]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: vmscan: fix force-scanning small targets without swap
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
99 MEM_CGROUP_EVENTS_NSTATS,
100};
7a159cc9
JW
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 110 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 115#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 116
d52aa412 117struct mem_cgroup_stat_cpu {
7a159cc9 118 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 120 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
121};
122
6d12e2d8
KH
123/*
124 * per-zone information in memory controller.
125 */
6d12e2d8 126struct mem_cgroup_per_zone {
072c56c1
KH
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
b69408e8
CL
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
132
133 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
4e416953
BS
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
6d12e2d8
KH
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
f64c3f54
BS
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
2e72b634
KS
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
9490ff27 177/* For threshold */
2e72b634
KS
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
5407a562 180 int current_threshold;
2e72b634
KS
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
2c488db2
KS
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
9490ff27
KH
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
2e72b634 203
2e72b634 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 206
82f9d486
KH
207enum {
208 SCAN_BY_LIMIT,
209 SCAN_BY_SYSTEM,
210 NR_SCAN_CONTEXT,
211 SCAN_BY_SHRINK, /* not recorded now */
212};
213
214enum {
215 SCAN,
216 SCAN_ANON,
217 SCAN_FILE,
218 ROTATE,
219 ROTATE_ANON,
220 ROTATE_FILE,
221 FREED,
222 FREED_ANON,
223 FREED_FILE,
224 ELAPSED,
225 NR_SCANSTATS,
226};
227
228struct scanstat {
229 spinlock_t lock;
230 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232};
233
234const char *scanstat_string[NR_SCANSTATS] = {
235 "scanned_pages",
236 "scanned_anon_pages",
237 "scanned_file_pages",
238 "rotated_pages",
239 "rotated_anon_pages",
240 "rotated_file_pages",
241 "freed_pages",
242 "freed_anon_pages",
243 "freed_file_pages",
244 "elapsed_ns",
245};
246#define SCANSTAT_WORD_LIMIT "_by_limit"
247#define SCANSTAT_WORD_SYSTEM "_by_system"
248#define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
249
250
8cdea7c0
BS
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
8cdea7c0
BS
261 */
262struct mem_cgroup {
263 struct cgroup_subsys_state css;
264 /*
265 * the counter to account for memory usage
266 */
267 struct res_counter res;
8c7c6e34
KH
268 /*
269 * the counter to account for mem+swap usage.
270 */
271 struct res_counter memsw;
78fb7466
PE
272 /*
273 * Per cgroup active and inactive list, similar to the
274 * per zone LRU lists.
78fb7466 275 */
6d12e2d8 276 struct mem_cgroup_lru_info info;
6d61ef40 277 /*
af901ca1 278 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 279 * reclaimed from.
6d61ef40 280 */
04046e1a 281 int last_scanned_child;
889976db
YH
282 int last_scanned_node;
283#if MAX_NUMNODES > 1
284 nodemask_t scan_nodes;
453a9bf3
KH
285 atomic_t numainfo_events;
286 atomic_t numainfo_updating;
889976db 287#endif
18f59ea7
BS
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
79dfdacc
MH
292
293 bool oom_lock;
294 atomic_t under_oom;
295
8c7c6e34 296 atomic_t refcnt;
14797e23 297
1f4c025b 298 int swappiness;
3c11ecf4
KH
299 /* OOM-Killer disable */
300 int oom_kill_disable;
a7885eb8 301
22a668d7
KH
302 /* set when res.limit == memsw.limit */
303 bool memsw_is_minimum;
304
2e72b634
KS
305 /* protect arrays of thresholds */
306 struct mutex thresholds_lock;
307
308 /* thresholds for memory usage. RCU-protected */
2c488db2 309 struct mem_cgroup_thresholds thresholds;
907860ed 310
2e72b634 311 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 313
9490ff27
KH
314 /* For oom notifier event fd */
315 struct list_head oom_notify;
82f9d486
KH
316 /* For recording LRU-scan statistics */
317 struct scanstat scanstat;
7dc74be0
DN
318 /*
319 * Should we move charges of a task when a task is moved into this
320 * mem_cgroup ? And what type of charges should we move ?
321 */
322 unsigned long move_charge_at_immigrate;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
c62b1a3b 326 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 383 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 384 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
387 NR_CHARGE_TYPE,
388};
389
8c7c6e34
KH
390/* for encoding cft->private value on file */
391#define _MEM (0)
392#define _MEMSWAP (1)
9490ff27 393#define _OOM_TYPE (2)
8c7c6e34
KH
394#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
395#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
396#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
397/* Used for OOM nofiier */
398#define OOM_CONTROL (0)
8c7c6e34 399
75822b44
BS
400/*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
407#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
408#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 409
8c7c6e34
KH
410static void mem_cgroup_get(struct mem_cgroup *mem);
411static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 412static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 413static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 414
f64c3f54
BS
415static struct mem_cgroup_per_zone *
416mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
417{
418 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
419}
420
d324236b
WF
421struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
422{
423 return &mem->css;
424}
425
f64c3f54 426static struct mem_cgroup_per_zone *
97a6c37b 427page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 428{
97a6c37b
JW
429 int nid = page_to_nid(page);
430 int zid = page_zonenum(page);
f64c3f54 431
f64c3f54
BS
432 return mem_cgroup_zoneinfo(mem, nid, zid);
433}
434
435static struct mem_cgroup_tree_per_zone *
436soft_limit_tree_node_zone(int nid, int zid)
437{
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439}
440
441static struct mem_cgroup_tree_per_zone *
442soft_limit_tree_from_page(struct page *page)
443{
444 int nid = page_to_nid(page);
445 int zid = page_zonenum(page);
446
447 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
448}
449
450static void
4e416953 451__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 452 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
453 struct mem_cgroup_tree_per_zone *mctz,
454 unsigned long long new_usage_in_excess)
f64c3f54
BS
455{
456 struct rb_node **p = &mctz->rb_root.rb_node;
457 struct rb_node *parent = NULL;
458 struct mem_cgroup_per_zone *mz_node;
459
460 if (mz->on_tree)
461 return;
462
ef8745c1
KH
463 mz->usage_in_excess = new_usage_in_excess;
464 if (!mz->usage_in_excess)
465 return;
f64c3f54
BS
466 while (*p) {
467 parent = *p;
468 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469 tree_node);
470 if (mz->usage_in_excess < mz_node->usage_in_excess)
471 p = &(*p)->rb_left;
472 /*
473 * We can't avoid mem cgroups that are over their soft
474 * limit by the same amount
475 */
476 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477 p = &(*p)->rb_right;
478 }
479 rb_link_node(&mz->tree_node, parent, p);
480 rb_insert_color(&mz->tree_node, &mctz->rb_root);
481 mz->on_tree = true;
4e416953
BS
482}
483
484static void
485__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486 struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488{
489 if (!mz->on_tree)
490 return;
491 rb_erase(&mz->tree_node, &mctz->rb_root);
492 mz->on_tree = false;
493}
494
f64c3f54
BS
495static void
496mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497 struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz)
499{
500 spin_lock(&mctz->lock);
4e416953 501 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
502 spin_unlock(&mctz->lock);
503}
504
f64c3f54
BS
505
506static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
507{
ef8745c1 508 unsigned long long excess;
f64c3f54
BS
509 struct mem_cgroup_per_zone *mz;
510 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
511 int nid = page_to_nid(page);
512 int zid = page_zonenum(page);
f64c3f54
BS
513 mctz = soft_limit_tree_from_page(page);
514
515 /*
4e649152
KH
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
f64c3f54 518 */
4e649152
KH
519 for (; mem; mem = parent_mem_cgroup(mem)) {
520 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 521 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
ef8745c1 526 if (excess || mz->on_tree) {
4e649152
KH
527 spin_lock(&mctz->lock);
528 /* if on-tree, remove it */
529 if (mz->on_tree)
530 __mem_cgroup_remove_exceeded(mem, mz, mctz);
531 /*
ef8745c1
KH
532 * Insert again. mz->usage_in_excess will be updated.
533 * If excess is 0, no tree ops.
4e649152 534 */
ef8745c1 535 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
536 spin_unlock(&mctz->lock);
537 }
f64c3f54
BS
538 }
539}
540
541static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
542{
543 int node, zone;
544 struct mem_cgroup_per_zone *mz;
545 struct mem_cgroup_tree_per_zone *mctz;
546
547 for_each_node_state(node, N_POSSIBLE) {
548 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549 mz = mem_cgroup_zoneinfo(mem, node, zone);
550 mctz = soft_limit_tree_node_zone(node, zone);
551 mem_cgroup_remove_exceeded(mem, mz, mctz);
552 }
553 }
554}
555
4e416953
BS
556static struct mem_cgroup_per_zone *
557__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
558{
559 struct rb_node *rightmost = NULL;
26251eaf 560 struct mem_cgroup_per_zone *mz;
4e416953
BS
561
562retry:
26251eaf 563 mz = NULL;
4e416953
BS
564 rightmost = rb_last(&mctz->rb_root);
565 if (!rightmost)
566 goto done; /* Nothing to reclaim from */
567
568 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
569 /*
570 * Remove the node now but someone else can add it back,
571 * we will to add it back at the end of reclaim to its correct
572 * position in the tree.
573 */
574 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576 !css_tryget(&mz->mem->css))
577 goto retry;
578done:
579 return mz;
580}
581
582static struct mem_cgroup_per_zone *
583mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584{
585 struct mem_cgroup_per_zone *mz;
586
587 spin_lock(&mctz->lock);
588 mz = __mem_cgroup_largest_soft_limit_node(mctz);
589 spin_unlock(&mctz->lock);
590 return mz;
591}
592
711d3d2c
KH
593/*
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronizion of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threashold and synchonization as vmstat[] should be
610 * implemented.
611 */
7a159cc9
JW
612static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613 enum mem_cgroup_stat_index idx)
c62b1a3b 614{
7a159cc9 615 long val = 0;
c62b1a3b 616 int cpu;
c62b1a3b 617
711d3d2c
KH
618 get_online_cpus();
619 for_each_online_cpu(cpu)
c62b1a3b 620 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
621#ifdef CONFIG_HOTPLUG_CPU
622 spin_lock(&mem->pcp_counter_lock);
623 val += mem->nocpu_base.count[idx];
624 spin_unlock(&mem->pcp_counter_lock);
625#endif
626 put_online_cpus();
c62b1a3b
KH
627 return val;
628}
629
0c3e73e8
BS
630static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631 bool charge)
632{
633 int val = (charge) ? 1 : -1;
c62b1a3b 634 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
635}
636
456f998e
YH
637void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
638{
639 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
640}
641
642void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
643{
644 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
645}
646
e9f8974f
JW
647static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648 enum mem_cgroup_events_index idx)
649{
650 unsigned long val = 0;
651 int cpu;
652
653 for_each_online_cpu(cpu)
654 val += per_cpu(mem->stat->events[idx], cpu);
655#ifdef CONFIG_HOTPLUG_CPU
656 spin_lock(&mem->pcp_counter_lock);
657 val += mem->nocpu_base.events[idx];
658 spin_unlock(&mem->pcp_counter_lock);
659#endif
660 return val;
661}
662
c05555b5 663static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 664 bool file, int nr_pages)
d52aa412 665{
c62b1a3b
KH
666 preempt_disable();
667
e401f176
KH
668 if (file)
669 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 670 else
e401f176 671 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 672
e401f176
KH
673 /* pagein of a big page is an event. So, ignore page size */
674 if (nr_pages > 0)
e9f8974f 675 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 676 else {
e9f8974f 677 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
678 nr_pages = -nr_pages; /* for event */
679 }
e401f176 680
e9f8974f 681 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 682
c62b1a3b 683 preempt_enable();
6d12e2d8
KH
684}
685
bb2a0de9
KH
686unsigned long
687mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688 unsigned int lru_mask)
889976db
YH
689{
690 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
691 enum lru_list l;
692 unsigned long ret = 0;
693
694 mz = mem_cgroup_zoneinfo(mem, nid, zid);
695
696 for_each_lru(l) {
697 if (BIT(l) & lru_mask)
698 ret += MEM_CGROUP_ZSTAT(mz, l);
699 }
700 return ret;
701}
702
703static unsigned long
704mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705 int nid, unsigned int lru_mask)
706{
889976db
YH
707 u64 total = 0;
708 int zid;
709
bb2a0de9
KH
710 for (zid = 0; zid < MAX_NR_ZONES; zid++)
711 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
712
889976db
YH
713 return total;
714}
bb2a0de9
KH
715
716static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717 unsigned int lru_mask)
6d12e2d8 718{
889976db 719 int nid;
6d12e2d8
KH
720 u64 total = 0;
721
bb2a0de9
KH
722 for_each_node_state(nid, N_HIGH_MEMORY)
723 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 724 return total;
d52aa412
KH
725}
726
7a159cc9
JW
727static bool __memcg_event_check(struct mem_cgroup *mem, int target)
728{
729 unsigned long val, next;
730
731 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732 next = this_cpu_read(mem->stat->targets[target]);
733 /* from time_after() in jiffies.h */
734 return ((long)next - (long)val < 0);
735}
736
737static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 738{
7a159cc9 739 unsigned long val, next;
d2265e6f 740
e9f8974f 741 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 742
7a159cc9
JW
743 switch (target) {
744 case MEM_CGROUP_TARGET_THRESH:
745 next = val + THRESHOLDS_EVENTS_TARGET;
746 break;
747 case MEM_CGROUP_TARGET_SOFTLIMIT:
748 next = val + SOFTLIMIT_EVENTS_TARGET;
749 break;
453a9bf3
KH
750 case MEM_CGROUP_TARGET_NUMAINFO:
751 next = val + NUMAINFO_EVENTS_TARGET;
752 break;
7a159cc9
JW
753 default:
754 return;
755 }
756
757 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
758}
759
760/*
761 * Check events in order.
762 *
763 */
764static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
765{
766 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 767 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 768 mem_cgroup_threshold(mem);
7a159cc9
JW
769 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770 if (unlikely(__memcg_event_check(mem,
453a9bf3 771 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 772 mem_cgroup_update_tree(mem, page);
7a159cc9 773 __mem_cgroup_target_update(mem,
453a9bf3
KH
774 MEM_CGROUP_TARGET_SOFTLIMIT);
775 }
776#if MAX_NUMNODES > 1
777 if (unlikely(__memcg_event_check(mem,
778 MEM_CGROUP_TARGET_NUMAINFO))) {
779 atomic_inc(&mem->numainfo_events);
780 __mem_cgroup_target_update(mem,
781 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 782 }
453a9bf3 783#endif
d2265e6f
KH
784 }
785}
786
d5b69e38 787static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
788{
789 return container_of(cgroup_subsys_state(cont,
790 mem_cgroup_subsys_id), struct mem_cgroup,
791 css);
792}
793
cf475ad2 794struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 795{
31a78f23
BS
796 /*
797 * mm_update_next_owner() may clear mm->owner to NULL
798 * if it races with swapoff, page migration, etc.
799 * So this can be called with p == NULL.
800 */
801 if (unlikely(!p))
802 return NULL;
803
78fb7466
PE
804 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805 struct mem_cgroup, css);
806}
807
a433658c 808struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
809{
810 struct mem_cgroup *mem = NULL;
0b7f569e
KH
811
812 if (!mm)
813 return NULL;
54595fe2
KH
814 /*
815 * Because we have no locks, mm->owner's may be being moved to other
816 * cgroup. We use css_tryget() here even if this looks
817 * pessimistic (rather than adding locks here).
818 */
819 rcu_read_lock();
820 do {
821 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822 if (unlikely(!mem))
823 break;
824 } while (!css_tryget(&mem->css));
825 rcu_read_unlock();
826 return mem;
827}
828
7d74b06f
KH
829/* The caller has to guarantee "mem" exists before calling this */
830static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 831{
711d3d2c
KH
832 struct cgroup_subsys_state *css;
833 int found;
834
835 if (!mem) /* ROOT cgroup has the smallest ID */
836 return root_mem_cgroup; /*css_put/get against root is ignored*/
837 if (!mem->use_hierarchy) {
838 if (css_tryget(&mem->css))
839 return mem;
840 return NULL;
841 }
842 rcu_read_lock();
843 /*
844 * searching a memory cgroup which has the smallest ID under given
845 * ROOT cgroup. (ID >= 1)
846 */
847 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848 if (css && css_tryget(css))
849 mem = container_of(css, struct mem_cgroup, css);
850 else
851 mem = NULL;
852 rcu_read_unlock();
853 return mem;
7d74b06f
KH
854}
855
856static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857 struct mem_cgroup *root,
858 bool cond)
859{
860 int nextid = css_id(&iter->css) + 1;
861 int found;
862 int hierarchy_used;
14067bb3 863 struct cgroup_subsys_state *css;
14067bb3 864
7d74b06f 865 hierarchy_used = iter->use_hierarchy;
14067bb3 866
7d74b06f 867 css_put(&iter->css);
711d3d2c
KH
868 /* If no ROOT, walk all, ignore hierarchy */
869 if (!cond || (root && !hierarchy_used))
7d74b06f 870 return NULL;
14067bb3 871
711d3d2c
KH
872 if (!root)
873 root = root_mem_cgroup;
874
7d74b06f
KH
875 do {
876 iter = NULL;
14067bb3 877 rcu_read_lock();
7d74b06f
KH
878
879 css = css_get_next(&mem_cgroup_subsys, nextid,
880 &root->css, &found);
14067bb3 881 if (css && css_tryget(css))
7d74b06f 882 iter = container_of(css, struct mem_cgroup, css);
14067bb3 883 rcu_read_unlock();
7d74b06f 884 /* If css is NULL, no more cgroups will be found */
14067bb3 885 nextid = found + 1;
7d74b06f 886 } while (css && !iter);
14067bb3 887
7d74b06f 888 return iter;
14067bb3 889}
7d74b06f
KH
890/*
891 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892 * be careful that "break" loop is not allowed. We have reference count.
893 * Instead of that modify "cond" to be false and "continue" to exit the loop.
894 */
895#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
896 for (iter = mem_cgroup_start_loop(root);\
897 iter != NULL;\
898 iter = mem_cgroup_get_next(iter, root, cond))
899
900#define for_each_mem_cgroup_tree(iter, root) \
901 for_each_mem_cgroup_tree_cond(iter, root, true)
902
711d3d2c
KH
903#define for_each_mem_cgroup_all(iter) \
904 for_each_mem_cgroup_tree_cond(iter, NULL, true)
905
14067bb3 906
4b3bde4c
BS
907static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
908{
909 return (mem == root_mem_cgroup);
910}
911
456f998e
YH
912void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
913{
914 struct mem_cgroup *mem;
915
916 if (!mm)
917 return;
918
919 rcu_read_lock();
920 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921 if (unlikely(!mem))
922 goto out;
923
924 switch (idx) {
925 case PGMAJFAULT:
926 mem_cgroup_pgmajfault(mem, 1);
927 break;
928 case PGFAULT:
929 mem_cgroup_pgfault(mem, 1);
930 break;
931 default:
932 BUG();
933 }
934out:
935 rcu_read_unlock();
936}
937EXPORT_SYMBOL(mem_cgroup_count_vm_event);
938
08e552c6
KH
939/*
940 * Following LRU functions are allowed to be used without PCG_LOCK.
941 * Operations are called by routine of global LRU independently from memcg.
942 * What we have to take care of here is validness of pc->mem_cgroup.
943 *
944 * Changes to pc->mem_cgroup happens when
945 * 1. charge
946 * 2. moving account
947 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948 * It is added to LRU before charge.
949 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950 * When moving account, the page is not on LRU. It's isolated.
951 */
4f98a2fe 952
08e552c6
KH
953void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
954{
955 struct page_cgroup *pc;
08e552c6 956 struct mem_cgroup_per_zone *mz;
6d12e2d8 957
f8d66542 958 if (mem_cgroup_disabled())
08e552c6
KH
959 return;
960 pc = lookup_page_cgroup(page);
961 /* can happen while we handle swapcache. */
4b3bde4c 962 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 963 return;
4b3bde4c 964 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
965 /*
966 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967 * removed from global LRU.
968 */
97a6c37b 969 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
970 /* huge page split is done under lru_lock. so, we have no races. */
971 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
972 if (mem_cgroup_is_root(pc->mem_cgroup))
973 return;
974 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 975 list_del_init(&pc->lru);
6d12e2d8
KH
976}
977
08e552c6 978void mem_cgroup_del_lru(struct page *page)
6d12e2d8 979{
08e552c6
KH
980 mem_cgroup_del_lru_list(page, page_lru(page));
981}
b69408e8 982
3f58a829
MK
983/*
984 * Writeback is about to end against a page which has been marked for immediate
985 * reclaim. If it still appears to be reclaimable, move it to the tail of the
986 * inactive list.
987 */
988void mem_cgroup_rotate_reclaimable_page(struct page *page)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct page_cgroup *pc;
992 enum lru_list lru = page_lru(page);
993
994 if (mem_cgroup_disabled())
995 return;
996
997 pc = lookup_page_cgroup(page);
998 /* unused or root page is not rotated. */
999 if (!PageCgroupUsed(pc))
1000 return;
1001 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002 smp_rmb();
1003 if (mem_cgroup_is_root(pc->mem_cgroup))
1004 return;
97a6c37b 1005 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1006 list_move_tail(&pc->lru, &mz->lists[lru]);
1007}
1008
08e552c6
KH
1009void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1010{
1011 struct mem_cgroup_per_zone *mz;
1012 struct page_cgroup *pc;
b69408e8 1013
f8d66542 1014 if (mem_cgroup_disabled())
08e552c6 1015 return;
6d12e2d8 1016
08e552c6 1017 pc = lookup_page_cgroup(page);
4b3bde4c 1018 /* unused or root page is not rotated. */
713735b4
JW
1019 if (!PageCgroupUsed(pc))
1020 return;
1021 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022 smp_rmb();
1023 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1024 return;
97a6c37b 1025 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1026 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1027}
1028
08e552c6 1029void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1030{
08e552c6
KH
1031 struct page_cgroup *pc;
1032 struct mem_cgroup_per_zone *mz;
6d12e2d8 1033
f8d66542 1034 if (mem_cgroup_disabled())
08e552c6
KH
1035 return;
1036 pc = lookup_page_cgroup(page);
4b3bde4c 1037 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 1038 if (!PageCgroupUsed(pc))
894bc310 1039 return;
713735b4
JW
1040 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 smp_rmb();
97a6c37b 1042 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1043 /* huge page split is done under lru_lock. so, we have no races. */
1044 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1045 SetPageCgroupAcctLRU(pc);
1046 if (mem_cgroup_is_root(pc->mem_cgroup))
1047 return;
08e552c6
KH
1048 list_add(&pc->lru, &mz->lists[lru]);
1049}
544122e5 1050
08e552c6 1051/*
5a6475a4
KH
1052 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053 * while it's linked to lru because the page may be reused after it's fully
1054 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1056 */
5a6475a4 1057static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1058{
544122e5
KH
1059 unsigned long flags;
1060 struct zone *zone = page_zone(page);
1061 struct page_cgroup *pc = lookup_page_cgroup(page);
1062
5a6475a4
KH
1063 /*
1064 * Doing this check without taking ->lru_lock seems wrong but this
1065 * is safe. Because if page_cgroup's USED bit is unset, the page
1066 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067 * set, the commit after this will fail, anyway.
1068 * This all charge/uncharge is done under some mutual execustion.
1069 * So, we don't need to taking care of changes in USED bit.
1070 */
1071 if (likely(!PageLRU(page)))
1072 return;
1073
544122e5
KH
1074 spin_lock_irqsave(&zone->lru_lock, flags);
1075 /*
1076 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077 * is guarded by lock_page() because the page is SwapCache.
1078 */
1079 if (!PageCgroupUsed(pc))
1080 mem_cgroup_del_lru_list(page, page_lru(page));
1081 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1082}
1083
5a6475a4 1084static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1085{
1086 unsigned long flags;
1087 struct zone *zone = page_zone(page);
1088 struct page_cgroup *pc = lookup_page_cgroup(page);
1089
5a6475a4
KH
1090 /* taking care of that the page is added to LRU while we commit it */
1091 if (likely(!PageLRU(page)))
1092 return;
544122e5
KH
1093 spin_lock_irqsave(&zone->lru_lock, flags);
1094 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1095 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1096 mem_cgroup_add_lru_list(page, page_lru(page));
1097 spin_unlock_irqrestore(&zone->lru_lock, flags);
1098}
1099
1100
08e552c6
KH
1101void mem_cgroup_move_lists(struct page *page,
1102 enum lru_list from, enum lru_list to)
1103{
f8d66542 1104 if (mem_cgroup_disabled())
08e552c6
KH
1105 return;
1106 mem_cgroup_del_lru_list(page, from);
1107 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1108}
1109
3e92041d
MH
1110/*
1111 * Checks whether given mem is same or in the root_mem's
1112 * hierarchy subtree
1113 */
1114static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115 struct mem_cgroup *mem)
1116{
1117 if (root_mem != mem) {
1118 return (root_mem->use_hierarchy &&
1119 css_is_ancestor(&mem->css, &root_mem->css));
1120 }
1121
1122 return true;
1123}
1124
4c4a2214
DR
1125int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1126{
1127 int ret;
0b7f569e 1128 struct mem_cgroup *curr = NULL;
158e0a2d 1129 struct task_struct *p;
4c4a2214 1130
158e0a2d
KH
1131 p = find_lock_task_mm(task);
1132 if (!p)
1133 return 0;
1134 curr = try_get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
0b7f569e
KH
1136 if (!curr)
1137 return 0;
d31f56db
DN
1138 /*
1139 * We should check use_hierarchy of "mem" not "curr". Because checking
1140 * use_hierarchy of "curr" here make this function true if hierarchy is
1141 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142 * hierarchy(even if use_hierarchy is disabled in "mem").
1143 */
3e92041d 1144 ret = mem_cgroup_same_or_subtree(mem, curr);
0b7f569e 1145 css_put(&curr->css);
4c4a2214
DR
1146 return ret;
1147}
1148
c772be93 1149static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1150{
1151 unsigned long active;
1152 unsigned long inactive;
c772be93
KM
1153 unsigned long gb;
1154 unsigned long inactive_ratio;
14797e23 1155
bb2a0de9
KH
1156 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1158
c772be93
KM
1159 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160 if (gb)
1161 inactive_ratio = int_sqrt(10 * gb);
1162 else
1163 inactive_ratio = 1;
1164
1165 if (present_pages) {
1166 present_pages[0] = inactive;
1167 present_pages[1] = active;
1168 }
1169
1170 return inactive_ratio;
1171}
1172
1173int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1174{
1175 unsigned long active;
1176 unsigned long inactive;
1177 unsigned long present_pages[2];
1178 unsigned long inactive_ratio;
1179
1180 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1181
1182 inactive = present_pages[0];
1183 active = present_pages[1];
1184
1185 if (inactive * inactive_ratio < active)
14797e23
KM
1186 return 1;
1187
1188 return 0;
1189}
1190
56e49d21
RR
1191int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1192{
1193 unsigned long active;
1194 unsigned long inactive;
1195
bb2a0de9
KH
1196 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1198
1199 return (active > inactive);
1200}
1201
3e2f41f1
KM
1202struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203 struct zone *zone)
1204{
13d7e3a2 1205 int nid = zone_to_nid(zone);
3e2f41f1
KM
1206 int zid = zone_idx(zone);
1207 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1208
1209 return &mz->reclaim_stat;
1210}
1211
1212struct zone_reclaim_stat *
1213mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1214{
1215 struct page_cgroup *pc;
1216 struct mem_cgroup_per_zone *mz;
1217
1218 if (mem_cgroup_disabled())
1219 return NULL;
1220
1221 pc = lookup_page_cgroup(page);
bd112db8
DN
1222 if (!PageCgroupUsed(pc))
1223 return NULL;
713735b4
JW
1224 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225 smp_rmb();
97a6c37b 1226 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1227 return &mz->reclaim_stat;
1228}
1229
66e1707b
BS
1230unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231 struct list_head *dst,
1232 unsigned long *scanned, int order,
1233 int mode, struct zone *z,
1234 struct mem_cgroup *mem_cont,
4f98a2fe 1235 int active, int file)
66e1707b
BS
1236{
1237 unsigned long nr_taken = 0;
1238 struct page *page;
1239 unsigned long scan;
1240 LIST_HEAD(pc_list);
1241 struct list_head *src;
ff7283fa 1242 struct page_cgroup *pc, *tmp;
13d7e3a2 1243 int nid = zone_to_nid(z);
1ecaab2b
KH
1244 int zid = zone_idx(z);
1245 struct mem_cgroup_per_zone *mz;
b7c46d15 1246 int lru = LRU_FILE * file + active;
2ffebca6 1247 int ret;
66e1707b 1248
cf475ad2 1249 BUG_ON(!mem_cont);
1ecaab2b 1250 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1251 src = &mz->lists[lru];
66e1707b 1252
ff7283fa
KH
1253 scan = 0;
1254 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1255 if (scan >= nr_to_scan)
ff7283fa 1256 break;
08e552c6 1257
52d4b9ac
KH
1258 if (unlikely(!PageCgroupUsed(pc)))
1259 continue;
5564e88b 1260
6b3ae58e 1261 page = lookup_cgroup_page(pc);
5564e88b 1262
436c6541 1263 if (unlikely(!PageLRU(page)))
ff7283fa 1264 continue;
ff7283fa 1265
436c6541 1266 scan++;
2ffebca6
KH
1267 ret = __isolate_lru_page(page, mode, file);
1268 switch (ret) {
1269 case 0:
66e1707b 1270 list_move(&page->lru, dst);
2ffebca6 1271 mem_cgroup_del_lru(page);
2c888cfb 1272 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1273 break;
1274 case -EBUSY:
1275 /* we don't affect global LRU but rotate in our LRU */
1276 mem_cgroup_rotate_lru_list(page, page_lru(page));
1277 break;
1278 default:
1279 break;
66e1707b
BS
1280 }
1281 }
1282
66e1707b 1283 *scanned = scan;
cc8e970c
KM
1284
1285 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286 0, 0, 0, mode);
1287
66e1707b
BS
1288 return nr_taken;
1289}
1290
6d61ef40
BS
1291#define mem_cgroup_from_res_counter(counter, member) \
1292 container_of(counter, struct mem_cgroup, member)
1293
19942822 1294/**
9d11ea9f
JW
1295 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296 * @mem: the memory cgroup
19942822 1297 *
9d11ea9f 1298 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1299 * pages.
19942822 1300 */
7ec99d62 1301static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1302{
9d11ea9f
JW
1303 unsigned long long margin;
1304
1305 margin = res_counter_margin(&mem->res);
1306 if (do_swap_account)
1307 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1308 return margin >> PAGE_SHIFT;
19942822
JW
1309}
1310
1f4c025b 1311int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1312{
1313 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1314
1315 /* root ? */
1316 if (cgrp->parent == NULL)
1317 return vm_swappiness;
1318
bf1ff263 1319 return memcg->swappiness;
a7885eb8
KM
1320}
1321
32047e2a
KH
1322static void mem_cgroup_start_move(struct mem_cgroup *mem)
1323{
1324 int cpu;
1489ebad
KH
1325
1326 get_online_cpus();
1327 spin_lock(&mem->pcp_counter_lock);
1328 for_each_online_cpu(cpu)
32047e2a 1329 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1330 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331 spin_unlock(&mem->pcp_counter_lock);
1332 put_online_cpus();
32047e2a
KH
1333
1334 synchronize_rcu();
1335}
1336
1337static void mem_cgroup_end_move(struct mem_cgroup *mem)
1338{
1339 int cpu;
1340
1341 if (!mem)
1342 return;
1489ebad
KH
1343 get_online_cpus();
1344 spin_lock(&mem->pcp_counter_lock);
1345 for_each_online_cpu(cpu)
32047e2a 1346 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1347 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348 spin_unlock(&mem->pcp_counter_lock);
1349 put_online_cpus();
32047e2a
KH
1350}
1351/*
1352 * 2 routines for checking "mem" is under move_account() or not.
1353 *
1354 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355 * for avoiding race in accounting. If true,
1356 * pc->mem_cgroup may be overwritten.
1357 *
1358 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359 * under hierarchy of moving cgroups. This is for
1360 * waiting at hith-memory prressure caused by "move".
1361 */
1362
1363static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1364{
1365 VM_BUG_ON(!rcu_read_lock_held());
1366 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1367}
4b534334
KH
1368
1369static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1370{
2bd9bb20
KH
1371 struct mem_cgroup *from;
1372 struct mem_cgroup *to;
4b534334 1373 bool ret = false;
2bd9bb20
KH
1374 /*
1375 * Unlike task_move routines, we access mc.to, mc.from not under
1376 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1377 */
1378 spin_lock(&mc.lock);
1379 from = mc.from;
1380 to = mc.to;
1381 if (!from)
1382 goto unlock;
3e92041d
MH
1383
1384 ret = mem_cgroup_same_or_subtree(mem, from)
1385 || mem_cgroup_same_or_subtree(mem, to);
2bd9bb20
KH
1386unlock:
1387 spin_unlock(&mc.lock);
4b534334
KH
1388 return ret;
1389}
1390
1391static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1392{
1393 if (mc.moving_task && current != mc.moving_task) {
1394 if (mem_cgroup_under_move(mem)) {
1395 DEFINE_WAIT(wait);
1396 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397 /* moving charge context might have finished. */
1398 if (mc.moving_task)
1399 schedule();
1400 finish_wait(&mc.waitq, &wait);
1401 return true;
1402 }
1403 }
1404 return false;
1405}
1406
e222432b 1407/**
6a6135b6 1408 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1409 * @memcg: The memory cgroup that went over limit
1410 * @p: Task that is going to be killed
1411 *
1412 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413 * enabled
1414 */
1415void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416{
1417 struct cgroup *task_cgrp;
1418 struct cgroup *mem_cgrp;
1419 /*
1420 * Need a buffer in BSS, can't rely on allocations. The code relies
1421 * on the assumption that OOM is serialized for memory controller.
1422 * If this assumption is broken, revisit this code.
1423 */
1424 static char memcg_name[PATH_MAX];
1425 int ret;
1426
d31f56db 1427 if (!memcg || !p)
e222432b
BS
1428 return;
1429
1430
1431 rcu_read_lock();
1432
1433 mem_cgrp = memcg->css.cgroup;
1434 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1435
1436 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437 if (ret < 0) {
1438 /*
1439 * Unfortunately, we are unable to convert to a useful name
1440 * But we'll still print out the usage information
1441 */
1442 rcu_read_unlock();
1443 goto done;
1444 }
1445 rcu_read_unlock();
1446
1447 printk(KERN_INFO "Task in %s killed", memcg_name);
1448
1449 rcu_read_lock();
1450 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451 if (ret < 0) {
1452 rcu_read_unlock();
1453 goto done;
1454 }
1455 rcu_read_unlock();
1456
1457 /*
1458 * Continues from above, so we don't need an KERN_ level
1459 */
1460 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461done:
1462
1463 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468 "failcnt %llu\n",
1469 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1472}
1473
81d39c20
KH
1474/*
1475 * This function returns the number of memcg under hierarchy tree. Returns
1476 * 1(self count) if no children.
1477 */
1478static int mem_cgroup_count_children(struct mem_cgroup *mem)
1479{
1480 int num = 0;
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
1483 for_each_mem_cgroup_tree(iter, mem)
1484 num++;
81d39c20
KH
1485 return num;
1486}
1487
a63d83f4
DR
1488/*
1489 * Return the memory (and swap, if configured) limit for a memcg.
1490 */
1491u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1492{
1493 u64 limit;
1494 u64 memsw;
1495
f3e8eb70
JW
1496 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497 limit += total_swap_pages << PAGE_SHIFT;
1498
a63d83f4
DR
1499 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1500 /*
1501 * If memsw is finite and limits the amount of swap space available
1502 * to this memcg, return that limit.
1503 */
1504 return min(limit, memsw);
1505}
1506
6d61ef40 1507/*
04046e1a
KH
1508 * Visit the first child (need not be the first child as per the ordering
1509 * of the cgroup list, since we track last_scanned_child) of @mem and use
1510 * that to reclaim free pages from.
1511 */
1512static struct mem_cgroup *
1513mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1514{
1515 struct mem_cgroup *ret = NULL;
1516 struct cgroup_subsys_state *css;
1517 int nextid, found;
1518
1519 if (!root_mem->use_hierarchy) {
1520 css_get(&root_mem->css);
1521 ret = root_mem;
1522 }
1523
1524 while (!ret) {
1525 rcu_read_lock();
1526 nextid = root_mem->last_scanned_child + 1;
1527 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528 &found);
1529 if (css && css_tryget(css))
1530 ret = container_of(css, struct mem_cgroup, css);
1531
1532 rcu_read_unlock();
1533 /* Updates scanning parameter */
04046e1a
KH
1534 if (!css) {
1535 /* this means start scan from ID:1 */
1536 root_mem->last_scanned_child = 0;
1537 } else
1538 root_mem->last_scanned_child = found;
04046e1a
KH
1539 }
1540
1541 return ret;
1542}
1543
4d0c066d
KH
1544/**
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1549 *
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1553 */
1554static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555 int nid, bool noswap)
1556{
bb2a0de9 1557 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1558 return true;
1559 if (noswap || !total_swap_pages)
1560 return false;
bb2a0de9 1561 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1562 return true;
1563 return false;
1564
1565}
889976db
YH
1566#if MAX_NUMNODES > 1
1567
1568/*
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572 *
1573 */
1574static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1575{
1576 int nid;
453a9bf3
KH
1577 /*
1578 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 * pagein/pageout changes since the last update.
1580 */
1581 if (!atomic_read(&mem->numainfo_events))
1582 return;
1583 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1584 return;
1585
889976db
YH
1586 /* make a nodemask where this memcg uses memory from */
1587 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1588
1589 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590
4d0c066d
KH
1591 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592 node_clear(nid, mem->scan_nodes);
889976db 1593 }
453a9bf3
KH
1594
1595 atomic_set(&mem->numainfo_events, 0);
1596 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1597}
1598
1599/*
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1603 *
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1608 *
1609 * Now, we use round-robin. Better algorithm is welcomed.
1610 */
1611int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1612{
1613 int node;
1614
1615 mem_cgroup_may_update_nodemask(mem);
1616 node = mem->last_scanned_node;
1617
1618 node = next_node(node, mem->scan_nodes);
1619 if (node == MAX_NUMNODES)
1620 node = first_node(mem->scan_nodes);
1621 /*
1622 * We call this when we hit limit, not when pages are added to LRU.
1623 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 * memcg is too small and all pages are not on LRU. In that case,
1625 * we use curret node.
1626 */
1627 if (unlikely(node == MAX_NUMNODES))
1628 node = numa_node_id();
1629
1630 mem->last_scanned_node = node;
1631 return node;
1632}
1633
4d0c066d
KH
1634/*
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1639 */
1640bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1641{
1642 int nid;
1643
1644 /*
1645 * quick check...making use of scan_node.
1646 * We can skip unused nodes.
1647 */
1648 if (!nodes_empty(mem->scan_nodes)) {
1649 for (nid = first_node(mem->scan_nodes);
1650 nid < MAX_NUMNODES;
1651 nid = next_node(nid, mem->scan_nodes)) {
1652
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1655 }
1656 }
1657 /*
1658 * Check rest of nodes.
1659 */
1660 for_each_node_state(nid, N_HIGH_MEMORY) {
1661 if (node_isset(nid, mem->scan_nodes))
1662 continue;
1663 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664 return true;
1665 }
1666 return false;
1667}
1668
889976db
YH
1669#else
1670int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1671{
1672 return 0;
1673}
4d0c066d
KH
1674
1675bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1676{
1677 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1678}
889976db
YH
1679#endif
1680
82f9d486
KH
1681static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682 struct memcg_scanrecord *rec)
1683{
1684
1685 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686 stats[SCAN_ANON] += rec->nr_scanned[0];
1687 stats[SCAN_FILE] += rec->nr_scanned[1];
1688
1689 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690 stats[ROTATE_ANON] += rec->nr_rotated[0];
1691 stats[ROTATE_FILE] += rec->nr_rotated[1];
1692
1693 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694 stats[FREED_ANON] += rec->nr_freed[0];
1695 stats[FREED_FILE] += rec->nr_freed[1];
1696
1697 stats[ELAPSED] += rec->elapsed;
1698}
1699
1700static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1701{
1702 struct mem_cgroup *mem;
1703 int context = rec->context;
1704
1705 if (context >= NR_SCAN_CONTEXT)
1706 return;
1707
1708 mem = rec->mem;
1709 spin_lock(&mem->scanstat.lock);
1710 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711 spin_unlock(&mem->scanstat.lock);
1712
1713 mem = rec->root;
1714 spin_lock(&mem->scanstat.lock);
1715 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716 spin_unlock(&mem->scanstat.lock);
1717}
1718
04046e1a
KH
1719/*
1720 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721 * we reclaimed from, so that we don't end up penalizing one child extensively
1722 * based on its position in the children list.
6d61ef40
BS
1723 *
1724 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1725 *
1726 * We give up and return to the caller when we visit root_mem twice.
1727 * (other groups can be removed while we're walking....)
81d39c20
KH
1728 *
1729 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1730 */
1731static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1732 struct zone *zone,
75822b44 1733 gfp_t gfp_mask,
0ae5e89c
YH
1734 unsigned long reclaim_options,
1735 unsigned long *total_scanned)
6d61ef40 1736{
04046e1a
KH
1737 struct mem_cgroup *victim;
1738 int ret, total = 0;
1739 int loop = 0;
75822b44
BS
1740 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1742 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
82f9d486 1743 struct memcg_scanrecord rec;
9d11ea9f 1744 unsigned long excess;
82f9d486 1745 unsigned long scanned;
9d11ea9f
JW
1746
1747 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1748
22a668d7 1749 /* If memsw_is_minimum==1, swap-out is of-no-use. */
108b6a78 1750 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
22a668d7
KH
1751 noswap = true;
1752
82f9d486
KH
1753 if (shrink)
1754 rec.context = SCAN_BY_SHRINK;
1755 else if (check_soft)
1756 rec.context = SCAN_BY_SYSTEM;
1757 else
1758 rec.context = SCAN_BY_LIMIT;
1759
1760 rec.root = root_mem;
1761
4e416953 1762 while (1) {
04046e1a 1763 victim = mem_cgroup_select_victim(root_mem);
4e416953 1764 if (victim == root_mem) {
04046e1a 1765 loop++;
fbc29a25
KH
1766 /*
1767 * We are not draining per cpu cached charges during
1768 * soft limit reclaim because global reclaim doesn't
1769 * care about charges. It tries to free some memory and
1770 * charges will not give any.
1771 */
1772 if (!check_soft && loop >= 1)
26fe6168 1773 drain_all_stock_async(root_mem);
4e416953
BS
1774 if (loop >= 2) {
1775 /*
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1779 */
1780 if (!check_soft || !total) {
1781 css_put(&victim->css);
1782 break;
1783 }
1784 /*
25985edc 1785 * We want to do more targeted reclaim.
4e416953
BS
1786 * excess >> 2 is not to excessive so as to
1787 * reclaim too much, nor too less that we keep
1788 * coming back to reclaim from this cgroup
1789 */
1790 if (total >= (excess >> 2) ||
1791 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792 css_put(&victim->css);
1793 break;
1794 }
1795 }
1796 }
4d0c066d 1797 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1798 /* this cgroup's local usage == 0 */
1799 css_put(&victim->css);
6d61ef40
BS
1800 continue;
1801 }
82f9d486
KH
1802 rec.mem = victim;
1803 rec.nr_scanned[0] = 0;
1804 rec.nr_scanned[1] = 0;
1805 rec.nr_rotated[0] = 0;
1806 rec.nr_rotated[1] = 0;
1807 rec.nr_freed[0] = 0;
1808 rec.nr_freed[1] = 0;
1809 rec.elapsed = 0;
04046e1a 1810 /* we use swappiness of local cgroup */
0ae5e89c 1811 if (check_soft) {
4e416953 1812 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
82f9d486
KH
1813 noswap, zone, &rec, &scanned);
1814 *total_scanned += scanned;
0ae5e89c 1815 } else
4e416953 1816 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
82f9d486
KH
1817 noswap, &rec);
1818 mem_cgroup_record_scanstat(&rec);
04046e1a 1819 css_put(&victim->css);
81d39c20
KH
1820 /*
1821 * At shrinking usage, we can't check we should stop here or
1822 * reclaim more. It's depends on callers. last_scanned_child
1823 * will work enough for keeping fairness under tree.
1824 */
1825 if (shrink)
1826 return ret;
04046e1a 1827 total += ret;
4e416953 1828 if (check_soft) {
9d11ea9f 1829 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1830 return total;
9d11ea9f 1831 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1832 return total;
6d61ef40 1833 }
04046e1a 1834 return total;
6d61ef40
BS
1835}
1836
867578cb
KH
1837/*
1838 * Check OOM-Killer is already running under our hierarchy.
1839 * If someone is running, return false.
1af8efe9 1840 * Has to be called with memcg_oom_lock
867578cb
KH
1841 */
1842static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1843{
79dfdacc
MH
1844 struct mem_cgroup *iter, *failed = NULL;
1845 bool cond = true;
a636b327 1846
79dfdacc 1847 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
23751be0 1848 if (iter->oom_lock) {
79dfdacc
MH
1849 /*
1850 * this subtree of our hierarchy is already locked
1851 * so we cannot give a lock.
1852 */
79dfdacc
MH
1853 failed = iter;
1854 cond = false;
23751be0
JW
1855 } else
1856 iter->oom_lock = true;
7d74b06f 1857 }
867578cb 1858
79dfdacc 1859 if (!failed)
23751be0 1860 return true;
79dfdacc
MH
1861
1862 /*
1863 * OK, we failed to lock the whole subtree so we have to clean up
1864 * what we set up to the failing subtree
1865 */
1866 cond = true;
1867 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1868 if (iter == failed) {
1869 cond = false;
1870 continue;
1871 }
1872 iter->oom_lock = false;
1873 }
23751be0 1874 return false;
a636b327 1875}
0b7f569e 1876
79dfdacc 1877/*
1af8efe9 1878 * Has to be called with memcg_oom_lock
79dfdacc 1879 */
7d74b06f 1880static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1881{
7d74b06f
KH
1882 struct mem_cgroup *iter;
1883
79dfdacc
MH
1884 for_each_mem_cgroup_tree(iter, mem)
1885 iter->oom_lock = false;
1886 return 0;
1887}
1888
1889static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1890{
1891 struct mem_cgroup *iter;
1892
1893 for_each_mem_cgroup_tree(iter, mem)
1894 atomic_inc(&iter->under_oom);
1895}
1896
1897static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1898{
1899 struct mem_cgroup *iter;
1900
867578cb
KH
1901 /*
1902 * When a new child is created while the hierarchy is under oom,
1903 * mem_cgroup_oom_lock() may not be called. We have to use
1904 * atomic_add_unless() here.
1905 */
7d74b06f 1906 for_each_mem_cgroup_tree(iter, mem)
79dfdacc 1907 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1908}
1909
1af8efe9 1910static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1911static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1912
dc98df5a
KH
1913struct oom_wait_info {
1914 struct mem_cgroup *mem;
1915 wait_queue_t wait;
1916};
1917
1918static int memcg_oom_wake_function(wait_queue_t *wait,
1919 unsigned mode, int sync, void *arg)
1920{
3e92041d
MH
1921 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1922 *oom_wait_mem;
dc98df5a
KH
1923 struct oom_wait_info *oom_wait_info;
1924
1925 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
3e92041d 1926 oom_wait_mem = oom_wait_info->mem;
dc98df5a 1927
dc98df5a
KH
1928 /*
1929 * Both of oom_wait_info->mem and wake_mem are stable under us.
1930 * Then we can use css_is_ancestor without taking care of RCU.
1931 */
3e92041d
MH
1932 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1933 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
dc98df5a 1934 return 0;
dc98df5a
KH
1935 return autoremove_wake_function(wait, mode, sync, arg);
1936}
1937
1938static void memcg_wakeup_oom(struct mem_cgroup *mem)
1939{
1940 /* for filtering, pass "mem" as argument. */
1941 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1942}
1943
3c11ecf4
KH
1944static void memcg_oom_recover(struct mem_cgroup *mem)
1945{
79dfdacc 1946 if (mem && atomic_read(&mem->under_oom))
3c11ecf4
KH
1947 memcg_wakeup_oom(mem);
1948}
1949
867578cb
KH
1950/*
1951 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1952 */
1953bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1954{
dc98df5a 1955 struct oom_wait_info owait;
3c11ecf4 1956 bool locked, need_to_kill;
867578cb 1957
dc98df5a
KH
1958 owait.mem = mem;
1959 owait.wait.flags = 0;
1960 owait.wait.func = memcg_oom_wake_function;
1961 owait.wait.private = current;
1962 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1963 need_to_kill = true;
79dfdacc
MH
1964 mem_cgroup_mark_under_oom(mem);
1965
867578cb 1966 /* At first, try to OOM lock hierarchy under mem.*/
1af8efe9 1967 spin_lock(&memcg_oom_lock);
867578cb
KH
1968 locked = mem_cgroup_oom_lock(mem);
1969 /*
1970 * Even if signal_pending(), we can't quit charge() loop without
1971 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1972 * under OOM is always welcomed, use TASK_KILLABLE here.
1973 */
3c11ecf4
KH
1974 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1975 if (!locked || mem->oom_kill_disable)
1976 need_to_kill = false;
1977 if (locked)
9490ff27 1978 mem_cgroup_oom_notify(mem);
1af8efe9 1979 spin_unlock(&memcg_oom_lock);
867578cb 1980
3c11ecf4
KH
1981 if (need_to_kill) {
1982 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1983 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1984 } else {
867578cb 1985 schedule();
dc98df5a 1986 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1987 }
1af8efe9 1988 spin_lock(&memcg_oom_lock);
79dfdacc
MH
1989 if (locked)
1990 mem_cgroup_oom_unlock(mem);
dc98df5a 1991 memcg_wakeup_oom(mem);
1af8efe9 1992 spin_unlock(&memcg_oom_lock);
867578cb 1993
79dfdacc
MH
1994 mem_cgroup_unmark_under_oom(mem);
1995
867578cb
KH
1996 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1997 return false;
1998 /* Give chance to dying process */
1999 schedule_timeout(1);
2000 return true;
0b7f569e
KH
2001}
2002
d69b042f
BS
2003/*
2004 * Currently used to update mapped file statistics, but the routine can be
2005 * generalized to update other statistics as well.
32047e2a
KH
2006 *
2007 * Notes: Race condition
2008 *
2009 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2010 * it tends to be costly. But considering some conditions, we doesn't need
2011 * to do so _always_.
2012 *
2013 * Considering "charge", lock_page_cgroup() is not required because all
2014 * file-stat operations happen after a page is attached to radix-tree. There
2015 * are no race with "charge".
2016 *
2017 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2018 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2019 * if there are race with "uncharge". Statistics itself is properly handled
2020 * by flags.
2021 *
2022 * Considering "move", this is an only case we see a race. To make the race
2023 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2024 * possibility of race condition. If there is, we take a lock.
d69b042f 2025 */
26174efd 2026
2a7106f2
GT
2027void mem_cgroup_update_page_stat(struct page *page,
2028 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
2029{
2030 struct mem_cgroup *mem;
32047e2a
KH
2031 struct page_cgroup *pc = lookup_page_cgroup(page);
2032 bool need_unlock = false;
dbd4ea78 2033 unsigned long uninitialized_var(flags);
d69b042f 2034
d69b042f
BS
2035 if (unlikely(!pc))
2036 return;
2037
32047e2a 2038 rcu_read_lock();
d69b042f 2039 mem = pc->mem_cgroup;
32047e2a
KH
2040 if (unlikely(!mem || !PageCgroupUsed(pc)))
2041 goto out;
2042 /* pc->mem_cgroup is unstable ? */
ca3e0214 2043 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 2044 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2045 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
2046 need_unlock = true;
2047 mem = pc->mem_cgroup;
2048 if (!mem || !PageCgroupUsed(pc))
2049 goto out;
2050 }
26174efd 2051
26174efd 2052 switch (idx) {
2a7106f2 2053 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2054 if (val > 0)
2055 SetPageCgroupFileMapped(pc);
2056 else if (!page_mapped(page))
0c270f8f 2057 ClearPageCgroupFileMapped(pc);
2a7106f2 2058 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2059 break;
2060 default:
2061 BUG();
8725d541 2062 }
d69b042f 2063
2a7106f2
GT
2064 this_cpu_add(mem->stat->count[idx], val);
2065
32047e2a
KH
2066out:
2067 if (unlikely(need_unlock))
dbd4ea78 2068 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2069 rcu_read_unlock();
2070 return;
d69b042f 2071}
2a7106f2 2072EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2073
cdec2e42
KH
2074/*
2075 * size of first charge trial. "32" comes from vmscan.c's magic value.
2076 * TODO: maybe necessary to use big numbers in big irons.
2077 */
7ec99d62 2078#define CHARGE_BATCH 32U
cdec2e42
KH
2079struct memcg_stock_pcp {
2080 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2081 unsigned int nr_pages;
cdec2e42 2082 struct work_struct work;
26fe6168
KH
2083 unsigned long flags;
2084#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2085};
2086static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2087static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2088
2089/*
11c9ea4e 2090 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2091 * from local stock and true is returned. If the stock is 0 or charges from a
2092 * cgroup which is not current target, returns false. This stock will be
2093 * refilled.
2094 */
2095static bool consume_stock(struct mem_cgroup *mem)
2096{
2097 struct memcg_stock_pcp *stock;
2098 bool ret = true;
2099
2100 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
2101 if (mem == stock->cached && stock->nr_pages)
2102 stock->nr_pages--;
cdec2e42
KH
2103 else /* need to call res_counter_charge */
2104 ret = false;
2105 put_cpu_var(memcg_stock);
2106 return ret;
2107}
2108
2109/*
2110 * Returns stocks cached in percpu to res_counter and reset cached information.
2111 */
2112static void drain_stock(struct memcg_stock_pcp *stock)
2113{
2114 struct mem_cgroup *old = stock->cached;
2115
11c9ea4e
JW
2116 if (stock->nr_pages) {
2117 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2118
2119 res_counter_uncharge(&old->res, bytes);
cdec2e42 2120 if (do_swap_account)
11c9ea4e
JW
2121 res_counter_uncharge(&old->memsw, bytes);
2122 stock->nr_pages = 0;
cdec2e42
KH
2123 }
2124 stock->cached = NULL;
cdec2e42
KH
2125}
2126
2127/*
2128 * This must be called under preempt disabled or must be called by
2129 * a thread which is pinned to local cpu.
2130 */
2131static void drain_local_stock(struct work_struct *dummy)
2132{
2133 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2134 drain_stock(stock);
26fe6168 2135 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2136}
2137
2138/*
2139 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2140 * This will be consumed by consume_stock() function, later.
cdec2e42 2141 */
11c9ea4e 2142static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
2143{
2144 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2145
2146 if (stock->cached != mem) { /* reset if necessary */
2147 drain_stock(stock);
2148 stock->cached = mem;
2149 }
11c9ea4e 2150 stock->nr_pages += nr_pages;
cdec2e42
KH
2151 put_cpu_var(memcg_stock);
2152}
2153
2154/*
d38144b7
MH
2155 * Drains all per-CPU charge caches for given root_mem resp. subtree
2156 * of the hierarchy under it. sync flag says whether we should block
2157 * until the work is done.
cdec2e42 2158 */
d38144b7 2159static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
cdec2e42 2160{
26fe6168 2161 int cpu, curcpu;
d38144b7 2162
cdec2e42 2163 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2164 get_online_cpus();
5af12d0e 2165 curcpu = get_cpu();
cdec2e42
KH
2166 for_each_online_cpu(cpu) {
2167 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2168 struct mem_cgroup *mem;
2169
26fe6168 2170 mem = stock->cached;
d1a05b69 2171 if (!mem || !stock->nr_pages)
26fe6168 2172 continue;
3e92041d
MH
2173 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2174 continue;
d1a05b69
MH
2175 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2176 if (cpu == curcpu)
2177 drain_local_stock(&stock->work);
2178 else
2179 schedule_work_on(cpu, &stock->work);
2180 }
cdec2e42 2181 }
5af12d0e 2182 put_cpu();
d38144b7
MH
2183
2184 if (!sync)
2185 goto out;
2186
2187 for_each_online_cpu(cpu) {
2188 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2189 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2190 flush_work(&stock->work);
2191 }
2192out:
cdec2e42 2193 put_online_cpus();
d38144b7
MH
2194}
2195
2196/*
2197 * Tries to drain stocked charges in other cpus. This function is asynchronous
2198 * and just put a work per cpu for draining localy on each cpu. Caller can
2199 * expects some charges will be back to res_counter later but cannot wait for
2200 * it.
2201 */
2202static void drain_all_stock_async(struct mem_cgroup *root_mem)
2203{
9f50fad6
MH
2204 /*
2205 * If someone calls draining, avoid adding more kworker runs.
2206 */
2207 if (!mutex_trylock(&percpu_charge_mutex))
2208 return;
d38144b7 2209 drain_all_stock(root_mem, false);
9f50fad6 2210 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2211}
2212
2213/* This is a synchronous drain interface. */
d38144b7 2214static void drain_all_stock_sync(struct mem_cgroup *root_mem)
cdec2e42
KH
2215{
2216 /* called when force_empty is called */
9f50fad6 2217 mutex_lock(&percpu_charge_mutex);
d38144b7 2218 drain_all_stock(root_mem, true);
9f50fad6 2219 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2220}
2221
711d3d2c
KH
2222/*
2223 * This function drains percpu counter value from DEAD cpu and
2224 * move it to local cpu. Note that this function can be preempted.
2225 */
2226static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2227{
2228 int i;
2229
2230 spin_lock(&mem->pcp_counter_lock);
2231 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2232 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2233
2234 per_cpu(mem->stat->count[i], cpu) = 0;
2235 mem->nocpu_base.count[i] += x;
2236 }
e9f8974f
JW
2237 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2238 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2239
2240 per_cpu(mem->stat->events[i], cpu) = 0;
2241 mem->nocpu_base.events[i] += x;
2242 }
1489ebad
KH
2243 /* need to clear ON_MOVE value, works as a kind of lock. */
2244 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2245 spin_unlock(&mem->pcp_counter_lock);
2246}
2247
2248static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2249{
2250 int idx = MEM_CGROUP_ON_MOVE;
2251
2252 spin_lock(&mem->pcp_counter_lock);
2253 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2254 spin_unlock(&mem->pcp_counter_lock);
2255}
2256
2257static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2258 unsigned long action,
2259 void *hcpu)
2260{
2261 int cpu = (unsigned long)hcpu;
2262 struct memcg_stock_pcp *stock;
711d3d2c 2263 struct mem_cgroup *iter;
cdec2e42 2264
1489ebad
KH
2265 if ((action == CPU_ONLINE)) {
2266 for_each_mem_cgroup_all(iter)
2267 synchronize_mem_cgroup_on_move(iter, cpu);
2268 return NOTIFY_OK;
2269 }
2270
711d3d2c 2271 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2272 return NOTIFY_OK;
711d3d2c
KH
2273
2274 for_each_mem_cgroup_all(iter)
2275 mem_cgroup_drain_pcp_counter(iter, cpu);
2276
cdec2e42
KH
2277 stock = &per_cpu(memcg_stock, cpu);
2278 drain_stock(stock);
2279 return NOTIFY_OK;
2280}
2281
4b534334
KH
2282
2283/* See __mem_cgroup_try_charge() for details */
2284enum {
2285 CHARGE_OK, /* success */
2286 CHARGE_RETRY, /* need to retry but retry is not bad */
2287 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2288 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2289 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2290};
2291
7ec99d62
JW
2292static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2293 unsigned int nr_pages, bool oom_check)
4b534334 2294{
7ec99d62 2295 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2296 struct mem_cgroup *mem_over_limit;
2297 struct res_counter *fail_res;
2298 unsigned long flags = 0;
2299 int ret;
2300
2301 ret = res_counter_charge(&mem->res, csize, &fail_res);
2302
2303 if (likely(!ret)) {
2304 if (!do_swap_account)
2305 return CHARGE_OK;
2306 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2307 if (likely(!ret))
2308 return CHARGE_OK;
2309
01c88e2d 2310 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2311 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2312 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2313 } else
2314 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2315 /*
7ec99d62
JW
2316 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2317 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2318 *
2319 * Never reclaim on behalf of optional batching, retry with a
2320 * single page instead.
2321 */
7ec99d62 2322 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2323 return CHARGE_RETRY;
2324
2325 if (!(gfp_mask & __GFP_WAIT))
2326 return CHARGE_WOULDBLOCK;
2327
2328 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2329 gfp_mask, flags, NULL);
7ec99d62 2330 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2331 return CHARGE_RETRY;
4b534334 2332 /*
19942822
JW
2333 * Even though the limit is exceeded at this point, reclaim
2334 * may have been able to free some pages. Retry the charge
2335 * before killing the task.
2336 *
2337 * Only for regular pages, though: huge pages are rather
2338 * unlikely to succeed so close to the limit, and we fall back
2339 * to regular pages anyway in case of failure.
4b534334 2340 */
7ec99d62 2341 if (nr_pages == 1 && ret)
4b534334
KH
2342 return CHARGE_RETRY;
2343
2344 /*
2345 * At task move, charge accounts can be doubly counted. So, it's
2346 * better to wait until the end of task_move if something is going on.
2347 */
2348 if (mem_cgroup_wait_acct_move(mem_over_limit))
2349 return CHARGE_RETRY;
2350
2351 /* If we don't need to call oom-killer at el, return immediately */
2352 if (!oom_check)
2353 return CHARGE_NOMEM;
2354 /* check OOM */
2355 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2356 return CHARGE_OOM_DIE;
2357
2358 return CHARGE_RETRY;
2359}
2360
f817ed48
KH
2361/*
2362 * Unlike exported interface, "oom" parameter is added. if oom==true,
2363 * oom-killer can be invoked.
8a9f3ccd 2364 */
f817ed48 2365static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2366 gfp_t gfp_mask,
7ec99d62
JW
2367 unsigned int nr_pages,
2368 struct mem_cgroup **memcg,
2369 bool oom)
8a9f3ccd 2370{
7ec99d62 2371 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2372 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2373 struct mem_cgroup *mem = NULL;
2374 int ret;
a636b327 2375
867578cb
KH
2376 /*
2377 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2378 * in system level. So, allow to go ahead dying process in addition to
2379 * MEMDIE process.
2380 */
2381 if (unlikely(test_thread_flag(TIF_MEMDIE)
2382 || fatal_signal_pending(current)))
2383 goto bypass;
a636b327 2384
8a9f3ccd 2385 /*
3be91277
HD
2386 * We always charge the cgroup the mm_struct belongs to.
2387 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2388 * thread group leader migrates. It's possible that mm is not
2389 * set, if so charge the init_mm (happens for pagecache usage).
2390 */
f75ca962
KH
2391 if (!*memcg && !mm)
2392 goto bypass;
2393again:
2394 if (*memcg) { /* css should be a valid one */
4b534334 2395 mem = *memcg;
f75ca962
KH
2396 VM_BUG_ON(css_is_removed(&mem->css));
2397 if (mem_cgroup_is_root(mem))
2398 goto done;
7ec99d62 2399 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2400 goto done;
4b534334
KH
2401 css_get(&mem->css);
2402 } else {
f75ca962 2403 struct task_struct *p;
54595fe2 2404
f75ca962
KH
2405 rcu_read_lock();
2406 p = rcu_dereference(mm->owner);
f75ca962 2407 /*
ebb76ce1
KH
2408 * Because we don't have task_lock(), "p" can exit.
2409 * In that case, "mem" can point to root or p can be NULL with
2410 * race with swapoff. Then, we have small risk of mis-accouning.
2411 * But such kind of mis-account by race always happens because
2412 * we don't have cgroup_mutex(). It's overkill and we allo that
2413 * small race, here.
2414 * (*) swapoff at el will charge against mm-struct not against
2415 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2416 */
2417 mem = mem_cgroup_from_task(p);
ebb76ce1 2418 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2419 rcu_read_unlock();
2420 goto done;
2421 }
7ec99d62 2422 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2423 /*
2424 * It seems dagerous to access memcg without css_get().
2425 * But considering how consume_stok works, it's not
2426 * necessary. If consume_stock success, some charges
2427 * from this memcg are cached on this cpu. So, we
2428 * don't need to call css_get()/css_tryget() before
2429 * calling consume_stock().
2430 */
2431 rcu_read_unlock();
2432 goto done;
2433 }
2434 /* after here, we may be blocked. we need to get refcnt */
2435 if (!css_tryget(&mem->css)) {
2436 rcu_read_unlock();
2437 goto again;
2438 }
2439 rcu_read_unlock();
2440 }
8a9f3ccd 2441
4b534334
KH
2442 do {
2443 bool oom_check;
7a81b88c 2444
4b534334 2445 /* If killed, bypass charge */
f75ca962
KH
2446 if (fatal_signal_pending(current)) {
2447 css_put(&mem->css);
4b534334 2448 goto bypass;
f75ca962 2449 }
6d61ef40 2450
4b534334
KH
2451 oom_check = false;
2452 if (oom && !nr_oom_retries) {
2453 oom_check = true;
2454 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2455 }
66e1707b 2456
7ec99d62 2457 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2458 switch (ret) {
2459 case CHARGE_OK:
2460 break;
2461 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2462 batch = nr_pages;
f75ca962
KH
2463 css_put(&mem->css);
2464 mem = NULL;
2465 goto again;
4b534334 2466 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2467 css_put(&mem->css);
4b534334
KH
2468 goto nomem;
2469 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2470 if (!oom) {
2471 css_put(&mem->css);
867578cb 2472 goto nomem;
f75ca962 2473 }
4b534334
KH
2474 /* If oom, we never return -ENOMEM */
2475 nr_oom_retries--;
2476 break;
2477 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2478 css_put(&mem->css);
867578cb 2479 goto bypass;
66e1707b 2480 }
4b534334
KH
2481 } while (ret != CHARGE_OK);
2482
7ec99d62
JW
2483 if (batch > nr_pages)
2484 refill_stock(mem, batch - nr_pages);
f75ca962 2485 css_put(&mem->css);
0c3e73e8 2486done:
f75ca962 2487 *memcg = mem;
7a81b88c
KH
2488 return 0;
2489nomem:
f75ca962 2490 *memcg = NULL;
7a81b88c 2491 return -ENOMEM;
867578cb
KH
2492bypass:
2493 *memcg = NULL;
2494 return 0;
7a81b88c 2495}
8a9f3ccd 2496
a3032a2c
DN
2497/*
2498 * Somemtimes we have to undo a charge we got by try_charge().
2499 * This function is for that and do uncharge, put css's refcnt.
2500 * gotten by try_charge().
2501 */
854ffa8d 2502static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2503 unsigned int nr_pages)
a3032a2c
DN
2504{
2505 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2506 unsigned long bytes = nr_pages * PAGE_SIZE;
2507
2508 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2509 if (do_swap_account)
e7018b8d 2510 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2511 }
854ffa8d
DN
2512}
2513
a3b2d692
KH
2514/*
2515 * A helper function to get mem_cgroup from ID. must be called under
2516 * rcu_read_lock(). The caller must check css_is_removed() or some if
2517 * it's concern. (dropping refcnt from swap can be called against removed
2518 * memcg.)
2519 */
2520static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2521{
2522 struct cgroup_subsys_state *css;
2523
2524 /* ID 0 is unused ID */
2525 if (!id)
2526 return NULL;
2527 css = css_lookup(&mem_cgroup_subsys, id);
2528 if (!css)
2529 return NULL;
2530 return container_of(css, struct mem_cgroup, css);
2531}
2532
e42d9d5d 2533struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2534{
e42d9d5d 2535 struct mem_cgroup *mem = NULL;
3c776e64 2536 struct page_cgroup *pc;
a3b2d692 2537 unsigned short id;
b5a84319
KH
2538 swp_entry_t ent;
2539
3c776e64
DN
2540 VM_BUG_ON(!PageLocked(page));
2541
3c776e64 2542 pc = lookup_page_cgroup(page);
c0bd3f63 2543 lock_page_cgroup(pc);
a3b2d692 2544 if (PageCgroupUsed(pc)) {
3c776e64 2545 mem = pc->mem_cgroup;
a3b2d692
KH
2546 if (mem && !css_tryget(&mem->css))
2547 mem = NULL;
e42d9d5d 2548 } else if (PageSwapCache(page)) {
3c776e64 2549 ent.val = page_private(page);
a3b2d692
KH
2550 id = lookup_swap_cgroup(ent);
2551 rcu_read_lock();
2552 mem = mem_cgroup_lookup(id);
2553 if (mem && !css_tryget(&mem->css))
2554 mem = NULL;
2555 rcu_read_unlock();
3c776e64 2556 }
c0bd3f63 2557 unlock_page_cgroup(pc);
b5a84319
KH
2558 return mem;
2559}
2560
ca3e0214 2561static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2562 struct page *page,
7ec99d62 2563 unsigned int nr_pages,
ca3e0214 2564 struct page_cgroup *pc,
7ec99d62 2565 enum charge_type ctype)
7a81b88c 2566{
ca3e0214
KH
2567 lock_page_cgroup(pc);
2568 if (unlikely(PageCgroupUsed(pc))) {
2569 unlock_page_cgroup(pc);
e7018b8d 2570 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2571 return;
2572 }
2573 /*
2574 * we don't need page_cgroup_lock about tail pages, becase they are not
2575 * accessed by any other context at this point.
2576 */
8a9f3ccd 2577 pc->mem_cgroup = mem;
261fb61a
KH
2578 /*
2579 * We access a page_cgroup asynchronously without lock_page_cgroup().
2580 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2581 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2582 * before USED bit, we need memory barrier here.
2583 * See mem_cgroup_add_lru_list(), etc.
2584 */
08e552c6 2585 smp_wmb();
4b3bde4c
BS
2586 switch (ctype) {
2587 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2588 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2589 SetPageCgroupCache(pc);
2590 SetPageCgroupUsed(pc);
2591 break;
2592 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2593 ClearPageCgroupCache(pc);
2594 SetPageCgroupUsed(pc);
2595 break;
2596 default:
2597 break;
2598 }
3be91277 2599
ca3e0214 2600 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2601 unlock_page_cgroup(pc);
430e4863
KH
2602 /*
2603 * "charge_statistics" updated event counter. Then, check it.
2604 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2605 * if they exceeds softlimit.
2606 */
5564e88b 2607 memcg_check_events(mem, page);
7a81b88c 2608}
66e1707b 2609
ca3e0214
KH
2610#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2611
2612#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2613 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2614/*
2615 * Because tail pages are not marked as "used", set it. We're under
2616 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2617 */
2618void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2619{
2620 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2621 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2622 unsigned long flags;
2623
3d37c4a9
KH
2624 if (mem_cgroup_disabled())
2625 return;
ca3e0214 2626 /*
ece35ca8 2627 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2628 * page state accounting.
2629 */
2630 move_lock_page_cgroup(head_pc, &flags);
2631
2632 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2633 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2634 if (PageCgroupAcctLRU(head_pc)) {
2635 enum lru_list lru;
2636 struct mem_cgroup_per_zone *mz;
2637
2638 /*
2639 * LRU flags cannot be copied because we need to add tail
2640 *.page to LRU by generic call and our hook will be called.
2641 * We hold lru_lock, then, reduce counter directly.
2642 */
2643 lru = page_lru(head);
97a6c37b 2644 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2645 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2646 }
ca3e0214
KH
2647 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2648 move_unlock_page_cgroup(head_pc, &flags);
2649}
2650#endif
2651
f817ed48 2652/**
de3638d9 2653 * mem_cgroup_move_account - move account of the page
5564e88b 2654 * @page: the page
7ec99d62 2655 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2656 * @pc: page_cgroup of the page.
2657 * @from: mem_cgroup which the page is moved from.
2658 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2659 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2660 *
2661 * The caller must confirm following.
08e552c6 2662 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2663 * - compound_lock is held when nr_pages > 1
f817ed48 2664 *
854ffa8d 2665 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2666 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2667 * true, this function does "uncharge" from old cgroup, but it doesn't if
2668 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2669 */
7ec99d62
JW
2670static int mem_cgroup_move_account(struct page *page,
2671 unsigned int nr_pages,
2672 struct page_cgroup *pc,
2673 struct mem_cgroup *from,
2674 struct mem_cgroup *to,
2675 bool uncharge)
f817ed48 2676{
de3638d9
JW
2677 unsigned long flags;
2678 int ret;
987eba66 2679
f817ed48 2680 VM_BUG_ON(from == to);
5564e88b 2681 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2682 /*
2683 * The page is isolated from LRU. So, collapse function
2684 * will not handle this page. But page splitting can happen.
2685 * Do this check under compound_page_lock(). The caller should
2686 * hold it.
2687 */
2688 ret = -EBUSY;
7ec99d62 2689 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2690 goto out;
2691
2692 lock_page_cgroup(pc);
2693
2694 ret = -EINVAL;
2695 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2696 goto unlock;
2697
2698 move_lock_page_cgroup(pc, &flags);
f817ed48 2699
8725d541 2700 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2701 /* Update mapped_file data for mem_cgroup */
2702 preempt_disable();
2703 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2704 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2705 preempt_enable();
d69b042f 2706 }
987eba66 2707 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2708 if (uncharge)
2709 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2710 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2711
854ffa8d 2712 /* caller should have done css_get */
08e552c6 2713 pc->mem_cgroup = to;
987eba66 2714 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2715 /*
2716 * We charges against "to" which may not have any tasks. Then, "to"
2717 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2718 * this function is just force_empty() and move charge, so it's
25985edc 2719 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2720 * status here.
88703267 2721 */
de3638d9
JW
2722 move_unlock_page_cgroup(pc, &flags);
2723 ret = 0;
2724unlock:
57f9fd7d 2725 unlock_page_cgroup(pc);
d2265e6f
KH
2726 /*
2727 * check events
2728 */
5564e88b
JW
2729 memcg_check_events(to, page);
2730 memcg_check_events(from, page);
de3638d9 2731out:
f817ed48
KH
2732 return ret;
2733}
2734
2735/*
2736 * move charges to its parent.
2737 */
2738
5564e88b
JW
2739static int mem_cgroup_move_parent(struct page *page,
2740 struct page_cgroup *pc,
f817ed48
KH
2741 struct mem_cgroup *child,
2742 gfp_t gfp_mask)
2743{
2744 struct cgroup *cg = child->css.cgroup;
2745 struct cgroup *pcg = cg->parent;
2746 struct mem_cgroup *parent;
7ec99d62 2747 unsigned int nr_pages;
4be4489f 2748 unsigned long uninitialized_var(flags);
f817ed48
KH
2749 int ret;
2750
2751 /* Is ROOT ? */
2752 if (!pcg)
2753 return -EINVAL;
2754
57f9fd7d
DN
2755 ret = -EBUSY;
2756 if (!get_page_unless_zero(page))
2757 goto out;
2758 if (isolate_lru_page(page))
2759 goto put;
52dbb905 2760
7ec99d62 2761 nr_pages = hpage_nr_pages(page);
08e552c6 2762
f817ed48 2763 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2764 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2765 if (ret || !parent)
57f9fd7d 2766 goto put_back;
f817ed48 2767
7ec99d62 2768 if (nr_pages > 1)
987eba66
KH
2769 flags = compound_lock_irqsave(page);
2770
7ec99d62 2771 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2772 if (ret)
7ec99d62 2773 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2774
7ec99d62 2775 if (nr_pages > 1)
987eba66 2776 compound_unlock_irqrestore(page, flags);
8dba474f 2777put_back:
08e552c6 2778 putback_lru_page(page);
57f9fd7d 2779put:
40d58138 2780 put_page(page);
57f9fd7d 2781out:
f817ed48
KH
2782 return ret;
2783}
2784
7a81b88c
KH
2785/*
2786 * Charge the memory controller for page usage.
2787 * Return
2788 * 0 if the charge was successful
2789 * < 0 if the cgroup is over its limit
2790 */
2791static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2792 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2793{
73045c47 2794 struct mem_cgroup *mem = NULL;
7ec99d62 2795 unsigned int nr_pages = 1;
7a81b88c 2796 struct page_cgroup *pc;
8493ae43 2797 bool oom = true;
7a81b88c 2798 int ret;
ec168510 2799
37c2ac78 2800 if (PageTransHuge(page)) {
7ec99d62 2801 nr_pages <<= compound_order(page);
37c2ac78 2802 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2803 /*
2804 * Never OOM-kill a process for a huge page. The
2805 * fault handler will fall back to regular pages.
2806 */
2807 oom = false;
37c2ac78 2808 }
7a81b88c
KH
2809
2810 pc = lookup_page_cgroup(page);
af4a6621 2811 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2812
7ec99d62 2813 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2814 if (ret || !mem)
7a81b88c
KH
2815 return ret;
2816
7ec99d62 2817 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2818 return 0;
8a9f3ccd
BS
2819}
2820
7a81b88c
KH
2821int mem_cgroup_newpage_charge(struct page *page,
2822 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2823{
f8d66542 2824 if (mem_cgroup_disabled())
cede86ac 2825 return 0;
69029cd5
KH
2826 /*
2827 * If already mapped, we don't have to account.
2828 * If page cache, page->mapping has address_space.
2829 * But page->mapping may have out-of-use anon_vma pointer,
2830 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2831 * is NULL.
2832 */
2833 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2834 return 0;
2835 if (unlikely(!mm))
2836 mm = &init_mm;
217bc319 2837 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2838 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2839}
2840
83aae4c7
DN
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype);
2844
5a6475a4
KH
2845static void
2846__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2847 enum charge_type ctype)
2848{
2849 struct page_cgroup *pc = lookup_page_cgroup(page);
2850 /*
2851 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2852 * is already on LRU. It means the page may on some other page_cgroup's
2853 * LRU. Take care of it.
2854 */
2855 mem_cgroup_lru_del_before_commit(page);
2856 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2857 mem_cgroup_lru_add_after_commit(page);
2858 return;
2859}
2860
e1a1cd59
BS
2861int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2862 gfp_t gfp_mask)
8697d331 2863{
5a6475a4 2864 struct mem_cgroup *mem = NULL;
b5a84319
KH
2865 int ret;
2866
f8d66542 2867 if (mem_cgroup_disabled())
cede86ac 2868 return 0;
52d4b9ac
KH
2869 if (PageCompound(page))
2870 return 0;
accf163e 2871
73045c47 2872 if (unlikely(!mm))
8697d331 2873 mm = &init_mm;
accf163e 2874
5a6475a4
KH
2875 if (page_is_file_cache(page)) {
2876 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2877 if (ret || !mem)
2878 return ret;
b5a84319 2879
5a6475a4
KH
2880 /*
2881 * FUSE reuses pages without going through the final
2882 * put that would remove them from the LRU list, make
2883 * sure that they get relinked properly.
2884 */
2885 __mem_cgroup_commit_charge_lrucare(page, mem,
2886 MEM_CGROUP_CHARGE_TYPE_CACHE);
2887 return ret;
2888 }
83aae4c7
DN
2889 /* shmem */
2890 if (PageSwapCache(page)) {
2891 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2892 if (!ret)
2893 __mem_cgroup_commit_charge_swapin(page, mem,
2894 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2895 } else
2896 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2897 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2898
b5a84319 2899 return ret;
e8589cc1
KH
2900}
2901
54595fe2
KH
2902/*
2903 * While swap-in, try_charge -> commit or cancel, the page is locked.
2904 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2905 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2906 * "commit()" or removed by "cancel()"
2907 */
8c7c6e34
KH
2908int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2909 struct page *page,
2910 gfp_t mask, struct mem_cgroup **ptr)
2911{
2912 struct mem_cgroup *mem;
54595fe2 2913 int ret;
8c7c6e34 2914
56039efa
KH
2915 *ptr = NULL;
2916
f8d66542 2917 if (mem_cgroup_disabled())
8c7c6e34
KH
2918 return 0;
2919
2920 if (!do_swap_account)
2921 goto charge_cur_mm;
8c7c6e34
KH
2922 /*
2923 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2924 * the pte, and even removed page from swap cache: in those cases
2925 * do_swap_page()'s pte_same() test will fail; but there's also a
2926 * KSM case which does need to charge the page.
8c7c6e34
KH
2927 */
2928 if (!PageSwapCache(page))
407f9c8b 2929 goto charge_cur_mm;
e42d9d5d 2930 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2931 if (!mem)
2932 goto charge_cur_mm;
8c7c6e34 2933 *ptr = mem;
7ec99d62 2934 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2935 css_put(&mem->css);
2936 return ret;
8c7c6e34
KH
2937charge_cur_mm:
2938 if (unlikely(!mm))
2939 mm = &init_mm;
7ec99d62 2940 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2941}
2942
83aae4c7
DN
2943static void
2944__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2945 enum charge_type ctype)
7a81b88c 2946{
f8d66542 2947 if (mem_cgroup_disabled())
7a81b88c
KH
2948 return;
2949 if (!ptr)
2950 return;
88703267 2951 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2952
2953 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2954 /*
2955 * Now swap is on-memory. This means this page may be
2956 * counted both as mem and swap....double count.
03f3c433
KH
2957 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2958 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2959 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2960 */
03f3c433 2961 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2962 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2963 unsigned short id;
8c7c6e34 2964 struct mem_cgroup *memcg;
a3b2d692
KH
2965
2966 id = swap_cgroup_record(ent, 0);
2967 rcu_read_lock();
2968 memcg = mem_cgroup_lookup(id);
8c7c6e34 2969 if (memcg) {
a3b2d692
KH
2970 /*
2971 * This recorded memcg can be obsolete one. So, avoid
2972 * calling css_tryget
2973 */
0c3e73e8 2974 if (!mem_cgroup_is_root(memcg))
4e649152 2975 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2976 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2977 mem_cgroup_put(memcg);
2978 }
a3b2d692 2979 rcu_read_unlock();
8c7c6e34 2980 }
88703267
KH
2981 /*
2982 * At swapin, we may charge account against cgroup which has no tasks.
2983 * So, rmdir()->pre_destroy() can be called while we do this charge.
2984 * In that case, we need to call pre_destroy() again. check it here.
2985 */
2986 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2987}
2988
83aae4c7
DN
2989void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2990{
2991 __mem_cgroup_commit_charge_swapin(page, ptr,
2992 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2993}
2994
7a81b88c
KH
2995void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2996{
f8d66542 2997 if (mem_cgroup_disabled())
7a81b88c
KH
2998 return;
2999 if (!mem)
3000 return;
e7018b8d 3001 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
3002}
3003
7ec99d62
JW
3004static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3005 unsigned int nr_pages,
3006 const enum charge_type ctype)
569b846d
KH
3007{
3008 struct memcg_batch_info *batch = NULL;
3009 bool uncharge_memsw = true;
7ec99d62 3010
569b846d
KH
3011 /* If swapout, usage of swap doesn't decrease */
3012 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3013 uncharge_memsw = false;
569b846d
KH
3014
3015 batch = &current->memcg_batch;
3016 /*
3017 * In usual, we do css_get() when we remember memcg pointer.
3018 * But in this case, we keep res->usage until end of a series of
3019 * uncharges. Then, it's ok to ignore memcg's refcnt.
3020 */
3021 if (!batch->memcg)
3022 batch->memcg = mem;
3c11ecf4
KH
3023 /*
3024 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3025 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3026 * the same cgroup and we have chance to coalesce uncharges.
3027 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3028 * because we want to do uncharge as soon as possible.
3029 */
3030
3031 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3032 goto direct_uncharge;
3033
7ec99d62 3034 if (nr_pages > 1)
ec168510
AA
3035 goto direct_uncharge;
3036
569b846d
KH
3037 /*
3038 * In typical case, batch->memcg == mem. This means we can
3039 * merge a series of uncharges to an uncharge of res_counter.
3040 * If not, we uncharge res_counter ony by one.
3041 */
3042 if (batch->memcg != mem)
3043 goto direct_uncharge;
3044 /* remember freed charge and uncharge it later */
7ffd4ca7 3045 batch->nr_pages++;
569b846d 3046 if (uncharge_memsw)
7ffd4ca7 3047 batch->memsw_nr_pages++;
569b846d
KH
3048 return;
3049direct_uncharge:
7ec99d62 3050 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 3051 if (uncharge_memsw)
7ec99d62 3052 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
3053 if (unlikely(batch->memcg != mem))
3054 memcg_oom_recover(mem);
569b846d
KH
3055 return;
3056}
7a81b88c 3057
8a9f3ccd 3058/*
69029cd5 3059 * uncharge if !page_mapped(page)
8a9f3ccd 3060 */
8c7c6e34 3061static struct mem_cgroup *
69029cd5 3062__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3063{
8c7c6e34 3064 struct mem_cgroup *mem = NULL;
7ec99d62
JW
3065 unsigned int nr_pages = 1;
3066 struct page_cgroup *pc;
8a9f3ccd 3067
f8d66542 3068 if (mem_cgroup_disabled())
8c7c6e34 3069 return NULL;
4077960e 3070
d13d1443 3071 if (PageSwapCache(page))
8c7c6e34 3072 return NULL;
d13d1443 3073
37c2ac78 3074 if (PageTransHuge(page)) {
7ec99d62 3075 nr_pages <<= compound_order(page);
37c2ac78
AA
3076 VM_BUG_ON(!PageTransHuge(page));
3077 }
8697d331 3078 /*
3c541e14 3079 * Check if our page_cgroup is valid
8697d331 3080 */
52d4b9ac
KH
3081 pc = lookup_page_cgroup(page);
3082 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3083 return NULL;
b9c565d5 3084
52d4b9ac 3085 lock_page_cgroup(pc);
d13d1443 3086
8c7c6e34
KH
3087 mem = pc->mem_cgroup;
3088
d13d1443
KH
3089 if (!PageCgroupUsed(pc))
3090 goto unlock_out;
3091
3092 switch (ctype) {
3093 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3094 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3095 /* See mem_cgroup_prepare_migration() */
3096 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3097 goto unlock_out;
3098 break;
3099 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3100 if (!PageAnon(page)) { /* Shared memory */
3101 if (page->mapping && !page_is_file_cache(page))
3102 goto unlock_out;
3103 } else if (page_mapped(page)) /* Anon */
3104 goto unlock_out;
3105 break;
3106 default:
3107 break;
52d4b9ac 3108 }
d13d1443 3109
7ec99d62 3110 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 3111
52d4b9ac 3112 ClearPageCgroupUsed(pc);
544122e5
KH
3113 /*
3114 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3115 * freed from LRU. This is safe because uncharged page is expected not
3116 * to be reused (freed soon). Exception is SwapCache, it's handled by
3117 * special functions.
3118 */
b9c565d5 3119
52d4b9ac 3120 unlock_page_cgroup(pc);
f75ca962
KH
3121 /*
3122 * even after unlock, we have mem->res.usage here and this memcg
3123 * will never be freed.
3124 */
d2265e6f 3125 memcg_check_events(mem, page);
f75ca962
KH
3126 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3127 mem_cgroup_swap_statistics(mem, true);
3128 mem_cgroup_get(mem);
3129 }
3130 if (!mem_cgroup_is_root(mem))
7ec99d62 3131 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 3132
8c7c6e34 3133 return mem;
d13d1443
KH
3134
3135unlock_out:
3136 unlock_page_cgroup(pc);
8c7c6e34 3137 return NULL;
3c541e14
BS
3138}
3139
69029cd5
KH
3140void mem_cgroup_uncharge_page(struct page *page)
3141{
52d4b9ac
KH
3142 /* early check. */
3143 if (page_mapped(page))
3144 return;
3145 if (page->mapping && !PageAnon(page))
3146 return;
69029cd5
KH
3147 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3148}
3149
3150void mem_cgroup_uncharge_cache_page(struct page *page)
3151{
3152 VM_BUG_ON(page_mapped(page));
b7abea96 3153 VM_BUG_ON(page->mapping);
69029cd5
KH
3154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3155}
3156
569b846d
KH
3157/*
3158 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3159 * In that cases, pages are freed continuously and we can expect pages
3160 * are in the same memcg. All these calls itself limits the number of
3161 * pages freed at once, then uncharge_start/end() is called properly.
3162 * This may be called prural(2) times in a context,
3163 */
3164
3165void mem_cgroup_uncharge_start(void)
3166{
3167 current->memcg_batch.do_batch++;
3168 /* We can do nest. */
3169 if (current->memcg_batch.do_batch == 1) {
3170 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3171 current->memcg_batch.nr_pages = 0;
3172 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3173 }
3174}
3175
3176void mem_cgroup_uncharge_end(void)
3177{
3178 struct memcg_batch_info *batch = &current->memcg_batch;
3179
3180 if (!batch->do_batch)
3181 return;
3182
3183 batch->do_batch--;
3184 if (batch->do_batch) /* If stacked, do nothing. */
3185 return;
3186
3187 if (!batch->memcg)
3188 return;
3189 /*
3190 * This "batch->memcg" is valid without any css_get/put etc...
3191 * bacause we hide charges behind us.
3192 */
7ffd4ca7
JW
3193 if (batch->nr_pages)
3194 res_counter_uncharge(&batch->memcg->res,
3195 batch->nr_pages * PAGE_SIZE);
3196 if (batch->memsw_nr_pages)
3197 res_counter_uncharge(&batch->memcg->memsw,
3198 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3199 memcg_oom_recover(batch->memcg);
569b846d
KH
3200 /* forget this pointer (for sanity check) */
3201 batch->memcg = NULL;
3202}
3203
e767e056 3204#ifdef CONFIG_SWAP
8c7c6e34 3205/*
e767e056 3206 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3207 * memcg information is recorded to swap_cgroup of "ent"
3208 */
8a9478ca
KH
3209void
3210mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3211{
3212 struct mem_cgroup *memcg;
8a9478ca
KH
3213 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3214
3215 if (!swapout) /* this was a swap cache but the swap is unused ! */
3216 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3217
3218 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3219
f75ca962
KH
3220 /*
3221 * record memcg information, if swapout && memcg != NULL,
3222 * mem_cgroup_get() was called in uncharge().
3223 */
3224 if (do_swap_account && swapout && memcg)
a3b2d692 3225 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3226}
e767e056 3227#endif
8c7c6e34
KH
3228
3229#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3230/*
3231 * called from swap_entry_free(). remove record in swap_cgroup and
3232 * uncharge "memsw" account.
3233 */
3234void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3235{
8c7c6e34 3236 struct mem_cgroup *memcg;
a3b2d692 3237 unsigned short id;
8c7c6e34
KH
3238
3239 if (!do_swap_account)
3240 return;
3241
a3b2d692
KH
3242 id = swap_cgroup_record(ent, 0);
3243 rcu_read_lock();
3244 memcg = mem_cgroup_lookup(id);
8c7c6e34 3245 if (memcg) {
a3b2d692
KH
3246 /*
3247 * We uncharge this because swap is freed.
3248 * This memcg can be obsolete one. We avoid calling css_tryget
3249 */
0c3e73e8 3250 if (!mem_cgroup_is_root(memcg))
4e649152 3251 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3252 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3253 mem_cgroup_put(memcg);
3254 }
a3b2d692 3255 rcu_read_unlock();
d13d1443 3256}
02491447
DN
3257
3258/**
3259 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3260 * @entry: swap entry to be moved
3261 * @from: mem_cgroup which the entry is moved from
3262 * @to: mem_cgroup which the entry is moved to
483c30b5 3263 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3264 *
3265 * It succeeds only when the swap_cgroup's record for this entry is the same
3266 * as the mem_cgroup's id of @from.
3267 *
3268 * Returns 0 on success, -EINVAL on failure.
3269 *
3270 * The caller must have charged to @to, IOW, called res_counter_charge() about
3271 * both res and memsw, and called css_get().
3272 */
3273static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3274 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3275{
3276 unsigned short old_id, new_id;
3277
3278 old_id = css_id(&from->css);
3279 new_id = css_id(&to->css);
3280
3281 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3282 mem_cgroup_swap_statistics(from, false);
483c30b5 3283 mem_cgroup_swap_statistics(to, true);
02491447 3284 /*
483c30b5
DN
3285 * This function is only called from task migration context now.
3286 * It postpones res_counter and refcount handling till the end
3287 * of task migration(mem_cgroup_clear_mc()) for performance
3288 * improvement. But we cannot postpone mem_cgroup_get(to)
3289 * because if the process that has been moved to @to does
3290 * swap-in, the refcount of @to might be decreased to 0.
02491447 3291 */
02491447 3292 mem_cgroup_get(to);
483c30b5
DN
3293 if (need_fixup) {
3294 if (!mem_cgroup_is_root(from))
3295 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3296 mem_cgroup_put(from);
3297 /*
3298 * we charged both to->res and to->memsw, so we should
3299 * uncharge to->res.
3300 */
3301 if (!mem_cgroup_is_root(to))
3302 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3303 }
02491447
DN
3304 return 0;
3305 }
3306 return -EINVAL;
3307}
3308#else
3309static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3310 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3311{
3312 return -EINVAL;
3313}
8c7c6e34 3314#endif
d13d1443 3315
ae41be37 3316/*
01b1ae63
KH
3317 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3318 * page belongs to.
ae41be37 3319 */
ac39cf8c 3320int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3321 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3322{
e8589cc1 3323 struct mem_cgroup *mem = NULL;
7ec99d62 3324 struct page_cgroup *pc;
ac39cf8c 3325 enum charge_type ctype;
e8589cc1 3326 int ret = 0;
8869b8f6 3327
56039efa
KH
3328 *ptr = NULL;
3329
ec168510 3330 VM_BUG_ON(PageTransHuge(page));
f8d66542 3331 if (mem_cgroup_disabled())
4077960e
BS
3332 return 0;
3333
52d4b9ac
KH
3334 pc = lookup_page_cgroup(page);
3335 lock_page_cgroup(pc);
3336 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3337 mem = pc->mem_cgroup;
3338 css_get(&mem->css);
ac39cf8c
AM
3339 /*
3340 * At migrating an anonymous page, its mapcount goes down
3341 * to 0 and uncharge() will be called. But, even if it's fully
3342 * unmapped, migration may fail and this page has to be
3343 * charged again. We set MIGRATION flag here and delay uncharge
3344 * until end_migration() is called
3345 *
3346 * Corner Case Thinking
3347 * A)
3348 * When the old page was mapped as Anon and it's unmap-and-freed
3349 * while migration was ongoing.
3350 * If unmap finds the old page, uncharge() of it will be delayed
3351 * until end_migration(). If unmap finds a new page, it's
3352 * uncharged when it make mapcount to be 1->0. If unmap code
3353 * finds swap_migration_entry, the new page will not be mapped
3354 * and end_migration() will find it(mapcount==0).
3355 *
3356 * B)
3357 * When the old page was mapped but migraion fails, the kernel
3358 * remaps it. A charge for it is kept by MIGRATION flag even
3359 * if mapcount goes down to 0. We can do remap successfully
3360 * without charging it again.
3361 *
3362 * C)
3363 * The "old" page is under lock_page() until the end of
3364 * migration, so, the old page itself will not be swapped-out.
3365 * If the new page is swapped out before end_migraton, our
3366 * hook to usual swap-out path will catch the event.
3367 */
3368 if (PageAnon(page))
3369 SetPageCgroupMigration(pc);
e8589cc1 3370 }
52d4b9ac 3371 unlock_page_cgroup(pc);
ac39cf8c
AM
3372 /*
3373 * If the page is not charged at this point,
3374 * we return here.
3375 */
3376 if (!mem)
3377 return 0;
01b1ae63 3378
93d5c9be 3379 *ptr = mem;
7ec99d62 3380 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
3381 css_put(&mem->css);/* drop extra refcnt */
3382 if (ret || *ptr == NULL) {
3383 if (PageAnon(page)) {
3384 lock_page_cgroup(pc);
3385 ClearPageCgroupMigration(pc);
3386 unlock_page_cgroup(pc);
3387 /*
3388 * The old page may be fully unmapped while we kept it.
3389 */
3390 mem_cgroup_uncharge_page(page);
3391 }
3392 return -ENOMEM;
e8589cc1 3393 }
ac39cf8c
AM
3394 /*
3395 * We charge new page before it's used/mapped. So, even if unlock_page()
3396 * is called before end_migration, we can catch all events on this new
3397 * page. In the case new page is migrated but not remapped, new page's
3398 * mapcount will be finally 0 and we call uncharge in end_migration().
3399 */
3400 pc = lookup_page_cgroup(newpage);
3401 if (PageAnon(page))
3402 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3403 else if (page_is_file_cache(page))
3404 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3405 else
3406 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3407 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3408 return ret;
ae41be37 3409}
8869b8f6 3410
69029cd5 3411/* remove redundant charge if migration failed*/
01b1ae63 3412void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3413 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3414{
ac39cf8c 3415 struct page *used, *unused;
01b1ae63 3416 struct page_cgroup *pc;
01b1ae63
KH
3417
3418 if (!mem)
3419 return;
ac39cf8c 3420 /* blocks rmdir() */
88703267 3421 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3422 if (!migration_ok) {
ac39cf8c
AM
3423 used = oldpage;
3424 unused = newpage;
01b1ae63 3425 } else {
ac39cf8c 3426 used = newpage;
01b1ae63
KH
3427 unused = oldpage;
3428 }
69029cd5 3429 /*
ac39cf8c
AM
3430 * We disallowed uncharge of pages under migration because mapcount
3431 * of the page goes down to zero, temporarly.
3432 * Clear the flag and check the page should be charged.
01b1ae63 3433 */
ac39cf8c
AM
3434 pc = lookup_page_cgroup(oldpage);
3435 lock_page_cgroup(pc);
3436 ClearPageCgroupMigration(pc);
3437 unlock_page_cgroup(pc);
01b1ae63 3438
ac39cf8c
AM
3439 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3440
01b1ae63 3441 /*
ac39cf8c
AM
3442 * If a page is a file cache, radix-tree replacement is very atomic
3443 * and we can skip this check. When it was an Anon page, its mapcount
3444 * goes down to 0. But because we added MIGRATION flage, it's not
3445 * uncharged yet. There are several case but page->mapcount check
3446 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3447 * check. (see prepare_charge() also)
69029cd5 3448 */
ac39cf8c
AM
3449 if (PageAnon(used))
3450 mem_cgroup_uncharge_page(used);
88703267 3451 /*
ac39cf8c
AM
3452 * At migration, we may charge account against cgroup which has no
3453 * tasks.
88703267
KH
3454 * So, rmdir()->pre_destroy() can be called while we do this charge.
3455 * In that case, we need to call pre_destroy() again. check it here.
3456 */
3457 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3458}
78fb7466 3459
f212ad7c
DN
3460#ifdef CONFIG_DEBUG_VM
3461static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3462{
3463 struct page_cgroup *pc;
3464
3465 pc = lookup_page_cgroup(page);
3466 if (likely(pc) && PageCgroupUsed(pc))
3467 return pc;
3468 return NULL;
3469}
3470
3471bool mem_cgroup_bad_page_check(struct page *page)
3472{
3473 if (mem_cgroup_disabled())
3474 return false;
3475
3476 return lookup_page_cgroup_used(page) != NULL;
3477}
3478
3479void mem_cgroup_print_bad_page(struct page *page)
3480{
3481 struct page_cgroup *pc;
3482
3483 pc = lookup_page_cgroup_used(page);
3484 if (pc) {
3485 int ret = -1;
3486 char *path;
3487
3488 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3489 pc, pc->flags, pc->mem_cgroup);
3490
3491 path = kmalloc(PATH_MAX, GFP_KERNEL);
3492 if (path) {
3493 rcu_read_lock();
3494 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3495 path, PATH_MAX);
3496 rcu_read_unlock();
3497 }
3498
3499 printk(KERN_CONT "(%s)\n",
3500 (ret < 0) ? "cannot get the path" : path);
3501 kfree(path);
3502 }
3503}
3504#endif
3505
8c7c6e34
KH
3506static DEFINE_MUTEX(set_limit_mutex);
3507
d38d2a75 3508static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3509 unsigned long long val)
628f4235 3510{
81d39c20 3511 int retry_count;
3c11ecf4 3512 u64 memswlimit, memlimit;
628f4235 3513 int ret = 0;
81d39c20
KH
3514 int children = mem_cgroup_count_children(memcg);
3515 u64 curusage, oldusage;
3c11ecf4 3516 int enlarge;
81d39c20
KH
3517
3518 /*
3519 * For keeping hierarchical_reclaim simple, how long we should retry
3520 * is depends on callers. We set our retry-count to be function
3521 * of # of children which we should visit in this loop.
3522 */
3523 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3524
3525 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3526
3c11ecf4 3527 enlarge = 0;
8c7c6e34 3528 while (retry_count) {
628f4235
KH
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3532 }
8c7c6e34
KH
3533 /*
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
3536 * We have to guarantee mem->res.limit < mem->memsw.limit.
3537 */
3538 mutex_lock(&set_limit_mutex);
3539 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3540 if (memswlimit < val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
628f4235
KH
3543 break;
3544 }
3c11ecf4
KH
3545
3546 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3547 if (memlimit < val)
3548 enlarge = 1;
3549
8c7c6e34 3550 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3551 if (!ret) {
3552 if (memswlimit == val)
3553 memcg->memsw_is_minimum = true;
3554 else
3555 memcg->memsw_is_minimum = false;
3556 }
8c7c6e34
KH
3557 mutex_unlock(&set_limit_mutex);
3558
3559 if (!ret)
3560 break;
3561
aa20d489 3562 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3563 MEM_CGROUP_RECLAIM_SHRINK,
3564 NULL);
81d39c20
KH
3565 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3566 /* Usage is reduced ? */
3567 if (curusage >= oldusage)
3568 retry_count--;
3569 else
3570 oldusage = curusage;
8c7c6e34 3571 }
3c11ecf4
KH
3572 if (!ret && enlarge)
3573 memcg_oom_recover(memcg);
14797e23 3574
8c7c6e34
KH
3575 return ret;
3576}
3577
338c8431
LZ
3578static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3579 unsigned long long val)
8c7c6e34 3580{
81d39c20 3581 int retry_count;
3c11ecf4 3582 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3583 int children = mem_cgroup_count_children(memcg);
3584 int ret = -EBUSY;
3c11ecf4 3585 int enlarge = 0;
8c7c6e34 3586
81d39c20
KH
3587 /* see mem_cgroup_resize_res_limit */
3588 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3589 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3590 while (retry_count) {
3591 if (signal_pending(current)) {
3592 ret = -EINTR;
3593 break;
3594 }
3595 /*
3596 * Rather than hide all in some function, I do this in
3597 * open coded manner. You see what this really does.
3598 * We have to guarantee mem->res.limit < mem->memsw.limit.
3599 */
3600 mutex_lock(&set_limit_mutex);
3601 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3602 if (memlimit > val) {
3603 ret = -EINVAL;
3604 mutex_unlock(&set_limit_mutex);
3605 break;
3606 }
3c11ecf4
KH
3607 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3608 if (memswlimit < val)
3609 enlarge = 1;
8c7c6e34 3610 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3611 if (!ret) {
3612 if (memlimit == val)
3613 memcg->memsw_is_minimum = true;
3614 else
3615 memcg->memsw_is_minimum = false;
3616 }
8c7c6e34
KH
3617 mutex_unlock(&set_limit_mutex);
3618
3619 if (!ret)
3620 break;
3621
4e416953 3622 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3623 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3624 MEM_CGROUP_RECLAIM_SHRINK,
3625 NULL);
8c7c6e34 3626 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3627 /* Usage is reduced ? */
8c7c6e34 3628 if (curusage >= oldusage)
628f4235 3629 retry_count--;
81d39c20
KH
3630 else
3631 oldusage = curusage;
628f4235 3632 }
3c11ecf4
KH
3633 if (!ret && enlarge)
3634 memcg_oom_recover(memcg);
628f4235
KH
3635 return ret;
3636}
3637
4e416953 3638unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3639 gfp_t gfp_mask,
3640 unsigned long *total_scanned)
4e416953
BS
3641{
3642 unsigned long nr_reclaimed = 0;
3643 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3644 unsigned long reclaimed;
3645 int loop = 0;
3646 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3647 unsigned long long excess;
0ae5e89c 3648 unsigned long nr_scanned;
4e416953
BS
3649
3650 if (order > 0)
3651 return 0;
3652
00918b6a 3653 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3654 /*
3655 * This loop can run a while, specially if mem_cgroup's continuously
3656 * keep exceeding their soft limit and putting the system under
3657 * pressure
3658 */
3659 do {
3660 if (next_mz)
3661 mz = next_mz;
3662 else
3663 mz = mem_cgroup_largest_soft_limit_node(mctz);
3664 if (!mz)
3665 break;
3666
0ae5e89c 3667 nr_scanned = 0;
4e416953
BS
3668 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3669 gfp_mask,
0ae5e89c
YH
3670 MEM_CGROUP_RECLAIM_SOFT,
3671 &nr_scanned);
4e416953 3672 nr_reclaimed += reclaimed;
0ae5e89c 3673 *total_scanned += nr_scanned;
4e416953
BS
3674 spin_lock(&mctz->lock);
3675
3676 /*
3677 * If we failed to reclaim anything from this memory cgroup
3678 * it is time to move on to the next cgroup
3679 */
3680 next_mz = NULL;
3681 if (!reclaimed) {
3682 do {
3683 /*
3684 * Loop until we find yet another one.
3685 *
3686 * By the time we get the soft_limit lock
3687 * again, someone might have aded the
3688 * group back on the RB tree. Iterate to
3689 * make sure we get a different mem.
3690 * mem_cgroup_largest_soft_limit_node returns
3691 * NULL if no other cgroup is present on
3692 * the tree
3693 */
3694 next_mz =
3695 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3696 if (next_mz == mz)
4e416953 3697 css_put(&next_mz->mem->css);
39cc98f1 3698 else /* next_mz == NULL or other memcg */
4e416953
BS
3699 break;
3700 } while (1);
3701 }
4e416953 3702 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3703 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3704 /*
3705 * One school of thought says that we should not add
3706 * back the node to the tree if reclaim returns 0.
3707 * But our reclaim could return 0, simply because due
3708 * to priority we are exposing a smaller subset of
3709 * memory to reclaim from. Consider this as a longer
3710 * term TODO.
3711 */
ef8745c1
KH
3712 /* If excess == 0, no tree ops */
3713 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3714 spin_unlock(&mctz->lock);
3715 css_put(&mz->mem->css);
3716 loop++;
3717 /*
3718 * Could not reclaim anything and there are no more
3719 * mem cgroups to try or we seem to be looping without
3720 * reclaiming anything.
3721 */
3722 if (!nr_reclaimed &&
3723 (next_mz == NULL ||
3724 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3725 break;
3726 } while (!nr_reclaimed);
3727 if (next_mz)
3728 css_put(&next_mz->mem->css);
3729 return nr_reclaimed;
3730}
3731
cc847582
KH
3732/*
3733 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3734 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3735 */
f817ed48 3736static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3737 int node, int zid, enum lru_list lru)
cc847582 3738{
08e552c6
KH
3739 struct zone *zone;
3740 struct mem_cgroup_per_zone *mz;
f817ed48 3741 struct page_cgroup *pc, *busy;
08e552c6 3742 unsigned long flags, loop;
072c56c1 3743 struct list_head *list;
f817ed48 3744 int ret = 0;
072c56c1 3745
08e552c6
KH
3746 zone = &NODE_DATA(node)->node_zones[zid];
3747 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3748 list = &mz->lists[lru];
cc847582 3749
f817ed48
KH
3750 loop = MEM_CGROUP_ZSTAT(mz, lru);
3751 /* give some margin against EBUSY etc...*/
3752 loop += 256;
3753 busy = NULL;
3754 while (loop--) {
5564e88b
JW
3755 struct page *page;
3756
f817ed48 3757 ret = 0;
08e552c6 3758 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3759 if (list_empty(list)) {
08e552c6 3760 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3761 break;
f817ed48
KH
3762 }
3763 pc = list_entry(list->prev, struct page_cgroup, lru);
3764 if (busy == pc) {
3765 list_move(&pc->lru, list);
648bcc77 3766 busy = NULL;
08e552c6 3767 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3768 continue;
3769 }
08e552c6 3770 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3771
6b3ae58e 3772 page = lookup_cgroup_page(pc);
5564e88b
JW
3773
3774 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3775 if (ret == -ENOMEM)
52d4b9ac 3776 break;
f817ed48
KH
3777
3778 if (ret == -EBUSY || ret == -EINVAL) {
3779 /* found lock contention or "pc" is obsolete. */
3780 busy = pc;
3781 cond_resched();
3782 } else
3783 busy = NULL;
cc847582 3784 }
08e552c6 3785
f817ed48
KH
3786 if (!ret && !list_empty(list))
3787 return -EBUSY;
3788 return ret;
cc847582
KH
3789}
3790
3791/*
3792 * make mem_cgroup's charge to be 0 if there is no task.
3793 * This enables deleting this mem_cgroup.
3794 */
c1e862c1 3795static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3796{
f817ed48
KH
3797 int ret;
3798 int node, zid, shrink;
3799 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3800 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3801
cc847582 3802 css_get(&mem->css);
f817ed48
KH
3803
3804 shrink = 0;
c1e862c1
KH
3805 /* should free all ? */
3806 if (free_all)
3807 goto try_to_free;
f817ed48 3808move_account:
fce66477 3809 do {
f817ed48 3810 ret = -EBUSY;
c1e862c1
KH
3811 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3812 goto out;
3813 ret = -EINTR;
3814 if (signal_pending(current))
cc847582 3815 goto out;
52d4b9ac
KH
3816 /* This is for making all *used* pages to be on LRU. */
3817 lru_add_drain_all();
d38144b7 3818 drain_all_stock_sync(mem);
f817ed48 3819 ret = 0;
32047e2a 3820 mem_cgroup_start_move(mem);
299b4eaa 3821 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3822 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3823 enum lru_list l;
f817ed48
KH
3824 for_each_lru(l) {
3825 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3826 node, zid, l);
f817ed48
KH
3827 if (ret)
3828 break;
3829 }
1ecaab2b 3830 }
f817ed48
KH
3831 if (ret)
3832 break;
3833 }
32047e2a 3834 mem_cgroup_end_move(mem);
3c11ecf4 3835 memcg_oom_recover(mem);
f817ed48
KH
3836 /* it seems parent cgroup doesn't have enough mem */
3837 if (ret == -ENOMEM)
3838 goto try_to_free;
52d4b9ac 3839 cond_resched();
fce66477
DN
3840 /* "ret" should also be checked to ensure all lists are empty. */
3841 } while (mem->res.usage > 0 || ret);
cc847582
KH
3842out:
3843 css_put(&mem->css);
3844 return ret;
f817ed48
KH
3845
3846try_to_free:
c1e862c1
KH
3847 /* returns EBUSY if there is a task or if we come here twice. */
3848 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3849 ret = -EBUSY;
3850 goto out;
3851 }
c1e862c1
KH
3852 /* we call try-to-free pages for make this cgroup empty */
3853 lru_add_drain_all();
f817ed48
KH
3854 /* try to free all pages in this cgroup */
3855 shrink = 1;
3856 while (nr_retries && mem->res.usage > 0) {
82f9d486 3857 struct memcg_scanrecord rec;
f817ed48 3858 int progress;
c1e862c1
KH
3859
3860 if (signal_pending(current)) {
3861 ret = -EINTR;
3862 goto out;
3863 }
82f9d486
KH
3864 rec.context = SCAN_BY_SHRINK;
3865 rec.mem = mem;
3866 rec.root = mem;
a7885eb8 3867 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
82f9d486 3868 false, &rec);
c1e862c1 3869 if (!progress) {
f817ed48 3870 nr_retries--;
c1e862c1 3871 /* maybe some writeback is necessary */
8aa7e847 3872 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3873 }
f817ed48
KH
3874
3875 }
08e552c6 3876 lru_add_drain();
f817ed48 3877 /* try move_account...there may be some *locked* pages. */
fce66477 3878 goto move_account;
cc847582
KH
3879}
3880
c1e862c1
KH
3881int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3882{
3883 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3884}
3885
3886
18f59ea7
BS
3887static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3888{
3889 return mem_cgroup_from_cont(cont)->use_hierarchy;
3890}
3891
3892static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3893 u64 val)
3894{
3895 int retval = 0;
3896 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3897 struct cgroup *parent = cont->parent;
3898 struct mem_cgroup *parent_mem = NULL;
3899
3900 if (parent)
3901 parent_mem = mem_cgroup_from_cont(parent);
3902
3903 cgroup_lock();
3904 /*
af901ca1 3905 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3906 * in the child subtrees. If it is unset, then the change can
3907 * occur, provided the current cgroup has no children.
3908 *
3909 * For the root cgroup, parent_mem is NULL, we allow value to be
3910 * set if there are no children.
3911 */
3912 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3913 (val == 1 || val == 0)) {
3914 if (list_empty(&cont->children))
3915 mem->use_hierarchy = val;
3916 else
3917 retval = -EBUSY;
3918 } else
3919 retval = -EINVAL;
3920 cgroup_unlock();
3921
3922 return retval;
3923}
3924
0c3e73e8 3925
7a159cc9
JW
3926static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3927 enum mem_cgroup_stat_index idx)
0c3e73e8 3928{
7d74b06f 3929 struct mem_cgroup *iter;
7a159cc9 3930 long val = 0;
0c3e73e8 3931
7a159cc9 3932 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3933 for_each_mem_cgroup_tree(iter, mem)
3934 val += mem_cgroup_read_stat(iter, idx);
3935
3936 if (val < 0) /* race ? */
3937 val = 0;
3938 return val;
0c3e73e8
BS
3939}
3940
104f3928
KS
3941static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3942{
7d74b06f 3943 u64 val;
104f3928
KS
3944
3945 if (!mem_cgroup_is_root(mem)) {
3946 if (!swap)
3947 return res_counter_read_u64(&mem->res, RES_USAGE);
3948 else
3949 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3950 }
3951
7a159cc9
JW
3952 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3953 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3954
7d74b06f 3955 if (swap)
7a159cc9 3956 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3957
3958 return val << PAGE_SHIFT;
3959}
3960
2c3daa72 3961static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3962{
8c7c6e34 3963 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3964 u64 val;
8c7c6e34
KH
3965 int type, name;
3966
3967 type = MEMFILE_TYPE(cft->private);
3968 name = MEMFILE_ATTR(cft->private);
3969 switch (type) {
3970 case _MEM:
104f3928
KS
3971 if (name == RES_USAGE)
3972 val = mem_cgroup_usage(mem, false);
3973 else
0c3e73e8 3974 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3975 break;
3976 case _MEMSWAP:
104f3928
KS
3977 if (name == RES_USAGE)
3978 val = mem_cgroup_usage(mem, true);
3979 else
0c3e73e8 3980 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3981 break;
3982 default:
3983 BUG();
3984 break;
3985 }
3986 return val;
8cdea7c0 3987}
628f4235
KH
3988/*
3989 * The user of this function is...
3990 * RES_LIMIT.
3991 */
856c13aa
PM
3992static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3993 const char *buffer)
8cdea7c0 3994{
628f4235 3995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3996 int type, name;
628f4235
KH
3997 unsigned long long val;
3998 int ret;
3999
8c7c6e34
KH
4000 type = MEMFILE_TYPE(cft->private);
4001 name = MEMFILE_ATTR(cft->private);
4002 switch (name) {
628f4235 4003 case RES_LIMIT:
4b3bde4c
BS
4004 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4005 ret = -EINVAL;
4006 break;
4007 }
628f4235
KH
4008 /* This function does all necessary parse...reuse it */
4009 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4010 if (ret)
4011 break;
4012 if (type == _MEM)
628f4235 4013 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4014 else
4015 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4016 break;
296c81d8
BS
4017 case RES_SOFT_LIMIT:
4018 ret = res_counter_memparse_write_strategy(buffer, &val);
4019 if (ret)
4020 break;
4021 /*
4022 * For memsw, soft limits are hard to implement in terms
4023 * of semantics, for now, we support soft limits for
4024 * control without swap
4025 */
4026 if (type == _MEM)
4027 ret = res_counter_set_soft_limit(&memcg->res, val);
4028 else
4029 ret = -EINVAL;
4030 break;
628f4235
KH
4031 default:
4032 ret = -EINVAL; /* should be BUG() ? */
4033 break;
4034 }
4035 return ret;
8cdea7c0
BS
4036}
4037
fee7b548
KH
4038static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4039 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4040{
4041 struct cgroup *cgroup;
4042 unsigned long long min_limit, min_memsw_limit, tmp;
4043
4044 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4046 cgroup = memcg->css.cgroup;
4047 if (!memcg->use_hierarchy)
4048 goto out;
4049
4050 while (cgroup->parent) {
4051 cgroup = cgroup->parent;
4052 memcg = mem_cgroup_from_cont(cgroup);
4053 if (!memcg->use_hierarchy)
4054 break;
4055 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4056 min_limit = min(min_limit, tmp);
4057 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4058 min_memsw_limit = min(min_memsw_limit, tmp);
4059 }
4060out:
4061 *mem_limit = min_limit;
4062 *memsw_limit = min_memsw_limit;
4063 return;
4064}
4065
29f2a4da 4066static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
4067{
4068 struct mem_cgroup *mem;
8c7c6e34 4069 int type, name;
c84872e1
PE
4070
4071 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4072 type = MEMFILE_TYPE(event);
4073 name = MEMFILE_ATTR(event);
4074 switch (name) {
29f2a4da 4075 case RES_MAX_USAGE:
8c7c6e34
KH
4076 if (type == _MEM)
4077 res_counter_reset_max(&mem->res);
4078 else
4079 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
4080 break;
4081 case RES_FAILCNT:
8c7c6e34
KH
4082 if (type == _MEM)
4083 res_counter_reset_failcnt(&mem->res);
4084 else
4085 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
4086 break;
4087 }
f64c3f54 4088
85cc59db 4089 return 0;
c84872e1
PE
4090}
4091
7dc74be0
DN
4092static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4093 struct cftype *cft)
4094{
4095 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4096}
4097
02491447 4098#ifdef CONFIG_MMU
7dc74be0
DN
4099static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4100 struct cftype *cft, u64 val)
4101{
4102 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4103
4104 if (val >= (1 << NR_MOVE_TYPE))
4105 return -EINVAL;
4106 /*
4107 * We check this value several times in both in can_attach() and
4108 * attach(), so we need cgroup lock to prevent this value from being
4109 * inconsistent.
4110 */
4111 cgroup_lock();
4112 mem->move_charge_at_immigrate = val;
4113 cgroup_unlock();
4114
4115 return 0;
4116}
02491447
DN
4117#else
4118static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4119 struct cftype *cft, u64 val)
4120{
4121 return -ENOSYS;
4122}
4123#endif
7dc74be0 4124
14067bb3
KH
4125
4126/* For read statistics */
4127enum {
4128 MCS_CACHE,
4129 MCS_RSS,
d8046582 4130 MCS_FILE_MAPPED,
14067bb3
KH
4131 MCS_PGPGIN,
4132 MCS_PGPGOUT,
1dd3a273 4133 MCS_SWAP,
456f998e
YH
4134 MCS_PGFAULT,
4135 MCS_PGMAJFAULT,
14067bb3
KH
4136 MCS_INACTIVE_ANON,
4137 MCS_ACTIVE_ANON,
4138 MCS_INACTIVE_FILE,
4139 MCS_ACTIVE_FILE,
4140 MCS_UNEVICTABLE,
4141 NR_MCS_STAT,
4142};
4143
4144struct mcs_total_stat {
4145 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4146};
4147
14067bb3
KH
4148struct {
4149 char *local_name;
4150 char *total_name;
4151} memcg_stat_strings[NR_MCS_STAT] = {
4152 {"cache", "total_cache"},
4153 {"rss", "total_rss"},
d69b042f 4154 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4155 {"pgpgin", "total_pgpgin"},
4156 {"pgpgout", "total_pgpgout"},
1dd3a273 4157 {"swap", "total_swap"},
456f998e
YH
4158 {"pgfault", "total_pgfault"},
4159 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4160 {"inactive_anon", "total_inactive_anon"},
4161 {"active_anon", "total_active_anon"},
4162 {"inactive_file", "total_inactive_file"},
4163 {"active_file", "total_active_file"},
4164 {"unevictable", "total_unevictable"}
4165};
4166
4167
7d74b06f
KH
4168static void
4169mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4170{
14067bb3
KH
4171 s64 val;
4172
4173 /* per cpu stat */
c62b1a3b 4174 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4175 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4176 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4177 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4178 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4179 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4180 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4181 s->stat[MCS_PGPGIN] += val;
e9f8974f 4182 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4183 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4184 if (do_swap_account) {
c62b1a3b 4185 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4186 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4187 }
456f998e
YH
4188 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4189 s->stat[MCS_PGFAULT] += val;
4190 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4191 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4192
4193 /* per zone stat */
bb2a0de9 4194 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4195 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4196 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4197 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4198 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4199 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4200 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4201 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4202 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4203 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4204}
4205
4206static void
4207mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4208{
7d74b06f
KH
4209 struct mem_cgroup *iter;
4210
4211 for_each_mem_cgroup_tree(iter, mem)
4212 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4213}
4214
406eb0c9
YH
4215#ifdef CONFIG_NUMA
4216static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4217{
4218 int nid;
4219 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4220 unsigned long node_nr;
4221 struct cgroup *cont = m->private;
4222 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4223
bb2a0de9 4224 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4225 seq_printf(m, "total=%lu", total_nr);
4226 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4227 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4228 seq_printf(m, " N%d=%lu", nid, node_nr);
4229 }
4230 seq_putc(m, '\n');
4231
bb2a0de9 4232 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4233 seq_printf(m, "file=%lu", file_nr);
4234 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4235 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4236 LRU_ALL_FILE);
406eb0c9
YH
4237 seq_printf(m, " N%d=%lu", nid, node_nr);
4238 }
4239 seq_putc(m, '\n');
4240
bb2a0de9 4241 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4242 seq_printf(m, "anon=%lu", anon_nr);
4243 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4244 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4245 LRU_ALL_ANON);
406eb0c9
YH
4246 seq_printf(m, " N%d=%lu", nid, node_nr);
4247 }
4248 seq_putc(m, '\n');
4249
bb2a0de9 4250 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4251 seq_printf(m, "unevictable=%lu", unevictable_nr);
4252 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4253 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4254 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4255 seq_printf(m, " N%d=%lu", nid, node_nr);
4256 }
4257 seq_putc(m, '\n');
4258 return 0;
4259}
4260#endif /* CONFIG_NUMA */
4261
c64745cf
PM
4262static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4263 struct cgroup_map_cb *cb)
d2ceb9b7 4264{
d2ceb9b7 4265 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4266 struct mcs_total_stat mystat;
d2ceb9b7
KH
4267 int i;
4268
14067bb3
KH
4269 memset(&mystat, 0, sizeof(mystat));
4270 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4271
406eb0c9 4272
1dd3a273
DN
4273 for (i = 0; i < NR_MCS_STAT; i++) {
4274 if (i == MCS_SWAP && !do_swap_account)
4275 continue;
14067bb3 4276 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4277 }
7b854121 4278
14067bb3 4279 /* Hierarchical information */
fee7b548
KH
4280 {
4281 unsigned long long limit, memsw_limit;
4282 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4283 cb->fill(cb, "hierarchical_memory_limit", limit);
4284 if (do_swap_account)
4285 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4286 }
7f016ee8 4287
14067bb3
KH
4288 memset(&mystat, 0, sizeof(mystat));
4289 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4290 for (i = 0; i < NR_MCS_STAT; i++) {
4291 if (i == MCS_SWAP && !do_swap_account)
4292 continue;
14067bb3 4293 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4294 }
14067bb3 4295
7f016ee8 4296#ifdef CONFIG_DEBUG_VM
c772be93 4297 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4298
4299 {
4300 int nid, zid;
4301 struct mem_cgroup_per_zone *mz;
4302 unsigned long recent_rotated[2] = {0, 0};
4303 unsigned long recent_scanned[2] = {0, 0};
4304
4305 for_each_online_node(nid)
4306 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4307 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4308
4309 recent_rotated[0] +=
4310 mz->reclaim_stat.recent_rotated[0];
4311 recent_rotated[1] +=
4312 mz->reclaim_stat.recent_rotated[1];
4313 recent_scanned[0] +=
4314 mz->reclaim_stat.recent_scanned[0];
4315 recent_scanned[1] +=
4316 mz->reclaim_stat.recent_scanned[1];
4317 }
4318 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4319 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4320 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4321 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4322 }
4323#endif
4324
d2ceb9b7
KH
4325 return 0;
4326}
4327
a7885eb8
KM
4328static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4329{
4330 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4331
1f4c025b 4332 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4333}
4334
4335static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4336 u64 val)
4337{
4338 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4339 struct mem_cgroup *parent;
068b38c1 4340
a7885eb8
KM
4341 if (val > 100)
4342 return -EINVAL;
4343
4344 if (cgrp->parent == NULL)
4345 return -EINVAL;
4346
4347 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4348
4349 cgroup_lock();
4350
a7885eb8
KM
4351 /* If under hierarchy, only empty-root can set this value */
4352 if ((parent->use_hierarchy) ||
068b38c1
LZ
4353 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4354 cgroup_unlock();
a7885eb8 4355 return -EINVAL;
068b38c1 4356 }
a7885eb8 4357
a7885eb8 4358 memcg->swappiness = val;
a7885eb8 4359
068b38c1
LZ
4360 cgroup_unlock();
4361
a7885eb8
KM
4362 return 0;
4363}
4364
2e72b634
KS
4365static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4366{
4367 struct mem_cgroup_threshold_ary *t;
4368 u64 usage;
4369 int i;
4370
4371 rcu_read_lock();
4372 if (!swap)
2c488db2 4373 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4374 else
2c488db2 4375 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4376
4377 if (!t)
4378 goto unlock;
4379
4380 usage = mem_cgroup_usage(memcg, swap);
4381
4382 /*
4383 * current_threshold points to threshold just below usage.
4384 * If it's not true, a threshold was crossed after last
4385 * call of __mem_cgroup_threshold().
4386 */
5407a562 4387 i = t->current_threshold;
2e72b634
KS
4388
4389 /*
4390 * Iterate backward over array of thresholds starting from
4391 * current_threshold and check if a threshold is crossed.
4392 * If none of thresholds below usage is crossed, we read
4393 * only one element of the array here.
4394 */
4395 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4396 eventfd_signal(t->entries[i].eventfd, 1);
4397
4398 /* i = current_threshold + 1 */
4399 i++;
4400
4401 /*
4402 * Iterate forward over array of thresholds starting from
4403 * current_threshold+1 and check if a threshold is crossed.
4404 * If none of thresholds above usage is crossed, we read
4405 * only one element of the array here.
4406 */
4407 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4408 eventfd_signal(t->entries[i].eventfd, 1);
4409
4410 /* Update current_threshold */
5407a562 4411 t->current_threshold = i - 1;
2e72b634
KS
4412unlock:
4413 rcu_read_unlock();
4414}
4415
4416static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4417{
ad4ca5f4
KS
4418 while (memcg) {
4419 __mem_cgroup_threshold(memcg, false);
4420 if (do_swap_account)
4421 __mem_cgroup_threshold(memcg, true);
4422
4423 memcg = parent_mem_cgroup(memcg);
4424 }
2e72b634
KS
4425}
4426
4427static int compare_thresholds(const void *a, const void *b)
4428{
4429 const struct mem_cgroup_threshold *_a = a;
4430 const struct mem_cgroup_threshold *_b = b;
4431
4432 return _a->threshold - _b->threshold;
4433}
4434
7d74b06f 4435static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4436{
4437 struct mem_cgroup_eventfd_list *ev;
4438
4439 list_for_each_entry(ev, &mem->oom_notify, list)
4440 eventfd_signal(ev->eventfd, 1);
4441 return 0;
4442}
4443
4444static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4445{
7d74b06f
KH
4446 struct mem_cgroup *iter;
4447
4448 for_each_mem_cgroup_tree(iter, mem)
4449 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4450}
4451
4452static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4453 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4454{
4455 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4456 struct mem_cgroup_thresholds *thresholds;
4457 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4458 int type = MEMFILE_TYPE(cft->private);
4459 u64 threshold, usage;
2c488db2 4460 int i, size, ret;
2e72b634
KS
4461
4462 ret = res_counter_memparse_write_strategy(args, &threshold);
4463 if (ret)
4464 return ret;
4465
4466 mutex_lock(&memcg->thresholds_lock);
2c488db2 4467
2e72b634 4468 if (type == _MEM)
2c488db2 4469 thresholds = &memcg->thresholds;
2e72b634 4470 else if (type == _MEMSWAP)
2c488db2 4471 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4472 else
4473 BUG();
4474
4475 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4476
4477 /* Check if a threshold crossed before adding a new one */
2c488db2 4478 if (thresholds->primary)
2e72b634
KS
4479 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4480
2c488db2 4481 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4482
4483 /* Allocate memory for new array of thresholds */
2c488db2 4484 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4485 GFP_KERNEL);
2c488db2 4486 if (!new) {
2e72b634
KS
4487 ret = -ENOMEM;
4488 goto unlock;
4489 }
2c488db2 4490 new->size = size;
2e72b634
KS
4491
4492 /* Copy thresholds (if any) to new array */
2c488db2
KS
4493 if (thresholds->primary) {
4494 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4495 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4496 }
4497
2e72b634 4498 /* Add new threshold */
2c488db2
KS
4499 new->entries[size - 1].eventfd = eventfd;
4500 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4501
4502 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4503 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4504 compare_thresholds, NULL);
4505
4506 /* Find current threshold */
2c488db2 4507 new->current_threshold = -1;
2e72b634 4508 for (i = 0; i < size; i++) {
2c488db2 4509 if (new->entries[i].threshold < usage) {
2e72b634 4510 /*
2c488db2
KS
4511 * new->current_threshold will not be used until
4512 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4513 * it here.
4514 */
2c488db2 4515 ++new->current_threshold;
2e72b634
KS
4516 }
4517 }
4518
2c488db2
KS
4519 /* Free old spare buffer and save old primary buffer as spare */
4520 kfree(thresholds->spare);
4521 thresholds->spare = thresholds->primary;
4522
4523 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4524
907860ed 4525 /* To be sure that nobody uses thresholds */
2e72b634
KS
4526 synchronize_rcu();
4527
2e72b634
KS
4528unlock:
4529 mutex_unlock(&memcg->thresholds_lock);
4530
4531 return ret;
4532}
4533
907860ed 4534static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4535 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4536{
4537 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4538 struct mem_cgroup_thresholds *thresholds;
4539 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4540 int type = MEMFILE_TYPE(cft->private);
4541 u64 usage;
2c488db2 4542 int i, j, size;
2e72b634
KS
4543
4544 mutex_lock(&memcg->thresholds_lock);
4545 if (type == _MEM)
2c488db2 4546 thresholds = &memcg->thresholds;
2e72b634 4547 else if (type == _MEMSWAP)
2c488db2 4548 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4549 else
4550 BUG();
4551
4552 /*
4553 * Something went wrong if we trying to unregister a threshold
4554 * if we don't have thresholds
4555 */
4556 BUG_ON(!thresholds);
4557
4558 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4559
4560 /* Check if a threshold crossed before removing */
4561 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4562
4563 /* Calculate new number of threshold */
2c488db2
KS
4564 size = 0;
4565 for (i = 0; i < thresholds->primary->size; i++) {
4566 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4567 size++;
4568 }
4569
2c488db2 4570 new = thresholds->spare;
907860ed 4571
2e72b634
KS
4572 /* Set thresholds array to NULL if we don't have thresholds */
4573 if (!size) {
2c488db2
KS
4574 kfree(new);
4575 new = NULL;
907860ed 4576 goto swap_buffers;
2e72b634
KS
4577 }
4578
2c488db2 4579 new->size = size;
2e72b634
KS
4580
4581 /* Copy thresholds and find current threshold */
2c488db2
KS
4582 new->current_threshold = -1;
4583 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4584 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4585 continue;
4586
2c488db2
KS
4587 new->entries[j] = thresholds->primary->entries[i];
4588 if (new->entries[j].threshold < usage) {
2e72b634 4589 /*
2c488db2 4590 * new->current_threshold will not be used
2e72b634
KS
4591 * until rcu_assign_pointer(), so it's safe to increment
4592 * it here.
4593 */
2c488db2 4594 ++new->current_threshold;
2e72b634
KS
4595 }
4596 j++;
4597 }
4598
907860ed 4599swap_buffers:
2c488db2
KS
4600 /* Swap primary and spare array */
4601 thresholds->spare = thresholds->primary;
4602 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4603
907860ed 4604 /* To be sure that nobody uses thresholds */
2e72b634
KS
4605 synchronize_rcu();
4606
2e72b634 4607 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4608}
c1e862c1 4609
9490ff27
KH
4610static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4611 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4612{
4613 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4614 struct mem_cgroup_eventfd_list *event;
4615 int type = MEMFILE_TYPE(cft->private);
4616
4617 BUG_ON(type != _OOM_TYPE);
4618 event = kmalloc(sizeof(*event), GFP_KERNEL);
4619 if (!event)
4620 return -ENOMEM;
4621
1af8efe9 4622 spin_lock(&memcg_oom_lock);
9490ff27
KH
4623
4624 event->eventfd = eventfd;
4625 list_add(&event->list, &memcg->oom_notify);
4626
4627 /* already in OOM ? */
79dfdacc 4628 if (atomic_read(&memcg->under_oom))
9490ff27 4629 eventfd_signal(eventfd, 1);
1af8efe9 4630 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4631
4632 return 0;
4633}
4634
907860ed 4635static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4636 struct cftype *cft, struct eventfd_ctx *eventfd)
4637{
4638 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4639 struct mem_cgroup_eventfd_list *ev, *tmp;
4640 int type = MEMFILE_TYPE(cft->private);
4641
4642 BUG_ON(type != _OOM_TYPE);
4643
1af8efe9 4644 spin_lock(&memcg_oom_lock);
9490ff27
KH
4645
4646 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4647 if (ev->eventfd == eventfd) {
4648 list_del(&ev->list);
4649 kfree(ev);
4650 }
4651 }
4652
1af8efe9 4653 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4654}
4655
3c11ecf4
KH
4656static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4657 struct cftype *cft, struct cgroup_map_cb *cb)
4658{
4659 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4660
4661 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4662
79dfdacc 4663 if (atomic_read(&mem->under_oom))
3c11ecf4
KH
4664 cb->fill(cb, "under_oom", 1);
4665 else
4666 cb->fill(cb, "under_oom", 0);
4667 return 0;
4668}
4669
3c11ecf4
KH
4670static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4671 struct cftype *cft, u64 val)
4672{
4673 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4674 struct mem_cgroup *parent;
4675
4676 /* cannot set to root cgroup and only 0 and 1 are allowed */
4677 if (!cgrp->parent || !((val == 0) || (val == 1)))
4678 return -EINVAL;
4679
4680 parent = mem_cgroup_from_cont(cgrp->parent);
4681
4682 cgroup_lock();
4683 /* oom-kill-disable is a flag for subhierarchy. */
4684 if ((parent->use_hierarchy) ||
4685 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4686 cgroup_unlock();
4687 return -EINVAL;
4688 }
4689 mem->oom_kill_disable = val;
4d845ebf
KH
4690 if (!val)
4691 memcg_oom_recover(mem);
3c11ecf4
KH
4692 cgroup_unlock();
4693 return 0;
4694}
4695
406eb0c9
YH
4696#ifdef CONFIG_NUMA
4697static const struct file_operations mem_control_numa_stat_file_operations = {
4698 .read = seq_read,
4699 .llseek = seq_lseek,
4700 .release = single_release,
4701};
4702
4703static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4704{
4705 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4706
4707 file->f_op = &mem_control_numa_stat_file_operations;
4708 return single_open(file, mem_control_numa_stat_show, cont);
4709}
4710#endif /* CONFIG_NUMA */
4711
82f9d486
KH
4712static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4713 struct cftype *cft,
4714 struct cgroup_map_cb *cb)
4715{
4716 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4717 char string[64];
4718 int i;
4719
4720 for (i = 0; i < NR_SCANSTATS; i++) {
4721 strcpy(string, scanstat_string[i]);
4722 strcat(string, SCANSTAT_WORD_LIMIT);
4723 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4724 }
4725
4726 for (i = 0; i < NR_SCANSTATS; i++) {
4727 strcpy(string, scanstat_string[i]);
4728 strcat(string, SCANSTAT_WORD_SYSTEM);
4729 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4730 }
4731
4732 for (i = 0; i < NR_SCANSTATS; i++) {
4733 strcpy(string, scanstat_string[i]);
4734 strcat(string, SCANSTAT_WORD_LIMIT);
4735 strcat(string, SCANSTAT_WORD_HIERARCHY);
4736 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4737 }
4738 for (i = 0; i < NR_SCANSTATS; i++) {
4739 strcpy(string, scanstat_string[i]);
4740 strcat(string, SCANSTAT_WORD_SYSTEM);
4741 strcat(string, SCANSTAT_WORD_HIERARCHY);
4742 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4743 }
4744 return 0;
4745}
4746
4747static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4748 unsigned int event)
4749{
4750 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4751
4752 spin_lock(&mem->scanstat.lock);
4753 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4754 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4755 spin_unlock(&mem->scanstat.lock);
4756 return 0;
4757}
4758
4759
8cdea7c0
BS
4760static struct cftype mem_cgroup_files[] = {
4761 {
0eea1030 4762 .name = "usage_in_bytes",
8c7c6e34 4763 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4764 .read_u64 = mem_cgroup_read,
9490ff27
KH
4765 .register_event = mem_cgroup_usage_register_event,
4766 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4767 },
c84872e1
PE
4768 {
4769 .name = "max_usage_in_bytes",
8c7c6e34 4770 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4771 .trigger = mem_cgroup_reset,
c84872e1
PE
4772 .read_u64 = mem_cgroup_read,
4773 },
8cdea7c0 4774 {
0eea1030 4775 .name = "limit_in_bytes",
8c7c6e34 4776 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4777 .write_string = mem_cgroup_write,
2c3daa72 4778 .read_u64 = mem_cgroup_read,
8cdea7c0 4779 },
296c81d8
BS
4780 {
4781 .name = "soft_limit_in_bytes",
4782 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4783 .write_string = mem_cgroup_write,
4784 .read_u64 = mem_cgroup_read,
4785 },
8cdea7c0
BS
4786 {
4787 .name = "failcnt",
8c7c6e34 4788 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4789 .trigger = mem_cgroup_reset,
2c3daa72 4790 .read_u64 = mem_cgroup_read,
8cdea7c0 4791 },
d2ceb9b7
KH
4792 {
4793 .name = "stat",
c64745cf 4794 .read_map = mem_control_stat_show,
d2ceb9b7 4795 },
c1e862c1
KH
4796 {
4797 .name = "force_empty",
4798 .trigger = mem_cgroup_force_empty_write,
4799 },
18f59ea7
BS
4800 {
4801 .name = "use_hierarchy",
4802 .write_u64 = mem_cgroup_hierarchy_write,
4803 .read_u64 = mem_cgroup_hierarchy_read,
4804 },
a7885eb8
KM
4805 {
4806 .name = "swappiness",
4807 .read_u64 = mem_cgroup_swappiness_read,
4808 .write_u64 = mem_cgroup_swappiness_write,
4809 },
7dc74be0
DN
4810 {
4811 .name = "move_charge_at_immigrate",
4812 .read_u64 = mem_cgroup_move_charge_read,
4813 .write_u64 = mem_cgroup_move_charge_write,
4814 },
9490ff27
KH
4815 {
4816 .name = "oom_control",
3c11ecf4
KH
4817 .read_map = mem_cgroup_oom_control_read,
4818 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4819 .register_event = mem_cgroup_oom_register_event,
4820 .unregister_event = mem_cgroup_oom_unregister_event,
4821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4822 },
406eb0c9
YH
4823#ifdef CONFIG_NUMA
4824 {
4825 .name = "numa_stat",
4826 .open = mem_control_numa_stat_open,
89577127 4827 .mode = S_IRUGO,
406eb0c9
YH
4828 },
4829#endif
82f9d486
KH
4830 {
4831 .name = "vmscan_stat",
4832 .read_map = mem_cgroup_vmscan_stat_read,
4833 .trigger = mem_cgroup_reset_vmscan_stat,
4834 },
8cdea7c0
BS
4835};
4836
8c7c6e34
KH
4837#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4838static struct cftype memsw_cgroup_files[] = {
4839 {
4840 .name = "memsw.usage_in_bytes",
4841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4842 .read_u64 = mem_cgroup_read,
9490ff27
KH
4843 .register_event = mem_cgroup_usage_register_event,
4844 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4845 },
4846 {
4847 .name = "memsw.max_usage_in_bytes",
4848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4849 .trigger = mem_cgroup_reset,
4850 .read_u64 = mem_cgroup_read,
4851 },
4852 {
4853 .name = "memsw.limit_in_bytes",
4854 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4855 .write_string = mem_cgroup_write,
4856 .read_u64 = mem_cgroup_read,
4857 },
4858 {
4859 .name = "memsw.failcnt",
4860 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4861 .trigger = mem_cgroup_reset,
4862 .read_u64 = mem_cgroup_read,
4863 },
4864};
4865
4866static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4867{
4868 if (!do_swap_account)
4869 return 0;
4870 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4871 ARRAY_SIZE(memsw_cgroup_files));
4872};
4873#else
4874static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4875{
4876 return 0;
4877}
4878#endif
4879
6d12e2d8
KH
4880static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4881{
4882 struct mem_cgroup_per_node *pn;
1ecaab2b 4883 struct mem_cgroup_per_zone *mz;
b69408e8 4884 enum lru_list l;
41e3355d 4885 int zone, tmp = node;
1ecaab2b
KH
4886 /*
4887 * This routine is called against possible nodes.
4888 * But it's BUG to call kmalloc() against offline node.
4889 *
4890 * TODO: this routine can waste much memory for nodes which will
4891 * never be onlined. It's better to use memory hotplug callback
4892 * function.
4893 */
41e3355d
KH
4894 if (!node_state(node, N_NORMAL_MEMORY))
4895 tmp = -1;
17295c88 4896 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4897 if (!pn)
4898 return 1;
1ecaab2b 4899
6d12e2d8 4900 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4901 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4902 mz = &pn->zoneinfo[zone];
b69408e8
CL
4903 for_each_lru(l)
4904 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4905 mz->usage_in_excess = 0;
4e416953
BS
4906 mz->on_tree = false;
4907 mz->mem = mem;
1ecaab2b 4908 }
6d12e2d8
KH
4909 return 0;
4910}
4911
1ecaab2b
KH
4912static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4913{
4914 kfree(mem->info.nodeinfo[node]);
4915}
4916
33327948
KH
4917static struct mem_cgroup *mem_cgroup_alloc(void)
4918{
4919 struct mem_cgroup *mem;
c62b1a3b 4920 int size = sizeof(struct mem_cgroup);
33327948 4921
c62b1a3b 4922 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4923 if (size < PAGE_SIZE)
17295c88 4924 mem = kzalloc(size, GFP_KERNEL);
33327948 4925 else
17295c88 4926 mem = vzalloc(size);
33327948 4927
e7bbcdf3
DC
4928 if (!mem)
4929 return NULL;
4930
c62b1a3b 4931 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4932 if (!mem->stat)
4933 goto out_free;
711d3d2c 4934 spin_lock_init(&mem->pcp_counter_lock);
33327948 4935 return mem;
d2e61b8d
DC
4936
4937out_free:
4938 if (size < PAGE_SIZE)
4939 kfree(mem);
4940 else
4941 vfree(mem);
4942 return NULL;
33327948
KH
4943}
4944
8c7c6e34
KH
4945/*
4946 * At destroying mem_cgroup, references from swap_cgroup can remain.
4947 * (scanning all at force_empty is too costly...)
4948 *
4949 * Instead of clearing all references at force_empty, we remember
4950 * the number of reference from swap_cgroup and free mem_cgroup when
4951 * it goes down to 0.
4952 *
8c7c6e34
KH
4953 * Removal of cgroup itself succeeds regardless of refs from swap.
4954 */
4955
a7ba0eef 4956static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4957{
08e552c6
KH
4958 int node;
4959
f64c3f54 4960 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4961 free_css_id(&mem_cgroup_subsys, &mem->css);
4962
08e552c6
KH
4963 for_each_node_state(node, N_POSSIBLE)
4964 free_mem_cgroup_per_zone_info(mem, node);
4965
c62b1a3b
KH
4966 free_percpu(mem->stat);
4967 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4968 kfree(mem);
4969 else
4970 vfree(mem);
4971}
4972
8c7c6e34
KH
4973static void mem_cgroup_get(struct mem_cgroup *mem)
4974{
4975 atomic_inc(&mem->refcnt);
4976}
4977
483c30b5 4978static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4979{
483c30b5 4980 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4981 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4982 __mem_cgroup_free(mem);
7bcc1bb1
DN
4983 if (parent)
4984 mem_cgroup_put(parent);
4985 }
8c7c6e34
KH
4986}
4987
483c30b5
DN
4988static void mem_cgroup_put(struct mem_cgroup *mem)
4989{
4990 __mem_cgroup_put(mem, 1);
4991}
4992
7bcc1bb1
DN
4993/*
4994 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4995 */
4996static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4997{
4998 if (!mem->res.parent)
4999 return NULL;
5000 return mem_cgroup_from_res_counter(mem->res.parent, res);
5001}
33327948 5002
c077719b
KH
5003#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5004static void __init enable_swap_cgroup(void)
5005{
f8d66542 5006 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5007 do_swap_account = 1;
5008}
5009#else
5010static void __init enable_swap_cgroup(void)
5011{
5012}
5013#endif
5014
f64c3f54
BS
5015static int mem_cgroup_soft_limit_tree_init(void)
5016{
5017 struct mem_cgroup_tree_per_node *rtpn;
5018 struct mem_cgroup_tree_per_zone *rtpz;
5019 int tmp, node, zone;
5020
5021 for_each_node_state(node, N_POSSIBLE) {
5022 tmp = node;
5023 if (!node_state(node, N_NORMAL_MEMORY))
5024 tmp = -1;
5025 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5026 if (!rtpn)
5027 return 1;
5028
5029 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5030
5031 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5032 rtpz = &rtpn->rb_tree_per_zone[zone];
5033 rtpz->rb_root = RB_ROOT;
5034 spin_lock_init(&rtpz->lock);
5035 }
5036 }
5037 return 0;
5038}
5039
0eb253e2 5040static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5041mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5042{
28dbc4b6 5043 struct mem_cgroup *mem, *parent;
04046e1a 5044 long error = -ENOMEM;
6d12e2d8 5045 int node;
8cdea7c0 5046
c8dad2bb
JB
5047 mem = mem_cgroup_alloc();
5048 if (!mem)
04046e1a 5049 return ERR_PTR(error);
78fb7466 5050
6d12e2d8
KH
5051 for_each_node_state(node, N_POSSIBLE)
5052 if (alloc_mem_cgroup_per_zone_info(mem, node))
5053 goto free_out;
f64c3f54 5054
c077719b 5055 /* root ? */
28dbc4b6 5056 if (cont->parent == NULL) {
cdec2e42 5057 int cpu;
c077719b 5058 enable_swap_cgroup();
28dbc4b6 5059 parent = NULL;
4b3bde4c 5060 root_mem_cgroup = mem;
f64c3f54
BS
5061 if (mem_cgroup_soft_limit_tree_init())
5062 goto free_out;
cdec2e42
KH
5063 for_each_possible_cpu(cpu) {
5064 struct memcg_stock_pcp *stock =
5065 &per_cpu(memcg_stock, cpu);
5066 INIT_WORK(&stock->work, drain_local_stock);
5067 }
711d3d2c 5068 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5069 } else {
28dbc4b6 5070 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 5071 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 5072 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5073 }
28dbc4b6 5074
18f59ea7
BS
5075 if (parent && parent->use_hierarchy) {
5076 res_counter_init(&mem->res, &parent->res);
5077 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
5078 /*
5079 * We increment refcnt of the parent to ensure that we can
5080 * safely access it on res_counter_charge/uncharge.
5081 * This refcnt will be decremented when freeing this
5082 * mem_cgroup(see mem_cgroup_put).
5083 */
5084 mem_cgroup_get(parent);
18f59ea7
BS
5085 } else {
5086 res_counter_init(&mem->res, NULL);
5087 res_counter_init(&mem->memsw, NULL);
5088 }
04046e1a 5089 mem->last_scanned_child = 0;
889976db 5090 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 5091 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 5092
a7885eb8 5093 if (parent)
1f4c025b 5094 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 5095 atomic_set(&mem->refcnt, 1);
7dc74be0 5096 mem->move_charge_at_immigrate = 0;
2e72b634 5097 mutex_init(&mem->thresholds_lock);
82f9d486 5098 spin_lock_init(&mem->scanstat.lock);
8cdea7c0 5099 return &mem->css;
6d12e2d8 5100free_out:
a7ba0eef 5101 __mem_cgroup_free(mem);
4b3bde4c 5102 root_mem_cgroup = NULL;
04046e1a 5103 return ERR_PTR(error);
8cdea7c0
BS
5104}
5105
ec64f515 5106static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5107 struct cgroup *cont)
5108{
5109 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
5110
5111 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
5112}
5113
8cdea7c0
BS
5114static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5115 struct cgroup *cont)
5116{
c268e994 5117 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 5118
c268e994 5119 mem_cgroup_put(mem);
8cdea7c0
BS
5120}
5121
5122static int mem_cgroup_populate(struct cgroup_subsys *ss,
5123 struct cgroup *cont)
5124{
8c7c6e34
KH
5125 int ret;
5126
5127 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5128 ARRAY_SIZE(mem_cgroup_files));
5129
5130 if (!ret)
5131 ret = register_memsw_files(cont, ss);
5132 return ret;
8cdea7c0
BS
5133}
5134
02491447 5135#ifdef CONFIG_MMU
7dc74be0 5136/* Handlers for move charge at task migration. */
854ffa8d
DN
5137#define PRECHARGE_COUNT_AT_ONCE 256
5138static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5139{
854ffa8d
DN
5140 int ret = 0;
5141 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
5142 struct mem_cgroup *mem = mc.to;
5143
854ffa8d
DN
5144 if (mem_cgroup_is_root(mem)) {
5145 mc.precharge += count;
5146 /* we don't need css_get for root */
5147 return ret;
5148 }
5149 /* try to charge at once */
5150 if (count > 1) {
5151 struct res_counter *dummy;
5152 /*
5153 * "mem" cannot be under rmdir() because we've already checked
5154 * by cgroup_lock_live_cgroup() that it is not removed and we
5155 * are still under the same cgroup_mutex. So we can postpone
5156 * css_get().
5157 */
5158 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5159 goto one_by_one;
5160 if (do_swap_account && res_counter_charge(&mem->memsw,
5161 PAGE_SIZE * count, &dummy)) {
5162 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5163 goto one_by_one;
5164 }
5165 mc.precharge += count;
854ffa8d
DN
5166 return ret;
5167 }
5168one_by_one:
5169 /* fall back to one by one charge */
5170 while (count--) {
5171 if (signal_pending(current)) {
5172 ret = -EINTR;
5173 break;
5174 }
5175 if (!batch_count--) {
5176 batch_count = PRECHARGE_COUNT_AT_ONCE;
5177 cond_resched();
5178 }
7ec99d62 5179 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5180 if (ret || !mem)
5181 /* mem_cgroup_clear_mc() will do uncharge later */
5182 return -ENOMEM;
5183 mc.precharge++;
5184 }
4ffef5fe
DN
5185 return ret;
5186}
5187
5188/**
5189 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5190 * @vma: the vma the pte to be checked belongs
5191 * @addr: the address corresponding to the pte to be checked
5192 * @ptent: the pte to be checked
02491447 5193 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5194 *
5195 * Returns
5196 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5197 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5198 * move charge. if @target is not NULL, the page is stored in target->page
5199 * with extra refcnt got(Callers should handle it).
02491447
DN
5200 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5201 * target for charge migration. if @target is not NULL, the entry is stored
5202 * in target->ent.
4ffef5fe
DN
5203 *
5204 * Called with pte lock held.
5205 */
4ffef5fe
DN
5206union mc_target {
5207 struct page *page;
02491447 5208 swp_entry_t ent;
4ffef5fe
DN
5209};
5210
4ffef5fe
DN
5211enum mc_target_type {
5212 MC_TARGET_NONE, /* not used */
5213 MC_TARGET_PAGE,
02491447 5214 MC_TARGET_SWAP,
4ffef5fe
DN
5215};
5216
90254a65
DN
5217static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5218 unsigned long addr, pte_t ptent)
4ffef5fe 5219{
90254a65 5220 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5221
90254a65
DN
5222 if (!page || !page_mapped(page))
5223 return NULL;
5224 if (PageAnon(page)) {
5225 /* we don't move shared anon */
5226 if (!move_anon() || page_mapcount(page) > 2)
5227 return NULL;
87946a72
DN
5228 } else if (!move_file())
5229 /* we ignore mapcount for file pages */
90254a65
DN
5230 return NULL;
5231 if (!get_page_unless_zero(page))
5232 return NULL;
5233
5234 return page;
5235}
5236
5237static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5238 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5239{
5240 int usage_count;
5241 struct page *page = NULL;
5242 swp_entry_t ent = pte_to_swp_entry(ptent);
5243
5244 if (!move_anon() || non_swap_entry(ent))
5245 return NULL;
5246 usage_count = mem_cgroup_count_swap_user(ent, &page);
5247 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5248 if (page)
5249 put_page(page);
90254a65 5250 return NULL;
02491447 5251 }
90254a65
DN
5252 if (do_swap_account)
5253 entry->val = ent.val;
5254
5255 return page;
5256}
5257
87946a72
DN
5258static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5259 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5260{
5261 struct page *page = NULL;
5262 struct inode *inode;
5263 struct address_space *mapping;
5264 pgoff_t pgoff;
5265
5266 if (!vma->vm_file) /* anonymous vma */
5267 return NULL;
5268 if (!move_file())
5269 return NULL;
5270
5271 inode = vma->vm_file->f_path.dentry->d_inode;
5272 mapping = vma->vm_file->f_mapping;
5273 if (pte_none(ptent))
5274 pgoff = linear_page_index(vma, addr);
5275 else /* pte_file(ptent) is true */
5276 pgoff = pte_to_pgoff(ptent);
5277
5278 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5279 page = find_get_page(mapping, pgoff);
5280
5281#ifdef CONFIG_SWAP
5282 /* shmem/tmpfs may report page out on swap: account for that too. */
5283 if (radix_tree_exceptional_entry(page)) {
5284 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5285 if (do_swap_account)
aa3b1895
HD
5286 *entry = swap;
5287 page = find_get_page(&swapper_space, swap.val);
87946a72 5288 }
aa3b1895 5289#endif
87946a72
DN
5290 return page;
5291}
5292
90254a65
DN
5293static int is_target_pte_for_mc(struct vm_area_struct *vma,
5294 unsigned long addr, pte_t ptent, union mc_target *target)
5295{
5296 struct page *page = NULL;
5297 struct page_cgroup *pc;
5298 int ret = 0;
5299 swp_entry_t ent = { .val = 0 };
5300
5301 if (pte_present(ptent))
5302 page = mc_handle_present_pte(vma, addr, ptent);
5303 else if (is_swap_pte(ptent))
5304 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5305 else if (pte_none(ptent) || pte_file(ptent))
5306 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5307
5308 if (!page && !ent.val)
5309 return 0;
02491447
DN
5310 if (page) {
5311 pc = lookup_page_cgroup(page);
5312 /*
5313 * Do only loose check w/o page_cgroup lock.
5314 * mem_cgroup_move_account() checks the pc is valid or not under
5315 * the lock.
5316 */
5317 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5318 ret = MC_TARGET_PAGE;
5319 if (target)
5320 target->page = page;
5321 }
5322 if (!ret || !target)
5323 put_page(page);
5324 }
90254a65
DN
5325 /* There is a swap entry and a page doesn't exist or isn't charged */
5326 if (ent.val && !ret &&
7f0f1546
KH
5327 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5328 ret = MC_TARGET_SWAP;
5329 if (target)
5330 target->ent = ent;
4ffef5fe 5331 }
4ffef5fe
DN
5332 return ret;
5333}
5334
5335static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
5338{
5339 struct vm_area_struct *vma = walk->private;
5340 pte_t *pte;
5341 spinlock_t *ptl;
5342
03319327
DH
5343 split_huge_page_pmd(walk->mm, pmd);
5344
4ffef5fe
DN
5345 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5346 for (; addr != end; pte++, addr += PAGE_SIZE)
5347 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5348 mc.precharge++; /* increment precharge temporarily */
5349 pte_unmap_unlock(pte - 1, ptl);
5350 cond_resched();
5351
7dc74be0
DN
5352 return 0;
5353}
5354
4ffef5fe
DN
5355static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5356{
5357 unsigned long precharge;
5358 struct vm_area_struct *vma;
5359
dfe076b0 5360 down_read(&mm->mmap_sem);
4ffef5fe
DN
5361 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5362 struct mm_walk mem_cgroup_count_precharge_walk = {
5363 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5364 .mm = mm,
5365 .private = vma,
5366 };
5367 if (is_vm_hugetlb_page(vma))
5368 continue;
4ffef5fe
DN
5369 walk_page_range(vma->vm_start, vma->vm_end,
5370 &mem_cgroup_count_precharge_walk);
5371 }
dfe076b0 5372 up_read(&mm->mmap_sem);
4ffef5fe
DN
5373
5374 precharge = mc.precharge;
5375 mc.precharge = 0;
5376
5377 return precharge;
5378}
5379
4ffef5fe
DN
5380static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5381{
dfe076b0
DN
5382 unsigned long precharge = mem_cgroup_count_precharge(mm);
5383
5384 VM_BUG_ON(mc.moving_task);
5385 mc.moving_task = current;
5386 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5387}
5388
dfe076b0
DN
5389/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5390static void __mem_cgroup_clear_mc(void)
4ffef5fe 5391{
2bd9bb20
KH
5392 struct mem_cgroup *from = mc.from;
5393 struct mem_cgroup *to = mc.to;
5394
4ffef5fe 5395 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5396 if (mc.precharge) {
5397 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5398 mc.precharge = 0;
5399 }
5400 /*
5401 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5402 * we must uncharge here.
5403 */
5404 if (mc.moved_charge) {
5405 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5406 mc.moved_charge = 0;
4ffef5fe 5407 }
483c30b5
DN
5408 /* we must fixup refcnts and charges */
5409 if (mc.moved_swap) {
483c30b5
DN
5410 /* uncharge swap account from the old cgroup */
5411 if (!mem_cgroup_is_root(mc.from))
5412 res_counter_uncharge(&mc.from->memsw,
5413 PAGE_SIZE * mc.moved_swap);
5414 __mem_cgroup_put(mc.from, mc.moved_swap);
5415
5416 if (!mem_cgroup_is_root(mc.to)) {
5417 /*
5418 * we charged both to->res and to->memsw, so we should
5419 * uncharge to->res.
5420 */
5421 res_counter_uncharge(&mc.to->res,
5422 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5423 }
5424 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5425 mc.moved_swap = 0;
5426 }
dfe076b0
DN
5427 memcg_oom_recover(from);
5428 memcg_oom_recover(to);
5429 wake_up_all(&mc.waitq);
5430}
5431
5432static void mem_cgroup_clear_mc(void)
5433{
5434 struct mem_cgroup *from = mc.from;
5435
5436 /*
5437 * we must clear moving_task before waking up waiters at the end of
5438 * task migration.
5439 */
5440 mc.moving_task = NULL;
5441 __mem_cgroup_clear_mc();
2bd9bb20 5442 spin_lock(&mc.lock);
4ffef5fe
DN
5443 mc.from = NULL;
5444 mc.to = NULL;
2bd9bb20 5445 spin_unlock(&mc.lock);
32047e2a 5446 mem_cgroup_end_move(from);
4ffef5fe
DN
5447}
5448
7dc74be0
DN
5449static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5450 struct cgroup *cgroup,
f780bdb7 5451 struct task_struct *p)
7dc74be0
DN
5452{
5453 int ret = 0;
5454 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5455
5456 if (mem->move_charge_at_immigrate) {
5457 struct mm_struct *mm;
5458 struct mem_cgroup *from = mem_cgroup_from_task(p);
5459
5460 VM_BUG_ON(from == mem);
5461
5462 mm = get_task_mm(p);
5463 if (!mm)
5464 return 0;
7dc74be0 5465 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5466 if (mm->owner == p) {
5467 VM_BUG_ON(mc.from);
5468 VM_BUG_ON(mc.to);
5469 VM_BUG_ON(mc.precharge);
854ffa8d 5470 VM_BUG_ON(mc.moved_charge);
483c30b5 5471 VM_BUG_ON(mc.moved_swap);
32047e2a 5472 mem_cgroup_start_move(from);
2bd9bb20 5473 spin_lock(&mc.lock);
4ffef5fe
DN
5474 mc.from = from;
5475 mc.to = mem;
2bd9bb20 5476 spin_unlock(&mc.lock);
dfe076b0 5477 /* We set mc.moving_task later */
4ffef5fe
DN
5478
5479 ret = mem_cgroup_precharge_mc(mm);
5480 if (ret)
5481 mem_cgroup_clear_mc();
dfe076b0
DN
5482 }
5483 mmput(mm);
7dc74be0
DN
5484 }
5485 return ret;
5486}
5487
5488static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5489 struct cgroup *cgroup,
f780bdb7 5490 struct task_struct *p)
7dc74be0 5491{
4ffef5fe 5492 mem_cgroup_clear_mc();
7dc74be0
DN
5493}
5494
4ffef5fe
DN
5495static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5496 unsigned long addr, unsigned long end,
5497 struct mm_walk *walk)
7dc74be0 5498{
4ffef5fe
DN
5499 int ret = 0;
5500 struct vm_area_struct *vma = walk->private;
5501 pte_t *pte;
5502 spinlock_t *ptl;
5503
03319327 5504 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5505retry:
5506 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5507 for (; addr != end; addr += PAGE_SIZE) {
5508 pte_t ptent = *(pte++);
5509 union mc_target target;
5510 int type;
5511 struct page *page;
5512 struct page_cgroup *pc;
02491447 5513 swp_entry_t ent;
4ffef5fe
DN
5514
5515 if (!mc.precharge)
5516 break;
5517
5518 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5519 switch (type) {
5520 case MC_TARGET_PAGE:
5521 page = target.page;
5522 if (isolate_lru_page(page))
5523 goto put;
5524 pc = lookup_page_cgroup(page);
7ec99d62
JW
5525 if (!mem_cgroup_move_account(page, 1, pc,
5526 mc.from, mc.to, false)) {
4ffef5fe 5527 mc.precharge--;
854ffa8d
DN
5528 /* we uncharge from mc.from later. */
5529 mc.moved_charge++;
4ffef5fe
DN
5530 }
5531 putback_lru_page(page);
5532put: /* is_target_pte_for_mc() gets the page */
5533 put_page(page);
5534 break;
02491447
DN
5535 case MC_TARGET_SWAP:
5536 ent = target.ent;
483c30b5
DN
5537 if (!mem_cgroup_move_swap_account(ent,
5538 mc.from, mc.to, false)) {
02491447 5539 mc.precharge--;
483c30b5
DN
5540 /* we fixup refcnts and charges later. */
5541 mc.moved_swap++;
5542 }
02491447 5543 break;
4ffef5fe
DN
5544 default:
5545 break;
5546 }
5547 }
5548 pte_unmap_unlock(pte - 1, ptl);
5549 cond_resched();
5550
5551 if (addr != end) {
5552 /*
5553 * We have consumed all precharges we got in can_attach().
5554 * We try charge one by one, but don't do any additional
5555 * charges to mc.to if we have failed in charge once in attach()
5556 * phase.
5557 */
854ffa8d 5558 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5559 if (!ret)
5560 goto retry;
5561 }
5562
5563 return ret;
5564}
5565
5566static void mem_cgroup_move_charge(struct mm_struct *mm)
5567{
5568 struct vm_area_struct *vma;
5569
5570 lru_add_drain_all();
dfe076b0
DN
5571retry:
5572 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5573 /*
5574 * Someone who are holding the mmap_sem might be waiting in
5575 * waitq. So we cancel all extra charges, wake up all waiters,
5576 * and retry. Because we cancel precharges, we might not be able
5577 * to move enough charges, but moving charge is a best-effort
5578 * feature anyway, so it wouldn't be a big problem.
5579 */
5580 __mem_cgroup_clear_mc();
5581 cond_resched();
5582 goto retry;
5583 }
4ffef5fe
DN
5584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5585 int ret;
5586 struct mm_walk mem_cgroup_move_charge_walk = {
5587 .pmd_entry = mem_cgroup_move_charge_pte_range,
5588 .mm = mm,
5589 .private = vma,
5590 };
5591 if (is_vm_hugetlb_page(vma))
5592 continue;
4ffef5fe
DN
5593 ret = walk_page_range(vma->vm_start, vma->vm_end,
5594 &mem_cgroup_move_charge_walk);
5595 if (ret)
5596 /*
5597 * means we have consumed all precharges and failed in
5598 * doing additional charge. Just abandon here.
5599 */
5600 break;
5601 }
dfe076b0 5602 up_read(&mm->mmap_sem);
7dc74be0
DN
5603}
5604
67e465a7
BS
5605static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5606 struct cgroup *cont,
5607 struct cgroup *old_cont,
f780bdb7 5608 struct task_struct *p)
67e465a7 5609{
a433658c 5610 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5611
dfe076b0 5612 if (mm) {
a433658c
KM
5613 if (mc.to)
5614 mem_cgroup_move_charge(mm);
5615 put_swap_token(mm);
dfe076b0
DN
5616 mmput(mm);
5617 }
a433658c
KM
5618 if (mc.to)
5619 mem_cgroup_clear_mc();
67e465a7 5620}
5cfb80a7
DN
5621#else /* !CONFIG_MMU */
5622static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5623 struct cgroup *cgroup,
f780bdb7 5624 struct task_struct *p)
5cfb80a7
DN
5625{
5626 return 0;
5627}
5628static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5629 struct cgroup *cgroup,
f780bdb7 5630 struct task_struct *p)
5cfb80a7
DN
5631{
5632}
5633static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5634 struct cgroup *cont,
5635 struct cgroup *old_cont,
f780bdb7 5636 struct task_struct *p)
5cfb80a7
DN
5637{
5638}
5639#endif
67e465a7 5640
8cdea7c0
BS
5641struct cgroup_subsys mem_cgroup_subsys = {
5642 .name = "memory",
5643 .subsys_id = mem_cgroup_subsys_id,
5644 .create = mem_cgroup_create,
df878fb0 5645 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5646 .destroy = mem_cgroup_destroy,
5647 .populate = mem_cgroup_populate,
7dc74be0
DN
5648 .can_attach = mem_cgroup_can_attach,
5649 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5650 .attach = mem_cgroup_move_task,
6d12e2d8 5651 .early_init = 0,
04046e1a 5652 .use_id = 1,
8cdea7c0 5653};
c077719b
KH
5654
5655#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5656static int __init enable_swap_account(char *s)
5657{
5658 /* consider enabled if no parameter or 1 is given */
a2c8990a 5659 if (!strcmp(s, "1"))
a42c390c 5660 really_do_swap_account = 1;
a2c8990a 5661 else if (!strcmp(s, "0"))
a42c390c
MH
5662 really_do_swap_account = 0;
5663 return 1;
5664}
a2c8990a 5665__setup("swapaccount=", enable_swap_account);
c077719b 5666
c077719b 5667#endif