]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memcontrol.c
mm, memcg: clean up reclaim iter array
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
71cd3113 101static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
a0db00fc
KS
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 112
bb4cc1a8
AM
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
ef8f2327 118struct mem_cgroup_tree_per_node {
bb4cc1a8 119 struct rb_root rb_root;
fa90b2fd 120 struct rb_node *rb_rightmost;
bb4cc1a8
AM
121 spinlock_t lock;
122};
123
bb4cc1a8
AM
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
9490ff27
KH
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
2e72b634 135
79bd9814
TH
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
3bc942f3 139struct mem_cgroup_event {
79bd9814 140 /*
59b6f873 141 * memcg which the event belongs to.
79bd9814 142 */
59b6f873 143 struct mem_cgroup *memcg;
79bd9814
TH
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
fba94807
TH
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
59b6f873 157 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 158 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
59b6f873 164 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 165 struct eventfd_ctx *eventfd);
79bd9814
TH
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
ac6424b9 172 wait_queue_entry_t wait;
79bd9814
TH
173 struct work_struct remove;
174};
175
c0ff4b85
R
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 178
7dc74be0
DN
179/* Stuffs for move charges at task migration. */
180/*
1dfab5ab 181 * Types of charges to be moved.
7dc74be0 182 */
1dfab5ab
JW
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 186
4ffef5fe
DN
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
b1dd693e 189 spinlock_t lock; /* for from, to */
264a0ae1 190 struct mm_struct *mm;
4ffef5fe
DN
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
1dfab5ab 193 unsigned long flags;
4ffef5fe 194 unsigned long precharge;
854ffa8d 195 unsigned long moved_charge;
483c30b5 196 unsigned long moved_swap;
8033b97c
DN
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
2bd9bb20 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
4ffef5fe 203
4e416953
BS
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
a0db00fc 208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 210
217bc319
KH
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 213 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
216 NR_CHARGE_TYPE,
217};
218
8c7c6e34 219/* for encoding cft->private value on file */
86ae53e1
GC
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
510fc4e1 224 _KMEM,
d55f90bf 225 _TCP,
86ae53e1
GC
226};
227
a0db00fc
KS
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 230#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
8c7c6e34 233
b05706f1
KT
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
7775face
TH
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
70ddf637
AV
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
84c07d11 268#ifdef CONFIG_MEMCG_KMEM
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
17cc4dfe 320struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 321#endif
17cc4dfe 322
0a4465d3
KT
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
fae91d6d
KT
430
431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432{
433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 struct memcg_shrinker_map *map;
435
436 rcu_read_lock();
437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
438 /* Pairs with smp mb in shrink_slab() */
439 smp_mb__before_atomic();
fae91d6d
KT
440 set_bit(shrinker_id, map->map);
441 rcu_read_unlock();
442 }
443}
444
ad7fa852
TH
445/**
446 * mem_cgroup_css_from_page - css of the memcg associated with a page
447 * @page: page of interest
448 *
449 * If memcg is bound to the default hierarchy, css of the memcg associated
450 * with @page is returned. The returned css remains associated with @page
451 * until it is released.
452 *
453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454 * is returned.
ad7fa852
TH
455 */
456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457{
458 struct mem_cgroup *memcg;
459
ad7fa852
TH
460 memcg = page->mem_cgroup;
461
9e10a130 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
463 memcg = root_mem_cgroup;
464
ad7fa852
TH
465 return &memcg->css;
466}
467
2fc04524
VD
468/**
469 * page_cgroup_ino - return inode number of the memcg a page is charged to
470 * @page: the page
471 *
472 * Look up the closest online ancestor of the memory cgroup @page is charged to
473 * and return its inode number or 0 if @page is not charged to any cgroup. It
474 * is safe to call this function without holding a reference to @page.
475 *
476 * Note, this function is inherently racy, because there is nothing to prevent
477 * the cgroup inode from getting torn down and potentially reallocated a moment
478 * after page_cgroup_ino() returns, so it only should be used by callers that
479 * do not care (such as procfs interfaces).
480 */
481ino_t page_cgroup_ino(struct page *page)
482{
483 struct mem_cgroup *memcg;
484 unsigned long ino = 0;
485
486 rcu_read_lock();
221ec5c0 487 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
488 memcg = memcg_from_slab_page(page);
489 else
490 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
db9adbcb
JW
683/**
684 * __mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690{
691 long x;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
698 struct mem_cgroup *mi;
699
766a4c19
YS
700 /*
701 * Batch local counters to keep them in sync with
702 * the hierarchical ones.
703 */
704 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
707 x = 0;
708 }
709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710}
711
42a30035
JW
712static struct mem_cgroup_per_node *
713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714{
715 struct mem_cgroup *parent;
716
717 parent = parent_mem_cgroup(pn->memcg);
718 if (!parent)
719 return NULL;
720 return mem_cgroup_nodeinfo(parent, nid);
721}
722
db9adbcb
JW
723/**
724 * __mod_lruvec_state - update lruvec memory statistics
725 * @lruvec: the lruvec
726 * @idx: the stat item
727 * @val: delta to add to the counter, can be negative
728 *
729 * The lruvec is the intersection of the NUMA node and a cgroup. This
730 * function updates the all three counters that are affected by a
731 * change of state at this level: per-node, per-cgroup, per-lruvec.
732 */
733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 int val)
735{
42a30035 736 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 737 struct mem_cgroup_per_node *pn;
42a30035 738 struct mem_cgroup *memcg;
db9adbcb
JW
739 long x;
740
741 /* Update node */
42a30035 742 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
743
744 if (mem_cgroup_disabled())
745 return;
746
747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 748 memcg = pn->memcg;
db9adbcb
JW
749
750 /* Update memcg */
42a30035 751 __mod_memcg_state(memcg, idx, val);
db9adbcb 752
b4c46484
RG
753 /* Update lruvec */
754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755
db9adbcb
JW
756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
758 struct mem_cgroup_per_node *pi;
759
42a30035
JW
760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
762 x = 0;
763 }
764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765}
766
ec9f0238
RG
767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768{
769 struct page *page = virt_to_head_page(p);
770 pg_data_t *pgdat = page_pgdat(page);
771 struct mem_cgroup *memcg;
772 struct lruvec *lruvec;
773
774 rcu_read_lock();
775 memcg = memcg_from_slab_page(page);
776
777 /* Untracked pages have no memcg, no lruvec. Update only the node */
778 if (!memcg || memcg == root_mem_cgroup) {
779 __mod_node_page_state(pgdat, idx, val);
780 } else {
781 lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 __mod_lruvec_state(lruvec, idx, val);
783 }
784 rcu_read_unlock();
785}
786
db9adbcb
JW
787/**
788 * __count_memcg_events - account VM events in a cgroup
789 * @memcg: the memory cgroup
790 * @idx: the event item
791 * @count: the number of events that occured
792 */
793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 unsigned long count)
795{
796 unsigned long x;
797
798 if (mem_cgroup_disabled())
799 return;
800
801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
803 struct mem_cgroup *mi;
804
766a4c19
YS
805 /*
806 * Batch local counters to keep them in sync with
807 * the hierarchical ones.
808 */
809 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
812 x = 0;
813 }
814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815}
816
42a30035 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 818{
871789d4 819 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
820}
821
42a30035
JW
822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823{
815744d7
JW
824 long x = 0;
825 int cpu;
826
827 for_each_possible_cpu(cpu)
828 x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 return x;
42a30035
JW
830}
831
c0ff4b85 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 833 struct page *page,
f627c2f5 834 bool compound, int nr_pages)
d52aa412 835{
b2402857
KH
836 /*
837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 * counted as CACHE even if it's on ANON LRU.
839 */
0a31bc97 840 if (PageAnon(page))
c9019e9b 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 842 else {
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 844 if (PageSwapBacked(page))
c9019e9b 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 846 }
55e462b0 847
f627c2f5
KS
848 if (compound) {
849 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 851 }
b070e65c 852
e401f176
KH
853 /* pagein of a big page is an event. So, ignore page size */
854 if (nr_pages > 0)
c9019e9b 855 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 856 else {
c9019e9b 857 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
858 nr_pages = -nr_pages; /* for event */
859 }
e401f176 860
871789d4 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
862}
863
f53d7ce3
JW
864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_target target)
7a159cc9
JW
866{
867 unsigned long val, next;
868
871789d4
CD
869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 871 /* from time_after() in jiffies.h */
6a1a8b80 872 if ((long)(next - val) < 0) {
f53d7ce3
JW
873 switch (target) {
874 case MEM_CGROUP_TARGET_THRESH:
875 next = val + THRESHOLDS_EVENTS_TARGET;
876 break;
bb4cc1a8
AM
877 case MEM_CGROUP_TARGET_SOFTLIMIT:
878 next = val + SOFTLIMIT_EVENTS_TARGET;
879 break;
f53d7ce3
JW
880 case MEM_CGROUP_TARGET_NUMAINFO:
881 next = val + NUMAINFO_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
82b3f2a7 902 bool do_numainfo __maybe_unused;
f53d7ce3 903
bb4cc1a8
AM
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
906#if MAX_NUMNODES > 1
907 do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_NUMAINFO);
909#endif
c0ff4b85 910 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_tree(memcg, page);
453a9bf3 913#if MAX_NUMNODES > 1
f53d7ce3 914 if (unlikely(do_numainfo))
c0ff4b85 915 atomic_inc(&memcg->numainfo_events);
453a9bf3 916#endif
0a31bc97 917 }
d2265e6f
KH
918}
919
cf475ad2 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 921{
31a78f23
BS
922 /*
923 * mm_update_next_owner() may clear mm->owner to NULL
924 * if it races with swapoff, page migration, etc.
925 * So this can be called with p == NULL.
926 */
927 if (unlikely(!p))
928 return NULL;
929
073219e9 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 931}
33398cf2 932EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 933
d46eb14b
SB
934/**
935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936 * @mm: mm from which memcg should be extracted. It can be NULL.
937 *
938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940 * returned.
941 */
942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 943{
d46eb14b
SB
944 struct mem_cgroup *memcg;
945
946 if (mem_cgroup_disabled())
947 return NULL;
0b7f569e 948
54595fe2
KH
949 rcu_read_lock();
950 do {
6f6acb00
MH
951 /*
952 * Page cache insertions can happen withou an
953 * actual mm context, e.g. during disk probing
954 * on boot, loopback IO, acct() writes etc.
955 */
956 if (unlikely(!mm))
df381975 957 memcg = root_mem_cgroup;
6f6acb00
MH
958 else {
959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 if (unlikely(!memcg))
961 memcg = root_mem_cgroup;
962 }
00d484f3 963 } while (!css_tryget(&memcg->css));
54595fe2 964 rcu_read_unlock();
c0ff4b85 965 return memcg;
54595fe2 966}
d46eb14b
SB
967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
f745c6f5
SB
969/**
970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971 * @page: page from which memcg should be extracted.
972 *
973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
974 * root_mem_cgroup is returned.
975 */
976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977{
978 struct mem_cgroup *memcg = page->mem_cgroup;
979
980 if (mem_cgroup_disabled())
981 return NULL;
982
983 rcu_read_lock();
984 if (!memcg || !css_tryget_online(&memcg->css))
985 memcg = root_mem_cgroup;
986 rcu_read_unlock();
987 return memcg;
988}
989EXPORT_SYMBOL(get_mem_cgroup_from_page);
990
d46eb14b
SB
991/**
992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993 */
994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995{
996 if (unlikely(current->active_memcg)) {
997 struct mem_cgroup *memcg = root_mem_cgroup;
998
999 rcu_read_lock();
1000 if (css_tryget_online(&current->active_memcg->css))
1001 memcg = current->active_memcg;
1002 rcu_read_unlock();
1003 return memcg;
1004 }
1005 return get_mem_cgroup_from_mm(current->mm);
1006}
54595fe2 1007
5660048c
JW
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
b213b54f 1021 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1022 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1023 * reclaimers operating on the same node and priority.
5660048c 1024 */
694fbc0f 1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1026 struct mem_cgroup *prev,
694fbc0f 1027 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1028{
33398cf2 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1030 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1031 struct mem_cgroup *memcg = NULL;
5ac8fb31 1032 struct mem_cgroup *pos = NULL;
711d3d2c 1033
694fbc0f
AM
1034 if (mem_cgroup_disabled())
1035 return NULL;
5660048c 1036
9f3a0d09
JW
1037 if (!root)
1038 root = root_mem_cgroup;
7d74b06f 1039
9f3a0d09 1040 if (prev && !reclaim)
5ac8fb31 1041 pos = prev;
14067bb3 1042
9f3a0d09
JW
1043 if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 if (prev)
5ac8fb31 1045 goto out;
694fbc0f 1046 return root;
9f3a0d09 1047 }
14067bb3 1048
542f85f9 1049 rcu_read_lock();
5f578161 1050
5ac8fb31 1051 if (reclaim) {
ef8f2327 1052 struct mem_cgroup_per_node *mz;
5ac8fb31 1053
ef8f2327 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1055 iter = &mz->iter;
5ac8fb31
JW
1056
1057 if (prev && reclaim->generation != iter->generation)
1058 goto out_unlock;
1059
6df38689 1060 while (1) {
4db0c3c2 1061 pos = READ_ONCE(iter->position);
6df38689
VD
1062 if (!pos || css_tryget(&pos->css))
1063 break;
5ac8fb31 1064 /*
6df38689
VD
1065 * css reference reached zero, so iter->position will
1066 * be cleared by ->css_released. However, we should not
1067 * rely on this happening soon, because ->css_released
1068 * is called from a work queue, and by busy-waiting we
1069 * might block it. So we clear iter->position right
1070 * away.
5ac8fb31 1071 */
6df38689
VD
1072 (void)cmpxchg(&iter->position, pos, NULL);
1073 }
5ac8fb31
JW
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
0b8f73e1
JW
1103 if (css_tryget(css))
1104 break;
9f3a0d09 1105
5ac8fb31 1106 memcg = NULL;
9f3a0d09 1107 }
5ac8fb31
JW
1108
1109 if (reclaim) {
5ac8fb31 1110 /*
6df38689
VD
1111 * The position could have already been updated by a competing
1112 * thread, so check that the value hasn't changed since we read
1113 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1114 */
6df38689
VD
1115 (void)cmpxchg(&iter->position, pos, memcg);
1116
5ac8fb31
JW
1117 if (pos)
1118 css_put(&pos->css);
1119
1120 if (!memcg)
1121 iter->generation++;
1122 else if (!prev)
1123 reclaim->generation = iter->generation;
9f3a0d09 1124 }
5ac8fb31 1125
542f85f9
MH
1126out_unlock:
1127 rcu_read_unlock();
5ac8fb31 1128out:
c40046f3
MH
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131
9f3a0d09 1132 return memcg;
14067bb3 1133}
7d74b06f 1134
5660048c
JW
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 struct mem_cgroup *prev)
9f3a0d09
JW
1142{
1143 if (!root)
1144 root = root_mem_cgroup;
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147}
7d74b06f 1148
54a83d6b
MC
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 struct mem_cgroup *dead_memcg)
6df38689 1151{
6df38689 1152 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1153 struct mem_cgroup_per_node *mz;
1154 int nid;
6df38689 1155
54a83d6b
MC
1156 for_each_node(nid) {
1157 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1158 iter = &mz->iter;
1159 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1160 }
1161}
1162
54a83d6b
MC
1163static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1164{
1165 struct mem_cgroup *memcg = dead_memcg;
1166 struct mem_cgroup *last;
1167
1168 do {
1169 __invalidate_reclaim_iterators(memcg, dead_memcg);
1170 last = memcg;
1171 } while ((memcg = parent_mem_cgroup(memcg)));
1172
1173 /*
1174 * When cgruop1 non-hierarchy mode is used,
1175 * parent_mem_cgroup() does not walk all the way up to the
1176 * cgroup root (root_mem_cgroup). So we have to handle
1177 * dead_memcg from cgroup root separately.
1178 */
1179 if (last != root_mem_cgroup)
1180 __invalidate_reclaim_iterators(root_mem_cgroup,
1181 dead_memcg);
1182}
1183
7c5f64f8
VD
1184/**
1185 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1186 * @memcg: hierarchy root
1187 * @fn: function to call for each task
1188 * @arg: argument passed to @fn
1189 *
1190 * This function iterates over tasks attached to @memcg or to any of its
1191 * descendants and calls @fn for each task. If @fn returns a non-zero
1192 * value, the function breaks the iteration loop and returns the value.
1193 * Otherwise, it will iterate over all tasks and return 0.
1194 *
1195 * This function must not be called for the root memory cgroup.
1196 */
1197int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1198 int (*fn)(struct task_struct *, void *), void *arg)
1199{
1200 struct mem_cgroup *iter;
1201 int ret = 0;
1202
1203 BUG_ON(memcg == root_mem_cgroup);
1204
1205 for_each_mem_cgroup_tree(iter, memcg) {
1206 struct css_task_iter it;
1207 struct task_struct *task;
1208
f168a9a5 1209 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1210 while (!ret && (task = css_task_iter_next(&it)))
1211 ret = fn(task, arg);
1212 css_task_iter_end(&it);
1213 if (ret) {
1214 mem_cgroup_iter_break(memcg, iter);
1215 break;
1216 }
1217 }
1218 return ret;
1219}
1220
925b7673 1221/**
dfe0e773 1222 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1223 * @page: the page
f144c390 1224 * @pgdat: pgdat of the page
dfe0e773
JW
1225 *
1226 * This function is only safe when following the LRU page isolation
1227 * and putback protocol: the LRU lock must be held, and the page must
1228 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1229 */
599d0c95 1230struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1231{
ef8f2327 1232 struct mem_cgroup_per_node *mz;
925b7673 1233 struct mem_cgroup *memcg;
bea8c150 1234 struct lruvec *lruvec;
6d12e2d8 1235
bea8c150 1236 if (mem_cgroup_disabled()) {
599d0c95 1237 lruvec = &pgdat->lruvec;
bea8c150
HD
1238 goto out;
1239 }
925b7673 1240
1306a85a 1241 memcg = page->mem_cgroup;
7512102c 1242 /*
dfe0e773 1243 * Swapcache readahead pages are added to the LRU - and
29833315 1244 * possibly migrated - before they are charged.
7512102c 1245 */
29833315
JW
1246 if (!memcg)
1247 memcg = root_mem_cgroup;
7512102c 1248
ef8f2327 1249 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1250 lruvec = &mz->lruvec;
1251out:
1252 /*
1253 * Since a node can be onlined after the mem_cgroup was created,
1254 * we have to be prepared to initialize lruvec->zone here;
1255 * and if offlined then reonlined, we need to reinitialize it.
1256 */
599d0c95
MG
1257 if (unlikely(lruvec->pgdat != pgdat))
1258 lruvec->pgdat = pgdat;
bea8c150 1259 return lruvec;
08e552c6 1260}
b69408e8 1261
925b7673 1262/**
fa9add64
HD
1263 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1264 * @lruvec: mem_cgroup per zone lru vector
1265 * @lru: index of lru list the page is sitting on
b4536f0c 1266 * @zid: zone id of the accounted pages
fa9add64 1267 * @nr_pages: positive when adding or negative when removing
925b7673 1268 *
ca707239
HD
1269 * This function must be called under lru_lock, just before a page is added
1270 * to or just after a page is removed from an lru list (that ordering being
1271 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1272 */
fa9add64 1273void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1274 int zid, int nr_pages)
3f58a829 1275{
ef8f2327 1276 struct mem_cgroup_per_node *mz;
fa9add64 1277 unsigned long *lru_size;
ca707239 1278 long size;
3f58a829
MK
1279
1280 if (mem_cgroup_disabled())
1281 return;
1282
ef8f2327 1283 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1284 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1285
1286 if (nr_pages < 0)
1287 *lru_size += nr_pages;
1288
1289 size = *lru_size;
b4536f0c
MH
1290 if (WARN_ONCE(size < 0,
1291 "%s(%p, %d, %d): lru_size %ld\n",
1292 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1293 VM_BUG_ON(1);
1294 *lru_size = 0;
1295 }
1296
1297 if (nr_pages > 0)
1298 *lru_size += nr_pages;
08e552c6 1299}
544122e5 1300
19942822 1301/**
9d11ea9f 1302 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1303 * @memcg: the memory cgroup
19942822 1304 *
9d11ea9f 1305 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1306 * pages.
19942822 1307 */
c0ff4b85 1308static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1309{
3e32cb2e
JW
1310 unsigned long margin = 0;
1311 unsigned long count;
1312 unsigned long limit;
9d11ea9f 1313
3e32cb2e 1314 count = page_counter_read(&memcg->memory);
bbec2e15 1315 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1316 if (count < limit)
1317 margin = limit - count;
1318
7941d214 1319 if (do_memsw_account()) {
3e32cb2e 1320 count = page_counter_read(&memcg->memsw);
bbec2e15 1321 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1322 if (count <= limit)
1323 margin = min(margin, limit - count);
cbedbac3
LR
1324 else
1325 margin = 0;
3e32cb2e
JW
1326 }
1327
1328 return margin;
19942822
JW
1329}
1330
32047e2a 1331/*
bdcbb659 1332 * A routine for checking "mem" is under move_account() or not.
32047e2a 1333 *
bdcbb659
QH
1334 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1335 * moving cgroups. This is for waiting at high-memory pressure
1336 * caused by "move".
32047e2a 1337 */
c0ff4b85 1338static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1339{
2bd9bb20
KH
1340 struct mem_cgroup *from;
1341 struct mem_cgroup *to;
4b534334 1342 bool ret = false;
2bd9bb20
KH
1343 /*
1344 * Unlike task_move routines, we access mc.to, mc.from not under
1345 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1346 */
1347 spin_lock(&mc.lock);
1348 from = mc.from;
1349 to = mc.to;
1350 if (!from)
1351 goto unlock;
3e92041d 1352
2314b42d
JW
1353 ret = mem_cgroup_is_descendant(from, memcg) ||
1354 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1355unlock:
1356 spin_unlock(&mc.lock);
4b534334
KH
1357 return ret;
1358}
1359
c0ff4b85 1360static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1361{
1362 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1363 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1364 DEFINE_WAIT(wait);
1365 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1366 /* moving charge context might have finished. */
1367 if (mc.moving_task)
1368 schedule();
1369 finish_wait(&mc.waitq, &wait);
1370 return true;
1371 }
1372 }
1373 return false;
1374}
1375
c8713d0b
JW
1376static char *memory_stat_format(struct mem_cgroup *memcg)
1377{
1378 struct seq_buf s;
1379 int i;
71cd3113 1380
c8713d0b
JW
1381 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1382 if (!s.buffer)
1383 return NULL;
1384
1385 /*
1386 * Provide statistics on the state of the memory subsystem as
1387 * well as cumulative event counters that show past behavior.
1388 *
1389 * This list is ordered following a combination of these gradients:
1390 * 1) generic big picture -> specifics and details
1391 * 2) reflecting userspace activity -> reflecting kernel heuristics
1392 *
1393 * Current memory state:
1394 */
1395
1396 seq_buf_printf(&s, "anon %llu\n",
1397 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1398 PAGE_SIZE);
1399 seq_buf_printf(&s, "file %llu\n",
1400 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1401 PAGE_SIZE);
1402 seq_buf_printf(&s, "kernel_stack %llu\n",
1403 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1404 1024);
1405 seq_buf_printf(&s, "slab %llu\n",
1406 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1407 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1408 PAGE_SIZE);
1409 seq_buf_printf(&s, "sock %llu\n",
1410 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1411 PAGE_SIZE);
1412
1413 seq_buf_printf(&s, "shmem %llu\n",
1414 (u64)memcg_page_state(memcg, NR_SHMEM) *
1415 PAGE_SIZE);
1416 seq_buf_printf(&s, "file_mapped %llu\n",
1417 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1418 PAGE_SIZE);
1419 seq_buf_printf(&s, "file_dirty %llu\n",
1420 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1421 PAGE_SIZE);
1422 seq_buf_printf(&s, "file_writeback %llu\n",
1423 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1424 PAGE_SIZE);
1425
1426 /*
1427 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1428 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1429 * arse because it requires migrating the work out of rmap to a place
1430 * where the page->mem_cgroup is set up and stable.
1431 */
1432 seq_buf_printf(&s, "anon_thp %llu\n",
1433 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1434 PAGE_SIZE);
1435
1436 for (i = 0; i < NR_LRU_LISTS; i++)
1437 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1438 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1439 PAGE_SIZE);
1440
1441 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1442 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1443 PAGE_SIZE);
1444 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1445 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1446 PAGE_SIZE);
1447
1448 /* Accumulated memory events */
1449
1450 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1451 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1452
1453 seq_buf_printf(&s, "workingset_refault %lu\n",
1454 memcg_page_state(memcg, WORKINGSET_REFAULT));
1455 seq_buf_printf(&s, "workingset_activate %lu\n",
1456 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1457 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1458 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1459
1460 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1461 seq_buf_printf(&s, "pgscan %lu\n",
1462 memcg_events(memcg, PGSCAN_KSWAPD) +
1463 memcg_events(memcg, PGSCAN_DIRECT));
1464 seq_buf_printf(&s, "pgsteal %lu\n",
1465 memcg_events(memcg, PGSTEAL_KSWAPD) +
1466 memcg_events(memcg, PGSTEAL_DIRECT));
1467 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1468 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1470 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1471
1472#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1473 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1474 memcg_events(memcg, THP_FAULT_ALLOC));
1475 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1476 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1477#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1478
1479 /* The above should easily fit into one page */
1480 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1481
1482 return s.buffer;
1483}
71cd3113 1484
58cf188e 1485#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1486/**
f0c867d9 1487 * mem_cgroup_print_oom_context: Print OOM information relevant to
1488 * memory controller.
e222432b
BS
1489 * @memcg: The memory cgroup that went over limit
1490 * @p: Task that is going to be killed
1491 *
1492 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1493 * enabled
1494 */
f0c867d9 1495void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1496{
e222432b
BS
1497 rcu_read_lock();
1498
f0c867d9 1499 if (memcg) {
1500 pr_cont(",oom_memcg=");
1501 pr_cont_cgroup_path(memcg->css.cgroup);
1502 } else
1503 pr_cont(",global_oom");
2415b9f5 1504 if (p) {
f0c867d9 1505 pr_cont(",task_memcg=");
2415b9f5 1506 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1507 }
e222432b 1508 rcu_read_unlock();
f0c867d9 1509}
1510
1511/**
1512 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1513 * memory controller.
1514 * @memcg: The memory cgroup that went over limit
1515 */
1516void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1517{
c8713d0b 1518 char *buf;
e222432b 1519
3e32cb2e
JW
1520 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1521 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1522 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1523 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1524 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->swap)),
1526 K((u64)memcg->swap.max), memcg->swap.failcnt);
1527 else {
1528 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->memsw)),
1530 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1531 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1532 K((u64)page_counter_read(&memcg->kmem)),
1533 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1534 }
c8713d0b
JW
1535
1536 pr_info("Memory cgroup stats for ");
1537 pr_cont_cgroup_path(memcg->css.cgroup);
1538 pr_cont(":");
1539 buf = memory_stat_format(memcg);
1540 if (!buf)
1541 return;
1542 pr_info("%s", buf);
1543 kfree(buf);
e222432b
BS
1544}
1545
a63d83f4
DR
1546/*
1547 * Return the memory (and swap, if configured) limit for a memcg.
1548 */
bbec2e15 1549unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1550{
bbec2e15 1551 unsigned long max;
f3e8eb70 1552
bbec2e15 1553 max = memcg->memory.max;
9a5a8f19 1554 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1555 unsigned long memsw_max;
1556 unsigned long swap_max;
9a5a8f19 1557
bbec2e15
RG
1558 memsw_max = memcg->memsw.max;
1559 swap_max = memcg->swap.max;
1560 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1561 max = min(max + swap_max, memsw_max);
9a5a8f19 1562 }
bbec2e15 1563 return max;
a63d83f4
DR
1564}
1565
9783aa99
CD
1566unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1567{
1568 return page_counter_read(&memcg->memory);
1569}
1570
b6e6edcf 1571static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1572 int order)
9cbb78bb 1573{
6e0fc46d
DR
1574 struct oom_control oc = {
1575 .zonelist = NULL,
1576 .nodemask = NULL,
2a966b77 1577 .memcg = memcg,
6e0fc46d
DR
1578 .gfp_mask = gfp_mask,
1579 .order = order,
6e0fc46d 1580 };
7c5f64f8 1581 bool ret;
9cbb78bb 1582
7775face
TH
1583 if (mutex_lock_killable(&oom_lock))
1584 return true;
1585 /*
1586 * A few threads which were not waiting at mutex_lock_killable() can
1587 * fail to bail out. Therefore, check again after holding oom_lock.
1588 */
1589 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1590 mutex_unlock(&oom_lock);
7c5f64f8 1591 return ret;
9cbb78bb
DR
1592}
1593
ae6e71d3
MC
1594#if MAX_NUMNODES > 1
1595
4d0c066d
KH
1596/**
1597 * test_mem_cgroup_node_reclaimable
dad7557e 1598 * @memcg: the target memcg
4d0c066d
KH
1599 * @nid: the node ID to be checked.
1600 * @noswap : specify true here if the user wants flle only information.
1601 *
1602 * This function returns whether the specified memcg contains any
1603 * reclaimable pages on a node. Returns true if there are any reclaimable
1604 * pages in the node.
1605 */
c0ff4b85 1606static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1607 int nid, bool noswap)
1608{
2b487e59
JW
1609 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1610
def0fdae
JW
1611 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1612 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1613 return true;
1614 if (noswap || !total_swap_pages)
1615 return false;
def0fdae
JW
1616 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1617 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1618 return true;
1619 return false;
1620
1621}
889976db
YH
1622
1623/*
1624 * Always updating the nodemask is not very good - even if we have an empty
1625 * list or the wrong list here, we can start from some node and traverse all
1626 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1627 *
1628 */
c0ff4b85 1629static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1630{
1631 int nid;
453a9bf3
KH
1632 /*
1633 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1634 * pagein/pageout changes since the last update.
1635 */
c0ff4b85 1636 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1637 return;
c0ff4b85 1638 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1639 return;
1640
889976db 1641 /* make a nodemask where this memcg uses memory from */
31aaea4a 1642 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1643
31aaea4a 1644 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1645
c0ff4b85
R
1646 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1647 node_clear(nid, memcg->scan_nodes);
889976db 1648 }
453a9bf3 1649
c0ff4b85
R
1650 atomic_set(&memcg->numainfo_events, 0);
1651 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1652}
1653
1654/*
1655 * Selecting a node where we start reclaim from. Because what we need is just
1656 * reducing usage counter, start from anywhere is O,K. Considering
1657 * memory reclaim from current node, there are pros. and cons.
1658 *
1659 * Freeing memory from current node means freeing memory from a node which
1660 * we'll use or we've used. So, it may make LRU bad. And if several threads
1661 * hit limits, it will see a contention on a node. But freeing from remote
1662 * node means more costs for memory reclaim because of memory latency.
1663 *
1664 * Now, we use round-robin. Better algorithm is welcomed.
1665 */
c0ff4b85 1666int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1667{
1668 int node;
1669
c0ff4b85
R
1670 mem_cgroup_may_update_nodemask(memcg);
1671 node = memcg->last_scanned_node;
889976db 1672
0edaf86c 1673 node = next_node_in(node, memcg->scan_nodes);
889976db 1674 /*
fda3d69b
MH
1675 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1676 * last time it really checked all the LRUs due to rate limiting.
1677 * Fallback to the current node in that case for simplicity.
889976db
YH
1678 */
1679 if (unlikely(node == MAX_NUMNODES))
1680 node = numa_node_id();
1681
c0ff4b85 1682 memcg->last_scanned_node = node;
889976db
YH
1683 return node;
1684}
889976db 1685#else
c0ff4b85 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 return 0;
1689}
1690#endif
1691
0608f43d 1692static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1693 pg_data_t *pgdat,
0608f43d
AM
1694 gfp_t gfp_mask,
1695 unsigned long *total_scanned)
1696{
1697 struct mem_cgroup *victim = NULL;
1698 int total = 0;
1699 int loop = 0;
1700 unsigned long excess;
1701 unsigned long nr_scanned;
1702 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1703 .pgdat = pgdat,
0608f43d
AM
1704 };
1705
3e32cb2e 1706 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1707
1708 while (1) {
1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 if (!victim) {
1711 loop++;
1712 if (loop >= 2) {
1713 /*
1714 * If we have not been able to reclaim
1715 * anything, it might because there are
1716 * no reclaimable pages under this hierarchy
1717 */
1718 if (!total)
1719 break;
1720 /*
1721 * We want to do more targeted reclaim.
1722 * excess >> 2 is not to excessive so as to
1723 * reclaim too much, nor too less that we keep
1724 * coming back to reclaim from this cgroup
1725 */
1726 if (total >= (excess >> 2) ||
1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 break;
1729 }
1730 continue;
1731 }
a9dd0a83 1732 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1733 pgdat, &nr_scanned);
0608f43d 1734 *total_scanned += nr_scanned;
3e32cb2e 1735 if (!soft_limit_excess(root_memcg))
0608f43d 1736 break;
6d61ef40 1737 }
0608f43d
AM
1738 mem_cgroup_iter_break(root_memcg, victim);
1739 return total;
6d61ef40
BS
1740}
1741
0056f4e6
JW
1742#ifdef CONFIG_LOCKDEP
1743static struct lockdep_map memcg_oom_lock_dep_map = {
1744 .name = "memcg_oom_lock",
1745};
1746#endif
1747
fb2a6fc5
JW
1748static DEFINE_SPINLOCK(memcg_oom_lock);
1749
867578cb
KH
1750/*
1751 * Check OOM-Killer is already running under our hierarchy.
1752 * If someone is running, return false.
1753 */
fb2a6fc5 1754static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1755{
79dfdacc 1756 struct mem_cgroup *iter, *failed = NULL;
a636b327 1757
fb2a6fc5
JW
1758 spin_lock(&memcg_oom_lock);
1759
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1761 if (iter->oom_lock) {
79dfdacc
MH
1762 /*
1763 * this subtree of our hierarchy is already locked
1764 * so we cannot give a lock.
1765 */
79dfdacc 1766 failed = iter;
9f3a0d09
JW
1767 mem_cgroup_iter_break(memcg, iter);
1768 break;
23751be0
JW
1769 } else
1770 iter->oom_lock = true;
7d74b06f 1771 }
867578cb 1772
fb2a6fc5
JW
1773 if (failed) {
1774 /*
1775 * OK, we failed to lock the whole subtree so we have
1776 * to clean up what we set up to the failing subtree
1777 */
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 if (iter == failed) {
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 }
1783 iter->oom_lock = false;
79dfdacc 1784 }
0056f4e6
JW
1785 } else
1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1787
1788 spin_unlock(&memcg_oom_lock);
1789
1790 return !failed;
a636b327 1791}
0b7f569e 1792
fb2a6fc5 1793static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1794{
7d74b06f
KH
1795 struct mem_cgroup *iter;
1796
fb2a6fc5 1797 spin_lock(&memcg_oom_lock);
5facae4f 1798 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 iter->oom_lock = false;
fb2a6fc5 1801 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1802}
1803
c0ff4b85 1804static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1805{
1806 struct mem_cgroup *iter;
1807
c2b42d3c 1808 spin_lock(&memcg_oom_lock);
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1810 iter->under_oom++;
1811 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1812}
1813
c0ff4b85 1814static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1815{
1816 struct mem_cgroup *iter;
1817
867578cb
KH
1818 /*
1819 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1820 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1821 */
c2b42d3c 1822 spin_lock(&memcg_oom_lock);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1824 if (iter->under_oom > 0)
1825 iter->under_oom--;
1826 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1827}
1828
867578cb
KH
1829static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1830
dc98df5a 1831struct oom_wait_info {
d79154bb 1832 struct mem_cgroup *memcg;
ac6424b9 1833 wait_queue_entry_t wait;
dc98df5a
KH
1834};
1835
ac6424b9 1836static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1837 unsigned mode, int sync, void *arg)
1838{
d79154bb
HD
1839 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1840 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1841 struct oom_wait_info *oom_wait_info;
1842
1843 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1844 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1845
2314b42d
JW
1846 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1847 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1848 return 0;
dc98df5a
KH
1849 return autoremove_wake_function(wait, mode, sync, arg);
1850}
1851
c0ff4b85 1852static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1853{
c2b42d3c
TH
1854 /*
1855 * For the following lockless ->under_oom test, the only required
1856 * guarantee is that it must see the state asserted by an OOM when
1857 * this function is called as a result of userland actions
1858 * triggered by the notification of the OOM. This is trivially
1859 * achieved by invoking mem_cgroup_mark_under_oom() before
1860 * triggering notification.
1861 */
1862 if (memcg && memcg->under_oom)
f4b90b70 1863 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1864}
1865
29ef680a
MH
1866enum oom_status {
1867 OOM_SUCCESS,
1868 OOM_FAILED,
1869 OOM_ASYNC,
1870 OOM_SKIPPED
1871};
1872
1873static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1874{
7056d3a3
MH
1875 enum oom_status ret;
1876 bool locked;
1877
29ef680a
MH
1878 if (order > PAGE_ALLOC_COSTLY_ORDER)
1879 return OOM_SKIPPED;
1880
7a1adfdd
RG
1881 memcg_memory_event(memcg, MEMCG_OOM);
1882
867578cb 1883 /*
49426420
JW
1884 * We are in the middle of the charge context here, so we
1885 * don't want to block when potentially sitting on a callstack
1886 * that holds all kinds of filesystem and mm locks.
1887 *
29ef680a
MH
1888 * cgroup1 allows disabling the OOM killer and waiting for outside
1889 * handling until the charge can succeed; remember the context and put
1890 * the task to sleep at the end of the page fault when all locks are
1891 * released.
49426420 1892 *
29ef680a
MH
1893 * On the other hand, in-kernel OOM killer allows for an async victim
1894 * memory reclaim (oom_reaper) and that means that we are not solely
1895 * relying on the oom victim to make a forward progress and we can
1896 * invoke the oom killer here.
1897 *
1898 * Please note that mem_cgroup_out_of_memory might fail to find a
1899 * victim and then we have to bail out from the charge path.
867578cb 1900 */
29ef680a
MH
1901 if (memcg->oom_kill_disable) {
1902 if (!current->in_user_fault)
1903 return OOM_SKIPPED;
1904 css_get(&memcg->css);
1905 current->memcg_in_oom = memcg;
1906 current->memcg_oom_gfp_mask = mask;
1907 current->memcg_oom_order = order;
1908
1909 return OOM_ASYNC;
1910 }
1911
7056d3a3
MH
1912 mem_cgroup_mark_under_oom(memcg);
1913
1914 locked = mem_cgroup_oom_trylock(memcg);
1915
1916 if (locked)
1917 mem_cgroup_oom_notify(memcg);
1918
1919 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1920 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1921 ret = OOM_SUCCESS;
1922 else
1923 ret = OOM_FAILED;
1924
1925 if (locked)
1926 mem_cgroup_oom_unlock(memcg);
29ef680a 1927
7056d3a3 1928 return ret;
3812c8c8
JW
1929}
1930
1931/**
1932 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1933 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1934 *
49426420
JW
1935 * This has to be called at the end of a page fault if the memcg OOM
1936 * handler was enabled.
3812c8c8 1937 *
49426420 1938 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1939 * sleep on a waitqueue until the userspace task resolves the
1940 * situation. Sleeping directly in the charge context with all kinds
1941 * of locks held is not a good idea, instead we remember an OOM state
1942 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1943 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1944 *
1945 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1946 * completed, %false otherwise.
3812c8c8 1947 */
49426420 1948bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1949{
626ebc41 1950 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1951 struct oom_wait_info owait;
49426420 1952 bool locked;
3812c8c8
JW
1953
1954 /* OOM is global, do not handle */
3812c8c8 1955 if (!memcg)
49426420 1956 return false;
3812c8c8 1957
7c5f64f8 1958 if (!handle)
49426420 1959 goto cleanup;
3812c8c8
JW
1960
1961 owait.memcg = memcg;
1962 owait.wait.flags = 0;
1963 owait.wait.func = memcg_oom_wake_function;
1964 owait.wait.private = current;
2055da97 1965 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1966
3812c8c8 1967 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1968 mem_cgroup_mark_under_oom(memcg);
1969
1970 locked = mem_cgroup_oom_trylock(memcg);
1971
1972 if (locked)
1973 mem_cgroup_oom_notify(memcg);
1974
1975 if (locked && !memcg->oom_kill_disable) {
1976 mem_cgroup_unmark_under_oom(memcg);
1977 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1978 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1979 current->memcg_oom_order);
49426420 1980 } else {
3812c8c8 1981 schedule();
49426420
JW
1982 mem_cgroup_unmark_under_oom(memcg);
1983 finish_wait(&memcg_oom_waitq, &owait.wait);
1984 }
1985
1986 if (locked) {
fb2a6fc5
JW
1987 mem_cgroup_oom_unlock(memcg);
1988 /*
1989 * There is no guarantee that an OOM-lock contender
1990 * sees the wakeups triggered by the OOM kill
1991 * uncharges. Wake any sleepers explicitely.
1992 */
1993 memcg_oom_recover(memcg);
1994 }
49426420 1995cleanup:
626ebc41 1996 current->memcg_in_oom = NULL;
3812c8c8 1997 css_put(&memcg->css);
867578cb 1998 return true;
0b7f569e
KH
1999}
2000
3d8b38eb
RG
2001/**
2002 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2003 * @victim: task to be killed by the OOM killer
2004 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2005 *
2006 * Returns a pointer to a memory cgroup, which has to be cleaned up
2007 * by killing all belonging OOM-killable tasks.
2008 *
2009 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2010 */
2011struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2012 struct mem_cgroup *oom_domain)
2013{
2014 struct mem_cgroup *oom_group = NULL;
2015 struct mem_cgroup *memcg;
2016
2017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2018 return NULL;
2019
2020 if (!oom_domain)
2021 oom_domain = root_mem_cgroup;
2022
2023 rcu_read_lock();
2024
2025 memcg = mem_cgroup_from_task(victim);
2026 if (memcg == root_mem_cgroup)
2027 goto out;
2028
2029 /*
2030 * Traverse the memory cgroup hierarchy from the victim task's
2031 * cgroup up to the OOMing cgroup (or root) to find the
2032 * highest-level memory cgroup with oom.group set.
2033 */
2034 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2035 if (memcg->oom_group)
2036 oom_group = memcg;
2037
2038 if (memcg == oom_domain)
2039 break;
2040 }
2041
2042 if (oom_group)
2043 css_get(&oom_group->css);
2044out:
2045 rcu_read_unlock();
2046
2047 return oom_group;
2048}
2049
2050void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2051{
2052 pr_info("Tasks in ");
2053 pr_cont_cgroup_path(memcg->css.cgroup);
2054 pr_cont(" are going to be killed due to memory.oom.group set\n");
2055}
2056
d7365e78 2057/**
81f8c3a4
JW
2058 * lock_page_memcg - lock a page->mem_cgroup binding
2059 * @page: the page
32047e2a 2060 *
81f8c3a4 2061 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2062 * another cgroup.
2063 *
2064 * It ensures lifetime of the returned memcg. Caller is responsible
2065 * for the lifetime of the page; __unlock_page_memcg() is available
2066 * when @page might get freed inside the locked section.
d69b042f 2067 */
739f79fc 2068struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2069{
2070 struct mem_cgroup *memcg;
6de22619 2071 unsigned long flags;
89c06bd5 2072
6de22619
JW
2073 /*
2074 * The RCU lock is held throughout the transaction. The fast
2075 * path can get away without acquiring the memcg->move_lock
2076 * because page moving starts with an RCU grace period.
739f79fc
JW
2077 *
2078 * The RCU lock also protects the memcg from being freed when
2079 * the page state that is going to change is the only thing
2080 * preventing the page itself from being freed. E.g. writeback
2081 * doesn't hold a page reference and relies on PG_writeback to
2082 * keep off truncation, migration and so forth.
2083 */
d7365e78
JW
2084 rcu_read_lock();
2085
2086 if (mem_cgroup_disabled())
739f79fc 2087 return NULL;
89c06bd5 2088again:
1306a85a 2089 memcg = page->mem_cgroup;
29833315 2090 if (unlikely(!memcg))
739f79fc 2091 return NULL;
d7365e78 2092
bdcbb659 2093 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2094 return memcg;
89c06bd5 2095
6de22619 2096 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2097 if (memcg != page->mem_cgroup) {
6de22619 2098 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2099 goto again;
2100 }
6de22619
JW
2101
2102 /*
2103 * When charge migration first begins, we can have locked and
2104 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2105 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2106 */
2107 memcg->move_lock_task = current;
2108 memcg->move_lock_flags = flags;
d7365e78 2109
739f79fc 2110 return memcg;
89c06bd5 2111}
81f8c3a4 2112EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2113
d7365e78 2114/**
739f79fc
JW
2115 * __unlock_page_memcg - unlock and unpin a memcg
2116 * @memcg: the memcg
2117 *
2118 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2119 */
739f79fc 2120void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2121{
6de22619
JW
2122 if (memcg && memcg->move_lock_task == current) {
2123 unsigned long flags = memcg->move_lock_flags;
2124
2125 memcg->move_lock_task = NULL;
2126 memcg->move_lock_flags = 0;
2127
2128 spin_unlock_irqrestore(&memcg->move_lock, flags);
2129 }
89c06bd5 2130
d7365e78 2131 rcu_read_unlock();
89c06bd5 2132}
739f79fc
JW
2133
2134/**
2135 * unlock_page_memcg - unlock a page->mem_cgroup binding
2136 * @page: the page
2137 */
2138void unlock_page_memcg(struct page *page)
2139{
2140 __unlock_page_memcg(page->mem_cgroup);
2141}
81f8c3a4 2142EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2143
cdec2e42
KH
2144struct memcg_stock_pcp {
2145 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2146 unsigned int nr_pages;
cdec2e42 2147 struct work_struct work;
26fe6168 2148 unsigned long flags;
a0db00fc 2149#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2150};
2151static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2152static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2153
a0956d54
SS
2154/**
2155 * consume_stock: Try to consume stocked charge on this cpu.
2156 * @memcg: memcg to consume from.
2157 * @nr_pages: how many pages to charge.
2158 *
2159 * The charges will only happen if @memcg matches the current cpu's memcg
2160 * stock, and at least @nr_pages are available in that stock. Failure to
2161 * service an allocation will refill the stock.
2162 *
2163 * returns true if successful, false otherwise.
cdec2e42 2164 */
a0956d54 2165static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2166{
2167 struct memcg_stock_pcp *stock;
db2ba40c 2168 unsigned long flags;
3e32cb2e 2169 bool ret = false;
cdec2e42 2170
a983b5eb 2171 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2172 return ret;
a0956d54 2173
db2ba40c
JW
2174 local_irq_save(flags);
2175
2176 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2177 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2178 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2179 ret = true;
2180 }
db2ba40c
JW
2181
2182 local_irq_restore(flags);
2183
cdec2e42
KH
2184 return ret;
2185}
2186
2187/*
3e32cb2e 2188 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2189 */
2190static void drain_stock(struct memcg_stock_pcp *stock)
2191{
2192 struct mem_cgroup *old = stock->cached;
2193
11c9ea4e 2194 if (stock->nr_pages) {
3e32cb2e 2195 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2196 if (do_memsw_account())
3e32cb2e 2197 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2198 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2199 stock->nr_pages = 0;
cdec2e42
KH
2200 }
2201 stock->cached = NULL;
cdec2e42
KH
2202}
2203
cdec2e42
KH
2204static void drain_local_stock(struct work_struct *dummy)
2205{
db2ba40c
JW
2206 struct memcg_stock_pcp *stock;
2207 unsigned long flags;
2208
72f0184c
MH
2209 /*
2210 * The only protection from memory hotplug vs. drain_stock races is
2211 * that we always operate on local CPU stock here with IRQ disabled
2212 */
db2ba40c
JW
2213 local_irq_save(flags);
2214
2215 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2216 drain_stock(stock);
26fe6168 2217 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2218
2219 local_irq_restore(flags);
cdec2e42
KH
2220}
2221
2222/*
3e32cb2e 2223 * Cache charges(val) to local per_cpu area.
320cc51d 2224 * This will be consumed by consume_stock() function, later.
cdec2e42 2225 */
c0ff4b85 2226static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2227{
db2ba40c
JW
2228 struct memcg_stock_pcp *stock;
2229 unsigned long flags;
2230
2231 local_irq_save(flags);
cdec2e42 2232
db2ba40c 2233 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2234 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2235 drain_stock(stock);
c0ff4b85 2236 stock->cached = memcg;
cdec2e42 2237 }
11c9ea4e 2238 stock->nr_pages += nr_pages;
db2ba40c 2239
a983b5eb 2240 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2241 drain_stock(stock);
2242
db2ba40c 2243 local_irq_restore(flags);
cdec2e42
KH
2244}
2245
2246/*
c0ff4b85 2247 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2248 * of the hierarchy under it.
cdec2e42 2249 */
6d3d6aa2 2250static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2251{
26fe6168 2252 int cpu, curcpu;
d38144b7 2253
6d3d6aa2
JW
2254 /* If someone's already draining, avoid adding running more workers. */
2255 if (!mutex_trylock(&percpu_charge_mutex))
2256 return;
72f0184c
MH
2257 /*
2258 * Notify other cpus that system-wide "drain" is running
2259 * We do not care about races with the cpu hotplug because cpu down
2260 * as well as workers from this path always operate on the local
2261 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2262 */
5af12d0e 2263 curcpu = get_cpu();
cdec2e42
KH
2264 for_each_online_cpu(cpu) {
2265 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2266 struct mem_cgroup *memcg;
e1a366be 2267 bool flush = false;
26fe6168 2268
e1a366be 2269 rcu_read_lock();
c0ff4b85 2270 memcg = stock->cached;
e1a366be
RG
2271 if (memcg && stock->nr_pages &&
2272 mem_cgroup_is_descendant(memcg, root_memcg))
2273 flush = true;
2274 rcu_read_unlock();
2275
2276 if (flush &&
2277 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2278 if (cpu == curcpu)
2279 drain_local_stock(&stock->work);
2280 else
2281 schedule_work_on(cpu, &stock->work);
2282 }
cdec2e42 2283 }
5af12d0e 2284 put_cpu();
9f50fad6 2285 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2286}
2287
308167fc 2288static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2289{
cdec2e42 2290 struct memcg_stock_pcp *stock;
42a30035 2291 struct mem_cgroup *memcg, *mi;
cdec2e42 2292
cdec2e42
KH
2293 stock = &per_cpu(memcg_stock, cpu);
2294 drain_stock(stock);
a983b5eb
JW
2295
2296 for_each_mem_cgroup(memcg) {
2297 int i;
2298
2299 for (i = 0; i < MEMCG_NR_STAT; i++) {
2300 int nid;
2301 long x;
2302
871789d4 2303 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2304 if (x)
42a30035
JW
2305 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2306 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2307
2308 if (i >= NR_VM_NODE_STAT_ITEMS)
2309 continue;
2310
2311 for_each_node(nid) {
2312 struct mem_cgroup_per_node *pn;
2313
2314 pn = mem_cgroup_nodeinfo(memcg, nid);
2315 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2316 if (x)
42a30035
JW
2317 do {
2318 atomic_long_add(x, &pn->lruvec_stat[i]);
2319 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2320 }
2321 }
2322
e27be240 2323 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2324 long x;
2325
871789d4 2326 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2327 if (x)
42a30035
JW
2328 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2329 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2330 }
2331 }
2332
308167fc 2333 return 0;
cdec2e42
KH
2334}
2335
f7e1cb6e
JW
2336static void reclaim_high(struct mem_cgroup *memcg,
2337 unsigned int nr_pages,
2338 gfp_t gfp_mask)
2339{
2340 do {
2341 if (page_counter_read(&memcg->memory) <= memcg->high)
2342 continue;
e27be240 2343 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2344 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2345 } while ((memcg = parent_mem_cgroup(memcg)));
2346}
2347
2348static void high_work_func(struct work_struct *work)
2349{
2350 struct mem_cgroup *memcg;
2351
2352 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2353 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2354}
2355
0e4b01df
CD
2356/*
2357 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2358 * enough to still cause a significant slowdown in most cases, while still
2359 * allowing diagnostics and tracing to proceed without becoming stuck.
2360 */
2361#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2362
2363/*
2364 * When calculating the delay, we use these either side of the exponentiation to
2365 * maintain precision and scale to a reasonable number of jiffies (see the table
2366 * below.
2367 *
2368 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2369 * overage ratio to a delay.
2370 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2371 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2372 * to produce a reasonable delay curve.
2373 *
2374 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2375 * reasonable delay curve compared to precision-adjusted overage, not
2376 * penalising heavily at first, but still making sure that growth beyond the
2377 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2378 * example, with a high of 100 megabytes:
2379 *
2380 * +-------+------------------------+
2381 * | usage | time to allocate in ms |
2382 * +-------+------------------------+
2383 * | 100M | 0 |
2384 * | 101M | 6 |
2385 * | 102M | 25 |
2386 * | 103M | 57 |
2387 * | 104M | 102 |
2388 * | 105M | 159 |
2389 * | 106M | 230 |
2390 * | 107M | 313 |
2391 * | 108M | 409 |
2392 * | 109M | 518 |
2393 * | 110M | 639 |
2394 * | 111M | 774 |
2395 * | 112M | 921 |
2396 * | 113M | 1081 |
2397 * | 114M | 1254 |
2398 * | 115M | 1439 |
2399 * | 116M | 1638 |
2400 * | 117M | 1849 |
2401 * | 118M | 2000 |
2402 * | 119M | 2000 |
2403 * | 120M | 2000 |
2404 * +-------+------------------------+
2405 */
2406 #define MEMCG_DELAY_PRECISION_SHIFT 20
2407 #define MEMCG_DELAY_SCALING_SHIFT 14
2408
b23afb93
TH
2409/*
2410 * Scheduled by try_charge() to be executed from the userland return path
2411 * and reclaims memory over the high limit.
2412 */
2413void mem_cgroup_handle_over_high(void)
2414{
0e4b01df
CD
2415 unsigned long usage, high, clamped_high;
2416 unsigned long pflags;
2417 unsigned long penalty_jiffies, overage;
b23afb93 2418 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2419 struct mem_cgroup *memcg;
b23afb93
TH
2420
2421 if (likely(!nr_pages))
2422 return;
2423
f7e1cb6e
JW
2424 memcg = get_mem_cgroup_from_mm(current->mm);
2425 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93 2426 current->memcg_nr_pages_over_high = 0;
0e4b01df
CD
2427
2428 /*
2429 * memory.high is breached and reclaim is unable to keep up. Throttle
2430 * allocators proactively to slow down excessive growth.
2431 *
2432 * We use overage compared to memory.high to calculate the number of
2433 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2434 * fairly lenient on small overages, and increasingly harsh when the
2435 * memcg in question makes it clear that it has no intention of stopping
2436 * its crazy behaviour, so we exponentially increase the delay based on
2437 * overage amount.
2438 */
2439
2440 usage = page_counter_read(&memcg->memory);
2441 high = READ_ONCE(memcg->high);
2442
2443 if (usage <= high)
2444 goto out;
2445
2446 /*
2447 * Prevent division by 0 in overage calculation by acting as if it was a
2448 * threshold of 1 page
2449 */
2450 clamped_high = max(high, 1UL);
2451
2452 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2453 clamped_high);
2454
2455 penalty_jiffies = ((u64)overage * overage * HZ)
2456 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2457
2458 /*
2459 * Factor in the task's own contribution to the overage, such that four
2460 * N-sized allocations are throttled approximately the same as one
2461 * 4N-sized allocation.
2462 *
2463 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2464 * larger the current charge patch is than that.
2465 */
2466 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2467
2468 /*
2469 * Clamp the max delay per usermode return so as to still keep the
2470 * application moving forwards and also permit diagnostics, albeit
2471 * extremely slowly.
2472 */
2473 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2474
2475 /*
2476 * Don't sleep if the amount of jiffies this memcg owes us is so low
2477 * that it's not even worth doing, in an attempt to be nice to those who
2478 * go only a small amount over their memory.high value and maybe haven't
2479 * been aggressively reclaimed enough yet.
2480 */
2481 if (penalty_jiffies <= HZ / 100)
2482 goto out;
2483
2484 /*
2485 * If we exit early, we're guaranteed to die (since
2486 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2487 * need to account for any ill-begotten jiffies to pay them off later.
2488 */
2489 psi_memstall_enter(&pflags);
2490 schedule_timeout_killable(penalty_jiffies);
2491 psi_memstall_leave(&pflags);
2492
2493out:
2494 css_put(&memcg->css);
b23afb93
TH
2495}
2496
00501b53
JW
2497static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2498 unsigned int nr_pages)
8a9f3ccd 2499{
a983b5eb 2500 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2501 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2502 struct mem_cgroup *mem_over_limit;
3e32cb2e 2503 struct page_counter *counter;
6539cc05 2504 unsigned long nr_reclaimed;
b70a2a21
JW
2505 bool may_swap = true;
2506 bool drained = false;
29ef680a 2507 enum oom_status oom_status;
a636b327 2508
ce00a967 2509 if (mem_cgroup_is_root(memcg))
10d53c74 2510 return 0;
6539cc05 2511retry:
b6b6cc72 2512 if (consume_stock(memcg, nr_pages))
10d53c74 2513 return 0;
8a9f3ccd 2514
7941d214 2515 if (!do_memsw_account() ||
6071ca52
JW
2516 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2517 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2518 goto done_restock;
7941d214 2519 if (do_memsw_account())
3e32cb2e
JW
2520 page_counter_uncharge(&memcg->memsw, batch);
2521 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2522 } else {
3e32cb2e 2523 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2524 may_swap = false;
3fbe7244 2525 }
7a81b88c 2526
6539cc05
JW
2527 if (batch > nr_pages) {
2528 batch = nr_pages;
2529 goto retry;
2530 }
6d61ef40 2531
869712fd
JW
2532 /*
2533 * Memcg doesn't have a dedicated reserve for atomic
2534 * allocations. But like the global atomic pool, we need to
2535 * put the burden of reclaim on regular allocation requests
2536 * and let these go through as privileged allocations.
2537 */
2538 if (gfp_mask & __GFP_ATOMIC)
2539 goto force;
2540
06b078fc
JW
2541 /*
2542 * Unlike in global OOM situations, memcg is not in a physical
2543 * memory shortage. Allow dying and OOM-killed tasks to
2544 * bypass the last charges so that they can exit quickly and
2545 * free their memory.
2546 */
7775face 2547 if (unlikely(should_force_charge()))
10d53c74 2548 goto force;
06b078fc 2549
89a28483
JW
2550 /*
2551 * Prevent unbounded recursion when reclaim operations need to
2552 * allocate memory. This might exceed the limits temporarily,
2553 * but we prefer facilitating memory reclaim and getting back
2554 * under the limit over triggering OOM kills in these cases.
2555 */
2556 if (unlikely(current->flags & PF_MEMALLOC))
2557 goto force;
2558
06b078fc
JW
2559 if (unlikely(task_in_memcg_oom(current)))
2560 goto nomem;
2561
d0164adc 2562 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2563 goto nomem;
4b534334 2564
e27be240 2565 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2566
b70a2a21
JW
2567 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2568 gfp_mask, may_swap);
6539cc05 2569
61e02c74 2570 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2571 goto retry;
28c34c29 2572
b70a2a21 2573 if (!drained) {
6d3d6aa2 2574 drain_all_stock(mem_over_limit);
b70a2a21
JW
2575 drained = true;
2576 goto retry;
2577 }
2578
28c34c29
JW
2579 if (gfp_mask & __GFP_NORETRY)
2580 goto nomem;
6539cc05
JW
2581 /*
2582 * Even though the limit is exceeded at this point, reclaim
2583 * may have been able to free some pages. Retry the charge
2584 * before killing the task.
2585 *
2586 * Only for regular pages, though: huge pages are rather
2587 * unlikely to succeed so close to the limit, and we fall back
2588 * to regular pages anyway in case of failure.
2589 */
61e02c74 2590 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2591 goto retry;
2592 /*
2593 * At task move, charge accounts can be doubly counted. So, it's
2594 * better to wait until the end of task_move if something is going on.
2595 */
2596 if (mem_cgroup_wait_acct_move(mem_over_limit))
2597 goto retry;
2598
9b130619
JW
2599 if (nr_retries--)
2600 goto retry;
2601
38d38493 2602 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2603 goto nomem;
2604
06b078fc 2605 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2606 goto force;
06b078fc 2607
6539cc05 2608 if (fatal_signal_pending(current))
10d53c74 2609 goto force;
6539cc05 2610
29ef680a
MH
2611 /*
2612 * keep retrying as long as the memcg oom killer is able to make
2613 * a forward progress or bypass the charge if the oom killer
2614 * couldn't make any progress.
2615 */
2616 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2617 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2618 switch (oom_status) {
2619 case OOM_SUCCESS:
2620 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2621 goto retry;
2622 case OOM_FAILED:
2623 goto force;
2624 default:
2625 goto nomem;
2626 }
7a81b88c 2627nomem:
6d1fdc48 2628 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2629 return -ENOMEM;
10d53c74
TH
2630force:
2631 /*
2632 * The allocation either can't fail or will lead to more memory
2633 * being freed very soon. Allow memory usage go over the limit
2634 * temporarily by force charging it.
2635 */
2636 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2637 if (do_memsw_account())
10d53c74
TH
2638 page_counter_charge(&memcg->memsw, nr_pages);
2639 css_get_many(&memcg->css, nr_pages);
2640
2641 return 0;
6539cc05
JW
2642
2643done_restock:
e8ea14cc 2644 css_get_many(&memcg->css, batch);
6539cc05
JW
2645 if (batch > nr_pages)
2646 refill_stock(memcg, batch - nr_pages);
b23afb93 2647
241994ed 2648 /*
b23afb93
TH
2649 * If the hierarchy is above the normal consumption range, schedule
2650 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2651 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2652 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2653 * not recorded as it most likely matches current's and won't
2654 * change in the meantime. As high limit is checked again before
2655 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2656 */
2657 do {
b23afb93 2658 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2659 /* Don't bother a random interrupted task */
2660 if (in_interrupt()) {
2661 schedule_work(&memcg->high_work);
2662 break;
2663 }
9516a18a 2664 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2665 set_notify_resume(current);
2666 break;
2667 }
241994ed 2668 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2669
2670 return 0;
7a81b88c 2671}
8a9f3ccd 2672
00501b53 2673static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2674{
ce00a967
JW
2675 if (mem_cgroup_is_root(memcg))
2676 return;
2677
3e32cb2e 2678 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2679 if (do_memsw_account())
3e32cb2e 2680 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2681
e8ea14cc 2682 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2683}
2684
0a31bc97
JW
2685static void lock_page_lru(struct page *page, int *isolated)
2686{
f4b7e272 2687 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2688
f4b7e272 2689 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2690 if (PageLRU(page)) {
2691 struct lruvec *lruvec;
2692
f4b7e272 2693 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2694 ClearPageLRU(page);
2695 del_page_from_lru_list(page, lruvec, page_lru(page));
2696 *isolated = 1;
2697 } else
2698 *isolated = 0;
2699}
2700
2701static void unlock_page_lru(struct page *page, int isolated)
2702{
f4b7e272 2703 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2704
2705 if (isolated) {
2706 struct lruvec *lruvec;
2707
f4b7e272 2708 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2709 VM_BUG_ON_PAGE(PageLRU(page), page);
2710 SetPageLRU(page);
2711 add_page_to_lru_list(page, lruvec, page_lru(page));
2712 }
f4b7e272 2713 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2714}
2715
00501b53 2716static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2717 bool lrucare)
7a81b88c 2718{
0a31bc97 2719 int isolated;
9ce70c02 2720
1306a85a 2721 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2722
2723 /*
2724 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2725 * may already be on some other mem_cgroup's LRU. Take care of it.
2726 */
0a31bc97
JW
2727 if (lrucare)
2728 lock_page_lru(page, &isolated);
9ce70c02 2729
0a31bc97
JW
2730 /*
2731 * Nobody should be changing or seriously looking at
1306a85a 2732 * page->mem_cgroup at this point:
0a31bc97
JW
2733 *
2734 * - the page is uncharged
2735 *
2736 * - the page is off-LRU
2737 *
2738 * - an anonymous fault has exclusive page access, except for
2739 * a locked page table
2740 *
2741 * - a page cache insertion, a swapin fault, or a migration
2742 * have the page locked
2743 */
1306a85a 2744 page->mem_cgroup = memcg;
9ce70c02 2745
0a31bc97
JW
2746 if (lrucare)
2747 unlock_page_lru(page, isolated);
7a81b88c 2748}
66e1707b 2749
84c07d11 2750#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2751static int memcg_alloc_cache_id(void)
55007d84 2752{
f3bb3043
VD
2753 int id, size;
2754 int err;
2755
dbcf73e2 2756 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2757 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2758 if (id < 0)
2759 return id;
55007d84 2760
dbcf73e2 2761 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2762 return id;
2763
2764 /*
2765 * There's no space for the new id in memcg_caches arrays,
2766 * so we have to grow them.
2767 */
05257a1a 2768 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2769
2770 size = 2 * (id + 1);
55007d84
GC
2771 if (size < MEMCG_CACHES_MIN_SIZE)
2772 size = MEMCG_CACHES_MIN_SIZE;
2773 else if (size > MEMCG_CACHES_MAX_SIZE)
2774 size = MEMCG_CACHES_MAX_SIZE;
2775
f3bb3043 2776 err = memcg_update_all_caches(size);
60d3fd32
VD
2777 if (!err)
2778 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2779 if (!err)
2780 memcg_nr_cache_ids = size;
2781
2782 up_write(&memcg_cache_ids_sem);
2783
f3bb3043 2784 if (err) {
dbcf73e2 2785 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2786 return err;
2787 }
2788 return id;
2789}
2790
2791static void memcg_free_cache_id(int id)
2792{
dbcf73e2 2793 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2794}
2795
d5b3cf71 2796struct memcg_kmem_cache_create_work {
5722d094
VD
2797 struct mem_cgroup *memcg;
2798 struct kmem_cache *cachep;
2799 struct work_struct work;
2800};
2801
d5b3cf71 2802static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2803{
d5b3cf71
VD
2804 struct memcg_kmem_cache_create_work *cw =
2805 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2806 struct mem_cgroup *memcg = cw->memcg;
2807 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2808
d5b3cf71 2809 memcg_create_kmem_cache(memcg, cachep);
bd673145 2810
5722d094 2811 css_put(&memcg->css);
d7f25f8a
GC
2812 kfree(cw);
2813}
2814
2815/*
2816 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2817 */
85cfb245 2818static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2819 struct kmem_cache *cachep)
d7f25f8a 2820{
d5b3cf71 2821 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2822
f0a3a24b
RG
2823 if (!css_tryget_online(&memcg->css))
2824 return;
2825
c892fd82 2826 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2827 if (!cw)
d7f25f8a 2828 return;
8135be5a 2829
d7f25f8a
GC
2830 cw->memcg = memcg;
2831 cw->cachep = cachep;
d5b3cf71 2832 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2833
17cc4dfe 2834 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2835}
2836
45264778
VD
2837static inline bool memcg_kmem_bypass(void)
2838{
2839 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2840 return true;
2841 return false;
2842}
2843
2844/**
2845 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2846 * @cachep: the original global kmem cache
2847 *
d7f25f8a
GC
2848 * Return the kmem_cache we're supposed to use for a slab allocation.
2849 * We try to use the current memcg's version of the cache.
2850 *
45264778
VD
2851 * If the cache does not exist yet, if we are the first user of it, we
2852 * create it asynchronously in a workqueue and let the current allocation
2853 * go through with the original cache.
d7f25f8a 2854 *
45264778
VD
2855 * This function takes a reference to the cache it returns to assure it
2856 * won't get destroyed while we are working with it. Once the caller is
2857 * done with it, memcg_kmem_put_cache() must be called to release the
2858 * reference.
d7f25f8a 2859 */
45264778 2860struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2861{
2862 struct mem_cgroup *memcg;
959c8963 2863 struct kmem_cache *memcg_cachep;
f0a3a24b 2864 struct memcg_cache_array *arr;
2a4db7eb 2865 int kmemcg_id;
d7f25f8a 2866
f7ce3190 2867 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2868
45264778 2869 if (memcg_kmem_bypass())
230e9fc2
VD
2870 return cachep;
2871
f0a3a24b
RG
2872 rcu_read_lock();
2873
2874 if (unlikely(current->active_memcg))
2875 memcg = current->active_memcg;
2876 else
2877 memcg = mem_cgroup_from_task(current);
2878
2879 if (!memcg || memcg == root_mem_cgroup)
2880 goto out_unlock;
2881
4db0c3c2 2882 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2883 if (kmemcg_id < 0)
f0a3a24b 2884 goto out_unlock;
d7f25f8a 2885
f0a3a24b
RG
2886 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2887
2888 /*
2889 * Make sure we will access the up-to-date value. The code updating
2890 * memcg_caches issues a write barrier to match the data dependency
2891 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2892 */
2893 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2894
2895 /*
2896 * If we are in a safe context (can wait, and not in interrupt
2897 * context), we could be be predictable and return right away.
2898 * This would guarantee that the allocation being performed
2899 * already belongs in the new cache.
2900 *
2901 * However, there are some clashes that can arrive from locking.
2902 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2903 * memcg_create_kmem_cache, this means no further allocation
2904 * could happen with the slab_mutex held. So it's better to
2905 * defer everything.
f0a3a24b
RG
2906 *
2907 * If the memcg is dying or memcg_cache is about to be released,
2908 * don't bother creating new kmem_caches. Because memcg_cachep
2909 * is ZEROed as the fist step of kmem offlining, we don't need
2910 * percpu_ref_tryget_live() here. css_tryget_online() check in
2911 * memcg_schedule_kmem_cache_create() will prevent us from
2912 * creation of a new kmem_cache.
ca0dde97 2913 */
f0a3a24b
RG
2914 if (unlikely(!memcg_cachep))
2915 memcg_schedule_kmem_cache_create(memcg, cachep);
2916 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2917 cachep = memcg_cachep;
2918out_unlock:
2919 rcu_read_unlock();
ca0dde97 2920 return cachep;
d7f25f8a 2921}
d7f25f8a 2922
45264778
VD
2923/**
2924 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2925 * @cachep: the cache returned by memcg_kmem_get_cache
2926 */
2927void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2928{
2929 if (!is_root_cache(cachep))
f0a3a24b 2930 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2931}
2932
45264778 2933/**
60cd4bcd 2934 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2935 * @page: page to charge
2936 * @gfp: reclaim mode
2937 * @order: allocation order
2938 * @memcg: memory cgroup to charge
2939 *
2940 * Returns 0 on success, an error code on failure.
2941 */
60cd4bcd 2942int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2943 struct mem_cgroup *memcg)
7ae1e1d0 2944{
f3ccb2c4
VD
2945 unsigned int nr_pages = 1 << order;
2946 struct page_counter *counter;
7ae1e1d0
GC
2947 int ret;
2948
f3ccb2c4 2949 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2950 if (ret)
f3ccb2c4 2951 return ret;
52c29b04
JW
2952
2953 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2954 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2955
2956 /*
2957 * Enforce __GFP_NOFAIL allocation because callers are not
2958 * prepared to see failures and likely do not have any failure
2959 * handling code.
2960 */
2961 if (gfp & __GFP_NOFAIL) {
2962 page_counter_charge(&memcg->kmem, nr_pages);
2963 return 0;
2964 }
52c29b04
JW
2965 cancel_charge(memcg, nr_pages);
2966 return -ENOMEM;
7ae1e1d0 2967 }
f3ccb2c4 2968 return 0;
7ae1e1d0
GC
2969}
2970
45264778 2971/**
60cd4bcd 2972 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2973 * @page: page to charge
2974 * @gfp: reclaim mode
2975 * @order: allocation order
2976 *
2977 * Returns 0 on success, an error code on failure.
2978 */
60cd4bcd 2979int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2980{
f3ccb2c4 2981 struct mem_cgroup *memcg;
fcff7d7e 2982 int ret = 0;
7ae1e1d0 2983
60cd4bcd 2984 if (memcg_kmem_bypass())
45264778
VD
2985 return 0;
2986
d46eb14b 2987 memcg = get_mem_cgroup_from_current();
c4159a75 2988 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2989 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2990 if (!ret) {
2991 page->mem_cgroup = memcg;
c4159a75 2992 __SetPageKmemcg(page);
4d96ba35 2993 }
c4159a75 2994 }
7ae1e1d0 2995 css_put(&memcg->css);
d05e83a6 2996 return ret;
7ae1e1d0 2997}
49a18eae
RG
2998
2999/**
3000 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3001 * @memcg: memcg to uncharge
3002 * @nr_pages: number of pages to uncharge
3003 */
3004void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3005 unsigned int nr_pages)
3006{
3007 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3008 page_counter_uncharge(&memcg->kmem, nr_pages);
3009
3010 page_counter_uncharge(&memcg->memory, nr_pages);
3011 if (do_memsw_account())
3012 page_counter_uncharge(&memcg->memsw, nr_pages);
3013}
45264778 3014/**
60cd4bcd 3015 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
3016 * @page: page to uncharge
3017 * @order: allocation order
3018 */
60cd4bcd 3019void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 3020{
1306a85a 3021 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3022 unsigned int nr_pages = 1 << order;
7ae1e1d0 3023
7ae1e1d0
GC
3024 if (!memcg)
3025 return;
3026
309381fe 3027 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 3028 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 3029 page->mem_cgroup = NULL;
c4159a75
VD
3030
3031 /* slab pages do not have PageKmemcg flag set */
3032 if (PageKmemcg(page))
3033 __ClearPageKmemcg(page);
3034
f3ccb2c4 3035 css_put_many(&memcg->css, nr_pages);
60d3fd32 3036}
84c07d11 3037#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3038
ca3e0214
KH
3039#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3040
ca3e0214
KH
3041/*
3042 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3043 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3044 */
e94c8a9c 3045void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3046{
e94c8a9c 3047 int i;
ca3e0214 3048
3d37c4a9
KH
3049 if (mem_cgroup_disabled())
3050 return;
b070e65c 3051
29833315 3052 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3053 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3054
c9019e9b 3055 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3056}
12d27107 3057#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3058
c255a458 3059#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3060/**
3061 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3062 * @entry: swap entry to be moved
3063 * @from: mem_cgroup which the entry is moved from
3064 * @to: mem_cgroup which the entry is moved to
3065 *
3066 * It succeeds only when the swap_cgroup's record for this entry is the same
3067 * as the mem_cgroup's id of @from.
3068 *
3069 * Returns 0 on success, -EINVAL on failure.
3070 *
3e32cb2e 3071 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3072 * both res and memsw, and called css_get().
3073 */
3074static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3075 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3076{
3077 unsigned short old_id, new_id;
3078
34c00c31
LZ
3079 old_id = mem_cgroup_id(from);
3080 new_id = mem_cgroup_id(to);
02491447
DN
3081
3082 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3083 mod_memcg_state(from, MEMCG_SWAP, -1);
3084 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3085 return 0;
3086 }
3087 return -EINVAL;
3088}
3089#else
3090static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3091 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3092{
3093 return -EINVAL;
3094}
8c7c6e34 3095#endif
d13d1443 3096
bbec2e15 3097static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3098
bbec2e15
RG
3099static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3100 unsigned long max, bool memsw)
628f4235 3101{
3e32cb2e 3102 bool enlarge = false;
bb4a7ea2 3103 bool drained = false;
3e32cb2e 3104 int ret;
c054a78c
YZ
3105 bool limits_invariant;
3106 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3107
3e32cb2e 3108 do {
628f4235
KH
3109 if (signal_pending(current)) {
3110 ret = -EINTR;
3111 break;
3112 }
3e32cb2e 3113
bbec2e15 3114 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3115 /*
3116 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3117 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3118 */
bbec2e15
RG
3119 limits_invariant = memsw ? max >= memcg->memory.max :
3120 max <= memcg->memsw.max;
c054a78c 3121 if (!limits_invariant) {
bbec2e15 3122 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3123 ret = -EINVAL;
8c7c6e34
KH
3124 break;
3125 }
bbec2e15 3126 if (max > counter->max)
3e32cb2e 3127 enlarge = true;
bbec2e15
RG
3128 ret = page_counter_set_max(counter, max);
3129 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3130
3131 if (!ret)
3132 break;
3133
bb4a7ea2
SB
3134 if (!drained) {
3135 drain_all_stock(memcg);
3136 drained = true;
3137 continue;
3138 }
3139
1ab5c056
AR
3140 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3141 GFP_KERNEL, !memsw)) {
3142 ret = -EBUSY;
3143 break;
3144 }
3145 } while (true);
3e32cb2e 3146
3c11ecf4
KH
3147 if (!ret && enlarge)
3148 memcg_oom_recover(memcg);
3e32cb2e 3149
628f4235
KH
3150 return ret;
3151}
3152
ef8f2327 3153unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3154 gfp_t gfp_mask,
3155 unsigned long *total_scanned)
3156{
3157 unsigned long nr_reclaimed = 0;
ef8f2327 3158 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3159 unsigned long reclaimed;
3160 int loop = 0;
ef8f2327 3161 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3162 unsigned long excess;
0608f43d
AM
3163 unsigned long nr_scanned;
3164
3165 if (order > 0)
3166 return 0;
3167
ef8f2327 3168 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3169
3170 /*
3171 * Do not even bother to check the largest node if the root
3172 * is empty. Do it lockless to prevent lock bouncing. Races
3173 * are acceptable as soft limit is best effort anyway.
3174 */
bfc7228b 3175 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3176 return 0;
3177
0608f43d
AM
3178 /*
3179 * This loop can run a while, specially if mem_cgroup's continuously
3180 * keep exceeding their soft limit and putting the system under
3181 * pressure
3182 */
3183 do {
3184 if (next_mz)
3185 mz = next_mz;
3186 else
3187 mz = mem_cgroup_largest_soft_limit_node(mctz);
3188 if (!mz)
3189 break;
3190
3191 nr_scanned = 0;
ef8f2327 3192 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3193 gfp_mask, &nr_scanned);
3194 nr_reclaimed += reclaimed;
3195 *total_scanned += nr_scanned;
0a31bc97 3196 spin_lock_irq(&mctz->lock);
bc2f2e7f 3197 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3198
3199 /*
3200 * If we failed to reclaim anything from this memory cgroup
3201 * it is time to move on to the next cgroup
3202 */
3203 next_mz = NULL;
bc2f2e7f
VD
3204 if (!reclaimed)
3205 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3206
3e32cb2e 3207 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3208 /*
3209 * One school of thought says that we should not add
3210 * back the node to the tree if reclaim returns 0.
3211 * But our reclaim could return 0, simply because due
3212 * to priority we are exposing a smaller subset of
3213 * memory to reclaim from. Consider this as a longer
3214 * term TODO.
3215 */
3216 /* If excess == 0, no tree ops */
cf2c8127 3217 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3218 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3219 css_put(&mz->memcg->css);
3220 loop++;
3221 /*
3222 * Could not reclaim anything and there are no more
3223 * mem cgroups to try or we seem to be looping without
3224 * reclaiming anything.
3225 */
3226 if (!nr_reclaimed &&
3227 (next_mz == NULL ||
3228 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3229 break;
3230 } while (!nr_reclaimed);
3231 if (next_mz)
3232 css_put(&next_mz->memcg->css);
3233 return nr_reclaimed;
3234}
3235
ea280e7b
TH
3236/*
3237 * Test whether @memcg has children, dead or alive. Note that this
3238 * function doesn't care whether @memcg has use_hierarchy enabled and
3239 * returns %true if there are child csses according to the cgroup
3240 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3241 */
b5f99b53
GC
3242static inline bool memcg_has_children(struct mem_cgroup *memcg)
3243{
ea280e7b
TH
3244 bool ret;
3245
ea280e7b
TH
3246 rcu_read_lock();
3247 ret = css_next_child(NULL, &memcg->css);
3248 rcu_read_unlock();
3249 return ret;
b5f99b53
GC
3250}
3251
c26251f9 3252/*
51038171 3253 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3254 *
3255 * Caller is responsible for holding css reference for memcg.
3256 */
3257static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3258{
3259 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3260
c1e862c1
KH
3261 /* we call try-to-free pages for make this cgroup empty */
3262 lru_add_drain_all();
d12c60f6
JS
3263
3264 drain_all_stock(memcg);
3265
f817ed48 3266 /* try to free all pages in this cgroup */
3e32cb2e 3267 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3268 int progress;
c1e862c1 3269
c26251f9
MH
3270 if (signal_pending(current))
3271 return -EINTR;
3272
b70a2a21
JW
3273 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3274 GFP_KERNEL, true);
c1e862c1 3275 if (!progress) {
f817ed48 3276 nr_retries--;
c1e862c1 3277 /* maybe some writeback is necessary */
8aa7e847 3278 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3279 }
f817ed48
KH
3280
3281 }
ab5196c2
MH
3282
3283 return 0;
cc847582
KH
3284}
3285
6770c64e
TH
3286static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3287 char *buf, size_t nbytes,
3288 loff_t off)
c1e862c1 3289{
6770c64e 3290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3291
d8423011
MH
3292 if (mem_cgroup_is_root(memcg))
3293 return -EINVAL;
6770c64e 3294 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3295}
3296
182446d0
TH
3297static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3298 struct cftype *cft)
18f59ea7 3299{
182446d0 3300 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3301}
3302
182446d0
TH
3303static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3304 struct cftype *cft, u64 val)
18f59ea7
BS
3305{
3306 int retval = 0;
182446d0 3307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3308 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3309
567fb435 3310 if (memcg->use_hierarchy == val)
0b8f73e1 3311 return 0;
567fb435 3312
18f59ea7 3313 /*
af901ca1 3314 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3315 * in the child subtrees. If it is unset, then the change can
3316 * occur, provided the current cgroup has no children.
3317 *
3318 * For the root cgroup, parent_mem is NULL, we allow value to be
3319 * set if there are no children.
3320 */
c0ff4b85 3321 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3322 (val == 1 || val == 0)) {
ea280e7b 3323 if (!memcg_has_children(memcg))
c0ff4b85 3324 memcg->use_hierarchy = val;
18f59ea7
BS
3325 else
3326 retval = -EBUSY;
3327 } else
3328 retval = -EINVAL;
567fb435 3329
18f59ea7
BS
3330 return retval;
3331}
3332
6f646156 3333static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3334{
42a30035 3335 unsigned long val;
ce00a967 3336
3e32cb2e 3337 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3338 val = memcg_page_state(memcg, MEMCG_CACHE) +
3339 memcg_page_state(memcg, MEMCG_RSS);
3340 if (swap)
3341 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3342 } else {
ce00a967 3343 if (!swap)
3e32cb2e 3344 val = page_counter_read(&memcg->memory);
ce00a967 3345 else
3e32cb2e 3346 val = page_counter_read(&memcg->memsw);
ce00a967 3347 }
c12176d3 3348 return val;
ce00a967
JW
3349}
3350
3e32cb2e
JW
3351enum {
3352 RES_USAGE,
3353 RES_LIMIT,
3354 RES_MAX_USAGE,
3355 RES_FAILCNT,
3356 RES_SOFT_LIMIT,
3357};
ce00a967 3358
791badbd 3359static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3360 struct cftype *cft)
8cdea7c0 3361{
182446d0 3362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3363 struct page_counter *counter;
af36f906 3364
3e32cb2e 3365 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3366 case _MEM:
3e32cb2e
JW
3367 counter = &memcg->memory;
3368 break;
8c7c6e34 3369 case _MEMSWAP:
3e32cb2e
JW
3370 counter = &memcg->memsw;
3371 break;
510fc4e1 3372 case _KMEM:
3e32cb2e 3373 counter = &memcg->kmem;
510fc4e1 3374 break;
d55f90bf 3375 case _TCP:
0db15298 3376 counter = &memcg->tcpmem;
d55f90bf 3377 break;
8c7c6e34
KH
3378 default:
3379 BUG();
8c7c6e34 3380 }
3e32cb2e
JW
3381
3382 switch (MEMFILE_ATTR(cft->private)) {
3383 case RES_USAGE:
3384 if (counter == &memcg->memory)
c12176d3 3385 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3386 if (counter == &memcg->memsw)
c12176d3 3387 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3388 return (u64)page_counter_read(counter) * PAGE_SIZE;
3389 case RES_LIMIT:
bbec2e15 3390 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3391 case RES_MAX_USAGE:
3392 return (u64)counter->watermark * PAGE_SIZE;
3393 case RES_FAILCNT:
3394 return counter->failcnt;
3395 case RES_SOFT_LIMIT:
3396 return (u64)memcg->soft_limit * PAGE_SIZE;
3397 default:
3398 BUG();
3399 }
8cdea7c0 3400}
510fc4e1 3401
bee07b33 3402static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3403{
3404 unsigned long stat[MEMCG_NR_STAT];
3405 struct mem_cgroup *mi;
3406 int node, cpu, i;
bee07b33 3407 int min_idx, max_idx;
c350a99e 3408
bee07b33
RG
3409 if (slab_only) {
3410 min_idx = NR_SLAB_RECLAIMABLE;
3411 max_idx = NR_SLAB_UNRECLAIMABLE;
3412 } else {
3413 min_idx = 0;
3414 max_idx = MEMCG_NR_STAT;
3415 }
3416
3417 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3418 stat[i] = 0;
3419
3420 for_each_online_cpu(cpu)
bee07b33 3421 for (i = min_idx; i < max_idx; i++)
6c1c2808 3422 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3423
3424 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3425 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3426 atomic_long_add(stat[i], &mi->vmstats[i]);
3427
bee07b33
RG
3428 if (!slab_only)
3429 max_idx = NR_VM_NODE_STAT_ITEMS;
3430
c350a99e
RG
3431 for_each_node(node) {
3432 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3433 struct mem_cgroup_per_node *pi;
3434
bee07b33 3435 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3436 stat[i] = 0;
3437
3438 for_each_online_cpu(cpu)
bee07b33 3439 for (i = min_idx; i < max_idx; i++)
6c1c2808
SB
3440 stat[i] += per_cpu(
3441 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3442
3443 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3444 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3445 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3446 }
3447}
3448
bb65f89b
RG
3449static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3450{
3451 unsigned long events[NR_VM_EVENT_ITEMS];
3452 struct mem_cgroup *mi;
3453 int cpu, i;
3454
3455 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3456 events[i] = 0;
3457
3458 for_each_online_cpu(cpu)
3459 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3460 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3461 cpu);
bb65f89b
RG
3462
3463 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3464 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3465 atomic_long_add(events[i], &mi->vmevents[i]);
3466}
3467
84c07d11 3468#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3469static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3470{
d6441637
VD
3471 int memcg_id;
3472
b313aeee
VD
3473 if (cgroup_memory_nokmem)
3474 return 0;
3475
2a4db7eb 3476 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3477 BUG_ON(memcg->kmem_state);
d6441637 3478
f3bb3043 3479 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3480 if (memcg_id < 0)
3481 return memcg_id;
d6441637 3482
ef12947c 3483 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3484 /*
567e9ab2 3485 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3486 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3487 * guarantee no one starts accounting before all call sites are
3488 * patched.
3489 */
900a38f0 3490 memcg->kmemcg_id = memcg_id;
567e9ab2 3491 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3492 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3493
3494 return 0;
d6441637
VD
3495}
3496
8e0a8912
JW
3497static void memcg_offline_kmem(struct mem_cgroup *memcg)
3498{
3499 struct cgroup_subsys_state *css;
3500 struct mem_cgroup *parent, *child;
3501 int kmemcg_id;
3502
3503 if (memcg->kmem_state != KMEM_ONLINE)
3504 return;
3505 /*
3506 * Clear the online state before clearing memcg_caches array
3507 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3508 * guarantees that no cache will be created for this cgroup
3509 * after we are done (see memcg_create_kmem_cache()).
3510 */
3511 memcg->kmem_state = KMEM_ALLOCATED;
3512
8e0a8912
JW
3513 parent = parent_mem_cgroup(memcg);
3514 if (!parent)
3515 parent = root_mem_cgroup;
3516
bee07b33
RG
3517 /*
3518 * Deactivate and reparent kmem_caches. Then flush percpu
3519 * slab statistics to have precise values at the parent and
3520 * all ancestor levels. It's required to keep slab stats
3521 * accurate after the reparenting of kmem_caches.
3522 */
fb2f2b0a 3523 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3524 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3525
3526 kmemcg_id = memcg->kmemcg_id;
3527 BUG_ON(kmemcg_id < 0);
3528
8e0a8912
JW
3529 /*
3530 * Change kmemcg_id of this cgroup and all its descendants to the
3531 * parent's id, and then move all entries from this cgroup's list_lrus
3532 * to ones of the parent. After we have finished, all list_lrus
3533 * corresponding to this cgroup are guaranteed to remain empty. The
3534 * ordering is imposed by list_lru_node->lock taken by
3535 * memcg_drain_all_list_lrus().
3536 */
3a06bb78 3537 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3538 css_for_each_descendant_pre(css, &memcg->css) {
3539 child = mem_cgroup_from_css(css);
3540 BUG_ON(child->kmemcg_id != kmemcg_id);
3541 child->kmemcg_id = parent->kmemcg_id;
3542 if (!memcg->use_hierarchy)
3543 break;
3544 }
3a06bb78
TH
3545 rcu_read_unlock();
3546
9bec5c35 3547 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3548
3549 memcg_free_cache_id(kmemcg_id);
3550}
3551
3552static void memcg_free_kmem(struct mem_cgroup *memcg)
3553{
0b8f73e1
JW
3554 /* css_alloc() failed, offlining didn't happen */
3555 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3556 memcg_offline_kmem(memcg);
3557
8e0a8912 3558 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3559 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3560 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3561 }
8e0a8912 3562}
d6441637 3563#else
0b8f73e1 3564static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3565{
3566 return 0;
3567}
3568static void memcg_offline_kmem(struct mem_cgroup *memcg)
3569{
3570}
3571static void memcg_free_kmem(struct mem_cgroup *memcg)
3572{
3573}
84c07d11 3574#endif /* CONFIG_MEMCG_KMEM */
127424c8 3575
bbec2e15
RG
3576static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3577 unsigned long max)
d6441637 3578{
b313aeee 3579 int ret;
127424c8 3580
bbec2e15
RG
3581 mutex_lock(&memcg_max_mutex);
3582 ret = page_counter_set_max(&memcg->kmem, max);
3583 mutex_unlock(&memcg_max_mutex);
127424c8 3584 return ret;
d6441637 3585}
510fc4e1 3586
bbec2e15 3587static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3588{
3589 int ret;
3590
bbec2e15 3591 mutex_lock(&memcg_max_mutex);
d55f90bf 3592
bbec2e15 3593 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3594 if (ret)
3595 goto out;
3596
0db15298 3597 if (!memcg->tcpmem_active) {
d55f90bf
VD
3598 /*
3599 * The active flag needs to be written after the static_key
3600 * update. This is what guarantees that the socket activation
2d758073
JW
3601 * function is the last one to run. See mem_cgroup_sk_alloc()
3602 * for details, and note that we don't mark any socket as
3603 * belonging to this memcg until that flag is up.
d55f90bf
VD
3604 *
3605 * We need to do this, because static_keys will span multiple
3606 * sites, but we can't control their order. If we mark a socket
3607 * as accounted, but the accounting functions are not patched in
3608 * yet, we'll lose accounting.
3609 *
2d758073 3610 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3611 * because when this value change, the code to process it is not
3612 * patched in yet.
3613 */
3614 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3615 memcg->tcpmem_active = true;
d55f90bf
VD
3616 }
3617out:
bbec2e15 3618 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3619 return ret;
3620}
d55f90bf 3621
628f4235
KH
3622/*
3623 * The user of this function is...
3624 * RES_LIMIT.
3625 */
451af504
TH
3626static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3627 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3628{
451af504 3629 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3630 unsigned long nr_pages;
628f4235
KH
3631 int ret;
3632
451af504 3633 buf = strstrip(buf);
650c5e56 3634 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3635 if (ret)
3636 return ret;
af36f906 3637
3e32cb2e 3638 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3639 case RES_LIMIT:
4b3bde4c
BS
3640 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3641 ret = -EINVAL;
3642 break;
3643 }
3e32cb2e
JW
3644 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3645 case _MEM:
bbec2e15 3646 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3647 break;
3e32cb2e 3648 case _MEMSWAP:
bbec2e15 3649 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3650 break;
3e32cb2e 3651 case _KMEM:
0158115f
MH
3652 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3653 "Please report your usecase to linux-mm@kvack.org if you "
3654 "depend on this functionality.\n");
bbec2e15 3655 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3656 break;
d55f90bf 3657 case _TCP:
bbec2e15 3658 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3659 break;
3e32cb2e 3660 }
296c81d8 3661 break;
3e32cb2e
JW
3662 case RES_SOFT_LIMIT:
3663 memcg->soft_limit = nr_pages;
3664 ret = 0;
628f4235
KH
3665 break;
3666 }
451af504 3667 return ret ?: nbytes;
8cdea7c0
BS
3668}
3669
6770c64e
TH
3670static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3671 size_t nbytes, loff_t off)
c84872e1 3672{
6770c64e 3673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3674 struct page_counter *counter;
c84872e1 3675
3e32cb2e
JW
3676 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3677 case _MEM:
3678 counter = &memcg->memory;
3679 break;
3680 case _MEMSWAP:
3681 counter = &memcg->memsw;
3682 break;
3683 case _KMEM:
3684 counter = &memcg->kmem;
3685 break;
d55f90bf 3686 case _TCP:
0db15298 3687 counter = &memcg->tcpmem;
d55f90bf 3688 break;
3e32cb2e
JW
3689 default:
3690 BUG();
3691 }
af36f906 3692
3e32cb2e 3693 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3694 case RES_MAX_USAGE:
3e32cb2e 3695 page_counter_reset_watermark(counter);
29f2a4da
PE
3696 break;
3697 case RES_FAILCNT:
3e32cb2e 3698 counter->failcnt = 0;
29f2a4da 3699 break;
3e32cb2e
JW
3700 default:
3701 BUG();
29f2a4da 3702 }
f64c3f54 3703
6770c64e 3704 return nbytes;
c84872e1
PE
3705}
3706
182446d0 3707static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3708 struct cftype *cft)
3709{
182446d0 3710 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3711}
3712
02491447 3713#ifdef CONFIG_MMU
182446d0 3714static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3715 struct cftype *cft, u64 val)
3716{
182446d0 3717 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3718
1dfab5ab 3719 if (val & ~MOVE_MASK)
7dc74be0 3720 return -EINVAL;
ee5e8472 3721
7dc74be0 3722 /*
ee5e8472
GC
3723 * No kind of locking is needed in here, because ->can_attach() will
3724 * check this value once in the beginning of the process, and then carry
3725 * on with stale data. This means that changes to this value will only
3726 * affect task migrations starting after the change.
7dc74be0 3727 */
c0ff4b85 3728 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3729 return 0;
3730}
02491447 3731#else
182446d0 3732static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3733 struct cftype *cft, u64 val)
3734{
3735 return -ENOSYS;
3736}
3737#endif
7dc74be0 3738
406eb0c9 3739#ifdef CONFIG_NUMA
113b7dfd
JW
3740
3741#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3742#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3743#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3744
3745static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3746 int nid, unsigned int lru_mask)
3747{
3748 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3749 unsigned long nr = 0;
3750 enum lru_list lru;
3751
3752 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3753
3754 for_each_lru(lru) {
3755 if (!(BIT(lru) & lru_mask))
3756 continue;
205b20cc 3757 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3758 }
3759 return nr;
3760}
3761
3762static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3763 unsigned int lru_mask)
3764{
3765 unsigned long nr = 0;
3766 enum lru_list lru;
3767
3768 for_each_lru(lru) {
3769 if (!(BIT(lru) & lru_mask))
3770 continue;
205b20cc 3771 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3772 }
3773 return nr;
3774}
3775
2da8ca82 3776static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3777{
25485de6
GT
3778 struct numa_stat {
3779 const char *name;
3780 unsigned int lru_mask;
3781 };
3782
3783 static const struct numa_stat stats[] = {
3784 { "total", LRU_ALL },
3785 { "file", LRU_ALL_FILE },
3786 { "anon", LRU_ALL_ANON },
3787 { "unevictable", BIT(LRU_UNEVICTABLE) },
3788 };
3789 const struct numa_stat *stat;
406eb0c9 3790 int nid;
25485de6 3791 unsigned long nr;
aa9694bb 3792 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3793
25485de6
GT
3794 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3795 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3796 seq_printf(m, "%s=%lu", stat->name, nr);
3797 for_each_node_state(nid, N_MEMORY) {
3798 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3799 stat->lru_mask);
3800 seq_printf(m, " N%d=%lu", nid, nr);
3801 }
3802 seq_putc(m, '\n');
406eb0c9 3803 }
406eb0c9 3804
071aee13
YH
3805 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3806 struct mem_cgroup *iter;
3807
3808 nr = 0;
3809 for_each_mem_cgroup_tree(iter, memcg)
3810 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3811 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3812 for_each_node_state(nid, N_MEMORY) {
3813 nr = 0;
3814 for_each_mem_cgroup_tree(iter, memcg)
3815 nr += mem_cgroup_node_nr_lru_pages(
3816 iter, nid, stat->lru_mask);
3817 seq_printf(m, " N%d=%lu", nid, nr);
3818 }
3819 seq_putc(m, '\n');
406eb0c9 3820 }
406eb0c9 3821
406eb0c9
YH
3822 return 0;
3823}
3824#endif /* CONFIG_NUMA */
3825
c8713d0b
JW
3826static const unsigned int memcg1_stats[] = {
3827 MEMCG_CACHE,
3828 MEMCG_RSS,
3829 MEMCG_RSS_HUGE,
3830 NR_SHMEM,
3831 NR_FILE_MAPPED,
3832 NR_FILE_DIRTY,
3833 NR_WRITEBACK,
3834 MEMCG_SWAP,
3835};
3836
3837static const char *const memcg1_stat_names[] = {
3838 "cache",
3839 "rss",
3840 "rss_huge",
3841 "shmem",
3842 "mapped_file",
3843 "dirty",
3844 "writeback",
3845 "swap",
3846};
3847
df0e53d0 3848/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3849static const unsigned int memcg1_events[] = {
df0e53d0
JW
3850 PGPGIN,
3851 PGPGOUT,
3852 PGFAULT,
3853 PGMAJFAULT,
3854};
3855
3856static const char *const memcg1_event_names[] = {
3857 "pgpgin",
3858 "pgpgout",
3859 "pgfault",
3860 "pgmajfault",
3861};
3862
2da8ca82 3863static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3864{
aa9694bb 3865 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3866 unsigned long memory, memsw;
af7c4b0e
JW
3867 struct mem_cgroup *mi;
3868 unsigned int i;
406eb0c9 3869
71cd3113 3870 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3871 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3872
71cd3113
JW
3873 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3874 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3875 continue;
71cd3113 3876 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3877 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3878 PAGE_SIZE);
1dd3a273 3879 }
7b854121 3880
df0e53d0
JW
3881 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3882 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3883 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3884
3885 for (i = 0; i < NR_LRU_LISTS; i++)
3886 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3887 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3888 PAGE_SIZE);
af7c4b0e 3889
14067bb3 3890 /* Hierarchical information */
3e32cb2e
JW
3891 memory = memsw = PAGE_COUNTER_MAX;
3892 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3893 memory = min(memory, mi->memory.max);
3894 memsw = min(memsw, mi->memsw.max);
fee7b548 3895 }
3e32cb2e
JW
3896 seq_printf(m, "hierarchical_memory_limit %llu\n",
3897 (u64)memory * PAGE_SIZE);
7941d214 3898 if (do_memsw_account())
3e32cb2e
JW
3899 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3900 (u64)memsw * PAGE_SIZE);
7f016ee8 3901
8de7ecc6 3902 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3903 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3904 continue;
8de7ecc6 3905 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3906 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3907 PAGE_SIZE);
af7c4b0e
JW
3908 }
3909
8de7ecc6
SB
3910 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3911 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3912 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3913
8de7ecc6
SB
3914 for (i = 0; i < NR_LRU_LISTS; i++)
3915 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3916 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3917 PAGE_SIZE);
14067bb3 3918
7f016ee8 3919#ifdef CONFIG_DEBUG_VM
7f016ee8 3920 {
ef8f2327
MG
3921 pg_data_t *pgdat;
3922 struct mem_cgroup_per_node *mz;
89abfab1 3923 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3924 unsigned long recent_rotated[2] = {0, 0};
3925 unsigned long recent_scanned[2] = {0, 0};
3926
ef8f2327
MG
3927 for_each_online_pgdat(pgdat) {
3928 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3929 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3930
ef8f2327
MG
3931 recent_rotated[0] += rstat->recent_rotated[0];
3932 recent_rotated[1] += rstat->recent_rotated[1];
3933 recent_scanned[0] += rstat->recent_scanned[0];
3934 recent_scanned[1] += rstat->recent_scanned[1];
3935 }
78ccf5b5
JW
3936 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3937 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3938 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3939 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3940 }
3941#endif
3942
d2ceb9b7
KH
3943 return 0;
3944}
3945
182446d0
TH
3946static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3947 struct cftype *cft)
a7885eb8 3948{
182446d0 3949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3950
1f4c025b 3951 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3952}
3953
182446d0
TH
3954static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3955 struct cftype *cft, u64 val)
a7885eb8 3956{
182446d0 3957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3958
3dae7fec 3959 if (val > 100)
a7885eb8
KM
3960 return -EINVAL;
3961
14208b0e 3962 if (css->parent)
3dae7fec
JW
3963 memcg->swappiness = val;
3964 else
3965 vm_swappiness = val;
068b38c1 3966
a7885eb8
KM
3967 return 0;
3968}
3969
2e72b634
KS
3970static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3971{
3972 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3973 unsigned long usage;
2e72b634
KS
3974 int i;
3975
3976 rcu_read_lock();
3977 if (!swap)
2c488db2 3978 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3979 else
2c488db2 3980 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3981
3982 if (!t)
3983 goto unlock;
3984
ce00a967 3985 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3986
3987 /*
748dad36 3988 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3989 * If it's not true, a threshold was crossed after last
3990 * call of __mem_cgroup_threshold().
3991 */
5407a562 3992 i = t->current_threshold;
2e72b634
KS
3993
3994 /*
3995 * Iterate backward over array of thresholds starting from
3996 * current_threshold and check if a threshold is crossed.
3997 * If none of thresholds below usage is crossed, we read
3998 * only one element of the array here.
3999 */
4000 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4001 eventfd_signal(t->entries[i].eventfd, 1);
4002
4003 /* i = current_threshold + 1 */
4004 i++;
4005
4006 /*
4007 * Iterate forward over array of thresholds starting from
4008 * current_threshold+1 and check if a threshold is crossed.
4009 * If none of thresholds above usage is crossed, we read
4010 * only one element of the array here.
4011 */
4012 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4013 eventfd_signal(t->entries[i].eventfd, 1);
4014
4015 /* Update current_threshold */
5407a562 4016 t->current_threshold = i - 1;
2e72b634
KS
4017unlock:
4018 rcu_read_unlock();
4019}
4020
4021static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4022{
ad4ca5f4
KS
4023 while (memcg) {
4024 __mem_cgroup_threshold(memcg, false);
7941d214 4025 if (do_memsw_account())
ad4ca5f4
KS
4026 __mem_cgroup_threshold(memcg, true);
4027
4028 memcg = parent_mem_cgroup(memcg);
4029 }
2e72b634
KS
4030}
4031
4032static int compare_thresholds(const void *a, const void *b)
4033{
4034 const struct mem_cgroup_threshold *_a = a;
4035 const struct mem_cgroup_threshold *_b = b;
4036
2bff24a3
GT
4037 if (_a->threshold > _b->threshold)
4038 return 1;
4039
4040 if (_a->threshold < _b->threshold)
4041 return -1;
4042
4043 return 0;
2e72b634
KS
4044}
4045
c0ff4b85 4046static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4047{
4048 struct mem_cgroup_eventfd_list *ev;
4049
2bcf2e92
MH
4050 spin_lock(&memcg_oom_lock);
4051
c0ff4b85 4052 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4053 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4054
4055 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4056 return 0;
4057}
4058
c0ff4b85 4059static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4060{
7d74b06f
KH
4061 struct mem_cgroup *iter;
4062
c0ff4b85 4063 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4064 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4065}
4066
59b6f873 4067static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4068 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4069{
2c488db2
KS
4070 struct mem_cgroup_thresholds *thresholds;
4071 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4072 unsigned long threshold;
4073 unsigned long usage;
2c488db2 4074 int i, size, ret;
2e72b634 4075
650c5e56 4076 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4077 if (ret)
4078 return ret;
4079
4080 mutex_lock(&memcg->thresholds_lock);
2c488db2 4081
05b84301 4082 if (type == _MEM) {
2c488db2 4083 thresholds = &memcg->thresholds;
ce00a967 4084 usage = mem_cgroup_usage(memcg, false);
05b84301 4085 } else if (type == _MEMSWAP) {
2c488db2 4086 thresholds = &memcg->memsw_thresholds;
ce00a967 4087 usage = mem_cgroup_usage(memcg, true);
05b84301 4088 } else
2e72b634
KS
4089 BUG();
4090
2e72b634 4091 /* Check if a threshold crossed before adding a new one */
2c488db2 4092 if (thresholds->primary)
2e72b634
KS
4093 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4094
2c488db2 4095 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4096
4097 /* Allocate memory for new array of thresholds */
67b8046f 4098 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4099 if (!new) {
2e72b634
KS
4100 ret = -ENOMEM;
4101 goto unlock;
4102 }
2c488db2 4103 new->size = size;
2e72b634
KS
4104
4105 /* Copy thresholds (if any) to new array */
2c488db2
KS
4106 if (thresholds->primary) {
4107 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4108 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4109 }
4110
2e72b634 4111 /* Add new threshold */
2c488db2
KS
4112 new->entries[size - 1].eventfd = eventfd;
4113 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4114
4115 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4116 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4117 compare_thresholds, NULL);
4118
4119 /* Find current threshold */
2c488db2 4120 new->current_threshold = -1;
2e72b634 4121 for (i = 0; i < size; i++) {
748dad36 4122 if (new->entries[i].threshold <= usage) {
2e72b634 4123 /*
2c488db2
KS
4124 * new->current_threshold will not be used until
4125 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4126 * it here.
4127 */
2c488db2 4128 ++new->current_threshold;
748dad36
SZ
4129 } else
4130 break;
2e72b634
KS
4131 }
4132
2c488db2
KS
4133 /* Free old spare buffer and save old primary buffer as spare */
4134 kfree(thresholds->spare);
4135 thresholds->spare = thresholds->primary;
4136
4137 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4138
907860ed 4139 /* To be sure that nobody uses thresholds */
2e72b634
KS
4140 synchronize_rcu();
4141
2e72b634
KS
4142unlock:
4143 mutex_unlock(&memcg->thresholds_lock);
4144
4145 return ret;
4146}
4147
59b6f873 4148static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4149 struct eventfd_ctx *eventfd, const char *args)
4150{
59b6f873 4151 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4152}
4153
59b6f873 4154static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4155 struct eventfd_ctx *eventfd, const char *args)
4156{
59b6f873 4157 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4158}
4159
59b6f873 4160static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4161 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4162{
2c488db2
KS
4163 struct mem_cgroup_thresholds *thresholds;
4164 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4165 unsigned long usage;
2c488db2 4166 int i, j, size;
2e72b634
KS
4167
4168 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4169
4170 if (type == _MEM) {
2c488db2 4171 thresholds = &memcg->thresholds;
ce00a967 4172 usage = mem_cgroup_usage(memcg, false);
05b84301 4173 } else if (type == _MEMSWAP) {
2c488db2 4174 thresholds = &memcg->memsw_thresholds;
ce00a967 4175 usage = mem_cgroup_usage(memcg, true);
05b84301 4176 } else
2e72b634
KS
4177 BUG();
4178
371528ca
AV
4179 if (!thresholds->primary)
4180 goto unlock;
4181
2e72b634
KS
4182 /* Check if a threshold crossed before removing */
4183 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4184
4185 /* Calculate new number of threshold */
2c488db2
KS
4186 size = 0;
4187 for (i = 0; i < thresholds->primary->size; i++) {
4188 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4189 size++;
4190 }
4191
2c488db2 4192 new = thresholds->spare;
907860ed 4193
2e72b634
KS
4194 /* Set thresholds array to NULL if we don't have thresholds */
4195 if (!size) {
2c488db2
KS
4196 kfree(new);
4197 new = NULL;
907860ed 4198 goto swap_buffers;
2e72b634
KS
4199 }
4200
2c488db2 4201 new->size = size;
2e72b634
KS
4202
4203 /* Copy thresholds and find current threshold */
2c488db2
KS
4204 new->current_threshold = -1;
4205 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4206 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4207 continue;
4208
2c488db2 4209 new->entries[j] = thresholds->primary->entries[i];
748dad36 4210 if (new->entries[j].threshold <= usage) {
2e72b634 4211 /*
2c488db2 4212 * new->current_threshold will not be used
2e72b634
KS
4213 * until rcu_assign_pointer(), so it's safe to increment
4214 * it here.
4215 */
2c488db2 4216 ++new->current_threshold;
2e72b634
KS
4217 }
4218 j++;
4219 }
4220
907860ed 4221swap_buffers:
2c488db2
KS
4222 /* Swap primary and spare array */
4223 thresholds->spare = thresholds->primary;
8c757763 4224
2c488db2 4225 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4226
907860ed 4227 /* To be sure that nobody uses thresholds */
2e72b634 4228 synchronize_rcu();
6611d8d7
MC
4229
4230 /* If all events are unregistered, free the spare array */
4231 if (!new) {
4232 kfree(thresholds->spare);
4233 thresholds->spare = NULL;
4234 }
371528ca 4235unlock:
2e72b634 4236 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4237}
c1e862c1 4238
59b6f873 4239static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4240 struct eventfd_ctx *eventfd)
4241{
59b6f873 4242 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4243}
4244
59b6f873 4245static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4246 struct eventfd_ctx *eventfd)
4247{
59b6f873 4248 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4249}
4250
59b6f873 4251static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4252 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4253{
9490ff27 4254 struct mem_cgroup_eventfd_list *event;
9490ff27 4255
9490ff27
KH
4256 event = kmalloc(sizeof(*event), GFP_KERNEL);
4257 if (!event)
4258 return -ENOMEM;
4259
1af8efe9 4260 spin_lock(&memcg_oom_lock);
9490ff27
KH
4261
4262 event->eventfd = eventfd;
4263 list_add(&event->list, &memcg->oom_notify);
4264
4265 /* already in OOM ? */
c2b42d3c 4266 if (memcg->under_oom)
9490ff27 4267 eventfd_signal(eventfd, 1);
1af8efe9 4268 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4269
4270 return 0;
4271}
4272
59b6f873 4273static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4274 struct eventfd_ctx *eventfd)
9490ff27 4275{
9490ff27 4276 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4277
1af8efe9 4278 spin_lock(&memcg_oom_lock);
9490ff27 4279
c0ff4b85 4280 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4281 if (ev->eventfd == eventfd) {
4282 list_del(&ev->list);
4283 kfree(ev);
4284 }
4285 }
4286
1af8efe9 4287 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4288}
4289
2da8ca82 4290static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4291{
aa9694bb 4292 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4293
791badbd 4294 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4295 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4296 seq_printf(sf, "oom_kill %lu\n",
4297 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4298 return 0;
4299}
4300
182446d0 4301static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4302 struct cftype *cft, u64 val)
4303{
182446d0 4304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4305
4306 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4307 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4308 return -EINVAL;
4309
c0ff4b85 4310 memcg->oom_kill_disable = val;
4d845ebf 4311 if (!val)
c0ff4b85 4312 memcg_oom_recover(memcg);
3dae7fec 4313
3c11ecf4
KH
4314 return 0;
4315}
4316
52ebea74
TH
4317#ifdef CONFIG_CGROUP_WRITEBACK
4318
3a8e9ac8
TH
4319#include <trace/events/writeback.h>
4320
841710aa
TH
4321static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4322{
4323 return wb_domain_init(&memcg->cgwb_domain, gfp);
4324}
4325
4326static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4327{
4328 wb_domain_exit(&memcg->cgwb_domain);
4329}
4330
2529bb3a
TH
4331static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4332{
4333 wb_domain_size_changed(&memcg->cgwb_domain);
4334}
4335
841710aa
TH
4336struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4337{
4338 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4339
4340 if (!memcg->css.parent)
4341 return NULL;
4342
4343 return &memcg->cgwb_domain;
4344}
4345
0b3d6e6f
GT
4346/*
4347 * idx can be of type enum memcg_stat_item or node_stat_item.
4348 * Keep in sync with memcg_exact_page().
4349 */
4350static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4351{
871789d4 4352 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4353 int cpu;
4354
4355 for_each_online_cpu(cpu)
871789d4 4356 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4357 if (x < 0)
4358 x = 0;
4359 return x;
4360}
4361
c2aa723a
TH
4362/**
4363 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4364 * @wb: bdi_writeback in question
c5edf9cd
TH
4365 * @pfilepages: out parameter for number of file pages
4366 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4367 * @pdirty: out parameter for number of dirty pages
4368 * @pwriteback: out parameter for number of pages under writeback
4369 *
c5edf9cd
TH
4370 * Determine the numbers of file, headroom, dirty, and writeback pages in
4371 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4372 * is a bit more involved.
c2aa723a 4373 *
c5edf9cd
TH
4374 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4375 * headroom is calculated as the lowest headroom of itself and the
4376 * ancestors. Note that this doesn't consider the actual amount of
4377 * available memory in the system. The caller should further cap
4378 * *@pheadroom accordingly.
c2aa723a 4379 */
c5edf9cd
TH
4380void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4381 unsigned long *pheadroom, unsigned long *pdirty,
4382 unsigned long *pwriteback)
c2aa723a
TH
4383{
4384 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4385 struct mem_cgroup *parent;
c2aa723a 4386
0b3d6e6f 4387 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4388
4389 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4390 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4391 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4392 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4393 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4394
c2aa723a 4395 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4396 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4397 unsigned long used = page_counter_read(&memcg->memory);
4398
c5edf9cd 4399 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4400 memcg = parent;
4401 }
c2aa723a
TH
4402}
4403
97b27821
TH
4404/*
4405 * Foreign dirty flushing
4406 *
4407 * There's an inherent mismatch between memcg and writeback. The former
4408 * trackes ownership per-page while the latter per-inode. This was a
4409 * deliberate design decision because honoring per-page ownership in the
4410 * writeback path is complicated, may lead to higher CPU and IO overheads
4411 * and deemed unnecessary given that write-sharing an inode across
4412 * different cgroups isn't a common use-case.
4413 *
4414 * Combined with inode majority-writer ownership switching, this works well
4415 * enough in most cases but there are some pathological cases. For
4416 * example, let's say there are two cgroups A and B which keep writing to
4417 * different but confined parts of the same inode. B owns the inode and
4418 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4419 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4420 * triggering background writeback. A will be slowed down without a way to
4421 * make writeback of the dirty pages happen.
4422 *
4423 * Conditions like the above can lead to a cgroup getting repatedly and
4424 * severely throttled after making some progress after each
4425 * dirty_expire_interval while the underyling IO device is almost
4426 * completely idle.
4427 *
4428 * Solving this problem completely requires matching the ownership tracking
4429 * granularities between memcg and writeback in either direction. However,
4430 * the more egregious behaviors can be avoided by simply remembering the
4431 * most recent foreign dirtying events and initiating remote flushes on
4432 * them when local writeback isn't enough to keep the memory clean enough.
4433 *
4434 * The following two functions implement such mechanism. When a foreign
4435 * page - a page whose memcg and writeback ownerships don't match - is
4436 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4437 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4438 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4439 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4440 * foreign bdi_writebacks which haven't expired. Both the numbers of
4441 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4442 * limited to MEMCG_CGWB_FRN_CNT.
4443 *
4444 * The mechanism only remembers IDs and doesn't hold any object references.
4445 * As being wrong occasionally doesn't matter, updates and accesses to the
4446 * records are lockless and racy.
4447 */
4448void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4449 struct bdi_writeback *wb)
4450{
4451 struct mem_cgroup *memcg = page->mem_cgroup;
4452 struct memcg_cgwb_frn *frn;
4453 u64 now = get_jiffies_64();
4454 u64 oldest_at = now;
4455 int oldest = -1;
4456 int i;
4457
3a8e9ac8
TH
4458 trace_track_foreign_dirty(page, wb);
4459
97b27821
TH
4460 /*
4461 * Pick the slot to use. If there is already a slot for @wb, keep
4462 * using it. If not replace the oldest one which isn't being
4463 * written out.
4464 */
4465 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4466 frn = &memcg->cgwb_frn[i];
4467 if (frn->bdi_id == wb->bdi->id &&
4468 frn->memcg_id == wb->memcg_css->id)
4469 break;
4470 if (time_before64(frn->at, oldest_at) &&
4471 atomic_read(&frn->done.cnt) == 1) {
4472 oldest = i;
4473 oldest_at = frn->at;
4474 }
4475 }
4476
4477 if (i < MEMCG_CGWB_FRN_CNT) {
4478 /*
4479 * Re-using an existing one. Update timestamp lazily to
4480 * avoid making the cacheline hot. We want them to be
4481 * reasonably up-to-date and significantly shorter than
4482 * dirty_expire_interval as that's what expires the record.
4483 * Use the shorter of 1s and dirty_expire_interval / 8.
4484 */
4485 unsigned long update_intv =
4486 min_t(unsigned long, HZ,
4487 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4488
4489 if (time_before64(frn->at, now - update_intv))
4490 frn->at = now;
4491 } else if (oldest >= 0) {
4492 /* replace the oldest free one */
4493 frn = &memcg->cgwb_frn[oldest];
4494 frn->bdi_id = wb->bdi->id;
4495 frn->memcg_id = wb->memcg_css->id;
4496 frn->at = now;
4497 }
4498}
4499
4500/* issue foreign writeback flushes for recorded foreign dirtying events */
4501void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4502{
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4504 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4505 u64 now = jiffies_64;
4506 int i;
4507
4508 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4509 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4510
4511 /*
4512 * If the record is older than dirty_expire_interval,
4513 * writeback on it has already started. No need to kick it
4514 * off again. Also, don't start a new one if there's
4515 * already one in flight.
4516 */
4517 if (time_after64(frn->at, now - intv) &&
4518 atomic_read(&frn->done.cnt) == 1) {
4519 frn->at = 0;
3a8e9ac8 4520 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4521 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4522 WB_REASON_FOREIGN_FLUSH,
4523 &frn->done);
4524 }
4525 }
4526}
4527
841710aa
TH
4528#else /* CONFIG_CGROUP_WRITEBACK */
4529
4530static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4531{
4532 return 0;
4533}
4534
4535static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4536{
4537}
4538
2529bb3a
TH
4539static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4540{
4541}
4542
52ebea74
TH
4543#endif /* CONFIG_CGROUP_WRITEBACK */
4544
3bc942f3
TH
4545/*
4546 * DO NOT USE IN NEW FILES.
4547 *
4548 * "cgroup.event_control" implementation.
4549 *
4550 * This is way over-engineered. It tries to support fully configurable
4551 * events for each user. Such level of flexibility is completely
4552 * unnecessary especially in the light of the planned unified hierarchy.
4553 *
4554 * Please deprecate this and replace with something simpler if at all
4555 * possible.
4556 */
4557
79bd9814
TH
4558/*
4559 * Unregister event and free resources.
4560 *
4561 * Gets called from workqueue.
4562 */
3bc942f3 4563static void memcg_event_remove(struct work_struct *work)
79bd9814 4564{
3bc942f3
TH
4565 struct mem_cgroup_event *event =
4566 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4567 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4568
4569 remove_wait_queue(event->wqh, &event->wait);
4570
59b6f873 4571 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4572
4573 /* Notify userspace the event is going away. */
4574 eventfd_signal(event->eventfd, 1);
4575
4576 eventfd_ctx_put(event->eventfd);
4577 kfree(event);
59b6f873 4578 css_put(&memcg->css);
79bd9814
TH
4579}
4580
4581/*
a9a08845 4582 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4583 *
4584 * Called with wqh->lock held and interrupts disabled.
4585 */
ac6424b9 4586static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4587 int sync, void *key)
79bd9814 4588{
3bc942f3
TH
4589 struct mem_cgroup_event *event =
4590 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4591 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4592 __poll_t flags = key_to_poll(key);
79bd9814 4593
a9a08845 4594 if (flags & EPOLLHUP) {
79bd9814
TH
4595 /*
4596 * If the event has been detached at cgroup removal, we
4597 * can simply return knowing the other side will cleanup
4598 * for us.
4599 *
4600 * We can't race against event freeing since the other
4601 * side will require wqh->lock via remove_wait_queue(),
4602 * which we hold.
4603 */
fba94807 4604 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4605 if (!list_empty(&event->list)) {
4606 list_del_init(&event->list);
4607 /*
4608 * We are in atomic context, but cgroup_event_remove()
4609 * may sleep, so we have to call it in workqueue.
4610 */
4611 schedule_work(&event->remove);
4612 }
fba94807 4613 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4614 }
4615
4616 return 0;
4617}
4618
3bc942f3 4619static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4620 wait_queue_head_t *wqh, poll_table *pt)
4621{
3bc942f3
TH
4622 struct mem_cgroup_event *event =
4623 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4624
4625 event->wqh = wqh;
4626 add_wait_queue(wqh, &event->wait);
4627}
4628
4629/*
3bc942f3
TH
4630 * DO NOT USE IN NEW FILES.
4631 *
79bd9814
TH
4632 * Parse input and register new cgroup event handler.
4633 *
4634 * Input must be in format '<event_fd> <control_fd> <args>'.
4635 * Interpretation of args is defined by control file implementation.
4636 */
451af504
TH
4637static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4638 char *buf, size_t nbytes, loff_t off)
79bd9814 4639{
451af504 4640 struct cgroup_subsys_state *css = of_css(of);
fba94807 4641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4642 struct mem_cgroup_event *event;
79bd9814
TH
4643 struct cgroup_subsys_state *cfile_css;
4644 unsigned int efd, cfd;
4645 struct fd efile;
4646 struct fd cfile;
fba94807 4647 const char *name;
79bd9814
TH
4648 char *endp;
4649 int ret;
4650
451af504
TH
4651 buf = strstrip(buf);
4652
4653 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4654 if (*endp != ' ')
4655 return -EINVAL;
451af504 4656 buf = endp + 1;
79bd9814 4657
451af504 4658 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4659 if ((*endp != ' ') && (*endp != '\0'))
4660 return -EINVAL;
451af504 4661 buf = endp + 1;
79bd9814
TH
4662
4663 event = kzalloc(sizeof(*event), GFP_KERNEL);
4664 if (!event)
4665 return -ENOMEM;
4666
59b6f873 4667 event->memcg = memcg;
79bd9814 4668 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4669 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4670 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4671 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4672
4673 efile = fdget(efd);
4674 if (!efile.file) {
4675 ret = -EBADF;
4676 goto out_kfree;
4677 }
4678
4679 event->eventfd = eventfd_ctx_fileget(efile.file);
4680 if (IS_ERR(event->eventfd)) {
4681 ret = PTR_ERR(event->eventfd);
4682 goto out_put_efile;
4683 }
4684
4685 cfile = fdget(cfd);
4686 if (!cfile.file) {
4687 ret = -EBADF;
4688 goto out_put_eventfd;
4689 }
4690
4691 /* the process need read permission on control file */
4692 /* AV: shouldn't we check that it's been opened for read instead? */
4693 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4694 if (ret < 0)
4695 goto out_put_cfile;
4696
fba94807
TH
4697 /*
4698 * Determine the event callbacks and set them in @event. This used
4699 * to be done via struct cftype but cgroup core no longer knows
4700 * about these events. The following is crude but the whole thing
4701 * is for compatibility anyway.
3bc942f3
TH
4702 *
4703 * DO NOT ADD NEW FILES.
fba94807 4704 */
b583043e 4705 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4706
4707 if (!strcmp(name, "memory.usage_in_bytes")) {
4708 event->register_event = mem_cgroup_usage_register_event;
4709 event->unregister_event = mem_cgroup_usage_unregister_event;
4710 } else if (!strcmp(name, "memory.oom_control")) {
4711 event->register_event = mem_cgroup_oom_register_event;
4712 event->unregister_event = mem_cgroup_oom_unregister_event;
4713 } else if (!strcmp(name, "memory.pressure_level")) {
4714 event->register_event = vmpressure_register_event;
4715 event->unregister_event = vmpressure_unregister_event;
4716 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4717 event->register_event = memsw_cgroup_usage_register_event;
4718 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4719 } else {
4720 ret = -EINVAL;
4721 goto out_put_cfile;
4722 }
4723
79bd9814 4724 /*
b5557c4c
TH
4725 * Verify @cfile should belong to @css. Also, remaining events are
4726 * automatically removed on cgroup destruction but the removal is
4727 * asynchronous, so take an extra ref on @css.
79bd9814 4728 */
b583043e 4729 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4730 &memory_cgrp_subsys);
79bd9814 4731 ret = -EINVAL;
5a17f543 4732 if (IS_ERR(cfile_css))
79bd9814 4733 goto out_put_cfile;
5a17f543
TH
4734 if (cfile_css != css) {
4735 css_put(cfile_css);
79bd9814 4736 goto out_put_cfile;
5a17f543 4737 }
79bd9814 4738
451af504 4739 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4740 if (ret)
4741 goto out_put_css;
4742
9965ed17 4743 vfs_poll(efile.file, &event->pt);
79bd9814 4744
fba94807
TH
4745 spin_lock(&memcg->event_list_lock);
4746 list_add(&event->list, &memcg->event_list);
4747 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4748
4749 fdput(cfile);
4750 fdput(efile);
4751
451af504 4752 return nbytes;
79bd9814
TH
4753
4754out_put_css:
b5557c4c 4755 css_put(css);
79bd9814
TH
4756out_put_cfile:
4757 fdput(cfile);
4758out_put_eventfd:
4759 eventfd_ctx_put(event->eventfd);
4760out_put_efile:
4761 fdput(efile);
4762out_kfree:
4763 kfree(event);
4764
4765 return ret;
4766}
4767
241994ed 4768static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4769 {
0eea1030 4770 .name = "usage_in_bytes",
8c7c6e34 4771 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4772 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4773 },
c84872e1
PE
4774 {
4775 .name = "max_usage_in_bytes",
8c7c6e34 4776 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4777 .write = mem_cgroup_reset,
791badbd 4778 .read_u64 = mem_cgroup_read_u64,
c84872e1 4779 },
8cdea7c0 4780 {
0eea1030 4781 .name = "limit_in_bytes",
8c7c6e34 4782 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4783 .write = mem_cgroup_write,
791badbd 4784 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4785 },
296c81d8
BS
4786 {
4787 .name = "soft_limit_in_bytes",
4788 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4789 .write = mem_cgroup_write,
791badbd 4790 .read_u64 = mem_cgroup_read_u64,
296c81d8 4791 },
8cdea7c0
BS
4792 {
4793 .name = "failcnt",
8c7c6e34 4794 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4795 .write = mem_cgroup_reset,
791badbd 4796 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4797 },
d2ceb9b7
KH
4798 {
4799 .name = "stat",
2da8ca82 4800 .seq_show = memcg_stat_show,
d2ceb9b7 4801 },
c1e862c1
KH
4802 {
4803 .name = "force_empty",
6770c64e 4804 .write = mem_cgroup_force_empty_write,
c1e862c1 4805 },
18f59ea7
BS
4806 {
4807 .name = "use_hierarchy",
4808 .write_u64 = mem_cgroup_hierarchy_write,
4809 .read_u64 = mem_cgroup_hierarchy_read,
4810 },
79bd9814 4811 {
3bc942f3 4812 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4813 .write = memcg_write_event_control,
7dbdb199 4814 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4815 },
a7885eb8
KM
4816 {
4817 .name = "swappiness",
4818 .read_u64 = mem_cgroup_swappiness_read,
4819 .write_u64 = mem_cgroup_swappiness_write,
4820 },
7dc74be0
DN
4821 {
4822 .name = "move_charge_at_immigrate",
4823 .read_u64 = mem_cgroup_move_charge_read,
4824 .write_u64 = mem_cgroup_move_charge_write,
4825 },
9490ff27
KH
4826 {
4827 .name = "oom_control",
2da8ca82 4828 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4829 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4830 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4831 },
70ddf637
AV
4832 {
4833 .name = "pressure_level",
70ddf637 4834 },
406eb0c9
YH
4835#ifdef CONFIG_NUMA
4836 {
4837 .name = "numa_stat",
2da8ca82 4838 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4839 },
4840#endif
510fc4e1
GC
4841 {
4842 .name = "kmem.limit_in_bytes",
4843 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4844 .write = mem_cgroup_write,
791badbd 4845 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4846 },
4847 {
4848 .name = "kmem.usage_in_bytes",
4849 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4850 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4851 },
4852 {
4853 .name = "kmem.failcnt",
4854 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4855 .write = mem_cgroup_reset,
791badbd 4856 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4857 },
4858 {
4859 .name = "kmem.max_usage_in_bytes",
4860 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4861 .write = mem_cgroup_reset,
791badbd 4862 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4863 },
5b365771 4864#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4865 {
4866 .name = "kmem.slabinfo",
bc2791f8
TH
4867 .seq_start = memcg_slab_start,
4868 .seq_next = memcg_slab_next,
4869 .seq_stop = memcg_slab_stop,
b047501c 4870 .seq_show = memcg_slab_show,
749c5415
GC
4871 },
4872#endif
d55f90bf
VD
4873 {
4874 .name = "kmem.tcp.limit_in_bytes",
4875 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4876 .write = mem_cgroup_write,
4877 .read_u64 = mem_cgroup_read_u64,
4878 },
4879 {
4880 .name = "kmem.tcp.usage_in_bytes",
4881 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4882 .read_u64 = mem_cgroup_read_u64,
4883 },
4884 {
4885 .name = "kmem.tcp.failcnt",
4886 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4887 .write = mem_cgroup_reset,
4888 .read_u64 = mem_cgroup_read_u64,
4889 },
4890 {
4891 .name = "kmem.tcp.max_usage_in_bytes",
4892 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4893 .write = mem_cgroup_reset,
4894 .read_u64 = mem_cgroup_read_u64,
4895 },
6bc10349 4896 { }, /* terminate */
af36f906 4897};
8c7c6e34 4898
73f576c0
JW
4899/*
4900 * Private memory cgroup IDR
4901 *
4902 * Swap-out records and page cache shadow entries need to store memcg
4903 * references in constrained space, so we maintain an ID space that is
4904 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4905 * memory-controlled cgroups to 64k.
4906 *
4907 * However, there usually are many references to the oflline CSS after
4908 * the cgroup has been destroyed, such as page cache or reclaimable
4909 * slab objects, that don't need to hang on to the ID. We want to keep
4910 * those dead CSS from occupying IDs, or we might quickly exhaust the
4911 * relatively small ID space and prevent the creation of new cgroups
4912 * even when there are much fewer than 64k cgroups - possibly none.
4913 *
4914 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4915 * be freed and recycled when it's no longer needed, which is usually
4916 * when the CSS is offlined.
4917 *
4918 * The only exception to that are records of swapped out tmpfs/shmem
4919 * pages that need to be attributed to live ancestors on swapin. But
4920 * those references are manageable from userspace.
4921 */
4922
4923static DEFINE_IDR(mem_cgroup_idr);
4924
7e97de0b
KT
4925static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4926{
4927 if (memcg->id.id > 0) {
4928 idr_remove(&mem_cgroup_idr, memcg->id.id);
4929 memcg->id.id = 0;
4930 }
4931}
4932
615d66c3 4933static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4934{
1c2d479a 4935 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4936}
4937
615d66c3 4938static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4939{
1c2d479a 4940 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4941 mem_cgroup_id_remove(memcg);
73f576c0
JW
4942
4943 /* Memcg ID pins CSS */
4944 css_put(&memcg->css);
4945 }
4946}
4947
615d66c3
VD
4948static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4949{
4950 mem_cgroup_id_put_many(memcg, 1);
4951}
4952
73f576c0
JW
4953/**
4954 * mem_cgroup_from_id - look up a memcg from a memcg id
4955 * @id: the memcg id to look up
4956 *
4957 * Caller must hold rcu_read_lock().
4958 */
4959struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4960{
4961 WARN_ON_ONCE(!rcu_read_lock_held());
4962 return idr_find(&mem_cgroup_idr, id);
4963}
4964
ef8f2327 4965static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4966{
4967 struct mem_cgroup_per_node *pn;
ef8f2327 4968 int tmp = node;
1ecaab2b
KH
4969 /*
4970 * This routine is called against possible nodes.
4971 * But it's BUG to call kmalloc() against offline node.
4972 *
4973 * TODO: this routine can waste much memory for nodes which will
4974 * never be onlined. It's better to use memory hotplug callback
4975 * function.
4976 */
41e3355d
KH
4977 if (!node_state(node, N_NORMAL_MEMORY))
4978 tmp = -1;
17295c88 4979 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4980 if (!pn)
4981 return 1;
1ecaab2b 4982
815744d7
JW
4983 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4984 if (!pn->lruvec_stat_local) {
4985 kfree(pn);
4986 return 1;
4987 }
4988
a983b5eb
JW
4989 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4990 if (!pn->lruvec_stat_cpu) {
815744d7 4991 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4992 kfree(pn);
4993 return 1;
4994 }
4995
ef8f2327
MG
4996 lruvec_init(&pn->lruvec);
4997 pn->usage_in_excess = 0;
4998 pn->on_tree = false;
4999 pn->memcg = memcg;
5000
54f72fe0 5001 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5002 return 0;
5003}
5004
ef8f2327 5005static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5006{
00f3ca2c
JW
5007 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5008
4eaf431f
MH
5009 if (!pn)
5010 return;
5011
a983b5eb 5012 free_percpu(pn->lruvec_stat_cpu);
815744d7 5013 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5014 kfree(pn);
1ecaab2b
KH
5015}
5016
40e952f9 5017static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5018{
c8b2a36f 5019 int node;
59927fb9 5020
c8b2a36f 5021 for_each_node(node)
ef8f2327 5022 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5023 free_percpu(memcg->vmstats_percpu);
815744d7 5024 free_percpu(memcg->vmstats_local);
8ff69e2c 5025 kfree(memcg);
59927fb9 5026}
3afe36b1 5027
40e952f9
TE
5028static void mem_cgroup_free(struct mem_cgroup *memcg)
5029{
5030 memcg_wb_domain_exit(memcg);
7961eee3
SB
5031 /*
5032 * Flush percpu vmstats and vmevents to guarantee the value correctness
5033 * on parent's and all ancestor levels.
5034 */
5035 memcg_flush_percpu_vmstats(memcg, false);
5036 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5037 __mem_cgroup_free(memcg);
5038}
5039
0b8f73e1 5040static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5041{
d142e3e6 5042 struct mem_cgroup *memcg;
b9726c26 5043 unsigned int size;
6d12e2d8 5044 int node;
97b27821 5045 int __maybe_unused i;
8cdea7c0 5046
0b8f73e1
JW
5047 size = sizeof(struct mem_cgroup);
5048 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5049
5050 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5051 if (!memcg)
0b8f73e1
JW
5052 return NULL;
5053
73f576c0
JW
5054 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5055 1, MEM_CGROUP_ID_MAX,
5056 GFP_KERNEL);
5057 if (memcg->id.id < 0)
5058 goto fail;
5059
815744d7
JW
5060 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5061 if (!memcg->vmstats_local)
5062 goto fail;
5063
871789d4
CD
5064 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5065 if (!memcg->vmstats_percpu)
0b8f73e1 5066 goto fail;
78fb7466 5067
3ed28fa1 5068 for_each_node(node)
ef8f2327 5069 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5070 goto fail;
f64c3f54 5071
0b8f73e1
JW
5072 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5073 goto fail;
28dbc4b6 5074
f7e1cb6e 5075 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
5076 memcg->last_scanned_node = MAX_NUMNODES;
5077 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5078 mutex_init(&memcg->thresholds_lock);
5079 spin_lock_init(&memcg->move_lock);
70ddf637 5080 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5081 INIT_LIST_HEAD(&memcg->event_list);
5082 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5083 memcg->socket_pressure = jiffies;
84c07d11 5084#ifdef CONFIG_MEMCG_KMEM
900a38f0 5085 memcg->kmemcg_id = -1;
900a38f0 5086#endif
52ebea74
TH
5087#ifdef CONFIG_CGROUP_WRITEBACK
5088 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5089 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5090 memcg->cgwb_frn[i].done =
5091 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5092#endif
5093#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5094 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5095 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5096 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5097#endif
73f576c0 5098 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5099 return memcg;
5100fail:
7e97de0b 5101 mem_cgroup_id_remove(memcg);
40e952f9 5102 __mem_cgroup_free(memcg);
0b8f73e1 5103 return NULL;
d142e3e6
GC
5104}
5105
0b8f73e1
JW
5106static struct cgroup_subsys_state * __ref
5107mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5108{
0b8f73e1
JW
5109 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5110 struct mem_cgroup *memcg;
5111 long error = -ENOMEM;
d142e3e6 5112
0b8f73e1
JW
5113 memcg = mem_cgroup_alloc();
5114 if (!memcg)
5115 return ERR_PTR(error);
d142e3e6 5116
0b8f73e1
JW
5117 memcg->high = PAGE_COUNTER_MAX;
5118 memcg->soft_limit = PAGE_COUNTER_MAX;
5119 if (parent) {
5120 memcg->swappiness = mem_cgroup_swappiness(parent);
5121 memcg->oom_kill_disable = parent->oom_kill_disable;
5122 }
5123 if (parent && parent->use_hierarchy) {
5124 memcg->use_hierarchy = true;
3e32cb2e 5125 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5126 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5127 page_counter_init(&memcg->memsw, &parent->memsw);
5128 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5129 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5130 } else {
3e32cb2e 5131 page_counter_init(&memcg->memory, NULL);
37e84351 5132 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5133 page_counter_init(&memcg->memsw, NULL);
5134 page_counter_init(&memcg->kmem, NULL);
0db15298 5135 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5136 /*
5137 * Deeper hierachy with use_hierarchy == false doesn't make
5138 * much sense so let cgroup subsystem know about this
5139 * unfortunate state in our controller.
5140 */
d142e3e6 5141 if (parent != root_mem_cgroup)
073219e9 5142 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5143 }
d6441637 5144
0b8f73e1
JW
5145 /* The following stuff does not apply to the root */
5146 if (!parent) {
fb2f2b0a
RG
5147#ifdef CONFIG_MEMCG_KMEM
5148 INIT_LIST_HEAD(&memcg->kmem_caches);
5149#endif
0b8f73e1
JW
5150 root_mem_cgroup = memcg;
5151 return &memcg->css;
5152 }
5153
b313aeee 5154 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5155 if (error)
5156 goto fail;
127424c8 5157
f7e1cb6e 5158 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5159 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5160
0b8f73e1
JW
5161 return &memcg->css;
5162fail:
7e97de0b 5163 mem_cgroup_id_remove(memcg);
0b8f73e1 5164 mem_cgroup_free(memcg);
ea3a9645 5165 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5166}
5167
73f576c0 5168static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5169{
58fa2a55
VD
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5171
0a4465d3
KT
5172 /*
5173 * A memcg must be visible for memcg_expand_shrinker_maps()
5174 * by the time the maps are allocated. So, we allocate maps
5175 * here, when for_each_mem_cgroup() can't skip it.
5176 */
5177 if (memcg_alloc_shrinker_maps(memcg)) {
5178 mem_cgroup_id_remove(memcg);
5179 return -ENOMEM;
5180 }
5181
73f576c0 5182 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5183 refcount_set(&memcg->id.ref, 1);
73f576c0 5184 css_get(css);
2f7dd7a4 5185 return 0;
8cdea7c0
BS
5186}
5187
eb95419b 5188static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5189{
eb95419b 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5191 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5192
5193 /*
5194 * Unregister events and notify userspace.
5195 * Notify userspace about cgroup removing only after rmdir of cgroup
5196 * directory to avoid race between userspace and kernelspace.
5197 */
fba94807
TH
5198 spin_lock(&memcg->event_list_lock);
5199 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5200 list_del_init(&event->list);
5201 schedule_work(&event->remove);
5202 }
fba94807 5203 spin_unlock(&memcg->event_list_lock);
ec64f515 5204
bf8d5d52 5205 page_counter_set_min(&memcg->memory, 0);
23067153 5206 page_counter_set_low(&memcg->memory, 0);
63677c74 5207
567e9ab2 5208 memcg_offline_kmem(memcg);
52ebea74 5209 wb_memcg_offline(memcg);
73f576c0 5210
591edfb1
RG
5211 drain_all_stock(memcg);
5212
73f576c0 5213 mem_cgroup_id_put(memcg);
df878fb0
KH
5214}
5215
6df38689
VD
5216static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5217{
5218 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5219
5220 invalidate_reclaim_iterators(memcg);
5221}
5222
eb95419b 5223static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5224{
eb95419b 5225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5226 int __maybe_unused i;
c268e994 5227
97b27821
TH
5228#ifdef CONFIG_CGROUP_WRITEBACK
5229 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5230 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5231#endif
f7e1cb6e 5232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5233 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5234
0db15298 5235 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5236 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5237
0b8f73e1
JW
5238 vmpressure_cleanup(&memcg->vmpressure);
5239 cancel_work_sync(&memcg->high_work);
5240 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5241 memcg_free_shrinker_maps(memcg);
d886f4e4 5242 memcg_free_kmem(memcg);
0b8f73e1 5243 mem_cgroup_free(memcg);
8cdea7c0
BS
5244}
5245
1ced953b
TH
5246/**
5247 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5248 * @css: the target css
5249 *
5250 * Reset the states of the mem_cgroup associated with @css. This is
5251 * invoked when the userland requests disabling on the default hierarchy
5252 * but the memcg is pinned through dependency. The memcg should stop
5253 * applying policies and should revert to the vanilla state as it may be
5254 * made visible again.
5255 *
5256 * The current implementation only resets the essential configurations.
5257 * This needs to be expanded to cover all the visible parts.
5258 */
5259static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5260{
5261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5262
bbec2e15
RG
5263 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5264 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5265 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5266 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5267 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5268 page_counter_set_min(&memcg->memory, 0);
23067153 5269 page_counter_set_low(&memcg->memory, 0);
241994ed 5270 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5271 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5272 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5273}
5274
02491447 5275#ifdef CONFIG_MMU
7dc74be0 5276/* Handlers for move charge at task migration. */
854ffa8d 5277static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5278{
05b84301 5279 int ret;
9476db97 5280
d0164adc
MG
5281 /* Try a single bulk charge without reclaim first, kswapd may wake */
5282 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5283 if (!ret) {
854ffa8d 5284 mc.precharge += count;
854ffa8d
DN
5285 return ret;
5286 }
9476db97 5287
3674534b 5288 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5289 while (count--) {
3674534b 5290 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5291 if (ret)
38c5d72f 5292 return ret;
854ffa8d 5293 mc.precharge++;
9476db97 5294 cond_resched();
854ffa8d 5295 }
9476db97 5296 return 0;
4ffef5fe
DN
5297}
5298
4ffef5fe
DN
5299union mc_target {
5300 struct page *page;
02491447 5301 swp_entry_t ent;
4ffef5fe
DN
5302};
5303
4ffef5fe 5304enum mc_target_type {
8d32ff84 5305 MC_TARGET_NONE = 0,
4ffef5fe 5306 MC_TARGET_PAGE,
02491447 5307 MC_TARGET_SWAP,
c733a828 5308 MC_TARGET_DEVICE,
4ffef5fe
DN
5309};
5310
90254a65
DN
5311static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5312 unsigned long addr, pte_t ptent)
4ffef5fe 5313{
25b2995a 5314 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5315
90254a65
DN
5316 if (!page || !page_mapped(page))
5317 return NULL;
5318 if (PageAnon(page)) {
1dfab5ab 5319 if (!(mc.flags & MOVE_ANON))
90254a65 5320 return NULL;
1dfab5ab
JW
5321 } else {
5322 if (!(mc.flags & MOVE_FILE))
5323 return NULL;
5324 }
90254a65
DN
5325 if (!get_page_unless_zero(page))
5326 return NULL;
5327
5328 return page;
5329}
5330
c733a828 5331#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5332static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5333 pte_t ptent, swp_entry_t *entry)
90254a65 5334{
90254a65
DN
5335 struct page *page = NULL;
5336 swp_entry_t ent = pte_to_swp_entry(ptent);
5337
1dfab5ab 5338 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5339 return NULL;
c733a828
JG
5340
5341 /*
5342 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5343 * a device and because they are not accessible by CPU they are store
5344 * as special swap entry in the CPU page table.
5345 */
5346 if (is_device_private_entry(ent)) {
5347 page = device_private_entry_to_page(ent);
5348 /*
5349 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5350 * a refcount of 1 when free (unlike normal page)
5351 */
5352 if (!page_ref_add_unless(page, 1, 1))
5353 return NULL;
5354 return page;
5355 }
5356
4b91355e
KH
5357 /*
5358 * Because lookup_swap_cache() updates some statistics counter,
5359 * we call find_get_page() with swapper_space directly.
5360 */
f6ab1f7f 5361 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5362 if (do_memsw_account())
90254a65
DN
5363 entry->val = ent.val;
5364
5365 return page;
5366}
4b91355e
KH
5367#else
5368static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5369 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5370{
5371 return NULL;
5372}
5373#endif
90254a65 5374
87946a72
DN
5375static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5376 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5377{
5378 struct page *page = NULL;
87946a72
DN
5379 struct address_space *mapping;
5380 pgoff_t pgoff;
5381
5382 if (!vma->vm_file) /* anonymous vma */
5383 return NULL;
1dfab5ab 5384 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5385 return NULL;
5386
87946a72 5387 mapping = vma->vm_file->f_mapping;
0661a336 5388 pgoff = linear_page_index(vma, addr);
87946a72
DN
5389
5390 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5391#ifdef CONFIG_SWAP
5392 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5393 if (shmem_mapping(mapping)) {
5394 page = find_get_entry(mapping, pgoff);
3159f943 5395 if (xa_is_value(page)) {
139b6a6f 5396 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5397 if (do_memsw_account())
139b6a6f 5398 *entry = swp;
f6ab1f7f
HY
5399 page = find_get_page(swap_address_space(swp),
5400 swp_offset(swp));
139b6a6f
JW
5401 }
5402 } else
5403 page = find_get_page(mapping, pgoff);
5404#else
5405 page = find_get_page(mapping, pgoff);
aa3b1895 5406#endif
87946a72
DN
5407 return page;
5408}
5409
b1b0deab
CG
5410/**
5411 * mem_cgroup_move_account - move account of the page
5412 * @page: the page
25843c2b 5413 * @compound: charge the page as compound or small page
b1b0deab
CG
5414 * @from: mem_cgroup which the page is moved from.
5415 * @to: mem_cgroup which the page is moved to. @from != @to.
5416 *
3ac808fd 5417 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5418 *
5419 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5420 * from old cgroup.
5421 */
5422static int mem_cgroup_move_account(struct page *page,
f627c2f5 5423 bool compound,
b1b0deab
CG
5424 struct mem_cgroup *from,
5425 struct mem_cgroup *to)
5426{
ae8af438
KK
5427 struct lruvec *from_vec, *to_vec;
5428 struct pglist_data *pgdat;
b1b0deab 5429 unsigned long flags;
f627c2f5 5430 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5431 int ret;
c4843a75 5432 bool anon;
b1b0deab
CG
5433
5434 VM_BUG_ON(from == to);
5435 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5436 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5437
5438 /*
6a93ca8f 5439 * Prevent mem_cgroup_migrate() from looking at
45637bab 5440 * page->mem_cgroup of its source page while we change it.
b1b0deab 5441 */
f627c2f5 5442 ret = -EBUSY;
b1b0deab
CG
5443 if (!trylock_page(page))
5444 goto out;
5445
5446 ret = -EINVAL;
5447 if (page->mem_cgroup != from)
5448 goto out_unlock;
5449
c4843a75
GT
5450 anon = PageAnon(page);
5451
ae8af438
KK
5452 pgdat = page_pgdat(page);
5453 from_vec = mem_cgroup_lruvec(pgdat, from);
5454 to_vec = mem_cgroup_lruvec(pgdat, to);
5455
b1b0deab
CG
5456 spin_lock_irqsave(&from->move_lock, flags);
5457
c4843a75 5458 if (!anon && page_mapped(page)) {
ae8af438
KK
5459 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5460 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5461 }
5462
c4843a75
GT
5463 /*
5464 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5465 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5466 * So mapping should be stable for dirty pages.
5467 */
5468 if (!anon && PageDirty(page)) {
5469 struct address_space *mapping = page_mapping(page);
5470
5471 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5472 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5473 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5474 }
5475 }
5476
b1b0deab 5477 if (PageWriteback(page)) {
ae8af438
KK
5478 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5479 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5480 }
5481
87eaceb3
YS
5482#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5483 if (compound && !list_empty(page_deferred_list(page))) {
5484 spin_lock(&from->deferred_split_queue.split_queue_lock);
5485 list_del_init(page_deferred_list(page));
5486 from->deferred_split_queue.split_queue_len--;
5487 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5488 }
5489#endif
b1b0deab
CG
5490 /*
5491 * It is safe to change page->mem_cgroup here because the page
5492 * is referenced, charged, and isolated - we can't race with
5493 * uncharging, charging, migration, or LRU putback.
5494 */
5495
5496 /* caller should have done css_get */
5497 page->mem_cgroup = to;
87eaceb3
YS
5498
5499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5500 if (compound && list_empty(page_deferred_list(page))) {
5501 spin_lock(&to->deferred_split_queue.split_queue_lock);
5502 list_add_tail(page_deferred_list(page),
5503 &to->deferred_split_queue.split_queue);
5504 to->deferred_split_queue.split_queue_len++;
5505 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5506 }
5507#endif
5508
b1b0deab
CG
5509 spin_unlock_irqrestore(&from->move_lock, flags);
5510
5511 ret = 0;
5512
5513 local_irq_disable();
f627c2f5 5514 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5515 memcg_check_events(to, page);
f627c2f5 5516 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5517 memcg_check_events(from, page);
5518 local_irq_enable();
5519out_unlock:
5520 unlock_page(page);
5521out:
5522 return ret;
5523}
5524
7cf7806c
LR
5525/**
5526 * get_mctgt_type - get target type of moving charge
5527 * @vma: the vma the pte to be checked belongs
5528 * @addr: the address corresponding to the pte to be checked
5529 * @ptent: the pte to be checked
5530 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5531 *
5532 * Returns
5533 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5534 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5535 * move charge. if @target is not NULL, the page is stored in target->page
5536 * with extra refcnt got(Callers should handle it).
5537 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5538 * target for charge migration. if @target is not NULL, the entry is stored
5539 * in target->ent.
25b2995a
CH
5540 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5541 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5542 * For now we such page is charge like a regular page would be as for all
5543 * intent and purposes it is just special memory taking the place of a
5544 * regular page.
c733a828
JG
5545 *
5546 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5547 *
5548 * Called with pte lock held.
5549 */
5550
8d32ff84 5551static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5552 unsigned long addr, pte_t ptent, union mc_target *target)
5553{
5554 struct page *page = NULL;
8d32ff84 5555 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5556 swp_entry_t ent = { .val = 0 };
5557
5558 if (pte_present(ptent))
5559 page = mc_handle_present_pte(vma, addr, ptent);
5560 else if (is_swap_pte(ptent))
48406ef8 5561 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5562 else if (pte_none(ptent))
87946a72 5563 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5564
5565 if (!page && !ent.val)
8d32ff84 5566 return ret;
02491447 5567 if (page) {
02491447 5568 /*
0a31bc97 5569 * Do only loose check w/o serialization.
1306a85a 5570 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5571 * not under LRU exclusion.
02491447 5572 */
1306a85a 5573 if (page->mem_cgroup == mc.from) {
02491447 5574 ret = MC_TARGET_PAGE;
25b2995a 5575 if (is_device_private_page(page))
c733a828 5576 ret = MC_TARGET_DEVICE;
02491447
DN
5577 if (target)
5578 target->page = page;
5579 }
5580 if (!ret || !target)
5581 put_page(page);
5582 }
3e14a57b
HY
5583 /*
5584 * There is a swap entry and a page doesn't exist or isn't charged.
5585 * But we cannot move a tail-page in a THP.
5586 */
5587 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5588 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5589 ret = MC_TARGET_SWAP;
5590 if (target)
5591 target->ent = ent;
4ffef5fe 5592 }
4ffef5fe
DN
5593 return ret;
5594}
5595
12724850
NH
5596#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5597/*
d6810d73
HY
5598 * We don't consider PMD mapped swapping or file mapped pages because THP does
5599 * not support them for now.
12724850
NH
5600 * Caller should make sure that pmd_trans_huge(pmd) is true.
5601 */
5602static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5603 unsigned long addr, pmd_t pmd, union mc_target *target)
5604{
5605 struct page *page = NULL;
12724850
NH
5606 enum mc_target_type ret = MC_TARGET_NONE;
5607
84c3fc4e
ZY
5608 if (unlikely(is_swap_pmd(pmd))) {
5609 VM_BUG_ON(thp_migration_supported() &&
5610 !is_pmd_migration_entry(pmd));
5611 return ret;
5612 }
12724850 5613 page = pmd_page(pmd);
309381fe 5614 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5615 if (!(mc.flags & MOVE_ANON))
12724850 5616 return ret;
1306a85a 5617 if (page->mem_cgroup == mc.from) {
12724850
NH
5618 ret = MC_TARGET_PAGE;
5619 if (target) {
5620 get_page(page);
5621 target->page = page;
5622 }
5623 }
5624 return ret;
5625}
5626#else
5627static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5628 unsigned long addr, pmd_t pmd, union mc_target *target)
5629{
5630 return MC_TARGET_NONE;
5631}
5632#endif
5633
4ffef5fe
DN
5634static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5635 unsigned long addr, unsigned long end,
5636 struct mm_walk *walk)
5637{
26bcd64a 5638 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5639 pte_t *pte;
5640 spinlock_t *ptl;
5641
b6ec57f4
KS
5642 ptl = pmd_trans_huge_lock(pmd, vma);
5643 if (ptl) {
c733a828
JG
5644 /*
5645 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5646 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5647 * this might change.
c733a828 5648 */
12724850
NH
5649 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5650 mc.precharge += HPAGE_PMD_NR;
bf929152 5651 spin_unlock(ptl);
1a5a9906 5652 return 0;
12724850 5653 }
03319327 5654
45f83cef
AA
5655 if (pmd_trans_unstable(pmd))
5656 return 0;
4ffef5fe
DN
5657 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5658 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5659 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5660 mc.precharge++; /* increment precharge temporarily */
5661 pte_unmap_unlock(pte - 1, ptl);
5662 cond_resched();
5663
7dc74be0
DN
5664 return 0;
5665}
5666
7b86ac33
CH
5667static const struct mm_walk_ops precharge_walk_ops = {
5668 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5669};
5670
4ffef5fe
DN
5671static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5672{
5673 unsigned long precharge;
4ffef5fe 5674
dfe076b0 5675 down_read(&mm->mmap_sem);
7b86ac33 5676 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5677 up_read(&mm->mmap_sem);
4ffef5fe
DN
5678
5679 precharge = mc.precharge;
5680 mc.precharge = 0;
5681
5682 return precharge;
5683}
5684
4ffef5fe
DN
5685static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5686{
dfe076b0
DN
5687 unsigned long precharge = mem_cgroup_count_precharge(mm);
5688
5689 VM_BUG_ON(mc.moving_task);
5690 mc.moving_task = current;
5691 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5692}
5693
dfe076b0
DN
5694/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5695static void __mem_cgroup_clear_mc(void)
4ffef5fe 5696{
2bd9bb20
KH
5697 struct mem_cgroup *from = mc.from;
5698 struct mem_cgroup *to = mc.to;
5699
4ffef5fe 5700 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5701 if (mc.precharge) {
00501b53 5702 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5703 mc.precharge = 0;
5704 }
5705 /*
5706 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5707 * we must uncharge here.
5708 */
5709 if (mc.moved_charge) {
00501b53 5710 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5711 mc.moved_charge = 0;
4ffef5fe 5712 }
483c30b5
DN
5713 /* we must fixup refcnts and charges */
5714 if (mc.moved_swap) {
483c30b5 5715 /* uncharge swap account from the old cgroup */
ce00a967 5716 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5717 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5718
615d66c3
VD
5719 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5720
05b84301 5721 /*
3e32cb2e
JW
5722 * we charged both to->memory and to->memsw, so we
5723 * should uncharge to->memory.
05b84301 5724 */
ce00a967 5725 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5726 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5727
615d66c3
VD
5728 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5729 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5730
483c30b5
DN
5731 mc.moved_swap = 0;
5732 }
dfe076b0
DN
5733 memcg_oom_recover(from);
5734 memcg_oom_recover(to);
5735 wake_up_all(&mc.waitq);
5736}
5737
5738static void mem_cgroup_clear_mc(void)
5739{
264a0ae1
TH
5740 struct mm_struct *mm = mc.mm;
5741
dfe076b0
DN
5742 /*
5743 * we must clear moving_task before waking up waiters at the end of
5744 * task migration.
5745 */
5746 mc.moving_task = NULL;
5747 __mem_cgroup_clear_mc();
2bd9bb20 5748 spin_lock(&mc.lock);
4ffef5fe
DN
5749 mc.from = NULL;
5750 mc.to = NULL;
264a0ae1 5751 mc.mm = NULL;
2bd9bb20 5752 spin_unlock(&mc.lock);
264a0ae1
TH
5753
5754 mmput(mm);
4ffef5fe
DN
5755}
5756
1f7dd3e5 5757static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5758{
1f7dd3e5 5759 struct cgroup_subsys_state *css;
eed67d75 5760 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5761 struct mem_cgroup *from;
4530eddb 5762 struct task_struct *leader, *p;
9f2115f9 5763 struct mm_struct *mm;
1dfab5ab 5764 unsigned long move_flags;
9f2115f9 5765 int ret = 0;
7dc74be0 5766
1f7dd3e5
TH
5767 /* charge immigration isn't supported on the default hierarchy */
5768 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5769 return 0;
5770
4530eddb
TH
5771 /*
5772 * Multi-process migrations only happen on the default hierarchy
5773 * where charge immigration is not used. Perform charge
5774 * immigration if @tset contains a leader and whine if there are
5775 * multiple.
5776 */
5777 p = NULL;
1f7dd3e5 5778 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5779 WARN_ON_ONCE(p);
5780 p = leader;
1f7dd3e5 5781 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5782 }
5783 if (!p)
5784 return 0;
5785
1f7dd3e5
TH
5786 /*
5787 * We are now commited to this value whatever it is. Changes in this
5788 * tunable will only affect upcoming migrations, not the current one.
5789 * So we need to save it, and keep it going.
5790 */
5791 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5792 if (!move_flags)
5793 return 0;
5794
9f2115f9
TH
5795 from = mem_cgroup_from_task(p);
5796
5797 VM_BUG_ON(from == memcg);
5798
5799 mm = get_task_mm(p);
5800 if (!mm)
5801 return 0;
5802 /* We move charges only when we move a owner of the mm */
5803 if (mm->owner == p) {
5804 VM_BUG_ON(mc.from);
5805 VM_BUG_ON(mc.to);
5806 VM_BUG_ON(mc.precharge);
5807 VM_BUG_ON(mc.moved_charge);
5808 VM_BUG_ON(mc.moved_swap);
5809
5810 spin_lock(&mc.lock);
264a0ae1 5811 mc.mm = mm;
9f2115f9
TH
5812 mc.from = from;
5813 mc.to = memcg;
5814 mc.flags = move_flags;
5815 spin_unlock(&mc.lock);
5816 /* We set mc.moving_task later */
5817
5818 ret = mem_cgroup_precharge_mc(mm);
5819 if (ret)
5820 mem_cgroup_clear_mc();
264a0ae1
TH
5821 } else {
5822 mmput(mm);
7dc74be0
DN
5823 }
5824 return ret;
5825}
5826
1f7dd3e5 5827static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5828{
4e2f245d
JW
5829 if (mc.to)
5830 mem_cgroup_clear_mc();
7dc74be0
DN
5831}
5832
4ffef5fe
DN
5833static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5834 unsigned long addr, unsigned long end,
5835 struct mm_walk *walk)
7dc74be0 5836{
4ffef5fe 5837 int ret = 0;
26bcd64a 5838 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5839 pte_t *pte;
5840 spinlock_t *ptl;
12724850
NH
5841 enum mc_target_type target_type;
5842 union mc_target target;
5843 struct page *page;
4ffef5fe 5844
b6ec57f4
KS
5845 ptl = pmd_trans_huge_lock(pmd, vma);
5846 if (ptl) {
62ade86a 5847 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5848 spin_unlock(ptl);
12724850
NH
5849 return 0;
5850 }
5851 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5852 if (target_type == MC_TARGET_PAGE) {
5853 page = target.page;
5854 if (!isolate_lru_page(page)) {
f627c2f5 5855 if (!mem_cgroup_move_account(page, true,
1306a85a 5856 mc.from, mc.to)) {
12724850
NH
5857 mc.precharge -= HPAGE_PMD_NR;
5858 mc.moved_charge += HPAGE_PMD_NR;
5859 }
5860 putback_lru_page(page);
5861 }
5862 put_page(page);
c733a828
JG
5863 } else if (target_type == MC_TARGET_DEVICE) {
5864 page = target.page;
5865 if (!mem_cgroup_move_account(page, true,
5866 mc.from, mc.to)) {
5867 mc.precharge -= HPAGE_PMD_NR;
5868 mc.moved_charge += HPAGE_PMD_NR;
5869 }
5870 put_page(page);
12724850 5871 }
bf929152 5872 spin_unlock(ptl);
1a5a9906 5873 return 0;
12724850
NH
5874 }
5875
45f83cef
AA
5876 if (pmd_trans_unstable(pmd))
5877 return 0;
4ffef5fe
DN
5878retry:
5879 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5880 for (; addr != end; addr += PAGE_SIZE) {
5881 pte_t ptent = *(pte++);
c733a828 5882 bool device = false;
02491447 5883 swp_entry_t ent;
4ffef5fe
DN
5884
5885 if (!mc.precharge)
5886 break;
5887
8d32ff84 5888 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5889 case MC_TARGET_DEVICE:
5890 device = true;
5891 /* fall through */
4ffef5fe
DN
5892 case MC_TARGET_PAGE:
5893 page = target.page;
53f9263b
KS
5894 /*
5895 * We can have a part of the split pmd here. Moving it
5896 * can be done but it would be too convoluted so simply
5897 * ignore such a partial THP and keep it in original
5898 * memcg. There should be somebody mapping the head.
5899 */
5900 if (PageTransCompound(page))
5901 goto put;
c733a828 5902 if (!device && isolate_lru_page(page))
4ffef5fe 5903 goto put;
f627c2f5
KS
5904 if (!mem_cgroup_move_account(page, false,
5905 mc.from, mc.to)) {
4ffef5fe 5906 mc.precharge--;
854ffa8d
DN
5907 /* we uncharge from mc.from later. */
5908 mc.moved_charge++;
4ffef5fe 5909 }
c733a828
JG
5910 if (!device)
5911 putback_lru_page(page);
8d32ff84 5912put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5913 put_page(page);
5914 break;
02491447
DN
5915 case MC_TARGET_SWAP:
5916 ent = target.ent;
e91cbb42 5917 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5918 mc.precharge--;
483c30b5
DN
5919 /* we fixup refcnts and charges later. */
5920 mc.moved_swap++;
5921 }
02491447 5922 break;
4ffef5fe
DN
5923 default:
5924 break;
5925 }
5926 }
5927 pte_unmap_unlock(pte - 1, ptl);
5928 cond_resched();
5929
5930 if (addr != end) {
5931 /*
5932 * We have consumed all precharges we got in can_attach().
5933 * We try charge one by one, but don't do any additional
5934 * charges to mc.to if we have failed in charge once in attach()
5935 * phase.
5936 */
854ffa8d 5937 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5938 if (!ret)
5939 goto retry;
5940 }
5941
5942 return ret;
5943}
5944
7b86ac33
CH
5945static const struct mm_walk_ops charge_walk_ops = {
5946 .pmd_entry = mem_cgroup_move_charge_pte_range,
5947};
5948
264a0ae1 5949static void mem_cgroup_move_charge(void)
4ffef5fe 5950{
4ffef5fe 5951 lru_add_drain_all();
312722cb 5952 /*
81f8c3a4
JW
5953 * Signal lock_page_memcg() to take the memcg's move_lock
5954 * while we're moving its pages to another memcg. Then wait
5955 * for already started RCU-only updates to finish.
312722cb
JW
5956 */
5957 atomic_inc(&mc.from->moving_account);
5958 synchronize_rcu();
dfe076b0 5959retry:
264a0ae1 5960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5961 /*
5962 * Someone who are holding the mmap_sem might be waiting in
5963 * waitq. So we cancel all extra charges, wake up all waiters,
5964 * and retry. Because we cancel precharges, we might not be able
5965 * to move enough charges, but moving charge is a best-effort
5966 * feature anyway, so it wouldn't be a big problem.
5967 */
5968 __mem_cgroup_clear_mc();
5969 cond_resched();
5970 goto retry;
5971 }
26bcd64a
NH
5972 /*
5973 * When we have consumed all precharges and failed in doing
5974 * additional charge, the page walk just aborts.
5975 */
7b86ac33
CH
5976 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5977 NULL);
0247f3f4 5978
264a0ae1 5979 up_read(&mc.mm->mmap_sem);
312722cb 5980 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5981}
5982
264a0ae1 5983static void mem_cgroup_move_task(void)
67e465a7 5984{
264a0ae1
TH
5985 if (mc.to) {
5986 mem_cgroup_move_charge();
a433658c 5987 mem_cgroup_clear_mc();
264a0ae1 5988 }
67e465a7 5989}
5cfb80a7 5990#else /* !CONFIG_MMU */
1f7dd3e5 5991static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5992{
5993 return 0;
5994}
1f7dd3e5 5995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5996{
5997}
264a0ae1 5998static void mem_cgroup_move_task(void)
5cfb80a7
DN
5999{
6000}
6001#endif
67e465a7 6002
f00baae7
TH
6003/*
6004 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6005 * to verify whether we're attached to the default hierarchy on each mount
6006 * attempt.
f00baae7 6007 */
eb95419b 6008static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6009{
6010 /*
aa6ec29b 6011 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6012 * guarantees that @root doesn't have any children, so turning it
6013 * on for the root memcg is enough.
6014 */
9e10a130 6015 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6016 root_mem_cgroup->use_hierarchy = true;
6017 else
6018 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6019}
6020
677dc973
CD
6021static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6022{
6023 if (value == PAGE_COUNTER_MAX)
6024 seq_puts(m, "max\n");
6025 else
6026 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6027
6028 return 0;
6029}
6030
241994ed
JW
6031static u64 memory_current_read(struct cgroup_subsys_state *css,
6032 struct cftype *cft)
6033{
f5fc3c5d
JW
6034 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6035
6036 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6037}
6038
bf8d5d52
RG
6039static int memory_min_show(struct seq_file *m, void *v)
6040{
677dc973
CD
6041 return seq_puts_memcg_tunable(m,
6042 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6043}
6044
6045static ssize_t memory_min_write(struct kernfs_open_file *of,
6046 char *buf, size_t nbytes, loff_t off)
6047{
6048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6049 unsigned long min;
6050 int err;
6051
6052 buf = strstrip(buf);
6053 err = page_counter_memparse(buf, "max", &min);
6054 if (err)
6055 return err;
6056
6057 page_counter_set_min(&memcg->memory, min);
6058
6059 return nbytes;
6060}
6061
241994ed
JW
6062static int memory_low_show(struct seq_file *m, void *v)
6063{
677dc973
CD
6064 return seq_puts_memcg_tunable(m,
6065 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6066}
6067
6068static ssize_t memory_low_write(struct kernfs_open_file *of,
6069 char *buf, size_t nbytes, loff_t off)
6070{
6071 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6072 unsigned long low;
6073 int err;
6074
6075 buf = strstrip(buf);
d2973697 6076 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6077 if (err)
6078 return err;
6079
23067153 6080 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6081
6082 return nbytes;
6083}
6084
6085static int memory_high_show(struct seq_file *m, void *v)
6086{
677dc973 6087 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6088}
6089
6090static ssize_t memory_high_write(struct kernfs_open_file *of,
6091 char *buf, size_t nbytes, loff_t off)
6092{
6093 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 6094 unsigned long nr_pages;
241994ed
JW
6095 unsigned long high;
6096 int err;
6097
6098 buf = strstrip(buf);
d2973697 6099 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6100 if (err)
6101 return err;
6102
6103 memcg->high = high;
6104
588083bb
JW
6105 nr_pages = page_counter_read(&memcg->memory);
6106 if (nr_pages > high)
6107 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6108 GFP_KERNEL, true);
6109
2529bb3a 6110 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6111 return nbytes;
6112}
6113
6114static int memory_max_show(struct seq_file *m, void *v)
6115{
677dc973
CD
6116 return seq_puts_memcg_tunable(m,
6117 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6118}
6119
6120static ssize_t memory_max_write(struct kernfs_open_file *of,
6121 char *buf, size_t nbytes, loff_t off)
6122{
6123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6124 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6125 bool drained = false;
241994ed
JW
6126 unsigned long max;
6127 int err;
6128
6129 buf = strstrip(buf);
d2973697 6130 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6131 if (err)
6132 return err;
6133
bbec2e15 6134 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6135
6136 for (;;) {
6137 unsigned long nr_pages = page_counter_read(&memcg->memory);
6138
6139 if (nr_pages <= max)
6140 break;
6141
6142 if (signal_pending(current)) {
6143 err = -EINTR;
6144 break;
6145 }
6146
6147 if (!drained) {
6148 drain_all_stock(memcg);
6149 drained = true;
6150 continue;
6151 }
6152
6153 if (nr_reclaims) {
6154 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6155 GFP_KERNEL, true))
6156 nr_reclaims--;
6157 continue;
6158 }
6159
e27be240 6160 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6161 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6162 break;
6163 }
241994ed 6164
2529bb3a 6165 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6166 return nbytes;
6167}
6168
1e577f97
SB
6169static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6170{
6171 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6172 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6173 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6174 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6175 seq_printf(m, "oom_kill %lu\n",
6176 atomic_long_read(&events[MEMCG_OOM_KILL]));
6177}
6178
241994ed
JW
6179static int memory_events_show(struct seq_file *m, void *v)
6180{
aa9694bb 6181 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6182
1e577f97
SB
6183 __memory_events_show(m, memcg->memory_events);
6184 return 0;
6185}
6186
6187static int memory_events_local_show(struct seq_file *m, void *v)
6188{
6189 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6190
1e577f97 6191 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6192 return 0;
6193}
6194
587d9f72
JW
6195static int memory_stat_show(struct seq_file *m, void *v)
6196{
aa9694bb 6197 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6198 char *buf;
1ff9e6e1 6199
c8713d0b
JW
6200 buf = memory_stat_format(memcg);
6201 if (!buf)
6202 return -ENOMEM;
6203 seq_puts(m, buf);
6204 kfree(buf);
587d9f72
JW
6205 return 0;
6206}
6207
3d8b38eb
RG
6208static int memory_oom_group_show(struct seq_file *m, void *v)
6209{
aa9694bb 6210 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6211
6212 seq_printf(m, "%d\n", memcg->oom_group);
6213
6214 return 0;
6215}
6216
6217static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6218 char *buf, size_t nbytes, loff_t off)
6219{
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6221 int ret, oom_group;
6222
6223 buf = strstrip(buf);
6224 if (!buf)
6225 return -EINVAL;
6226
6227 ret = kstrtoint(buf, 0, &oom_group);
6228 if (ret)
6229 return ret;
6230
6231 if (oom_group != 0 && oom_group != 1)
6232 return -EINVAL;
6233
6234 memcg->oom_group = oom_group;
6235
6236 return nbytes;
6237}
6238
241994ed
JW
6239static struct cftype memory_files[] = {
6240 {
6241 .name = "current",
f5fc3c5d 6242 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6243 .read_u64 = memory_current_read,
6244 },
bf8d5d52
RG
6245 {
6246 .name = "min",
6247 .flags = CFTYPE_NOT_ON_ROOT,
6248 .seq_show = memory_min_show,
6249 .write = memory_min_write,
6250 },
241994ed
JW
6251 {
6252 .name = "low",
6253 .flags = CFTYPE_NOT_ON_ROOT,
6254 .seq_show = memory_low_show,
6255 .write = memory_low_write,
6256 },
6257 {
6258 .name = "high",
6259 .flags = CFTYPE_NOT_ON_ROOT,
6260 .seq_show = memory_high_show,
6261 .write = memory_high_write,
6262 },
6263 {
6264 .name = "max",
6265 .flags = CFTYPE_NOT_ON_ROOT,
6266 .seq_show = memory_max_show,
6267 .write = memory_max_write,
6268 },
6269 {
6270 .name = "events",
6271 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6272 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6273 .seq_show = memory_events_show,
6274 },
1e577f97
SB
6275 {
6276 .name = "events.local",
6277 .flags = CFTYPE_NOT_ON_ROOT,
6278 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6279 .seq_show = memory_events_local_show,
6280 },
587d9f72
JW
6281 {
6282 .name = "stat",
6283 .flags = CFTYPE_NOT_ON_ROOT,
6284 .seq_show = memory_stat_show,
6285 },
3d8b38eb
RG
6286 {
6287 .name = "oom.group",
6288 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6289 .seq_show = memory_oom_group_show,
6290 .write = memory_oom_group_write,
6291 },
241994ed
JW
6292 { } /* terminate */
6293};
6294
073219e9 6295struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6296 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6297 .css_online = mem_cgroup_css_online,
92fb9748 6298 .css_offline = mem_cgroup_css_offline,
6df38689 6299 .css_released = mem_cgroup_css_released,
92fb9748 6300 .css_free = mem_cgroup_css_free,
1ced953b 6301 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6302 .can_attach = mem_cgroup_can_attach,
6303 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6304 .post_attach = mem_cgroup_move_task,
f00baae7 6305 .bind = mem_cgroup_bind,
241994ed
JW
6306 .dfl_cftypes = memory_files,
6307 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6308 .early_init = 0,
8cdea7c0 6309};
c077719b 6310
241994ed 6311/**
bf8d5d52 6312 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6313 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6314 * @memcg: the memory cgroup to check
6315 *
23067153
RG
6316 * WARNING: This function is not stateless! It can only be used as part
6317 * of a top-down tree iteration, not for isolated queries.
34c81057 6318 *
bf8d5d52
RG
6319 * Returns one of the following:
6320 * MEMCG_PROT_NONE: cgroup memory is not protected
6321 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6322 * an unprotected supply of reclaimable memory from other cgroups.
6323 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6324 *
bf8d5d52 6325 * @root is exclusive; it is never protected when looked at directly
34c81057 6326 *
bf8d5d52
RG
6327 * To provide a proper hierarchical behavior, effective memory.min/low values
6328 * are used. Below is the description of how effective memory.low is calculated.
6329 * Effective memory.min values is calculated in the same way.
34c81057 6330 *
23067153
RG
6331 * Effective memory.low is always equal or less than the original memory.low.
6332 * If there is no memory.low overcommittment (which is always true for
6333 * top-level memory cgroups), these two values are equal.
6334 * Otherwise, it's a part of parent's effective memory.low,
6335 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6336 * memory.low usages, where memory.low usage is the size of actually
6337 * protected memory.
34c81057 6338 *
23067153
RG
6339 * low_usage
6340 * elow = min( memory.low, parent->elow * ------------------ ),
6341 * siblings_low_usage
34c81057 6342 *
23067153
RG
6343 * | memory.current, if memory.current < memory.low
6344 * low_usage = |
82ede7ee 6345 * | 0, otherwise.
34c81057 6346 *
23067153
RG
6347 *
6348 * Such definition of the effective memory.low provides the expected
6349 * hierarchical behavior: parent's memory.low value is limiting
6350 * children, unprotected memory is reclaimed first and cgroups,
6351 * which are not using their guarantee do not affect actual memory
6352 * distribution.
6353 *
6354 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6355 *
6356 * A A/memory.low = 2G, A/memory.current = 6G
6357 * //\\
6358 * BC DE B/memory.low = 3G B/memory.current = 2G
6359 * C/memory.low = 1G C/memory.current = 2G
6360 * D/memory.low = 0 D/memory.current = 2G
6361 * E/memory.low = 10G E/memory.current = 0
6362 *
6363 * and the memory pressure is applied, the following memory distribution
6364 * is expected (approximately):
6365 *
6366 * A/memory.current = 2G
6367 *
6368 * B/memory.current = 1.3G
6369 * C/memory.current = 0.6G
6370 * D/memory.current = 0
6371 * E/memory.current = 0
6372 *
6373 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6374 * (see propagate_protected_usage()), as well as recursive calculation of
6375 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6376 * path for each memory cgroup top-down from the reclaim,
6377 * it's possible to optimize this part, and save calculated elow
6378 * for next usage. This part is intentionally racy, but it's ok,
6379 * as memory.low is a best-effort mechanism.
241994ed 6380 */
bf8d5d52
RG
6381enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6382 struct mem_cgroup *memcg)
241994ed 6383{
23067153 6384 struct mem_cgroup *parent;
bf8d5d52
RG
6385 unsigned long emin, parent_emin;
6386 unsigned long elow, parent_elow;
6387 unsigned long usage;
23067153 6388
241994ed 6389 if (mem_cgroup_disabled())
bf8d5d52 6390 return MEMCG_PROT_NONE;
241994ed 6391
34c81057
SC
6392 if (!root)
6393 root = root_mem_cgroup;
6394 if (memcg == root)
bf8d5d52 6395 return MEMCG_PROT_NONE;
241994ed 6396
23067153 6397 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6398 if (!usage)
6399 return MEMCG_PROT_NONE;
6400
6401 emin = memcg->memory.min;
6402 elow = memcg->memory.low;
34c81057 6403
bf8d5d52 6404 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6405 /* No parent means a non-hierarchical mode on v1 memcg */
6406 if (!parent)
6407 return MEMCG_PROT_NONE;
6408
23067153
RG
6409 if (parent == root)
6410 goto exit;
6411
bf8d5d52
RG
6412 parent_emin = READ_ONCE(parent->memory.emin);
6413 emin = min(emin, parent_emin);
6414 if (emin && parent_emin) {
6415 unsigned long min_usage, siblings_min_usage;
6416
6417 min_usage = min(usage, memcg->memory.min);
6418 siblings_min_usage = atomic_long_read(
6419 &parent->memory.children_min_usage);
6420
6421 if (min_usage && siblings_min_usage)
6422 emin = min(emin, parent_emin * min_usage /
6423 siblings_min_usage);
6424 }
6425
23067153
RG
6426 parent_elow = READ_ONCE(parent->memory.elow);
6427 elow = min(elow, parent_elow);
bf8d5d52
RG
6428 if (elow && parent_elow) {
6429 unsigned long low_usage, siblings_low_usage;
23067153 6430
bf8d5d52
RG
6431 low_usage = min(usage, memcg->memory.low);
6432 siblings_low_usage = atomic_long_read(
6433 &parent->memory.children_low_usage);
23067153 6434
bf8d5d52
RG
6435 if (low_usage && siblings_low_usage)
6436 elow = min(elow, parent_elow * low_usage /
6437 siblings_low_usage);
6438 }
23067153 6439
23067153 6440exit:
bf8d5d52 6441 memcg->memory.emin = emin;
23067153 6442 memcg->memory.elow = elow;
bf8d5d52
RG
6443
6444 if (usage <= emin)
6445 return MEMCG_PROT_MIN;
6446 else if (usage <= elow)
6447 return MEMCG_PROT_LOW;
6448 else
6449 return MEMCG_PROT_NONE;
241994ed
JW
6450}
6451
00501b53
JW
6452/**
6453 * mem_cgroup_try_charge - try charging a page
6454 * @page: page to charge
6455 * @mm: mm context of the victim
6456 * @gfp_mask: reclaim mode
6457 * @memcgp: charged memcg return
25843c2b 6458 * @compound: charge the page as compound or small page
00501b53
JW
6459 *
6460 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6461 * pages according to @gfp_mask if necessary.
6462 *
6463 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6464 * Otherwise, an error code is returned.
6465 *
6466 * After page->mapping has been set up, the caller must finalize the
6467 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6468 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6469 */
6470int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6471 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6472 bool compound)
00501b53
JW
6473{
6474 struct mem_cgroup *memcg = NULL;
f627c2f5 6475 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6476 int ret = 0;
6477
6478 if (mem_cgroup_disabled())
6479 goto out;
6480
6481 if (PageSwapCache(page)) {
00501b53
JW
6482 /*
6483 * Every swap fault against a single page tries to charge the
6484 * page, bail as early as possible. shmem_unuse() encounters
6485 * already charged pages, too. The USED bit is protected by
6486 * the page lock, which serializes swap cache removal, which
6487 * in turn serializes uncharging.
6488 */
e993d905 6489 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6490 if (compound_head(page)->mem_cgroup)
00501b53 6491 goto out;
e993d905 6492
37e84351 6493 if (do_swap_account) {
e993d905
VD
6494 swp_entry_t ent = { .val = page_private(page), };
6495 unsigned short id = lookup_swap_cgroup_id(ent);
6496
6497 rcu_read_lock();
6498 memcg = mem_cgroup_from_id(id);
6499 if (memcg && !css_tryget_online(&memcg->css))
6500 memcg = NULL;
6501 rcu_read_unlock();
6502 }
00501b53
JW
6503 }
6504
00501b53
JW
6505 if (!memcg)
6506 memcg = get_mem_cgroup_from_mm(mm);
6507
6508 ret = try_charge(memcg, gfp_mask, nr_pages);
6509
6510 css_put(&memcg->css);
00501b53
JW
6511out:
6512 *memcgp = memcg;
6513 return ret;
6514}
6515
2cf85583
TH
6516int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6517 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6518 bool compound)
6519{
6520 struct mem_cgroup *memcg;
6521 int ret;
6522
6523 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6524 memcg = *memcgp;
6525 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6526 return ret;
6527}
6528
00501b53
JW
6529/**
6530 * mem_cgroup_commit_charge - commit a page charge
6531 * @page: page to charge
6532 * @memcg: memcg to charge the page to
6533 * @lrucare: page might be on LRU already
25843c2b 6534 * @compound: charge the page as compound or small page
00501b53
JW
6535 *
6536 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6537 * after page->mapping has been set up. This must happen atomically
6538 * as part of the page instantiation, i.e. under the page table lock
6539 * for anonymous pages, under the page lock for page and swap cache.
6540 *
6541 * In addition, the page must not be on the LRU during the commit, to
6542 * prevent racing with task migration. If it might be, use @lrucare.
6543 *
6544 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6545 */
6546void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6547 bool lrucare, bool compound)
00501b53 6548{
f627c2f5 6549 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6550
6551 VM_BUG_ON_PAGE(!page->mapping, page);
6552 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6553
6554 if (mem_cgroup_disabled())
6555 return;
6556 /*
6557 * Swap faults will attempt to charge the same page multiple
6558 * times. But reuse_swap_page() might have removed the page
6559 * from swapcache already, so we can't check PageSwapCache().
6560 */
6561 if (!memcg)
6562 return;
6563
6abb5a86
JW
6564 commit_charge(page, memcg, lrucare);
6565
6abb5a86 6566 local_irq_disable();
f627c2f5 6567 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6568 memcg_check_events(memcg, page);
6569 local_irq_enable();
00501b53 6570
7941d214 6571 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6572 swp_entry_t entry = { .val = page_private(page) };
6573 /*
6574 * The swap entry might not get freed for a long time,
6575 * let's not wait for it. The page already received a
6576 * memory+swap charge, drop the swap entry duplicate.
6577 */
38d8b4e6 6578 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6579 }
6580}
6581
6582/**
6583 * mem_cgroup_cancel_charge - cancel a page charge
6584 * @page: page to charge
6585 * @memcg: memcg to charge the page to
25843c2b 6586 * @compound: charge the page as compound or small page
00501b53
JW
6587 *
6588 * Cancel a charge transaction started by mem_cgroup_try_charge().
6589 */
f627c2f5
KS
6590void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6591 bool compound)
00501b53 6592{
f627c2f5 6593 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6594
6595 if (mem_cgroup_disabled())
6596 return;
6597 /*
6598 * Swap faults will attempt to charge the same page multiple
6599 * times. But reuse_swap_page() might have removed the page
6600 * from swapcache already, so we can't check PageSwapCache().
6601 */
6602 if (!memcg)
6603 return;
6604
00501b53
JW
6605 cancel_charge(memcg, nr_pages);
6606}
6607
a9d5adee
JG
6608struct uncharge_gather {
6609 struct mem_cgroup *memcg;
6610 unsigned long pgpgout;
6611 unsigned long nr_anon;
6612 unsigned long nr_file;
6613 unsigned long nr_kmem;
6614 unsigned long nr_huge;
6615 unsigned long nr_shmem;
6616 struct page *dummy_page;
6617};
6618
6619static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6620{
a9d5adee
JG
6621 memset(ug, 0, sizeof(*ug));
6622}
6623
6624static void uncharge_batch(const struct uncharge_gather *ug)
6625{
6626 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6627 unsigned long flags;
6628
a9d5adee
JG
6629 if (!mem_cgroup_is_root(ug->memcg)) {
6630 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6631 if (do_memsw_account())
a9d5adee
JG
6632 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6633 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6634 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6635 memcg_oom_recover(ug->memcg);
ce00a967 6636 }
747db954
JW
6637
6638 local_irq_save(flags);
c9019e9b
JW
6639 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6640 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6641 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6642 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6643 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6644 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6645 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6646 local_irq_restore(flags);
e8ea14cc 6647
a9d5adee
JG
6648 if (!mem_cgroup_is_root(ug->memcg))
6649 css_put_many(&ug->memcg->css, nr_pages);
6650}
6651
6652static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6653{
6654 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6655 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6656 !PageHWPoison(page) , page);
a9d5adee
JG
6657
6658 if (!page->mem_cgroup)
6659 return;
6660
6661 /*
6662 * Nobody should be changing or seriously looking at
6663 * page->mem_cgroup at this point, we have fully
6664 * exclusive access to the page.
6665 */
6666
6667 if (ug->memcg != page->mem_cgroup) {
6668 if (ug->memcg) {
6669 uncharge_batch(ug);
6670 uncharge_gather_clear(ug);
6671 }
6672 ug->memcg = page->mem_cgroup;
6673 }
6674
6675 if (!PageKmemcg(page)) {
6676 unsigned int nr_pages = 1;
6677
6678 if (PageTransHuge(page)) {
d8c6546b 6679 nr_pages = compound_nr(page);
a9d5adee
JG
6680 ug->nr_huge += nr_pages;
6681 }
6682 if (PageAnon(page))
6683 ug->nr_anon += nr_pages;
6684 else {
6685 ug->nr_file += nr_pages;
6686 if (PageSwapBacked(page))
6687 ug->nr_shmem += nr_pages;
6688 }
6689 ug->pgpgout++;
6690 } else {
d8c6546b 6691 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6692 __ClearPageKmemcg(page);
6693 }
6694
6695 ug->dummy_page = page;
6696 page->mem_cgroup = NULL;
747db954
JW
6697}
6698
6699static void uncharge_list(struct list_head *page_list)
6700{
a9d5adee 6701 struct uncharge_gather ug;
747db954 6702 struct list_head *next;
a9d5adee
JG
6703
6704 uncharge_gather_clear(&ug);
747db954 6705
8b592656
JW
6706 /*
6707 * Note that the list can be a single page->lru; hence the
6708 * do-while loop instead of a simple list_for_each_entry().
6709 */
747db954
JW
6710 next = page_list->next;
6711 do {
a9d5adee
JG
6712 struct page *page;
6713
747db954
JW
6714 page = list_entry(next, struct page, lru);
6715 next = page->lru.next;
6716
a9d5adee 6717 uncharge_page(page, &ug);
747db954
JW
6718 } while (next != page_list);
6719
a9d5adee
JG
6720 if (ug.memcg)
6721 uncharge_batch(&ug);
747db954
JW
6722}
6723
0a31bc97
JW
6724/**
6725 * mem_cgroup_uncharge - uncharge a page
6726 * @page: page to uncharge
6727 *
6728 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6729 * mem_cgroup_commit_charge().
6730 */
6731void mem_cgroup_uncharge(struct page *page)
6732{
a9d5adee
JG
6733 struct uncharge_gather ug;
6734
0a31bc97
JW
6735 if (mem_cgroup_disabled())
6736 return;
6737
747db954 6738 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6739 if (!page->mem_cgroup)
0a31bc97
JW
6740 return;
6741
a9d5adee
JG
6742 uncharge_gather_clear(&ug);
6743 uncharge_page(page, &ug);
6744 uncharge_batch(&ug);
747db954 6745}
0a31bc97 6746
747db954
JW
6747/**
6748 * mem_cgroup_uncharge_list - uncharge a list of page
6749 * @page_list: list of pages to uncharge
6750 *
6751 * Uncharge a list of pages previously charged with
6752 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6753 */
6754void mem_cgroup_uncharge_list(struct list_head *page_list)
6755{
6756 if (mem_cgroup_disabled())
6757 return;
0a31bc97 6758
747db954
JW
6759 if (!list_empty(page_list))
6760 uncharge_list(page_list);
0a31bc97
JW
6761}
6762
6763/**
6a93ca8f
JW
6764 * mem_cgroup_migrate - charge a page's replacement
6765 * @oldpage: currently circulating page
6766 * @newpage: replacement page
0a31bc97 6767 *
6a93ca8f
JW
6768 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6769 * be uncharged upon free.
0a31bc97
JW
6770 *
6771 * Both pages must be locked, @newpage->mapping must be set up.
6772 */
6a93ca8f 6773void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6774{
29833315 6775 struct mem_cgroup *memcg;
44b7a8d3
JW
6776 unsigned int nr_pages;
6777 bool compound;
d93c4130 6778 unsigned long flags;
0a31bc97
JW
6779
6780 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6781 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6782 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6783 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6784 newpage);
0a31bc97
JW
6785
6786 if (mem_cgroup_disabled())
6787 return;
6788
6789 /* Page cache replacement: new page already charged? */
1306a85a 6790 if (newpage->mem_cgroup)
0a31bc97
JW
6791 return;
6792
45637bab 6793 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6794 memcg = oldpage->mem_cgroup;
29833315 6795 if (!memcg)
0a31bc97
JW
6796 return;
6797
44b7a8d3
JW
6798 /* Force-charge the new page. The old one will be freed soon */
6799 compound = PageTransHuge(newpage);
6800 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6801
6802 page_counter_charge(&memcg->memory, nr_pages);
6803 if (do_memsw_account())
6804 page_counter_charge(&memcg->memsw, nr_pages);
6805 css_get_many(&memcg->css, nr_pages);
0a31bc97 6806
9cf7666a 6807 commit_charge(newpage, memcg, false);
44b7a8d3 6808
d93c4130 6809 local_irq_save(flags);
44b7a8d3
JW
6810 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6811 memcg_check_events(memcg, newpage);
d93c4130 6812 local_irq_restore(flags);
0a31bc97
JW
6813}
6814
ef12947c 6815DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6816EXPORT_SYMBOL(memcg_sockets_enabled_key);
6817
2d758073 6818void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6819{
6820 struct mem_cgroup *memcg;
6821
2d758073
JW
6822 if (!mem_cgroup_sockets_enabled)
6823 return;
6824
edbe69ef
RG
6825 /*
6826 * Socket cloning can throw us here with sk_memcg already
6827 * filled. It won't however, necessarily happen from
6828 * process context. So the test for root memcg given
6829 * the current task's memcg won't help us in this case.
6830 *
6831 * Respecting the original socket's memcg is a better
6832 * decision in this case.
6833 */
6834 if (sk->sk_memcg) {
6835 css_get(&sk->sk_memcg->css);
6836 return;
6837 }
6838
11092087
JW
6839 rcu_read_lock();
6840 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6841 if (memcg == root_mem_cgroup)
6842 goto out;
0db15298 6843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6844 goto out;
f7e1cb6e 6845 if (css_tryget_online(&memcg->css))
11092087 6846 sk->sk_memcg = memcg;
f7e1cb6e 6847out:
11092087
JW
6848 rcu_read_unlock();
6849}
11092087 6850
2d758073 6851void mem_cgroup_sk_free(struct sock *sk)
11092087 6852{
2d758073
JW
6853 if (sk->sk_memcg)
6854 css_put(&sk->sk_memcg->css);
11092087
JW
6855}
6856
6857/**
6858 * mem_cgroup_charge_skmem - charge socket memory
6859 * @memcg: memcg to charge
6860 * @nr_pages: number of pages to charge
6861 *
6862 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6863 * @memcg's configured limit, %false if the charge had to be forced.
6864 */
6865bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6866{
f7e1cb6e 6867 gfp_t gfp_mask = GFP_KERNEL;
11092087 6868
f7e1cb6e 6869 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6870 struct page_counter *fail;
f7e1cb6e 6871
0db15298
JW
6872 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6873 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6874 return true;
6875 }
0db15298
JW
6876 page_counter_charge(&memcg->tcpmem, nr_pages);
6877 memcg->tcpmem_pressure = 1;
f7e1cb6e 6878 return false;
11092087 6879 }
d886f4e4 6880
f7e1cb6e
JW
6881 /* Don't block in the packet receive path */
6882 if (in_softirq())
6883 gfp_mask = GFP_NOWAIT;
6884
c9019e9b 6885 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6886
f7e1cb6e
JW
6887 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6888 return true;
6889
6890 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6891 return false;
6892}
6893
6894/**
6895 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6896 * @memcg: memcg to uncharge
6897 * @nr_pages: number of pages to uncharge
11092087
JW
6898 */
6899void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6900{
f7e1cb6e 6901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6902 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6903 return;
6904 }
d886f4e4 6905
c9019e9b 6906 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6907
475d0487 6908 refill_stock(memcg, nr_pages);
11092087
JW
6909}
6910
f7e1cb6e
JW
6911static int __init cgroup_memory(char *s)
6912{
6913 char *token;
6914
6915 while ((token = strsep(&s, ",")) != NULL) {
6916 if (!*token)
6917 continue;
6918 if (!strcmp(token, "nosocket"))
6919 cgroup_memory_nosocket = true;
04823c83
VD
6920 if (!strcmp(token, "nokmem"))
6921 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6922 }
6923 return 0;
6924}
6925__setup("cgroup.memory=", cgroup_memory);
11092087 6926
2d11085e 6927/*
1081312f
MH
6928 * subsys_initcall() for memory controller.
6929 *
308167fc
SAS
6930 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6931 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6932 * basically everything that doesn't depend on a specific mem_cgroup structure
6933 * should be initialized from here.
2d11085e
MH
6934 */
6935static int __init mem_cgroup_init(void)
6936{
95a045f6
JW
6937 int cpu, node;
6938
84c07d11 6939#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6940 /*
6941 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6942 * so use a workqueue with limited concurrency to avoid stalling
6943 * all worker threads in case lots of cgroups are created and
6944 * destroyed simultaneously.
13583c3d 6945 */
17cc4dfe
TH
6946 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6947 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6948#endif
6949
308167fc
SAS
6950 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6951 memcg_hotplug_cpu_dead);
95a045f6
JW
6952
6953 for_each_possible_cpu(cpu)
6954 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6955 drain_local_stock);
6956
6957 for_each_node(node) {
6958 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6959
6960 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6961 node_online(node) ? node : NUMA_NO_NODE);
6962
ef8f2327 6963 rtpn->rb_root = RB_ROOT;
fa90b2fd 6964 rtpn->rb_rightmost = NULL;
ef8f2327 6965 spin_lock_init(&rtpn->lock);
95a045f6
JW
6966 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6967 }
6968
2d11085e
MH
6969 return 0;
6970}
6971subsys_initcall(mem_cgroup_init);
21afa38e
JW
6972
6973#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6974static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6975{
1c2d479a 6976 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6977 /*
6978 * The root cgroup cannot be destroyed, so it's refcount must
6979 * always be >= 1.
6980 */
6981 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6982 VM_BUG_ON(1);
6983 break;
6984 }
6985 memcg = parent_mem_cgroup(memcg);
6986 if (!memcg)
6987 memcg = root_mem_cgroup;
6988 }
6989 return memcg;
6990}
6991
21afa38e
JW
6992/**
6993 * mem_cgroup_swapout - transfer a memsw charge to swap
6994 * @page: page whose memsw charge to transfer
6995 * @entry: swap entry to move the charge to
6996 *
6997 * Transfer the memsw charge of @page to @entry.
6998 */
6999void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7000{
1f47b61f 7001 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7002 unsigned int nr_entries;
21afa38e
JW
7003 unsigned short oldid;
7004
7005 VM_BUG_ON_PAGE(PageLRU(page), page);
7006 VM_BUG_ON_PAGE(page_count(page), page);
7007
7941d214 7008 if (!do_memsw_account())
21afa38e
JW
7009 return;
7010
7011 memcg = page->mem_cgroup;
7012
7013 /* Readahead page, never charged */
7014 if (!memcg)
7015 return;
7016
1f47b61f
VD
7017 /*
7018 * In case the memcg owning these pages has been offlined and doesn't
7019 * have an ID allocated to it anymore, charge the closest online
7020 * ancestor for the swap instead and transfer the memory+swap charge.
7021 */
7022 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7023 nr_entries = hpage_nr_pages(page);
7024 /* Get references for the tail pages, too */
7025 if (nr_entries > 1)
7026 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7027 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7028 nr_entries);
21afa38e 7029 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7030 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7031
7032 page->mem_cgroup = NULL;
7033
7034 if (!mem_cgroup_is_root(memcg))
d6810d73 7035 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7036
1f47b61f
VD
7037 if (memcg != swap_memcg) {
7038 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7039 page_counter_charge(&swap_memcg->memsw, nr_entries);
7040 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7041 }
7042
ce9ce665
SAS
7043 /*
7044 * Interrupts should be disabled here because the caller holds the
b93b0163 7045 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7046 * important here to have the interrupts disabled because it is the
b93b0163 7047 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7048 */
7049 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7050 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7051 -nr_entries);
21afa38e 7052 memcg_check_events(memcg, page);
73f576c0
JW
7053
7054 if (!mem_cgroup_is_root(memcg))
d08afa14 7055 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7056}
7057
38d8b4e6
HY
7058/**
7059 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7060 * @page: page being added to swap
7061 * @entry: swap entry to charge
7062 *
38d8b4e6 7063 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7064 *
7065 * Returns 0 on success, -ENOMEM on failure.
7066 */
7067int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7068{
38d8b4e6 7069 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7070 struct page_counter *counter;
38d8b4e6 7071 struct mem_cgroup *memcg;
37e84351
VD
7072 unsigned short oldid;
7073
7074 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7075 return 0;
7076
7077 memcg = page->mem_cgroup;
7078
7079 /* Readahead page, never charged */
7080 if (!memcg)
7081 return 0;
7082
f3a53a3a
TH
7083 if (!entry.val) {
7084 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7085 return 0;
f3a53a3a 7086 }
bb98f2c5 7087
1f47b61f
VD
7088 memcg = mem_cgroup_id_get_online(memcg);
7089
37e84351 7090 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7091 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7092 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7093 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7094 mem_cgroup_id_put(memcg);
37e84351 7095 return -ENOMEM;
1f47b61f 7096 }
37e84351 7097
38d8b4e6
HY
7098 /* Get references for the tail pages, too */
7099 if (nr_pages > 1)
7100 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7101 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7102 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7103 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7104
37e84351
VD
7105 return 0;
7106}
7107
21afa38e 7108/**
38d8b4e6 7109 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7110 * @entry: swap entry to uncharge
38d8b4e6 7111 * @nr_pages: the amount of swap space to uncharge
21afa38e 7112 */
38d8b4e6 7113void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7114{
7115 struct mem_cgroup *memcg;
7116 unsigned short id;
7117
37e84351 7118 if (!do_swap_account)
21afa38e
JW
7119 return;
7120
38d8b4e6 7121 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7122 rcu_read_lock();
adbe427b 7123 memcg = mem_cgroup_from_id(id);
21afa38e 7124 if (memcg) {
37e84351
VD
7125 if (!mem_cgroup_is_root(memcg)) {
7126 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7127 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7128 else
38d8b4e6 7129 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7130 }
c9019e9b 7131 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7132 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7133 }
7134 rcu_read_unlock();
7135}
7136
d8b38438
VD
7137long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7138{
7139 long nr_swap_pages = get_nr_swap_pages();
7140
7141 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7142 return nr_swap_pages;
7143 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7144 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7145 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7146 page_counter_read(&memcg->swap));
7147 return nr_swap_pages;
7148}
7149
5ccc5aba
VD
7150bool mem_cgroup_swap_full(struct page *page)
7151{
7152 struct mem_cgroup *memcg;
7153
7154 VM_BUG_ON_PAGE(!PageLocked(page), page);
7155
7156 if (vm_swap_full())
7157 return true;
7158 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7159 return false;
7160
7161 memcg = page->mem_cgroup;
7162 if (!memcg)
7163 return false;
7164
7165 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7166 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7167 return true;
7168
7169 return false;
7170}
7171
21afa38e
JW
7172/* for remember boot option*/
7173#ifdef CONFIG_MEMCG_SWAP_ENABLED
7174static int really_do_swap_account __initdata = 1;
7175#else
7176static int really_do_swap_account __initdata;
7177#endif
7178
7179static int __init enable_swap_account(char *s)
7180{
7181 if (!strcmp(s, "1"))
7182 really_do_swap_account = 1;
7183 else if (!strcmp(s, "0"))
7184 really_do_swap_account = 0;
7185 return 1;
7186}
7187__setup("swapaccount=", enable_swap_account);
7188
37e84351
VD
7189static u64 swap_current_read(struct cgroup_subsys_state *css,
7190 struct cftype *cft)
7191{
7192 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7193
7194 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7195}
7196
7197static int swap_max_show(struct seq_file *m, void *v)
7198{
677dc973
CD
7199 return seq_puts_memcg_tunable(m,
7200 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7201}
7202
7203static ssize_t swap_max_write(struct kernfs_open_file *of,
7204 char *buf, size_t nbytes, loff_t off)
7205{
7206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7207 unsigned long max;
7208 int err;
7209
7210 buf = strstrip(buf);
7211 err = page_counter_memparse(buf, "max", &max);
7212 if (err)
7213 return err;
7214
be09102b 7215 xchg(&memcg->swap.max, max);
37e84351
VD
7216
7217 return nbytes;
7218}
7219
f3a53a3a
TH
7220static int swap_events_show(struct seq_file *m, void *v)
7221{
aa9694bb 7222 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7223
7224 seq_printf(m, "max %lu\n",
7225 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7226 seq_printf(m, "fail %lu\n",
7227 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7228
7229 return 0;
7230}
7231
37e84351
VD
7232static struct cftype swap_files[] = {
7233 {
7234 .name = "swap.current",
7235 .flags = CFTYPE_NOT_ON_ROOT,
7236 .read_u64 = swap_current_read,
7237 },
7238 {
7239 .name = "swap.max",
7240 .flags = CFTYPE_NOT_ON_ROOT,
7241 .seq_show = swap_max_show,
7242 .write = swap_max_write,
7243 },
f3a53a3a
TH
7244 {
7245 .name = "swap.events",
7246 .flags = CFTYPE_NOT_ON_ROOT,
7247 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7248 .seq_show = swap_events_show,
7249 },
37e84351
VD
7250 { } /* terminate */
7251};
7252
21afa38e
JW
7253static struct cftype memsw_cgroup_files[] = {
7254 {
7255 .name = "memsw.usage_in_bytes",
7256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7257 .read_u64 = mem_cgroup_read_u64,
7258 },
7259 {
7260 .name = "memsw.max_usage_in_bytes",
7261 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7262 .write = mem_cgroup_reset,
7263 .read_u64 = mem_cgroup_read_u64,
7264 },
7265 {
7266 .name = "memsw.limit_in_bytes",
7267 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7268 .write = mem_cgroup_write,
7269 .read_u64 = mem_cgroup_read_u64,
7270 },
7271 {
7272 .name = "memsw.failcnt",
7273 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7274 .write = mem_cgroup_reset,
7275 .read_u64 = mem_cgroup_read_u64,
7276 },
7277 { }, /* terminate */
7278};
7279
7280static int __init mem_cgroup_swap_init(void)
7281{
7282 if (!mem_cgroup_disabled() && really_do_swap_account) {
7283 do_swap_account = 1;
37e84351
VD
7284 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7285 swap_files));
21afa38e
JW
7286 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7287 memsw_cgroup_files));
7288 }
7289 return 0;
7290}
7291subsys_initcall(mem_cgroup_swap_init);
7292
7293#endif /* CONFIG_MEMCG_SWAP */