
864
9f3a0d09
JW
865/*
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
869 */
870#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 872 iter != NULL; \
527a5ec9 873 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 874
9f3a0d09 875#define for_each_mem_cgroup(iter) \
527a5ec9 876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 877 iter != NULL; \
527a5ec9 878 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 879
7c5f64f8
VD
880/**
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
885 *
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
890 *
891 * This function must not be called for the root memory cgroup.
892 */
893int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
895{
896 struct mem_cgroup *iter;
897 int ret = 0;
898
899 BUG_ON(memcg == root_mem_cgroup);
900
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
904
bc2fb7ed 905 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
912 }
913 }
914 return ret;
915}
916
925b7673 917/**
dfe0e773 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 919 * @page: the page
f144c390 920 * @pgdat: pgdat of the page
dfe0e773
JW
921 *
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 925 */
599d0c95 926struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 927{
ef8f2327 928 struct mem_cgroup_per_node *mz;
925b7673 929 struct mem_cgroup *memcg;
bea8c150 930 struct lruvec *lruvec;
6d12e2d8 931
bea8c150 932 if (mem_cgroup_disabled()) {
599d0c95 933 lruvec = &pgdat->lruvec;
bea8c150
HD
934 goto out;
935 }
925b7673 936
1306a85a 937 memcg = page->mem_cgroup;
7512102c 938 /*
dfe0e773 939 * Swapcache readahead pages are added to the LRU - and
29833315 940 * possibly migrated - before they are charged.
7512102c 941 */
29833315
JW
942 if (!memcg)
943 memcg = root_mem_cgroup;
7512102c 944
ef8f2327 945 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
946 lruvec = &mz->lruvec;
947out:
948 /*
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
952 */
599d0c95
MG
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
bea8c150 955 return lruvec;
08e552c6 956}
b69408e8 957
925b7673 958/**
fa9add64
HD
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
b4536f0c 962 * @zid: zone id of the accounted pages
fa9add64 963 * @nr_pages: positive when adding or negative when removing
925b7673 964 *
ca707239
HD
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 968 */
fa9add64 969void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 970 int zid, int nr_pages)
3f58a829 971{
ef8f2327 972 struct mem_cgroup_per_node *mz;
fa9add64 973 unsigned long *lru_size;
ca707239 974 long size;
3f58a829
MK
975
976 if (mem_cgroup_disabled())
977 return;
978
ef8f2327 979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 980 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
981
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
984
985 size = *lru_size;
b4536f0c
MH
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
989 VM_BUG_ON(1);
990 *lru_size = 0;
991 }
992
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
08e552c6 995}
544122e5 996
2314b42d 997bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 998{
2314b42d 999 struct mem_cgroup *task_memcg;
158e0a2d 1000 struct task_struct *p;
ffbdccf5 1001 bool ret;
4c4a2214 1002
158e0a2d 1003 p = find_lock_task_mm(task);
de077d22 1004 if (p) {
2314b42d 1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1006 task_unlock(p);
1007 } else {
1008 /*
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1012 */
ffbdccf5 1013 rcu_read_lock();
2314b42d
JW
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
ffbdccf5 1016 rcu_read_unlock();
de077d22 1017 }
2314b42d
JW
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
4c4a2214
DR
1020 return ret;
1021}
1022
19942822 1023/**
9d11ea9f 1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1025 * @memcg: the memory cgroup
19942822 1026 *
9d11ea9f 1027 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1028 * pages.
19942822 1029 */
c0ff4b85 1030static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1031{
3e32cb2e
JW
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
9d11ea9f 1035
3e32cb2e 1036 count = page_counter_read(&memcg->memory);
bbec2e15 1037 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1038 if (count < limit)
1039 margin = limit - count;
1040
7941d214 1041 if (do_memsw_account()) {
3e32cb2e 1042 count = page_counter_read(&memcg->memsw);
bbec2e15 1043 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
cbedbac3
LR
1046 else
1047 margin = 0;
3e32cb2e
JW
1048 }
1049
1050 return margin;
19942822
JW
1051}
1052
32047e2a 1053/*
bdcbb659 1054 * A routine for checking "mem" is under move_account() or not.
32047e2a 1055 *
bdcbb659
QH
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
32047e2a 1059 */
c0ff4b85 1060static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1061{
2bd9bb20
KH
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
4b534334 1064 bool ret = false;
2bd9bb20
KH
1065 /*
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 */
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
3e92041d 1074
2314b42d
JW
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1077unlock:
1078 spin_unlock(&mc.lock);
4b534334
KH
1079 return ret;
1080}
1081
c0ff4b85 1082static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1083{
1084 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1085 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1093 }
1094 }
1095 return false;
1096}
1097
8ad6e404 1098static const unsigned int memcg1_stats[] = {
71cd3113
JW
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1107};
1108
1109static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1118};
1119
58cf188e 1120#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1121/**
58cf188e 1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130{
58cf188e
SZ
1131 struct mem_cgroup *iter;
1132 unsigned int i;
e222432b 1133
e222432b
BS
1134 rcu_read_lock();
1135
2415b9f5
BV
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1142 }
1143
e61734c5 1144 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1145 pr_cont("\n");
e222432b 1146
e222432b
BS
1147 rcu_read_unlock();
1148
3e32cb2e
JW
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1151 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1154 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1157 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1162 pr_cont(":");
1163
71cd3113
JW
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1166 continue;
71cd3113 1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1168 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1169 }
1170
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175 pr_cont("\n");
1176 }
e222432b
BS
1177}
1178
a63d83f4
DR
1179/*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
bbec2e15 1182unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1183{
bbec2e15 1184 unsigned long max;
f3e8eb70 1185
bbec2e15 1186 max = memcg->memory.max;
9a5a8f19 1187 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1188 unsigned long memsw_max;
1189 unsigned long swap_max;
9a5a8f19 1190
bbec2e15
RG
1191 memsw_max = memcg->memsw.max;
1192 swap_max = memcg->swap.max;
1193 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1194 max = min(max + swap_max, memsw_max);
9a5a8f19 1195 }
bbec2e15 1196 return max;
a63d83f4
DR
1197}
1198
b6e6edcf 1199static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1200 int order)
9cbb78bb 1201{
6e0fc46d
DR
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
2a966b77 1205 .memcg = memcg,
6e0fc46d
DR
1206 .gfp_mask = gfp_mask,
1207 .order = order,
6e0fc46d 1208 };
7c5f64f8 1209 bool ret;
9cbb78bb 1210
dc56401f 1211 mutex_lock(&oom_lock);
7c5f64f8 1212 ret = out_of_memory(&oc);
dc56401f 1213 mutex_unlock(&oom_lock);
7c5f64f8 1214 return ret;
9cbb78bb
DR
1215}
1216
ae6e71d3
MC
1217#if MAX_NUMNODES > 1
1218
4d0c066d
KH
1219/**
1220 * test_mem_cgroup_node_reclaimable
dad7557e 1221 * @memcg: the target memcg
4d0c066d
KH
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
c0ff4b85 1229static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1230 int nid, bool noswap)
1231{
c0ff4b85 1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
c0ff4b85 1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1237 return true;
1238 return false;
1239
1240}
889976db
YH
1241
1242/*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
c0ff4b85 1248static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1249{
1250 int nid;
453a9bf3
KH
1251 /*
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1254 */
c0ff4b85 1255 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1256 return;
c0ff4b85 1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1258 return;
1259
889976db 1260 /* make a nodemask where this memcg uses memory from */
31aaea4a 1261 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1262
31aaea4a 1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1264
c0ff4b85
R
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
889976db 1267 }
453a9bf3 1268
c0ff4b85
R
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1271}
1272
1273/*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
c0ff4b85 1285int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1286{
1287 int node;
1288
c0ff4b85
R
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
889976db 1291
0edaf86c 1292 node = next_node_in(node, memcg->scan_nodes);
889976db 1293 /*
fda3d69b
MH
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
889976db
YH
1297 */
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1300
c0ff4b85 1301 memcg->last_scanned_node = node;
889976db
YH
1302 return node;
1303}
889976db 1304#else
c0ff4b85 1305int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1306{
1307 return 0;
1308}
1309#endif
1310
0608f43d 1311static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1312 pg_data_t *pgdat,
0608f43d
AM
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315{
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1322 .pgdat = pgdat,
0608f43d
AM
1323 .priority = 0,
1324 };
1325
3e32cb2e 1326 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1327
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1333 /*
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1337 */
1338 if (!total)
1339 break;
1340 /*
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1345 */
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1349 }
1350 continue;
1351 }
a9dd0a83 1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1353 pgdat, &nr_scanned);
0608f43d 1354 *total_scanned += nr_scanned;
3e32cb2e 1355 if (!soft_limit_excess(root_memcg))
0608f43d 1356 break;
6d61ef40 1357 }
0608f43d
AM
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
6d61ef40
BS
1360}
1361
0056f4e6
JW
1362#ifdef CONFIG_LOCKDEP
1363static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1365};
1366#endif
1367
fb2a6fc5
JW
1368static DEFINE_SPINLOCK(memcg_oom_lock);
1369
867578cb
KH
1370/*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
fb2a6fc5 1374static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1375{
79dfdacc 1376 struct mem_cgroup *iter, *failed = NULL;
a636b327 1377
fb2a6fc5
JW
1378 spin_lock(&memcg_oom_lock);
1379
9f3a0d09 1380 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1381 if (iter->oom_lock) {
79dfdacc
MH
1382 /*
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1385 */
79dfdacc 1386 failed = iter;
9f3a0d09
JW
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
23751be0
JW
1389 } else
1390 iter->oom_lock = true;
7d74b06f 1391 }
867578cb 1392
fb2a6fc5
JW
1393 if (failed) {
1394 /*
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1397 */
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1402 }
1403 iter->oom_lock = false;
79dfdacc 1404 }
0056f4e6
JW
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1407
1408 spin_unlock(&memcg_oom_lock);
1409
1410 return !failed;
a636b327 1411}
0b7f569e 1412
fb2a6fc5 1413static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1414{
7d74b06f
KH
1415 struct mem_cgroup *iter;
1416
fb2a6fc5 1417 spin_lock(&memcg_oom_lock);
0056f4e6 1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1419 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1420 iter->oom_lock = false;
fb2a6fc5 1421 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1422}
1423
c0ff4b85 1424static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1425{
1426 struct mem_cgroup *iter;
1427
c2b42d3c 1428 spin_lock(&memcg_oom_lock);
c0ff4b85 1429 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1432}
1433
c0ff4b85 1434static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1435{
1436 struct mem_cgroup *iter;
1437
867578cb
KH
1438 /*
1439 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1441 */
c2b42d3c 1442 spin_lock(&memcg_oom_lock);
c0ff4b85 1443 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1447}
1448
867578cb
KH
1449static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
dc98df5a 1451struct oom_wait_info {
d79154bb 1452 struct mem_cgroup *memcg;
ac6424b9 1453 wait_queue_entry_t wait;
dc98df5a
KH
1454};
1455
ac6424b9 1456static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1457 unsigned mode, int sync, void *arg)
1458{
d79154bb
HD
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1461 struct oom_wait_info *oom_wait_info;
1462
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1464 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1465
2314b42d
JW
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1468 return 0;
dc98df5a
KH
1469 return autoremove_wake_function(wait, mode, sync, arg);
1470}
1471
c0ff4b85 1472static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1473{
c2b42d3c
TH
1474 /*
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1481 */
1482 if (memcg && memcg->under_oom)
f4b90b70 1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1484}
1485
3812c8c8 1486static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1487{
2a70f6a7 1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
3812c8c8 1489 return;
867578cb 1490 /*
49426420
JW
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1494 *
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1498 *
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
867578cb 1503 */
49426420 1504 css_get(&memcg->css);
626ebc41
TH
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
3812c8c8
JW
1508}
1509
1510/**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1512 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1513 *
49426420
JW
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
3812c8c8 1516 *
49426420 1517 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1522 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1525 * completed, %false otherwise.
3812c8c8 1526 */
49426420 1527bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1528{
626ebc41 1529 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1530 struct oom_wait_info owait;
49426420 1531 bool locked;
3812c8c8
JW
1532
1533 /* OOM is global, do not handle */
3812c8c8 1534 if (!memcg)
49426420 1535 return false;
3812c8c8 1536
7c5f64f8 1537 if (!handle)
49426420 1538 goto cleanup;
3812c8c8
JW
1539
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
2055da97 1544 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1545
3812c8c8 1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1547 mem_cgroup_mark_under_oom(memcg);
1548
1549 locked = mem_cgroup_oom_trylock(memcg);
1550
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1553
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
49426420 1559 } else {
3812c8c8 1560 schedule();
49426420
JW
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1563 }
1564
1565 if (locked) {
fb2a6fc5
JW
1566 mem_cgroup_oom_unlock(memcg);
1567 /*
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1571 */
1572 memcg_oom_recover(memcg);
1573 }
49426420 1574cleanup:
626ebc41 1575 current->memcg_in_oom = NULL;
3812c8c8 1576 css_put(&memcg->css);
867578cb 1577 return true;
0b7f569e
KH
1578}
1579
d7365e78 1580/**
81f8c3a4
JW
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
32047e2a 1583 *
81f8c3a4 1584 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
d69b042f 1590 */
739f79fc 1591struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1592{
1593 struct mem_cgroup *memcg;
6de22619 1594 unsigned long flags;
89c06bd5 1595
6de22619
JW
1596 /*
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
739f79fc
JW
1600 *
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1606 */
d7365e78
JW
1607 rcu_read_lock();
1608
1609 if (mem_cgroup_disabled())
739f79fc 1610 return NULL;
89c06bd5 1611again:
1306a85a 1612 memcg = page->mem_cgroup;
29833315 1613 if (unlikely(!memcg))
739f79fc 1614 return NULL;
d7365e78 1615
bdcbb659 1616 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1617 return memcg;
89c06bd5 1618
6de22619 1619 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1620 if (memcg != page->mem_cgroup) {
6de22619 1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1622 goto again;
1623 }
6de22619
JW
1624
1625 /*
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1628 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1629 */
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
d7365e78 1632
739f79fc 1633 return memcg;
89c06bd5 1634}
81f8c3a4 1635EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1636
d7365e78 1637/**
739f79fc
JW
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1642 */
739f79fc 1643void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1644{
6de22619
JW
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1647
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1650
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 }
89c06bd5 1653
d7365e78 1654 rcu_read_unlock();
89c06bd5 1655}
739f79fc
JW
1656
1657/**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661void unlock_page_memcg(struct page *page)
1662{
1663 __unlock_page_memcg(page->mem_cgroup);
1664}
81f8c3a4 1665EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1666
cdec2e42
KH
1667struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1669 unsigned int nr_pages;
cdec2e42 1670 struct work_struct work;
26fe6168 1671 unsigned long flags;
a0db00fc 1672#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1675static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1676
a0956d54
SS
1677/**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
cdec2e42 1687 */
a0956d54 1688static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1689{
1690 struct memcg_stock_pcp *stock;
db2ba40c 1691 unsigned long flags;
3e32cb2e 1692 bool ret = false;
cdec2e42 1693
a983b5eb 1694 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1695 return ret;
a0956d54 1696
db2ba40c
JW
1697 local_irq_save(flags);
1698
1699 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1701 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1702 ret = true;
1703 }
db2ba40c
JW
1704
1705 local_irq_restore(flags);
1706
cdec2e42
KH
1707 return ret;
1708}
1709
1710/*
3e32cb2e 1711 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1712 */
1713static void drain_stock(struct memcg_stock_pcp *stock)
1714{
1715 struct mem_cgroup *old = stock->cached;
1716
11c9ea4e 1717 if (stock->nr_pages) {
3e32cb2e 1718 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1719 if (do_memsw_account())
3e32cb2e 1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1721 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1722 stock->nr_pages = 0;
cdec2e42
KH
1723 }
1724 stock->cached = NULL;
cdec2e42
KH
1725}
1726
cdec2e42
KH
1727static void drain_local_stock(struct work_struct *dummy)
1728{
db2ba40c
JW
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1731
72f0184c
MH
1732 /*
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1735 */
db2ba40c
JW
1736 local_irq_save(flags);
1737
1738 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1739 drain_stock(stock);
26fe6168 1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1741
1742 local_irq_restore(flags);
cdec2e42
KH
1743}
1744
1745/*
3e32cb2e 1746 * Cache charges(val) to local per_cpu area.
320cc51d 1747 * This will be consumed by consume_stock() function, later.
cdec2e42 1748 */
c0ff4b85 1749static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1750{
db2ba40c
JW
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
cdec2e42 1755
db2ba40c 1756 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1757 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1758 drain_stock(stock);
c0ff4b85 1759 stock->cached = memcg;
cdec2e42 1760 }
11c9ea4e 1761 stock->nr_pages += nr_pages;
db2ba40c 1762
a983b5eb 1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1764 drain_stock(stock);
1765
db2ba40c 1766 local_irq_restore(flags);
cdec2e42
KH
1767}
1768
1769/*
c0ff4b85 1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1771 * of the hierarchy under it.
cdec2e42 1772 */
6d3d6aa2 1773static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1774{
26fe6168 1775 int cpu, curcpu;
d38144b7 1776
6d3d6aa2
JW
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
72f0184c
MH
1780 /*
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 */
5af12d0e 1786 curcpu = get_cpu();
cdec2e42
KH
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1789 struct mem_cgroup *memcg;
26fe6168 1790
c0ff4b85 1791 memcg = stock->cached;
72f0184c 1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1793 continue;
72f0184c
MH
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
3e92041d 1796 continue;
72f0184c 1797 }
d1a05b69
MH
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1803 }
72f0184c 1804 css_put(&memcg->css);
cdec2e42 1805 }
5af12d0e 1806 put_cpu();
9f50fad6 1807 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1808}
1809
308167fc 1810static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1811{
cdec2e42 1812 struct memcg_stock_pcp *stock;
a983b5eb 1813 struct mem_cgroup *memcg;
cdec2e42 1814
cdec2e42
KH
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
a983b5eb
JW
1817
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1820
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1824
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1828
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1831
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1834
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1839 }
1840 }
1841
e27be240 1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
1843 long x;
1844
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1848 }
1849 }
1850
308167fc 1851 return 0;
cdec2e42
KH
1852}
1853
f7e1cb6e
JW
1854static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857{
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
e27be240 1861 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864}
1865
1866static void high_work_func(struct work_struct *work)
1867{
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
1872}
1873
b23afb93
TH
1874/*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878void mem_cgroup_handle_over_high(void)
1879{
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1881 struct mem_cgroup *memcg;
b23afb93
TH
1882
1883 if (likely(!nr_pages))
1884 return;
1885
f7e1cb6e
JW
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890}
1891
00501b53
JW
1892static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
8a9f3ccd 1894{
a983b5eb 1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1897 struct mem_cgroup *mem_over_limit;
3e32cb2e 1898 struct page_counter *counter;
6539cc05 1899 unsigned long nr_reclaimed;
b70a2a21
JW
1900 bool may_swap = true;
1901 bool drained = false;
a636b327 1902
ce00a967 1903 if (mem_cgroup_is_root(memcg))
10d53c74 1904 return 0;
6539cc05 1905retry:
b6b6cc72 1906 if (consume_stock(memcg, nr_pages))
10d53c74 1907 return 0;
8a9f3ccd 1908
7941d214 1909 if (!do_memsw_account() ||
6071ca52
JW
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1912 goto done_restock;
7941d214 1913 if (do_memsw_account())
3e32cb2e
JW
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1916 } else {
3e32cb2e 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1918 may_swap = false;
3fbe7244 1919 }
7a81b88c 1920
6539cc05
JW
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
6d61ef40 1925
06b078fc
JW
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
da99ecf1 1932 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
10d53c74 1935 goto force;
06b078fc 1936
89a28483
JW
1937 /*
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1942 */
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1945
06b078fc
JW
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1948
d0164adc 1949 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1950 goto nomem;
4b534334 1951
e27be240 1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 1953
b70a2a21
JW
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
6539cc05 1956
61e02c74 1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1958 goto retry;
28c34c29 1959
b70a2a21 1960 if (!drained) {
6d3d6aa2 1961 drain_all_stock(mem_over_limit);
b70a2a21
JW
1962 drained = true;
1963 goto retry;
1964 }
1965
28c34c29
JW
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
6539cc05
JW
1968 /*
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1972 *
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1976 */
61e02c74 1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1978 goto retry;
1979 /*
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1982 */
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1985
9b130619
JW
1986 if (nr_retries--)
1987 goto retry;
1988
06b078fc 1989 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1990 goto force;
06b078fc 1991
6539cc05 1992 if (fatal_signal_pending(current))
10d53c74 1993 goto force;
6539cc05 1994
e27be240 1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 1996
3608de07
JM
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1999nomem:
6d1fdc48 2000 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2001 return -ENOMEM;
10d53c74
TH
2002force:
2003 /*
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2007 */
2008 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2009 if (do_memsw_account())
10d53c74
TH
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2012
2013 return 0;
6539cc05
JW
2014
2015done_restock:
e8ea14cc 2016 css_get_many(&memcg->css, batch);
6539cc05
JW
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
b23afb93 2019
241994ed 2020 /*
b23afb93
TH
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2028 */
2029 do {
b23afb93 2030 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2035 }
9516a18a 2036 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2037 set_notify_resume(current);
2038 break;
2039 }
241994ed 2040 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2041
2042 return 0;
7a81b88c 2043}
8a9f3ccd 2044
00501b53 2045static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2046{
ce00a967
JW
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2049
3e32cb2e 2050 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2051 if (do_memsw_account())
3e32cb2e 2052 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2053
e8ea14cc 2054 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2055}
2056
0a31bc97
JW
2057static void lock_page_lru(struct page *page, int *isolated)
2058{
2059 struct zone *zone = page_zone(page);
2060
a52633d8 2061 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2064
599d0c95 2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2071}
2072
2073static void unlock_page_lru(struct page *page, int isolated)
2074{
2075 struct zone *zone = page_zone(page);
2076
2077 if (isolated) {
2078 struct lruvec *lruvec;
2079
599d0c95 2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2084 }
a52633d8 2085 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2086}
2087
00501b53 2088static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2089 bool lrucare)
7a81b88c 2090{
0a31bc97 2091 int isolated;
9ce70c02 2092
1306a85a 2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2094
2095 /*
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2098 */
0a31bc97
JW
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
9ce70c02 2101
0a31bc97
JW
2102 /*
2103 * Nobody should be changing or seriously looking at
1306a85a 2104 * page->mem_cgroup at this point:
0a31bc97
JW
2105 *
2106 * - the page is uncharged
2107 *
2108 * - the page is off-LRU
2109 *
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2112 *
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2115 */
1306a85a 2116 page->mem_cgroup = memcg;
9ce70c02 2117
0a31bc97
JW
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
7a81b88c 2120}
66e1707b 2121
127424c8 2122#ifndef CONFIG_SLOB
f3bb3043 2123static int memcg_alloc_cache_id(void)
55007d84 2124{
f3bb3043
VD
2125 int id, size;
2126 int err;
2127
dbcf73e2 2128 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
55007d84 2132
dbcf73e2 2133 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2134 return id;
2135
2136 /*
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2139 */
05257a1a 2140 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2141
2142 size = 2 * (id + 1);
55007d84
GC
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2147
f3bb3043 2148 err = memcg_update_all_caches(size);
60d3fd32
VD
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2153
2154 up_write(&memcg_cache_ids_sem);
2155
f3bb3043 2156 if (err) {
dbcf73e2 2157 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2158 return err;
2159 }
2160 return id;
2161}
2162
2163static void memcg_free_cache_id(int id)
2164{
dbcf73e2 2165 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2166}
2167
d5b3cf71 2168struct memcg_kmem_cache_create_work {
5722d094
VD
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2172};
2173
d5b3cf71 2174static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2175{
d5b3cf71
VD
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2180
d5b3cf71 2181 memcg_create_kmem_cache(memcg, cachep);
bd673145 2182
5722d094 2183 css_put(&memcg->css);
d7f25f8a
GC
2184 kfree(cw);
2185}
2186
2187/*
2188 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2189 */
d5b3cf71
VD
2190static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
d7f25f8a 2192{
d5b3cf71 2193 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2194
c892fd82 2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2196 if (!cw)
d7f25f8a 2197 return;
8135be5a
VD
2198
2199 css_get(&memcg->css);
d7f25f8a
GC
2200
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
d5b3cf71 2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2204
17cc4dfe 2205 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2206}
2207
d5b3cf71
VD
2208static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
0e9d92f2
GC
2210{
2211 /*
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2214 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2215 *
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2221 */
6f185c29 2222 current->memcg_kmem_skip_account = 1;
d5b3cf71 2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2224 current->memcg_kmem_skip_account = 0;
0e9d92f2 2225}
c67a8a68 2226
45264778
VD
2227static inline bool memcg_kmem_bypass(void)
2228{
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2232}
2233
2234/**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
d7f25f8a
GC
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
45264778
VD
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
d7f25f8a 2244 *
45264778
VD
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
d7f25f8a 2249 */
45264778 2250struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2251{
2252 struct mem_cgroup *memcg;
959c8963 2253 struct kmem_cache *memcg_cachep;
2a4db7eb 2254 int kmemcg_id;
d7f25f8a 2255
f7ce3190 2256 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2257
45264778 2258 if (memcg_kmem_bypass())
230e9fc2
VD
2259 return cachep;
2260
9d100c5e 2261 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2262 return cachep;
2263
8135be5a 2264 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2266 if (kmemcg_id < 0)
ca0dde97 2267 goto out;
d7f25f8a 2268
2a4db7eb 2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
ca0dde97
LZ
2272
2273 /*
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2278 *
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
ca0dde97 2284 */
d5b3cf71 2285 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2286out:
8135be5a 2287 css_put(&memcg->css);
ca0dde97 2288 return cachep;
d7f25f8a 2289}
d7f25f8a 2290
45264778
VD
2291/**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2296{
2297 if (!is_root_cache(cachep))
f7ce3190 2298 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2299}
2300
45264778 2301/**
b213b54f 2302 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
7ae1e1d0 2312{
f3ccb2c4
VD
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
7ae1e1d0
GC
2315 int ret;
2316
f3ccb2c4 2317 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2318 if (ret)
f3ccb2c4 2319 return ret;
52c29b04
JW
2320
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
7ae1e1d0
GC
2325 }
2326
f3ccb2c4 2327 page->mem_cgroup = memcg;
7ae1e1d0 2328
f3ccb2c4 2329 return 0;
7ae1e1d0
GC
2330}
2331
45264778
VD
2332/**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2341{
f3ccb2c4 2342 struct mem_cgroup *memcg;
fcff7d7e 2343 int ret = 0;
7ae1e1d0 2344
45264778
VD
2345 if (memcg_kmem_bypass())
2346 return 0;
2347
f3ccb2c4 2348 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2349 if (!mem_cgroup_is_root(memcg)) {
45264778 2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2351 if (!ret)
2352 __SetPageKmemcg(page);
2353 }
7ae1e1d0 2354 css_put(&memcg->css);
d05e83a6 2355 return ret;
7ae1e1d0 2356}
45264778
VD
2357/**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2363{
1306a85a 2364 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2365 unsigned int nr_pages = 1 << order;
7ae1e1d0 2366
7ae1e1d0
GC
2367 if (!memcg)
2368 return;
2369
309381fe 2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2371
52c29b04
JW
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
f3ccb2c4 2375 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2376 if (do_memsw_account())
f3ccb2c4 2377 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2378
1306a85a 2379 page->mem_cgroup = NULL;
c4159a75
VD
2380
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2384
f3ccb2c4 2385 css_put_many(&memcg->css, nr_pages);
60d3fd32 2386}
127424c8 2387#endif /* !CONFIG_SLOB */
7ae1e1d0 2388
ca3e0214
KH
2389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
ca3e0214
KH
2391/*
2392 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2393 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2394 */
e94c8a9c 2395void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2396{
e94c8a9c 2397 int i;
ca3e0214 2398
3d37c4a9
KH
2399 if (mem_cgroup_disabled())
2400 return;
b070e65c 2401
29833315 2402 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2403 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2404
c9019e9b 2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2406}
12d27107 2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2408
c255a458 2409#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2410/**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
3e32cb2e 2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2422 * both res and memsw, and called css_get().
2423 */
2424static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2425 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2426{
2427 unsigned short old_id, new_id;
2428
34c00c31
LZ
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
02491447
DN
2431
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2435 return 0;
2436 }
2437 return -EINVAL;
2438}
2439#else
2440static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2441 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2442{
2443 return -EINVAL;
2444}
8c7c6e34 2445#endif
d13d1443 2446
bbec2e15 2447static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2448
bbec2e15
RG
2449static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2450 unsigned long max, bool memsw)
628f4235 2451{
3e32cb2e 2452 bool enlarge = false;
3e32cb2e 2453 int ret;
c054a78c
YZ
2454 bool limits_invariant;
2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2456
3e32cb2e 2457 do {
628f4235
KH
2458 if (signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
3e32cb2e 2462
bbec2e15 2463 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2464 /*
2465 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2466 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2467 */
bbec2e15
RG
2468 limits_invariant = memsw ? max >= memcg->memory.max :
2469 max <= memcg->memsw.max;
c054a78c 2470 if (!limits_invariant) {
bbec2e15 2471 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2472 ret = -EINVAL;
8c7c6e34
KH
2473 break;
2474 }
bbec2e15 2475 if (max > counter->max)
3e32cb2e 2476 enlarge = true;
bbec2e15
RG
2477 ret = page_counter_set_max(counter, max);
2478 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2479
2480 if (!ret)
2481 break;
2482
1ab5c056
AR
2483 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484 GFP_KERNEL, !memsw)) {
2485 ret = -EBUSY;
2486 break;
2487 }
2488 } while (true);
3e32cb2e 2489
3c11ecf4
KH
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
3e32cb2e 2492
628f4235
KH
2493 return ret;
2494}
2495
ef8f2327 2496unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2497 gfp_t gfp_mask,
2498 unsigned long *total_scanned)
2499{
2500 unsigned long nr_reclaimed = 0;
ef8f2327 2501 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2502 unsigned long reclaimed;
2503 int loop = 0;
ef8f2327 2504 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2505 unsigned long excess;
0608f43d
AM
2506 unsigned long nr_scanned;
2507
2508 if (order > 0)
2509 return 0;
2510
ef8f2327 2511 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2512
2513 /*
2514 * Do not even bother to check the largest node if the root
2515 * is empty. Do it lockless to prevent lock bouncing. Races
2516 * are acceptable as soft limit is best effort anyway.
2517 */
bfc7228b 2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2519 return 0;
2520
0608f43d
AM
2521 /*
2522 * This loop can run a while, specially if mem_cgroup's continuously
2523 * keep exceeding their soft limit and putting the system under
2524 * pressure
2525 */
2526 do {
2527 if (next_mz)
2528 mz = next_mz;
2529 else
2530 mz = mem_cgroup_largest_soft_limit_node(mctz);
2531 if (!mz)
2532 break;
2533
2534 nr_scanned = 0;
ef8f2327 2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2536 gfp_mask, &nr_scanned);
2537 nr_reclaimed += reclaimed;
2538 *total_scanned += nr_scanned;
0a31bc97 2539 spin_lock_irq(&mctz->lock);
bc2f2e7f 2540 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2541
2542 /*
2543 * If we failed to reclaim anything from this memory cgroup
2544 * it is time to move on to the next cgroup
2545 */
2546 next_mz = NULL;
bc2f2e7f
VD
2547 if (!reclaimed)
2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
3e32cb2e 2550 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2551 /*
2552 * One school of thought says that we should not add
2553 * back the node to the tree if reclaim returns 0.
2554 * But our reclaim could return 0, simply because due
2555 * to priority we are exposing a smaller subset of
2556 * memory to reclaim from. Consider this as a longer
2557 * term TODO.
2558 */
2559 /* If excess == 0, no tree ops */
cf2c8127 2560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2561 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2562 css_put(&mz->memcg->css);
2563 loop++;
2564 /*
2565 * Could not reclaim anything and there are no more
2566 * mem cgroups to try or we seem to be looping without
2567 * reclaiming anything.
2568 */
2569 if (!nr_reclaimed &&
2570 (next_mz == NULL ||
2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572 break;
2573 } while (!nr_reclaimed);
2574 if (next_mz)
2575 css_put(&next_mz->memcg->css);
2576 return nr_reclaimed;
2577}
2578
ea280e7b
TH
2579/*
2580 * Test whether @memcg has children, dead or alive. Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2584 */
b5f99b53
GC
2585static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586{
ea280e7b
TH
2587 bool ret;
2588
ea280e7b
TH
2589 rcu_read_lock();
2590 ret = css_next_child(NULL, &memcg->css);
2591 rcu_read_unlock();
2592 return ret;
b5f99b53
GC
2593}
2594
c26251f9 2595/*
51038171 2596 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601{
2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2603
c1e862c1
KH
2604 /* we call try-to-free pages for make this cgroup empty */
2605 lru_add_drain_all();
f817ed48 2606 /* try to free all pages in this cgroup */
3e32cb2e 2607 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2608 int progress;
c1e862c1 2609
c26251f9
MH
2610 if (signal_pending(current))
2611 return -EINTR;
2612
b70a2a21
JW
2613 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614 GFP_KERNEL, true);
c1e862c1 2615 if (!progress) {
f817ed48 2616 nr_retries--;
c1e862c1 2617 /* maybe some writeback is necessary */
8aa7e847 2618 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2619 }
f817ed48
KH
2620
2621 }
ab5196c2
MH
2622
2623 return 0;
cc847582
KH
2624}
2625
6770c64e
TH
2626static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627 char *buf, size_t nbytes,
2628 loff_t off)
c1e862c1 2629{
6770c64e 2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2631
d8423011
MH
2632 if (mem_cgroup_is_root(memcg))
2633 return -EINVAL;
6770c64e 2634 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2635}
2636
182446d0
TH
2637static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638 struct cftype *cft)
18f59ea7 2639{
182446d0 2640 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2641}
2642
182446d0
TH
2643static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644 struct cftype *cft, u64 val)
18f59ea7
BS
2645{
2646 int retval = 0;
182446d0 2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2649
567fb435 2650 if (memcg->use_hierarchy == val)
0b8f73e1 2651 return 0;
567fb435 2652
18f59ea7 2653 /*
af901ca1 2654 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2655 * in the child subtrees. If it is unset, then the change can
2656 * occur, provided the current cgroup has no children.
2657 *
2658 * For the root cgroup, parent_mem is NULL, we allow value to be
2659 * set if there are no children.
2660 */
c0ff4b85 2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2662 (val == 1 || val == 0)) {
ea280e7b 2663 if (!memcg_has_children(memcg))
c0ff4b85 2664 memcg->use_hierarchy = val;
18f59ea7
BS
2665 else
2666 retval = -EBUSY;
2667 } else
2668 retval = -EINVAL;
567fb435 2669
18f59ea7
BS
2670 return retval;
2671}
2672
72b54e73 2673static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2674{
2675 struct mem_cgroup *iter;
72b54e73 2676 int i;
ce00a967 2677
72b54e73 2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2679
72b54e73
VD
2680 for_each_mem_cgroup_tree(iter, memcg) {
2681 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2682 stat[i] += memcg_page_state(iter, i);
72b54e73 2683 }
ce00a967
JW
2684}
2685
72b54e73 2686static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2687{
2688 struct mem_cgroup *iter;
72b54e73 2689 int i;
587d9f72 2690
e27be240 2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
587d9f72 2692
72b54e73 2693 for_each_mem_cgroup_tree(iter, memcg) {
e27be240 2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ccda7f43 2695 events[i] += memcg_sum_events(iter, i);
72b54e73 2696 }
587d9f72
JW
2697}
2698
6f646156 2699static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2700{
72b54e73 2701 unsigned long val = 0;
ce00a967 2702
3e32cb2e 2703 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2704 struct mem_cgroup *iter;
2705
2706 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2707 val += memcg_page_state(iter, MEMCG_CACHE);
2708 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2709 if (swap)
ccda7f43 2710 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2711 }
3e32cb2e 2712 } else {
ce00a967 2713 if (!swap)
3e32cb2e 2714 val = page_counter_read(&memcg->memory);
ce00a967 2715 else
3e32cb2e 2716 val = page_counter_read(&memcg->memsw);
ce00a967 2717 }
c12176d3 2718 return val;
ce00a967
JW
2719}
2720
3e32cb2e
JW
2721enum {
2722 RES_USAGE,
2723 RES_LIMIT,
2724 RES_MAX_USAGE,
2725 RES_FAILCNT,
2726 RES_SOFT_LIMIT,
2727};
ce00a967 2728
791badbd 2729static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2730 struct cftype *cft)
8cdea7c0 2731{
182446d0 2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2733 struct page_counter *counter;
af36f906 2734
3e32cb2e 2735 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2736 case _MEM:
3e32cb2e
JW
2737 counter = &memcg->memory;
2738 break;
8c7c6e34 2739 case _MEMSWAP:
3e32cb2e
JW
2740 counter = &memcg->memsw;
2741 break;
510fc4e1 2742 case _KMEM:
3e32cb2e 2743 counter = &memcg->kmem;
510fc4e1 2744 break;
d55f90bf 2745 case _TCP:
0db15298 2746 counter = &memcg->tcpmem;
d55f90bf 2747 break;
8c7c6e34
KH
2748 default:
2749 BUG();
8c7c6e34 2750 }
3e32cb2e
JW
2751
2752 switch (MEMFILE_ATTR(cft->private)) {
2753 case RES_USAGE:
2754 if (counter == &memcg->memory)
c12176d3 2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2756 if (counter == &memcg->memsw)
c12176d3 2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2758 return (u64)page_counter_read(counter) * PAGE_SIZE;
2759 case RES_LIMIT:
bbec2e15 2760 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2761 case RES_MAX_USAGE:
2762 return (u64)counter->watermark * PAGE_SIZE;
2763 case RES_FAILCNT:
2764 return counter->failcnt;
2765 case RES_SOFT_LIMIT:
2766 return (u64)memcg->soft_limit * PAGE_SIZE;
2767 default:
2768 BUG();
2769 }
8cdea7c0 2770}
510fc4e1 2771
127424c8 2772#ifndef CONFIG_SLOB
567e9ab2 2773static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2774{
d6441637
VD
2775 int memcg_id;
2776
b313aeee
VD
2777 if (cgroup_memory_nokmem)
2778 return 0;
2779
2a4db7eb 2780 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2781 BUG_ON(memcg->kmem_state);
d6441637 2782
f3bb3043 2783 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2784 if (memcg_id < 0)
2785 return memcg_id;
d6441637 2786
ef12947c 2787 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2788 /*
567e9ab2 2789 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2790 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2791 * guarantee no one starts accounting before all call sites are
2792 * patched.
2793 */
900a38f0 2794 memcg->kmemcg_id = memcg_id;
567e9ab2 2795 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2796 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2797
2798 return 0;
d6441637
VD
2799}
2800
8e0a8912
JW
2801static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802{
2803 struct cgroup_subsys_state *css;
2804 struct mem_cgroup *parent, *child;
2805 int kmemcg_id;
2806
2807 if (memcg->kmem_state != KMEM_ONLINE)
2808 return;
2809 /*
2810 * Clear the online state before clearing memcg_caches array
2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812 * guarantees that no cache will be created for this cgroup
2813 * after we are done (see memcg_create_kmem_cache()).
2814 */
2815 memcg->kmem_state = KMEM_ALLOCATED;
2816
2817 memcg_deactivate_kmem_caches(memcg);
2818
2819 kmemcg_id = memcg->kmemcg_id;
2820 BUG_ON(kmemcg_id < 0);
2821
2822 parent = parent_mem_cgroup(memcg);
2823 if (!parent)
2824 parent = root_mem_cgroup;
2825
2826 /*
2827 * Change kmemcg_id of this cgroup and all its descendants to the
2828 * parent's id, and then move all entries from this cgroup's list_lrus
2829 * to ones of the parent. After we have finished, all list_lrus
2830 * corresponding to this cgroup are guaranteed to remain empty. The
2831 * ordering is imposed by list_lru_node->lock taken by
2832 * memcg_drain_all_list_lrus().
2833 */
3a06bb78 2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2835 css_for_each_descendant_pre(css, &memcg->css) {
2836 child = mem_cgroup_from_css(css);
2837 BUG_ON(child->kmemcg_id != kmemcg_id);
2838 child->kmemcg_id = parent->kmemcg_id;
2839 if (!memcg->use_hierarchy)
2840 break;
2841 }
3a06bb78
TH
2842 rcu_read_unlock();
2843
8e0a8912
JW
2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846 memcg_free_cache_id(kmemcg_id);
2847}
2848
2849static void memcg_free_kmem(struct mem_cgroup *memcg)
2850{
0b8f73e1
JW
2851 /* css_alloc() failed, offlining didn't happen */
2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853 memcg_offline_kmem(memcg);
2854
8e0a8912
JW
2855 if (memcg->kmem_state == KMEM_ALLOCATED) {
2856 memcg_destroy_kmem_caches(memcg);
2857 static_branch_dec(&memcg_kmem_enabled_key);
2858 WARN_ON(page_counter_read(&memcg->kmem));
2859 }
8e0a8912 2860}
d6441637 2861#else
0b8f73e1 2862static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2863{
2864 return 0;
2865}
2866static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867{
2868}
2869static void memcg_free_kmem(struct mem_cgroup *memcg)
2870{
2871}
2872#endif /* !CONFIG_SLOB */
2873
bbec2e15
RG
2874static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2875 unsigned long max)
d6441637 2876{
b313aeee 2877 int ret;
127424c8 2878
bbec2e15
RG
2879 mutex_lock(&memcg_max_mutex);
2880 ret = page_counter_set_max(&memcg->kmem, max);
2881 mutex_unlock(&memcg_max_mutex);
127424c8 2882 return ret;
d6441637 2883}
510fc4e1 2884
bbec2e15 2885static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
2886{
2887 int ret;
2888
bbec2e15 2889 mutex_lock(&memcg_max_mutex);
d55f90bf 2890
bbec2e15 2891 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
2892 if (ret)
2893 goto out;
2894
0db15298 2895 if (!memcg->tcpmem_active) {
d55f90bf
VD
2896 /*
2897 * The active flag needs to be written after the static_key
2898 * update. This is what guarantees that the socket activation
2d758073
JW
2899 * function is the last one to run. See mem_cgroup_sk_alloc()
2900 * for details, and note that we don't mark any socket as
2901 * belonging to this memcg until that flag is up.
d55f90bf
VD
2902 *
2903 * We need to do this, because static_keys will span multiple
2904 * sites, but we can't control their order. If we mark a socket
2905 * as accounted, but the accounting functions are not patched in
2906 * yet, we'll lose accounting.
2907 *
2d758073 2908 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2909 * because when this value change, the code to process it is not
2910 * patched in yet.
2911 */
2912 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2913 memcg->tcpmem_active = true;
d55f90bf
VD
2914 }
2915out:
bbec2e15 2916 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
2917 return ret;
2918}
d55f90bf 2919
628f4235
KH
2920/*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
451af504
TH
2924static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2926{
451af504 2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2928 unsigned long nr_pages;
628f4235
KH
2929 int ret;
2930
451af504 2931 buf = strstrip(buf);
650c5e56 2932 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2933 if (ret)
2934 return ret;
af36f906 2935
3e32cb2e 2936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2937 case RES_LIMIT:
4b3bde4c
BS
2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939 ret = -EINVAL;
2940 break;
2941 }
3e32cb2e
JW
2942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943 case _MEM:
bbec2e15 2944 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 2945 break;
3e32cb2e 2946 case _MEMSWAP:
bbec2e15 2947 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 2948 break;
3e32cb2e 2949 case _KMEM:
bbec2e15 2950 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 2951 break;
d55f90bf 2952 case _TCP:
bbec2e15 2953 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 2954 break;
3e32cb2e 2955 }
296c81d8 2956 break;
3e32cb2e
JW
2957 case RES_SOFT_LIMIT:
2958 memcg->soft_limit = nr_pages;
2959 ret = 0;
628f4235
KH
2960 break;
2961 }
451af504 2962 return ret ?: nbytes;
8cdea7c0
BS
2963}
2964
6770c64e
TH
2965static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966 size_t nbytes, loff_t off)
c84872e1 2967{
6770c64e 2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2969 struct page_counter *counter;
c84872e1 2970
3e32cb2e
JW
2971 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972 case _MEM:
2973 counter = &memcg->memory;
2974 break;
2975 case _MEMSWAP:
2976 counter = &memcg->memsw;
2977 break;
2978 case _KMEM:
2979 counter = &memcg->kmem;
2980 break;
d55f90bf 2981 case _TCP:
0db15298 2982 counter = &memcg->tcpmem;
d55f90bf 2983 break;
3e32cb2e
JW
2984 default:
2985 BUG();
2986 }
af36f906 2987
3e32cb2e 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 2989 case RES_MAX_USAGE:
3e32cb2e 2990 page_counter_reset_watermark(counter);
29f2a4da
PE
2991 break;
2992 case RES_FAILCNT:
3e32cb2e 2993 counter->failcnt = 0;
29f2a4da 2994 break;
3e32cb2e
JW
2995 default:
2996 BUG();
29f2a4da 2997 }
f64c3f54 2998
6770c64e 2999 return nbytes;
c84872e1
PE
3000}
3001
182446d0 3002static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3003 struct cftype *cft)
3004{
182446d0 3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3006}
3007
02491447 3008#ifdef CONFIG_MMU
182446d0 3009static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3010 struct cftype *cft, u64 val)
3011{
182446d0 3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3013
1dfab5ab 3014 if (val & ~MOVE_MASK)
7dc74be0 3015 return -EINVAL;
ee5e8472 3016
7dc74be0 3017 /*
ee5e8472
GC
3018 * No kind of locking is needed in here, because ->can_attach() will
3019 * check this value once in the beginning of the process, and then carry
3020 * on with stale data. This means that changes to this value will only
3021 * affect task migrations starting after the change.
7dc74be0 3022 */
c0ff4b85 3023 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3024 return 0;
3025}
02491447 3026#else
182446d0 3027static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3028 struct cftype *cft, u64 val)
3029{
3030 return -ENOSYS;
3031}
3032#endif
7dc74be0 3033
406eb0c9 3034#ifdef CONFIG_NUMA
2da8ca82 3035static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3036{
25485de6
GT
3037 struct numa_stat {
3038 const char *name;
3039 unsigned int lru_mask;
3040 };
3041
3042 static const struct numa_stat stats[] = {
3043 { "total", LRU_ALL },
3044 { "file", LRU_ALL_FILE },
3045 { "anon", LRU_ALL_ANON },
3046 { "unevictable", BIT(LRU_UNEVICTABLE) },
3047 };
3048 const struct numa_stat *stat;
406eb0c9 3049 int nid;
25485de6 3050 unsigned long nr;
2da8ca82 3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3052
25485de6
GT
3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055 seq_printf(m, "%s=%lu", stat->name, nr);
3056 for_each_node_state(nid, N_MEMORY) {
3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058 stat->lru_mask);
3059 seq_printf(m, " N%d=%lu", nid, nr);
3060 }
3061 seq_putc(m, '\n');
406eb0c9 3062 }
406eb0c9 3063
071aee13
YH
3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065 struct mem_cgroup *iter;
3066
3067 nr = 0;
3068 for_each_mem_cgroup_tree(iter, memcg)
3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071 for_each_node_state(nid, N_MEMORY) {
3072 nr = 0;
3073 for_each_mem_cgroup_tree(iter, memcg)
3074 nr += mem_cgroup_node_nr_lru_pages(
3075 iter, nid, stat->lru_mask);
3076 seq_printf(m, " N%d=%lu", nid, nr);
3077 }
3078 seq_putc(m, '\n');
406eb0c9 3079 }
406eb0c9 3080
406eb0c9
YH
3081 return 0;
3082}
3083#endif /* CONFIG_NUMA */
3084
df0e53d0
JW
3085/* Universal VM events cgroup1 shows, original sort order */
3086unsigned int memcg1_events[] = {
3087 PGPGIN,
3088 PGPGOUT,
3089 PGFAULT,
3090 PGMAJFAULT,
3091};
3092
3093static const char *const memcg1_event_names[] = {
3094 "pgpgin",
3095 "pgpgout",
3096 "pgfault",
3097 "pgmajfault",
3098};
3099
2da8ca82 3100static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3101{
2da8ca82 3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3103 unsigned long memory, memsw;
af7c4b0e
JW
3104 struct mem_cgroup *mi;
3105 unsigned int i;
406eb0c9 3106
71cd3113 3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
71cd3113
JW
3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3112 continue;
71cd3113 3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3114 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3115 PAGE_SIZE);
1dd3a273 3116 }
7b854121 3117
df0e53d0
JW
3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3120 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3121
3122 for (i = 0; i < NR_LRU_LISTS; i++)
3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
14067bb3 3126 /* Hierarchical information */
3e32cb2e
JW
3127 memory = memsw = PAGE_COUNTER_MAX;
3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3129 memory = min(memory, mi->memory.max);
3130 memsw = min(memsw, mi->memsw.max);
fee7b548 3131 }
3e32cb2e
JW
3132 seq_printf(m, "hierarchical_memory_limit %llu\n",
3133 (u64)memory * PAGE_SIZE);
7941d214 3134 if (do_memsw_account())
3e32cb2e
JW
3135 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136 (u64)memsw * PAGE_SIZE);
7f016ee8 3137
71cd3113 3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3139 unsigned long long val = 0;
af7c4b0e 3140
71cd3113 3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3142 continue;
af7c4b0e 3143 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3144 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3145 PAGE_SIZE;
3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3147 }
3148
df0e53d0 3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3150 unsigned long long val = 0;
3151
3152 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3153 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3155 }
3156
3157 for (i = 0; i < NR_LRU_LISTS; i++) {
3158 unsigned long long val = 0;
3159
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3163 }
14067bb3 3164
7f016ee8 3165#ifdef CONFIG_DEBUG_VM
7f016ee8 3166 {
ef8f2327
MG
3167 pg_data_t *pgdat;
3168 struct mem_cgroup_per_node *mz;
89abfab1 3169 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3170 unsigned long recent_rotated[2] = {0, 0};
3171 unsigned long recent_scanned[2] = {0, 0};
3172
ef8f2327
MG
3173 for_each_online_pgdat(pgdat) {
3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3176
ef8f2327
MG
3177 recent_rotated[0] += rstat->recent_rotated[0];
3178 recent_rotated[1] += rstat->recent_rotated[1];
3179 recent_scanned[0] += rstat->recent_scanned[0];
3180 recent_scanned[1] += rstat->recent_scanned[1];
3181 }
78ccf5b5
JW
3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3186 }
3187#endif
3188
d2ceb9b7
KH
3189 return 0;
3190}
3191
182446d0
TH
3192static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
a7885eb8 3194{
182446d0 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3196
1f4c025b 3197 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3198}
3199
182446d0
TH
3200static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201 struct cftype *cft, u64 val)
a7885eb8 3202{
182446d0 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3204
3dae7fec 3205 if (val > 100)
a7885eb8
KM
3206 return -EINVAL;
3207
14208b0e 3208 if (css->parent)
3dae7fec
JW
3209 memcg->swappiness = val;
3210 else
3211 vm_swappiness = val;
068b38c1 3212
a7885eb8
KM
3213 return 0;
3214}
3215
2e72b634
KS
3216static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217{
3218 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3219 unsigned long usage;
2e72b634
KS
3220 int i;
3221
3222 rcu_read_lock();
3223 if (!swap)
2c488db2 3224 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3225 else
2c488db2 3226 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3227
3228 if (!t)
3229 goto unlock;
3230
ce00a967 3231 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3232
3233 /*
748dad36 3234 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3235 * If it's not true, a threshold was crossed after last
3236 * call of __mem_cgroup_threshold().
3237 */
5407a562 3238 i = t->current_threshold;
2e72b634
KS
3239
3240 /*
3241 * Iterate backward over array of thresholds starting from
3242 * current_threshold and check if a threshold is crossed.
3243 * If none of thresholds below usage is crossed, we read
3244 * only one element of the array here.
3245 */
3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247 eventfd_signal(t->entries[i].eventfd, 1);
3248
3249 /* i = current_threshold + 1 */
3250 i++;
3251
3252 /*
3253 * Iterate forward over array of thresholds starting from
3254 * current_threshold+1 and check if a threshold is crossed.
3255 * If none of thresholds above usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* Update current_threshold */
5407a562 3262 t->current_threshold = i - 1;
2e72b634
KS
3263unlock:
3264 rcu_read_unlock();
3265}
3266
3267static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268{
ad4ca5f4
KS
3269 while (memcg) {
3270 __mem_cgroup_threshold(memcg, false);
7941d214 3271 if (do_memsw_account())
ad4ca5f4
KS
3272 __mem_cgroup_threshold(memcg, true);
3273
3274 memcg = parent_mem_cgroup(memcg);
3275 }
2e72b634
KS
3276}
3277
3278static int compare_thresholds(const void *a, const void *b)
3279{
3280 const struct mem_cgroup_threshold *_a = a;
3281 const struct mem_cgroup_threshold *_b = b;
3282
2bff24a3
GT
3283 if (_a->threshold > _b->threshold)
3284 return 1;
3285
3286 if (_a->threshold < _b->threshold)
3287 return -1;
3288
3289 return 0;
2e72b634
KS
3290}
3291
c0ff4b85 3292static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3293{
3294 struct mem_cgroup_eventfd_list *ev;
3295
2bcf2e92
MH
3296 spin_lock(&memcg_oom_lock);
3297
c0ff4b85 3298 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3299 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3300
3301 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3302 return 0;
3303}
3304
c0ff4b85 3305static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3306{
7d74b06f
KH
3307 struct mem_cgroup *iter;
3308
c0ff4b85 3309 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3310 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3311}
3312
59b6f873 3313static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3315{
2c488db2
KS
3316 struct mem_cgroup_thresholds *thresholds;
3317 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3318 unsigned long threshold;
3319 unsigned long usage;
2c488db2 3320 int i, size, ret;
2e72b634 3321
650c5e56 3322 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3323 if (ret)
3324 return ret;
3325
3326 mutex_lock(&memcg->thresholds_lock);
2c488db2 3327
05b84301 3328 if (type == _MEM) {
2c488db2 3329 thresholds = &memcg->thresholds;
ce00a967 3330 usage = mem_cgroup_usage(memcg, false);
05b84301 3331 } else if (type == _MEMSWAP) {
2c488db2 3332 thresholds = &memcg->memsw_thresholds;
ce00a967 3333 usage = mem_cgroup_usage(memcg, true);
05b84301 3334 } else
2e72b634
KS
3335 BUG();
3336
2e72b634 3337 /* Check if a threshold crossed before adding a new one */
2c488db2 3338 if (thresholds->primary)
2e72b634
KS
3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
2c488db2 3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3342
3343 /* Allocate memory for new array of thresholds */
2c488db2 3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3345 GFP_KERNEL);
2c488db2 3346 if (!new) {
2e72b634
KS
3347 ret = -ENOMEM;
3348 goto unlock;
3349 }
2c488db2 3350 new->size = size;
2e72b634
KS
3351
3352 /* Copy thresholds (if any) to new array */
2c488db2
KS
3353 if (thresholds->primary) {
3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3355 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3356 }
3357
2e72b634 3358 /* Add new threshold */
2c488db2
KS
3359 new->entries[size - 1].eventfd = eventfd;
3360 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3361
3362 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3364 compare_thresholds, NULL);
3365
3366 /* Find current threshold */
2c488db2 3367 new->current_threshold = -1;
2e72b634 3368 for (i = 0; i < size; i++) {
748dad36 3369 if (new->entries[i].threshold <= usage) {
2e72b634 3370 /*
2c488db2
KS
3371 * new->current_threshold will not be used until
3372 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3373 * it here.
3374 */
2c488db2 3375 ++new->current_threshold;
748dad36
SZ
3376 } else
3377 break;
2e72b634
KS
3378 }
3379
2c488db2
KS
3380 /* Free old spare buffer and save old primary buffer as spare */
3381 kfree(thresholds->spare);
3382 thresholds->spare = thresholds->primary;
3383
3384 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3385
907860ed 3386 /* To be sure that nobody uses thresholds */
2e72b634
KS
3387 synchronize_rcu();
3388
2e72b634
KS
3389unlock:
3390 mutex_unlock(&memcg->thresholds_lock);
3391
3392 return ret;
3393}
3394
59b6f873 3395static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3396 struct eventfd_ctx *eventfd, const char *args)
3397{
59b6f873 3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3399}
3400
59b6f873 3401static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3402 struct eventfd_ctx *eventfd, const char *args)
3403{
59b6f873 3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3405}
3406
59b6f873 3407static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3408 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3409{
2c488db2
KS
3410 struct mem_cgroup_thresholds *thresholds;
3411 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3412 unsigned long usage;
2c488db2 3413 int i, j, size;
2e72b634
KS
3414
3415 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3416
3417 if (type == _MEM) {
2c488db2 3418 thresholds = &memcg->thresholds;
ce00a967 3419 usage = mem_cgroup_usage(memcg, false);
05b84301 3420 } else if (type == _MEMSWAP) {
2c488db2 3421 thresholds = &memcg->memsw_thresholds;
ce00a967 3422 usage = mem_cgroup_usage(memcg, true);
05b84301 3423 } else
2e72b634
KS
3424 BUG();
3425
371528ca
AV
3426 if (!thresholds->primary)
3427 goto unlock;
3428
2e72b634
KS
3429 /* Check if a threshold crossed before removing */
3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432 /* Calculate new number of threshold */
2c488db2
KS
3433 size = 0;
3434 for (i = 0; i < thresholds->primary->size; i++) {
3435 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3436 size++;
3437 }
3438
2c488db2 3439 new = thresholds->spare;
907860ed 3440
2e72b634
KS
3441 /* Set thresholds array to NULL if we don't have thresholds */
3442 if (!size) {
2c488db2
KS
3443 kfree(new);
3444 new = NULL;
907860ed 3445 goto swap_buffers;
2e72b634
KS
3446 }
3447
2c488db2 3448 new->size = size;
2e72b634
KS
3449
3450 /* Copy thresholds and find current threshold */
2c488db2
KS
3451 new->current_threshold = -1;
3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3454 continue;
3455
2c488db2 3456 new->entries[j] = thresholds->primary->entries[i];
748dad36 3457 if (new->entries[j].threshold <= usage) {
2e72b634 3458 /*
2c488db2 3459 * new->current_threshold will not be used
2e72b634
KS
3460 * until rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
2c488db2 3463 ++new->current_threshold;
2e72b634
KS
3464 }
3465 j++;
3466 }
3467
907860ed 3468swap_buffers:
2c488db2
KS
3469 /* Swap primary and spare array */
3470 thresholds->spare = thresholds->primary;
8c757763 3471
2c488db2 3472 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3473
907860ed 3474 /* To be sure that nobody uses thresholds */
2e72b634 3475 synchronize_rcu();
6611d8d7
MC
3476
3477 /* If all events are unregistered, free the spare array */
3478 if (!new) {
3479 kfree(thresholds->spare);
3480 thresholds->spare = NULL;
3481 }
371528ca 3482unlock:
2e72b634 3483 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3484}
c1e862c1 3485
59b6f873 3486static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3487 struct eventfd_ctx *eventfd)
3488{
59b6f873 3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3490}
3491
59b6f873 3492static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3493 struct eventfd_ctx *eventfd)
3494{
59b6f873 3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3496}
3497
59b6f873 3498static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3499 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3500{
9490ff27 3501 struct mem_cgroup_eventfd_list *event;
9490ff27 3502
9490ff27
KH
3503 event = kmalloc(sizeof(*event), GFP_KERNEL);
3504 if (!event)
3505 return -ENOMEM;
3506
1af8efe9 3507 spin_lock(&memcg_oom_lock);
9490ff27
KH
3508
3509 event->eventfd = eventfd;
3510 list_add(&event->list, &memcg->oom_notify);
3511
3512 /* already in OOM ? */
c2b42d3c 3513 if (memcg->under_oom)
9490ff27 3514 eventfd_signal(eventfd, 1);
1af8efe9 3515 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3516
3517 return 0;
3518}
3519
59b6f873 3520static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3521 struct eventfd_ctx *eventfd)
9490ff27 3522{
9490ff27 3523 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3524
1af8efe9 3525 spin_lock(&memcg_oom_lock);
9490ff27 3526
c0ff4b85 3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3528 if (ev->eventfd == eventfd) {
3529 list_del(&ev->list);
3530 kfree(ev);
3531 }
3532 }
3533
1af8efe9 3534 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3535}
3536
2da8ca82 3537static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3538{
2da8ca82 3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3540
791badbd 3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3544 return 0;
3545}
3546
182446d0 3547static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3548 struct cftype *cft, u64 val)
3549{
182446d0 3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3551
3552 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3553 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3554 return -EINVAL;
3555
c0ff4b85 3556 memcg->oom_kill_disable = val;
4d845ebf 3557 if (!val)
c0ff4b85 3558 memcg_oom_recover(memcg);
3dae7fec 3559
3c11ecf4
KH
3560 return 0;
3561}
3562
52ebea74
TH
3563#ifdef CONFIG_CGROUP_WRITEBACK
3564
841710aa
TH
3565static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3566{
3567 return wb_domain_init(&memcg->cgwb_domain, gfp);
3568}
3569
3570static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3571{
3572 wb_domain_exit(&memcg->cgwb_domain);
3573}
3574
2529bb3a
TH
3575static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3576{
3577 wb_domain_size_changed(&memcg->cgwb_domain);
3578}
3579
841710aa
TH
3580struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3581{
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3583
3584 if (!memcg->css.parent)
3585 return NULL;
3586
3587 return &memcg->cgwb_domain;
3588}
3589
c2aa723a
TH
3590/**
3591 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3592 * @wb: bdi_writeback in question
c5edf9cd
TH
3593 * @pfilepages: out parameter for number of file pages
3594 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3595 * @pdirty: out parameter for number of dirty pages
3596 * @pwriteback: out parameter for number of pages under writeback
3597 *
c5edf9cd
TH
3598 * Determine the numbers of file, headroom, dirty, and writeback pages in
3599 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3600 * is a bit more involved.
c2aa723a 3601 *
c5edf9cd
TH
3602 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3603 * headroom is calculated as the lowest headroom of itself and the
3604 * ancestors. Note that this doesn't consider the actual amount of
3605 * available memory in the system. The caller should further cap
3606 * *@pheadroom accordingly.
c2aa723a 3607 */
c5edf9cd
TH
3608void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3609 unsigned long *pheadroom, unsigned long *pdirty,
3610 unsigned long *pwriteback)
c2aa723a
TH
3611{
3612 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3613 struct mem_cgroup *parent;
c2aa723a 3614
ccda7f43 3615 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3616
3617 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3618 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3619 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3620 (1 << LRU_ACTIVE_FILE));
3621 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3622
c2aa723a 3623 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3624 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3625 unsigned long used = page_counter_read(&memcg->memory);
3626
c5edf9cd 3627 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3628 memcg = parent;
3629 }
c2aa723a
TH
3630}
3631
841710aa
TH
3632#else /* CONFIG_CGROUP_WRITEBACK */
3633
3634static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3635{
3636 return 0;
3637}
3638
3639static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3640{
3641}
3642
2529bb3a
TH
3643static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3644{
3645}
3646
52ebea74
TH
3647#endif /* CONFIG_CGROUP_WRITEBACK */
3648
3bc942f3
TH
3649/*
3650 * DO NOT USE IN NEW FILES.
3651 *
3652 * "cgroup.event_control" implementation.
3653 *
3654 * This is way over-engineered. It tries to support fully configurable
3655 * events for each user. Such level of flexibility is completely
3656 * unnecessary especially in the light of the planned unified hierarchy.
3657 *
3658 * Please deprecate this and replace with something simpler if at all
3659 * possible.
3660 */
3661
79bd9814
TH
3662/*
3663 * Unregister event and free resources.
3664 *
3665 * Gets called from workqueue.
3666 */
3bc942f3 3667static void memcg_event_remove(struct work_struct *work)
79bd9814 3668{
3bc942f3
TH
3669 struct mem_cgroup_event *event =
3670 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3671 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3672
3673 remove_wait_queue(event->wqh, &event->wait);
3674
59b6f873 3675 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3676
3677 /* Notify userspace the event is going away. */
3678 eventfd_signal(event->eventfd, 1);
3679
3680 eventfd_ctx_put(event->eventfd);
3681 kfree(event);
59b6f873 3682 css_put(&memcg->css);
79bd9814
TH
3683}
3684
3685/*
a9a08845 3686 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3687 *
3688 * Called with wqh->lock held and interrupts disabled.
3689 */
ac6424b9 3690static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3691 int sync, void *key)
79bd9814 3692{
3bc942f3
TH
3693 struct mem_cgroup_event *event =
3694 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3695 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3696 __poll_t flags = key_to_poll(key);
79bd9814 3697
a9a08845 3698 if (flags & EPOLLHUP) {
79bd9814
TH
3699 /*
3700 * If the event has been detached at cgroup removal, we
3701 * can simply return knowing the other side will cleanup
3702 * for us.
3703 *
3704 * We can't race against event freeing since the other
3705 * side will require wqh->lock via remove_wait_queue(),
3706 * which we hold.
3707 */
fba94807 3708 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3709 if (!list_empty(&event->list)) {
3710 list_del_init(&event->list);
3711 /*
3712 * We are in atomic context, but cgroup_event_remove()
3713 * may sleep, so we have to call it in workqueue.
3714 */
3715 schedule_work(&event->remove);
3716 }
fba94807 3717 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3718 }
3719
3720 return 0;
3721}
3722
3bc942f3 3723static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3724 wait_queue_head_t *wqh, poll_table *pt)
3725{
3bc942f3
TH
3726 struct mem_cgroup_event *event =
3727 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3728
3729 event->wqh = wqh;
3730 add_wait_queue(wqh, &event->wait);
3731}
3732
3733/*
3bc942f3
TH
3734 * DO NOT USE IN NEW FILES.
3735 *
79bd9814
TH
3736 * Parse input and register new cgroup event handler.
3737 *
3738 * Input must be in format '<event_fd> <control_fd> <args>'.
3739 * Interpretation of args is defined by control file implementation.
3740 */
451af504
TH
3741static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3742 char *buf, size_t nbytes, loff_t off)
79bd9814 3743{
451af504 3744 struct cgroup_subsys_state *css = of_css(of);
fba94807 3745 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3746 struct mem_cgroup_event *event;
79bd9814
TH
3747 struct cgroup_subsys_state *cfile_css;
3748 unsigned int efd, cfd;
3749 struct fd efile;
3750 struct fd cfile;
fba94807 3751 const char *name;
79bd9814
TH
3752 char *endp;
3753 int ret;
3754
451af504
TH
3755 buf = strstrip(buf);
3756
3757 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3758 if (*endp != ' ')
3759 return -EINVAL;
451af504 3760 buf = endp + 1;
79bd9814 3761
451af504 3762 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3763 if ((*endp != ' ') && (*endp != '\0'))
3764 return -EINVAL;
451af504 3765 buf = endp + 1;
79bd9814
TH
3766
3767 event = kzalloc(sizeof(*event), GFP_KERNEL);
3768 if (!event)
3769 return -ENOMEM;
3770
59b6f873 3771 event->memcg = memcg;
79bd9814 3772 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3773 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3774 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3775 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3776
3777 efile = fdget(efd);
3778 if (!efile.file) {
3779 ret = -EBADF;
3780 goto out_kfree;
3781 }
3782
3783 event->eventfd = eventfd_ctx_fileget(efile.file);
3784 if (IS_ERR(event->eventfd)) {
3785 ret = PTR_ERR(event->eventfd);
3786 goto out_put_efile;
3787 }
3788
3789 cfile = fdget(cfd);
3790 if (!cfile.file) {
3791 ret = -EBADF;
3792 goto out_put_eventfd;
3793 }
3794
3795 /* the process need read permission on control file */
3796 /* AV: shouldn't we check that it's been opened for read instead? */
3797 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3798 if (ret < 0)
3799 goto out_put_cfile;
3800
fba94807
TH
3801 /*
3802 * Determine the event callbacks and set them in @event. This used
3803 * to be done via struct cftype but cgroup core no longer knows
3804 * about these events. The following is crude but the whole thing
3805 * is for compatibility anyway.
3bc942f3
TH
3806 *
3807 * DO NOT ADD NEW FILES.
fba94807 3808 */
b583043e 3809 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3810
3811 if (!strcmp(name, "memory.usage_in_bytes")) {
3812 event->register_event = mem_cgroup_usage_register_event;
3813 event->unregister_event = mem_cgroup_usage_unregister_event;
3814 } else if (!strcmp(name, "memory.oom_control")) {
3815 event->register_event = mem_cgroup_oom_register_event;
3816 event->unregister_event = mem_cgroup_oom_unregister_event;
3817 } else if (!strcmp(name, "memory.pressure_level")) {
3818 event->register_event = vmpressure_register_event;
3819 event->unregister_event = vmpressure_unregister_event;
3820 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3821 event->register_event = memsw_cgroup_usage_register_event;
3822 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3823 } else {
3824 ret = -EINVAL;
3825 goto out_put_cfile;
3826 }
3827
79bd9814 3828 /*
b5557c4c
TH
3829 * Verify @cfile should belong to @css. Also, remaining events are
3830 * automatically removed on cgroup destruction but the removal is
3831 * asynchronous, so take an extra ref on @css.
79bd9814 3832 */
b583043e 3833 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3834 &memory_cgrp_subsys);
79bd9814 3835 ret = -EINVAL;
5a17f543 3836 if (IS_ERR(cfile_css))
79bd9814 3837 goto out_put_cfile;
5a17f543
TH
3838 if (cfile_css != css) {
3839 css_put(cfile_css);
79bd9814 3840 goto out_put_cfile;
5a17f543 3841 }
79bd9814 3842
451af504 3843 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3844 if (ret)
3845 goto out_put_css;
3846
9965ed17 3847 vfs_poll(efile.file, &event->pt);
79bd9814 3848
fba94807
TH
3849 spin_lock(&memcg->event_list_lock);
3850 list_add(&event->list, &memcg->event_list);
3851 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3852
3853 fdput(cfile);
3854 fdput(efile);
3855
451af504 3856 return nbytes;
79bd9814
TH
3857
3858out_put_css:
b5557c4c 3859 css_put(css);
79bd9814
TH
3860out_put_cfile:
3861 fdput(cfile);
3862out_put_eventfd:
3863 eventfd_ctx_put(event->eventfd);
3864out_put_efile:
3865 fdput(efile);
3866out_kfree:
3867 kfree(event);
3868
3869 return ret;
3870}
3871
241994ed 3872static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3873 {
0eea1030 3874 .name = "usage_in_bytes",
8c7c6e34 3875 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3876 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3877 },
c84872e1
PE
3878 {
3879 .name = "max_usage_in_bytes",
8c7c6e34 3880 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3881 .write = mem_cgroup_reset,
791badbd 3882 .read_u64 = mem_cgroup_read_u64,
c84872e1 3883 },
8cdea7c0 3884 {
0eea1030 3885 .name = "limit_in_bytes",
8c7c6e34 3886 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3887 .write = mem_cgroup_write,
791badbd 3888 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3889 },
296c81d8
BS
3890 {
3891 .name = "soft_limit_in_bytes",
3892 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3893 .write = mem_cgroup_write,
791badbd 3894 .read_u64 = mem_cgroup_read_u64,
296c81d8 3895 },
8cdea7c0
BS
3896 {
3897 .name = "failcnt",
8c7c6e34 3898 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3899 .write = mem_cgroup_reset,
791badbd 3900 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3901 },
d2ceb9b7
KH
3902 {
3903 .name = "stat",
2da8ca82 3904 .seq_show = memcg_stat_show,
d2ceb9b7 3905 },
c1e862c1
KH
3906 {
3907 .name = "force_empty",
6770c64e 3908 .write = mem_cgroup_force_empty_write,
c1e862c1 3909 },
18f59ea7
BS
3910 {
3911 .name = "use_hierarchy",
3912 .write_u64 = mem_cgroup_hierarchy_write,
3913 .read_u64 = mem_cgroup_hierarchy_read,
3914 },
79bd9814 3915 {
3bc942f3 3916 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3917 .write = memcg_write_event_control,
7dbdb199 3918 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3919 },
a7885eb8
KM
3920 {
3921 .name = "swappiness",
3922 .read_u64 = mem_cgroup_swappiness_read,
3923 .write_u64 = mem_cgroup_swappiness_write,
3924 },
7dc74be0
DN
3925 {
3926 .name = "move_charge_at_immigrate",
3927 .read_u64 = mem_cgroup_move_charge_read,
3928 .write_u64 = mem_cgroup_move_charge_write,
3929 },
9490ff27
KH
3930 {
3931 .name = "oom_control",
2da8ca82 3932 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3933 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3934 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3935 },
70ddf637
AV
3936 {
3937 .name = "pressure_level",
70ddf637 3938 },
406eb0c9
YH
3939#ifdef CONFIG_NUMA
3940 {
3941 .name = "numa_stat",
2da8ca82 3942 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3943 },
3944#endif
510fc4e1
GC
3945 {
3946 .name = "kmem.limit_in_bytes",
3947 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3948 .write = mem_cgroup_write,
791badbd 3949 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3950 },
3951 {
3952 .name = "kmem.usage_in_bytes",
3953 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3954 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3955 },
3956 {
3957 .name = "kmem.failcnt",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3959 .write = mem_cgroup_reset,
791badbd 3960 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3961 },
3962 {
3963 .name = "kmem.max_usage_in_bytes",
3964 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3965 .write = mem_cgroup_reset,
791badbd 3966 .read_u64 = mem_cgroup_read_u64,
510fc4e1 3967 },
5b365771 3968#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
3969 {
3970 .name = "kmem.slabinfo",
bc2791f8
TH
3971 .seq_start = memcg_slab_start,
3972 .seq_next = memcg_slab_next,
3973 .seq_stop = memcg_slab_stop,
b047501c 3974 .seq_show = memcg_slab_show,
749c5415
GC
3975 },
3976#endif
d55f90bf
VD
3977 {
3978 .name = "kmem.tcp.limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "kmem.tcp.usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.tcp.failcnt",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3991 .write = mem_cgroup_reset,
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.tcp.max_usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
6bc10349 4000 { }, /* terminate */
af36f906 4001};
8c7c6e34 4002
73f576c0
JW
4003/*
4004 * Private memory cgroup IDR
4005 *
4006 * Swap-out records and page cache shadow entries need to store memcg
4007 * references in constrained space, so we maintain an ID space that is
4008 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4009 * memory-controlled cgroups to 64k.
4010 *
4011 * However, there usually are many references to the oflline CSS after
4012 * the cgroup has been destroyed, such as page cache or reclaimable
4013 * slab objects, that don't need to hang on to the ID. We want to keep
4014 * those dead CSS from occupying IDs, or we might quickly exhaust the
4015 * relatively small ID space and prevent the creation of new cgroups
4016 * even when there are much fewer than 64k cgroups - possibly none.
4017 *
4018 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4019 * be freed and recycled when it's no longer needed, which is usually
4020 * when the CSS is offlined.
4021 *
4022 * The only exception to that are records of swapped out tmpfs/shmem
4023 * pages that need to be attributed to live ancestors on swapin. But
4024 * those references are manageable from userspace.
4025 */
4026
4027static DEFINE_IDR(mem_cgroup_idr);
4028
615d66c3 4029static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4030{
58fa2a55 4031 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4032 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4033}
4034
615d66c3 4035static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4036{
58fa2a55 4037 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4038 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4039 idr_remove(&mem_cgroup_idr, memcg->id.id);
4040 memcg->id.id = 0;
4041
4042 /* Memcg ID pins CSS */
4043 css_put(&memcg->css);
4044 }
4045}
4046
615d66c3
VD
4047static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4048{
4049 mem_cgroup_id_get_many(memcg, 1);
4050}
4051
4052static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4053{
4054 mem_cgroup_id_put_many(memcg, 1);
4055}
4056
73f576c0
JW
4057/**
4058 * mem_cgroup_from_id - look up a memcg from a memcg id
4059 * @id: the memcg id to look up
4060 *
4061 * Caller must hold rcu_read_lock().
4062 */
4063struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4064{
4065 WARN_ON_ONCE(!rcu_read_lock_held());
4066 return idr_find(&mem_cgroup_idr, id);
4067}
4068
ef8f2327 4069static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4070{
4071 struct mem_cgroup_per_node *pn;
ef8f2327 4072 int tmp = node;
1ecaab2b
KH
4073 /*
4074 * This routine is called against possible nodes.
4075 * But it's BUG to call kmalloc() against offline node.
4076 *
4077 * TODO: this routine can waste much memory for nodes which will
4078 * never be onlined. It's better to use memory hotplug callback
4079 * function.
4080 */
41e3355d
KH
4081 if (!node_state(node, N_NORMAL_MEMORY))
4082 tmp = -1;
17295c88 4083 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4084 if (!pn)
4085 return 1;
1ecaab2b 4086
a983b5eb
JW
4087 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4088 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4089 kfree(pn);
4090 return 1;
4091 }
4092
ef8f2327
MG
4093 lruvec_init(&pn->lruvec);
4094 pn->usage_in_excess = 0;
4095 pn->on_tree = false;
4096 pn->memcg = memcg;
4097
54f72fe0 4098 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4099 return 0;
4100}
4101
ef8f2327 4102static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4103{
00f3ca2c
JW
4104 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4105
4eaf431f
MH
4106 if (!pn)
4107 return;
4108
a983b5eb 4109 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4110 kfree(pn);
1ecaab2b
KH
4111}
4112
40e952f9 4113static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4114{
c8b2a36f 4115 int node;
59927fb9 4116
c8b2a36f 4117 for_each_node(node)
ef8f2327 4118 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4119 free_percpu(memcg->stat_cpu);
8ff69e2c 4120 kfree(memcg);
59927fb9 4121}
3afe36b1 4122
40e952f9
TE
4123static void mem_cgroup_free(struct mem_cgroup *memcg)
4124{
4125 memcg_wb_domain_exit(memcg);
4126 __mem_cgroup_free(memcg);
4127}
4128
0b8f73e1 4129static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4130{
d142e3e6 4131 struct mem_cgroup *memcg;
0b8f73e1 4132 size_t size;
6d12e2d8 4133 int node;
8cdea7c0 4134
0b8f73e1
JW
4135 size = sizeof(struct mem_cgroup);
4136 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4137
4138 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4139 if (!memcg)
0b8f73e1
JW
4140 return NULL;
4141
73f576c0
JW
4142 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4143 1, MEM_CGROUP_ID_MAX,
4144 GFP_KERNEL);
4145 if (memcg->id.id < 0)
4146 goto fail;
4147
a983b5eb
JW
4148 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4149 if (!memcg->stat_cpu)
0b8f73e1 4150 goto fail;
78fb7466 4151
3ed28fa1 4152 for_each_node(node)
ef8f2327 4153 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4154 goto fail;
f64c3f54 4155
0b8f73e1
JW
4156 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4157 goto fail;
28dbc4b6 4158
f7e1cb6e 4159 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4160 memcg->last_scanned_node = MAX_NUMNODES;
4161 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4162 mutex_init(&memcg->thresholds_lock);
4163 spin_lock_init(&memcg->move_lock);
70ddf637 4164 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4165 INIT_LIST_HEAD(&memcg->event_list);
4166 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4167 memcg->socket_pressure = jiffies;
127424c8 4168#ifndef CONFIG_SLOB
900a38f0 4169 memcg->kmemcg_id = -1;
900a38f0 4170#endif
52ebea74
TH
4171#ifdef CONFIG_CGROUP_WRITEBACK
4172 INIT_LIST_HEAD(&memcg->cgwb_list);
4173#endif
73f576c0 4174 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4175 return memcg;
4176fail:
73f576c0
JW
4177 if (memcg->id.id > 0)
4178 idr_remove(&mem_cgroup_idr, memcg->id.id);
40e952f9 4179 __mem_cgroup_free(memcg);
0b8f73e1 4180 return NULL;
d142e3e6
GC
4181}
4182
0b8f73e1
JW
4183static struct cgroup_subsys_state * __ref
4184mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4185{
0b8f73e1
JW
4186 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4187 struct mem_cgroup *memcg;
4188 long error = -ENOMEM;
d142e3e6 4189
0b8f73e1
JW
4190 memcg = mem_cgroup_alloc();
4191 if (!memcg)
4192 return ERR_PTR(error);
d142e3e6 4193
0b8f73e1
JW
4194 memcg->high = PAGE_COUNTER_MAX;
4195 memcg->soft_limit = PAGE_COUNTER_MAX;
4196 if (parent) {
4197 memcg->swappiness = mem_cgroup_swappiness(parent);
4198 memcg->oom_kill_disable = parent->oom_kill_disable;
4199 }
4200 if (parent && parent->use_hierarchy) {
4201 memcg->use_hierarchy = true;
3e32cb2e 4202 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4203 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4204 page_counter_init(&memcg->memsw, &parent->memsw);
4205 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4206 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4207 } else {
3e32cb2e 4208 page_counter_init(&memcg->memory, NULL);
37e84351 4209 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4210 page_counter_init(&memcg->memsw, NULL);
4211 page_counter_init(&memcg->kmem, NULL);
0db15298 4212 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4213 /*
4214 * Deeper hierachy with use_hierarchy == false doesn't make
4215 * much sense so let cgroup subsystem know about this
4216 * unfortunate state in our controller.
4217 */
d142e3e6 4218 if (parent != root_mem_cgroup)
073219e9 4219 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4220 }
d6441637 4221
0b8f73e1
JW
4222 /* The following stuff does not apply to the root */
4223 if (!parent) {
4224 root_mem_cgroup = memcg;
4225 return &memcg->css;
4226 }
4227
b313aeee 4228 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4229 if (error)
4230 goto fail;
127424c8 4231
f7e1cb6e 4232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4233 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4234
0b8f73e1
JW
4235 return &memcg->css;
4236fail:
4237 mem_cgroup_free(memcg);
ea3a9645 4238 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4239}
4240
73f576c0 4241static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4242{
58fa2a55
VD
4243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4244
73f576c0 4245 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4246 atomic_set(&memcg->id.ref, 1);
73f576c0 4247 css_get(css);
2f7dd7a4 4248 return 0;
8cdea7c0
BS
4249}
4250
eb95419b 4251static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4252{
eb95419b 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4254 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4255
4256 /*
4257 * Unregister events and notify userspace.
4258 * Notify userspace about cgroup removing only after rmdir of cgroup
4259 * directory to avoid race between userspace and kernelspace.
4260 */
fba94807
TH
4261 spin_lock(&memcg->event_list_lock);
4262 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4263 list_del_init(&event->list);
4264 schedule_work(&event->remove);
4265 }
fba94807 4266 spin_unlock(&memcg->event_list_lock);
ec64f515 4267
23067153 4268 page_counter_set_low(&memcg->memory, 0);
63677c74 4269
567e9ab2 4270 memcg_offline_kmem(memcg);
52ebea74 4271 wb_memcg_offline(memcg);
73f576c0
JW
4272
4273 mem_cgroup_id_put(memcg);
df878fb0
KH
4274}
4275
6df38689
VD
4276static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4277{
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280 invalidate_reclaim_iterators(memcg);
4281}
4282
eb95419b 4283static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4284{
eb95419b 4285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4286
f7e1cb6e 4287 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4288 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4289
0db15298 4290 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4291 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4292
0b8f73e1
JW
4293 vmpressure_cleanup(&memcg->vmpressure);
4294 cancel_work_sync(&memcg->high_work);
4295 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4296 memcg_free_kmem(memcg);
0b8f73e1 4297 mem_cgroup_free(memcg);
8cdea7c0
BS
4298}
4299
1ced953b
TH
4300/**
4301 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4302 * @css: the target css
4303 *
4304 * Reset the states of the mem_cgroup associated with @css. This is
4305 * invoked when the userland requests disabling on the default hierarchy
4306 * but the memcg is pinned through dependency. The memcg should stop
4307 * applying policies and should revert to the vanilla state as it may be
4308 * made visible again.
4309 *
4310 * The current implementation only resets the essential configurations.
4311 * This needs to be expanded to cover all the visible parts.
4312 */
4313static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4314{
4315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4316
bbec2e15
RG
4317 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4318 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4319 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4320 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4321 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
23067153 4322 page_counter_set_low(&memcg->memory, 0);
241994ed 4323 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4324 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4325 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4326}
4327
02491447 4328#ifdef CONFIG_MMU
7dc74be0 4329/* Handlers for move charge at task migration. */
854ffa8d 4330static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4331{
05b84301 4332 int ret;
9476db97 4333
d0164adc
MG
4334 /* Try a single bulk charge without reclaim first, kswapd may wake */
4335 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4336 if (!ret) {
854ffa8d 4337 mc.precharge += count;
854ffa8d
DN
4338 return ret;
4339 }
9476db97 4340
3674534b 4341 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4342 while (count--) {
3674534b 4343 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4344 if (ret)
38c5d72f 4345 return ret;
854ffa8d 4346 mc.precharge++;
9476db97 4347 cond_resched();
854ffa8d 4348 }
9476db97 4349 return 0;
4ffef5fe
DN
4350}
4351
4ffef5fe
DN
4352union mc_target {
4353 struct page *page;
02491447 4354 swp_entry_t ent;
4ffef5fe
DN
4355};
4356
4ffef5fe 4357enum mc_target_type {
8d32ff84 4358 MC_TARGET_NONE = 0,
4ffef5fe 4359 MC_TARGET_PAGE,
02491447 4360 MC_TARGET_SWAP,
c733a828 4361 MC_TARGET_DEVICE,
4ffef5fe
DN
4362};
4363
90254a65
DN
4364static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4365 unsigned long addr, pte_t ptent)
4ffef5fe 4366{
c733a828 4367 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4368
90254a65
DN
4369 if (!page || !page_mapped(page))
4370 return NULL;
4371 if (PageAnon(page)) {
1dfab5ab 4372 if (!(mc.flags & MOVE_ANON))
90254a65 4373 return NULL;
1dfab5ab
JW
4374 } else {
4375 if (!(mc.flags & MOVE_FILE))
4376 return NULL;
4377 }
90254a65
DN
4378 if (!get_page_unless_zero(page))
4379 return NULL;
4380
4381 return page;
4382}
4383
c733a828 4384#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4385static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4386 pte_t ptent, swp_entry_t *entry)
90254a65 4387{
90254a65
DN
4388 struct page *page = NULL;
4389 swp_entry_t ent = pte_to_swp_entry(ptent);
4390
1dfab5ab 4391 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4392 return NULL;
c733a828
JG
4393
4394 /*
4395 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4396 * a device and because they are not accessible by CPU they are store
4397 * as special swap entry in the CPU page table.
4398 */
4399 if (is_device_private_entry(ent)) {
4400 page = device_private_entry_to_page(ent);
4401 /*
4402 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4403 * a refcount of 1 when free (unlike normal page)
4404 */
4405 if (!page_ref_add_unless(page, 1, 1))
4406 return NULL;
4407 return page;
4408 }
4409
4b91355e
KH
4410 /*
4411 * Because lookup_swap_cache() updates some statistics counter,
4412 * we call find_get_page() with swapper_space directly.
4413 */
f6ab1f7f 4414 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4415 if (do_memsw_account())
90254a65
DN
4416 entry->val = ent.val;
4417
4418 return page;
4419}
4b91355e
KH
4420#else
4421static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4422 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4423{
4424 return NULL;
4425}
4426#endif
90254a65 4427
87946a72
DN
4428static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4429 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4430{
4431 struct page *page = NULL;
87946a72
DN
4432 struct address_space *mapping;
4433 pgoff_t pgoff;
4434
4435 if (!vma->vm_file) /* anonymous vma */
4436 return NULL;
1dfab5ab 4437 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4438 return NULL;
4439
87946a72 4440 mapping = vma->vm_file->f_mapping;
0661a336 4441 pgoff = linear_page_index(vma, addr);
87946a72
DN
4442
4443 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4444#ifdef CONFIG_SWAP
4445 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4446 if (shmem_mapping(mapping)) {
4447 page = find_get_entry(mapping, pgoff);
4448 if (radix_tree_exceptional_entry(page)) {
4449 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4450 if (do_memsw_account())
139b6a6f 4451 *entry = swp;
f6ab1f7f
HY
4452 page = find_get_page(swap_address_space(swp),
4453 swp_offset(swp));
139b6a6f
JW
4454 }
4455 } else
4456 page = find_get_page(mapping, pgoff);
4457#else
4458 page = find_get_page(mapping, pgoff);
aa3b1895 4459#endif
87946a72
DN
4460 return page;
4461}
4462
b1b0deab
CG
4463/**
4464 * mem_cgroup_move_account - move account of the page
4465 * @page: the page
25843c2b 4466 * @compound: charge the page as compound or small page
b1b0deab
CG
4467 * @from: mem_cgroup which the page is moved from.
4468 * @to: mem_cgroup which the page is moved to. @from != @to.
4469 *
3ac808fd 4470 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4471 *
4472 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4473 * from old cgroup.
4474 */
4475static int mem_cgroup_move_account(struct page *page,
f627c2f5 4476 bool compound,
b1b0deab
CG
4477 struct mem_cgroup *from,
4478 struct mem_cgroup *to)
4479{
4480 unsigned long flags;
f627c2f5 4481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4482 int ret;
c4843a75 4483 bool anon;
b1b0deab
CG
4484
4485 VM_BUG_ON(from == to);
4486 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4487 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4488
4489 /*
6a93ca8f 4490 * Prevent mem_cgroup_migrate() from looking at
45637bab 4491 * page->mem_cgroup of its source page while we change it.
b1b0deab 4492 */
f627c2f5 4493 ret = -EBUSY;
b1b0deab
CG
4494 if (!trylock_page(page))
4495 goto out;
4496
4497 ret = -EINVAL;
4498 if (page->mem_cgroup != from)
4499 goto out_unlock;
4500
c4843a75
GT
4501 anon = PageAnon(page);
4502
b1b0deab
CG
4503 spin_lock_irqsave(&from->move_lock, flags);
4504
c4843a75 4505 if (!anon && page_mapped(page)) {
c9019e9b
JW
4506 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4507 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4508 }
4509
c4843a75
GT
4510 /*
4511 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4512 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4513 * So mapping should be stable for dirty pages.
4514 */
4515 if (!anon && PageDirty(page)) {
4516 struct address_space *mapping = page_mapping(page);
4517
4518 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4519 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4520 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4521 }
4522 }
4523
b1b0deab 4524 if (PageWriteback(page)) {
c9019e9b
JW
4525 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4526 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4527 }
4528
4529 /*
4530 * It is safe to change page->mem_cgroup here because the page
4531 * is referenced, charged, and isolated - we can't race with
4532 * uncharging, charging, migration, or LRU putback.
4533 */
4534
4535 /* caller should have done css_get */
4536 page->mem_cgroup = to;
4537 spin_unlock_irqrestore(&from->move_lock, flags);
4538
4539 ret = 0;
4540
4541 local_irq_disable();
f627c2f5 4542 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4543 memcg_check_events(to, page);
f627c2f5 4544 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4545 memcg_check_events(from, page);
4546 local_irq_enable();
4547out_unlock:
4548 unlock_page(page);
4549out:
4550 return ret;
4551}
4552
7cf7806c
LR
4553/**
4554 * get_mctgt_type - get target type of moving charge
4555 * @vma: the vma the pte to be checked belongs
4556 * @addr: the address corresponding to the pte to be checked
4557 * @ptent: the pte to be checked
4558 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4559 *
4560 * Returns
4561 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4562 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4563 * move charge. if @target is not NULL, the page is stored in target->page
4564 * with extra refcnt got(Callers should handle it).
4565 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4566 * target for charge migration. if @target is not NULL, the entry is stored
4567 * in target->ent.
df6ad698
JG
4568 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4569 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4570 * For now we such page is charge like a regular page would be as for all
4571 * intent and purposes it is just special memory taking the place of a
4572 * regular page.
c733a828
JG
4573 *
4574 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4575 *
4576 * Called with pte lock held.
4577 */
4578
8d32ff84 4579static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4580 unsigned long addr, pte_t ptent, union mc_target *target)
4581{
4582 struct page *page = NULL;
8d32ff84 4583 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4584 swp_entry_t ent = { .val = 0 };
4585
4586 if (pte_present(ptent))
4587 page = mc_handle_present_pte(vma, addr, ptent);
4588 else if (is_swap_pte(ptent))
48406ef8 4589 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4590 else if (pte_none(ptent))
87946a72 4591 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4592
4593 if (!page && !ent.val)
8d32ff84 4594 return ret;
02491447 4595 if (page) {
02491447 4596 /*
0a31bc97 4597 * Do only loose check w/o serialization.
1306a85a 4598 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4599 * not under LRU exclusion.
02491447 4600 */
1306a85a 4601 if (page->mem_cgroup == mc.from) {
02491447 4602 ret = MC_TARGET_PAGE;
df6ad698
JG
4603 if (is_device_private_page(page) ||
4604 is_device_public_page(page))
c733a828 4605 ret = MC_TARGET_DEVICE;
02491447
DN
4606 if (target)
4607 target->page = page;
4608 }
4609 if (!ret || !target)
4610 put_page(page);
4611 }
3e14a57b
HY
4612 /*
4613 * There is a swap entry and a page doesn't exist or isn't charged.
4614 * But we cannot move a tail-page in a THP.
4615 */
4616 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4617 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4618 ret = MC_TARGET_SWAP;
4619 if (target)
4620 target->ent = ent;
4ffef5fe 4621 }
4ffef5fe
DN
4622 return ret;
4623}
4624
12724850
NH
4625#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4626/*
d6810d73
HY
4627 * We don't consider PMD mapped swapping or file mapped pages because THP does
4628 * not support them for now.
12724850
NH
4629 * Caller should make sure that pmd_trans_huge(pmd) is true.
4630 */
4631static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4632 unsigned long addr, pmd_t pmd, union mc_target *target)
4633{
4634 struct page *page = NULL;
12724850
NH
4635 enum mc_target_type ret = MC_TARGET_NONE;
4636
84c3fc4e
ZY
4637 if (unlikely(is_swap_pmd(pmd))) {
4638 VM_BUG_ON(thp_migration_supported() &&
4639 !is_pmd_migration_entry(pmd));
4640 return ret;
4641 }
12724850 4642 page = pmd_page(pmd);
309381fe 4643 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4644 if (!(mc.flags & MOVE_ANON))
12724850 4645 return ret;
1306a85a 4646 if (page->mem_cgroup == mc.from) {
12724850
NH
4647 ret = MC_TARGET_PAGE;
4648 if (target) {
4649 get_page(page);
4650 target->page = page;
4651 }
4652 }
4653 return ret;
4654}
4655#else
4656static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4657 unsigned long addr, pmd_t pmd, union mc_target *target)
4658{
4659 return MC_TARGET_NONE;
4660}
4661#endif
4662
4ffef5fe
DN
4663static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4664 unsigned long addr, unsigned long end,
4665 struct mm_walk *walk)
4666{
26bcd64a 4667 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4668 pte_t *pte;
4669 spinlock_t *ptl;
4670
b6ec57f4
KS
4671 ptl = pmd_trans_huge_lock(pmd, vma);
4672 if (ptl) {
c733a828
JG
4673 /*
4674 * Note their can not be MC_TARGET_DEVICE for now as we do not
4675 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4676 * MEMORY_DEVICE_PRIVATE but this might change.
4677 */
12724850
NH
4678 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4679 mc.precharge += HPAGE_PMD_NR;
bf929152 4680 spin_unlock(ptl);
1a5a9906 4681 return 0;
12724850 4682 }
03319327 4683
45f83cef
AA
4684 if (pmd_trans_unstable(pmd))
4685 return 0;
4ffef5fe
DN
4686 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4687 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4688 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4689 mc.precharge++; /* increment precharge temporarily */
4690 pte_unmap_unlock(pte - 1, ptl);
4691 cond_resched();
4692
7dc74be0
DN
4693 return 0;
4694}
4695
4ffef5fe
DN
4696static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4697{
4698 unsigned long precharge;
4ffef5fe 4699
26bcd64a
NH
4700 struct mm_walk mem_cgroup_count_precharge_walk = {
4701 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4702 .mm = mm,
4703 };
dfe076b0 4704 down_read(&mm->mmap_sem);
0247f3f4
JM
4705 walk_page_range(0, mm->highest_vm_end,
4706 &mem_cgroup_count_precharge_walk);
dfe076b0 4707 up_read(&mm->mmap_sem);
4ffef5fe
DN
4708
4709 precharge = mc.precharge;
4710 mc.precharge = 0;
4711
4712 return precharge;
4713}
4714
4ffef5fe
DN
4715static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4716{
dfe076b0
DN
4717 unsigned long precharge = mem_cgroup_count_precharge(mm);
4718
4719 VM_BUG_ON(mc.moving_task);
4720 mc.moving_task = current;
4721 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4722}
4723
dfe076b0
DN
4724/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4725static void __mem_cgroup_clear_mc(void)
4ffef5fe 4726{
2bd9bb20
KH
4727 struct mem_cgroup *from = mc.from;
4728 struct mem_cgroup *to = mc.to;
4729
4ffef5fe 4730 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4731 if (mc.precharge) {
00501b53 4732 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4733 mc.precharge = 0;
4734 }
4735 /*
4736 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4737 * we must uncharge here.
4738 */
4739 if (mc.moved_charge) {
00501b53 4740 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4741 mc.moved_charge = 0;
4ffef5fe 4742 }
483c30b5
DN
4743 /* we must fixup refcnts and charges */
4744 if (mc.moved_swap) {
483c30b5 4745 /* uncharge swap account from the old cgroup */
ce00a967 4746 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4747 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4748
615d66c3
VD
4749 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4750
05b84301 4751 /*
3e32cb2e
JW
4752 * we charged both to->memory and to->memsw, so we
4753 * should uncharge to->memory.
05b84301 4754 */
ce00a967 4755 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4756 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4757
615d66c3
VD
4758 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4759 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4760
483c30b5
DN
4761 mc.moved_swap = 0;
4762 }
dfe076b0
DN
4763 memcg_oom_recover(from);
4764 memcg_oom_recover(to);
4765 wake_up_all(&mc.waitq);
4766}
4767
4768static void mem_cgroup_clear_mc(void)
4769{
264a0ae1
TH
4770 struct mm_struct *mm = mc.mm;
4771
dfe076b0
DN
4772 /*
4773 * we must clear moving_task before waking up waiters at the end of
4774 * task migration.
4775 */
4776 mc.moving_task = NULL;
4777 __mem_cgroup_clear_mc();
2bd9bb20 4778 spin_lock(&mc.lock);
4ffef5fe
DN
4779 mc.from = NULL;
4780 mc.to = NULL;
264a0ae1 4781 mc.mm = NULL;
2bd9bb20 4782 spin_unlock(&mc.lock);
264a0ae1
TH
4783
4784 mmput(mm);
4ffef5fe
DN
4785}
4786
1f7dd3e5 4787static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4788{
1f7dd3e5 4789 struct cgroup_subsys_state *css;
eed67d75 4790 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4791 struct mem_cgroup *from;
4530eddb 4792 struct task_struct *leader, *p;
9f2115f9 4793 struct mm_struct *mm;
1dfab5ab 4794 unsigned long move_flags;
9f2115f9 4795 int ret = 0;
7dc74be0 4796
1f7dd3e5
TH
4797 /* charge immigration isn't supported on the default hierarchy */
4798 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4799 return 0;
4800
4530eddb
TH
4801 /*
4802 * Multi-process migrations only happen on the default hierarchy
4803 * where charge immigration is not used. Perform charge
4804 * immigration if @tset contains a leader and whine if there are
4805 * multiple.
4806 */
4807 p = NULL;
1f7dd3e5 4808 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4809 WARN_ON_ONCE(p);
4810 p = leader;
1f7dd3e5 4811 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4812 }
4813 if (!p)
4814 return 0;
4815
1f7dd3e5
TH
4816 /*
4817 * We are now commited to this value whatever it is. Changes in this
4818 * tunable will only affect upcoming migrations, not the current one.
4819 * So we need to save it, and keep it going.
4820 */
4821 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4822 if (!move_flags)
4823 return 0;
4824
9f2115f9
TH
4825 from = mem_cgroup_from_task(p);
4826
4827 VM_BUG_ON(from == memcg);
4828
4829 mm = get_task_mm(p);
4830 if (!mm)
4831 return 0;
4832 /* We move charges only when we move a owner of the mm */
4833 if (mm->owner == p) {
4834 VM_BUG_ON(mc.from);
4835 VM_BUG_ON(mc.to);
4836 VM_BUG_ON(mc.precharge);
4837 VM_BUG_ON(mc.moved_charge);
4838 VM_BUG_ON(mc.moved_swap);
4839
4840 spin_lock(&mc.lock);
264a0ae1 4841 mc.mm = mm;
9f2115f9
TH
4842 mc.from = from;
4843 mc.to = memcg;
4844 mc.flags = move_flags;
4845 spin_unlock(&mc.lock);
4846 /* We set mc.moving_task later */
4847
4848 ret = mem_cgroup_precharge_mc(mm);
4849 if (ret)
4850 mem_cgroup_clear_mc();
264a0ae1
TH
4851 } else {
4852 mmput(mm);
7dc74be0
DN
4853 }
4854 return ret;
4855}
4856
1f7dd3e5 4857static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4858{
4e2f245d
JW
4859 if (mc.to)
4860 mem_cgroup_clear_mc();
7dc74be0
DN
4861}
4862
4ffef5fe
DN
4863static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4864 unsigned long addr, unsigned long end,
4865 struct mm_walk *walk)
7dc74be0 4866{
4ffef5fe 4867 int ret = 0;
26bcd64a 4868 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4869 pte_t *pte;
4870 spinlock_t *ptl;
12724850
NH
4871 enum mc_target_type target_type;
4872 union mc_target target;
4873 struct page *page;
4ffef5fe 4874
b6ec57f4
KS
4875 ptl = pmd_trans_huge_lock(pmd, vma);
4876 if (ptl) {
62ade86a 4877 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4878 spin_unlock(ptl);
12724850
NH
4879 return 0;
4880 }
4881 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4882 if (target_type == MC_TARGET_PAGE) {
4883 page = target.page;
4884 if (!isolate_lru_page(page)) {
f627c2f5 4885 if (!mem_cgroup_move_account(page, true,
1306a85a 4886 mc.from, mc.to)) {
12724850
NH
4887 mc.precharge -= HPAGE_PMD_NR;
4888 mc.moved_charge += HPAGE_PMD_NR;
4889 }
4890 putback_lru_page(page);
4891 }
4892 put_page(page);
c733a828
JG
4893 } else if (target_type == MC_TARGET_DEVICE) {
4894 page = target.page;
4895 if (!mem_cgroup_move_account(page, true,
4896 mc.from, mc.to)) {
4897 mc.precharge -= HPAGE_PMD_NR;
4898 mc.moved_charge += HPAGE_PMD_NR;
4899 }
4900 put_page(page);
12724850 4901 }
bf929152 4902 spin_unlock(ptl);
1a5a9906 4903 return 0;
12724850
NH
4904 }
4905
45f83cef
AA
4906 if (pmd_trans_unstable(pmd))
4907 return 0;
4ffef5fe
DN
4908retry:
4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910 for (; addr != end; addr += PAGE_SIZE) {
4911 pte_t ptent = *(pte++);
c733a828 4912 bool device = false;
02491447 4913 swp_entry_t ent;
4ffef5fe
DN
4914
4915 if (!mc.precharge)
4916 break;
4917
8d32ff84 4918 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
4919 case MC_TARGET_DEVICE:
4920 device = true;
4921 /* fall through */
4ffef5fe
DN
4922 case MC_TARGET_PAGE:
4923 page = target.page;
53f9263b
KS
4924 /*
4925 * We can have a part of the split pmd here. Moving it
4926 * can be done but it would be too convoluted so simply
4927 * ignore such a partial THP and keep it in original
4928 * memcg. There should be somebody mapping the head.
4929 */
4930 if (PageTransCompound(page))
4931 goto put;
c733a828 4932 if (!device && isolate_lru_page(page))
4ffef5fe 4933 goto put;
f627c2f5
KS
4934 if (!mem_cgroup_move_account(page, false,
4935 mc.from, mc.to)) {
4ffef5fe 4936 mc.precharge--;
854ffa8d
DN
4937 /* we uncharge from mc.from later. */
4938 mc.moved_charge++;
4ffef5fe 4939 }
c733a828
JG
4940 if (!device)
4941 putback_lru_page(page);
8d32ff84 4942put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4943 put_page(page);
4944 break;
02491447
DN
4945 case MC_TARGET_SWAP:
4946 ent = target.ent;
e91cbb42 4947 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4948 mc.precharge--;
483c30b5
DN
4949 /* we fixup refcnts and charges later. */
4950 mc.moved_swap++;
4951 }
02491447 4952 break;
4ffef5fe
DN
4953 default:
4954 break;
4955 }
4956 }
4957 pte_unmap_unlock(pte - 1, ptl);
4958 cond_resched();
4959
4960 if (addr != end) {
4961 /*
4962 * We have consumed all precharges we got in can_attach().
4963 * We try charge one by one, but don't do any additional
4964 * charges to mc.to if we have failed in charge once in attach()
4965 * phase.
4966 */
854ffa8d 4967 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4968 if (!ret)
4969 goto retry;
4970 }
4971
4972 return ret;
4973}
4974
264a0ae1 4975static void mem_cgroup_move_charge(void)
4ffef5fe 4976{
26bcd64a
NH
4977 struct mm_walk mem_cgroup_move_charge_walk = {
4978 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4979 .mm = mc.mm,
26bcd64a 4980 };
4ffef5fe
DN
4981
4982 lru_add_drain_all();
312722cb 4983 /*
81f8c3a4
JW
4984 * Signal lock_page_memcg() to take the memcg's move_lock
4985 * while we're moving its pages to another memcg. Then wait
4986 * for already started RCU-only updates to finish.
312722cb
JW
4987 */
4988 atomic_inc(&mc.from->moving_account);
4989 synchronize_rcu();
dfe076b0 4990retry:
264a0ae1 4991 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4992 /*
4993 * Someone who are holding the mmap_sem might be waiting in
4994 * waitq. So we cancel all extra charges, wake up all waiters,
4995 * and retry. Because we cancel precharges, we might not be able
4996 * to move enough charges, but moving charge is a best-effort
4997 * feature anyway, so it wouldn't be a big problem.
4998 */
4999 __mem_cgroup_clear_mc();
5000 cond_resched();
5001 goto retry;
5002 }
26bcd64a
NH
5003 /*
5004 * When we have consumed all precharges and failed in doing
5005 * additional charge, the page walk just aborts.
5006 */
0247f3f4
JM
5007 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5008
264a0ae1 5009 up_read(&mc.mm->mmap_sem);
312722cb 5010 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5011}
5012
264a0ae1 5013static void mem_cgroup_move_task(void)
67e465a7 5014{
264a0ae1
TH
5015 if (mc.to) {
5016 mem_cgroup_move_charge();
a433658c 5017 mem_cgroup_clear_mc();
264a0ae1 5018 }
67e465a7 5019}
5cfb80a7 5020#else /* !CONFIG_MMU */
1f7dd3e5 5021static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5022{
5023 return 0;
5024}
1f7dd3e5 5025static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5026{
5027}
264a0ae1 5028static void mem_cgroup_move_task(void)
5cfb80a7
DN
5029{
5030}
5031#endif
67e465a7 5032
f00baae7
TH
5033/*
5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5035 * to verify whether we're attached to the default hierarchy on each mount
5036 * attempt.
f00baae7 5037 */
eb95419b 5038static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5039{
5040 /*
aa6ec29b 5041 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5042 * guarantees that @root doesn't have any children, so turning it
5043 * on for the root memcg is enough.
5044 */
9e10a130 5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5046 root_mem_cgroup->use_hierarchy = true;
5047 else
5048 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5049}
5050
241994ed
JW
5051static u64 memory_current_read(struct cgroup_subsys_state *css,
5052 struct cftype *cft)
5053{
f5fc3c5d
JW
5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5055
5056 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5057}
5058
5059static int memory_low_show(struct seq_file *m, void *v)
5060{
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5062 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5063
5064 if (low == PAGE_COUNTER_MAX)
d2973697 5065 seq_puts(m, "max\n");
241994ed
JW
5066 else
5067 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5068
5069 return 0;
5070}
5071
5072static ssize_t memory_low_write(struct kernfs_open_file *of,
5073 char *buf, size_t nbytes, loff_t off)
5074{
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 unsigned long low;
5077 int err;
5078
5079 buf = strstrip(buf);
d2973697 5080 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5081 if (err)
5082 return err;
5083
23067153 5084 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5085
5086 return nbytes;
5087}
5088
5089static int memory_high_show(struct seq_file *m, void *v)
5090{
5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5092 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5093
5094 if (high == PAGE_COUNTER_MAX)
d2973697 5095 seq_puts(m, "max\n");
241994ed
JW
5096 else
5097 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5098
5099 return 0;
5100}
5101
5102static ssize_t memory_high_write(struct kernfs_open_file *of,
5103 char *buf, size_t nbytes, loff_t off)
5104{
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5106 unsigned long nr_pages;
241994ed
JW
5107 unsigned long high;
5108 int err;
5109
5110 buf = strstrip(buf);
d2973697 5111 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5112 if (err)
5113 return err;
5114
5115 memcg->high = high;
5116
588083bb
JW
5117 nr_pages = page_counter_read(&memcg->memory);
5118 if (nr_pages > high)
5119 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5120 GFP_KERNEL, true);
5121
2529bb3a 5122 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5123 return nbytes;
5124}
5125
5126static int memory_max_show(struct seq_file *m, void *v)
5127{
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5129 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5130
5131 if (max == PAGE_COUNTER_MAX)
d2973697 5132 seq_puts(m, "max\n");
241994ed
JW
5133 else
5134 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5135
5136 return 0;
5137}
5138
5139static ssize_t memory_max_write(struct kernfs_open_file *of,
5140 char *buf, size_t nbytes, loff_t off)
5141{
5142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5143 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5144 bool drained = false;
241994ed
JW
5145 unsigned long max;
5146 int err;
5147
5148 buf = strstrip(buf);
d2973697 5149 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5150 if (err)
5151 return err;
5152
bbec2e15 5153 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5154
5155 for (;;) {
5156 unsigned long nr_pages = page_counter_read(&memcg->memory);
5157
5158 if (nr_pages <= max)
5159 break;
5160
5161 if (signal_pending(current)) {
5162 err = -EINTR;
5163 break;
5164 }
5165
5166 if (!drained) {
5167 drain_all_stock(memcg);
5168 drained = true;
5169 continue;
5170 }
5171
5172 if (nr_reclaims) {
5173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5174 GFP_KERNEL, true))
5175 nr_reclaims--;
5176 continue;
5177 }
5178
e27be240 5179 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5181 break;
5182 }
241994ed 5183
2529bb3a 5184 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5185 return nbytes;
5186}
5187
5188static int memory_events_show(struct seq_file *m, void *v)
5189{
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191
e27be240
JW
5192 seq_printf(m, "low %lu\n",
5193 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5194 seq_printf(m, "high %lu\n",
5195 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5196 seq_printf(m, "max %lu\n",
5197 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5198 seq_printf(m, "oom %lu\n",
5199 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
8e675f7a 5200 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5201
5202 return 0;
5203}
5204
587d9f72
JW
5205static int memory_stat_show(struct seq_file *m, void *v)
5206{
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73 5208 unsigned long stat[MEMCG_NR_STAT];
e27be240 5209 unsigned long events[NR_VM_EVENT_ITEMS];
587d9f72
JW
5210 int i;
5211
5212 /*
5213 * Provide statistics on the state of the memory subsystem as
5214 * well as cumulative event counters that show past behavior.
5215 *
5216 * This list is ordered following a combination of these gradients:
5217 * 1) generic big picture -> specifics and details
5218 * 2) reflecting userspace activity -> reflecting kernel heuristics
5219 *
5220 * Current memory state:
5221 */
5222
72b54e73
VD
5223 tree_stat(memcg, stat);
5224 tree_events(memcg, events);
5225
587d9f72 5226 seq_printf(m, "anon %llu\n",
71cd3113 5227 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5228 seq_printf(m, "file %llu\n",
71cd3113 5229 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5230 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5231 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5232 seq_printf(m, "slab %llu\n",
32049296
JW
5233 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5234 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5235 seq_printf(m, "sock %llu\n",
72b54e73 5236 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5237
9a4caf1e 5238 seq_printf(m, "shmem %llu\n",
71cd3113 5239 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5240 seq_printf(m, "file_mapped %llu\n",
71cd3113 5241 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5242 seq_printf(m, "file_dirty %llu\n",
71cd3113 5243 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5244 seq_printf(m, "file_writeback %llu\n",
71cd3113 5245 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5246
5247 for (i = 0; i < NR_LRU_LISTS; i++) {
5248 struct mem_cgroup *mi;
5249 unsigned long val = 0;
5250
5251 for_each_mem_cgroup_tree(mi, memcg)
5252 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5253 seq_printf(m, "%s %llu\n",
5254 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5255 }
5256
27ee57c9 5257 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5258 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5259 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5260 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5261
587d9f72
JW
5262 /* Accumulated memory events */
5263
df0e53d0
JW
5264 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5265 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5266
2262185c
RG
5267 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5268 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5269 events[PGSCAN_DIRECT]);
5270 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5271 events[PGSTEAL_DIRECT]);
5272 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5273 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5274 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5275 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5276
2a2e4885 5277 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5278 stat[WORKINGSET_REFAULT]);
2a2e4885 5279 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5280 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5281 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5282 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5283
587d9f72
JW
5284 return 0;
5285}
5286
241994ed
JW
5287static struct cftype memory_files[] = {
5288 {
5289 .name = "current",
f5fc3c5d 5290 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5291 .read_u64 = memory_current_read,
5292 },
5293 {
5294 .name = "low",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .seq_show = memory_low_show,
5297 .write = memory_low_write,
5298 },
5299 {
5300 .name = "high",
5301 .flags = CFTYPE_NOT_ON_ROOT,
5302 .seq_show = memory_high_show,
5303 .write = memory_high_write,
5304 },
5305 {
5306 .name = "max",
5307 .flags = CFTYPE_NOT_ON_ROOT,
5308 .seq_show = memory_max_show,
5309 .write = memory_max_write,
5310 },
5311 {
5312 .name = "events",
5313 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5314 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5315 .seq_show = memory_events_show,
5316 },
587d9f72
JW
5317 {
5318 .name = "stat",
5319 .flags = CFTYPE_NOT_ON_ROOT,
5320 .seq_show = memory_stat_show,
5321 },
241994ed
JW
5322 { } /* terminate */
5323};
5324
073219e9 5325struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5326 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5327 .css_online = mem_cgroup_css_online,
92fb9748 5328 .css_offline = mem_cgroup_css_offline,
6df38689 5329 .css_released = mem_cgroup_css_released,
92fb9748 5330 .css_free = mem_cgroup_css_free,
1ced953b 5331 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5332 .can_attach = mem_cgroup_can_attach,
5333 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5334 .post_attach = mem_cgroup_move_task,
f00baae7 5335 .bind = mem_cgroup_bind,
241994ed
JW
5336 .dfl_cftypes = memory_files,
5337 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5338 .early_init = 0,
8cdea7c0 5339};
c077719b 5340
241994ed 5341/**
5f93ad67 5342 * mem_cgroup_low - check if memory consumption is in the normal range
34c81057 5343 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5344 * @memcg: the memory cgroup to check
5345 *
23067153
RG
5346 * WARNING: This function is not stateless! It can only be used as part
5347 * of a top-down tree iteration, not for isolated queries.
34c81057 5348 *
5f93ad67 5349 * Returns %true if memory consumption of @memcg is in the normal range.
34c81057 5350 *
23067153 5351 * @root is exclusive; it is never low when looked at directly
34c81057 5352 *
23067153
RG
5353 * To provide a proper hierarchical behavior, effective memory.low value
5354 * is used.
34c81057 5355 *
23067153
RG
5356 * Effective memory.low is always equal or less than the original memory.low.
5357 * If there is no memory.low overcommittment (which is always true for
5358 * top-level memory cgroups), these two values are equal.
5359 * Otherwise, it's a part of parent's effective memory.low,
5360 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5361 * memory.low usages, where memory.low usage is the size of actually
5362 * protected memory.
34c81057 5363 *
23067153
RG
5364 * low_usage
5365 * elow = min( memory.low, parent->elow * ------------------ ),
5366 * siblings_low_usage
34c81057 5367 *
23067153
RG
5368 * | memory.current, if memory.current < memory.low
5369 * low_usage = |
5370 | 0, otherwise.
34c81057 5371 *
23067153
RG
5372 *
5373 * Such definition of the effective memory.low provides the expected
5374 * hierarchical behavior: parent's memory.low value is limiting
5375 * children, unprotected memory is reclaimed first and cgroups,
5376 * which are not using their guarantee do not affect actual memory
5377 * distribution.
5378 *
5379 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5380 *
5381 * A A/memory.low = 2G, A/memory.current = 6G
5382 * //\\
5383 * BC DE B/memory.low = 3G B/memory.current = 2G
5384 * C/memory.low = 1G C/memory.current = 2G
5385 * D/memory.low = 0 D/memory.current = 2G
5386 * E/memory.low = 10G E/memory.current = 0
5387 *
5388 * and the memory pressure is applied, the following memory distribution
5389 * is expected (approximately):
5390 *
5391 * A/memory.current = 2G
5392 *
5393 * B/memory.current = 1.3G
5394 * C/memory.current = 0.6G
5395 * D/memory.current = 0
5396 * E/memory.current = 0
5397 *
5398 * These calculations require constant tracking of the actual low usages
5399 * (see propagate_low_usage()), as well as recursive calculation of
5400 * effective memory.low values. But as we do call mem_cgroup_low()
5401 * path for each memory cgroup top-down from the reclaim,
5402 * it's possible to optimize this part, and save calculated elow
5403 * for next usage. This part is intentionally racy, but it's ok,
5404 * as memory.low is a best-effort mechanism.
241994ed
JW
5405 */
5406bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5407{
23067153
RG
5408 unsigned long usage, low_usage, siblings_low_usage;
5409 unsigned long elow, parent_elow;
5410 struct mem_cgroup *parent;
5411
241994ed
JW
5412 if (mem_cgroup_disabled())
5413 return false;
5414
34c81057
SC
5415 if (!root)
5416 root = root_mem_cgroup;
5417 if (memcg == root)
241994ed
JW
5418 return false;
5419
23067153
RG
5420 elow = memcg->memory.low;
5421 usage = page_counter_read(&memcg->memory);
5422 parent = parent_mem_cgroup(memcg);
34c81057 5423
23067153
RG
5424 if (parent == root)
5425 goto exit;
5426
5427 parent_elow = READ_ONCE(parent->memory.elow);
5428 elow = min(elow, parent_elow);
5429
5430 if (!elow || !parent_elow)
5431 goto exit;
5432
5433 low_usage = min(usage, memcg->memory.low);
5434 siblings_low_usage = atomic_long_read(
5435 &parent->memory.children_low_usage);
5436
5437 if (!low_usage || !siblings_low_usage)
5438 goto exit;
5439
5440 elow = min(elow, parent_elow * low_usage / siblings_low_usage);
5441exit:
5442 memcg->memory.elow = elow;
5f93ad67 5443 return usage && usage <= elow;
241994ed
JW
5444}
5445
00501b53
JW
5446/**
5447 * mem_cgroup_try_charge - try charging a page
5448 * @page: page to charge
5449 * @mm: mm context of the victim
5450 * @gfp_mask: reclaim mode
5451 * @memcgp: charged memcg return
25843c2b 5452 * @compound: charge the page as compound or small page
00501b53
JW
5453 *
5454 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5455 * pages according to @gfp_mask if necessary.
5456 *
5457 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5458 * Otherwise, an error code is returned.
5459 *
5460 * After page->mapping has been set up, the caller must finalize the
5461 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5462 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5463 */
5464int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5465 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5466 bool compound)
00501b53
JW
5467{
5468 struct mem_cgroup *memcg = NULL;
f627c2f5 5469 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5470 int ret = 0;
5471
5472 if (mem_cgroup_disabled())
5473 goto out;
5474
5475 if (PageSwapCache(page)) {
00501b53
JW
5476 /*
5477 * Every swap fault against a single page tries to charge the
5478 * page, bail as early as possible. shmem_unuse() encounters
5479 * already charged pages, too. The USED bit is protected by
5480 * the page lock, which serializes swap cache removal, which
5481 * in turn serializes uncharging.
5482 */
e993d905 5483 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5484 if (compound_head(page)->mem_cgroup)
00501b53 5485 goto out;
e993d905 5486
37e84351 5487 if (do_swap_account) {
e993d905
VD
5488 swp_entry_t ent = { .val = page_private(page), };
5489 unsigned short id = lookup_swap_cgroup_id(ent);
5490
5491 rcu_read_lock();
5492 memcg = mem_cgroup_from_id(id);
5493 if (memcg && !css_tryget_online(&memcg->css))
5494 memcg = NULL;
5495 rcu_read_unlock();
5496 }
00501b53
JW
5497 }
5498
00501b53
JW
5499 if (!memcg)
5500 memcg = get_mem_cgroup_from_mm(mm);
5501
5502 ret = try_charge(memcg, gfp_mask, nr_pages);
5503
5504 css_put(&memcg->css);
00501b53
JW
5505out:
5506 *memcgp = memcg;
5507 return ret;
5508}
5509
5510/**
5511 * mem_cgroup_commit_charge - commit a page charge
5512 * @page: page to charge
5513 * @memcg: memcg to charge the page to
5514 * @lrucare: page might be on LRU already
25843c2b 5515 * @compound: charge the page as compound or small page
00501b53
JW
5516 *
5517 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5518 * after page->mapping has been set up. This must happen atomically
5519 * as part of the page instantiation, i.e. under the page table lock
5520 * for anonymous pages, under the page lock for page and swap cache.
5521 *
5522 * In addition, the page must not be on the LRU during the commit, to
5523 * prevent racing with task migration. If it might be, use @lrucare.
5524 *
5525 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5526 */
5527void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5528 bool lrucare, bool compound)
00501b53 5529{
f627c2f5 5530 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5531
5532 VM_BUG_ON_PAGE(!page->mapping, page);
5533 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5534
5535 if (mem_cgroup_disabled())
5536 return;
5537 /*
5538 * Swap faults will attempt to charge the same page multiple
5539 * times. But reuse_swap_page() might have removed the page
5540 * from swapcache already, so we can't check PageSwapCache().
5541 */
5542 if (!memcg)
5543 return;
5544
6abb5a86
JW
5545 commit_charge(page, memcg, lrucare);
5546
6abb5a86 5547 local_irq_disable();
f627c2f5 5548 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5549 memcg_check_events(memcg, page);
5550 local_irq_enable();
00501b53 5551
7941d214 5552 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5553 swp_entry_t entry = { .val = page_private(page) };
5554 /*
5555 * The swap entry might not get freed for a long time,
5556 * let's not wait for it. The page already received a
5557 * memory+swap charge, drop the swap entry duplicate.
5558 */
38d8b4e6 5559 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5560 }
5561}
5562
5563/**
5564 * mem_cgroup_cancel_charge - cancel a page charge
5565 * @page: page to charge
5566 * @memcg: memcg to charge the page to
25843c2b 5567 * @compound: charge the page as compound or small page
00501b53
JW
5568 *
5569 * Cancel a charge transaction started by mem_cgroup_try_charge().
5570 */
f627c2f5
KS
5571void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5572 bool compound)
00501b53 5573{
f627c2f5 5574 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5575
5576 if (mem_cgroup_disabled())
5577 return;
5578 /*
5579 * Swap faults will attempt to charge the same page multiple
5580 * times. But reuse_swap_page() might have removed the page
5581 * from swapcache already, so we can't check PageSwapCache().
5582 */
5583 if (!memcg)
5584 return;
5585
00501b53
JW
5586 cancel_charge(memcg, nr_pages);
5587}
5588
a9d5adee
JG
5589struct uncharge_gather {
5590 struct mem_cgroup *memcg;
5591 unsigned long pgpgout;
5592 unsigned long nr_anon;
5593 unsigned long nr_file;
5594 unsigned long nr_kmem;
5595 unsigned long nr_huge;
5596 unsigned long nr_shmem;
5597 struct page *dummy_page;
5598};
5599
5600static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5601{
a9d5adee
JG
5602 memset(ug, 0, sizeof(*ug));
5603}
5604
5605static void uncharge_batch(const struct uncharge_gather *ug)
5606{
5607 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5608 unsigned long flags;
5609
a9d5adee
JG
5610 if (!mem_cgroup_is_root(ug->memcg)) {
5611 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5612 if (do_memsw_account())
a9d5adee
JG
5613 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5614 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5615 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5616 memcg_oom_recover(ug->memcg);
ce00a967 5617 }
747db954
JW
5618
5619 local_irq_save(flags);
c9019e9b
JW
5620 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5621 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5622 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5623 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5624 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5625 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5626 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5627 local_irq_restore(flags);
e8ea14cc 5628
a9d5adee
JG
5629 if (!mem_cgroup_is_root(ug->memcg))
5630 css_put_many(&ug->memcg->css, nr_pages);
5631}
5632
5633static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5634{
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5636 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5637 !PageHWPoison(page) , page);
a9d5adee
JG
5638
5639 if (!page->mem_cgroup)
5640 return;
5641
5642 /*
5643 * Nobody should be changing or seriously looking at
5644 * page->mem_cgroup at this point, we have fully
5645 * exclusive access to the page.
5646 */
5647
5648 if (ug->memcg != page->mem_cgroup) {
5649 if (ug->memcg) {
5650 uncharge_batch(ug);
5651 uncharge_gather_clear(ug);
5652 }
5653 ug->memcg = page->mem_cgroup;
5654 }
5655
5656 if (!PageKmemcg(page)) {
5657 unsigned int nr_pages = 1;
5658
5659 if (PageTransHuge(page)) {
5660 nr_pages <<= compound_order(page);
5661 ug->nr_huge += nr_pages;
5662 }
5663 if (PageAnon(page))
5664 ug->nr_anon += nr_pages;
5665 else {
5666 ug->nr_file += nr_pages;
5667 if (PageSwapBacked(page))
5668 ug->nr_shmem += nr_pages;
5669 }
5670 ug->pgpgout++;
5671 } else {
5672 ug->nr_kmem += 1 << compound_order(page);
5673 __ClearPageKmemcg(page);
5674 }
5675
5676 ug->dummy_page = page;
5677 page->mem_cgroup = NULL;
747db954
JW
5678}
5679
5680static void uncharge_list(struct list_head *page_list)
5681{
a9d5adee 5682 struct uncharge_gather ug;
747db954 5683 struct list_head *next;
a9d5adee
JG
5684
5685 uncharge_gather_clear(&ug);
747db954 5686
8b592656
JW
5687 /*
5688 * Note that the list can be a single page->lru; hence the
5689 * do-while loop instead of a simple list_for_each_entry().
5690 */
747db954
JW
5691 next = page_list->next;
5692 do {
a9d5adee
JG
5693 struct page *page;
5694
747db954
JW
5695 page = list_entry(next, struct page, lru);
5696 next = page->lru.next;
5697
a9d5adee 5698 uncharge_page(page, &ug);
747db954
JW
5699 } while (next != page_list);
5700
a9d5adee
JG
5701 if (ug.memcg)
5702 uncharge_batch(&ug);
747db954
JW
5703}
5704
0a31bc97
JW
5705/**
5706 * mem_cgroup_uncharge - uncharge a page
5707 * @page: page to uncharge
5708 *
5709 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5710 * mem_cgroup_commit_charge().
5711 */
5712void mem_cgroup_uncharge(struct page *page)
5713{
a9d5adee
JG
5714 struct uncharge_gather ug;
5715
0a31bc97
JW
5716 if (mem_cgroup_disabled())
5717 return;
5718
747db954 5719 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5720 if (!page->mem_cgroup)
0a31bc97
JW
5721 return;
5722
a9d5adee
JG
5723 uncharge_gather_clear(&ug);
5724 uncharge_page(page, &ug);
5725 uncharge_batch(&ug);
747db954 5726}
0a31bc97 5727
747db954
JW
5728/**
5729 * mem_cgroup_uncharge_list - uncharge a list of page
5730 * @page_list: list of pages to uncharge
5731 *
5732 * Uncharge a list of pages previously charged with
5733 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5734 */
5735void mem_cgroup_uncharge_list(struct list_head *page_list)
5736{
5737 if (mem_cgroup_disabled())
5738 return;
0a31bc97 5739
747db954
JW
5740 if (!list_empty(page_list))
5741 uncharge_list(page_list);
0a31bc97
JW
5742}
5743
5744/**
6a93ca8f
JW
5745 * mem_cgroup_migrate - charge a page's replacement
5746 * @oldpage: currently circulating page
5747 * @newpage: replacement page
0a31bc97 5748 *
6a93ca8f
JW
5749 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5750 * be uncharged upon free.
0a31bc97
JW
5751 *
5752 * Both pages must be locked, @newpage->mapping must be set up.
5753 */
6a93ca8f 5754void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5755{
29833315 5756 struct mem_cgroup *memcg;
44b7a8d3
JW
5757 unsigned int nr_pages;
5758 bool compound;
d93c4130 5759 unsigned long flags;
0a31bc97
JW
5760
5761 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5762 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5763 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5764 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5765 newpage);
0a31bc97
JW
5766
5767 if (mem_cgroup_disabled())
5768 return;
5769
5770 /* Page cache replacement: new page already charged? */
1306a85a 5771 if (newpage->mem_cgroup)
0a31bc97
JW
5772 return;
5773
45637bab 5774 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5775 memcg = oldpage->mem_cgroup;
29833315 5776 if (!memcg)
0a31bc97
JW
5777 return;
5778
44b7a8d3
JW
5779 /* Force-charge the new page. The old one will be freed soon */
5780 compound = PageTransHuge(newpage);
5781 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5782
5783 page_counter_charge(&memcg->memory, nr_pages);
5784 if (do_memsw_account())
5785 page_counter_charge(&memcg->memsw, nr_pages);
5786 css_get_many(&memcg->css, nr_pages);
0a31bc97 5787
9cf7666a 5788 commit_charge(newpage, memcg, false);
44b7a8d3 5789
d93c4130 5790 local_irq_save(flags);
44b7a8d3
JW
5791 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5792 memcg_check_events(memcg, newpage);
d93c4130 5793 local_irq_restore(flags);
0a31bc97
JW
5794}
5795
ef12947c 5796DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5797EXPORT_SYMBOL(memcg_sockets_enabled_key);
5798
2d758073 5799void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5800{
5801 struct mem_cgroup *memcg;
5802
2d758073
JW
5803 if (!mem_cgroup_sockets_enabled)
5804 return;
5805
edbe69ef
RG
5806 /*
5807 * Socket cloning can throw us here with sk_memcg already
5808 * filled. It won't however, necessarily happen from
5809 * process context. So the test for root memcg given
5810 * the current task's memcg won't help us in this case.
5811 *
5812 * Respecting the original socket's memcg is a better
5813 * decision in this case.
5814 */
5815 if (sk->sk_memcg) {
5816 css_get(&sk->sk_memcg->css);
5817 return;
5818 }
5819
11092087
JW
5820 rcu_read_lock();
5821 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5822 if (memcg == root_mem_cgroup)
5823 goto out;
0db15298 5824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5825 goto out;
f7e1cb6e 5826 if (css_tryget_online(&memcg->css))
11092087 5827 sk->sk_memcg = memcg;
f7e1cb6e 5828out:
11092087
JW
5829 rcu_read_unlock();
5830}
11092087 5831
2d758073 5832void mem_cgroup_sk_free(struct sock *sk)
11092087 5833{
2d758073
JW
5834 if (sk->sk_memcg)
5835 css_put(&sk->sk_memcg->css);
11092087
JW
5836}
5837
5838/**
5839 * mem_cgroup_charge_skmem - charge socket memory
5840 * @memcg: memcg to charge
5841 * @nr_pages: number of pages to charge
5842 *
5843 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5844 * @memcg's configured limit, %false if the charge had to be forced.
5845 */
5846bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5847{
f7e1cb6e 5848 gfp_t gfp_mask = GFP_KERNEL;
11092087 5849
f7e1cb6e 5850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5851 struct page_counter *fail;
f7e1cb6e 5852
0db15298
JW
5853 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5854 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5855 return true;
5856 }
0db15298
JW
5857 page_counter_charge(&memcg->tcpmem, nr_pages);
5858 memcg->tcpmem_pressure = 1;
f7e1cb6e 5859 return false;
11092087 5860 }
d886f4e4 5861
f7e1cb6e
JW
5862 /* Don't block in the packet receive path */
5863 if (in_softirq())
5864 gfp_mask = GFP_NOWAIT;
5865
c9019e9b 5866 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 5867
f7e1cb6e
JW
5868 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5869 return true;
5870
5871 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5872 return false;
5873}
5874
5875/**
5876 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
5877 * @memcg: memcg to uncharge
5878 * @nr_pages: number of pages to uncharge
11092087
JW
5879 */
5880void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5881{
f7e1cb6e 5882 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5883 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5884 return;
5885 }
d886f4e4 5886
c9019e9b 5887 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 5888
475d0487 5889 refill_stock(memcg, nr_pages);
11092087
JW
5890}
5891
f7e1cb6e
JW
5892static int __init cgroup_memory(char *s)
5893{
5894 char *token;
5895
5896 while ((token = strsep(&s, ",")) != NULL) {
5897 if (!*token)
5898 continue;
5899 if (!strcmp(token, "nosocket"))
5900 cgroup_memory_nosocket = true;
04823c83
VD
5901 if (!strcmp(token, "nokmem"))
5902 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5903 }
5904 return 0;
5905}
5906__setup("cgroup.memory=", cgroup_memory);
11092087 5907
2d11085e 5908/*
1081312f
MH
5909 * subsys_initcall() for memory controller.
5910 *
308167fc
SAS
5911 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5912 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5913 * basically everything that doesn't depend on a specific mem_cgroup structure
5914 * should be initialized from here.
2d11085e
MH
5915 */
5916static int __init mem_cgroup_init(void)
5917{
95a045f6
JW
5918 int cpu, node;
5919
13583c3d
VD
5920#ifndef CONFIG_SLOB
5921 /*
5922 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5923 * so use a workqueue with limited concurrency to avoid stalling
5924 * all worker threads in case lots of cgroups are created and
5925 * destroyed simultaneously.
13583c3d 5926 */
17cc4dfe
TH
5927 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5928 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5929#endif
5930
308167fc
SAS
5931 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5932 memcg_hotplug_cpu_dead);
95a045f6
JW
5933
5934 for_each_possible_cpu(cpu)
5935 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5936 drain_local_stock);
5937
5938 for_each_node(node) {
5939 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5940
5941 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5942 node_online(node) ? node : NUMA_NO_NODE);
5943
ef8f2327 5944 rtpn->rb_root = RB_ROOT;
fa90b2fd 5945 rtpn->rb_rightmost = NULL;
ef8f2327 5946 spin_lock_init(&rtpn->lock);
95a045f6
JW
5947 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5948 }
5949
2d11085e
MH
5950 return 0;
5951}
5952subsys_initcall(mem_cgroup_init);
21afa38e
JW
5953
5954#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5955static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5956{
5957 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5958 /*
5959 * The root cgroup cannot be destroyed, so it's refcount must
5960 * always be >= 1.
5961 */
5962 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5963 VM_BUG_ON(1);
5964 break;
5965 }
5966 memcg = parent_mem_cgroup(memcg);
5967 if (!memcg)
5968 memcg = root_mem_cgroup;
5969 }
5970 return memcg;
5971}
5972
21afa38e
JW
5973/**
5974 * mem_cgroup_swapout - transfer a memsw charge to swap
5975 * @page: page whose memsw charge to transfer
5976 * @entry: swap entry to move the charge to
5977 *
5978 * Transfer the memsw charge of @page to @entry.
5979 */
5980void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5981{
1f47b61f 5982 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 5983 unsigned int nr_entries;
21afa38e
JW
5984 unsigned short oldid;
5985
5986 VM_BUG_ON_PAGE(PageLRU(page), page);
5987 VM_BUG_ON_PAGE(page_count(page), page);
5988
7941d214 5989 if (!do_memsw_account())
21afa38e
JW
5990 return;
5991
5992 memcg = page->mem_cgroup;
5993
5994 /* Readahead page, never charged */
5995 if (!memcg)
5996 return;
5997
1f47b61f
VD
5998 /*
5999 * In case the memcg owning these pages has been offlined and doesn't
6000 * have an ID allocated to it anymore, charge the closest online
6001 * ancestor for the swap instead and transfer the memory+swap charge.
6002 */
6003 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6004 nr_entries = hpage_nr_pages(page);
6005 /* Get references for the tail pages, too */
6006 if (nr_entries > 1)
6007 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6008 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6009 nr_entries);
21afa38e 6010 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6011 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6012
6013 page->mem_cgroup = NULL;
6014
6015 if (!mem_cgroup_is_root(memcg))
d6810d73 6016 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6017
1f47b61f
VD
6018 if (memcg != swap_memcg) {
6019 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6020 page_counter_charge(&swap_memcg->memsw, nr_entries);
6021 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6022 }
6023
ce9ce665
SAS
6024 /*
6025 * Interrupts should be disabled here because the caller holds the
b93b0163 6026 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6027 * important here to have the interrupts disabled because it is the
b93b0163 6028 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6029 */
6030 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6031 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6032 -nr_entries);
21afa38e 6033 memcg_check_events(memcg, page);
73f576c0
JW
6034
6035 if (!mem_cgroup_is_root(memcg))
d08afa14 6036 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6037}
6038
38d8b4e6
HY
6039/**
6040 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6041 * @page: page being added to swap
6042 * @entry: swap entry to charge
6043 *
38d8b4e6 6044 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6045 *
6046 * Returns 0 on success, -ENOMEM on failure.
6047 */
6048int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6049{
38d8b4e6 6050 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6051 struct page_counter *counter;
38d8b4e6 6052 struct mem_cgroup *memcg;
37e84351
VD
6053 unsigned short oldid;
6054
6055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6056 return 0;
6057
6058 memcg = page->mem_cgroup;
6059
6060 /* Readahead page, never charged */
6061 if (!memcg)
6062 return 0;
6063
f3a53a3a
TH
6064 if (!entry.val) {
6065 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6066 return 0;
f3a53a3a 6067 }
bb98f2c5 6068
1f47b61f
VD
6069 memcg = mem_cgroup_id_get_online(memcg);
6070
37e84351 6071 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6072 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6073 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6074 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6075 mem_cgroup_id_put(memcg);
37e84351 6076 return -ENOMEM;
1f47b61f 6077 }
37e84351 6078
38d8b4e6
HY
6079 /* Get references for the tail pages, too */
6080 if (nr_pages > 1)
6081 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6082 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6083 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6084 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6085
37e84351
VD
6086 return 0;
6087}
6088
21afa38e 6089/**
38d8b4e6 6090 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6091 * @entry: swap entry to uncharge
38d8b4e6 6092 * @nr_pages: the amount of swap space to uncharge
21afa38e 6093 */
38d8b4e6 6094void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6095{
6096 struct mem_cgroup *memcg;
6097 unsigned short id;
6098
37e84351 6099 if (!do_swap_account)
21afa38e
JW
6100 return;
6101
38d8b4e6 6102 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6103 rcu_read_lock();
adbe427b 6104 memcg = mem_cgroup_from_id(id);
21afa38e 6105 if (memcg) {
37e84351
VD
6106 if (!mem_cgroup_is_root(memcg)) {
6107 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6108 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6109 else
38d8b4e6 6110 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6111 }
c9019e9b 6112 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6113 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6114 }
6115 rcu_read_unlock();
6116}
6117
d8b38438
VD
6118long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6119{
6120 long nr_swap_pages = get_nr_swap_pages();
6121
6122 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6123 return nr_swap_pages;
6124 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6125 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6126 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6127 page_counter_read(&memcg->swap));
6128 return nr_swap_pages;
6129}
6130
5ccc5aba
VD
6131bool mem_cgroup_swap_full(struct page *page)
6132{
6133 struct mem_cgroup *memcg;
6134
6135 VM_BUG_ON_PAGE(!PageLocked(page), page);
6136
6137 if (vm_swap_full())
6138 return true;
6139 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6140 return false;
6141
6142 memcg = page->mem_cgroup;
6143 if (!memcg)
6144 return false;
6145
6146 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6147 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6148 return true;
6149
6150 return false;
6151}
6152
21afa38e
JW
6153/* for remember boot option*/
6154#ifdef CONFIG_MEMCG_SWAP_ENABLED
6155static int really_do_swap_account __initdata = 1;
6156#else
6157static int really_do_swap_account __initdata;
6158#endif
6159
6160static int __init enable_swap_account(char *s)
6161{
6162 if (!strcmp(s, "1"))
6163 really_do_swap_account = 1;
6164 else if (!strcmp(s, "0"))
6165 really_do_swap_account = 0;
6166 return 1;
6167}
6168__setup("swapaccount=", enable_swap_account);
6169
37e84351
VD
6170static u64 swap_current_read(struct cgroup_subsys_state *css,
6171 struct cftype *cft)
6172{
6173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6174
6175 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6176}
6177
6178static int swap_max_show(struct seq_file *m, void *v)
6179{
6180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6181 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6182
6183 if (max == PAGE_COUNTER_MAX)
6184 seq_puts(m, "max\n");
6185 else
6186 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6187
6188 return 0;
6189}
6190
6191static ssize_t swap_max_write(struct kernfs_open_file *of,
6192 char *buf, size_t nbytes, loff_t off)
6193{
6194 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6195 unsigned long max;
6196 int err;
6197
6198 buf = strstrip(buf);
6199 err = page_counter_memparse(buf, "max", &max);
6200 if (err)
6201 return err;
6202
bbec2e15
RG
6203 mutex_lock(&memcg_max_mutex);
6204 err = page_counter_set_max(&memcg->swap, max);
6205 mutex_unlock(&memcg_max_mutex);
37e84351
VD
6206 if (err)
6207 return err;
6208
6209 return nbytes;
6210}
6211
f3a53a3a
TH
6212static int swap_events_show(struct seq_file *m, void *v)
6213{
6214 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6215
6216 seq_printf(m, "max %lu\n",
6217 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6218 seq_printf(m, "fail %lu\n",
6219 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6220
6221 return 0;
6222}
6223
37e84351
VD
6224static struct cftype swap_files[] = {
6225 {
6226 .name = "swap.current",
6227 .flags = CFTYPE_NOT_ON_ROOT,
6228 .read_u64 = swap_current_read,
6229 },
6230 {
6231 .name = "swap.max",
6232 .flags = CFTYPE_NOT_ON_ROOT,
6233 .seq_show = swap_max_show,
6234 .write = swap_max_write,
6235 },
f3a53a3a
TH
6236 {
6237 .name = "swap.events",
6238 .flags = CFTYPE_NOT_ON_ROOT,
6239 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6240 .seq_show = swap_events_show,
6241 },
37e84351
VD
6242 { } /* terminate */
6243};
6244
21afa38e
JW
6245static struct cftype memsw_cgroup_files[] = {
6246 {
6247 .name = "memsw.usage_in_bytes",
6248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6249 .read_u64 = mem_cgroup_read_u64,
6250 },
6251 {
6252 .name = "memsw.max_usage_in_bytes",
6253 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6254 .write = mem_cgroup_reset,
6255 .read_u64 = mem_cgroup_read_u64,
6256 },
6257 {
6258 .name = "memsw.limit_in_bytes",
6259 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6260 .write = mem_cgroup_write,
6261 .read_u64 = mem_cgroup_read_u64,
6262 },
6263 {
6264 .name = "memsw.failcnt",
6265 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6266 .write = mem_cgroup_reset,
6267 .read_u64 = mem_cgroup_read_u64,
6268 },
6269 { }, /* terminate */
6270};
6271
6272static int __init mem_cgroup_swap_init(void)
6273{
6274 if (!mem_cgroup_disabled() && really_do_swap_account) {
6275 do_swap_account = 1;
37e84351
VD
6276 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6277 swap_files));
21afa38e
JW
6278 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6279 memsw_cgroup_files));
6280 }
6281 return 0;
6282}
6283subsys_initcall(mem_cgroup_swap_init);
6284
6285#endif /* CONFIG_MEMCG_SWAP */