]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
mm, memcg: create mem_cgroup_from_seq
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
55007d84 265/*
f7ce3190 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
55007d84 272 *
dbcf73e2
VD
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
55007d84 275 */
dbcf73e2
VD
276static DEFINE_IDA(memcg_cache_ida);
277int memcg_nr_cache_ids;
749c5415 278
05257a1a
VD
279/* Protects memcg_nr_cache_ids */
280static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282void memcg_get_cache_ids(void)
283{
284 down_read(&memcg_cache_ids_sem);
285}
286
287void memcg_put_cache_ids(void)
288{
289 up_read(&memcg_cache_ids_sem);
290}
291
55007d84
GC
292/*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
b8627835 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
302 * increase ours as well if it increases.
303 */
304#define MEMCG_CACHES_MIN_SIZE 4
b8627835 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 306
d7f25f8a
GC
307/*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
ef12947c 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 315
17cc4dfe
TH
316struct workqueue_struct *memcg_kmem_cache_wq;
317
0a4465d3
KT
318static int memcg_shrinker_map_size;
319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322{
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324}
325
326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328{
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354}
355
356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357{
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372}
373
374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375{
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396}
397
398int memcg_expand_shrinker_maps(int new_id)
399{
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424}
fae91d6d
KT
425
426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427{
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
fae91d6d
KT
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438}
439
0a4465d3
KT
440#else /* CONFIG_MEMCG_KMEM */
441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442{
443 return 0;
444}
445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 446#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 447
ad7fa852
TH
448/**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
ad7fa852
TH
458 */
459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460{
461 struct mem_cgroup *memcg;
462
ad7fa852
TH
463 memcg = page->mem_cgroup;
464
9e10a130 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
466 memcg = root_mem_cgroup;
467
ad7fa852
TH
468 return &memcg->css;
469}
470
2fc04524
VD
471/**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484ino_t page_cgroup_ino(struct page *page)
485{
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
ccda7f43 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 684 int event)
e9f8974f 685{
a983b5eb 686 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 690 struct page *page,
f627c2f5 691 bool compound, int nr_pages)
d52aa412 692{
b2402857
KH
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
0a31bc97 697 if (PageAnon(page))
c9019e9b 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 699 else {
c9019e9b 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 701 if (PageSwapBacked(page))
c9019e9b 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 703 }
55e462b0 704
f627c2f5
KS
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 708 }
b070e65c 709
e401f176
KH
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
c9019e9b 712 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 713 else {
c9019e9b 714 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
715 nr_pages = -nr_pages; /* for event */
716 }
e401f176 717
a983b5eb 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
719}
720
0a6b76dd
VD
721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
bb2a0de9 723{
b4536f0c 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 725 unsigned long nr = 0;
ef8f2327 726 enum lru_list lru;
889976db 727
e231875b 728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 729
ef8f2327
MG
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
b4536f0c 733 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
734 }
735 return nr;
889976db 736}
bb2a0de9 737
c0ff4b85 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 739 unsigned int lru_mask)
6d12e2d8 740{
e231875b 741 unsigned long nr = 0;
889976db 742 int nid;
6d12e2d8 743
31aaea4a 744 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
d52aa412
KH
747}
748
f53d7ce3
JW
749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
7a159cc9
JW
751{
752 unsigned long val, next;
753
a983b5eb
JW
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 756 /* from time_after() in jiffies.h */
6a1a8b80 757 if ((long)(next - val) < 0) {
f53d7ce3
JW
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
bb4cc1a8
AM
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
f53d7ce3
JW
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
a983b5eb 771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 772 return true;
7a159cc9 773 }
f53d7ce3 774 return false;
d2265e6f
KH
775}
776
777/*
778 * Check events in order.
779 *
780 */
c0ff4b85 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
782{
783 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 786 bool do_softlimit;
82b3f2a7 787 bool do_numainfo __maybe_unused;
f53d7ce3 788
bb4cc1a8
AM
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
791#if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794#endif
c0ff4b85 795 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
453a9bf3 798#if MAX_NUMNODES > 1
f53d7ce3 799 if (unlikely(do_numainfo))
c0ff4b85 800 atomic_inc(&memcg->numainfo_events);
453a9bf3 801#endif
0a31bc97 802 }
d2265e6f
KH
803}
804
cf475ad2 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 806{
31a78f23
BS
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
073219e9 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 816}
33398cf2 817EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 818
d46eb14b
SB
819/**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 828{
d46eb14b
SB
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
0b7f569e 833
54595fe2
KH
834 rcu_read_lock();
835 do {
6f6acb00
MH
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
df381975 842 memcg = root_mem_cgroup;
6f6acb00
MH
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
ec903c0c 848 } while (!css_tryget_online(&memcg->css));
54595fe2 849 rcu_read_unlock();
c0ff4b85 850 return memcg;
54595fe2 851}
d46eb14b
SB
852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
f745c6f5
SB
854/**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862{
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873}
874EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
d46eb14b
SB
876/**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880{
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891}
54595fe2 892
5660048c
JW
893/**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
b213b54f 906 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 907 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 908 * reclaimers operating on the same node and priority.
5660048c 909 */
694fbc0f 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 911 struct mem_cgroup *prev,
694fbc0f 912 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 913{
33398cf2 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 915 struct cgroup_subsys_state *css = NULL;
9f3a0d09 916 struct mem_cgroup *memcg = NULL;
5ac8fb31 917 struct mem_cgroup *pos = NULL;
711d3d2c 918
694fbc0f
AM
919 if (mem_cgroup_disabled())
920 return NULL;
5660048c 921
9f3a0d09
JW
922 if (!root)
923 root = root_mem_cgroup;
7d74b06f 924
9f3a0d09 925 if (prev && !reclaim)
5ac8fb31 926 pos = prev;
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
5ac8fb31 930 goto out;
694fbc0f 931 return root;
9f3a0d09 932 }
14067bb3 933
542f85f9 934 rcu_read_lock();
5f578161 935
5ac8fb31 936 if (reclaim) {
ef8f2327 937 struct mem_cgroup_per_node *mz;
5ac8fb31 938
ef8f2327 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
6df38689 945 while (1) {
4db0c3c2 946 pos = READ_ONCE(iter->position);
6df38689
VD
947 if (!pos || css_tryget(&pos->css))
948 break;
5ac8fb31 949 /*
6df38689
VD
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
5ac8fb31
JW
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
527a5ec9 976 }
7d74b06f 977
5ac8fb31
JW
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
14067bb3 984
5ac8fb31
JW
985 if (css == &root->css)
986 break;
14067bb3 987
0b8f73e1
JW
988 if (css_tryget(css))
989 break;
9f3a0d09 990
5ac8fb31 991 memcg = NULL;
9f3a0d09 992 }
5ac8fb31
JW
993
994 if (reclaim) {
5ac8fb31 995 /*
6df38689
VD
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 999 */
6df38689
VD
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
5ac8fb31
JW
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
9f3a0d09 1009 }
5ac8fb31 1010
542f85f9
MH
1011out_unlock:
1012 rcu_read_unlock();
5ac8fb31 1013out:
c40046f3
MH
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
9f3a0d09 1017 return memcg;
14067bb3 1018}
7d74b06f 1019
5660048c
JW
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
9f3a0d09
JW
1027{
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032}
7d74b06f 1033
6df38689
VD
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
6df38689
VD
1040 int i;
1041
9f15bde6 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1043 for_each_node(nid) {
ef8f2327
MG
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
6df38689
VD
1049 }
1050 }
1051 }
1052}
1053
7c5f64f8
VD
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
bc2fb7ed 1079 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089}
1090
925b7673 1091/**
dfe0e773 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1093 * @page: the page
f144c390 1094 * @pgdat: pgdat of the page
dfe0e773
JW
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1099 */
599d0c95 1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1101{
ef8f2327 1102 struct mem_cgroup_per_node *mz;
925b7673 1103 struct mem_cgroup *memcg;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150 1106 if (mem_cgroup_disabled()) {
599d0c95 1107 lruvec = &pgdat->lruvec;
bea8c150
HD
1108 goto out;
1109 }
925b7673 1110
1306a85a 1111 memcg = page->mem_cgroup;
7512102c 1112 /*
dfe0e773 1113 * Swapcache readahead pages are added to the LRU - and
29833315 1114 * possibly migrated - before they are charged.
7512102c 1115 */
29833315
JW
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
7512102c 1118
ef8f2327 1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1120 lruvec = &mz->lruvec;
1121out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
599d0c95
MG
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
bea8c150 1129 return lruvec;
08e552c6 1130}
b69408e8 1131
925b7673 1132/**
fa9add64
HD
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
b4536f0c 1136 * @zid: zone id of the accounted pages
fa9add64 1137 * @nr_pages: positive when adding or negative when removing
925b7673 1138 *
ca707239
HD
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1142 */
fa9add64 1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1144 int zid, int nr_pages)
3f58a829 1145{
ef8f2327 1146 struct mem_cgroup_per_node *mz;
fa9add64 1147 unsigned long *lru_size;
ca707239 1148 long size;
3f58a829
MK
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
ef8f2327 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1154 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
b4536f0c
MH
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
08e552c6 1169}
544122e5 1170
2314b42d 1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1172{
2314b42d 1173 struct mem_cgroup *task_memcg;
158e0a2d 1174 struct task_struct *p;
ffbdccf5 1175 bool ret;
4c4a2214 1176
158e0a2d 1177 p = find_lock_task_mm(task);
de077d22 1178 if (p) {
2314b42d 1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
ffbdccf5 1187 rcu_read_lock();
2314b42d
JW
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
ffbdccf5 1190 rcu_read_unlock();
de077d22 1191 }
2314b42d
JW
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
4c4a2214
DR
1194 return ret;
1195}
1196
19942822 1197/**
9d11ea9f 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1199 * @memcg: the memory cgroup
19942822 1200 *
9d11ea9f 1201 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1202 * pages.
19942822 1203 */
c0ff4b85 1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1205{
3e32cb2e
JW
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
9d11ea9f 1209
3e32cb2e 1210 count = page_counter_read(&memcg->memory);
bbec2e15 1211 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1212 if (count < limit)
1213 margin = limit - count;
1214
7941d214 1215 if (do_memsw_account()) {
3e32cb2e 1216 count = page_counter_read(&memcg->memsw);
bbec2e15 1217 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
cbedbac3
LR
1220 else
1221 margin = 0;
3e32cb2e
JW
1222 }
1223
1224 return margin;
19942822
JW
1225}
1226
32047e2a 1227/*
bdcbb659 1228 * A routine for checking "mem" is under move_account() or not.
32047e2a 1229 *
bdcbb659
QH
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
32047e2a 1233 */
c0ff4b85 1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1235{
2bd9bb20
KH
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
4b534334 1238 bool ret = false;
2bd9bb20
KH
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
3e92041d 1248
2314b42d
JW
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1251unlock:
1252 spin_unlock(&mc.lock);
4b534334
KH
1253 return ret;
1254}
1255
c0ff4b85 1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1257{
1258 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1259 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270}
1271
8ad6e404 1272static const unsigned int memcg1_stats[] = {
71cd3113
JW
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292};
1293
58cf188e 1294#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1295/**
f0c867d9 1296 * mem_cgroup_print_oom_context: Print OOM information relevant to
1297 * memory controller.
e222432b
BS
1298 * @memcg: The memory cgroup that went over limit
1299 * @p: Task that is going to be killed
1300 *
1301 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1302 * enabled
1303 */
f0c867d9 1304void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1305{
e222432b
BS
1306 rcu_read_lock();
1307
f0c867d9 1308 if (memcg) {
1309 pr_cont(",oom_memcg=");
1310 pr_cont_cgroup_path(memcg->css.cgroup);
1311 } else
1312 pr_cont(",global_oom");
2415b9f5 1313 if (p) {
f0c867d9 1314 pr_cont(",task_memcg=");
2415b9f5 1315 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1316 }
e222432b 1317 rcu_read_unlock();
f0c867d9 1318}
1319
1320/**
1321 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1322 * memory controller.
1323 * @memcg: The memory cgroup that went over limit
1324 */
1325void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1326{
1327 struct mem_cgroup *iter;
1328 unsigned int i;
e222432b 1329
3e32cb2e
JW
1330 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1331 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1332 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1333 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1334 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1335 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1336 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1337 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1338 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1339
1340 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1341 pr_info("Memory cgroup stats for ");
1342 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1343 pr_cont(":");
1344
71cd3113
JW
1345 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1346 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1347 continue;
71cd3113 1348 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1349 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1350 }
1351
1352 for (i = 0; i < NR_LRU_LISTS; i++)
1353 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1354 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1355
1356 pr_cont("\n");
1357 }
e222432b
BS
1358}
1359
a63d83f4
DR
1360/*
1361 * Return the memory (and swap, if configured) limit for a memcg.
1362 */
bbec2e15 1363unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1364{
bbec2e15 1365 unsigned long max;
f3e8eb70 1366
bbec2e15 1367 max = memcg->memory.max;
9a5a8f19 1368 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1369 unsigned long memsw_max;
1370 unsigned long swap_max;
9a5a8f19 1371
bbec2e15
RG
1372 memsw_max = memcg->memsw.max;
1373 swap_max = memcg->swap.max;
1374 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1375 max = min(max + swap_max, memsw_max);
9a5a8f19 1376 }
bbec2e15 1377 return max;
a63d83f4
DR
1378}
1379
b6e6edcf 1380static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1381 int order)
9cbb78bb 1382{
6e0fc46d
DR
1383 struct oom_control oc = {
1384 .zonelist = NULL,
1385 .nodemask = NULL,
2a966b77 1386 .memcg = memcg,
6e0fc46d
DR
1387 .gfp_mask = gfp_mask,
1388 .order = order,
6e0fc46d 1389 };
7c5f64f8 1390 bool ret;
9cbb78bb 1391
dc56401f 1392 mutex_lock(&oom_lock);
7c5f64f8 1393 ret = out_of_memory(&oc);
dc56401f 1394 mutex_unlock(&oom_lock);
7c5f64f8 1395 return ret;
9cbb78bb
DR
1396}
1397
ae6e71d3
MC
1398#if MAX_NUMNODES > 1
1399
4d0c066d
KH
1400/**
1401 * test_mem_cgroup_node_reclaimable
dad7557e 1402 * @memcg: the target memcg
4d0c066d
KH
1403 * @nid: the node ID to be checked.
1404 * @noswap : specify true here if the user wants flle only information.
1405 *
1406 * This function returns whether the specified memcg contains any
1407 * reclaimable pages on a node. Returns true if there are any reclaimable
1408 * pages in the node.
1409 */
c0ff4b85 1410static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1411 int nid, bool noswap)
1412{
c0ff4b85 1413 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1414 return true;
1415 if (noswap || !total_swap_pages)
1416 return false;
c0ff4b85 1417 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1418 return true;
1419 return false;
1420
1421}
889976db
YH
1422
1423/*
1424 * Always updating the nodemask is not very good - even if we have an empty
1425 * list or the wrong list here, we can start from some node and traverse all
1426 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1427 *
1428 */
c0ff4b85 1429static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1430{
1431 int nid;
453a9bf3
KH
1432 /*
1433 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1434 * pagein/pageout changes since the last update.
1435 */
c0ff4b85 1436 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1437 return;
c0ff4b85 1438 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1439 return;
1440
889976db 1441 /* make a nodemask where this memcg uses memory from */
31aaea4a 1442 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1443
31aaea4a 1444 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1445
c0ff4b85
R
1446 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1447 node_clear(nid, memcg->scan_nodes);
889976db 1448 }
453a9bf3 1449
c0ff4b85
R
1450 atomic_set(&memcg->numainfo_events, 0);
1451 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1452}
1453
1454/*
1455 * Selecting a node where we start reclaim from. Because what we need is just
1456 * reducing usage counter, start from anywhere is O,K. Considering
1457 * memory reclaim from current node, there are pros. and cons.
1458 *
1459 * Freeing memory from current node means freeing memory from a node which
1460 * we'll use or we've used. So, it may make LRU bad. And if several threads
1461 * hit limits, it will see a contention on a node. But freeing from remote
1462 * node means more costs for memory reclaim because of memory latency.
1463 *
1464 * Now, we use round-robin. Better algorithm is welcomed.
1465 */
c0ff4b85 1466int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1467{
1468 int node;
1469
c0ff4b85
R
1470 mem_cgroup_may_update_nodemask(memcg);
1471 node = memcg->last_scanned_node;
889976db 1472
0edaf86c 1473 node = next_node_in(node, memcg->scan_nodes);
889976db 1474 /*
fda3d69b
MH
1475 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1476 * last time it really checked all the LRUs due to rate limiting.
1477 * Fallback to the current node in that case for simplicity.
889976db
YH
1478 */
1479 if (unlikely(node == MAX_NUMNODES))
1480 node = numa_node_id();
1481
c0ff4b85 1482 memcg->last_scanned_node = node;
889976db
YH
1483 return node;
1484}
889976db 1485#else
c0ff4b85 1486int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1487{
1488 return 0;
1489}
1490#endif
1491
0608f43d 1492static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1493 pg_data_t *pgdat,
0608f43d
AM
1494 gfp_t gfp_mask,
1495 unsigned long *total_scanned)
1496{
1497 struct mem_cgroup *victim = NULL;
1498 int total = 0;
1499 int loop = 0;
1500 unsigned long excess;
1501 unsigned long nr_scanned;
1502 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1503 .pgdat = pgdat,
0608f43d
AM
1504 .priority = 0,
1505 };
1506
3e32cb2e 1507 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1508
1509 while (1) {
1510 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1511 if (!victim) {
1512 loop++;
1513 if (loop >= 2) {
1514 /*
1515 * If we have not been able to reclaim
1516 * anything, it might because there are
1517 * no reclaimable pages under this hierarchy
1518 */
1519 if (!total)
1520 break;
1521 /*
1522 * We want to do more targeted reclaim.
1523 * excess >> 2 is not to excessive so as to
1524 * reclaim too much, nor too less that we keep
1525 * coming back to reclaim from this cgroup
1526 */
1527 if (total >= (excess >> 2) ||
1528 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1529 break;
1530 }
1531 continue;
1532 }
a9dd0a83 1533 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1534 pgdat, &nr_scanned);
0608f43d 1535 *total_scanned += nr_scanned;
3e32cb2e 1536 if (!soft_limit_excess(root_memcg))
0608f43d 1537 break;
6d61ef40 1538 }
0608f43d
AM
1539 mem_cgroup_iter_break(root_memcg, victim);
1540 return total;
6d61ef40
BS
1541}
1542
0056f4e6
JW
1543#ifdef CONFIG_LOCKDEP
1544static struct lockdep_map memcg_oom_lock_dep_map = {
1545 .name = "memcg_oom_lock",
1546};
1547#endif
1548
fb2a6fc5
JW
1549static DEFINE_SPINLOCK(memcg_oom_lock);
1550
867578cb
KH
1551/*
1552 * Check OOM-Killer is already running under our hierarchy.
1553 * If someone is running, return false.
1554 */
fb2a6fc5 1555static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1556{
79dfdacc 1557 struct mem_cgroup *iter, *failed = NULL;
a636b327 1558
fb2a6fc5
JW
1559 spin_lock(&memcg_oom_lock);
1560
9f3a0d09 1561 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1562 if (iter->oom_lock) {
79dfdacc
MH
1563 /*
1564 * this subtree of our hierarchy is already locked
1565 * so we cannot give a lock.
1566 */
79dfdacc 1567 failed = iter;
9f3a0d09
JW
1568 mem_cgroup_iter_break(memcg, iter);
1569 break;
23751be0
JW
1570 } else
1571 iter->oom_lock = true;
7d74b06f 1572 }
867578cb 1573
fb2a6fc5
JW
1574 if (failed) {
1575 /*
1576 * OK, we failed to lock the whole subtree so we have
1577 * to clean up what we set up to the failing subtree
1578 */
1579 for_each_mem_cgroup_tree(iter, memcg) {
1580 if (iter == failed) {
1581 mem_cgroup_iter_break(memcg, iter);
1582 break;
1583 }
1584 iter->oom_lock = false;
79dfdacc 1585 }
0056f4e6
JW
1586 } else
1587 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1588
1589 spin_unlock(&memcg_oom_lock);
1590
1591 return !failed;
a636b327 1592}
0b7f569e 1593
fb2a6fc5 1594static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1595{
7d74b06f
KH
1596 struct mem_cgroup *iter;
1597
fb2a6fc5 1598 spin_lock(&memcg_oom_lock);
0056f4e6 1599 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1600 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1601 iter->oom_lock = false;
fb2a6fc5 1602 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1603}
1604
c0ff4b85 1605static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1606{
1607 struct mem_cgroup *iter;
1608
c2b42d3c 1609 spin_lock(&memcg_oom_lock);
c0ff4b85 1610 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1611 iter->under_oom++;
1612 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1613}
1614
c0ff4b85 1615static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1616{
1617 struct mem_cgroup *iter;
1618
867578cb
KH
1619 /*
1620 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1621 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1622 */
c2b42d3c 1623 spin_lock(&memcg_oom_lock);
c0ff4b85 1624 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1625 if (iter->under_oom > 0)
1626 iter->under_oom--;
1627 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1628}
1629
867578cb
KH
1630static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1631
dc98df5a 1632struct oom_wait_info {
d79154bb 1633 struct mem_cgroup *memcg;
ac6424b9 1634 wait_queue_entry_t wait;
dc98df5a
KH
1635};
1636
ac6424b9 1637static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1638 unsigned mode, int sync, void *arg)
1639{
d79154bb
HD
1640 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1641 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1642 struct oom_wait_info *oom_wait_info;
1643
1644 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1645 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1646
2314b42d
JW
1647 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1648 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1649 return 0;
dc98df5a
KH
1650 return autoremove_wake_function(wait, mode, sync, arg);
1651}
1652
c0ff4b85 1653static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1654{
c2b42d3c
TH
1655 /*
1656 * For the following lockless ->under_oom test, the only required
1657 * guarantee is that it must see the state asserted by an OOM when
1658 * this function is called as a result of userland actions
1659 * triggered by the notification of the OOM. This is trivially
1660 * achieved by invoking mem_cgroup_mark_under_oom() before
1661 * triggering notification.
1662 */
1663 if (memcg && memcg->under_oom)
f4b90b70 1664 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1665}
1666
29ef680a
MH
1667enum oom_status {
1668 OOM_SUCCESS,
1669 OOM_FAILED,
1670 OOM_ASYNC,
1671 OOM_SKIPPED
1672};
1673
1674static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1675{
7056d3a3
MH
1676 enum oom_status ret;
1677 bool locked;
1678
29ef680a
MH
1679 if (order > PAGE_ALLOC_COSTLY_ORDER)
1680 return OOM_SKIPPED;
1681
7a1adfdd
RG
1682 memcg_memory_event(memcg, MEMCG_OOM);
1683
867578cb 1684 /*
49426420
JW
1685 * We are in the middle of the charge context here, so we
1686 * don't want to block when potentially sitting on a callstack
1687 * that holds all kinds of filesystem and mm locks.
1688 *
29ef680a
MH
1689 * cgroup1 allows disabling the OOM killer and waiting for outside
1690 * handling until the charge can succeed; remember the context and put
1691 * the task to sleep at the end of the page fault when all locks are
1692 * released.
49426420 1693 *
29ef680a
MH
1694 * On the other hand, in-kernel OOM killer allows for an async victim
1695 * memory reclaim (oom_reaper) and that means that we are not solely
1696 * relying on the oom victim to make a forward progress and we can
1697 * invoke the oom killer here.
1698 *
1699 * Please note that mem_cgroup_out_of_memory might fail to find a
1700 * victim and then we have to bail out from the charge path.
867578cb 1701 */
29ef680a
MH
1702 if (memcg->oom_kill_disable) {
1703 if (!current->in_user_fault)
1704 return OOM_SKIPPED;
1705 css_get(&memcg->css);
1706 current->memcg_in_oom = memcg;
1707 current->memcg_oom_gfp_mask = mask;
1708 current->memcg_oom_order = order;
1709
1710 return OOM_ASYNC;
1711 }
1712
7056d3a3
MH
1713 mem_cgroup_mark_under_oom(memcg);
1714
1715 locked = mem_cgroup_oom_trylock(memcg);
1716
1717 if (locked)
1718 mem_cgroup_oom_notify(memcg);
1719
1720 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1721 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1722 ret = OOM_SUCCESS;
1723 else
1724 ret = OOM_FAILED;
1725
1726 if (locked)
1727 mem_cgroup_oom_unlock(memcg);
29ef680a 1728
7056d3a3 1729 return ret;
3812c8c8
JW
1730}
1731
1732/**
1733 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1734 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1735 *
49426420
JW
1736 * This has to be called at the end of a page fault if the memcg OOM
1737 * handler was enabled.
3812c8c8 1738 *
49426420 1739 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1740 * sleep on a waitqueue until the userspace task resolves the
1741 * situation. Sleeping directly in the charge context with all kinds
1742 * of locks held is not a good idea, instead we remember an OOM state
1743 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1744 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1745 *
1746 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1747 * completed, %false otherwise.
3812c8c8 1748 */
49426420 1749bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1750{
626ebc41 1751 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1752 struct oom_wait_info owait;
49426420 1753 bool locked;
3812c8c8
JW
1754
1755 /* OOM is global, do not handle */
3812c8c8 1756 if (!memcg)
49426420 1757 return false;
3812c8c8 1758
7c5f64f8 1759 if (!handle)
49426420 1760 goto cleanup;
3812c8c8
JW
1761
1762 owait.memcg = memcg;
1763 owait.wait.flags = 0;
1764 owait.wait.func = memcg_oom_wake_function;
1765 owait.wait.private = current;
2055da97 1766 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1767
3812c8c8 1768 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1769 mem_cgroup_mark_under_oom(memcg);
1770
1771 locked = mem_cgroup_oom_trylock(memcg);
1772
1773 if (locked)
1774 mem_cgroup_oom_notify(memcg);
1775
1776 if (locked && !memcg->oom_kill_disable) {
1777 mem_cgroup_unmark_under_oom(memcg);
1778 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1779 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1780 current->memcg_oom_order);
49426420 1781 } else {
3812c8c8 1782 schedule();
49426420
JW
1783 mem_cgroup_unmark_under_oom(memcg);
1784 finish_wait(&memcg_oom_waitq, &owait.wait);
1785 }
1786
1787 if (locked) {
fb2a6fc5
JW
1788 mem_cgroup_oom_unlock(memcg);
1789 /*
1790 * There is no guarantee that an OOM-lock contender
1791 * sees the wakeups triggered by the OOM kill
1792 * uncharges. Wake any sleepers explicitely.
1793 */
1794 memcg_oom_recover(memcg);
1795 }
49426420 1796cleanup:
626ebc41 1797 current->memcg_in_oom = NULL;
3812c8c8 1798 css_put(&memcg->css);
867578cb 1799 return true;
0b7f569e
KH
1800}
1801
3d8b38eb
RG
1802/**
1803 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1804 * @victim: task to be killed by the OOM killer
1805 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1806 *
1807 * Returns a pointer to a memory cgroup, which has to be cleaned up
1808 * by killing all belonging OOM-killable tasks.
1809 *
1810 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1811 */
1812struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1813 struct mem_cgroup *oom_domain)
1814{
1815 struct mem_cgroup *oom_group = NULL;
1816 struct mem_cgroup *memcg;
1817
1818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1819 return NULL;
1820
1821 if (!oom_domain)
1822 oom_domain = root_mem_cgroup;
1823
1824 rcu_read_lock();
1825
1826 memcg = mem_cgroup_from_task(victim);
1827 if (memcg == root_mem_cgroup)
1828 goto out;
1829
1830 /*
1831 * Traverse the memory cgroup hierarchy from the victim task's
1832 * cgroup up to the OOMing cgroup (or root) to find the
1833 * highest-level memory cgroup with oom.group set.
1834 */
1835 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1836 if (memcg->oom_group)
1837 oom_group = memcg;
1838
1839 if (memcg == oom_domain)
1840 break;
1841 }
1842
1843 if (oom_group)
1844 css_get(&oom_group->css);
1845out:
1846 rcu_read_unlock();
1847
1848 return oom_group;
1849}
1850
1851void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1852{
1853 pr_info("Tasks in ");
1854 pr_cont_cgroup_path(memcg->css.cgroup);
1855 pr_cont(" are going to be killed due to memory.oom.group set\n");
1856}
1857
d7365e78 1858/**
81f8c3a4
JW
1859 * lock_page_memcg - lock a page->mem_cgroup binding
1860 * @page: the page
32047e2a 1861 *
81f8c3a4 1862 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1863 * another cgroup.
1864 *
1865 * It ensures lifetime of the returned memcg. Caller is responsible
1866 * for the lifetime of the page; __unlock_page_memcg() is available
1867 * when @page might get freed inside the locked section.
d69b042f 1868 */
739f79fc 1869struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1870{
1871 struct mem_cgroup *memcg;
6de22619 1872 unsigned long flags;
89c06bd5 1873
6de22619
JW
1874 /*
1875 * The RCU lock is held throughout the transaction. The fast
1876 * path can get away without acquiring the memcg->move_lock
1877 * because page moving starts with an RCU grace period.
739f79fc
JW
1878 *
1879 * The RCU lock also protects the memcg from being freed when
1880 * the page state that is going to change is the only thing
1881 * preventing the page itself from being freed. E.g. writeback
1882 * doesn't hold a page reference and relies on PG_writeback to
1883 * keep off truncation, migration and so forth.
1884 */
d7365e78
JW
1885 rcu_read_lock();
1886
1887 if (mem_cgroup_disabled())
739f79fc 1888 return NULL;
89c06bd5 1889again:
1306a85a 1890 memcg = page->mem_cgroup;
29833315 1891 if (unlikely(!memcg))
739f79fc 1892 return NULL;
d7365e78 1893
bdcbb659 1894 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1895 return memcg;
89c06bd5 1896
6de22619 1897 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1898 if (memcg != page->mem_cgroup) {
6de22619 1899 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1900 goto again;
1901 }
6de22619
JW
1902
1903 /*
1904 * When charge migration first begins, we can have locked and
1905 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1906 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1907 */
1908 memcg->move_lock_task = current;
1909 memcg->move_lock_flags = flags;
d7365e78 1910
739f79fc 1911 return memcg;
89c06bd5 1912}
81f8c3a4 1913EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1914
d7365e78 1915/**
739f79fc
JW
1916 * __unlock_page_memcg - unlock and unpin a memcg
1917 * @memcg: the memcg
1918 *
1919 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1920 */
739f79fc 1921void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1922{
6de22619
JW
1923 if (memcg && memcg->move_lock_task == current) {
1924 unsigned long flags = memcg->move_lock_flags;
1925
1926 memcg->move_lock_task = NULL;
1927 memcg->move_lock_flags = 0;
1928
1929 spin_unlock_irqrestore(&memcg->move_lock, flags);
1930 }
89c06bd5 1931
d7365e78 1932 rcu_read_unlock();
89c06bd5 1933}
739f79fc
JW
1934
1935/**
1936 * unlock_page_memcg - unlock a page->mem_cgroup binding
1937 * @page: the page
1938 */
1939void unlock_page_memcg(struct page *page)
1940{
1941 __unlock_page_memcg(page->mem_cgroup);
1942}
81f8c3a4 1943EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1944
cdec2e42
KH
1945struct memcg_stock_pcp {
1946 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1947 unsigned int nr_pages;
cdec2e42 1948 struct work_struct work;
26fe6168 1949 unsigned long flags;
a0db00fc 1950#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1951};
1952static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1953static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1954
a0956d54
SS
1955/**
1956 * consume_stock: Try to consume stocked charge on this cpu.
1957 * @memcg: memcg to consume from.
1958 * @nr_pages: how many pages to charge.
1959 *
1960 * The charges will only happen if @memcg matches the current cpu's memcg
1961 * stock, and at least @nr_pages are available in that stock. Failure to
1962 * service an allocation will refill the stock.
1963 *
1964 * returns true if successful, false otherwise.
cdec2e42 1965 */
a0956d54 1966static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1967{
1968 struct memcg_stock_pcp *stock;
db2ba40c 1969 unsigned long flags;
3e32cb2e 1970 bool ret = false;
cdec2e42 1971
a983b5eb 1972 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1973 return ret;
a0956d54 1974
db2ba40c
JW
1975 local_irq_save(flags);
1976
1977 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1978 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1979 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1980 ret = true;
1981 }
db2ba40c
JW
1982
1983 local_irq_restore(flags);
1984
cdec2e42
KH
1985 return ret;
1986}
1987
1988/*
3e32cb2e 1989 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1990 */
1991static void drain_stock(struct memcg_stock_pcp *stock)
1992{
1993 struct mem_cgroup *old = stock->cached;
1994
11c9ea4e 1995 if (stock->nr_pages) {
3e32cb2e 1996 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1997 if (do_memsw_account())
3e32cb2e 1998 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1999 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2000 stock->nr_pages = 0;
cdec2e42
KH
2001 }
2002 stock->cached = NULL;
cdec2e42
KH
2003}
2004
cdec2e42
KH
2005static void drain_local_stock(struct work_struct *dummy)
2006{
db2ba40c
JW
2007 struct memcg_stock_pcp *stock;
2008 unsigned long flags;
2009
72f0184c
MH
2010 /*
2011 * The only protection from memory hotplug vs. drain_stock races is
2012 * that we always operate on local CPU stock here with IRQ disabled
2013 */
db2ba40c
JW
2014 local_irq_save(flags);
2015
2016 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2017 drain_stock(stock);
26fe6168 2018 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2019
2020 local_irq_restore(flags);
cdec2e42
KH
2021}
2022
2023/*
3e32cb2e 2024 * Cache charges(val) to local per_cpu area.
320cc51d 2025 * This will be consumed by consume_stock() function, later.
cdec2e42 2026 */
c0ff4b85 2027static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2028{
db2ba40c
JW
2029 struct memcg_stock_pcp *stock;
2030 unsigned long flags;
2031
2032 local_irq_save(flags);
cdec2e42 2033
db2ba40c 2034 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2035 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2036 drain_stock(stock);
c0ff4b85 2037 stock->cached = memcg;
cdec2e42 2038 }
11c9ea4e 2039 stock->nr_pages += nr_pages;
db2ba40c 2040
a983b5eb 2041 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2042 drain_stock(stock);
2043
db2ba40c 2044 local_irq_restore(flags);
cdec2e42
KH
2045}
2046
2047/*
c0ff4b85 2048 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2049 * of the hierarchy under it.
cdec2e42 2050 */
6d3d6aa2 2051static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2052{
26fe6168 2053 int cpu, curcpu;
d38144b7 2054
6d3d6aa2
JW
2055 /* If someone's already draining, avoid adding running more workers. */
2056 if (!mutex_trylock(&percpu_charge_mutex))
2057 return;
72f0184c
MH
2058 /*
2059 * Notify other cpus that system-wide "drain" is running
2060 * We do not care about races with the cpu hotplug because cpu down
2061 * as well as workers from this path always operate on the local
2062 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2063 */
5af12d0e 2064 curcpu = get_cpu();
cdec2e42
KH
2065 for_each_online_cpu(cpu) {
2066 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2067 struct mem_cgroup *memcg;
26fe6168 2068
c0ff4b85 2069 memcg = stock->cached;
72f0184c 2070 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2071 continue;
72f0184c
MH
2072 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2073 css_put(&memcg->css);
3e92041d 2074 continue;
72f0184c 2075 }
d1a05b69
MH
2076 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2077 if (cpu == curcpu)
2078 drain_local_stock(&stock->work);
2079 else
2080 schedule_work_on(cpu, &stock->work);
2081 }
72f0184c 2082 css_put(&memcg->css);
cdec2e42 2083 }
5af12d0e 2084 put_cpu();
9f50fad6 2085 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2086}
2087
308167fc 2088static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2089{
cdec2e42 2090 struct memcg_stock_pcp *stock;
a983b5eb 2091 struct mem_cgroup *memcg;
cdec2e42 2092
cdec2e42
KH
2093 stock = &per_cpu(memcg_stock, cpu);
2094 drain_stock(stock);
a983b5eb
JW
2095
2096 for_each_mem_cgroup(memcg) {
2097 int i;
2098
2099 for (i = 0; i < MEMCG_NR_STAT; i++) {
2100 int nid;
2101 long x;
2102
2103 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2104 if (x)
2105 atomic_long_add(x, &memcg->stat[i]);
2106
2107 if (i >= NR_VM_NODE_STAT_ITEMS)
2108 continue;
2109
2110 for_each_node(nid) {
2111 struct mem_cgroup_per_node *pn;
2112
2113 pn = mem_cgroup_nodeinfo(memcg, nid);
2114 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2115 if (x)
2116 atomic_long_add(x, &pn->lruvec_stat[i]);
2117 }
2118 }
2119
e27be240 2120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2121 long x;
2122
2123 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2124 if (x)
2125 atomic_long_add(x, &memcg->events[i]);
2126 }
2127 }
2128
308167fc 2129 return 0;
cdec2e42
KH
2130}
2131
f7e1cb6e
JW
2132static void reclaim_high(struct mem_cgroup *memcg,
2133 unsigned int nr_pages,
2134 gfp_t gfp_mask)
2135{
2136 do {
2137 if (page_counter_read(&memcg->memory) <= memcg->high)
2138 continue;
e27be240 2139 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2140 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2141 } while ((memcg = parent_mem_cgroup(memcg)));
2142}
2143
2144static void high_work_func(struct work_struct *work)
2145{
2146 struct mem_cgroup *memcg;
2147
2148 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2149 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2150}
2151
b23afb93
TH
2152/*
2153 * Scheduled by try_charge() to be executed from the userland return path
2154 * and reclaims memory over the high limit.
2155 */
2156void mem_cgroup_handle_over_high(void)
2157{
2158 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2159 struct mem_cgroup *memcg;
b23afb93
TH
2160
2161 if (likely(!nr_pages))
2162 return;
2163
f7e1cb6e
JW
2164 memcg = get_mem_cgroup_from_mm(current->mm);
2165 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2166 css_put(&memcg->css);
2167 current->memcg_nr_pages_over_high = 0;
2168}
2169
00501b53
JW
2170static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2171 unsigned int nr_pages)
8a9f3ccd 2172{
a983b5eb 2173 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2174 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2175 struct mem_cgroup *mem_over_limit;
3e32cb2e 2176 struct page_counter *counter;
6539cc05 2177 unsigned long nr_reclaimed;
b70a2a21
JW
2178 bool may_swap = true;
2179 bool drained = false;
29ef680a
MH
2180 bool oomed = false;
2181 enum oom_status oom_status;
a636b327 2182
ce00a967 2183 if (mem_cgroup_is_root(memcg))
10d53c74 2184 return 0;
6539cc05 2185retry:
b6b6cc72 2186 if (consume_stock(memcg, nr_pages))
10d53c74 2187 return 0;
8a9f3ccd 2188
7941d214 2189 if (!do_memsw_account() ||
6071ca52
JW
2190 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2191 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2192 goto done_restock;
7941d214 2193 if (do_memsw_account())
3e32cb2e
JW
2194 page_counter_uncharge(&memcg->memsw, batch);
2195 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2196 } else {
3e32cb2e 2197 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2198 may_swap = false;
3fbe7244 2199 }
7a81b88c 2200
6539cc05
JW
2201 if (batch > nr_pages) {
2202 batch = nr_pages;
2203 goto retry;
2204 }
6d61ef40 2205
06b078fc
JW
2206 /*
2207 * Unlike in global OOM situations, memcg is not in a physical
2208 * memory shortage. Allow dying and OOM-killed tasks to
2209 * bypass the last charges so that they can exit quickly and
2210 * free their memory.
2211 */
da99ecf1 2212 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2213 fatal_signal_pending(current) ||
2214 current->flags & PF_EXITING))
10d53c74 2215 goto force;
06b078fc 2216
89a28483
JW
2217 /*
2218 * Prevent unbounded recursion when reclaim operations need to
2219 * allocate memory. This might exceed the limits temporarily,
2220 * but we prefer facilitating memory reclaim and getting back
2221 * under the limit over triggering OOM kills in these cases.
2222 */
2223 if (unlikely(current->flags & PF_MEMALLOC))
2224 goto force;
2225
06b078fc
JW
2226 if (unlikely(task_in_memcg_oom(current)))
2227 goto nomem;
2228
d0164adc 2229 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2230 goto nomem;
4b534334 2231
e27be240 2232 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2233
b70a2a21
JW
2234 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2235 gfp_mask, may_swap);
6539cc05 2236
61e02c74 2237 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2238 goto retry;
28c34c29 2239
b70a2a21 2240 if (!drained) {
6d3d6aa2 2241 drain_all_stock(mem_over_limit);
b70a2a21
JW
2242 drained = true;
2243 goto retry;
2244 }
2245
28c34c29
JW
2246 if (gfp_mask & __GFP_NORETRY)
2247 goto nomem;
6539cc05
JW
2248 /*
2249 * Even though the limit is exceeded at this point, reclaim
2250 * may have been able to free some pages. Retry the charge
2251 * before killing the task.
2252 *
2253 * Only for regular pages, though: huge pages are rather
2254 * unlikely to succeed so close to the limit, and we fall back
2255 * to regular pages anyway in case of failure.
2256 */
61e02c74 2257 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2258 goto retry;
2259 /*
2260 * At task move, charge accounts can be doubly counted. So, it's
2261 * better to wait until the end of task_move if something is going on.
2262 */
2263 if (mem_cgroup_wait_acct_move(mem_over_limit))
2264 goto retry;
2265
9b130619
JW
2266 if (nr_retries--)
2267 goto retry;
2268
29ef680a
MH
2269 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2270 goto nomem;
2271
06b078fc 2272 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2273 goto force;
06b078fc 2274
6539cc05 2275 if (fatal_signal_pending(current))
10d53c74 2276 goto force;
6539cc05 2277
29ef680a
MH
2278 /*
2279 * keep retrying as long as the memcg oom killer is able to make
2280 * a forward progress or bypass the charge if the oom killer
2281 * couldn't make any progress.
2282 */
2283 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2284 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2285 switch (oom_status) {
2286 case OOM_SUCCESS:
2287 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2288 oomed = true;
2289 goto retry;
2290 case OOM_FAILED:
2291 goto force;
2292 default:
2293 goto nomem;
2294 }
7a81b88c 2295nomem:
6d1fdc48 2296 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2297 return -ENOMEM;
10d53c74
TH
2298force:
2299 /*
2300 * The allocation either can't fail or will lead to more memory
2301 * being freed very soon. Allow memory usage go over the limit
2302 * temporarily by force charging it.
2303 */
2304 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2305 if (do_memsw_account())
10d53c74
TH
2306 page_counter_charge(&memcg->memsw, nr_pages);
2307 css_get_many(&memcg->css, nr_pages);
2308
2309 return 0;
6539cc05
JW
2310
2311done_restock:
e8ea14cc 2312 css_get_many(&memcg->css, batch);
6539cc05
JW
2313 if (batch > nr_pages)
2314 refill_stock(memcg, batch - nr_pages);
b23afb93 2315
241994ed 2316 /*
b23afb93
TH
2317 * If the hierarchy is above the normal consumption range, schedule
2318 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2319 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2320 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2321 * not recorded as it most likely matches current's and won't
2322 * change in the meantime. As high limit is checked again before
2323 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2324 */
2325 do {
b23afb93 2326 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2327 /* Don't bother a random interrupted task */
2328 if (in_interrupt()) {
2329 schedule_work(&memcg->high_work);
2330 break;
2331 }
9516a18a 2332 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2333 set_notify_resume(current);
2334 break;
2335 }
241994ed 2336 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2337
2338 return 0;
7a81b88c 2339}
8a9f3ccd 2340
00501b53 2341static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2342{
ce00a967
JW
2343 if (mem_cgroup_is_root(memcg))
2344 return;
2345
3e32cb2e 2346 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2347 if (do_memsw_account())
3e32cb2e 2348 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2349
e8ea14cc 2350 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2351}
2352
0a31bc97
JW
2353static void lock_page_lru(struct page *page, int *isolated)
2354{
2355 struct zone *zone = page_zone(page);
2356
a52633d8 2357 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2358 if (PageLRU(page)) {
2359 struct lruvec *lruvec;
2360
599d0c95 2361 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2362 ClearPageLRU(page);
2363 del_page_from_lru_list(page, lruvec, page_lru(page));
2364 *isolated = 1;
2365 } else
2366 *isolated = 0;
2367}
2368
2369static void unlock_page_lru(struct page *page, int isolated)
2370{
2371 struct zone *zone = page_zone(page);
2372
2373 if (isolated) {
2374 struct lruvec *lruvec;
2375
599d0c95 2376 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2377 VM_BUG_ON_PAGE(PageLRU(page), page);
2378 SetPageLRU(page);
2379 add_page_to_lru_list(page, lruvec, page_lru(page));
2380 }
a52633d8 2381 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2382}
2383
00501b53 2384static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2385 bool lrucare)
7a81b88c 2386{
0a31bc97 2387 int isolated;
9ce70c02 2388
1306a85a 2389 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2390
2391 /*
2392 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2393 * may already be on some other mem_cgroup's LRU. Take care of it.
2394 */
0a31bc97
JW
2395 if (lrucare)
2396 lock_page_lru(page, &isolated);
9ce70c02 2397
0a31bc97
JW
2398 /*
2399 * Nobody should be changing or seriously looking at
1306a85a 2400 * page->mem_cgroup at this point:
0a31bc97
JW
2401 *
2402 * - the page is uncharged
2403 *
2404 * - the page is off-LRU
2405 *
2406 * - an anonymous fault has exclusive page access, except for
2407 * a locked page table
2408 *
2409 * - a page cache insertion, a swapin fault, or a migration
2410 * have the page locked
2411 */
1306a85a 2412 page->mem_cgroup = memcg;
9ce70c02 2413
0a31bc97
JW
2414 if (lrucare)
2415 unlock_page_lru(page, isolated);
7a81b88c 2416}
66e1707b 2417
84c07d11 2418#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2419static int memcg_alloc_cache_id(void)
55007d84 2420{
f3bb3043
VD
2421 int id, size;
2422 int err;
2423
dbcf73e2 2424 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2425 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2426 if (id < 0)
2427 return id;
55007d84 2428
dbcf73e2 2429 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2430 return id;
2431
2432 /*
2433 * There's no space for the new id in memcg_caches arrays,
2434 * so we have to grow them.
2435 */
05257a1a 2436 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2437
2438 size = 2 * (id + 1);
55007d84
GC
2439 if (size < MEMCG_CACHES_MIN_SIZE)
2440 size = MEMCG_CACHES_MIN_SIZE;
2441 else if (size > MEMCG_CACHES_MAX_SIZE)
2442 size = MEMCG_CACHES_MAX_SIZE;
2443
f3bb3043 2444 err = memcg_update_all_caches(size);
60d3fd32
VD
2445 if (!err)
2446 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2447 if (!err)
2448 memcg_nr_cache_ids = size;
2449
2450 up_write(&memcg_cache_ids_sem);
2451
f3bb3043 2452 if (err) {
dbcf73e2 2453 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2454 return err;
2455 }
2456 return id;
2457}
2458
2459static void memcg_free_cache_id(int id)
2460{
dbcf73e2 2461 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2462}
2463
d5b3cf71 2464struct memcg_kmem_cache_create_work {
5722d094
VD
2465 struct mem_cgroup *memcg;
2466 struct kmem_cache *cachep;
2467 struct work_struct work;
2468};
2469
d5b3cf71 2470static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2471{
d5b3cf71
VD
2472 struct memcg_kmem_cache_create_work *cw =
2473 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2474 struct mem_cgroup *memcg = cw->memcg;
2475 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2476
d5b3cf71 2477 memcg_create_kmem_cache(memcg, cachep);
bd673145 2478
5722d094 2479 css_put(&memcg->css);
d7f25f8a
GC
2480 kfree(cw);
2481}
2482
2483/*
2484 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2485 */
85cfb245 2486static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2487 struct kmem_cache *cachep)
d7f25f8a 2488{
d5b3cf71 2489 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2490
c892fd82 2491 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2492 if (!cw)
d7f25f8a 2493 return;
8135be5a
VD
2494
2495 css_get(&memcg->css);
d7f25f8a
GC
2496
2497 cw->memcg = memcg;
2498 cw->cachep = cachep;
d5b3cf71 2499 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2500
17cc4dfe 2501 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2502}
2503
45264778
VD
2504static inline bool memcg_kmem_bypass(void)
2505{
2506 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2507 return true;
2508 return false;
2509}
2510
2511/**
2512 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2513 * @cachep: the original global kmem cache
2514 *
d7f25f8a
GC
2515 * Return the kmem_cache we're supposed to use for a slab allocation.
2516 * We try to use the current memcg's version of the cache.
2517 *
45264778
VD
2518 * If the cache does not exist yet, if we are the first user of it, we
2519 * create it asynchronously in a workqueue and let the current allocation
2520 * go through with the original cache.
d7f25f8a 2521 *
45264778
VD
2522 * This function takes a reference to the cache it returns to assure it
2523 * won't get destroyed while we are working with it. Once the caller is
2524 * done with it, memcg_kmem_put_cache() must be called to release the
2525 * reference.
d7f25f8a 2526 */
45264778 2527struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2528{
2529 struct mem_cgroup *memcg;
959c8963 2530 struct kmem_cache *memcg_cachep;
2a4db7eb 2531 int kmemcg_id;
d7f25f8a 2532
f7ce3190 2533 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2534
45264778 2535 if (memcg_kmem_bypass())
230e9fc2
VD
2536 return cachep;
2537
d46eb14b 2538 memcg = get_mem_cgroup_from_current();
4db0c3c2 2539 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2540 if (kmemcg_id < 0)
ca0dde97 2541 goto out;
d7f25f8a 2542
2a4db7eb 2543 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2544 if (likely(memcg_cachep))
2545 return memcg_cachep;
ca0dde97
LZ
2546
2547 /*
2548 * If we are in a safe context (can wait, and not in interrupt
2549 * context), we could be be predictable and return right away.
2550 * This would guarantee that the allocation being performed
2551 * already belongs in the new cache.
2552 *
2553 * However, there are some clashes that can arrive from locking.
2554 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2555 * memcg_create_kmem_cache, this means no further allocation
2556 * could happen with the slab_mutex held. So it's better to
2557 * defer everything.
ca0dde97 2558 */
d5b3cf71 2559 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2560out:
8135be5a 2561 css_put(&memcg->css);
ca0dde97 2562 return cachep;
d7f25f8a 2563}
d7f25f8a 2564
45264778
VD
2565/**
2566 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2567 * @cachep: the cache returned by memcg_kmem_get_cache
2568 */
2569void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2570{
2571 if (!is_root_cache(cachep))
f7ce3190 2572 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2573}
2574
45264778 2575/**
60cd4bcd 2576 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2577 * @page: page to charge
2578 * @gfp: reclaim mode
2579 * @order: allocation order
2580 * @memcg: memory cgroup to charge
2581 *
2582 * Returns 0 on success, an error code on failure.
2583 */
60cd4bcd 2584int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2585 struct mem_cgroup *memcg)
7ae1e1d0 2586{
f3ccb2c4
VD
2587 unsigned int nr_pages = 1 << order;
2588 struct page_counter *counter;
7ae1e1d0
GC
2589 int ret;
2590
f3ccb2c4 2591 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2592 if (ret)
f3ccb2c4 2593 return ret;
52c29b04
JW
2594
2595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2596 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2597 cancel_charge(memcg, nr_pages);
2598 return -ENOMEM;
7ae1e1d0
GC
2599 }
2600
f3ccb2c4 2601 page->mem_cgroup = memcg;
7ae1e1d0 2602
f3ccb2c4 2603 return 0;
7ae1e1d0
GC
2604}
2605
45264778 2606/**
60cd4bcd 2607 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2608 * @page: page to charge
2609 * @gfp: reclaim mode
2610 * @order: allocation order
2611 *
2612 * Returns 0 on success, an error code on failure.
2613 */
60cd4bcd 2614int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2615{
f3ccb2c4 2616 struct mem_cgroup *memcg;
fcff7d7e 2617 int ret = 0;
7ae1e1d0 2618
60cd4bcd 2619 if (memcg_kmem_bypass())
45264778
VD
2620 return 0;
2621
d46eb14b 2622 memcg = get_mem_cgroup_from_current();
c4159a75 2623 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2624 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2625 if (!ret)
2626 __SetPageKmemcg(page);
2627 }
7ae1e1d0 2628 css_put(&memcg->css);
d05e83a6 2629 return ret;
7ae1e1d0 2630}
45264778 2631/**
60cd4bcd 2632 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2633 * @page: page to uncharge
2634 * @order: allocation order
2635 */
60cd4bcd 2636void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2637{
1306a85a 2638 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2639 unsigned int nr_pages = 1 << order;
7ae1e1d0 2640
7ae1e1d0
GC
2641 if (!memcg)
2642 return;
2643
309381fe 2644 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2645
52c29b04
JW
2646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2647 page_counter_uncharge(&memcg->kmem, nr_pages);
2648
f3ccb2c4 2649 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2650 if (do_memsw_account())
f3ccb2c4 2651 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2652
1306a85a 2653 page->mem_cgroup = NULL;
c4159a75
VD
2654
2655 /* slab pages do not have PageKmemcg flag set */
2656 if (PageKmemcg(page))
2657 __ClearPageKmemcg(page);
2658
f3ccb2c4 2659 css_put_many(&memcg->css, nr_pages);
60d3fd32 2660}
84c07d11 2661#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2662
ca3e0214
KH
2663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2664
ca3e0214
KH
2665/*
2666 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2667 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2668 */
e94c8a9c 2669void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2670{
e94c8a9c 2671 int i;
ca3e0214 2672
3d37c4a9
KH
2673 if (mem_cgroup_disabled())
2674 return;
b070e65c 2675
29833315 2676 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2677 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2678
c9019e9b 2679 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2680}
12d27107 2681#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2682
c255a458 2683#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2684/**
2685 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2686 * @entry: swap entry to be moved
2687 * @from: mem_cgroup which the entry is moved from
2688 * @to: mem_cgroup which the entry is moved to
2689 *
2690 * It succeeds only when the swap_cgroup's record for this entry is the same
2691 * as the mem_cgroup's id of @from.
2692 *
2693 * Returns 0 on success, -EINVAL on failure.
2694 *
3e32cb2e 2695 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2696 * both res and memsw, and called css_get().
2697 */
2698static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2699 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2700{
2701 unsigned short old_id, new_id;
2702
34c00c31
LZ
2703 old_id = mem_cgroup_id(from);
2704 new_id = mem_cgroup_id(to);
02491447
DN
2705
2706 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2707 mod_memcg_state(from, MEMCG_SWAP, -1);
2708 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2709 return 0;
2710 }
2711 return -EINVAL;
2712}
2713#else
2714static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2715 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2716{
2717 return -EINVAL;
2718}
8c7c6e34 2719#endif
d13d1443 2720
bbec2e15 2721static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2722
bbec2e15
RG
2723static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2724 unsigned long max, bool memsw)
628f4235 2725{
3e32cb2e 2726 bool enlarge = false;
bb4a7ea2 2727 bool drained = false;
3e32cb2e 2728 int ret;
c054a78c
YZ
2729 bool limits_invariant;
2730 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2731
3e32cb2e 2732 do {
628f4235
KH
2733 if (signal_pending(current)) {
2734 ret = -EINTR;
2735 break;
2736 }
3e32cb2e 2737
bbec2e15 2738 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2739 /*
2740 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2741 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2742 */
bbec2e15
RG
2743 limits_invariant = memsw ? max >= memcg->memory.max :
2744 max <= memcg->memsw.max;
c054a78c 2745 if (!limits_invariant) {
bbec2e15 2746 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2747 ret = -EINVAL;
8c7c6e34
KH
2748 break;
2749 }
bbec2e15 2750 if (max > counter->max)
3e32cb2e 2751 enlarge = true;
bbec2e15
RG
2752 ret = page_counter_set_max(counter, max);
2753 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2754
2755 if (!ret)
2756 break;
2757
bb4a7ea2
SB
2758 if (!drained) {
2759 drain_all_stock(memcg);
2760 drained = true;
2761 continue;
2762 }
2763
1ab5c056
AR
2764 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2765 GFP_KERNEL, !memsw)) {
2766 ret = -EBUSY;
2767 break;
2768 }
2769 } while (true);
3e32cb2e 2770
3c11ecf4
KH
2771 if (!ret && enlarge)
2772 memcg_oom_recover(memcg);
3e32cb2e 2773
628f4235
KH
2774 return ret;
2775}
2776
ef8f2327 2777unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2778 gfp_t gfp_mask,
2779 unsigned long *total_scanned)
2780{
2781 unsigned long nr_reclaimed = 0;
ef8f2327 2782 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2783 unsigned long reclaimed;
2784 int loop = 0;
ef8f2327 2785 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2786 unsigned long excess;
0608f43d
AM
2787 unsigned long nr_scanned;
2788
2789 if (order > 0)
2790 return 0;
2791
ef8f2327 2792 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2793
2794 /*
2795 * Do not even bother to check the largest node if the root
2796 * is empty. Do it lockless to prevent lock bouncing. Races
2797 * are acceptable as soft limit is best effort anyway.
2798 */
bfc7228b 2799 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2800 return 0;
2801
0608f43d
AM
2802 /*
2803 * This loop can run a while, specially if mem_cgroup's continuously
2804 * keep exceeding their soft limit and putting the system under
2805 * pressure
2806 */
2807 do {
2808 if (next_mz)
2809 mz = next_mz;
2810 else
2811 mz = mem_cgroup_largest_soft_limit_node(mctz);
2812 if (!mz)
2813 break;
2814
2815 nr_scanned = 0;
ef8f2327 2816 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2817 gfp_mask, &nr_scanned);
2818 nr_reclaimed += reclaimed;
2819 *total_scanned += nr_scanned;
0a31bc97 2820 spin_lock_irq(&mctz->lock);
bc2f2e7f 2821 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2822
2823 /*
2824 * If we failed to reclaim anything from this memory cgroup
2825 * it is time to move on to the next cgroup
2826 */
2827 next_mz = NULL;
bc2f2e7f
VD
2828 if (!reclaimed)
2829 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2830
3e32cb2e 2831 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2832 /*
2833 * One school of thought says that we should not add
2834 * back the node to the tree if reclaim returns 0.
2835 * But our reclaim could return 0, simply because due
2836 * to priority we are exposing a smaller subset of
2837 * memory to reclaim from. Consider this as a longer
2838 * term TODO.
2839 */
2840 /* If excess == 0, no tree ops */
cf2c8127 2841 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2842 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2843 css_put(&mz->memcg->css);
2844 loop++;
2845 /*
2846 * Could not reclaim anything and there are no more
2847 * mem cgroups to try or we seem to be looping without
2848 * reclaiming anything.
2849 */
2850 if (!nr_reclaimed &&
2851 (next_mz == NULL ||
2852 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2853 break;
2854 } while (!nr_reclaimed);
2855 if (next_mz)
2856 css_put(&next_mz->memcg->css);
2857 return nr_reclaimed;
2858}
2859
ea280e7b
TH
2860/*
2861 * Test whether @memcg has children, dead or alive. Note that this
2862 * function doesn't care whether @memcg has use_hierarchy enabled and
2863 * returns %true if there are child csses according to the cgroup
2864 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2865 */
b5f99b53
GC
2866static inline bool memcg_has_children(struct mem_cgroup *memcg)
2867{
ea280e7b
TH
2868 bool ret;
2869
ea280e7b
TH
2870 rcu_read_lock();
2871 ret = css_next_child(NULL, &memcg->css);
2872 rcu_read_unlock();
2873 return ret;
b5f99b53
GC
2874}
2875
c26251f9 2876/*
51038171 2877 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2878 *
2879 * Caller is responsible for holding css reference for memcg.
2880 */
2881static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2882{
2883 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2884
c1e862c1
KH
2885 /* we call try-to-free pages for make this cgroup empty */
2886 lru_add_drain_all();
d12c60f6
JS
2887
2888 drain_all_stock(memcg);
2889
f817ed48 2890 /* try to free all pages in this cgroup */
3e32cb2e 2891 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2892 int progress;
c1e862c1 2893
c26251f9
MH
2894 if (signal_pending(current))
2895 return -EINTR;
2896
b70a2a21
JW
2897 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2898 GFP_KERNEL, true);
c1e862c1 2899 if (!progress) {
f817ed48 2900 nr_retries--;
c1e862c1 2901 /* maybe some writeback is necessary */
8aa7e847 2902 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2903 }
f817ed48
KH
2904
2905 }
ab5196c2
MH
2906
2907 return 0;
cc847582
KH
2908}
2909
6770c64e
TH
2910static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2911 char *buf, size_t nbytes,
2912 loff_t off)
c1e862c1 2913{
6770c64e 2914 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2915
d8423011
MH
2916 if (mem_cgroup_is_root(memcg))
2917 return -EINVAL;
6770c64e 2918 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2919}
2920
182446d0
TH
2921static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2922 struct cftype *cft)
18f59ea7 2923{
182446d0 2924 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2925}
2926
182446d0
TH
2927static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2928 struct cftype *cft, u64 val)
18f59ea7
BS
2929{
2930 int retval = 0;
182446d0 2931 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2932 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2933
567fb435 2934 if (memcg->use_hierarchy == val)
0b8f73e1 2935 return 0;
567fb435 2936
18f59ea7 2937 /*
af901ca1 2938 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2939 * in the child subtrees. If it is unset, then the change can
2940 * occur, provided the current cgroup has no children.
2941 *
2942 * For the root cgroup, parent_mem is NULL, we allow value to be
2943 * set if there are no children.
2944 */
c0ff4b85 2945 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2946 (val == 1 || val == 0)) {
ea280e7b 2947 if (!memcg_has_children(memcg))
c0ff4b85 2948 memcg->use_hierarchy = val;
18f59ea7
BS
2949 else
2950 retval = -EBUSY;
2951 } else
2952 retval = -EINVAL;
567fb435 2953
18f59ea7
BS
2954 return retval;
2955}
2956
8de7ecc6
SB
2957struct accumulated_stats {
2958 unsigned long stat[MEMCG_NR_STAT];
2959 unsigned long events[NR_VM_EVENT_ITEMS];
2960 unsigned long lru_pages[NR_LRU_LISTS];
2961 const unsigned int *stats_array;
2962 const unsigned int *events_array;
2963 int stats_size;
2964 int events_size;
2965};
ce00a967 2966
8de7ecc6
SB
2967static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2968 struct accumulated_stats *acc)
587d9f72 2969{
8de7ecc6 2970 struct mem_cgroup *mi;
72b54e73 2971 int i;
587d9f72 2972
8de7ecc6
SB
2973 for_each_mem_cgroup_tree(mi, memcg) {
2974 for (i = 0; i < acc->stats_size; i++)
2975 acc->stat[i] += memcg_page_state(mi,
2976 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 2977
8de7ecc6
SB
2978 for (i = 0; i < acc->events_size; i++)
2979 acc->events[i] += memcg_sum_events(mi,
2980 acc->events_array ? acc->events_array[i] : i);
2981
2982 for (i = 0; i < NR_LRU_LISTS; i++)
2983 acc->lru_pages[i] +=
2984 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 2985 }
587d9f72
JW
2986}
2987
6f646156 2988static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2989{
72b54e73 2990 unsigned long val = 0;
ce00a967 2991
3e32cb2e 2992 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2993 struct mem_cgroup *iter;
2994
2995 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2996 val += memcg_page_state(iter, MEMCG_CACHE);
2997 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2998 if (swap)
ccda7f43 2999 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 3000 }
3e32cb2e 3001 } else {
ce00a967 3002 if (!swap)
3e32cb2e 3003 val = page_counter_read(&memcg->memory);
ce00a967 3004 else
3e32cb2e 3005 val = page_counter_read(&memcg->memsw);
ce00a967 3006 }
c12176d3 3007 return val;
ce00a967
JW
3008}
3009
3e32cb2e
JW
3010enum {
3011 RES_USAGE,
3012 RES_LIMIT,
3013 RES_MAX_USAGE,
3014 RES_FAILCNT,
3015 RES_SOFT_LIMIT,
3016};
ce00a967 3017
791badbd 3018static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3019 struct cftype *cft)
8cdea7c0 3020{
182446d0 3021 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3022 struct page_counter *counter;
af36f906 3023
3e32cb2e 3024 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3025 case _MEM:
3e32cb2e
JW
3026 counter = &memcg->memory;
3027 break;
8c7c6e34 3028 case _MEMSWAP:
3e32cb2e
JW
3029 counter = &memcg->memsw;
3030 break;
510fc4e1 3031 case _KMEM:
3e32cb2e 3032 counter = &memcg->kmem;
510fc4e1 3033 break;
d55f90bf 3034 case _TCP:
0db15298 3035 counter = &memcg->tcpmem;
d55f90bf 3036 break;
8c7c6e34
KH
3037 default:
3038 BUG();
8c7c6e34 3039 }
3e32cb2e
JW
3040
3041 switch (MEMFILE_ATTR(cft->private)) {
3042 case RES_USAGE:
3043 if (counter == &memcg->memory)
c12176d3 3044 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3045 if (counter == &memcg->memsw)
c12176d3 3046 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3047 return (u64)page_counter_read(counter) * PAGE_SIZE;
3048 case RES_LIMIT:
bbec2e15 3049 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3050 case RES_MAX_USAGE:
3051 return (u64)counter->watermark * PAGE_SIZE;
3052 case RES_FAILCNT:
3053 return counter->failcnt;
3054 case RES_SOFT_LIMIT:
3055 return (u64)memcg->soft_limit * PAGE_SIZE;
3056 default:
3057 BUG();
3058 }
8cdea7c0 3059}
510fc4e1 3060
84c07d11 3061#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3062static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3063{
d6441637
VD
3064 int memcg_id;
3065
b313aeee
VD
3066 if (cgroup_memory_nokmem)
3067 return 0;
3068
2a4db7eb 3069 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3070 BUG_ON(memcg->kmem_state);
d6441637 3071
f3bb3043 3072 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3073 if (memcg_id < 0)
3074 return memcg_id;
d6441637 3075
ef12947c 3076 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3077 /*
567e9ab2 3078 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3079 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3080 * guarantee no one starts accounting before all call sites are
3081 * patched.
3082 */
900a38f0 3083 memcg->kmemcg_id = memcg_id;
567e9ab2 3084 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3085 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3086
3087 return 0;
d6441637
VD
3088}
3089
8e0a8912
JW
3090static void memcg_offline_kmem(struct mem_cgroup *memcg)
3091{
3092 struct cgroup_subsys_state *css;
3093 struct mem_cgroup *parent, *child;
3094 int kmemcg_id;
3095
3096 if (memcg->kmem_state != KMEM_ONLINE)
3097 return;
3098 /*
3099 * Clear the online state before clearing memcg_caches array
3100 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3101 * guarantees that no cache will be created for this cgroup
3102 * after we are done (see memcg_create_kmem_cache()).
3103 */
3104 memcg->kmem_state = KMEM_ALLOCATED;
3105
3106 memcg_deactivate_kmem_caches(memcg);
3107
3108 kmemcg_id = memcg->kmemcg_id;
3109 BUG_ON(kmemcg_id < 0);
3110
3111 parent = parent_mem_cgroup(memcg);
3112 if (!parent)
3113 parent = root_mem_cgroup;
3114
3115 /*
3116 * Change kmemcg_id of this cgroup and all its descendants to the
3117 * parent's id, and then move all entries from this cgroup's list_lrus
3118 * to ones of the parent. After we have finished, all list_lrus
3119 * corresponding to this cgroup are guaranteed to remain empty. The
3120 * ordering is imposed by list_lru_node->lock taken by
3121 * memcg_drain_all_list_lrus().
3122 */
3a06bb78 3123 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3124 css_for_each_descendant_pre(css, &memcg->css) {
3125 child = mem_cgroup_from_css(css);
3126 BUG_ON(child->kmemcg_id != kmemcg_id);
3127 child->kmemcg_id = parent->kmemcg_id;
3128 if (!memcg->use_hierarchy)
3129 break;
3130 }
3a06bb78
TH
3131 rcu_read_unlock();
3132
9bec5c35 3133 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3134
3135 memcg_free_cache_id(kmemcg_id);
3136}
3137
3138static void memcg_free_kmem(struct mem_cgroup *memcg)
3139{
0b8f73e1
JW
3140 /* css_alloc() failed, offlining didn't happen */
3141 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3142 memcg_offline_kmem(memcg);
3143
8e0a8912
JW
3144 if (memcg->kmem_state == KMEM_ALLOCATED) {
3145 memcg_destroy_kmem_caches(memcg);
3146 static_branch_dec(&memcg_kmem_enabled_key);
3147 WARN_ON(page_counter_read(&memcg->kmem));
3148 }
8e0a8912 3149}
d6441637 3150#else
0b8f73e1 3151static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3152{
3153 return 0;
3154}
3155static void memcg_offline_kmem(struct mem_cgroup *memcg)
3156{
3157}
3158static void memcg_free_kmem(struct mem_cgroup *memcg)
3159{
3160}
84c07d11 3161#endif /* CONFIG_MEMCG_KMEM */
127424c8 3162
bbec2e15
RG
3163static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3164 unsigned long max)
d6441637 3165{
b313aeee 3166 int ret;
127424c8 3167
bbec2e15
RG
3168 mutex_lock(&memcg_max_mutex);
3169 ret = page_counter_set_max(&memcg->kmem, max);
3170 mutex_unlock(&memcg_max_mutex);
127424c8 3171 return ret;
d6441637 3172}
510fc4e1 3173
bbec2e15 3174static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3175{
3176 int ret;
3177
bbec2e15 3178 mutex_lock(&memcg_max_mutex);
d55f90bf 3179
bbec2e15 3180 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3181 if (ret)
3182 goto out;
3183
0db15298 3184 if (!memcg->tcpmem_active) {
d55f90bf
VD
3185 /*
3186 * The active flag needs to be written after the static_key
3187 * update. This is what guarantees that the socket activation
2d758073
JW
3188 * function is the last one to run. See mem_cgroup_sk_alloc()
3189 * for details, and note that we don't mark any socket as
3190 * belonging to this memcg until that flag is up.
d55f90bf
VD
3191 *
3192 * We need to do this, because static_keys will span multiple
3193 * sites, but we can't control their order. If we mark a socket
3194 * as accounted, but the accounting functions are not patched in
3195 * yet, we'll lose accounting.
3196 *
2d758073 3197 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3198 * because when this value change, the code to process it is not
3199 * patched in yet.
3200 */
3201 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3202 memcg->tcpmem_active = true;
d55f90bf
VD
3203 }
3204out:
bbec2e15 3205 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3206 return ret;
3207}
d55f90bf 3208
628f4235
KH
3209/*
3210 * The user of this function is...
3211 * RES_LIMIT.
3212 */
451af504
TH
3213static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3214 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3215{
451af504 3216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3217 unsigned long nr_pages;
628f4235
KH
3218 int ret;
3219
451af504 3220 buf = strstrip(buf);
650c5e56 3221 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3222 if (ret)
3223 return ret;
af36f906 3224
3e32cb2e 3225 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3226 case RES_LIMIT:
4b3bde4c
BS
3227 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3228 ret = -EINVAL;
3229 break;
3230 }
3e32cb2e
JW
3231 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3232 case _MEM:
bbec2e15 3233 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3234 break;
3e32cb2e 3235 case _MEMSWAP:
bbec2e15 3236 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3237 break;
3e32cb2e 3238 case _KMEM:
bbec2e15 3239 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3240 break;
d55f90bf 3241 case _TCP:
bbec2e15 3242 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3243 break;
3e32cb2e 3244 }
296c81d8 3245 break;
3e32cb2e
JW
3246 case RES_SOFT_LIMIT:
3247 memcg->soft_limit = nr_pages;
3248 ret = 0;
628f4235
KH
3249 break;
3250 }
451af504 3251 return ret ?: nbytes;
8cdea7c0
BS
3252}
3253
6770c64e
TH
3254static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3255 size_t nbytes, loff_t off)
c84872e1 3256{
6770c64e 3257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3258 struct page_counter *counter;
c84872e1 3259
3e32cb2e
JW
3260 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3261 case _MEM:
3262 counter = &memcg->memory;
3263 break;
3264 case _MEMSWAP:
3265 counter = &memcg->memsw;
3266 break;
3267 case _KMEM:
3268 counter = &memcg->kmem;
3269 break;
d55f90bf 3270 case _TCP:
0db15298 3271 counter = &memcg->tcpmem;
d55f90bf 3272 break;
3e32cb2e
JW
3273 default:
3274 BUG();
3275 }
af36f906 3276
3e32cb2e 3277 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3278 case RES_MAX_USAGE:
3e32cb2e 3279 page_counter_reset_watermark(counter);
29f2a4da
PE
3280 break;
3281 case RES_FAILCNT:
3e32cb2e 3282 counter->failcnt = 0;
29f2a4da 3283 break;
3e32cb2e
JW
3284 default:
3285 BUG();
29f2a4da 3286 }
f64c3f54 3287
6770c64e 3288 return nbytes;
c84872e1
PE
3289}
3290
182446d0 3291static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3292 struct cftype *cft)
3293{
182446d0 3294 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3295}
3296
02491447 3297#ifdef CONFIG_MMU
182446d0 3298static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3299 struct cftype *cft, u64 val)
3300{
182446d0 3301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3302
1dfab5ab 3303 if (val & ~MOVE_MASK)
7dc74be0 3304 return -EINVAL;
ee5e8472 3305
7dc74be0 3306 /*
ee5e8472
GC
3307 * No kind of locking is needed in here, because ->can_attach() will
3308 * check this value once in the beginning of the process, and then carry
3309 * on with stale data. This means that changes to this value will only
3310 * affect task migrations starting after the change.
7dc74be0 3311 */
c0ff4b85 3312 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3313 return 0;
3314}
02491447 3315#else
182446d0 3316static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3317 struct cftype *cft, u64 val)
3318{
3319 return -ENOSYS;
3320}
3321#endif
7dc74be0 3322
406eb0c9 3323#ifdef CONFIG_NUMA
2da8ca82 3324static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3325{
25485de6
GT
3326 struct numa_stat {
3327 const char *name;
3328 unsigned int lru_mask;
3329 };
3330
3331 static const struct numa_stat stats[] = {
3332 { "total", LRU_ALL },
3333 { "file", LRU_ALL_FILE },
3334 { "anon", LRU_ALL_ANON },
3335 { "unevictable", BIT(LRU_UNEVICTABLE) },
3336 };
3337 const struct numa_stat *stat;
406eb0c9 3338 int nid;
25485de6 3339 unsigned long nr;
aa9694bb 3340 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3341
25485de6
GT
3342 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3343 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3344 seq_printf(m, "%s=%lu", stat->name, nr);
3345 for_each_node_state(nid, N_MEMORY) {
3346 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3347 stat->lru_mask);
3348 seq_printf(m, " N%d=%lu", nid, nr);
3349 }
3350 seq_putc(m, '\n');
406eb0c9 3351 }
406eb0c9 3352
071aee13
YH
3353 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3354 struct mem_cgroup *iter;
3355
3356 nr = 0;
3357 for_each_mem_cgroup_tree(iter, memcg)
3358 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3359 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3360 for_each_node_state(nid, N_MEMORY) {
3361 nr = 0;
3362 for_each_mem_cgroup_tree(iter, memcg)
3363 nr += mem_cgroup_node_nr_lru_pages(
3364 iter, nid, stat->lru_mask);
3365 seq_printf(m, " N%d=%lu", nid, nr);
3366 }
3367 seq_putc(m, '\n');
406eb0c9 3368 }
406eb0c9 3369
406eb0c9
YH
3370 return 0;
3371}
3372#endif /* CONFIG_NUMA */
3373
df0e53d0 3374/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3375static const unsigned int memcg1_events[] = {
df0e53d0
JW
3376 PGPGIN,
3377 PGPGOUT,
3378 PGFAULT,
3379 PGMAJFAULT,
3380};
3381
3382static const char *const memcg1_event_names[] = {
3383 "pgpgin",
3384 "pgpgout",
3385 "pgfault",
3386 "pgmajfault",
3387};
3388
2da8ca82 3389static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3390{
aa9694bb 3391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3392 unsigned long memory, memsw;
af7c4b0e
JW
3393 struct mem_cgroup *mi;
3394 unsigned int i;
8de7ecc6 3395 struct accumulated_stats acc;
406eb0c9 3396
71cd3113 3397 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3398 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3399
71cd3113
JW
3400 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3401 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3402 continue;
71cd3113 3403 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3404 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3405 PAGE_SIZE);
1dd3a273 3406 }
7b854121 3407
df0e53d0
JW
3408 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3409 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3410 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3411
3412 for (i = 0; i < NR_LRU_LISTS; i++)
3413 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3414 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3415
14067bb3 3416 /* Hierarchical information */
3e32cb2e
JW
3417 memory = memsw = PAGE_COUNTER_MAX;
3418 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3419 memory = min(memory, mi->memory.max);
3420 memsw = min(memsw, mi->memsw.max);
fee7b548 3421 }
3e32cb2e
JW
3422 seq_printf(m, "hierarchical_memory_limit %llu\n",
3423 (u64)memory * PAGE_SIZE);
7941d214 3424 if (do_memsw_account())
3e32cb2e
JW
3425 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3426 (u64)memsw * PAGE_SIZE);
7f016ee8 3427
8de7ecc6
SB
3428 memset(&acc, 0, sizeof(acc));
3429 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3430 acc.stats_array = memcg1_stats;
3431 acc.events_size = ARRAY_SIZE(memcg1_events);
3432 acc.events_array = memcg1_events;
3433 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3434
8de7ecc6 3435 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3436 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3437 continue;
8de7ecc6
SB
3438 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3439 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3440 }
3441
8de7ecc6
SB
3442 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3443 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3444 (u64)acc.events[i]);
af7c4b0e 3445
8de7ecc6
SB
3446 for (i = 0; i < NR_LRU_LISTS; i++)
3447 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3448 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3449
7f016ee8 3450#ifdef CONFIG_DEBUG_VM
7f016ee8 3451 {
ef8f2327
MG
3452 pg_data_t *pgdat;
3453 struct mem_cgroup_per_node *mz;
89abfab1 3454 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3455 unsigned long recent_rotated[2] = {0, 0};
3456 unsigned long recent_scanned[2] = {0, 0};
3457
ef8f2327
MG
3458 for_each_online_pgdat(pgdat) {
3459 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3460 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3461
ef8f2327
MG
3462 recent_rotated[0] += rstat->recent_rotated[0];
3463 recent_rotated[1] += rstat->recent_rotated[1];
3464 recent_scanned[0] += rstat->recent_scanned[0];
3465 recent_scanned[1] += rstat->recent_scanned[1];
3466 }
78ccf5b5
JW
3467 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3468 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3469 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3470 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3471 }
3472#endif
3473
d2ceb9b7
KH
3474 return 0;
3475}
3476
182446d0
TH
3477static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3478 struct cftype *cft)
a7885eb8 3479{
182446d0 3480 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3481
1f4c025b 3482 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3483}
3484
182446d0
TH
3485static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3486 struct cftype *cft, u64 val)
a7885eb8 3487{
182446d0 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3489
3dae7fec 3490 if (val > 100)
a7885eb8
KM
3491 return -EINVAL;
3492
14208b0e 3493 if (css->parent)
3dae7fec
JW
3494 memcg->swappiness = val;
3495 else
3496 vm_swappiness = val;
068b38c1 3497
a7885eb8
KM
3498 return 0;
3499}
3500
2e72b634
KS
3501static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3502{
3503 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3504 unsigned long usage;
2e72b634
KS
3505 int i;
3506
3507 rcu_read_lock();
3508 if (!swap)
2c488db2 3509 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3510 else
2c488db2 3511 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3512
3513 if (!t)
3514 goto unlock;
3515
ce00a967 3516 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3517
3518 /*
748dad36 3519 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3520 * If it's not true, a threshold was crossed after last
3521 * call of __mem_cgroup_threshold().
3522 */
5407a562 3523 i = t->current_threshold;
2e72b634
KS
3524
3525 /*
3526 * Iterate backward over array of thresholds starting from
3527 * current_threshold and check if a threshold is crossed.
3528 * If none of thresholds below usage is crossed, we read
3529 * only one element of the array here.
3530 */
3531 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3532 eventfd_signal(t->entries[i].eventfd, 1);
3533
3534 /* i = current_threshold + 1 */
3535 i++;
3536
3537 /*
3538 * Iterate forward over array of thresholds starting from
3539 * current_threshold+1 and check if a threshold is crossed.
3540 * If none of thresholds above usage is crossed, we read
3541 * only one element of the array here.
3542 */
3543 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3544 eventfd_signal(t->entries[i].eventfd, 1);
3545
3546 /* Update current_threshold */
5407a562 3547 t->current_threshold = i - 1;
2e72b634
KS
3548unlock:
3549 rcu_read_unlock();
3550}
3551
3552static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3553{
ad4ca5f4
KS
3554 while (memcg) {
3555 __mem_cgroup_threshold(memcg, false);
7941d214 3556 if (do_memsw_account())
ad4ca5f4
KS
3557 __mem_cgroup_threshold(memcg, true);
3558
3559 memcg = parent_mem_cgroup(memcg);
3560 }
2e72b634
KS
3561}
3562
3563static int compare_thresholds(const void *a, const void *b)
3564{
3565 const struct mem_cgroup_threshold *_a = a;
3566 const struct mem_cgroup_threshold *_b = b;
3567
2bff24a3
GT
3568 if (_a->threshold > _b->threshold)
3569 return 1;
3570
3571 if (_a->threshold < _b->threshold)
3572 return -1;
3573
3574 return 0;
2e72b634
KS
3575}
3576
c0ff4b85 3577static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3578{
3579 struct mem_cgroup_eventfd_list *ev;
3580
2bcf2e92
MH
3581 spin_lock(&memcg_oom_lock);
3582
c0ff4b85 3583 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3584 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3585
3586 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3587 return 0;
3588}
3589
c0ff4b85 3590static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3591{
7d74b06f
KH
3592 struct mem_cgroup *iter;
3593
c0ff4b85 3594 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3595 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3596}
3597
59b6f873 3598static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3599 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3600{
2c488db2
KS
3601 struct mem_cgroup_thresholds *thresholds;
3602 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3603 unsigned long threshold;
3604 unsigned long usage;
2c488db2 3605 int i, size, ret;
2e72b634 3606
650c5e56 3607 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3608 if (ret)
3609 return ret;
3610
3611 mutex_lock(&memcg->thresholds_lock);
2c488db2 3612
05b84301 3613 if (type == _MEM) {
2c488db2 3614 thresholds = &memcg->thresholds;
ce00a967 3615 usage = mem_cgroup_usage(memcg, false);
05b84301 3616 } else if (type == _MEMSWAP) {
2c488db2 3617 thresholds = &memcg->memsw_thresholds;
ce00a967 3618 usage = mem_cgroup_usage(memcg, true);
05b84301 3619 } else
2e72b634
KS
3620 BUG();
3621
2e72b634 3622 /* Check if a threshold crossed before adding a new one */
2c488db2 3623 if (thresholds->primary)
2e72b634
KS
3624 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3625
2c488db2 3626 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3627
3628 /* Allocate memory for new array of thresholds */
67b8046f 3629 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3630 if (!new) {
2e72b634
KS
3631 ret = -ENOMEM;
3632 goto unlock;
3633 }
2c488db2 3634 new->size = size;
2e72b634
KS
3635
3636 /* Copy thresholds (if any) to new array */
2c488db2
KS
3637 if (thresholds->primary) {
3638 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3639 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3640 }
3641
2e72b634 3642 /* Add new threshold */
2c488db2
KS
3643 new->entries[size - 1].eventfd = eventfd;
3644 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3645
3646 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3647 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3648 compare_thresholds, NULL);
3649
3650 /* Find current threshold */
2c488db2 3651 new->current_threshold = -1;
2e72b634 3652 for (i = 0; i < size; i++) {
748dad36 3653 if (new->entries[i].threshold <= usage) {
2e72b634 3654 /*
2c488db2
KS
3655 * new->current_threshold will not be used until
3656 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3657 * it here.
3658 */
2c488db2 3659 ++new->current_threshold;
748dad36
SZ
3660 } else
3661 break;
2e72b634
KS
3662 }
3663
2c488db2
KS
3664 /* Free old spare buffer and save old primary buffer as spare */
3665 kfree(thresholds->spare);
3666 thresholds->spare = thresholds->primary;
3667
3668 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3669
907860ed 3670 /* To be sure that nobody uses thresholds */
2e72b634
KS
3671 synchronize_rcu();
3672
2e72b634
KS
3673unlock:
3674 mutex_unlock(&memcg->thresholds_lock);
3675
3676 return ret;
3677}
3678
59b6f873 3679static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3680 struct eventfd_ctx *eventfd, const char *args)
3681{
59b6f873 3682 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3683}
3684
59b6f873 3685static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3686 struct eventfd_ctx *eventfd, const char *args)
3687{
59b6f873 3688 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3689}
3690
59b6f873 3691static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3692 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3693{
2c488db2
KS
3694 struct mem_cgroup_thresholds *thresholds;
3695 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3696 unsigned long usage;
2c488db2 3697 int i, j, size;
2e72b634
KS
3698
3699 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3700
3701 if (type == _MEM) {
2c488db2 3702 thresholds = &memcg->thresholds;
ce00a967 3703 usage = mem_cgroup_usage(memcg, false);
05b84301 3704 } else if (type == _MEMSWAP) {
2c488db2 3705 thresholds = &memcg->memsw_thresholds;
ce00a967 3706 usage = mem_cgroup_usage(memcg, true);
05b84301 3707 } else
2e72b634
KS
3708 BUG();
3709
371528ca
AV
3710 if (!thresholds->primary)
3711 goto unlock;
3712
2e72b634
KS
3713 /* Check if a threshold crossed before removing */
3714 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3715
3716 /* Calculate new number of threshold */
2c488db2
KS
3717 size = 0;
3718 for (i = 0; i < thresholds->primary->size; i++) {
3719 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3720 size++;
3721 }
3722
2c488db2 3723 new = thresholds->spare;
907860ed 3724
2e72b634
KS
3725 /* Set thresholds array to NULL if we don't have thresholds */
3726 if (!size) {
2c488db2
KS
3727 kfree(new);
3728 new = NULL;
907860ed 3729 goto swap_buffers;
2e72b634
KS
3730 }
3731
2c488db2 3732 new->size = size;
2e72b634
KS
3733
3734 /* Copy thresholds and find current threshold */
2c488db2
KS
3735 new->current_threshold = -1;
3736 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3737 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3738 continue;
3739
2c488db2 3740 new->entries[j] = thresholds->primary->entries[i];
748dad36 3741 if (new->entries[j].threshold <= usage) {
2e72b634 3742 /*
2c488db2 3743 * new->current_threshold will not be used
2e72b634
KS
3744 * until rcu_assign_pointer(), so it's safe to increment
3745 * it here.
3746 */
2c488db2 3747 ++new->current_threshold;
2e72b634
KS
3748 }
3749 j++;
3750 }
3751
907860ed 3752swap_buffers:
2c488db2
KS
3753 /* Swap primary and spare array */
3754 thresholds->spare = thresholds->primary;
8c757763 3755
2c488db2 3756 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3757
907860ed 3758 /* To be sure that nobody uses thresholds */
2e72b634 3759 synchronize_rcu();
6611d8d7
MC
3760
3761 /* If all events are unregistered, free the spare array */
3762 if (!new) {
3763 kfree(thresholds->spare);
3764 thresholds->spare = NULL;
3765 }
371528ca 3766unlock:
2e72b634 3767 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3768}
c1e862c1 3769
59b6f873 3770static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3771 struct eventfd_ctx *eventfd)
3772{
59b6f873 3773 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3774}
3775
59b6f873 3776static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3777 struct eventfd_ctx *eventfd)
3778{
59b6f873 3779 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3780}
3781
59b6f873 3782static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3783 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3784{
9490ff27 3785 struct mem_cgroup_eventfd_list *event;
9490ff27 3786
9490ff27
KH
3787 event = kmalloc(sizeof(*event), GFP_KERNEL);
3788 if (!event)
3789 return -ENOMEM;
3790
1af8efe9 3791 spin_lock(&memcg_oom_lock);
9490ff27
KH
3792
3793 event->eventfd = eventfd;
3794 list_add(&event->list, &memcg->oom_notify);
3795
3796 /* already in OOM ? */
c2b42d3c 3797 if (memcg->under_oom)
9490ff27 3798 eventfd_signal(eventfd, 1);
1af8efe9 3799 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3800
3801 return 0;
3802}
3803
59b6f873 3804static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3805 struct eventfd_ctx *eventfd)
9490ff27 3806{
9490ff27 3807 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3808
1af8efe9 3809 spin_lock(&memcg_oom_lock);
9490ff27 3810
c0ff4b85 3811 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3812 if (ev->eventfd == eventfd) {
3813 list_del(&ev->list);
3814 kfree(ev);
3815 }
3816 }
3817
1af8efe9 3818 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3819}
3820
2da8ca82 3821static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3822{
aa9694bb 3823 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 3824
791badbd 3825 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3826 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3827 seq_printf(sf, "oom_kill %lu\n",
3828 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3829 return 0;
3830}
3831
182446d0 3832static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3833 struct cftype *cft, u64 val)
3834{
182446d0 3835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3836
3837 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3838 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3839 return -EINVAL;
3840
c0ff4b85 3841 memcg->oom_kill_disable = val;
4d845ebf 3842 if (!val)
c0ff4b85 3843 memcg_oom_recover(memcg);
3dae7fec 3844
3c11ecf4
KH
3845 return 0;
3846}
3847
52ebea74
TH
3848#ifdef CONFIG_CGROUP_WRITEBACK
3849
841710aa
TH
3850static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3851{
3852 return wb_domain_init(&memcg->cgwb_domain, gfp);
3853}
3854
3855static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3856{
3857 wb_domain_exit(&memcg->cgwb_domain);
3858}
3859
2529bb3a
TH
3860static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3861{
3862 wb_domain_size_changed(&memcg->cgwb_domain);
3863}
3864
841710aa
TH
3865struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3866{
3867 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3868
3869 if (!memcg->css.parent)
3870 return NULL;
3871
3872 return &memcg->cgwb_domain;
3873}
3874
c2aa723a
TH
3875/**
3876 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3877 * @wb: bdi_writeback in question
c5edf9cd
TH
3878 * @pfilepages: out parameter for number of file pages
3879 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3880 * @pdirty: out parameter for number of dirty pages
3881 * @pwriteback: out parameter for number of pages under writeback
3882 *
c5edf9cd
TH
3883 * Determine the numbers of file, headroom, dirty, and writeback pages in
3884 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3885 * is a bit more involved.
c2aa723a 3886 *
c5edf9cd
TH
3887 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3888 * headroom is calculated as the lowest headroom of itself and the
3889 * ancestors. Note that this doesn't consider the actual amount of
3890 * available memory in the system. The caller should further cap
3891 * *@pheadroom accordingly.
c2aa723a 3892 */
c5edf9cd
TH
3893void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3894 unsigned long *pheadroom, unsigned long *pdirty,
3895 unsigned long *pwriteback)
c2aa723a
TH
3896{
3897 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3898 struct mem_cgroup *parent;
c2aa723a 3899
ccda7f43 3900 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3901
3902 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3903 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3904 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3905 (1 << LRU_ACTIVE_FILE));
3906 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3907
c2aa723a 3908 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3909 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3910 unsigned long used = page_counter_read(&memcg->memory);
3911
c5edf9cd 3912 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3913 memcg = parent;
3914 }
c2aa723a
TH
3915}
3916
841710aa
TH
3917#else /* CONFIG_CGROUP_WRITEBACK */
3918
3919static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3920{
3921 return 0;
3922}
3923
3924static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3925{
3926}
3927
2529bb3a
TH
3928static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3929{
3930}
3931
52ebea74
TH
3932#endif /* CONFIG_CGROUP_WRITEBACK */
3933
3bc942f3
TH
3934/*
3935 * DO NOT USE IN NEW FILES.
3936 *
3937 * "cgroup.event_control" implementation.
3938 *
3939 * This is way over-engineered. It tries to support fully configurable
3940 * events for each user. Such level of flexibility is completely
3941 * unnecessary especially in the light of the planned unified hierarchy.
3942 *
3943 * Please deprecate this and replace with something simpler if at all
3944 * possible.
3945 */
3946
79bd9814
TH
3947/*
3948 * Unregister event and free resources.
3949 *
3950 * Gets called from workqueue.
3951 */
3bc942f3 3952static void memcg_event_remove(struct work_struct *work)
79bd9814 3953{
3bc942f3
TH
3954 struct mem_cgroup_event *event =
3955 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3956 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3957
3958 remove_wait_queue(event->wqh, &event->wait);
3959
59b6f873 3960 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3961
3962 /* Notify userspace the event is going away. */
3963 eventfd_signal(event->eventfd, 1);
3964
3965 eventfd_ctx_put(event->eventfd);
3966 kfree(event);
59b6f873 3967 css_put(&memcg->css);
79bd9814
TH
3968}
3969
3970/*
a9a08845 3971 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3972 *
3973 * Called with wqh->lock held and interrupts disabled.
3974 */
ac6424b9 3975static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3976 int sync, void *key)
79bd9814 3977{
3bc942f3
TH
3978 struct mem_cgroup_event *event =
3979 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3980 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3981 __poll_t flags = key_to_poll(key);
79bd9814 3982
a9a08845 3983 if (flags & EPOLLHUP) {
79bd9814
TH
3984 /*
3985 * If the event has been detached at cgroup removal, we
3986 * can simply return knowing the other side will cleanup
3987 * for us.
3988 *
3989 * We can't race against event freeing since the other
3990 * side will require wqh->lock via remove_wait_queue(),
3991 * which we hold.
3992 */
fba94807 3993 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3994 if (!list_empty(&event->list)) {
3995 list_del_init(&event->list);
3996 /*
3997 * We are in atomic context, but cgroup_event_remove()
3998 * may sleep, so we have to call it in workqueue.
3999 */
4000 schedule_work(&event->remove);
4001 }
fba94807 4002 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4003 }
4004
4005 return 0;
4006}
4007
3bc942f3 4008static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4009 wait_queue_head_t *wqh, poll_table *pt)
4010{
3bc942f3
TH
4011 struct mem_cgroup_event *event =
4012 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4013
4014 event->wqh = wqh;
4015 add_wait_queue(wqh, &event->wait);
4016}
4017
4018/*
3bc942f3
TH
4019 * DO NOT USE IN NEW FILES.
4020 *
79bd9814
TH
4021 * Parse input and register new cgroup event handler.
4022 *
4023 * Input must be in format '<event_fd> <control_fd> <args>'.
4024 * Interpretation of args is defined by control file implementation.
4025 */
451af504
TH
4026static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4027 char *buf, size_t nbytes, loff_t off)
79bd9814 4028{
451af504 4029 struct cgroup_subsys_state *css = of_css(of);
fba94807 4030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4031 struct mem_cgroup_event *event;
79bd9814
TH
4032 struct cgroup_subsys_state *cfile_css;
4033 unsigned int efd, cfd;
4034 struct fd efile;
4035 struct fd cfile;
fba94807 4036 const char *name;
79bd9814
TH
4037 char *endp;
4038 int ret;
4039
451af504
TH
4040 buf = strstrip(buf);
4041
4042 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4043 if (*endp != ' ')
4044 return -EINVAL;
451af504 4045 buf = endp + 1;
79bd9814 4046
451af504 4047 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4048 if ((*endp != ' ') && (*endp != '\0'))
4049 return -EINVAL;
451af504 4050 buf = endp + 1;
79bd9814
TH
4051
4052 event = kzalloc(sizeof(*event), GFP_KERNEL);
4053 if (!event)
4054 return -ENOMEM;
4055
59b6f873 4056 event->memcg = memcg;
79bd9814 4057 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4058 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4059 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4060 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4061
4062 efile = fdget(efd);
4063 if (!efile.file) {
4064 ret = -EBADF;
4065 goto out_kfree;
4066 }
4067
4068 event->eventfd = eventfd_ctx_fileget(efile.file);
4069 if (IS_ERR(event->eventfd)) {
4070 ret = PTR_ERR(event->eventfd);
4071 goto out_put_efile;
4072 }
4073
4074 cfile = fdget(cfd);
4075 if (!cfile.file) {
4076 ret = -EBADF;
4077 goto out_put_eventfd;
4078 }
4079
4080 /* the process need read permission on control file */
4081 /* AV: shouldn't we check that it's been opened for read instead? */
4082 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4083 if (ret < 0)
4084 goto out_put_cfile;
4085
fba94807
TH
4086 /*
4087 * Determine the event callbacks and set them in @event. This used
4088 * to be done via struct cftype but cgroup core no longer knows
4089 * about these events. The following is crude but the whole thing
4090 * is for compatibility anyway.
3bc942f3
TH
4091 *
4092 * DO NOT ADD NEW FILES.
fba94807 4093 */
b583043e 4094 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4095
4096 if (!strcmp(name, "memory.usage_in_bytes")) {
4097 event->register_event = mem_cgroup_usage_register_event;
4098 event->unregister_event = mem_cgroup_usage_unregister_event;
4099 } else if (!strcmp(name, "memory.oom_control")) {
4100 event->register_event = mem_cgroup_oom_register_event;
4101 event->unregister_event = mem_cgroup_oom_unregister_event;
4102 } else if (!strcmp(name, "memory.pressure_level")) {
4103 event->register_event = vmpressure_register_event;
4104 event->unregister_event = vmpressure_unregister_event;
4105 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4106 event->register_event = memsw_cgroup_usage_register_event;
4107 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4108 } else {
4109 ret = -EINVAL;
4110 goto out_put_cfile;
4111 }
4112
79bd9814 4113 /*
b5557c4c
TH
4114 * Verify @cfile should belong to @css. Also, remaining events are
4115 * automatically removed on cgroup destruction but the removal is
4116 * asynchronous, so take an extra ref on @css.
79bd9814 4117 */
b583043e 4118 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4119 &memory_cgrp_subsys);
79bd9814 4120 ret = -EINVAL;
5a17f543 4121 if (IS_ERR(cfile_css))
79bd9814 4122 goto out_put_cfile;
5a17f543
TH
4123 if (cfile_css != css) {
4124 css_put(cfile_css);
79bd9814 4125 goto out_put_cfile;
5a17f543 4126 }
79bd9814 4127
451af504 4128 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4129 if (ret)
4130 goto out_put_css;
4131
9965ed17 4132 vfs_poll(efile.file, &event->pt);
79bd9814 4133
fba94807
TH
4134 spin_lock(&memcg->event_list_lock);
4135 list_add(&event->list, &memcg->event_list);
4136 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4137
4138 fdput(cfile);
4139 fdput(efile);
4140
451af504 4141 return nbytes;
79bd9814
TH
4142
4143out_put_css:
b5557c4c 4144 css_put(css);
79bd9814
TH
4145out_put_cfile:
4146 fdput(cfile);
4147out_put_eventfd:
4148 eventfd_ctx_put(event->eventfd);
4149out_put_efile:
4150 fdput(efile);
4151out_kfree:
4152 kfree(event);
4153
4154 return ret;
4155}
4156
241994ed 4157static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4158 {
0eea1030 4159 .name = "usage_in_bytes",
8c7c6e34 4160 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4161 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4162 },
c84872e1
PE
4163 {
4164 .name = "max_usage_in_bytes",
8c7c6e34 4165 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4166 .write = mem_cgroup_reset,
791badbd 4167 .read_u64 = mem_cgroup_read_u64,
c84872e1 4168 },
8cdea7c0 4169 {
0eea1030 4170 .name = "limit_in_bytes",
8c7c6e34 4171 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4172 .write = mem_cgroup_write,
791badbd 4173 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4174 },
296c81d8
BS
4175 {
4176 .name = "soft_limit_in_bytes",
4177 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4178 .write = mem_cgroup_write,
791badbd 4179 .read_u64 = mem_cgroup_read_u64,
296c81d8 4180 },
8cdea7c0
BS
4181 {
4182 .name = "failcnt",
8c7c6e34 4183 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4184 .write = mem_cgroup_reset,
791badbd 4185 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4186 },
d2ceb9b7
KH
4187 {
4188 .name = "stat",
2da8ca82 4189 .seq_show = memcg_stat_show,
d2ceb9b7 4190 },
c1e862c1
KH
4191 {
4192 .name = "force_empty",
6770c64e 4193 .write = mem_cgroup_force_empty_write,
c1e862c1 4194 },
18f59ea7
BS
4195 {
4196 .name = "use_hierarchy",
4197 .write_u64 = mem_cgroup_hierarchy_write,
4198 .read_u64 = mem_cgroup_hierarchy_read,
4199 },
79bd9814 4200 {
3bc942f3 4201 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4202 .write = memcg_write_event_control,
7dbdb199 4203 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4204 },
a7885eb8
KM
4205 {
4206 .name = "swappiness",
4207 .read_u64 = mem_cgroup_swappiness_read,
4208 .write_u64 = mem_cgroup_swappiness_write,
4209 },
7dc74be0
DN
4210 {
4211 .name = "move_charge_at_immigrate",
4212 .read_u64 = mem_cgroup_move_charge_read,
4213 .write_u64 = mem_cgroup_move_charge_write,
4214 },
9490ff27
KH
4215 {
4216 .name = "oom_control",
2da8ca82 4217 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4218 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4219 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4220 },
70ddf637
AV
4221 {
4222 .name = "pressure_level",
70ddf637 4223 },
406eb0c9
YH
4224#ifdef CONFIG_NUMA
4225 {
4226 .name = "numa_stat",
2da8ca82 4227 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4228 },
4229#endif
510fc4e1
GC
4230 {
4231 .name = "kmem.limit_in_bytes",
4232 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4233 .write = mem_cgroup_write,
791badbd 4234 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4235 },
4236 {
4237 .name = "kmem.usage_in_bytes",
4238 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4239 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4240 },
4241 {
4242 .name = "kmem.failcnt",
4243 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4244 .write = mem_cgroup_reset,
791badbd 4245 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4246 },
4247 {
4248 .name = "kmem.max_usage_in_bytes",
4249 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4250 .write = mem_cgroup_reset,
791badbd 4251 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4252 },
5b365771 4253#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4254 {
4255 .name = "kmem.slabinfo",
bc2791f8
TH
4256 .seq_start = memcg_slab_start,
4257 .seq_next = memcg_slab_next,
4258 .seq_stop = memcg_slab_stop,
b047501c 4259 .seq_show = memcg_slab_show,
749c5415
GC
4260 },
4261#endif
d55f90bf
VD
4262 {
4263 .name = "kmem.tcp.limit_in_bytes",
4264 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4265 .write = mem_cgroup_write,
4266 .read_u64 = mem_cgroup_read_u64,
4267 },
4268 {
4269 .name = "kmem.tcp.usage_in_bytes",
4270 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4271 .read_u64 = mem_cgroup_read_u64,
4272 },
4273 {
4274 .name = "kmem.tcp.failcnt",
4275 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4276 .write = mem_cgroup_reset,
4277 .read_u64 = mem_cgroup_read_u64,
4278 },
4279 {
4280 .name = "kmem.tcp.max_usage_in_bytes",
4281 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4282 .write = mem_cgroup_reset,
4283 .read_u64 = mem_cgroup_read_u64,
4284 },
6bc10349 4285 { }, /* terminate */
af36f906 4286};
8c7c6e34 4287
73f576c0
JW
4288/*
4289 * Private memory cgroup IDR
4290 *
4291 * Swap-out records and page cache shadow entries need to store memcg
4292 * references in constrained space, so we maintain an ID space that is
4293 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4294 * memory-controlled cgroups to 64k.
4295 *
4296 * However, there usually are many references to the oflline CSS after
4297 * the cgroup has been destroyed, such as page cache or reclaimable
4298 * slab objects, that don't need to hang on to the ID. We want to keep
4299 * those dead CSS from occupying IDs, or we might quickly exhaust the
4300 * relatively small ID space and prevent the creation of new cgroups
4301 * even when there are much fewer than 64k cgroups - possibly none.
4302 *
4303 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4304 * be freed and recycled when it's no longer needed, which is usually
4305 * when the CSS is offlined.
4306 *
4307 * The only exception to that are records of swapped out tmpfs/shmem
4308 * pages that need to be attributed to live ancestors on swapin. But
4309 * those references are manageable from userspace.
4310 */
4311
4312static DEFINE_IDR(mem_cgroup_idr);
4313
7e97de0b
KT
4314static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4315{
4316 if (memcg->id.id > 0) {
4317 idr_remove(&mem_cgroup_idr, memcg->id.id);
4318 memcg->id.id = 0;
4319 }
4320}
4321
615d66c3 4322static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4323{
1c2d479a 4324 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4325}
4326
615d66c3 4327static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4328{
1c2d479a 4329 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4330 mem_cgroup_id_remove(memcg);
73f576c0
JW
4331
4332 /* Memcg ID pins CSS */
4333 css_put(&memcg->css);
4334 }
4335}
4336
615d66c3
VD
4337static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4338{
4339 mem_cgroup_id_get_many(memcg, 1);
4340}
4341
4342static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4343{
4344 mem_cgroup_id_put_many(memcg, 1);
4345}
4346
73f576c0
JW
4347/**
4348 * mem_cgroup_from_id - look up a memcg from a memcg id
4349 * @id: the memcg id to look up
4350 *
4351 * Caller must hold rcu_read_lock().
4352 */
4353struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4354{
4355 WARN_ON_ONCE(!rcu_read_lock_held());
4356 return idr_find(&mem_cgroup_idr, id);
4357}
4358
ef8f2327 4359static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4360{
4361 struct mem_cgroup_per_node *pn;
ef8f2327 4362 int tmp = node;
1ecaab2b
KH
4363 /*
4364 * This routine is called against possible nodes.
4365 * But it's BUG to call kmalloc() against offline node.
4366 *
4367 * TODO: this routine can waste much memory for nodes which will
4368 * never be onlined. It's better to use memory hotplug callback
4369 * function.
4370 */
41e3355d
KH
4371 if (!node_state(node, N_NORMAL_MEMORY))
4372 tmp = -1;
17295c88 4373 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4374 if (!pn)
4375 return 1;
1ecaab2b 4376
a983b5eb
JW
4377 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4378 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4379 kfree(pn);
4380 return 1;
4381 }
4382
ef8f2327
MG
4383 lruvec_init(&pn->lruvec);
4384 pn->usage_in_excess = 0;
4385 pn->on_tree = false;
4386 pn->memcg = memcg;
4387
54f72fe0 4388 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4389 return 0;
4390}
4391
ef8f2327 4392static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4393{
00f3ca2c
JW
4394 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4395
4eaf431f
MH
4396 if (!pn)
4397 return;
4398
a983b5eb 4399 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4400 kfree(pn);
1ecaab2b
KH
4401}
4402
40e952f9 4403static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4404{
c8b2a36f 4405 int node;
59927fb9 4406
c8b2a36f 4407 for_each_node(node)
ef8f2327 4408 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4409 free_percpu(memcg->stat_cpu);
8ff69e2c 4410 kfree(memcg);
59927fb9 4411}
3afe36b1 4412
40e952f9
TE
4413static void mem_cgroup_free(struct mem_cgroup *memcg)
4414{
4415 memcg_wb_domain_exit(memcg);
4416 __mem_cgroup_free(memcg);
4417}
4418
0b8f73e1 4419static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4420{
d142e3e6 4421 struct mem_cgroup *memcg;
0b8f73e1 4422 size_t size;
6d12e2d8 4423 int node;
8cdea7c0 4424
0b8f73e1
JW
4425 size = sizeof(struct mem_cgroup);
4426 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4427
4428 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4429 if (!memcg)
0b8f73e1
JW
4430 return NULL;
4431
73f576c0
JW
4432 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4433 1, MEM_CGROUP_ID_MAX,
4434 GFP_KERNEL);
4435 if (memcg->id.id < 0)
4436 goto fail;
4437
a983b5eb
JW
4438 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4439 if (!memcg->stat_cpu)
0b8f73e1 4440 goto fail;
78fb7466 4441
3ed28fa1 4442 for_each_node(node)
ef8f2327 4443 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4444 goto fail;
f64c3f54 4445
0b8f73e1
JW
4446 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4447 goto fail;
28dbc4b6 4448
f7e1cb6e 4449 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4450 memcg->last_scanned_node = MAX_NUMNODES;
4451 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4452 mutex_init(&memcg->thresholds_lock);
4453 spin_lock_init(&memcg->move_lock);
70ddf637 4454 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4455 INIT_LIST_HEAD(&memcg->event_list);
4456 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4457 memcg->socket_pressure = jiffies;
84c07d11 4458#ifdef CONFIG_MEMCG_KMEM
900a38f0 4459 memcg->kmemcg_id = -1;
900a38f0 4460#endif
52ebea74
TH
4461#ifdef CONFIG_CGROUP_WRITEBACK
4462 INIT_LIST_HEAD(&memcg->cgwb_list);
4463#endif
73f576c0 4464 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4465 return memcg;
4466fail:
7e97de0b 4467 mem_cgroup_id_remove(memcg);
40e952f9 4468 __mem_cgroup_free(memcg);
0b8f73e1 4469 return NULL;
d142e3e6
GC
4470}
4471
0b8f73e1
JW
4472static struct cgroup_subsys_state * __ref
4473mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4474{
0b8f73e1
JW
4475 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4476 struct mem_cgroup *memcg;
4477 long error = -ENOMEM;
d142e3e6 4478
0b8f73e1
JW
4479 memcg = mem_cgroup_alloc();
4480 if (!memcg)
4481 return ERR_PTR(error);
d142e3e6 4482
0b8f73e1
JW
4483 memcg->high = PAGE_COUNTER_MAX;
4484 memcg->soft_limit = PAGE_COUNTER_MAX;
4485 if (parent) {
4486 memcg->swappiness = mem_cgroup_swappiness(parent);
4487 memcg->oom_kill_disable = parent->oom_kill_disable;
4488 }
4489 if (parent && parent->use_hierarchy) {
4490 memcg->use_hierarchy = true;
3e32cb2e 4491 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4492 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4493 page_counter_init(&memcg->memsw, &parent->memsw);
4494 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4495 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4496 } else {
3e32cb2e 4497 page_counter_init(&memcg->memory, NULL);
37e84351 4498 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4499 page_counter_init(&memcg->memsw, NULL);
4500 page_counter_init(&memcg->kmem, NULL);
0db15298 4501 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4502 /*
4503 * Deeper hierachy with use_hierarchy == false doesn't make
4504 * much sense so let cgroup subsystem know about this
4505 * unfortunate state in our controller.
4506 */
d142e3e6 4507 if (parent != root_mem_cgroup)
073219e9 4508 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4509 }
d6441637 4510
0b8f73e1
JW
4511 /* The following stuff does not apply to the root */
4512 if (!parent) {
4513 root_mem_cgroup = memcg;
4514 return &memcg->css;
4515 }
4516
b313aeee 4517 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4518 if (error)
4519 goto fail;
127424c8 4520
f7e1cb6e 4521 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4522 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4523
0b8f73e1
JW
4524 return &memcg->css;
4525fail:
7e97de0b 4526 mem_cgroup_id_remove(memcg);
0b8f73e1 4527 mem_cgroup_free(memcg);
ea3a9645 4528 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4529}
4530
73f576c0 4531static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4532{
58fa2a55
VD
4533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4534
0a4465d3
KT
4535 /*
4536 * A memcg must be visible for memcg_expand_shrinker_maps()
4537 * by the time the maps are allocated. So, we allocate maps
4538 * here, when for_each_mem_cgroup() can't skip it.
4539 */
4540 if (memcg_alloc_shrinker_maps(memcg)) {
4541 mem_cgroup_id_remove(memcg);
4542 return -ENOMEM;
4543 }
4544
73f576c0 4545 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4546 refcount_set(&memcg->id.ref, 1);
73f576c0 4547 css_get(css);
2f7dd7a4 4548 return 0;
8cdea7c0
BS
4549}
4550
eb95419b 4551static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4552{
eb95419b 4553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4554 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4555
4556 /*
4557 * Unregister events and notify userspace.
4558 * Notify userspace about cgroup removing only after rmdir of cgroup
4559 * directory to avoid race between userspace and kernelspace.
4560 */
fba94807
TH
4561 spin_lock(&memcg->event_list_lock);
4562 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4563 list_del_init(&event->list);
4564 schedule_work(&event->remove);
4565 }
fba94807 4566 spin_unlock(&memcg->event_list_lock);
ec64f515 4567
bf8d5d52 4568 page_counter_set_min(&memcg->memory, 0);
23067153 4569 page_counter_set_low(&memcg->memory, 0);
63677c74 4570
567e9ab2 4571 memcg_offline_kmem(memcg);
52ebea74 4572 wb_memcg_offline(memcg);
73f576c0 4573
591edfb1
RG
4574 drain_all_stock(memcg);
4575
73f576c0 4576 mem_cgroup_id_put(memcg);
df878fb0
KH
4577}
4578
6df38689
VD
4579static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4580{
4581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4582
4583 invalidate_reclaim_iterators(memcg);
4584}
4585
eb95419b 4586static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4587{
eb95419b 4588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4589
f7e1cb6e 4590 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4591 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4592
0db15298 4593 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4594 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4595
0b8f73e1
JW
4596 vmpressure_cleanup(&memcg->vmpressure);
4597 cancel_work_sync(&memcg->high_work);
4598 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4599 memcg_free_shrinker_maps(memcg);
d886f4e4 4600 memcg_free_kmem(memcg);
0b8f73e1 4601 mem_cgroup_free(memcg);
8cdea7c0
BS
4602}
4603
1ced953b
TH
4604/**
4605 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4606 * @css: the target css
4607 *
4608 * Reset the states of the mem_cgroup associated with @css. This is
4609 * invoked when the userland requests disabling on the default hierarchy
4610 * but the memcg is pinned through dependency. The memcg should stop
4611 * applying policies and should revert to the vanilla state as it may be
4612 * made visible again.
4613 *
4614 * The current implementation only resets the essential configurations.
4615 * This needs to be expanded to cover all the visible parts.
4616 */
4617static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4618{
4619 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4620
bbec2e15
RG
4621 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4622 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4623 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4624 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4625 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4626 page_counter_set_min(&memcg->memory, 0);
23067153 4627 page_counter_set_low(&memcg->memory, 0);
241994ed 4628 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4629 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4630 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4631}
4632
02491447 4633#ifdef CONFIG_MMU
7dc74be0 4634/* Handlers for move charge at task migration. */
854ffa8d 4635static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4636{
05b84301 4637 int ret;
9476db97 4638
d0164adc
MG
4639 /* Try a single bulk charge without reclaim first, kswapd may wake */
4640 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4641 if (!ret) {
854ffa8d 4642 mc.precharge += count;
854ffa8d
DN
4643 return ret;
4644 }
9476db97 4645
3674534b 4646 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4647 while (count--) {
3674534b 4648 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4649 if (ret)
38c5d72f 4650 return ret;
854ffa8d 4651 mc.precharge++;
9476db97 4652 cond_resched();
854ffa8d 4653 }
9476db97 4654 return 0;
4ffef5fe
DN
4655}
4656
4ffef5fe
DN
4657union mc_target {
4658 struct page *page;
02491447 4659 swp_entry_t ent;
4ffef5fe
DN
4660};
4661
4ffef5fe 4662enum mc_target_type {
8d32ff84 4663 MC_TARGET_NONE = 0,
4ffef5fe 4664 MC_TARGET_PAGE,
02491447 4665 MC_TARGET_SWAP,
c733a828 4666 MC_TARGET_DEVICE,
4ffef5fe
DN
4667};
4668
90254a65
DN
4669static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4670 unsigned long addr, pte_t ptent)
4ffef5fe 4671{
c733a828 4672 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4673
90254a65
DN
4674 if (!page || !page_mapped(page))
4675 return NULL;
4676 if (PageAnon(page)) {
1dfab5ab 4677 if (!(mc.flags & MOVE_ANON))
90254a65 4678 return NULL;
1dfab5ab
JW
4679 } else {
4680 if (!(mc.flags & MOVE_FILE))
4681 return NULL;
4682 }
90254a65
DN
4683 if (!get_page_unless_zero(page))
4684 return NULL;
4685
4686 return page;
4687}
4688
c733a828 4689#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4690static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4691 pte_t ptent, swp_entry_t *entry)
90254a65 4692{
90254a65
DN
4693 struct page *page = NULL;
4694 swp_entry_t ent = pte_to_swp_entry(ptent);
4695
1dfab5ab 4696 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4697 return NULL;
c733a828
JG
4698
4699 /*
4700 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4701 * a device and because they are not accessible by CPU they are store
4702 * as special swap entry in the CPU page table.
4703 */
4704 if (is_device_private_entry(ent)) {
4705 page = device_private_entry_to_page(ent);
4706 /*
4707 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4708 * a refcount of 1 when free (unlike normal page)
4709 */
4710 if (!page_ref_add_unless(page, 1, 1))
4711 return NULL;
4712 return page;
4713 }
4714
4b91355e
KH
4715 /*
4716 * Because lookup_swap_cache() updates some statistics counter,
4717 * we call find_get_page() with swapper_space directly.
4718 */
f6ab1f7f 4719 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4720 if (do_memsw_account())
90254a65
DN
4721 entry->val = ent.val;
4722
4723 return page;
4724}
4b91355e
KH
4725#else
4726static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4727 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4728{
4729 return NULL;
4730}
4731#endif
90254a65 4732
87946a72
DN
4733static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4734 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4735{
4736 struct page *page = NULL;
87946a72
DN
4737 struct address_space *mapping;
4738 pgoff_t pgoff;
4739
4740 if (!vma->vm_file) /* anonymous vma */
4741 return NULL;
1dfab5ab 4742 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4743 return NULL;
4744
87946a72 4745 mapping = vma->vm_file->f_mapping;
0661a336 4746 pgoff = linear_page_index(vma, addr);
87946a72
DN
4747
4748 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4749#ifdef CONFIG_SWAP
4750 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4751 if (shmem_mapping(mapping)) {
4752 page = find_get_entry(mapping, pgoff);
3159f943 4753 if (xa_is_value(page)) {
139b6a6f 4754 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4755 if (do_memsw_account())
139b6a6f 4756 *entry = swp;
f6ab1f7f
HY
4757 page = find_get_page(swap_address_space(swp),
4758 swp_offset(swp));
139b6a6f
JW
4759 }
4760 } else
4761 page = find_get_page(mapping, pgoff);
4762#else
4763 page = find_get_page(mapping, pgoff);
aa3b1895 4764#endif
87946a72
DN
4765 return page;
4766}
4767
b1b0deab
CG
4768/**
4769 * mem_cgroup_move_account - move account of the page
4770 * @page: the page
25843c2b 4771 * @compound: charge the page as compound or small page
b1b0deab
CG
4772 * @from: mem_cgroup which the page is moved from.
4773 * @to: mem_cgroup which the page is moved to. @from != @to.
4774 *
3ac808fd 4775 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4776 *
4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778 * from old cgroup.
4779 */
4780static int mem_cgroup_move_account(struct page *page,
f627c2f5 4781 bool compound,
b1b0deab
CG
4782 struct mem_cgroup *from,
4783 struct mem_cgroup *to)
4784{
4785 unsigned long flags;
f627c2f5 4786 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4787 int ret;
c4843a75 4788 bool anon;
b1b0deab
CG
4789
4790 VM_BUG_ON(from == to);
4791 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4792 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4793
4794 /*
6a93ca8f 4795 * Prevent mem_cgroup_migrate() from looking at
45637bab 4796 * page->mem_cgroup of its source page while we change it.
b1b0deab 4797 */
f627c2f5 4798 ret = -EBUSY;
b1b0deab
CG
4799 if (!trylock_page(page))
4800 goto out;
4801
4802 ret = -EINVAL;
4803 if (page->mem_cgroup != from)
4804 goto out_unlock;
4805
c4843a75
GT
4806 anon = PageAnon(page);
4807
b1b0deab
CG
4808 spin_lock_irqsave(&from->move_lock, flags);
4809
c4843a75 4810 if (!anon && page_mapped(page)) {
c9019e9b
JW
4811 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4812 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4813 }
4814
c4843a75
GT
4815 /*
4816 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4817 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4818 * So mapping should be stable for dirty pages.
4819 */
4820 if (!anon && PageDirty(page)) {
4821 struct address_space *mapping = page_mapping(page);
4822
4823 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4824 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4825 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4826 }
4827 }
4828
b1b0deab 4829 if (PageWriteback(page)) {
c9019e9b
JW
4830 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4831 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4832 }
4833
4834 /*
4835 * It is safe to change page->mem_cgroup here because the page
4836 * is referenced, charged, and isolated - we can't race with
4837 * uncharging, charging, migration, or LRU putback.
4838 */
4839
4840 /* caller should have done css_get */
4841 page->mem_cgroup = to;
4842 spin_unlock_irqrestore(&from->move_lock, flags);
4843
4844 ret = 0;
4845
4846 local_irq_disable();
f627c2f5 4847 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4848 memcg_check_events(to, page);
f627c2f5 4849 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4850 memcg_check_events(from, page);
4851 local_irq_enable();
4852out_unlock:
4853 unlock_page(page);
4854out:
4855 return ret;
4856}
4857
7cf7806c
LR
4858/**
4859 * get_mctgt_type - get target type of moving charge
4860 * @vma: the vma the pte to be checked belongs
4861 * @addr: the address corresponding to the pte to be checked
4862 * @ptent: the pte to be checked
4863 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4864 *
4865 * Returns
4866 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4867 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4868 * move charge. if @target is not NULL, the page is stored in target->page
4869 * with extra refcnt got(Callers should handle it).
4870 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4871 * target for charge migration. if @target is not NULL, the entry is stored
4872 * in target->ent.
df6ad698
JG
4873 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4874 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4875 * For now we such page is charge like a regular page would be as for all
4876 * intent and purposes it is just special memory taking the place of a
4877 * regular page.
c733a828
JG
4878 *
4879 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4880 *
4881 * Called with pte lock held.
4882 */
4883
8d32ff84 4884static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4885 unsigned long addr, pte_t ptent, union mc_target *target)
4886{
4887 struct page *page = NULL;
8d32ff84 4888 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4889 swp_entry_t ent = { .val = 0 };
4890
4891 if (pte_present(ptent))
4892 page = mc_handle_present_pte(vma, addr, ptent);
4893 else if (is_swap_pte(ptent))
48406ef8 4894 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4895 else if (pte_none(ptent))
87946a72 4896 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4897
4898 if (!page && !ent.val)
8d32ff84 4899 return ret;
02491447 4900 if (page) {
02491447 4901 /*
0a31bc97 4902 * Do only loose check w/o serialization.
1306a85a 4903 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4904 * not under LRU exclusion.
02491447 4905 */
1306a85a 4906 if (page->mem_cgroup == mc.from) {
02491447 4907 ret = MC_TARGET_PAGE;
df6ad698
JG
4908 if (is_device_private_page(page) ||
4909 is_device_public_page(page))
c733a828 4910 ret = MC_TARGET_DEVICE;
02491447
DN
4911 if (target)
4912 target->page = page;
4913 }
4914 if (!ret || !target)
4915 put_page(page);
4916 }
3e14a57b
HY
4917 /*
4918 * There is a swap entry and a page doesn't exist or isn't charged.
4919 * But we cannot move a tail-page in a THP.
4920 */
4921 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4922 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4923 ret = MC_TARGET_SWAP;
4924 if (target)
4925 target->ent = ent;
4ffef5fe 4926 }
4ffef5fe
DN
4927 return ret;
4928}
4929
12724850
NH
4930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931/*
d6810d73
HY
4932 * We don't consider PMD mapped swapping or file mapped pages because THP does
4933 * not support them for now.
12724850
NH
4934 * Caller should make sure that pmd_trans_huge(pmd) is true.
4935 */
4936static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4937 unsigned long addr, pmd_t pmd, union mc_target *target)
4938{
4939 struct page *page = NULL;
12724850
NH
4940 enum mc_target_type ret = MC_TARGET_NONE;
4941
84c3fc4e
ZY
4942 if (unlikely(is_swap_pmd(pmd))) {
4943 VM_BUG_ON(thp_migration_supported() &&
4944 !is_pmd_migration_entry(pmd));
4945 return ret;
4946 }
12724850 4947 page = pmd_page(pmd);
309381fe 4948 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4949 if (!(mc.flags & MOVE_ANON))
12724850 4950 return ret;
1306a85a 4951 if (page->mem_cgroup == mc.from) {
12724850
NH
4952 ret = MC_TARGET_PAGE;
4953 if (target) {
4954 get_page(page);
4955 target->page = page;
4956 }
4957 }
4958 return ret;
4959}
4960#else
4961static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4962 unsigned long addr, pmd_t pmd, union mc_target *target)
4963{
4964 return MC_TARGET_NONE;
4965}
4966#endif
4967
4ffef5fe
DN
4968static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4969 unsigned long addr, unsigned long end,
4970 struct mm_walk *walk)
4971{
26bcd64a 4972 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4973 pte_t *pte;
4974 spinlock_t *ptl;
4975
b6ec57f4
KS
4976 ptl = pmd_trans_huge_lock(pmd, vma);
4977 if (ptl) {
c733a828
JG
4978 /*
4979 * Note their can not be MC_TARGET_DEVICE for now as we do not
4980 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4981 * MEMORY_DEVICE_PRIVATE but this might change.
4982 */
12724850
NH
4983 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4984 mc.precharge += HPAGE_PMD_NR;
bf929152 4985 spin_unlock(ptl);
1a5a9906 4986 return 0;
12724850 4987 }
03319327 4988
45f83cef
AA
4989 if (pmd_trans_unstable(pmd))
4990 return 0;
4ffef5fe
DN
4991 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4992 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4993 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4994 mc.precharge++; /* increment precharge temporarily */
4995 pte_unmap_unlock(pte - 1, ptl);
4996 cond_resched();
4997
7dc74be0
DN
4998 return 0;
4999}
5000
4ffef5fe
DN
5001static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5002{
5003 unsigned long precharge;
4ffef5fe 5004
26bcd64a
NH
5005 struct mm_walk mem_cgroup_count_precharge_walk = {
5006 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5007 .mm = mm,
5008 };
dfe076b0 5009 down_read(&mm->mmap_sem);
0247f3f4
JM
5010 walk_page_range(0, mm->highest_vm_end,
5011 &mem_cgroup_count_precharge_walk);
dfe076b0 5012 up_read(&mm->mmap_sem);
4ffef5fe
DN
5013
5014 precharge = mc.precharge;
5015 mc.precharge = 0;
5016
5017 return precharge;
5018}
5019
4ffef5fe
DN
5020static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5021{
dfe076b0
DN
5022 unsigned long precharge = mem_cgroup_count_precharge(mm);
5023
5024 VM_BUG_ON(mc.moving_task);
5025 mc.moving_task = current;
5026 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5027}
5028
dfe076b0
DN
5029/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5030static void __mem_cgroup_clear_mc(void)
4ffef5fe 5031{
2bd9bb20
KH
5032 struct mem_cgroup *from = mc.from;
5033 struct mem_cgroup *to = mc.to;
5034
4ffef5fe 5035 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5036 if (mc.precharge) {
00501b53 5037 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5038 mc.precharge = 0;
5039 }
5040 /*
5041 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5042 * we must uncharge here.
5043 */
5044 if (mc.moved_charge) {
00501b53 5045 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5046 mc.moved_charge = 0;
4ffef5fe 5047 }
483c30b5
DN
5048 /* we must fixup refcnts and charges */
5049 if (mc.moved_swap) {
483c30b5 5050 /* uncharge swap account from the old cgroup */
ce00a967 5051 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5052 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5053
615d66c3
VD
5054 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5055
05b84301 5056 /*
3e32cb2e
JW
5057 * we charged both to->memory and to->memsw, so we
5058 * should uncharge to->memory.
05b84301 5059 */
ce00a967 5060 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5061 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5062
615d66c3
VD
5063 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5064 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5065
483c30b5
DN
5066 mc.moved_swap = 0;
5067 }
dfe076b0
DN
5068 memcg_oom_recover(from);
5069 memcg_oom_recover(to);
5070 wake_up_all(&mc.waitq);
5071}
5072
5073static void mem_cgroup_clear_mc(void)
5074{
264a0ae1
TH
5075 struct mm_struct *mm = mc.mm;
5076
dfe076b0
DN
5077 /*
5078 * we must clear moving_task before waking up waiters at the end of
5079 * task migration.
5080 */
5081 mc.moving_task = NULL;
5082 __mem_cgroup_clear_mc();
2bd9bb20 5083 spin_lock(&mc.lock);
4ffef5fe
DN
5084 mc.from = NULL;
5085 mc.to = NULL;
264a0ae1 5086 mc.mm = NULL;
2bd9bb20 5087 spin_unlock(&mc.lock);
264a0ae1
TH
5088
5089 mmput(mm);
4ffef5fe
DN
5090}
5091
1f7dd3e5 5092static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5093{
1f7dd3e5 5094 struct cgroup_subsys_state *css;
eed67d75 5095 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5096 struct mem_cgroup *from;
4530eddb 5097 struct task_struct *leader, *p;
9f2115f9 5098 struct mm_struct *mm;
1dfab5ab 5099 unsigned long move_flags;
9f2115f9 5100 int ret = 0;
7dc74be0 5101
1f7dd3e5
TH
5102 /* charge immigration isn't supported on the default hierarchy */
5103 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5104 return 0;
5105
4530eddb
TH
5106 /*
5107 * Multi-process migrations only happen on the default hierarchy
5108 * where charge immigration is not used. Perform charge
5109 * immigration if @tset contains a leader and whine if there are
5110 * multiple.
5111 */
5112 p = NULL;
1f7dd3e5 5113 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5114 WARN_ON_ONCE(p);
5115 p = leader;
1f7dd3e5 5116 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5117 }
5118 if (!p)
5119 return 0;
5120
1f7dd3e5
TH
5121 /*
5122 * We are now commited to this value whatever it is. Changes in this
5123 * tunable will only affect upcoming migrations, not the current one.
5124 * So we need to save it, and keep it going.
5125 */
5126 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5127 if (!move_flags)
5128 return 0;
5129
9f2115f9
TH
5130 from = mem_cgroup_from_task(p);
5131
5132 VM_BUG_ON(from == memcg);
5133
5134 mm = get_task_mm(p);
5135 if (!mm)
5136 return 0;
5137 /* We move charges only when we move a owner of the mm */
5138 if (mm->owner == p) {
5139 VM_BUG_ON(mc.from);
5140 VM_BUG_ON(mc.to);
5141 VM_BUG_ON(mc.precharge);
5142 VM_BUG_ON(mc.moved_charge);
5143 VM_BUG_ON(mc.moved_swap);
5144
5145 spin_lock(&mc.lock);
264a0ae1 5146 mc.mm = mm;
9f2115f9
TH
5147 mc.from = from;
5148 mc.to = memcg;
5149 mc.flags = move_flags;
5150 spin_unlock(&mc.lock);
5151 /* We set mc.moving_task later */
5152
5153 ret = mem_cgroup_precharge_mc(mm);
5154 if (ret)
5155 mem_cgroup_clear_mc();
264a0ae1
TH
5156 } else {
5157 mmput(mm);
7dc74be0
DN
5158 }
5159 return ret;
5160}
5161
1f7dd3e5 5162static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5163{
4e2f245d
JW
5164 if (mc.to)
5165 mem_cgroup_clear_mc();
7dc74be0
DN
5166}
5167
4ffef5fe
DN
5168static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5169 unsigned long addr, unsigned long end,
5170 struct mm_walk *walk)
7dc74be0 5171{
4ffef5fe 5172 int ret = 0;
26bcd64a 5173 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5174 pte_t *pte;
5175 spinlock_t *ptl;
12724850
NH
5176 enum mc_target_type target_type;
5177 union mc_target target;
5178 struct page *page;
4ffef5fe 5179
b6ec57f4
KS
5180 ptl = pmd_trans_huge_lock(pmd, vma);
5181 if (ptl) {
62ade86a 5182 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5183 spin_unlock(ptl);
12724850
NH
5184 return 0;
5185 }
5186 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5187 if (target_type == MC_TARGET_PAGE) {
5188 page = target.page;
5189 if (!isolate_lru_page(page)) {
f627c2f5 5190 if (!mem_cgroup_move_account(page, true,
1306a85a 5191 mc.from, mc.to)) {
12724850
NH
5192 mc.precharge -= HPAGE_PMD_NR;
5193 mc.moved_charge += HPAGE_PMD_NR;
5194 }
5195 putback_lru_page(page);
5196 }
5197 put_page(page);
c733a828
JG
5198 } else if (target_type == MC_TARGET_DEVICE) {
5199 page = target.page;
5200 if (!mem_cgroup_move_account(page, true,
5201 mc.from, mc.to)) {
5202 mc.precharge -= HPAGE_PMD_NR;
5203 mc.moved_charge += HPAGE_PMD_NR;
5204 }
5205 put_page(page);
12724850 5206 }
bf929152 5207 spin_unlock(ptl);
1a5a9906 5208 return 0;
12724850
NH
5209 }
5210
45f83cef
AA
5211 if (pmd_trans_unstable(pmd))
5212 return 0;
4ffef5fe
DN
5213retry:
5214 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5215 for (; addr != end; addr += PAGE_SIZE) {
5216 pte_t ptent = *(pte++);
c733a828 5217 bool device = false;
02491447 5218 swp_entry_t ent;
4ffef5fe
DN
5219
5220 if (!mc.precharge)
5221 break;
5222
8d32ff84 5223 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5224 case MC_TARGET_DEVICE:
5225 device = true;
5226 /* fall through */
4ffef5fe
DN
5227 case MC_TARGET_PAGE:
5228 page = target.page;
53f9263b
KS
5229 /*
5230 * We can have a part of the split pmd here. Moving it
5231 * can be done but it would be too convoluted so simply
5232 * ignore such a partial THP and keep it in original
5233 * memcg. There should be somebody mapping the head.
5234 */
5235 if (PageTransCompound(page))
5236 goto put;
c733a828 5237 if (!device && isolate_lru_page(page))
4ffef5fe 5238 goto put;
f627c2f5
KS
5239 if (!mem_cgroup_move_account(page, false,
5240 mc.from, mc.to)) {
4ffef5fe 5241 mc.precharge--;
854ffa8d
DN
5242 /* we uncharge from mc.from later. */
5243 mc.moved_charge++;
4ffef5fe 5244 }
c733a828
JG
5245 if (!device)
5246 putback_lru_page(page);
8d32ff84 5247put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5248 put_page(page);
5249 break;
02491447
DN
5250 case MC_TARGET_SWAP:
5251 ent = target.ent;
e91cbb42 5252 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5253 mc.precharge--;
483c30b5
DN
5254 /* we fixup refcnts and charges later. */
5255 mc.moved_swap++;
5256 }
02491447 5257 break;
4ffef5fe
DN
5258 default:
5259 break;
5260 }
5261 }
5262 pte_unmap_unlock(pte - 1, ptl);
5263 cond_resched();
5264
5265 if (addr != end) {
5266 /*
5267 * We have consumed all precharges we got in can_attach().
5268 * We try charge one by one, but don't do any additional
5269 * charges to mc.to if we have failed in charge once in attach()
5270 * phase.
5271 */
854ffa8d 5272 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5273 if (!ret)
5274 goto retry;
5275 }
5276
5277 return ret;
5278}
5279
264a0ae1 5280static void mem_cgroup_move_charge(void)
4ffef5fe 5281{
26bcd64a
NH
5282 struct mm_walk mem_cgroup_move_charge_walk = {
5283 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5284 .mm = mc.mm,
26bcd64a 5285 };
4ffef5fe
DN
5286
5287 lru_add_drain_all();
312722cb 5288 /*
81f8c3a4
JW
5289 * Signal lock_page_memcg() to take the memcg's move_lock
5290 * while we're moving its pages to another memcg. Then wait
5291 * for already started RCU-only updates to finish.
312722cb
JW
5292 */
5293 atomic_inc(&mc.from->moving_account);
5294 synchronize_rcu();
dfe076b0 5295retry:
264a0ae1 5296 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5297 /*
5298 * Someone who are holding the mmap_sem might be waiting in
5299 * waitq. So we cancel all extra charges, wake up all waiters,
5300 * and retry. Because we cancel precharges, we might not be able
5301 * to move enough charges, but moving charge is a best-effort
5302 * feature anyway, so it wouldn't be a big problem.
5303 */
5304 __mem_cgroup_clear_mc();
5305 cond_resched();
5306 goto retry;
5307 }
26bcd64a
NH
5308 /*
5309 * When we have consumed all precharges and failed in doing
5310 * additional charge, the page walk just aborts.
5311 */
0247f3f4
JM
5312 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5313
264a0ae1 5314 up_read(&mc.mm->mmap_sem);
312722cb 5315 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5316}
5317
264a0ae1 5318static void mem_cgroup_move_task(void)
67e465a7 5319{
264a0ae1
TH
5320 if (mc.to) {
5321 mem_cgroup_move_charge();
a433658c 5322 mem_cgroup_clear_mc();
264a0ae1 5323 }
67e465a7 5324}
5cfb80a7 5325#else /* !CONFIG_MMU */
1f7dd3e5 5326static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5327{
5328 return 0;
5329}
1f7dd3e5 5330static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5331{
5332}
264a0ae1 5333static void mem_cgroup_move_task(void)
5cfb80a7
DN
5334{
5335}
5336#endif
67e465a7 5337
f00baae7
TH
5338/*
5339 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5340 * to verify whether we're attached to the default hierarchy on each mount
5341 * attempt.
f00baae7 5342 */
eb95419b 5343static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5344{
5345 /*
aa6ec29b 5346 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5347 * guarantees that @root doesn't have any children, so turning it
5348 * on for the root memcg is enough.
5349 */
9e10a130 5350 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5351 root_mem_cgroup->use_hierarchy = true;
5352 else
5353 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5354}
5355
241994ed
JW
5356static u64 memory_current_read(struct cgroup_subsys_state *css,
5357 struct cftype *cft)
5358{
f5fc3c5d
JW
5359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360
5361 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5362}
5363
bf8d5d52
RG
5364static int memory_min_show(struct seq_file *m, void *v)
5365{
aa9694bb 5366 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bf8d5d52
RG
5367 unsigned long min = READ_ONCE(memcg->memory.min);
5368
5369 if (min == PAGE_COUNTER_MAX)
5370 seq_puts(m, "max\n");
5371 else
5372 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5373
5374 return 0;
5375}
5376
5377static ssize_t memory_min_write(struct kernfs_open_file *of,
5378 char *buf, size_t nbytes, loff_t off)
5379{
5380 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5381 unsigned long min;
5382 int err;
5383
5384 buf = strstrip(buf);
5385 err = page_counter_memparse(buf, "max", &min);
5386 if (err)
5387 return err;
5388
5389 page_counter_set_min(&memcg->memory, min);
5390
5391 return nbytes;
5392}
5393
241994ed
JW
5394static int memory_low_show(struct seq_file *m, void *v)
5395{
aa9694bb 5396 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
23067153 5397 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5398
5399 if (low == PAGE_COUNTER_MAX)
d2973697 5400 seq_puts(m, "max\n");
241994ed
JW
5401 else
5402 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5403
5404 return 0;
5405}
5406
5407static ssize_t memory_low_write(struct kernfs_open_file *of,
5408 char *buf, size_t nbytes, loff_t off)
5409{
5410 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5411 unsigned long low;
5412 int err;
5413
5414 buf = strstrip(buf);
d2973697 5415 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5416 if (err)
5417 return err;
5418
23067153 5419 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5420
5421 return nbytes;
5422}
5423
5424static int memory_high_show(struct seq_file *m, void *v)
5425{
aa9694bb 5426 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4db0c3c2 5427 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5428
5429 if (high == PAGE_COUNTER_MAX)
d2973697 5430 seq_puts(m, "max\n");
241994ed
JW
5431 else
5432 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5433
5434 return 0;
5435}
5436
5437static ssize_t memory_high_write(struct kernfs_open_file *of,
5438 char *buf, size_t nbytes, loff_t off)
5439{
5440 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5441 unsigned long nr_pages;
241994ed
JW
5442 unsigned long high;
5443 int err;
5444
5445 buf = strstrip(buf);
d2973697 5446 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5447 if (err)
5448 return err;
5449
5450 memcg->high = high;
5451
588083bb
JW
5452 nr_pages = page_counter_read(&memcg->memory);
5453 if (nr_pages > high)
5454 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5455 GFP_KERNEL, true);
5456
2529bb3a 5457 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5458 return nbytes;
5459}
5460
5461static int memory_max_show(struct seq_file *m, void *v)
5462{
aa9694bb 5463 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bbec2e15 5464 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5465
5466 if (max == PAGE_COUNTER_MAX)
d2973697 5467 seq_puts(m, "max\n");
241994ed
JW
5468 else
5469 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5470
5471 return 0;
5472}
5473
5474static ssize_t memory_max_write(struct kernfs_open_file *of,
5475 char *buf, size_t nbytes, loff_t off)
5476{
5477 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5478 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5479 bool drained = false;
241994ed
JW
5480 unsigned long max;
5481 int err;
5482
5483 buf = strstrip(buf);
d2973697 5484 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5485 if (err)
5486 return err;
5487
bbec2e15 5488 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5489
5490 for (;;) {
5491 unsigned long nr_pages = page_counter_read(&memcg->memory);
5492
5493 if (nr_pages <= max)
5494 break;
5495
5496 if (signal_pending(current)) {
5497 err = -EINTR;
5498 break;
5499 }
5500
5501 if (!drained) {
5502 drain_all_stock(memcg);
5503 drained = true;
5504 continue;
5505 }
5506
5507 if (nr_reclaims) {
5508 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5509 GFP_KERNEL, true))
5510 nr_reclaims--;
5511 continue;
5512 }
5513
e27be240 5514 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5515 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5516 break;
5517 }
241994ed 5518
2529bb3a 5519 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5520 return nbytes;
5521}
5522
5523static int memory_events_show(struct seq_file *m, void *v)
5524{
aa9694bb 5525 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5526
e27be240
JW
5527 seq_printf(m, "low %lu\n",
5528 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5529 seq_printf(m, "high %lu\n",
5530 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5531 seq_printf(m, "max %lu\n",
5532 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5533 seq_printf(m, "oom %lu\n",
5534 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5535 seq_printf(m, "oom_kill %lu\n",
5536 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5537
5538 return 0;
5539}
5540
587d9f72
JW
5541static int memory_stat_show(struct seq_file *m, void *v)
5542{
aa9694bb 5543 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8de7ecc6 5544 struct accumulated_stats acc;
587d9f72
JW
5545 int i;
5546
5547 /*
5548 * Provide statistics on the state of the memory subsystem as
5549 * well as cumulative event counters that show past behavior.
5550 *
5551 * This list is ordered following a combination of these gradients:
5552 * 1) generic big picture -> specifics and details
5553 * 2) reflecting userspace activity -> reflecting kernel heuristics
5554 *
5555 * Current memory state:
5556 */
5557
8de7ecc6
SB
5558 memset(&acc, 0, sizeof(acc));
5559 acc.stats_size = MEMCG_NR_STAT;
5560 acc.events_size = NR_VM_EVENT_ITEMS;
5561 accumulate_memcg_tree(memcg, &acc);
72b54e73 5562
587d9f72 5563 seq_printf(m, "anon %llu\n",
8de7ecc6 5564 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5565 seq_printf(m, "file %llu\n",
8de7ecc6 5566 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5567 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5568 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5569 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5570 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5571 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5572 seq_printf(m, "sock %llu\n",
8de7ecc6 5573 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5574
9a4caf1e 5575 seq_printf(m, "shmem %llu\n",
8de7ecc6 5576 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5577 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5578 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5579 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5580 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5581 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5582 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5583
8de7ecc6
SB
5584 for (i = 0; i < NR_LRU_LISTS; i++)
5585 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5586 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5587
27ee57c9 5588 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5589 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5590 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5591 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5592
587d9f72
JW
5593 /* Accumulated memory events */
5594
8de7ecc6
SB
5595 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5596 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5597
e9b257ed
JW
5598 seq_printf(m, "workingset_refault %lu\n",
5599 acc.stat[WORKINGSET_REFAULT]);
5600 seq_printf(m, "workingset_activate %lu\n",
5601 acc.stat[WORKINGSET_ACTIVATE]);
5602 seq_printf(m, "workingset_nodereclaim %lu\n",
5603 acc.stat[WORKINGSET_NODERECLAIM]);
5604
8de7ecc6
SB
5605 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5606 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5607 acc.events[PGSCAN_DIRECT]);
5608 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5609 acc.events[PGSTEAL_DIRECT]);
5610 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5611 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5612 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5613 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5614
587d9f72
JW
5615 return 0;
5616}
5617
3d8b38eb
RG
5618static int memory_oom_group_show(struct seq_file *m, void *v)
5619{
aa9694bb 5620 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5621
5622 seq_printf(m, "%d\n", memcg->oom_group);
5623
5624 return 0;
5625}
5626
5627static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5628 char *buf, size_t nbytes, loff_t off)
5629{
5630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5631 int ret, oom_group;
5632
5633 buf = strstrip(buf);
5634 if (!buf)
5635 return -EINVAL;
5636
5637 ret = kstrtoint(buf, 0, &oom_group);
5638 if (ret)
5639 return ret;
5640
5641 if (oom_group != 0 && oom_group != 1)
5642 return -EINVAL;
5643
5644 memcg->oom_group = oom_group;
5645
5646 return nbytes;
5647}
5648
241994ed
JW
5649static struct cftype memory_files[] = {
5650 {
5651 .name = "current",
f5fc3c5d 5652 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5653 .read_u64 = memory_current_read,
5654 },
bf8d5d52
RG
5655 {
5656 .name = "min",
5657 .flags = CFTYPE_NOT_ON_ROOT,
5658 .seq_show = memory_min_show,
5659 .write = memory_min_write,
5660 },
241994ed
JW
5661 {
5662 .name = "low",
5663 .flags = CFTYPE_NOT_ON_ROOT,
5664 .seq_show = memory_low_show,
5665 .write = memory_low_write,
5666 },
5667 {
5668 .name = "high",
5669 .flags = CFTYPE_NOT_ON_ROOT,
5670 .seq_show = memory_high_show,
5671 .write = memory_high_write,
5672 },
5673 {
5674 .name = "max",
5675 .flags = CFTYPE_NOT_ON_ROOT,
5676 .seq_show = memory_max_show,
5677 .write = memory_max_write,
5678 },
5679 {
5680 .name = "events",
5681 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5682 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5683 .seq_show = memory_events_show,
5684 },
587d9f72
JW
5685 {
5686 .name = "stat",
5687 .flags = CFTYPE_NOT_ON_ROOT,
5688 .seq_show = memory_stat_show,
5689 },
3d8b38eb
RG
5690 {
5691 .name = "oom.group",
5692 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5693 .seq_show = memory_oom_group_show,
5694 .write = memory_oom_group_write,
5695 },
241994ed
JW
5696 { } /* terminate */
5697};
5698
073219e9 5699struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5700 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5701 .css_online = mem_cgroup_css_online,
92fb9748 5702 .css_offline = mem_cgroup_css_offline,
6df38689 5703 .css_released = mem_cgroup_css_released,
92fb9748 5704 .css_free = mem_cgroup_css_free,
1ced953b 5705 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5706 .can_attach = mem_cgroup_can_attach,
5707 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5708 .post_attach = mem_cgroup_move_task,
f00baae7 5709 .bind = mem_cgroup_bind,
241994ed
JW
5710 .dfl_cftypes = memory_files,
5711 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5712 .early_init = 0,
8cdea7c0 5713};
c077719b 5714
241994ed 5715/**
bf8d5d52 5716 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5717 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5718 * @memcg: the memory cgroup to check
5719 *
23067153
RG
5720 * WARNING: This function is not stateless! It can only be used as part
5721 * of a top-down tree iteration, not for isolated queries.
34c81057 5722 *
bf8d5d52
RG
5723 * Returns one of the following:
5724 * MEMCG_PROT_NONE: cgroup memory is not protected
5725 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5726 * an unprotected supply of reclaimable memory from other cgroups.
5727 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5728 *
bf8d5d52 5729 * @root is exclusive; it is never protected when looked at directly
34c81057 5730 *
bf8d5d52
RG
5731 * To provide a proper hierarchical behavior, effective memory.min/low values
5732 * are used. Below is the description of how effective memory.low is calculated.
5733 * Effective memory.min values is calculated in the same way.
34c81057 5734 *
23067153
RG
5735 * Effective memory.low is always equal or less than the original memory.low.
5736 * If there is no memory.low overcommittment (which is always true for
5737 * top-level memory cgroups), these two values are equal.
5738 * Otherwise, it's a part of parent's effective memory.low,
5739 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5740 * memory.low usages, where memory.low usage is the size of actually
5741 * protected memory.
34c81057 5742 *
23067153
RG
5743 * low_usage
5744 * elow = min( memory.low, parent->elow * ------------------ ),
5745 * siblings_low_usage
34c81057 5746 *
23067153
RG
5747 * | memory.current, if memory.current < memory.low
5748 * low_usage = |
5749 | 0, otherwise.
34c81057 5750 *
23067153
RG
5751 *
5752 * Such definition of the effective memory.low provides the expected
5753 * hierarchical behavior: parent's memory.low value is limiting
5754 * children, unprotected memory is reclaimed first and cgroups,
5755 * which are not using their guarantee do not affect actual memory
5756 * distribution.
5757 *
5758 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5759 *
5760 * A A/memory.low = 2G, A/memory.current = 6G
5761 * //\\
5762 * BC DE B/memory.low = 3G B/memory.current = 2G
5763 * C/memory.low = 1G C/memory.current = 2G
5764 * D/memory.low = 0 D/memory.current = 2G
5765 * E/memory.low = 10G E/memory.current = 0
5766 *
5767 * and the memory pressure is applied, the following memory distribution
5768 * is expected (approximately):
5769 *
5770 * A/memory.current = 2G
5771 *
5772 * B/memory.current = 1.3G
5773 * C/memory.current = 0.6G
5774 * D/memory.current = 0
5775 * E/memory.current = 0
5776 *
5777 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5778 * (see propagate_protected_usage()), as well as recursive calculation of
5779 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5780 * path for each memory cgroup top-down from the reclaim,
5781 * it's possible to optimize this part, and save calculated elow
5782 * for next usage. This part is intentionally racy, but it's ok,
5783 * as memory.low is a best-effort mechanism.
241994ed 5784 */
bf8d5d52
RG
5785enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5786 struct mem_cgroup *memcg)
241994ed 5787{
23067153 5788 struct mem_cgroup *parent;
bf8d5d52
RG
5789 unsigned long emin, parent_emin;
5790 unsigned long elow, parent_elow;
5791 unsigned long usage;
23067153 5792
241994ed 5793 if (mem_cgroup_disabled())
bf8d5d52 5794 return MEMCG_PROT_NONE;
241994ed 5795
34c81057
SC
5796 if (!root)
5797 root = root_mem_cgroup;
5798 if (memcg == root)
bf8d5d52 5799 return MEMCG_PROT_NONE;
241994ed 5800
23067153 5801 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5802 if (!usage)
5803 return MEMCG_PROT_NONE;
5804
5805 emin = memcg->memory.min;
5806 elow = memcg->memory.low;
34c81057 5807
bf8d5d52 5808 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5809 /* No parent means a non-hierarchical mode on v1 memcg */
5810 if (!parent)
5811 return MEMCG_PROT_NONE;
5812
23067153
RG
5813 if (parent == root)
5814 goto exit;
5815
bf8d5d52
RG
5816 parent_emin = READ_ONCE(parent->memory.emin);
5817 emin = min(emin, parent_emin);
5818 if (emin && parent_emin) {
5819 unsigned long min_usage, siblings_min_usage;
5820
5821 min_usage = min(usage, memcg->memory.min);
5822 siblings_min_usage = atomic_long_read(
5823 &parent->memory.children_min_usage);
5824
5825 if (min_usage && siblings_min_usage)
5826 emin = min(emin, parent_emin * min_usage /
5827 siblings_min_usage);
5828 }
5829
23067153
RG
5830 parent_elow = READ_ONCE(parent->memory.elow);
5831 elow = min(elow, parent_elow);
bf8d5d52
RG
5832 if (elow && parent_elow) {
5833 unsigned long low_usage, siblings_low_usage;
23067153 5834
bf8d5d52
RG
5835 low_usage = min(usage, memcg->memory.low);
5836 siblings_low_usage = atomic_long_read(
5837 &parent->memory.children_low_usage);
23067153 5838
bf8d5d52
RG
5839 if (low_usage && siblings_low_usage)
5840 elow = min(elow, parent_elow * low_usage /
5841 siblings_low_usage);
5842 }
23067153 5843
23067153 5844exit:
bf8d5d52 5845 memcg->memory.emin = emin;
23067153 5846 memcg->memory.elow = elow;
bf8d5d52
RG
5847
5848 if (usage <= emin)
5849 return MEMCG_PROT_MIN;
5850 else if (usage <= elow)
5851 return MEMCG_PROT_LOW;
5852 else
5853 return MEMCG_PROT_NONE;
241994ed
JW
5854}
5855
00501b53
JW
5856/**
5857 * mem_cgroup_try_charge - try charging a page
5858 * @page: page to charge
5859 * @mm: mm context of the victim
5860 * @gfp_mask: reclaim mode
5861 * @memcgp: charged memcg return
25843c2b 5862 * @compound: charge the page as compound or small page
00501b53
JW
5863 *
5864 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5865 * pages according to @gfp_mask if necessary.
5866 *
5867 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5868 * Otherwise, an error code is returned.
5869 *
5870 * After page->mapping has been set up, the caller must finalize the
5871 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5872 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5873 */
5874int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5875 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5876 bool compound)
00501b53
JW
5877{
5878 struct mem_cgroup *memcg = NULL;
f627c2f5 5879 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5880 int ret = 0;
5881
5882 if (mem_cgroup_disabled())
5883 goto out;
5884
5885 if (PageSwapCache(page)) {
00501b53
JW
5886 /*
5887 * Every swap fault against a single page tries to charge the
5888 * page, bail as early as possible. shmem_unuse() encounters
5889 * already charged pages, too. The USED bit is protected by
5890 * the page lock, which serializes swap cache removal, which
5891 * in turn serializes uncharging.
5892 */
e993d905 5893 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5894 if (compound_head(page)->mem_cgroup)
00501b53 5895 goto out;
e993d905 5896
37e84351 5897 if (do_swap_account) {
e993d905
VD
5898 swp_entry_t ent = { .val = page_private(page), };
5899 unsigned short id = lookup_swap_cgroup_id(ent);
5900
5901 rcu_read_lock();
5902 memcg = mem_cgroup_from_id(id);
5903 if (memcg && !css_tryget_online(&memcg->css))
5904 memcg = NULL;
5905 rcu_read_unlock();
5906 }
00501b53
JW
5907 }
5908
00501b53
JW
5909 if (!memcg)
5910 memcg = get_mem_cgroup_from_mm(mm);
5911
5912 ret = try_charge(memcg, gfp_mask, nr_pages);
5913
5914 css_put(&memcg->css);
00501b53
JW
5915out:
5916 *memcgp = memcg;
5917 return ret;
5918}
5919
2cf85583
TH
5920int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5921 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5922 bool compound)
5923{
5924 struct mem_cgroup *memcg;
5925 int ret;
5926
5927 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5928 memcg = *memcgp;
5929 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5930 return ret;
5931}
5932
00501b53
JW
5933/**
5934 * mem_cgroup_commit_charge - commit a page charge
5935 * @page: page to charge
5936 * @memcg: memcg to charge the page to
5937 * @lrucare: page might be on LRU already
25843c2b 5938 * @compound: charge the page as compound or small page
00501b53
JW
5939 *
5940 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5941 * after page->mapping has been set up. This must happen atomically
5942 * as part of the page instantiation, i.e. under the page table lock
5943 * for anonymous pages, under the page lock for page and swap cache.
5944 *
5945 * In addition, the page must not be on the LRU during the commit, to
5946 * prevent racing with task migration. If it might be, use @lrucare.
5947 *
5948 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5949 */
5950void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5951 bool lrucare, bool compound)
00501b53 5952{
f627c2f5 5953 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5954
5955 VM_BUG_ON_PAGE(!page->mapping, page);
5956 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5957
5958 if (mem_cgroup_disabled())
5959 return;
5960 /*
5961 * Swap faults will attempt to charge the same page multiple
5962 * times. But reuse_swap_page() might have removed the page
5963 * from swapcache already, so we can't check PageSwapCache().
5964 */
5965 if (!memcg)
5966 return;
5967
6abb5a86
JW
5968 commit_charge(page, memcg, lrucare);
5969
6abb5a86 5970 local_irq_disable();
f627c2f5 5971 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5972 memcg_check_events(memcg, page);
5973 local_irq_enable();
00501b53 5974
7941d214 5975 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5976 swp_entry_t entry = { .val = page_private(page) };
5977 /*
5978 * The swap entry might not get freed for a long time,
5979 * let's not wait for it. The page already received a
5980 * memory+swap charge, drop the swap entry duplicate.
5981 */
38d8b4e6 5982 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5983 }
5984}
5985
5986/**
5987 * mem_cgroup_cancel_charge - cancel a page charge
5988 * @page: page to charge
5989 * @memcg: memcg to charge the page to
25843c2b 5990 * @compound: charge the page as compound or small page
00501b53
JW
5991 *
5992 * Cancel a charge transaction started by mem_cgroup_try_charge().
5993 */
f627c2f5
KS
5994void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5995 bool compound)
00501b53 5996{
f627c2f5 5997 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5998
5999 if (mem_cgroup_disabled())
6000 return;
6001 /*
6002 * Swap faults will attempt to charge the same page multiple
6003 * times. But reuse_swap_page() might have removed the page
6004 * from swapcache already, so we can't check PageSwapCache().
6005 */
6006 if (!memcg)
6007 return;
6008
00501b53
JW
6009 cancel_charge(memcg, nr_pages);
6010}
6011
a9d5adee
JG
6012struct uncharge_gather {
6013 struct mem_cgroup *memcg;
6014 unsigned long pgpgout;
6015 unsigned long nr_anon;
6016 unsigned long nr_file;
6017 unsigned long nr_kmem;
6018 unsigned long nr_huge;
6019 unsigned long nr_shmem;
6020 struct page *dummy_page;
6021};
6022
6023static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6024{
a9d5adee
JG
6025 memset(ug, 0, sizeof(*ug));
6026}
6027
6028static void uncharge_batch(const struct uncharge_gather *ug)
6029{
6030 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6031 unsigned long flags;
6032
a9d5adee
JG
6033 if (!mem_cgroup_is_root(ug->memcg)) {
6034 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6035 if (do_memsw_account())
a9d5adee
JG
6036 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6038 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6039 memcg_oom_recover(ug->memcg);
ce00a967 6040 }
747db954
JW
6041
6042 local_irq_save(flags);
c9019e9b
JW
6043 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6044 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6045 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6046 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6047 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 6048 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 6049 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6050 local_irq_restore(flags);
e8ea14cc 6051
a9d5adee
JG
6052 if (!mem_cgroup_is_root(ug->memcg))
6053 css_put_many(&ug->memcg->css, nr_pages);
6054}
6055
6056static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6057{
6058 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6059 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6060 !PageHWPoison(page) , page);
a9d5adee
JG
6061
6062 if (!page->mem_cgroup)
6063 return;
6064
6065 /*
6066 * Nobody should be changing or seriously looking at
6067 * page->mem_cgroup at this point, we have fully
6068 * exclusive access to the page.
6069 */
6070
6071 if (ug->memcg != page->mem_cgroup) {
6072 if (ug->memcg) {
6073 uncharge_batch(ug);
6074 uncharge_gather_clear(ug);
6075 }
6076 ug->memcg = page->mem_cgroup;
6077 }
6078
6079 if (!PageKmemcg(page)) {
6080 unsigned int nr_pages = 1;
6081
6082 if (PageTransHuge(page)) {
6083 nr_pages <<= compound_order(page);
6084 ug->nr_huge += nr_pages;
6085 }
6086 if (PageAnon(page))
6087 ug->nr_anon += nr_pages;
6088 else {
6089 ug->nr_file += nr_pages;
6090 if (PageSwapBacked(page))
6091 ug->nr_shmem += nr_pages;
6092 }
6093 ug->pgpgout++;
6094 } else {
6095 ug->nr_kmem += 1 << compound_order(page);
6096 __ClearPageKmemcg(page);
6097 }
6098
6099 ug->dummy_page = page;
6100 page->mem_cgroup = NULL;
747db954
JW
6101}
6102
6103static void uncharge_list(struct list_head *page_list)
6104{
a9d5adee 6105 struct uncharge_gather ug;
747db954 6106 struct list_head *next;
a9d5adee
JG
6107
6108 uncharge_gather_clear(&ug);
747db954 6109
8b592656
JW
6110 /*
6111 * Note that the list can be a single page->lru; hence the
6112 * do-while loop instead of a simple list_for_each_entry().
6113 */
747db954
JW
6114 next = page_list->next;
6115 do {
a9d5adee
JG
6116 struct page *page;
6117
747db954
JW
6118 page = list_entry(next, struct page, lru);
6119 next = page->lru.next;
6120
a9d5adee 6121 uncharge_page(page, &ug);
747db954
JW
6122 } while (next != page_list);
6123
a9d5adee
JG
6124 if (ug.memcg)
6125 uncharge_batch(&ug);
747db954
JW
6126}
6127
0a31bc97
JW
6128/**
6129 * mem_cgroup_uncharge - uncharge a page
6130 * @page: page to uncharge
6131 *
6132 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6133 * mem_cgroup_commit_charge().
6134 */
6135void mem_cgroup_uncharge(struct page *page)
6136{
a9d5adee
JG
6137 struct uncharge_gather ug;
6138
0a31bc97
JW
6139 if (mem_cgroup_disabled())
6140 return;
6141
747db954 6142 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6143 if (!page->mem_cgroup)
0a31bc97
JW
6144 return;
6145
a9d5adee
JG
6146 uncharge_gather_clear(&ug);
6147 uncharge_page(page, &ug);
6148 uncharge_batch(&ug);
747db954 6149}
0a31bc97 6150
747db954
JW
6151/**
6152 * mem_cgroup_uncharge_list - uncharge a list of page
6153 * @page_list: list of pages to uncharge
6154 *
6155 * Uncharge a list of pages previously charged with
6156 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6157 */
6158void mem_cgroup_uncharge_list(struct list_head *page_list)
6159{
6160 if (mem_cgroup_disabled())
6161 return;
0a31bc97 6162
747db954
JW
6163 if (!list_empty(page_list))
6164 uncharge_list(page_list);
0a31bc97
JW
6165}
6166
6167/**
6a93ca8f
JW
6168 * mem_cgroup_migrate - charge a page's replacement
6169 * @oldpage: currently circulating page
6170 * @newpage: replacement page
0a31bc97 6171 *
6a93ca8f
JW
6172 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6173 * be uncharged upon free.
0a31bc97
JW
6174 *
6175 * Both pages must be locked, @newpage->mapping must be set up.
6176 */
6a93ca8f 6177void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6178{
29833315 6179 struct mem_cgroup *memcg;
44b7a8d3
JW
6180 unsigned int nr_pages;
6181 bool compound;
d93c4130 6182 unsigned long flags;
0a31bc97
JW
6183
6184 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6185 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6186 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6187 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6188 newpage);
0a31bc97
JW
6189
6190 if (mem_cgroup_disabled())
6191 return;
6192
6193 /* Page cache replacement: new page already charged? */
1306a85a 6194 if (newpage->mem_cgroup)
0a31bc97
JW
6195 return;
6196
45637bab 6197 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6198 memcg = oldpage->mem_cgroup;
29833315 6199 if (!memcg)
0a31bc97
JW
6200 return;
6201
44b7a8d3
JW
6202 /* Force-charge the new page. The old one will be freed soon */
6203 compound = PageTransHuge(newpage);
6204 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6205
6206 page_counter_charge(&memcg->memory, nr_pages);
6207 if (do_memsw_account())
6208 page_counter_charge(&memcg->memsw, nr_pages);
6209 css_get_many(&memcg->css, nr_pages);
0a31bc97 6210
9cf7666a 6211 commit_charge(newpage, memcg, false);
44b7a8d3 6212
d93c4130 6213 local_irq_save(flags);
44b7a8d3
JW
6214 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6215 memcg_check_events(memcg, newpage);
d93c4130 6216 local_irq_restore(flags);
0a31bc97
JW
6217}
6218
ef12947c 6219DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6220EXPORT_SYMBOL(memcg_sockets_enabled_key);
6221
2d758073 6222void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6223{
6224 struct mem_cgroup *memcg;
6225
2d758073
JW
6226 if (!mem_cgroup_sockets_enabled)
6227 return;
6228
edbe69ef
RG
6229 /*
6230 * Socket cloning can throw us here with sk_memcg already
6231 * filled. It won't however, necessarily happen from
6232 * process context. So the test for root memcg given
6233 * the current task's memcg won't help us in this case.
6234 *
6235 * Respecting the original socket's memcg is a better
6236 * decision in this case.
6237 */
6238 if (sk->sk_memcg) {
6239 css_get(&sk->sk_memcg->css);
6240 return;
6241 }
6242
11092087
JW
6243 rcu_read_lock();
6244 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6245 if (memcg == root_mem_cgroup)
6246 goto out;
0db15298 6247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6248 goto out;
f7e1cb6e 6249 if (css_tryget_online(&memcg->css))
11092087 6250 sk->sk_memcg = memcg;
f7e1cb6e 6251out:
11092087
JW
6252 rcu_read_unlock();
6253}
11092087 6254
2d758073 6255void mem_cgroup_sk_free(struct sock *sk)
11092087 6256{
2d758073
JW
6257 if (sk->sk_memcg)
6258 css_put(&sk->sk_memcg->css);
11092087
JW
6259}
6260
6261/**
6262 * mem_cgroup_charge_skmem - charge socket memory
6263 * @memcg: memcg to charge
6264 * @nr_pages: number of pages to charge
6265 *
6266 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6267 * @memcg's configured limit, %false if the charge had to be forced.
6268 */
6269bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6270{
f7e1cb6e 6271 gfp_t gfp_mask = GFP_KERNEL;
11092087 6272
f7e1cb6e 6273 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6274 struct page_counter *fail;
f7e1cb6e 6275
0db15298
JW
6276 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6277 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6278 return true;
6279 }
0db15298
JW
6280 page_counter_charge(&memcg->tcpmem, nr_pages);
6281 memcg->tcpmem_pressure = 1;
f7e1cb6e 6282 return false;
11092087 6283 }
d886f4e4 6284
f7e1cb6e
JW
6285 /* Don't block in the packet receive path */
6286 if (in_softirq())
6287 gfp_mask = GFP_NOWAIT;
6288
c9019e9b 6289 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6290
f7e1cb6e
JW
6291 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6292 return true;
6293
6294 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6295 return false;
6296}
6297
6298/**
6299 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6300 * @memcg: memcg to uncharge
6301 * @nr_pages: number of pages to uncharge
11092087
JW
6302 */
6303void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6304{
f7e1cb6e 6305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6306 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6307 return;
6308 }
d886f4e4 6309
c9019e9b 6310 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6311
475d0487 6312 refill_stock(memcg, nr_pages);
11092087
JW
6313}
6314
f7e1cb6e
JW
6315static int __init cgroup_memory(char *s)
6316{
6317 char *token;
6318
6319 while ((token = strsep(&s, ",")) != NULL) {
6320 if (!*token)
6321 continue;
6322 if (!strcmp(token, "nosocket"))
6323 cgroup_memory_nosocket = true;
04823c83
VD
6324 if (!strcmp(token, "nokmem"))
6325 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6326 }
6327 return 0;
6328}
6329__setup("cgroup.memory=", cgroup_memory);
11092087 6330
2d11085e 6331/*
1081312f
MH
6332 * subsys_initcall() for memory controller.
6333 *
308167fc
SAS
6334 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6335 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6336 * basically everything that doesn't depend on a specific mem_cgroup structure
6337 * should be initialized from here.
2d11085e
MH
6338 */
6339static int __init mem_cgroup_init(void)
6340{
95a045f6
JW
6341 int cpu, node;
6342
84c07d11 6343#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6344 /*
6345 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6346 * so use a workqueue with limited concurrency to avoid stalling
6347 * all worker threads in case lots of cgroups are created and
6348 * destroyed simultaneously.
13583c3d 6349 */
17cc4dfe
TH
6350 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6351 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6352#endif
6353
308167fc
SAS
6354 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6355 memcg_hotplug_cpu_dead);
95a045f6
JW
6356
6357 for_each_possible_cpu(cpu)
6358 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6359 drain_local_stock);
6360
6361 for_each_node(node) {
6362 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6363
6364 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6365 node_online(node) ? node : NUMA_NO_NODE);
6366
ef8f2327 6367 rtpn->rb_root = RB_ROOT;
fa90b2fd 6368 rtpn->rb_rightmost = NULL;
ef8f2327 6369 spin_lock_init(&rtpn->lock);
95a045f6
JW
6370 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6371 }
6372
2d11085e
MH
6373 return 0;
6374}
6375subsys_initcall(mem_cgroup_init);
21afa38e
JW
6376
6377#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6378static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6379{
1c2d479a 6380 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6381 /*
6382 * The root cgroup cannot be destroyed, so it's refcount must
6383 * always be >= 1.
6384 */
6385 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6386 VM_BUG_ON(1);
6387 break;
6388 }
6389 memcg = parent_mem_cgroup(memcg);
6390 if (!memcg)
6391 memcg = root_mem_cgroup;
6392 }
6393 return memcg;
6394}
6395
21afa38e
JW
6396/**
6397 * mem_cgroup_swapout - transfer a memsw charge to swap
6398 * @page: page whose memsw charge to transfer
6399 * @entry: swap entry to move the charge to
6400 *
6401 * Transfer the memsw charge of @page to @entry.
6402 */
6403void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6404{
1f47b61f 6405 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6406 unsigned int nr_entries;
21afa38e
JW
6407 unsigned short oldid;
6408
6409 VM_BUG_ON_PAGE(PageLRU(page), page);
6410 VM_BUG_ON_PAGE(page_count(page), page);
6411
7941d214 6412 if (!do_memsw_account())
21afa38e
JW
6413 return;
6414
6415 memcg = page->mem_cgroup;
6416
6417 /* Readahead page, never charged */
6418 if (!memcg)
6419 return;
6420
1f47b61f
VD
6421 /*
6422 * In case the memcg owning these pages has been offlined and doesn't
6423 * have an ID allocated to it anymore, charge the closest online
6424 * ancestor for the swap instead and transfer the memory+swap charge.
6425 */
6426 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6427 nr_entries = hpage_nr_pages(page);
6428 /* Get references for the tail pages, too */
6429 if (nr_entries > 1)
6430 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6431 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6432 nr_entries);
21afa38e 6433 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6434 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6435
6436 page->mem_cgroup = NULL;
6437
6438 if (!mem_cgroup_is_root(memcg))
d6810d73 6439 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6440
1f47b61f
VD
6441 if (memcg != swap_memcg) {
6442 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6443 page_counter_charge(&swap_memcg->memsw, nr_entries);
6444 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6445 }
6446
ce9ce665
SAS
6447 /*
6448 * Interrupts should be disabled here because the caller holds the
b93b0163 6449 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6450 * important here to have the interrupts disabled because it is the
b93b0163 6451 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6452 */
6453 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6454 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6455 -nr_entries);
21afa38e 6456 memcg_check_events(memcg, page);
73f576c0
JW
6457
6458 if (!mem_cgroup_is_root(memcg))
d08afa14 6459 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6460}
6461
38d8b4e6
HY
6462/**
6463 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6464 * @page: page being added to swap
6465 * @entry: swap entry to charge
6466 *
38d8b4e6 6467 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6468 *
6469 * Returns 0 on success, -ENOMEM on failure.
6470 */
6471int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6472{
38d8b4e6 6473 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6474 struct page_counter *counter;
38d8b4e6 6475 struct mem_cgroup *memcg;
37e84351
VD
6476 unsigned short oldid;
6477
6478 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6479 return 0;
6480
6481 memcg = page->mem_cgroup;
6482
6483 /* Readahead page, never charged */
6484 if (!memcg)
6485 return 0;
6486
f3a53a3a
TH
6487 if (!entry.val) {
6488 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6489 return 0;
f3a53a3a 6490 }
bb98f2c5 6491
1f47b61f
VD
6492 memcg = mem_cgroup_id_get_online(memcg);
6493
37e84351 6494 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6495 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6496 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6497 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6498 mem_cgroup_id_put(memcg);
37e84351 6499 return -ENOMEM;
1f47b61f 6500 }
37e84351 6501
38d8b4e6
HY
6502 /* Get references for the tail pages, too */
6503 if (nr_pages > 1)
6504 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6505 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6506 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6507 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6508
37e84351
VD
6509 return 0;
6510}
6511
21afa38e 6512/**
38d8b4e6 6513 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6514 * @entry: swap entry to uncharge
38d8b4e6 6515 * @nr_pages: the amount of swap space to uncharge
21afa38e 6516 */
38d8b4e6 6517void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6518{
6519 struct mem_cgroup *memcg;
6520 unsigned short id;
6521
37e84351 6522 if (!do_swap_account)
21afa38e
JW
6523 return;
6524
38d8b4e6 6525 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6526 rcu_read_lock();
adbe427b 6527 memcg = mem_cgroup_from_id(id);
21afa38e 6528 if (memcg) {
37e84351
VD
6529 if (!mem_cgroup_is_root(memcg)) {
6530 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6531 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6532 else
38d8b4e6 6533 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6534 }
c9019e9b 6535 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6536 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6537 }
6538 rcu_read_unlock();
6539}
6540
d8b38438
VD
6541long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6542{
6543 long nr_swap_pages = get_nr_swap_pages();
6544
6545 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6546 return nr_swap_pages;
6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6549 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6550 page_counter_read(&memcg->swap));
6551 return nr_swap_pages;
6552}
6553
5ccc5aba
VD
6554bool mem_cgroup_swap_full(struct page *page)
6555{
6556 struct mem_cgroup *memcg;
6557
6558 VM_BUG_ON_PAGE(!PageLocked(page), page);
6559
6560 if (vm_swap_full())
6561 return true;
6562 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6563 return false;
6564
6565 memcg = page->mem_cgroup;
6566 if (!memcg)
6567 return false;
6568
6569 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6570 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6571 return true;
6572
6573 return false;
6574}
6575
21afa38e
JW
6576/* for remember boot option*/
6577#ifdef CONFIG_MEMCG_SWAP_ENABLED
6578static int really_do_swap_account __initdata = 1;
6579#else
6580static int really_do_swap_account __initdata;
6581#endif
6582
6583static int __init enable_swap_account(char *s)
6584{
6585 if (!strcmp(s, "1"))
6586 really_do_swap_account = 1;
6587 else if (!strcmp(s, "0"))
6588 really_do_swap_account = 0;
6589 return 1;
6590}
6591__setup("swapaccount=", enable_swap_account);
6592
37e84351
VD
6593static u64 swap_current_read(struct cgroup_subsys_state *css,
6594 struct cftype *cft)
6595{
6596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597
6598 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6599}
6600
6601static int swap_max_show(struct seq_file *m, void *v)
6602{
aa9694bb 6603 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
bbec2e15 6604 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6605
6606 if (max == PAGE_COUNTER_MAX)
6607 seq_puts(m, "max\n");
6608 else
6609 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6610
6611 return 0;
6612}
6613
6614static ssize_t swap_max_write(struct kernfs_open_file *of,
6615 char *buf, size_t nbytes, loff_t off)
6616{
6617 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6618 unsigned long max;
6619 int err;
6620
6621 buf = strstrip(buf);
6622 err = page_counter_memparse(buf, "max", &max);
6623 if (err)
6624 return err;
6625
be09102b 6626 xchg(&memcg->swap.max, max);
37e84351
VD
6627
6628 return nbytes;
6629}
6630
f3a53a3a
TH
6631static int swap_events_show(struct seq_file *m, void *v)
6632{
aa9694bb 6633 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6634
6635 seq_printf(m, "max %lu\n",
6636 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6637 seq_printf(m, "fail %lu\n",
6638 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6639
6640 return 0;
6641}
6642
37e84351
VD
6643static struct cftype swap_files[] = {
6644 {
6645 .name = "swap.current",
6646 .flags = CFTYPE_NOT_ON_ROOT,
6647 .read_u64 = swap_current_read,
6648 },
6649 {
6650 .name = "swap.max",
6651 .flags = CFTYPE_NOT_ON_ROOT,
6652 .seq_show = swap_max_show,
6653 .write = swap_max_write,
6654 },
f3a53a3a
TH
6655 {
6656 .name = "swap.events",
6657 .flags = CFTYPE_NOT_ON_ROOT,
6658 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6659 .seq_show = swap_events_show,
6660 },
37e84351
VD
6661 { } /* terminate */
6662};
6663
21afa38e
JW
6664static struct cftype memsw_cgroup_files[] = {
6665 {
6666 .name = "memsw.usage_in_bytes",
6667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6668 .read_u64 = mem_cgroup_read_u64,
6669 },
6670 {
6671 .name = "memsw.max_usage_in_bytes",
6672 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6673 .write = mem_cgroup_reset,
6674 .read_u64 = mem_cgroup_read_u64,
6675 },
6676 {
6677 .name = "memsw.limit_in_bytes",
6678 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6679 .write = mem_cgroup_write,
6680 .read_u64 = mem_cgroup_read_u64,
6681 },
6682 {
6683 .name = "memsw.failcnt",
6684 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6685 .write = mem_cgroup_reset,
6686 .read_u64 = mem_cgroup_read_u64,
6687 },
6688 { }, /* terminate */
6689};
6690
6691static int __init mem_cgroup_swap_init(void)
6692{
6693 if (!mem_cgroup_disabled() && really_do_swap_account) {
6694 do_swap_account = 1;
37e84351
VD
6695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6696 swap_files));
21afa38e
JW
6697 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6698 memsw_cgroup_files));
6699 }
6700 return 0;
6701}
6702subsys_initcall(mem_cgroup_swap_init);
6703
6704#endif /* CONFIG_MEMCG_SWAP */