]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> | |
8 | * | |
8cdea7c0 BS |
9 | * This program is free software; you can redistribute it and/or modify |
10 | * it under the terms of the GNU General Public License as published by | |
11 | * the Free Software Foundation; either version 2 of the License, or | |
12 | * (at your option) any later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | * GNU General Public License for more details. | |
18 | */ | |
19 | ||
20 | #include <linux/res_counter.h> | |
21 | #include <linux/memcontrol.h> | |
22 | #include <linux/cgroup.h> | |
78fb7466 | 23 | #include <linux/mm.h> |
d13d1443 | 24 | #include <linux/pagemap.h> |
d52aa412 | 25 | #include <linux/smp.h> |
8a9f3ccd | 26 | #include <linux/page-flags.h> |
66e1707b | 27 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
28 | #include <linux/bit_spinlock.h> |
29 | #include <linux/rcupdate.h> | |
8c7c6e34 | 30 | #include <linux/mutex.h> |
b6ac57d5 | 31 | #include <linux/slab.h> |
66e1707b BS |
32 | #include <linux/swap.h> |
33 | #include <linux/spinlock.h> | |
34 | #include <linux/fs.h> | |
d2ceb9b7 | 35 | #include <linux/seq_file.h> |
33327948 | 36 | #include <linux/vmalloc.h> |
b69408e8 | 37 | #include <linux/mm_inline.h> |
52d4b9ac | 38 | #include <linux/page_cgroup.h> |
08e552c6 | 39 | #include "internal.h" |
8cdea7c0 | 40 | |
8697d331 BS |
41 | #include <asm/uaccess.h> |
42 | ||
a181b0e8 | 43 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
a181b0e8 | 44 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
8cdea7c0 | 45 | |
c077719b KH |
46 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
47 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ | |
48 | int do_swap_account __read_mostly; | |
49 | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | |
50 | #else | |
51 | #define do_swap_account (0) | |
52 | #endif | |
53 | ||
7f4d454d | 54 | static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ |
c077719b | 55 | |
d52aa412 KH |
56 | /* |
57 | * Statistics for memory cgroup. | |
58 | */ | |
59 | enum mem_cgroup_stat_index { | |
60 | /* | |
61 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
62 | */ | |
63 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | |
64 | MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ | |
55e462b0 BR |
65 | MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ |
66 | MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ | |
d52aa412 KH |
67 | |
68 | MEM_CGROUP_STAT_NSTATS, | |
69 | }; | |
70 | ||
71 | struct mem_cgroup_stat_cpu { | |
72 | s64 count[MEM_CGROUP_STAT_NSTATS]; | |
73 | } ____cacheline_aligned_in_smp; | |
74 | ||
75 | struct mem_cgroup_stat { | |
c8dad2bb | 76 | struct mem_cgroup_stat_cpu cpustat[0]; |
d52aa412 KH |
77 | }; |
78 | ||
79 | /* | |
80 | * For accounting under irq disable, no need for increment preempt count. | |
81 | */ | |
addb9efe | 82 | static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, |
d52aa412 KH |
83 | enum mem_cgroup_stat_index idx, int val) |
84 | { | |
addb9efe | 85 | stat->count[idx] += val; |
d52aa412 KH |
86 | } |
87 | ||
88 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | |
89 | enum mem_cgroup_stat_index idx) | |
90 | { | |
91 | int cpu; | |
92 | s64 ret = 0; | |
93 | for_each_possible_cpu(cpu) | |
94 | ret += stat->cpustat[cpu].count[idx]; | |
95 | return ret; | |
96 | } | |
97 | ||
6d12e2d8 KH |
98 | /* |
99 | * per-zone information in memory controller. | |
100 | */ | |
6d12e2d8 | 101 | struct mem_cgroup_per_zone { |
072c56c1 KH |
102 | /* |
103 | * spin_lock to protect the per cgroup LRU | |
104 | */ | |
b69408e8 CL |
105 | struct list_head lists[NR_LRU_LISTS]; |
106 | unsigned long count[NR_LRU_LISTS]; | |
3e2f41f1 KM |
107 | |
108 | struct zone_reclaim_stat reclaim_stat; | |
6d12e2d8 KH |
109 | }; |
110 | /* Macro for accessing counter */ | |
111 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | |
112 | ||
113 | struct mem_cgroup_per_node { | |
114 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
115 | }; | |
116 | ||
117 | struct mem_cgroup_lru_info { | |
118 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | |
119 | }; | |
120 | ||
8cdea7c0 BS |
121 | /* |
122 | * The memory controller data structure. The memory controller controls both | |
123 | * page cache and RSS per cgroup. We would eventually like to provide | |
124 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
125 | * to help the administrator determine what knobs to tune. | |
126 | * | |
127 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
128 | * we hit the water mark. May be even add a low water mark, such that |
129 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
130 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
131 | */ |
132 | struct mem_cgroup { | |
133 | struct cgroup_subsys_state css; | |
134 | /* | |
135 | * the counter to account for memory usage | |
136 | */ | |
137 | struct res_counter res; | |
8c7c6e34 KH |
138 | /* |
139 | * the counter to account for mem+swap usage. | |
140 | */ | |
141 | struct res_counter memsw; | |
78fb7466 PE |
142 | /* |
143 | * Per cgroup active and inactive list, similar to the | |
144 | * per zone LRU lists. | |
78fb7466 | 145 | */ |
6d12e2d8 | 146 | struct mem_cgroup_lru_info info; |
072c56c1 | 147 | |
2733c06a KM |
148 | /* |
149 | protect against reclaim related member. | |
150 | */ | |
151 | spinlock_t reclaim_param_lock; | |
152 | ||
6c48a1d0 | 153 | int prev_priority; /* for recording reclaim priority */ |
6d61ef40 BS |
154 | |
155 | /* | |
156 | * While reclaiming in a hiearchy, we cache the last child we | |
157 | * reclaimed from. Protected by cgroup_lock() | |
158 | */ | |
159 | struct mem_cgroup *last_scanned_child; | |
18f59ea7 BS |
160 | /* |
161 | * Should the accounting and control be hierarchical, per subtree? | |
162 | */ | |
163 | bool use_hierarchy; | |
a636b327 | 164 | unsigned long last_oom_jiffies; |
8c7c6e34 KH |
165 | int obsolete; |
166 | atomic_t refcnt; | |
14797e23 | 167 | |
a7885eb8 KM |
168 | unsigned int swappiness; |
169 | ||
d52aa412 | 170 | /* |
c8dad2bb | 171 | * statistics. This must be placed at the end of memcg. |
d52aa412 KH |
172 | */ |
173 | struct mem_cgroup_stat stat; | |
8cdea7c0 BS |
174 | }; |
175 | ||
217bc319 KH |
176 | enum charge_type { |
177 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
178 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | |
4f98a2fe | 179 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
c05555b5 | 180 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
d13d1443 | 181 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
c05555b5 KH |
182 | NR_CHARGE_TYPE, |
183 | }; | |
184 | ||
52d4b9ac KH |
185 | /* only for here (for easy reading.) */ |
186 | #define PCGF_CACHE (1UL << PCG_CACHE) | |
187 | #define PCGF_USED (1UL << PCG_USED) | |
52d4b9ac | 188 | #define PCGF_LOCK (1UL << PCG_LOCK) |
c05555b5 KH |
189 | static const unsigned long |
190 | pcg_default_flags[NR_CHARGE_TYPE] = { | |
08e552c6 KH |
191 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ |
192 | PCGF_USED | PCGF_LOCK, /* Anon */ | |
193 | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ | |
52d4b9ac | 194 | 0, /* FORCE */ |
217bc319 KH |
195 | }; |
196 | ||
8c7c6e34 KH |
197 | /* for encoding cft->private value on file */ |
198 | #define _MEM (0) | |
199 | #define _MEMSWAP (1) | |
200 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) | |
201 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | |
202 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
203 | ||
204 | static void mem_cgroup_get(struct mem_cgroup *mem); | |
205 | static void mem_cgroup_put(struct mem_cgroup *mem); | |
206 | ||
c05555b5 KH |
207 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
208 | struct page_cgroup *pc, | |
209 | bool charge) | |
d52aa412 KH |
210 | { |
211 | int val = (charge)? 1 : -1; | |
212 | struct mem_cgroup_stat *stat = &mem->stat; | |
addb9efe | 213 | struct mem_cgroup_stat_cpu *cpustat; |
08e552c6 | 214 | int cpu = get_cpu(); |
d52aa412 | 215 | |
08e552c6 | 216 | cpustat = &stat->cpustat[cpu]; |
c05555b5 | 217 | if (PageCgroupCache(pc)) |
addb9efe | 218 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); |
d52aa412 | 219 | else |
addb9efe | 220 | __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); |
55e462b0 BR |
221 | |
222 | if (charge) | |
addb9efe | 223 | __mem_cgroup_stat_add_safe(cpustat, |
55e462b0 BR |
224 | MEM_CGROUP_STAT_PGPGIN_COUNT, 1); |
225 | else | |
addb9efe | 226 | __mem_cgroup_stat_add_safe(cpustat, |
55e462b0 | 227 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); |
08e552c6 | 228 | put_cpu(); |
6d12e2d8 KH |
229 | } |
230 | ||
d5b69e38 | 231 | static struct mem_cgroup_per_zone * |
6d12e2d8 KH |
232 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) |
233 | { | |
6d12e2d8 KH |
234 | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; |
235 | } | |
236 | ||
d5b69e38 | 237 | static struct mem_cgroup_per_zone * |
6d12e2d8 KH |
238 | page_cgroup_zoneinfo(struct page_cgroup *pc) |
239 | { | |
240 | struct mem_cgroup *mem = pc->mem_cgroup; | |
241 | int nid = page_cgroup_nid(pc); | |
242 | int zid = page_cgroup_zid(pc); | |
d52aa412 | 243 | |
54992762 KM |
244 | if (!mem) |
245 | return NULL; | |
246 | ||
6d12e2d8 KH |
247 | return mem_cgroup_zoneinfo(mem, nid, zid); |
248 | } | |
249 | ||
250 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | |
b69408e8 | 251 | enum lru_list idx) |
6d12e2d8 KH |
252 | { |
253 | int nid, zid; | |
254 | struct mem_cgroup_per_zone *mz; | |
255 | u64 total = 0; | |
256 | ||
257 | for_each_online_node(nid) | |
258 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
259 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
260 | total += MEM_CGROUP_ZSTAT(mz, idx); | |
261 | } | |
262 | return total; | |
d52aa412 KH |
263 | } |
264 | ||
d5b69e38 | 265 | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 BS |
266 | { |
267 | return container_of(cgroup_subsys_state(cont, | |
268 | mem_cgroup_subsys_id), struct mem_cgroup, | |
269 | css); | |
270 | } | |
271 | ||
cf475ad2 | 272 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 273 | { |
31a78f23 BS |
274 | /* |
275 | * mm_update_next_owner() may clear mm->owner to NULL | |
276 | * if it races with swapoff, page migration, etc. | |
277 | * So this can be called with p == NULL. | |
278 | */ | |
279 | if (unlikely(!p)) | |
280 | return NULL; | |
281 | ||
78fb7466 PE |
282 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
283 | struct mem_cgroup, css); | |
284 | } | |
285 | ||
08e552c6 KH |
286 | /* |
287 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
288 | * Operations are called by routine of global LRU independently from memcg. | |
289 | * What we have to take care of here is validness of pc->mem_cgroup. | |
290 | * | |
291 | * Changes to pc->mem_cgroup happens when | |
292 | * 1. charge | |
293 | * 2. moving account | |
294 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
295 | * It is added to LRU before charge. | |
296 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
297 | * When moving account, the page is not on LRU. It's isolated. | |
298 | */ | |
4f98a2fe | 299 | |
08e552c6 KH |
300 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
301 | { | |
302 | struct page_cgroup *pc; | |
303 | struct mem_cgroup *mem; | |
304 | struct mem_cgroup_per_zone *mz; | |
6d12e2d8 | 305 | |
f8d66542 | 306 | if (mem_cgroup_disabled()) |
08e552c6 KH |
307 | return; |
308 | pc = lookup_page_cgroup(page); | |
309 | /* can happen while we handle swapcache. */ | |
310 | if (list_empty(&pc->lru)) | |
311 | return; | |
312 | mz = page_cgroup_zoneinfo(pc); | |
313 | mem = pc->mem_cgroup; | |
b69408e8 | 314 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
08e552c6 KH |
315 | list_del_init(&pc->lru); |
316 | return; | |
6d12e2d8 KH |
317 | } |
318 | ||
08e552c6 | 319 | void mem_cgroup_del_lru(struct page *page) |
6d12e2d8 | 320 | { |
08e552c6 KH |
321 | mem_cgroup_del_lru_list(page, page_lru(page)); |
322 | } | |
b69408e8 | 323 | |
08e552c6 KH |
324 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
325 | { | |
326 | struct mem_cgroup_per_zone *mz; | |
327 | struct page_cgroup *pc; | |
b69408e8 | 328 | |
f8d66542 | 329 | if (mem_cgroup_disabled()) |
08e552c6 | 330 | return; |
6d12e2d8 | 331 | |
08e552c6 KH |
332 | pc = lookup_page_cgroup(page); |
333 | smp_rmb(); | |
334 | /* unused page is not rotated. */ | |
335 | if (!PageCgroupUsed(pc)) | |
336 | return; | |
337 | mz = page_cgroup_zoneinfo(pc); | |
338 | list_move(&pc->lru, &mz->lists[lru]); | |
6d12e2d8 KH |
339 | } |
340 | ||
08e552c6 | 341 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
66e1707b | 342 | { |
08e552c6 KH |
343 | struct page_cgroup *pc; |
344 | struct mem_cgroup_per_zone *mz; | |
6d12e2d8 | 345 | |
f8d66542 | 346 | if (mem_cgroup_disabled()) |
08e552c6 KH |
347 | return; |
348 | pc = lookup_page_cgroup(page); | |
349 | /* barrier to sync with "charge" */ | |
350 | smp_rmb(); | |
351 | if (!PageCgroupUsed(pc)) | |
894bc310 | 352 | return; |
b69408e8 | 353 | |
08e552c6 | 354 | mz = page_cgroup_zoneinfo(pc); |
b69408e8 | 355 | MEM_CGROUP_ZSTAT(mz, lru) += 1; |
08e552c6 KH |
356 | list_add(&pc->lru, &mz->lists[lru]); |
357 | } | |
358 | /* | |
359 | * To add swapcache into LRU. Be careful to all this function. | |
360 | * zone->lru_lock shouldn't be held and irq must not be disabled. | |
361 | */ | |
362 | static void mem_cgroup_lru_fixup(struct page *page) | |
363 | { | |
364 | if (!isolate_lru_page(page)) | |
365 | putback_lru_page(page); | |
366 | } | |
367 | ||
368 | void mem_cgroup_move_lists(struct page *page, | |
369 | enum lru_list from, enum lru_list to) | |
370 | { | |
f8d66542 | 371 | if (mem_cgroup_disabled()) |
08e552c6 KH |
372 | return; |
373 | mem_cgroup_del_lru_list(page, from); | |
374 | mem_cgroup_add_lru_list(page, to); | |
66e1707b BS |
375 | } |
376 | ||
4c4a2214 DR |
377 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
378 | { | |
379 | int ret; | |
380 | ||
381 | task_lock(task); | |
bd845e38 | 382 | ret = task->mm && mm_match_cgroup(task->mm, mem); |
4c4a2214 DR |
383 | task_unlock(task); |
384 | return ret; | |
385 | } | |
386 | ||
58ae83db KH |
387 | /* |
388 | * Calculate mapped_ratio under memory controller. This will be used in | |
389 | * vmscan.c for deteremining we have to reclaim mapped pages. | |
390 | */ | |
391 | int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |
392 | { | |
393 | long total, rss; | |
394 | ||
395 | /* | |
396 | * usage is recorded in bytes. But, here, we assume the number of | |
397 | * physical pages can be represented by "long" on any arch. | |
398 | */ | |
399 | total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; | |
400 | rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | |
401 | return (int)((rss * 100L) / total); | |
402 | } | |
8869b8f6 | 403 | |
6c48a1d0 KH |
404 | /* |
405 | * prev_priority control...this will be used in memory reclaim path. | |
406 | */ | |
407 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | |
408 | { | |
2733c06a KM |
409 | int prev_priority; |
410 | ||
411 | spin_lock(&mem->reclaim_param_lock); | |
412 | prev_priority = mem->prev_priority; | |
413 | spin_unlock(&mem->reclaim_param_lock); | |
414 | ||
415 | return prev_priority; | |
6c48a1d0 KH |
416 | } |
417 | ||
418 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | |
419 | { | |
2733c06a | 420 | spin_lock(&mem->reclaim_param_lock); |
6c48a1d0 KH |
421 | if (priority < mem->prev_priority) |
422 | mem->prev_priority = priority; | |
2733c06a | 423 | spin_unlock(&mem->reclaim_param_lock); |
6c48a1d0 KH |
424 | } |
425 | ||
426 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | |
427 | { | |
2733c06a | 428 | spin_lock(&mem->reclaim_param_lock); |
6c48a1d0 | 429 | mem->prev_priority = priority; |
2733c06a | 430 | spin_unlock(&mem->reclaim_param_lock); |
6c48a1d0 KH |
431 | } |
432 | ||
c772be93 | 433 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
14797e23 KM |
434 | { |
435 | unsigned long active; | |
436 | unsigned long inactive; | |
c772be93 KM |
437 | unsigned long gb; |
438 | unsigned long inactive_ratio; | |
14797e23 KM |
439 | |
440 | inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON); | |
441 | active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON); | |
442 | ||
c772be93 KM |
443 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
444 | if (gb) | |
445 | inactive_ratio = int_sqrt(10 * gb); | |
446 | else | |
447 | inactive_ratio = 1; | |
448 | ||
449 | if (present_pages) { | |
450 | present_pages[0] = inactive; | |
451 | present_pages[1] = active; | |
452 | } | |
453 | ||
454 | return inactive_ratio; | |
455 | } | |
456 | ||
457 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | |
458 | { | |
459 | unsigned long active; | |
460 | unsigned long inactive; | |
461 | unsigned long present_pages[2]; | |
462 | unsigned long inactive_ratio; | |
463 | ||
464 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); | |
465 | ||
466 | inactive = present_pages[0]; | |
467 | active = present_pages[1]; | |
468 | ||
469 | if (inactive * inactive_ratio < active) | |
14797e23 KM |
470 | return 1; |
471 | ||
472 | return 0; | |
473 | } | |
474 | ||
a3d8e054 KM |
475 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, |
476 | struct zone *zone, | |
477 | enum lru_list lru) | |
478 | { | |
479 | int nid = zone->zone_pgdat->node_id; | |
480 | int zid = zone_idx(zone); | |
481 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
482 | ||
483 | return MEM_CGROUP_ZSTAT(mz, lru); | |
484 | } | |
485 | ||
3e2f41f1 KM |
486 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
487 | struct zone *zone) | |
488 | { | |
489 | int nid = zone->zone_pgdat->node_id; | |
490 | int zid = zone_idx(zone); | |
491 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
492 | ||
493 | return &mz->reclaim_stat; | |
494 | } | |
495 | ||
496 | struct zone_reclaim_stat * | |
497 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | |
498 | { | |
499 | struct page_cgroup *pc; | |
500 | struct mem_cgroup_per_zone *mz; | |
501 | ||
502 | if (mem_cgroup_disabled()) | |
503 | return NULL; | |
504 | ||
505 | pc = lookup_page_cgroup(page); | |
506 | mz = page_cgroup_zoneinfo(pc); | |
507 | if (!mz) | |
508 | return NULL; | |
509 | ||
510 | return &mz->reclaim_stat; | |
511 | } | |
512 | ||
66e1707b BS |
513 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
514 | struct list_head *dst, | |
515 | unsigned long *scanned, int order, | |
516 | int mode, struct zone *z, | |
517 | struct mem_cgroup *mem_cont, | |
4f98a2fe | 518 | int active, int file) |
66e1707b BS |
519 | { |
520 | unsigned long nr_taken = 0; | |
521 | struct page *page; | |
522 | unsigned long scan; | |
523 | LIST_HEAD(pc_list); | |
524 | struct list_head *src; | |
ff7283fa | 525 | struct page_cgroup *pc, *tmp; |
1ecaab2b KH |
526 | int nid = z->zone_pgdat->node_id; |
527 | int zid = zone_idx(z); | |
528 | struct mem_cgroup_per_zone *mz; | |
4f98a2fe | 529 | int lru = LRU_FILE * !!file + !!active; |
66e1707b | 530 | |
cf475ad2 | 531 | BUG_ON(!mem_cont); |
1ecaab2b | 532 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
b69408e8 | 533 | src = &mz->lists[lru]; |
66e1707b | 534 | |
ff7283fa KH |
535 | scan = 0; |
536 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | |
436c6541 | 537 | if (scan >= nr_to_scan) |
ff7283fa | 538 | break; |
08e552c6 KH |
539 | |
540 | page = pc->page; | |
52d4b9ac KH |
541 | if (unlikely(!PageCgroupUsed(pc))) |
542 | continue; | |
436c6541 | 543 | if (unlikely(!PageLRU(page))) |
ff7283fa | 544 | continue; |
ff7283fa | 545 | |
436c6541 | 546 | scan++; |
4f98a2fe | 547 | if (__isolate_lru_page(page, mode, file) == 0) { |
66e1707b BS |
548 | list_move(&page->lru, dst); |
549 | nr_taken++; | |
550 | } | |
551 | } | |
552 | ||
66e1707b BS |
553 | *scanned = scan; |
554 | return nr_taken; | |
555 | } | |
556 | ||
6d61ef40 BS |
557 | #define mem_cgroup_from_res_counter(counter, member) \ |
558 | container_of(counter, struct mem_cgroup, member) | |
559 | ||
560 | /* | |
561 | * This routine finds the DFS walk successor. This routine should be | |
562 | * called with cgroup_mutex held | |
563 | */ | |
564 | static struct mem_cgroup * | |
565 | mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem) | |
566 | { | |
567 | struct cgroup *cgroup, *curr_cgroup, *root_cgroup; | |
568 | ||
569 | curr_cgroup = curr->css.cgroup; | |
570 | root_cgroup = root_mem->css.cgroup; | |
571 | ||
572 | if (!list_empty(&curr_cgroup->children)) { | |
573 | /* | |
574 | * Walk down to children | |
575 | */ | |
576 | mem_cgroup_put(curr); | |
577 | cgroup = list_entry(curr_cgroup->children.next, | |
578 | struct cgroup, sibling); | |
579 | curr = mem_cgroup_from_cont(cgroup); | |
580 | mem_cgroup_get(curr); | |
581 | goto done; | |
582 | } | |
583 | ||
584 | visit_parent: | |
585 | if (curr_cgroup == root_cgroup) { | |
586 | mem_cgroup_put(curr); | |
587 | curr = root_mem; | |
588 | mem_cgroup_get(curr); | |
589 | goto done; | |
590 | } | |
591 | ||
592 | /* | |
593 | * Goto next sibling | |
594 | */ | |
595 | if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) { | |
596 | mem_cgroup_put(curr); | |
597 | cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup, | |
598 | sibling); | |
599 | curr = mem_cgroup_from_cont(cgroup); | |
600 | mem_cgroup_get(curr); | |
601 | goto done; | |
602 | } | |
603 | ||
604 | /* | |
605 | * Go up to next parent and next parent's sibling if need be | |
606 | */ | |
607 | curr_cgroup = curr_cgroup->parent; | |
608 | goto visit_parent; | |
609 | ||
610 | done: | |
611 | root_mem->last_scanned_child = curr; | |
612 | return curr; | |
613 | } | |
614 | ||
615 | /* | |
616 | * Visit the first child (need not be the first child as per the ordering | |
617 | * of the cgroup list, since we track last_scanned_child) of @mem and use | |
618 | * that to reclaim free pages from. | |
619 | */ | |
620 | static struct mem_cgroup * | |
621 | mem_cgroup_get_first_node(struct mem_cgroup *root_mem) | |
622 | { | |
623 | struct cgroup *cgroup; | |
624 | struct mem_cgroup *ret; | |
625 | bool obsolete = (root_mem->last_scanned_child && | |
626 | root_mem->last_scanned_child->obsolete); | |
627 | ||
628 | /* | |
629 | * Scan all children under the mem_cgroup mem | |
630 | */ | |
631 | cgroup_lock(); | |
632 | if (list_empty(&root_mem->css.cgroup->children)) { | |
633 | ret = root_mem; | |
634 | goto done; | |
635 | } | |
636 | ||
637 | if (!root_mem->last_scanned_child || obsolete) { | |
638 | ||
639 | if (obsolete) | |
640 | mem_cgroup_put(root_mem->last_scanned_child); | |
641 | ||
642 | cgroup = list_first_entry(&root_mem->css.cgroup->children, | |
643 | struct cgroup, sibling); | |
644 | ret = mem_cgroup_from_cont(cgroup); | |
645 | mem_cgroup_get(ret); | |
646 | } else | |
647 | ret = mem_cgroup_get_next_node(root_mem->last_scanned_child, | |
648 | root_mem); | |
649 | ||
650 | done: | |
651 | root_mem->last_scanned_child = ret; | |
652 | cgroup_unlock(); | |
653 | return ret; | |
654 | } | |
655 | ||
b85a96c0 DN |
656 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) |
657 | { | |
658 | if (do_swap_account) { | |
659 | if (res_counter_check_under_limit(&mem->res) && | |
660 | res_counter_check_under_limit(&mem->memsw)) | |
661 | return true; | |
662 | } else | |
663 | if (res_counter_check_under_limit(&mem->res)) | |
664 | return true; | |
665 | return false; | |
666 | } | |
667 | ||
a7885eb8 KM |
668 | static unsigned int get_swappiness(struct mem_cgroup *memcg) |
669 | { | |
670 | struct cgroup *cgrp = memcg->css.cgroup; | |
671 | unsigned int swappiness; | |
672 | ||
673 | /* root ? */ | |
674 | if (cgrp->parent == NULL) | |
675 | return vm_swappiness; | |
676 | ||
677 | spin_lock(&memcg->reclaim_param_lock); | |
678 | swappiness = memcg->swappiness; | |
679 | spin_unlock(&memcg->reclaim_param_lock); | |
680 | ||
681 | return swappiness; | |
682 | } | |
683 | ||
6d61ef40 BS |
684 | /* |
685 | * Dance down the hierarchy if needed to reclaim memory. We remember the | |
686 | * last child we reclaimed from, so that we don't end up penalizing | |
687 | * one child extensively based on its position in the children list. | |
688 | * | |
689 | * root_mem is the original ancestor that we've been reclaim from. | |
690 | */ | |
691 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |
692 | gfp_t gfp_mask, bool noswap) | |
693 | { | |
694 | struct mem_cgroup *next_mem; | |
695 | int ret = 0; | |
696 | ||
697 | /* | |
698 | * Reclaim unconditionally and don't check for return value. | |
699 | * We need to reclaim in the current group and down the tree. | |
700 | * One might think about checking for children before reclaiming, | |
701 | * but there might be left over accounting, even after children | |
702 | * have left. | |
703 | */ | |
a7885eb8 KM |
704 | ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap, |
705 | get_swappiness(root_mem)); | |
b85a96c0 | 706 | if (mem_cgroup_check_under_limit(root_mem)) |
6d61ef40 | 707 | return 0; |
670ec2f1 DN |
708 | if (!root_mem->use_hierarchy) |
709 | return ret; | |
6d61ef40 BS |
710 | |
711 | next_mem = mem_cgroup_get_first_node(root_mem); | |
712 | ||
713 | while (next_mem != root_mem) { | |
714 | if (next_mem->obsolete) { | |
715 | mem_cgroup_put(next_mem); | |
716 | cgroup_lock(); | |
717 | next_mem = mem_cgroup_get_first_node(root_mem); | |
718 | cgroup_unlock(); | |
719 | continue; | |
720 | } | |
a7885eb8 KM |
721 | ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap, |
722 | get_swappiness(next_mem)); | |
b85a96c0 | 723 | if (mem_cgroup_check_under_limit(root_mem)) |
6d61ef40 BS |
724 | return 0; |
725 | cgroup_lock(); | |
726 | next_mem = mem_cgroup_get_next_node(next_mem, root_mem); | |
727 | cgroup_unlock(); | |
728 | } | |
729 | return ret; | |
730 | } | |
731 | ||
a636b327 KH |
732 | bool mem_cgroup_oom_called(struct task_struct *task) |
733 | { | |
734 | bool ret = false; | |
735 | struct mem_cgroup *mem; | |
736 | struct mm_struct *mm; | |
737 | ||
738 | rcu_read_lock(); | |
739 | mm = task->mm; | |
740 | if (!mm) | |
741 | mm = &init_mm; | |
742 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
743 | if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) | |
744 | ret = true; | |
745 | rcu_read_unlock(); | |
746 | return ret; | |
747 | } | |
f817ed48 KH |
748 | /* |
749 | * Unlike exported interface, "oom" parameter is added. if oom==true, | |
750 | * oom-killer can be invoked. | |
8a9f3ccd | 751 | */ |
f817ed48 | 752 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
8c7c6e34 KH |
753 | gfp_t gfp_mask, struct mem_cgroup **memcg, |
754 | bool oom) | |
8a9f3ccd | 755 | { |
6d61ef40 | 756 | struct mem_cgroup *mem, *mem_over_limit; |
7a81b88c | 757 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
28dbc4b6 | 758 | struct res_counter *fail_res; |
a636b327 KH |
759 | |
760 | if (unlikely(test_thread_flag(TIF_MEMDIE))) { | |
761 | /* Don't account this! */ | |
762 | *memcg = NULL; | |
763 | return 0; | |
764 | } | |
765 | ||
8a9f3ccd | 766 | /* |
3be91277 HD |
767 | * We always charge the cgroup the mm_struct belongs to. |
768 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd BS |
769 | * thread group leader migrates. It's possible that mm is not |
770 | * set, if so charge the init_mm (happens for pagecache usage). | |
771 | */ | |
7a81b88c | 772 | if (likely(!*memcg)) { |
e8589cc1 KH |
773 | rcu_read_lock(); |
774 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
31a78f23 BS |
775 | if (unlikely(!mem)) { |
776 | rcu_read_unlock(); | |
31a78f23 BS |
777 | return 0; |
778 | } | |
e8589cc1 KH |
779 | /* |
780 | * For every charge from the cgroup, increment reference count | |
781 | */ | |
782 | css_get(&mem->css); | |
7a81b88c | 783 | *memcg = mem; |
e8589cc1 KH |
784 | rcu_read_unlock(); |
785 | } else { | |
7a81b88c KH |
786 | mem = *memcg; |
787 | css_get(&mem->css); | |
e8589cc1 | 788 | } |
8a9f3ccd | 789 | |
8c7c6e34 KH |
790 | while (1) { |
791 | int ret; | |
792 | bool noswap = false; | |
7a81b88c | 793 | |
28dbc4b6 | 794 | ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); |
8c7c6e34 KH |
795 | if (likely(!ret)) { |
796 | if (!do_swap_account) | |
797 | break; | |
28dbc4b6 BS |
798 | ret = res_counter_charge(&mem->memsw, PAGE_SIZE, |
799 | &fail_res); | |
8c7c6e34 KH |
800 | if (likely(!ret)) |
801 | break; | |
802 | /* mem+swap counter fails */ | |
803 | res_counter_uncharge(&mem->res, PAGE_SIZE); | |
804 | noswap = true; | |
6d61ef40 BS |
805 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, |
806 | memsw); | |
807 | } else | |
808 | /* mem counter fails */ | |
809 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | |
810 | res); | |
811 | ||
3be91277 | 812 | if (!(gfp_mask & __GFP_WAIT)) |
7a81b88c | 813 | goto nomem; |
e1a1cd59 | 814 | |
6d61ef40 BS |
815 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, |
816 | noswap); | |
66e1707b BS |
817 | |
818 | /* | |
8869b8f6 HD |
819 | * try_to_free_mem_cgroup_pages() might not give us a full |
820 | * picture of reclaim. Some pages are reclaimed and might be | |
821 | * moved to swap cache or just unmapped from the cgroup. | |
822 | * Check the limit again to see if the reclaim reduced the | |
823 | * current usage of the cgroup before giving up | |
8c7c6e34 | 824 | * |
8869b8f6 | 825 | */ |
b85a96c0 DN |
826 | if (mem_cgroup_check_under_limit(mem_over_limit)) |
827 | continue; | |
3be91277 HD |
828 | |
829 | if (!nr_retries--) { | |
a636b327 | 830 | if (oom) { |
7f4d454d | 831 | mutex_lock(&memcg_tasklist); |
88700756 | 832 | mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); |
7f4d454d | 833 | mutex_unlock(&memcg_tasklist); |
88700756 | 834 | mem_over_limit->last_oom_jiffies = jiffies; |
a636b327 | 835 | } |
7a81b88c | 836 | goto nomem; |
66e1707b | 837 | } |
8a9f3ccd | 838 | } |
7a81b88c KH |
839 | return 0; |
840 | nomem: | |
841 | css_put(&mem->css); | |
842 | return -ENOMEM; | |
843 | } | |
8a9f3ccd | 844 | |
7a81b88c | 845 | /* |
a5e924f5 | 846 | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be |
7a81b88c KH |
847 | * USED state. If already USED, uncharge and return. |
848 | */ | |
849 | ||
850 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | |
851 | struct page_cgroup *pc, | |
852 | enum charge_type ctype) | |
853 | { | |
7a81b88c KH |
854 | /* try_charge() can return NULL to *memcg, taking care of it. */ |
855 | if (!mem) | |
856 | return; | |
52d4b9ac KH |
857 | |
858 | lock_page_cgroup(pc); | |
859 | if (unlikely(PageCgroupUsed(pc))) { | |
860 | unlock_page_cgroup(pc); | |
861 | res_counter_uncharge(&mem->res, PAGE_SIZE); | |
8c7c6e34 KH |
862 | if (do_swap_account) |
863 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | |
52d4b9ac | 864 | css_put(&mem->css); |
7a81b88c | 865 | return; |
52d4b9ac | 866 | } |
8a9f3ccd | 867 | pc->mem_cgroup = mem; |
08e552c6 | 868 | smp_wmb(); |
c05555b5 | 869 | pc->flags = pcg_default_flags[ctype]; |
3be91277 | 870 | |
08e552c6 | 871 | mem_cgroup_charge_statistics(mem, pc, true); |
52d4b9ac | 872 | |
52d4b9ac | 873 | unlock_page_cgroup(pc); |
7a81b88c | 874 | } |
66e1707b | 875 | |
f817ed48 KH |
876 | /** |
877 | * mem_cgroup_move_account - move account of the page | |
878 | * @pc: page_cgroup of the page. | |
879 | * @from: mem_cgroup which the page is moved from. | |
880 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
881 | * | |
882 | * The caller must confirm following. | |
08e552c6 | 883 | * - page is not on LRU (isolate_page() is useful.) |
f817ed48 KH |
884 | * |
885 | * returns 0 at success, | |
886 | * returns -EBUSY when lock is busy or "pc" is unstable. | |
887 | * | |
888 | * This function does "uncharge" from old cgroup but doesn't do "charge" to | |
889 | * new cgroup. It should be done by a caller. | |
890 | */ | |
891 | ||
892 | static int mem_cgroup_move_account(struct page_cgroup *pc, | |
893 | struct mem_cgroup *from, struct mem_cgroup *to) | |
894 | { | |
895 | struct mem_cgroup_per_zone *from_mz, *to_mz; | |
896 | int nid, zid; | |
897 | int ret = -EBUSY; | |
898 | ||
f817ed48 | 899 | VM_BUG_ON(from == to); |
08e552c6 | 900 | VM_BUG_ON(PageLRU(pc->page)); |
f817ed48 KH |
901 | |
902 | nid = page_cgroup_nid(pc); | |
903 | zid = page_cgroup_zid(pc); | |
904 | from_mz = mem_cgroup_zoneinfo(from, nid, zid); | |
905 | to_mz = mem_cgroup_zoneinfo(to, nid, zid); | |
906 | ||
f817ed48 KH |
907 | if (!trylock_page_cgroup(pc)) |
908 | return ret; | |
909 | ||
910 | if (!PageCgroupUsed(pc)) | |
911 | goto out; | |
912 | ||
913 | if (pc->mem_cgroup != from) | |
914 | goto out; | |
915 | ||
08e552c6 KH |
916 | css_put(&from->css); |
917 | res_counter_uncharge(&from->res, PAGE_SIZE); | |
918 | mem_cgroup_charge_statistics(from, pc, false); | |
919 | if (do_swap_account) | |
920 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | |
921 | pc->mem_cgroup = to; | |
922 | mem_cgroup_charge_statistics(to, pc, true); | |
923 | css_get(&to->css); | |
924 | ret = 0; | |
f817ed48 KH |
925 | out: |
926 | unlock_page_cgroup(pc); | |
927 | return ret; | |
928 | } | |
929 | ||
930 | /* | |
931 | * move charges to its parent. | |
932 | */ | |
933 | ||
934 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | |
935 | struct mem_cgroup *child, | |
936 | gfp_t gfp_mask) | |
937 | { | |
08e552c6 | 938 | struct page *page = pc->page; |
f817ed48 KH |
939 | struct cgroup *cg = child->css.cgroup; |
940 | struct cgroup *pcg = cg->parent; | |
941 | struct mem_cgroup *parent; | |
f817ed48 KH |
942 | int ret; |
943 | ||
944 | /* Is ROOT ? */ | |
945 | if (!pcg) | |
946 | return -EINVAL; | |
947 | ||
08e552c6 | 948 | |
f817ed48 KH |
949 | parent = mem_cgroup_from_cont(pcg); |
950 | ||
08e552c6 | 951 | |
f817ed48 | 952 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); |
a636b327 | 953 | if (ret || !parent) |
f817ed48 KH |
954 | return ret; |
955 | ||
08e552c6 KH |
956 | if (!get_page_unless_zero(page)) |
957 | return -EBUSY; | |
958 | ||
959 | ret = isolate_lru_page(page); | |
960 | ||
961 | if (ret) | |
962 | goto cancel; | |
f817ed48 | 963 | |
f817ed48 | 964 | ret = mem_cgroup_move_account(pc, child, parent); |
f817ed48 | 965 | |
08e552c6 | 966 | /* drop extra refcnt by try_charge() (move_account increment one) */ |
f817ed48 | 967 | css_put(&parent->css); |
08e552c6 KH |
968 | putback_lru_page(page); |
969 | if (!ret) { | |
970 | put_page(page); | |
971 | return 0; | |
8c7c6e34 | 972 | } |
08e552c6 KH |
973 | /* uncharge if move fails */ |
974 | cancel: | |
975 | res_counter_uncharge(&parent->res, PAGE_SIZE); | |
976 | if (do_swap_account) | |
977 | res_counter_uncharge(&parent->memsw, PAGE_SIZE); | |
978 | put_page(page); | |
f817ed48 KH |
979 | return ret; |
980 | } | |
981 | ||
7a81b88c KH |
982 | /* |
983 | * Charge the memory controller for page usage. | |
984 | * Return | |
985 | * 0 if the charge was successful | |
986 | * < 0 if the cgroup is over its limit | |
987 | */ | |
988 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |
989 | gfp_t gfp_mask, enum charge_type ctype, | |
990 | struct mem_cgroup *memcg) | |
991 | { | |
992 | struct mem_cgroup *mem; | |
993 | struct page_cgroup *pc; | |
994 | int ret; | |
995 | ||
996 | pc = lookup_page_cgroup(page); | |
997 | /* can happen at boot */ | |
998 | if (unlikely(!pc)) | |
999 | return 0; | |
1000 | prefetchw(pc); | |
1001 | ||
1002 | mem = memcg; | |
f817ed48 | 1003 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); |
a636b327 | 1004 | if (ret || !mem) |
7a81b88c KH |
1005 | return ret; |
1006 | ||
1007 | __mem_cgroup_commit_charge(mem, pc, ctype); | |
8a9f3ccd | 1008 | return 0; |
8a9f3ccd BS |
1009 | } |
1010 | ||
7a81b88c KH |
1011 | int mem_cgroup_newpage_charge(struct page *page, |
1012 | struct mm_struct *mm, gfp_t gfp_mask) | |
217bc319 | 1013 | { |
f8d66542 | 1014 | if (mem_cgroup_disabled()) |
cede86ac | 1015 | return 0; |
52d4b9ac KH |
1016 | if (PageCompound(page)) |
1017 | return 0; | |
69029cd5 KH |
1018 | /* |
1019 | * If already mapped, we don't have to account. | |
1020 | * If page cache, page->mapping has address_space. | |
1021 | * But page->mapping may have out-of-use anon_vma pointer, | |
1022 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | |
1023 | * is NULL. | |
1024 | */ | |
1025 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | |
1026 | return 0; | |
1027 | if (unlikely(!mm)) | |
1028 | mm = &init_mm; | |
217bc319 | 1029 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
e8589cc1 | 1030 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
217bc319 KH |
1031 | } |
1032 | ||
e1a1cd59 BS |
1033 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
1034 | gfp_t gfp_mask) | |
8697d331 | 1035 | { |
f8d66542 | 1036 | if (mem_cgroup_disabled()) |
cede86ac | 1037 | return 0; |
52d4b9ac KH |
1038 | if (PageCompound(page)) |
1039 | return 0; | |
accf163e KH |
1040 | /* |
1041 | * Corner case handling. This is called from add_to_page_cache() | |
1042 | * in usual. But some FS (shmem) precharges this page before calling it | |
1043 | * and call add_to_page_cache() with GFP_NOWAIT. | |
1044 | * | |
1045 | * For GFP_NOWAIT case, the page may be pre-charged before calling | |
1046 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | |
1047 | * charge twice. (It works but has to pay a bit larger cost.) | |
1048 | */ | |
1049 | if (!(gfp_mask & __GFP_WAIT)) { | |
1050 | struct page_cgroup *pc; | |
1051 | ||
52d4b9ac KH |
1052 | |
1053 | pc = lookup_page_cgroup(page); | |
1054 | if (!pc) | |
1055 | return 0; | |
1056 | lock_page_cgroup(pc); | |
1057 | if (PageCgroupUsed(pc)) { | |
1058 | unlock_page_cgroup(pc); | |
accf163e KH |
1059 | return 0; |
1060 | } | |
52d4b9ac | 1061 | unlock_page_cgroup(pc); |
accf163e KH |
1062 | } |
1063 | ||
69029cd5 | 1064 | if (unlikely(!mm)) |
8697d331 | 1065 | mm = &init_mm; |
accf163e | 1066 | |
c05555b5 KH |
1067 | if (page_is_file_cache(page)) |
1068 | return mem_cgroup_charge_common(page, mm, gfp_mask, | |
e8589cc1 | 1069 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
c05555b5 KH |
1070 | else |
1071 | return mem_cgroup_charge_common(page, mm, gfp_mask, | |
1072 | MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL); | |
e8589cc1 KH |
1073 | } |
1074 | ||
8c7c6e34 KH |
1075 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
1076 | struct page *page, | |
1077 | gfp_t mask, struct mem_cgroup **ptr) | |
1078 | { | |
1079 | struct mem_cgroup *mem; | |
1080 | swp_entry_t ent; | |
1081 | ||
f8d66542 | 1082 | if (mem_cgroup_disabled()) |
8c7c6e34 KH |
1083 | return 0; |
1084 | ||
1085 | if (!do_swap_account) | |
1086 | goto charge_cur_mm; | |
1087 | ||
1088 | /* | |
1089 | * A racing thread's fault, or swapoff, may have already updated | |
1090 | * the pte, and even removed page from swap cache: return success | |
1091 | * to go on to do_swap_page()'s pte_same() test, which should fail. | |
1092 | */ | |
1093 | if (!PageSwapCache(page)) | |
1094 | return 0; | |
1095 | ||
1096 | ent.val = page_private(page); | |
1097 | ||
1098 | mem = lookup_swap_cgroup(ent); | |
1099 | if (!mem || mem->obsolete) | |
1100 | goto charge_cur_mm; | |
1101 | *ptr = mem; | |
1102 | return __mem_cgroup_try_charge(NULL, mask, ptr, true); | |
1103 | charge_cur_mm: | |
1104 | if (unlikely(!mm)) | |
1105 | mm = &init_mm; | |
1106 | return __mem_cgroup_try_charge(mm, mask, ptr, true); | |
1107 | } | |
1108 | ||
d13d1443 | 1109 | #ifdef CONFIG_SWAP |
8c7c6e34 | 1110 | |
d13d1443 KH |
1111 | int mem_cgroup_cache_charge_swapin(struct page *page, |
1112 | struct mm_struct *mm, gfp_t mask, bool locked) | |
1113 | { | |
1114 | int ret = 0; | |
1115 | ||
f8d66542 | 1116 | if (mem_cgroup_disabled()) |
d13d1443 KH |
1117 | return 0; |
1118 | if (unlikely(!mm)) | |
1119 | mm = &init_mm; | |
1120 | if (!locked) | |
1121 | lock_page(page); | |
1122 | /* | |
1123 | * If not locked, the page can be dropped from SwapCache until | |
1124 | * we reach here. | |
1125 | */ | |
1126 | if (PageSwapCache(page)) { | |
8c7c6e34 KH |
1127 | struct mem_cgroup *mem = NULL; |
1128 | swp_entry_t ent; | |
1129 | ||
1130 | ent.val = page_private(page); | |
1131 | if (do_swap_account) { | |
1132 | mem = lookup_swap_cgroup(ent); | |
1133 | if (mem && mem->obsolete) | |
1134 | mem = NULL; | |
1135 | if (mem) | |
1136 | mm = NULL; | |
1137 | } | |
d13d1443 | 1138 | ret = mem_cgroup_charge_common(page, mm, mask, |
8c7c6e34 KH |
1139 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); |
1140 | ||
1141 | if (!ret && do_swap_account) { | |
1142 | /* avoid double counting */ | |
1143 | mem = swap_cgroup_record(ent, NULL); | |
1144 | if (mem) { | |
1145 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | |
1146 | mem_cgroup_put(mem); | |
1147 | } | |
1148 | } | |
d13d1443 KH |
1149 | } |
1150 | if (!locked) | |
1151 | unlock_page(page); | |
08e552c6 KH |
1152 | /* add this page(page_cgroup) to the LRU we want. */ |
1153 | mem_cgroup_lru_fixup(page); | |
d13d1443 KH |
1154 | |
1155 | return ret; | |
1156 | } | |
1157 | #endif | |
1158 | ||
7a81b88c KH |
1159 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) |
1160 | { | |
1161 | struct page_cgroup *pc; | |
1162 | ||
f8d66542 | 1163 | if (mem_cgroup_disabled()) |
7a81b88c KH |
1164 | return; |
1165 | if (!ptr) | |
1166 | return; | |
1167 | pc = lookup_page_cgroup(page); | |
1168 | __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED); | |
8c7c6e34 KH |
1169 | /* |
1170 | * Now swap is on-memory. This means this page may be | |
1171 | * counted both as mem and swap....double count. | |
03f3c433 KH |
1172 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
1173 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
1174 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 1175 | */ |
03f3c433 | 1176 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 KH |
1177 | swp_entry_t ent = {.val = page_private(page)}; |
1178 | struct mem_cgroup *memcg; | |
1179 | memcg = swap_cgroup_record(ent, NULL); | |
1180 | if (memcg) { | |
1181 | /* If memcg is obsolete, memcg can be != ptr */ | |
1182 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | |
1183 | mem_cgroup_put(memcg); | |
1184 | } | |
1185 | ||
1186 | } | |
08e552c6 KH |
1187 | /* add this page(page_cgroup) to the LRU we want. */ |
1188 | mem_cgroup_lru_fixup(page); | |
7a81b88c KH |
1189 | } |
1190 | ||
1191 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | |
1192 | { | |
f8d66542 | 1193 | if (mem_cgroup_disabled()) |
7a81b88c KH |
1194 | return; |
1195 | if (!mem) | |
1196 | return; | |
1197 | res_counter_uncharge(&mem->res, PAGE_SIZE); | |
8c7c6e34 KH |
1198 | if (do_swap_account) |
1199 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | |
7a81b88c KH |
1200 | css_put(&mem->css); |
1201 | } | |
1202 | ||
1203 | ||
8a9f3ccd | 1204 | /* |
69029cd5 | 1205 | * uncharge if !page_mapped(page) |
8a9f3ccd | 1206 | */ |
8c7c6e34 | 1207 | static struct mem_cgroup * |
69029cd5 | 1208 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
8a9f3ccd | 1209 | { |
8289546e | 1210 | struct page_cgroup *pc; |
8c7c6e34 | 1211 | struct mem_cgroup *mem = NULL; |
072c56c1 | 1212 | struct mem_cgroup_per_zone *mz; |
8a9f3ccd | 1213 | |
f8d66542 | 1214 | if (mem_cgroup_disabled()) |
8c7c6e34 | 1215 | return NULL; |
4077960e | 1216 | |
d13d1443 | 1217 | if (PageSwapCache(page)) |
8c7c6e34 | 1218 | return NULL; |
d13d1443 | 1219 | |
8697d331 | 1220 | /* |
3c541e14 | 1221 | * Check if our page_cgroup is valid |
8697d331 | 1222 | */ |
52d4b9ac KH |
1223 | pc = lookup_page_cgroup(page); |
1224 | if (unlikely(!pc || !PageCgroupUsed(pc))) | |
8c7c6e34 | 1225 | return NULL; |
b9c565d5 | 1226 | |
52d4b9ac | 1227 | lock_page_cgroup(pc); |
d13d1443 | 1228 | |
8c7c6e34 KH |
1229 | mem = pc->mem_cgroup; |
1230 | ||
d13d1443 KH |
1231 | if (!PageCgroupUsed(pc)) |
1232 | goto unlock_out; | |
1233 | ||
1234 | switch (ctype) { | |
1235 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | |
1236 | if (page_mapped(page)) | |
1237 | goto unlock_out; | |
1238 | break; | |
1239 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
1240 | if (!PageAnon(page)) { /* Shared memory */ | |
1241 | if (page->mapping && !page_is_file_cache(page)) | |
1242 | goto unlock_out; | |
1243 | } else if (page_mapped(page)) /* Anon */ | |
1244 | goto unlock_out; | |
1245 | break; | |
1246 | default: | |
1247 | break; | |
52d4b9ac | 1248 | } |
d13d1443 | 1249 | |
8c7c6e34 KH |
1250 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
1251 | if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) | |
1252 | res_counter_uncharge(&mem->memsw, PAGE_SIZE); | |
1253 | ||
08e552c6 | 1254 | mem_cgroup_charge_statistics(mem, pc, false); |
52d4b9ac | 1255 | ClearPageCgroupUsed(pc); |
b9c565d5 | 1256 | |
69029cd5 | 1257 | mz = page_cgroup_zoneinfo(pc); |
52d4b9ac | 1258 | unlock_page_cgroup(pc); |
fb59e9f1 | 1259 | |
a7fe942e KH |
1260 | /* at swapout, this memcg will be accessed to record to swap */ |
1261 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
1262 | css_put(&mem->css); | |
6d12e2d8 | 1263 | |
8c7c6e34 | 1264 | return mem; |
d13d1443 KH |
1265 | |
1266 | unlock_out: | |
1267 | unlock_page_cgroup(pc); | |
8c7c6e34 | 1268 | return NULL; |
3c541e14 BS |
1269 | } |
1270 | ||
69029cd5 KH |
1271 | void mem_cgroup_uncharge_page(struct page *page) |
1272 | { | |
52d4b9ac KH |
1273 | /* early check. */ |
1274 | if (page_mapped(page)) | |
1275 | return; | |
1276 | if (page->mapping && !PageAnon(page)) | |
1277 | return; | |
69029cd5 KH |
1278 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); |
1279 | } | |
1280 | ||
1281 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
1282 | { | |
1283 | VM_BUG_ON(page_mapped(page)); | |
b7abea96 | 1284 | VM_BUG_ON(page->mapping); |
69029cd5 KH |
1285 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); |
1286 | } | |
1287 | ||
8c7c6e34 KH |
1288 | /* |
1289 | * called from __delete_from_swap_cache() and drop "page" account. | |
1290 | * memcg information is recorded to swap_cgroup of "ent" | |
1291 | */ | |
1292 | void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) | |
1293 | { | |
1294 | struct mem_cgroup *memcg; | |
1295 | ||
1296 | memcg = __mem_cgroup_uncharge_common(page, | |
1297 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT); | |
1298 | /* record memcg information */ | |
1299 | if (do_swap_account && memcg) { | |
1300 | swap_cgroup_record(ent, memcg); | |
1301 | mem_cgroup_get(memcg); | |
1302 | } | |
a7fe942e KH |
1303 | if (memcg) |
1304 | css_put(&memcg->css); | |
8c7c6e34 KH |
1305 | } |
1306 | ||
1307 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
1308 | /* | |
1309 | * called from swap_entry_free(). remove record in swap_cgroup and | |
1310 | * uncharge "memsw" account. | |
1311 | */ | |
1312 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 1313 | { |
8c7c6e34 KH |
1314 | struct mem_cgroup *memcg; |
1315 | ||
1316 | if (!do_swap_account) | |
1317 | return; | |
1318 | ||
1319 | memcg = swap_cgroup_record(ent, NULL); | |
1320 | if (memcg) { | |
1321 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | |
1322 | mem_cgroup_put(memcg); | |
1323 | } | |
d13d1443 | 1324 | } |
8c7c6e34 | 1325 | #endif |
d13d1443 | 1326 | |
ae41be37 | 1327 | /* |
01b1ae63 KH |
1328 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
1329 | * page belongs to. | |
ae41be37 | 1330 | */ |
01b1ae63 | 1331 | int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) |
ae41be37 KH |
1332 | { |
1333 | struct page_cgroup *pc; | |
e8589cc1 | 1334 | struct mem_cgroup *mem = NULL; |
e8589cc1 | 1335 | int ret = 0; |
8869b8f6 | 1336 | |
f8d66542 | 1337 | if (mem_cgroup_disabled()) |
4077960e BS |
1338 | return 0; |
1339 | ||
52d4b9ac KH |
1340 | pc = lookup_page_cgroup(page); |
1341 | lock_page_cgroup(pc); | |
1342 | if (PageCgroupUsed(pc)) { | |
e8589cc1 KH |
1343 | mem = pc->mem_cgroup; |
1344 | css_get(&mem->css); | |
e8589cc1 | 1345 | } |
52d4b9ac | 1346 | unlock_page_cgroup(pc); |
01b1ae63 | 1347 | |
e8589cc1 | 1348 | if (mem) { |
3bb4edf2 | 1349 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); |
e8589cc1 KH |
1350 | css_put(&mem->css); |
1351 | } | |
01b1ae63 | 1352 | *ptr = mem; |
e8589cc1 | 1353 | return ret; |
ae41be37 | 1354 | } |
8869b8f6 | 1355 | |
69029cd5 | 1356 | /* remove redundant charge if migration failed*/ |
01b1ae63 KH |
1357 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
1358 | struct page *oldpage, struct page *newpage) | |
ae41be37 | 1359 | { |
01b1ae63 KH |
1360 | struct page *target, *unused; |
1361 | struct page_cgroup *pc; | |
1362 | enum charge_type ctype; | |
1363 | ||
1364 | if (!mem) | |
1365 | return; | |
1366 | ||
1367 | /* at migration success, oldpage->mapping is NULL. */ | |
1368 | if (oldpage->mapping) { | |
1369 | target = oldpage; | |
1370 | unused = NULL; | |
1371 | } else { | |
1372 | target = newpage; | |
1373 | unused = oldpage; | |
1374 | } | |
1375 | ||
1376 | if (PageAnon(target)) | |
1377 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | |
1378 | else if (page_is_file_cache(target)) | |
1379 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
1380 | else | |
1381 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | |
1382 | ||
1383 | /* unused page is not on radix-tree now. */ | |
d13d1443 | 1384 | if (unused) |
01b1ae63 KH |
1385 | __mem_cgroup_uncharge_common(unused, ctype); |
1386 | ||
1387 | pc = lookup_page_cgroup(target); | |
69029cd5 | 1388 | /* |
01b1ae63 KH |
1389 | * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. |
1390 | * So, double-counting is effectively avoided. | |
1391 | */ | |
1392 | __mem_cgroup_commit_charge(mem, pc, ctype); | |
1393 | ||
1394 | /* | |
1395 | * Both of oldpage and newpage are still under lock_page(). | |
1396 | * Then, we don't have to care about race in radix-tree. | |
1397 | * But we have to be careful that this page is unmapped or not. | |
1398 | * | |
1399 | * There is a case for !page_mapped(). At the start of | |
1400 | * migration, oldpage was mapped. But now, it's zapped. | |
1401 | * But we know *target* page is not freed/reused under us. | |
1402 | * mem_cgroup_uncharge_page() does all necessary checks. | |
69029cd5 | 1403 | */ |
01b1ae63 KH |
1404 | if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) |
1405 | mem_cgroup_uncharge_page(target); | |
ae41be37 | 1406 | } |
78fb7466 | 1407 | |
c9b0ed51 KH |
1408 | /* |
1409 | * A call to try to shrink memory usage under specified resource controller. | |
1410 | * This is typically used for page reclaiming for shmem for reducing side | |
1411 | * effect of page allocation from shmem, which is used by some mem_cgroup. | |
1412 | */ | |
1413 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | |
1414 | { | |
1415 | struct mem_cgroup *mem; | |
1416 | int progress = 0; | |
1417 | int retry = MEM_CGROUP_RECLAIM_RETRIES; | |
1418 | ||
f8d66542 | 1419 | if (mem_cgroup_disabled()) |
cede86ac | 1420 | return 0; |
9623e078 HD |
1421 | if (!mm) |
1422 | return 0; | |
cede86ac | 1423 | |
c9b0ed51 KH |
1424 | rcu_read_lock(); |
1425 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
31a78f23 BS |
1426 | if (unlikely(!mem)) { |
1427 | rcu_read_unlock(); | |
1428 | return 0; | |
1429 | } | |
c9b0ed51 KH |
1430 | css_get(&mem->css); |
1431 | rcu_read_unlock(); | |
1432 | ||
1433 | do { | |
42e9abb6 | 1434 | progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true); |
b85a96c0 | 1435 | progress += mem_cgroup_check_under_limit(mem); |
c9b0ed51 KH |
1436 | } while (!progress && --retry); |
1437 | ||
1438 | css_put(&mem->css); | |
1439 | if (!retry) | |
1440 | return -ENOMEM; | |
1441 | return 0; | |
1442 | } | |
1443 | ||
8c7c6e34 KH |
1444 | static DEFINE_MUTEX(set_limit_mutex); |
1445 | ||
d38d2a75 | 1446 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 1447 | unsigned long long val) |
628f4235 KH |
1448 | { |
1449 | ||
1450 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | |
1451 | int progress; | |
8c7c6e34 | 1452 | u64 memswlimit; |
628f4235 KH |
1453 | int ret = 0; |
1454 | ||
8c7c6e34 | 1455 | while (retry_count) { |
628f4235 KH |
1456 | if (signal_pending(current)) { |
1457 | ret = -EINTR; | |
1458 | break; | |
1459 | } | |
8c7c6e34 KH |
1460 | /* |
1461 | * Rather than hide all in some function, I do this in | |
1462 | * open coded manner. You see what this really does. | |
1463 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
1464 | */ | |
1465 | mutex_lock(&set_limit_mutex); | |
1466 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1467 | if (memswlimit < val) { | |
1468 | ret = -EINVAL; | |
1469 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
1470 | break; |
1471 | } | |
8c7c6e34 KH |
1472 | ret = res_counter_set_limit(&memcg->res, val); |
1473 | mutex_unlock(&set_limit_mutex); | |
1474 | ||
1475 | if (!ret) | |
1476 | break; | |
1477 | ||
42e9abb6 DN |
1478 | progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, |
1479 | false); | |
8c7c6e34 KH |
1480 | if (!progress) retry_count--; |
1481 | } | |
14797e23 | 1482 | |
8c7c6e34 KH |
1483 | return ret; |
1484 | } | |
1485 | ||
1486 | int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |
1487 | unsigned long long val) | |
1488 | { | |
1489 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | |
1490 | u64 memlimit, oldusage, curusage; | |
1491 | int ret; | |
1492 | ||
1493 | if (!do_swap_account) | |
1494 | return -EINVAL; | |
1495 | ||
1496 | while (retry_count) { | |
1497 | if (signal_pending(current)) { | |
1498 | ret = -EINTR; | |
1499 | break; | |
1500 | } | |
1501 | /* | |
1502 | * Rather than hide all in some function, I do this in | |
1503 | * open coded manner. You see what this really does. | |
1504 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
1505 | */ | |
1506 | mutex_lock(&set_limit_mutex); | |
1507 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
1508 | if (memlimit > val) { | |
1509 | ret = -EINVAL; | |
1510 | mutex_unlock(&set_limit_mutex); | |
1511 | break; | |
1512 | } | |
1513 | ret = res_counter_set_limit(&memcg->memsw, val); | |
1514 | mutex_unlock(&set_limit_mutex); | |
1515 | ||
1516 | if (!ret) | |
1517 | break; | |
1518 | ||
1519 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | |
42e9abb6 | 1520 | mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true); |
8c7c6e34 KH |
1521 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
1522 | if (curusage >= oldusage) | |
628f4235 KH |
1523 | retry_count--; |
1524 | } | |
1525 | return ret; | |
1526 | } | |
1527 | ||
cc847582 KH |
1528 | /* |
1529 | * This routine traverse page_cgroup in given list and drop them all. | |
cc847582 KH |
1530 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
1531 | */ | |
f817ed48 | 1532 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
08e552c6 | 1533 | int node, int zid, enum lru_list lru) |
cc847582 | 1534 | { |
08e552c6 KH |
1535 | struct zone *zone; |
1536 | struct mem_cgroup_per_zone *mz; | |
f817ed48 | 1537 | struct page_cgroup *pc, *busy; |
08e552c6 | 1538 | unsigned long flags, loop; |
072c56c1 | 1539 | struct list_head *list; |
f817ed48 | 1540 | int ret = 0; |
072c56c1 | 1541 | |
08e552c6 KH |
1542 | zone = &NODE_DATA(node)->node_zones[zid]; |
1543 | mz = mem_cgroup_zoneinfo(mem, node, zid); | |
b69408e8 | 1544 | list = &mz->lists[lru]; |
cc847582 | 1545 | |
f817ed48 KH |
1546 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
1547 | /* give some margin against EBUSY etc...*/ | |
1548 | loop += 256; | |
1549 | busy = NULL; | |
1550 | while (loop--) { | |
1551 | ret = 0; | |
08e552c6 | 1552 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 1553 | if (list_empty(list)) { |
08e552c6 | 1554 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 1555 | break; |
f817ed48 KH |
1556 | } |
1557 | pc = list_entry(list->prev, struct page_cgroup, lru); | |
1558 | if (busy == pc) { | |
1559 | list_move(&pc->lru, list); | |
1560 | busy = 0; | |
08e552c6 | 1561 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
1562 | continue; |
1563 | } | |
08e552c6 | 1564 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 1565 | |
2c26fdd7 | 1566 | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); |
f817ed48 | 1567 | if (ret == -ENOMEM) |
52d4b9ac | 1568 | break; |
f817ed48 KH |
1569 | |
1570 | if (ret == -EBUSY || ret == -EINVAL) { | |
1571 | /* found lock contention or "pc" is obsolete. */ | |
1572 | busy = pc; | |
1573 | cond_resched(); | |
1574 | } else | |
1575 | busy = NULL; | |
cc847582 | 1576 | } |
08e552c6 | 1577 | |
f817ed48 KH |
1578 | if (!ret && !list_empty(list)) |
1579 | return -EBUSY; | |
1580 | return ret; | |
cc847582 KH |
1581 | } |
1582 | ||
1583 | /* | |
1584 | * make mem_cgroup's charge to be 0 if there is no task. | |
1585 | * This enables deleting this mem_cgroup. | |
1586 | */ | |
c1e862c1 | 1587 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
cc847582 | 1588 | { |
f817ed48 KH |
1589 | int ret; |
1590 | int node, zid, shrink; | |
1591 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c1e862c1 | 1592 | struct cgroup *cgrp = mem->css.cgroup; |
8869b8f6 | 1593 | |
cc847582 | 1594 | css_get(&mem->css); |
f817ed48 KH |
1595 | |
1596 | shrink = 0; | |
c1e862c1 KH |
1597 | /* should free all ? */ |
1598 | if (free_all) | |
1599 | goto try_to_free; | |
f817ed48 | 1600 | move_account: |
1ecaab2b | 1601 | while (mem->res.usage > 0) { |
f817ed48 | 1602 | ret = -EBUSY; |
c1e862c1 KH |
1603 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
1604 | goto out; | |
1605 | ret = -EINTR; | |
1606 | if (signal_pending(current)) | |
cc847582 | 1607 | goto out; |
52d4b9ac KH |
1608 | /* This is for making all *used* pages to be on LRU. */ |
1609 | lru_add_drain_all(); | |
f817ed48 KH |
1610 | ret = 0; |
1611 | for_each_node_state(node, N_POSSIBLE) { | |
1612 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { | |
b69408e8 | 1613 | enum lru_list l; |
f817ed48 KH |
1614 | for_each_lru(l) { |
1615 | ret = mem_cgroup_force_empty_list(mem, | |
08e552c6 | 1616 | node, zid, l); |
f817ed48 KH |
1617 | if (ret) |
1618 | break; | |
1619 | } | |
1ecaab2b | 1620 | } |
f817ed48 KH |
1621 | if (ret) |
1622 | break; | |
1623 | } | |
1624 | /* it seems parent cgroup doesn't have enough mem */ | |
1625 | if (ret == -ENOMEM) | |
1626 | goto try_to_free; | |
52d4b9ac | 1627 | cond_resched(); |
cc847582 KH |
1628 | } |
1629 | ret = 0; | |
1630 | out: | |
1631 | css_put(&mem->css); | |
1632 | return ret; | |
f817ed48 KH |
1633 | |
1634 | try_to_free: | |
c1e862c1 KH |
1635 | /* returns EBUSY if there is a task or if we come here twice. */ |
1636 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | |
f817ed48 KH |
1637 | ret = -EBUSY; |
1638 | goto out; | |
1639 | } | |
c1e862c1 KH |
1640 | /* we call try-to-free pages for make this cgroup empty */ |
1641 | lru_add_drain_all(); | |
f817ed48 KH |
1642 | /* try to free all pages in this cgroup */ |
1643 | shrink = 1; | |
1644 | while (nr_retries && mem->res.usage > 0) { | |
1645 | int progress; | |
c1e862c1 KH |
1646 | |
1647 | if (signal_pending(current)) { | |
1648 | ret = -EINTR; | |
1649 | goto out; | |
1650 | } | |
a7885eb8 KM |
1651 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, |
1652 | false, get_swappiness(mem)); | |
c1e862c1 | 1653 | if (!progress) { |
f817ed48 | 1654 | nr_retries--; |
c1e862c1 KH |
1655 | /* maybe some writeback is necessary */ |
1656 | congestion_wait(WRITE, HZ/10); | |
1657 | } | |
f817ed48 KH |
1658 | |
1659 | } | |
08e552c6 | 1660 | lru_add_drain(); |
f817ed48 KH |
1661 | /* try move_account...there may be some *locked* pages. */ |
1662 | if (mem->res.usage) | |
1663 | goto move_account; | |
1664 | ret = 0; | |
1665 | goto out; | |
cc847582 KH |
1666 | } |
1667 | ||
c1e862c1 KH |
1668 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
1669 | { | |
1670 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | |
1671 | } | |
1672 | ||
1673 | ||
18f59ea7 BS |
1674 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
1675 | { | |
1676 | return mem_cgroup_from_cont(cont)->use_hierarchy; | |
1677 | } | |
1678 | ||
1679 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |
1680 | u64 val) | |
1681 | { | |
1682 | int retval = 0; | |
1683 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
1684 | struct cgroup *parent = cont->parent; | |
1685 | struct mem_cgroup *parent_mem = NULL; | |
1686 | ||
1687 | if (parent) | |
1688 | parent_mem = mem_cgroup_from_cont(parent); | |
1689 | ||
1690 | cgroup_lock(); | |
1691 | /* | |
1692 | * If parent's use_hiearchy is set, we can't make any modifications | |
1693 | * in the child subtrees. If it is unset, then the change can | |
1694 | * occur, provided the current cgroup has no children. | |
1695 | * | |
1696 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
1697 | * set if there are no children. | |
1698 | */ | |
1699 | if ((!parent_mem || !parent_mem->use_hierarchy) && | |
1700 | (val == 1 || val == 0)) { | |
1701 | if (list_empty(&cont->children)) | |
1702 | mem->use_hierarchy = val; | |
1703 | else | |
1704 | retval = -EBUSY; | |
1705 | } else | |
1706 | retval = -EINVAL; | |
1707 | cgroup_unlock(); | |
1708 | ||
1709 | return retval; | |
1710 | } | |
1711 | ||
2c3daa72 | 1712 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
8cdea7c0 | 1713 | { |
8c7c6e34 KH |
1714 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
1715 | u64 val = 0; | |
1716 | int type, name; | |
1717 | ||
1718 | type = MEMFILE_TYPE(cft->private); | |
1719 | name = MEMFILE_ATTR(cft->private); | |
1720 | switch (type) { | |
1721 | case _MEM: | |
1722 | val = res_counter_read_u64(&mem->res, name); | |
1723 | break; | |
1724 | case _MEMSWAP: | |
1725 | if (do_swap_account) | |
1726 | val = res_counter_read_u64(&mem->memsw, name); | |
1727 | break; | |
1728 | default: | |
1729 | BUG(); | |
1730 | break; | |
1731 | } | |
1732 | return val; | |
8cdea7c0 | 1733 | } |
628f4235 KH |
1734 | /* |
1735 | * The user of this function is... | |
1736 | * RES_LIMIT. | |
1737 | */ | |
856c13aa PM |
1738 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
1739 | const char *buffer) | |
8cdea7c0 | 1740 | { |
628f4235 | 1741 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
8c7c6e34 | 1742 | int type, name; |
628f4235 KH |
1743 | unsigned long long val; |
1744 | int ret; | |
1745 | ||
8c7c6e34 KH |
1746 | type = MEMFILE_TYPE(cft->private); |
1747 | name = MEMFILE_ATTR(cft->private); | |
1748 | switch (name) { | |
628f4235 KH |
1749 | case RES_LIMIT: |
1750 | /* This function does all necessary parse...reuse it */ | |
1751 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
8c7c6e34 KH |
1752 | if (ret) |
1753 | break; | |
1754 | if (type == _MEM) | |
628f4235 | 1755 | ret = mem_cgroup_resize_limit(memcg, val); |
8c7c6e34 KH |
1756 | else |
1757 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | |
628f4235 KH |
1758 | break; |
1759 | default: | |
1760 | ret = -EINVAL; /* should be BUG() ? */ | |
1761 | break; | |
1762 | } | |
1763 | return ret; | |
8cdea7c0 BS |
1764 | } |
1765 | ||
fee7b548 KH |
1766 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
1767 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
1768 | { | |
1769 | struct cgroup *cgroup; | |
1770 | unsigned long long min_limit, min_memsw_limit, tmp; | |
1771 | ||
1772 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
1773 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1774 | cgroup = memcg->css.cgroup; | |
1775 | if (!memcg->use_hierarchy) | |
1776 | goto out; | |
1777 | ||
1778 | while (cgroup->parent) { | |
1779 | cgroup = cgroup->parent; | |
1780 | memcg = mem_cgroup_from_cont(cgroup); | |
1781 | if (!memcg->use_hierarchy) | |
1782 | break; | |
1783 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
1784 | min_limit = min(min_limit, tmp); | |
1785 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1786 | min_memsw_limit = min(min_memsw_limit, tmp); | |
1787 | } | |
1788 | out: | |
1789 | *mem_limit = min_limit; | |
1790 | *memsw_limit = min_memsw_limit; | |
1791 | return; | |
1792 | } | |
1793 | ||
29f2a4da | 1794 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 PE |
1795 | { |
1796 | struct mem_cgroup *mem; | |
8c7c6e34 | 1797 | int type, name; |
c84872e1 PE |
1798 | |
1799 | mem = mem_cgroup_from_cont(cont); | |
8c7c6e34 KH |
1800 | type = MEMFILE_TYPE(event); |
1801 | name = MEMFILE_ATTR(event); | |
1802 | switch (name) { | |
29f2a4da | 1803 | case RES_MAX_USAGE: |
8c7c6e34 KH |
1804 | if (type == _MEM) |
1805 | res_counter_reset_max(&mem->res); | |
1806 | else | |
1807 | res_counter_reset_max(&mem->memsw); | |
29f2a4da PE |
1808 | break; |
1809 | case RES_FAILCNT: | |
8c7c6e34 KH |
1810 | if (type == _MEM) |
1811 | res_counter_reset_failcnt(&mem->res); | |
1812 | else | |
1813 | res_counter_reset_failcnt(&mem->memsw); | |
29f2a4da PE |
1814 | break; |
1815 | } | |
85cc59db | 1816 | return 0; |
c84872e1 PE |
1817 | } |
1818 | ||
d2ceb9b7 KH |
1819 | static const struct mem_cgroup_stat_desc { |
1820 | const char *msg; | |
1821 | u64 unit; | |
1822 | } mem_cgroup_stat_desc[] = { | |
1823 | [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, | |
1824 | [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, | |
55e462b0 BR |
1825 | [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, |
1826 | [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, | |
d2ceb9b7 KH |
1827 | }; |
1828 | ||
c64745cf PM |
1829 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
1830 | struct cgroup_map_cb *cb) | |
d2ceb9b7 | 1831 | { |
d2ceb9b7 KH |
1832 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
1833 | struct mem_cgroup_stat *stat = &mem_cont->stat; | |
1834 | int i; | |
1835 | ||
1836 | for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { | |
1837 | s64 val; | |
1838 | ||
1839 | val = mem_cgroup_read_stat(stat, i); | |
1840 | val *= mem_cgroup_stat_desc[i].unit; | |
c64745cf | 1841 | cb->fill(cb, mem_cgroup_stat_desc[i].msg, val); |
d2ceb9b7 | 1842 | } |
6d12e2d8 KH |
1843 | /* showing # of active pages */ |
1844 | { | |
4f98a2fe RR |
1845 | unsigned long active_anon, inactive_anon; |
1846 | unsigned long active_file, inactive_file; | |
7b854121 | 1847 | unsigned long unevictable; |
4f98a2fe RR |
1848 | |
1849 | inactive_anon = mem_cgroup_get_all_zonestat(mem_cont, | |
1850 | LRU_INACTIVE_ANON); | |
1851 | active_anon = mem_cgroup_get_all_zonestat(mem_cont, | |
1852 | LRU_ACTIVE_ANON); | |
1853 | inactive_file = mem_cgroup_get_all_zonestat(mem_cont, | |
1854 | LRU_INACTIVE_FILE); | |
1855 | active_file = mem_cgroup_get_all_zonestat(mem_cont, | |
1856 | LRU_ACTIVE_FILE); | |
7b854121 LS |
1857 | unevictable = mem_cgroup_get_all_zonestat(mem_cont, |
1858 | LRU_UNEVICTABLE); | |
1859 | ||
4f98a2fe RR |
1860 | cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE); |
1861 | cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE); | |
1862 | cb->fill(cb, "active_file", (active_file) * PAGE_SIZE); | |
1863 | cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE); | |
7b854121 LS |
1864 | cb->fill(cb, "unevictable", unevictable * PAGE_SIZE); |
1865 | ||
6d12e2d8 | 1866 | } |
fee7b548 KH |
1867 | { |
1868 | unsigned long long limit, memsw_limit; | |
1869 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | |
1870 | cb->fill(cb, "hierarchical_memory_limit", limit); | |
1871 | if (do_swap_account) | |
1872 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | |
1873 | } | |
7f016ee8 KM |
1874 | |
1875 | #ifdef CONFIG_DEBUG_VM | |
c772be93 | 1876 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); |
7f016ee8 KM |
1877 | |
1878 | { | |
1879 | int nid, zid; | |
1880 | struct mem_cgroup_per_zone *mz; | |
1881 | unsigned long recent_rotated[2] = {0, 0}; | |
1882 | unsigned long recent_scanned[2] = {0, 0}; | |
1883 | ||
1884 | for_each_online_node(nid) | |
1885 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1886 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | |
1887 | ||
1888 | recent_rotated[0] += | |
1889 | mz->reclaim_stat.recent_rotated[0]; | |
1890 | recent_rotated[1] += | |
1891 | mz->reclaim_stat.recent_rotated[1]; | |
1892 | recent_scanned[0] += | |
1893 | mz->reclaim_stat.recent_scanned[0]; | |
1894 | recent_scanned[1] += | |
1895 | mz->reclaim_stat.recent_scanned[1]; | |
1896 | } | |
1897 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | |
1898 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | |
1899 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | |
1900 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | |
1901 | } | |
1902 | #endif | |
1903 | ||
d2ceb9b7 KH |
1904 | return 0; |
1905 | } | |
1906 | ||
a7885eb8 KM |
1907 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
1908 | { | |
1909 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
1910 | ||
1911 | return get_swappiness(memcg); | |
1912 | } | |
1913 | ||
1914 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | |
1915 | u64 val) | |
1916 | { | |
1917 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
1918 | struct mem_cgroup *parent; | |
1919 | if (val > 100) | |
1920 | return -EINVAL; | |
1921 | ||
1922 | if (cgrp->parent == NULL) | |
1923 | return -EINVAL; | |
1924 | ||
1925 | parent = mem_cgroup_from_cont(cgrp->parent); | |
1926 | /* If under hierarchy, only empty-root can set this value */ | |
1927 | if ((parent->use_hierarchy) || | |
1928 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) | |
1929 | return -EINVAL; | |
1930 | ||
1931 | spin_lock(&memcg->reclaim_param_lock); | |
1932 | memcg->swappiness = val; | |
1933 | spin_unlock(&memcg->reclaim_param_lock); | |
1934 | ||
1935 | return 0; | |
1936 | } | |
1937 | ||
c1e862c1 | 1938 | |
8cdea7c0 BS |
1939 | static struct cftype mem_cgroup_files[] = { |
1940 | { | |
0eea1030 | 1941 | .name = "usage_in_bytes", |
8c7c6e34 | 1942 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
2c3daa72 | 1943 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 1944 | }, |
c84872e1 PE |
1945 | { |
1946 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 1947 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
29f2a4da | 1948 | .trigger = mem_cgroup_reset, |
c84872e1 PE |
1949 | .read_u64 = mem_cgroup_read, |
1950 | }, | |
8cdea7c0 | 1951 | { |
0eea1030 | 1952 | .name = "limit_in_bytes", |
8c7c6e34 | 1953 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
856c13aa | 1954 | .write_string = mem_cgroup_write, |
2c3daa72 | 1955 | .read_u64 = mem_cgroup_read, |
8cdea7c0 BS |
1956 | }, |
1957 | { | |
1958 | .name = "failcnt", | |
8c7c6e34 | 1959 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
29f2a4da | 1960 | .trigger = mem_cgroup_reset, |
2c3daa72 | 1961 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 1962 | }, |
d2ceb9b7 KH |
1963 | { |
1964 | .name = "stat", | |
c64745cf | 1965 | .read_map = mem_control_stat_show, |
d2ceb9b7 | 1966 | }, |
c1e862c1 KH |
1967 | { |
1968 | .name = "force_empty", | |
1969 | .trigger = mem_cgroup_force_empty_write, | |
1970 | }, | |
18f59ea7 BS |
1971 | { |
1972 | .name = "use_hierarchy", | |
1973 | .write_u64 = mem_cgroup_hierarchy_write, | |
1974 | .read_u64 = mem_cgroup_hierarchy_read, | |
1975 | }, | |
a7885eb8 KM |
1976 | { |
1977 | .name = "swappiness", | |
1978 | .read_u64 = mem_cgroup_swappiness_read, | |
1979 | .write_u64 = mem_cgroup_swappiness_write, | |
1980 | }, | |
8cdea7c0 BS |
1981 | }; |
1982 | ||
8c7c6e34 KH |
1983 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
1984 | static struct cftype memsw_cgroup_files[] = { | |
1985 | { | |
1986 | .name = "memsw.usage_in_bytes", | |
1987 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
1988 | .read_u64 = mem_cgroup_read, | |
1989 | }, | |
1990 | { | |
1991 | .name = "memsw.max_usage_in_bytes", | |
1992 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
1993 | .trigger = mem_cgroup_reset, | |
1994 | .read_u64 = mem_cgroup_read, | |
1995 | }, | |
1996 | { | |
1997 | .name = "memsw.limit_in_bytes", | |
1998 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
1999 | .write_string = mem_cgroup_write, | |
2000 | .read_u64 = mem_cgroup_read, | |
2001 | }, | |
2002 | { | |
2003 | .name = "memsw.failcnt", | |
2004 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
2005 | .trigger = mem_cgroup_reset, | |
2006 | .read_u64 = mem_cgroup_read, | |
2007 | }, | |
2008 | }; | |
2009 | ||
2010 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
2011 | { | |
2012 | if (!do_swap_account) | |
2013 | return 0; | |
2014 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | |
2015 | ARRAY_SIZE(memsw_cgroup_files)); | |
2016 | }; | |
2017 | #else | |
2018 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
2019 | { | |
2020 | return 0; | |
2021 | } | |
2022 | #endif | |
2023 | ||
6d12e2d8 KH |
2024 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
2025 | { | |
2026 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 2027 | struct mem_cgroup_per_zone *mz; |
b69408e8 | 2028 | enum lru_list l; |
41e3355d | 2029 | int zone, tmp = node; |
1ecaab2b KH |
2030 | /* |
2031 | * This routine is called against possible nodes. | |
2032 | * But it's BUG to call kmalloc() against offline node. | |
2033 | * | |
2034 | * TODO: this routine can waste much memory for nodes which will | |
2035 | * never be onlined. It's better to use memory hotplug callback | |
2036 | * function. | |
2037 | */ | |
41e3355d KH |
2038 | if (!node_state(node, N_NORMAL_MEMORY)) |
2039 | tmp = -1; | |
2040 | pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | |
6d12e2d8 KH |
2041 | if (!pn) |
2042 | return 1; | |
1ecaab2b | 2043 | |
6d12e2d8 KH |
2044 | mem->info.nodeinfo[node] = pn; |
2045 | memset(pn, 0, sizeof(*pn)); | |
1ecaab2b KH |
2046 | |
2047 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
2048 | mz = &pn->zoneinfo[zone]; | |
b69408e8 CL |
2049 | for_each_lru(l) |
2050 | INIT_LIST_HEAD(&mz->lists[l]); | |
1ecaab2b | 2051 | } |
6d12e2d8 KH |
2052 | return 0; |
2053 | } | |
2054 | ||
1ecaab2b KH |
2055 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
2056 | { | |
2057 | kfree(mem->info.nodeinfo[node]); | |
2058 | } | |
2059 | ||
c8dad2bb JB |
2060 | static int mem_cgroup_size(void) |
2061 | { | |
2062 | int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); | |
2063 | return sizeof(struct mem_cgroup) + cpustat_size; | |
2064 | } | |
2065 | ||
33327948 KH |
2066 | static struct mem_cgroup *mem_cgroup_alloc(void) |
2067 | { | |
2068 | struct mem_cgroup *mem; | |
c8dad2bb | 2069 | int size = mem_cgroup_size(); |
33327948 | 2070 | |
c8dad2bb JB |
2071 | if (size < PAGE_SIZE) |
2072 | mem = kmalloc(size, GFP_KERNEL); | |
33327948 | 2073 | else |
c8dad2bb | 2074 | mem = vmalloc(size); |
33327948 KH |
2075 | |
2076 | if (mem) | |
c8dad2bb | 2077 | memset(mem, 0, size); |
33327948 KH |
2078 | return mem; |
2079 | } | |
2080 | ||
8c7c6e34 KH |
2081 | /* |
2082 | * At destroying mem_cgroup, references from swap_cgroup can remain. | |
2083 | * (scanning all at force_empty is too costly...) | |
2084 | * | |
2085 | * Instead of clearing all references at force_empty, we remember | |
2086 | * the number of reference from swap_cgroup and free mem_cgroup when | |
2087 | * it goes down to 0. | |
2088 | * | |
2089 | * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and | |
2090 | * entry which points to this memcg will be ignore at swapin. | |
2091 | * | |
2092 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
2093 | */ | |
2094 | ||
a7ba0eef | 2095 | static void __mem_cgroup_free(struct mem_cgroup *mem) |
33327948 | 2096 | { |
08e552c6 KH |
2097 | int node; |
2098 | ||
08e552c6 KH |
2099 | for_each_node_state(node, N_POSSIBLE) |
2100 | free_mem_cgroup_per_zone_info(mem, node); | |
2101 | ||
c8dad2bb | 2102 | if (mem_cgroup_size() < PAGE_SIZE) |
33327948 KH |
2103 | kfree(mem); |
2104 | else | |
2105 | vfree(mem); | |
2106 | } | |
2107 | ||
8c7c6e34 KH |
2108 | static void mem_cgroup_get(struct mem_cgroup *mem) |
2109 | { | |
2110 | atomic_inc(&mem->refcnt); | |
2111 | } | |
2112 | ||
2113 | static void mem_cgroup_put(struct mem_cgroup *mem) | |
2114 | { | |
a7ba0eef KH |
2115 | if (atomic_dec_and_test(&mem->refcnt)) |
2116 | __mem_cgroup_free(mem); | |
8c7c6e34 KH |
2117 | } |
2118 | ||
33327948 | 2119 | |
c077719b KH |
2120 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
2121 | static void __init enable_swap_cgroup(void) | |
2122 | { | |
f8d66542 | 2123 | if (!mem_cgroup_disabled() && really_do_swap_account) |
c077719b KH |
2124 | do_swap_account = 1; |
2125 | } | |
2126 | #else | |
2127 | static void __init enable_swap_cgroup(void) | |
2128 | { | |
2129 | } | |
2130 | #endif | |
2131 | ||
8cdea7c0 BS |
2132 | static struct cgroup_subsys_state * |
2133 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |
2134 | { | |
28dbc4b6 | 2135 | struct mem_cgroup *mem, *parent; |
6d12e2d8 | 2136 | int node; |
8cdea7c0 | 2137 | |
c8dad2bb JB |
2138 | mem = mem_cgroup_alloc(); |
2139 | if (!mem) | |
2140 | return ERR_PTR(-ENOMEM); | |
78fb7466 | 2141 | |
6d12e2d8 KH |
2142 | for_each_node_state(node, N_POSSIBLE) |
2143 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | |
2144 | goto free_out; | |
c077719b | 2145 | /* root ? */ |
28dbc4b6 | 2146 | if (cont->parent == NULL) { |
c077719b | 2147 | enable_swap_cgroup(); |
28dbc4b6 | 2148 | parent = NULL; |
18f59ea7 | 2149 | } else { |
28dbc4b6 | 2150 | parent = mem_cgroup_from_cont(cont->parent); |
18f59ea7 BS |
2151 | mem->use_hierarchy = parent->use_hierarchy; |
2152 | } | |
28dbc4b6 | 2153 | |
18f59ea7 BS |
2154 | if (parent && parent->use_hierarchy) { |
2155 | res_counter_init(&mem->res, &parent->res); | |
2156 | res_counter_init(&mem->memsw, &parent->memsw); | |
2157 | } else { | |
2158 | res_counter_init(&mem->res, NULL); | |
2159 | res_counter_init(&mem->memsw, NULL); | |
2160 | } | |
6d61ef40 | 2161 | mem->last_scanned_child = NULL; |
2733c06a | 2162 | spin_lock_init(&mem->reclaim_param_lock); |
6d61ef40 | 2163 | |
a7885eb8 KM |
2164 | if (parent) |
2165 | mem->swappiness = get_swappiness(parent); | |
a7ba0eef | 2166 | atomic_set(&mem->refcnt, 1); |
8cdea7c0 | 2167 | return &mem->css; |
6d12e2d8 | 2168 | free_out: |
a7ba0eef | 2169 | __mem_cgroup_free(mem); |
2dda81ca | 2170 | return ERR_PTR(-ENOMEM); |
8cdea7c0 BS |
2171 | } |
2172 | ||
df878fb0 KH |
2173 | static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
2174 | struct cgroup *cont) | |
2175 | { | |
2176 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
8c7c6e34 | 2177 | mem->obsolete = 1; |
c1e862c1 | 2178 | mem_cgroup_force_empty(mem, false); |
df878fb0 KH |
2179 | } |
2180 | ||
8cdea7c0 BS |
2181 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
2182 | struct cgroup *cont) | |
2183 | { | |
a7ba0eef | 2184 | mem_cgroup_put(mem_cgroup_from_cont(cont)); |
8cdea7c0 BS |
2185 | } |
2186 | ||
2187 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | |
2188 | struct cgroup *cont) | |
2189 | { | |
8c7c6e34 KH |
2190 | int ret; |
2191 | ||
2192 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | |
2193 | ARRAY_SIZE(mem_cgroup_files)); | |
2194 | ||
2195 | if (!ret) | |
2196 | ret = register_memsw_files(cont, ss); | |
2197 | return ret; | |
8cdea7c0 BS |
2198 | } |
2199 | ||
67e465a7 BS |
2200 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
2201 | struct cgroup *cont, | |
2202 | struct cgroup *old_cont, | |
2203 | struct task_struct *p) | |
2204 | { | |
7f4d454d | 2205 | mutex_lock(&memcg_tasklist); |
67e465a7 | 2206 | /* |
f9717d28 NK |
2207 | * FIXME: It's better to move charges of this process from old |
2208 | * memcg to new memcg. But it's just on TODO-List now. | |
67e465a7 | 2209 | */ |
7f4d454d | 2210 | mutex_unlock(&memcg_tasklist); |
67e465a7 BS |
2211 | } |
2212 | ||
8cdea7c0 BS |
2213 | struct cgroup_subsys mem_cgroup_subsys = { |
2214 | .name = "memory", | |
2215 | .subsys_id = mem_cgroup_subsys_id, | |
2216 | .create = mem_cgroup_create, | |
df878fb0 | 2217 | .pre_destroy = mem_cgroup_pre_destroy, |
8cdea7c0 BS |
2218 | .destroy = mem_cgroup_destroy, |
2219 | .populate = mem_cgroup_populate, | |
67e465a7 | 2220 | .attach = mem_cgroup_move_task, |
6d12e2d8 | 2221 | .early_init = 0, |
8cdea7c0 | 2222 | }; |
c077719b KH |
2223 | |
2224 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
2225 | ||
2226 | static int __init disable_swap_account(char *s) | |
2227 | { | |
2228 | really_do_swap_account = 0; | |
2229 | return 1; | |
2230 | } | |
2231 | __setup("noswapaccount", disable_swap_account); | |
2232 | #endif |