]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
MAINTAINERS: Evgeniy has moved
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
99 MEM_CGROUP_EVENTS_NSTATS,
100};
7a159cc9
JW
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 110 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 115#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 116
d52aa412 117struct mem_cgroup_stat_cpu {
7a159cc9 118 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 120 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
121};
122
6d12e2d8
KH
123/*
124 * per-zone information in memory controller.
125 */
6d12e2d8 126struct mem_cgroup_per_zone {
072c56c1
KH
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
b69408e8
CL
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
132
133 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
4e416953
BS
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
6d12e2d8
KH
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
f64c3f54
BS
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
2e72b634
KS
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
9490ff27 177/* For threshold */
2e72b634
KS
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
5407a562 180 int current_threshold;
2e72b634
KS
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
2c488db2
KS
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
9490ff27
KH
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
2e72b634 203
2e72b634 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 206
82f9d486
KH
207enum {
208 SCAN_BY_LIMIT,
209 SCAN_BY_SYSTEM,
210 NR_SCAN_CONTEXT,
211 SCAN_BY_SHRINK, /* not recorded now */
212};
213
214enum {
215 SCAN,
216 SCAN_ANON,
217 SCAN_FILE,
218 ROTATE,
219 ROTATE_ANON,
220 ROTATE_FILE,
221 FREED,
222 FREED_ANON,
223 FREED_FILE,
224 ELAPSED,
225 NR_SCANSTATS,
226};
227
228struct scanstat {
229 spinlock_t lock;
230 unsigned long stats[NR_SCAN_CONTEXT][NR_SCANSTATS];
231 unsigned long rootstats[NR_SCAN_CONTEXT][NR_SCANSTATS];
232};
233
234const char *scanstat_string[NR_SCANSTATS] = {
235 "scanned_pages",
236 "scanned_anon_pages",
237 "scanned_file_pages",
238 "rotated_pages",
239 "rotated_anon_pages",
240 "rotated_file_pages",
241 "freed_pages",
242 "freed_anon_pages",
243 "freed_file_pages",
244 "elapsed_ns",
245};
246#define SCANSTAT_WORD_LIMIT "_by_limit"
247#define SCANSTAT_WORD_SYSTEM "_by_system"
248#define SCANSTAT_WORD_HIERARCHY "_under_hierarchy"
249
250
8cdea7c0
BS
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
8cdea7c0
BS
261 */
262struct mem_cgroup {
263 struct cgroup_subsys_state css;
264 /*
265 * the counter to account for memory usage
266 */
267 struct res_counter res;
8c7c6e34
KH
268 /*
269 * the counter to account for mem+swap usage.
270 */
271 struct res_counter memsw;
78fb7466
PE
272 /*
273 * Per cgroup active and inactive list, similar to the
274 * per zone LRU lists.
78fb7466 275 */
6d12e2d8 276 struct mem_cgroup_lru_info info;
6d61ef40 277 /*
af901ca1 278 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 279 * reclaimed from.
6d61ef40 280 */
04046e1a 281 int last_scanned_child;
889976db
YH
282 int last_scanned_node;
283#if MAX_NUMNODES > 1
284 nodemask_t scan_nodes;
453a9bf3
KH
285 atomic_t numainfo_events;
286 atomic_t numainfo_updating;
889976db 287#endif
18f59ea7
BS
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
79dfdacc
MH
292
293 bool oom_lock;
294 atomic_t under_oom;
295
8c7c6e34 296 atomic_t refcnt;
14797e23 297
1f4c025b 298 int swappiness;
3c11ecf4
KH
299 /* OOM-Killer disable */
300 int oom_kill_disable;
a7885eb8 301
22a668d7
KH
302 /* set when res.limit == memsw.limit */
303 bool memsw_is_minimum;
304
2e72b634
KS
305 /* protect arrays of thresholds */
306 struct mutex thresholds_lock;
307
308 /* thresholds for memory usage. RCU-protected */
2c488db2 309 struct mem_cgroup_thresholds thresholds;
907860ed 310
2e72b634 311 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 313
9490ff27
KH
314 /* For oom notifier event fd */
315 struct list_head oom_notify;
82f9d486
KH
316 /* For recording LRU-scan statistics */
317 struct scanstat scanstat;
7dc74be0
DN
318 /*
319 * Should we move charges of a task when a task is moved into this
320 * mem_cgroup ? And what type of charges should we move ?
321 */
322 unsigned long move_charge_at_immigrate;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
c62b1a3b 326 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 383 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 384 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 385 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 386 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
387 NR_CHARGE_TYPE,
388};
389
8c7c6e34
KH
390/* for encoding cft->private value on file */
391#define _MEM (0)
392#define _MEMSWAP (1)
9490ff27 393#define _OOM_TYPE (2)
8c7c6e34
KH
394#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
395#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
396#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
397/* Used for OOM nofiier */
398#define OOM_CONTROL (0)
8c7c6e34 399
75822b44
BS
400/*
401 * Reclaim flags for mem_cgroup_hierarchical_reclaim
402 */
403#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
404#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
405#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
406#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
407#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
408#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 409
8c7c6e34
KH
410static void mem_cgroup_get(struct mem_cgroup *mem);
411static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 412static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 413static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 414
f64c3f54
BS
415static struct mem_cgroup_per_zone *
416mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
417{
418 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
419}
420
d324236b
WF
421struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
422{
423 return &mem->css;
424}
425
f64c3f54 426static struct mem_cgroup_per_zone *
97a6c37b 427page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 428{
97a6c37b
JW
429 int nid = page_to_nid(page);
430 int zid = page_zonenum(page);
f64c3f54 431
f64c3f54
BS
432 return mem_cgroup_zoneinfo(mem, nid, zid);
433}
434
435static struct mem_cgroup_tree_per_zone *
436soft_limit_tree_node_zone(int nid, int zid)
437{
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439}
440
441static struct mem_cgroup_tree_per_zone *
442soft_limit_tree_from_page(struct page *page)
443{
444 int nid = page_to_nid(page);
445 int zid = page_zonenum(page);
446
447 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
448}
449
450static void
4e416953 451__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 452 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
453 struct mem_cgroup_tree_per_zone *mctz,
454 unsigned long long new_usage_in_excess)
f64c3f54
BS
455{
456 struct rb_node **p = &mctz->rb_root.rb_node;
457 struct rb_node *parent = NULL;
458 struct mem_cgroup_per_zone *mz_node;
459
460 if (mz->on_tree)
461 return;
462
ef8745c1
KH
463 mz->usage_in_excess = new_usage_in_excess;
464 if (!mz->usage_in_excess)
465 return;
f64c3f54
BS
466 while (*p) {
467 parent = *p;
468 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
469 tree_node);
470 if (mz->usage_in_excess < mz_node->usage_in_excess)
471 p = &(*p)->rb_left;
472 /*
473 * We can't avoid mem cgroups that are over their soft
474 * limit by the same amount
475 */
476 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
477 p = &(*p)->rb_right;
478 }
479 rb_link_node(&mz->tree_node, parent, p);
480 rb_insert_color(&mz->tree_node, &mctz->rb_root);
481 mz->on_tree = true;
4e416953
BS
482}
483
484static void
485__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
486 struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
488{
489 if (!mz->on_tree)
490 return;
491 rb_erase(&mz->tree_node, &mctz->rb_root);
492 mz->on_tree = false;
493}
494
f64c3f54
BS
495static void
496mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
497 struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz)
499{
500 spin_lock(&mctz->lock);
4e416953 501 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
502 spin_unlock(&mctz->lock);
503}
504
f64c3f54
BS
505
506static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
507{
ef8745c1 508 unsigned long long excess;
f64c3f54
BS
509 struct mem_cgroup_per_zone *mz;
510 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
511 int nid = page_to_nid(page);
512 int zid = page_zonenum(page);
f64c3f54
BS
513 mctz = soft_limit_tree_from_page(page);
514
515 /*
4e649152
KH
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
f64c3f54 518 */
4e649152
KH
519 for (; mem; mem = parent_mem_cgroup(mem)) {
520 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 521 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
ef8745c1 526 if (excess || mz->on_tree) {
4e649152
KH
527 spin_lock(&mctz->lock);
528 /* if on-tree, remove it */
529 if (mz->on_tree)
530 __mem_cgroup_remove_exceeded(mem, mz, mctz);
531 /*
ef8745c1
KH
532 * Insert again. mz->usage_in_excess will be updated.
533 * If excess is 0, no tree ops.
4e649152 534 */
ef8745c1 535 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
536 spin_unlock(&mctz->lock);
537 }
f64c3f54
BS
538 }
539}
540
541static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
542{
543 int node, zone;
544 struct mem_cgroup_per_zone *mz;
545 struct mem_cgroup_tree_per_zone *mctz;
546
547 for_each_node_state(node, N_POSSIBLE) {
548 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
549 mz = mem_cgroup_zoneinfo(mem, node, zone);
550 mctz = soft_limit_tree_node_zone(node, zone);
551 mem_cgroup_remove_exceeded(mem, mz, mctz);
552 }
553 }
554}
555
4e416953
BS
556static struct mem_cgroup_per_zone *
557__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
558{
559 struct rb_node *rightmost = NULL;
26251eaf 560 struct mem_cgroup_per_zone *mz;
4e416953
BS
561
562retry:
26251eaf 563 mz = NULL;
4e416953
BS
564 rightmost = rb_last(&mctz->rb_root);
565 if (!rightmost)
566 goto done; /* Nothing to reclaim from */
567
568 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
569 /*
570 * Remove the node now but someone else can add it back,
571 * we will to add it back at the end of reclaim to its correct
572 * position in the tree.
573 */
574 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
575 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
576 !css_tryget(&mz->mem->css))
577 goto retry;
578done:
579 return mz;
580}
581
582static struct mem_cgroup_per_zone *
583mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584{
585 struct mem_cgroup_per_zone *mz;
586
587 spin_lock(&mctz->lock);
588 mz = __mem_cgroup_largest_soft_limit_node(mctz);
589 spin_unlock(&mctz->lock);
590 return mz;
591}
592
711d3d2c
KH
593/*
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
599 * a periodic synchronizion of counter in memcg's counter.
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
609 * common workload, threashold and synchonization as vmstat[] should be
610 * implemented.
611 */
7a159cc9
JW
612static long mem_cgroup_read_stat(struct mem_cgroup *mem,
613 enum mem_cgroup_stat_index idx)
c62b1a3b 614{
7a159cc9 615 long val = 0;
c62b1a3b 616 int cpu;
c62b1a3b 617
711d3d2c
KH
618 get_online_cpus();
619 for_each_online_cpu(cpu)
c62b1a3b 620 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
621#ifdef CONFIG_HOTPLUG_CPU
622 spin_lock(&mem->pcp_counter_lock);
623 val += mem->nocpu_base.count[idx];
624 spin_unlock(&mem->pcp_counter_lock);
625#endif
626 put_online_cpus();
c62b1a3b
KH
627 return val;
628}
629
0c3e73e8
BS
630static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
631 bool charge)
632{
633 int val = (charge) ? 1 : -1;
c62b1a3b 634 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
635}
636
456f998e
YH
637void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
638{
639 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
640}
641
642void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
643{
644 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
645}
646
e9f8974f
JW
647static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
648 enum mem_cgroup_events_index idx)
649{
650 unsigned long val = 0;
651 int cpu;
652
653 for_each_online_cpu(cpu)
654 val += per_cpu(mem->stat->events[idx], cpu);
655#ifdef CONFIG_HOTPLUG_CPU
656 spin_lock(&mem->pcp_counter_lock);
657 val += mem->nocpu_base.events[idx];
658 spin_unlock(&mem->pcp_counter_lock);
659#endif
660 return val;
661}
662
c05555b5 663static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 664 bool file, int nr_pages)
d52aa412 665{
c62b1a3b
KH
666 preempt_disable();
667
e401f176
KH
668 if (file)
669 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 670 else
e401f176 671 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 672
e401f176
KH
673 /* pagein of a big page is an event. So, ignore page size */
674 if (nr_pages > 0)
e9f8974f 675 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 676 else {
e9f8974f 677 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
678 nr_pages = -nr_pages; /* for event */
679 }
e401f176 680
e9f8974f 681 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 682
c62b1a3b 683 preempt_enable();
6d12e2d8
KH
684}
685
bb2a0de9
KH
686unsigned long
687mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
688 unsigned int lru_mask)
889976db
YH
689{
690 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
691 enum lru_list l;
692 unsigned long ret = 0;
693
694 mz = mem_cgroup_zoneinfo(mem, nid, zid);
695
696 for_each_lru(l) {
697 if (BIT(l) & lru_mask)
698 ret += MEM_CGROUP_ZSTAT(mz, l);
699 }
700 return ret;
701}
702
703static unsigned long
704mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
705 int nid, unsigned int lru_mask)
706{
889976db
YH
707 u64 total = 0;
708 int zid;
709
bb2a0de9
KH
710 for (zid = 0; zid < MAX_NR_ZONES; zid++)
711 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
712
889976db
YH
713 return total;
714}
bb2a0de9
KH
715
716static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
717 unsigned int lru_mask)
6d12e2d8 718{
889976db 719 int nid;
6d12e2d8
KH
720 u64 total = 0;
721
bb2a0de9
KH
722 for_each_node_state(nid, N_HIGH_MEMORY)
723 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 724 return total;
d52aa412
KH
725}
726
7a159cc9
JW
727static bool __memcg_event_check(struct mem_cgroup *mem, int target)
728{
729 unsigned long val, next;
730
731 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
732 next = this_cpu_read(mem->stat->targets[target]);
733 /* from time_after() in jiffies.h */
734 return ((long)next - (long)val < 0);
735}
736
737static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 738{
7a159cc9 739 unsigned long val, next;
d2265e6f 740
e9f8974f 741 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 742
7a159cc9
JW
743 switch (target) {
744 case MEM_CGROUP_TARGET_THRESH:
745 next = val + THRESHOLDS_EVENTS_TARGET;
746 break;
747 case MEM_CGROUP_TARGET_SOFTLIMIT:
748 next = val + SOFTLIMIT_EVENTS_TARGET;
749 break;
453a9bf3
KH
750 case MEM_CGROUP_TARGET_NUMAINFO:
751 next = val + NUMAINFO_EVENTS_TARGET;
752 break;
7a159cc9
JW
753 default:
754 return;
755 }
756
757 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
758}
759
760/*
761 * Check events in order.
762 *
763 */
764static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
765{
766 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 767 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 768 mem_cgroup_threshold(mem);
7a159cc9
JW
769 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
770 if (unlikely(__memcg_event_check(mem,
453a9bf3 771 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 772 mem_cgroup_update_tree(mem, page);
7a159cc9 773 __mem_cgroup_target_update(mem,
453a9bf3
KH
774 MEM_CGROUP_TARGET_SOFTLIMIT);
775 }
776#if MAX_NUMNODES > 1
777 if (unlikely(__memcg_event_check(mem,
778 MEM_CGROUP_TARGET_NUMAINFO))) {
779 atomic_inc(&mem->numainfo_events);
780 __mem_cgroup_target_update(mem,
781 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 782 }
453a9bf3 783#endif
d2265e6f
KH
784 }
785}
786
d5b69e38 787static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
788{
789 return container_of(cgroup_subsys_state(cont,
790 mem_cgroup_subsys_id), struct mem_cgroup,
791 css);
792}
793
cf475ad2 794struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 795{
31a78f23
BS
796 /*
797 * mm_update_next_owner() may clear mm->owner to NULL
798 * if it races with swapoff, page migration, etc.
799 * So this can be called with p == NULL.
800 */
801 if (unlikely(!p))
802 return NULL;
803
78fb7466
PE
804 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
805 struct mem_cgroup, css);
806}
807
a433658c 808struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
809{
810 struct mem_cgroup *mem = NULL;
0b7f569e
KH
811
812 if (!mm)
813 return NULL;
54595fe2
KH
814 /*
815 * Because we have no locks, mm->owner's may be being moved to other
816 * cgroup. We use css_tryget() here even if this looks
817 * pessimistic (rather than adding locks here).
818 */
819 rcu_read_lock();
820 do {
821 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
822 if (unlikely(!mem))
823 break;
824 } while (!css_tryget(&mem->css));
825 rcu_read_unlock();
826 return mem;
827}
828
7d74b06f
KH
829/* The caller has to guarantee "mem" exists before calling this */
830static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 831{
711d3d2c
KH
832 struct cgroup_subsys_state *css;
833 int found;
834
835 if (!mem) /* ROOT cgroup has the smallest ID */
836 return root_mem_cgroup; /*css_put/get against root is ignored*/
837 if (!mem->use_hierarchy) {
838 if (css_tryget(&mem->css))
839 return mem;
840 return NULL;
841 }
842 rcu_read_lock();
843 /*
844 * searching a memory cgroup which has the smallest ID under given
845 * ROOT cgroup. (ID >= 1)
846 */
847 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
848 if (css && css_tryget(css))
849 mem = container_of(css, struct mem_cgroup, css);
850 else
851 mem = NULL;
852 rcu_read_unlock();
853 return mem;
7d74b06f
KH
854}
855
856static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
857 struct mem_cgroup *root,
858 bool cond)
859{
860 int nextid = css_id(&iter->css) + 1;
861 int found;
862 int hierarchy_used;
14067bb3 863 struct cgroup_subsys_state *css;
14067bb3 864
7d74b06f 865 hierarchy_used = iter->use_hierarchy;
14067bb3 866
7d74b06f 867 css_put(&iter->css);
711d3d2c
KH
868 /* If no ROOT, walk all, ignore hierarchy */
869 if (!cond || (root && !hierarchy_used))
7d74b06f 870 return NULL;
14067bb3 871
711d3d2c
KH
872 if (!root)
873 root = root_mem_cgroup;
874
7d74b06f
KH
875 do {
876 iter = NULL;
14067bb3 877 rcu_read_lock();
7d74b06f
KH
878
879 css = css_get_next(&mem_cgroup_subsys, nextid,
880 &root->css, &found);
14067bb3 881 if (css && css_tryget(css))
7d74b06f 882 iter = container_of(css, struct mem_cgroup, css);
14067bb3 883 rcu_read_unlock();
7d74b06f 884 /* If css is NULL, no more cgroups will be found */
14067bb3 885 nextid = found + 1;
7d74b06f 886 } while (css && !iter);
14067bb3 887
7d74b06f 888 return iter;
14067bb3 889}
7d74b06f
KH
890/*
891 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
892 * be careful that "break" loop is not allowed. We have reference count.
893 * Instead of that modify "cond" to be false and "continue" to exit the loop.
894 */
895#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
896 for (iter = mem_cgroup_start_loop(root);\
897 iter != NULL;\
898 iter = mem_cgroup_get_next(iter, root, cond))
899
900#define for_each_mem_cgroup_tree(iter, root) \
901 for_each_mem_cgroup_tree_cond(iter, root, true)
902
711d3d2c
KH
903#define for_each_mem_cgroup_all(iter) \
904 for_each_mem_cgroup_tree_cond(iter, NULL, true)
905
14067bb3 906
4b3bde4c
BS
907static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
908{
909 return (mem == root_mem_cgroup);
910}
911
456f998e
YH
912void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
913{
914 struct mem_cgroup *mem;
915
916 if (!mm)
917 return;
918
919 rcu_read_lock();
920 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
921 if (unlikely(!mem))
922 goto out;
923
924 switch (idx) {
925 case PGMAJFAULT:
926 mem_cgroup_pgmajfault(mem, 1);
927 break;
928 case PGFAULT:
929 mem_cgroup_pgfault(mem, 1);
930 break;
931 default:
932 BUG();
933 }
934out:
935 rcu_read_unlock();
936}
937EXPORT_SYMBOL(mem_cgroup_count_vm_event);
938
08e552c6
KH
939/*
940 * Following LRU functions are allowed to be used without PCG_LOCK.
941 * Operations are called by routine of global LRU independently from memcg.
942 * What we have to take care of here is validness of pc->mem_cgroup.
943 *
944 * Changes to pc->mem_cgroup happens when
945 * 1. charge
946 * 2. moving account
947 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
948 * It is added to LRU before charge.
949 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
950 * When moving account, the page is not on LRU. It's isolated.
951 */
4f98a2fe 952
08e552c6
KH
953void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
954{
955 struct page_cgroup *pc;
08e552c6 956 struct mem_cgroup_per_zone *mz;
6d12e2d8 957
f8d66542 958 if (mem_cgroup_disabled())
08e552c6
KH
959 return;
960 pc = lookup_page_cgroup(page);
961 /* can happen while we handle swapcache. */
4b3bde4c 962 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 963 return;
4b3bde4c 964 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
965 /*
966 * We don't check PCG_USED bit. It's cleared when the "page" is finally
967 * removed from global LRU.
968 */
97a6c37b 969 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
970 /* huge page split is done under lru_lock. so, we have no races. */
971 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
972 if (mem_cgroup_is_root(pc->mem_cgroup))
973 return;
974 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 975 list_del_init(&pc->lru);
6d12e2d8
KH
976}
977
08e552c6 978void mem_cgroup_del_lru(struct page *page)
6d12e2d8 979{
08e552c6
KH
980 mem_cgroup_del_lru_list(page, page_lru(page));
981}
b69408e8 982
3f58a829
MK
983/*
984 * Writeback is about to end against a page which has been marked for immediate
985 * reclaim. If it still appears to be reclaimable, move it to the tail of the
986 * inactive list.
987 */
988void mem_cgroup_rotate_reclaimable_page(struct page *page)
989{
990 struct mem_cgroup_per_zone *mz;
991 struct page_cgroup *pc;
992 enum lru_list lru = page_lru(page);
993
994 if (mem_cgroup_disabled())
995 return;
996
997 pc = lookup_page_cgroup(page);
998 /* unused or root page is not rotated. */
999 if (!PageCgroupUsed(pc))
1000 return;
1001 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1002 smp_rmb();
1003 if (mem_cgroup_is_root(pc->mem_cgroup))
1004 return;
97a6c37b 1005 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1006 list_move_tail(&pc->lru, &mz->lists[lru]);
1007}
1008
08e552c6
KH
1009void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1010{
1011 struct mem_cgroup_per_zone *mz;
1012 struct page_cgroup *pc;
b69408e8 1013
f8d66542 1014 if (mem_cgroup_disabled())
08e552c6 1015 return;
6d12e2d8 1016
08e552c6 1017 pc = lookup_page_cgroup(page);
4b3bde4c 1018 /* unused or root page is not rotated. */
713735b4
JW
1019 if (!PageCgroupUsed(pc))
1020 return;
1021 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1022 smp_rmb();
1023 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1024 return;
97a6c37b 1025 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1026 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1027}
1028
08e552c6 1029void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1030{
08e552c6
KH
1031 struct page_cgroup *pc;
1032 struct mem_cgroup_per_zone *mz;
6d12e2d8 1033
f8d66542 1034 if (mem_cgroup_disabled())
08e552c6
KH
1035 return;
1036 pc = lookup_page_cgroup(page);
4b3bde4c 1037 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 1038 if (!PageCgroupUsed(pc))
894bc310 1039 return;
713735b4
JW
1040 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1041 smp_rmb();
97a6c37b 1042 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1043 /* huge page split is done under lru_lock. so, we have no races. */
1044 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1045 SetPageCgroupAcctLRU(pc);
1046 if (mem_cgroup_is_root(pc->mem_cgroup))
1047 return;
08e552c6
KH
1048 list_add(&pc->lru, &mz->lists[lru]);
1049}
544122e5 1050
08e552c6 1051/*
5a6475a4
KH
1052 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1053 * while it's linked to lru because the page may be reused after it's fully
1054 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1055 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1056 */
5a6475a4 1057static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1058{
544122e5
KH
1059 unsigned long flags;
1060 struct zone *zone = page_zone(page);
1061 struct page_cgroup *pc = lookup_page_cgroup(page);
1062
5a6475a4
KH
1063 /*
1064 * Doing this check without taking ->lru_lock seems wrong but this
1065 * is safe. Because if page_cgroup's USED bit is unset, the page
1066 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1067 * set, the commit after this will fail, anyway.
1068 * This all charge/uncharge is done under some mutual execustion.
1069 * So, we don't need to taking care of changes in USED bit.
1070 */
1071 if (likely(!PageLRU(page)))
1072 return;
1073
544122e5
KH
1074 spin_lock_irqsave(&zone->lru_lock, flags);
1075 /*
1076 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1077 * is guarded by lock_page() because the page is SwapCache.
1078 */
1079 if (!PageCgroupUsed(pc))
1080 mem_cgroup_del_lru_list(page, page_lru(page));
1081 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1082}
1083
5a6475a4 1084static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1085{
1086 unsigned long flags;
1087 struct zone *zone = page_zone(page);
1088 struct page_cgroup *pc = lookup_page_cgroup(page);
1089
5a6475a4
KH
1090 /* taking care of that the page is added to LRU while we commit it */
1091 if (likely(!PageLRU(page)))
1092 return;
544122e5
KH
1093 spin_lock_irqsave(&zone->lru_lock, flags);
1094 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1095 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1096 mem_cgroup_add_lru_list(page, page_lru(page));
1097 spin_unlock_irqrestore(&zone->lru_lock, flags);
1098}
1099
1100
08e552c6
KH
1101void mem_cgroup_move_lists(struct page *page,
1102 enum lru_list from, enum lru_list to)
1103{
f8d66542 1104 if (mem_cgroup_disabled())
08e552c6
KH
1105 return;
1106 mem_cgroup_del_lru_list(page, from);
1107 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1108}
1109
3e92041d
MH
1110/*
1111 * Checks whether given mem is same or in the root_mem's
1112 * hierarchy subtree
1113 */
1114static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1115 struct mem_cgroup *mem)
1116{
1117 if (root_mem != mem) {
1118 return (root_mem->use_hierarchy &&
1119 css_is_ancestor(&mem->css, &root_mem->css));
1120 }
1121
1122 return true;
1123}
1124
4c4a2214
DR
1125int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1126{
1127 int ret;
0b7f569e 1128 struct mem_cgroup *curr = NULL;
158e0a2d 1129 struct task_struct *p;
4c4a2214 1130
158e0a2d
KH
1131 p = find_lock_task_mm(task);
1132 if (!p)
1133 return 0;
1134 curr = try_get_mem_cgroup_from_mm(p->mm);
1135 task_unlock(p);
0b7f569e
KH
1136 if (!curr)
1137 return 0;
d31f56db
DN
1138 /*
1139 * We should check use_hierarchy of "mem" not "curr". Because checking
1140 * use_hierarchy of "curr" here make this function true if hierarchy is
1141 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1142 * hierarchy(even if use_hierarchy is disabled in "mem").
1143 */
3e92041d 1144 ret = mem_cgroup_same_or_subtree(mem, curr);
0b7f569e 1145 css_put(&curr->css);
4c4a2214
DR
1146 return ret;
1147}
1148
c772be93 1149static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1150{
1151 unsigned long active;
1152 unsigned long inactive;
c772be93
KM
1153 unsigned long gb;
1154 unsigned long inactive_ratio;
14797e23 1155
bb2a0de9
KH
1156 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1157 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1158
c772be93
KM
1159 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1160 if (gb)
1161 inactive_ratio = int_sqrt(10 * gb);
1162 else
1163 inactive_ratio = 1;
1164
1165 if (present_pages) {
1166 present_pages[0] = inactive;
1167 present_pages[1] = active;
1168 }
1169
1170 return inactive_ratio;
1171}
1172
1173int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1174{
1175 unsigned long active;
1176 unsigned long inactive;
1177 unsigned long present_pages[2];
1178 unsigned long inactive_ratio;
1179
1180 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1181
1182 inactive = present_pages[0];
1183 active = present_pages[1];
1184
1185 if (inactive * inactive_ratio < active)
14797e23
KM
1186 return 1;
1187
1188 return 0;
1189}
1190
56e49d21
RR
1191int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1192{
1193 unsigned long active;
1194 unsigned long inactive;
1195
bb2a0de9
KH
1196 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1197 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1198
1199 return (active > inactive);
1200}
1201
3e2f41f1
KM
1202struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1203 struct zone *zone)
1204{
13d7e3a2 1205 int nid = zone_to_nid(zone);
3e2f41f1
KM
1206 int zid = zone_idx(zone);
1207 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1208
1209 return &mz->reclaim_stat;
1210}
1211
1212struct zone_reclaim_stat *
1213mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1214{
1215 struct page_cgroup *pc;
1216 struct mem_cgroup_per_zone *mz;
1217
1218 if (mem_cgroup_disabled())
1219 return NULL;
1220
1221 pc = lookup_page_cgroup(page);
bd112db8
DN
1222 if (!PageCgroupUsed(pc))
1223 return NULL;
713735b4
JW
1224 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1225 smp_rmb();
97a6c37b 1226 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1227 return &mz->reclaim_stat;
1228}
1229
66e1707b
BS
1230unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1231 struct list_head *dst,
1232 unsigned long *scanned, int order,
1233 int mode, struct zone *z,
1234 struct mem_cgroup *mem_cont,
4f98a2fe 1235 int active, int file)
66e1707b
BS
1236{
1237 unsigned long nr_taken = 0;
1238 struct page *page;
1239 unsigned long scan;
1240 LIST_HEAD(pc_list);
1241 struct list_head *src;
ff7283fa 1242 struct page_cgroup *pc, *tmp;
13d7e3a2 1243 int nid = zone_to_nid(z);
1ecaab2b
KH
1244 int zid = zone_idx(z);
1245 struct mem_cgroup_per_zone *mz;
b7c46d15 1246 int lru = LRU_FILE * file + active;
2ffebca6 1247 int ret;
66e1707b 1248
cf475ad2 1249 BUG_ON(!mem_cont);
1ecaab2b 1250 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1251 src = &mz->lists[lru];
66e1707b 1252
ff7283fa
KH
1253 scan = 0;
1254 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1255 if (scan >= nr_to_scan)
ff7283fa 1256 break;
08e552c6 1257
52d4b9ac
KH
1258 if (unlikely(!PageCgroupUsed(pc)))
1259 continue;
5564e88b 1260
6b3ae58e 1261 page = lookup_cgroup_page(pc);
5564e88b 1262
436c6541 1263 if (unlikely(!PageLRU(page)))
ff7283fa 1264 continue;
ff7283fa 1265
436c6541 1266 scan++;
2ffebca6
KH
1267 ret = __isolate_lru_page(page, mode, file);
1268 switch (ret) {
1269 case 0:
66e1707b 1270 list_move(&page->lru, dst);
2ffebca6 1271 mem_cgroup_del_lru(page);
2c888cfb 1272 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1273 break;
1274 case -EBUSY:
1275 /* we don't affect global LRU but rotate in our LRU */
1276 mem_cgroup_rotate_lru_list(page, page_lru(page));
1277 break;
1278 default:
1279 break;
66e1707b
BS
1280 }
1281 }
1282
66e1707b 1283 *scanned = scan;
cc8e970c
KM
1284
1285 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1286 0, 0, 0, mode);
1287
66e1707b
BS
1288 return nr_taken;
1289}
1290
6d61ef40
BS
1291#define mem_cgroup_from_res_counter(counter, member) \
1292 container_of(counter, struct mem_cgroup, member)
1293
19942822 1294/**
9d11ea9f
JW
1295 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1296 * @mem: the memory cgroup
19942822 1297 *
9d11ea9f 1298 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1299 * pages.
19942822 1300 */
7ec99d62 1301static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1302{
9d11ea9f
JW
1303 unsigned long long margin;
1304
1305 margin = res_counter_margin(&mem->res);
1306 if (do_swap_account)
1307 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1308 return margin >> PAGE_SHIFT;
19942822
JW
1309}
1310
1f4c025b 1311int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1312{
1313 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1314
1315 /* root ? */
1316 if (cgrp->parent == NULL)
1317 return vm_swappiness;
1318
bf1ff263 1319 return memcg->swappiness;
a7885eb8
KM
1320}
1321
32047e2a
KH
1322static void mem_cgroup_start_move(struct mem_cgroup *mem)
1323{
1324 int cpu;
1489ebad
KH
1325
1326 get_online_cpus();
1327 spin_lock(&mem->pcp_counter_lock);
1328 for_each_online_cpu(cpu)
32047e2a 1329 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1330 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1331 spin_unlock(&mem->pcp_counter_lock);
1332 put_online_cpus();
32047e2a
KH
1333
1334 synchronize_rcu();
1335}
1336
1337static void mem_cgroup_end_move(struct mem_cgroup *mem)
1338{
1339 int cpu;
1340
1341 if (!mem)
1342 return;
1489ebad
KH
1343 get_online_cpus();
1344 spin_lock(&mem->pcp_counter_lock);
1345 for_each_online_cpu(cpu)
32047e2a 1346 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1347 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1348 spin_unlock(&mem->pcp_counter_lock);
1349 put_online_cpus();
32047e2a
KH
1350}
1351/*
1352 * 2 routines for checking "mem" is under move_account() or not.
1353 *
1354 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1355 * for avoiding race in accounting. If true,
1356 * pc->mem_cgroup may be overwritten.
1357 *
1358 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1359 * under hierarchy of moving cgroups. This is for
1360 * waiting at hith-memory prressure caused by "move".
1361 */
1362
1363static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1364{
1365 VM_BUG_ON(!rcu_read_lock_held());
1366 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1367}
4b534334
KH
1368
1369static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1370{
2bd9bb20
KH
1371 struct mem_cgroup *from;
1372 struct mem_cgroup *to;
4b534334 1373 bool ret = false;
2bd9bb20
KH
1374 /*
1375 * Unlike task_move routines, we access mc.to, mc.from not under
1376 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1377 */
1378 spin_lock(&mc.lock);
1379 from = mc.from;
1380 to = mc.to;
1381 if (!from)
1382 goto unlock;
3e92041d
MH
1383
1384 ret = mem_cgroup_same_or_subtree(mem, from)
1385 || mem_cgroup_same_or_subtree(mem, to);
2bd9bb20
KH
1386unlock:
1387 spin_unlock(&mc.lock);
4b534334
KH
1388 return ret;
1389}
1390
1391static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1392{
1393 if (mc.moving_task && current != mc.moving_task) {
1394 if (mem_cgroup_under_move(mem)) {
1395 DEFINE_WAIT(wait);
1396 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1397 /* moving charge context might have finished. */
1398 if (mc.moving_task)
1399 schedule();
1400 finish_wait(&mc.waitq, &wait);
1401 return true;
1402 }
1403 }
1404 return false;
1405}
1406
e222432b 1407/**
6a6135b6 1408 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1409 * @memcg: The memory cgroup that went over limit
1410 * @p: Task that is going to be killed
1411 *
1412 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1413 * enabled
1414 */
1415void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1416{
1417 struct cgroup *task_cgrp;
1418 struct cgroup *mem_cgrp;
1419 /*
1420 * Need a buffer in BSS, can't rely on allocations. The code relies
1421 * on the assumption that OOM is serialized for memory controller.
1422 * If this assumption is broken, revisit this code.
1423 */
1424 static char memcg_name[PATH_MAX];
1425 int ret;
1426
d31f56db 1427 if (!memcg || !p)
e222432b
BS
1428 return;
1429
1430
1431 rcu_read_lock();
1432
1433 mem_cgrp = memcg->css.cgroup;
1434 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1435
1436 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1437 if (ret < 0) {
1438 /*
1439 * Unfortunately, we are unable to convert to a useful name
1440 * But we'll still print out the usage information
1441 */
1442 rcu_read_unlock();
1443 goto done;
1444 }
1445 rcu_read_unlock();
1446
1447 printk(KERN_INFO "Task in %s killed", memcg_name);
1448
1449 rcu_read_lock();
1450 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1451 if (ret < 0) {
1452 rcu_read_unlock();
1453 goto done;
1454 }
1455 rcu_read_unlock();
1456
1457 /*
1458 * Continues from above, so we don't need an KERN_ level
1459 */
1460 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1461done:
1462
1463 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1464 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1465 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1467 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1468 "failcnt %llu\n",
1469 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1470 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1472}
1473
81d39c20
KH
1474/*
1475 * This function returns the number of memcg under hierarchy tree. Returns
1476 * 1(self count) if no children.
1477 */
1478static int mem_cgroup_count_children(struct mem_cgroup *mem)
1479{
1480 int num = 0;
7d74b06f
KH
1481 struct mem_cgroup *iter;
1482
1483 for_each_mem_cgroup_tree(iter, mem)
1484 num++;
81d39c20
KH
1485 return num;
1486}
1487
a63d83f4
DR
1488/*
1489 * Return the memory (and swap, if configured) limit for a memcg.
1490 */
1491u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1492{
1493 u64 limit;
1494 u64 memsw;
1495
f3e8eb70
JW
1496 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1497 limit += total_swap_pages << PAGE_SHIFT;
1498
a63d83f4
DR
1499 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1500 /*
1501 * If memsw is finite and limits the amount of swap space available
1502 * to this memcg, return that limit.
1503 */
1504 return min(limit, memsw);
1505}
1506
6d61ef40 1507/*
04046e1a
KH
1508 * Visit the first child (need not be the first child as per the ordering
1509 * of the cgroup list, since we track last_scanned_child) of @mem and use
1510 * that to reclaim free pages from.
1511 */
1512static struct mem_cgroup *
1513mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1514{
1515 struct mem_cgroup *ret = NULL;
1516 struct cgroup_subsys_state *css;
1517 int nextid, found;
1518
1519 if (!root_mem->use_hierarchy) {
1520 css_get(&root_mem->css);
1521 ret = root_mem;
1522 }
1523
1524 while (!ret) {
1525 rcu_read_lock();
1526 nextid = root_mem->last_scanned_child + 1;
1527 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1528 &found);
1529 if (css && css_tryget(css))
1530 ret = container_of(css, struct mem_cgroup, css);
1531
1532 rcu_read_unlock();
1533 /* Updates scanning parameter */
04046e1a
KH
1534 if (!css) {
1535 /* this means start scan from ID:1 */
1536 root_mem->last_scanned_child = 0;
1537 } else
1538 root_mem->last_scanned_child = found;
04046e1a
KH
1539 }
1540
1541 return ret;
1542}
1543
4d0c066d
KH
1544/**
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1549 *
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1553 */
1554static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1555 int nid, bool noswap)
1556{
bb2a0de9 1557 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1558 return true;
1559 if (noswap || !total_swap_pages)
1560 return false;
bb2a0de9 1561 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1562 return true;
1563 return false;
1564
1565}
889976db
YH
1566#if MAX_NUMNODES > 1
1567
1568/*
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572 *
1573 */
1574static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1575{
1576 int nid;
453a9bf3
KH
1577 /*
1578 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 * pagein/pageout changes since the last update.
1580 */
1581 if (!atomic_read(&mem->numainfo_events))
1582 return;
1583 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1584 return;
1585
889976db
YH
1586 /* make a nodemask where this memcg uses memory from */
1587 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1588
1589 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590
4d0c066d
KH
1591 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1592 node_clear(nid, mem->scan_nodes);
889976db 1593 }
453a9bf3
KH
1594
1595 atomic_set(&mem->numainfo_events, 0);
1596 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1597}
1598
1599/*
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1603 *
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1608 *
1609 * Now, we use round-robin. Better algorithm is welcomed.
1610 */
1611int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1612{
1613 int node;
1614
1615 mem_cgroup_may_update_nodemask(mem);
1616 node = mem->last_scanned_node;
1617
1618 node = next_node(node, mem->scan_nodes);
1619 if (node == MAX_NUMNODES)
1620 node = first_node(mem->scan_nodes);
1621 /*
1622 * We call this when we hit limit, not when pages are added to LRU.
1623 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 * memcg is too small and all pages are not on LRU. In that case,
1625 * we use curret node.
1626 */
1627 if (unlikely(node == MAX_NUMNODES))
1628 node = numa_node_id();
1629
1630 mem->last_scanned_node = node;
1631 return node;
1632}
1633
4d0c066d
KH
1634/*
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1639 */
1640bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1641{
1642 int nid;
1643
1644 /*
1645 * quick check...making use of scan_node.
1646 * We can skip unused nodes.
1647 */
1648 if (!nodes_empty(mem->scan_nodes)) {
1649 for (nid = first_node(mem->scan_nodes);
1650 nid < MAX_NUMNODES;
1651 nid = next_node(nid, mem->scan_nodes)) {
1652
1653 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1654 return true;
1655 }
1656 }
1657 /*
1658 * Check rest of nodes.
1659 */
1660 for_each_node_state(nid, N_HIGH_MEMORY) {
1661 if (node_isset(nid, mem->scan_nodes))
1662 continue;
1663 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1664 return true;
1665 }
1666 return false;
1667}
1668
889976db
YH
1669#else
1670int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1671{
1672 return 0;
1673}
4d0c066d
KH
1674
1675bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1676{
1677 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1678}
889976db
YH
1679#endif
1680
82f9d486
KH
1681static void __mem_cgroup_record_scanstat(unsigned long *stats,
1682 struct memcg_scanrecord *rec)
1683{
1684
1685 stats[SCAN] += rec->nr_scanned[0] + rec->nr_scanned[1];
1686 stats[SCAN_ANON] += rec->nr_scanned[0];
1687 stats[SCAN_FILE] += rec->nr_scanned[1];
1688
1689 stats[ROTATE] += rec->nr_rotated[0] + rec->nr_rotated[1];
1690 stats[ROTATE_ANON] += rec->nr_rotated[0];
1691 stats[ROTATE_FILE] += rec->nr_rotated[1];
1692
1693 stats[FREED] += rec->nr_freed[0] + rec->nr_freed[1];
1694 stats[FREED_ANON] += rec->nr_freed[0];
1695 stats[FREED_FILE] += rec->nr_freed[1];
1696
1697 stats[ELAPSED] += rec->elapsed;
1698}
1699
1700static void mem_cgroup_record_scanstat(struct memcg_scanrecord *rec)
1701{
1702 struct mem_cgroup *mem;
1703 int context = rec->context;
1704
1705 if (context >= NR_SCAN_CONTEXT)
1706 return;
1707
1708 mem = rec->mem;
1709 spin_lock(&mem->scanstat.lock);
1710 __mem_cgroup_record_scanstat(mem->scanstat.stats[context], rec);
1711 spin_unlock(&mem->scanstat.lock);
1712
1713 mem = rec->root;
1714 spin_lock(&mem->scanstat.lock);
1715 __mem_cgroup_record_scanstat(mem->scanstat.rootstats[context], rec);
1716 spin_unlock(&mem->scanstat.lock);
1717}
1718
04046e1a
KH
1719/*
1720 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1721 * we reclaimed from, so that we don't end up penalizing one child extensively
1722 * based on its position in the children list.
6d61ef40
BS
1723 *
1724 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1725 *
1726 * We give up and return to the caller when we visit root_mem twice.
1727 * (other groups can be removed while we're walking....)
81d39c20
KH
1728 *
1729 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1730 */
1731static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1732 struct zone *zone,
75822b44 1733 gfp_t gfp_mask,
0ae5e89c
YH
1734 unsigned long reclaim_options,
1735 unsigned long *total_scanned)
6d61ef40 1736{
04046e1a
KH
1737 struct mem_cgroup *victim;
1738 int ret, total = 0;
1739 int loop = 0;
75822b44
BS
1740 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1741 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1742 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
82f9d486 1743 struct memcg_scanrecord rec;
9d11ea9f 1744 unsigned long excess;
82f9d486 1745 unsigned long scanned;
9d11ea9f
JW
1746
1747 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1748
22a668d7 1749 /* If memsw_is_minimum==1, swap-out is of-no-use. */
108b6a78 1750 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
22a668d7
KH
1751 noswap = true;
1752
82f9d486
KH
1753 if (shrink)
1754 rec.context = SCAN_BY_SHRINK;
1755 else if (check_soft)
1756 rec.context = SCAN_BY_SYSTEM;
1757 else
1758 rec.context = SCAN_BY_LIMIT;
1759
1760 rec.root = root_mem;
1761
4e416953 1762 while (1) {
04046e1a 1763 victim = mem_cgroup_select_victim(root_mem);
4e416953 1764 if (victim == root_mem) {
04046e1a 1765 loop++;
fbc29a25
KH
1766 /*
1767 * We are not draining per cpu cached charges during
1768 * soft limit reclaim because global reclaim doesn't
1769 * care about charges. It tries to free some memory and
1770 * charges will not give any.
1771 */
1772 if (!check_soft && loop >= 1)
26fe6168 1773 drain_all_stock_async(root_mem);
4e416953
BS
1774 if (loop >= 2) {
1775 /*
1776 * If we have not been able to reclaim
1777 * anything, it might because there are
1778 * no reclaimable pages under this hierarchy
1779 */
1780 if (!check_soft || !total) {
1781 css_put(&victim->css);
1782 break;
1783 }
1784 /*
25985edc 1785 * We want to do more targeted reclaim.
4e416953
BS
1786 * excess >> 2 is not to excessive so as to
1787 * reclaim too much, nor too less that we keep
1788 * coming back to reclaim from this cgroup
1789 */
1790 if (total >= (excess >> 2) ||
1791 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1792 css_put(&victim->css);
1793 break;
1794 }
1795 }
1796 }
4d0c066d 1797 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1798 /* this cgroup's local usage == 0 */
1799 css_put(&victim->css);
6d61ef40
BS
1800 continue;
1801 }
82f9d486
KH
1802 rec.mem = victim;
1803 rec.nr_scanned[0] = 0;
1804 rec.nr_scanned[1] = 0;
1805 rec.nr_rotated[0] = 0;
1806 rec.nr_rotated[1] = 0;
1807 rec.nr_freed[0] = 0;
1808 rec.nr_freed[1] = 0;
1809 rec.elapsed = 0;
04046e1a 1810 /* we use swappiness of local cgroup */
0ae5e89c 1811 if (check_soft) {
4e416953 1812 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
82f9d486
KH
1813 noswap, zone, &rec, &scanned);
1814 *total_scanned += scanned;
0ae5e89c 1815 } else
4e416953 1816 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
82f9d486
KH
1817 noswap, &rec);
1818 mem_cgroup_record_scanstat(&rec);
04046e1a 1819 css_put(&victim->css);
81d39c20
KH
1820 /*
1821 * At shrinking usage, we can't check we should stop here or
1822 * reclaim more. It's depends on callers. last_scanned_child
1823 * will work enough for keeping fairness under tree.
1824 */
1825 if (shrink)
1826 return ret;
04046e1a 1827 total += ret;
4e416953 1828 if (check_soft) {
9d11ea9f 1829 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1830 return total;
9d11ea9f 1831 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1832 return total;
6d61ef40 1833 }
04046e1a 1834 return total;
6d61ef40
BS
1835}
1836
867578cb
KH
1837/*
1838 * Check OOM-Killer is already running under our hierarchy.
1839 * If someone is running, return false.
1af8efe9 1840 * Has to be called with memcg_oom_lock
867578cb
KH
1841 */
1842static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1843{
79dfdacc
MH
1844 int lock_count = -1;
1845 struct mem_cgroup *iter, *failed = NULL;
1846 bool cond = true;
a636b327 1847
79dfdacc
MH
1848 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1849 bool locked = iter->oom_lock;
1850
1851 iter->oom_lock = true;
1852 if (lock_count == -1)
1853 lock_count = iter->oom_lock;
1854 else if (lock_count != locked) {
1855 /*
1856 * this subtree of our hierarchy is already locked
1857 * so we cannot give a lock.
1858 */
1859 lock_count = 0;
1860 failed = iter;
1861 cond = false;
1862 }
7d74b06f 1863 }
867578cb 1864
79dfdacc
MH
1865 if (!failed)
1866 goto done;
1867
1868 /*
1869 * OK, we failed to lock the whole subtree so we have to clean up
1870 * what we set up to the failing subtree
1871 */
1872 cond = true;
1873 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1874 if (iter == failed) {
1875 cond = false;
1876 continue;
1877 }
1878 iter->oom_lock = false;
1879 }
1880done:
1881 return lock_count;
a636b327 1882}
0b7f569e 1883
79dfdacc 1884/*
1af8efe9 1885 * Has to be called with memcg_oom_lock
79dfdacc 1886 */
7d74b06f 1887static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1888{
7d74b06f
KH
1889 struct mem_cgroup *iter;
1890
79dfdacc
MH
1891 for_each_mem_cgroup_tree(iter, mem)
1892 iter->oom_lock = false;
1893 return 0;
1894}
1895
1896static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1897{
1898 struct mem_cgroup *iter;
1899
1900 for_each_mem_cgroup_tree(iter, mem)
1901 atomic_inc(&iter->under_oom);
1902}
1903
1904static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1905{
1906 struct mem_cgroup *iter;
1907
867578cb
KH
1908 /*
1909 * When a new child is created while the hierarchy is under oom,
1910 * mem_cgroup_oom_lock() may not be called. We have to use
1911 * atomic_add_unless() here.
1912 */
7d74b06f 1913 for_each_mem_cgroup_tree(iter, mem)
79dfdacc 1914 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1915}
1916
1af8efe9 1917static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1918static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1919
dc98df5a
KH
1920struct oom_wait_info {
1921 struct mem_cgroup *mem;
1922 wait_queue_t wait;
1923};
1924
1925static int memcg_oom_wake_function(wait_queue_t *wait,
1926 unsigned mode, int sync, void *arg)
1927{
3e92041d
MH
1928 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1929 *oom_wait_mem;
dc98df5a
KH
1930 struct oom_wait_info *oom_wait_info;
1931
1932 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
3e92041d 1933 oom_wait_mem = oom_wait_info->mem;
dc98df5a 1934
dc98df5a
KH
1935 /*
1936 * Both of oom_wait_info->mem and wake_mem are stable under us.
1937 * Then we can use css_is_ancestor without taking care of RCU.
1938 */
3e92041d
MH
1939 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1940 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
dc98df5a 1941 return 0;
dc98df5a
KH
1942 return autoremove_wake_function(wait, mode, sync, arg);
1943}
1944
1945static void memcg_wakeup_oom(struct mem_cgroup *mem)
1946{
1947 /* for filtering, pass "mem" as argument. */
1948 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1949}
1950
3c11ecf4
KH
1951static void memcg_oom_recover(struct mem_cgroup *mem)
1952{
79dfdacc 1953 if (mem && atomic_read(&mem->under_oom))
3c11ecf4
KH
1954 memcg_wakeup_oom(mem);
1955}
1956
867578cb
KH
1957/*
1958 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1959 */
1960bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1961{
dc98df5a 1962 struct oom_wait_info owait;
3c11ecf4 1963 bool locked, need_to_kill;
867578cb 1964
dc98df5a
KH
1965 owait.mem = mem;
1966 owait.wait.flags = 0;
1967 owait.wait.func = memcg_oom_wake_function;
1968 owait.wait.private = current;
1969 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1970 need_to_kill = true;
79dfdacc
MH
1971 mem_cgroup_mark_under_oom(mem);
1972
867578cb 1973 /* At first, try to OOM lock hierarchy under mem.*/
1af8efe9 1974 spin_lock(&memcg_oom_lock);
867578cb
KH
1975 locked = mem_cgroup_oom_lock(mem);
1976 /*
1977 * Even if signal_pending(), we can't quit charge() loop without
1978 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1979 * under OOM is always welcomed, use TASK_KILLABLE here.
1980 */
3c11ecf4
KH
1981 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1982 if (!locked || mem->oom_kill_disable)
1983 need_to_kill = false;
1984 if (locked)
9490ff27 1985 mem_cgroup_oom_notify(mem);
1af8efe9 1986 spin_unlock(&memcg_oom_lock);
867578cb 1987
3c11ecf4
KH
1988 if (need_to_kill) {
1989 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1990 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1991 } else {
867578cb 1992 schedule();
dc98df5a 1993 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1994 }
1af8efe9 1995 spin_lock(&memcg_oom_lock);
79dfdacc
MH
1996 if (locked)
1997 mem_cgroup_oom_unlock(mem);
dc98df5a 1998 memcg_wakeup_oom(mem);
1af8efe9 1999 spin_unlock(&memcg_oom_lock);
867578cb 2000
79dfdacc
MH
2001 mem_cgroup_unmark_under_oom(mem);
2002
867578cb
KH
2003 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2004 return false;
2005 /* Give chance to dying process */
2006 schedule_timeout(1);
2007 return true;
0b7f569e
KH
2008}
2009
d69b042f
BS
2010/*
2011 * Currently used to update mapped file statistics, but the routine can be
2012 * generalized to update other statistics as well.
32047e2a
KH
2013 *
2014 * Notes: Race condition
2015 *
2016 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2017 * it tends to be costly. But considering some conditions, we doesn't need
2018 * to do so _always_.
2019 *
2020 * Considering "charge", lock_page_cgroup() is not required because all
2021 * file-stat operations happen after a page is attached to radix-tree. There
2022 * are no race with "charge".
2023 *
2024 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2025 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2026 * if there are race with "uncharge". Statistics itself is properly handled
2027 * by flags.
2028 *
2029 * Considering "move", this is an only case we see a race. To make the race
2030 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
2031 * possibility of race condition. If there is, we take a lock.
d69b042f 2032 */
26174efd 2033
2a7106f2
GT
2034void mem_cgroup_update_page_stat(struct page *page,
2035 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
2036{
2037 struct mem_cgroup *mem;
32047e2a
KH
2038 struct page_cgroup *pc = lookup_page_cgroup(page);
2039 bool need_unlock = false;
dbd4ea78 2040 unsigned long uninitialized_var(flags);
d69b042f 2041
d69b042f
BS
2042 if (unlikely(!pc))
2043 return;
2044
32047e2a 2045 rcu_read_lock();
d69b042f 2046 mem = pc->mem_cgroup;
32047e2a
KH
2047 if (unlikely(!mem || !PageCgroupUsed(pc)))
2048 goto out;
2049 /* pc->mem_cgroup is unstable ? */
ca3e0214 2050 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 2051 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2052 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
2053 need_unlock = true;
2054 mem = pc->mem_cgroup;
2055 if (!mem || !PageCgroupUsed(pc))
2056 goto out;
2057 }
26174efd 2058
26174efd 2059 switch (idx) {
2a7106f2 2060 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2061 if (val > 0)
2062 SetPageCgroupFileMapped(pc);
2063 else if (!page_mapped(page))
0c270f8f 2064 ClearPageCgroupFileMapped(pc);
2a7106f2 2065 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2066 break;
2067 default:
2068 BUG();
8725d541 2069 }
d69b042f 2070
2a7106f2
GT
2071 this_cpu_add(mem->stat->count[idx], val);
2072
32047e2a
KH
2073out:
2074 if (unlikely(need_unlock))
dbd4ea78 2075 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2076 rcu_read_unlock();
2077 return;
d69b042f 2078}
2a7106f2 2079EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2080
cdec2e42
KH
2081/*
2082 * size of first charge trial. "32" comes from vmscan.c's magic value.
2083 * TODO: maybe necessary to use big numbers in big irons.
2084 */
7ec99d62 2085#define CHARGE_BATCH 32U
cdec2e42
KH
2086struct memcg_stock_pcp {
2087 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2088 unsigned int nr_pages;
cdec2e42 2089 struct work_struct work;
26fe6168
KH
2090 unsigned long flags;
2091#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2092};
2093static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2094static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2095
2096/*
11c9ea4e 2097 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2098 * from local stock and true is returned. If the stock is 0 or charges from a
2099 * cgroup which is not current target, returns false. This stock will be
2100 * refilled.
2101 */
2102static bool consume_stock(struct mem_cgroup *mem)
2103{
2104 struct memcg_stock_pcp *stock;
2105 bool ret = true;
2106
2107 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
2108 if (mem == stock->cached && stock->nr_pages)
2109 stock->nr_pages--;
cdec2e42
KH
2110 else /* need to call res_counter_charge */
2111 ret = false;
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114}
2115
2116/*
2117 * Returns stocks cached in percpu to res_counter and reset cached information.
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121 struct mem_cgroup *old = stock->cached;
2122
11c9ea4e
JW
2123 if (stock->nr_pages) {
2124 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2125
2126 res_counter_uncharge(&old->res, bytes);
cdec2e42 2127 if (do_swap_account)
11c9ea4e
JW
2128 res_counter_uncharge(&old->memsw, bytes);
2129 stock->nr_pages = 0;
cdec2e42
KH
2130 }
2131 stock->cached = NULL;
cdec2e42
KH
2132}
2133
2134/*
2135 * This must be called under preempt disabled or must be called by
2136 * a thread which is pinned to local cpu.
2137 */
2138static void drain_local_stock(struct work_struct *dummy)
2139{
2140 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2141 drain_stock(stock);
26fe6168 2142 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2143}
2144
2145/*
2146 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2147 * This will be consumed by consume_stock() function, later.
cdec2e42 2148 */
11c9ea4e 2149static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
2150{
2151 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2152
2153 if (stock->cached != mem) { /* reset if necessary */
2154 drain_stock(stock);
2155 stock->cached = mem;
2156 }
11c9ea4e 2157 stock->nr_pages += nr_pages;
cdec2e42
KH
2158 put_cpu_var(memcg_stock);
2159}
2160
2161/*
d38144b7
MH
2162 * Drains all per-CPU charge caches for given root_mem resp. subtree
2163 * of the hierarchy under it. sync flag says whether we should block
2164 * until the work is done.
cdec2e42 2165 */
d38144b7 2166static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
cdec2e42 2167{
26fe6168 2168 int cpu, curcpu;
d38144b7 2169
cdec2e42 2170 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2171 get_online_cpus();
26fe6168
KH
2172 /*
2173 * Get a hint for avoiding draining charges on the current cpu,
2174 * which must be exhausted by our charging. It is not required that
2175 * this be a precise check, so we use raw_smp_processor_id() instead of
2176 * getcpu()/putcpu().
2177 */
2178 curcpu = raw_smp_processor_id();
cdec2e42
KH
2179 for_each_online_cpu(cpu) {
2180 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2181 struct mem_cgroup *mem;
2182
26fe6168 2183 mem = stock->cached;
d1a05b69 2184 if (!mem || !stock->nr_pages)
26fe6168 2185 continue;
3e92041d
MH
2186 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2187 continue;
d1a05b69
MH
2188 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2189 if (cpu == curcpu)
2190 drain_local_stock(&stock->work);
2191 else
2192 schedule_work_on(cpu, &stock->work);
2193 }
cdec2e42 2194 }
d38144b7
MH
2195
2196 if (!sync)
2197 goto out;
2198
2199 for_each_online_cpu(cpu) {
2200 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2201 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2202 flush_work(&stock->work);
2203 }
2204out:
cdec2e42 2205 put_online_cpus();
d38144b7
MH
2206}
2207
2208/*
2209 * Tries to drain stocked charges in other cpus. This function is asynchronous
2210 * and just put a work per cpu for draining localy on each cpu. Caller can
2211 * expects some charges will be back to res_counter later but cannot wait for
2212 * it.
2213 */
2214static void drain_all_stock_async(struct mem_cgroup *root_mem)
2215{
9f50fad6
MH
2216 /*
2217 * If someone calls draining, avoid adding more kworker runs.
2218 */
2219 if (!mutex_trylock(&percpu_charge_mutex))
2220 return;
d38144b7 2221 drain_all_stock(root_mem, false);
9f50fad6 2222 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2223}
2224
2225/* This is a synchronous drain interface. */
d38144b7 2226static void drain_all_stock_sync(struct mem_cgroup *root_mem)
cdec2e42
KH
2227{
2228 /* called when force_empty is called */
9f50fad6 2229 mutex_lock(&percpu_charge_mutex);
d38144b7 2230 drain_all_stock(root_mem, true);
9f50fad6 2231 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2232}
2233
711d3d2c
KH
2234/*
2235 * This function drains percpu counter value from DEAD cpu and
2236 * move it to local cpu. Note that this function can be preempted.
2237 */
2238static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2239{
2240 int i;
2241
2242 spin_lock(&mem->pcp_counter_lock);
2243 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2244 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2245
2246 per_cpu(mem->stat->count[i], cpu) = 0;
2247 mem->nocpu_base.count[i] += x;
2248 }
e9f8974f
JW
2249 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2250 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2251
2252 per_cpu(mem->stat->events[i], cpu) = 0;
2253 mem->nocpu_base.events[i] += x;
2254 }
1489ebad
KH
2255 /* need to clear ON_MOVE value, works as a kind of lock. */
2256 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2257 spin_unlock(&mem->pcp_counter_lock);
2258}
2259
2260static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2261{
2262 int idx = MEM_CGROUP_ON_MOVE;
2263
2264 spin_lock(&mem->pcp_counter_lock);
2265 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2266 spin_unlock(&mem->pcp_counter_lock);
2267}
2268
2269static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2270 unsigned long action,
2271 void *hcpu)
2272{
2273 int cpu = (unsigned long)hcpu;
2274 struct memcg_stock_pcp *stock;
711d3d2c 2275 struct mem_cgroup *iter;
cdec2e42 2276
1489ebad
KH
2277 if ((action == CPU_ONLINE)) {
2278 for_each_mem_cgroup_all(iter)
2279 synchronize_mem_cgroup_on_move(iter, cpu);
2280 return NOTIFY_OK;
2281 }
2282
711d3d2c 2283 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2284 return NOTIFY_OK;
711d3d2c
KH
2285
2286 for_each_mem_cgroup_all(iter)
2287 mem_cgroup_drain_pcp_counter(iter, cpu);
2288
cdec2e42
KH
2289 stock = &per_cpu(memcg_stock, cpu);
2290 drain_stock(stock);
2291 return NOTIFY_OK;
2292}
2293
4b534334
KH
2294
2295/* See __mem_cgroup_try_charge() for details */
2296enum {
2297 CHARGE_OK, /* success */
2298 CHARGE_RETRY, /* need to retry but retry is not bad */
2299 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2300 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2301 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2302};
2303
7ec99d62
JW
2304static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2305 unsigned int nr_pages, bool oom_check)
4b534334 2306{
7ec99d62 2307 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2308 struct mem_cgroup *mem_over_limit;
2309 struct res_counter *fail_res;
2310 unsigned long flags = 0;
2311 int ret;
2312
2313 ret = res_counter_charge(&mem->res, csize, &fail_res);
2314
2315 if (likely(!ret)) {
2316 if (!do_swap_account)
2317 return CHARGE_OK;
2318 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2319 if (likely(!ret))
2320 return CHARGE_OK;
2321
01c88e2d 2322 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2323 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2324 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2325 } else
2326 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2327 /*
7ec99d62
JW
2328 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2329 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2330 *
2331 * Never reclaim on behalf of optional batching, retry with a
2332 * single page instead.
2333 */
7ec99d62 2334 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2335 return CHARGE_RETRY;
2336
2337 if (!(gfp_mask & __GFP_WAIT))
2338 return CHARGE_WOULDBLOCK;
2339
2340 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2341 gfp_mask, flags, NULL);
7ec99d62 2342 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2343 return CHARGE_RETRY;
4b534334 2344 /*
19942822
JW
2345 * Even though the limit is exceeded at this point, reclaim
2346 * may have been able to free some pages. Retry the charge
2347 * before killing the task.
2348 *
2349 * Only for regular pages, though: huge pages are rather
2350 * unlikely to succeed so close to the limit, and we fall back
2351 * to regular pages anyway in case of failure.
4b534334 2352 */
7ec99d62 2353 if (nr_pages == 1 && ret)
4b534334
KH
2354 return CHARGE_RETRY;
2355
2356 /*
2357 * At task move, charge accounts can be doubly counted. So, it's
2358 * better to wait until the end of task_move if something is going on.
2359 */
2360 if (mem_cgroup_wait_acct_move(mem_over_limit))
2361 return CHARGE_RETRY;
2362
2363 /* If we don't need to call oom-killer at el, return immediately */
2364 if (!oom_check)
2365 return CHARGE_NOMEM;
2366 /* check OOM */
2367 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2368 return CHARGE_OOM_DIE;
2369
2370 return CHARGE_RETRY;
2371}
2372
f817ed48
KH
2373/*
2374 * Unlike exported interface, "oom" parameter is added. if oom==true,
2375 * oom-killer can be invoked.
8a9f3ccd 2376 */
f817ed48 2377static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2378 gfp_t gfp_mask,
7ec99d62
JW
2379 unsigned int nr_pages,
2380 struct mem_cgroup **memcg,
2381 bool oom)
8a9f3ccd 2382{
7ec99d62 2383 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2384 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2385 struct mem_cgroup *mem = NULL;
2386 int ret;
a636b327 2387
867578cb
KH
2388 /*
2389 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2390 * in system level. So, allow to go ahead dying process in addition to
2391 * MEMDIE process.
2392 */
2393 if (unlikely(test_thread_flag(TIF_MEMDIE)
2394 || fatal_signal_pending(current)))
2395 goto bypass;
a636b327 2396
8a9f3ccd 2397 /*
3be91277
HD
2398 * We always charge the cgroup the mm_struct belongs to.
2399 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2400 * thread group leader migrates. It's possible that mm is not
2401 * set, if so charge the init_mm (happens for pagecache usage).
2402 */
f75ca962
KH
2403 if (!*memcg && !mm)
2404 goto bypass;
2405again:
2406 if (*memcg) { /* css should be a valid one */
4b534334 2407 mem = *memcg;
f75ca962
KH
2408 VM_BUG_ON(css_is_removed(&mem->css));
2409 if (mem_cgroup_is_root(mem))
2410 goto done;
7ec99d62 2411 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2412 goto done;
4b534334
KH
2413 css_get(&mem->css);
2414 } else {
f75ca962 2415 struct task_struct *p;
54595fe2 2416
f75ca962
KH
2417 rcu_read_lock();
2418 p = rcu_dereference(mm->owner);
f75ca962 2419 /*
ebb76ce1
KH
2420 * Because we don't have task_lock(), "p" can exit.
2421 * In that case, "mem" can point to root or p can be NULL with
2422 * race with swapoff. Then, we have small risk of mis-accouning.
2423 * But such kind of mis-account by race always happens because
2424 * we don't have cgroup_mutex(). It's overkill and we allo that
2425 * small race, here.
2426 * (*) swapoff at el will charge against mm-struct not against
2427 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2428 */
2429 mem = mem_cgroup_from_task(p);
ebb76ce1 2430 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2431 rcu_read_unlock();
2432 goto done;
2433 }
7ec99d62 2434 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2435 /*
2436 * It seems dagerous to access memcg without css_get().
2437 * But considering how consume_stok works, it's not
2438 * necessary. If consume_stock success, some charges
2439 * from this memcg are cached on this cpu. So, we
2440 * don't need to call css_get()/css_tryget() before
2441 * calling consume_stock().
2442 */
2443 rcu_read_unlock();
2444 goto done;
2445 }
2446 /* after here, we may be blocked. we need to get refcnt */
2447 if (!css_tryget(&mem->css)) {
2448 rcu_read_unlock();
2449 goto again;
2450 }
2451 rcu_read_unlock();
2452 }
8a9f3ccd 2453
4b534334
KH
2454 do {
2455 bool oom_check;
7a81b88c 2456
4b534334 2457 /* If killed, bypass charge */
f75ca962
KH
2458 if (fatal_signal_pending(current)) {
2459 css_put(&mem->css);
4b534334 2460 goto bypass;
f75ca962 2461 }
6d61ef40 2462
4b534334
KH
2463 oom_check = false;
2464 if (oom && !nr_oom_retries) {
2465 oom_check = true;
2466 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2467 }
66e1707b 2468
7ec99d62 2469 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2470 switch (ret) {
2471 case CHARGE_OK:
2472 break;
2473 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2474 batch = nr_pages;
f75ca962
KH
2475 css_put(&mem->css);
2476 mem = NULL;
2477 goto again;
4b534334 2478 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2479 css_put(&mem->css);
4b534334
KH
2480 goto nomem;
2481 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2482 if (!oom) {
2483 css_put(&mem->css);
867578cb 2484 goto nomem;
f75ca962 2485 }
4b534334
KH
2486 /* If oom, we never return -ENOMEM */
2487 nr_oom_retries--;
2488 break;
2489 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2490 css_put(&mem->css);
867578cb 2491 goto bypass;
66e1707b 2492 }
4b534334
KH
2493 } while (ret != CHARGE_OK);
2494
7ec99d62
JW
2495 if (batch > nr_pages)
2496 refill_stock(mem, batch - nr_pages);
f75ca962 2497 css_put(&mem->css);
0c3e73e8 2498done:
f75ca962 2499 *memcg = mem;
7a81b88c
KH
2500 return 0;
2501nomem:
f75ca962 2502 *memcg = NULL;
7a81b88c 2503 return -ENOMEM;
867578cb
KH
2504bypass:
2505 *memcg = NULL;
2506 return 0;
7a81b88c 2507}
8a9f3ccd 2508
a3032a2c
DN
2509/*
2510 * Somemtimes we have to undo a charge we got by try_charge().
2511 * This function is for that and do uncharge, put css's refcnt.
2512 * gotten by try_charge().
2513 */
854ffa8d 2514static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2515 unsigned int nr_pages)
a3032a2c
DN
2516{
2517 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2518 unsigned long bytes = nr_pages * PAGE_SIZE;
2519
2520 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2521 if (do_swap_account)
e7018b8d 2522 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2523 }
854ffa8d
DN
2524}
2525
a3b2d692
KH
2526/*
2527 * A helper function to get mem_cgroup from ID. must be called under
2528 * rcu_read_lock(). The caller must check css_is_removed() or some if
2529 * it's concern. (dropping refcnt from swap can be called against removed
2530 * memcg.)
2531 */
2532static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2533{
2534 struct cgroup_subsys_state *css;
2535
2536 /* ID 0 is unused ID */
2537 if (!id)
2538 return NULL;
2539 css = css_lookup(&mem_cgroup_subsys, id);
2540 if (!css)
2541 return NULL;
2542 return container_of(css, struct mem_cgroup, css);
2543}
2544
e42d9d5d 2545struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2546{
e42d9d5d 2547 struct mem_cgroup *mem = NULL;
3c776e64 2548 struct page_cgroup *pc;
a3b2d692 2549 unsigned short id;
b5a84319
KH
2550 swp_entry_t ent;
2551
3c776e64
DN
2552 VM_BUG_ON(!PageLocked(page));
2553
3c776e64 2554 pc = lookup_page_cgroup(page);
c0bd3f63 2555 lock_page_cgroup(pc);
a3b2d692 2556 if (PageCgroupUsed(pc)) {
3c776e64 2557 mem = pc->mem_cgroup;
a3b2d692
KH
2558 if (mem && !css_tryget(&mem->css))
2559 mem = NULL;
e42d9d5d 2560 } else if (PageSwapCache(page)) {
3c776e64 2561 ent.val = page_private(page);
a3b2d692
KH
2562 id = lookup_swap_cgroup(ent);
2563 rcu_read_lock();
2564 mem = mem_cgroup_lookup(id);
2565 if (mem && !css_tryget(&mem->css))
2566 mem = NULL;
2567 rcu_read_unlock();
3c776e64 2568 }
c0bd3f63 2569 unlock_page_cgroup(pc);
b5a84319
KH
2570 return mem;
2571}
2572
ca3e0214 2573static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2574 struct page *page,
7ec99d62 2575 unsigned int nr_pages,
ca3e0214 2576 struct page_cgroup *pc,
7ec99d62 2577 enum charge_type ctype)
7a81b88c 2578{
ca3e0214
KH
2579 lock_page_cgroup(pc);
2580 if (unlikely(PageCgroupUsed(pc))) {
2581 unlock_page_cgroup(pc);
e7018b8d 2582 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2583 return;
2584 }
2585 /*
2586 * we don't need page_cgroup_lock about tail pages, becase they are not
2587 * accessed by any other context at this point.
2588 */
8a9f3ccd 2589 pc->mem_cgroup = mem;
261fb61a
KH
2590 /*
2591 * We access a page_cgroup asynchronously without lock_page_cgroup().
2592 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2593 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2594 * before USED bit, we need memory barrier here.
2595 * See mem_cgroup_add_lru_list(), etc.
2596 */
08e552c6 2597 smp_wmb();
4b3bde4c
BS
2598 switch (ctype) {
2599 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2600 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2601 SetPageCgroupCache(pc);
2602 SetPageCgroupUsed(pc);
2603 break;
2604 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2605 ClearPageCgroupCache(pc);
2606 SetPageCgroupUsed(pc);
2607 break;
2608 default:
2609 break;
2610 }
3be91277 2611
ca3e0214 2612 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2613 unlock_page_cgroup(pc);
430e4863
KH
2614 /*
2615 * "charge_statistics" updated event counter. Then, check it.
2616 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2617 * if they exceeds softlimit.
2618 */
5564e88b 2619 memcg_check_events(mem, page);
7a81b88c 2620}
66e1707b 2621
ca3e0214
KH
2622#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2623
2624#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2625 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2626/*
2627 * Because tail pages are not marked as "used", set it. We're under
2628 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2629 */
2630void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2631{
2632 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2633 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2634 unsigned long flags;
2635
3d37c4a9
KH
2636 if (mem_cgroup_disabled())
2637 return;
ca3e0214 2638 /*
ece35ca8 2639 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2640 * page state accounting.
2641 */
2642 move_lock_page_cgroup(head_pc, &flags);
2643
2644 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2645 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2646 if (PageCgroupAcctLRU(head_pc)) {
2647 enum lru_list lru;
2648 struct mem_cgroup_per_zone *mz;
2649
2650 /*
2651 * LRU flags cannot be copied because we need to add tail
2652 *.page to LRU by generic call and our hook will be called.
2653 * We hold lru_lock, then, reduce counter directly.
2654 */
2655 lru = page_lru(head);
97a6c37b 2656 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2657 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2658 }
ca3e0214
KH
2659 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2660 move_unlock_page_cgroup(head_pc, &flags);
2661}
2662#endif
2663
f817ed48 2664/**
de3638d9 2665 * mem_cgroup_move_account - move account of the page
5564e88b 2666 * @page: the page
7ec99d62 2667 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2668 * @pc: page_cgroup of the page.
2669 * @from: mem_cgroup which the page is moved from.
2670 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2671 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2672 *
2673 * The caller must confirm following.
08e552c6 2674 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2675 * - compound_lock is held when nr_pages > 1
f817ed48 2676 *
854ffa8d 2677 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2678 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2679 * true, this function does "uncharge" from old cgroup, but it doesn't if
2680 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2681 */
7ec99d62
JW
2682static int mem_cgroup_move_account(struct page *page,
2683 unsigned int nr_pages,
2684 struct page_cgroup *pc,
2685 struct mem_cgroup *from,
2686 struct mem_cgroup *to,
2687 bool uncharge)
f817ed48 2688{
de3638d9
JW
2689 unsigned long flags;
2690 int ret;
987eba66 2691
f817ed48 2692 VM_BUG_ON(from == to);
5564e88b 2693 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2694 /*
2695 * The page is isolated from LRU. So, collapse function
2696 * will not handle this page. But page splitting can happen.
2697 * Do this check under compound_page_lock(). The caller should
2698 * hold it.
2699 */
2700 ret = -EBUSY;
7ec99d62 2701 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2702 goto out;
2703
2704 lock_page_cgroup(pc);
2705
2706 ret = -EINVAL;
2707 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2708 goto unlock;
2709
2710 move_lock_page_cgroup(pc, &flags);
f817ed48 2711
8725d541 2712 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2713 /* Update mapped_file data for mem_cgroup */
2714 preempt_disable();
2715 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2716 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2717 preempt_enable();
d69b042f 2718 }
987eba66 2719 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2720 if (uncharge)
2721 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2722 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2723
854ffa8d 2724 /* caller should have done css_get */
08e552c6 2725 pc->mem_cgroup = to;
987eba66 2726 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2727 /*
2728 * We charges against "to" which may not have any tasks. Then, "to"
2729 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2730 * this function is just force_empty() and move charge, so it's
25985edc 2731 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2732 * status here.
88703267 2733 */
de3638d9
JW
2734 move_unlock_page_cgroup(pc, &flags);
2735 ret = 0;
2736unlock:
57f9fd7d 2737 unlock_page_cgroup(pc);
d2265e6f
KH
2738 /*
2739 * check events
2740 */
5564e88b
JW
2741 memcg_check_events(to, page);
2742 memcg_check_events(from, page);
de3638d9 2743out:
f817ed48
KH
2744 return ret;
2745}
2746
2747/*
2748 * move charges to its parent.
2749 */
2750
5564e88b
JW
2751static int mem_cgroup_move_parent(struct page *page,
2752 struct page_cgroup *pc,
f817ed48
KH
2753 struct mem_cgroup *child,
2754 gfp_t gfp_mask)
2755{
2756 struct cgroup *cg = child->css.cgroup;
2757 struct cgroup *pcg = cg->parent;
2758 struct mem_cgroup *parent;
7ec99d62 2759 unsigned int nr_pages;
4be4489f 2760 unsigned long uninitialized_var(flags);
f817ed48
KH
2761 int ret;
2762
2763 /* Is ROOT ? */
2764 if (!pcg)
2765 return -EINVAL;
2766
57f9fd7d
DN
2767 ret = -EBUSY;
2768 if (!get_page_unless_zero(page))
2769 goto out;
2770 if (isolate_lru_page(page))
2771 goto put;
52dbb905 2772
7ec99d62 2773 nr_pages = hpage_nr_pages(page);
08e552c6 2774
f817ed48 2775 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2776 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2777 if (ret || !parent)
57f9fd7d 2778 goto put_back;
f817ed48 2779
7ec99d62 2780 if (nr_pages > 1)
987eba66
KH
2781 flags = compound_lock_irqsave(page);
2782
7ec99d62 2783 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2784 if (ret)
7ec99d62 2785 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2786
7ec99d62 2787 if (nr_pages > 1)
987eba66 2788 compound_unlock_irqrestore(page, flags);
8dba474f 2789put_back:
08e552c6 2790 putback_lru_page(page);
57f9fd7d 2791put:
40d58138 2792 put_page(page);
57f9fd7d 2793out:
f817ed48
KH
2794 return ret;
2795}
2796
7a81b88c
KH
2797/*
2798 * Charge the memory controller for page usage.
2799 * Return
2800 * 0 if the charge was successful
2801 * < 0 if the cgroup is over its limit
2802 */
2803static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2804 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2805{
73045c47 2806 struct mem_cgroup *mem = NULL;
7ec99d62 2807 unsigned int nr_pages = 1;
7a81b88c 2808 struct page_cgroup *pc;
8493ae43 2809 bool oom = true;
7a81b88c 2810 int ret;
ec168510 2811
37c2ac78 2812 if (PageTransHuge(page)) {
7ec99d62 2813 nr_pages <<= compound_order(page);
37c2ac78 2814 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2815 /*
2816 * Never OOM-kill a process for a huge page. The
2817 * fault handler will fall back to regular pages.
2818 */
2819 oom = false;
37c2ac78 2820 }
7a81b88c
KH
2821
2822 pc = lookup_page_cgroup(page);
af4a6621 2823 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2824
7ec99d62 2825 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2826 if (ret || !mem)
7a81b88c
KH
2827 return ret;
2828
7ec99d62 2829 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2830 return 0;
8a9f3ccd
BS
2831}
2832
7a81b88c
KH
2833int mem_cgroup_newpage_charge(struct page *page,
2834 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2835{
f8d66542 2836 if (mem_cgroup_disabled())
cede86ac 2837 return 0;
69029cd5
KH
2838 /*
2839 * If already mapped, we don't have to account.
2840 * If page cache, page->mapping has address_space.
2841 * But page->mapping may have out-of-use anon_vma pointer,
2842 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2843 * is NULL.
2844 */
2845 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2846 return 0;
2847 if (unlikely(!mm))
2848 mm = &init_mm;
217bc319 2849 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2850 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2851}
2852
83aae4c7
DN
2853static void
2854__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2855 enum charge_type ctype);
2856
5a6475a4
KH
2857static void
2858__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2859 enum charge_type ctype)
2860{
2861 struct page_cgroup *pc = lookup_page_cgroup(page);
2862 /*
2863 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2864 * is already on LRU. It means the page may on some other page_cgroup's
2865 * LRU. Take care of it.
2866 */
2867 mem_cgroup_lru_del_before_commit(page);
2868 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2869 mem_cgroup_lru_add_after_commit(page);
2870 return;
2871}
2872
e1a1cd59
BS
2873int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2874 gfp_t gfp_mask)
8697d331 2875{
5a6475a4 2876 struct mem_cgroup *mem = NULL;
b5a84319
KH
2877 int ret;
2878
f8d66542 2879 if (mem_cgroup_disabled())
cede86ac 2880 return 0;
52d4b9ac
KH
2881 if (PageCompound(page))
2882 return 0;
accf163e 2883
73045c47 2884 if (unlikely(!mm))
8697d331 2885 mm = &init_mm;
accf163e 2886
5a6475a4
KH
2887 if (page_is_file_cache(page)) {
2888 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2889 if (ret || !mem)
2890 return ret;
b5a84319 2891
5a6475a4
KH
2892 /*
2893 * FUSE reuses pages without going through the final
2894 * put that would remove them from the LRU list, make
2895 * sure that they get relinked properly.
2896 */
2897 __mem_cgroup_commit_charge_lrucare(page, mem,
2898 MEM_CGROUP_CHARGE_TYPE_CACHE);
2899 return ret;
2900 }
83aae4c7
DN
2901 /* shmem */
2902 if (PageSwapCache(page)) {
2903 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2904 if (!ret)
2905 __mem_cgroup_commit_charge_swapin(page, mem,
2906 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2907 } else
2908 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2909 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2910
b5a84319 2911 return ret;
e8589cc1
KH
2912}
2913
54595fe2
KH
2914/*
2915 * While swap-in, try_charge -> commit or cancel, the page is locked.
2916 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2917 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2918 * "commit()" or removed by "cancel()"
2919 */
8c7c6e34
KH
2920int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2921 struct page *page,
2922 gfp_t mask, struct mem_cgroup **ptr)
2923{
2924 struct mem_cgroup *mem;
54595fe2 2925 int ret;
8c7c6e34 2926
56039efa
KH
2927 *ptr = NULL;
2928
f8d66542 2929 if (mem_cgroup_disabled())
8c7c6e34
KH
2930 return 0;
2931
2932 if (!do_swap_account)
2933 goto charge_cur_mm;
8c7c6e34
KH
2934 /*
2935 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2936 * the pte, and even removed page from swap cache: in those cases
2937 * do_swap_page()'s pte_same() test will fail; but there's also a
2938 * KSM case which does need to charge the page.
8c7c6e34
KH
2939 */
2940 if (!PageSwapCache(page))
407f9c8b 2941 goto charge_cur_mm;
e42d9d5d 2942 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2943 if (!mem)
2944 goto charge_cur_mm;
8c7c6e34 2945 *ptr = mem;
7ec99d62 2946 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2947 css_put(&mem->css);
2948 return ret;
8c7c6e34
KH
2949charge_cur_mm:
2950 if (unlikely(!mm))
2951 mm = &init_mm;
7ec99d62 2952 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2953}
2954
83aae4c7
DN
2955static void
2956__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2957 enum charge_type ctype)
7a81b88c 2958{
f8d66542 2959 if (mem_cgroup_disabled())
7a81b88c
KH
2960 return;
2961 if (!ptr)
2962 return;
88703267 2963 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2964
2965 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2966 /*
2967 * Now swap is on-memory. This means this page may be
2968 * counted both as mem and swap....double count.
03f3c433
KH
2969 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2970 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2971 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2972 */
03f3c433 2973 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2974 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2975 unsigned short id;
8c7c6e34 2976 struct mem_cgroup *memcg;
a3b2d692
KH
2977
2978 id = swap_cgroup_record(ent, 0);
2979 rcu_read_lock();
2980 memcg = mem_cgroup_lookup(id);
8c7c6e34 2981 if (memcg) {
a3b2d692
KH
2982 /*
2983 * This recorded memcg can be obsolete one. So, avoid
2984 * calling css_tryget
2985 */
0c3e73e8 2986 if (!mem_cgroup_is_root(memcg))
4e649152 2987 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2988 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2989 mem_cgroup_put(memcg);
2990 }
a3b2d692 2991 rcu_read_unlock();
8c7c6e34 2992 }
88703267
KH
2993 /*
2994 * At swapin, we may charge account against cgroup which has no tasks.
2995 * So, rmdir()->pre_destroy() can be called while we do this charge.
2996 * In that case, we need to call pre_destroy() again. check it here.
2997 */
2998 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2999}
3000
83aae4c7
DN
3001void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
3002{
3003 __mem_cgroup_commit_charge_swapin(page, ptr,
3004 MEM_CGROUP_CHARGE_TYPE_MAPPED);
3005}
3006
7a81b88c
KH
3007void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
3008{
f8d66542 3009 if (mem_cgroup_disabled())
7a81b88c
KH
3010 return;
3011 if (!mem)
3012 return;
e7018b8d 3013 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
3014}
3015
7ec99d62
JW
3016static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
3017 unsigned int nr_pages,
3018 const enum charge_type ctype)
569b846d
KH
3019{
3020 struct memcg_batch_info *batch = NULL;
3021 bool uncharge_memsw = true;
7ec99d62 3022
569b846d
KH
3023 /* If swapout, usage of swap doesn't decrease */
3024 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3025 uncharge_memsw = false;
569b846d
KH
3026
3027 batch = &current->memcg_batch;
3028 /*
3029 * In usual, we do css_get() when we remember memcg pointer.
3030 * But in this case, we keep res->usage until end of a series of
3031 * uncharges. Then, it's ok to ignore memcg's refcnt.
3032 */
3033 if (!batch->memcg)
3034 batch->memcg = mem;
3c11ecf4
KH
3035 /*
3036 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3037 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3038 * the same cgroup and we have chance to coalesce uncharges.
3039 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3040 * because we want to do uncharge as soon as possible.
3041 */
3042
3043 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3044 goto direct_uncharge;
3045
7ec99d62 3046 if (nr_pages > 1)
ec168510
AA
3047 goto direct_uncharge;
3048
569b846d
KH
3049 /*
3050 * In typical case, batch->memcg == mem. This means we can
3051 * merge a series of uncharges to an uncharge of res_counter.
3052 * If not, we uncharge res_counter ony by one.
3053 */
3054 if (batch->memcg != mem)
3055 goto direct_uncharge;
3056 /* remember freed charge and uncharge it later */
7ffd4ca7 3057 batch->nr_pages++;
569b846d 3058 if (uncharge_memsw)
7ffd4ca7 3059 batch->memsw_nr_pages++;
569b846d
KH
3060 return;
3061direct_uncharge:
7ec99d62 3062 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 3063 if (uncharge_memsw)
7ec99d62 3064 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
3065 if (unlikely(batch->memcg != mem))
3066 memcg_oom_recover(mem);
569b846d
KH
3067 return;
3068}
7a81b88c 3069
8a9f3ccd 3070/*
69029cd5 3071 * uncharge if !page_mapped(page)
8a9f3ccd 3072 */
8c7c6e34 3073static struct mem_cgroup *
69029cd5 3074__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3075{
8c7c6e34 3076 struct mem_cgroup *mem = NULL;
7ec99d62
JW
3077 unsigned int nr_pages = 1;
3078 struct page_cgroup *pc;
8a9f3ccd 3079
f8d66542 3080 if (mem_cgroup_disabled())
8c7c6e34 3081 return NULL;
4077960e 3082
d13d1443 3083 if (PageSwapCache(page))
8c7c6e34 3084 return NULL;
d13d1443 3085
37c2ac78 3086 if (PageTransHuge(page)) {
7ec99d62 3087 nr_pages <<= compound_order(page);
37c2ac78
AA
3088 VM_BUG_ON(!PageTransHuge(page));
3089 }
8697d331 3090 /*
3c541e14 3091 * Check if our page_cgroup is valid
8697d331 3092 */
52d4b9ac
KH
3093 pc = lookup_page_cgroup(page);
3094 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3095 return NULL;
b9c565d5 3096
52d4b9ac 3097 lock_page_cgroup(pc);
d13d1443 3098
8c7c6e34
KH
3099 mem = pc->mem_cgroup;
3100
d13d1443
KH
3101 if (!PageCgroupUsed(pc))
3102 goto unlock_out;
3103
3104 switch (ctype) {
3105 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3106 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3107 /* See mem_cgroup_prepare_migration() */
3108 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3109 goto unlock_out;
3110 break;
3111 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3112 if (!PageAnon(page)) { /* Shared memory */
3113 if (page->mapping && !page_is_file_cache(page))
3114 goto unlock_out;
3115 } else if (page_mapped(page)) /* Anon */
3116 goto unlock_out;
3117 break;
3118 default:
3119 break;
52d4b9ac 3120 }
d13d1443 3121
7ec99d62 3122 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 3123
52d4b9ac 3124 ClearPageCgroupUsed(pc);
544122e5
KH
3125 /*
3126 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3127 * freed from LRU. This is safe because uncharged page is expected not
3128 * to be reused (freed soon). Exception is SwapCache, it's handled by
3129 * special functions.
3130 */
b9c565d5 3131
52d4b9ac 3132 unlock_page_cgroup(pc);
f75ca962
KH
3133 /*
3134 * even after unlock, we have mem->res.usage here and this memcg
3135 * will never be freed.
3136 */
d2265e6f 3137 memcg_check_events(mem, page);
f75ca962
KH
3138 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3139 mem_cgroup_swap_statistics(mem, true);
3140 mem_cgroup_get(mem);
3141 }
3142 if (!mem_cgroup_is_root(mem))
7ec99d62 3143 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 3144
8c7c6e34 3145 return mem;
d13d1443
KH
3146
3147unlock_out:
3148 unlock_page_cgroup(pc);
8c7c6e34 3149 return NULL;
3c541e14
BS
3150}
3151
69029cd5
KH
3152void mem_cgroup_uncharge_page(struct page *page)
3153{
52d4b9ac
KH
3154 /* early check. */
3155 if (page_mapped(page))
3156 return;
3157 if (page->mapping && !PageAnon(page))
3158 return;
69029cd5
KH
3159 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3160}
3161
3162void mem_cgroup_uncharge_cache_page(struct page *page)
3163{
3164 VM_BUG_ON(page_mapped(page));
b7abea96 3165 VM_BUG_ON(page->mapping);
69029cd5
KH
3166 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3167}
3168
569b846d
KH
3169/*
3170 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3171 * In that cases, pages are freed continuously and we can expect pages
3172 * are in the same memcg. All these calls itself limits the number of
3173 * pages freed at once, then uncharge_start/end() is called properly.
3174 * This may be called prural(2) times in a context,
3175 */
3176
3177void mem_cgroup_uncharge_start(void)
3178{
3179 current->memcg_batch.do_batch++;
3180 /* We can do nest. */
3181 if (current->memcg_batch.do_batch == 1) {
3182 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3183 current->memcg_batch.nr_pages = 0;
3184 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3185 }
3186}
3187
3188void mem_cgroup_uncharge_end(void)
3189{
3190 struct memcg_batch_info *batch = &current->memcg_batch;
3191
3192 if (!batch->do_batch)
3193 return;
3194
3195 batch->do_batch--;
3196 if (batch->do_batch) /* If stacked, do nothing. */
3197 return;
3198
3199 if (!batch->memcg)
3200 return;
3201 /*
3202 * This "batch->memcg" is valid without any css_get/put etc...
3203 * bacause we hide charges behind us.
3204 */
7ffd4ca7
JW
3205 if (batch->nr_pages)
3206 res_counter_uncharge(&batch->memcg->res,
3207 batch->nr_pages * PAGE_SIZE);
3208 if (batch->memsw_nr_pages)
3209 res_counter_uncharge(&batch->memcg->memsw,
3210 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3211 memcg_oom_recover(batch->memcg);
569b846d
KH
3212 /* forget this pointer (for sanity check) */
3213 batch->memcg = NULL;
3214}
3215
e767e056 3216#ifdef CONFIG_SWAP
8c7c6e34 3217/*
e767e056 3218 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3219 * memcg information is recorded to swap_cgroup of "ent"
3220 */
8a9478ca
KH
3221void
3222mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3223{
3224 struct mem_cgroup *memcg;
8a9478ca
KH
3225 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3226
3227 if (!swapout) /* this was a swap cache but the swap is unused ! */
3228 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3229
3230 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3231
f75ca962
KH
3232 /*
3233 * record memcg information, if swapout && memcg != NULL,
3234 * mem_cgroup_get() was called in uncharge().
3235 */
3236 if (do_swap_account && swapout && memcg)
a3b2d692 3237 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3238}
e767e056 3239#endif
8c7c6e34
KH
3240
3241#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3242/*
3243 * called from swap_entry_free(). remove record in swap_cgroup and
3244 * uncharge "memsw" account.
3245 */
3246void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3247{
8c7c6e34 3248 struct mem_cgroup *memcg;
a3b2d692 3249 unsigned short id;
8c7c6e34
KH
3250
3251 if (!do_swap_account)
3252 return;
3253
a3b2d692
KH
3254 id = swap_cgroup_record(ent, 0);
3255 rcu_read_lock();
3256 memcg = mem_cgroup_lookup(id);
8c7c6e34 3257 if (memcg) {
a3b2d692
KH
3258 /*
3259 * We uncharge this because swap is freed.
3260 * This memcg can be obsolete one. We avoid calling css_tryget
3261 */
0c3e73e8 3262 if (!mem_cgroup_is_root(memcg))
4e649152 3263 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3264 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3265 mem_cgroup_put(memcg);
3266 }
a3b2d692 3267 rcu_read_unlock();
d13d1443 3268}
02491447
DN
3269
3270/**
3271 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3272 * @entry: swap entry to be moved
3273 * @from: mem_cgroup which the entry is moved from
3274 * @to: mem_cgroup which the entry is moved to
483c30b5 3275 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3276 *
3277 * It succeeds only when the swap_cgroup's record for this entry is the same
3278 * as the mem_cgroup's id of @from.
3279 *
3280 * Returns 0 on success, -EINVAL on failure.
3281 *
3282 * The caller must have charged to @to, IOW, called res_counter_charge() about
3283 * both res and memsw, and called css_get().
3284 */
3285static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3286 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3287{
3288 unsigned short old_id, new_id;
3289
3290 old_id = css_id(&from->css);
3291 new_id = css_id(&to->css);
3292
3293 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3294 mem_cgroup_swap_statistics(from, false);
483c30b5 3295 mem_cgroup_swap_statistics(to, true);
02491447 3296 /*
483c30b5
DN
3297 * This function is only called from task migration context now.
3298 * It postpones res_counter and refcount handling till the end
3299 * of task migration(mem_cgroup_clear_mc()) for performance
3300 * improvement. But we cannot postpone mem_cgroup_get(to)
3301 * because if the process that has been moved to @to does
3302 * swap-in, the refcount of @to might be decreased to 0.
02491447 3303 */
02491447 3304 mem_cgroup_get(to);
483c30b5
DN
3305 if (need_fixup) {
3306 if (!mem_cgroup_is_root(from))
3307 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3308 mem_cgroup_put(from);
3309 /*
3310 * we charged both to->res and to->memsw, so we should
3311 * uncharge to->res.
3312 */
3313 if (!mem_cgroup_is_root(to))
3314 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3315 }
02491447
DN
3316 return 0;
3317 }
3318 return -EINVAL;
3319}
3320#else
3321static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3322 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3323{
3324 return -EINVAL;
3325}
8c7c6e34 3326#endif
d13d1443 3327
ae41be37 3328/*
01b1ae63
KH
3329 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3330 * page belongs to.
ae41be37 3331 */
ac39cf8c 3332int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3333 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3334{
e8589cc1 3335 struct mem_cgroup *mem = NULL;
7ec99d62 3336 struct page_cgroup *pc;
ac39cf8c 3337 enum charge_type ctype;
e8589cc1 3338 int ret = 0;
8869b8f6 3339
56039efa
KH
3340 *ptr = NULL;
3341
ec168510 3342 VM_BUG_ON(PageTransHuge(page));
f8d66542 3343 if (mem_cgroup_disabled())
4077960e
BS
3344 return 0;
3345
52d4b9ac
KH
3346 pc = lookup_page_cgroup(page);
3347 lock_page_cgroup(pc);
3348 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3349 mem = pc->mem_cgroup;
3350 css_get(&mem->css);
ac39cf8c
AM
3351 /*
3352 * At migrating an anonymous page, its mapcount goes down
3353 * to 0 and uncharge() will be called. But, even if it's fully
3354 * unmapped, migration may fail and this page has to be
3355 * charged again. We set MIGRATION flag here and delay uncharge
3356 * until end_migration() is called
3357 *
3358 * Corner Case Thinking
3359 * A)
3360 * When the old page was mapped as Anon and it's unmap-and-freed
3361 * while migration was ongoing.
3362 * If unmap finds the old page, uncharge() of it will be delayed
3363 * until end_migration(). If unmap finds a new page, it's
3364 * uncharged when it make mapcount to be 1->0. If unmap code
3365 * finds swap_migration_entry, the new page will not be mapped
3366 * and end_migration() will find it(mapcount==0).
3367 *
3368 * B)
3369 * When the old page was mapped but migraion fails, the kernel
3370 * remaps it. A charge for it is kept by MIGRATION flag even
3371 * if mapcount goes down to 0. We can do remap successfully
3372 * without charging it again.
3373 *
3374 * C)
3375 * The "old" page is under lock_page() until the end of
3376 * migration, so, the old page itself will not be swapped-out.
3377 * If the new page is swapped out before end_migraton, our
3378 * hook to usual swap-out path will catch the event.
3379 */
3380 if (PageAnon(page))
3381 SetPageCgroupMigration(pc);
e8589cc1 3382 }
52d4b9ac 3383 unlock_page_cgroup(pc);
ac39cf8c
AM
3384 /*
3385 * If the page is not charged at this point,
3386 * we return here.
3387 */
3388 if (!mem)
3389 return 0;
01b1ae63 3390
93d5c9be 3391 *ptr = mem;
7ec99d62 3392 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
3393 css_put(&mem->css);/* drop extra refcnt */
3394 if (ret || *ptr == NULL) {
3395 if (PageAnon(page)) {
3396 lock_page_cgroup(pc);
3397 ClearPageCgroupMigration(pc);
3398 unlock_page_cgroup(pc);
3399 /*
3400 * The old page may be fully unmapped while we kept it.
3401 */
3402 mem_cgroup_uncharge_page(page);
3403 }
3404 return -ENOMEM;
e8589cc1 3405 }
ac39cf8c
AM
3406 /*
3407 * We charge new page before it's used/mapped. So, even if unlock_page()
3408 * is called before end_migration, we can catch all events on this new
3409 * page. In the case new page is migrated but not remapped, new page's
3410 * mapcount will be finally 0 and we call uncharge in end_migration().
3411 */
3412 pc = lookup_page_cgroup(newpage);
3413 if (PageAnon(page))
3414 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3415 else if (page_is_file_cache(page))
3416 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3417 else
3418 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3419 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3420 return ret;
ae41be37 3421}
8869b8f6 3422
69029cd5 3423/* remove redundant charge if migration failed*/
01b1ae63 3424void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3425 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3426{
ac39cf8c 3427 struct page *used, *unused;
01b1ae63 3428 struct page_cgroup *pc;
01b1ae63
KH
3429
3430 if (!mem)
3431 return;
ac39cf8c 3432 /* blocks rmdir() */
88703267 3433 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3434 if (!migration_ok) {
ac39cf8c
AM
3435 used = oldpage;
3436 unused = newpage;
01b1ae63 3437 } else {
ac39cf8c 3438 used = newpage;
01b1ae63
KH
3439 unused = oldpage;
3440 }
69029cd5 3441 /*
ac39cf8c
AM
3442 * We disallowed uncharge of pages under migration because mapcount
3443 * of the page goes down to zero, temporarly.
3444 * Clear the flag and check the page should be charged.
01b1ae63 3445 */
ac39cf8c
AM
3446 pc = lookup_page_cgroup(oldpage);
3447 lock_page_cgroup(pc);
3448 ClearPageCgroupMigration(pc);
3449 unlock_page_cgroup(pc);
01b1ae63 3450
ac39cf8c
AM
3451 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3452
01b1ae63 3453 /*
ac39cf8c
AM
3454 * If a page is a file cache, radix-tree replacement is very atomic
3455 * and we can skip this check. When it was an Anon page, its mapcount
3456 * goes down to 0. But because we added MIGRATION flage, it's not
3457 * uncharged yet. There are several case but page->mapcount check
3458 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3459 * check. (see prepare_charge() also)
69029cd5 3460 */
ac39cf8c
AM
3461 if (PageAnon(used))
3462 mem_cgroup_uncharge_page(used);
88703267 3463 /*
ac39cf8c
AM
3464 * At migration, we may charge account against cgroup which has no
3465 * tasks.
88703267
KH
3466 * So, rmdir()->pre_destroy() can be called while we do this charge.
3467 * In that case, we need to call pre_destroy() again. check it here.
3468 */
3469 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3470}
78fb7466 3471
f212ad7c
DN
3472#ifdef CONFIG_DEBUG_VM
3473static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3474{
3475 struct page_cgroup *pc;
3476
3477 pc = lookup_page_cgroup(page);
3478 if (likely(pc) && PageCgroupUsed(pc))
3479 return pc;
3480 return NULL;
3481}
3482
3483bool mem_cgroup_bad_page_check(struct page *page)
3484{
3485 if (mem_cgroup_disabled())
3486 return false;
3487
3488 return lookup_page_cgroup_used(page) != NULL;
3489}
3490
3491void mem_cgroup_print_bad_page(struct page *page)
3492{
3493 struct page_cgroup *pc;
3494
3495 pc = lookup_page_cgroup_used(page);
3496 if (pc) {
3497 int ret = -1;
3498 char *path;
3499
3500 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3501 pc, pc->flags, pc->mem_cgroup);
3502
3503 path = kmalloc(PATH_MAX, GFP_KERNEL);
3504 if (path) {
3505 rcu_read_lock();
3506 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3507 path, PATH_MAX);
3508 rcu_read_unlock();
3509 }
3510
3511 printk(KERN_CONT "(%s)\n",
3512 (ret < 0) ? "cannot get the path" : path);
3513 kfree(path);
3514 }
3515}
3516#endif
3517
8c7c6e34
KH
3518static DEFINE_MUTEX(set_limit_mutex);
3519
d38d2a75 3520static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3521 unsigned long long val)
628f4235 3522{
81d39c20 3523 int retry_count;
3c11ecf4 3524 u64 memswlimit, memlimit;
628f4235 3525 int ret = 0;
81d39c20
KH
3526 int children = mem_cgroup_count_children(memcg);
3527 u64 curusage, oldusage;
3c11ecf4 3528 int enlarge;
81d39c20
KH
3529
3530 /*
3531 * For keeping hierarchical_reclaim simple, how long we should retry
3532 * is depends on callers. We set our retry-count to be function
3533 * of # of children which we should visit in this loop.
3534 */
3535 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3536
3537 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3538
3c11ecf4 3539 enlarge = 0;
8c7c6e34 3540 while (retry_count) {
628f4235
KH
3541 if (signal_pending(current)) {
3542 ret = -EINTR;
3543 break;
3544 }
8c7c6e34
KH
3545 /*
3546 * Rather than hide all in some function, I do this in
3547 * open coded manner. You see what this really does.
3548 * We have to guarantee mem->res.limit < mem->memsw.limit.
3549 */
3550 mutex_lock(&set_limit_mutex);
3551 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3552 if (memswlimit < val) {
3553 ret = -EINVAL;
3554 mutex_unlock(&set_limit_mutex);
628f4235
KH
3555 break;
3556 }
3c11ecf4
KH
3557
3558 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3559 if (memlimit < val)
3560 enlarge = 1;
3561
8c7c6e34 3562 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3563 if (!ret) {
3564 if (memswlimit == val)
3565 memcg->memsw_is_minimum = true;
3566 else
3567 memcg->memsw_is_minimum = false;
3568 }
8c7c6e34
KH
3569 mutex_unlock(&set_limit_mutex);
3570
3571 if (!ret)
3572 break;
3573
aa20d489 3574 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3575 MEM_CGROUP_RECLAIM_SHRINK,
3576 NULL);
81d39c20
KH
3577 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3578 /* Usage is reduced ? */
3579 if (curusage >= oldusage)
3580 retry_count--;
3581 else
3582 oldusage = curusage;
8c7c6e34 3583 }
3c11ecf4
KH
3584 if (!ret && enlarge)
3585 memcg_oom_recover(memcg);
14797e23 3586
8c7c6e34
KH
3587 return ret;
3588}
3589
338c8431
LZ
3590static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3591 unsigned long long val)
8c7c6e34 3592{
81d39c20 3593 int retry_count;
3c11ecf4 3594 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3595 int children = mem_cgroup_count_children(memcg);
3596 int ret = -EBUSY;
3c11ecf4 3597 int enlarge = 0;
8c7c6e34 3598
81d39c20
KH
3599 /* see mem_cgroup_resize_res_limit */
3600 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3601 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3602 while (retry_count) {
3603 if (signal_pending(current)) {
3604 ret = -EINTR;
3605 break;
3606 }
3607 /*
3608 * Rather than hide all in some function, I do this in
3609 * open coded manner. You see what this really does.
3610 * We have to guarantee mem->res.limit < mem->memsw.limit.
3611 */
3612 mutex_lock(&set_limit_mutex);
3613 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3614 if (memlimit > val) {
3615 ret = -EINVAL;
3616 mutex_unlock(&set_limit_mutex);
3617 break;
3618 }
3c11ecf4
KH
3619 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3620 if (memswlimit < val)
3621 enlarge = 1;
8c7c6e34 3622 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3623 if (!ret) {
3624 if (memlimit == val)
3625 memcg->memsw_is_minimum = true;
3626 else
3627 memcg->memsw_is_minimum = false;
3628 }
8c7c6e34
KH
3629 mutex_unlock(&set_limit_mutex);
3630
3631 if (!ret)
3632 break;
3633
4e416953 3634 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3635 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3636 MEM_CGROUP_RECLAIM_SHRINK,
3637 NULL);
8c7c6e34 3638 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3639 /* Usage is reduced ? */
8c7c6e34 3640 if (curusage >= oldusage)
628f4235 3641 retry_count--;
81d39c20
KH
3642 else
3643 oldusage = curusage;
628f4235 3644 }
3c11ecf4
KH
3645 if (!ret && enlarge)
3646 memcg_oom_recover(memcg);
628f4235
KH
3647 return ret;
3648}
3649
4e416953 3650unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3651 gfp_t gfp_mask,
3652 unsigned long *total_scanned)
4e416953
BS
3653{
3654 unsigned long nr_reclaimed = 0;
3655 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3656 unsigned long reclaimed;
3657 int loop = 0;
3658 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3659 unsigned long long excess;
0ae5e89c 3660 unsigned long nr_scanned;
4e416953
BS
3661
3662 if (order > 0)
3663 return 0;
3664
00918b6a 3665 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3666 /*
3667 * This loop can run a while, specially if mem_cgroup's continuously
3668 * keep exceeding their soft limit and putting the system under
3669 * pressure
3670 */
3671 do {
3672 if (next_mz)
3673 mz = next_mz;
3674 else
3675 mz = mem_cgroup_largest_soft_limit_node(mctz);
3676 if (!mz)
3677 break;
3678
0ae5e89c 3679 nr_scanned = 0;
4e416953
BS
3680 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3681 gfp_mask,
0ae5e89c
YH
3682 MEM_CGROUP_RECLAIM_SOFT,
3683 &nr_scanned);
4e416953 3684 nr_reclaimed += reclaimed;
0ae5e89c 3685 *total_scanned += nr_scanned;
4e416953
BS
3686 spin_lock(&mctz->lock);
3687
3688 /*
3689 * If we failed to reclaim anything from this memory cgroup
3690 * it is time to move on to the next cgroup
3691 */
3692 next_mz = NULL;
3693 if (!reclaimed) {
3694 do {
3695 /*
3696 * Loop until we find yet another one.
3697 *
3698 * By the time we get the soft_limit lock
3699 * again, someone might have aded the
3700 * group back on the RB tree. Iterate to
3701 * make sure we get a different mem.
3702 * mem_cgroup_largest_soft_limit_node returns
3703 * NULL if no other cgroup is present on
3704 * the tree
3705 */
3706 next_mz =
3707 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3708 if (next_mz == mz)
4e416953 3709 css_put(&next_mz->mem->css);
39cc98f1 3710 else /* next_mz == NULL or other memcg */
4e416953
BS
3711 break;
3712 } while (1);
3713 }
4e416953 3714 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3715 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3716 /*
3717 * One school of thought says that we should not add
3718 * back the node to the tree if reclaim returns 0.
3719 * But our reclaim could return 0, simply because due
3720 * to priority we are exposing a smaller subset of
3721 * memory to reclaim from. Consider this as a longer
3722 * term TODO.
3723 */
ef8745c1
KH
3724 /* If excess == 0, no tree ops */
3725 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3726 spin_unlock(&mctz->lock);
3727 css_put(&mz->mem->css);
3728 loop++;
3729 /*
3730 * Could not reclaim anything and there are no more
3731 * mem cgroups to try or we seem to be looping without
3732 * reclaiming anything.
3733 */
3734 if (!nr_reclaimed &&
3735 (next_mz == NULL ||
3736 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3737 break;
3738 } while (!nr_reclaimed);
3739 if (next_mz)
3740 css_put(&next_mz->mem->css);
3741 return nr_reclaimed;
3742}
3743
cc847582
KH
3744/*
3745 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3746 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3747 */
f817ed48 3748static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3749 int node, int zid, enum lru_list lru)
cc847582 3750{
08e552c6
KH
3751 struct zone *zone;
3752 struct mem_cgroup_per_zone *mz;
f817ed48 3753 struct page_cgroup *pc, *busy;
08e552c6 3754 unsigned long flags, loop;
072c56c1 3755 struct list_head *list;
f817ed48 3756 int ret = 0;
072c56c1 3757
08e552c6
KH
3758 zone = &NODE_DATA(node)->node_zones[zid];
3759 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3760 list = &mz->lists[lru];
cc847582 3761
f817ed48
KH
3762 loop = MEM_CGROUP_ZSTAT(mz, lru);
3763 /* give some margin against EBUSY etc...*/
3764 loop += 256;
3765 busy = NULL;
3766 while (loop--) {
5564e88b
JW
3767 struct page *page;
3768
f817ed48 3769 ret = 0;
08e552c6 3770 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3771 if (list_empty(list)) {
08e552c6 3772 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3773 break;
f817ed48
KH
3774 }
3775 pc = list_entry(list->prev, struct page_cgroup, lru);
3776 if (busy == pc) {
3777 list_move(&pc->lru, list);
648bcc77 3778 busy = NULL;
08e552c6 3779 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3780 continue;
3781 }
08e552c6 3782 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3783
6b3ae58e 3784 page = lookup_cgroup_page(pc);
5564e88b
JW
3785
3786 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3787 if (ret == -ENOMEM)
52d4b9ac 3788 break;
f817ed48
KH
3789
3790 if (ret == -EBUSY || ret == -EINVAL) {
3791 /* found lock contention or "pc" is obsolete. */
3792 busy = pc;
3793 cond_resched();
3794 } else
3795 busy = NULL;
cc847582 3796 }
08e552c6 3797
f817ed48
KH
3798 if (!ret && !list_empty(list))
3799 return -EBUSY;
3800 return ret;
cc847582
KH
3801}
3802
3803/*
3804 * make mem_cgroup's charge to be 0 if there is no task.
3805 * This enables deleting this mem_cgroup.
3806 */
c1e862c1 3807static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3808{
f817ed48
KH
3809 int ret;
3810 int node, zid, shrink;
3811 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3812 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3813
cc847582 3814 css_get(&mem->css);
f817ed48
KH
3815
3816 shrink = 0;
c1e862c1
KH
3817 /* should free all ? */
3818 if (free_all)
3819 goto try_to_free;
f817ed48 3820move_account:
fce66477 3821 do {
f817ed48 3822 ret = -EBUSY;
c1e862c1
KH
3823 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3824 goto out;
3825 ret = -EINTR;
3826 if (signal_pending(current))
cc847582 3827 goto out;
52d4b9ac
KH
3828 /* This is for making all *used* pages to be on LRU. */
3829 lru_add_drain_all();
d38144b7 3830 drain_all_stock_sync(mem);
f817ed48 3831 ret = 0;
32047e2a 3832 mem_cgroup_start_move(mem);
299b4eaa 3833 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3834 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3835 enum lru_list l;
f817ed48
KH
3836 for_each_lru(l) {
3837 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3838 node, zid, l);
f817ed48
KH
3839 if (ret)
3840 break;
3841 }
1ecaab2b 3842 }
f817ed48
KH
3843 if (ret)
3844 break;
3845 }
32047e2a 3846 mem_cgroup_end_move(mem);
3c11ecf4 3847 memcg_oom_recover(mem);
f817ed48
KH
3848 /* it seems parent cgroup doesn't have enough mem */
3849 if (ret == -ENOMEM)
3850 goto try_to_free;
52d4b9ac 3851 cond_resched();
fce66477
DN
3852 /* "ret" should also be checked to ensure all lists are empty. */
3853 } while (mem->res.usage > 0 || ret);
cc847582
KH
3854out:
3855 css_put(&mem->css);
3856 return ret;
f817ed48
KH
3857
3858try_to_free:
c1e862c1
KH
3859 /* returns EBUSY if there is a task or if we come here twice. */
3860 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3861 ret = -EBUSY;
3862 goto out;
3863 }
c1e862c1
KH
3864 /* we call try-to-free pages for make this cgroup empty */
3865 lru_add_drain_all();
f817ed48
KH
3866 /* try to free all pages in this cgroup */
3867 shrink = 1;
3868 while (nr_retries && mem->res.usage > 0) {
82f9d486 3869 struct memcg_scanrecord rec;
f817ed48 3870 int progress;
c1e862c1
KH
3871
3872 if (signal_pending(current)) {
3873 ret = -EINTR;
3874 goto out;
3875 }
82f9d486
KH
3876 rec.context = SCAN_BY_SHRINK;
3877 rec.mem = mem;
3878 rec.root = mem;
a7885eb8 3879 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
82f9d486 3880 false, &rec);
c1e862c1 3881 if (!progress) {
f817ed48 3882 nr_retries--;
c1e862c1 3883 /* maybe some writeback is necessary */
8aa7e847 3884 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3885 }
f817ed48
KH
3886
3887 }
08e552c6 3888 lru_add_drain();
f817ed48 3889 /* try move_account...there may be some *locked* pages. */
fce66477 3890 goto move_account;
cc847582
KH
3891}
3892
c1e862c1
KH
3893int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3894{
3895 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3896}
3897
3898
18f59ea7
BS
3899static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3900{
3901 return mem_cgroup_from_cont(cont)->use_hierarchy;
3902}
3903
3904static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3905 u64 val)
3906{
3907 int retval = 0;
3908 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3909 struct cgroup *parent = cont->parent;
3910 struct mem_cgroup *parent_mem = NULL;
3911
3912 if (parent)
3913 parent_mem = mem_cgroup_from_cont(parent);
3914
3915 cgroup_lock();
3916 /*
af901ca1 3917 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3918 * in the child subtrees. If it is unset, then the change can
3919 * occur, provided the current cgroup has no children.
3920 *
3921 * For the root cgroup, parent_mem is NULL, we allow value to be
3922 * set if there are no children.
3923 */
3924 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3925 (val == 1 || val == 0)) {
3926 if (list_empty(&cont->children))
3927 mem->use_hierarchy = val;
3928 else
3929 retval = -EBUSY;
3930 } else
3931 retval = -EINVAL;
3932 cgroup_unlock();
3933
3934 return retval;
3935}
3936
0c3e73e8 3937
7a159cc9
JW
3938static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3939 enum mem_cgroup_stat_index idx)
0c3e73e8 3940{
7d74b06f 3941 struct mem_cgroup *iter;
7a159cc9 3942 long val = 0;
0c3e73e8 3943
7a159cc9 3944 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3945 for_each_mem_cgroup_tree(iter, mem)
3946 val += mem_cgroup_read_stat(iter, idx);
3947
3948 if (val < 0) /* race ? */
3949 val = 0;
3950 return val;
0c3e73e8
BS
3951}
3952
104f3928
KS
3953static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3954{
7d74b06f 3955 u64 val;
104f3928
KS
3956
3957 if (!mem_cgroup_is_root(mem)) {
3958 if (!swap)
3959 return res_counter_read_u64(&mem->res, RES_USAGE);
3960 else
3961 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3962 }
3963
7a159cc9
JW
3964 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3965 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3966
7d74b06f 3967 if (swap)
7a159cc9 3968 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3969
3970 return val << PAGE_SHIFT;
3971}
3972
2c3daa72 3973static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3974{
8c7c6e34 3975 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3976 u64 val;
8c7c6e34
KH
3977 int type, name;
3978
3979 type = MEMFILE_TYPE(cft->private);
3980 name = MEMFILE_ATTR(cft->private);
3981 switch (type) {
3982 case _MEM:
104f3928
KS
3983 if (name == RES_USAGE)
3984 val = mem_cgroup_usage(mem, false);
3985 else
0c3e73e8 3986 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3987 break;
3988 case _MEMSWAP:
104f3928
KS
3989 if (name == RES_USAGE)
3990 val = mem_cgroup_usage(mem, true);
3991 else
0c3e73e8 3992 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3993 break;
3994 default:
3995 BUG();
3996 break;
3997 }
3998 return val;
8cdea7c0 3999}
628f4235
KH
4000/*
4001 * The user of this function is...
4002 * RES_LIMIT.
4003 */
856c13aa
PM
4004static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4005 const char *buffer)
8cdea7c0 4006{
628f4235 4007 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4008 int type, name;
628f4235
KH
4009 unsigned long long val;
4010 int ret;
4011
8c7c6e34
KH
4012 type = MEMFILE_TYPE(cft->private);
4013 name = MEMFILE_ATTR(cft->private);
4014 switch (name) {
628f4235 4015 case RES_LIMIT:
4b3bde4c
BS
4016 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4017 ret = -EINVAL;
4018 break;
4019 }
628f4235
KH
4020 /* This function does all necessary parse...reuse it */
4021 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4022 if (ret)
4023 break;
4024 if (type == _MEM)
628f4235 4025 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4026 else
4027 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4028 break;
296c81d8
BS
4029 case RES_SOFT_LIMIT:
4030 ret = res_counter_memparse_write_strategy(buffer, &val);
4031 if (ret)
4032 break;
4033 /*
4034 * For memsw, soft limits are hard to implement in terms
4035 * of semantics, for now, we support soft limits for
4036 * control without swap
4037 */
4038 if (type == _MEM)
4039 ret = res_counter_set_soft_limit(&memcg->res, val);
4040 else
4041 ret = -EINVAL;
4042 break;
628f4235
KH
4043 default:
4044 ret = -EINVAL; /* should be BUG() ? */
4045 break;
4046 }
4047 return ret;
8cdea7c0
BS
4048}
4049
fee7b548
KH
4050static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4051 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4052{
4053 struct cgroup *cgroup;
4054 unsigned long long min_limit, min_memsw_limit, tmp;
4055
4056 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4057 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4058 cgroup = memcg->css.cgroup;
4059 if (!memcg->use_hierarchy)
4060 goto out;
4061
4062 while (cgroup->parent) {
4063 cgroup = cgroup->parent;
4064 memcg = mem_cgroup_from_cont(cgroup);
4065 if (!memcg->use_hierarchy)
4066 break;
4067 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4068 min_limit = min(min_limit, tmp);
4069 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4070 min_memsw_limit = min(min_memsw_limit, tmp);
4071 }
4072out:
4073 *mem_limit = min_limit;
4074 *memsw_limit = min_memsw_limit;
4075 return;
4076}
4077
29f2a4da 4078static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
4079{
4080 struct mem_cgroup *mem;
8c7c6e34 4081 int type, name;
c84872e1
PE
4082
4083 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4084 type = MEMFILE_TYPE(event);
4085 name = MEMFILE_ATTR(event);
4086 switch (name) {
29f2a4da 4087 case RES_MAX_USAGE:
8c7c6e34
KH
4088 if (type == _MEM)
4089 res_counter_reset_max(&mem->res);
4090 else
4091 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
4092 break;
4093 case RES_FAILCNT:
8c7c6e34
KH
4094 if (type == _MEM)
4095 res_counter_reset_failcnt(&mem->res);
4096 else
4097 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
4098 break;
4099 }
f64c3f54 4100
85cc59db 4101 return 0;
c84872e1
PE
4102}
4103
7dc74be0
DN
4104static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4105 struct cftype *cft)
4106{
4107 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4108}
4109
02491447 4110#ifdef CONFIG_MMU
7dc74be0
DN
4111static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4112 struct cftype *cft, u64 val)
4113{
4114 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4115
4116 if (val >= (1 << NR_MOVE_TYPE))
4117 return -EINVAL;
4118 /*
4119 * We check this value several times in both in can_attach() and
4120 * attach(), so we need cgroup lock to prevent this value from being
4121 * inconsistent.
4122 */
4123 cgroup_lock();
4124 mem->move_charge_at_immigrate = val;
4125 cgroup_unlock();
4126
4127 return 0;
4128}
02491447
DN
4129#else
4130static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4131 struct cftype *cft, u64 val)
4132{
4133 return -ENOSYS;
4134}
4135#endif
7dc74be0 4136
14067bb3
KH
4137
4138/* For read statistics */
4139enum {
4140 MCS_CACHE,
4141 MCS_RSS,
d8046582 4142 MCS_FILE_MAPPED,
14067bb3
KH
4143 MCS_PGPGIN,
4144 MCS_PGPGOUT,
1dd3a273 4145 MCS_SWAP,
456f998e
YH
4146 MCS_PGFAULT,
4147 MCS_PGMAJFAULT,
14067bb3
KH
4148 MCS_INACTIVE_ANON,
4149 MCS_ACTIVE_ANON,
4150 MCS_INACTIVE_FILE,
4151 MCS_ACTIVE_FILE,
4152 MCS_UNEVICTABLE,
4153 NR_MCS_STAT,
4154};
4155
4156struct mcs_total_stat {
4157 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4158};
4159
14067bb3
KH
4160struct {
4161 char *local_name;
4162 char *total_name;
4163} memcg_stat_strings[NR_MCS_STAT] = {
4164 {"cache", "total_cache"},
4165 {"rss", "total_rss"},
d69b042f 4166 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4167 {"pgpgin", "total_pgpgin"},
4168 {"pgpgout", "total_pgpgout"},
1dd3a273 4169 {"swap", "total_swap"},
456f998e
YH
4170 {"pgfault", "total_pgfault"},
4171 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4172 {"inactive_anon", "total_inactive_anon"},
4173 {"active_anon", "total_active_anon"},
4174 {"inactive_file", "total_inactive_file"},
4175 {"active_file", "total_active_file"},
4176 {"unevictable", "total_unevictable"}
4177};
4178
4179
7d74b06f
KH
4180static void
4181mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4182{
14067bb3
KH
4183 s64 val;
4184
4185 /* per cpu stat */
c62b1a3b 4186 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4187 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4188 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4189 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4190 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4191 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4192 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4193 s->stat[MCS_PGPGIN] += val;
e9f8974f 4194 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4195 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4196 if (do_swap_account) {
c62b1a3b 4197 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4198 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4199 }
456f998e
YH
4200 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4201 s->stat[MCS_PGFAULT] += val;
4202 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4203 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4204
4205 /* per zone stat */
bb2a0de9 4206 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4207 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4208 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4209 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4210 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4211 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4212 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4213 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4214 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4215 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4216}
4217
4218static void
4219mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4220{
7d74b06f
KH
4221 struct mem_cgroup *iter;
4222
4223 for_each_mem_cgroup_tree(iter, mem)
4224 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4225}
4226
406eb0c9
YH
4227#ifdef CONFIG_NUMA
4228static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4229{
4230 int nid;
4231 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4232 unsigned long node_nr;
4233 struct cgroup *cont = m->private;
4234 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4235
bb2a0de9 4236 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4237 seq_printf(m, "total=%lu", total_nr);
4238 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4239 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4240 seq_printf(m, " N%d=%lu", nid, node_nr);
4241 }
4242 seq_putc(m, '\n');
4243
bb2a0de9 4244 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4245 seq_printf(m, "file=%lu", file_nr);
4246 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4247 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4248 LRU_ALL_FILE);
406eb0c9
YH
4249 seq_printf(m, " N%d=%lu", nid, node_nr);
4250 }
4251 seq_putc(m, '\n');
4252
bb2a0de9 4253 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4254 seq_printf(m, "anon=%lu", anon_nr);
4255 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4256 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4257 LRU_ALL_ANON);
406eb0c9
YH
4258 seq_printf(m, " N%d=%lu", nid, node_nr);
4259 }
4260 seq_putc(m, '\n');
4261
bb2a0de9 4262 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4263 seq_printf(m, "unevictable=%lu", unevictable_nr);
4264 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4265 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4266 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4267 seq_printf(m, " N%d=%lu", nid, node_nr);
4268 }
4269 seq_putc(m, '\n');
4270 return 0;
4271}
4272#endif /* CONFIG_NUMA */
4273
c64745cf
PM
4274static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4275 struct cgroup_map_cb *cb)
d2ceb9b7 4276{
d2ceb9b7 4277 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4278 struct mcs_total_stat mystat;
d2ceb9b7
KH
4279 int i;
4280
14067bb3
KH
4281 memset(&mystat, 0, sizeof(mystat));
4282 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4283
406eb0c9 4284
1dd3a273
DN
4285 for (i = 0; i < NR_MCS_STAT; i++) {
4286 if (i == MCS_SWAP && !do_swap_account)
4287 continue;
14067bb3 4288 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4289 }
7b854121 4290
14067bb3 4291 /* Hierarchical information */
fee7b548
KH
4292 {
4293 unsigned long long limit, memsw_limit;
4294 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4295 cb->fill(cb, "hierarchical_memory_limit", limit);
4296 if (do_swap_account)
4297 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4298 }
7f016ee8 4299
14067bb3
KH
4300 memset(&mystat, 0, sizeof(mystat));
4301 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4302 for (i = 0; i < NR_MCS_STAT; i++) {
4303 if (i == MCS_SWAP && !do_swap_account)
4304 continue;
14067bb3 4305 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4306 }
14067bb3 4307
7f016ee8 4308#ifdef CONFIG_DEBUG_VM
c772be93 4309 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4310
4311 {
4312 int nid, zid;
4313 struct mem_cgroup_per_zone *mz;
4314 unsigned long recent_rotated[2] = {0, 0};
4315 unsigned long recent_scanned[2] = {0, 0};
4316
4317 for_each_online_node(nid)
4318 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4319 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4320
4321 recent_rotated[0] +=
4322 mz->reclaim_stat.recent_rotated[0];
4323 recent_rotated[1] +=
4324 mz->reclaim_stat.recent_rotated[1];
4325 recent_scanned[0] +=
4326 mz->reclaim_stat.recent_scanned[0];
4327 recent_scanned[1] +=
4328 mz->reclaim_stat.recent_scanned[1];
4329 }
4330 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4331 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4332 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4333 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4334 }
4335#endif
4336
d2ceb9b7
KH
4337 return 0;
4338}
4339
a7885eb8
KM
4340static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4341{
4342 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4343
1f4c025b 4344 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4345}
4346
4347static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4348 u64 val)
4349{
4350 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4351 struct mem_cgroup *parent;
068b38c1 4352
a7885eb8
KM
4353 if (val > 100)
4354 return -EINVAL;
4355
4356 if (cgrp->parent == NULL)
4357 return -EINVAL;
4358
4359 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4360
4361 cgroup_lock();
4362
a7885eb8
KM
4363 /* If under hierarchy, only empty-root can set this value */
4364 if ((parent->use_hierarchy) ||
068b38c1
LZ
4365 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4366 cgroup_unlock();
a7885eb8 4367 return -EINVAL;
068b38c1 4368 }
a7885eb8 4369
a7885eb8 4370 memcg->swappiness = val;
a7885eb8 4371
068b38c1
LZ
4372 cgroup_unlock();
4373
a7885eb8
KM
4374 return 0;
4375}
4376
2e72b634
KS
4377static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4378{
4379 struct mem_cgroup_threshold_ary *t;
4380 u64 usage;
4381 int i;
4382
4383 rcu_read_lock();
4384 if (!swap)
2c488db2 4385 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4386 else
2c488db2 4387 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4388
4389 if (!t)
4390 goto unlock;
4391
4392 usage = mem_cgroup_usage(memcg, swap);
4393
4394 /*
4395 * current_threshold points to threshold just below usage.
4396 * If it's not true, a threshold was crossed after last
4397 * call of __mem_cgroup_threshold().
4398 */
5407a562 4399 i = t->current_threshold;
2e72b634
KS
4400
4401 /*
4402 * Iterate backward over array of thresholds starting from
4403 * current_threshold and check if a threshold is crossed.
4404 * If none of thresholds below usage is crossed, we read
4405 * only one element of the array here.
4406 */
4407 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4408 eventfd_signal(t->entries[i].eventfd, 1);
4409
4410 /* i = current_threshold + 1 */
4411 i++;
4412
4413 /*
4414 * Iterate forward over array of thresholds starting from
4415 * current_threshold+1 and check if a threshold is crossed.
4416 * If none of thresholds above usage is crossed, we read
4417 * only one element of the array here.
4418 */
4419 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4420 eventfd_signal(t->entries[i].eventfd, 1);
4421
4422 /* Update current_threshold */
5407a562 4423 t->current_threshold = i - 1;
2e72b634
KS
4424unlock:
4425 rcu_read_unlock();
4426}
4427
4428static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4429{
ad4ca5f4
KS
4430 while (memcg) {
4431 __mem_cgroup_threshold(memcg, false);
4432 if (do_swap_account)
4433 __mem_cgroup_threshold(memcg, true);
4434
4435 memcg = parent_mem_cgroup(memcg);
4436 }
2e72b634
KS
4437}
4438
4439static int compare_thresholds(const void *a, const void *b)
4440{
4441 const struct mem_cgroup_threshold *_a = a;
4442 const struct mem_cgroup_threshold *_b = b;
4443
4444 return _a->threshold - _b->threshold;
4445}
4446
7d74b06f 4447static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4448{
4449 struct mem_cgroup_eventfd_list *ev;
4450
4451 list_for_each_entry(ev, &mem->oom_notify, list)
4452 eventfd_signal(ev->eventfd, 1);
4453 return 0;
4454}
4455
4456static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4457{
7d74b06f
KH
4458 struct mem_cgroup *iter;
4459
4460 for_each_mem_cgroup_tree(iter, mem)
4461 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4462}
4463
4464static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4465 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4466{
4467 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4468 struct mem_cgroup_thresholds *thresholds;
4469 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4470 int type = MEMFILE_TYPE(cft->private);
4471 u64 threshold, usage;
2c488db2 4472 int i, size, ret;
2e72b634
KS
4473
4474 ret = res_counter_memparse_write_strategy(args, &threshold);
4475 if (ret)
4476 return ret;
4477
4478 mutex_lock(&memcg->thresholds_lock);
2c488db2 4479
2e72b634 4480 if (type == _MEM)
2c488db2 4481 thresholds = &memcg->thresholds;
2e72b634 4482 else if (type == _MEMSWAP)
2c488db2 4483 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4484 else
4485 BUG();
4486
4487 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4488
4489 /* Check if a threshold crossed before adding a new one */
2c488db2 4490 if (thresholds->primary)
2e72b634
KS
4491 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4492
2c488db2 4493 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4494
4495 /* Allocate memory for new array of thresholds */
2c488db2 4496 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4497 GFP_KERNEL);
2c488db2 4498 if (!new) {
2e72b634
KS
4499 ret = -ENOMEM;
4500 goto unlock;
4501 }
2c488db2 4502 new->size = size;
2e72b634
KS
4503
4504 /* Copy thresholds (if any) to new array */
2c488db2
KS
4505 if (thresholds->primary) {
4506 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4507 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4508 }
4509
2e72b634 4510 /* Add new threshold */
2c488db2
KS
4511 new->entries[size - 1].eventfd = eventfd;
4512 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4513
4514 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4515 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4516 compare_thresholds, NULL);
4517
4518 /* Find current threshold */
2c488db2 4519 new->current_threshold = -1;
2e72b634 4520 for (i = 0; i < size; i++) {
2c488db2 4521 if (new->entries[i].threshold < usage) {
2e72b634 4522 /*
2c488db2
KS
4523 * new->current_threshold will not be used until
4524 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4525 * it here.
4526 */
2c488db2 4527 ++new->current_threshold;
2e72b634
KS
4528 }
4529 }
4530
2c488db2
KS
4531 /* Free old spare buffer and save old primary buffer as spare */
4532 kfree(thresholds->spare);
4533 thresholds->spare = thresholds->primary;
4534
4535 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4536
907860ed 4537 /* To be sure that nobody uses thresholds */
2e72b634
KS
4538 synchronize_rcu();
4539
2e72b634
KS
4540unlock:
4541 mutex_unlock(&memcg->thresholds_lock);
4542
4543 return ret;
4544}
4545
907860ed 4546static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4547 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4548{
4549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4550 struct mem_cgroup_thresholds *thresholds;
4551 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4552 int type = MEMFILE_TYPE(cft->private);
4553 u64 usage;
2c488db2 4554 int i, j, size;
2e72b634
KS
4555
4556 mutex_lock(&memcg->thresholds_lock);
4557 if (type == _MEM)
2c488db2 4558 thresholds = &memcg->thresholds;
2e72b634 4559 else if (type == _MEMSWAP)
2c488db2 4560 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4561 else
4562 BUG();
4563
4564 /*
4565 * Something went wrong if we trying to unregister a threshold
4566 * if we don't have thresholds
4567 */
4568 BUG_ON(!thresholds);
4569
4570 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4571
4572 /* Check if a threshold crossed before removing */
4573 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4574
4575 /* Calculate new number of threshold */
2c488db2
KS
4576 size = 0;
4577 for (i = 0; i < thresholds->primary->size; i++) {
4578 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4579 size++;
4580 }
4581
2c488db2 4582 new = thresholds->spare;
907860ed 4583
2e72b634
KS
4584 /* Set thresholds array to NULL if we don't have thresholds */
4585 if (!size) {
2c488db2
KS
4586 kfree(new);
4587 new = NULL;
907860ed 4588 goto swap_buffers;
2e72b634
KS
4589 }
4590
2c488db2 4591 new->size = size;
2e72b634
KS
4592
4593 /* Copy thresholds and find current threshold */
2c488db2
KS
4594 new->current_threshold = -1;
4595 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4596 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4597 continue;
4598
2c488db2
KS
4599 new->entries[j] = thresholds->primary->entries[i];
4600 if (new->entries[j].threshold < usage) {
2e72b634 4601 /*
2c488db2 4602 * new->current_threshold will not be used
2e72b634
KS
4603 * until rcu_assign_pointer(), so it's safe to increment
4604 * it here.
4605 */
2c488db2 4606 ++new->current_threshold;
2e72b634
KS
4607 }
4608 j++;
4609 }
4610
907860ed 4611swap_buffers:
2c488db2
KS
4612 /* Swap primary and spare array */
4613 thresholds->spare = thresholds->primary;
4614 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4615
907860ed 4616 /* To be sure that nobody uses thresholds */
2e72b634
KS
4617 synchronize_rcu();
4618
2e72b634 4619 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4620}
c1e862c1 4621
9490ff27
KH
4622static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4623 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4624{
4625 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4626 struct mem_cgroup_eventfd_list *event;
4627 int type = MEMFILE_TYPE(cft->private);
4628
4629 BUG_ON(type != _OOM_TYPE);
4630 event = kmalloc(sizeof(*event), GFP_KERNEL);
4631 if (!event)
4632 return -ENOMEM;
4633
1af8efe9 4634 spin_lock(&memcg_oom_lock);
9490ff27
KH
4635
4636 event->eventfd = eventfd;
4637 list_add(&event->list, &memcg->oom_notify);
4638
4639 /* already in OOM ? */
79dfdacc 4640 if (atomic_read(&memcg->under_oom))
9490ff27 4641 eventfd_signal(eventfd, 1);
1af8efe9 4642 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4643
4644 return 0;
4645}
4646
907860ed 4647static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4648 struct cftype *cft, struct eventfd_ctx *eventfd)
4649{
4650 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4651 struct mem_cgroup_eventfd_list *ev, *tmp;
4652 int type = MEMFILE_TYPE(cft->private);
4653
4654 BUG_ON(type != _OOM_TYPE);
4655
1af8efe9 4656 spin_lock(&memcg_oom_lock);
9490ff27
KH
4657
4658 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4659 if (ev->eventfd == eventfd) {
4660 list_del(&ev->list);
4661 kfree(ev);
4662 }
4663 }
4664
1af8efe9 4665 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4666}
4667
3c11ecf4
KH
4668static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4669 struct cftype *cft, struct cgroup_map_cb *cb)
4670{
4671 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4672
4673 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4674
79dfdacc 4675 if (atomic_read(&mem->under_oom))
3c11ecf4
KH
4676 cb->fill(cb, "under_oom", 1);
4677 else
4678 cb->fill(cb, "under_oom", 0);
4679 return 0;
4680}
4681
3c11ecf4
KH
4682static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4683 struct cftype *cft, u64 val)
4684{
4685 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4686 struct mem_cgroup *parent;
4687
4688 /* cannot set to root cgroup and only 0 and 1 are allowed */
4689 if (!cgrp->parent || !((val == 0) || (val == 1)))
4690 return -EINVAL;
4691
4692 parent = mem_cgroup_from_cont(cgrp->parent);
4693
4694 cgroup_lock();
4695 /* oom-kill-disable is a flag for subhierarchy. */
4696 if ((parent->use_hierarchy) ||
4697 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4698 cgroup_unlock();
4699 return -EINVAL;
4700 }
4701 mem->oom_kill_disable = val;
4d845ebf
KH
4702 if (!val)
4703 memcg_oom_recover(mem);
3c11ecf4
KH
4704 cgroup_unlock();
4705 return 0;
4706}
4707
406eb0c9
YH
4708#ifdef CONFIG_NUMA
4709static const struct file_operations mem_control_numa_stat_file_operations = {
4710 .read = seq_read,
4711 .llseek = seq_lseek,
4712 .release = single_release,
4713};
4714
4715static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4716{
4717 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4718
4719 file->f_op = &mem_control_numa_stat_file_operations;
4720 return single_open(file, mem_control_numa_stat_show, cont);
4721}
4722#endif /* CONFIG_NUMA */
4723
82f9d486
KH
4724static int mem_cgroup_vmscan_stat_read(struct cgroup *cgrp,
4725 struct cftype *cft,
4726 struct cgroup_map_cb *cb)
4727{
4728 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4729 char string[64];
4730 int i;
4731
4732 for (i = 0; i < NR_SCANSTATS; i++) {
4733 strcpy(string, scanstat_string[i]);
4734 strcat(string, SCANSTAT_WORD_LIMIT);
4735 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_LIMIT][i]);
4736 }
4737
4738 for (i = 0; i < NR_SCANSTATS; i++) {
4739 strcpy(string, scanstat_string[i]);
4740 strcat(string, SCANSTAT_WORD_SYSTEM);
4741 cb->fill(cb, string, mem->scanstat.stats[SCAN_BY_SYSTEM][i]);
4742 }
4743
4744 for (i = 0; i < NR_SCANSTATS; i++) {
4745 strcpy(string, scanstat_string[i]);
4746 strcat(string, SCANSTAT_WORD_LIMIT);
4747 strcat(string, SCANSTAT_WORD_HIERARCHY);
4748 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_LIMIT][i]);
4749 }
4750 for (i = 0; i < NR_SCANSTATS; i++) {
4751 strcpy(string, scanstat_string[i]);
4752 strcat(string, SCANSTAT_WORD_SYSTEM);
4753 strcat(string, SCANSTAT_WORD_HIERARCHY);
4754 cb->fill(cb, string, mem->scanstat.rootstats[SCAN_BY_SYSTEM][i]);
4755 }
4756 return 0;
4757}
4758
4759static int mem_cgroup_reset_vmscan_stat(struct cgroup *cgrp,
4760 unsigned int event)
4761{
4762 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4763
4764 spin_lock(&mem->scanstat.lock);
4765 memset(&mem->scanstat.stats, 0, sizeof(mem->scanstat.stats));
4766 memset(&mem->scanstat.rootstats, 0, sizeof(mem->scanstat.rootstats));
4767 spin_unlock(&mem->scanstat.lock);
4768 return 0;
4769}
4770
4771
8cdea7c0
BS
4772static struct cftype mem_cgroup_files[] = {
4773 {
0eea1030 4774 .name = "usage_in_bytes",
8c7c6e34 4775 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4776 .read_u64 = mem_cgroup_read,
9490ff27
KH
4777 .register_event = mem_cgroup_usage_register_event,
4778 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4779 },
c84872e1
PE
4780 {
4781 .name = "max_usage_in_bytes",
8c7c6e34 4782 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4783 .trigger = mem_cgroup_reset,
c84872e1
PE
4784 .read_u64 = mem_cgroup_read,
4785 },
8cdea7c0 4786 {
0eea1030 4787 .name = "limit_in_bytes",
8c7c6e34 4788 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4789 .write_string = mem_cgroup_write,
2c3daa72 4790 .read_u64 = mem_cgroup_read,
8cdea7c0 4791 },
296c81d8
BS
4792 {
4793 .name = "soft_limit_in_bytes",
4794 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4795 .write_string = mem_cgroup_write,
4796 .read_u64 = mem_cgroup_read,
4797 },
8cdea7c0
BS
4798 {
4799 .name = "failcnt",
8c7c6e34 4800 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4801 .trigger = mem_cgroup_reset,
2c3daa72 4802 .read_u64 = mem_cgroup_read,
8cdea7c0 4803 },
d2ceb9b7
KH
4804 {
4805 .name = "stat",
c64745cf 4806 .read_map = mem_control_stat_show,
d2ceb9b7 4807 },
c1e862c1
KH
4808 {
4809 .name = "force_empty",
4810 .trigger = mem_cgroup_force_empty_write,
4811 },
18f59ea7
BS
4812 {
4813 .name = "use_hierarchy",
4814 .write_u64 = mem_cgroup_hierarchy_write,
4815 .read_u64 = mem_cgroup_hierarchy_read,
4816 },
a7885eb8
KM
4817 {
4818 .name = "swappiness",
4819 .read_u64 = mem_cgroup_swappiness_read,
4820 .write_u64 = mem_cgroup_swappiness_write,
4821 },
7dc74be0
DN
4822 {
4823 .name = "move_charge_at_immigrate",
4824 .read_u64 = mem_cgroup_move_charge_read,
4825 .write_u64 = mem_cgroup_move_charge_write,
4826 },
9490ff27
KH
4827 {
4828 .name = "oom_control",
3c11ecf4
KH
4829 .read_map = mem_cgroup_oom_control_read,
4830 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4831 .register_event = mem_cgroup_oom_register_event,
4832 .unregister_event = mem_cgroup_oom_unregister_event,
4833 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4834 },
406eb0c9
YH
4835#ifdef CONFIG_NUMA
4836 {
4837 .name = "numa_stat",
4838 .open = mem_control_numa_stat_open,
89577127 4839 .mode = S_IRUGO,
406eb0c9
YH
4840 },
4841#endif
82f9d486
KH
4842 {
4843 .name = "vmscan_stat",
4844 .read_map = mem_cgroup_vmscan_stat_read,
4845 .trigger = mem_cgroup_reset_vmscan_stat,
4846 },
8cdea7c0
BS
4847};
4848
8c7c6e34
KH
4849#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4850static struct cftype memsw_cgroup_files[] = {
4851 {
4852 .name = "memsw.usage_in_bytes",
4853 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4854 .read_u64 = mem_cgroup_read,
9490ff27
KH
4855 .register_event = mem_cgroup_usage_register_event,
4856 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4857 },
4858 {
4859 .name = "memsw.max_usage_in_bytes",
4860 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4861 .trigger = mem_cgroup_reset,
4862 .read_u64 = mem_cgroup_read,
4863 },
4864 {
4865 .name = "memsw.limit_in_bytes",
4866 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4867 .write_string = mem_cgroup_write,
4868 .read_u64 = mem_cgroup_read,
4869 },
4870 {
4871 .name = "memsw.failcnt",
4872 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4873 .trigger = mem_cgroup_reset,
4874 .read_u64 = mem_cgroup_read,
4875 },
4876};
4877
4878static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4879{
4880 if (!do_swap_account)
4881 return 0;
4882 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4883 ARRAY_SIZE(memsw_cgroup_files));
4884};
4885#else
4886static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4887{
4888 return 0;
4889}
4890#endif
4891
6d12e2d8
KH
4892static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4893{
4894 struct mem_cgroup_per_node *pn;
1ecaab2b 4895 struct mem_cgroup_per_zone *mz;
b69408e8 4896 enum lru_list l;
41e3355d 4897 int zone, tmp = node;
1ecaab2b
KH
4898 /*
4899 * This routine is called against possible nodes.
4900 * But it's BUG to call kmalloc() against offline node.
4901 *
4902 * TODO: this routine can waste much memory for nodes which will
4903 * never be onlined. It's better to use memory hotplug callback
4904 * function.
4905 */
41e3355d
KH
4906 if (!node_state(node, N_NORMAL_MEMORY))
4907 tmp = -1;
17295c88 4908 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4909 if (!pn)
4910 return 1;
1ecaab2b 4911
6d12e2d8 4912 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4913 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4914 mz = &pn->zoneinfo[zone];
b69408e8
CL
4915 for_each_lru(l)
4916 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4917 mz->usage_in_excess = 0;
4e416953
BS
4918 mz->on_tree = false;
4919 mz->mem = mem;
1ecaab2b 4920 }
6d12e2d8
KH
4921 return 0;
4922}
4923
1ecaab2b
KH
4924static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4925{
4926 kfree(mem->info.nodeinfo[node]);
4927}
4928
33327948
KH
4929static struct mem_cgroup *mem_cgroup_alloc(void)
4930{
4931 struct mem_cgroup *mem;
c62b1a3b 4932 int size = sizeof(struct mem_cgroup);
33327948 4933
c62b1a3b 4934 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4935 if (size < PAGE_SIZE)
17295c88 4936 mem = kzalloc(size, GFP_KERNEL);
33327948 4937 else
17295c88 4938 mem = vzalloc(size);
33327948 4939
e7bbcdf3
DC
4940 if (!mem)
4941 return NULL;
4942
c62b1a3b 4943 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4944 if (!mem->stat)
4945 goto out_free;
711d3d2c 4946 spin_lock_init(&mem->pcp_counter_lock);
33327948 4947 return mem;
d2e61b8d
DC
4948
4949out_free:
4950 if (size < PAGE_SIZE)
4951 kfree(mem);
4952 else
4953 vfree(mem);
4954 return NULL;
33327948
KH
4955}
4956
8c7c6e34
KH
4957/*
4958 * At destroying mem_cgroup, references from swap_cgroup can remain.
4959 * (scanning all at force_empty is too costly...)
4960 *
4961 * Instead of clearing all references at force_empty, we remember
4962 * the number of reference from swap_cgroup and free mem_cgroup when
4963 * it goes down to 0.
4964 *
8c7c6e34
KH
4965 * Removal of cgroup itself succeeds regardless of refs from swap.
4966 */
4967
a7ba0eef 4968static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4969{
08e552c6
KH
4970 int node;
4971
f64c3f54 4972 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4973 free_css_id(&mem_cgroup_subsys, &mem->css);
4974
08e552c6
KH
4975 for_each_node_state(node, N_POSSIBLE)
4976 free_mem_cgroup_per_zone_info(mem, node);
4977
c62b1a3b
KH
4978 free_percpu(mem->stat);
4979 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4980 kfree(mem);
4981 else
4982 vfree(mem);
4983}
4984
8c7c6e34
KH
4985static void mem_cgroup_get(struct mem_cgroup *mem)
4986{
4987 atomic_inc(&mem->refcnt);
4988}
4989
483c30b5 4990static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4991{
483c30b5 4992 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4993 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4994 __mem_cgroup_free(mem);
7bcc1bb1
DN
4995 if (parent)
4996 mem_cgroup_put(parent);
4997 }
8c7c6e34
KH
4998}
4999
483c30b5
DN
5000static void mem_cgroup_put(struct mem_cgroup *mem)
5001{
5002 __mem_cgroup_put(mem, 1);
5003}
5004
7bcc1bb1
DN
5005/*
5006 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5007 */
5008static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
5009{
5010 if (!mem->res.parent)
5011 return NULL;
5012 return mem_cgroup_from_res_counter(mem->res.parent, res);
5013}
33327948 5014
c077719b
KH
5015#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5016static void __init enable_swap_cgroup(void)
5017{
f8d66542 5018 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5019 do_swap_account = 1;
5020}
5021#else
5022static void __init enable_swap_cgroup(void)
5023{
5024}
5025#endif
5026
f64c3f54
BS
5027static int mem_cgroup_soft_limit_tree_init(void)
5028{
5029 struct mem_cgroup_tree_per_node *rtpn;
5030 struct mem_cgroup_tree_per_zone *rtpz;
5031 int tmp, node, zone;
5032
5033 for_each_node_state(node, N_POSSIBLE) {
5034 tmp = node;
5035 if (!node_state(node, N_NORMAL_MEMORY))
5036 tmp = -1;
5037 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5038 if (!rtpn)
5039 return 1;
5040
5041 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5042
5043 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5044 rtpz = &rtpn->rb_tree_per_zone[zone];
5045 rtpz->rb_root = RB_ROOT;
5046 spin_lock_init(&rtpz->lock);
5047 }
5048 }
5049 return 0;
5050}
5051
0eb253e2 5052static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5053mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5054{
28dbc4b6 5055 struct mem_cgroup *mem, *parent;
04046e1a 5056 long error = -ENOMEM;
6d12e2d8 5057 int node;
8cdea7c0 5058
c8dad2bb
JB
5059 mem = mem_cgroup_alloc();
5060 if (!mem)
04046e1a 5061 return ERR_PTR(error);
78fb7466 5062
6d12e2d8
KH
5063 for_each_node_state(node, N_POSSIBLE)
5064 if (alloc_mem_cgroup_per_zone_info(mem, node))
5065 goto free_out;
f64c3f54 5066
c077719b 5067 /* root ? */
28dbc4b6 5068 if (cont->parent == NULL) {
cdec2e42 5069 int cpu;
c077719b 5070 enable_swap_cgroup();
28dbc4b6 5071 parent = NULL;
4b3bde4c 5072 root_mem_cgroup = mem;
f64c3f54
BS
5073 if (mem_cgroup_soft_limit_tree_init())
5074 goto free_out;
cdec2e42
KH
5075 for_each_possible_cpu(cpu) {
5076 struct memcg_stock_pcp *stock =
5077 &per_cpu(memcg_stock, cpu);
5078 INIT_WORK(&stock->work, drain_local_stock);
5079 }
711d3d2c 5080 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5081 } else {
28dbc4b6 5082 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 5083 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 5084 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5085 }
28dbc4b6 5086
18f59ea7
BS
5087 if (parent && parent->use_hierarchy) {
5088 res_counter_init(&mem->res, &parent->res);
5089 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
5090 /*
5091 * We increment refcnt of the parent to ensure that we can
5092 * safely access it on res_counter_charge/uncharge.
5093 * This refcnt will be decremented when freeing this
5094 * mem_cgroup(see mem_cgroup_put).
5095 */
5096 mem_cgroup_get(parent);
18f59ea7
BS
5097 } else {
5098 res_counter_init(&mem->res, NULL);
5099 res_counter_init(&mem->memsw, NULL);
5100 }
04046e1a 5101 mem->last_scanned_child = 0;
889976db 5102 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 5103 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 5104
a7885eb8 5105 if (parent)
1f4c025b 5106 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 5107 atomic_set(&mem->refcnt, 1);
7dc74be0 5108 mem->move_charge_at_immigrate = 0;
2e72b634 5109 mutex_init(&mem->thresholds_lock);
82f9d486 5110 spin_lock_init(&mem->scanstat.lock);
8cdea7c0 5111 return &mem->css;
6d12e2d8 5112free_out:
a7ba0eef 5113 __mem_cgroup_free(mem);
4b3bde4c 5114 root_mem_cgroup = NULL;
04046e1a 5115 return ERR_PTR(error);
8cdea7c0
BS
5116}
5117
ec64f515 5118static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5119 struct cgroup *cont)
5120{
5121 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
5122
5123 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
5124}
5125
8cdea7c0
BS
5126static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5127 struct cgroup *cont)
5128{
c268e994 5129 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 5130
c268e994 5131 mem_cgroup_put(mem);
8cdea7c0
BS
5132}
5133
5134static int mem_cgroup_populate(struct cgroup_subsys *ss,
5135 struct cgroup *cont)
5136{
8c7c6e34
KH
5137 int ret;
5138
5139 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5140 ARRAY_SIZE(mem_cgroup_files));
5141
5142 if (!ret)
5143 ret = register_memsw_files(cont, ss);
5144 return ret;
8cdea7c0
BS
5145}
5146
02491447 5147#ifdef CONFIG_MMU
7dc74be0 5148/* Handlers for move charge at task migration. */
854ffa8d
DN
5149#define PRECHARGE_COUNT_AT_ONCE 256
5150static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5151{
854ffa8d
DN
5152 int ret = 0;
5153 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
5154 struct mem_cgroup *mem = mc.to;
5155
854ffa8d
DN
5156 if (mem_cgroup_is_root(mem)) {
5157 mc.precharge += count;
5158 /* we don't need css_get for root */
5159 return ret;
5160 }
5161 /* try to charge at once */
5162 if (count > 1) {
5163 struct res_counter *dummy;
5164 /*
5165 * "mem" cannot be under rmdir() because we've already checked
5166 * by cgroup_lock_live_cgroup() that it is not removed and we
5167 * are still under the same cgroup_mutex. So we can postpone
5168 * css_get().
5169 */
5170 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5171 goto one_by_one;
5172 if (do_swap_account && res_counter_charge(&mem->memsw,
5173 PAGE_SIZE * count, &dummy)) {
5174 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5175 goto one_by_one;
5176 }
5177 mc.precharge += count;
854ffa8d
DN
5178 return ret;
5179 }
5180one_by_one:
5181 /* fall back to one by one charge */
5182 while (count--) {
5183 if (signal_pending(current)) {
5184 ret = -EINTR;
5185 break;
5186 }
5187 if (!batch_count--) {
5188 batch_count = PRECHARGE_COUNT_AT_ONCE;
5189 cond_resched();
5190 }
7ec99d62 5191 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5192 if (ret || !mem)
5193 /* mem_cgroup_clear_mc() will do uncharge later */
5194 return -ENOMEM;
5195 mc.precharge++;
5196 }
4ffef5fe
DN
5197 return ret;
5198}
5199
5200/**
5201 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5202 * @vma: the vma the pte to be checked belongs
5203 * @addr: the address corresponding to the pte to be checked
5204 * @ptent: the pte to be checked
02491447 5205 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5206 *
5207 * Returns
5208 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5209 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5210 * move charge. if @target is not NULL, the page is stored in target->page
5211 * with extra refcnt got(Callers should handle it).
02491447
DN
5212 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5213 * target for charge migration. if @target is not NULL, the entry is stored
5214 * in target->ent.
4ffef5fe
DN
5215 *
5216 * Called with pte lock held.
5217 */
4ffef5fe
DN
5218union mc_target {
5219 struct page *page;
02491447 5220 swp_entry_t ent;
4ffef5fe
DN
5221};
5222
4ffef5fe
DN
5223enum mc_target_type {
5224 MC_TARGET_NONE, /* not used */
5225 MC_TARGET_PAGE,
02491447 5226 MC_TARGET_SWAP,
4ffef5fe
DN
5227};
5228
90254a65
DN
5229static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5230 unsigned long addr, pte_t ptent)
4ffef5fe 5231{
90254a65 5232 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5233
90254a65
DN
5234 if (!page || !page_mapped(page))
5235 return NULL;
5236 if (PageAnon(page)) {
5237 /* we don't move shared anon */
5238 if (!move_anon() || page_mapcount(page) > 2)
5239 return NULL;
87946a72
DN
5240 } else if (!move_file())
5241 /* we ignore mapcount for file pages */
90254a65
DN
5242 return NULL;
5243 if (!get_page_unless_zero(page))
5244 return NULL;
5245
5246 return page;
5247}
5248
5249static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5250 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5251{
5252 int usage_count;
5253 struct page *page = NULL;
5254 swp_entry_t ent = pte_to_swp_entry(ptent);
5255
5256 if (!move_anon() || non_swap_entry(ent))
5257 return NULL;
5258 usage_count = mem_cgroup_count_swap_user(ent, &page);
5259 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5260 if (page)
5261 put_page(page);
90254a65 5262 return NULL;
02491447 5263 }
90254a65
DN
5264 if (do_swap_account)
5265 entry->val = ent.val;
5266
5267 return page;
5268}
5269
87946a72
DN
5270static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5271 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5272{
5273 struct page *page = NULL;
5274 struct inode *inode;
5275 struct address_space *mapping;
5276 pgoff_t pgoff;
5277
5278 if (!vma->vm_file) /* anonymous vma */
5279 return NULL;
5280 if (!move_file())
5281 return NULL;
5282
5283 inode = vma->vm_file->f_path.dentry->d_inode;
5284 mapping = vma->vm_file->f_mapping;
5285 if (pte_none(ptent))
5286 pgoff = linear_page_index(vma, addr);
5287 else /* pte_file(ptent) is true */
5288 pgoff = pte_to_pgoff(ptent);
5289
5290 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5291 page = find_get_page(mapping, pgoff);
5292
5293#ifdef CONFIG_SWAP
5294 /* shmem/tmpfs may report page out on swap: account for that too. */
5295 if (radix_tree_exceptional_entry(page)) {
5296 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5297 if (do_swap_account)
aa3b1895
HD
5298 *entry = swap;
5299 page = find_get_page(&swapper_space, swap.val);
87946a72 5300 }
aa3b1895 5301#endif
87946a72
DN
5302 return page;
5303}
5304
90254a65
DN
5305static int is_target_pte_for_mc(struct vm_area_struct *vma,
5306 unsigned long addr, pte_t ptent, union mc_target *target)
5307{
5308 struct page *page = NULL;
5309 struct page_cgroup *pc;
5310 int ret = 0;
5311 swp_entry_t ent = { .val = 0 };
5312
5313 if (pte_present(ptent))
5314 page = mc_handle_present_pte(vma, addr, ptent);
5315 else if (is_swap_pte(ptent))
5316 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5317 else if (pte_none(ptent) || pte_file(ptent))
5318 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5319
5320 if (!page && !ent.val)
5321 return 0;
02491447
DN
5322 if (page) {
5323 pc = lookup_page_cgroup(page);
5324 /*
5325 * Do only loose check w/o page_cgroup lock.
5326 * mem_cgroup_move_account() checks the pc is valid or not under
5327 * the lock.
5328 */
5329 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5330 ret = MC_TARGET_PAGE;
5331 if (target)
5332 target->page = page;
5333 }
5334 if (!ret || !target)
5335 put_page(page);
5336 }
90254a65
DN
5337 /* There is a swap entry and a page doesn't exist or isn't charged */
5338 if (ent.val && !ret &&
7f0f1546
KH
5339 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5340 ret = MC_TARGET_SWAP;
5341 if (target)
5342 target->ent = ent;
4ffef5fe 5343 }
4ffef5fe
DN
5344 return ret;
5345}
5346
5347static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5348 unsigned long addr, unsigned long end,
5349 struct mm_walk *walk)
5350{
5351 struct vm_area_struct *vma = walk->private;
5352 pte_t *pte;
5353 spinlock_t *ptl;
5354
03319327
DH
5355 split_huge_page_pmd(walk->mm, pmd);
5356
4ffef5fe
DN
5357 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5358 for (; addr != end; pte++, addr += PAGE_SIZE)
5359 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5360 mc.precharge++; /* increment precharge temporarily */
5361 pte_unmap_unlock(pte - 1, ptl);
5362 cond_resched();
5363
7dc74be0
DN
5364 return 0;
5365}
5366
4ffef5fe
DN
5367static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5368{
5369 unsigned long precharge;
5370 struct vm_area_struct *vma;
5371
dfe076b0 5372 down_read(&mm->mmap_sem);
4ffef5fe
DN
5373 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5374 struct mm_walk mem_cgroup_count_precharge_walk = {
5375 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5376 .mm = mm,
5377 .private = vma,
5378 };
5379 if (is_vm_hugetlb_page(vma))
5380 continue;
4ffef5fe
DN
5381 walk_page_range(vma->vm_start, vma->vm_end,
5382 &mem_cgroup_count_precharge_walk);
5383 }
dfe076b0 5384 up_read(&mm->mmap_sem);
4ffef5fe
DN
5385
5386 precharge = mc.precharge;
5387 mc.precharge = 0;
5388
5389 return precharge;
5390}
5391
4ffef5fe
DN
5392static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5393{
dfe076b0
DN
5394 unsigned long precharge = mem_cgroup_count_precharge(mm);
5395
5396 VM_BUG_ON(mc.moving_task);
5397 mc.moving_task = current;
5398 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5399}
5400
dfe076b0
DN
5401/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5402static void __mem_cgroup_clear_mc(void)
4ffef5fe 5403{
2bd9bb20
KH
5404 struct mem_cgroup *from = mc.from;
5405 struct mem_cgroup *to = mc.to;
5406
4ffef5fe 5407 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5408 if (mc.precharge) {
5409 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5410 mc.precharge = 0;
5411 }
5412 /*
5413 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5414 * we must uncharge here.
5415 */
5416 if (mc.moved_charge) {
5417 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5418 mc.moved_charge = 0;
4ffef5fe 5419 }
483c30b5
DN
5420 /* we must fixup refcnts and charges */
5421 if (mc.moved_swap) {
483c30b5
DN
5422 /* uncharge swap account from the old cgroup */
5423 if (!mem_cgroup_is_root(mc.from))
5424 res_counter_uncharge(&mc.from->memsw,
5425 PAGE_SIZE * mc.moved_swap);
5426 __mem_cgroup_put(mc.from, mc.moved_swap);
5427
5428 if (!mem_cgroup_is_root(mc.to)) {
5429 /*
5430 * we charged both to->res and to->memsw, so we should
5431 * uncharge to->res.
5432 */
5433 res_counter_uncharge(&mc.to->res,
5434 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5435 }
5436 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5437 mc.moved_swap = 0;
5438 }
dfe076b0
DN
5439 memcg_oom_recover(from);
5440 memcg_oom_recover(to);
5441 wake_up_all(&mc.waitq);
5442}
5443
5444static void mem_cgroup_clear_mc(void)
5445{
5446 struct mem_cgroup *from = mc.from;
5447
5448 /*
5449 * we must clear moving_task before waking up waiters at the end of
5450 * task migration.
5451 */
5452 mc.moving_task = NULL;
5453 __mem_cgroup_clear_mc();
2bd9bb20 5454 spin_lock(&mc.lock);
4ffef5fe
DN
5455 mc.from = NULL;
5456 mc.to = NULL;
2bd9bb20 5457 spin_unlock(&mc.lock);
32047e2a 5458 mem_cgroup_end_move(from);
4ffef5fe
DN
5459}
5460
7dc74be0
DN
5461static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5462 struct cgroup *cgroup,
f780bdb7 5463 struct task_struct *p)
7dc74be0
DN
5464{
5465 int ret = 0;
5466 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5467
5468 if (mem->move_charge_at_immigrate) {
5469 struct mm_struct *mm;
5470 struct mem_cgroup *from = mem_cgroup_from_task(p);
5471
5472 VM_BUG_ON(from == mem);
5473
5474 mm = get_task_mm(p);
5475 if (!mm)
5476 return 0;
7dc74be0 5477 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5478 if (mm->owner == p) {
5479 VM_BUG_ON(mc.from);
5480 VM_BUG_ON(mc.to);
5481 VM_BUG_ON(mc.precharge);
854ffa8d 5482 VM_BUG_ON(mc.moved_charge);
483c30b5 5483 VM_BUG_ON(mc.moved_swap);
32047e2a 5484 mem_cgroup_start_move(from);
2bd9bb20 5485 spin_lock(&mc.lock);
4ffef5fe
DN
5486 mc.from = from;
5487 mc.to = mem;
2bd9bb20 5488 spin_unlock(&mc.lock);
dfe076b0 5489 /* We set mc.moving_task later */
4ffef5fe
DN
5490
5491 ret = mem_cgroup_precharge_mc(mm);
5492 if (ret)
5493 mem_cgroup_clear_mc();
dfe076b0
DN
5494 }
5495 mmput(mm);
7dc74be0
DN
5496 }
5497 return ret;
5498}
5499
5500static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5501 struct cgroup *cgroup,
f780bdb7 5502 struct task_struct *p)
7dc74be0 5503{
4ffef5fe 5504 mem_cgroup_clear_mc();
7dc74be0
DN
5505}
5506
4ffef5fe
DN
5507static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5508 unsigned long addr, unsigned long end,
5509 struct mm_walk *walk)
7dc74be0 5510{
4ffef5fe
DN
5511 int ret = 0;
5512 struct vm_area_struct *vma = walk->private;
5513 pte_t *pte;
5514 spinlock_t *ptl;
5515
03319327 5516 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5517retry:
5518 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5519 for (; addr != end; addr += PAGE_SIZE) {
5520 pte_t ptent = *(pte++);
5521 union mc_target target;
5522 int type;
5523 struct page *page;
5524 struct page_cgroup *pc;
02491447 5525 swp_entry_t ent;
4ffef5fe
DN
5526
5527 if (!mc.precharge)
5528 break;
5529
5530 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5531 switch (type) {
5532 case MC_TARGET_PAGE:
5533 page = target.page;
5534 if (isolate_lru_page(page))
5535 goto put;
5536 pc = lookup_page_cgroup(page);
7ec99d62
JW
5537 if (!mem_cgroup_move_account(page, 1, pc,
5538 mc.from, mc.to, false)) {
4ffef5fe 5539 mc.precharge--;
854ffa8d
DN
5540 /* we uncharge from mc.from later. */
5541 mc.moved_charge++;
4ffef5fe
DN
5542 }
5543 putback_lru_page(page);
5544put: /* is_target_pte_for_mc() gets the page */
5545 put_page(page);
5546 break;
02491447
DN
5547 case MC_TARGET_SWAP:
5548 ent = target.ent;
483c30b5
DN
5549 if (!mem_cgroup_move_swap_account(ent,
5550 mc.from, mc.to, false)) {
02491447 5551 mc.precharge--;
483c30b5
DN
5552 /* we fixup refcnts and charges later. */
5553 mc.moved_swap++;
5554 }
02491447 5555 break;
4ffef5fe
DN
5556 default:
5557 break;
5558 }
5559 }
5560 pte_unmap_unlock(pte - 1, ptl);
5561 cond_resched();
5562
5563 if (addr != end) {
5564 /*
5565 * We have consumed all precharges we got in can_attach().
5566 * We try charge one by one, but don't do any additional
5567 * charges to mc.to if we have failed in charge once in attach()
5568 * phase.
5569 */
854ffa8d 5570 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5571 if (!ret)
5572 goto retry;
5573 }
5574
5575 return ret;
5576}
5577
5578static void mem_cgroup_move_charge(struct mm_struct *mm)
5579{
5580 struct vm_area_struct *vma;
5581
5582 lru_add_drain_all();
dfe076b0
DN
5583retry:
5584 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5585 /*
5586 * Someone who are holding the mmap_sem might be waiting in
5587 * waitq. So we cancel all extra charges, wake up all waiters,
5588 * and retry. Because we cancel precharges, we might not be able
5589 * to move enough charges, but moving charge is a best-effort
5590 * feature anyway, so it wouldn't be a big problem.
5591 */
5592 __mem_cgroup_clear_mc();
5593 cond_resched();
5594 goto retry;
5595 }
4ffef5fe
DN
5596 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5597 int ret;
5598 struct mm_walk mem_cgroup_move_charge_walk = {
5599 .pmd_entry = mem_cgroup_move_charge_pte_range,
5600 .mm = mm,
5601 .private = vma,
5602 };
5603 if (is_vm_hugetlb_page(vma))
5604 continue;
4ffef5fe
DN
5605 ret = walk_page_range(vma->vm_start, vma->vm_end,
5606 &mem_cgroup_move_charge_walk);
5607 if (ret)
5608 /*
5609 * means we have consumed all precharges and failed in
5610 * doing additional charge. Just abandon here.
5611 */
5612 break;
5613 }
dfe076b0 5614 up_read(&mm->mmap_sem);
7dc74be0
DN
5615}
5616
67e465a7
BS
5617static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5618 struct cgroup *cont,
5619 struct cgroup *old_cont,
f780bdb7 5620 struct task_struct *p)
67e465a7 5621{
a433658c 5622 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5623
dfe076b0 5624 if (mm) {
a433658c
KM
5625 if (mc.to)
5626 mem_cgroup_move_charge(mm);
5627 put_swap_token(mm);
dfe076b0
DN
5628 mmput(mm);
5629 }
a433658c
KM
5630 if (mc.to)
5631 mem_cgroup_clear_mc();
67e465a7 5632}
5cfb80a7
DN
5633#else /* !CONFIG_MMU */
5634static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5635 struct cgroup *cgroup,
f780bdb7 5636 struct task_struct *p)
5cfb80a7
DN
5637{
5638 return 0;
5639}
5640static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5641 struct cgroup *cgroup,
f780bdb7 5642 struct task_struct *p)
5cfb80a7
DN
5643{
5644}
5645static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5646 struct cgroup *cont,
5647 struct cgroup *old_cont,
f780bdb7 5648 struct task_struct *p)
5cfb80a7
DN
5649{
5650}
5651#endif
67e465a7 5652
8cdea7c0
BS
5653struct cgroup_subsys mem_cgroup_subsys = {
5654 .name = "memory",
5655 .subsys_id = mem_cgroup_subsys_id,
5656 .create = mem_cgroup_create,
df878fb0 5657 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5658 .destroy = mem_cgroup_destroy,
5659 .populate = mem_cgroup_populate,
7dc74be0
DN
5660 .can_attach = mem_cgroup_can_attach,
5661 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5662 .attach = mem_cgroup_move_task,
6d12e2d8 5663 .early_init = 0,
04046e1a 5664 .use_id = 1,
8cdea7c0 5665};
c077719b
KH
5666
5667#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5668static int __init enable_swap_account(char *s)
5669{
5670 /* consider enabled if no parameter or 1 is given */
a2c8990a 5671 if (!strcmp(s, "1"))
a42c390c 5672 really_do_swap_account = 1;
a2c8990a 5673 else if (!strcmp(s, "0"))
a42c390c
MH
5674 really_do_swap_account = 0;
5675 return 1;
5676}
a2c8990a 5677__setup("swapaccount=", enable_swap_account);
c077719b 5678
c077719b 5679#endif