]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
7ae1e1d0 GC |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
8cdea7c0 BS |
17 | * This program is free software; you can redistribute it and/or modify |
18 | * it under the terms of the GNU General Public License as published by | |
19 | * the Free Software Foundation; either version 2 of the License, or | |
20 | * (at your option) any later version. | |
21 | * | |
22 | * This program is distributed in the hope that it will be useful, | |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
25 | * GNU General Public License for more details. | |
26 | */ | |
27 | ||
28 | #include <linux/res_counter.h> | |
29 | #include <linux/memcontrol.h> | |
30 | #include <linux/cgroup.h> | |
78fb7466 | 31 | #include <linux/mm.h> |
4ffef5fe | 32 | #include <linux/hugetlb.h> |
d13d1443 | 33 | #include <linux/pagemap.h> |
d52aa412 | 34 | #include <linux/smp.h> |
8a9f3ccd | 35 | #include <linux/page-flags.h> |
66e1707b | 36 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
37 | #include <linux/bit_spinlock.h> |
38 | #include <linux/rcupdate.h> | |
e222432b | 39 | #include <linux/limits.h> |
b9e15baf | 40 | #include <linux/export.h> |
8c7c6e34 | 41 | #include <linux/mutex.h> |
bb4cc1a8 | 42 | #include <linux/rbtree.h> |
b6ac57d5 | 43 | #include <linux/slab.h> |
66e1707b | 44 | #include <linux/swap.h> |
02491447 | 45 | #include <linux/swapops.h> |
66e1707b | 46 | #include <linux/spinlock.h> |
2e72b634 | 47 | #include <linux/eventfd.h> |
79bd9814 | 48 | #include <linux/poll.h> |
2e72b634 | 49 | #include <linux/sort.h> |
66e1707b | 50 | #include <linux/fs.h> |
d2ceb9b7 | 51 | #include <linux/seq_file.h> |
70ddf637 | 52 | #include <linux/vmpressure.h> |
b69408e8 | 53 | #include <linux/mm_inline.h> |
52d4b9ac | 54 | #include <linux/page_cgroup.h> |
cdec2e42 | 55 | #include <linux/cpu.h> |
158e0a2d | 56 | #include <linux/oom.h> |
0056f4e6 | 57 | #include <linux/lockdep.h> |
79bd9814 | 58 | #include <linux/file.h> |
08e552c6 | 59 | #include "internal.h" |
d1a4c0b3 | 60 | #include <net/sock.h> |
4bd2c1ee | 61 | #include <net/ip.h> |
d1a4c0b3 | 62 | #include <net/tcp_memcontrol.h> |
f35c3a8e | 63 | #include "slab.h" |
8cdea7c0 | 64 | |
8697d331 BS |
65 | #include <asm/uaccess.h> |
66 | ||
cc8e970c KM |
67 | #include <trace/events/vmscan.h> |
68 | ||
073219e9 TH |
69 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
70 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
68ae564b | 71 | |
a181b0e8 | 72 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
6bbda35c | 73 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 74 | |
c255a458 | 75 | #ifdef CONFIG_MEMCG_SWAP |
338c8431 | 76 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 77 | int do_swap_account __read_mostly; |
a42c390c MH |
78 | |
79 | /* for remember boot option*/ | |
c255a458 | 80 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
a42c390c MH |
81 | static int really_do_swap_account __initdata = 1; |
82 | #else | |
ada4ba59 | 83 | static int really_do_swap_account __initdata; |
a42c390c MH |
84 | #endif |
85 | ||
c077719b | 86 | #else |
a0db00fc | 87 | #define do_swap_account 0 |
c077719b KH |
88 | #endif |
89 | ||
90 | ||
af7c4b0e JW |
91 | static const char * const mem_cgroup_stat_names[] = { |
92 | "cache", | |
93 | "rss", | |
b070e65c | 94 | "rss_huge", |
af7c4b0e | 95 | "mapped_file", |
3ea67d06 | 96 | "writeback", |
af7c4b0e JW |
97 | "swap", |
98 | }; | |
99 | ||
e9f8974f JW |
100 | enum mem_cgroup_events_index { |
101 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
102 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
456f998e YH |
103 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
104 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | |
e9f8974f JW |
105 | MEM_CGROUP_EVENTS_NSTATS, |
106 | }; | |
af7c4b0e JW |
107 | |
108 | static const char * const mem_cgroup_events_names[] = { | |
109 | "pgpgin", | |
110 | "pgpgout", | |
111 | "pgfault", | |
112 | "pgmajfault", | |
113 | }; | |
114 | ||
58cf188e SZ |
115 | static const char * const mem_cgroup_lru_names[] = { |
116 | "inactive_anon", | |
117 | "active_anon", | |
118 | "inactive_file", | |
119 | "active_file", | |
120 | "unevictable", | |
121 | }; | |
122 | ||
7a159cc9 JW |
123 | /* |
124 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
125 | * it will be incremated by the number of pages. This counter is used for | |
126 | * for trigger some periodic events. This is straightforward and better | |
127 | * than using jiffies etc. to handle periodic memcg event. | |
128 | */ | |
129 | enum mem_cgroup_events_target { | |
130 | MEM_CGROUP_TARGET_THRESH, | |
bb4cc1a8 | 131 | MEM_CGROUP_TARGET_SOFTLIMIT, |
453a9bf3 | 132 | MEM_CGROUP_TARGET_NUMAINFO, |
7a159cc9 JW |
133 | MEM_CGROUP_NTARGETS, |
134 | }; | |
a0db00fc KS |
135 | #define THRESHOLDS_EVENTS_TARGET 128 |
136 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
137 | #define NUMAINFO_EVENTS_TARGET 1024 | |
e9f8974f | 138 | |
d52aa412 | 139 | struct mem_cgroup_stat_cpu { |
7a159cc9 | 140 | long count[MEM_CGROUP_STAT_NSTATS]; |
e9f8974f | 141 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
13114716 | 142 | unsigned long nr_page_events; |
7a159cc9 | 143 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
d52aa412 KH |
144 | }; |
145 | ||
527a5ec9 | 146 | struct mem_cgroup_reclaim_iter { |
5f578161 MH |
147 | /* |
148 | * last scanned hierarchy member. Valid only if last_dead_count | |
149 | * matches memcg->dead_count of the hierarchy root group. | |
150 | */ | |
542f85f9 | 151 | struct mem_cgroup *last_visited; |
d2ab70aa | 152 | int last_dead_count; |
5f578161 | 153 | |
527a5ec9 JW |
154 | /* scan generation, increased every round-trip */ |
155 | unsigned int generation; | |
156 | }; | |
157 | ||
6d12e2d8 KH |
158 | /* |
159 | * per-zone information in memory controller. | |
160 | */ | |
6d12e2d8 | 161 | struct mem_cgroup_per_zone { |
6290df54 | 162 | struct lruvec lruvec; |
1eb49272 | 163 | unsigned long lru_size[NR_LRU_LISTS]; |
3e2f41f1 | 164 | |
527a5ec9 JW |
165 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
166 | ||
bb4cc1a8 AM |
167 | struct rb_node tree_node; /* RB tree node */ |
168 | unsigned long long usage_in_excess;/* Set to the value by which */ | |
169 | /* the soft limit is exceeded*/ | |
170 | bool on_tree; | |
d79154bb | 171 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
4e416953 | 172 | /* use container_of */ |
6d12e2d8 | 173 | }; |
6d12e2d8 KH |
174 | |
175 | struct mem_cgroup_per_node { | |
176 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
177 | }; | |
178 | ||
bb4cc1a8 AM |
179 | /* |
180 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
181 | * their hierarchy representation | |
182 | */ | |
183 | ||
184 | struct mem_cgroup_tree_per_zone { | |
185 | struct rb_root rb_root; | |
186 | spinlock_t lock; | |
187 | }; | |
188 | ||
189 | struct mem_cgroup_tree_per_node { | |
190 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
191 | }; | |
192 | ||
193 | struct mem_cgroup_tree { | |
194 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
195 | }; | |
196 | ||
197 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
198 | ||
2e72b634 KS |
199 | struct mem_cgroup_threshold { |
200 | struct eventfd_ctx *eventfd; | |
201 | u64 threshold; | |
202 | }; | |
203 | ||
9490ff27 | 204 | /* For threshold */ |
2e72b634 | 205 | struct mem_cgroup_threshold_ary { |
748dad36 | 206 | /* An array index points to threshold just below or equal to usage. */ |
5407a562 | 207 | int current_threshold; |
2e72b634 KS |
208 | /* Size of entries[] */ |
209 | unsigned int size; | |
210 | /* Array of thresholds */ | |
211 | struct mem_cgroup_threshold entries[0]; | |
212 | }; | |
2c488db2 KS |
213 | |
214 | struct mem_cgroup_thresholds { | |
215 | /* Primary thresholds array */ | |
216 | struct mem_cgroup_threshold_ary *primary; | |
217 | /* | |
218 | * Spare threshold array. | |
219 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
220 | * It must be able to store at least primary->size - 1 entries. | |
221 | */ | |
222 | struct mem_cgroup_threshold_ary *spare; | |
223 | }; | |
224 | ||
9490ff27 KH |
225 | /* for OOM */ |
226 | struct mem_cgroup_eventfd_list { | |
227 | struct list_head list; | |
228 | struct eventfd_ctx *eventfd; | |
229 | }; | |
2e72b634 | 230 | |
79bd9814 TH |
231 | /* |
232 | * cgroup_event represents events which userspace want to receive. | |
233 | */ | |
3bc942f3 | 234 | struct mem_cgroup_event { |
79bd9814 | 235 | /* |
59b6f873 | 236 | * memcg which the event belongs to. |
79bd9814 | 237 | */ |
59b6f873 | 238 | struct mem_cgroup *memcg; |
79bd9814 TH |
239 | /* |
240 | * eventfd to signal userspace about the event. | |
241 | */ | |
242 | struct eventfd_ctx *eventfd; | |
243 | /* | |
244 | * Each of these stored in a list by the cgroup. | |
245 | */ | |
246 | struct list_head list; | |
fba94807 TH |
247 | /* |
248 | * register_event() callback will be used to add new userspace | |
249 | * waiter for changes related to this event. Use eventfd_signal() | |
250 | * on eventfd to send notification to userspace. | |
251 | */ | |
59b6f873 | 252 | int (*register_event)(struct mem_cgroup *memcg, |
347c4a87 | 253 | struct eventfd_ctx *eventfd, const char *args); |
fba94807 TH |
254 | /* |
255 | * unregister_event() callback will be called when userspace closes | |
256 | * the eventfd or on cgroup removing. This callback must be set, | |
257 | * if you want provide notification functionality. | |
258 | */ | |
59b6f873 | 259 | void (*unregister_event)(struct mem_cgroup *memcg, |
fba94807 | 260 | struct eventfd_ctx *eventfd); |
79bd9814 TH |
261 | /* |
262 | * All fields below needed to unregister event when | |
263 | * userspace closes eventfd. | |
264 | */ | |
265 | poll_table pt; | |
266 | wait_queue_head_t *wqh; | |
267 | wait_queue_t wait; | |
268 | struct work_struct remove; | |
269 | }; | |
270 | ||
c0ff4b85 R |
271 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
272 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
2e72b634 | 273 | |
8cdea7c0 BS |
274 | /* |
275 | * The memory controller data structure. The memory controller controls both | |
276 | * page cache and RSS per cgroup. We would eventually like to provide | |
277 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
278 | * to help the administrator determine what knobs to tune. | |
279 | * | |
280 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
281 | * we hit the water mark. May be even add a low water mark, such that |
282 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
283 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
284 | */ |
285 | struct mem_cgroup { | |
286 | struct cgroup_subsys_state css; | |
287 | /* | |
288 | * the counter to account for memory usage | |
289 | */ | |
290 | struct res_counter res; | |
59927fb9 | 291 | |
70ddf637 AV |
292 | /* vmpressure notifications */ |
293 | struct vmpressure vmpressure; | |
294 | ||
465939a1 LZ |
295 | /* |
296 | * the counter to account for mem+swap usage. | |
297 | */ | |
298 | struct res_counter memsw; | |
59927fb9 | 299 | |
510fc4e1 GC |
300 | /* |
301 | * the counter to account for kernel memory usage. | |
302 | */ | |
303 | struct res_counter kmem; | |
18f59ea7 BS |
304 | /* |
305 | * Should the accounting and control be hierarchical, per subtree? | |
306 | */ | |
307 | bool use_hierarchy; | |
510fc4e1 | 308 | unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ |
79dfdacc MH |
309 | |
310 | bool oom_lock; | |
311 | atomic_t under_oom; | |
3812c8c8 | 312 | atomic_t oom_wakeups; |
79dfdacc | 313 | |
1f4c025b | 314 | int swappiness; |
3c11ecf4 KH |
315 | /* OOM-Killer disable */ |
316 | int oom_kill_disable; | |
a7885eb8 | 317 | |
22a668d7 KH |
318 | /* set when res.limit == memsw.limit */ |
319 | bool memsw_is_minimum; | |
320 | ||
2e72b634 KS |
321 | /* protect arrays of thresholds */ |
322 | struct mutex thresholds_lock; | |
323 | ||
324 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 325 | struct mem_cgroup_thresholds thresholds; |
907860ed | 326 | |
2e72b634 | 327 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 328 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 329 | |
9490ff27 KH |
330 | /* For oom notifier event fd */ |
331 | struct list_head oom_notify; | |
185efc0f | 332 | |
7dc74be0 DN |
333 | /* |
334 | * Should we move charges of a task when a task is moved into this | |
335 | * mem_cgroup ? And what type of charges should we move ? | |
336 | */ | |
f894ffa8 | 337 | unsigned long move_charge_at_immigrate; |
619d094b KH |
338 | /* |
339 | * set > 0 if pages under this cgroup are moving to other cgroup. | |
340 | */ | |
341 | atomic_t moving_account; | |
312734c0 KH |
342 | /* taken only while moving_account > 0 */ |
343 | spinlock_t move_lock; | |
d52aa412 | 344 | /* |
c62b1a3b | 345 | * percpu counter. |
d52aa412 | 346 | */ |
3a7951b4 | 347 | struct mem_cgroup_stat_cpu __percpu *stat; |
711d3d2c KH |
348 | /* |
349 | * used when a cpu is offlined or other synchronizations | |
350 | * See mem_cgroup_read_stat(). | |
351 | */ | |
352 | struct mem_cgroup_stat_cpu nocpu_base; | |
353 | spinlock_t pcp_counter_lock; | |
d1a4c0b3 | 354 | |
5f578161 | 355 | atomic_t dead_count; |
4bd2c1ee | 356 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) |
2e685cad | 357 | struct cg_proto tcp_mem; |
d1a4c0b3 | 358 | #endif |
2633d7a0 | 359 | #if defined(CONFIG_MEMCG_KMEM) |
bd673145 VD |
360 | /* analogous to slab_common's slab_caches list, but per-memcg; |
361 | * protected by memcg_slab_mutex */ | |
2633d7a0 | 362 | struct list_head memcg_slab_caches; |
2633d7a0 GC |
363 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ |
364 | int kmemcg_id; | |
365 | #endif | |
45cf7ebd GC |
366 | |
367 | int last_scanned_node; | |
368 | #if MAX_NUMNODES > 1 | |
369 | nodemask_t scan_nodes; | |
370 | atomic_t numainfo_events; | |
371 | atomic_t numainfo_updating; | |
372 | #endif | |
70ddf637 | 373 | |
fba94807 TH |
374 | /* List of events which userspace want to receive */ |
375 | struct list_head event_list; | |
376 | spinlock_t event_list_lock; | |
377 | ||
54f72fe0 JW |
378 | struct mem_cgroup_per_node *nodeinfo[0]; |
379 | /* WARNING: nodeinfo must be the last member here */ | |
8cdea7c0 BS |
380 | }; |
381 | ||
510fc4e1 GC |
382 | /* internal only representation about the status of kmem accounting. */ |
383 | enum { | |
6de64beb | 384 | KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ |
7de37682 | 385 | KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ |
510fc4e1 GC |
386 | }; |
387 | ||
510fc4e1 GC |
388 | #ifdef CONFIG_MEMCG_KMEM |
389 | static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) | |
390 | { | |
391 | set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
392 | } | |
7de37682 GC |
393 | |
394 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) | |
395 | { | |
396 | return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
397 | } | |
398 | ||
399 | static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) | |
400 | { | |
10d5ebf4 LZ |
401 | /* |
402 | * Our caller must use css_get() first, because memcg_uncharge_kmem() | |
403 | * will call css_put() if it sees the memcg is dead. | |
404 | */ | |
405 | smp_wmb(); | |
7de37682 GC |
406 | if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) |
407 | set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); | |
408 | } | |
409 | ||
410 | static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) | |
411 | { | |
412 | return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, | |
413 | &memcg->kmem_account_flags); | |
414 | } | |
510fc4e1 GC |
415 | #endif |
416 | ||
7dc74be0 DN |
417 | /* Stuffs for move charges at task migration. */ |
418 | /* | |
ee5e8472 GC |
419 | * Types of charges to be moved. "move_charge_at_immitgrate" and |
420 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. | |
7dc74be0 DN |
421 | */ |
422 | enum move_type { | |
4ffef5fe | 423 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 424 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
425 | NR_MOVE_TYPE, |
426 | }; | |
427 | ||
4ffef5fe DN |
428 | /* "mc" and its members are protected by cgroup_mutex */ |
429 | static struct move_charge_struct { | |
b1dd693e | 430 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
431 | struct mem_cgroup *from; |
432 | struct mem_cgroup *to; | |
ee5e8472 | 433 | unsigned long immigrate_flags; |
4ffef5fe | 434 | unsigned long precharge; |
854ffa8d | 435 | unsigned long moved_charge; |
483c30b5 | 436 | unsigned long moved_swap; |
8033b97c DN |
437 | struct task_struct *moving_task; /* a task moving charges */ |
438 | wait_queue_head_t waitq; /* a waitq for other context */ | |
439 | } mc = { | |
2bd9bb20 | 440 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
441 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
442 | }; | |
4ffef5fe | 443 | |
90254a65 DN |
444 | static bool move_anon(void) |
445 | { | |
ee5e8472 | 446 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); |
90254a65 DN |
447 | } |
448 | ||
87946a72 DN |
449 | static bool move_file(void) |
450 | { | |
ee5e8472 | 451 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); |
87946a72 DN |
452 | } |
453 | ||
4e416953 BS |
454 | /* |
455 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
456 | * limit reclaim to prevent infinite loops, if they ever occur. | |
457 | */ | |
a0db00fc | 458 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
bb4cc1a8 | 459 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
4e416953 | 460 | |
217bc319 KH |
461 | enum charge_type { |
462 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
41326c17 | 463 | MEM_CGROUP_CHARGE_TYPE_ANON, |
d13d1443 | 464 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 465 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
466 | NR_CHARGE_TYPE, |
467 | }; | |
468 | ||
8c7c6e34 | 469 | /* for encoding cft->private value on file */ |
86ae53e1 GC |
470 | enum res_type { |
471 | _MEM, | |
472 | _MEMSWAP, | |
473 | _OOM_TYPE, | |
510fc4e1 | 474 | _KMEM, |
86ae53e1 GC |
475 | }; |
476 | ||
a0db00fc KS |
477 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
478 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
8c7c6e34 | 479 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
9490ff27 KH |
480 | /* Used for OOM nofiier */ |
481 | #define OOM_CONTROL (0) | |
8c7c6e34 | 482 | |
75822b44 BS |
483 | /* |
484 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | |
485 | */ | |
486 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | |
487 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | |
488 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | |
489 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | |
490 | ||
0999821b GC |
491 | /* |
492 | * The memcg_create_mutex will be held whenever a new cgroup is created. | |
493 | * As a consequence, any change that needs to protect against new child cgroups | |
494 | * appearing has to hold it as well. | |
495 | */ | |
496 | static DEFINE_MUTEX(memcg_create_mutex); | |
497 | ||
b2145145 WL |
498 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) |
499 | { | |
a7c6d554 | 500 | return s ? container_of(s, struct mem_cgroup, css) : NULL; |
b2145145 WL |
501 | } |
502 | ||
70ddf637 AV |
503 | /* Some nice accessors for the vmpressure. */ |
504 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
505 | { | |
506 | if (!memcg) | |
507 | memcg = root_mem_cgroup; | |
508 | return &memcg->vmpressure; | |
509 | } | |
510 | ||
511 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
512 | { | |
513 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
514 | } | |
515 | ||
7ffc0edc MH |
516 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
517 | { | |
518 | return (memcg == root_mem_cgroup); | |
519 | } | |
520 | ||
4219b2da LZ |
521 | /* |
522 | * We restrict the id in the range of [1, 65535], so it can fit into | |
523 | * an unsigned short. | |
524 | */ | |
525 | #define MEM_CGROUP_ID_MAX USHRT_MAX | |
526 | ||
34c00c31 LZ |
527 | static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) |
528 | { | |
15a4c835 | 529 | return memcg->css.id; |
34c00c31 LZ |
530 | } |
531 | ||
532 | static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
533 | { | |
534 | struct cgroup_subsys_state *css; | |
535 | ||
7d699ddb | 536 | css = css_from_id(id, &memory_cgrp_subsys); |
34c00c31 LZ |
537 | return mem_cgroup_from_css(css); |
538 | } | |
539 | ||
e1aab161 | 540 | /* Writing them here to avoid exposing memcg's inner layout */ |
4bd2c1ee | 541 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
e1aab161 | 542 | |
e1aab161 GC |
543 | void sock_update_memcg(struct sock *sk) |
544 | { | |
376be5ff | 545 | if (mem_cgroup_sockets_enabled) { |
e1aab161 | 546 | struct mem_cgroup *memcg; |
3f134619 | 547 | struct cg_proto *cg_proto; |
e1aab161 GC |
548 | |
549 | BUG_ON(!sk->sk_prot->proto_cgroup); | |
550 | ||
f3f511e1 GC |
551 | /* Socket cloning can throw us here with sk_cgrp already |
552 | * filled. It won't however, necessarily happen from | |
553 | * process context. So the test for root memcg given | |
554 | * the current task's memcg won't help us in this case. | |
555 | * | |
556 | * Respecting the original socket's memcg is a better | |
557 | * decision in this case. | |
558 | */ | |
559 | if (sk->sk_cgrp) { | |
560 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | |
5347e5ae | 561 | css_get(&sk->sk_cgrp->memcg->css); |
f3f511e1 GC |
562 | return; |
563 | } | |
564 | ||
e1aab161 GC |
565 | rcu_read_lock(); |
566 | memcg = mem_cgroup_from_task(current); | |
3f134619 | 567 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
5347e5ae | 568 | if (!mem_cgroup_is_root(memcg) && |
ec903c0c TH |
569 | memcg_proto_active(cg_proto) && |
570 | css_tryget_online(&memcg->css)) { | |
3f134619 | 571 | sk->sk_cgrp = cg_proto; |
e1aab161 GC |
572 | } |
573 | rcu_read_unlock(); | |
574 | } | |
575 | } | |
576 | EXPORT_SYMBOL(sock_update_memcg); | |
577 | ||
578 | void sock_release_memcg(struct sock *sk) | |
579 | { | |
376be5ff | 580 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
e1aab161 GC |
581 | struct mem_cgroup *memcg; |
582 | WARN_ON(!sk->sk_cgrp->memcg); | |
583 | memcg = sk->sk_cgrp->memcg; | |
5347e5ae | 584 | css_put(&sk->sk_cgrp->memcg->css); |
e1aab161 GC |
585 | } |
586 | } | |
d1a4c0b3 GC |
587 | |
588 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | |
589 | { | |
590 | if (!memcg || mem_cgroup_is_root(memcg)) | |
591 | return NULL; | |
592 | ||
2e685cad | 593 | return &memcg->tcp_mem; |
d1a4c0b3 GC |
594 | } |
595 | EXPORT_SYMBOL(tcp_proto_cgroup); | |
e1aab161 | 596 | |
3f134619 GC |
597 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
598 | { | |
2e685cad | 599 | if (!memcg_proto_activated(&memcg->tcp_mem)) |
3f134619 GC |
600 | return; |
601 | static_key_slow_dec(&memcg_socket_limit_enabled); | |
602 | } | |
603 | #else | |
604 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
605 | { | |
606 | } | |
607 | #endif | |
608 | ||
a8964b9b | 609 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 GC |
610 | /* |
611 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | |
b8627835 LZ |
612 | * The main reason for not using cgroup id for this: |
613 | * this works better in sparse environments, where we have a lot of memcgs, | |
614 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
615 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
616 | * 200 entry array for that. | |
55007d84 GC |
617 | * |
618 | * The current size of the caches array is stored in | |
619 | * memcg_limited_groups_array_size. It will double each time we have to | |
620 | * increase it. | |
621 | */ | |
622 | static DEFINE_IDA(kmem_limited_groups); | |
749c5415 GC |
623 | int memcg_limited_groups_array_size; |
624 | ||
55007d84 GC |
625 | /* |
626 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
627 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
628 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
629 | * tunable, but that is strictly not necessary. | |
630 | * | |
b8627835 | 631 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get |
55007d84 GC |
632 | * this constant directly from cgroup, but it is understandable that this is |
633 | * better kept as an internal representation in cgroup.c. In any case, the | |
b8627835 | 634 | * cgrp_id space is not getting any smaller, and we don't have to necessarily |
55007d84 GC |
635 | * increase ours as well if it increases. |
636 | */ | |
637 | #define MEMCG_CACHES_MIN_SIZE 4 | |
b8627835 | 638 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX |
55007d84 | 639 | |
d7f25f8a GC |
640 | /* |
641 | * A lot of the calls to the cache allocation functions are expected to be | |
642 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
643 | * conditional to this static branch, we'll have to allow modules that does | |
644 | * kmem_cache_alloc and the such to see this symbol as well | |
645 | */ | |
a8964b9b | 646 | struct static_key memcg_kmem_enabled_key; |
d7f25f8a | 647 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
a8964b9b GC |
648 | |
649 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
650 | { | |
55007d84 | 651 | if (memcg_kmem_is_active(memcg)) { |
a8964b9b | 652 | static_key_slow_dec(&memcg_kmem_enabled_key); |
55007d84 GC |
653 | ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); |
654 | } | |
bea207c8 GC |
655 | /* |
656 | * This check can't live in kmem destruction function, | |
657 | * since the charges will outlive the cgroup | |
658 | */ | |
659 | WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); | |
a8964b9b GC |
660 | } |
661 | #else | |
662 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
663 | { | |
664 | } | |
665 | #endif /* CONFIG_MEMCG_KMEM */ | |
666 | ||
667 | static void disarm_static_keys(struct mem_cgroup *memcg) | |
668 | { | |
669 | disarm_sock_keys(memcg); | |
670 | disarm_kmem_keys(memcg); | |
671 | } | |
672 | ||
c0ff4b85 | 673 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
8c7c6e34 | 674 | |
f64c3f54 | 675 | static struct mem_cgroup_per_zone * |
e231875b | 676 | mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) |
f64c3f54 | 677 | { |
e231875b JZ |
678 | int nid = zone_to_nid(zone); |
679 | int zid = zone_idx(zone); | |
680 | ||
54f72fe0 | 681 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
682 | } |
683 | ||
c0ff4b85 | 684 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
d324236b | 685 | { |
c0ff4b85 | 686 | return &memcg->css; |
d324236b WF |
687 | } |
688 | ||
f64c3f54 | 689 | static struct mem_cgroup_per_zone * |
e231875b | 690 | mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 691 | { |
97a6c37b JW |
692 | int nid = page_to_nid(page); |
693 | int zid = page_zonenum(page); | |
f64c3f54 | 694 | |
e231875b | 695 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
696 | } |
697 | ||
bb4cc1a8 AM |
698 | static struct mem_cgroup_tree_per_zone * |
699 | soft_limit_tree_node_zone(int nid, int zid) | |
700 | { | |
701 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
702 | } | |
703 | ||
704 | static struct mem_cgroup_tree_per_zone * | |
705 | soft_limit_tree_from_page(struct page *page) | |
706 | { | |
707 | int nid = page_to_nid(page); | |
708 | int zid = page_zonenum(page); | |
709 | ||
710 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
711 | } | |
712 | ||
cf2c8127 JW |
713 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, |
714 | struct mem_cgroup_tree_per_zone *mctz, | |
715 | unsigned long long new_usage_in_excess) | |
bb4cc1a8 AM |
716 | { |
717 | struct rb_node **p = &mctz->rb_root.rb_node; | |
718 | struct rb_node *parent = NULL; | |
719 | struct mem_cgroup_per_zone *mz_node; | |
720 | ||
721 | if (mz->on_tree) | |
722 | return; | |
723 | ||
724 | mz->usage_in_excess = new_usage_in_excess; | |
725 | if (!mz->usage_in_excess) | |
726 | return; | |
727 | while (*p) { | |
728 | parent = *p; | |
729 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
730 | tree_node); | |
731 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
732 | p = &(*p)->rb_left; | |
733 | /* | |
734 | * We can't avoid mem cgroups that are over their soft | |
735 | * limit by the same amount | |
736 | */ | |
737 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
738 | p = &(*p)->rb_right; | |
739 | } | |
740 | rb_link_node(&mz->tree_node, parent, p); | |
741 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
742 | mz->on_tree = true; | |
743 | } | |
744 | ||
cf2c8127 JW |
745 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, |
746 | struct mem_cgroup_tree_per_zone *mctz) | |
bb4cc1a8 AM |
747 | { |
748 | if (!mz->on_tree) | |
749 | return; | |
750 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
751 | mz->on_tree = false; | |
752 | } | |
753 | ||
cf2c8127 JW |
754 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, |
755 | struct mem_cgroup_tree_per_zone *mctz) | |
bb4cc1a8 AM |
756 | { |
757 | spin_lock(&mctz->lock); | |
cf2c8127 | 758 | __mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
759 | spin_unlock(&mctz->lock); |
760 | } | |
761 | ||
762 | ||
763 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
764 | { | |
765 | unsigned long long excess; | |
766 | struct mem_cgroup_per_zone *mz; | |
767 | struct mem_cgroup_tree_per_zone *mctz; | |
bb4cc1a8 | 768 | |
e231875b | 769 | mctz = soft_limit_tree_from_page(page); |
bb4cc1a8 AM |
770 | /* |
771 | * Necessary to update all ancestors when hierarchy is used. | |
772 | * because their event counter is not touched. | |
773 | */ | |
774 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
e231875b | 775 | mz = mem_cgroup_page_zoneinfo(memcg, page); |
bb4cc1a8 AM |
776 | excess = res_counter_soft_limit_excess(&memcg->res); |
777 | /* | |
778 | * We have to update the tree if mz is on RB-tree or | |
779 | * mem is over its softlimit. | |
780 | */ | |
781 | if (excess || mz->on_tree) { | |
782 | spin_lock(&mctz->lock); | |
783 | /* if on-tree, remove it */ | |
784 | if (mz->on_tree) | |
cf2c8127 | 785 | __mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
786 | /* |
787 | * Insert again. mz->usage_in_excess will be updated. | |
788 | * If excess is 0, no tree ops. | |
789 | */ | |
cf2c8127 | 790 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
bb4cc1a8 AM |
791 | spin_unlock(&mctz->lock); |
792 | } | |
793 | } | |
794 | } | |
795 | ||
796 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
797 | { | |
bb4cc1a8 | 798 | struct mem_cgroup_tree_per_zone *mctz; |
e231875b JZ |
799 | struct mem_cgroup_per_zone *mz; |
800 | int nid, zid; | |
bb4cc1a8 | 801 | |
e231875b JZ |
802 | for_each_node(nid) { |
803 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
804 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
805 | mctz = soft_limit_tree_node_zone(nid, zid); | |
cf2c8127 | 806 | mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
807 | } |
808 | } | |
809 | } | |
810 | ||
811 | static struct mem_cgroup_per_zone * | |
812 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
813 | { | |
814 | struct rb_node *rightmost = NULL; | |
815 | struct mem_cgroup_per_zone *mz; | |
816 | ||
817 | retry: | |
818 | mz = NULL; | |
819 | rightmost = rb_last(&mctz->rb_root); | |
820 | if (!rightmost) | |
821 | goto done; /* Nothing to reclaim from */ | |
822 | ||
823 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
824 | /* | |
825 | * Remove the node now but someone else can add it back, | |
826 | * we will to add it back at the end of reclaim to its correct | |
827 | * position in the tree. | |
828 | */ | |
cf2c8127 | 829 | __mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 | 830 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || |
ec903c0c | 831 | !css_tryget_online(&mz->memcg->css)) |
bb4cc1a8 AM |
832 | goto retry; |
833 | done: | |
834 | return mz; | |
835 | } | |
836 | ||
837 | static struct mem_cgroup_per_zone * | |
838 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
839 | { | |
840 | struct mem_cgroup_per_zone *mz; | |
841 | ||
842 | spin_lock(&mctz->lock); | |
843 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
844 | spin_unlock(&mctz->lock); | |
845 | return mz; | |
846 | } | |
847 | ||
711d3d2c KH |
848 | /* |
849 | * Implementation Note: reading percpu statistics for memcg. | |
850 | * | |
851 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
852 | * synchronization to implement "quick" read. There are trade-off between | |
853 | * reading cost and precision of value. Then, we may have a chance to implement | |
854 | * a periodic synchronizion of counter in memcg's counter. | |
855 | * | |
856 | * But this _read() function is used for user interface now. The user accounts | |
857 | * memory usage by memory cgroup and he _always_ requires exact value because | |
858 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
859 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
860 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
861 | * | |
862 | * If there are kernel internal actions which can make use of some not-exact | |
863 | * value, and reading all cpu value can be performance bottleneck in some | |
864 | * common workload, threashold and synchonization as vmstat[] should be | |
865 | * implemented. | |
866 | */ | |
c0ff4b85 | 867 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
7a159cc9 | 868 | enum mem_cgroup_stat_index idx) |
c62b1a3b | 869 | { |
7a159cc9 | 870 | long val = 0; |
c62b1a3b | 871 | int cpu; |
c62b1a3b | 872 | |
711d3d2c KH |
873 | get_online_cpus(); |
874 | for_each_online_cpu(cpu) | |
c0ff4b85 | 875 | val += per_cpu(memcg->stat->count[idx], cpu); |
711d3d2c | 876 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
877 | spin_lock(&memcg->pcp_counter_lock); |
878 | val += memcg->nocpu_base.count[idx]; | |
879 | spin_unlock(&memcg->pcp_counter_lock); | |
711d3d2c KH |
880 | #endif |
881 | put_online_cpus(); | |
c62b1a3b KH |
882 | return val; |
883 | } | |
884 | ||
c0ff4b85 | 885 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
0c3e73e8 BS |
886 | bool charge) |
887 | { | |
888 | int val = (charge) ? 1 : -1; | |
bff6bb83 | 889 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
0c3e73e8 BS |
890 | } |
891 | ||
c0ff4b85 | 892 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
e9f8974f JW |
893 | enum mem_cgroup_events_index idx) |
894 | { | |
895 | unsigned long val = 0; | |
896 | int cpu; | |
897 | ||
9c567512 | 898 | get_online_cpus(); |
e9f8974f | 899 | for_each_online_cpu(cpu) |
c0ff4b85 | 900 | val += per_cpu(memcg->stat->events[idx], cpu); |
e9f8974f | 901 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
902 | spin_lock(&memcg->pcp_counter_lock); |
903 | val += memcg->nocpu_base.events[idx]; | |
904 | spin_unlock(&memcg->pcp_counter_lock); | |
e9f8974f | 905 | #endif |
9c567512 | 906 | put_online_cpus(); |
e9f8974f JW |
907 | return val; |
908 | } | |
909 | ||
c0ff4b85 | 910 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
b070e65c | 911 | struct page *page, |
b2402857 | 912 | bool anon, int nr_pages) |
d52aa412 | 913 | { |
b2402857 KH |
914 | /* |
915 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
916 | * counted as CACHE even if it's on ANON LRU. | |
917 | */ | |
918 | if (anon) | |
919 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | |
c0ff4b85 | 920 | nr_pages); |
d52aa412 | 921 | else |
b2402857 | 922 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
c0ff4b85 | 923 | nr_pages); |
55e462b0 | 924 | |
b070e65c DR |
925 | if (PageTransHuge(page)) |
926 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
927 | nr_pages); | |
928 | ||
e401f176 KH |
929 | /* pagein of a big page is an event. So, ignore page size */ |
930 | if (nr_pages > 0) | |
c0ff4b85 | 931 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 932 | else { |
c0ff4b85 | 933 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
934 | nr_pages = -nr_pages; /* for event */ |
935 | } | |
e401f176 | 936 | |
13114716 | 937 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
6d12e2d8 KH |
938 | } |
939 | ||
e231875b | 940 | unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
074291fe KK |
941 | { |
942 | struct mem_cgroup_per_zone *mz; | |
943 | ||
944 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
945 | return mz->lru_size[lru]; | |
946 | } | |
947 | ||
e231875b JZ |
948 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
949 | int nid, | |
950 | unsigned int lru_mask) | |
bb2a0de9 | 951 | { |
e231875b | 952 | unsigned long nr = 0; |
889976db YH |
953 | int zid; |
954 | ||
e231875b | 955 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
bb2a0de9 | 956 | |
e231875b JZ |
957 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
958 | struct mem_cgroup_per_zone *mz; | |
959 | enum lru_list lru; | |
960 | ||
961 | for_each_lru(lru) { | |
962 | if (!(BIT(lru) & lru_mask)) | |
963 | continue; | |
964 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
965 | nr += mz->lru_size[lru]; | |
966 | } | |
967 | } | |
968 | return nr; | |
889976db | 969 | } |
bb2a0de9 | 970 | |
c0ff4b85 | 971 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 | 972 | unsigned int lru_mask) |
6d12e2d8 | 973 | { |
e231875b | 974 | unsigned long nr = 0; |
889976db | 975 | int nid; |
6d12e2d8 | 976 | |
31aaea4a | 977 | for_each_node_state(nid, N_MEMORY) |
e231875b JZ |
978 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
979 | return nr; | |
d52aa412 KH |
980 | } |
981 | ||
f53d7ce3 JW |
982 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
983 | enum mem_cgroup_events_target target) | |
7a159cc9 JW |
984 | { |
985 | unsigned long val, next; | |
986 | ||
13114716 | 987 | val = __this_cpu_read(memcg->stat->nr_page_events); |
4799401f | 988 | next = __this_cpu_read(memcg->stat->targets[target]); |
7a159cc9 | 989 | /* from time_after() in jiffies.h */ |
f53d7ce3 JW |
990 | if ((long)next - (long)val < 0) { |
991 | switch (target) { | |
992 | case MEM_CGROUP_TARGET_THRESH: | |
993 | next = val + THRESHOLDS_EVENTS_TARGET; | |
994 | break; | |
bb4cc1a8 AM |
995 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
996 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
997 | break; | |
f53d7ce3 JW |
998 | case MEM_CGROUP_TARGET_NUMAINFO: |
999 | next = val + NUMAINFO_EVENTS_TARGET; | |
1000 | break; | |
1001 | default: | |
1002 | break; | |
1003 | } | |
1004 | __this_cpu_write(memcg->stat->targets[target], next); | |
1005 | return true; | |
7a159cc9 | 1006 | } |
f53d7ce3 | 1007 | return false; |
d2265e6f KH |
1008 | } |
1009 | ||
1010 | /* | |
1011 | * Check events in order. | |
1012 | * | |
1013 | */ | |
c0ff4b85 | 1014 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
d2265e6f | 1015 | { |
4799401f | 1016 | preempt_disable(); |
d2265e6f | 1017 | /* threshold event is triggered in finer grain than soft limit */ |
f53d7ce3 JW |
1018 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
1019 | MEM_CGROUP_TARGET_THRESH))) { | |
bb4cc1a8 | 1020 | bool do_softlimit; |
82b3f2a7 | 1021 | bool do_numainfo __maybe_unused; |
f53d7ce3 | 1022 | |
bb4cc1a8 AM |
1023 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
1024 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
f53d7ce3 JW |
1025 | #if MAX_NUMNODES > 1 |
1026 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
1027 | MEM_CGROUP_TARGET_NUMAINFO); | |
1028 | #endif | |
1029 | preempt_enable(); | |
1030 | ||
c0ff4b85 | 1031 | mem_cgroup_threshold(memcg); |
bb4cc1a8 AM |
1032 | if (unlikely(do_softlimit)) |
1033 | mem_cgroup_update_tree(memcg, page); | |
453a9bf3 | 1034 | #if MAX_NUMNODES > 1 |
f53d7ce3 | 1035 | if (unlikely(do_numainfo)) |
c0ff4b85 | 1036 | atomic_inc(&memcg->numainfo_events); |
453a9bf3 | 1037 | #endif |
f53d7ce3 JW |
1038 | } else |
1039 | preempt_enable(); | |
d2265e6f KH |
1040 | } |
1041 | ||
cf475ad2 | 1042 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 1043 | { |
31a78f23 BS |
1044 | /* |
1045 | * mm_update_next_owner() may clear mm->owner to NULL | |
1046 | * if it races with swapoff, page migration, etc. | |
1047 | * So this can be called with p == NULL. | |
1048 | */ | |
1049 | if (unlikely(!p)) | |
1050 | return NULL; | |
1051 | ||
073219e9 | 1052 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); |
78fb7466 PE |
1053 | } |
1054 | ||
df381975 | 1055 | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
54595fe2 | 1056 | { |
c0ff4b85 | 1057 | struct mem_cgroup *memcg = NULL; |
0b7f569e | 1058 | |
54595fe2 KH |
1059 | rcu_read_lock(); |
1060 | do { | |
6f6acb00 MH |
1061 | /* |
1062 | * Page cache insertions can happen withou an | |
1063 | * actual mm context, e.g. during disk probing | |
1064 | * on boot, loopback IO, acct() writes etc. | |
1065 | */ | |
1066 | if (unlikely(!mm)) | |
df381975 | 1067 | memcg = root_mem_cgroup; |
6f6acb00 MH |
1068 | else { |
1069 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
1070 | if (unlikely(!memcg)) | |
1071 | memcg = root_mem_cgroup; | |
1072 | } | |
ec903c0c | 1073 | } while (!css_tryget_online(&memcg->css)); |
54595fe2 | 1074 | rcu_read_unlock(); |
c0ff4b85 | 1075 | return memcg; |
54595fe2 KH |
1076 | } |
1077 | ||
16248d8f MH |
1078 | /* |
1079 | * Returns a next (in a pre-order walk) alive memcg (with elevated css | |
1080 | * ref. count) or NULL if the whole root's subtree has been visited. | |
1081 | * | |
1082 | * helper function to be used by mem_cgroup_iter | |
1083 | */ | |
1084 | static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, | |
694fbc0f | 1085 | struct mem_cgroup *last_visited) |
16248d8f | 1086 | { |
492eb21b | 1087 | struct cgroup_subsys_state *prev_css, *next_css; |
16248d8f | 1088 | |
bd8815a6 | 1089 | prev_css = last_visited ? &last_visited->css : NULL; |
16248d8f | 1090 | skip_node: |
492eb21b | 1091 | next_css = css_next_descendant_pre(prev_css, &root->css); |
16248d8f MH |
1092 | |
1093 | /* | |
1094 | * Even if we found a group we have to make sure it is | |
1095 | * alive. css && !memcg means that the groups should be | |
1096 | * skipped and we should continue the tree walk. | |
1097 | * last_visited css is safe to use because it is | |
1098 | * protected by css_get and the tree walk is rcu safe. | |
0eef6156 MH |
1099 | * |
1100 | * We do not take a reference on the root of the tree walk | |
1101 | * because we might race with the root removal when it would | |
1102 | * be the only node in the iterated hierarchy and mem_cgroup_iter | |
1103 | * would end up in an endless loop because it expects that at | |
1104 | * least one valid node will be returned. Root cannot disappear | |
1105 | * because caller of the iterator should hold it already so | |
1106 | * skipping css reference should be safe. | |
16248d8f | 1107 | */ |
492eb21b | 1108 | if (next_css) { |
ce48225f | 1109 | if ((next_css == &root->css) || |
ec903c0c TH |
1110 | ((next_css->flags & CSS_ONLINE) && |
1111 | css_tryget_online(next_css))) | |
d8ad3055 | 1112 | return mem_cgroup_from_css(next_css); |
0eef6156 MH |
1113 | |
1114 | prev_css = next_css; | |
1115 | goto skip_node; | |
16248d8f MH |
1116 | } |
1117 | ||
1118 | return NULL; | |
1119 | } | |
1120 | ||
519ebea3 JW |
1121 | static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) |
1122 | { | |
1123 | /* | |
1124 | * When a group in the hierarchy below root is destroyed, the | |
1125 | * hierarchy iterator can no longer be trusted since it might | |
1126 | * have pointed to the destroyed group. Invalidate it. | |
1127 | */ | |
1128 | atomic_inc(&root->dead_count); | |
1129 | } | |
1130 | ||
1131 | static struct mem_cgroup * | |
1132 | mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, | |
1133 | struct mem_cgroup *root, | |
1134 | int *sequence) | |
1135 | { | |
1136 | struct mem_cgroup *position = NULL; | |
1137 | /* | |
1138 | * A cgroup destruction happens in two stages: offlining and | |
1139 | * release. They are separated by a RCU grace period. | |
1140 | * | |
1141 | * If the iterator is valid, we may still race with an | |
1142 | * offlining. The RCU lock ensures the object won't be | |
1143 | * released, tryget will fail if we lost the race. | |
1144 | */ | |
1145 | *sequence = atomic_read(&root->dead_count); | |
1146 | if (iter->last_dead_count == *sequence) { | |
1147 | smp_rmb(); | |
1148 | position = iter->last_visited; | |
ecc736fc MH |
1149 | |
1150 | /* | |
1151 | * We cannot take a reference to root because we might race | |
1152 | * with root removal and returning NULL would end up in | |
1153 | * an endless loop on the iterator user level when root | |
1154 | * would be returned all the time. | |
1155 | */ | |
1156 | if (position && position != root && | |
ec903c0c | 1157 | !css_tryget_online(&position->css)) |
519ebea3 JW |
1158 | position = NULL; |
1159 | } | |
1160 | return position; | |
1161 | } | |
1162 | ||
1163 | static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, | |
1164 | struct mem_cgroup *last_visited, | |
1165 | struct mem_cgroup *new_position, | |
ecc736fc | 1166 | struct mem_cgroup *root, |
519ebea3 JW |
1167 | int sequence) |
1168 | { | |
ecc736fc MH |
1169 | /* root reference counting symmetric to mem_cgroup_iter_load */ |
1170 | if (last_visited && last_visited != root) | |
519ebea3 JW |
1171 | css_put(&last_visited->css); |
1172 | /* | |
1173 | * We store the sequence count from the time @last_visited was | |
1174 | * loaded successfully instead of rereading it here so that we | |
1175 | * don't lose destruction events in between. We could have | |
1176 | * raced with the destruction of @new_position after all. | |
1177 | */ | |
1178 | iter->last_visited = new_position; | |
1179 | smp_wmb(); | |
1180 | iter->last_dead_count = sequence; | |
1181 | } | |
1182 | ||
5660048c JW |
1183 | /** |
1184 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1185 | * @root: hierarchy root | |
1186 | * @prev: previously returned memcg, NULL on first invocation | |
1187 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1188 | * | |
1189 | * Returns references to children of the hierarchy below @root, or | |
1190 | * @root itself, or %NULL after a full round-trip. | |
1191 | * | |
1192 | * Caller must pass the return value in @prev on subsequent | |
1193 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1194 | * to cancel a hierarchy walk before the round-trip is complete. | |
1195 | * | |
1196 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
1197 | * divide up the memcgs in the hierarchy among all concurrent | |
1198 | * reclaimers operating on the same zone and priority. | |
1199 | */ | |
694fbc0f | 1200 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
5660048c | 1201 | struct mem_cgroup *prev, |
694fbc0f | 1202 | struct mem_cgroup_reclaim_cookie *reclaim) |
14067bb3 | 1203 | { |
9f3a0d09 | 1204 | struct mem_cgroup *memcg = NULL; |
542f85f9 | 1205 | struct mem_cgroup *last_visited = NULL; |
711d3d2c | 1206 | |
694fbc0f AM |
1207 | if (mem_cgroup_disabled()) |
1208 | return NULL; | |
5660048c | 1209 | |
9f3a0d09 JW |
1210 | if (!root) |
1211 | root = root_mem_cgroup; | |
7d74b06f | 1212 | |
9f3a0d09 | 1213 | if (prev && !reclaim) |
542f85f9 | 1214 | last_visited = prev; |
14067bb3 | 1215 | |
9f3a0d09 JW |
1216 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
1217 | if (prev) | |
c40046f3 | 1218 | goto out_css_put; |
694fbc0f | 1219 | return root; |
9f3a0d09 | 1220 | } |
14067bb3 | 1221 | |
542f85f9 | 1222 | rcu_read_lock(); |
9f3a0d09 | 1223 | while (!memcg) { |
527a5ec9 | 1224 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
519ebea3 | 1225 | int uninitialized_var(seq); |
711d3d2c | 1226 | |
527a5ec9 | 1227 | if (reclaim) { |
527a5ec9 JW |
1228 | struct mem_cgroup_per_zone *mz; |
1229 | ||
e231875b | 1230 | mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); |
527a5ec9 | 1231 | iter = &mz->reclaim_iter[reclaim->priority]; |
542f85f9 | 1232 | if (prev && reclaim->generation != iter->generation) { |
5f578161 | 1233 | iter->last_visited = NULL; |
542f85f9 MH |
1234 | goto out_unlock; |
1235 | } | |
5f578161 | 1236 | |
519ebea3 | 1237 | last_visited = mem_cgroup_iter_load(iter, root, &seq); |
527a5ec9 | 1238 | } |
7d74b06f | 1239 | |
694fbc0f | 1240 | memcg = __mem_cgroup_iter_next(root, last_visited); |
14067bb3 | 1241 | |
527a5ec9 | 1242 | if (reclaim) { |
ecc736fc MH |
1243 | mem_cgroup_iter_update(iter, last_visited, memcg, root, |
1244 | seq); | |
542f85f9 | 1245 | |
19f39402 | 1246 | if (!memcg) |
527a5ec9 JW |
1247 | iter->generation++; |
1248 | else if (!prev && memcg) | |
1249 | reclaim->generation = iter->generation; | |
1250 | } | |
9f3a0d09 | 1251 | |
694fbc0f | 1252 | if (prev && !memcg) |
542f85f9 | 1253 | goto out_unlock; |
9f3a0d09 | 1254 | } |
542f85f9 MH |
1255 | out_unlock: |
1256 | rcu_read_unlock(); | |
c40046f3 MH |
1257 | out_css_put: |
1258 | if (prev && prev != root) | |
1259 | css_put(&prev->css); | |
1260 | ||
9f3a0d09 | 1261 | return memcg; |
14067bb3 | 1262 | } |
7d74b06f | 1263 | |
5660048c JW |
1264 | /** |
1265 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1266 | * @root: hierarchy root | |
1267 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1268 | */ | |
1269 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1270 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
1271 | { |
1272 | if (!root) | |
1273 | root = root_mem_cgroup; | |
1274 | if (prev && prev != root) | |
1275 | css_put(&prev->css); | |
1276 | } | |
7d74b06f | 1277 | |
9f3a0d09 JW |
1278 | /* |
1279 | * Iteration constructs for visiting all cgroups (under a tree). If | |
1280 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
1281 | * be used for reference counting. | |
1282 | */ | |
1283 | #define for_each_mem_cgroup_tree(iter, root) \ | |
527a5ec9 | 1284 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
9f3a0d09 | 1285 | iter != NULL; \ |
527a5ec9 | 1286 | iter = mem_cgroup_iter(root, iter, NULL)) |
711d3d2c | 1287 | |
9f3a0d09 | 1288 | #define for_each_mem_cgroup(iter) \ |
527a5ec9 | 1289 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
9f3a0d09 | 1290 | iter != NULL; \ |
527a5ec9 | 1291 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
14067bb3 | 1292 | |
68ae564b | 1293 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
456f998e | 1294 | { |
c0ff4b85 | 1295 | struct mem_cgroup *memcg; |
456f998e | 1296 | |
456f998e | 1297 | rcu_read_lock(); |
c0ff4b85 R |
1298 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1299 | if (unlikely(!memcg)) | |
456f998e YH |
1300 | goto out; |
1301 | ||
1302 | switch (idx) { | |
456f998e | 1303 | case PGFAULT: |
0e574a93 JW |
1304 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1305 | break; | |
1306 | case PGMAJFAULT: | |
1307 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
456f998e YH |
1308 | break; |
1309 | default: | |
1310 | BUG(); | |
1311 | } | |
1312 | out: | |
1313 | rcu_read_unlock(); | |
1314 | } | |
68ae564b | 1315 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); |
456f998e | 1316 | |
925b7673 JW |
1317 | /** |
1318 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
1319 | * @zone: zone of the wanted lruvec | |
fa9add64 | 1320 | * @memcg: memcg of the wanted lruvec |
925b7673 JW |
1321 | * |
1322 | * Returns the lru list vector holding pages for the given @zone and | |
1323 | * @mem. This can be the global zone lruvec, if the memory controller | |
1324 | * is disabled. | |
1325 | */ | |
1326 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
1327 | struct mem_cgroup *memcg) | |
1328 | { | |
1329 | struct mem_cgroup_per_zone *mz; | |
bea8c150 | 1330 | struct lruvec *lruvec; |
925b7673 | 1331 | |
bea8c150 HD |
1332 | if (mem_cgroup_disabled()) { |
1333 | lruvec = &zone->lruvec; | |
1334 | goto out; | |
1335 | } | |
925b7673 | 1336 | |
e231875b | 1337 | mz = mem_cgroup_zone_zoneinfo(memcg, zone); |
bea8c150 HD |
1338 | lruvec = &mz->lruvec; |
1339 | out: | |
1340 | /* | |
1341 | * Since a node can be onlined after the mem_cgroup was created, | |
1342 | * we have to be prepared to initialize lruvec->zone here; | |
1343 | * and if offlined then reonlined, we need to reinitialize it. | |
1344 | */ | |
1345 | if (unlikely(lruvec->zone != zone)) | |
1346 | lruvec->zone = zone; | |
1347 | return lruvec; | |
925b7673 JW |
1348 | } |
1349 | ||
08e552c6 KH |
1350 | /* |
1351 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
1352 | * Operations are called by routine of global LRU independently from memcg. | |
1353 | * What we have to take care of here is validness of pc->mem_cgroup. | |
1354 | * | |
1355 | * Changes to pc->mem_cgroup happens when | |
1356 | * 1. charge | |
1357 | * 2. moving account | |
1358 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
1359 | * It is added to LRU before charge. | |
1360 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
1361 | * When moving account, the page is not on LRU. It's isolated. | |
1362 | */ | |
4f98a2fe | 1363 | |
925b7673 | 1364 | /** |
fa9add64 | 1365 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
925b7673 | 1366 | * @page: the page |
fa9add64 | 1367 | * @zone: zone of the page |
925b7673 | 1368 | */ |
fa9add64 | 1369 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
08e552c6 | 1370 | { |
08e552c6 | 1371 | struct mem_cgroup_per_zone *mz; |
925b7673 JW |
1372 | struct mem_cgroup *memcg; |
1373 | struct page_cgroup *pc; | |
bea8c150 | 1374 | struct lruvec *lruvec; |
6d12e2d8 | 1375 | |
bea8c150 HD |
1376 | if (mem_cgroup_disabled()) { |
1377 | lruvec = &zone->lruvec; | |
1378 | goto out; | |
1379 | } | |
925b7673 | 1380 | |
08e552c6 | 1381 | pc = lookup_page_cgroup(page); |
38c5d72f | 1382 | memcg = pc->mem_cgroup; |
7512102c HD |
1383 | |
1384 | /* | |
fa9add64 | 1385 | * Surreptitiously switch any uncharged offlist page to root: |
7512102c HD |
1386 | * an uncharged page off lru does nothing to secure |
1387 | * its former mem_cgroup from sudden removal. | |
1388 | * | |
1389 | * Our caller holds lru_lock, and PageCgroupUsed is updated | |
1390 | * under page_cgroup lock: between them, they make all uses | |
1391 | * of pc->mem_cgroup safe. | |
1392 | */ | |
fa9add64 | 1393 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
7512102c HD |
1394 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1395 | ||
e231875b | 1396 | mz = mem_cgroup_page_zoneinfo(memcg, page); |
bea8c150 HD |
1397 | lruvec = &mz->lruvec; |
1398 | out: | |
1399 | /* | |
1400 | * Since a node can be onlined after the mem_cgroup was created, | |
1401 | * we have to be prepared to initialize lruvec->zone here; | |
1402 | * and if offlined then reonlined, we need to reinitialize it. | |
1403 | */ | |
1404 | if (unlikely(lruvec->zone != zone)) | |
1405 | lruvec->zone = zone; | |
1406 | return lruvec; | |
08e552c6 | 1407 | } |
b69408e8 | 1408 | |
925b7673 | 1409 | /** |
fa9add64 HD |
1410 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1411 | * @lruvec: mem_cgroup per zone lru vector | |
1412 | * @lru: index of lru list the page is sitting on | |
1413 | * @nr_pages: positive when adding or negative when removing | |
925b7673 | 1414 | * |
fa9add64 HD |
1415 | * This function must be called when a page is added to or removed from an |
1416 | * lru list. | |
3f58a829 | 1417 | */ |
fa9add64 HD |
1418 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1419 | int nr_pages) | |
3f58a829 MK |
1420 | { |
1421 | struct mem_cgroup_per_zone *mz; | |
fa9add64 | 1422 | unsigned long *lru_size; |
3f58a829 MK |
1423 | |
1424 | if (mem_cgroup_disabled()) | |
1425 | return; | |
1426 | ||
fa9add64 HD |
1427 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1428 | lru_size = mz->lru_size + lru; | |
1429 | *lru_size += nr_pages; | |
1430 | VM_BUG_ON((long)(*lru_size) < 0); | |
08e552c6 | 1431 | } |
544122e5 | 1432 | |
3e92041d | 1433 | /* |
c0ff4b85 | 1434 | * Checks whether given mem is same or in the root_mem_cgroup's |
3e92041d MH |
1435 | * hierarchy subtree |
1436 | */ | |
c3ac9a8a JW |
1437 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1438 | struct mem_cgroup *memcg) | |
3e92041d | 1439 | { |
91c63734 JW |
1440 | if (root_memcg == memcg) |
1441 | return true; | |
3a981f48 | 1442 | if (!root_memcg->use_hierarchy || !memcg) |
91c63734 | 1443 | return false; |
b47f77b5 | 1444 | return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); |
c3ac9a8a JW |
1445 | } |
1446 | ||
1447 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | |
1448 | struct mem_cgroup *memcg) | |
1449 | { | |
1450 | bool ret; | |
1451 | ||
91c63734 | 1452 | rcu_read_lock(); |
c3ac9a8a | 1453 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
91c63734 JW |
1454 | rcu_read_unlock(); |
1455 | return ret; | |
3e92041d MH |
1456 | } |
1457 | ||
ffbdccf5 DR |
1458 | bool task_in_mem_cgroup(struct task_struct *task, |
1459 | const struct mem_cgroup *memcg) | |
4c4a2214 | 1460 | { |
0b7f569e | 1461 | struct mem_cgroup *curr = NULL; |
158e0a2d | 1462 | struct task_struct *p; |
ffbdccf5 | 1463 | bool ret; |
4c4a2214 | 1464 | |
158e0a2d | 1465 | p = find_lock_task_mm(task); |
de077d22 | 1466 | if (p) { |
df381975 | 1467 | curr = get_mem_cgroup_from_mm(p->mm); |
de077d22 DR |
1468 | task_unlock(p); |
1469 | } else { | |
1470 | /* | |
1471 | * All threads may have already detached their mm's, but the oom | |
1472 | * killer still needs to detect if they have already been oom | |
1473 | * killed to prevent needlessly killing additional tasks. | |
1474 | */ | |
ffbdccf5 | 1475 | rcu_read_lock(); |
de077d22 DR |
1476 | curr = mem_cgroup_from_task(task); |
1477 | if (curr) | |
1478 | css_get(&curr->css); | |
ffbdccf5 | 1479 | rcu_read_unlock(); |
de077d22 | 1480 | } |
d31f56db | 1481 | /* |
c0ff4b85 | 1482 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
d31f56db | 1483 | * use_hierarchy of "curr" here make this function true if hierarchy is |
c0ff4b85 R |
1484 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1485 | * hierarchy(even if use_hierarchy is disabled in "memcg"). | |
d31f56db | 1486 | */ |
c0ff4b85 | 1487 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
0b7f569e | 1488 | css_put(&curr->css); |
4c4a2214 DR |
1489 | return ret; |
1490 | } | |
1491 | ||
c56d5c7d | 1492 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1493 | { |
9b272977 | 1494 | unsigned long inactive_ratio; |
14797e23 | 1495 | unsigned long inactive; |
9b272977 | 1496 | unsigned long active; |
c772be93 | 1497 | unsigned long gb; |
14797e23 | 1498 | |
4d7dcca2 HD |
1499 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1500 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | |
14797e23 | 1501 | |
c772be93 KM |
1502 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1503 | if (gb) | |
1504 | inactive_ratio = int_sqrt(10 * gb); | |
1505 | else | |
1506 | inactive_ratio = 1; | |
1507 | ||
9b272977 | 1508 | return inactive * inactive_ratio < active; |
14797e23 KM |
1509 | } |
1510 | ||
6d61ef40 BS |
1511 | #define mem_cgroup_from_res_counter(counter, member) \ |
1512 | container_of(counter, struct mem_cgroup, member) | |
1513 | ||
19942822 | 1514 | /** |
9d11ea9f | 1515 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1516 | * @memcg: the memory cgroup |
19942822 | 1517 | * |
9d11ea9f | 1518 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1519 | * pages. |
19942822 | 1520 | */ |
c0ff4b85 | 1521 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1522 | { |
9d11ea9f JW |
1523 | unsigned long long margin; |
1524 | ||
c0ff4b85 | 1525 | margin = res_counter_margin(&memcg->res); |
9d11ea9f | 1526 | if (do_swap_account) |
c0ff4b85 | 1527 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
7ec99d62 | 1528 | return margin >> PAGE_SHIFT; |
19942822 JW |
1529 | } |
1530 | ||
1f4c025b | 1531 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
a7885eb8 | 1532 | { |
a7885eb8 | 1533 | /* root ? */ |
14208b0e | 1534 | if (mem_cgroup_disabled() || !memcg->css.parent) |
a7885eb8 KM |
1535 | return vm_swappiness; |
1536 | ||
bf1ff263 | 1537 | return memcg->swappiness; |
a7885eb8 KM |
1538 | } |
1539 | ||
619d094b KH |
1540 | /* |
1541 | * memcg->moving_account is used for checking possibility that some thread is | |
1542 | * calling move_account(). When a thread on CPU-A starts moving pages under | |
1543 | * a memcg, other threads should check memcg->moving_account under | |
1544 | * rcu_read_lock(), like this: | |
1545 | * | |
1546 | * CPU-A CPU-B | |
1547 | * rcu_read_lock() | |
1548 | * memcg->moving_account+1 if (memcg->mocing_account) | |
1549 | * take heavy locks. | |
1550 | * synchronize_rcu() update something. | |
1551 | * rcu_read_unlock() | |
1552 | * start move here. | |
1553 | */ | |
4331f7d3 KH |
1554 | |
1555 | /* for quick checking without looking up memcg */ | |
1556 | atomic_t memcg_moving __read_mostly; | |
1557 | ||
c0ff4b85 | 1558 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
32047e2a | 1559 | { |
4331f7d3 | 1560 | atomic_inc(&memcg_moving); |
619d094b | 1561 | atomic_inc(&memcg->moving_account); |
32047e2a KH |
1562 | synchronize_rcu(); |
1563 | } | |
1564 | ||
c0ff4b85 | 1565 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
32047e2a | 1566 | { |
619d094b KH |
1567 | /* |
1568 | * Now, mem_cgroup_clear_mc() may call this function with NULL. | |
1569 | * We check NULL in callee rather than caller. | |
1570 | */ | |
4331f7d3 KH |
1571 | if (memcg) { |
1572 | atomic_dec(&memcg_moving); | |
619d094b | 1573 | atomic_dec(&memcg->moving_account); |
4331f7d3 | 1574 | } |
32047e2a | 1575 | } |
619d094b | 1576 | |
32047e2a | 1577 | /* |
bdcbb659 | 1578 | * A routine for checking "mem" is under move_account() or not. |
32047e2a | 1579 | * |
bdcbb659 QH |
1580 | * Checking a cgroup is mc.from or mc.to or under hierarchy of |
1581 | * moving cgroups. This is for waiting at high-memory pressure | |
1582 | * caused by "move". | |
32047e2a | 1583 | */ |
c0ff4b85 | 1584 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
4b534334 | 1585 | { |
2bd9bb20 KH |
1586 | struct mem_cgroup *from; |
1587 | struct mem_cgroup *to; | |
4b534334 | 1588 | bool ret = false; |
2bd9bb20 KH |
1589 | /* |
1590 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1591 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1592 | */ | |
1593 | spin_lock(&mc.lock); | |
1594 | from = mc.from; | |
1595 | to = mc.to; | |
1596 | if (!from) | |
1597 | goto unlock; | |
3e92041d | 1598 | |
c0ff4b85 R |
1599 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1600 | || mem_cgroup_same_or_subtree(memcg, to); | |
2bd9bb20 KH |
1601 | unlock: |
1602 | spin_unlock(&mc.lock); | |
4b534334 KH |
1603 | return ret; |
1604 | } | |
1605 | ||
c0ff4b85 | 1606 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
4b534334 KH |
1607 | { |
1608 | if (mc.moving_task && current != mc.moving_task) { | |
c0ff4b85 | 1609 | if (mem_cgroup_under_move(memcg)) { |
4b534334 KH |
1610 | DEFINE_WAIT(wait); |
1611 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1612 | /* moving charge context might have finished. */ | |
1613 | if (mc.moving_task) | |
1614 | schedule(); | |
1615 | finish_wait(&mc.waitq, &wait); | |
1616 | return true; | |
1617 | } | |
1618 | } | |
1619 | return false; | |
1620 | } | |
1621 | ||
312734c0 KH |
1622 | /* |
1623 | * Take this lock when | |
1624 | * - a code tries to modify page's memcg while it's USED. | |
1625 | * - a code tries to modify page state accounting in a memcg. | |
312734c0 KH |
1626 | */ |
1627 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, | |
1628 | unsigned long *flags) | |
1629 | { | |
1630 | spin_lock_irqsave(&memcg->move_lock, *flags); | |
1631 | } | |
1632 | ||
1633 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, | |
1634 | unsigned long *flags) | |
1635 | { | |
1636 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
1637 | } | |
1638 | ||
58cf188e | 1639 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
e222432b | 1640 | /** |
58cf188e | 1641 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
e222432b BS |
1642 | * @memcg: The memory cgroup that went over limit |
1643 | * @p: Task that is going to be killed | |
1644 | * | |
1645 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1646 | * enabled | |
1647 | */ | |
1648 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1649 | { | |
e61734c5 | 1650 | /* oom_info_lock ensures that parallel ooms do not interleave */ |
08088cb9 | 1651 | static DEFINE_MUTEX(oom_info_lock); |
58cf188e SZ |
1652 | struct mem_cgroup *iter; |
1653 | unsigned int i; | |
e222432b | 1654 | |
58cf188e | 1655 | if (!p) |
e222432b BS |
1656 | return; |
1657 | ||
08088cb9 | 1658 | mutex_lock(&oom_info_lock); |
e222432b BS |
1659 | rcu_read_lock(); |
1660 | ||
e61734c5 TH |
1661 | pr_info("Task in "); |
1662 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
1663 | pr_info(" killed as a result of limit of "); | |
1664 | pr_cont_cgroup_path(memcg->css.cgroup); | |
1665 | pr_info("\n"); | |
e222432b | 1666 | |
e222432b BS |
1667 | rcu_read_unlock(); |
1668 | ||
d045197f | 1669 | pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1670 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1671 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | |
1672 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | |
d045197f | 1673 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1674 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1675 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | |
1676 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | |
d045197f | 1677 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", |
510fc4e1 GC |
1678 | res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, |
1679 | res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, | |
1680 | res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); | |
58cf188e SZ |
1681 | |
1682 | for_each_mem_cgroup_tree(iter, memcg) { | |
e61734c5 TH |
1683 | pr_info("Memory cgroup stats for "); |
1684 | pr_cont_cgroup_path(iter->css.cgroup); | |
58cf188e SZ |
1685 | pr_cont(":"); |
1686 | ||
1687 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1688 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1689 | continue; | |
1690 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | |
1691 | K(mem_cgroup_read_stat(iter, i))); | |
1692 | } | |
1693 | ||
1694 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1695 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1696 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1697 | ||
1698 | pr_cont("\n"); | |
1699 | } | |
08088cb9 | 1700 | mutex_unlock(&oom_info_lock); |
e222432b BS |
1701 | } |
1702 | ||
81d39c20 KH |
1703 | /* |
1704 | * This function returns the number of memcg under hierarchy tree. Returns | |
1705 | * 1(self count) if no children. | |
1706 | */ | |
c0ff4b85 | 1707 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
81d39c20 KH |
1708 | { |
1709 | int num = 0; | |
7d74b06f KH |
1710 | struct mem_cgroup *iter; |
1711 | ||
c0ff4b85 | 1712 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 1713 | num++; |
81d39c20 KH |
1714 | return num; |
1715 | } | |
1716 | ||
a63d83f4 DR |
1717 | /* |
1718 | * Return the memory (and swap, if configured) limit for a memcg. | |
1719 | */ | |
9cbb78bb | 1720 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
a63d83f4 DR |
1721 | { |
1722 | u64 limit; | |
a63d83f4 | 1723 | |
f3e8eb70 | 1724 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
f3e8eb70 | 1725 | |
a63d83f4 | 1726 | /* |
9a5a8f19 | 1727 | * Do not consider swap space if we cannot swap due to swappiness |
a63d83f4 | 1728 | */ |
9a5a8f19 MH |
1729 | if (mem_cgroup_swappiness(memcg)) { |
1730 | u64 memsw; | |
1731 | ||
1732 | limit += total_swap_pages << PAGE_SHIFT; | |
1733 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1734 | ||
1735 | /* | |
1736 | * If memsw is finite and limits the amount of swap space | |
1737 | * available to this memcg, return that limit. | |
1738 | */ | |
1739 | limit = min(limit, memsw); | |
1740 | } | |
1741 | ||
1742 | return limit; | |
a63d83f4 DR |
1743 | } |
1744 | ||
19965460 DR |
1745 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1746 | int order) | |
9cbb78bb DR |
1747 | { |
1748 | struct mem_cgroup *iter; | |
1749 | unsigned long chosen_points = 0; | |
1750 | unsigned long totalpages; | |
1751 | unsigned int points = 0; | |
1752 | struct task_struct *chosen = NULL; | |
1753 | ||
876aafbf | 1754 | /* |
465adcf1 DR |
1755 | * If current has a pending SIGKILL or is exiting, then automatically |
1756 | * select it. The goal is to allow it to allocate so that it may | |
1757 | * quickly exit and free its memory. | |
876aafbf | 1758 | */ |
465adcf1 | 1759 | if (fatal_signal_pending(current) || current->flags & PF_EXITING) { |
876aafbf DR |
1760 | set_thread_flag(TIF_MEMDIE); |
1761 | return; | |
1762 | } | |
1763 | ||
1764 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | |
9cbb78bb DR |
1765 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1766 | for_each_mem_cgroup_tree(iter, memcg) { | |
72ec7029 | 1767 | struct css_task_iter it; |
9cbb78bb DR |
1768 | struct task_struct *task; |
1769 | ||
72ec7029 TH |
1770 | css_task_iter_start(&iter->css, &it); |
1771 | while ((task = css_task_iter_next(&it))) { | |
9cbb78bb DR |
1772 | switch (oom_scan_process_thread(task, totalpages, NULL, |
1773 | false)) { | |
1774 | case OOM_SCAN_SELECT: | |
1775 | if (chosen) | |
1776 | put_task_struct(chosen); | |
1777 | chosen = task; | |
1778 | chosen_points = ULONG_MAX; | |
1779 | get_task_struct(chosen); | |
1780 | /* fall through */ | |
1781 | case OOM_SCAN_CONTINUE: | |
1782 | continue; | |
1783 | case OOM_SCAN_ABORT: | |
72ec7029 | 1784 | css_task_iter_end(&it); |
9cbb78bb DR |
1785 | mem_cgroup_iter_break(memcg, iter); |
1786 | if (chosen) | |
1787 | put_task_struct(chosen); | |
1788 | return; | |
1789 | case OOM_SCAN_OK: | |
1790 | break; | |
1791 | }; | |
1792 | points = oom_badness(task, memcg, NULL, totalpages); | |
d49ad935 DR |
1793 | if (!points || points < chosen_points) |
1794 | continue; | |
1795 | /* Prefer thread group leaders for display purposes */ | |
1796 | if (points == chosen_points && | |
1797 | thread_group_leader(chosen)) | |
1798 | continue; | |
1799 | ||
1800 | if (chosen) | |
1801 | put_task_struct(chosen); | |
1802 | chosen = task; | |
1803 | chosen_points = points; | |
1804 | get_task_struct(chosen); | |
9cbb78bb | 1805 | } |
72ec7029 | 1806 | css_task_iter_end(&it); |
9cbb78bb DR |
1807 | } |
1808 | ||
1809 | if (!chosen) | |
1810 | return; | |
1811 | points = chosen_points * 1000 / totalpages; | |
9cbb78bb DR |
1812 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1813 | NULL, "Memory cgroup out of memory"); | |
9cbb78bb DR |
1814 | } |
1815 | ||
5660048c JW |
1816 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1817 | gfp_t gfp_mask, | |
1818 | unsigned long flags) | |
1819 | { | |
1820 | unsigned long total = 0; | |
1821 | bool noswap = false; | |
1822 | int loop; | |
1823 | ||
1824 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) | |
1825 | noswap = true; | |
1826 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) | |
1827 | noswap = true; | |
1828 | ||
1829 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { | |
1830 | if (loop) | |
1831 | drain_all_stock_async(memcg); | |
1832 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); | |
1833 | /* | |
1834 | * Allow limit shrinkers, which are triggered directly | |
1835 | * by userspace, to catch signals and stop reclaim | |
1836 | * after minimal progress, regardless of the margin. | |
1837 | */ | |
1838 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) | |
1839 | break; | |
1840 | if (mem_cgroup_margin(memcg)) | |
1841 | break; | |
1842 | /* | |
1843 | * If nothing was reclaimed after two attempts, there | |
1844 | * may be no reclaimable pages in this hierarchy. | |
1845 | */ | |
1846 | if (loop && !total) | |
1847 | break; | |
1848 | } | |
1849 | return total; | |
1850 | } | |
1851 | ||
4d0c066d KH |
1852 | /** |
1853 | * test_mem_cgroup_node_reclaimable | |
dad7557e | 1854 | * @memcg: the target memcg |
4d0c066d KH |
1855 | * @nid: the node ID to be checked. |
1856 | * @noswap : specify true here if the user wants flle only information. | |
1857 | * | |
1858 | * This function returns whether the specified memcg contains any | |
1859 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1860 | * pages in the node. | |
1861 | */ | |
c0ff4b85 | 1862 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
4d0c066d KH |
1863 | int nid, bool noswap) |
1864 | { | |
c0ff4b85 | 1865 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
4d0c066d KH |
1866 | return true; |
1867 | if (noswap || !total_swap_pages) | |
1868 | return false; | |
c0ff4b85 | 1869 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
4d0c066d KH |
1870 | return true; |
1871 | return false; | |
1872 | ||
1873 | } | |
bb4cc1a8 | 1874 | #if MAX_NUMNODES > 1 |
889976db YH |
1875 | |
1876 | /* | |
1877 | * Always updating the nodemask is not very good - even if we have an empty | |
1878 | * list or the wrong list here, we can start from some node and traverse all | |
1879 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1880 | * | |
1881 | */ | |
c0ff4b85 | 1882 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
889976db YH |
1883 | { |
1884 | int nid; | |
453a9bf3 KH |
1885 | /* |
1886 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1887 | * pagein/pageout changes since the last update. | |
1888 | */ | |
c0ff4b85 | 1889 | if (!atomic_read(&memcg->numainfo_events)) |
453a9bf3 | 1890 | return; |
c0ff4b85 | 1891 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
889976db YH |
1892 | return; |
1893 | ||
889976db | 1894 | /* make a nodemask where this memcg uses memory from */ |
31aaea4a | 1895 | memcg->scan_nodes = node_states[N_MEMORY]; |
889976db | 1896 | |
31aaea4a | 1897 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
889976db | 1898 | |
c0ff4b85 R |
1899 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1900 | node_clear(nid, memcg->scan_nodes); | |
889976db | 1901 | } |
453a9bf3 | 1902 | |
c0ff4b85 R |
1903 | atomic_set(&memcg->numainfo_events, 0); |
1904 | atomic_set(&memcg->numainfo_updating, 0); | |
889976db YH |
1905 | } |
1906 | ||
1907 | /* | |
1908 | * Selecting a node where we start reclaim from. Because what we need is just | |
1909 | * reducing usage counter, start from anywhere is O,K. Considering | |
1910 | * memory reclaim from current node, there are pros. and cons. | |
1911 | * | |
1912 | * Freeing memory from current node means freeing memory from a node which | |
1913 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1914 | * hit limits, it will see a contention on a node. But freeing from remote | |
1915 | * node means more costs for memory reclaim because of memory latency. | |
1916 | * | |
1917 | * Now, we use round-robin. Better algorithm is welcomed. | |
1918 | */ | |
c0ff4b85 | 1919 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1920 | { |
1921 | int node; | |
1922 | ||
c0ff4b85 R |
1923 | mem_cgroup_may_update_nodemask(memcg); |
1924 | node = memcg->last_scanned_node; | |
889976db | 1925 | |
c0ff4b85 | 1926 | node = next_node(node, memcg->scan_nodes); |
889976db | 1927 | if (node == MAX_NUMNODES) |
c0ff4b85 | 1928 | node = first_node(memcg->scan_nodes); |
889976db YH |
1929 | /* |
1930 | * We call this when we hit limit, not when pages are added to LRU. | |
1931 | * No LRU may hold pages because all pages are UNEVICTABLE or | |
1932 | * memcg is too small and all pages are not on LRU. In that case, | |
1933 | * we use curret node. | |
1934 | */ | |
1935 | if (unlikely(node == MAX_NUMNODES)) | |
1936 | node = numa_node_id(); | |
1937 | ||
c0ff4b85 | 1938 | memcg->last_scanned_node = node; |
889976db YH |
1939 | return node; |
1940 | } | |
1941 | ||
bb4cc1a8 AM |
1942 | /* |
1943 | * Check all nodes whether it contains reclaimable pages or not. | |
1944 | * For quick scan, we make use of scan_nodes. This will allow us to skip | |
1945 | * unused nodes. But scan_nodes is lazily updated and may not cotain | |
1946 | * enough new information. We need to do double check. | |
1947 | */ | |
1948 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) | |
1949 | { | |
1950 | int nid; | |
1951 | ||
1952 | /* | |
1953 | * quick check...making use of scan_node. | |
1954 | * We can skip unused nodes. | |
1955 | */ | |
1956 | if (!nodes_empty(memcg->scan_nodes)) { | |
1957 | for (nid = first_node(memcg->scan_nodes); | |
1958 | nid < MAX_NUMNODES; | |
1959 | nid = next_node(nid, memcg->scan_nodes)) { | |
1960 | ||
1961 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | |
1962 | return true; | |
1963 | } | |
1964 | } | |
1965 | /* | |
1966 | * Check rest of nodes. | |
1967 | */ | |
1968 | for_each_node_state(nid, N_MEMORY) { | |
1969 | if (node_isset(nid, memcg->scan_nodes)) | |
1970 | continue; | |
1971 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) | |
1972 | return true; | |
1973 | } | |
1974 | return false; | |
1975 | } | |
1976 | ||
889976db | 1977 | #else |
c0ff4b85 | 1978 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1979 | { |
1980 | return 0; | |
1981 | } | |
4d0c066d | 1982 | |
bb4cc1a8 AM |
1983 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1984 | { | |
1985 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); | |
1986 | } | |
889976db YH |
1987 | #endif |
1988 | ||
0608f43d AM |
1989 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1990 | struct zone *zone, | |
1991 | gfp_t gfp_mask, | |
1992 | unsigned long *total_scanned) | |
1993 | { | |
1994 | struct mem_cgroup *victim = NULL; | |
1995 | int total = 0; | |
1996 | int loop = 0; | |
1997 | unsigned long excess; | |
1998 | unsigned long nr_scanned; | |
1999 | struct mem_cgroup_reclaim_cookie reclaim = { | |
2000 | .zone = zone, | |
2001 | .priority = 0, | |
2002 | }; | |
2003 | ||
2004 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; | |
2005 | ||
2006 | while (1) { | |
2007 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
2008 | if (!victim) { | |
2009 | loop++; | |
2010 | if (loop >= 2) { | |
2011 | /* | |
2012 | * If we have not been able to reclaim | |
2013 | * anything, it might because there are | |
2014 | * no reclaimable pages under this hierarchy | |
2015 | */ | |
2016 | if (!total) | |
2017 | break; | |
2018 | /* | |
2019 | * We want to do more targeted reclaim. | |
2020 | * excess >> 2 is not to excessive so as to | |
2021 | * reclaim too much, nor too less that we keep | |
2022 | * coming back to reclaim from this cgroup | |
2023 | */ | |
2024 | if (total >= (excess >> 2) || | |
2025 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
2026 | break; | |
2027 | } | |
2028 | continue; | |
2029 | } | |
2030 | if (!mem_cgroup_reclaimable(victim, false)) | |
2031 | continue; | |
2032 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, | |
2033 | zone, &nr_scanned); | |
2034 | *total_scanned += nr_scanned; | |
2035 | if (!res_counter_soft_limit_excess(&root_memcg->res)) | |
2036 | break; | |
6d61ef40 | 2037 | } |
0608f43d AM |
2038 | mem_cgroup_iter_break(root_memcg, victim); |
2039 | return total; | |
6d61ef40 BS |
2040 | } |
2041 | ||
0056f4e6 JW |
2042 | #ifdef CONFIG_LOCKDEP |
2043 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
2044 | .name = "memcg_oom_lock", | |
2045 | }; | |
2046 | #endif | |
2047 | ||
fb2a6fc5 JW |
2048 | static DEFINE_SPINLOCK(memcg_oom_lock); |
2049 | ||
867578cb KH |
2050 | /* |
2051 | * Check OOM-Killer is already running under our hierarchy. | |
2052 | * If someone is running, return false. | |
2053 | */ | |
fb2a6fc5 | 2054 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
867578cb | 2055 | { |
79dfdacc | 2056 | struct mem_cgroup *iter, *failed = NULL; |
a636b327 | 2057 | |
fb2a6fc5 JW |
2058 | spin_lock(&memcg_oom_lock); |
2059 | ||
9f3a0d09 | 2060 | for_each_mem_cgroup_tree(iter, memcg) { |
23751be0 | 2061 | if (iter->oom_lock) { |
79dfdacc MH |
2062 | /* |
2063 | * this subtree of our hierarchy is already locked | |
2064 | * so we cannot give a lock. | |
2065 | */ | |
79dfdacc | 2066 | failed = iter; |
9f3a0d09 JW |
2067 | mem_cgroup_iter_break(memcg, iter); |
2068 | break; | |
23751be0 JW |
2069 | } else |
2070 | iter->oom_lock = true; | |
7d74b06f | 2071 | } |
867578cb | 2072 | |
fb2a6fc5 JW |
2073 | if (failed) { |
2074 | /* | |
2075 | * OK, we failed to lock the whole subtree so we have | |
2076 | * to clean up what we set up to the failing subtree | |
2077 | */ | |
2078 | for_each_mem_cgroup_tree(iter, memcg) { | |
2079 | if (iter == failed) { | |
2080 | mem_cgroup_iter_break(memcg, iter); | |
2081 | break; | |
2082 | } | |
2083 | iter->oom_lock = false; | |
79dfdacc | 2084 | } |
0056f4e6 JW |
2085 | } else |
2086 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
fb2a6fc5 JW |
2087 | |
2088 | spin_unlock(&memcg_oom_lock); | |
2089 | ||
2090 | return !failed; | |
a636b327 | 2091 | } |
0b7f569e | 2092 | |
fb2a6fc5 | 2093 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
0b7f569e | 2094 | { |
7d74b06f KH |
2095 | struct mem_cgroup *iter; |
2096 | ||
fb2a6fc5 | 2097 | spin_lock(&memcg_oom_lock); |
0056f4e6 | 2098 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); |
c0ff4b85 | 2099 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 2100 | iter->oom_lock = false; |
fb2a6fc5 | 2101 | spin_unlock(&memcg_oom_lock); |
79dfdacc MH |
2102 | } |
2103 | ||
c0ff4b85 | 2104 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2105 | { |
2106 | struct mem_cgroup *iter; | |
2107 | ||
c0ff4b85 | 2108 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
2109 | atomic_inc(&iter->under_oom); |
2110 | } | |
2111 | ||
c0ff4b85 | 2112 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2113 | { |
2114 | struct mem_cgroup *iter; | |
2115 | ||
867578cb KH |
2116 | /* |
2117 | * When a new child is created while the hierarchy is under oom, | |
2118 | * mem_cgroup_oom_lock() may not be called. We have to use | |
2119 | * atomic_add_unless() here. | |
2120 | */ | |
c0ff4b85 | 2121 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 2122 | atomic_add_unless(&iter->under_oom, -1, 0); |
0b7f569e KH |
2123 | } |
2124 | ||
867578cb KH |
2125 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
2126 | ||
dc98df5a | 2127 | struct oom_wait_info { |
d79154bb | 2128 | struct mem_cgroup *memcg; |
dc98df5a KH |
2129 | wait_queue_t wait; |
2130 | }; | |
2131 | ||
2132 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
2133 | unsigned mode, int sync, void *arg) | |
2134 | { | |
d79154bb HD |
2135 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
2136 | struct mem_cgroup *oom_wait_memcg; | |
dc98df5a KH |
2137 | struct oom_wait_info *oom_wait_info; |
2138 | ||
2139 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
d79154bb | 2140 | oom_wait_memcg = oom_wait_info->memcg; |
dc98df5a | 2141 | |
dc98df5a | 2142 | /* |
d79154bb | 2143 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
dc98df5a KH |
2144 | * Then we can use css_is_ancestor without taking care of RCU. |
2145 | */ | |
c0ff4b85 R |
2146 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
2147 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) | |
dc98df5a | 2148 | return 0; |
dc98df5a KH |
2149 | return autoremove_wake_function(wait, mode, sync, arg); |
2150 | } | |
2151 | ||
c0ff4b85 | 2152 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
dc98df5a | 2153 | { |
3812c8c8 | 2154 | atomic_inc(&memcg->oom_wakeups); |
c0ff4b85 R |
2155 | /* for filtering, pass "memcg" as argument. */ |
2156 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
dc98df5a KH |
2157 | } |
2158 | ||
c0ff4b85 | 2159 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
3c11ecf4 | 2160 | { |
c0ff4b85 R |
2161 | if (memcg && atomic_read(&memcg->under_oom)) |
2162 | memcg_wakeup_oom(memcg); | |
3c11ecf4 KH |
2163 | } |
2164 | ||
3812c8c8 | 2165 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
0b7f569e | 2166 | { |
3812c8c8 JW |
2167 | if (!current->memcg_oom.may_oom) |
2168 | return; | |
867578cb | 2169 | /* |
49426420 JW |
2170 | * We are in the middle of the charge context here, so we |
2171 | * don't want to block when potentially sitting on a callstack | |
2172 | * that holds all kinds of filesystem and mm locks. | |
2173 | * | |
2174 | * Also, the caller may handle a failed allocation gracefully | |
2175 | * (like optional page cache readahead) and so an OOM killer | |
2176 | * invocation might not even be necessary. | |
2177 | * | |
2178 | * That's why we don't do anything here except remember the | |
2179 | * OOM context and then deal with it at the end of the page | |
2180 | * fault when the stack is unwound, the locks are released, | |
2181 | * and when we know whether the fault was overall successful. | |
867578cb | 2182 | */ |
49426420 JW |
2183 | css_get(&memcg->css); |
2184 | current->memcg_oom.memcg = memcg; | |
2185 | current->memcg_oom.gfp_mask = mask; | |
2186 | current->memcg_oom.order = order; | |
3812c8c8 JW |
2187 | } |
2188 | ||
2189 | /** | |
2190 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
49426420 | 2191 | * @handle: actually kill/wait or just clean up the OOM state |
3812c8c8 | 2192 | * |
49426420 JW |
2193 | * This has to be called at the end of a page fault if the memcg OOM |
2194 | * handler was enabled. | |
3812c8c8 | 2195 | * |
49426420 | 2196 | * Memcg supports userspace OOM handling where failed allocations must |
3812c8c8 JW |
2197 | * sleep on a waitqueue until the userspace task resolves the |
2198 | * situation. Sleeping directly in the charge context with all kinds | |
2199 | * of locks held is not a good idea, instead we remember an OOM state | |
2200 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
49426420 | 2201 | * the end of the page fault to complete the OOM handling. |
3812c8c8 JW |
2202 | * |
2203 | * Returns %true if an ongoing memcg OOM situation was detected and | |
49426420 | 2204 | * completed, %false otherwise. |
3812c8c8 | 2205 | */ |
49426420 | 2206 | bool mem_cgroup_oom_synchronize(bool handle) |
3812c8c8 | 2207 | { |
49426420 | 2208 | struct mem_cgroup *memcg = current->memcg_oom.memcg; |
3812c8c8 | 2209 | struct oom_wait_info owait; |
49426420 | 2210 | bool locked; |
3812c8c8 JW |
2211 | |
2212 | /* OOM is global, do not handle */ | |
3812c8c8 | 2213 | if (!memcg) |
49426420 | 2214 | return false; |
3812c8c8 | 2215 | |
49426420 JW |
2216 | if (!handle) |
2217 | goto cleanup; | |
3812c8c8 JW |
2218 | |
2219 | owait.memcg = memcg; | |
2220 | owait.wait.flags = 0; | |
2221 | owait.wait.func = memcg_oom_wake_function; | |
2222 | owait.wait.private = current; | |
2223 | INIT_LIST_HEAD(&owait.wait.task_list); | |
867578cb | 2224 | |
3812c8c8 | 2225 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
49426420 JW |
2226 | mem_cgroup_mark_under_oom(memcg); |
2227 | ||
2228 | locked = mem_cgroup_oom_trylock(memcg); | |
2229 | ||
2230 | if (locked) | |
2231 | mem_cgroup_oom_notify(memcg); | |
2232 | ||
2233 | if (locked && !memcg->oom_kill_disable) { | |
2234 | mem_cgroup_unmark_under_oom(memcg); | |
2235 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
2236 | mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, | |
2237 | current->memcg_oom.order); | |
2238 | } else { | |
3812c8c8 | 2239 | schedule(); |
49426420 JW |
2240 | mem_cgroup_unmark_under_oom(memcg); |
2241 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
2242 | } | |
2243 | ||
2244 | if (locked) { | |
fb2a6fc5 JW |
2245 | mem_cgroup_oom_unlock(memcg); |
2246 | /* | |
2247 | * There is no guarantee that an OOM-lock contender | |
2248 | * sees the wakeups triggered by the OOM kill | |
2249 | * uncharges. Wake any sleepers explicitely. | |
2250 | */ | |
2251 | memcg_oom_recover(memcg); | |
2252 | } | |
49426420 JW |
2253 | cleanup: |
2254 | current->memcg_oom.memcg = NULL; | |
3812c8c8 | 2255 | css_put(&memcg->css); |
867578cb | 2256 | return true; |
0b7f569e KH |
2257 | } |
2258 | ||
d69b042f | 2259 | /* |
b5ffc856 | 2260 | * Used to update mapped file or writeback or other statistics. |
32047e2a KH |
2261 | * |
2262 | * Notes: Race condition | |
2263 | * | |
b5ffc856 | 2264 | * We usually use lock_page_cgroup() for accessing page_cgroup member but |
32047e2a KH |
2265 | * it tends to be costly. But considering some conditions, we doesn't need |
2266 | * to do so _always_. | |
2267 | * | |
2268 | * Considering "charge", lock_page_cgroup() is not required because all | |
2269 | * file-stat operations happen after a page is attached to radix-tree. There | |
2270 | * are no race with "charge". | |
2271 | * | |
2272 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | |
2273 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | |
2274 | * if there are race with "uncharge". Statistics itself is properly handled | |
2275 | * by flags. | |
2276 | * | |
2277 | * Considering "move", this is an only case we see a race. To make the race | |
b5ffc856 QH |
2278 | * small, we check memcg->moving_account and detect there are possibility |
2279 | * of race or not. If there is, we take a lock. | |
d69b042f | 2280 | */ |
26174efd | 2281 | |
89c06bd5 KH |
2282 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
2283 | bool *locked, unsigned long *flags) | |
2284 | { | |
2285 | struct mem_cgroup *memcg; | |
2286 | struct page_cgroup *pc; | |
2287 | ||
2288 | pc = lookup_page_cgroup(page); | |
2289 | again: | |
2290 | memcg = pc->mem_cgroup; | |
2291 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
2292 | return; | |
2293 | /* | |
2294 | * If this memory cgroup is not under account moving, we don't | |
da92c47d | 2295 | * need to take move_lock_mem_cgroup(). Because we already hold |
89c06bd5 | 2296 | * rcu_read_lock(), any calls to move_account will be delayed until |
bdcbb659 | 2297 | * rcu_read_unlock(). |
89c06bd5 | 2298 | */ |
bdcbb659 QH |
2299 | VM_BUG_ON(!rcu_read_lock_held()); |
2300 | if (atomic_read(&memcg->moving_account) <= 0) | |
89c06bd5 KH |
2301 | return; |
2302 | ||
2303 | move_lock_mem_cgroup(memcg, flags); | |
2304 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { | |
2305 | move_unlock_mem_cgroup(memcg, flags); | |
2306 | goto again; | |
2307 | } | |
2308 | *locked = true; | |
2309 | } | |
2310 | ||
2311 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) | |
2312 | { | |
2313 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
2314 | ||
2315 | /* | |
2316 | * It's guaranteed that pc->mem_cgroup never changes while | |
2317 | * lock is held because a routine modifies pc->mem_cgroup | |
da92c47d | 2318 | * should take move_lock_mem_cgroup(). |
89c06bd5 KH |
2319 | */ |
2320 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); | |
2321 | } | |
2322 | ||
2a7106f2 | 2323 | void mem_cgroup_update_page_stat(struct page *page, |
68b4876d | 2324 | enum mem_cgroup_stat_index idx, int val) |
d69b042f | 2325 | { |
c0ff4b85 | 2326 | struct mem_cgroup *memcg; |
32047e2a | 2327 | struct page_cgroup *pc = lookup_page_cgroup(page); |
dbd4ea78 | 2328 | unsigned long uninitialized_var(flags); |
d69b042f | 2329 | |
cfa44946 | 2330 | if (mem_cgroup_disabled()) |
d69b042f | 2331 | return; |
89c06bd5 | 2332 | |
658b72c5 | 2333 | VM_BUG_ON(!rcu_read_lock_held()); |
c0ff4b85 R |
2334 | memcg = pc->mem_cgroup; |
2335 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
89c06bd5 | 2336 | return; |
26174efd | 2337 | |
c0ff4b85 | 2338 | this_cpu_add(memcg->stat->count[idx], val); |
d69b042f | 2339 | } |
26174efd | 2340 | |
cdec2e42 KH |
2341 | /* |
2342 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
2343 | * TODO: maybe necessary to use big numbers in big irons. | |
2344 | */ | |
7ec99d62 | 2345 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
2346 | struct memcg_stock_pcp { |
2347 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 2348 | unsigned int nr_pages; |
cdec2e42 | 2349 | struct work_struct work; |
26fe6168 | 2350 | unsigned long flags; |
a0db00fc | 2351 | #define FLUSHING_CACHED_CHARGE 0 |
cdec2e42 KH |
2352 | }; |
2353 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
9f50fad6 | 2354 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 2355 | |
a0956d54 SS |
2356 | /** |
2357 | * consume_stock: Try to consume stocked charge on this cpu. | |
2358 | * @memcg: memcg to consume from. | |
2359 | * @nr_pages: how many pages to charge. | |
2360 | * | |
2361 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2362 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2363 | * service an allocation will refill the stock. | |
2364 | * | |
2365 | * returns true if successful, false otherwise. | |
cdec2e42 | 2366 | */ |
a0956d54 | 2367 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2368 | { |
2369 | struct memcg_stock_pcp *stock; | |
2370 | bool ret = true; | |
2371 | ||
a0956d54 SS |
2372 | if (nr_pages > CHARGE_BATCH) |
2373 | return false; | |
2374 | ||
cdec2e42 | 2375 | stock = &get_cpu_var(memcg_stock); |
a0956d54 SS |
2376 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) |
2377 | stock->nr_pages -= nr_pages; | |
cdec2e42 KH |
2378 | else /* need to call res_counter_charge */ |
2379 | ret = false; | |
2380 | put_cpu_var(memcg_stock); | |
2381 | return ret; | |
2382 | } | |
2383 | ||
2384 | /* | |
2385 | * Returns stocks cached in percpu to res_counter and reset cached information. | |
2386 | */ | |
2387 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2388 | { | |
2389 | struct mem_cgroup *old = stock->cached; | |
2390 | ||
11c9ea4e JW |
2391 | if (stock->nr_pages) { |
2392 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; | |
2393 | ||
2394 | res_counter_uncharge(&old->res, bytes); | |
cdec2e42 | 2395 | if (do_swap_account) |
11c9ea4e JW |
2396 | res_counter_uncharge(&old->memsw, bytes); |
2397 | stock->nr_pages = 0; | |
cdec2e42 KH |
2398 | } |
2399 | stock->cached = NULL; | |
cdec2e42 KH |
2400 | } |
2401 | ||
2402 | /* | |
2403 | * This must be called under preempt disabled or must be called by | |
2404 | * a thread which is pinned to local cpu. | |
2405 | */ | |
2406 | static void drain_local_stock(struct work_struct *dummy) | |
2407 | { | |
7c8e0181 | 2408 | struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); |
cdec2e42 | 2409 | drain_stock(stock); |
26fe6168 | 2410 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
cdec2e42 KH |
2411 | } |
2412 | ||
e4777496 MH |
2413 | static void __init memcg_stock_init(void) |
2414 | { | |
2415 | int cpu; | |
2416 | ||
2417 | for_each_possible_cpu(cpu) { | |
2418 | struct memcg_stock_pcp *stock = | |
2419 | &per_cpu(memcg_stock, cpu); | |
2420 | INIT_WORK(&stock->work, drain_local_stock); | |
2421 | } | |
2422 | } | |
2423 | ||
cdec2e42 KH |
2424 | /* |
2425 | * Cache charges(val) which is from res_counter, to local per_cpu area. | |
320cc51d | 2426 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 2427 | */ |
c0ff4b85 | 2428 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2429 | { |
2430 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
2431 | ||
c0ff4b85 | 2432 | if (stock->cached != memcg) { /* reset if necessary */ |
cdec2e42 | 2433 | drain_stock(stock); |
c0ff4b85 | 2434 | stock->cached = memcg; |
cdec2e42 | 2435 | } |
11c9ea4e | 2436 | stock->nr_pages += nr_pages; |
cdec2e42 KH |
2437 | put_cpu_var(memcg_stock); |
2438 | } | |
2439 | ||
2440 | /* | |
c0ff4b85 | 2441 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
d38144b7 MH |
2442 | * of the hierarchy under it. sync flag says whether we should block |
2443 | * until the work is done. | |
cdec2e42 | 2444 | */ |
c0ff4b85 | 2445 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
cdec2e42 | 2446 | { |
26fe6168 | 2447 | int cpu, curcpu; |
d38144b7 | 2448 | |
cdec2e42 | 2449 | /* Notify other cpus that system-wide "drain" is running */ |
cdec2e42 | 2450 | get_online_cpus(); |
5af12d0e | 2451 | curcpu = get_cpu(); |
cdec2e42 KH |
2452 | for_each_online_cpu(cpu) { |
2453 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
c0ff4b85 | 2454 | struct mem_cgroup *memcg; |
26fe6168 | 2455 | |
c0ff4b85 R |
2456 | memcg = stock->cached; |
2457 | if (!memcg || !stock->nr_pages) | |
26fe6168 | 2458 | continue; |
c0ff4b85 | 2459 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
3e92041d | 2460 | continue; |
d1a05b69 MH |
2461 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2462 | if (cpu == curcpu) | |
2463 | drain_local_stock(&stock->work); | |
2464 | else | |
2465 | schedule_work_on(cpu, &stock->work); | |
2466 | } | |
cdec2e42 | 2467 | } |
5af12d0e | 2468 | put_cpu(); |
d38144b7 MH |
2469 | |
2470 | if (!sync) | |
2471 | goto out; | |
2472 | ||
2473 | for_each_online_cpu(cpu) { | |
2474 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
9f50fad6 | 2475 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
d38144b7 MH |
2476 | flush_work(&stock->work); |
2477 | } | |
2478 | out: | |
f894ffa8 | 2479 | put_online_cpus(); |
d38144b7 MH |
2480 | } |
2481 | ||
2482 | /* | |
2483 | * Tries to drain stocked charges in other cpus. This function is asynchronous | |
2484 | * and just put a work per cpu for draining localy on each cpu. Caller can | |
2485 | * expects some charges will be back to res_counter later but cannot wait for | |
2486 | * it. | |
2487 | */ | |
c0ff4b85 | 2488 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
d38144b7 | 2489 | { |
9f50fad6 MH |
2490 | /* |
2491 | * If someone calls draining, avoid adding more kworker runs. | |
2492 | */ | |
2493 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2494 | return; | |
c0ff4b85 | 2495 | drain_all_stock(root_memcg, false); |
9f50fad6 | 2496 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2497 | } |
2498 | ||
2499 | /* This is a synchronous drain interface. */ | |
c0ff4b85 | 2500 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
cdec2e42 KH |
2501 | { |
2502 | /* called when force_empty is called */ | |
9f50fad6 | 2503 | mutex_lock(&percpu_charge_mutex); |
c0ff4b85 | 2504 | drain_all_stock(root_memcg, true); |
9f50fad6 | 2505 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2506 | } |
2507 | ||
711d3d2c KH |
2508 | /* |
2509 | * This function drains percpu counter value from DEAD cpu and | |
2510 | * move it to local cpu. Note that this function can be preempted. | |
2511 | */ | |
c0ff4b85 | 2512 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
711d3d2c KH |
2513 | { |
2514 | int i; | |
2515 | ||
c0ff4b85 | 2516 | spin_lock(&memcg->pcp_counter_lock); |
6104621d | 2517 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
c0ff4b85 | 2518 | long x = per_cpu(memcg->stat->count[i], cpu); |
711d3d2c | 2519 | |
c0ff4b85 R |
2520 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2521 | memcg->nocpu_base.count[i] += x; | |
711d3d2c | 2522 | } |
e9f8974f | 2523 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
c0ff4b85 | 2524 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
e9f8974f | 2525 | |
c0ff4b85 R |
2526 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2527 | memcg->nocpu_base.events[i] += x; | |
e9f8974f | 2528 | } |
c0ff4b85 | 2529 | spin_unlock(&memcg->pcp_counter_lock); |
711d3d2c KH |
2530 | } |
2531 | ||
0db0628d | 2532 | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, |
cdec2e42 KH |
2533 | unsigned long action, |
2534 | void *hcpu) | |
2535 | { | |
2536 | int cpu = (unsigned long)hcpu; | |
2537 | struct memcg_stock_pcp *stock; | |
711d3d2c | 2538 | struct mem_cgroup *iter; |
cdec2e42 | 2539 | |
619d094b | 2540 | if (action == CPU_ONLINE) |
1489ebad | 2541 | return NOTIFY_OK; |
1489ebad | 2542 | |
d833049b | 2543 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
cdec2e42 | 2544 | return NOTIFY_OK; |
711d3d2c | 2545 | |
9f3a0d09 | 2546 | for_each_mem_cgroup(iter) |
711d3d2c KH |
2547 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2548 | ||
cdec2e42 KH |
2549 | stock = &per_cpu(memcg_stock, cpu); |
2550 | drain_stock(stock); | |
2551 | return NOTIFY_OK; | |
2552 | } | |
2553 | ||
4b534334 | 2554 | |
6d1fdc48 | 2555 | /* See mem_cgroup_try_charge() for details */ |
4b534334 KH |
2556 | enum { |
2557 | CHARGE_OK, /* success */ | |
2558 | CHARGE_RETRY, /* need to retry but retry is not bad */ | |
2559 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | |
2560 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | |
4b534334 KH |
2561 | }; |
2562 | ||
c0ff4b85 | 2563 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
4c9c5359 | 2564 | unsigned int nr_pages, unsigned int min_pages, |
3812c8c8 | 2565 | bool invoke_oom) |
4b534334 | 2566 | { |
7ec99d62 | 2567 | unsigned long csize = nr_pages * PAGE_SIZE; |
4b534334 KH |
2568 | struct mem_cgroup *mem_over_limit; |
2569 | struct res_counter *fail_res; | |
2570 | unsigned long flags = 0; | |
2571 | int ret; | |
2572 | ||
c0ff4b85 | 2573 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
4b534334 KH |
2574 | |
2575 | if (likely(!ret)) { | |
2576 | if (!do_swap_account) | |
2577 | return CHARGE_OK; | |
c0ff4b85 | 2578 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
4b534334 KH |
2579 | if (likely(!ret)) |
2580 | return CHARGE_OK; | |
2581 | ||
c0ff4b85 | 2582 | res_counter_uncharge(&memcg->res, csize); |
4b534334 KH |
2583 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2584 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | |
2585 | } else | |
2586 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | |
9221edb7 | 2587 | /* |
9221edb7 JW |
2588 | * Never reclaim on behalf of optional batching, retry with a |
2589 | * single page instead. | |
2590 | */ | |
4c9c5359 | 2591 | if (nr_pages > min_pages) |
4b534334 KH |
2592 | return CHARGE_RETRY; |
2593 | ||
2594 | if (!(gfp_mask & __GFP_WAIT)) | |
2595 | return CHARGE_WOULDBLOCK; | |
2596 | ||
4c9c5359 SS |
2597 | if (gfp_mask & __GFP_NORETRY) |
2598 | return CHARGE_NOMEM; | |
2599 | ||
5660048c | 2600 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
7ec99d62 | 2601 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
19942822 | 2602 | return CHARGE_RETRY; |
4b534334 | 2603 | /* |
19942822 JW |
2604 | * Even though the limit is exceeded at this point, reclaim |
2605 | * may have been able to free some pages. Retry the charge | |
2606 | * before killing the task. | |
2607 | * | |
2608 | * Only for regular pages, though: huge pages are rather | |
2609 | * unlikely to succeed so close to the limit, and we fall back | |
2610 | * to regular pages anyway in case of failure. | |
4b534334 | 2611 | */ |
4c9c5359 | 2612 | if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) |
4b534334 KH |
2613 | return CHARGE_RETRY; |
2614 | ||
2615 | /* | |
2616 | * At task move, charge accounts can be doubly counted. So, it's | |
2617 | * better to wait until the end of task_move if something is going on. | |
2618 | */ | |
2619 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2620 | return CHARGE_RETRY; | |
2621 | ||
3812c8c8 JW |
2622 | if (invoke_oom) |
2623 | mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); | |
4b534334 | 2624 | |
3812c8c8 | 2625 | return CHARGE_NOMEM; |
4b534334 KH |
2626 | } |
2627 | ||
6d1fdc48 JW |
2628 | /** |
2629 | * mem_cgroup_try_charge - try charging a memcg | |
2630 | * @memcg: memcg to charge | |
2631 | * @nr_pages: number of pages to charge | |
2632 | * @oom: trigger OOM if reclaim fails | |
38c5d72f | 2633 | * |
6d1fdc48 JW |
2634 | * Returns 0 if @memcg was charged successfully, -EINTR if the charge |
2635 | * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed. | |
8a9f3ccd | 2636 | */ |
6d1fdc48 JW |
2637 | static int mem_cgroup_try_charge(struct mem_cgroup *memcg, |
2638 | gfp_t gfp_mask, | |
2639 | unsigned int nr_pages, | |
2640 | bool oom) | |
8a9f3ccd | 2641 | { |
7ec99d62 | 2642 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
4b534334 | 2643 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
4b534334 | 2644 | int ret; |
a636b327 | 2645 | |
6d1fdc48 JW |
2646 | if (mem_cgroup_is_root(memcg)) |
2647 | goto done; | |
867578cb | 2648 | /* |
6d1fdc48 JW |
2649 | * Unlike in global OOM situations, memcg is not in a physical |
2650 | * memory shortage. Allow dying and OOM-killed tasks to | |
2651 | * bypass the last charges so that they can exit quickly and | |
2652 | * free their memory. | |
867578cb | 2653 | */ |
6d1fdc48 | 2654 | if (unlikely(test_thread_flag(TIF_MEMDIE) || |
d8dc595c MH |
2655 | fatal_signal_pending(current) || |
2656 | current->flags & PF_EXITING)) | |
867578cb | 2657 | goto bypass; |
a636b327 | 2658 | |
49426420 | 2659 | if (unlikely(task_in_memcg_oom(current))) |
1f14c1ac | 2660 | goto nomem; |
49426420 | 2661 | |
a0d8b00a JW |
2662 | if (gfp_mask & __GFP_NOFAIL) |
2663 | oom = false; | |
f75ca962 | 2664 | again: |
b6b6cc72 MH |
2665 | if (consume_stock(memcg, nr_pages)) |
2666 | goto done; | |
8a9f3ccd | 2667 | |
4b534334 | 2668 | do { |
3812c8c8 | 2669 | bool invoke_oom = oom && !nr_oom_retries; |
7a81b88c | 2670 | |
4b534334 | 2671 | /* If killed, bypass charge */ |
6d1fdc48 | 2672 | if (fatal_signal_pending(current)) |
4b534334 | 2673 | goto bypass; |
6d61ef40 | 2674 | |
3812c8c8 JW |
2675 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, |
2676 | nr_pages, invoke_oom); | |
4b534334 KH |
2677 | switch (ret) { |
2678 | case CHARGE_OK: | |
2679 | break; | |
2680 | case CHARGE_RETRY: /* not in OOM situation but retry */ | |
7ec99d62 | 2681 | batch = nr_pages; |
f75ca962 | 2682 | goto again; |
4b534334 KH |
2683 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
2684 | goto nomem; | |
2685 | case CHARGE_NOMEM: /* OOM routine works */ | |
6d1fdc48 | 2686 | if (!oom || invoke_oom) |
867578cb | 2687 | goto nomem; |
4b534334 KH |
2688 | nr_oom_retries--; |
2689 | break; | |
66e1707b | 2690 | } |
4b534334 KH |
2691 | } while (ret != CHARGE_OK); |
2692 | ||
7ec99d62 | 2693 | if (batch > nr_pages) |
c0ff4b85 | 2694 | refill_stock(memcg, batch - nr_pages); |
0c3e73e8 | 2695 | done: |
7a81b88c KH |
2696 | return 0; |
2697 | nomem: | |
6d1fdc48 | 2698 | if (!(gfp_mask & __GFP_NOFAIL)) |
3168ecbe | 2699 | return -ENOMEM; |
867578cb | 2700 | bypass: |
38c5d72f | 2701 | return -EINTR; |
7a81b88c | 2702 | } |
8a9f3ccd | 2703 | |
6d1fdc48 JW |
2704 | /** |
2705 | * mem_cgroup_try_charge_mm - try charging a mm | |
2706 | * @mm: mm_struct to charge | |
2707 | * @nr_pages: number of pages to charge | |
2708 | * @oom: trigger OOM if reclaim fails | |
2709 | * | |
2710 | * Returns the charged mem_cgroup associated with the given mm_struct or | |
2711 | * NULL the charge failed. | |
2712 | */ | |
2713 | static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, | |
2714 | gfp_t gfp_mask, | |
2715 | unsigned int nr_pages, | |
2716 | bool oom) | |
2717 | ||
2718 | { | |
2719 | struct mem_cgroup *memcg; | |
2720 | int ret; | |
2721 | ||
2722 | memcg = get_mem_cgroup_from_mm(mm); | |
2723 | ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); | |
2724 | css_put(&memcg->css); | |
2725 | if (ret == -EINTR) | |
2726 | memcg = root_mem_cgroup; | |
2727 | else if (ret) | |
2728 | memcg = NULL; | |
2729 | ||
2730 | return memcg; | |
2731 | } | |
2732 | ||
a3032a2c DN |
2733 | /* |
2734 | * Somemtimes we have to undo a charge we got by try_charge(). | |
2735 | * This function is for that and do uncharge, put css's refcnt. | |
2736 | * gotten by try_charge(). | |
2737 | */ | |
c0ff4b85 | 2738 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
e7018b8d | 2739 | unsigned int nr_pages) |
a3032a2c | 2740 | { |
c0ff4b85 | 2741 | if (!mem_cgroup_is_root(memcg)) { |
e7018b8d JW |
2742 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2743 | ||
c0ff4b85 | 2744 | res_counter_uncharge(&memcg->res, bytes); |
a3032a2c | 2745 | if (do_swap_account) |
c0ff4b85 | 2746 | res_counter_uncharge(&memcg->memsw, bytes); |
a3032a2c | 2747 | } |
854ffa8d DN |
2748 | } |
2749 | ||
d01dd17f KH |
2750 | /* |
2751 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. | |
2752 | * This is useful when moving usage to parent cgroup. | |
2753 | */ | |
2754 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, | |
2755 | unsigned int nr_pages) | |
2756 | { | |
2757 | unsigned long bytes = nr_pages * PAGE_SIZE; | |
2758 | ||
2759 | if (mem_cgroup_is_root(memcg)) | |
2760 | return; | |
2761 | ||
2762 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); | |
2763 | if (do_swap_account) | |
2764 | res_counter_uncharge_until(&memcg->memsw, | |
2765 | memcg->memsw.parent, bytes); | |
2766 | } | |
2767 | ||
a3b2d692 KH |
2768 | /* |
2769 | * A helper function to get mem_cgroup from ID. must be called under | |
ec903c0c TH |
2770 | * rcu_read_lock(). The caller is responsible for calling |
2771 | * css_tryget_online() if the mem_cgroup is used for charging. (dropping | |
2772 | * refcnt from swap can be called against removed memcg.) | |
a3b2d692 KH |
2773 | */ |
2774 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2775 | { | |
a3b2d692 KH |
2776 | /* ID 0 is unused ID */ |
2777 | if (!id) | |
2778 | return NULL; | |
34c00c31 | 2779 | return mem_cgroup_from_id(id); |
a3b2d692 KH |
2780 | } |
2781 | ||
e42d9d5d | 2782 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2783 | { |
c0ff4b85 | 2784 | struct mem_cgroup *memcg = NULL; |
3c776e64 | 2785 | struct page_cgroup *pc; |
a3b2d692 | 2786 | unsigned short id; |
b5a84319 KH |
2787 | swp_entry_t ent; |
2788 | ||
309381fe | 2789 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
3c776e64 | 2790 | |
3c776e64 | 2791 | pc = lookup_page_cgroup(page); |
c0bd3f63 | 2792 | lock_page_cgroup(pc); |
a3b2d692 | 2793 | if (PageCgroupUsed(pc)) { |
c0ff4b85 | 2794 | memcg = pc->mem_cgroup; |
ec903c0c | 2795 | if (memcg && !css_tryget_online(&memcg->css)) |
c0ff4b85 | 2796 | memcg = NULL; |
e42d9d5d | 2797 | } else if (PageSwapCache(page)) { |
3c776e64 | 2798 | ent.val = page_private(page); |
9fb4b7cc | 2799 | id = lookup_swap_cgroup_id(ent); |
a3b2d692 | 2800 | rcu_read_lock(); |
c0ff4b85 | 2801 | memcg = mem_cgroup_lookup(id); |
ec903c0c | 2802 | if (memcg && !css_tryget_online(&memcg->css)) |
c0ff4b85 | 2803 | memcg = NULL; |
a3b2d692 | 2804 | rcu_read_unlock(); |
3c776e64 | 2805 | } |
c0bd3f63 | 2806 | unlock_page_cgroup(pc); |
c0ff4b85 | 2807 | return memcg; |
b5a84319 KH |
2808 | } |
2809 | ||
c0ff4b85 | 2810 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
5564e88b | 2811 | struct page *page, |
7ec99d62 | 2812 | unsigned int nr_pages, |
9ce70c02 HD |
2813 | enum charge_type ctype, |
2814 | bool lrucare) | |
7a81b88c | 2815 | { |
ce587e65 | 2816 | struct page_cgroup *pc = lookup_page_cgroup(page); |
9ce70c02 | 2817 | struct zone *uninitialized_var(zone); |
fa9add64 | 2818 | struct lruvec *lruvec; |
9ce70c02 | 2819 | bool was_on_lru = false; |
b2402857 | 2820 | bool anon; |
9ce70c02 | 2821 | |
ca3e0214 | 2822 | lock_page_cgroup(pc); |
309381fe | 2823 | VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); |
ca3e0214 KH |
2824 | /* |
2825 | * we don't need page_cgroup_lock about tail pages, becase they are not | |
2826 | * accessed by any other context at this point. | |
2827 | */ | |
9ce70c02 HD |
2828 | |
2829 | /* | |
2830 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2831 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2832 | */ | |
2833 | if (lrucare) { | |
2834 | zone = page_zone(page); | |
2835 | spin_lock_irq(&zone->lru_lock); | |
2836 | if (PageLRU(page)) { | |
fa9add64 | 2837 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
9ce70c02 | 2838 | ClearPageLRU(page); |
fa9add64 | 2839 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2840 | was_on_lru = true; |
2841 | } | |
2842 | } | |
2843 | ||
c0ff4b85 | 2844 | pc->mem_cgroup = memcg; |
261fb61a KH |
2845 | /* |
2846 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | |
2847 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | |
2848 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | |
2849 | * before USED bit, we need memory barrier here. | |
2850 | * See mem_cgroup_add_lru_list(), etc. | |
f894ffa8 | 2851 | */ |
08e552c6 | 2852 | smp_wmb(); |
b2402857 | 2853 | SetPageCgroupUsed(pc); |
3be91277 | 2854 | |
9ce70c02 HD |
2855 | if (lrucare) { |
2856 | if (was_on_lru) { | |
fa9add64 | 2857 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
309381fe | 2858 | VM_BUG_ON_PAGE(PageLRU(page), page); |
9ce70c02 | 2859 | SetPageLRU(page); |
fa9add64 | 2860 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2861 | } |
2862 | spin_unlock_irq(&zone->lru_lock); | |
2863 | } | |
2864 | ||
41326c17 | 2865 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
b2402857 KH |
2866 | anon = true; |
2867 | else | |
2868 | anon = false; | |
2869 | ||
b070e65c | 2870 | mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); |
52d4b9ac | 2871 | unlock_page_cgroup(pc); |
9ce70c02 | 2872 | |
430e4863 | 2873 | /* |
bb4cc1a8 AM |
2874 | * "charge_statistics" updated event counter. Then, check it. |
2875 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | |
2876 | * if they exceeds softlimit. | |
430e4863 | 2877 | */ |
c0ff4b85 | 2878 | memcg_check_events(memcg, page); |
7a81b88c | 2879 | } |
66e1707b | 2880 | |
7cf27982 GC |
2881 | static DEFINE_MUTEX(set_limit_mutex); |
2882 | ||
7ae1e1d0 | 2883 | #ifdef CONFIG_MEMCG_KMEM |
bd673145 VD |
2884 | /* |
2885 | * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or | |
2886 | * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. | |
2887 | */ | |
2888 | static DEFINE_MUTEX(memcg_slab_mutex); | |
2889 | ||
d6441637 VD |
2890 | static DEFINE_MUTEX(activate_kmem_mutex); |
2891 | ||
7ae1e1d0 GC |
2892 | static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) |
2893 | { | |
2894 | return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && | |
6de64beb | 2895 | memcg_kmem_is_active(memcg); |
7ae1e1d0 GC |
2896 | } |
2897 | ||
1f458cbf GC |
2898 | /* |
2899 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer | |
2900 | * in the memcg_cache_params struct. | |
2901 | */ | |
2902 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | |
2903 | { | |
2904 | struct kmem_cache *cachep; | |
2905 | ||
2906 | VM_BUG_ON(p->is_root_cache); | |
2907 | cachep = p->root_cache; | |
7a67d7ab | 2908 | return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); |
1f458cbf GC |
2909 | } |
2910 | ||
749c5415 | 2911 | #ifdef CONFIG_SLABINFO |
2da8ca82 | 2912 | static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) |
749c5415 | 2913 | { |
2da8ca82 | 2914 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
749c5415 GC |
2915 | struct memcg_cache_params *params; |
2916 | ||
2917 | if (!memcg_can_account_kmem(memcg)) | |
2918 | return -EIO; | |
2919 | ||
2920 | print_slabinfo_header(m); | |
2921 | ||
bd673145 | 2922 | mutex_lock(&memcg_slab_mutex); |
749c5415 GC |
2923 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) |
2924 | cache_show(memcg_params_to_cache(params), m); | |
bd673145 | 2925 | mutex_unlock(&memcg_slab_mutex); |
749c5415 GC |
2926 | |
2927 | return 0; | |
2928 | } | |
2929 | #endif | |
2930 | ||
c67a8a68 | 2931 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) |
7ae1e1d0 GC |
2932 | { |
2933 | struct res_counter *fail_res; | |
7ae1e1d0 | 2934 | int ret = 0; |
7ae1e1d0 GC |
2935 | |
2936 | ret = res_counter_charge(&memcg->kmem, size, &fail_res); | |
2937 | if (ret) | |
2938 | return ret; | |
2939 | ||
6d1fdc48 JW |
2940 | ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, |
2941 | oom_gfp_allowed(gfp)); | |
7ae1e1d0 GC |
2942 | if (ret == -EINTR) { |
2943 | /* | |
6d1fdc48 | 2944 | * mem_cgroup_try_charge() chosed to bypass to root due to |
7ae1e1d0 GC |
2945 | * OOM kill or fatal signal. Since our only options are to |
2946 | * either fail the allocation or charge it to this cgroup, do | |
2947 | * it as a temporary condition. But we can't fail. From a | |
2948 | * kmem/slab perspective, the cache has already been selected, | |
2949 | * by mem_cgroup_kmem_get_cache(), so it is too late to change | |
2950 | * our minds. | |
2951 | * | |
2952 | * This condition will only trigger if the task entered | |
2953 | * memcg_charge_kmem in a sane state, but was OOM-killed during | |
6d1fdc48 | 2954 | * mem_cgroup_try_charge() above. Tasks that were already |
7ae1e1d0 GC |
2955 | * dying when the allocation triggers should have been already |
2956 | * directed to the root cgroup in memcontrol.h | |
2957 | */ | |
2958 | res_counter_charge_nofail(&memcg->res, size, &fail_res); | |
2959 | if (do_swap_account) | |
2960 | res_counter_charge_nofail(&memcg->memsw, size, | |
2961 | &fail_res); | |
2962 | ret = 0; | |
2963 | } else if (ret) | |
2964 | res_counter_uncharge(&memcg->kmem, size); | |
2965 | ||
2966 | return ret; | |
2967 | } | |
2968 | ||
c67a8a68 | 2969 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) |
7ae1e1d0 | 2970 | { |
7ae1e1d0 GC |
2971 | res_counter_uncharge(&memcg->res, size); |
2972 | if (do_swap_account) | |
2973 | res_counter_uncharge(&memcg->memsw, size); | |
7de37682 GC |
2974 | |
2975 | /* Not down to 0 */ | |
2976 | if (res_counter_uncharge(&memcg->kmem, size)) | |
2977 | return; | |
2978 | ||
10d5ebf4 LZ |
2979 | /* |
2980 | * Releases a reference taken in kmem_cgroup_css_offline in case | |
2981 | * this last uncharge is racing with the offlining code or it is | |
2982 | * outliving the memcg existence. | |
2983 | * | |
2984 | * The memory barrier imposed by test&clear is paired with the | |
2985 | * explicit one in memcg_kmem_mark_dead(). | |
2986 | */ | |
7de37682 | 2987 | if (memcg_kmem_test_and_clear_dead(memcg)) |
10d5ebf4 | 2988 | css_put(&memcg->css); |
7ae1e1d0 GC |
2989 | } |
2990 | ||
2633d7a0 GC |
2991 | /* |
2992 | * helper for acessing a memcg's index. It will be used as an index in the | |
2993 | * child cache array in kmem_cache, and also to derive its name. This function | |
2994 | * will return -1 when this is not a kmem-limited memcg. | |
2995 | */ | |
2996 | int memcg_cache_id(struct mem_cgroup *memcg) | |
2997 | { | |
2998 | return memcg ? memcg->kmemcg_id : -1; | |
2999 | } | |
3000 | ||
55007d84 GC |
3001 | static size_t memcg_caches_array_size(int num_groups) |
3002 | { | |
3003 | ssize_t size; | |
3004 | if (num_groups <= 0) | |
3005 | return 0; | |
3006 | ||
3007 | size = 2 * num_groups; | |
3008 | if (size < MEMCG_CACHES_MIN_SIZE) | |
3009 | size = MEMCG_CACHES_MIN_SIZE; | |
3010 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
3011 | size = MEMCG_CACHES_MAX_SIZE; | |
3012 | ||
3013 | return size; | |
3014 | } | |
3015 | ||
3016 | /* | |
3017 | * We should update the current array size iff all caches updates succeed. This | |
3018 | * can only be done from the slab side. The slab mutex needs to be held when | |
3019 | * calling this. | |
3020 | */ | |
3021 | void memcg_update_array_size(int num) | |
3022 | { | |
3023 | if (num > memcg_limited_groups_array_size) | |
3024 | memcg_limited_groups_array_size = memcg_caches_array_size(num); | |
3025 | } | |
3026 | ||
3027 | int memcg_update_cache_size(struct kmem_cache *s, int num_groups) | |
3028 | { | |
3029 | struct memcg_cache_params *cur_params = s->memcg_params; | |
3030 | ||
f35c3a8e | 3031 | VM_BUG_ON(!is_root_cache(s)); |
55007d84 GC |
3032 | |
3033 | if (num_groups > memcg_limited_groups_array_size) { | |
3034 | int i; | |
f8570263 | 3035 | struct memcg_cache_params *new_params; |
55007d84 GC |
3036 | ssize_t size = memcg_caches_array_size(num_groups); |
3037 | ||
3038 | size *= sizeof(void *); | |
90c7a79c | 3039 | size += offsetof(struct memcg_cache_params, memcg_caches); |
55007d84 | 3040 | |
f8570263 VD |
3041 | new_params = kzalloc(size, GFP_KERNEL); |
3042 | if (!new_params) | |
55007d84 | 3043 | return -ENOMEM; |
55007d84 | 3044 | |
f8570263 | 3045 | new_params->is_root_cache = true; |
55007d84 GC |
3046 | |
3047 | /* | |
3048 | * There is the chance it will be bigger than | |
3049 | * memcg_limited_groups_array_size, if we failed an allocation | |
3050 | * in a cache, in which case all caches updated before it, will | |
3051 | * have a bigger array. | |
3052 | * | |
3053 | * But if that is the case, the data after | |
3054 | * memcg_limited_groups_array_size is certainly unused | |
3055 | */ | |
3056 | for (i = 0; i < memcg_limited_groups_array_size; i++) { | |
3057 | if (!cur_params->memcg_caches[i]) | |
3058 | continue; | |
f8570263 | 3059 | new_params->memcg_caches[i] = |
55007d84 GC |
3060 | cur_params->memcg_caches[i]; |
3061 | } | |
3062 | ||
3063 | /* | |
3064 | * Ideally, we would wait until all caches succeed, and only | |
3065 | * then free the old one. But this is not worth the extra | |
3066 | * pointer per-cache we'd have to have for this. | |
3067 | * | |
3068 | * It is not a big deal if some caches are left with a size | |
3069 | * bigger than the others. And all updates will reset this | |
3070 | * anyway. | |
3071 | */ | |
f8570263 VD |
3072 | rcu_assign_pointer(s->memcg_params, new_params); |
3073 | if (cur_params) | |
3074 | kfree_rcu(cur_params, rcu_head); | |
55007d84 GC |
3075 | } |
3076 | return 0; | |
3077 | } | |
3078 | ||
363a044f VD |
3079 | int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, |
3080 | struct kmem_cache *root_cache) | |
2633d7a0 | 3081 | { |
90c7a79c | 3082 | size_t size; |
2633d7a0 GC |
3083 | |
3084 | if (!memcg_kmem_enabled()) | |
3085 | return 0; | |
3086 | ||
90c7a79c AV |
3087 | if (!memcg) { |
3088 | size = offsetof(struct memcg_cache_params, memcg_caches); | |
55007d84 | 3089 | size += memcg_limited_groups_array_size * sizeof(void *); |
90c7a79c AV |
3090 | } else |
3091 | size = sizeof(struct memcg_cache_params); | |
55007d84 | 3092 | |
2633d7a0 GC |
3093 | s->memcg_params = kzalloc(size, GFP_KERNEL); |
3094 | if (!s->memcg_params) | |
3095 | return -ENOMEM; | |
3096 | ||
943a451a | 3097 | if (memcg) { |
2633d7a0 | 3098 | s->memcg_params->memcg = memcg; |
943a451a | 3099 | s->memcg_params->root_cache = root_cache; |
051dd460 | 3100 | css_get(&memcg->css); |
4ba902b5 GC |
3101 | } else |
3102 | s->memcg_params->is_root_cache = true; | |
3103 | ||
2633d7a0 GC |
3104 | return 0; |
3105 | } | |
3106 | ||
363a044f VD |
3107 | void memcg_free_cache_params(struct kmem_cache *s) |
3108 | { | |
051dd460 VD |
3109 | if (!s->memcg_params) |
3110 | return; | |
3111 | if (!s->memcg_params->is_root_cache) | |
3112 | css_put(&s->memcg_params->memcg->css); | |
363a044f VD |
3113 | kfree(s->memcg_params); |
3114 | } | |
3115 | ||
776ed0f0 VD |
3116 | static void memcg_register_cache(struct mem_cgroup *memcg, |
3117 | struct kmem_cache *root_cache) | |
2633d7a0 | 3118 | { |
93f39eea VD |
3119 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by |
3120 | memcg_slab_mutex */ | |
bd673145 | 3121 | struct kmem_cache *cachep; |
d7f25f8a GC |
3122 | int id; |
3123 | ||
bd673145 VD |
3124 | lockdep_assert_held(&memcg_slab_mutex); |
3125 | ||
3126 | id = memcg_cache_id(memcg); | |
3127 | ||
3128 | /* | |
3129 | * Since per-memcg caches are created asynchronously on first | |
3130 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
3131 | * create the same cache, but only one of them may succeed. | |
3132 | */ | |
3133 | if (cache_from_memcg_idx(root_cache, id)) | |
1aa13254 VD |
3134 | return; |
3135 | ||
073ee1c6 | 3136 | cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); |
776ed0f0 | 3137 | cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); |
2edefe11 | 3138 | /* |
bd673145 VD |
3139 | * If we could not create a memcg cache, do not complain, because |
3140 | * that's not critical at all as we can always proceed with the root | |
3141 | * cache. | |
2edefe11 | 3142 | */ |
bd673145 VD |
3143 | if (!cachep) |
3144 | return; | |
2edefe11 | 3145 | |
bd673145 | 3146 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); |
1aa13254 | 3147 | |
d7f25f8a | 3148 | /* |
959c8963 VD |
3149 | * Since readers won't lock (see cache_from_memcg_idx()), we need a |
3150 | * barrier here to ensure nobody will see the kmem_cache partially | |
3151 | * initialized. | |
d7f25f8a | 3152 | */ |
959c8963 VD |
3153 | smp_wmb(); |
3154 | ||
bd673145 VD |
3155 | BUG_ON(root_cache->memcg_params->memcg_caches[id]); |
3156 | root_cache->memcg_params->memcg_caches[id] = cachep; | |
1aa13254 | 3157 | } |
d7f25f8a | 3158 | |
776ed0f0 | 3159 | static void memcg_unregister_cache(struct kmem_cache *cachep) |
1aa13254 | 3160 | { |
bd673145 | 3161 | struct kmem_cache *root_cache; |
1aa13254 VD |
3162 | struct mem_cgroup *memcg; |
3163 | int id; | |
3164 | ||
bd673145 | 3165 | lockdep_assert_held(&memcg_slab_mutex); |
d7f25f8a | 3166 | |
bd673145 | 3167 | BUG_ON(is_root_cache(cachep)); |
2edefe11 | 3168 | |
bd673145 VD |
3169 | root_cache = cachep->memcg_params->root_cache; |
3170 | memcg = cachep->memcg_params->memcg; | |
96403da2 | 3171 | id = memcg_cache_id(memcg); |
d7f25f8a | 3172 | |
bd673145 VD |
3173 | BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); |
3174 | root_cache->memcg_params->memcg_caches[id] = NULL; | |
d7f25f8a | 3175 | |
bd673145 VD |
3176 | list_del(&cachep->memcg_params->list); |
3177 | ||
3178 | kmem_cache_destroy(cachep); | |
2633d7a0 GC |
3179 | } |
3180 | ||
0e9d92f2 GC |
3181 | /* |
3182 | * During the creation a new cache, we need to disable our accounting mechanism | |
3183 | * altogether. This is true even if we are not creating, but rather just | |
3184 | * enqueing new caches to be created. | |
3185 | * | |
3186 | * This is because that process will trigger allocations; some visible, like | |
3187 | * explicit kmallocs to auxiliary data structures, name strings and internal | |
3188 | * cache structures; some well concealed, like INIT_WORK() that can allocate | |
3189 | * objects during debug. | |
3190 | * | |
3191 | * If any allocation happens during memcg_kmem_get_cache, we will recurse back | |
3192 | * to it. This may not be a bounded recursion: since the first cache creation | |
3193 | * failed to complete (waiting on the allocation), we'll just try to create the | |
3194 | * cache again, failing at the same point. | |
3195 | * | |
3196 | * memcg_kmem_get_cache is prepared to abort after seeing a positive count of | |
3197 | * memcg_kmem_skip_account. So we enclose anything that might allocate memory | |
3198 | * inside the following two functions. | |
3199 | */ | |
3200 | static inline void memcg_stop_kmem_account(void) | |
3201 | { | |
3202 | VM_BUG_ON(!current->mm); | |
3203 | current->memcg_kmem_skip_account++; | |
3204 | } | |
3205 | ||
3206 | static inline void memcg_resume_kmem_account(void) | |
3207 | { | |
3208 | VM_BUG_ON(!current->mm); | |
3209 | current->memcg_kmem_skip_account--; | |
3210 | } | |
3211 | ||
776ed0f0 | 3212 | int __memcg_cleanup_cache_params(struct kmem_cache *s) |
7cf27982 GC |
3213 | { |
3214 | struct kmem_cache *c; | |
b8529907 | 3215 | int i, failed = 0; |
7cf27982 | 3216 | |
bd673145 | 3217 | mutex_lock(&memcg_slab_mutex); |
7a67d7ab QH |
3218 | for_each_memcg_cache_index(i) { |
3219 | c = cache_from_memcg_idx(s, i); | |
7cf27982 GC |
3220 | if (!c) |
3221 | continue; | |
3222 | ||
776ed0f0 | 3223 | memcg_unregister_cache(c); |
b8529907 VD |
3224 | |
3225 | if (cache_from_memcg_idx(s, i)) | |
3226 | failed++; | |
7cf27982 | 3227 | } |
bd673145 | 3228 | mutex_unlock(&memcg_slab_mutex); |
b8529907 | 3229 | return failed; |
7cf27982 GC |
3230 | } |
3231 | ||
776ed0f0 | 3232 | static void memcg_unregister_all_caches(struct mem_cgroup *memcg) |
1f458cbf GC |
3233 | { |
3234 | struct kmem_cache *cachep; | |
bd673145 | 3235 | struct memcg_cache_params *params, *tmp; |
1f458cbf GC |
3236 | |
3237 | if (!memcg_kmem_is_active(memcg)) | |
3238 | return; | |
3239 | ||
bd673145 VD |
3240 | mutex_lock(&memcg_slab_mutex); |
3241 | list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { | |
1f458cbf | 3242 | cachep = memcg_params_to_cache(params); |
bd673145 VD |
3243 | kmem_cache_shrink(cachep); |
3244 | if (atomic_read(&cachep->memcg_params->nr_pages) == 0) | |
776ed0f0 | 3245 | memcg_unregister_cache(cachep); |
1f458cbf | 3246 | } |
bd673145 | 3247 | mutex_unlock(&memcg_slab_mutex); |
1f458cbf GC |
3248 | } |
3249 | ||
776ed0f0 | 3250 | struct memcg_register_cache_work { |
5722d094 VD |
3251 | struct mem_cgroup *memcg; |
3252 | struct kmem_cache *cachep; | |
3253 | struct work_struct work; | |
3254 | }; | |
3255 | ||
776ed0f0 | 3256 | static void memcg_register_cache_func(struct work_struct *w) |
d7f25f8a | 3257 | { |
776ed0f0 VD |
3258 | struct memcg_register_cache_work *cw = |
3259 | container_of(w, struct memcg_register_cache_work, work); | |
5722d094 VD |
3260 | struct mem_cgroup *memcg = cw->memcg; |
3261 | struct kmem_cache *cachep = cw->cachep; | |
d7f25f8a | 3262 | |
bd673145 | 3263 | mutex_lock(&memcg_slab_mutex); |
776ed0f0 | 3264 | memcg_register_cache(memcg, cachep); |
bd673145 VD |
3265 | mutex_unlock(&memcg_slab_mutex); |
3266 | ||
5722d094 | 3267 | css_put(&memcg->css); |
d7f25f8a GC |
3268 | kfree(cw); |
3269 | } | |
3270 | ||
3271 | /* | |
3272 | * Enqueue the creation of a per-memcg kmem_cache. | |
d7f25f8a | 3273 | */ |
776ed0f0 VD |
3274 | static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, |
3275 | struct kmem_cache *cachep) | |
d7f25f8a | 3276 | { |
776ed0f0 | 3277 | struct memcg_register_cache_work *cw; |
d7f25f8a | 3278 | |
776ed0f0 | 3279 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); |
ca0dde97 LZ |
3280 | if (cw == NULL) { |
3281 | css_put(&memcg->css); | |
d7f25f8a GC |
3282 | return; |
3283 | } | |
3284 | ||
3285 | cw->memcg = memcg; | |
3286 | cw->cachep = cachep; | |
3287 | ||
776ed0f0 | 3288 | INIT_WORK(&cw->work, memcg_register_cache_func); |
d7f25f8a GC |
3289 | schedule_work(&cw->work); |
3290 | } | |
3291 | ||
776ed0f0 VD |
3292 | static void memcg_schedule_register_cache(struct mem_cgroup *memcg, |
3293 | struct kmem_cache *cachep) | |
0e9d92f2 GC |
3294 | { |
3295 | /* | |
3296 | * We need to stop accounting when we kmalloc, because if the | |
3297 | * corresponding kmalloc cache is not yet created, the first allocation | |
776ed0f0 | 3298 | * in __memcg_schedule_register_cache will recurse. |
0e9d92f2 GC |
3299 | * |
3300 | * However, it is better to enclose the whole function. Depending on | |
3301 | * the debugging options enabled, INIT_WORK(), for instance, can | |
3302 | * trigger an allocation. This too, will make us recurse. Because at | |
3303 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
3304 | * the safest choice is to do it like this, wrapping the whole function. | |
3305 | */ | |
3306 | memcg_stop_kmem_account(); | |
776ed0f0 | 3307 | __memcg_schedule_register_cache(memcg, cachep); |
0e9d92f2 GC |
3308 | memcg_resume_kmem_account(); |
3309 | } | |
c67a8a68 VD |
3310 | |
3311 | int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) | |
3312 | { | |
3313 | int res; | |
3314 | ||
3315 | res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, | |
3316 | PAGE_SIZE << order); | |
3317 | if (!res) | |
3318 | atomic_add(1 << order, &cachep->memcg_params->nr_pages); | |
3319 | return res; | |
3320 | } | |
3321 | ||
3322 | void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) | |
3323 | { | |
3324 | memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order); | |
3325 | atomic_sub(1 << order, &cachep->memcg_params->nr_pages); | |
3326 | } | |
3327 | ||
d7f25f8a GC |
3328 | /* |
3329 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
3330 | * We try to use the current memcg's version of the cache. | |
3331 | * | |
3332 | * If the cache does not exist yet, if we are the first user of it, | |
3333 | * we either create it immediately, if possible, or create it asynchronously | |
3334 | * in a workqueue. | |
3335 | * In the latter case, we will let the current allocation go through with | |
3336 | * the original cache. | |
3337 | * | |
3338 | * Can't be called in interrupt context or from kernel threads. | |
3339 | * This function needs to be called with rcu_read_lock() held. | |
3340 | */ | |
3341 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, | |
3342 | gfp_t gfp) | |
3343 | { | |
3344 | struct mem_cgroup *memcg; | |
959c8963 | 3345 | struct kmem_cache *memcg_cachep; |
d7f25f8a GC |
3346 | |
3347 | VM_BUG_ON(!cachep->memcg_params); | |
3348 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); | |
3349 | ||
0e9d92f2 GC |
3350 | if (!current->mm || current->memcg_kmem_skip_account) |
3351 | return cachep; | |
3352 | ||
d7f25f8a GC |
3353 | rcu_read_lock(); |
3354 | memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); | |
d7f25f8a GC |
3355 | |
3356 | if (!memcg_can_account_kmem(memcg)) | |
ca0dde97 | 3357 | goto out; |
d7f25f8a | 3358 | |
959c8963 VD |
3359 | memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); |
3360 | if (likely(memcg_cachep)) { | |
3361 | cachep = memcg_cachep; | |
ca0dde97 | 3362 | goto out; |
d7f25f8a GC |
3363 | } |
3364 | ||
ca0dde97 | 3365 | /* The corresponding put will be done in the workqueue. */ |
ec903c0c | 3366 | if (!css_tryget_online(&memcg->css)) |
ca0dde97 LZ |
3367 | goto out; |
3368 | rcu_read_unlock(); | |
3369 | ||
3370 | /* | |
3371 | * If we are in a safe context (can wait, and not in interrupt | |
3372 | * context), we could be be predictable and return right away. | |
3373 | * This would guarantee that the allocation being performed | |
3374 | * already belongs in the new cache. | |
3375 | * | |
3376 | * However, there are some clashes that can arrive from locking. | |
3377 | * For instance, because we acquire the slab_mutex while doing | |
776ed0f0 VD |
3378 | * memcg_create_kmem_cache, this means no further allocation |
3379 | * could happen with the slab_mutex held. So it's better to | |
3380 | * defer everything. | |
ca0dde97 | 3381 | */ |
776ed0f0 | 3382 | memcg_schedule_register_cache(memcg, cachep); |
ca0dde97 LZ |
3383 | return cachep; |
3384 | out: | |
3385 | rcu_read_unlock(); | |
3386 | return cachep; | |
d7f25f8a | 3387 | } |
d7f25f8a | 3388 | |
7ae1e1d0 GC |
3389 | /* |
3390 | * We need to verify if the allocation against current->mm->owner's memcg is | |
3391 | * possible for the given order. But the page is not allocated yet, so we'll | |
3392 | * need a further commit step to do the final arrangements. | |
3393 | * | |
3394 | * It is possible for the task to switch cgroups in this mean time, so at | |
3395 | * commit time, we can't rely on task conversion any longer. We'll then use | |
3396 | * the handle argument to return to the caller which cgroup we should commit | |
3397 | * against. We could also return the memcg directly and avoid the pointer | |
3398 | * passing, but a boolean return value gives better semantics considering | |
3399 | * the compiled-out case as well. | |
3400 | * | |
3401 | * Returning true means the allocation is possible. | |
3402 | */ | |
3403 | bool | |
3404 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | |
3405 | { | |
3406 | struct mem_cgroup *memcg; | |
3407 | int ret; | |
3408 | ||
3409 | *_memcg = NULL; | |
6d42c232 GC |
3410 | |
3411 | /* | |
3412 | * Disabling accounting is only relevant for some specific memcg | |
3413 | * internal allocations. Therefore we would initially not have such | |
52383431 VD |
3414 | * check here, since direct calls to the page allocator that are |
3415 | * accounted to kmemcg (alloc_kmem_pages and friends) only happen | |
3416 | * outside memcg core. We are mostly concerned with cache allocations, | |
3417 | * and by having this test at memcg_kmem_get_cache, we are already able | |
3418 | * to relay the allocation to the root cache and bypass the memcg cache | |
3419 | * altogether. | |
6d42c232 GC |
3420 | * |
3421 | * There is one exception, though: the SLUB allocator does not create | |
3422 | * large order caches, but rather service large kmallocs directly from | |
3423 | * the page allocator. Therefore, the following sequence when backed by | |
3424 | * the SLUB allocator: | |
3425 | * | |
f894ffa8 AM |
3426 | * memcg_stop_kmem_account(); |
3427 | * kmalloc(<large_number>) | |
3428 | * memcg_resume_kmem_account(); | |
6d42c232 GC |
3429 | * |
3430 | * would effectively ignore the fact that we should skip accounting, | |
3431 | * since it will drive us directly to this function without passing | |
3432 | * through the cache selector memcg_kmem_get_cache. Such large | |
3433 | * allocations are extremely rare but can happen, for instance, for the | |
3434 | * cache arrays. We bring this test here. | |
3435 | */ | |
3436 | if (!current->mm || current->memcg_kmem_skip_account) | |
3437 | return true; | |
3438 | ||
df381975 | 3439 | memcg = get_mem_cgroup_from_mm(current->mm); |
7ae1e1d0 GC |
3440 | |
3441 | if (!memcg_can_account_kmem(memcg)) { | |
3442 | css_put(&memcg->css); | |
3443 | return true; | |
3444 | } | |
3445 | ||
7ae1e1d0 GC |
3446 | ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); |
3447 | if (!ret) | |
3448 | *_memcg = memcg; | |
7ae1e1d0 GC |
3449 | |
3450 | css_put(&memcg->css); | |
3451 | return (ret == 0); | |
3452 | } | |
3453 | ||
3454 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
3455 | int order) | |
3456 | { | |
3457 | struct page_cgroup *pc; | |
3458 | ||
3459 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
3460 | ||
3461 | /* The page allocation failed. Revert */ | |
3462 | if (!page) { | |
3463 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | |
7ae1e1d0 GC |
3464 | return; |
3465 | } | |
3466 | ||
3467 | pc = lookup_page_cgroup(page); | |
3468 | lock_page_cgroup(pc); | |
3469 | pc->mem_cgroup = memcg; | |
3470 | SetPageCgroupUsed(pc); | |
3471 | unlock_page_cgroup(pc); | |
3472 | } | |
3473 | ||
3474 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | |
3475 | { | |
3476 | struct mem_cgroup *memcg = NULL; | |
3477 | struct page_cgroup *pc; | |
3478 | ||
3479 | ||
3480 | pc = lookup_page_cgroup(page); | |
3481 | /* | |
3482 | * Fast unlocked return. Theoretically might have changed, have to | |
3483 | * check again after locking. | |
3484 | */ | |
3485 | if (!PageCgroupUsed(pc)) | |
3486 | return; | |
3487 | ||
3488 | lock_page_cgroup(pc); | |
3489 | if (PageCgroupUsed(pc)) { | |
3490 | memcg = pc->mem_cgroup; | |
3491 | ClearPageCgroupUsed(pc); | |
3492 | } | |
3493 | unlock_page_cgroup(pc); | |
3494 | ||
3495 | /* | |
3496 | * We trust that only if there is a memcg associated with the page, it | |
3497 | * is a valid allocation | |
3498 | */ | |
3499 | if (!memcg) | |
3500 | return; | |
3501 | ||
309381fe | 3502 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); |
7ae1e1d0 | 3503 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); |
7ae1e1d0 | 3504 | } |
1f458cbf | 3505 | #else |
776ed0f0 | 3506 | static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) |
1f458cbf GC |
3507 | { |
3508 | } | |
7ae1e1d0 GC |
3509 | #endif /* CONFIG_MEMCG_KMEM */ |
3510 | ||
ca3e0214 KH |
3511 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
3512 | ||
a0db00fc | 3513 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
ca3e0214 KH |
3514 | /* |
3515 | * Because tail pages are not marked as "used", set it. We're under | |
e94c8a9c KH |
3516 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
3517 | * charge/uncharge will be never happen and move_account() is done under | |
3518 | * compound_lock(), so we don't have to take care of races. | |
ca3e0214 | 3519 | */ |
e94c8a9c | 3520 | void mem_cgroup_split_huge_fixup(struct page *head) |
ca3e0214 KH |
3521 | { |
3522 | struct page_cgroup *head_pc = lookup_page_cgroup(head); | |
e94c8a9c | 3523 | struct page_cgroup *pc; |
b070e65c | 3524 | struct mem_cgroup *memcg; |
e94c8a9c | 3525 | int i; |
ca3e0214 | 3526 | |
3d37c4a9 KH |
3527 | if (mem_cgroup_disabled()) |
3528 | return; | |
b070e65c DR |
3529 | |
3530 | memcg = head_pc->mem_cgroup; | |
e94c8a9c KH |
3531 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
3532 | pc = head_pc + i; | |
b070e65c | 3533 | pc->mem_cgroup = memcg; |
e94c8a9c | 3534 | smp_wmb();/* see __commit_charge() */ |
e94c8a9c KH |
3535 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
3536 | } | |
b070e65c DR |
3537 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
3538 | HPAGE_PMD_NR); | |
ca3e0214 | 3539 | } |
12d27107 | 3540 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
ca3e0214 | 3541 | |
f817ed48 | 3542 | /** |
de3638d9 | 3543 | * mem_cgroup_move_account - move account of the page |
5564e88b | 3544 | * @page: the page |
7ec99d62 | 3545 | * @nr_pages: number of regular pages (>1 for huge pages) |
f817ed48 KH |
3546 | * @pc: page_cgroup of the page. |
3547 | * @from: mem_cgroup which the page is moved from. | |
3548 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
3549 | * | |
3550 | * The caller must confirm following. | |
08e552c6 | 3551 | * - page is not on LRU (isolate_page() is useful.) |
7ec99d62 | 3552 | * - compound_lock is held when nr_pages > 1 |
f817ed48 | 3553 | * |
2f3479b1 KH |
3554 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
3555 | * from old cgroup. | |
f817ed48 | 3556 | */ |
7ec99d62 JW |
3557 | static int mem_cgroup_move_account(struct page *page, |
3558 | unsigned int nr_pages, | |
3559 | struct page_cgroup *pc, | |
3560 | struct mem_cgroup *from, | |
2f3479b1 | 3561 | struct mem_cgroup *to) |
f817ed48 | 3562 | { |
de3638d9 JW |
3563 | unsigned long flags; |
3564 | int ret; | |
b2402857 | 3565 | bool anon = PageAnon(page); |
987eba66 | 3566 | |
f817ed48 | 3567 | VM_BUG_ON(from == to); |
309381fe | 3568 | VM_BUG_ON_PAGE(PageLRU(page), page); |
de3638d9 JW |
3569 | /* |
3570 | * The page is isolated from LRU. So, collapse function | |
3571 | * will not handle this page. But page splitting can happen. | |
3572 | * Do this check under compound_page_lock(). The caller should | |
3573 | * hold it. | |
3574 | */ | |
3575 | ret = -EBUSY; | |
7ec99d62 | 3576 | if (nr_pages > 1 && !PageTransHuge(page)) |
de3638d9 JW |
3577 | goto out; |
3578 | ||
3579 | lock_page_cgroup(pc); | |
3580 | ||
3581 | ret = -EINVAL; | |
3582 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | |
3583 | goto unlock; | |
3584 | ||
312734c0 | 3585 | move_lock_mem_cgroup(from, &flags); |
f817ed48 | 3586 | |
59d1d256 JW |
3587 | if (!anon && page_mapped(page)) { |
3588 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
3589 | nr_pages); | |
3590 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
3591 | nr_pages); | |
3592 | } | |
3ea67d06 | 3593 | |
59d1d256 JW |
3594 | if (PageWriteback(page)) { |
3595 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
3596 | nr_pages); | |
3597 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
3598 | nr_pages); | |
3599 | } | |
3ea67d06 | 3600 | |
b070e65c | 3601 | mem_cgroup_charge_statistics(from, page, anon, -nr_pages); |
d69b042f | 3602 | |
854ffa8d | 3603 | /* caller should have done css_get */ |
08e552c6 | 3604 | pc->mem_cgroup = to; |
b070e65c | 3605 | mem_cgroup_charge_statistics(to, page, anon, nr_pages); |
312734c0 | 3606 | move_unlock_mem_cgroup(from, &flags); |
de3638d9 JW |
3607 | ret = 0; |
3608 | unlock: | |
57f9fd7d | 3609 | unlock_page_cgroup(pc); |
d2265e6f KH |
3610 | /* |
3611 | * check events | |
3612 | */ | |
5564e88b JW |
3613 | memcg_check_events(to, page); |
3614 | memcg_check_events(from, page); | |
de3638d9 | 3615 | out: |
f817ed48 KH |
3616 | return ret; |
3617 | } | |
3618 | ||
2ef37d3f MH |
3619 | /** |
3620 | * mem_cgroup_move_parent - moves page to the parent group | |
3621 | * @page: the page to move | |
3622 | * @pc: page_cgroup of the page | |
3623 | * @child: page's cgroup | |
3624 | * | |
3625 | * move charges to its parent or the root cgroup if the group has no | |
3626 | * parent (aka use_hierarchy==0). | |
3627 | * Although this might fail (get_page_unless_zero, isolate_lru_page or | |
3628 | * mem_cgroup_move_account fails) the failure is always temporary and | |
3629 | * it signals a race with a page removal/uncharge or migration. In the | |
3630 | * first case the page is on the way out and it will vanish from the LRU | |
3631 | * on the next attempt and the call should be retried later. | |
3632 | * Isolation from the LRU fails only if page has been isolated from | |
3633 | * the LRU since we looked at it and that usually means either global | |
3634 | * reclaim or migration going on. The page will either get back to the | |
3635 | * LRU or vanish. | |
3636 | * Finaly mem_cgroup_move_account fails only if the page got uncharged | |
3637 | * (!PageCgroupUsed) or moved to a different group. The page will | |
3638 | * disappear in the next attempt. | |
f817ed48 | 3639 | */ |
5564e88b JW |
3640 | static int mem_cgroup_move_parent(struct page *page, |
3641 | struct page_cgroup *pc, | |
6068bf01 | 3642 | struct mem_cgroup *child) |
f817ed48 | 3643 | { |
f817ed48 | 3644 | struct mem_cgroup *parent; |
7ec99d62 | 3645 | unsigned int nr_pages; |
4be4489f | 3646 | unsigned long uninitialized_var(flags); |
f817ed48 KH |
3647 | int ret; |
3648 | ||
d8423011 | 3649 | VM_BUG_ON(mem_cgroup_is_root(child)); |
f817ed48 | 3650 | |
57f9fd7d DN |
3651 | ret = -EBUSY; |
3652 | if (!get_page_unless_zero(page)) | |
3653 | goto out; | |
3654 | if (isolate_lru_page(page)) | |
3655 | goto put; | |
52dbb905 | 3656 | |
7ec99d62 | 3657 | nr_pages = hpage_nr_pages(page); |
08e552c6 | 3658 | |
cc926f78 KH |
3659 | parent = parent_mem_cgroup(child); |
3660 | /* | |
3661 | * If no parent, move charges to root cgroup. | |
3662 | */ | |
3663 | if (!parent) | |
3664 | parent = root_mem_cgroup; | |
f817ed48 | 3665 | |
2ef37d3f | 3666 | if (nr_pages > 1) { |
309381fe | 3667 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
987eba66 | 3668 | flags = compound_lock_irqsave(page); |
2ef37d3f | 3669 | } |
987eba66 | 3670 | |
cc926f78 | 3671 | ret = mem_cgroup_move_account(page, nr_pages, |
2f3479b1 | 3672 | pc, child, parent); |
cc926f78 KH |
3673 | if (!ret) |
3674 | __mem_cgroup_cancel_local_charge(child, nr_pages); | |
8dba474f | 3675 | |
7ec99d62 | 3676 | if (nr_pages > 1) |
987eba66 | 3677 | compound_unlock_irqrestore(page, flags); |
08e552c6 | 3678 | putback_lru_page(page); |
57f9fd7d | 3679 | put: |
40d58138 | 3680 | put_page(page); |
57f9fd7d | 3681 | out: |
f817ed48 KH |
3682 | return ret; |
3683 | } | |
3684 | ||
d715ae08 | 3685 | int mem_cgroup_charge_anon(struct page *page, |
1bec6b33 | 3686 | struct mm_struct *mm, gfp_t gfp_mask) |
7a81b88c | 3687 | { |
7ec99d62 | 3688 | unsigned int nr_pages = 1; |
6d1fdc48 | 3689 | struct mem_cgroup *memcg; |
8493ae43 | 3690 | bool oom = true; |
ec168510 | 3691 | |
1bec6b33 JW |
3692 | if (mem_cgroup_disabled()) |
3693 | return 0; | |
3694 | ||
3695 | VM_BUG_ON_PAGE(page_mapped(page), page); | |
3696 | VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); | |
3697 | VM_BUG_ON(!mm); | |
3698 | ||
37c2ac78 | 3699 | if (PageTransHuge(page)) { |
7ec99d62 | 3700 | nr_pages <<= compound_order(page); |
309381fe | 3701 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
8493ae43 JW |
3702 | /* |
3703 | * Never OOM-kill a process for a huge page. The | |
3704 | * fault handler will fall back to regular pages. | |
3705 | */ | |
3706 | oom = false; | |
37c2ac78 | 3707 | } |
7a81b88c | 3708 | |
6d1fdc48 JW |
3709 | memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); |
3710 | if (!memcg) | |
3711 | return -ENOMEM; | |
1bec6b33 JW |
3712 | __mem_cgroup_commit_charge(memcg, page, nr_pages, |
3713 | MEM_CGROUP_CHARGE_TYPE_ANON, false); | |
8a9f3ccd | 3714 | return 0; |
8a9f3ccd BS |
3715 | } |
3716 | ||
54595fe2 KH |
3717 | /* |
3718 | * While swap-in, try_charge -> commit or cancel, the page is locked. | |
3719 | * And when try_charge() successfully returns, one refcnt to memcg without | |
21ae2956 | 3720 | * struct page_cgroup is acquired. This refcnt will be consumed by |
54595fe2 KH |
3721 | * "commit()" or removed by "cancel()" |
3722 | */ | |
0435a2fd JW |
3723 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
3724 | struct page *page, | |
3725 | gfp_t mask, | |
3726 | struct mem_cgroup **memcgp) | |
8c7c6e34 | 3727 | { |
6d1fdc48 | 3728 | struct mem_cgroup *memcg = NULL; |
90deb788 | 3729 | struct page_cgroup *pc; |
54595fe2 | 3730 | int ret; |
8c7c6e34 | 3731 | |
90deb788 JW |
3732 | pc = lookup_page_cgroup(page); |
3733 | /* | |
3734 | * Every swap fault against a single page tries to charge the | |
3735 | * page, bail as early as possible. shmem_unuse() encounters | |
3736 | * already charged pages, too. The USED bit is protected by | |
3737 | * the page lock, which serializes swap cache removal, which | |
3738 | * in turn serializes uncharging. | |
3739 | */ | |
3740 | if (PageCgroupUsed(pc)) | |
6d1fdc48 JW |
3741 | goto out; |
3742 | if (do_swap_account) | |
3743 | memcg = try_get_mem_cgroup_from_page(page); | |
c0ff4b85 | 3744 | if (!memcg) |
6d1fdc48 JW |
3745 | memcg = get_mem_cgroup_from_mm(mm); |
3746 | ret = mem_cgroup_try_charge(memcg, mask, 1, true); | |
c0ff4b85 | 3747 | css_put(&memcg->css); |
38c5d72f | 3748 | if (ret == -EINTR) |
6d1fdc48 JW |
3749 | memcg = root_mem_cgroup; |
3750 | else if (ret) | |
3751 | return ret; | |
3752 | out: | |
3753 | *memcgp = memcg; | |
3754 | return 0; | |
8c7c6e34 KH |
3755 | } |
3756 | ||
0435a2fd JW |
3757 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
3758 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | |
3759 | { | |
6d1fdc48 JW |
3760 | if (mem_cgroup_disabled()) { |
3761 | *memcgp = NULL; | |
0435a2fd | 3762 | return 0; |
6d1fdc48 | 3763 | } |
bdf4f4d2 JW |
3764 | /* |
3765 | * A racing thread's fault, or swapoff, may have already | |
3766 | * updated the pte, and even removed page from swap cache: in | |
3767 | * those cases unuse_pte()'s pte_same() test will fail; but | |
3768 | * there's also a KSM case which does need to charge the page. | |
3769 | */ | |
3770 | if (!PageSwapCache(page)) { | |
6d1fdc48 | 3771 | struct mem_cgroup *memcg; |
bdf4f4d2 | 3772 | |
6d1fdc48 JW |
3773 | memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); |
3774 | if (!memcg) | |
3775 | return -ENOMEM; | |
3776 | *memcgp = memcg; | |
3777 | return 0; | |
bdf4f4d2 | 3778 | } |
0435a2fd JW |
3779 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
3780 | } | |
3781 | ||
827a03d2 JW |
3782 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
3783 | { | |
3784 | if (mem_cgroup_disabled()) | |
3785 | return; | |
3786 | if (!memcg) | |
3787 | return; | |
3788 | __mem_cgroup_cancel_charge(memcg, 1); | |
3789 | } | |
3790 | ||
83aae4c7 | 3791 | static void |
72835c86 | 3792 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
83aae4c7 | 3793 | enum charge_type ctype) |
7a81b88c | 3794 | { |
f8d66542 | 3795 | if (mem_cgroup_disabled()) |
7a81b88c | 3796 | return; |
72835c86 | 3797 | if (!memcg) |
7a81b88c | 3798 | return; |
5a6475a4 | 3799 | |
ce587e65 | 3800 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
8c7c6e34 KH |
3801 | /* |
3802 | * Now swap is on-memory. This means this page may be | |
3803 | * counted both as mem and swap....double count. | |
03f3c433 KH |
3804 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
3805 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
3806 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 3807 | */ |
03f3c433 | 3808 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 | 3809 | swp_entry_t ent = {.val = page_private(page)}; |
86493009 | 3810 | mem_cgroup_uncharge_swap(ent); |
8c7c6e34 | 3811 | } |
7a81b88c KH |
3812 | } |
3813 | ||
72835c86 JW |
3814 | void mem_cgroup_commit_charge_swapin(struct page *page, |
3815 | struct mem_cgroup *memcg) | |
83aae4c7 | 3816 | { |
72835c86 | 3817 | __mem_cgroup_commit_charge_swapin(page, memcg, |
41326c17 | 3818 | MEM_CGROUP_CHARGE_TYPE_ANON); |
83aae4c7 DN |
3819 | } |
3820 | ||
d715ae08 | 3821 | int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, |
827a03d2 | 3822 | gfp_t gfp_mask) |
7a81b88c | 3823 | { |
827a03d2 | 3824 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
6d1fdc48 | 3825 | struct mem_cgroup *memcg; |
827a03d2 JW |
3826 | int ret; |
3827 | ||
f8d66542 | 3828 | if (mem_cgroup_disabled()) |
827a03d2 JW |
3829 | return 0; |
3830 | if (PageCompound(page)) | |
3831 | return 0; | |
3832 | ||
6d1fdc48 | 3833 | if (PageSwapCache(page)) { /* shmem */ |
0435a2fd JW |
3834 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
3835 | gfp_mask, &memcg); | |
6d1fdc48 JW |
3836 | if (ret) |
3837 | return ret; | |
3838 | __mem_cgroup_commit_charge_swapin(page, memcg, type); | |
3839 | return 0; | |
827a03d2 | 3840 | } |
6d1fdc48 | 3841 | |
6f6acb00 MH |
3842 | memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); |
3843 | if (!memcg) | |
3844 | return -ENOMEM; | |
6d1fdc48 JW |
3845 | __mem_cgroup_commit_charge(memcg, page, 1, type, false); |
3846 | return 0; | |
7a81b88c KH |
3847 | } |
3848 | ||
c0ff4b85 | 3849 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
7ec99d62 JW |
3850 | unsigned int nr_pages, |
3851 | const enum charge_type ctype) | |
569b846d KH |
3852 | { |
3853 | struct memcg_batch_info *batch = NULL; | |
3854 | bool uncharge_memsw = true; | |
7ec99d62 | 3855 | |
569b846d KH |
3856 | /* If swapout, usage of swap doesn't decrease */ |
3857 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
3858 | uncharge_memsw = false; | |
569b846d KH |
3859 | |
3860 | batch = ¤t->memcg_batch; | |
3861 | /* | |
3862 | * In usual, we do css_get() when we remember memcg pointer. | |
3863 | * But in this case, we keep res->usage until end of a series of | |
3864 | * uncharges. Then, it's ok to ignore memcg's refcnt. | |
3865 | */ | |
3866 | if (!batch->memcg) | |
c0ff4b85 | 3867 | batch->memcg = memcg; |
3c11ecf4 KH |
3868 | /* |
3869 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | |
25985edc | 3870 | * In those cases, all pages freed continuously can be expected to be in |
3c11ecf4 KH |
3871 | * the same cgroup and we have chance to coalesce uncharges. |
3872 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | |
3873 | * because we want to do uncharge as soon as possible. | |
3874 | */ | |
3875 | ||
3876 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | |
3877 | goto direct_uncharge; | |
3878 | ||
7ec99d62 | 3879 | if (nr_pages > 1) |
ec168510 AA |
3880 | goto direct_uncharge; |
3881 | ||
569b846d KH |
3882 | /* |
3883 | * In typical case, batch->memcg == mem. This means we can | |
3884 | * merge a series of uncharges to an uncharge of res_counter. | |
3885 | * If not, we uncharge res_counter ony by one. | |
3886 | */ | |
c0ff4b85 | 3887 | if (batch->memcg != memcg) |
569b846d KH |
3888 | goto direct_uncharge; |
3889 | /* remember freed charge and uncharge it later */ | |
7ffd4ca7 | 3890 | batch->nr_pages++; |
569b846d | 3891 | if (uncharge_memsw) |
7ffd4ca7 | 3892 | batch->memsw_nr_pages++; |
569b846d KH |
3893 | return; |
3894 | direct_uncharge: | |
c0ff4b85 | 3895 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
569b846d | 3896 | if (uncharge_memsw) |
c0ff4b85 R |
3897 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
3898 | if (unlikely(batch->memcg != memcg)) | |
3899 | memcg_oom_recover(memcg); | |
569b846d | 3900 | } |
7a81b88c | 3901 | |
8a9f3ccd | 3902 | /* |
69029cd5 | 3903 | * uncharge if !page_mapped(page) |
8a9f3ccd | 3904 | */ |
8c7c6e34 | 3905 | static struct mem_cgroup * |
0030f535 JW |
3906 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
3907 | bool end_migration) | |
8a9f3ccd | 3908 | { |
c0ff4b85 | 3909 | struct mem_cgroup *memcg = NULL; |
7ec99d62 JW |
3910 | unsigned int nr_pages = 1; |
3911 | struct page_cgroup *pc; | |
b2402857 | 3912 | bool anon; |
8a9f3ccd | 3913 | |
f8d66542 | 3914 | if (mem_cgroup_disabled()) |
8c7c6e34 | 3915 | return NULL; |
4077960e | 3916 | |
37c2ac78 | 3917 | if (PageTransHuge(page)) { |
7ec99d62 | 3918 | nr_pages <<= compound_order(page); |
309381fe | 3919 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
37c2ac78 | 3920 | } |
8697d331 | 3921 | /* |
3c541e14 | 3922 | * Check if our page_cgroup is valid |
8697d331 | 3923 | */ |
52d4b9ac | 3924 | pc = lookup_page_cgroup(page); |
cfa44946 | 3925 | if (unlikely(!PageCgroupUsed(pc))) |
8c7c6e34 | 3926 | return NULL; |
b9c565d5 | 3927 | |
52d4b9ac | 3928 | lock_page_cgroup(pc); |
d13d1443 | 3929 | |
c0ff4b85 | 3930 | memcg = pc->mem_cgroup; |
8c7c6e34 | 3931 | |
d13d1443 KH |
3932 | if (!PageCgroupUsed(pc)) |
3933 | goto unlock_out; | |
3934 | ||
b2402857 KH |
3935 | anon = PageAnon(page); |
3936 | ||
d13d1443 | 3937 | switch (ctype) { |
41326c17 | 3938 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
2ff76f11 KH |
3939 | /* |
3940 | * Generally PageAnon tells if it's the anon statistics to be | |
3941 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is | |
3942 | * used before page reached the stage of being marked PageAnon. | |
3943 | */ | |
b2402857 KH |
3944 | anon = true; |
3945 | /* fallthrough */ | |
8a9478ca | 3946 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
ac39cf8c | 3947 | /* See mem_cgroup_prepare_migration() */ |
0030f535 JW |
3948 | if (page_mapped(page)) |
3949 | goto unlock_out; | |
3950 | /* | |
3951 | * Pages under migration may not be uncharged. But | |
3952 | * end_migration() /must/ be the one uncharging the | |
3953 | * unused post-migration page and so it has to call | |
3954 | * here with the migration bit still set. See the | |
3955 | * res_counter handling below. | |
3956 | */ | |
3957 | if (!end_migration && PageCgroupMigration(pc)) | |
d13d1443 KH |
3958 | goto unlock_out; |
3959 | break; | |
3960 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
3961 | if (!PageAnon(page)) { /* Shared memory */ | |
3962 | if (page->mapping && !page_is_file_cache(page)) | |
3963 | goto unlock_out; | |
3964 | } else if (page_mapped(page)) /* Anon */ | |
3965 | goto unlock_out; | |
3966 | break; | |
3967 | default: | |
3968 | break; | |
52d4b9ac | 3969 | } |
d13d1443 | 3970 | |
b070e65c | 3971 | mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); |
04046e1a | 3972 | |
52d4b9ac | 3973 | ClearPageCgroupUsed(pc); |
544122e5 KH |
3974 | /* |
3975 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | |
3976 | * freed from LRU. This is safe because uncharged page is expected not | |
3977 | * to be reused (freed soon). Exception is SwapCache, it's handled by | |
3978 | * special functions. | |
3979 | */ | |
b9c565d5 | 3980 | |
52d4b9ac | 3981 | unlock_page_cgroup(pc); |
f75ca962 | 3982 | /* |
c0ff4b85 | 3983 | * even after unlock, we have memcg->res.usage here and this memcg |
4050377b | 3984 | * will never be freed, so it's safe to call css_get(). |
f75ca962 | 3985 | */ |
c0ff4b85 | 3986 | memcg_check_events(memcg, page); |
f75ca962 | 3987 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
c0ff4b85 | 3988 | mem_cgroup_swap_statistics(memcg, true); |
4050377b | 3989 | css_get(&memcg->css); |
f75ca962 | 3990 | } |
0030f535 JW |
3991 | /* |
3992 | * Migration does not charge the res_counter for the | |
3993 | * replacement page, so leave it alone when phasing out the | |
3994 | * page that is unused after the migration. | |
3995 | */ | |
3996 | if (!end_migration && !mem_cgroup_is_root(memcg)) | |
c0ff4b85 | 3997 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
6d12e2d8 | 3998 | |
c0ff4b85 | 3999 | return memcg; |
d13d1443 KH |
4000 | |
4001 | unlock_out: | |
4002 | unlock_page_cgroup(pc); | |
8c7c6e34 | 4003 | return NULL; |
3c541e14 BS |
4004 | } |
4005 | ||
69029cd5 KH |
4006 | void mem_cgroup_uncharge_page(struct page *page) |
4007 | { | |
52d4b9ac KH |
4008 | /* early check. */ |
4009 | if (page_mapped(page)) | |
4010 | return; | |
309381fe | 4011 | VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); |
28ccddf7 JW |
4012 | /* |
4013 | * If the page is in swap cache, uncharge should be deferred | |
4014 | * to the swap path, which also properly accounts swap usage | |
4015 | * and handles memcg lifetime. | |
4016 | * | |
4017 | * Note that this check is not stable and reclaim may add the | |
4018 | * page to swap cache at any time after this. However, if the | |
4019 | * page is not in swap cache by the time page->mapcount hits | |
4020 | * 0, there won't be any page table references to the swap | |
4021 | * slot, and reclaim will free it and not actually write the | |
4022 | * page to disk. | |
4023 | */ | |
0c59b89c JW |
4024 | if (PageSwapCache(page)) |
4025 | return; | |
0030f535 | 4026 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
69029cd5 KH |
4027 | } |
4028 | ||
4029 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
4030 | { | |
309381fe SL |
4031 | VM_BUG_ON_PAGE(page_mapped(page), page); |
4032 | VM_BUG_ON_PAGE(page->mapping, page); | |
0030f535 | 4033 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
69029cd5 KH |
4034 | } |
4035 | ||
569b846d KH |
4036 | /* |
4037 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | |
4038 | * In that cases, pages are freed continuously and we can expect pages | |
4039 | * are in the same memcg. All these calls itself limits the number of | |
4040 | * pages freed at once, then uncharge_start/end() is called properly. | |
4041 | * This may be called prural(2) times in a context, | |
4042 | */ | |
4043 | ||
4044 | void mem_cgroup_uncharge_start(void) | |
4045 | { | |
4046 | current->memcg_batch.do_batch++; | |
4047 | /* We can do nest. */ | |
4048 | if (current->memcg_batch.do_batch == 1) { | |
4049 | current->memcg_batch.memcg = NULL; | |
7ffd4ca7 JW |
4050 | current->memcg_batch.nr_pages = 0; |
4051 | current->memcg_batch.memsw_nr_pages = 0; | |
569b846d KH |
4052 | } |
4053 | } | |
4054 | ||
4055 | void mem_cgroup_uncharge_end(void) | |
4056 | { | |
4057 | struct memcg_batch_info *batch = ¤t->memcg_batch; | |
4058 | ||
4059 | if (!batch->do_batch) | |
4060 | return; | |
4061 | ||
4062 | batch->do_batch--; | |
4063 | if (batch->do_batch) /* If stacked, do nothing. */ | |
4064 | return; | |
4065 | ||
4066 | if (!batch->memcg) | |
4067 | return; | |
4068 | /* | |
4069 | * This "batch->memcg" is valid without any css_get/put etc... | |
4070 | * bacause we hide charges behind us. | |
4071 | */ | |
7ffd4ca7 JW |
4072 | if (batch->nr_pages) |
4073 | res_counter_uncharge(&batch->memcg->res, | |
4074 | batch->nr_pages * PAGE_SIZE); | |
4075 | if (batch->memsw_nr_pages) | |
4076 | res_counter_uncharge(&batch->memcg->memsw, | |
4077 | batch->memsw_nr_pages * PAGE_SIZE); | |
3c11ecf4 | 4078 | memcg_oom_recover(batch->memcg); |
569b846d KH |
4079 | /* forget this pointer (for sanity check) */ |
4080 | batch->memcg = NULL; | |
4081 | } | |
4082 | ||
e767e056 | 4083 | #ifdef CONFIG_SWAP |
8c7c6e34 | 4084 | /* |
e767e056 | 4085 | * called after __delete_from_swap_cache() and drop "page" account. |
8c7c6e34 KH |
4086 | * memcg information is recorded to swap_cgroup of "ent" |
4087 | */ | |
8a9478ca KH |
4088 | void |
4089 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |
8c7c6e34 KH |
4090 | { |
4091 | struct mem_cgroup *memcg; | |
8a9478ca KH |
4092 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
4093 | ||
4094 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | |
4095 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | |
4096 | ||
0030f535 | 4097 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
8c7c6e34 | 4098 | |
f75ca962 KH |
4099 | /* |
4100 | * record memcg information, if swapout && memcg != NULL, | |
4050377b | 4101 | * css_get() was called in uncharge(). |
f75ca962 KH |
4102 | */ |
4103 | if (do_swap_account && swapout && memcg) | |
34c00c31 | 4104 | swap_cgroup_record(ent, mem_cgroup_id(memcg)); |
8c7c6e34 | 4105 | } |
e767e056 | 4106 | #endif |
8c7c6e34 | 4107 | |
c255a458 | 4108 | #ifdef CONFIG_MEMCG_SWAP |
8c7c6e34 KH |
4109 | /* |
4110 | * called from swap_entry_free(). remove record in swap_cgroup and | |
4111 | * uncharge "memsw" account. | |
4112 | */ | |
4113 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 4114 | { |
8c7c6e34 | 4115 | struct mem_cgroup *memcg; |
a3b2d692 | 4116 | unsigned short id; |
8c7c6e34 KH |
4117 | |
4118 | if (!do_swap_account) | |
4119 | return; | |
4120 | ||
a3b2d692 KH |
4121 | id = swap_cgroup_record(ent, 0); |
4122 | rcu_read_lock(); | |
4123 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 4124 | if (memcg) { |
a3b2d692 | 4125 | /* |
ec903c0c TH |
4126 | * We uncharge this because swap is freed. This memcg can |
4127 | * be obsolete one. We avoid calling css_tryget_online(). | |
a3b2d692 | 4128 | */ |
0c3e73e8 | 4129 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 4130 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 4131 | mem_cgroup_swap_statistics(memcg, false); |
4050377b | 4132 | css_put(&memcg->css); |
8c7c6e34 | 4133 | } |
a3b2d692 | 4134 | rcu_read_unlock(); |
d13d1443 | 4135 | } |
02491447 DN |
4136 | |
4137 | /** | |
4138 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
4139 | * @entry: swap entry to be moved | |
4140 | * @from: mem_cgroup which the entry is moved from | |
4141 | * @to: mem_cgroup which the entry is moved to | |
4142 | * | |
4143 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
4144 | * as the mem_cgroup's id of @from. | |
4145 | * | |
4146 | * Returns 0 on success, -EINVAL on failure. | |
4147 | * | |
4148 | * The caller must have charged to @to, IOW, called res_counter_charge() about | |
4149 | * both res and memsw, and called css_get(). | |
4150 | */ | |
4151 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4152 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4153 | { |
4154 | unsigned short old_id, new_id; | |
4155 | ||
34c00c31 LZ |
4156 | old_id = mem_cgroup_id(from); |
4157 | new_id = mem_cgroup_id(to); | |
02491447 DN |
4158 | |
4159 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 4160 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 4161 | mem_cgroup_swap_statistics(to, true); |
02491447 | 4162 | /* |
483c30b5 DN |
4163 | * This function is only called from task migration context now. |
4164 | * It postpones res_counter and refcount handling till the end | |
4165 | * of task migration(mem_cgroup_clear_mc()) for performance | |
4050377b LZ |
4166 | * improvement. But we cannot postpone css_get(to) because if |
4167 | * the process that has been moved to @to does swap-in, the | |
4168 | * refcount of @to might be decreased to 0. | |
4169 | * | |
4170 | * We are in attach() phase, so the cgroup is guaranteed to be | |
4171 | * alive, so we can just call css_get(). | |
02491447 | 4172 | */ |
4050377b | 4173 | css_get(&to->css); |
02491447 DN |
4174 | return 0; |
4175 | } | |
4176 | return -EINVAL; | |
4177 | } | |
4178 | #else | |
4179 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4180 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4181 | { |
4182 | return -EINVAL; | |
4183 | } | |
8c7c6e34 | 4184 | #endif |
d13d1443 | 4185 | |
ae41be37 | 4186 | /* |
01b1ae63 KH |
4187 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
4188 | * page belongs to. | |
ae41be37 | 4189 | */ |
0030f535 JW |
4190 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
4191 | struct mem_cgroup **memcgp) | |
ae41be37 | 4192 | { |
c0ff4b85 | 4193 | struct mem_cgroup *memcg = NULL; |
b32967ff | 4194 | unsigned int nr_pages = 1; |
7ec99d62 | 4195 | struct page_cgroup *pc; |
ac39cf8c | 4196 | enum charge_type ctype; |
8869b8f6 | 4197 | |
72835c86 | 4198 | *memcgp = NULL; |
56039efa | 4199 | |
f8d66542 | 4200 | if (mem_cgroup_disabled()) |
0030f535 | 4201 | return; |
4077960e | 4202 | |
b32967ff MG |
4203 | if (PageTransHuge(page)) |
4204 | nr_pages <<= compound_order(page); | |
4205 | ||
52d4b9ac KH |
4206 | pc = lookup_page_cgroup(page); |
4207 | lock_page_cgroup(pc); | |
4208 | if (PageCgroupUsed(pc)) { | |
c0ff4b85 R |
4209 | memcg = pc->mem_cgroup; |
4210 | css_get(&memcg->css); | |
ac39cf8c AM |
4211 | /* |
4212 | * At migrating an anonymous page, its mapcount goes down | |
4213 | * to 0 and uncharge() will be called. But, even if it's fully | |
4214 | * unmapped, migration may fail and this page has to be | |
4215 | * charged again. We set MIGRATION flag here and delay uncharge | |
4216 | * until end_migration() is called | |
4217 | * | |
4218 | * Corner Case Thinking | |
4219 | * A) | |
4220 | * When the old page was mapped as Anon and it's unmap-and-freed | |
4221 | * while migration was ongoing. | |
4222 | * If unmap finds the old page, uncharge() of it will be delayed | |
4223 | * until end_migration(). If unmap finds a new page, it's | |
4224 | * uncharged when it make mapcount to be 1->0. If unmap code | |
4225 | * finds swap_migration_entry, the new page will not be mapped | |
4226 | * and end_migration() will find it(mapcount==0). | |
4227 | * | |
4228 | * B) | |
4229 | * When the old page was mapped but migraion fails, the kernel | |
4230 | * remaps it. A charge for it is kept by MIGRATION flag even | |
4231 | * if mapcount goes down to 0. We can do remap successfully | |
4232 | * without charging it again. | |
4233 | * | |
4234 | * C) | |
4235 | * The "old" page is under lock_page() until the end of | |
4236 | * migration, so, the old page itself will not be swapped-out. | |
4237 | * If the new page is swapped out before end_migraton, our | |
4238 | * hook to usual swap-out path will catch the event. | |
4239 | */ | |
4240 | if (PageAnon(page)) | |
4241 | SetPageCgroupMigration(pc); | |
e8589cc1 | 4242 | } |
52d4b9ac | 4243 | unlock_page_cgroup(pc); |
ac39cf8c AM |
4244 | /* |
4245 | * If the page is not charged at this point, | |
4246 | * we return here. | |
4247 | */ | |
c0ff4b85 | 4248 | if (!memcg) |
0030f535 | 4249 | return; |
01b1ae63 | 4250 | |
72835c86 | 4251 | *memcgp = memcg; |
ac39cf8c AM |
4252 | /* |
4253 | * We charge new page before it's used/mapped. So, even if unlock_page() | |
4254 | * is called before end_migration, we can catch all events on this new | |
4255 | * page. In the case new page is migrated but not remapped, new page's | |
4256 | * mapcount will be finally 0 and we call uncharge in end_migration(). | |
4257 | */ | |
ac39cf8c | 4258 | if (PageAnon(page)) |
41326c17 | 4259 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
ac39cf8c | 4260 | else |
62ba7442 | 4261 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
0030f535 JW |
4262 | /* |
4263 | * The page is committed to the memcg, but it's not actually | |
4264 | * charged to the res_counter since we plan on replacing the | |
4265 | * old one and only one page is going to be left afterwards. | |
4266 | */ | |
b32967ff | 4267 | __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); |
ae41be37 | 4268 | } |
8869b8f6 | 4269 | |
69029cd5 | 4270 | /* remove redundant charge if migration failed*/ |
c0ff4b85 | 4271 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
50de1dd9 | 4272 | struct page *oldpage, struct page *newpage, bool migration_ok) |
ae41be37 | 4273 | { |
ac39cf8c | 4274 | struct page *used, *unused; |
01b1ae63 | 4275 | struct page_cgroup *pc; |
b2402857 | 4276 | bool anon; |
01b1ae63 | 4277 | |
c0ff4b85 | 4278 | if (!memcg) |
01b1ae63 | 4279 | return; |
b25ed609 | 4280 | |
50de1dd9 | 4281 | if (!migration_ok) { |
ac39cf8c AM |
4282 | used = oldpage; |
4283 | unused = newpage; | |
01b1ae63 | 4284 | } else { |
ac39cf8c | 4285 | used = newpage; |
01b1ae63 KH |
4286 | unused = oldpage; |
4287 | } | |
0030f535 | 4288 | anon = PageAnon(used); |
7d188958 JW |
4289 | __mem_cgroup_uncharge_common(unused, |
4290 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON | |
4291 | : MEM_CGROUP_CHARGE_TYPE_CACHE, | |
4292 | true); | |
0030f535 | 4293 | css_put(&memcg->css); |
69029cd5 | 4294 | /* |
ac39cf8c AM |
4295 | * We disallowed uncharge of pages under migration because mapcount |
4296 | * of the page goes down to zero, temporarly. | |
4297 | * Clear the flag and check the page should be charged. | |
01b1ae63 | 4298 | */ |
ac39cf8c AM |
4299 | pc = lookup_page_cgroup(oldpage); |
4300 | lock_page_cgroup(pc); | |
4301 | ClearPageCgroupMigration(pc); | |
4302 | unlock_page_cgroup(pc); | |
ac39cf8c | 4303 | |
01b1ae63 | 4304 | /* |
ac39cf8c AM |
4305 | * If a page is a file cache, radix-tree replacement is very atomic |
4306 | * and we can skip this check. When it was an Anon page, its mapcount | |
4307 | * goes down to 0. But because we added MIGRATION flage, it's not | |
4308 | * uncharged yet. There are several case but page->mapcount check | |
4309 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | |
4310 | * check. (see prepare_charge() also) | |
69029cd5 | 4311 | */ |
b2402857 | 4312 | if (anon) |
ac39cf8c | 4313 | mem_cgroup_uncharge_page(used); |
ae41be37 | 4314 | } |
78fb7466 | 4315 | |
ab936cbc KH |
4316 | /* |
4317 | * At replace page cache, newpage is not under any memcg but it's on | |
4318 | * LRU. So, this function doesn't touch res_counter but handles LRU | |
4319 | * in correct way. Both pages are locked so we cannot race with uncharge. | |
4320 | */ | |
4321 | void mem_cgroup_replace_page_cache(struct page *oldpage, | |
4322 | struct page *newpage) | |
4323 | { | |
bde05d1c | 4324 | struct mem_cgroup *memcg = NULL; |
ab936cbc | 4325 | struct page_cgroup *pc; |
ab936cbc | 4326 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
ab936cbc KH |
4327 | |
4328 | if (mem_cgroup_disabled()) | |
4329 | return; | |
4330 | ||
4331 | pc = lookup_page_cgroup(oldpage); | |
4332 | /* fix accounting on old pages */ | |
4333 | lock_page_cgroup(pc); | |
bde05d1c HD |
4334 | if (PageCgroupUsed(pc)) { |
4335 | memcg = pc->mem_cgroup; | |
b070e65c | 4336 | mem_cgroup_charge_statistics(memcg, oldpage, false, -1); |
bde05d1c HD |
4337 | ClearPageCgroupUsed(pc); |
4338 | } | |
ab936cbc KH |
4339 | unlock_page_cgroup(pc); |
4340 | ||
bde05d1c HD |
4341 | /* |
4342 | * When called from shmem_replace_page(), in some cases the | |
4343 | * oldpage has already been charged, and in some cases not. | |
4344 | */ | |
4345 | if (!memcg) | |
4346 | return; | |
ab936cbc KH |
4347 | /* |
4348 | * Even if newpage->mapping was NULL before starting replacement, | |
4349 | * the newpage may be on LRU(or pagevec for LRU) already. We lock | |
4350 | * LRU while we overwrite pc->mem_cgroup. | |
4351 | */ | |
ce587e65 | 4352 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
ab936cbc KH |
4353 | } |
4354 | ||
f212ad7c DN |
4355 | #ifdef CONFIG_DEBUG_VM |
4356 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | |
4357 | { | |
4358 | struct page_cgroup *pc; | |
4359 | ||
4360 | pc = lookup_page_cgroup(page); | |
cfa44946 JW |
4361 | /* |
4362 | * Can be NULL while feeding pages into the page allocator for | |
4363 | * the first time, i.e. during boot or memory hotplug; | |
4364 | * or when mem_cgroup_disabled(). | |
4365 | */ | |
f212ad7c DN |
4366 | if (likely(pc) && PageCgroupUsed(pc)) |
4367 | return pc; | |
4368 | return NULL; | |
4369 | } | |
4370 | ||
4371 | bool mem_cgroup_bad_page_check(struct page *page) | |
4372 | { | |
4373 | if (mem_cgroup_disabled()) | |
4374 | return false; | |
4375 | ||
4376 | return lookup_page_cgroup_used(page) != NULL; | |
4377 | } | |
4378 | ||
4379 | void mem_cgroup_print_bad_page(struct page *page) | |
4380 | { | |
4381 | struct page_cgroup *pc; | |
4382 | ||
4383 | pc = lookup_page_cgroup_used(page); | |
4384 | if (pc) { | |
d045197f AM |
4385 | pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
4386 | pc, pc->flags, pc->mem_cgroup); | |
f212ad7c DN |
4387 | } |
4388 | } | |
4389 | #endif | |
4390 | ||
d38d2a75 | 4391 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 4392 | unsigned long long val) |
628f4235 | 4393 | { |
81d39c20 | 4394 | int retry_count; |
3c11ecf4 | 4395 | u64 memswlimit, memlimit; |
628f4235 | 4396 | int ret = 0; |
81d39c20 KH |
4397 | int children = mem_cgroup_count_children(memcg); |
4398 | u64 curusage, oldusage; | |
3c11ecf4 | 4399 | int enlarge; |
81d39c20 KH |
4400 | |
4401 | /* | |
4402 | * For keeping hierarchical_reclaim simple, how long we should retry | |
4403 | * is depends on callers. We set our retry-count to be function | |
4404 | * of # of children which we should visit in this loop. | |
4405 | */ | |
4406 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | |
4407 | ||
4408 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | |
628f4235 | 4409 | |
3c11ecf4 | 4410 | enlarge = 0; |
8c7c6e34 | 4411 | while (retry_count) { |
628f4235 KH |
4412 | if (signal_pending(current)) { |
4413 | ret = -EINTR; | |
4414 | break; | |
4415 | } | |
8c7c6e34 KH |
4416 | /* |
4417 | * Rather than hide all in some function, I do this in | |
4418 | * open coded manner. You see what this really does. | |
aaad153e | 4419 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4420 | */ |
4421 | mutex_lock(&set_limit_mutex); | |
4422 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
4423 | if (memswlimit < val) { | |
4424 | ret = -EINVAL; | |
4425 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
4426 | break; |
4427 | } | |
3c11ecf4 KH |
4428 | |
4429 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4430 | if (memlimit < val) | |
4431 | enlarge = 1; | |
4432 | ||
8c7c6e34 | 4433 | ret = res_counter_set_limit(&memcg->res, val); |
22a668d7 KH |
4434 | if (!ret) { |
4435 | if (memswlimit == val) | |
4436 | memcg->memsw_is_minimum = true; | |
4437 | else | |
4438 | memcg->memsw_is_minimum = false; | |
4439 | } | |
8c7c6e34 KH |
4440 | mutex_unlock(&set_limit_mutex); |
4441 | ||
4442 | if (!ret) | |
4443 | break; | |
4444 | ||
5660048c JW |
4445 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4446 | MEM_CGROUP_RECLAIM_SHRINK); | |
81d39c20 KH |
4447 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
4448 | /* Usage is reduced ? */ | |
f894ffa8 | 4449 | if (curusage >= oldusage) |
81d39c20 KH |
4450 | retry_count--; |
4451 | else | |
4452 | oldusage = curusage; | |
8c7c6e34 | 4453 | } |
3c11ecf4 KH |
4454 | if (!ret && enlarge) |
4455 | memcg_oom_recover(memcg); | |
14797e23 | 4456 | |
8c7c6e34 KH |
4457 | return ret; |
4458 | } | |
4459 | ||
338c8431 LZ |
4460 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
4461 | unsigned long long val) | |
8c7c6e34 | 4462 | { |
81d39c20 | 4463 | int retry_count; |
3c11ecf4 | 4464 | u64 memlimit, memswlimit, oldusage, curusage; |
81d39c20 KH |
4465 | int children = mem_cgroup_count_children(memcg); |
4466 | int ret = -EBUSY; | |
3c11ecf4 | 4467 | int enlarge = 0; |
8c7c6e34 | 4468 | |
81d39c20 | 4469 | /* see mem_cgroup_resize_res_limit */ |
f894ffa8 | 4470 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; |
81d39c20 | 4471 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
8c7c6e34 KH |
4472 | while (retry_count) { |
4473 | if (signal_pending(current)) { | |
4474 | ret = -EINTR; | |
4475 | break; | |
4476 | } | |
4477 | /* | |
4478 | * Rather than hide all in some function, I do this in | |
4479 | * open coded manner. You see what this really does. | |
aaad153e | 4480 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4481 | */ |
4482 | mutex_lock(&set_limit_mutex); | |
4483 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4484 | if (memlimit > val) { | |
4485 | ret = -EINVAL; | |
4486 | mutex_unlock(&set_limit_mutex); | |
4487 | break; | |
4488 | } | |
3c11ecf4 KH |
4489 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4490 | if (memswlimit < val) | |
4491 | enlarge = 1; | |
8c7c6e34 | 4492 | ret = res_counter_set_limit(&memcg->memsw, val); |
22a668d7 KH |
4493 | if (!ret) { |
4494 | if (memlimit == val) | |
4495 | memcg->memsw_is_minimum = true; | |
4496 | else | |
4497 | memcg->memsw_is_minimum = false; | |
4498 | } | |
8c7c6e34 KH |
4499 | mutex_unlock(&set_limit_mutex); |
4500 | ||
4501 | if (!ret) | |
4502 | break; | |
4503 | ||
5660048c JW |
4504 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4505 | MEM_CGROUP_RECLAIM_NOSWAP | | |
4506 | MEM_CGROUP_RECLAIM_SHRINK); | |
8c7c6e34 | 4507 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
81d39c20 | 4508 | /* Usage is reduced ? */ |
8c7c6e34 | 4509 | if (curusage >= oldusage) |
628f4235 | 4510 | retry_count--; |
81d39c20 KH |
4511 | else |
4512 | oldusage = curusage; | |
628f4235 | 4513 | } |
3c11ecf4 KH |
4514 | if (!ret && enlarge) |
4515 | memcg_oom_recover(memcg); | |
628f4235 KH |
4516 | return ret; |
4517 | } | |
4518 | ||
0608f43d AM |
4519 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
4520 | gfp_t gfp_mask, | |
4521 | unsigned long *total_scanned) | |
4522 | { | |
4523 | unsigned long nr_reclaimed = 0; | |
4524 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
4525 | unsigned long reclaimed; | |
4526 | int loop = 0; | |
4527 | struct mem_cgroup_tree_per_zone *mctz; | |
4528 | unsigned long long excess; | |
4529 | unsigned long nr_scanned; | |
4530 | ||
4531 | if (order > 0) | |
4532 | return 0; | |
4533 | ||
4534 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | |
4535 | /* | |
4536 | * This loop can run a while, specially if mem_cgroup's continuously | |
4537 | * keep exceeding their soft limit and putting the system under | |
4538 | * pressure | |
4539 | */ | |
4540 | do { | |
4541 | if (next_mz) | |
4542 | mz = next_mz; | |
4543 | else | |
4544 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
4545 | if (!mz) | |
4546 | break; | |
4547 | ||
4548 | nr_scanned = 0; | |
4549 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | |
4550 | gfp_mask, &nr_scanned); | |
4551 | nr_reclaimed += reclaimed; | |
4552 | *total_scanned += nr_scanned; | |
4553 | spin_lock(&mctz->lock); | |
4554 | ||
4555 | /* | |
4556 | * If we failed to reclaim anything from this memory cgroup | |
4557 | * it is time to move on to the next cgroup | |
4558 | */ | |
4559 | next_mz = NULL; | |
4560 | if (!reclaimed) { | |
4561 | do { | |
4562 | /* | |
4563 | * Loop until we find yet another one. | |
4564 | * | |
4565 | * By the time we get the soft_limit lock | |
4566 | * again, someone might have aded the | |
4567 | * group back on the RB tree. Iterate to | |
4568 | * make sure we get a different mem. | |
4569 | * mem_cgroup_largest_soft_limit_node returns | |
4570 | * NULL if no other cgroup is present on | |
4571 | * the tree | |
4572 | */ | |
4573 | next_mz = | |
4574 | __mem_cgroup_largest_soft_limit_node(mctz); | |
4575 | if (next_mz == mz) | |
4576 | css_put(&next_mz->memcg->css); | |
4577 | else /* next_mz == NULL or other memcg */ | |
4578 | break; | |
4579 | } while (1); | |
4580 | } | |
cf2c8127 | 4581 | __mem_cgroup_remove_exceeded(mz, mctz); |
0608f43d AM |
4582 | excess = res_counter_soft_limit_excess(&mz->memcg->res); |
4583 | /* | |
4584 | * One school of thought says that we should not add | |
4585 | * back the node to the tree if reclaim returns 0. | |
4586 | * But our reclaim could return 0, simply because due | |
4587 | * to priority we are exposing a smaller subset of | |
4588 | * memory to reclaim from. Consider this as a longer | |
4589 | * term TODO. | |
4590 | */ | |
4591 | /* If excess == 0, no tree ops */ | |
cf2c8127 | 4592 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
0608f43d AM |
4593 | spin_unlock(&mctz->lock); |
4594 | css_put(&mz->memcg->css); | |
4595 | loop++; | |
4596 | /* | |
4597 | * Could not reclaim anything and there are no more | |
4598 | * mem cgroups to try or we seem to be looping without | |
4599 | * reclaiming anything. | |
4600 | */ | |
4601 | if (!nr_reclaimed && | |
4602 | (next_mz == NULL || | |
4603 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
4604 | break; | |
4605 | } while (!nr_reclaimed); | |
4606 | if (next_mz) | |
4607 | css_put(&next_mz->memcg->css); | |
4608 | return nr_reclaimed; | |
4609 | } | |
4610 | ||
2ef37d3f MH |
4611 | /** |
4612 | * mem_cgroup_force_empty_list - clears LRU of a group | |
4613 | * @memcg: group to clear | |
4614 | * @node: NUMA node | |
4615 | * @zid: zone id | |
4616 | * @lru: lru to to clear | |
4617 | * | |
3c935d18 | 4618 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
2ef37d3f MH |
4619 | * reclaim the pages page themselves - pages are moved to the parent (or root) |
4620 | * group. | |
cc847582 | 4621 | */ |
2ef37d3f | 4622 | static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
08e552c6 | 4623 | int node, int zid, enum lru_list lru) |
cc847582 | 4624 | { |
bea8c150 | 4625 | struct lruvec *lruvec; |
2ef37d3f | 4626 | unsigned long flags; |
072c56c1 | 4627 | struct list_head *list; |
925b7673 JW |
4628 | struct page *busy; |
4629 | struct zone *zone; | |
072c56c1 | 4630 | |
08e552c6 | 4631 | zone = &NODE_DATA(node)->node_zones[zid]; |
bea8c150 HD |
4632 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
4633 | list = &lruvec->lists[lru]; | |
cc847582 | 4634 | |
f817ed48 | 4635 | busy = NULL; |
2ef37d3f | 4636 | do { |
925b7673 | 4637 | struct page_cgroup *pc; |
5564e88b JW |
4638 | struct page *page; |
4639 | ||
08e552c6 | 4640 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 4641 | if (list_empty(list)) { |
08e552c6 | 4642 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 4643 | break; |
f817ed48 | 4644 | } |
925b7673 JW |
4645 | page = list_entry(list->prev, struct page, lru); |
4646 | if (busy == page) { | |
4647 | list_move(&page->lru, list); | |
648bcc77 | 4648 | busy = NULL; |
08e552c6 | 4649 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
4650 | continue; |
4651 | } | |
08e552c6 | 4652 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 4653 | |
925b7673 | 4654 | pc = lookup_page_cgroup(page); |
5564e88b | 4655 | |
3c935d18 | 4656 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
f817ed48 | 4657 | /* found lock contention or "pc" is obsolete. */ |
925b7673 | 4658 | busy = page; |
f817ed48 KH |
4659 | } else |
4660 | busy = NULL; | |
2a7a0e0f | 4661 | cond_resched(); |
2ef37d3f | 4662 | } while (!list_empty(list)); |
cc847582 KH |
4663 | } |
4664 | ||
4665 | /* | |
c26251f9 MH |
4666 | * make mem_cgroup's charge to be 0 if there is no task by moving |
4667 | * all the charges and pages to the parent. | |
cc847582 | 4668 | * This enables deleting this mem_cgroup. |
c26251f9 MH |
4669 | * |
4670 | * Caller is responsible for holding css reference on the memcg. | |
cc847582 | 4671 | */ |
ab5196c2 | 4672 | static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) |
cc847582 | 4673 | { |
c26251f9 | 4674 | int node, zid; |
bea207c8 | 4675 | u64 usage; |
f817ed48 | 4676 | |
fce66477 | 4677 | do { |
52d4b9ac KH |
4678 | /* This is for making all *used* pages to be on LRU. */ |
4679 | lru_add_drain_all(); | |
c0ff4b85 | 4680 | drain_all_stock_sync(memcg); |
c0ff4b85 | 4681 | mem_cgroup_start_move(memcg); |
31aaea4a | 4682 | for_each_node_state(node, N_MEMORY) { |
2ef37d3f | 4683 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
f156ab93 HD |
4684 | enum lru_list lru; |
4685 | for_each_lru(lru) { | |
2ef37d3f | 4686 | mem_cgroup_force_empty_list(memcg, |
f156ab93 | 4687 | node, zid, lru); |
f817ed48 | 4688 | } |
1ecaab2b | 4689 | } |
f817ed48 | 4690 | } |
c0ff4b85 R |
4691 | mem_cgroup_end_move(memcg); |
4692 | memcg_oom_recover(memcg); | |
52d4b9ac | 4693 | cond_resched(); |
f817ed48 | 4694 | |
2ef37d3f | 4695 | /* |
bea207c8 GC |
4696 | * Kernel memory may not necessarily be trackable to a specific |
4697 | * process. So they are not migrated, and therefore we can't | |
4698 | * expect their value to drop to 0 here. | |
4699 | * Having res filled up with kmem only is enough. | |
4700 | * | |
2ef37d3f MH |
4701 | * This is a safety check because mem_cgroup_force_empty_list |
4702 | * could have raced with mem_cgroup_replace_page_cache callers | |
4703 | * so the lru seemed empty but the page could have been added | |
4704 | * right after the check. RES_USAGE should be safe as we always | |
4705 | * charge before adding to the LRU. | |
4706 | */ | |
bea207c8 GC |
4707 | usage = res_counter_read_u64(&memcg->res, RES_USAGE) - |
4708 | res_counter_read_u64(&memcg->kmem, RES_USAGE); | |
4709 | } while (usage > 0); | |
c26251f9 MH |
4710 | } |
4711 | ||
ea280e7b TH |
4712 | /* |
4713 | * Test whether @memcg has children, dead or alive. Note that this | |
4714 | * function doesn't care whether @memcg has use_hierarchy enabled and | |
4715 | * returns %true if there are child csses according to the cgroup | |
4716 | * hierarchy. Testing use_hierarchy is the caller's responsiblity. | |
4717 | */ | |
b5f99b53 GC |
4718 | static inline bool memcg_has_children(struct mem_cgroup *memcg) |
4719 | { | |
ea280e7b TH |
4720 | bool ret; |
4721 | ||
696ac172 | 4722 | /* |
ea280e7b TH |
4723 | * The lock does not prevent addition or deletion of children, but |
4724 | * it prevents a new child from being initialized based on this | |
4725 | * parent in css_online(), so it's enough to decide whether | |
4726 | * hierarchically inherited attributes can still be changed or not. | |
696ac172 | 4727 | */ |
ea280e7b TH |
4728 | lockdep_assert_held(&memcg_create_mutex); |
4729 | ||
4730 | rcu_read_lock(); | |
4731 | ret = css_next_child(NULL, &memcg->css); | |
4732 | rcu_read_unlock(); | |
4733 | return ret; | |
b5f99b53 GC |
4734 | } |
4735 | ||
c26251f9 MH |
4736 | /* |
4737 | * Reclaims as many pages from the given memcg as possible and moves | |
4738 | * the rest to the parent. | |
4739 | * | |
4740 | * Caller is responsible for holding css reference for memcg. | |
4741 | */ | |
4742 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
4743 | { | |
4744 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c26251f9 | 4745 | |
c1e862c1 KH |
4746 | /* we call try-to-free pages for make this cgroup empty */ |
4747 | lru_add_drain_all(); | |
f817ed48 | 4748 | /* try to free all pages in this cgroup */ |
569530fb | 4749 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
f817ed48 | 4750 | int progress; |
c1e862c1 | 4751 | |
c26251f9 MH |
4752 | if (signal_pending(current)) |
4753 | return -EINTR; | |
4754 | ||
c0ff4b85 | 4755 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
185efc0f | 4756 | false); |
c1e862c1 | 4757 | if (!progress) { |
f817ed48 | 4758 | nr_retries--; |
c1e862c1 | 4759 | /* maybe some writeback is necessary */ |
8aa7e847 | 4760 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 4761 | } |
f817ed48 KH |
4762 | |
4763 | } | |
ab5196c2 MH |
4764 | |
4765 | return 0; | |
cc847582 KH |
4766 | } |
4767 | ||
6770c64e TH |
4768 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, |
4769 | char *buf, size_t nbytes, | |
4770 | loff_t off) | |
c1e862c1 | 4771 | { |
6770c64e | 4772 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
c26251f9 | 4773 | |
d8423011 MH |
4774 | if (mem_cgroup_is_root(memcg)) |
4775 | return -EINVAL; | |
6770c64e | 4776 | return mem_cgroup_force_empty(memcg) ?: nbytes; |
c1e862c1 KH |
4777 | } |
4778 | ||
182446d0 TH |
4779 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
4780 | struct cftype *cft) | |
18f59ea7 | 4781 | { |
182446d0 | 4782 | return mem_cgroup_from_css(css)->use_hierarchy; |
18f59ea7 BS |
4783 | } |
4784 | ||
182446d0 TH |
4785 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
4786 | struct cftype *cft, u64 val) | |
18f59ea7 BS |
4787 | { |
4788 | int retval = 0; | |
182446d0 | 4789 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5c9d535b | 4790 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); |
18f59ea7 | 4791 | |
0999821b | 4792 | mutex_lock(&memcg_create_mutex); |
567fb435 GC |
4793 | |
4794 | if (memcg->use_hierarchy == val) | |
4795 | goto out; | |
4796 | ||
18f59ea7 | 4797 | /* |
af901ca1 | 4798 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
4799 | * in the child subtrees. If it is unset, then the change can |
4800 | * occur, provided the current cgroup has no children. | |
4801 | * | |
4802 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
4803 | * set if there are no children. | |
4804 | */ | |
c0ff4b85 | 4805 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
18f59ea7 | 4806 | (val == 1 || val == 0)) { |
ea280e7b | 4807 | if (!memcg_has_children(memcg)) |
c0ff4b85 | 4808 | memcg->use_hierarchy = val; |
18f59ea7 BS |
4809 | else |
4810 | retval = -EBUSY; | |
4811 | } else | |
4812 | retval = -EINVAL; | |
567fb435 GC |
4813 | |
4814 | out: | |
0999821b | 4815 | mutex_unlock(&memcg_create_mutex); |
18f59ea7 BS |
4816 | |
4817 | return retval; | |
4818 | } | |
4819 | ||
0c3e73e8 | 4820 | |
c0ff4b85 | 4821 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
7a159cc9 | 4822 | enum mem_cgroup_stat_index idx) |
0c3e73e8 | 4823 | { |
7d74b06f | 4824 | struct mem_cgroup *iter; |
7a159cc9 | 4825 | long val = 0; |
0c3e73e8 | 4826 | |
7a159cc9 | 4827 | /* Per-cpu values can be negative, use a signed accumulator */ |
c0ff4b85 | 4828 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f KH |
4829 | val += mem_cgroup_read_stat(iter, idx); |
4830 | ||
4831 | if (val < 0) /* race ? */ | |
4832 | val = 0; | |
4833 | return val; | |
0c3e73e8 BS |
4834 | } |
4835 | ||
c0ff4b85 | 4836 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
104f3928 | 4837 | { |
7d74b06f | 4838 | u64 val; |
104f3928 | 4839 | |
c0ff4b85 | 4840 | if (!mem_cgroup_is_root(memcg)) { |
104f3928 | 4841 | if (!swap) |
65c64ce8 | 4842 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
104f3928 | 4843 | else |
65c64ce8 | 4844 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
104f3928 KS |
4845 | } |
4846 | ||
b070e65c DR |
4847 | /* |
4848 | * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS | |
4849 | * as well as in MEM_CGROUP_STAT_RSS_HUGE. | |
4850 | */ | |
c0ff4b85 R |
4851 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
4852 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); | |
104f3928 | 4853 | |
7d74b06f | 4854 | if (swap) |
bff6bb83 | 4855 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
104f3928 KS |
4856 | |
4857 | return val << PAGE_SHIFT; | |
4858 | } | |
4859 | ||
791badbd TH |
4860 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, |
4861 | struct cftype *cft) | |
8cdea7c0 | 4862 | { |
182446d0 | 4863 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
104f3928 | 4864 | u64 val; |
791badbd | 4865 | int name; |
86ae53e1 | 4866 | enum res_type type; |
8c7c6e34 KH |
4867 | |
4868 | type = MEMFILE_TYPE(cft->private); | |
4869 | name = MEMFILE_ATTR(cft->private); | |
af36f906 | 4870 | |
8c7c6e34 KH |
4871 | switch (type) { |
4872 | case _MEM: | |
104f3928 | 4873 | if (name == RES_USAGE) |
c0ff4b85 | 4874 | val = mem_cgroup_usage(memcg, false); |
104f3928 | 4875 | else |
c0ff4b85 | 4876 | val = res_counter_read_u64(&memcg->res, name); |
8c7c6e34 KH |
4877 | break; |
4878 | case _MEMSWAP: | |
104f3928 | 4879 | if (name == RES_USAGE) |
c0ff4b85 | 4880 | val = mem_cgroup_usage(memcg, true); |
104f3928 | 4881 | else |
c0ff4b85 | 4882 | val = res_counter_read_u64(&memcg->memsw, name); |
8c7c6e34 | 4883 | break; |
510fc4e1 GC |
4884 | case _KMEM: |
4885 | val = res_counter_read_u64(&memcg->kmem, name); | |
4886 | break; | |
8c7c6e34 KH |
4887 | default: |
4888 | BUG(); | |
8c7c6e34 | 4889 | } |
af36f906 | 4890 | |
791badbd | 4891 | return val; |
8cdea7c0 | 4892 | } |
510fc4e1 | 4893 | |
510fc4e1 | 4894 | #ifdef CONFIG_MEMCG_KMEM |
d6441637 VD |
4895 | /* should be called with activate_kmem_mutex held */ |
4896 | static int __memcg_activate_kmem(struct mem_cgroup *memcg, | |
4897 | unsigned long long limit) | |
4898 | { | |
4899 | int err = 0; | |
4900 | int memcg_id; | |
4901 | ||
4902 | if (memcg_kmem_is_active(memcg)) | |
4903 | return 0; | |
4904 | ||
4905 | /* | |
4906 | * We are going to allocate memory for data shared by all memory | |
4907 | * cgroups so let's stop accounting here. | |
4908 | */ | |
4909 | memcg_stop_kmem_account(); | |
4910 | ||
510fc4e1 GC |
4911 | /* |
4912 | * For simplicity, we won't allow this to be disabled. It also can't | |
4913 | * be changed if the cgroup has children already, or if tasks had | |
4914 | * already joined. | |
4915 | * | |
4916 | * If tasks join before we set the limit, a person looking at | |
4917 | * kmem.usage_in_bytes will have no way to determine when it took | |
4918 | * place, which makes the value quite meaningless. | |
4919 | * | |
4920 | * After it first became limited, changes in the value of the limit are | |
4921 | * of course permitted. | |
510fc4e1 | 4922 | */ |
0999821b | 4923 | mutex_lock(&memcg_create_mutex); |
ea280e7b TH |
4924 | if (cgroup_has_tasks(memcg->css.cgroup) || |
4925 | (memcg->use_hierarchy && memcg_has_children(memcg))) | |
d6441637 VD |
4926 | err = -EBUSY; |
4927 | mutex_unlock(&memcg_create_mutex); | |
4928 | if (err) | |
4929 | goto out; | |
510fc4e1 | 4930 | |
d6441637 VD |
4931 | memcg_id = ida_simple_get(&kmem_limited_groups, |
4932 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
4933 | if (memcg_id < 0) { | |
4934 | err = memcg_id; | |
4935 | goto out; | |
4936 | } | |
4937 | ||
4938 | /* | |
4939 | * Make sure we have enough space for this cgroup in each root cache's | |
4940 | * memcg_params. | |
4941 | */ | |
bd673145 | 4942 | mutex_lock(&memcg_slab_mutex); |
d6441637 | 4943 | err = memcg_update_all_caches(memcg_id + 1); |
bd673145 | 4944 | mutex_unlock(&memcg_slab_mutex); |
d6441637 VD |
4945 | if (err) |
4946 | goto out_rmid; | |
4947 | ||
4948 | memcg->kmemcg_id = memcg_id; | |
4949 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); | |
d6441637 VD |
4950 | |
4951 | /* | |
4952 | * We couldn't have accounted to this cgroup, because it hasn't got the | |
4953 | * active bit set yet, so this should succeed. | |
4954 | */ | |
4955 | err = res_counter_set_limit(&memcg->kmem, limit); | |
4956 | VM_BUG_ON(err); | |
4957 | ||
4958 | static_key_slow_inc(&memcg_kmem_enabled_key); | |
4959 | /* | |
4960 | * Setting the active bit after enabling static branching will | |
4961 | * guarantee no one starts accounting before all call sites are | |
4962 | * patched. | |
4963 | */ | |
4964 | memcg_kmem_set_active(memcg); | |
510fc4e1 | 4965 | out: |
d6441637 VD |
4966 | memcg_resume_kmem_account(); |
4967 | return err; | |
4968 | ||
4969 | out_rmid: | |
4970 | ida_simple_remove(&kmem_limited_groups, memcg_id); | |
4971 | goto out; | |
4972 | } | |
4973 | ||
4974 | static int memcg_activate_kmem(struct mem_cgroup *memcg, | |
4975 | unsigned long long limit) | |
4976 | { | |
4977 | int ret; | |
4978 | ||
4979 | mutex_lock(&activate_kmem_mutex); | |
4980 | ret = __memcg_activate_kmem(memcg, limit); | |
4981 | mutex_unlock(&activate_kmem_mutex); | |
4982 | return ret; | |
4983 | } | |
4984 | ||
4985 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
4986 | unsigned long long val) | |
4987 | { | |
4988 | int ret; | |
4989 | ||
4990 | if (!memcg_kmem_is_active(memcg)) | |
4991 | ret = memcg_activate_kmem(memcg, val); | |
4992 | else | |
4993 | ret = res_counter_set_limit(&memcg->kmem, val); | |
510fc4e1 GC |
4994 | return ret; |
4995 | } | |
4996 | ||
55007d84 | 4997 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) |
510fc4e1 | 4998 | { |
55007d84 | 4999 | int ret = 0; |
510fc4e1 | 5000 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
55007d84 | 5001 | |
d6441637 VD |
5002 | if (!parent) |
5003 | return 0; | |
55007d84 | 5004 | |
d6441637 | 5005 | mutex_lock(&activate_kmem_mutex); |
55007d84 | 5006 | /* |
d6441637 VD |
5007 | * If the parent cgroup is not kmem-active now, it cannot be activated |
5008 | * after this point, because it has at least one child already. | |
55007d84 | 5009 | */ |
d6441637 VD |
5010 | if (memcg_kmem_is_active(parent)) |
5011 | ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); | |
5012 | mutex_unlock(&activate_kmem_mutex); | |
55007d84 | 5013 | return ret; |
510fc4e1 | 5014 | } |
d6441637 VD |
5015 | #else |
5016 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
5017 | unsigned long long val) | |
5018 | { | |
5019 | return -EINVAL; | |
5020 | } | |
6d043990 | 5021 | #endif /* CONFIG_MEMCG_KMEM */ |
510fc4e1 | 5022 | |
628f4235 KH |
5023 | /* |
5024 | * The user of this function is... | |
5025 | * RES_LIMIT. | |
5026 | */ | |
451af504 TH |
5027 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, |
5028 | char *buf, size_t nbytes, loff_t off) | |
8cdea7c0 | 5029 | { |
451af504 | 5030 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
86ae53e1 GC |
5031 | enum res_type type; |
5032 | int name; | |
628f4235 KH |
5033 | unsigned long long val; |
5034 | int ret; | |
5035 | ||
451af504 TH |
5036 | buf = strstrip(buf); |
5037 | type = MEMFILE_TYPE(of_cft(of)->private); | |
5038 | name = MEMFILE_ATTR(of_cft(of)->private); | |
af36f906 | 5039 | |
8c7c6e34 | 5040 | switch (name) { |
628f4235 | 5041 | case RES_LIMIT: |
4b3bde4c BS |
5042 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
5043 | ret = -EINVAL; | |
5044 | break; | |
5045 | } | |
628f4235 | 5046 | /* This function does all necessary parse...reuse it */ |
451af504 | 5047 | ret = res_counter_memparse_write_strategy(buf, &val); |
8c7c6e34 KH |
5048 | if (ret) |
5049 | break; | |
5050 | if (type == _MEM) | |
628f4235 | 5051 | ret = mem_cgroup_resize_limit(memcg, val); |
510fc4e1 | 5052 | else if (type == _MEMSWAP) |
8c7c6e34 | 5053 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
510fc4e1 | 5054 | else if (type == _KMEM) |
d6441637 | 5055 | ret = memcg_update_kmem_limit(memcg, val); |
510fc4e1 GC |
5056 | else |
5057 | return -EINVAL; | |
628f4235 | 5058 | break; |
296c81d8 | 5059 | case RES_SOFT_LIMIT: |
451af504 | 5060 | ret = res_counter_memparse_write_strategy(buf, &val); |
296c81d8 BS |
5061 | if (ret) |
5062 | break; | |
5063 | /* | |
5064 | * For memsw, soft limits are hard to implement in terms | |
5065 | * of semantics, for now, we support soft limits for | |
5066 | * control without swap | |
5067 | */ | |
5068 | if (type == _MEM) | |
5069 | ret = res_counter_set_soft_limit(&memcg->res, val); | |
5070 | else | |
5071 | ret = -EINVAL; | |
5072 | break; | |
628f4235 KH |
5073 | default: |
5074 | ret = -EINVAL; /* should be BUG() ? */ | |
5075 | break; | |
5076 | } | |
451af504 | 5077 | return ret ?: nbytes; |
8cdea7c0 BS |
5078 | } |
5079 | ||
fee7b548 KH |
5080 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
5081 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
5082 | { | |
fee7b548 KH |
5083 | unsigned long long min_limit, min_memsw_limit, tmp; |
5084 | ||
5085 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5086 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
fee7b548 KH |
5087 | if (!memcg->use_hierarchy) |
5088 | goto out; | |
5089 | ||
5c9d535b TH |
5090 | while (memcg->css.parent) { |
5091 | memcg = mem_cgroup_from_css(memcg->css.parent); | |
fee7b548 KH |
5092 | if (!memcg->use_hierarchy) |
5093 | break; | |
5094 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5095 | min_limit = min(min_limit, tmp); | |
5096 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
5097 | min_memsw_limit = min(min_memsw_limit, tmp); | |
5098 | } | |
5099 | out: | |
5100 | *mem_limit = min_limit; | |
5101 | *memsw_limit = min_memsw_limit; | |
fee7b548 KH |
5102 | } |
5103 | ||
6770c64e TH |
5104 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, |
5105 | size_t nbytes, loff_t off) | |
c84872e1 | 5106 | { |
6770c64e | 5107 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
86ae53e1 GC |
5108 | int name; |
5109 | enum res_type type; | |
c84872e1 | 5110 | |
6770c64e TH |
5111 | type = MEMFILE_TYPE(of_cft(of)->private); |
5112 | name = MEMFILE_ATTR(of_cft(of)->private); | |
af36f906 | 5113 | |
8c7c6e34 | 5114 | switch (name) { |
29f2a4da | 5115 | case RES_MAX_USAGE: |
8c7c6e34 | 5116 | if (type == _MEM) |
c0ff4b85 | 5117 | res_counter_reset_max(&memcg->res); |
510fc4e1 | 5118 | else if (type == _MEMSWAP) |
c0ff4b85 | 5119 | res_counter_reset_max(&memcg->memsw); |
510fc4e1 GC |
5120 | else if (type == _KMEM) |
5121 | res_counter_reset_max(&memcg->kmem); | |
5122 | else | |
5123 | return -EINVAL; | |
29f2a4da PE |
5124 | break; |
5125 | case RES_FAILCNT: | |
8c7c6e34 | 5126 | if (type == _MEM) |
c0ff4b85 | 5127 | res_counter_reset_failcnt(&memcg->res); |
510fc4e1 | 5128 | else if (type == _MEMSWAP) |
c0ff4b85 | 5129 | res_counter_reset_failcnt(&memcg->memsw); |
510fc4e1 GC |
5130 | else if (type == _KMEM) |
5131 | res_counter_reset_failcnt(&memcg->kmem); | |
5132 | else | |
5133 | return -EINVAL; | |
29f2a4da PE |
5134 | break; |
5135 | } | |
f64c3f54 | 5136 | |
6770c64e | 5137 | return nbytes; |
c84872e1 PE |
5138 | } |
5139 | ||
182446d0 | 5140 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
7dc74be0 DN |
5141 | struct cftype *cft) |
5142 | { | |
182446d0 | 5143 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
7dc74be0 DN |
5144 | } |
5145 | ||
02491447 | 5146 | #ifdef CONFIG_MMU |
182446d0 | 5147 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
7dc74be0 DN |
5148 | struct cftype *cft, u64 val) |
5149 | { | |
182446d0 | 5150 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
7dc74be0 DN |
5151 | |
5152 | if (val >= (1 << NR_MOVE_TYPE)) | |
5153 | return -EINVAL; | |
ee5e8472 | 5154 | |
7dc74be0 | 5155 | /* |
ee5e8472 GC |
5156 | * No kind of locking is needed in here, because ->can_attach() will |
5157 | * check this value once in the beginning of the process, and then carry | |
5158 | * on with stale data. This means that changes to this value will only | |
5159 | * affect task migrations starting after the change. | |
7dc74be0 | 5160 | */ |
c0ff4b85 | 5161 | memcg->move_charge_at_immigrate = val; |
7dc74be0 DN |
5162 | return 0; |
5163 | } | |
02491447 | 5164 | #else |
182446d0 | 5165 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
02491447 DN |
5166 | struct cftype *cft, u64 val) |
5167 | { | |
5168 | return -ENOSYS; | |
5169 | } | |
5170 | #endif | |
7dc74be0 | 5171 | |
406eb0c9 | 5172 | #ifdef CONFIG_NUMA |
2da8ca82 | 5173 | static int memcg_numa_stat_show(struct seq_file *m, void *v) |
406eb0c9 | 5174 | { |
25485de6 GT |
5175 | struct numa_stat { |
5176 | const char *name; | |
5177 | unsigned int lru_mask; | |
5178 | }; | |
5179 | ||
5180 | static const struct numa_stat stats[] = { | |
5181 | { "total", LRU_ALL }, | |
5182 | { "file", LRU_ALL_FILE }, | |
5183 | { "anon", LRU_ALL_ANON }, | |
5184 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
5185 | }; | |
5186 | const struct numa_stat *stat; | |
406eb0c9 | 5187 | int nid; |
25485de6 | 5188 | unsigned long nr; |
2da8ca82 | 5189 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
406eb0c9 | 5190 | |
25485de6 GT |
5191 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
5192 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | |
5193 | seq_printf(m, "%s=%lu", stat->name, nr); | |
5194 | for_each_node_state(nid, N_MEMORY) { | |
5195 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | |
5196 | stat->lru_mask); | |
5197 | seq_printf(m, " N%d=%lu", nid, nr); | |
5198 | } | |
5199 | seq_putc(m, '\n'); | |
406eb0c9 | 5200 | } |
406eb0c9 | 5201 | |
071aee13 YH |
5202 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
5203 | struct mem_cgroup *iter; | |
5204 | ||
5205 | nr = 0; | |
5206 | for_each_mem_cgroup_tree(iter, memcg) | |
5207 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | |
5208 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | |
5209 | for_each_node_state(nid, N_MEMORY) { | |
5210 | nr = 0; | |
5211 | for_each_mem_cgroup_tree(iter, memcg) | |
5212 | nr += mem_cgroup_node_nr_lru_pages( | |
5213 | iter, nid, stat->lru_mask); | |
5214 | seq_printf(m, " N%d=%lu", nid, nr); | |
5215 | } | |
5216 | seq_putc(m, '\n'); | |
406eb0c9 | 5217 | } |
406eb0c9 | 5218 | |
406eb0c9 YH |
5219 | return 0; |
5220 | } | |
5221 | #endif /* CONFIG_NUMA */ | |
5222 | ||
af7c4b0e JW |
5223 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
5224 | { | |
5225 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | |
5226 | } | |
5227 | ||
2da8ca82 | 5228 | static int memcg_stat_show(struct seq_file *m, void *v) |
d2ceb9b7 | 5229 | { |
2da8ca82 | 5230 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
af7c4b0e JW |
5231 | struct mem_cgroup *mi; |
5232 | unsigned int i; | |
406eb0c9 | 5233 | |
af7c4b0e | 5234 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
bff6bb83 | 5235 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5236 | continue; |
af7c4b0e JW |
5237 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
5238 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
1dd3a273 | 5239 | } |
7b854121 | 5240 | |
af7c4b0e JW |
5241 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
5242 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
5243 | mem_cgroup_read_events(memcg, i)); | |
5244 | ||
5245 | for (i = 0; i < NR_LRU_LISTS; i++) | |
5246 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
5247 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
5248 | ||
14067bb3 | 5249 | /* Hierarchical information */ |
fee7b548 KH |
5250 | { |
5251 | unsigned long long limit, memsw_limit; | |
d79154bb | 5252 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
78ccf5b5 | 5253 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
fee7b548 | 5254 | if (do_swap_account) |
78ccf5b5 JW |
5255 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
5256 | memsw_limit); | |
fee7b548 | 5257 | } |
7f016ee8 | 5258 | |
af7c4b0e JW |
5259 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
5260 | long long val = 0; | |
5261 | ||
bff6bb83 | 5262 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5263 | continue; |
af7c4b0e JW |
5264 | for_each_mem_cgroup_tree(mi, memcg) |
5265 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
5266 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | |
5267 | } | |
5268 | ||
5269 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
5270 | unsigned long long val = 0; | |
5271 | ||
5272 | for_each_mem_cgroup_tree(mi, memcg) | |
5273 | val += mem_cgroup_read_events(mi, i); | |
5274 | seq_printf(m, "total_%s %llu\n", | |
5275 | mem_cgroup_events_names[i], val); | |
5276 | } | |
5277 | ||
5278 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
5279 | unsigned long long val = 0; | |
5280 | ||
5281 | for_each_mem_cgroup_tree(mi, memcg) | |
5282 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
5283 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
1dd3a273 | 5284 | } |
14067bb3 | 5285 | |
7f016ee8 | 5286 | #ifdef CONFIG_DEBUG_VM |
7f016ee8 KM |
5287 | { |
5288 | int nid, zid; | |
5289 | struct mem_cgroup_per_zone *mz; | |
89abfab1 | 5290 | struct zone_reclaim_stat *rstat; |
7f016ee8 KM |
5291 | unsigned long recent_rotated[2] = {0, 0}; |
5292 | unsigned long recent_scanned[2] = {0, 0}; | |
5293 | ||
5294 | for_each_online_node(nid) | |
5295 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
e231875b | 5296 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; |
89abfab1 | 5297 | rstat = &mz->lruvec.reclaim_stat; |
7f016ee8 | 5298 | |
89abfab1 HD |
5299 | recent_rotated[0] += rstat->recent_rotated[0]; |
5300 | recent_rotated[1] += rstat->recent_rotated[1]; | |
5301 | recent_scanned[0] += rstat->recent_scanned[0]; | |
5302 | recent_scanned[1] += rstat->recent_scanned[1]; | |
7f016ee8 | 5303 | } |
78ccf5b5 JW |
5304 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
5305 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
5306 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
5307 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
7f016ee8 KM |
5308 | } |
5309 | #endif | |
5310 | ||
d2ceb9b7 KH |
5311 | return 0; |
5312 | } | |
5313 | ||
182446d0 TH |
5314 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
5315 | struct cftype *cft) | |
a7885eb8 | 5316 | { |
182446d0 | 5317 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 5318 | |
1f4c025b | 5319 | return mem_cgroup_swappiness(memcg); |
a7885eb8 KM |
5320 | } |
5321 | ||
182446d0 TH |
5322 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
5323 | struct cftype *cft, u64 val) | |
a7885eb8 | 5324 | { |
182446d0 | 5325 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 5326 | |
3dae7fec | 5327 | if (val > 100) |
a7885eb8 KM |
5328 | return -EINVAL; |
5329 | ||
14208b0e | 5330 | if (css->parent) |
3dae7fec JW |
5331 | memcg->swappiness = val; |
5332 | else | |
5333 | vm_swappiness = val; | |
068b38c1 | 5334 | |
a7885eb8 KM |
5335 | return 0; |
5336 | } | |
5337 | ||
2e72b634 KS |
5338 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
5339 | { | |
5340 | struct mem_cgroup_threshold_ary *t; | |
5341 | u64 usage; | |
5342 | int i; | |
5343 | ||
5344 | rcu_read_lock(); | |
5345 | if (!swap) | |
2c488db2 | 5346 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 5347 | else |
2c488db2 | 5348 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
5349 | |
5350 | if (!t) | |
5351 | goto unlock; | |
5352 | ||
5353 | usage = mem_cgroup_usage(memcg, swap); | |
5354 | ||
5355 | /* | |
748dad36 | 5356 | * current_threshold points to threshold just below or equal to usage. |
2e72b634 KS |
5357 | * If it's not true, a threshold was crossed after last |
5358 | * call of __mem_cgroup_threshold(). | |
5359 | */ | |
5407a562 | 5360 | i = t->current_threshold; |
2e72b634 KS |
5361 | |
5362 | /* | |
5363 | * Iterate backward over array of thresholds starting from | |
5364 | * current_threshold and check if a threshold is crossed. | |
5365 | * If none of thresholds below usage is crossed, we read | |
5366 | * only one element of the array here. | |
5367 | */ | |
5368 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
5369 | eventfd_signal(t->entries[i].eventfd, 1); | |
5370 | ||
5371 | /* i = current_threshold + 1 */ | |
5372 | i++; | |
5373 | ||
5374 | /* | |
5375 | * Iterate forward over array of thresholds starting from | |
5376 | * current_threshold+1 and check if a threshold is crossed. | |
5377 | * If none of thresholds above usage is crossed, we read | |
5378 | * only one element of the array here. | |
5379 | */ | |
5380 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
5381 | eventfd_signal(t->entries[i].eventfd, 1); | |
5382 | ||
5383 | /* Update current_threshold */ | |
5407a562 | 5384 | t->current_threshold = i - 1; |
2e72b634 KS |
5385 | unlock: |
5386 | rcu_read_unlock(); | |
5387 | } | |
5388 | ||
5389 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
5390 | { | |
ad4ca5f4 KS |
5391 | while (memcg) { |
5392 | __mem_cgroup_threshold(memcg, false); | |
5393 | if (do_swap_account) | |
5394 | __mem_cgroup_threshold(memcg, true); | |
5395 | ||
5396 | memcg = parent_mem_cgroup(memcg); | |
5397 | } | |
2e72b634 KS |
5398 | } |
5399 | ||
5400 | static int compare_thresholds(const void *a, const void *b) | |
5401 | { | |
5402 | const struct mem_cgroup_threshold *_a = a; | |
5403 | const struct mem_cgroup_threshold *_b = b; | |
5404 | ||
2bff24a3 GT |
5405 | if (_a->threshold > _b->threshold) |
5406 | return 1; | |
5407 | ||
5408 | if (_a->threshold < _b->threshold) | |
5409 | return -1; | |
5410 | ||
5411 | return 0; | |
2e72b634 KS |
5412 | } |
5413 | ||
c0ff4b85 | 5414 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
9490ff27 KH |
5415 | { |
5416 | struct mem_cgroup_eventfd_list *ev; | |
5417 | ||
c0ff4b85 | 5418 | list_for_each_entry(ev, &memcg->oom_notify, list) |
9490ff27 KH |
5419 | eventfd_signal(ev->eventfd, 1); |
5420 | return 0; | |
5421 | } | |
5422 | ||
c0ff4b85 | 5423 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
9490ff27 | 5424 | { |
7d74b06f KH |
5425 | struct mem_cgroup *iter; |
5426 | ||
c0ff4b85 | 5427 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 5428 | mem_cgroup_oom_notify_cb(iter); |
9490ff27 KH |
5429 | } |
5430 | ||
59b6f873 | 5431 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 | 5432 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) |
2e72b634 | 5433 | { |
2c488db2 KS |
5434 | struct mem_cgroup_thresholds *thresholds; |
5435 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 | 5436 | u64 threshold, usage; |
2c488db2 | 5437 | int i, size, ret; |
2e72b634 KS |
5438 | |
5439 | ret = res_counter_memparse_write_strategy(args, &threshold); | |
5440 | if (ret) | |
5441 | return ret; | |
5442 | ||
5443 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 5444 | |
2e72b634 | 5445 | if (type == _MEM) |
2c488db2 | 5446 | thresholds = &memcg->thresholds; |
2e72b634 | 5447 | else if (type == _MEMSWAP) |
2c488db2 | 5448 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5449 | else |
5450 | BUG(); | |
5451 | ||
5452 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
5453 | ||
5454 | /* Check if a threshold crossed before adding a new one */ | |
2c488db2 | 5455 | if (thresholds->primary) |
2e72b634 KS |
5456 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
5457 | ||
2c488db2 | 5458 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
5459 | |
5460 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 5461 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 5462 | GFP_KERNEL); |
2c488db2 | 5463 | if (!new) { |
2e72b634 KS |
5464 | ret = -ENOMEM; |
5465 | goto unlock; | |
5466 | } | |
2c488db2 | 5467 | new->size = size; |
2e72b634 KS |
5468 | |
5469 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
5470 | if (thresholds->primary) { |
5471 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 5472 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
5473 | } |
5474 | ||
2e72b634 | 5475 | /* Add new threshold */ |
2c488db2 KS |
5476 | new->entries[size - 1].eventfd = eventfd; |
5477 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
5478 | |
5479 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 5480 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
5481 | compare_thresholds, NULL); |
5482 | ||
5483 | /* Find current threshold */ | |
2c488db2 | 5484 | new->current_threshold = -1; |
2e72b634 | 5485 | for (i = 0; i < size; i++) { |
748dad36 | 5486 | if (new->entries[i].threshold <= usage) { |
2e72b634 | 5487 | /* |
2c488db2 KS |
5488 | * new->current_threshold will not be used until |
5489 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
5490 | * it here. |
5491 | */ | |
2c488db2 | 5492 | ++new->current_threshold; |
748dad36 SZ |
5493 | } else |
5494 | break; | |
2e72b634 KS |
5495 | } |
5496 | ||
2c488db2 KS |
5497 | /* Free old spare buffer and save old primary buffer as spare */ |
5498 | kfree(thresholds->spare); | |
5499 | thresholds->spare = thresholds->primary; | |
5500 | ||
5501 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 5502 | |
907860ed | 5503 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
5504 | synchronize_rcu(); |
5505 | ||
2e72b634 KS |
5506 | unlock: |
5507 | mutex_unlock(&memcg->thresholds_lock); | |
5508 | ||
5509 | return ret; | |
5510 | } | |
5511 | ||
59b6f873 | 5512 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
5513 | struct eventfd_ctx *eventfd, const char *args) |
5514 | { | |
59b6f873 | 5515 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); |
347c4a87 TH |
5516 | } |
5517 | ||
59b6f873 | 5518 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
5519 | struct eventfd_ctx *eventfd, const char *args) |
5520 | { | |
59b6f873 | 5521 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); |
347c4a87 TH |
5522 | } |
5523 | ||
59b6f873 | 5524 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 5525 | struct eventfd_ctx *eventfd, enum res_type type) |
2e72b634 | 5526 | { |
2c488db2 KS |
5527 | struct mem_cgroup_thresholds *thresholds; |
5528 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 | 5529 | u64 usage; |
2c488db2 | 5530 | int i, j, size; |
2e72b634 KS |
5531 | |
5532 | mutex_lock(&memcg->thresholds_lock); | |
5533 | if (type == _MEM) | |
2c488db2 | 5534 | thresholds = &memcg->thresholds; |
2e72b634 | 5535 | else if (type == _MEMSWAP) |
2c488db2 | 5536 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5537 | else |
5538 | BUG(); | |
5539 | ||
371528ca AV |
5540 | if (!thresholds->primary) |
5541 | goto unlock; | |
5542 | ||
2e72b634 KS |
5543 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
5544 | ||
5545 | /* Check if a threshold crossed before removing */ | |
5546 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
5547 | ||
5548 | /* Calculate new number of threshold */ | |
2c488db2 KS |
5549 | size = 0; |
5550 | for (i = 0; i < thresholds->primary->size; i++) { | |
5551 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
5552 | size++; |
5553 | } | |
5554 | ||
2c488db2 | 5555 | new = thresholds->spare; |
907860ed | 5556 | |
2e72b634 KS |
5557 | /* Set thresholds array to NULL if we don't have thresholds */ |
5558 | if (!size) { | |
2c488db2 KS |
5559 | kfree(new); |
5560 | new = NULL; | |
907860ed | 5561 | goto swap_buffers; |
2e72b634 KS |
5562 | } |
5563 | ||
2c488db2 | 5564 | new->size = size; |
2e72b634 KS |
5565 | |
5566 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
5567 | new->current_threshold = -1; |
5568 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
5569 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
5570 | continue; |
5571 | ||
2c488db2 | 5572 | new->entries[j] = thresholds->primary->entries[i]; |
748dad36 | 5573 | if (new->entries[j].threshold <= usage) { |
2e72b634 | 5574 | /* |
2c488db2 | 5575 | * new->current_threshold will not be used |
2e72b634 KS |
5576 | * until rcu_assign_pointer(), so it's safe to increment |
5577 | * it here. | |
5578 | */ | |
2c488db2 | 5579 | ++new->current_threshold; |
2e72b634 KS |
5580 | } |
5581 | j++; | |
5582 | } | |
5583 | ||
907860ed | 5584 | swap_buffers: |
2c488db2 KS |
5585 | /* Swap primary and spare array */ |
5586 | thresholds->spare = thresholds->primary; | |
8c757763 SZ |
5587 | /* If all events are unregistered, free the spare array */ |
5588 | if (!new) { | |
5589 | kfree(thresholds->spare); | |
5590 | thresholds->spare = NULL; | |
5591 | } | |
5592 | ||
2c488db2 | 5593 | rcu_assign_pointer(thresholds->primary, new); |
2e72b634 | 5594 | |
907860ed | 5595 | /* To be sure that nobody uses thresholds */ |
2e72b634 | 5596 | synchronize_rcu(); |
371528ca | 5597 | unlock: |
2e72b634 | 5598 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 5599 | } |
c1e862c1 | 5600 | |
59b6f873 | 5601 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
5602 | struct eventfd_ctx *eventfd) |
5603 | { | |
59b6f873 | 5604 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); |
347c4a87 TH |
5605 | } |
5606 | ||
59b6f873 | 5607 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
5608 | struct eventfd_ctx *eventfd) |
5609 | { | |
59b6f873 | 5610 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); |
347c4a87 TH |
5611 | } |
5612 | ||
59b6f873 | 5613 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, |
347c4a87 | 5614 | struct eventfd_ctx *eventfd, const char *args) |
9490ff27 | 5615 | { |
9490ff27 | 5616 | struct mem_cgroup_eventfd_list *event; |
9490ff27 | 5617 | |
9490ff27 KH |
5618 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
5619 | if (!event) | |
5620 | return -ENOMEM; | |
5621 | ||
1af8efe9 | 5622 | spin_lock(&memcg_oom_lock); |
9490ff27 KH |
5623 | |
5624 | event->eventfd = eventfd; | |
5625 | list_add(&event->list, &memcg->oom_notify); | |
5626 | ||
5627 | /* already in OOM ? */ | |
79dfdacc | 5628 | if (atomic_read(&memcg->under_oom)) |
9490ff27 | 5629 | eventfd_signal(eventfd, 1); |
1af8efe9 | 5630 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5631 | |
5632 | return 0; | |
5633 | } | |
5634 | ||
59b6f873 | 5635 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 5636 | struct eventfd_ctx *eventfd) |
9490ff27 | 5637 | { |
9490ff27 | 5638 | struct mem_cgroup_eventfd_list *ev, *tmp; |
9490ff27 | 5639 | |
1af8efe9 | 5640 | spin_lock(&memcg_oom_lock); |
9490ff27 | 5641 | |
c0ff4b85 | 5642 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
9490ff27 KH |
5643 | if (ev->eventfd == eventfd) { |
5644 | list_del(&ev->list); | |
5645 | kfree(ev); | |
5646 | } | |
5647 | } | |
5648 | ||
1af8efe9 | 5649 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5650 | } |
5651 | ||
2da8ca82 | 5652 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) |
3c11ecf4 | 5653 | { |
2da8ca82 | 5654 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
3c11ecf4 | 5655 | |
791badbd TH |
5656 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); |
5657 | seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); | |
3c11ecf4 KH |
5658 | return 0; |
5659 | } | |
5660 | ||
182446d0 | 5661 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
3c11ecf4 KH |
5662 | struct cftype *cft, u64 val) |
5663 | { | |
182446d0 | 5664 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3c11ecf4 KH |
5665 | |
5666 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
14208b0e | 5667 | if (!css->parent || !((val == 0) || (val == 1))) |
3c11ecf4 KH |
5668 | return -EINVAL; |
5669 | ||
c0ff4b85 | 5670 | memcg->oom_kill_disable = val; |
4d845ebf | 5671 | if (!val) |
c0ff4b85 | 5672 | memcg_oom_recover(memcg); |
3dae7fec | 5673 | |
3c11ecf4 KH |
5674 | return 0; |
5675 | } | |
5676 | ||
c255a458 | 5677 | #ifdef CONFIG_MEMCG_KMEM |
cbe128e3 | 5678 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa | 5679 | { |
55007d84 GC |
5680 | int ret; |
5681 | ||
2633d7a0 | 5682 | memcg->kmemcg_id = -1; |
55007d84 GC |
5683 | ret = memcg_propagate_kmem(memcg); |
5684 | if (ret) | |
5685 | return ret; | |
2633d7a0 | 5686 | |
1d62e436 | 5687 | return mem_cgroup_sockets_init(memcg, ss); |
573b400d | 5688 | } |
e5671dfa | 5689 | |
10d5ebf4 | 5690 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) |
d1a4c0b3 | 5691 | { |
1d62e436 | 5692 | mem_cgroup_sockets_destroy(memcg); |
10d5ebf4 LZ |
5693 | } |
5694 | ||
5695 | static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) | |
5696 | { | |
5697 | if (!memcg_kmem_is_active(memcg)) | |
5698 | return; | |
5699 | ||
5700 | /* | |
5701 | * kmem charges can outlive the cgroup. In the case of slab | |
5702 | * pages, for instance, a page contain objects from various | |
5703 | * processes. As we prevent from taking a reference for every | |
5704 | * such allocation we have to be careful when doing uncharge | |
5705 | * (see memcg_uncharge_kmem) and here during offlining. | |
5706 | * | |
5707 | * The idea is that that only the _last_ uncharge which sees | |
5708 | * the dead memcg will drop the last reference. An additional | |
5709 | * reference is taken here before the group is marked dead | |
5710 | * which is then paired with css_put during uncharge resp. here. | |
5711 | * | |
5712 | * Although this might sound strange as this path is called from | |
ec903c0c TH |
5713 | * css_offline() when the referencemight have dropped down to 0 and |
5714 | * shouldn't be incremented anymore (css_tryget_online() would | |
5715 | * fail) we do not have other options because of the kmem | |
5716 | * allocations lifetime. | |
10d5ebf4 LZ |
5717 | */ |
5718 | css_get(&memcg->css); | |
7de37682 GC |
5719 | |
5720 | memcg_kmem_mark_dead(memcg); | |
5721 | ||
5722 | if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) | |
5723 | return; | |
5724 | ||
7de37682 | 5725 | if (memcg_kmem_test_and_clear_dead(memcg)) |
10d5ebf4 | 5726 | css_put(&memcg->css); |
d1a4c0b3 | 5727 | } |
e5671dfa | 5728 | #else |
cbe128e3 | 5729 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa GC |
5730 | { |
5731 | return 0; | |
5732 | } | |
d1a4c0b3 | 5733 | |
10d5ebf4 LZ |
5734 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) |
5735 | { | |
5736 | } | |
5737 | ||
5738 | static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) | |
d1a4c0b3 GC |
5739 | { |
5740 | } | |
e5671dfa GC |
5741 | #endif |
5742 | ||
3bc942f3 TH |
5743 | /* |
5744 | * DO NOT USE IN NEW FILES. | |
5745 | * | |
5746 | * "cgroup.event_control" implementation. | |
5747 | * | |
5748 | * This is way over-engineered. It tries to support fully configurable | |
5749 | * events for each user. Such level of flexibility is completely | |
5750 | * unnecessary especially in the light of the planned unified hierarchy. | |
5751 | * | |
5752 | * Please deprecate this and replace with something simpler if at all | |
5753 | * possible. | |
5754 | */ | |
5755 | ||
79bd9814 TH |
5756 | /* |
5757 | * Unregister event and free resources. | |
5758 | * | |
5759 | * Gets called from workqueue. | |
5760 | */ | |
3bc942f3 | 5761 | static void memcg_event_remove(struct work_struct *work) |
79bd9814 | 5762 | { |
3bc942f3 TH |
5763 | struct mem_cgroup_event *event = |
5764 | container_of(work, struct mem_cgroup_event, remove); | |
59b6f873 | 5765 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
5766 | |
5767 | remove_wait_queue(event->wqh, &event->wait); | |
5768 | ||
59b6f873 | 5769 | event->unregister_event(memcg, event->eventfd); |
79bd9814 TH |
5770 | |
5771 | /* Notify userspace the event is going away. */ | |
5772 | eventfd_signal(event->eventfd, 1); | |
5773 | ||
5774 | eventfd_ctx_put(event->eventfd); | |
5775 | kfree(event); | |
59b6f873 | 5776 | css_put(&memcg->css); |
79bd9814 TH |
5777 | } |
5778 | ||
5779 | /* | |
5780 | * Gets called on POLLHUP on eventfd when user closes it. | |
5781 | * | |
5782 | * Called with wqh->lock held and interrupts disabled. | |
5783 | */ | |
3bc942f3 TH |
5784 | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, |
5785 | int sync, void *key) | |
79bd9814 | 5786 | { |
3bc942f3 TH |
5787 | struct mem_cgroup_event *event = |
5788 | container_of(wait, struct mem_cgroup_event, wait); | |
59b6f873 | 5789 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
5790 | unsigned long flags = (unsigned long)key; |
5791 | ||
5792 | if (flags & POLLHUP) { | |
5793 | /* | |
5794 | * If the event has been detached at cgroup removal, we | |
5795 | * can simply return knowing the other side will cleanup | |
5796 | * for us. | |
5797 | * | |
5798 | * We can't race against event freeing since the other | |
5799 | * side will require wqh->lock via remove_wait_queue(), | |
5800 | * which we hold. | |
5801 | */ | |
fba94807 | 5802 | spin_lock(&memcg->event_list_lock); |
79bd9814 TH |
5803 | if (!list_empty(&event->list)) { |
5804 | list_del_init(&event->list); | |
5805 | /* | |
5806 | * We are in atomic context, but cgroup_event_remove() | |
5807 | * may sleep, so we have to call it in workqueue. | |
5808 | */ | |
5809 | schedule_work(&event->remove); | |
5810 | } | |
fba94807 | 5811 | spin_unlock(&memcg->event_list_lock); |
79bd9814 TH |
5812 | } |
5813 | ||
5814 | return 0; | |
5815 | } | |
5816 | ||
3bc942f3 | 5817 | static void memcg_event_ptable_queue_proc(struct file *file, |
79bd9814 TH |
5818 | wait_queue_head_t *wqh, poll_table *pt) |
5819 | { | |
3bc942f3 TH |
5820 | struct mem_cgroup_event *event = |
5821 | container_of(pt, struct mem_cgroup_event, pt); | |
79bd9814 TH |
5822 | |
5823 | event->wqh = wqh; | |
5824 | add_wait_queue(wqh, &event->wait); | |
5825 | } | |
5826 | ||
5827 | /* | |
3bc942f3 TH |
5828 | * DO NOT USE IN NEW FILES. |
5829 | * | |
79bd9814 TH |
5830 | * Parse input and register new cgroup event handler. |
5831 | * | |
5832 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
5833 | * Interpretation of args is defined by control file implementation. | |
5834 | */ | |
451af504 TH |
5835 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, |
5836 | char *buf, size_t nbytes, loff_t off) | |
79bd9814 | 5837 | { |
451af504 | 5838 | struct cgroup_subsys_state *css = of_css(of); |
fba94807 | 5839 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 5840 | struct mem_cgroup_event *event; |
79bd9814 TH |
5841 | struct cgroup_subsys_state *cfile_css; |
5842 | unsigned int efd, cfd; | |
5843 | struct fd efile; | |
5844 | struct fd cfile; | |
fba94807 | 5845 | const char *name; |
79bd9814 TH |
5846 | char *endp; |
5847 | int ret; | |
5848 | ||
451af504 TH |
5849 | buf = strstrip(buf); |
5850 | ||
5851 | efd = simple_strtoul(buf, &endp, 10); | |
79bd9814 TH |
5852 | if (*endp != ' ') |
5853 | return -EINVAL; | |
451af504 | 5854 | buf = endp + 1; |
79bd9814 | 5855 | |
451af504 | 5856 | cfd = simple_strtoul(buf, &endp, 10); |
79bd9814 TH |
5857 | if ((*endp != ' ') && (*endp != '\0')) |
5858 | return -EINVAL; | |
451af504 | 5859 | buf = endp + 1; |
79bd9814 TH |
5860 | |
5861 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
5862 | if (!event) | |
5863 | return -ENOMEM; | |
5864 | ||
59b6f873 | 5865 | event->memcg = memcg; |
79bd9814 | 5866 | INIT_LIST_HEAD(&event->list); |
3bc942f3 TH |
5867 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); |
5868 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
5869 | INIT_WORK(&event->remove, memcg_event_remove); | |
79bd9814 TH |
5870 | |
5871 | efile = fdget(efd); | |
5872 | if (!efile.file) { | |
5873 | ret = -EBADF; | |
5874 | goto out_kfree; | |
5875 | } | |
5876 | ||
5877 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
5878 | if (IS_ERR(event->eventfd)) { | |
5879 | ret = PTR_ERR(event->eventfd); | |
5880 | goto out_put_efile; | |
5881 | } | |
5882 | ||
5883 | cfile = fdget(cfd); | |
5884 | if (!cfile.file) { | |
5885 | ret = -EBADF; | |
5886 | goto out_put_eventfd; | |
5887 | } | |
5888 | ||
5889 | /* the process need read permission on control file */ | |
5890 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
5891 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | |
5892 | if (ret < 0) | |
5893 | goto out_put_cfile; | |
5894 | ||
fba94807 TH |
5895 | /* |
5896 | * Determine the event callbacks and set them in @event. This used | |
5897 | * to be done via struct cftype but cgroup core no longer knows | |
5898 | * about these events. The following is crude but the whole thing | |
5899 | * is for compatibility anyway. | |
3bc942f3 TH |
5900 | * |
5901 | * DO NOT ADD NEW FILES. | |
fba94807 TH |
5902 | */ |
5903 | name = cfile.file->f_dentry->d_name.name; | |
5904 | ||
5905 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
5906 | event->register_event = mem_cgroup_usage_register_event; | |
5907 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
5908 | } else if (!strcmp(name, "memory.oom_control")) { | |
5909 | event->register_event = mem_cgroup_oom_register_event; | |
5910 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
5911 | } else if (!strcmp(name, "memory.pressure_level")) { | |
5912 | event->register_event = vmpressure_register_event; | |
5913 | event->unregister_event = vmpressure_unregister_event; | |
5914 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
347c4a87 TH |
5915 | event->register_event = memsw_cgroup_usage_register_event; |
5916 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
fba94807 TH |
5917 | } else { |
5918 | ret = -EINVAL; | |
5919 | goto out_put_cfile; | |
5920 | } | |
5921 | ||
79bd9814 | 5922 | /* |
b5557c4c TH |
5923 | * Verify @cfile should belong to @css. Also, remaining events are |
5924 | * automatically removed on cgroup destruction but the removal is | |
5925 | * asynchronous, so take an extra ref on @css. | |
79bd9814 | 5926 | */ |
ec903c0c TH |
5927 | cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent, |
5928 | &memory_cgrp_subsys); | |
79bd9814 | 5929 | ret = -EINVAL; |
5a17f543 | 5930 | if (IS_ERR(cfile_css)) |
79bd9814 | 5931 | goto out_put_cfile; |
5a17f543 TH |
5932 | if (cfile_css != css) { |
5933 | css_put(cfile_css); | |
79bd9814 | 5934 | goto out_put_cfile; |
5a17f543 | 5935 | } |
79bd9814 | 5936 | |
451af504 | 5937 | ret = event->register_event(memcg, event->eventfd, buf); |
79bd9814 TH |
5938 | if (ret) |
5939 | goto out_put_css; | |
5940 | ||
5941 | efile.file->f_op->poll(efile.file, &event->pt); | |
5942 | ||
fba94807 TH |
5943 | spin_lock(&memcg->event_list_lock); |
5944 | list_add(&event->list, &memcg->event_list); | |
5945 | spin_unlock(&memcg->event_list_lock); | |
79bd9814 TH |
5946 | |
5947 | fdput(cfile); | |
5948 | fdput(efile); | |
5949 | ||
451af504 | 5950 | return nbytes; |
79bd9814 TH |
5951 | |
5952 | out_put_css: | |
b5557c4c | 5953 | css_put(css); |
79bd9814 TH |
5954 | out_put_cfile: |
5955 | fdput(cfile); | |
5956 | out_put_eventfd: | |
5957 | eventfd_ctx_put(event->eventfd); | |
5958 | out_put_efile: | |
5959 | fdput(efile); | |
5960 | out_kfree: | |
5961 | kfree(event); | |
5962 | ||
5963 | return ret; | |
5964 | } | |
5965 | ||
8cdea7c0 BS |
5966 | static struct cftype mem_cgroup_files[] = { |
5967 | { | |
0eea1030 | 5968 | .name = "usage_in_bytes", |
8c7c6e34 | 5969 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
791badbd | 5970 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 5971 | }, |
c84872e1 PE |
5972 | { |
5973 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 5974 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
6770c64e | 5975 | .write = mem_cgroup_reset, |
791badbd | 5976 | .read_u64 = mem_cgroup_read_u64, |
c84872e1 | 5977 | }, |
8cdea7c0 | 5978 | { |
0eea1030 | 5979 | .name = "limit_in_bytes", |
8c7c6e34 | 5980 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
451af504 | 5981 | .write = mem_cgroup_write, |
791badbd | 5982 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 5983 | }, |
296c81d8 BS |
5984 | { |
5985 | .name = "soft_limit_in_bytes", | |
5986 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
451af504 | 5987 | .write = mem_cgroup_write, |
791badbd | 5988 | .read_u64 = mem_cgroup_read_u64, |
296c81d8 | 5989 | }, |
8cdea7c0 BS |
5990 | { |
5991 | .name = "failcnt", | |
8c7c6e34 | 5992 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
6770c64e | 5993 | .write = mem_cgroup_reset, |
791badbd | 5994 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 5995 | }, |
d2ceb9b7 KH |
5996 | { |
5997 | .name = "stat", | |
2da8ca82 | 5998 | .seq_show = memcg_stat_show, |
d2ceb9b7 | 5999 | }, |
c1e862c1 KH |
6000 | { |
6001 | .name = "force_empty", | |
6770c64e | 6002 | .write = mem_cgroup_force_empty_write, |
c1e862c1 | 6003 | }, |
18f59ea7 BS |
6004 | { |
6005 | .name = "use_hierarchy", | |
f00baae7 | 6006 | .flags = CFTYPE_INSANE, |
18f59ea7 BS |
6007 | .write_u64 = mem_cgroup_hierarchy_write, |
6008 | .read_u64 = mem_cgroup_hierarchy_read, | |
6009 | }, | |
79bd9814 | 6010 | { |
3bc942f3 | 6011 | .name = "cgroup.event_control", /* XXX: for compat */ |
451af504 | 6012 | .write = memcg_write_event_control, |
79bd9814 TH |
6013 | .flags = CFTYPE_NO_PREFIX, |
6014 | .mode = S_IWUGO, | |
6015 | }, | |
a7885eb8 KM |
6016 | { |
6017 | .name = "swappiness", | |
6018 | .read_u64 = mem_cgroup_swappiness_read, | |
6019 | .write_u64 = mem_cgroup_swappiness_write, | |
6020 | }, | |
7dc74be0 DN |
6021 | { |
6022 | .name = "move_charge_at_immigrate", | |
6023 | .read_u64 = mem_cgroup_move_charge_read, | |
6024 | .write_u64 = mem_cgroup_move_charge_write, | |
6025 | }, | |
9490ff27 KH |
6026 | { |
6027 | .name = "oom_control", | |
2da8ca82 | 6028 | .seq_show = mem_cgroup_oom_control_read, |
3c11ecf4 | 6029 | .write_u64 = mem_cgroup_oom_control_write, |
9490ff27 KH |
6030 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), |
6031 | }, | |
70ddf637 AV |
6032 | { |
6033 | .name = "pressure_level", | |
70ddf637 | 6034 | }, |
406eb0c9 YH |
6035 | #ifdef CONFIG_NUMA |
6036 | { | |
6037 | .name = "numa_stat", | |
2da8ca82 | 6038 | .seq_show = memcg_numa_stat_show, |
406eb0c9 YH |
6039 | }, |
6040 | #endif | |
510fc4e1 GC |
6041 | #ifdef CONFIG_MEMCG_KMEM |
6042 | { | |
6043 | .name = "kmem.limit_in_bytes", | |
6044 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
451af504 | 6045 | .write = mem_cgroup_write, |
791badbd | 6046 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
6047 | }, |
6048 | { | |
6049 | .name = "kmem.usage_in_bytes", | |
6050 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
791badbd | 6051 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
6052 | }, |
6053 | { | |
6054 | .name = "kmem.failcnt", | |
6055 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
6770c64e | 6056 | .write = mem_cgroup_reset, |
791badbd | 6057 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
6058 | }, |
6059 | { | |
6060 | .name = "kmem.max_usage_in_bytes", | |
6061 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
6770c64e | 6062 | .write = mem_cgroup_reset, |
791badbd | 6063 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 | 6064 | }, |
749c5415 GC |
6065 | #ifdef CONFIG_SLABINFO |
6066 | { | |
6067 | .name = "kmem.slabinfo", | |
2da8ca82 | 6068 | .seq_show = mem_cgroup_slabinfo_read, |
749c5415 GC |
6069 | }, |
6070 | #endif | |
8c7c6e34 | 6071 | #endif |
6bc10349 | 6072 | { }, /* terminate */ |
af36f906 | 6073 | }; |
8c7c6e34 | 6074 | |
2d11085e MH |
6075 | #ifdef CONFIG_MEMCG_SWAP |
6076 | static struct cftype memsw_cgroup_files[] = { | |
6077 | { | |
6078 | .name = "memsw.usage_in_bytes", | |
6079 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
791badbd | 6080 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
6081 | }, |
6082 | { | |
6083 | .name = "memsw.max_usage_in_bytes", | |
6084 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
6770c64e | 6085 | .write = mem_cgroup_reset, |
791badbd | 6086 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
6087 | }, |
6088 | { | |
6089 | .name = "memsw.limit_in_bytes", | |
6090 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
451af504 | 6091 | .write = mem_cgroup_write, |
791badbd | 6092 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
6093 | }, |
6094 | { | |
6095 | .name = "memsw.failcnt", | |
6096 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
6770c64e | 6097 | .write = mem_cgroup_reset, |
791badbd | 6098 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
6099 | }, |
6100 | { }, /* terminate */ | |
6101 | }; | |
6102 | #endif | |
c0ff4b85 | 6103 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
6104 | { |
6105 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 6106 | struct mem_cgroup_per_zone *mz; |
41e3355d | 6107 | int zone, tmp = node; |
1ecaab2b KH |
6108 | /* |
6109 | * This routine is called against possible nodes. | |
6110 | * But it's BUG to call kmalloc() against offline node. | |
6111 | * | |
6112 | * TODO: this routine can waste much memory for nodes which will | |
6113 | * never be onlined. It's better to use memory hotplug callback | |
6114 | * function. | |
6115 | */ | |
41e3355d KH |
6116 | if (!node_state(node, N_NORMAL_MEMORY)) |
6117 | tmp = -1; | |
17295c88 | 6118 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
6119 | if (!pn) |
6120 | return 1; | |
1ecaab2b | 6121 | |
1ecaab2b KH |
6122 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
6123 | mz = &pn->zoneinfo[zone]; | |
bea8c150 | 6124 | lruvec_init(&mz->lruvec); |
bb4cc1a8 AM |
6125 | mz->usage_in_excess = 0; |
6126 | mz->on_tree = false; | |
d79154bb | 6127 | mz->memcg = memcg; |
1ecaab2b | 6128 | } |
54f72fe0 | 6129 | memcg->nodeinfo[node] = pn; |
6d12e2d8 KH |
6130 | return 0; |
6131 | } | |
6132 | ||
c0ff4b85 | 6133 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
1ecaab2b | 6134 | { |
54f72fe0 | 6135 | kfree(memcg->nodeinfo[node]); |
1ecaab2b KH |
6136 | } |
6137 | ||
33327948 KH |
6138 | static struct mem_cgroup *mem_cgroup_alloc(void) |
6139 | { | |
d79154bb | 6140 | struct mem_cgroup *memcg; |
8ff69e2c | 6141 | size_t size; |
33327948 | 6142 | |
8ff69e2c VD |
6143 | size = sizeof(struct mem_cgroup); |
6144 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
33327948 | 6145 | |
8ff69e2c | 6146 | memcg = kzalloc(size, GFP_KERNEL); |
d79154bb | 6147 | if (!memcg) |
e7bbcdf3 DC |
6148 | return NULL; |
6149 | ||
d79154bb HD |
6150 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
6151 | if (!memcg->stat) | |
d2e61b8d | 6152 | goto out_free; |
d79154bb HD |
6153 | spin_lock_init(&memcg->pcp_counter_lock); |
6154 | return memcg; | |
d2e61b8d DC |
6155 | |
6156 | out_free: | |
8ff69e2c | 6157 | kfree(memcg); |
d2e61b8d | 6158 | return NULL; |
33327948 KH |
6159 | } |
6160 | ||
59927fb9 | 6161 | /* |
c8b2a36f GC |
6162 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
6163 | * (scanning all at force_empty is too costly...) | |
6164 | * | |
6165 | * Instead of clearing all references at force_empty, we remember | |
6166 | * the number of reference from swap_cgroup and free mem_cgroup when | |
6167 | * it goes down to 0. | |
6168 | * | |
6169 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
59927fb9 | 6170 | */ |
c8b2a36f GC |
6171 | |
6172 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
59927fb9 | 6173 | { |
c8b2a36f | 6174 | int node; |
59927fb9 | 6175 | |
bb4cc1a8 | 6176 | mem_cgroup_remove_from_trees(memcg); |
c8b2a36f GC |
6177 | |
6178 | for_each_node(node) | |
6179 | free_mem_cgroup_per_zone_info(memcg, node); | |
6180 | ||
6181 | free_percpu(memcg->stat); | |
6182 | ||
3f134619 GC |
6183 | /* |
6184 | * We need to make sure that (at least for now), the jump label | |
6185 | * destruction code runs outside of the cgroup lock. This is because | |
6186 | * get_online_cpus(), which is called from the static_branch update, | |
6187 | * can't be called inside the cgroup_lock. cpusets are the ones | |
6188 | * enforcing this dependency, so if they ever change, we might as well. | |
6189 | * | |
6190 | * schedule_work() will guarantee this happens. Be careful if you need | |
6191 | * to move this code around, and make sure it is outside | |
6192 | * the cgroup_lock. | |
6193 | */ | |
a8964b9b | 6194 | disarm_static_keys(memcg); |
8ff69e2c | 6195 | kfree(memcg); |
59927fb9 | 6196 | } |
3afe36b1 | 6197 | |
7bcc1bb1 DN |
6198 | /* |
6199 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
6200 | */ | |
e1aab161 | 6201 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
7bcc1bb1 | 6202 | { |
c0ff4b85 | 6203 | if (!memcg->res.parent) |
7bcc1bb1 | 6204 | return NULL; |
c0ff4b85 | 6205 | return mem_cgroup_from_res_counter(memcg->res.parent, res); |
7bcc1bb1 | 6206 | } |
e1aab161 | 6207 | EXPORT_SYMBOL(parent_mem_cgroup); |
33327948 | 6208 | |
bb4cc1a8 AM |
6209 | static void __init mem_cgroup_soft_limit_tree_init(void) |
6210 | { | |
6211 | struct mem_cgroup_tree_per_node *rtpn; | |
6212 | struct mem_cgroup_tree_per_zone *rtpz; | |
6213 | int tmp, node, zone; | |
6214 | ||
6215 | for_each_node(node) { | |
6216 | tmp = node; | |
6217 | if (!node_state(node, N_NORMAL_MEMORY)) | |
6218 | tmp = -1; | |
6219 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
6220 | BUG_ON(!rtpn); | |
6221 | ||
6222 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
6223 | ||
6224 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
6225 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
6226 | rtpz->rb_root = RB_ROOT; | |
6227 | spin_lock_init(&rtpz->lock); | |
6228 | } | |
6229 | } | |
6230 | } | |
6231 | ||
0eb253e2 | 6232 | static struct cgroup_subsys_state * __ref |
eb95419b | 6233 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
8cdea7c0 | 6234 | { |
d142e3e6 | 6235 | struct mem_cgroup *memcg; |
04046e1a | 6236 | long error = -ENOMEM; |
6d12e2d8 | 6237 | int node; |
8cdea7c0 | 6238 | |
c0ff4b85 R |
6239 | memcg = mem_cgroup_alloc(); |
6240 | if (!memcg) | |
04046e1a | 6241 | return ERR_PTR(error); |
78fb7466 | 6242 | |
3ed28fa1 | 6243 | for_each_node(node) |
c0ff4b85 | 6244 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
6d12e2d8 | 6245 | goto free_out; |
f64c3f54 | 6246 | |
c077719b | 6247 | /* root ? */ |
eb95419b | 6248 | if (parent_css == NULL) { |
a41c58a6 | 6249 | root_mem_cgroup = memcg; |
d142e3e6 GC |
6250 | res_counter_init(&memcg->res, NULL); |
6251 | res_counter_init(&memcg->memsw, NULL); | |
6252 | res_counter_init(&memcg->kmem, NULL); | |
18f59ea7 | 6253 | } |
28dbc4b6 | 6254 | |
d142e3e6 GC |
6255 | memcg->last_scanned_node = MAX_NUMNODES; |
6256 | INIT_LIST_HEAD(&memcg->oom_notify); | |
d142e3e6 GC |
6257 | memcg->move_charge_at_immigrate = 0; |
6258 | mutex_init(&memcg->thresholds_lock); | |
6259 | spin_lock_init(&memcg->move_lock); | |
70ddf637 | 6260 | vmpressure_init(&memcg->vmpressure); |
fba94807 TH |
6261 | INIT_LIST_HEAD(&memcg->event_list); |
6262 | spin_lock_init(&memcg->event_list_lock); | |
d142e3e6 GC |
6263 | |
6264 | return &memcg->css; | |
6265 | ||
6266 | free_out: | |
6267 | __mem_cgroup_free(memcg); | |
6268 | return ERR_PTR(error); | |
6269 | } | |
6270 | ||
6271 | static int | |
eb95419b | 6272 | mem_cgroup_css_online(struct cgroup_subsys_state *css) |
d142e3e6 | 6273 | { |
eb95419b | 6274 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5c9d535b | 6275 | struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); |
d142e3e6 | 6276 | |
15a4c835 | 6277 | if (css->id > MEM_CGROUP_ID_MAX) |
4219b2da LZ |
6278 | return -ENOSPC; |
6279 | ||
63876986 | 6280 | if (!parent) |
d142e3e6 GC |
6281 | return 0; |
6282 | ||
0999821b | 6283 | mutex_lock(&memcg_create_mutex); |
d142e3e6 GC |
6284 | |
6285 | memcg->use_hierarchy = parent->use_hierarchy; | |
6286 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
6287 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
6288 | ||
6289 | if (parent->use_hierarchy) { | |
c0ff4b85 R |
6290 | res_counter_init(&memcg->res, &parent->res); |
6291 | res_counter_init(&memcg->memsw, &parent->memsw); | |
510fc4e1 | 6292 | res_counter_init(&memcg->kmem, &parent->kmem); |
55007d84 | 6293 | |
7bcc1bb1 | 6294 | /* |
8d76a979 LZ |
6295 | * No need to take a reference to the parent because cgroup |
6296 | * core guarantees its existence. | |
7bcc1bb1 | 6297 | */ |
18f59ea7 | 6298 | } else { |
c0ff4b85 R |
6299 | res_counter_init(&memcg->res, NULL); |
6300 | res_counter_init(&memcg->memsw, NULL); | |
510fc4e1 | 6301 | res_counter_init(&memcg->kmem, NULL); |
8c7f6edb TH |
6302 | /* |
6303 | * Deeper hierachy with use_hierarchy == false doesn't make | |
6304 | * much sense so let cgroup subsystem know about this | |
6305 | * unfortunate state in our controller. | |
6306 | */ | |
d142e3e6 | 6307 | if (parent != root_mem_cgroup) |
073219e9 | 6308 | memory_cgrp_subsys.broken_hierarchy = true; |
18f59ea7 | 6309 | } |
0999821b | 6310 | mutex_unlock(&memcg_create_mutex); |
d6441637 | 6311 | |
073219e9 | 6312 | return memcg_init_kmem(memcg, &memory_cgrp_subsys); |
8cdea7c0 BS |
6313 | } |
6314 | ||
5f578161 MH |
6315 | /* |
6316 | * Announce all parents that a group from their hierarchy is gone. | |
6317 | */ | |
6318 | static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) | |
6319 | { | |
6320 | struct mem_cgroup *parent = memcg; | |
6321 | ||
6322 | while ((parent = parent_mem_cgroup(parent))) | |
519ebea3 | 6323 | mem_cgroup_iter_invalidate(parent); |
5f578161 MH |
6324 | |
6325 | /* | |
6326 | * if the root memcg is not hierarchical we have to check it | |
6327 | * explicitely. | |
6328 | */ | |
6329 | if (!root_mem_cgroup->use_hierarchy) | |
519ebea3 | 6330 | mem_cgroup_iter_invalidate(root_mem_cgroup); |
5f578161 MH |
6331 | } |
6332 | ||
eb95419b | 6333 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
df878fb0 | 6334 | { |
eb95419b | 6335 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 6336 | struct mem_cgroup_event *event, *tmp; |
4fb1a86f | 6337 | struct cgroup_subsys_state *iter; |
79bd9814 TH |
6338 | |
6339 | /* | |
6340 | * Unregister events and notify userspace. | |
6341 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
6342 | * directory to avoid race between userspace and kernelspace. | |
6343 | */ | |
fba94807 TH |
6344 | spin_lock(&memcg->event_list_lock); |
6345 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
79bd9814 TH |
6346 | list_del_init(&event->list); |
6347 | schedule_work(&event->remove); | |
6348 | } | |
fba94807 | 6349 | spin_unlock(&memcg->event_list_lock); |
ec64f515 | 6350 | |
10d5ebf4 LZ |
6351 | kmem_cgroup_css_offline(memcg); |
6352 | ||
5f578161 | 6353 | mem_cgroup_invalidate_reclaim_iterators(memcg); |
4fb1a86f FB |
6354 | |
6355 | /* | |
6356 | * This requires that offlining is serialized. Right now that is | |
6357 | * guaranteed because css_killed_work_fn() holds the cgroup_mutex. | |
6358 | */ | |
6359 | css_for_each_descendant_post(iter, css) | |
6360 | mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); | |
6361 | ||
776ed0f0 | 6362 | memcg_unregister_all_caches(memcg); |
33cb876e | 6363 | vmpressure_cleanup(&memcg->vmpressure); |
df878fb0 KH |
6364 | } |
6365 | ||
eb95419b | 6366 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
8cdea7c0 | 6367 | { |
eb95419b | 6368 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
96f1c58d JW |
6369 | /* |
6370 | * XXX: css_offline() would be where we should reparent all | |
6371 | * memory to prepare the cgroup for destruction. However, | |
ec903c0c | 6372 | * memcg does not do css_tryget_online() and res_counter charging |
96f1c58d JW |
6373 | * under the same RCU lock region, which means that charging |
6374 | * could race with offlining. Offlining only happens to | |
6375 | * cgroups with no tasks in them but charges can show up | |
6376 | * without any tasks from the swapin path when the target | |
6377 | * memcg is looked up from the swapout record and not from the | |
6378 | * current task as it usually is. A race like this can leak | |
6379 | * charges and put pages with stale cgroup pointers into | |
6380 | * circulation: | |
6381 | * | |
6382 | * #0 #1 | |
6383 | * lookup_swap_cgroup_id() | |
6384 | * rcu_read_lock() | |
6385 | * mem_cgroup_lookup() | |
ec903c0c | 6386 | * css_tryget_online() |
96f1c58d | 6387 | * rcu_read_unlock() |
ec903c0c | 6388 | * disable css_tryget_online() |
96f1c58d JW |
6389 | * call_rcu() |
6390 | * offline_css() | |
6391 | * reparent_charges() | |
6392 | * res_counter_charge() | |
6393 | * css_put() | |
6394 | * css_free() | |
6395 | * pc->mem_cgroup = dead memcg | |
6396 | * add page to lru | |
6397 | * | |
6398 | * The bulk of the charges are still moved in offline_css() to | |
6399 | * avoid pinning a lot of pages in case a long-term reference | |
6400 | * like a swapout record is deferring the css_free() to long | |
6401 | * after offlining. But this makes sure we catch any charges | |
6402 | * made after offlining: | |
6403 | */ | |
6404 | mem_cgroup_reparent_charges(memcg); | |
c268e994 | 6405 | |
10d5ebf4 | 6406 | memcg_destroy_kmem(memcg); |
465939a1 | 6407 | __mem_cgroup_free(memcg); |
8cdea7c0 BS |
6408 | } |
6409 | ||
1ced953b TH |
6410 | /** |
6411 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
6412 | * @css: the target css | |
6413 | * | |
6414 | * Reset the states of the mem_cgroup associated with @css. This is | |
6415 | * invoked when the userland requests disabling on the default hierarchy | |
6416 | * but the memcg is pinned through dependency. The memcg should stop | |
6417 | * applying policies and should revert to the vanilla state as it may be | |
6418 | * made visible again. | |
6419 | * | |
6420 | * The current implementation only resets the essential configurations. | |
6421 | * This needs to be expanded to cover all the visible parts. | |
6422 | */ | |
6423 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
6424 | { | |
6425 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
6426 | ||
6427 | mem_cgroup_resize_limit(memcg, ULLONG_MAX); | |
6428 | mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX); | |
6429 | memcg_update_kmem_limit(memcg, ULLONG_MAX); | |
6430 | res_counter_set_soft_limit(&memcg->res, ULLONG_MAX); | |
6431 | } | |
6432 | ||
02491447 | 6433 | #ifdef CONFIG_MMU |
7dc74be0 | 6434 | /* Handlers for move charge at task migration. */ |
854ffa8d DN |
6435 | #define PRECHARGE_COUNT_AT_ONCE 256 |
6436 | static int mem_cgroup_do_precharge(unsigned long count) | |
7dc74be0 | 6437 | { |
854ffa8d DN |
6438 | int ret = 0; |
6439 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | |
c0ff4b85 | 6440 | struct mem_cgroup *memcg = mc.to; |
4ffef5fe | 6441 | |
c0ff4b85 | 6442 | if (mem_cgroup_is_root(memcg)) { |
854ffa8d DN |
6443 | mc.precharge += count; |
6444 | /* we don't need css_get for root */ | |
6445 | return ret; | |
6446 | } | |
6447 | /* try to charge at once */ | |
6448 | if (count > 1) { | |
6449 | struct res_counter *dummy; | |
6450 | /* | |
c0ff4b85 | 6451 | * "memcg" cannot be under rmdir() because we've already checked |
854ffa8d DN |
6452 | * by cgroup_lock_live_cgroup() that it is not removed and we |
6453 | * are still under the same cgroup_mutex. So we can postpone | |
6454 | * css_get(). | |
6455 | */ | |
c0ff4b85 | 6456 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) |
854ffa8d | 6457 | goto one_by_one; |
c0ff4b85 | 6458 | if (do_swap_account && res_counter_charge(&memcg->memsw, |
854ffa8d | 6459 | PAGE_SIZE * count, &dummy)) { |
c0ff4b85 | 6460 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); |
854ffa8d DN |
6461 | goto one_by_one; |
6462 | } | |
6463 | mc.precharge += count; | |
854ffa8d DN |
6464 | return ret; |
6465 | } | |
6466 | one_by_one: | |
6467 | /* fall back to one by one charge */ | |
6468 | while (count--) { | |
6469 | if (signal_pending(current)) { | |
6470 | ret = -EINTR; | |
6471 | break; | |
6472 | } | |
6473 | if (!batch_count--) { | |
6474 | batch_count = PRECHARGE_COUNT_AT_ONCE; | |
6475 | cond_resched(); | |
6476 | } | |
6d1fdc48 | 6477 | ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); |
38c5d72f | 6478 | if (ret) |
854ffa8d | 6479 | /* mem_cgroup_clear_mc() will do uncharge later */ |
38c5d72f | 6480 | return ret; |
854ffa8d DN |
6481 | mc.precharge++; |
6482 | } | |
4ffef5fe DN |
6483 | return ret; |
6484 | } | |
6485 | ||
6486 | /** | |
8d32ff84 | 6487 | * get_mctgt_type - get target type of moving charge |
4ffef5fe DN |
6488 | * @vma: the vma the pte to be checked belongs |
6489 | * @addr: the address corresponding to the pte to be checked | |
6490 | * @ptent: the pte to be checked | |
02491447 | 6491 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
6492 | * |
6493 | * Returns | |
6494 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
6495 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
6496 | * move charge. if @target is not NULL, the page is stored in target->page | |
6497 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
6498 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
6499 | * target for charge migration. if @target is not NULL, the entry is stored | |
6500 | * in target->ent. | |
4ffef5fe DN |
6501 | * |
6502 | * Called with pte lock held. | |
6503 | */ | |
4ffef5fe DN |
6504 | union mc_target { |
6505 | struct page *page; | |
02491447 | 6506 | swp_entry_t ent; |
4ffef5fe DN |
6507 | }; |
6508 | ||
4ffef5fe | 6509 | enum mc_target_type { |
8d32ff84 | 6510 | MC_TARGET_NONE = 0, |
4ffef5fe | 6511 | MC_TARGET_PAGE, |
02491447 | 6512 | MC_TARGET_SWAP, |
4ffef5fe DN |
6513 | }; |
6514 | ||
90254a65 DN |
6515 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
6516 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 6517 | { |
90254a65 | 6518 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 6519 | |
90254a65 DN |
6520 | if (!page || !page_mapped(page)) |
6521 | return NULL; | |
6522 | if (PageAnon(page)) { | |
6523 | /* we don't move shared anon */ | |
4b91355e | 6524 | if (!move_anon()) |
90254a65 | 6525 | return NULL; |
87946a72 DN |
6526 | } else if (!move_file()) |
6527 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
6528 | return NULL; |
6529 | if (!get_page_unless_zero(page)) | |
6530 | return NULL; | |
6531 | ||
6532 | return page; | |
6533 | } | |
6534 | ||
4b91355e | 6535 | #ifdef CONFIG_SWAP |
90254a65 DN |
6536 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
6537 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6538 | { | |
90254a65 DN |
6539 | struct page *page = NULL; |
6540 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
6541 | ||
6542 | if (!move_anon() || non_swap_entry(ent)) | |
6543 | return NULL; | |
4b91355e KH |
6544 | /* |
6545 | * Because lookup_swap_cache() updates some statistics counter, | |
6546 | * we call find_get_page() with swapper_space directly. | |
6547 | */ | |
33806f06 | 6548 | page = find_get_page(swap_address_space(ent), ent.val); |
90254a65 DN |
6549 | if (do_swap_account) |
6550 | entry->val = ent.val; | |
6551 | ||
6552 | return page; | |
6553 | } | |
4b91355e KH |
6554 | #else |
6555 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
6556 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6557 | { | |
6558 | return NULL; | |
6559 | } | |
6560 | #endif | |
90254a65 | 6561 | |
87946a72 DN |
6562 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
6563 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6564 | { | |
6565 | struct page *page = NULL; | |
87946a72 DN |
6566 | struct address_space *mapping; |
6567 | pgoff_t pgoff; | |
6568 | ||
6569 | if (!vma->vm_file) /* anonymous vma */ | |
6570 | return NULL; | |
6571 | if (!move_file()) | |
6572 | return NULL; | |
6573 | ||
87946a72 DN |
6574 | mapping = vma->vm_file->f_mapping; |
6575 | if (pte_none(ptent)) | |
6576 | pgoff = linear_page_index(vma, addr); | |
6577 | else /* pte_file(ptent) is true */ | |
6578 | pgoff = pte_to_pgoff(ptent); | |
6579 | ||
6580 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
aa3b1895 HD |
6581 | #ifdef CONFIG_SWAP |
6582 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
139b6a6f JW |
6583 | if (shmem_mapping(mapping)) { |
6584 | page = find_get_entry(mapping, pgoff); | |
6585 | if (radix_tree_exceptional_entry(page)) { | |
6586 | swp_entry_t swp = radix_to_swp_entry(page); | |
6587 | if (do_swap_account) | |
6588 | *entry = swp; | |
6589 | page = find_get_page(swap_address_space(swp), swp.val); | |
6590 | } | |
6591 | } else | |
6592 | page = find_get_page(mapping, pgoff); | |
6593 | #else | |
6594 | page = find_get_page(mapping, pgoff); | |
aa3b1895 | 6595 | #endif |
87946a72 DN |
6596 | return page; |
6597 | } | |
6598 | ||
8d32ff84 | 6599 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
90254a65 DN |
6600 | unsigned long addr, pte_t ptent, union mc_target *target) |
6601 | { | |
6602 | struct page *page = NULL; | |
6603 | struct page_cgroup *pc; | |
8d32ff84 | 6604 | enum mc_target_type ret = MC_TARGET_NONE; |
90254a65 DN |
6605 | swp_entry_t ent = { .val = 0 }; |
6606 | ||
6607 | if (pte_present(ptent)) | |
6608 | page = mc_handle_present_pte(vma, addr, ptent); | |
6609 | else if (is_swap_pte(ptent)) | |
6610 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
87946a72 DN |
6611 | else if (pte_none(ptent) || pte_file(ptent)) |
6612 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
90254a65 DN |
6613 | |
6614 | if (!page && !ent.val) | |
8d32ff84 | 6615 | return ret; |
02491447 DN |
6616 | if (page) { |
6617 | pc = lookup_page_cgroup(page); | |
6618 | /* | |
6619 | * Do only loose check w/o page_cgroup lock. | |
6620 | * mem_cgroup_move_account() checks the pc is valid or not under | |
6621 | * the lock. | |
6622 | */ | |
6623 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6624 | ret = MC_TARGET_PAGE; | |
6625 | if (target) | |
6626 | target->page = page; | |
6627 | } | |
6628 | if (!ret || !target) | |
6629 | put_page(page); | |
6630 | } | |
90254a65 DN |
6631 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
6632 | if (ent.val && !ret && | |
34c00c31 | 6633 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { |
7f0f1546 KH |
6634 | ret = MC_TARGET_SWAP; |
6635 | if (target) | |
6636 | target->ent = ent; | |
4ffef5fe | 6637 | } |
4ffef5fe DN |
6638 | return ret; |
6639 | } | |
6640 | ||
12724850 NH |
6641 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6642 | /* | |
6643 | * We don't consider swapping or file mapped pages because THP does not | |
6644 | * support them for now. | |
6645 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
6646 | */ | |
6647 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6648 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6649 | { | |
6650 | struct page *page = NULL; | |
6651 | struct page_cgroup *pc; | |
6652 | enum mc_target_type ret = MC_TARGET_NONE; | |
6653 | ||
6654 | page = pmd_page(pmd); | |
309381fe | 6655 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); |
12724850 NH |
6656 | if (!move_anon()) |
6657 | return ret; | |
6658 | pc = lookup_page_cgroup(page); | |
6659 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6660 | ret = MC_TARGET_PAGE; | |
6661 | if (target) { | |
6662 | get_page(page); | |
6663 | target->page = page; | |
6664 | } | |
6665 | } | |
6666 | return ret; | |
6667 | } | |
6668 | #else | |
6669 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6670 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6671 | { | |
6672 | return MC_TARGET_NONE; | |
6673 | } | |
6674 | #endif | |
6675 | ||
4ffef5fe DN |
6676 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
6677 | unsigned long addr, unsigned long end, | |
6678 | struct mm_walk *walk) | |
6679 | { | |
6680 | struct vm_area_struct *vma = walk->private; | |
6681 | pte_t *pte; | |
6682 | spinlock_t *ptl; | |
6683 | ||
bf929152 | 6684 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
12724850 NH |
6685 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
6686 | mc.precharge += HPAGE_PMD_NR; | |
bf929152 | 6687 | spin_unlock(ptl); |
1a5a9906 | 6688 | return 0; |
12724850 | 6689 | } |
03319327 | 6690 | |
45f83cef AA |
6691 | if (pmd_trans_unstable(pmd)) |
6692 | return 0; | |
4ffef5fe DN |
6693 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
6694 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
8d32ff84 | 6695 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
4ffef5fe DN |
6696 | mc.precharge++; /* increment precharge temporarily */ |
6697 | pte_unmap_unlock(pte - 1, ptl); | |
6698 | cond_resched(); | |
6699 | ||
7dc74be0 DN |
6700 | return 0; |
6701 | } | |
6702 | ||
4ffef5fe DN |
6703 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
6704 | { | |
6705 | unsigned long precharge; | |
6706 | struct vm_area_struct *vma; | |
6707 | ||
dfe076b0 | 6708 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
6709 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6710 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
6711 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
6712 | .mm = mm, | |
6713 | .private = vma, | |
6714 | }; | |
6715 | if (is_vm_hugetlb_page(vma)) | |
6716 | continue; | |
4ffef5fe DN |
6717 | walk_page_range(vma->vm_start, vma->vm_end, |
6718 | &mem_cgroup_count_precharge_walk); | |
6719 | } | |
dfe076b0 | 6720 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
6721 | |
6722 | precharge = mc.precharge; | |
6723 | mc.precharge = 0; | |
6724 | ||
6725 | return precharge; | |
6726 | } | |
6727 | ||
4ffef5fe DN |
6728 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
6729 | { | |
dfe076b0 DN |
6730 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
6731 | ||
6732 | VM_BUG_ON(mc.moving_task); | |
6733 | mc.moving_task = current; | |
6734 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
6735 | } |
6736 | ||
dfe076b0 DN |
6737 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
6738 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 6739 | { |
2bd9bb20 KH |
6740 | struct mem_cgroup *from = mc.from; |
6741 | struct mem_cgroup *to = mc.to; | |
4050377b | 6742 | int i; |
2bd9bb20 | 6743 | |
4ffef5fe | 6744 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d DN |
6745 | if (mc.precharge) { |
6746 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | |
6747 | mc.precharge = 0; | |
6748 | } | |
6749 | /* | |
6750 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
6751 | * we must uncharge here. | |
6752 | */ | |
6753 | if (mc.moved_charge) { | |
6754 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | |
6755 | mc.moved_charge = 0; | |
4ffef5fe | 6756 | } |
483c30b5 DN |
6757 | /* we must fixup refcnts and charges */ |
6758 | if (mc.moved_swap) { | |
483c30b5 DN |
6759 | /* uncharge swap account from the old cgroup */ |
6760 | if (!mem_cgroup_is_root(mc.from)) | |
6761 | res_counter_uncharge(&mc.from->memsw, | |
6762 | PAGE_SIZE * mc.moved_swap); | |
4050377b LZ |
6763 | |
6764 | for (i = 0; i < mc.moved_swap; i++) | |
6765 | css_put(&mc.from->css); | |
483c30b5 DN |
6766 | |
6767 | if (!mem_cgroup_is_root(mc.to)) { | |
6768 | /* | |
6769 | * we charged both to->res and to->memsw, so we should | |
6770 | * uncharge to->res. | |
6771 | */ | |
6772 | res_counter_uncharge(&mc.to->res, | |
6773 | PAGE_SIZE * mc.moved_swap); | |
483c30b5 | 6774 | } |
4050377b | 6775 | /* we've already done css_get(mc.to) */ |
483c30b5 DN |
6776 | mc.moved_swap = 0; |
6777 | } | |
dfe076b0 DN |
6778 | memcg_oom_recover(from); |
6779 | memcg_oom_recover(to); | |
6780 | wake_up_all(&mc.waitq); | |
6781 | } | |
6782 | ||
6783 | static void mem_cgroup_clear_mc(void) | |
6784 | { | |
6785 | struct mem_cgroup *from = mc.from; | |
6786 | ||
6787 | /* | |
6788 | * we must clear moving_task before waking up waiters at the end of | |
6789 | * task migration. | |
6790 | */ | |
6791 | mc.moving_task = NULL; | |
6792 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 6793 | spin_lock(&mc.lock); |
4ffef5fe DN |
6794 | mc.from = NULL; |
6795 | mc.to = NULL; | |
2bd9bb20 | 6796 | spin_unlock(&mc.lock); |
32047e2a | 6797 | mem_cgroup_end_move(from); |
4ffef5fe DN |
6798 | } |
6799 | ||
eb95419b | 6800 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 6801 | struct cgroup_taskset *tset) |
7dc74be0 | 6802 | { |
2f7ee569 | 6803 | struct task_struct *p = cgroup_taskset_first(tset); |
7dc74be0 | 6804 | int ret = 0; |
eb95419b | 6805 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
ee5e8472 | 6806 | unsigned long move_charge_at_immigrate; |
7dc74be0 | 6807 | |
ee5e8472 GC |
6808 | /* |
6809 | * We are now commited to this value whatever it is. Changes in this | |
6810 | * tunable will only affect upcoming migrations, not the current one. | |
6811 | * So we need to save it, and keep it going. | |
6812 | */ | |
6813 | move_charge_at_immigrate = memcg->move_charge_at_immigrate; | |
6814 | if (move_charge_at_immigrate) { | |
7dc74be0 DN |
6815 | struct mm_struct *mm; |
6816 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
6817 | ||
c0ff4b85 | 6818 | VM_BUG_ON(from == memcg); |
7dc74be0 DN |
6819 | |
6820 | mm = get_task_mm(p); | |
6821 | if (!mm) | |
6822 | return 0; | |
7dc74be0 | 6823 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
6824 | if (mm->owner == p) { |
6825 | VM_BUG_ON(mc.from); | |
6826 | VM_BUG_ON(mc.to); | |
6827 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 6828 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 6829 | VM_BUG_ON(mc.moved_swap); |
32047e2a | 6830 | mem_cgroup_start_move(from); |
2bd9bb20 | 6831 | spin_lock(&mc.lock); |
4ffef5fe | 6832 | mc.from = from; |
c0ff4b85 | 6833 | mc.to = memcg; |
ee5e8472 | 6834 | mc.immigrate_flags = move_charge_at_immigrate; |
2bd9bb20 | 6835 | spin_unlock(&mc.lock); |
dfe076b0 | 6836 | /* We set mc.moving_task later */ |
4ffef5fe DN |
6837 | |
6838 | ret = mem_cgroup_precharge_mc(mm); | |
6839 | if (ret) | |
6840 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
6841 | } |
6842 | mmput(mm); | |
7dc74be0 DN |
6843 | } |
6844 | return ret; | |
6845 | } | |
6846 | ||
eb95419b | 6847 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 6848 | struct cgroup_taskset *tset) |
7dc74be0 | 6849 | { |
4ffef5fe | 6850 | mem_cgroup_clear_mc(); |
7dc74be0 DN |
6851 | } |
6852 | ||
4ffef5fe DN |
6853 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
6854 | unsigned long addr, unsigned long end, | |
6855 | struct mm_walk *walk) | |
7dc74be0 | 6856 | { |
4ffef5fe DN |
6857 | int ret = 0; |
6858 | struct vm_area_struct *vma = walk->private; | |
6859 | pte_t *pte; | |
6860 | spinlock_t *ptl; | |
12724850 NH |
6861 | enum mc_target_type target_type; |
6862 | union mc_target target; | |
6863 | struct page *page; | |
6864 | struct page_cgroup *pc; | |
4ffef5fe | 6865 | |
12724850 NH |
6866 | /* |
6867 | * We don't take compound_lock() here but no race with splitting thp | |
6868 | * happens because: | |
6869 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | |
6870 | * under splitting, which means there's no concurrent thp split, | |
6871 | * - if another thread runs into split_huge_page() just after we | |
6872 | * entered this if-block, the thread must wait for page table lock | |
6873 | * to be unlocked in __split_huge_page_splitting(), where the main | |
6874 | * part of thp split is not executed yet. | |
6875 | */ | |
bf929152 | 6876 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
62ade86a | 6877 | if (mc.precharge < HPAGE_PMD_NR) { |
bf929152 | 6878 | spin_unlock(ptl); |
12724850 NH |
6879 | return 0; |
6880 | } | |
6881 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
6882 | if (target_type == MC_TARGET_PAGE) { | |
6883 | page = target.page; | |
6884 | if (!isolate_lru_page(page)) { | |
6885 | pc = lookup_page_cgroup(page); | |
6886 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | |
2f3479b1 | 6887 | pc, mc.from, mc.to)) { |
12724850 NH |
6888 | mc.precharge -= HPAGE_PMD_NR; |
6889 | mc.moved_charge += HPAGE_PMD_NR; | |
6890 | } | |
6891 | putback_lru_page(page); | |
6892 | } | |
6893 | put_page(page); | |
6894 | } | |
bf929152 | 6895 | spin_unlock(ptl); |
1a5a9906 | 6896 | return 0; |
12724850 NH |
6897 | } |
6898 | ||
45f83cef AA |
6899 | if (pmd_trans_unstable(pmd)) |
6900 | return 0; | |
4ffef5fe DN |
6901 | retry: |
6902 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
6903 | for (; addr != end; addr += PAGE_SIZE) { | |
6904 | pte_t ptent = *(pte++); | |
02491447 | 6905 | swp_entry_t ent; |
4ffef5fe DN |
6906 | |
6907 | if (!mc.precharge) | |
6908 | break; | |
6909 | ||
8d32ff84 | 6910 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
4ffef5fe DN |
6911 | case MC_TARGET_PAGE: |
6912 | page = target.page; | |
6913 | if (isolate_lru_page(page)) | |
6914 | goto put; | |
6915 | pc = lookup_page_cgroup(page); | |
7ec99d62 | 6916 | if (!mem_cgroup_move_account(page, 1, pc, |
2f3479b1 | 6917 | mc.from, mc.to)) { |
4ffef5fe | 6918 | mc.precharge--; |
854ffa8d DN |
6919 | /* we uncharge from mc.from later. */ |
6920 | mc.moved_charge++; | |
4ffef5fe DN |
6921 | } |
6922 | putback_lru_page(page); | |
8d32ff84 | 6923 | put: /* get_mctgt_type() gets the page */ |
4ffef5fe DN |
6924 | put_page(page); |
6925 | break; | |
02491447 DN |
6926 | case MC_TARGET_SWAP: |
6927 | ent = target.ent; | |
e91cbb42 | 6928 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
02491447 | 6929 | mc.precharge--; |
483c30b5 DN |
6930 | /* we fixup refcnts and charges later. */ |
6931 | mc.moved_swap++; | |
6932 | } | |
02491447 | 6933 | break; |
4ffef5fe DN |
6934 | default: |
6935 | break; | |
6936 | } | |
6937 | } | |
6938 | pte_unmap_unlock(pte - 1, ptl); | |
6939 | cond_resched(); | |
6940 | ||
6941 | if (addr != end) { | |
6942 | /* | |
6943 | * We have consumed all precharges we got in can_attach(). | |
6944 | * We try charge one by one, but don't do any additional | |
6945 | * charges to mc.to if we have failed in charge once in attach() | |
6946 | * phase. | |
6947 | */ | |
854ffa8d | 6948 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
6949 | if (!ret) |
6950 | goto retry; | |
6951 | } | |
6952 | ||
6953 | return ret; | |
6954 | } | |
6955 | ||
6956 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
6957 | { | |
6958 | struct vm_area_struct *vma; | |
6959 | ||
6960 | lru_add_drain_all(); | |
dfe076b0 DN |
6961 | retry: |
6962 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
6963 | /* | |
6964 | * Someone who are holding the mmap_sem might be waiting in | |
6965 | * waitq. So we cancel all extra charges, wake up all waiters, | |
6966 | * and retry. Because we cancel precharges, we might not be able | |
6967 | * to move enough charges, but moving charge is a best-effort | |
6968 | * feature anyway, so it wouldn't be a big problem. | |
6969 | */ | |
6970 | __mem_cgroup_clear_mc(); | |
6971 | cond_resched(); | |
6972 | goto retry; | |
6973 | } | |
4ffef5fe DN |
6974 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6975 | int ret; | |
6976 | struct mm_walk mem_cgroup_move_charge_walk = { | |
6977 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
6978 | .mm = mm, | |
6979 | .private = vma, | |
6980 | }; | |
6981 | if (is_vm_hugetlb_page(vma)) | |
6982 | continue; | |
4ffef5fe DN |
6983 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
6984 | &mem_cgroup_move_charge_walk); | |
6985 | if (ret) | |
6986 | /* | |
6987 | * means we have consumed all precharges and failed in | |
6988 | * doing additional charge. Just abandon here. | |
6989 | */ | |
6990 | break; | |
6991 | } | |
dfe076b0 | 6992 | up_read(&mm->mmap_sem); |
7dc74be0 DN |
6993 | } |
6994 | ||
eb95419b | 6995 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, |
761b3ef5 | 6996 | struct cgroup_taskset *tset) |
67e465a7 | 6997 | { |
2f7ee569 | 6998 | struct task_struct *p = cgroup_taskset_first(tset); |
a433658c | 6999 | struct mm_struct *mm = get_task_mm(p); |
dfe076b0 | 7000 | |
dfe076b0 | 7001 | if (mm) { |
a433658c KM |
7002 | if (mc.to) |
7003 | mem_cgroup_move_charge(mm); | |
dfe076b0 DN |
7004 | mmput(mm); |
7005 | } | |
a433658c KM |
7006 | if (mc.to) |
7007 | mem_cgroup_clear_mc(); | |
67e465a7 | 7008 | } |
5cfb80a7 | 7009 | #else /* !CONFIG_MMU */ |
eb95419b | 7010 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 7011 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
7012 | { |
7013 | return 0; | |
7014 | } | |
eb95419b | 7015 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 7016 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
7017 | { |
7018 | } | |
eb95419b | 7019 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, |
761b3ef5 | 7020 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
7021 | { |
7022 | } | |
7023 | #endif | |
67e465a7 | 7024 | |
f00baae7 TH |
7025 | /* |
7026 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
aa6ec29b TH |
7027 | * to verify whether we're attached to the default hierarchy on each mount |
7028 | * attempt. | |
f00baae7 | 7029 | */ |
eb95419b | 7030 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) |
f00baae7 TH |
7031 | { |
7032 | /* | |
aa6ec29b | 7033 | * use_hierarchy is forced on the default hierarchy. cgroup core |
f00baae7 TH |
7034 | * guarantees that @root doesn't have any children, so turning it |
7035 | * on for the root memcg is enough. | |
7036 | */ | |
aa6ec29b | 7037 | if (cgroup_on_dfl(root_css->cgroup)) |
eb95419b | 7038 | mem_cgroup_from_css(root_css)->use_hierarchy = true; |
f00baae7 TH |
7039 | } |
7040 | ||
073219e9 | 7041 | struct cgroup_subsys memory_cgrp_subsys = { |
92fb9748 | 7042 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 7043 | .css_online = mem_cgroup_css_online, |
92fb9748 TH |
7044 | .css_offline = mem_cgroup_css_offline, |
7045 | .css_free = mem_cgroup_css_free, | |
1ced953b | 7046 | .css_reset = mem_cgroup_css_reset, |
7dc74be0 DN |
7047 | .can_attach = mem_cgroup_can_attach, |
7048 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 7049 | .attach = mem_cgroup_move_task, |
f00baae7 | 7050 | .bind = mem_cgroup_bind, |
6bc10349 | 7051 | .base_cftypes = mem_cgroup_files, |
6d12e2d8 | 7052 | .early_init = 0, |
8cdea7c0 | 7053 | }; |
c077719b | 7054 | |
c255a458 | 7055 | #ifdef CONFIG_MEMCG_SWAP |
a42c390c MH |
7056 | static int __init enable_swap_account(char *s) |
7057 | { | |
a2c8990a | 7058 | if (!strcmp(s, "1")) |
a42c390c | 7059 | really_do_swap_account = 1; |
a2c8990a | 7060 | else if (!strcmp(s, "0")) |
a42c390c MH |
7061 | really_do_swap_account = 0; |
7062 | return 1; | |
7063 | } | |
a2c8990a | 7064 | __setup("swapaccount=", enable_swap_account); |
c077719b | 7065 | |
2d11085e MH |
7066 | static void __init memsw_file_init(void) |
7067 | { | |
073219e9 | 7068 | WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); |
6acc8b02 MH |
7069 | } |
7070 | ||
7071 | static void __init enable_swap_cgroup(void) | |
7072 | { | |
7073 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
7074 | do_swap_account = 1; | |
7075 | memsw_file_init(); | |
7076 | } | |
2d11085e | 7077 | } |
6acc8b02 | 7078 | |
2d11085e | 7079 | #else |
6acc8b02 | 7080 | static void __init enable_swap_cgroup(void) |
2d11085e MH |
7081 | { |
7082 | } | |
c077719b | 7083 | #endif |
2d11085e MH |
7084 | |
7085 | /* | |
1081312f MH |
7086 | * subsys_initcall() for memory controller. |
7087 | * | |
7088 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
7089 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
7090 | * everything that doesn't depend on a specific mem_cgroup structure should | |
7091 | * be initialized from here. | |
2d11085e MH |
7092 | */ |
7093 | static int __init mem_cgroup_init(void) | |
7094 | { | |
7095 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
6acc8b02 | 7096 | enable_swap_cgroup(); |
bb4cc1a8 | 7097 | mem_cgroup_soft_limit_tree_init(); |
e4777496 | 7098 | memcg_stock_init(); |
2d11085e MH |
7099 | return 0; |
7100 | } | |
7101 | subsys_initcall(mem_cgroup_init); |