]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: memcontrol: fix NR_ANON_THPS accounting in charge moving
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
258static void obj_cgroup_release(struct percpu_ref *ref)
259{
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300}
301
302static struct obj_cgroup *obj_cgroup_alloc(void)
303{
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319}
320
321static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323{
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346}
347
55007d84 348/*
9855609b 349 * This will be used as a shrinker list's index.
b8627835
LZ
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
55007d84 355 *
dbcf73e2
VD
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
55007d84 358 */
dbcf73e2
VD
359static DEFINE_IDA(memcg_cache_ida);
360int memcg_nr_cache_ids;
749c5415 361
05257a1a
VD
362/* Protects memcg_nr_cache_ids */
363static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365void memcg_get_cache_ids(void)
366{
367 down_read(&memcg_cache_ids_sem);
368}
369
370void memcg_put_cache_ids(void)
371{
372 up_read(&memcg_cache_ids_sem);
373}
374
55007d84
GC
375/*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
b8627835 381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
385 * increase ours as well if it increases.
386 */
387#define MEMCG_CACHES_MIN_SIZE 4
b8627835 388#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 389
d7f25f8a
GC
390/*
391 * A lot of the calls to the cache allocation functions are expected to be
272911a4 392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
ef12947c 396DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 397EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 398#endif
17cc4dfe 399
0a4465d3
KT
400static int memcg_shrinker_map_size;
401static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404{
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406}
407
408static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410{
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
86daf94e 423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436}
437
438static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439{
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454}
455
456static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457{
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
86daf94e 467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478}
479
480int memcg_expand_shrinker_maps(int new_id)
481{
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 500 goto unlock;
75866af6 501 }
0a4465d3
KT
502 }
503unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508}
fae91d6d
KT
509
510void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511{
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
fae91d6d
KT
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522}
523
ad7fa852
TH
524/**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
ad7fa852
TH
534 */
535struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536{
537 struct mem_cgroup *memcg;
538
bcfe06bf 539 memcg = page_memcg(page);
ad7fa852 540
9e10a130 541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
542 memcg = root_mem_cgroup;
543
ad7fa852
TH
544 return &memcg->css;
545}
546
2fc04524
VD
547/**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560ino_t page_cgroup_ino(struct page *page)
561{
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
bcfe06bf 566 memcg = page_memcg_check(page);
286e04b8 567
2fc04524
VD
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574}
575
ef8f2327
MG
576static struct mem_cgroup_per_node *
577mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
97a6c37b 579 int nid = page_to_nid(page);
f64c3f54 580
ef8f2327 581 return memcg->nodeinfo[nid];
f64c3f54
BS
582}
583
ef8f2327
MG
584static struct mem_cgroup_tree_per_node *
585soft_limit_tree_node(int nid)
bb4cc1a8 586{
ef8f2327 587 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
588}
589
ef8f2327 590static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
591soft_limit_tree_from_page(struct page *page)
592{
593 int nid = page_to_nid(page);
bb4cc1a8 594
ef8f2327 595 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
596}
597
ef8f2327
MG
598static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 600 unsigned long new_usage_in_excess)
bb4cc1a8
AM
601{
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
ef8f2327 604 struct mem_cgroup_per_node *mz_node;
fa90b2fd 605 bool rightmost = true;
bb4cc1a8
AM
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
ef8f2327 615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 616 tree_node);
fa90b2fd 617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 618 p = &(*p)->rb_left;
fa90b2fd 619 rightmost = false;
378876b0 620 } else {
bb4cc1a8 621 p = &(*p)->rb_right;
378876b0 622 }
bb4cc1a8 623 }
fa90b2fd
DB
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
bb4cc1a8
AM
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631}
632
ef8f2327
MG
633static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
635{
636 if (!mz->on_tree)
637 return;
fa90b2fd
DB
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
bb4cc1a8
AM
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644}
645
ef8f2327
MG
646static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 648{
0a31bc97
JW
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 652 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 653 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
654}
655
3e32cb2e
JW
656static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657{
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666}
bb4cc1a8
AM
667
668static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669{
3e32cb2e 670 unsigned long excess;
ef8f2327
MG
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 673
e231875b 674 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
675 if (!mctz)
676 return;
bb4cc1a8
AM
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 682 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 683 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
0a31bc97
JW
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
692 /* if on-tree, remove it */
693 if (mz->on_tree)
cf2c8127 694 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
cf2c8127 699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 700 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
701 }
702 }
703}
704
705static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706{
ef8f2327
MG
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
bb4cc1a8 710
e231875b 711 for_each_node(nid) {
ef8f2327
MG
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
716 }
717}
718
ef8f2327
MG
719static struct mem_cgroup_per_node *
720__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 721{
ef8f2327 722 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
723
724retry:
725 mz = NULL;
fa90b2fd 726 if (!mctz->rb_rightmost)
bb4cc1a8
AM
727 goto done; /* Nothing to reclaim from */
728
fa90b2fd
DB
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
cf2c8127 736 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 737 if (!soft_limit_excess(mz->memcg) ||
8965aa28 738 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
739 goto retry;
740done:
741 return mz;
742}
743
ef8f2327
MG
744static struct mem_cgroup_per_node *
745mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 746{
ef8f2327 747 struct mem_cgroup_per_node *mz;
bb4cc1a8 748
0a31bc97 749 spin_lock_irq(&mctz->lock);
bb4cc1a8 750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 751 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
752 return mz;
753}
754
db9adbcb
JW
755/**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762{
ea426c2a 763 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
764
765 if (mem_cgroup_disabled())
766 return;
767
772616b0 768 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
769 threshold <<= PAGE_SHIFT;
770
db9adbcb 771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 772 if (unlikely(abs(x) > threshold)) {
42a30035
JW
773 struct mem_cgroup *mi;
774
766a4c19
YS
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785}
786
42a30035
JW
787static struct mem_cgroup_per_node *
788parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789{
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796}
797
eedc4e5a
RG
798void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
db9adbcb
JW
800{
801 struct mem_cgroup_per_node *pn;
42a30035 802 struct mem_cgroup *memcg;
ea426c2a 803 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 804
db9adbcb 805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 806 memcg = pn->memcg;
db9adbcb
JW
807
808 /* Update memcg */
42a30035 809 __mod_memcg_state(memcg, idx, val);
db9adbcb 810
b4c46484
RG
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
ea426c2a
RG
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
db9adbcb 817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 818 if (unlikely(abs(x) > threshold)) {
eedc4e5a 819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
820 struct mem_cgroup_per_node *pi;
821
42a30035
JW
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827}
828
eedc4e5a
RG
829/**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841{
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848}
849
c47d5032
SB
850void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852{
853 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 854 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 859 if (!memcg) {
c47d5032
SB
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
d635a69d 864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
865 __mod_lruvec_state(lruvec, idx, val);
866}
f0c0c115 867EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 868
da3ceeff 869void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 870{
4f103c63 871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
4f103c63 876 memcg = mem_cgroup_from_obj(p);
ec9f0238 877
8faeb1ff
MS
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
ec9f0238
RG
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
867e5e1d 887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891}
892
db9adbcb
JW
893/**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901{
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
909 struct mem_cgroup *mi;
910
766a4c19
YS
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921}
922
42a30035 923static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 924{
871789d4 925 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
926}
927
42a30035
JW
928static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929{
815744d7
JW
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
42a30035
JW
936}
937
c0ff4b85 938static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 939 struct page *page,
3fba69a5 940 int nr_pages)
d52aa412 941{
e401f176
KH
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
c9019e9b 944 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 945 else {
c9019e9b 946 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
947 nr_pages = -nr_pages; /* for event */
948 }
e401f176 949
871789d4 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
951}
952
f53d7ce3
JW
953static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
7a159cc9
JW
955{
956 unsigned long val, next;
957
871789d4
CD
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 960 /* from time_after() in jiffies.h */
6a1a8b80 961 if ((long)(next - val) < 0) {
f53d7ce3
JW
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
bb4cc1a8
AM
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
f53d7ce3
JW
969 default:
970 break;
971 }
871789d4 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 973 return true;
7a159cc9 974 }
f53d7ce3 975 return false;
d2265e6f
KH
976}
977
978/*
979 * Check events in order.
980 *
981 */
c0ff4b85 982static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
983{
984 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 987 bool do_softlimit;
f53d7ce3 988
bb4cc1a8
AM
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 991 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
0a31bc97 994 }
d2265e6f
KH
995}
996
cf475ad2 997struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 998{
31a78f23
BS
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
073219e9 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1008}
33398cf2 1009EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1010
d46eb14b
SB
1011/**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1020{
d46eb14b
SB
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
0b7f569e 1025
54595fe2
KH
1026 rcu_read_lock();
1027 do {
6f6acb00
MH
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
df381975 1034 memcg = root_mem_cgroup;
6f6acb00
MH
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
00d484f3 1040 } while (!css_tryget(&memcg->css));
54595fe2 1041 rcu_read_unlock();
c0ff4b85 1042 return memcg;
54595fe2 1043}
d46eb14b
SB
1044EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
f745c6f5
SB
1046/**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054{
bcfe06bf 1055 struct mem_cgroup *memcg = page_memcg(page);
f745c6f5
SB
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
8965aa28
SB
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066}
1067EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
37d5985c 1069static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1070{
37d5985c
RG
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075}
279c3393 1076
37d5985c
RG
1077static __always_inline struct mem_cgroup *get_active_memcg(void)
1078{
1079 struct mem_cgroup *memcg;
d46eb14b 1080
37d5985c
RG
1081 rcu_read_lock();
1082 memcg = active_memcg();
1083 if (memcg) {
8965aa28 1084 /* current->active_memcg must hold a ref. */
37d5985c 1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1086 memcg = root_mem_cgroup;
1087 else
d46eb14b 1088 memcg = current->active_memcg;
d46eb14b 1089 }
37d5985c
RG
1090 rcu_read_unlock();
1091
1092 return memcg;
1093}
1094
4127c650
RG
1095static __always_inline bool memcg_kmem_bypass(void)
1096{
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1099 return false;
1100
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 return true;
1104
1105 return false;
1106}
1107
37d5985c
RG
1108/**
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1110 */
1111static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112{
1113 if (memcg_kmem_bypass())
1114 return NULL;
1115
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1118
d46eb14b
SB
1119 return get_mem_cgroup_from_mm(current->mm);
1120}
54595fe2 1121
5660048c
JW
1122/**
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127 *
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1130 *
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1134 *
05bdc520
ML
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1137 * same node.
5660048c 1138 */
694fbc0f 1139struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1140 struct mem_cgroup *prev,
694fbc0f 1141 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1142{
3f649ab7 1143 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1144 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1145 struct mem_cgroup *memcg = NULL;
5ac8fb31 1146 struct mem_cgroup *pos = NULL;
711d3d2c 1147
694fbc0f
AM
1148 if (mem_cgroup_disabled())
1149 return NULL;
5660048c 1150
9f3a0d09
JW
1151 if (!root)
1152 root = root_mem_cgroup;
7d74b06f 1153
9f3a0d09 1154 if (prev && !reclaim)
5ac8fb31 1155 pos = prev;
14067bb3 1156
542f85f9 1157 rcu_read_lock();
5f578161 1158
5ac8fb31 1159 if (reclaim) {
ef8f2327 1160 struct mem_cgroup_per_node *mz;
5ac8fb31 1161
ef8f2327 1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1163 iter = &mz->iter;
5ac8fb31
JW
1164
1165 if (prev && reclaim->generation != iter->generation)
1166 goto out_unlock;
1167
6df38689 1168 while (1) {
4db0c3c2 1169 pos = READ_ONCE(iter->position);
6df38689
VD
1170 if (!pos || css_tryget(&pos->css))
1171 break;
5ac8fb31 1172 /*
6df38689
VD
1173 * css reference reached zero, so iter->position will
1174 * be cleared by ->css_released. However, we should not
1175 * rely on this happening soon, because ->css_released
1176 * is called from a work queue, and by busy-waiting we
1177 * might block it. So we clear iter->position right
1178 * away.
5ac8fb31 1179 */
6df38689
VD
1180 (void)cmpxchg(&iter->position, pos, NULL);
1181 }
5ac8fb31
JW
1182 }
1183
1184 if (pos)
1185 css = &pos->css;
1186
1187 for (;;) {
1188 css = css_next_descendant_pre(css, &root->css);
1189 if (!css) {
1190 /*
1191 * Reclaimers share the hierarchy walk, and a
1192 * new one might jump in right at the end of
1193 * the hierarchy - make sure they see at least
1194 * one group and restart from the beginning.
1195 */
1196 if (!prev)
1197 continue;
1198 break;
527a5ec9 1199 }
7d74b06f 1200
5ac8fb31
JW
1201 /*
1202 * Verify the css and acquire a reference. The root
1203 * is provided by the caller, so we know it's alive
1204 * and kicking, and don't take an extra reference.
1205 */
1206 memcg = mem_cgroup_from_css(css);
14067bb3 1207
5ac8fb31
JW
1208 if (css == &root->css)
1209 break;
14067bb3 1210
0b8f73e1
JW
1211 if (css_tryget(css))
1212 break;
9f3a0d09 1213
5ac8fb31 1214 memcg = NULL;
9f3a0d09 1215 }
5ac8fb31
JW
1216
1217 if (reclaim) {
5ac8fb31 1218 /*
6df38689
VD
1219 * The position could have already been updated by a competing
1220 * thread, so check that the value hasn't changed since we read
1221 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1222 */
6df38689
VD
1223 (void)cmpxchg(&iter->position, pos, memcg);
1224
5ac8fb31
JW
1225 if (pos)
1226 css_put(&pos->css);
1227
1228 if (!memcg)
1229 iter->generation++;
1230 else if (!prev)
1231 reclaim->generation = iter->generation;
9f3a0d09 1232 }
5ac8fb31 1233
542f85f9
MH
1234out_unlock:
1235 rcu_read_unlock();
c40046f3
MH
1236 if (prev && prev != root)
1237 css_put(&prev->css);
1238
9f3a0d09 1239 return memcg;
14067bb3 1240}
7d74b06f 1241
5660048c
JW
1242/**
1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244 * @root: hierarchy root
1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1246 */
1247void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 struct mem_cgroup *prev)
9f3a0d09
JW
1249{
1250 if (!root)
1251 root = root_mem_cgroup;
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1254}
7d74b06f 1255
54a83d6b
MC
1256static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 struct mem_cgroup *dead_memcg)
6df38689 1258{
6df38689 1259 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1260 struct mem_cgroup_per_node *mz;
1261 int nid;
6df38689 1262
54a83d6b
MC
1263 for_each_node(nid) {
1264 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1265 iter = &mz->iter;
1266 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1267 }
1268}
1269
54a83d6b
MC
1270static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1271{
1272 struct mem_cgroup *memcg = dead_memcg;
1273 struct mem_cgroup *last;
1274
1275 do {
1276 __invalidate_reclaim_iterators(memcg, dead_memcg);
1277 last = memcg;
1278 } while ((memcg = parent_mem_cgroup(memcg)));
1279
1280 /*
1281 * When cgruop1 non-hierarchy mode is used,
1282 * parent_mem_cgroup() does not walk all the way up to the
1283 * cgroup root (root_mem_cgroup). So we have to handle
1284 * dead_memcg from cgroup root separately.
1285 */
1286 if (last != root_mem_cgroup)
1287 __invalidate_reclaim_iterators(root_mem_cgroup,
1288 dead_memcg);
1289}
1290
7c5f64f8
VD
1291/**
1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293 * @memcg: hierarchy root
1294 * @fn: function to call for each task
1295 * @arg: argument passed to @fn
1296 *
1297 * This function iterates over tasks attached to @memcg or to any of its
1298 * descendants and calls @fn for each task. If @fn returns a non-zero
1299 * value, the function breaks the iteration loop and returns the value.
1300 * Otherwise, it will iterate over all tasks and return 0.
1301 *
1302 * This function must not be called for the root memory cgroup.
1303 */
1304int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 int (*fn)(struct task_struct *, void *), void *arg)
1306{
1307 struct mem_cgroup *iter;
1308 int ret = 0;
1309
1310 BUG_ON(memcg == root_mem_cgroup);
1311
1312 for_each_mem_cgroup_tree(iter, memcg) {
1313 struct css_task_iter it;
1314 struct task_struct *task;
1315
f168a9a5 1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1317 while (!ret && (task = css_task_iter_next(&it)))
1318 ret = fn(task, arg);
1319 css_task_iter_end(&it);
1320 if (ret) {
1321 mem_cgroup_iter_break(memcg, iter);
1322 break;
1323 }
1324 }
1325 return ret;
1326}
1327
6168d0da
AS
1328#ifdef CONFIG_DEBUG_VM
1329void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1330{
1331 struct mem_cgroup *memcg;
1332
1333 if (mem_cgroup_disabled())
1334 return;
1335
1336 memcg = page_memcg(page);
1337
1338 if (!memcg)
1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1340 else
1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1342}
1343#endif
1344
6168d0da
AS
1345/**
1346 * lock_page_lruvec - lock and return lruvec for a given page.
1347 * @page: the page
1348 *
1349 * This series functions should be used in either conditions:
1350 * PageLRU is cleared or unset
1351 * or page->_refcount is zero
1352 * or page is locked.
1353 */
1354struct lruvec *lock_page_lruvec(struct page *page)
1355{
1356 struct lruvec *lruvec;
1357 struct pglist_data *pgdat = page_pgdat(page);
1358
1359 rcu_read_lock();
1360 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1361 spin_lock(&lruvec->lru_lock);
1362 rcu_read_unlock();
1363
1364 lruvec_memcg_debug(lruvec, page);
1365
1366 return lruvec;
1367}
1368
1369struct lruvec *lock_page_lruvec_irq(struct page *page)
1370{
1371 struct lruvec *lruvec;
1372 struct pglist_data *pgdat = page_pgdat(page);
1373
1374 rcu_read_lock();
1375 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1376 spin_lock_irq(&lruvec->lru_lock);
1377 rcu_read_unlock();
1378
1379 lruvec_memcg_debug(lruvec, page);
1380
1381 return lruvec;
1382}
1383
1384struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1385{
1386 struct lruvec *lruvec;
1387 struct pglist_data *pgdat = page_pgdat(page);
1388
1389 rcu_read_lock();
1390 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1391 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1392 rcu_read_unlock();
1393
1394 lruvec_memcg_debug(lruvec, page);
1395
1396 return lruvec;
1397}
1398
925b7673 1399/**
fa9add64
HD
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
b4536f0c 1403 * @zid: zone id of the accounted pages
fa9add64 1404 * @nr_pages: positive when adding or negative when removing
925b7673 1405 *
ca707239
HD
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1409 */
fa9add64 1410void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1411 int zid, int nr_pages)
3f58a829 1412{
ef8f2327 1413 struct mem_cgroup_per_node *mz;
fa9add64 1414 unsigned long *lru_size;
ca707239 1415 long size;
3f58a829
MK
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
ef8f2327 1420 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1421 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1422
1423 if (nr_pages < 0)
1424 *lru_size += nr_pages;
1425
1426 size = *lru_size;
b4536f0c
MH
1427 if (WARN_ONCE(size < 0,
1428 "%s(%p, %d, %d): lru_size %ld\n",
1429 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1430 VM_BUG_ON(1);
1431 *lru_size = 0;
1432 }
1433
1434 if (nr_pages > 0)
1435 *lru_size += nr_pages;
08e552c6 1436}
544122e5 1437
19942822 1438/**
9d11ea9f 1439 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1440 * @memcg: the memory cgroup
19942822 1441 *
9d11ea9f 1442 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1443 * pages.
19942822 1444 */
c0ff4b85 1445static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1446{
3e32cb2e
JW
1447 unsigned long margin = 0;
1448 unsigned long count;
1449 unsigned long limit;
9d11ea9f 1450
3e32cb2e 1451 count = page_counter_read(&memcg->memory);
bbec2e15 1452 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1453 if (count < limit)
1454 margin = limit - count;
1455
7941d214 1456 if (do_memsw_account()) {
3e32cb2e 1457 count = page_counter_read(&memcg->memsw);
bbec2e15 1458 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1459 if (count < limit)
3e32cb2e 1460 margin = min(margin, limit - count);
cbedbac3
LR
1461 else
1462 margin = 0;
3e32cb2e
JW
1463 }
1464
1465 return margin;
19942822
JW
1466}
1467
32047e2a 1468/*
bdcbb659 1469 * A routine for checking "mem" is under move_account() or not.
32047e2a 1470 *
bdcbb659
QH
1471 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1472 * moving cgroups. This is for waiting at high-memory pressure
1473 * caused by "move".
32047e2a 1474 */
c0ff4b85 1475static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1476{
2bd9bb20
KH
1477 struct mem_cgroup *from;
1478 struct mem_cgroup *to;
4b534334 1479 bool ret = false;
2bd9bb20
KH
1480 /*
1481 * Unlike task_move routines, we access mc.to, mc.from not under
1482 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1483 */
1484 spin_lock(&mc.lock);
1485 from = mc.from;
1486 to = mc.to;
1487 if (!from)
1488 goto unlock;
3e92041d 1489
2314b42d
JW
1490 ret = mem_cgroup_is_descendant(from, memcg) ||
1491 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1492unlock:
1493 spin_unlock(&mc.lock);
4b534334
KH
1494 return ret;
1495}
1496
c0ff4b85 1497static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1498{
1499 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1500 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1501 DEFINE_WAIT(wait);
1502 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1503 /* moving charge context might have finished. */
1504 if (mc.moving_task)
1505 schedule();
1506 finish_wait(&mc.waitq, &wait);
1507 return true;
1508 }
1509 }
1510 return false;
1511}
1512
5f9a4f4a
MS
1513struct memory_stat {
1514 const char *name;
1515 unsigned int ratio;
1516 unsigned int idx;
1517};
1518
1519static struct memory_stat memory_stats[] = {
1520 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1521 { "file", PAGE_SIZE, NR_FILE_PAGES },
1522 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
f0c0c115 1523 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
5f9a4f4a
MS
1524 { "percpu", 1, MEMCG_PERCPU_B },
1525 { "sock", PAGE_SIZE, MEMCG_SOCK },
1526 { "shmem", PAGE_SIZE, NR_SHMEM },
1527 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1528 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1529 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 /*
1532 * The ratio will be initialized in memory_stats_init(). Because
1533 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1534 * constant(e.g. powerpc).
1535 */
1536 { "anon_thp", 0, NR_ANON_THPS },
b8eddff8
JW
1537 { "file_thp", 0, NR_FILE_THPS },
1538 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1539#endif
1540 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1541 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1542 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1543 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1544 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1545
1546 /*
1547 * Note: The slab_reclaimable and slab_unreclaimable must be
1548 * together and slab_reclaimable must be in front.
1549 */
1550 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1551 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1552
1553 /* The memory events */
1554 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1555 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1556 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1557 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1558 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1559 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1560 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1561};
1562
1563static int __init memory_stats_init(void)
1564{
1565 int i;
1566
1567 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
b8eddff8
JW
1569 if (memory_stats[i].idx == NR_ANON_THPS ||
1570 memory_stats[i].idx == NR_FILE_THPS ||
1571 memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1572 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1573#endif
1574 VM_BUG_ON(!memory_stats[i].ratio);
1575 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1576 }
1577
1578 return 0;
1579}
1580pure_initcall(memory_stats_init);
1581
c8713d0b
JW
1582static char *memory_stat_format(struct mem_cgroup *memcg)
1583{
1584 struct seq_buf s;
1585 int i;
71cd3113 1586
c8713d0b
JW
1587 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1588 if (!s.buffer)
1589 return NULL;
1590
1591 /*
1592 * Provide statistics on the state of the memory subsystem as
1593 * well as cumulative event counters that show past behavior.
1594 *
1595 * This list is ordered following a combination of these gradients:
1596 * 1) generic big picture -> specifics and details
1597 * 2) reflecting userspace activity -> reflecting kernel heuristics
1598 *
1599 * Current memory state:
1600 */
1601
5f9a4f4a
MS
1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 u64 size;
c8713d0b 1604
5f9a4f4a
MS
1605 size = memcg_page_state(memcg, memory_stats[i].idx);
1606 size *= memory_stats[i].ratio;
1607 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1608
5f9a4f4a
MS
1609 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1610 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1611 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1612 seq_buf_printf(&s, "slab %llu\n", size);
1613 }
1614 }
c8713d0b
JW
1615
1616 /* Accumulated memory events */
1617
ebc5d83d
KK
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1619 memcg_events(memcg, PGFAULT));
1620 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1621 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1622 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1623 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1624 seq_buf_printf(&s, "pgscan %lu\n",
1625 memcg_events(memcg, PGSCAN_KSWAPD) +
1626 memcg_events(memcg, PGSCAN_DIRECT));
1627 seq_buf_printf(&s, "pgsteal %lu\n",
1628 memcg_events(memcg, PGSTEAL_KSWAPD) +
1629 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1631 memcg_events(memcg, PGACTIVATE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1633 memcg_events(memcg, PGDEACTIVATE));
1634 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1635 memcg_events(memcg, PGLAZYFREE));
1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1637 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1638
1639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1641 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1642 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1643 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1644#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1645
1646 /* The above should easily fit into one page */
1647 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1648
1649 return s.buffer;
1650}
71cd3113 1651
58cf188e 1652#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1653/**
f0c867d9 1654 * mem_cgroup_print_oom_context: Print OOM information relevant to
1655 * memory controller.
e222432b
BS
1656 * @memcg: The memory cgroup that went over limit
1657 * @p: Task that is going to be killed
1658 *
1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1660 * enabled
1661 */
f0c867d9 1662void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1663{
e222432b
BS
1664 rcu_read_lock();
1665
f0c867d9 1666 if (memcg) {
1667 pr_cont(",oom_memcg=");
1668 pr_cont_cgroup_path(memcg->css.cgroup);
1669 } else
1670 pr_cont(",global_oom");
2415b9f5 1671 if (p) {
f0c867d9 1672 pr_cont(",task_memcg=");
2415b9f5 1673 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1674 }
e222432b 1675 rcu_read_unlock();
f0c867d9 1676}
1677
1678/**
1679 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1680 * memory controller.
1681 * @memcg: The memory cgroup that went over limit
1682 */
1683void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1684{
c8713d0b 1685 char *buf;
e222432b 1686
3e32cb2e
JW
1687 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->memory)),
15b42562 1689 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1690 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1691 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1693 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1694 else {
1695 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1696 K((u64)page_counter_read(&memcg->memsw)),
1697 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1698 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1699 K((u64)page_counter_read(&memcg->kmem)),
1700 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1701 }
c8713d0b
JW
1702
1703 pr_info("Memory cgroup stats for ");
1704 pr_cont_cgroup_path(memcg->css.cgroup);
1705 pr_cont(":");
1706 buf = memory_stat_format(memcg);
1707 if (!buf)
1708 return;
1709 pr_info("%s", buf);
1710 kfree(buf);
e222432b
BS
1711}
1712
a63d83f4
DR
1713/*
1714 * Return the memory (and swap, if configured) limit for a memcg.
1715 */
bbec2e15 1716unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1717{
8d387a5f
WL
1718 unsigned long max = READ_ONCE(memcg->memory.max);
1719
1720 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1721 if (mem_cgroup_swappiness(memcg))
1722 max += min(READ_ONCE(memcg->swap.max),
1723 (unsigned long)total_swap_pages);
1724 } else { /* v1 */
1725 if (mem_cgroup_swappiness(memcg)) {
1726 /* Calculate swap excess capacity from memsw limit */
1727 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1728
1729 max += min(swap, (unsigned long)total_swap_pages);
1730 }
9a5a8f19 1731 }
bbec2e15 1732 return max;
a63d83f4
DR
1733}
1734
9783aa99
CD
1735unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1736{
1737 return page_counter_read(&memcg->memory);
1738}
1739
b6e6edcf 1740static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1741 int order)
9cbb78bb 1742{
6e0fc46d
DR
1743 struct oom_control oc = {
1744 .zonelist = NULL,
1745 .nodemask = NULL,
2a966b77 1746 .memcg = memcg,
6e0fc46d
DR
1747 .gfp_mask = gfp_mask,
1748 .order = order,
6e0fc46d 1749 };
1378b37d 1750 bool ret = true;
9cbb78bb 1751
7775face
TH
1752 if (mutex_lock_killable(&oom_lock))
1753 return true;
1378b37d
YS
1754
1755 if (mem_cgroup_margin(memcg) >= (1 << order))
1756 goto unlock;
1757
7775face
TH
1758 /*
1759 * A few threads which were not waiting at mutex_lock_killable() can
1760 * fail to bail out. Therefore, check again after holding oom_lock.
1761 */
1762 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1763
1764unlock:
dc56401f 1765 mutex_unlock(&oom_lock);
7c5f64f8 1766 return ret;
9cbb78bb
DR
1767}
1768
0608f43d 1769static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1770 pg_data_t *pgdat,
0608f43d
AM
1771 gfp_t gfp_mask,
1772 unsigned long *total_scanned)
1773{
1774 struct mem_cgroup *victim = NULL;
1775 int total = 0;
1776 int loop = 0;
1777 unsigned long excess;
1778 unsigned long nr_scanned;
1779 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1780 .pgdat = pgdat,
0608f43d
AM
1781 };
1782
3e32cb2e 1783 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1784
1785 while (1) {
1786 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1787 if (!victim) {
1788 loop++;
1789 if (loop >= 2) {
1790 /*
1791 * If we have not been able to reclaim
1792 * anything, it might because there are
1793 * no reclaimable pages under this hierarchy
1794 */
1795 if (!total)
1796 break;
1797 /*
1798 * We want to do more targeted reclaim.
1799 * excess >> 2 is not to excessive so as to
1800 * reclaim too much, nor too less that we keep
1801 * coming back to reclaim from this cgroup
1802 */
1803 if (total >= (excess >> 2) ||
1804 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1805 break;
1806 }
1807 continue;
1808 }
a9dd0a83 1809 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1810 pgdat, &nr_scanned);
0608f43d 1811 *total_scanned += nr_scanned;
3e32cb2e 1812 if (!soft_limit_excess(root_memcg))
0608f43d 1813 break;
6d61ef40 1814 }
0608f43d
AM
1815 mem_cgroup_iter_break(root_memcg, victim);
1816 return total;
6d61ef40
BS
1817}
1818
0056f4e6
JW
1819#ifdef CONFIG_LOCKDEP
1820static struct lockdep_map memcg_oom_lock_dep_map = {
1821 .name = "memcg_oom_lock",
1822};
1823#endif
1824
fb2a6fc5
JW
1825static DEFINE_SPINLOCK(memcg_oom_lock);
1826
867578cb
KH
1827/*
1828 * Check OOM-Killer is already running under our hierarchy.
1829 * If someone is running, return false.
1830 */
fb2a6fc5 1831static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1832{
79dfdacc 1833 struct mem_cgroup *iter, *failed = NULL;
a636b327 1834
fb2a6fc5
JW
1835 spin_lock(&memcg_oom_lock);
1836
9f3a0d09 1837 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1838 if (iter->oom_lock) {
79dfdacc
MH
1839 /*
1840 * this subtree of our hierarchy is already locked
1841 * so we cannot give a lock.
1842 */
79dfdacc 1843 failed = iter;
9f3a0d09
JW
1844 mem_cgroup_iter_break(memcg, iter);
1845 break;
23751be0
JW
1846 } else
1847 iter->oom_lock = true;
7d74b06f 1848 }
867578cb 1849
fb2a6fc5
JW
1850 if (failed) {
1851 /*
1852 * OK, we failed to lock the whole subtree so we have
1853 * to clean up what we set up to the failing subtree
1854 */
1855 for_each_mem_cgroup_tree(iter, memcg) {
1856 if (iter == failed) {
1857 mem_cgroup_iter_break(memcg, iter);
1858 break;
1859 }
1860 iter->oom_lock = false;
79dfdacc 1861 }
0056f4e6
JW
1862 } else
1863 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1864
1865 spin_unlock(&memcg_oom_lock);
1866
1867 return !failed;
a636b327 1868}
0b7f569e 1869
fb2a6fc5 1870static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1871{
7d74b06f
KH
1872 struct mem_cgroup *iter;
1873
fb2a6fc5 1874 spin_lock(&memcg_oom_lock);
5facae4f 1875 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1876 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1877 iter->oom_lock = false;
fb2a6fc5 1878 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1879}
1880
c0ff4b85 1881static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1882{
1883 struct mem_cgroup *iter;
1884
c2b42d3c 1885 spin_lock(&memcg_oom_lock);
c0ff4b85 1886 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1887 iter->under_oom++;
1888 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1889}
1890
c0ff4b85 1891static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1892{
1893 struct mem_cgroup *iter;
1894
867578cb 1895 /*
7a52d4d8
ML
1896 * Be careful about under_oom underflows becase a child memcg
1897 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1898 */
c2b42d3c 1899 spin_lock(&memcg_oom_lock);
c0ff4b85 1900 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1901 if (iter->under_oom > 0)
1902 iter->under_oom--;
1903 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1904}
1905
867578cb
KH
1906static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1907
dc98df5a 1908struct oom_wait_info {
d79154bb 1909 struct mem_cgroup *memcg;
ac6424b9 1910 wait_queue_entry_t wait;
dc98df5a
KH
1911};
1912
ac6424b9 1913static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1914 unsigned mode, int sync, void *arg)
1915{
d79154bb
HD
1916 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1917 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1918 struct oom_wait_info *oom_wait_info;
1919
1920 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1921 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1922
2314b42d
JW
1923 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1924 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1925 return 0;
dc98df5a
KH
1926 return autoremove_wake_function(wait, mode, sync, arg);
1927}
1928
c0ff4b85 1929static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1930{
c2b42d3c
TH
1931 /*
1932 * For the following lockless ->under_oom test, the only required
1933 * guarantee is that it must see the state asserted by an OOM when
1934 * this function is called as a result of userland actions
1935 * triggered by the notification of the OOM. This is trivially
1936 * achieved by invoking mem_cgroup_mark_under_oom() before
1937 * triggering notification.
1938 */
1939 if (memcg && memcg->under_oom)
f4b90b70 1940 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1941}
1942
29ef680a
MH
1943enum oom_status {
1944 OOM_SUCCESS,
1945 OOM_FAILED,
1946 OOM_ASYNC,
1947 OOM_SKIPPED
1948};
1949
1950static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1951{
7056d3a3
MH
1952 enum oom_status ret;
1953 bool locked;
1954
29ef680a
MH
1955 if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 return OOM_SKIPPED;
1957
7a1adfdd
RG
1958 memcg_memory_event(memcg, MEMCG_OOM);
1959
867578cb 1960 /*
49426420
JW
1961 * We are in the middle of the charge context here, so we
1962 * don't want to block when potentially sitting on a callstack
1963 * that holds all kinds of filesystem and mm locks.
1964 *
29ef680a
MH
1965 * cgroup1 allows disabling the OOM killer and waiting for outside
1966 * handling until the charge can succeed; remember the context and put
1967 * the task to sleep at the end of the page fault when all locks are
1968 * released.
49426420 1969 *
29ef680a
MH
1970 * On the other hand, in-kernel OOM killer allows for an async victim
1971 * memory reclaim (oom_reaper) and that means that we are not solely
1972 * relying on the oom victim to make a forward progress and we can
1973 * invoke the oom killer here.
1974 *
1975 * Please note that mem_cgroup_out_of_memory might fail to find a
1976 * victim and then we have to bail out from the charge path.
867578cb 1977 */
29ef680a
MH
1978 if (memcg->oom_kill_disable) {
1979 if (!current->in_user_fault)
1980 return OOM_SKIPPED;
1981 css_get(&memcg->css);
1982 current->memcg_in_oom = memcg;
1983 current->memcg_oom_gfp_mask = mask;
1984 current->memcg_oom_order = order;
1985
1986 return OOM_ASYNC;
1987 }
1988
7056d3a3
MH
1989 mem_cgroup_mark_under_oom(memcg);
1990
1991 locked = mem_cgroup_oom_trylock(memcg);
1992
1993 if (locked)
1994 mem_cgroup_oom_notify(memcg);
1995
1996 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1997 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1998 ret = OOM_SUCCESS;
1999 else
2000 ret = OOM_FAILED;
2001
2002 if (locked)
2003 mem_cgroup_oom_unlock(memcg);
29ef680a 2004
7056d3a3 2005 return ret;
3812c8c8
JW
2006}
2007
2008/**
2009 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2010 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2011 *
49426420
JW
2012 * This has to be called at the end of a page fault if the memcg OOM
2013 * handler was enabled.
3812c8c8 2014 *
49426420 2015 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2016 * sleep on a waitqueue until the userspace task resolves the
2017 * situation. Sleeping directly in the charge context with all kinds
2018 * of locks held is not a good idea, instead we remember an OOM state
2019 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2020 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2021 *
2022 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2023 * completed, %false otherwise.
3812c8c8 2024 */
49426420 2025bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2026{
626ebc41 2027 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2028 struct oom_wait_info owait;
49426420 2029 bool locked;
3812c8c8
JW
2030
2031 /* OOM is global, do not handle */
3812c8c8 2032 if (!memcg)
49426420 2033 return false;
3812c8c8 2034
7c5f64f8 2035 if (!handle)
49426420 2036 goto cleanup;
3812c8c8
JW
2037
2038 owait.memcg = memcg;
2039 owait.wait.flags = 0;
2040 owait.wait.func = memcg_oom_wake_function;
2041 owait.wait.private = current;
2055da97 2042 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2043
3812c8c8 2044 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2045 mem_cgroup_mark_under_oom(memcg);
2046
2047 locked = mem_cgroup_oom_trylock(memcg);
2048
2049 if (locked)
2050 mem_cgroup_oom_notify(memcg);
2051
2052 if (locked && !memcg->oom_kill_disable) {
2053 mem_cgroup_unmark_under_oom(memcg);
2054 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2055 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2056 current->memcg_oom_order);
49426420 2057 } else {
3812c8c8 2058 schedule();
49426420
JW
2059 mem_cgroup_unmark_under_oom(memcg);
2060 finish_wait(&memcg_oom_waitq, &owait.wait);
2061 }
2062
2063 if (locked) {
fb2a6fc5
JW
2064 mem_cgroup_oom_unlock(memcg);
2065 /*
2066 * There is no guarantee that an OOM-lock contender
2067 * sees the wakeups triggered by the OOM kill
2068 * uncharges. Wake any sleepers explicitely.
2069 */
2070 memcg_oom_recover(memcg);
2071 }
49426420 2072cleanup:
626ebc41 2073 current->memcg_in_oom = NULL;
3812c8c8 2074 css_put(&memcg->css);
867578cb 2075 return true;
0b7f569e
KH
2076}
2077
3d8b38eb
RG
2078/**
2079 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2080 * @victim: task to be killed by the OOM killer
2081 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2082 *
2083 * Returns a pointer to a memory cgroup, which has to be cleaned up
2084 * by killing all belonging OOM-killable tasks.
2085 *
2086 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2087 */
2088struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2089 struct mem_cgroup *oom_domain)
2090{
2091 struct mem_cgroup *oom_group = NULL;
2092 struct mem_cgroup *memcg;
2093
2094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2095 return NULL;
2096
2097 if (!oom_domain)
2098 oom_domain = root_mem_cgroup;
2099
2100 rcu_read_lock();
2101
2102 memcg = mem_cgroup_from_task(victim);
2103 if (memcg == root_mem_cgroup)
2104 goto out;
2105
48fe267c
RG
2106 /*
2107 * If the victim task has been asynchronously moved to a different
2108 * memory cgroup, we might end up killing tasks outside oom_domain.
2109 * In this case it's better to ignore memory.group.oom.
2110 */
2111 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2112 goto out;
2113
3d8b38eb
RG
2114 /*
2115 * Traverse the memory cgroup hierarchy from the victim task's
2116 * cgroup up to the OOMing cgroup (or root) to find the
2117 * highest-level memory cgroup with oom.group set.
2118 */
2119 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2120 if (memcg->oom_group)
2121 oom_group = memcg;
2122
2123 if (memcg == oom_domain)
2124 break;
2125 }
2126
2127 if (oom_group)
2128 css_get(&oom_group->css);
2129out:
2130 rcu_read_unlock();
2131
2132 return oom_group;
2133}
2134
2135void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2136{
2137 pr_info("Tasks in ");
2138 pr_cont_cgroup_path(memcg->css.cgroup);
2139 pr_cont(" are going to be killed due to memory.oom.group set\n");
2140}
2141
d7365e78 2142/**
bcfe06bf 2143 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2144 * @page: the page
32047e2a 2145 *
81f8c3a4 2146 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2147 * another cgroup.
2148 *
2149 * It ensures lifetime of the returned memcg. Caller is responsible
2150 * for the lifetime of the page; __unlock_page_memcg() is available
2151 * when @page might get freed inside the locked section.
d69b042f 2152 */
739f79fc 2153struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2154{
9da7b521 2155 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2156 struct mem_cgroup *memcg;
6de22619 2157 unsigned long flags;
89c06bd5 2158
6de22619
JW
2159 /*
2160 * The RCU lock is held throughout the transaction. The fast
2161 * path can get away without acquiring the memcg->move_lock
2162 * because page moving starts with an RCU grace period.
739f79fc
JW
2163 *
2164 * The RCU lock also protects the memcg from being freed when
2165 * the page state that is going to change is the only thing
2166 * preventing the page itself from being freed. E.g. writeback
2167 * doesn't hold a page reference and relies on PG_writeback to
2168 * keep off truncation, migration and so forth.
2169 */
d7365e78
JW
2170 rcu_read_lock();
2171
2172 if (mem_cgroup_disabled())
739f79fc 2173 return NULL;
89c06bd5 2174again:
bcfe06bf 2175 memcg = page_memcg(head);
29833315 2176 if (unlikely(!memcg))
739f79fc 2177 return NULL;
d7365e78 2178
20ad50d6
AS
2179#ifdef CONFIG_PROVE_LOCKING
2180 local_irq_save(flags);
2181 might_lock(&memcg->move_lock);
2182 local_irq_restore(flags);
2183#endif
2184
bdcbb659 2185 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2186 return memcg;
89c06bd5 2187
6de22619 2188 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2189 if (memcg != page_memcg(head)) {
6de22619 2190 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2191 goto again;
2192 }
6de22619
JW
2193
2194 /*
2195 * When charge migration first begins, we can have locked and
2196 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2197 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
d7365e78 2201
739f79fc 2202 return memcg;
89c06bd5 2203}
81f8c3a4 2204EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2205
d7365e78 2206/**
739f79fc
JW
2207 * __unlock_page_memcg - unlock and unpin a memcg
2208 * @memcg: the memcg
2209 *
2210 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2211 */
739f79fc 2212void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2213{
6de22619
JW
2214 if (memcg && memcg->move_lock_task == current) {
2215 unsigned long flags = memcg->move_lock_flags;
2216
2217 memcg->move_lock_task = NULL;
2218 memcg->move_lock_flags = 0;
2219
2220 spin_unlock_irqrestore(&memcg->move_lock, flags);
2221 }
89c06bd5 2222
d7365e78 2223 rcu_read_unlock();
89c06bd5 2224}
739f79fc
JW
2225
2226/**
bcfe06bf 2227 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2228 * @page: the page
2229 */
2230void unlock_page_memcg(struct page *page)
2231{
9da7b521
JW
2232 struct page *head = compound_head(page);
2233
bcfe06bf 2234 __unlock_page_memcg(page_memcg(head));
739f79fc 2235}
81f8c3a4 2236EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2237
cdec2e42
KH
2238struct memcg_stock_pcp {
2239 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2240 unsigned int nr_pages;
bf4f0599
RG
2241
2242#ifdef CONFIG_MEMCG_KMEM
2243 struct obj_cgroup *cached_objcg;
2244 unsigned int nr_bytes;
2245#endif
2246
cdec2e42 2247 struct work_struct work;
26fe6168 2248 unsigned long flags;
a0db00fc 2249#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2250};
2251static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2252static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2253
bf4f0599
RG
2254#ifdef CONFIG_MEMCG_KMEM
2255static void drain_obj_stock(struct memcg_stock_pcp *stock);
2256static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 struct mem_cgroup *root_memcg);
2258
2259#else
2260static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2261{
2262}
2263static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265{
2266 return false;
2267}
2268#endif
2269
a0956d54
SS
2270/**
2271 * consume_stock: Try to consume stocked charge on this cpu.
2272 * @memcg: memcg to consume from.
2273 * @nr_pages: how many pages to charge.
2274 *
2275 * The charges will only happen if @memcg matches the current cpu's memcg
2276 * stock, and at least @nr_pages are available in that stock. Failure to
2277 * service an allocation will refill the stock.
2278 *
2279 * returns true if successful, false otherwise.
cdec2e42 2280 */
a0956d54 2281static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2282{
2283 struct memcg_stock_pcp *stock;
db2ba40c 2284 unsigned long flags;
3e32cb2e 2285 bool ret = false;
cdec2e42 2286
a983b5eb 2287 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2288 return ret;
a0956d54 2289
db2ba40c
JW
2290 local_irq_save(flags);
2291
2292 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2294 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2295 ret = true;
2296 }
db2ba40c
JW
2297
2298 local_irq_restore(flags);
2299
cdec2e42
KH
2300 return ret;
2301}
2302
2303/*
3e32cb2e 2304 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2305 */
2306static void drain_stock(struct memcg_stock_pcp *stock)
2307{
2308 struct mem_cgroup *old = stock->cached;
2309
1a3e1f40
JW
2310 if (!old)
2311 return;
2312
11c9ea4e 2313 if (stock->nr_pages) {
3e32cb2e 2314 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2315 if (do_memsw_account())
3e32cb2e 2316 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2317 stock->nr_pages = 0;
cdec2e42 2318 }
1a3e1f40
JW
2319
2320 css_put(&old->css);
cdec2e42 2321 stock->cached = NULL;
cdec2e42
KH
2322}
2323
cdec2e42
KH
2324static void drain_local_stock(struct work_struct *dummy)
2325{
db2ba40c
JW
2326 struct memcg_stock_pcp *stock;
2327 unsigned long flags;
2328
72f0184c
MH
2329 /*
2330 * The only protection from memory hotplug vs. drain_stock races is
2331 * that we always operate on local CPU stock here with IRQ disabled
2332 */
db2ba40c
JW
2333 local_irq_save(flags);
2334
2335 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2336 drain_obj_stock(stock);
cdec2e42 2337 drain_stock(stock);
26fe6168 2338 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2339
2340 local_irq_restore(flags);
cdec2e42
KH
2341}
2342
2343/*
3e32cb2e 2344 * Cache charges(val) to local per_cpu area.
320cc51d 2345 * This will be consumed by consume_stock() function, later.
cdec2e42 2346 */
c0ff4b85 2347static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2348{
db2ba40c
JW
2349 struct memcg_stock_pcp *stock;
2350 unsigned long flags;
2351
2352 local_irq_save(flags);
cdec2e42 2353
db2ba40c 2354 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2355 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2356 drain_stock(stock);
1a3e1f40 2357 css_get(&memcg->css);
c0ff4b85 2358 stock->cached = memcg;
cdec2e42 2359 }
11c9ea4e 2360 stock->nr_pages += nr_pages;
db2ba40c 2361
a983b5eb 2362 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2363 drain_stock(stock);
2364
db2ba40c 2365 local_irq_restore(flags);
cdec2e42
KH
2366}
2367
2368/*
c0ff4b85 2369 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2370 * of the hierarchy under it.
cdec2e42 2371 */
6d3d6aa2 2372static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2373{
26fe6168 2374 int cpu, curcpu;
d38144b7 2375
6d3d6aa2
JW
2376 /* If someone's already draining, avoid adding running more workers. */
2377 if (!mutex_trylock(&percpu_charge_mutex))
2378 return;
72f0184c
MH
2379 /*
2380 * Notify other cpus that system-wide "drain" is running
2381 * We do not care about races with the cpu hotplug because cpu down
2382 * as well as workers from this path always operate on the local
2383 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2384 */
5af12d0e 2385 curcpu = get_cpu();
cdec2e42
KH
2386 for_each_online_cpu(cpu) {
2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2388 struct mem_cgroup *memcg;
e1a366be 2389 bool flush = false;
26fe6168 2390
e1a366be 2391 rcu_read_lock();
c0ff4b85 2392 memcg = stock->cached;
e1a366be
RG
2393 if (memcg && stock->nr_pages &&
2394 mem_cgroup_is_descendant(memcg, root_memcg))
2395 flush = true;
bf4f0599
RG
2396 if (obj_stock_flush_required(stock, root_memcg))
2397 flush = true;
e1a366be
RG
2398 rcu_read_unlock();
2399
2400 if (flush &&
2401 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2402 if (cpu == curcpu)
2403 drain_local_stock(&stock->work);
2404 else
2405 schedule_work_on(cpu, &stock->work);
2406 }
cdec2e42 2407 }
5af12d0e 2408 put_cpu();
9f50fad6 2409 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2410}
2411
308167fc 2412static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2413{
cdec2e42 2414 struct memcg_stock_pcp *stock;
42a30035 2415 struct mem_cgroup *memcg, *mi;
cdec2e42 2416
cdec2e42
KH
2417 stock = &per_cpu(memcg_stock, cpu);
2418 drain_stock(stock);
a983b5eb
JW
2419
2420 for_each_mem_cgroup(memcg) {
2421 int i;
2422
2423 for (i = 0; i < MEMCG_NR_STAT; i++) {
2424 int nid;
2425 long x;
2426
871789d4 2427 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2428 if (x)
42a30035
JW
2429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2430 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2431
2432 if (i >= NR_VM_NODE_STAT_ITEMS)
2433 continue;
2434
2435 for_each_node(nid) {
2436 struct mem_cgroup_per_node *pn;
2437
2438 pn = mem_cgroup_nodeinfo(memcg, nid);
2439 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2440 if (x)
42a30035
JW
2441 do {
2442 atomic_long_add(x, &pn->lruvec_stat[i]);
2443 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2444 }
2445 }
2446
e27be240 2447 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2448 long x;
2449
871789d4 2450 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2451 if (x)
42a30035
JW
2452 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2453 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2454 }
2455 }
2456
308167fc 2457 return 0;
cdec2e42
KH
2458}
2459
b3ff9291
CD
2460static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 unsigned int nr_pages,
2462 gfp_t gfp_mask)
f7e1cb6e 2463{
b3ff9291
CD
2464 unsigned long nr_reclaimed = 0;
2465
f7e1cb6e 2466 do {
e22c6ed9
JW
2467 unsigned long pflags;
2468
d1663a90
JK
2469 if (page_counter_read(&memcg->memory) <=
2470 READ_ONCE(memcg->memory.high))
f7e1cb6e 2471 continue;
e22c6ed9 2472
e27be240 2473 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2474
2475 psi_memstall_enter(&pflags);
b3ff9291
CD
2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 gfp_mask, true);
e22c6ed9 2478 psi_memstall_leave(&pflags);
4bf17307
CD
2479 } while ((memcg = parent_mem_cgroup(memcg)) &&
2480 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2481
2482 return nr_reclaimed;
f7e1cb6e
JW
2483}
2484
2485static void high_work_func(struct work_struct *work)
2486{
2487 struct mem_cgroup *memcg;
2488
2489 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2491}
2492
0e4b01df
CD
2493/*
2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2495 * enough to still cause a significant slowdown in most cases, while still
2496 * allowing diagnostics and tracing to proceed without becoming stuck.
2497 */
2498#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2499
2500/*
2501 * When calculating the delay, we use these either side of the exponentiation to
2502 * maintain precision and scale to a reasonable number of jiffies (see the table
2503 * below.
2504 *
2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2506 * overage ratio to a delay.
ac5ddd0f 2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2509 * to produce a reasonable delay curve.
2510 *
2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2512 * reasonable delay curve compared to precision-adjusted overage, not
2513 * penalising heavily at first, but still making sure that growth beyond the
2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2515 * example, with a high of 100 megabytes:
2516 *
2517 * +-------+------------------------+
2518 * | usage | time to allocate in ms |
2519 * +-------+------------------------+
2520 * | 100M | 0 |
2521 * | 101M | 6 |
2522 * | 102M | 25 |
2523 * | 103M | 57 |
2524 * | 104M | 102 |
2525 * | 105M | 159 |
2526 * | 106M | 230 |
2527 * | 107M | 313 |
2528 * | 108M | 409 |
2529 * | 109M | 518 |
2530 * | 110M | 639 |
2531 * | 111M | 774 |
2532 * | 112M | 921 |
2533 * | 113M | 1081 |
2534 * | 114M | 1254 |
2535 * | 115M | 1439 |
2536 * | 116M | 1638 |
2537 * | 117M | 1849 |
2538 * | 118M | 2000 |
2539 * | 119M | 2000 |
2540 * | 120M | 2000 |
2541 * +-------+------------------------+
2542 */
2543 #define MEMCG_DELAY_PRECISION_SHIFT 20
2544 #define MEMCG_DELAY_SCALING_SHIFT 14
2545
8a5dbc65 2546static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2547{
8a5dbc65 2548 u64 overage;
b23afb93 2549
8a5dbc65
JK
2550 if (usage <= high)
2551 return 0;
e26733e0 2552
8a5dbc65
JK
2553 /*
2554 * Prevent division by 0 in overage calculation by acting as if
2555 * it was a threshold of 1 page
2556 */
2557 high = max(high, 1UL);
9b8b1754 2558
8a5dbc65
JK
2559 overage = usage - high;
2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2561 return div64_u64(overage, high);
2562}
e26733e0 2563
8a5dbc65
JK
2564static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2565{
2566 u64 overage, max_overage = 0;
e26733e0 2567
8a5dbc65
JK
2568 do {
2569 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2570 READ_ONCE(memcg->memory.high));
8a5dbc65 2571 max_overage = max(overage, max_overage);
e26733e0
CD
2572 } while ((memcg = parent_mem_cgroup(memcg)) &&
2573 !mem_cgroup_is_root(memcg));
2574
8a5dbc65
JK
2575 return max_overage;
2576}
2577
4b82ab4f
JK
2578static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2579{
2580 u64 overage, max_overage = 0;
2581
2582 do {
2583 overage = calculate_overage(page_counter_read(&memcg->swap),
2584 READ_ONCE(memcg->swap.high));
2585 if (overage)
2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2587 max_overage = max(overage, max_overage);
2588 } while ((memcg = parent_mem_cgroup(memcg)) &&
2589 !mem_cgroup_is_root(memcg));
2590
2591 return max_overage;
2592}
2593
8a5dbc65
JK
2594/*
2595 * Get the number of jiffies that we should penalise a mischievous cgroup which
2596 * is exceeding its memory.high by checking both it and its ancestors.
2597 */
2598static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2599 unsigned int nr_pages,
2600 u64 max_overage)
2601{
2602 unsigned long penalty_jiffies;
2603
e26733e0
CD
2604 if (!max_overage)
2605 return 0;
0e4b01df
CD
2606
2607 /*
0e4b01df
CD
2608 * We use overage compared to memory.high to calculate the number of
2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2610 * fairly lenient on small overages, and increasingly harsh when the
2611 * memcg in question makes it clear that it has no intention of stopping
2612 * its crazy behaviour, so we exponentially increase the delay based on
2613 * overage amount.
2614 */
e26733e0
CD
2615 penalty_jiffies = max_overage * max_overage * HZ;
2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2618
2619 /*
2620 * Factor in the task's own contribution to the overage, such that four
2621 * N-sized allocations are throttled approximately the same as one
2622 * 4N-sized allocation.
2623 *
2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2625 * larger the current charge patch is than that.
2626 */
ff144e69 2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2628}
2629
2630/*
2631 * Scheduled by try_charge() to be executed from the userland return path
2632 * and reclaims memory over the high limit.
2633 */
2634void mem_cgroup_handle_over_high(void)
2635{
2636 unsigned long penalty_jiffies;
2637 unsigned long pflags;
b3ff9291 2638 unsigned long nr_reclaimed;
e26733e0 2639 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2640 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2641 struct mem_cgroup *memcg;
b3ff9291 2642 bool in_retry = false;
e26733e0
CD
2643
2644 if (likely(!nr_pages))
2645 return;
2646
2647 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2648 current->memcg_nr_pages_over_high = 0;
2649
b3ff9291
CD
2650retry_reclaim:
2651 /*
2652 * The allocating task should reclaim at least the batch size, but for
2653 * subsequent retries we only want to do what's necessary to prevent oom
2654 * or breaching resource isolation.
2655 *
2656 * This is distinct from memory.max or page allocator behaviour because
2657 * memory.high is currently batched, whereas memory.max and the page
2658 * allocator run every time an allocation is made.
2659 */
2660 nr_reclaimed = reclaim_high(memcg,
2661 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2662 GFP_KERNEL);
2663
e26733e0
CD
2664 /*
2665 * memory.high is breached and reclaim is unable to keep up. Throttle
2666 * allocators proactively to slow down excessive growth.
2667 */
8a5dbc65
JK
2668 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2669 mem_find_max_overage(memcg));
0e4b01df 2670
4b82ab4f
JK
2671 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2672 swap_find_max_overage(memcg));
2673
ff144e69
JK
2674 /*
2675 * Clamp the max delay per usermode return so as to still keep the
2676 * application moving forwards and also permit diagnostics, albeit
2677 * extremely slowly.
2678 */
2679 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2680
0e4b01df
CD
2681 /*
2682 * Don't sleep if the amount of jiffies this memcg owes us is so low
2683 * that it's not even worth doing, in an attempt to be nice to those who
2684 * go only a small amount over their memory.high value and maybe haven't
2685 * been aggressively reclaimed enough yet.
2686 */
2687 if (penalty_jiffies <= HZ / 100)
2688 goto out;
2689
b3ff9291
CD
2690 /*
2691 * If reclaim is making forward progress but we're still over
2692 * memory.high, we want to encourage that rather than doing allocator
2693 * throttling.
2694 */
2695 if (nr_reclaimed || nr_retries--) {
2696 in_retry = true;
2697 goto retry_reclaim;
2698 }
2699
0e4b01df
CD
2700 /*
2701 * If we exit early, we're guaranteed to die (since
2702 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2703 * need to account for any ill-begotten jiffies to pay them off later.
2704 */
2705 psi_memstall_enter(&pflags);
2706 schedule_timeout_killable(penalty_jiffies);
2707 psi_memstall_leave(&pflags);
2708
2709out:
2710 css_put(&memcg->css);
b23afb93
TH
2711}
2712
00501b53
JW
2713static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2714 unsigned int nr_pages)
8a9f3ccd 2715{
a983b5eb 2716 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2717 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2718 struct mem_cgroup *mem_over_limit;
3e32cb2e 2719 struct page_counter *counter;
e22c6ed9 2720 enum oom_status oom_status;
6539cc05 2721 unsigned long nr_reclaimed;
b70a2a21
JW
2722 bool may_swap = true;
2723 bool drained = false;
e22c6ed9 2724 unsigned long pflags;
a636b327 2725
ce00a967 2726 if (mem_cgroup_is_root(memcg))
10d53c74 2727 return 0;
6539cc05 2728retry:
b6b6cc72 2729 if (consume_stock(memcg, nr_pages))
10d53c74 2730 return 0;
8a9f3ccd 2731
7941d214 2732 if (!do_memsw_account() ||
6071ca52
JW
2733 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2734 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2735 goto done_restock;
7941d214 2736 if (do_memsw_account())
3e32cb2e
JW
2737 page_counter_uncharge(&memcg->memsw, batch);
2738 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2739 } else {
3e32cb2e 2740 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2741 may_swap = false;
3fbe7244 2742 }
7a81b88c 2743
6539cc05
JW
2744 if (batch > nr_pages) {
2745 batch = nr_pages;
2746 goto retry;
2747 }
6d61ef40 2748
869712fd
JW
2749 /*
2750 * Memcg doesn't have a dedicated reserve for atomic
2751 * allocations. But like the global atomic pool, we need to
2752 * put the burden of reclaim on regular allocation requests
2753 * and let these go through as privileged allocations.
2754 */
2755 if (gfp_mask & __GFP_ATOMIC)
2756 goto force;
2757
06b078fc
JW
2758 /*
2759 * Unlike in global OOM situations, memcg is not in a physical
2760 * memory shortage. Allow dying and OOM-killed tasks to
2761 * bypass the last charges so that they can exit quickly and
2762 * free their memory.
2763 */
7775face 2764 if (unlikely(should_force_charge()))
10d53c74 2765 goto force;
06b078fc 2766
89a28483
JW
2767 /*
2768 * Prevent unbounded recursion when reclaim operations need to
2769 * allocate memory. This might exceed the limits temporarily,
2770 * but we prefer facilitating memory reclaim and getting back
2771 * under the limit over triggering OOM kills in these cases.
2772 */
2773 if (unlikely(current->flags & PF_MEMALLOC))
2774 goto force;
2775
06b078fc
JW
2776 if (unlikely(task_in_memcg_oom(current)))
2777 goto nomem;
2778
d0164adc 2779 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2780 goto nomem;
4b534334 2781
e27be240 2782 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2783
e22c6ed9 2784 psi_memstall_enter(&pflags);
b70a2a21
JW
2785 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2786 gfp_mask, may_swap);
e22c6ed9 2787 psi_memstall_leave(&pflags);
6539cc05 2788
61e02c74 2789 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2790 goto retry;
28c34c29 2791
b70a2a21 2792 if (!drained) {
6d3d6aa2 2793 drain_all_stock(mem_over_limit);
b70a2a21
JW
2794 drained = true;
2795 goto retry;
2796 }
2797
28c34c29
JW
2798 if (gfp_mask & __GFP_NORETRY)
2799 goto nomem;
6539cc05
JW
2800 /*
2801 * Even though the limit is exceeded at this point, reclaim
2802 * may have been able to free some pages. Retry the charge
2803 * before killing the task.
2804 *
2805 * Only for regular pages, though: huge pages are rather
2806 * unlikely to succeed so close to the limit, and we fall back
2807 * to regular pages anyway in case of failure.
2808 */
61e02c74 2809 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2810 goto retry;
2811 /*
2812 * At task move, charge accounts can be doubly counted. So, it's
2813 * better to wait until the end of task_move if something is going on.
2814 */
2815 if (mem_cgroup_wait_acct_move(mem_over_limit))
2816 goto retry;
2817
9b130619
JW
2818 if (nr_retries--)
2819 goto retry;
2820
38d38493 2821 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2822 goto nomem;
2823
06b078fc 2824 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2825 goto force;
06b078fc 2826
6539cc05 2827 if (fatal_signal_pending(current))
10d53c74 2828 goto force;
6539cc05 2829
29ef680a
MH
2830 /*
2831 * keep retrying as long as the memcg oom killer is able to make
2832 * a forward progress or bypass the charge if the oom killer
2833 * couldn't make any progress.
2834 */
2835 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2836 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2837 switch (oom_status) {
2838 case OOM_SUCCESS:
d977aa93 2839 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2840 goto retry;
2841 case OOM_FAILED:
2842 goto force;
2843 default:
2844 goto nomem;
2845 }
7a81b88c 2846nomem:
6d1fdc48 2847 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2848 return -ENOMEM;
10d53c74
TH
2849force:
2850 /*
2851 * The allocation either can't fail or will lead to more memory
2852 * being freed very soon. Allow memory usage go over the limit
2853 * temporarily by force charging it.
2854 */
2855 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2856 if (do_memsw_account())
10d53c74 2857 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2858
2859 return 0;
6539cc05
JW
2860
2861done_restock:
2862 if (batch > nr_pages)
2863 refill_stock(memcg, batch - nr_pages);
b23afb93 2864
241994ed 2865 /*
b23afb93
TH
2866 * If the hierarchy is above the normal consumption range, schedule
2867 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2868 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2869 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2870 * not recorded as it most likely matches current's and won't
2871 * change in the meantime. As high limit is checked again before
2872 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2873 */
2874 do {
4b82ab4f
JK
2875 bool mem_high, swap_high;
2876
2877 mem_high = page_counter_read(&memcg->memory) >
2878 READ_ONCE(memcg->memory.high);
2879 swap_high = page_counter_read(&memcg->swap) >
2880 READ_ONCE(memcg->swap.high);
2881
2882 /* Don't bother a random interrupted task */
2883 if (in_interrupt()) {
2884 if (mem_high) {
f7e1cb6e
JW
2885 schedule_work(&memcg->high_work);
2886 break;
2887 }
4b82ab4f
JK
2888 continue;
2889 }
2890
2891 if (mem_high || swap_high) {
2892 /*
2893 * The allocating tasks in this cgroup will need to do
2894 * reclaim or be throttled to prevent further growth
2895 * of the memory or swap footprints.
2896 *
2897 * Target some best-effort fairness between the tasks,
2898 * and distribute reclaim work and delay penalties
2899 * based on how much each task is actually allocating.
2900 */
9516a18a 2901 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2902 set_notify_resume(current);
2903 break;
2904 }
241994ed 2905 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2906
2907 return 0;
7a81b88c 2908}
8a9f3ccd 2909
f0e45fb4 2910#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2911static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2912{
ce00a967
JW
2913 if (mem_cgroup_is_root(memcg))
2914 return;
2915
3e32cb2e 2916 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2917 if (do_memsw_account())
3e32cb2e 2918 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2919}
f0e45fb4 2920#endif
d01dd17f 2921
d9eb1ea2 2922static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2923{
bcfe06bf 2924 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2925 /*
a5eb011a 2926 * Any of the following ensures page's memcg stability:
0a31bc97 2927 *
a0b5b414
JW
2928 * - the page lock
2929 * - LRU isolation
2930 * - lock_page_memcg()
2931 * - exclusive reference
0a31bc97 2932 */
bcfe06bf 2933 page->memcg_data = (unsigned long)memcg;
7a81b88c 2934}
66e1707b 2935
84c07d11 2936#ifdef CONFIG_MEMCG_KMEM
10befea9 2937int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2938 gfp_t gfp, bool new_page)
10befea9
RG
2939{
2940 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2941 unsigned long memcg_data;
10befea9
RG
2942 void *vec;
2943
2944 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2945 page_to_nid(page));
2946 if (!vec)
2947 return -ENOMEM;
2948
2e9bd483
RG
2949 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2950 if (new_page) {
2951 /*
2952 * If the slab page is brand new and nobody can yet access
2953 * it's memcg_data, no synchronization is required and
2954 * memcg_data can be simply assigned.
2955 */
2956 page->memcg_data = memcg_data;
2957 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2958 /*
2959 * If the slab page is already in use, somebody can allocate
2960 * and assign obj_cgroups in parallel. In this case the existing
2961 * objcg vector should be reused.
2962 */
10befea9 2963 kfree(vec);
2e9bd483
RG
2964 return 0;
2965 }
10befea9 2966
2e9bd483 2967 kmemleak_not_leak(vec);
10befea9
RG
2968 return 0;
2969}
2970
8380ce47
RG
2971/*
2972 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2973 *
bcfe06bf
RG
2974 * A passed kernel object can be a slab object or a generic kernel page, so
2975 * different mechanisms for getting the memory cgroup pointer should be used.
2976 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2977 * can not know for sure how the kernel object is implemented.
2978 * mem_cgroup_from_obj() can be safely used in such cases.
2979 *
8380ce47
RG
2980 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2981 * cgroup_mutex, etc.
2982 */
2983struct mem_cgroup *mem_cgroup_from_obj(void *p)
2984{
2985 struct page *page;
2986
2987 if (mem_cgroup_disabled())
2988 return NULL;
2989
2990 page = virt_to_head_page(p);
2991
2992 /*
9855609b
RG
2993 * Slab objects are accounted individually, not per-page.
2994 * Memcg membership data for each individual object is saved in
2995 * the page->obj_cgroups.
8380ce47 2996 */
270c6a71 2997 if (page_objcgs_check(page)) {
9855609b
RG
2998 struct obj_cgroup *objcg;
2999 unsigned int off;
3000
3001 off = obj_to_index(page->slab_cache, page, p);
270c6a71 3002 objcg = page_objcgs(page)[off];
10befea9
RG
3003 if (objcg)
3004 return obj_cgroup_memcg(objcg);
3005
3006 return NULL;
9855609b 3007 }
8380ce47 3008
bcfe06bf
RG
3009 /*
3010 * page_memcg_check() is used here, because page_has_obj_cgroups()
3011 * check above could fail because the object cgroups vector wasn't set
3012 * at that moment, but it can be set concurrently.
3013 * page_memcg_check(page) will guarantee that a proper memory
3014 * cgroup pointer or NULL will be returned.
3015 */
3016 return page_memcg_check(page);
8380ce47
RG
3017}
3018
bf4f0599
RG
3019__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3020{
3021 struct obj_cgroup *objcg = NULL;
3022 struct mem_cgroup *memcg;
3023
279c3393
RG
3024 if (memcg_kmem_bypass())
3025 return NULL;
3026
bf4f0599 3027 rcu_read_lock();
37d5985c
RG
3028 if (unlikely(active_memcg()))
3029 memcg = active_memcg();
bf4f0599
RG
3030 else
3031 memcg = mem_cgroup_from_task(current);
3032
3033 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3034 objcg = rcu_dereference(memcg->objcg);
3035 if (objcg && obj_cgroup_tryget(objcg))
3036 break;
2f7659a3 3037 objcg = NULL;
bf4f0599
RG
3038 }
3039 rcu_read_unlock();
3040
3041 return objcg;
3042}
3043
f3bb3043 3044static int memcg_alloc_cache_id(void)
55007d84 3045{
f3bb3043
VD
3046 int id, size;
3047 int err;
3048
dbcf73e2 3049 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3050 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3051 if (id < 0)
3052 return id;
55007d84 3053
dbcf73e2 3054 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3055 return id;
3056
3057 /*
3058 * There's no space for the new id in memcg_caches arrays,
3059 * so we have to grow them.
3060 */
05257a1a 3061 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3062
3063 size = 2 * (id + 1);
55007d84
GC
3064 if (size < MEMCG_CACHES_MIN_SIZE)
3065 size = MEMCG_CACHES_MIN_SIZE;
3066 else if (size > MEMCG_CACHES_MAX_SIZE)
3067 size = MEMCG_CACHES_MAX_SIZE;
3068
9855609b 3069 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3070 if (!err)
3071 memcg_nr_cache_ids = size;
3072
3073 up_write(&memcg_cache_ids_sem);
3074
f3bb3043 3075 if (err) {
dbcf73e2 3076 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3077 return err;
3078 }
3079 return id;
3080}
3081
3082static void memcg_free_cache_id(int id)
3083{
dbcf73e2 3084 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3085}
3086
45264778 3087/**
4b13f64d 3088 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3089 * @memcg: memory cgroup to charge
45264778 3090 * @gfp: reclaim mode
92d0510c 3091 * @nr_pages: number of pages to charge
45264778
VD
3092 *
3093 * Returns 0 on success, an error code on failure.
3094 */
4b13f64d
RG
3095int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3096 unsigned int nr_pages)
7ae1e1d0 3097{
f3ccb2c4 3098 struct page_counter *counter;
7ae1e1d0
GC
3099 int ret;
3100
f3ccb2c4 3101 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3102 if (ret)
f3ccb2c4 3103 return ret;
52c29b04
JW
3104
3105 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3106 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3107
3108 /*
3109 * Enforce __GFP_NOFAIL allocation because callers are not
3110 * prepared to see failures and likely do not have any failure
3111 * handling code.
3112 */
3113 if (gfp & __GFP_NOFAIL) {
3114 page_counter_charge(&memcg->kmem, nr_pages);
3115 return 0;
3116 }
52c29b04
JW
3117 cancel_charge(memcg, nr_pages);
3118 return -ENOMEM;
7ae1e1d0 3119 }
f3ccb2c4 3120 return 0;
7ae1e1d0
GC
3121}
3122
4b13f64d
RG
3123/**
3124 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3125 * @memcg: memcg to uncharge
3126 * @nr_pages: number of pages to uncharge
3127 */
3128void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3129{
3130 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3131 page_counter_uncharge(&memcg->kmem, nr_pages);
3132
3de7d4f2 3133 refill_stock(memcg, nr_pages);
4b13f64d
RG
3134}
3135
45264778 3136/**
f4b00eab 3137 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3138 * @page: page to charge
3139 * @gfp: reclaim mode
3140 * @order: allocation order
3141 *
3142 * Returns 0 on success, an error code on failure.
3143 */
f4b00eab 3144int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3145{
f3ccb2c4 3146 struct mem_cgroup *memcg;
fcff7d7e 3147 int ret = 0;
7ae1e1d0 3148
d46eb14b 3149 memcg = get_mem_cgroup_from_current();
279c3393 3150 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3151 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3152 if (!ret) {
18b2db3b
RG
3153 page->memcg_data = (unsigned long)memcg |
3154 MEMCG_DATA_KMEM;
1a3e1f40 3155 return 0;
4d96ba35 3156 }
279c3393 3157 css_put(&memcg->css);
c4159a75 3158 }
d05e83a6 3159 return ret;
7ae1e1d0 3160}
49a18eae 3161
45264778 3162/**
f4b00eab 3163 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3164 * @page: page to uncharge
3165 * @order: allocation order
3166 */
f4b00eab 3167void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3168{
bcfe06bf 3169 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3170 unsigned int nr_pages = 1 << order;
7ae1e1d0 3171
7ae1e1d0
GC
3172 if (!memcg)
3173 return;
3174
309381fe 3175 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3176 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3177 page->memcg_data = 0;
1a3e1f40 3178 css_put(&memcg->css);
60d3fd32 3179}
bf4f0599
RG
3180
3181static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3182{
3183 struct memcg_stock_pcp *stock;
3184 unsigned long flags;
3185 bool ret = false;
3186
3187 local_irq_save(flags);
3188
3189 stock = this_cpu_ptr(&memcg_stock);
3190 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3191 stock->nr_bytes -= nr_bytes;
3192 ret = true;
3193 }
3194
3195 local_irq_restore(flags);
3196
3197 return ret;
3198}
3199
3200static void drain_obj_stock(struct memcg_stock_pcp *stock)
3201{
3202 struct obj_cgroup *old = stock->cached_objcg;
3203
3204 if (!old)
3205 return;
3206
3207 if (stock->nr_bytes) {
3208 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3209 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3210
3211 if (nr_pages) {
3212 rcu_read_lock();
3213 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3214 rcu_read_unlock();
3215 }
3216
3217 /*
3218 * The leftover is flushed to the centralized per-memcg value.
3219 * On the next attempt to refill obj stock it will be moved
3220 * to a per-cpu stock (probably, on an other CPU), see
3221 * refill_obj_stock().
3222 *
3223 * How often it's flushed is a trade-off between the memory
3224 * limit enforcement accuracy and potential CPU contention,
3225 * so it might be changed in the future.
3226 */
3227 atomic_add(nr_bytes, &old->nr_charged_bytes);
3228 stock->nr_bytes = 0;
3229 }
3230
3231 obj_cgroup_put(old);
3232 stock->cached_objcg = NULL;
3233}
3234
3235static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3236 struct mem_cgroup *root_memcg)
3237{
3238 struct mem_cgroup *memcg;
3239
3240 if (stock->cached_objcg) {
3241 memcg = obj_cgroup_memcg(stock->cached_objcg);
3242 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3243 return true;
3244 }
3245
3246 return false;
3247}
3248
3249static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3250{
3251 struct memcg_stock_pcp *stock;
3252 unsigned long flags;
3253
3254 local_irq_save(flags);
3255
3256 stock = this_cpu_ptr(&memcg_stock);
3257 if (stock->cached_objcg != objcg) { /* reset if necessary */
3258 drain_obj_stock(stock);
3259 obj_cgroup_get(objcg);
3260 stock->cached_objcg = objcg;
3261 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3262 }
3263 stock->nr_bytes += nr_bytes;
3264
3265 if (stock->nr_bytes > PAGE_SIZE)
3266 drain_obj_stock(stock);
3267
3268 local_irq_restore(flags);
3269}
3270
3271int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3272{
3273 struct mem_cgroup *memcg;
3274 unsigned int nr_pages, nr_bytes;
3275 int ret;
3276
3277 if (consume_obj_stock(objcg, size))
3278 return 0;
3279
3280 /*
3281 * In theory, memcg->nr_charged_bytes can have enough
3282 * pre-charged bytes to satisfy the allocation. However,
3283 * flushing memcg->nr_charged_bytes requires two atomic
3284 * operations, and memcg->nr_charged_bytes can't be big,
3285 * so it's better to ignore it and try grab some new pages.
3286 * memcg->nr_charged_bytes will be flushed in
3287 * refill_obj_stock(), called from this function or
3288 * independently later.
3289 */
3290 rcu_read_lock();
eefbfa7f 3291retry:
bf4f0599 3292 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3293 if (unlikely(!css_tryget(&memcg->css)))
3294 goto retry;
bf4f0599
RG
3295 rcu_read_unlock();
3296
3297 nr_pages = size >> PAGE_SHIFT;
3298 nr_bytes = size & (PAGE_SIZE - 1);
3299
3300 if (nr_bytes)
3301 nr_pages += 1;
3302
3303 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3304 if (!ret && nr_bytes)
3305 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3306
3307 css_put(&memcg->css);
3308 return ret;
3309}
3310
3311void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3312{
3313 refill_obj_stock(objcg, size);
3314}
3315
84c07d11 3316#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3317
ca3e0214 3318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ca3e0214 3319/*
6168d0da 3320 * Because page_memcg(head) is not set on compound tails, set it now.
ca3e0214 3321 */
e94c8a9c 3322void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3323{
bcfe06bf 3324 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3325 int i;
ca3e0214 3326
3d37c4a9
KH
3327 if (mem_cgroup_disabled())
3328 return;
b070e65c 3329
1a3e1f40
JW
3330 for (i = 1; i < HPAGE_PMD_NR; i++) {
3331 css_get(&memcg->css);
bcfe06bf 3332 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3333 }
ca3e0214 3334}
12d27107 3335#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3336
c255a458 3337#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3338/**
3339 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3340 * @entry: swap entry to be moved
3341 * @from: mem_cgroup which the entry is moved from
3342 * @to: mem_cgroup which the entry is moved to
3343 *
3344 * It succeeds only when the swap_cgroup's record for this entry is the same
3345 * as the mem_cgroup's id of @from.
3346 *
3347 * Returns 0 on success, -EINVAL on failure.
3348 *
3e32cb2e 3349 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3350 * both res and memsw, and called css_get().
3351 */
3352static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3353 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3354{
3355 unsigned short old_id, new_id;
3356
34c00c31
LZ
3357 old_id = mem_cgroup_id(from);
3358 new_id = mem_cgroup_id(to);
02491447
DN
3359
3360 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3361 mod_memcg_state(from, MEMCG_SWAP, -1);
3362 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3363 return 0;
3364 }
3365 return -EINVAL;
3366}
3367#else
3368static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3369 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3370{
3371 return -EINVAL;
3372}
8c7c6e34 3373#endif
d13d1443 3374
bbec2e15 3375static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3376
bbec2e15
RG
3377static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3378 unsigned long max, bool memsw)
628f4235 3379{
3e32cb2e 3380 bool enlarge = false;
bb4a7ea2 3381 bool drained = false;
3e32cb2e 3382 int ret;
c054a78c
YZ
3383 bool limits_invariant;
3384 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3385
3e32cb2e 3386 do {
628f4235
KH
3387 if (signal_pending(current)) {
3388 ret = -EINTR;
3389 break;
3390 }
3e32cb2e 3391
bbec2e15 3392 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3393 /*
3394 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3395 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3396 */
15b42562 3397 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3398 max <= memcg->memsw.max;
c054a78c 3399 if (!limits_invariant) {
bbec2e15 3400 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3401 ret = -EINVAL;
8c7c6e34
KH
3402 break;
3403 }
bbec2e15 3404 if (max > counter->max)
3e32cb2e 3405 enlarge = true;
bbec2e15
RG
3406 ret = page_counter_set_max(counter, max);
3407 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3408
3409 if (!ret)
3410 break;
3411
bb4a7ea2
SB
3412 if (!drained) {
3413 drain_all_stock(memcg);
3414 drained = true;
3415 continue;
3416 }
3417
1ab5c056
AR
3418 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3419 GFP_KERNEL, !memsw)) {
3420 ret = -EBUSY;
3421 break;
3422 }
3423 } while (true);
3e32cb2e 3424
3c11ecf4
KH
3425 if (!ret && enlarge)
3426 memcg_oom_recover(memcg);
3e32cb2e 3427
628f4235
KH
3428 return ret;
3429}
3430
ef8f2327 3431unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3432 gfp_t gfp_mask,
3433 unsigned long *total_scanned)
3434{
3435 unsigned long nr_reclaimed = 0;
ef8f2327 3436 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3437 unsigned long reclaimed;
3438 int loop = 0;
ef8f2327 3439 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3440 unsigned long excess;
0608f43d
AM
3441 unsigned long nr_scanned;
3442
3443 if (order > 0)
3444 return 0;
3445
ef8f2327 3446 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3447
3448 /*
3449 * Do not even bother to check the largest node if the root
3450 * is empty. Do it lockless to prevent lock bouncing. Races
3451 * are acceptable as soft limit is best effort anyway.
3452 */
bfc7228b 3453 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3454 return 0;
3455
0608f43d
AM
3456 /*
3457 * This loop can run a while, specially if mem_cgroup's continuously
3458 * keep exceeding their soft limit and putting the system under
3459 * pressure
3460 */
3461 do {
3462 if (next_mz)
3463 mz = next_mz;
3464 else
3465 mz = mem_cgroup_largest_soft_limit_node(mctz);
3466 if (!mz)
3467 break;
3468
3469 nr_scanned = 0;
ef8f2327 3470 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3471 gfp_mask, &nr_scanned);
3472 nr_reclaimed += reclaimed;
3473 *total_scanned += nr_scanned;
0a31bc97 3474 spin_lock_irq(&mctz->lock);
bc2f2e7f 3475 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3476
3477 /*
3478 * If we failed to reclaim anything from this memory cgroup
3479 * it is time to move on to the next cgroup
3480 */
3481 next_mz = NULL;
bc2f2e7f
VD
3482 if (!reclaimed)
3483 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3484
3e32cb2e 3485 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3486 /*
3487 * One school of thought says that we should not add
3488 * back the node to the tree if reclaim returns 0.
3489 * But our reclaim could return 0, simply because due
3490 * to priority we are exposing a smaller subset of
3491 * memory to reclaim from. Consider this as a longer
3492 * term TODO.
3493 */
3494 /* If excess == 0, no tree ops */
cf2c8127 3495 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3496 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3497 css_put(&mz->memcg->css);
3498 loop++;
3499 /*
3500 * Could not reclaim anything and there are no more
3501 * mem cgroups to try or we seem to be looping without
3502 * reclaiming anything.
3503 */
3504 if (!nr_reclaimed &&
3505 (next_mz == NULL ||
3506 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3507 break;
3508 } while (!nr_reclaimed);
3509 if (next_mz)
3510 css_put(&next_mz->memcg->css);
3511 return nr_reclaimed;
3512}
3513
c26251f9 3514/*
51038171 3515 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3516 *
3517 * Caller is responsible for holding css reference for memcg.
3518 */
3519static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3520{
d977aa93 3521 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3522
c1e862c1
KH
3523 /* we call try-to-free pages for make this cgroup empty */
3524 lru_add_drain_all();
d12c60f6
JS
3525
3526 drain_all_stock(memcg);
3527
f817ed48 3528 /* try to free all pages in this cgroup */
3e32cb2e 3529 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3530 int progress;
c1e862c1 3531
c26251f9
MH
3532 if (signal_pending(current))
3533 return -EINTR;
3534
b70a2a21
JW
3535 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3536 GFP_KERNEL, true);
c1e862c1 3537 if (!progress) {
f817ed48 3538 nr_retries--;
c1e862c1 3539 /* maybe some writeback is necessary */
8aa7e847 3540 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3541 }
f817ed48
KH
3542
3543 }
ab5196c2
MH
3544
3545 return 0;
cc847582
KH
3546}
3547
6770c64e
TH
3548static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3549 char *buf, size_t nbytes,
3550 loff_t off)
c1e862c1 3551{
6770c64e 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3553
d8423011
MH
3554 if (mem_cgroup_is_root(memcg))
3555 return -EINVAL;
6770c64e 3556 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3557}
3558
182446d0
TH
3559static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3560 struct cftype *cft)
18f59ea7 3561{
bef8620c 3562 return 1;
18f59ea7
BS
3563}
3564
182446d0
TH
3565static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3566 struct cftype *cft, u64 val)
18f59ea7 3567{
bef8620c 3568 if (val == 1)
0b8f73e1 3569 return 0;
567fb435 3570
bef8620c
RG
3571 pr_warn_once("Non-hierarchical mode is deprecated. "
3572 "Please report your usecase to linux-mm@kvack.org if you "
3573 "depend on this functionality.\n");
567fb435 3574
bef8620c 3575 return -EINVAL;
18f59ea7
BS
3576}
3577
6f646156 3578static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3579{
42a30035 3580 unsigned long val;
ce00a967 3581
3e32cb2e 3582 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3583 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3584 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3585 if (swap)
3586 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3587 } else {
ce00a967 3588 if (!swap)
3e32cb2e 3589 val = page_counter_read(&memcg->memory);
ce00a967 3590 else
3e32cb2e 3591 val = page_counter_read(&memcg->memsw);
ce00a967 3592 }
c12176d3 3593 return val;
ce00a967
JW
3594}
3595
3e32cb2e
JW
3596enum {
3597 RES_USAGE,
3598 RES_LIMIT,
3599 RES_MAX_USAGE,
3600 RES_FAILCNT,
3601 RES_SOFT_LIMIT,
3602};
ce00a967 3603
791badbd 3604static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3605 struct cftype *cft)
8cdea7c0 3606{
182446d0 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3608 struct page_counter *counter;
af36f906 3609
3e32cb2e 3610 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3611 case _MEM:
3e32cb2e
JW
3612 counter = &memcg->memory;
3613 break;
8c7c6e34 3614 case _MEMSWAP:
3e32cb2e
JW
3615 counter = &memcg->memsw;
3616 break;
510fc4e1 3617 case _KMEM:
3e32cb2e 3618 counter = &memcg->kmem;
510fc4e1 3619 break;
d55f90bf 3620 case _TCP:
0db15298 3621 counter = &memcg->tcpmem;
d55f90bf 3622 break;
8c7c6e34
KH
3623 default:
3624 BUG();
8c7c6e34 3625 }
3e32cb2e
JW
3626
3627 switch (MEMFILE_ATTR(cft->private)) {
3628 case RES_USAGE:
3629 if (counter == &memcg->memory)
c12176d3 3630 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3631 if (counter == &memcg->memsw)
c12176d3 3632 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3633 return (u64)page_counter_read(counter) * PAGE_SIZE;
3634 case RES_LIMIT:
bbec2e15 3635 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3636 case RES_MAX_USAGE:
3637 return (u64)counter->watermark * PAGE_SIZE;
3638 case RES_FAILCNT:
3639 return counter->failcnt;
3640 case RES_SOFT_LIMIT:
3641 return (u64)memcg->soft_limit * PAGE_SIZE;
3642 default:
3643 BUG();
3644 }
8cdea7c0 3645}
510fc4e1 3646
4a87e2a2 3647static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3648{
4a87e2a2 3649 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3650 struct mem_cgroup *mi;
3651 int node, cpu, i;
c350a99e
RG
3652
3653 for_each_online_cpu(cpu)
4a87e2a2 3654 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3655 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3656
3657 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3658 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3659 atomic_long_add(stat[i], &mi->vmstats[i]);
3660
3661 for_each_node(node) {
3662 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3663 struct mem_cgroup_per_node *pi;
3664
4a87e2a2 3665 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3666 stat[i] = 0;
3667
3668 for_each_online_cpu(cpu)
4a87e2a2 3669 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3670 stat[i] += per_cpu(
3671 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3672
3673 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3674 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3675 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3676 }
3677}
3678
bb65f89b
RG
3679static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3680{
3681 unsigned long events[NR_VM_EVENT_ITEMS];
3682 struct mem_cgroup *mi;
3683 int cpu, i;
3684
3685 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3686 events[i] = 0;
3687
3688 for_each_online_cpu(cpu)
3689 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3690 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3691 cpu);
bb65f89b
RG
3692
3693 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3695 atomic_long_add(events[i], &mi->vmevents[i]);
3696}
3697
84c07d11 3698#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3699static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3700{
bf4f0599 3701 struct obj_cgroup *objcg;
d6441637
VD
3702 int memcg_id;
3703
b313aeee
VD
3704 if (cgroup_memory_nokmem)
3705 return 0;
3706
2a4db7eb 3707 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3708 BUG_ON(memcg->kmem_state);
d6441637 3709
f3bb3043 3710 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3711 if (memcg_id < 0)
3712 return memcg_id;
d6441637 3713
bf4f0599
RG
3714 objcg = obj_cgroup_alloc();
3715 if (!objcg) {
3716 memcg_free_cache_id(memcg_id);
3717 return -ENOMEM;
3718 }
3719 objcg->memcg = memcg;
3720 rcu_assign_pointer(memcg->objcg, objcg);
3721
d648bcc7
RG
3722 static_branch_enable(&memcg_kmem_enabled_key);
3723
900a38f0 3724 memcg->kmemcg_id = memcg_id;
567e9ab2 3725 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3726
3727 return 0;
d6441637
VD
3728}
3729
8e0a8912
JW
3730static void memcg_offline_kmem(struct mem_cgroup *memcg)
3731{
3732 struct cgroup_subsys_state *css;
3733 struct mem_cgroup *parent, *child;
3734 int kmemcg_id;
3735
3736 if (memcg->kmem_state != KMEM_ONLINE)
3737 return;
9855609b 3738
8e0a8912
JW
3739 memcg->kmem_state = KMEM_ALLOCATED;
3740
8e0a8912
JW
3741 parent = parent_mem_cgroup(memcg);
3742 if (!parent)
3743 parent = root_mem_cgroup;
3744
bf4f0599 3745 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3746
3747 kmemcg_id = memcg->kmemcg_id;
3748 BUG_ON(kmemcg_id < 0);
3749
8e0a8912
JW
3750 /*
3751 * Change kmemcg_id of this cgroup and all its descendants to the
3752 * parent's id, and then move all entries from this cgroup's list_lrus
3753 * to ones of the parent. After we have finished, all list_lrus
3754 * corresponding to this cgroup are guaranteed to remain empty. The
3755 * ordering is imposed by list_lru_node->lock taken by
3756 * memcg_drain_all_list_lrus().
3757 */
3a06bb78 3758 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3759 css_for_each_descendant_pre(css, &memcg->css) {
3760 child = mem_cgroup_from_css(css);
3761 BUG_ON(child->kmemcg_id != kmemcg_id);
3762 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3763 }
3a06bb78
TH
3764 rcu_read_unlock();
3765
9bec5c35 3766 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3767
3768 memcg_free_cache_id(kmemcg_id);
3769}
3770
3771static void memcg_free_kmem(struct mem_cgroup *memcg)
3772{
0b8f73e1
JW
3773 /* css_alloc() failed, offlining didn't happen */
3774 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3775 memcg_offline_kmem(memcg);
8e0a8912 3776}
d6441637 3777#else
0b8f73e1 3778static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3779{
3780 return 0;
3781}
3782static void memcg_offline_kmem(struct mem_cgroup *memcg)
3783{
3784}
3785static void memcg_free_kmem(struct mem_cgroup *memcg)
3786{
3787}
84c07d11 3788#endif /* CONFIG_MEMCG_KMEM */
127424c8 3789
bbec2e15
RG
3790static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3791 unsigned long max)
d6441637 3792{
b313aeee 3793 int ret;
127424c8 3794
bbec2e15
RG
3795 mutex_lock(&memcg_max_mutex);
3796 ret = page_counter_set_max(&memcg->kmem, max);
3797 mutex_unlock(&memcg_max_mutex);
127424c8 3798 return ret;
d6441637 3799}
510fc4e1 3800
bbec2e15 3801static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3802{
3803 int ret;
3804
bbec2e15 3805 mutex_lock(&memcg_max_mutex);
d55f90bf 3806
bbec2e15 3807 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3808 if (ret)
3809 goto out;
3810
0db15298 3811 if (!memcg->tcpmem_active) {
d55f90bf
VD
3812 /*
3813 * The active flag needs to be written after the static_key
3814 * update. This is what guarantees that the socket activation
2d758073
JW
3815 * function is the last one to run. See mem_cgroup_sk_alloc()
3816 * for details, and note that we don't mark any socket as
3817 * belonging to this memcg until that flag is up.
d55f90bf
VD
3818 *
3819 * We need to do this, because static_keys will span multiple
3820 * sites, but we can't control their order. If we mark a socket
3821 * as accounted, but the accounting functions are not patched in
3822 * yet, we'll lose accounting.
3823 *
2d758073 3824 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3825 * because when this value change, the code to process it is not
3826 * patched in yet.
3827 */
3828 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3829 memcg->tcpmem_active = true;
d55f90bf
VD
3830 }
3831out:
bbec2e15 3832 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3833 return ret;
3834}
d55f90bf 3835
628f4235
KH
3836/*
3837 * The user of this function is...
3838 * RES_LIMIT.
3839 */
451af504
TH
3840static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3841 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3842{
451af504 3843 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3844 unsigned long nr_pages;
628f4235
KH
3845 int ret;
3846
451af504 3847 buf = strstrip(buf);
650c5e56 3848 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3849 if (ret)
3850 return ret;
af36f906 3851
3e32cb2e 3852 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3853 case RES_LIMIT:
4b3bde4c
BS
3854 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3855 ret = -EINVAL;
3856 break;
3857 }
3e32cb2e
JW
3858 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3859 case _MEM:
bbec2e15 3860 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3861 break;
3e32cb2e 3862 case _MEMSWAP:
bbec2e15 3863 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3864 break;
3e32cb2e 3865 case _KMEM:
0158115f
MH
3866 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3867 "Please report your usecase to linux-mm@kvack.org if you "
3868 "depend on this functionality.\n");
bbec2e15 3869 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3870 break;
d55f90bf 3871 case _TCP:
bbec2e15 3872 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3873 break;
3e32cb2e 3874 }
296c81d8 3875 break;
3e32cb2e
JW
3876 case RES_SOFT_LIMIT:
3877 memcg->soft_limit = nr_pages;
3878 ret = 0;
628f4235
KH
3879 break;
3880 }
451af504 3881 return ret ?: nbytes;
8cdea7c0
BS
3882}
3883
6770c64e
TH
3884static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3885 size_t nbytes, loff_t off)
c84872e1 3886{
6770c64e 3887 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3888 struct page_counter *counter;
c84872e1 3889
3e32cb2e
JW
3890 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3891 case _MEM:
3892 counter = &memcg->memory;
3893 break;
3894 case _MEMSWAP:
3895 counter = &memcg->memsw;
3896 break;
3897 case _KMEM:
3898 counter = &memcg->kmem;
3899 break;
d55f90bf 3900 case _TCP:
0db15298 3901 counter = &memcg->tcpmem;
d55f90bf 3902 break;
3e32cb2e
JW
3903 default:
3904 BUG();
3905 }
af36f906 3906
3e32cb2e 3907 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3908 case RES_MAX_USAGE:
3e32cb2e 3909 page_counter_reset_watermark(counter);
29f2a4da
PE
3910 break;
3911 case RES_FAILCNT:
3e32cb2e 3912 counter->failcnt = 0;
29f2a4da 3913 break;
3e32cb2e
JW
3914 default:
3915 BUG();
29f2a4da 3916 }
f64c3f54 3917
6770c64e 3918 return nbytes;
c84872e1
PE
3919}
3920
182446d0 3921static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3922 struct cftype *cft)
3923{
182446d0 3924 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3925}
3926
02491447 3927#ifdef CONFIG_MMU
182446d0 3928static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3929 struct cftype *cft, u64 val)
3930{
182446d0 3931 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3932
1dfab5ab 3933 if (val & ~MOVE_MASK)
7dc74be0 3934 return -EINVAL;
ee5e8472 3935
7dc74be0 3936 /*
ee5e8472
GC
3937 * No kind of locking is needed in here, because ->can_attach() will
3938 * check this value once in the beginning of the process, and then carry
3939 * on with stale data. This means that changes to this value will only
3940 * affect task migrations starting after the change.
7dc74be0 3941 */
c0ff4b85 3942 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3943 return 0;
3944}
02491447 3945#else
182446d0 3946static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3947 struct cftype *cft, u64 val)
3948{
3949 return -ENOSYS;
3950}
3951#endif
7dc74be0 3952
406eb0c9 3953#ifdef CONFIG_NUMA
113b7dfd
JW
3954
3955#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3956#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3957#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3958
3959static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3960 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3961{
867e5e1d 3962 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3963 unsigned long nr = 0;
3964 enum lru_list lru;
3965
3966 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3967
3968 for_each_lru(lru) {
3969 if (!(BIT(lru) & lru_mask))
3970 continue;
dd8657b6
SB
3971 if (tree)
3972 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3973 else
3974 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3975 }
3976 return nr;
3977}
3978
3979static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3980 unsigned int lru_mask,
3981 bool tree)
113b7dfd
JW
3982{
3983 unsigned long nr = 0;
3984 enum lru_list lru;
3985
3986 for_each_lru(lru) {
3987 if (!(BIT(lru) & lru_mask))
3988 continue;
dd8657b6
SB
3989 if (tree)
3990 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3991 else
3992 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3993 }
3994 return nr;
3995}
3996
2da8ca82 3997static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3998{
25485de6
GT
3999 struct numa_stat {
4000 const char *name;
4001 unsigned int lru_mask;
4002 };
4003
4004 static const struct numa_stat stats[] = {
4005 { "total", LRU_ALL },
4006 { "file", LRU_ALL_FILE },
4007 { "anon", LRU_ALL_ANON },
4008 { "unevictable", BIT(LRU_UNEVICTABLE) },
4009 };
4010 const struct numa_stat *stat;
406eb0c9 4011 int nid;
aa9694bb 4012 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4013
25485de6 4014 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4015 seq_printf(m, "%s=%lu", stat->name,
4016 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4017 false));
4018 for_each_node_state(nid, N_MEMORY)
4019 seq_printf(m, " N%d=%lu", nid,
4020 mem_cgroup_node_nr_lru_pages(memcg, nid,
4021 stat->lru_mask, false));
25485de6 4022 seq_putc(m, '\n');
406eb0c9 4023 }
406eb0c9 4024
071aee13 4025 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4026
4027 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4028 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4029 true));
4030 for_each_node_state(nid, N_MEMORY)
4031 seq_printf(m, " N%d=%lu", nid,
4032 mem_cgroup_node_nr_lru_pages(memcg, nid,
4033 stat->lru_mask, true));
071aee13 4034 seq_putc(m, '\n');
406eb0c9 4035 }
406eb0c9 4036
406eb0c9
YH
4037 return 0;
4038}
4039#endif /* CONFIG_NUMA */
4040
c8713d0b 4041static const unsigned int memcg1_stats[] = {
0d1c2072 4042 NR_FILE_PAGES,
be5d0a74 4043 NR_ANON_MAPPED,
468c3982
JW
4044#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4045 NR_ANON_THPS,
4046#endif
c8713d0b
JW
4047 NR_SHMEM,
4048 NR_FILE_MAPPED,
4049 NR_FILE_DIRTY,
4050 NR_WRITEBACK,
4051 MEMCG_SWAP,
4052};
4053
4054static const char *const memcg1_stat_names[] = {
4055 "cache",
4056 "rss",
468c3982 4057#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4058 "rss_huge",
468c3982 4059#endif
c8713d0b
JW
4060 "shmem",
4061 "mapped_file",
4062 "dirty",
4063 "writeback",
4064 "swap",
4065};
4066
df0e53d0 4067/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4068static const unsigned int memcg1_events[] = {
df0e53d0
JW
4069 PGPGIN,
4070 PGPGOUT,
4071 PGFAULT,
4072 PGMAJFAULT,
4073};
4074
2da8ca82 4075static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4076{
aa9694bb 4077 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4078 unsigned long memory, memsw;
af7c4b0e
JW
4079 struct mem_cgroup *mi;
4080 unsigned int i;
406eb0c9 4081
71cd3113 4082 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4083
71cd3113 4084 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4085 unsigned long nr;
4086
71cd3113 4087 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4088 continue;
468c3982
JW
4089 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4090#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4091 if (memcg1_stats[i] == NR_ANON_THPS)
4092 nr *= HPAGE_PMD_NR;
4093#endif
4094 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4095 }
7b854121 4096
df0e53d0 4097 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4098 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4099 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4100
4101 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4102 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4103 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4104 PAGE_SIZE);
af7c4b0e 4105
14067bb3 4106 /* Hierarchical information */
3e32cb2e
JW
4107 memory = memsw = PAGE_COUNTER_MAX;
4108 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4109 memory = min(memory, READ_ONCE(mi->memory.max));
4110 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4111 }
3e32cb2e
JW
4112 seq_printf(m, "hierarchical_memory_limit %llu\n",
4113 (u64)memory * PAGE_SIZE);
7941d214 4114 if (do_memsw_account())
3e32cb2e
JW
4115 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4116 (u64)memsw * PAGE_SIZE);
7f016ee8 4117
8de7ecc6 4118 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4119 unsigned long nr;
4120
71cd3113 4121 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4122 continue;
7de2e9f1 4123 nr = memcg_page_state(memcg, memcg1_stats[i]);
4124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4125 if (memcg1_stats[i] == NR_ANON_THPS)
4126 nr *= HPAGE_PMD_NR;
4127#endif
8de7ecc6 4128 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4129 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4130 }
4131
8de7ecc6 4132 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4133 seq_printf(m, "total_%s %llu\n",
4134 vm_event_name(memcg1_events[i]),
dd923990 4135 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4136
8de7ecc6 4137 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4138 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4139 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4140 PAGE_SIZE);
14067bb3 4141
7f016ee8 4142#ifdef CONFIG_DEBUG_VM
7f016ee8 4143 {
ef8f2327
MG
4144 pg_data_t *pgdat;
4145 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4146 unsigned long anon_cost = 0;
4147 unsigned long file_cost = 0;
7f016ee8 4148
ef8f2327
MG
4149 for_each_online_pgdat(pgdat) {
4150 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4151
1431d4d1
JW
4152 anon_cost += mz->lruvec.anon_cost;
4153 file_cost += mz->lruvec.file_cost;
ef8f2327 4154 }
1431d4d1
JW
4155 seq_printf(m, "anon_cost %lu\n", anon_cost);
4156 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4157 }
4158#endif
4159
d2ceb9b7
KH
4160 return 0;
4161}
4162
182446d0
TH
4163static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4164 struct cftype *cft)
a7885eb8 4165{
182446d0 4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4167
1f4c025b 4168 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4169}
4170
182446d0
TH
4171static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4172 struct cftype *cft, u64 val)
a7885eb8 4173{
182446d0 4174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4175
3dae7fec 4176 if (val > 100)
a7885eb8
KM
4177 return -EINVAL;
4178
14208b0e 4179 if (css->parent)
3dae7fec
JW
4180 memcg->swappiness = val;
4181 else
4182 vm_swappiness = val;
068b38c1 4183
a7885eb8
KM
4184 return 0;
4185}
4186
2e72b634
KS
4187static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4188{
4189 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4190 unsigned long usage;
2e72b634
KS
4191 int i;
4192
4193 rcu_read_lock();
4194 if (!swap)
2c488db2 4195 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4196 else
2c488db2 4197 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4198
4199 if (!t)
4200 goto unlock;
4201
ce00a967 4202 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4203
4204 /*
748dad36 4205 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4206 * If it's not true, a threshold was crossed after last
4207 * call of __mem_cgroup_threshold().
4208 */
5407a562 4209 i = t->current_threshold;
2e72b634
KS
4210
4211 /*
4212 * Iterate backward over array of thresholds starting from
4213 * current_threshold and check if a threshold is crossed.
4214 * If none of thresholds below usage is crossed, we read
4215 * only one element of the array here.
4216 */
4217 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4218 eventfd_signal(t->entries[i].eventfd, 1);
4219
4220 /* i = current_threshold + 1 */
4221 i++;
4222
4223 /*
4224 * Iterate forward over array of thresholds starting from
4225 * current_threshold+1 and check if a threshold is crossed.
4226 * If none of thresholds above usage is crossed, we read
4227 * only one element of the array here.
4228 */
4229 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4230 eventfd_signal(t->entries[i].eventfd, 1);
4231
4232 /* Update current_threshold */
5407a562 4233 t->current_threshold = i - 1;
2e72b634
KS
4234unlock:
4235 rcu_read_unlock();
4236}
4237
4238static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4239{
ad4ca5f4
KS
4240 while (memcg) {
4241 __mem_cgroup_threshold(memcg, false);
7941d214 4242 if (do_memsw_account())
ad4ca5f4
KS
4243 __mem_cgroup_threshold(memcg, true);
4244
4245 memcg = parent_mem_cgroup(memcg);
4246 }
2e72b634
KS
4247}
4248
4249static int compare_thresholds(const void *a, const void *b)
4250{
4251 const struct mem_cgroup_threshold *_a = a;
4252 const struct mem_cgroup_threshold *_b = b;
4253
2bff24a3
GT
4254 if (_a->threshold > _b->threshold)
4255 return 1;
4256
4257 if (_a->threshold < _b->threshold)
4258 return -1;
4259
4260 return 0;
2e72b634
KS
4261}
4262
c0ff4b85 4263static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4264{
4265 struct mem_cgroup_eventfd_list *ev;
4266
2bcf2e92
MH
4267 spin_lock(&memcg_oom_lock);
4268
c0ff4b85 4269 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4270 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4271
4272 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4273 return 0;
4274}
4275
c0ff4b85 4276static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4277{
7d74b06f
KH
4278 struct mem_cgroup *iter;
4279
c0ff4b85 4280 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4281 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4282}
4283
59b6f873 4284static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4285 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4286{
2c488db2
KS
4287 struct mem_cgroup_thresholds *thresholds;
4288 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4289 unsigned long threshold;
4290 unsigned long usage;
2c488db2 4291 int i, size, ret;
2e72b634 4292
650c5e56 4293 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4294 if (ret)
4295 return ret;
4296
4297 mutex_lock(&memcg->thresholds_lock);
2c488db2 4298
05b84301 4299 if (type == _MEM) {
2c488db2 4300 thresholds = &memcg->thresholds;
ce00a967 4301 usage = mem_cgroup_usage(memcg, false);
05b84301 4302 } else if (type == _MEMSWAP) {
2c488db2 4303 thresholds = &memcg->memsw_thresholds;
ce00a967 4304 usage = mem_cgroup_usage(memcg, true);
05b84301 4305 } else
2e72b634
KS
4306 BUG();
4307
2e72b634 4308 /* Check if a threshold crossed before adding a new one */
2c488db2 4309 if (thresholds->primary)
2e72b634
KS
4310 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4311
2c488db2 4312 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4313
4314 /* Allocate memory for new array of thresholds */
67b8046f 4315 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4316 if (!new) {
2e72b634
KS
4317 ret = -ENOMEM;
4318 goto unlock;
4319 }
2c488db2 4320 new->size = size;
2e72b634
KS
4321
4322 /* Copy thresholds (if any) to new array */
e90342e6
GS
4323 if (thresholds->primary)
4324 memcpy(new->entries, thresholds->primary->entries,
4325 flex_array_size(new, entries, size - 1));
2c488db2 4326
2e72b634 4327 /* Add new threshold */
2c488db2
KS
4328 new->entries[size - 1].eventfd = eventfd;
4329 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4330
4331 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4332 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4333 compare_thresholds, NULL);
4334
4335 /* Find current threshold */
2c488db2 4336 new->current_threshold = -1;
2e72b634 4337 for (i = 0; i < size; i++) {
748dad36 4338 if (new->entries[i].threshold <= usage) {
2e72b634 4339 /*
2c488db2
KS
4340 * new->current_threshold will not be used until
4341 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4342 * it here.
4343 */
2c488db2 4344 ++new->current_threshold;
748dad36
SZ
4345 } else
4346 break;
2e72b634
KS
4347 }
4348
2c488db2
KS
4349 /* Free old spare buffer and save old primary buffer as spare */
4350 kfree(thresholds->spare);
4351 thresholds->spare = thresholds->primary;
4352
4353 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4354
907860ed 4355 /* To be sure that nobody uses thresholds */
2e72b634
KS
4356 synchronize_rcu();
4357
2e72b634
KS
4358unlock:
4359 mutex_unlock(&memcg->thresholds_lock);
4360
4361 return ret;
4362}
4363
59b6f873 4364static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4365 struct eventfd_ctx *eventfd, const char *args)
4366{
59b6f873 4367 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4368}
4369
59b6f873 4370static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4371 struct eventfd_ctx *eventfd, const char *args)
4372{
59b6f873 4373 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4374}
4375
59b6f873 4376static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4377 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4378{
2c488db2
KS
4379 struct mem_cgroup_thresholds *thresholds;
4380 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4381 unsigned long usage;
7d36665a 4382 int i, j, size, entries;
2e72b634
KS
4383
4384 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4385
4386 if (type == _MEM) {
2c488db2 4387 thresholds = &memcg->thresholds;
ce00a967 4388 usage = mem_cgroup_usage(memcg, false);
05b84301 4389 } else if (type == _MEMSWAP) {
2c488db2 4390 thresholds = &memcg->memsw_thresholds;
ce00a967 4391 usage = mem_cgroup_usage(memcg, true);
05b84301 4392 } else
2e72b634
KS
4393 BUG();
4394
371528ca
AV
4395 if (!thresholds->primary)
4396 goto unlock;
4397
2e72b634
KS
4398 /* Check if a threshold crossed before removing */
4399 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4400
4401 /* Calculate new number of threshold */
7d36665a 4402 size = entries = 0;
2c488db2
KS
4403 for (i = 0; i < thresholds->primary->size; i++) {
4404 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4405 size++;
7d36665a
CX
4406 else
4407 entries++;
2e72b634
KS
4408 }
4409
2c488db2 4410 new = thresholds->spare;
907860ed 4411
7d36665a
CX
4412 /* If no items related to eventfd have been cleared, nothing to do */
4413 if (!entries)
4414 goto unlock;
4415
2e72b634
KS
4416 /* Set thresholds array to NULL if we don't have thresholds */
4417 if (!size) {
2c488db2
KS
4418 kfree(new);
4419 new = NULL;
907860ed 4420 goto swap_buffers;
2e72b634
KS
4421 }
4422
2c488db2 4423 new->size = size;
2e72b634
KS
4424
4425 /* Copy thresholds and find current threshold */
2c488db2
KS
4426 new->current_threshold = -1;
4427 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4428 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4429 continue;
4430
2c488db2 4431 new->entries[j] = thresholds->primary->entries[i];
748dad36 4432 if (new->entries[j].threshold <= usage) {
2e72b634 4433 /*
2c488db2 4434 * new->current_threshold will not be used
2e72b634
KS
4435 * until rcu_assign_pointer(), so it's safe to increment
4436 * it here.
4437 */
2c488db2 4438 ++new->current_threshold;
2e72b634
KS
4439 }
4440 j++;
4441 }
4442
907860ed 4443swap_buffers:
2c488db2
KS
4444 /* Swap primary and spare array */
4445 thresholds->spare = thresholds->primary;
8c757763 4446
2c488db2 4447 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4448
907860ed 4449 /* To be sure that nobody uses thresholds */
2e72b634 4450 synchronize_rcu();
6611d8d7
MC
4451
4452 /* If all events are unregistered, free the spare array */
4453 if (!new) {
4454 kfree(thresholds->spare);
4455 thresholds->spare = NULL;
4456 }
371528ca 4457unlock:
2e72b634 4458 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4459}
c1e862c1 4460
59b6f873 4461static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4462 struct eventfd_ctx *eventfd)
4463{
59b6f873 4464 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4465}
4466
59b6f873 4467static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4468 struct eventfd_ctx *eventfd)
4469{
59b6f873 4470 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4471}
4472
59b6f873 4473static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4474 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4475{
9490ff27 4476 struct mem_cgroup_eventfd_list *event;
9490ff27 4477
9490ff27
KH
4478 event = kmalloc(sizeof(*event), GFP_KERNEL);
4479 if (!event)
4480 return -ENOMEM;
4481
1af8efe9 4482 spin_lock(&memcg_oom_lock);
9490ff27
KH
4483
4484 event->eventfd = eventfd;
4485 list_add(&event->list, &memcg->oom_notify);
4486
4487 /* already in OOM ? */
c2b42d3c 4488 if (memcg->under_oom)
9490ff27 4489 eventfd_signal(eventfd, 1);
1af8efe9 4490 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4491
4492 return 0;
4493}
4494
59b6f873 4495static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4496 struct eventfd_ctx *eventfd)
9490ff27 4497{
9490ff27 4498 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4499
1af8efe9 4500 spin_lock(&memcg_oom_lock);
9490ff27 4501
c0ff4b85 4502 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4503 if (ev->eventfd == eventfd) {
4504 list_del(&ev->list);
4505 kfree(ev);
4506 }
4507 }
4508
1af8efe9 4509 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4510}
4511
2da8ca82 4512static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4513{
aa9694bb 4514 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4515
791badbd 4516 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4517 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4518 seq_printf(sf, "oom_kill %lu\n",
4519 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4520 return 0;
4521}
4522
182446d0 4523static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4524 struct cftype *cft, u64 val)
4525{
182446d0 4526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4527
4528 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4529 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4530 return -EINVAL;
4531
c0ff4b85 4532 memcg->oom_kill_disable = val;
4d845ebf 4533 if (!val)
c0ff4b85 4534 memcg_oom_recover(memcg);
3dae7fec 4535
3c11ecf4
KH
4536 return 0;
4537}
4538
52ebea74
TH
4539#ifdef CONFIG_CGROUP_WRITEBACK
4540
3a8e9ac8
TH
4541#include <trace/events/writeback.h>
4542
841710aa
TH
4543static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4544{
4545 return wb_domain_init(&memcg->cgwb_domain, gfp);
4546}
4547
4548static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4549{
4550 wb_domain_exit(&memcg->cgwb_domain);
4551}
4552
2529bb3a
TH
4553static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4554{
4555 wb_domain_size_changed(&memcg->cgwb_domain);
4556}
4557
841710aa
TH
4558struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4559{
4560 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4561
4562 if (!memcg->css.parent)
4563 return NULL;
4564
4565 return &memcg->cgwb_domain;
4566}
4567
0b3d6e6f
GT
4568/*
4569 * idx can be of type enum memcg_stat_item or node_stat_item.
4570 * Keep in sync with memcg_exact_page().
4571 */
4572static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4573{
871789d4 4574 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4575 int cpu;
4576
4577 for_each_online_cpu(cpu)
871789d4 4578 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4579 if (x < 0)
4580 x = 0;
4581 return x;
4582}
4583
c2aa723a
TH
4584/**
4585 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4586 * @wb: bdi_writeback in question
c5edf9cd
TH
4587 * @pfilepages: out parameter for number of file pages
4588 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4589 * @pdirty: out parameter for number of dirty pages
4590 * @pwriteback: out parameter for number of pages under writeback
4591 *
c5edf9cd
TH
4592 * Determine the numbers of file, headroom, dirty, and writeback pages in
4593 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4594 * is a bit more involved.
c2aa723a 4595 *
c5edf9cd
TH
4596 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4597 * headroom is calculated as the lowest headroom of itself and the
4598 * ancestors. Note that this doesn't consider the actual amount of
4599 * available memory in the system. The caller should further cap
4600 * *@pheadroom accordingly.
c2aa723a 4601 */
c5edf9cd
TH
4602void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4603 unsigned long *pheadroom, unsigned long *pdirty,
4604 unsigned long *pwriteback)
c2aa723a
TH
4605{
4606 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4607 struct mem_cgroup *parent;
c2aa723a 4608
0b3d6e6f 4609 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4610
0b3d6e6f 4611 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4612 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4613 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4614 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4615
c2aa723a 4616 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4617 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4618 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4619 unsigned long used = page_counter_read(&memcg->memory);
4620
c5edf9cd 4621 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4622 memcg = parent;
4623 }
c2aa723a
TH
4624}
4625
97b27821
TH
4626/*
4627 * Foreign dirty flushing
4628 *
4629 * There's an inherent mismatch between memcg and writeback. The former
4630 * trackes ownership per-page while the latter per-inode. This was a
4631 * deliberate design decision because honoring per-page ownership in the
4632 * writeback path is complicated, may lead to higher CPU and IO overheads
4633 * and deemed unnecessary given that write-sharing an inode across
4634 * different cgroups isn't a common use-case.
4635 *
4636 * Combined with inode majority-writer ownership switching, this works well
4637 * enough in most cases but there are some pathological cases. For
4638 * example, let's say there are two cgroups A and B which keep writing to
4639 * different but confined parts of the same inode. B owns the inode and
4640 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4641 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4642 * triggering background writeback. A will be slowed down without a way to
4643 * make writeback of the dirty pages happen.
4644 *
4645 * Conditions like the above can lead to a cgroup getting repatedly and
4646 * severely throttled after making some progress after each
4647 * dirty_expire_interval while the underyling IO device is almost
4648 * completely idle.
4649 *
4650 * Solving this problem completely requires matching the ownership tracking
4651 * granularities between memcg and writeback in either direction. However,
4652 * the more egregious behaviors can be avoided by simply remembering the
4653 * most recent foreign dirtying events and initiating remote flushes on
4654 * them when local writeback isn't enough to keep the memory clean enough.
4655 *
4656 * The following two functions implement such mechanism. When a foreign
4657 * page - a page whose memcg and writeback ownerships don't match - is
4658 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4659 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4660 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4661 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4662 * foreign bdi_writebacks which haven't expired. Both the numbers of
4663 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4664 * limited to MEMCG_CGWB_FRN_CNT.
4665 *
4666 * The mechanism only remembers IDs and doesn't hold any object references.
4667 * As being wrong occasionally doesn't matter, updates and accesses to the
4668 * records are lockless and racy.
4669 */
4670void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4671 struct bdi_writeback *wb)
4672{
bcfe06bf 4673 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4674 struct memcg_cgwb_frn *frn;
4675 u64 now = get_jiffies_64();
4676 u64 oldest_at = now;
4677 int oldest = -1;
4678 int i;
4679
3a8e9ac8
TH
4680 trace_track_foreign_dirty(page, wb);
4681
97b27821
TH
4682 /*
4683 * Pick the slot to use. If there is already a slot for @wb, keep
4684 * using it. If not replace the oldest one which isn't being
4685 * written out.
4686 */
4687 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4688 frn = &memcg->cgwb_frn[i];
4689 if (frn->bdi_id == wb->bdi->id &&
4690 frn->memcg_id == wb->memcg_css->id)
4691 break;
4692 if (time_before64(frn->at, oldest_at) &&
4693 atomic_read(&frn->done.cnt) == 1) {
4694 oldest = i;
4695 oldest_at = frn->at;
4696 }
4697 }
4698
4699 if (i < MEMCG_CGWB_FRN_CNT) {
4700 /*
4701 * Re-using an existing one. Update timestamp lazily to
4702 * avoid making the cacheline hot. We want them to be
4703 * reasonably up-to-date and significantly shorter than
4704 * dirty_expire_interval as that's what expires the record.
4705 * Use the shorter of 1s and dirty_expire_interval / 8.
4706 */
4707 unsigned long update_intv =
4708 min_t(unsigned long, HZ,
4709 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4710
4711 if (time_before64(frn->at, now - update_intv))
4712 frn->at = now;
4713 } else if (oldest >= 0) {
4714 /* replace the oldest free one */
4715 frn = &memcg->cgwb_frn[oldest];
4716 frn->bdi_id = wb->bdi->id;
4717 frn->memcg_id = wb->memcg_css->id;
4718 frn->at = now;
4719 }
4720}
4721
4722/* issue foreign writeback flushes for recorded foreign dirtying events */
4723void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4724{
4725 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4726 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4727 u64 now = jiffies_64;
4728 int i;
4729
4730 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4731 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4732
4733 /*
4734 * If the record is older than dirty_expire_interval,
4735 * writeback on it has already started. No need to kick it
4736 * off again. Also, don't start a new one if there's
4737 * already one in flight.
4738 */
4739 if (time_after64(frn->at, now - intv) &&
4740 atomic_read(&frn->done.cnt) == 1) {
4741 frn->at = 0;
3a8e9ac8 4742 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4743 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4744 WB_REASON_FOREIGN_FLUSH,
4745 &frn->done);
4746 }
4747 }
4748}
4749
841710aa
TH
4750#else /* CONFIG_CGROUP_WRITEBACK */
4751
4752static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4753{
4754 return 0;
4755}
4756
4757static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4758{
4759}
4760
2529bb3a
TH
4761static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4762{
4763}
4764
52ebea74
TH
4765#endif /* CONFIG_CGROUP_WRITEBACK */
4766
3bc942f3
TH
4767/*
4768 * DO NOT USE IN NEW FILES.
4769 *
4770 * "cgroup.event_control" implementation.
4771 *
4772 * This is way over-engineered. It tries to support fully configurable
4773 * events for each user. Such level of flexibility is completely
4774 * unnecessary especially in the light of the planned unified hierarchy.
4775 *
4776 * Please deprecate this and replace with something simpler if at all
4777 * possible.
4778 */
4779
79bd9814
TH
4780/*
4781 * Unregister event and free resources.
4782 *
4783 * Gets called from workqueue.
4784 */
3bc942f3 4785static void memcg_event_remove(struct work_struct *work)
79bd9814 4786{
3bc942f3
TH
4787 struct mem_cgroup_event *event =
4788 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4789 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4790
4791 remove_wait_queue(event->wqh, &event->wait);
4792
59b6f873 4793 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4794
4795 /* Notify userspace the event is going away. */
4796 eventfd_signal(event->eventfd, 1);
4797
4798 eventfd_ctx_put(event->eventfd);
4799 kfree(event);
59b6f873 4800 css_put(&memcg->css);
79bd9814
TH
4801}
4802
4803/*
a9a08845 4804 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4805 *
4806 * Called with wqh->lock held and interrupts disabled.
4807 */
ac6424b9 4808static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4809 int sync, void *key)
79bd9814 4810{
3bc942f3
TH
4811 struct mem_cgroup_event *event =
4812 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4813 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4814 __poll_t flags = key_to_poll(key);
79bd9814 4815
a9a08845 4816 if (flags & EPOLLHUP) {
79bd9814
TH
4817 /*
4818 * If the event has been detached at cgroup removal, we
4819 * can simply return knowing the other side will cleanup
4820 * for us.
4821 *
4822 * We can't race against event freeing since the other
4823 * side will require wqh->lock via remove_wait_queue(),
4824 * which we hold.
4825 */
fba94807 4826 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4827 if (!list_empty(&event->list)) {
4828 list_del_init(&event->list);
4829 /*
4830 * We are in atomic context, but cgroup_event_remove()
4831 * may sleep, so we have to call it in workqueue.
4832 */
4833 schedule_work(&event->remove);
4834 }
fba94807 4835 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4836 }
4837
4838 return 0;
4839}
4840
3bc942f3 4841static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4842 wait_queue_head_t *wqh, poll_table *pt)
4843{
3bc942f3
TH
4844 struct mem_cgroup_event *event =
4845 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4846
4847 event->wqh = wqh;
4848 add_wait_queue(wqh, &event->wait);
4849}
4850
4851/*
3bc942f3
TH
4852 * DO NOT USE IN NEW FILES.
4853 *
79bd9814
TH
4854 * Parse input and register new cgroup event handler.
4855 *
4856 * Input must be in format '<event_fd> <control_fd> <args>'.
4857 * Interpretation of args is defined by control file implementation.
4858 */
451af504
TH
4859static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4860 char *buf, size_t nbytes, loff_t off)
79bd9814 4861{
451af504 4862 struct cgroup_subsys_state *css = of_css(of);
fba94807 4863 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4864 struct mem_cgroup_event *event;
79bd9814
TH
4865 struct cgroup_subsys_state *cfile_css;
4866 unsigned int efd, cfd;
4867 struct fd efile;
4868 struct fd cfile;
fba94807 4869 const char *name;
79bd9814
TH
4870 char *endp;
4871 int ret;
4872
451af504
TH
4873 buf = strstrip(buf);
4874
4875 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4876 if (*endp != ' ')
4877 return -EINVAL;
451af504 4878 buf = endp + 1;
79bd9814 4879
451af504 4880 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4881 if ((*endp != ' ') && (*endp != '\0'))
4882 return -EINVAL;
451af504 4883 buf = endp + 1;
79bd9814
TH
4884
4885 event = kzalloc(sizeof(*event), GFP_KERNEL);
4886 if (!event)
4887 return -ENOMEM;
4888
59b6f873 4889 event->memcg = memcg;
79bd9814 4890 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4891 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4892 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4893 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4894
4895 efile = fdget(efd);
4896 if (!efile.file) {
4897 ret = -EBADF;
4898 goto out_kfree;
4899 }
4900
4901 event->eventfd = eventfd_ctx_fileget(efile.file);
4902 if (IS_ERR(event->eventfd)) {
4903 ret = PTR_ERR(event->eventfd);
4904 goto out_put_efile;
4905 }
4906
4907 cfile = fdget(cfd);
4908 if (!cfile.file) {
4909 ret = -EBADF;
4910 goto out_put_eventfd;
4911 }
4912
4913 /* the process need read permission on control file */
4914 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4915 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4916 if (ret < 0)
4917 goto out_put_cfile;
4918
fba94807
TH
4919 /*
4920 * Determine the event callbacks and set them in @event. This used
4921 * to be done via struct cftype but cgroup core no longer knows
4922 * about these events. The following is crude but the whole thing
4923 * is for compatibility anyway.
3bc942f3
TH
4924 *
4925 * DO NOT ADD NEW FILES.
fba94807 4926 */
b583043e 4927 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4928
4929 if (!strcmp(name, "memory.usage_in_bytes")) {
4930 event->register_event = mem_cgroup_usage_register_event;
4931 event->unregister_event = mem_cgroup_usage_unregister_event;
4932 } else if (!strcmp(name, "memory.oom_control")) {
4933 event->register_event = mem_cgroup_oom_register_event;
4934 event->unregister_event = mem_cgroup_oom_unregister_event;
4935 } else if (!strcmp(name, "memory.pressure_level")) {
4936 event->register_event = vmpressure_register_event;
4937 event->unregister_event = vmpressure_unregister_event;
4938 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4939 event->register_event = memsw_cgroup_usage_register_event;
4940 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4941 } else {
4942 ret = -EINVAL;
4943 goto out_put_cfile;
4944 }
4945
79bd9814 4946 /*
b5557c4c
TH
4947 * Verify @cfile should belong to @css. Also, remaining events are
4948 * automatically removed on cgroup destruction but the removal is
4949 * asynchronous, so take an extra ref on @css.
79bd9814 4950 */
b583043e 4951 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4952 &memory_cgrp_subsys);
79bd9814 4953 ret = -EINVAL;
5a17f543 4954 if (IS_ERR(cfile_css))
79bd9814 4955 goto out_put_cfile;
5a17f543
TH
4956 if (cfile_css != css) {
4957 css_put(cfile_css);
79bd9814 4958 goto out_put_cfile;
5a17f543 4959 }
79bd9814 4960
451af504 4961 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4962 if (ret)
4963 goto out_put_css;
4964
9965ed17 4965 vfs_poll(efile.file, &event->pt);
79bd9814 4966
fba94807
TH
4967 spin_lock(&memcg->event_list_lock);
4968 list_add(&event->list, &memcg->event_list);
4969 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4970
4971 fdput(cfile);
4972 fdput(efile);
4973
451af504 4974 return nbytes;
79bd9814
TH
4975
4976out_put_css:
b5557c4c 4977 css_put(css);
79bd9814
TH
4978out_put_cfile:
4979 fdput(cfile);
4980out_put_eventfd:
4981 eventfd_ctx_put(event->eventfd);
4982out_put_efile:
4983 fdput(efile);
4984out_kfree:
4985 kfree(event);
4986
4987 return ret;
4988}
4989
241994ed 4990static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4991 {
0eea1030 4992 .name = "usage_in_bytes",
8c7c6e34 4993 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4994 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4995 },
c84872e1
PE
4996 {
4997 .name = "max_usage_in_bytes",
8c7c6e34 4998 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4999 .write = mem_cgroup_reset,
791badbd 5000 .read_u64 = mem_cgroup_read_u64,
c84872e1 5001 },
8cdea7c0 5002 {
0eea1030 5003 .name = "limit_in_bytes",
8c7c6e34 5004 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5005 .write = mem_cgroup_write,
791badbd 5006 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5007 },
296c81d8
BS
5008 {
5009 .name = "soft_limit_in_bytes",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5011 .write = mem_cgroup_write,
791badbd 5012 .read_u64 = mem_cgroup_read_u64,
296c81d8 5013 },
8cdea7c0
BS
5014 {
5015 .name = "failcnt",
8c7c6e34 5016 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5017 .write = mem_cgroup_reset,
791badbd 5018 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5019 },
d2ceb9b7
KH
5020 {
5021 .name = "stat",
2da8ca82 5022 .seq_show = memcg_stat_show,
d2ceb9b7 5023 },
c1e862c1
KH
5024 {
5025 .name = "force_empty",
6770c64e 5026 .write = mem_cgroup_force_empty_write,
c1e862c1 5027 },
18f59ea7
BS
5028 {
5029 .name = "use_hierarchy",
5030 .write_u64 = mem_cgroup_hierarchy_write,
5031 .read_u64 = mem_cgroup_hierarchy_read,
5032 },
79bd9814 5033 {
3bc942f3 5034 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5035 .write = memcg_write_event_control,
7dbdb199 5036 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5037 },
a7885eb8
KM
5038 {
5039 .name = "swappiness",
5040 .read_u64 = mem_cgroup_swappiness_read,
5041 .write_u64 = mem_cgroup_swappiness_write,
5042 },
7dc74be0
DN
5043 {
5044 .name = "move_charge_at_immigrate",
5045 .read_u64 = mem_cgroup_move_charge_read,
5046 .write_u64 = mem_cgroup_move_charge_write,
5047 },
9490ff27
KH
5048 {
5049 .name = "oom_control",
2da8ca82 5050 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5051 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5052 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5053 },
70ddf637
AV
5054 {
5055 .name = "pressure_level",
70ddf637 5056 },
406eb0c9
YH
5057#ifdef CONFIG_NUMA
5058 {
5059 .name = "numa_stat",
2da8ca82 5060 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5061 },
5062#endif
510fc4e1
GC
5063 {
5064 .name = "kmem.limit_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5066 .write = mem_cgroup_write,
791badbd 5067 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5068 },
5069 {
5070 .name = "kmem.usage_in_bytes",
5071 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5072 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5073 },
5074 {
5075 .name = "kmem.failcnt",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5077 .write = mem_cgroup_reset,
791badbd 5078 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5079 },
5080 {
5081 .name = "kmem.max_usage_in_bytes",
5082 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5083 .write = mem_cgroup_reset,
791badbd 5084 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5085 },
a87425a3
YS
5086#if defined(CONFIG_MEMCG_KMEM) && \
5087 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5088 {
5089 .name = "kmem.slabinfo",
b047501c 5090 .seq_show = memcg_slab_show,
749c5415
GC
5091 },
5092#endif
d55f90bf
VD
5093 {
5094 .name = "kmem.tcp.limit_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5096 .write = mem_cgroup_write,
5097 .read_u64 = mem_cgroup_read_u64,
5098 },
5099 {
5100 .name = "kmem.tcp.usage_in_bytes",
5101 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.failcnt",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 {
5111 .name = "kmem.tcp.max_usage_in_bytes",
5112 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5113 .write = mem_cgroup_reset,
5114 .read_u64 = mem_cgroup_read_u64,
5115 },
6bc10349 5116 { }, /* terminate */
af36f906 5117};
8c7c6e34 5118
73f576c0
JW
5119/*
5120 * Private memory cgroup IDR
5121 *
5122 * Swap-out records and page cache shadow entries need to store memcg
5123 * references in constrained space, so we maintain an ID space that is
5124 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5125 * memory-controlled cgroups to 64k.
5126 *
b8f2935f 5127 * However, there usually are many references to the offline CSS after
73f576c0
JW
5128 * the cgroup has been destroyed, such as page cache or reclaimable
5129 * slab objects, that don't need to hang on to the ID. We want to keep
5130 * those dead CSS from occupying IDs, or we might quickly exhaust the
5131 * relatively small ID space and prevent the creation of new cgroups
5132 * even when there are much fewer than 64k cgroups - possibly none.
5133 *
5134 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5135 * be freed and recycled when it's no longer needed, which is usually
5136 * when the CSS is offlined.
5137 *
5138 * The only exception to that are records of swapped out tmpfs/shmem
5139 * pages that need to be attributed to live ancestors on swapin. But
5140 * those references are manageable from userspace.
5141 */
5142
5143static DEFINE_IDR(mem_cgroup_idr);
5144
7e97de0b
KT
5145static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5146{
5147 if (memcg->id.id > 0) {
5148 idr_remove(&mem_cgroup_idr, memcg->id.id);
5149 memcg->id.id = 0;
5150 }
5151}
5152
c1514c0a
VF
5153static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5154 unsigned int n)
73f576c0 5155{
1c2d479a 5156 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5157}
5158
615d66c3 5159static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5160{
1c2d479a 5161 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5162 mem_cgroup_id_remove(memcg);
73f576c0
JW
5163
5164 /* Memcg ID pins CSS */
5165 css_put(&memcg->css);
5166 }
5167}
5168
615d66c3
VD
5169static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5170{
5171 mem_cgroup_id_put_many(memcg, 1);
5172}
5173
73f576c0
JW
5174/**
5175 * mem_cgroup_from_id - look up a memcg from a memcg id
5176 * @id: the memcg id to look up
5177 *
5178 * Caller must hold rcu_read_lock().
5179 */
5180struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5181{
5182 WARN_ON_ONCE(!rcu_read_lock_held());
5183 return idr_find(&mem_cgroup_idr, id);
5184}
5185
ef8f2327 5186static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5187{
5188 struct mem_cgroup_per_node *pn;
ef8f2327 5189 int tmp = node;
1ecaab2b
KH
5190 /*
5191 * This routine is called against possible nodes.
5192 * But it's BUG to call kmalloc() against offline node.
5193 *
5194 * TODO: this routine can waste much memory for nodes which will
5195 * never be onlined. It's better to use memory hotplug callback
5196 * function.
5197 */
41e3355d
KH
5198 if (!node_state(node, N_NORMAL_MEMORY))
5199 tmp = -1;
17295c88 5200 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5201 if (!pn)
5202 return 1;
1ecaab2b 5203
3e38e0aa
RG
5204 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5205 GFP_KERNEL_ACCOUNT);
815744d7
JW
5206 if (!pn->lruvec_stat_local) {
5207 kfree(pn);
5208 return 1;
5209 }
5210
f3344adf 5211 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5212 GFP_KERNEL_ACCOUNT);
a983b5eb 5213 if (!pn->lruvec_stat_cpu) {
815744d7 5214 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5215 kfree(pn);
5216 return 1;
5217 }
5218
ef8f2327
MG
5219 lruvec_init(&pn->lruvec);
5220 pn->usage_in_excess = 0;
5221 pn->on_tree = false;
5222 pn->memcg = memcg;
5223
54f72fe0 5224 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5225 return 0;
5226}
5227
ef8f2327 5228static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5229{
00f3ca2c
JW
5230 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5231
4eaf431f
MH
5232 if (!pn)
5233 return;
5234
a983b5eb 5235 free_percpu(pn->lruvec_stat_cpu);
815744d7 5236 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5237 kfree(pn);
1ecaab2b
KH
5238}
5239
40e952f9 5240static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5241{
c8b2a36f 5242 int node;
59927fb9 5243
c8b2a36f 5244 for_each_node(node)
ef8f2327 5245 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5246 free_percpu(memcg->vmstats_percpu);
815744d7 5247 free_percpu(memcg->vmstats_local);
8ff69e2c 5248 kfree(memcg);
59927fb9 5249}
3afe36b1 5250
40e952f9
TE
5251static void mem_cgroup_free(struct mem_cgroup *memcg)
5252{
5253 memcg_wb_domain_exit(memcg);
7961eee3
SB
5254 /*
5255 * Flush percpu vmstats and vmevents to guarantee the value correctness
5256 * on parent's and all ancestor levels.
5257 */
4a87e2a2 5258 memcg_flush_percpu_vmstats(memcg);
7961eee3 5259 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5260 __mem_cgroup_free(memcg);
5261}
5262
0b8f73e1 5263static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5264{
d142e3e6 5265 struct mem_cgroup *memcg;
b9726c26 5266 unsigned int size;
6d12e2d8 5267 int node;
97b27821 5268 int __maybe_unused i;
11d67612 5269 long error = -ENOMEM;
8cdea7c0 5270
0b8f73e1
JW
5271 size = sizeof(struct mem_cgroup);
5272 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5273
5274 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5275 if (!memcg)
11d67612 5276 return ERR_PTR(error);
0b8f73e1 5277
73f576c0
JW
5278 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5279 1, MEM_CGROUP_ID_MAX,
5280 GFP_KERNEL);
11d67612
YS
5281 if (memcg->id.id < 0) {
5282 error = memcg->id.id;
73f576c0 5283 goto fail;
11d67612 5284 }
73f576c0 5285
3e38e0aa
RG
5286 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5287 GFP_KERNEL_ACCOUNT);
815744d7
JW
5288 if (!memcg->vmstats_local)
5289 goto fail;
5290
3e38e0aa
RG
5291 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5292 GFP_KERNEL_ACCOUNT);
871789d4 5293 if (!memcg->vmstats_percpu)
0b8f73e1 5294 goto fail;
78fb7466 5295
3ed28fa1 5296 for_each_node(node)
ef8f2327 5297 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5298 goto fail;
f64c3f54 5299
0b8f73e1
JW
5300 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5301 goto fail;
28dbc4b6 5302
f7e1cb6e 5303 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5304 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5305 mutex_init(&memcg->thresholds_lock);
5306 spin_lock_init(&memcg->move_lock);
70ddf637 5307 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5308 INIT_LIST_HEAD(&memcg->event_list);
5309 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5310 memcg->socket_pressure = jiffies;
84c07d11 5311#ifdef CONFIG_MEMCG_KMEM
900a38f0 5312 memcg->kmemcg_id = -1;
bf4f0599 5313 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5314#endif
52ebea74
TH
5315#ifdef CONFIG_CGROUP_WRITEBACK
5316 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5317 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5318 memcg->cgwb_frn[i].done =
5319 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5320#endif
5321#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5322 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5323 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5324 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5325#endif
73f576c0 5326 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5327 return memcg;
5328fail:
7e97de0b 5329 mem_cgroup_id_remove(memcg);
40e952f9 5330 __mem_cgroup_free(memcg);
11d67612 5331 return ERR_PTR(error);
d142e3e6
GC
5332}
5333
0b8f73e1
JW
5334static struct cgroup_subsys_state * __ref
5335mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5336{
0b8f73e1 5337 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5338 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5339 long error = -ENOMEM;
d142e3e6 5340
b87d8cef 5341 old_memcg = set_active_memcg(parent);
0b8f73e1 5342 memcg = mem_cgroup_alloc();
b87d8cef 5343 set_active_memcg(old_memcg);
11d67612
YS
5344 if (IS_ERR(memcg))
5345 return ERR_CAST(memcg);
d142e3e6 5346
d1663a90 5347 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5348 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5349 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5350 if (parent) {
5351 memcg->swappiness = mem_cgroup_swappiness(parent);
5352 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5353
3e32cb2e 5354 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5355 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5356 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5357 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5358 } else {
bef8620c
RG
5359 page_counter_init(&memcg->memory, NULL);
5360 page_counter_init(&memcg->swap, NULL);
5361 page_counter_init(&memcg->kmem, NULL);
5362 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5363
0b8f73e1
JW
5364 root_mem_cgroup = memcg;
5365 return &memcg->css;
5366 }
5367
bef8620c 5368 /* The following stuff does not apply to the root */
b313aeee 5369 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5370 if (error)
5371 goto fail;
127424c8 5372
f7e1cb6e 5373 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5374 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5375
0b8f73e1
JW
5376 return &memcg->css;
5377fail:
7e97de0b 5378 mem_cgroup_id_remove(memcg);
0b8f73e1 5379 mem_cgroup_free(memcg);
11d67612 5380 return ERR_PTR(error);
0b8f73e1
JW
5381}
5382
73f576c0 5383static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5384{
58fa2a55
VD
5385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5386
0a4465d3
KT
5387 /*
5388 * A memcg must be visible for memcg_expand_shrinker_maps()
5389 * by the time the maps are allocated. So, we allocate maps
5390 * here, when for_each_mem_cgroup() can't skip it.
5391 */
5392 if (memcg_alloc_shrinker_maps(memcg)) {
5393 mem_cgroup_id_remove(memcg);
5394 return -ENOMEM;
5395 }
5396
73f576c0 5397 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5398 refcount_set(&memcg->id.ref, 1);
73f576c0 5399 css_get(css);
2f7dd7a4 5400 return 0;
8cdea7c0
BS
5401}
5402
eb95419b 5403static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5404{
eb95419b 5405 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5406 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5407
5408 /*
5409 * Unregister events and notify userspace.
5410 * Notify userspace about cgroup removing only after rmdir of cgroup
5411 * directory to avoid race between userspace and kernelspace.
5412 */
fba94807
TH
5413 spin_lock(&memcg->event_list_lock);
5414 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5415 list_del_init(&event->list);
5416 schedule_work(&event->remove);
5417 }
fba94807 5418 spin_unlock(&memcg->event_list_lock);
ec64f515 5419
bf8d5d52 5420 page_counter_set_min(&memcg->memory, 0);
23067153 5421 page_counter_set_low(&memcg->memory, 0);
63677c74 5422
567e9ab2 5423 memcg_offline_kmem(memcg);
52ebea74 5424 wb_memcg_offline(memcg);
73f576c0 5425
591edfb1
RG
5426 drain_all_stock(memcg);
5427
73f576c0 5428 mem_cgroup_id_put(memcg);
df878fb0
KH
5429}
5430
6df38689
VD
5431static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5432{
5433 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5434
5435 invalidate_reclaim_iterators(memcg);
5436}
5437
eb95419b 5438static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5439{
eb95419b 5440 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5441 int __maybe_unused i;
c268e994 5442
97b27821
TH
5443#ifdef CONFIG_CGROUP_WRITEBACK
5444 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5445 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5446#endif
f7e1cb6e 5447 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5448 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5449
0db15298 5450 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5451 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5452
0b8f73e1
JW
5453 vmpressure_cleanup(&memcg->vmpressure);
5454 cancel_work_sync(&memcg->high_work);
5455 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5456 memcg_free_shrinker_maps(memcg);
d886f4e4 5457 memcg_free_kmem(memcg);
0b8f73e1 5458 mem_cgroup_free(memcg);
8cdea7c0
BS
5459}
5460
1ced953b
TH
5461/**
5462 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5463 * @css: the target css
5464 *
5465 * Reset the states of the mem_cgroup associated with @css. This is
5466 * invoked when the userland requests disabling on the default hierarchy
5467 * but the memcg is pinned through dependency. The memcg should stop
5468 * applying policies and should revert to the vanilla state as it may be
5469 * made visible again.
5470 *
5471 * The current implementation only resets the essential configurations.
5472 * This needs to be expanded to cover all the visible parts.
5473 */
5474static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5475{
5476 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5477
bbec2e15
RG
5478 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5479 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5480 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5481 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5482 page_counter_set_min(&memcg->memory, 0);
23067153 5483 page_counter_set_low(&memcg->memory, 0);
d1663a90 5484 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5485 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5486 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5487 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5488}
5489
02491447 5490#ifdef CONFIG_MMU
7dc74be0 5491/* Handlers for move charge at task migration. */
854ffa8d 5492static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5493{
05b84301 5494 int ret;
9476db97 5495
d0164adc
MG
5496 /* Try a single bulk charge without reclaim first, kswapd may wake */
5497 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5498 if (!ret) {
854ffa8d 5499 mc.precharge += count;
854ffa8d
DN
5500 return ret;
5501 }
9476db97 5502
3674534b 5503 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5504 while (count--) {
3674534b 5505 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5506 if (ret)
38c5d72f 5507 return ret;
854ffa8d 5508 mc.precharge++;
9476db97 5509 cond_resched();
854ffa8d 5510 }
9476db97 5511 return 0;
4ffef5fe
DN
5512}
5513
4ffef5fe
DN
5514union mc_target {
5515 struct page *page;
02491447 5516 swp_entry_t ent;
4ffef5fe
DN
5517};
5518
4ffef5fe 5519enum mc_target_type {
8d32ff84 5520 MC_TARGET_NONE = 0,
4ffef5fe 5521 MC_TARGET_PAGE,
02491447 5522 MC_TARGET_SWAP,
c733a828 5523 MC_TARGET_DEVICE,
4ffef5fe
DN
5524};
5525
90254a65
DN
5526static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5527 unsigned long addr, pte_t ptent)
4ffef5fe 5528{
25b2995a 5529 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5530
90254a65
DN
5531 if (!page || !page_mapped(page))
5532 return NULL;
5533 if (PageAnon(page)) {
1dfab5ab 5534 if (!(mc.flags & MOVE_ANON))
90254a65 5535 return NULL;
1dfab5ab
JW
5536 } else {
5537 if (!(mc.flags & MOVE_FILE))
5538 return NULL;
5539 }
90254a65
DN
5540 if (!get_page_unless_zero(page))
5541 return NULL;
5542
5543 return page;
5544}
5545
c733a828 5546#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5547static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5548 pte_t ptent, swp_entry_t *entry)
90254a65 5549{
90254a65
DN
5550 struct page *page = NULL;
5551 swp_entry_t ent = pte_to_swp_entry(ptent);
5552
9a137153 5553 if (!(mc.flags & MOVE_ANON))
90254a65 5554 return NULL;
c733a828
JG
5555
5556 /*
5557 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5558 * a device and because they are not accessible by CPU they are store
5559 * as special swap entry in the CPU page table.
5560 */
5561 if (is_device_private_entry(ent)) {
5562 page = device_private_entry_to_page(ent);
5563 /*
5564 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5565 * a refcount of 1 when free (unlike normal page)
5566 */
5567 if (!page_ref_add_unless(page, 1, 1))
5568 return NULL;
5569 return page;
5570 }
5571
9a137153
RC
5572 if (non_swap_entry(ent))
5573 return NULL;
5574
4b91355e
KH
5575 /*
5576 * Because lookup_swap_cache() updates some statistics counter,
5577 * we call find_get_page() with swapper_space directly.
5578 */
f6ab1f7f 5579 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5580 entry->val = ent.val;
90254a65
DN
5581
5582 return page;
5583}
4b91355e
KH
5584#else
5585static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5586 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5587{
5588 return NULL;
5589}
5590#endif
90254a65 5591
87946a72
DN
5592static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5593 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5594{
87946a72
DN
5595 if (!vma->vm_file) /* anonymous vma */
5596 return NULL;
1dfab5ab 5597 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5598 return NULL;
5599
87946a72 5600 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5601 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5602 return find_get_incore_page(vma->vm_file->f_mapping,
5603 linear_page_index(vma, addr));
87946a72
DN
5604}
5605
b1b0deab
CG
5606/**
5607 * mem_cgroup_move_account - move account of the page
5608 * @page: the page
25843c2b 5609 * @compound: charge the page as compound or small page
b1b0deab
CG
5610 * @from: mem_cgroup which the page is moved from.
5611 * @to: mem_cgroup which the page is moved to. @from != @to.
5612 *
3ac808fd 5613 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5614 *
5615 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5616 * from old cgroup.
5617 */
5618static int mem_cgroup_move_account(struct page *page,
f627c2f5 5619 bool compound,
b1b0deab
CG
5620 struct mem_cgroup *from,
5621 struct mem_cgroup *to)
5622{
ae8af438
KK
5623 struct lruvec *from_vec, *to_vec;
5624 struct pglist_data *pgdat;
6c357848 5625 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5626 int ret;
5627
5628 VM_BUG_ON(from == to);
5629 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5630 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5631
5632 /*
6a93ca8f 5633 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5634 * page's memory cgroup of its source page while we change it.
b1b0deab 5635 */
f627c2f5 5636 ret = -EBUSY;
b1b0deab
CG
5637 if (!trylock_page(page))
5638 goto out;
5639
5640 ret = -EINVAL;
bcfe06bf 5641 if (page_memcg(page) != from)
b1b0deab
CG
5642 goto out_unlock;
5643
ae8af438 5644 pgdat = page_pgdat(page);
867e5e1d
JW
5645 from_vec = mem_cgroup_lruvec(from, pgdat);
5646 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5647
abb242f5 5648 lock_page_memcg(page);
b1b0deab 5649
be5d0a74
JW
5650 if (PageAnon(page)) {
5651 if (page_mapped(page)) {
5652 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5654 if (PageTransHuge(page)) {
b0ba3bff
MS
5655 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5656 __inc_lruvec_state(to_vec, NR_ANON_THPS);
468c3982
JW
5657 }
5658
be5d0a74
JW
5659 }
5660 } else {
0d1c2072
JW
5661 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5663
5664 if (PageSwapBacked(page)) {
5665 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5666 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5667 }
5668
49e50d27
JW
5669 if (page_mapped(page)) {
5670 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5671 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5672 }
b1b0deab 5673
49e50d27
JW
5674 if (PageDirty(page)) {
5675 struct address_space *mapping = page_mapping(page);
c4843a75 5676
f56753ac 5677 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5678 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5679 -nr_pages);
5680 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5681 nr_pages);
5682 }
c4843a75
GT
5683 }
5684 }
5685
b1b0deab 5686 if (PageWriteback(page)) {
ae8af438
KK
5687 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5688 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5689 }
5690
5691 /*
abb242f5
JW
5692 * All state has been migrated, let's switch to the new memcg.
5693 *
bcfe06bf 5694 * It is safe to change page's memcg here because the page
abb242f5
JW
5695 * is referenced, charged, isolated, and locked: we can't race
5696 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5697 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5698 *
5699 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5700 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5701 * new memcg that isn't locked, the above state can change
5702 * concurrently again. Make sure we're truly done with it.
b1b0deab 5703 */
abb242f5 5704 smp_mb();
b1b0deab 5705
1a3e1f40
JW
5706 css_get(&to->css);
5707 css_put(&from->css);
5708
bcfe06bf 5709 page->memcg_data = (unsigned long)to;
87eaceb3 5710
abb242f5 5711 __unlock_page_memcg(from);
b1b0deab
CG
5712
5713 ret = 0;
5714
5715 local_irq_disable();
3fba69a5 5716 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5717 memcg_check_events(to, page);
3fba69a5 5718 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5719 memcg_check_events(from, page);
5720 local_irq_enable();
5721out_unlock:
5722 unlock_page(page);
5723out:
5724 return ret;
5725}
5726
7cf7806c
LR
5727/**
5728 * get_mctgt_type - get target type of moving charge
5729 * @vma: the vma the pte to be checked belongs
5730 * @addr: the address corresponding to the pte to be checked
5731 * @ptent: the pte to be checked
5732 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5733 *
5734 * Returns
5735 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5736 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5737 * move charge. if @target is not NULL, the page is stored in target->page
5738 * with extra refcnt got(Callers should handle it).
5739 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5740 * target for charge migration. if @target is not NULL, the entry is stored
5741 * in target->ent.
25b2995a
CH
5742 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5743 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5744 * For now we such page is charge like a regular page would be as for all
5745 * intent and purposes it is just special memory taking the place of a
5746 * regular page.
c733a828
JG
5747 *
5748 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5749 *
5750 * Called with pte lock held.
5751 */
5752
8d32ff84 5753static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5754 unsigned long addr, pte_t ptent, union mc_target *target)
5755{
5756 struct page *page = NULL;
8d32ff84 5757 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5758 swp_entry_t ent = { .val = 0 };
5759
5760 if (pte_present(ptent))
5761 page = mc_handle_present_pte(vma, addr, ptent);
5762 else if (is_swap_pte(ptent))
48406ef8 5763 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5764 else if (pte_none(ptent))
87946a72 5765 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5766
5767 if (!page && !ent.val)
8d32ff84 5768 return ret;
02491447 5769 if (page) {
02491447 5770 /*
0a31bc97 5771 * Do only loose check w/o serialization.
1306a85a 5772 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5773 * not under LRU exclusion.
02491447 5774 */
bcfe06bf 5775 if (page_memcg(page) == mc.from) {
02491447 5776 ret = MC_TARGET_PAGE;
25b2995a 5777 if (is_device_private_page(page))
c733a828 5778 ret = MC_TARGET_DEVICE;
02491447
DN
5779 if (target)
5780 target->page = page;
5781 }
5782 if (!ret || !target)
5783 put_page(page);
5784 }
3e14a57b
HY
5785 /*
5786 * There is a swap entry and a page doesn't exist or isn't charged.
5787 * But we cannot move a tail-page in a THP.
5788 */
5789 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5790 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5791 ret = MC_TARGET_SWAP;
5792 if (target)
5793 target->ent = ent;
4ffef5fe 5794 }
4ffef5fe
DN
5795 return ret;
5796}
5797
12724850
NH
5798#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5799/*
d6810d73
HY
5800 * We don't consider PMD mapped swapping or file mapped pages because THP does
5801 * not support them for now.
12724850
NH
5802 * Caller should make sure that pmd_trans_huge(pmd) is true.
5803 */
5804static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5805 unsigned long addr, pmd_t pmd, union mc_target *target)
5806{
5807 struct page *page = NULL;
12724850
NH
5808 enum mc_target_type ret = MC_TARGET_NONE;
5809
84c3fc4e
ZY
5810 if (unlikely(is_swap_pmd(pmd))) {
5811 VM_BUG_ON(thp_migration_supported() &&
5812 !is_pmd_migration_entry(pmd));
5813 return ret;
5814 }
12724850 5815 page = pmd_page(pmd);
309381fe 5816 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5817 if (!(mc.flags & MOVE_ANON))
12724850 5818 return ret;
bcfe06bf 5819 if (page_memcg(page) == mc.from) {
12724850
NH
5820 ret = MC_TARGET_PAGE;
5821 if (target) {
5822 get_page(page);
5823 target->page = page;
5824 }
5825 }
5826 return ret;
5827}
5828#else
5829static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5830 unsigned long addr, pmd_t pmd, union mc_target *target)
5831{
5832 return MC_TARGET_NONE;
5833}
5834#endif
5835
4ffef5fe
DN
5836static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5837 unsigned long addr, unsigned long end,
5838 struct mm_walk *walk)
5839{
26bcd64a 5840 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5841 pte_t *pte;
5842 spinlock_t *ptl;
5843
b6ec57f4
KS
5844 ptl = pmd_trans_huge_lock(pmd, vma);
5845 if (ptl) {
c733a828
JG
5846 /*
5847 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5848 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5849 * this might change.
c733a828 5850 */
12724850
NH
5851 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5852 mc.precharge += HPAGE_PMD_NR;
bf929152 5853 spin_unlock(ptl);
1a5a9906 5854 return 0;
12724850 5855 }
03319327 5856
45f83cef
AA
5857 if (pmd_trans_unstable(pmd))
5858 return 0;
4ffef5fe
DN
5859 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5860 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5861 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5862 mc.precharge++; /* increment precharge temporarily */
5863 pte_unmap_unlock(pte - 1, ptl);
5864 cond_resched();
5865
7dc74be0
DN
5866 return 0;
5867}
5868
7b86ac33
CH
5869static const struct mm_walk_ops precharge_walk_ops = {
5870 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5871};
5872
4ffef5fe
DN
5873static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5874{
5875 unsigned long precharge;
4ffef5fe 5876
d8ed45c5 5877 mmap_read_lock(mm);
7b86ac33 5878 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5879 mmap_read_unlock(mm);
4ffef5fe
DN
5880
5881 precharge = mc.precharge;
5882 mc.precharge = 0;
5883
5884 return precharge;
5885}
5886
4ffef5fe
DN
5887static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5888{
dfe076b0
DN
5889 unsigned long precharge = mem_cgroup_count_precharge(mm);
5890
5891 VM_BUG_ON(mc.moving_task);
5892 mc.moving_task = current;
5893 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5894}
5895
dfe076b0
DN
5896/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5897static void __mem_cgroup_clear_mc(void)
4ffef5fe 5898{
2bd9bb20
KH
5899 struct mem_cgroup *from = mc.from;
5900 struct mem_cgroup *to = mc.to;
5901
4ffef5fe 5902 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5903 if (mc.precharge) {
00501b53 5904 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5905 mc.precharge = 0;
5906 }
5907 /*
5908 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5909 * we must uncharge here.
5910 */
5911 if (mc.moved_charge) {
00501b53 5912 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5913 mc.moved_charge = 0;
4ffef5fe 5914 }
483c30b5
DN
5915 /* we must fixup refcnts and charges */
5916 if (mc.moved_swap) {
483c30b5 5917 /* uncharge swap account from the old cgroup */
ce00a967 5918 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5919 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5920
615d66c3
VD
5921 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5922
05b84301 5923 /*
3e32cb2e
JW
5924 * we charged both to->memory and to->memsw, so we
5925 * should uncharge to->memory.
05b84301 5926 */
ce00a967 5927 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5928 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5929
483c30b5
DN
5930 mc.moved_swap = 0;
5931 }
dfe076b0
DN
5932 memcg_oom_recover(from);
5933 memcg_oom_recover(to);
5934 wake_up_all(&mc.waitq);
5935}
5936
5937static void mem_cgroup_clear_mc(void)
5938{
264a0ae1
TH
5939 struct mm_struct *mm = mc.mm;
5940
dfe076b0
DN
5941 /*
5942 * we must clear moving_task before waking up waiters at the end of
5943 * task migration.
5944 */
5945 mc.moving_task = NULL;
5946 __mem_cgroup_clear_mc();
2bd9bb20 5947 spin_lock(&mc.lock);
4ffef5fe
DN
5948 mc.from = NULL;
5949 mc.to = NULL;
264a0ae1 5950 mc.mm = NULL;
2bd9bb20 5951 spin_unlock(&mc.lock);
264a0ae1
TH
5952
5953 mmput(mm);
4ffef5fe
DN
5954}
5955
1f7dd3e5 5956static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5957{
1f7dd3e5 5958 struct cgroup_subsys_state *css;
eed67d75 5959 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5960 struct mem_cgroup *from;
4530eddb 5961 struct task_struct *leader, *p;
9f2115f9 5962 struct mm_struct *mm;
1dfab5ab 5963 unsigned long move_flags;
9f2115f9 5964 int ret = 0;
7dc74be0 5965
1f7dd3e5
TH
5966 /* charge immigration isn't supported on the default hierarchy */
5967 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5968 return 0;
5969
4530eddb
TH
5970 /*
5971 * Multi-process migrations only happen on the default hierarchy
5972 * where charge immigration is not used. Perform charge
5973 * immigration if @tset contains a leader and whine if there are
5974 * multiple.
5975 */
5976 p = NULL;
1f7dd3e5 5977 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5978 WARN_ON_ONCE(p);
5979 p = leader;
1f7dd3e5 5980 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5981 }
5982 if (!p)
5983 return 0;
5984
1f7dd3e5
TH
5985 /*
5986 * We are now commited to this value whatever it is. Changes in this
5987 * tunable will only affect upcoming migrations, not the current one.
5988 * So we need to save it, and keep it going.
5989 */
5990 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5991 if (!move_flags)
5992 return 0;
5993
9f2115f9
TH
5994 from = mem_cgroup_from_task(p);
5995
5996 VM_BUG_ON(from == memcg);
5997
5998 mm = get_task_mm(p);
5999 if (!mm)
6000 return 0;
6001 /* We move charges only when we move a owner of the mm */
6002 if (mm->owner == p) {
6003 VM_BUG_ON(mc.from);
6004 VM_BUG_ON(mc.to);
6005 VM_BUG_ON(mc.precharge);
6006 VM_BUG_ON(mc.moved_charge);
6007 VM_BUG_ON(mc.moved_swap);
6008
6009 spin_lock(&mc.lock);
264a0ae1 6010 mc.mm = mm;
9f2115f9
TH
6011 mc.from = from;
6012 mc.to = memcg;
6013 mc.flags = move_flags;
6014 spin_unlock(&mc.lock);
6015 /* We set mc.moving_task later */
6016
6017 ret = mem_cgroup_precharge_mc(mm);
6018 if (ret)
6019 mem_cgroup_clear_mc();
264a0ae1
TH
6020 } else {
6021 mmput(mm);
7dc74be0
DN
6022 }
6023 return ret;
6024}
6025
1f7dd3e5 6026static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6027{
4e2f245d
JW
6028 if (mc.to)
6029 mem_cgroup_clear_mc();
7dc74be0
DN
6030}
6031
4ffef5fe
DN
6032static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6033 unsigned long addr, unsigned long end,
6034 struct mm_walk *walk)
7dc74be0 6035{
4ffef5fe 6036 int ret = 0;
26bcd64a 6037 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6038 pte_t *pte;
6039 spinlock_t *ptl;
12724850
NH
6040 enum mc_target_type target_type;
6041 union mc_target target;
6042 struct page *page;
4ffef5fe 6043
b6ec57f4
KS
6044 ptl = pmd_trans_huge_lock(pmd, vma);
6045 if (ptl) {
62ade86a 6046 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6047 spin_unlock(ptl);
12724850
NH
6048 return 0;
6049 }
6050 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6051 if (target_type == MC_TARGET_PAGE) {
6052 page = target.page;
6053 if (!isolate_lru_page(page)) {
f627c2f5 6054 if (!mem_cgroup_move_account(page, true,
1306a85a 6055 mc.from, mc.to)) {
12724850
NH
6056 mc.precharge -= HPAGE_PMD_NR;
6057 mc.moved_charge += HPAGE_PMD_NR;
6058 }
6059 putback_lru_page(page);
6060 }
6061 put_page(page);
c733a828
JG
6062 } else if (target_type == MC_TARGET_DEVICE) {
6063 page = target.page;
6064 if (!mem_cgroup_move_account(page, true,
6065 mc.from, mc.to)) {
6066 mc.precharge -= HPAGE_PMD_NR;
6067 mc.moved_charge += HPAGE_PMD_NR;
6068 }
6069 put_page(page);
12724850 6070 }
bf929152 6071 spin_unlock(ptl);
1a5a9906 6072 return 0;
12724850
NH
6073 }
6074
45f83cef
AA
6075 if (pmd_trans_unstable(pmd))
6076 return 0;
4ffef5fe
DN
6077retry:
6078 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6079 for (; addr != end; addr += PAGE_SIZE) {
6080 pte_t ptent = *(pte++);
c733a828 6081 bool device = false;
02491447 6082 swp_entry_t ent;
4ffef5fe
DN
6083
6084 if (!mc.precharge)
6085 break;
6086
8d32ff84 6087 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6088 case MC_TARGET_DEVICE:
6089 device = true;
e4a9bc58 6090 fallthrough;
4ffef5fe
DN
6091 case MC_TARGET_PAGE:
6092 page = target.page;
53f9263b
KS
6093 /*
6094 * We can have a part of the split pmd here. Moving it
6095 * can be done but it would be too convoluted so simply
6096 * ignore such a partial THP and keep it in original
6097 * memcg. There should be somebody mapping the head.
6098 */
6099 if (PageTransCompound(page))
6100 goto put;
c733a828 6101 if (!device && isolate_lru_page(page))
4ffef5fe 6102 goto put;
f627c2f5
KS
6103 if (!mem_cgroup_move_account(page, false,
6104 mc.from, mc.to)) {
4ffef5fe 6105 mc.precharge--;
854ffa8d
DN
6106 /* we uncharge from mc.from later. */
6107 mc.moved_charge++;
4ffef5fe 6108 }
c733a828
JG
6109 if (!device)
6110 putback_lru_page(page);
8d32ff84 6111put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6112 put_page(page);
6113 break;
02491447
DN
6114 case MC_TARGET_SWAP:
6115 ent = target.ent;
e91cbb42 6116 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6117 mc.precharge--;
8d22a935
HD
6118 mem_cgroup_id_get_many(mc.to, 1);
6119 /* we fixup other refcnts and charges later. */
483c30b5
DN
6120 mc.moved_swap++;
6121 }
02491447 6122 break;
4ffef5fe
DN
6123 default:
6124 break;
6125 }
6126 }
6127 pte_unmap_unlock(pte - 1, ptl);
6128 cond_resched();
6129
6130 if (addr != end) {
6131 /*
6132 * We have consumed all precharges we got in can_attach().
6133 * We try charge one by one, but don't do any additional
6134 * charges to mc.to if we have failed in charge once in attach()
6135 * phase.
6136 */
854ffa8d 6137 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6138 if (!ret)
6139 goto retry;
6140 }
6141
6142 return ret;
6143}
6144
7b86ac33
CH
6145static const struct mm_walk_ops charge_walk_ops = {
6146 .pmd_entry = mem_cgroup_move_charge_pte_range,
6147};
6148
264a0ae1 6149static void mem_cgroup_move_charge(void)
4ffef5fe 6150{
4ffef5fe 6151 lru_add_drain_all();
312722cb 6152 /*
81f8c3a4
JW
6153 * Signal lock_page_memcg() to take the memcg's move_lock
6154 * while we're moving its pages to another memcg. Then wait
6155 * for already started RCU-only updates to finish.
312722cb
JW
6156 */
6157 atomic_inc(&mc.from->moving_account);
6158 synchronize_rcu();
dfe076b0 6159retry:
d8ed45c5 6160 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6161 /*
c1e8d7c6 6162 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6163 * waitq. So we cancel all extra charges, wake up all waiters,
6164 * and retry. Because we cancel precharges, we might not be able
6165 * to move enough charges, but moving charge is a best-effort
6166 * feature anyway, so it wouldn't be a big problem.
6167 */
6168 __mem_cgroup_clear_mc();
6169 cond_resched();
6170 goto retry;
6171 }
26bcd64a
NH
6172 /*
6173 * When we have consumed all precharges and failed in doing
6174 * additional charge, the page walk just aborts.
6175 */
7b86ac33
CH
6176 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6177 NULL);
0247f3f4 6178
d8ed45c5 6179 mmap_read_unlock(mc.mm);
312722cb 6180 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6181}
6182
264a0ae1 6183static void mem_cgroup_move_task(void)
67e465a7 6184{
264a0ae1
TH
6185 if (mc.to) {
6186 mem_cgroup_move_charge();
a433658c 6187 mem_cgroup_clear_mc();
264a0ae1 6188 }
67e465a7 6189}
5cfb80a7 6190#else /* !CONFIG_MMU */
1f7dd3e5 6191static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6192{
6193 return 0;
6194}
1f7dd3e5 6195static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6196{
6197}
264a0ae1 6198static void mem_cgroup_move_task(void)
5cfb80a7
DN
6199{
6200}
6201#endif
67e465a7 6202
677dc973
CD
6203static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6204{
6205 if (value == PAGE_COUNTER_MAX)
6206 seq_puts(m, "max\n");
6207 else
6208 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6209
6210 return 0;
6211}
6212
241994ed
JW
6213static u64 memory_current_read(struct cgroup_subsys_state *css,
6214 struct cftype *cft)
6215{
f5fc3c5d
JW
6216 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6217
6218 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6219}
6220
bf8d5d52
RG
6221static int memory_min_show(struct seq_file *m, void *v)
6222{
677dc973
CD
6223 return seq_puts_memcg_tunable(m,
6224 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6225}
6226
6227static ssize_t memory_min_write(struct kernfs_open_file *of,
6228 char *buf, size_t nbytes, loff_t off)
6229{
6230 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6231 unsigned long min;
6232 int err;
6233
6234 buf = strstrip(buf);
6235 err = page_counter_memparse(buf, "max", &min);
6236 if (err)
6237 return err;
6238
6239 page_counter_set_min(&memcg->memory, min);
6240
6241 return nbytes;
6242}
6243
241994ed
JW
6244static int memory_low_show(struct seq_file *m, void *v)
6245{
677dc973
CD
6246 return seq_puts_memcg_tunable(m,
6247 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6248}
6249
6250static ssize_t memory_low_write(struct kernfs_open_file *of,
6251 char *buf, size_t nbytes, loff_t off)
6252{
6253 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6254 unsigned long low;
6255 int err;
6256
6257 buf = strstrip(buf);
d2973697 6258 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6259 if (err)
6260 return err;
6261
23067153 6262 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6263
6264 return nbytes;
6265}
6266
6267static int memory_high_show(struct seq_file *m, void *v)
6268{
d1663a90
JK
6269 return seq_puts_memcg_tunable(m,
6270 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6271}
6272
6273static ssize_t memory_high_write(struct kernfs_open_file *of,
6274 char *buf, size_t nbytes, loff_t off)
6275{
6276 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6277 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6278 bool drained = false;
241994ed
JW
6279 unsigned long high;
6280 int err;
6281
6282 buf = strstrip(buf);
d2973697 6283 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6284 if (err)
6285 return err;
6286
e82553c1
JW
6287 page_counter_set_high(&memcg->memory, high);
6288
8c8c383c
JW
6289 for (;;) {
6290 unsigned long nr_pages = page_counter_read(&memcg->memory);
6291 unsigned long reclaimed;
6292
6293 if (nr_pages <= high)
6294 break;
6295
6296 if (signal_pending(current))
6297 break;
6298
6299 if (!drained) {
6300 drain_all_stock(memcg);
6301 drained = true;
6302 continue;
6303 }
6304
6305 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6306 GFP_KERNEL, true);
6307
6308 if (!reclaimed && !nr_retries--)
6309 break;
6310 }
588083bb 6311
19ce33ac 6312 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6313 return nbytes;
6314}
6315
6316static int memory_max_show(struct seq_file *m, void *v)
6317{
677dc973
CD
6318 return seq_puts_memcg_tunable(m,
6319 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6320}
6321
6322static ssize_t memory_max_write(struct kernfs_open_file *of,
6323 char *buf, size_t nbytes, loff_t off)
6324{
6325 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6326 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6327 bool drained = false;
241994ed
JW
6328 unsigned long max;
6329 int err;
6330
6331 buf = strstrip(buf);
d2973697 6332 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6333 if (err)
6334 return err;
6335
bbec2e15 6336 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6337
6338 for (;;) {
6339 unsigned long nr_pages = page_counter_read(&memcg->memory);
6340
6341 if (nr_pages <= max)
6342 break;
6343
7249c9f0 6344 if (signal_pending(current))
b6e6edcf 6345 break;
b6e6edcf
JW
6346
6347 if (!drained) {
6348 drain_all_stock(memcg);
6349 drained = true;
6350 continue;
6351 }
6352
6353 if (nr_reclaims) {
6354 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6355 GFP_KERNEL, true))
6356 nr_reclaims--;
6357 continue;
6358 }
6359
e27be240 6360 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6361 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6362 break;
6363 }
241994ed 6364
2529bb3a 6365 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6366 return nbytes;
6367}
6368
1e577f97
SB
6369static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6370{
6371 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6372 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6373 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6374 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6375 seq_printf(m, "oom_kill %lu\n",
6376 atomic_long_read(&events[MEMCG_OOM_KILL]));
6377}
6378
241994ed
JW
6379static int memory_events_show(struct seq_file *m, void *v)
6380{
aa9694bb 6381 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6382
1e577f97
SB
6383 __memory_events_show(m, memcg->memory_events);
6384 return 0;
6385}
6386
6387static int memory_events_local_show(struct seq_file *m, void *v)
6388{
6389 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6390
1e577f97 6391 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6392 return 0;
6393}
6394
587d9f72
JW
6395static int memory_stat_show(struct seq_file *m, void *v)
6396{
aa9694bb 6397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6398 char *buf;
1ff9e6e1 6399
c8713d0b
JW
6400 buf = memory_stat_format(memcg);
6401 if (!buf)
6402 return -ENOMEM;
6403 seq_puts(m, buf);
6404 kfree(buf);
587d9f72
JW
6405 return 0;
6406}
6407
5f9a4f4a
MS
6408#ifdef CONFIG_NUMA
6409static int memory_numa_stat_show(struct seq_file *m, void *v)
6410{
6411 int i;
6412 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6413
6414 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6415 int nid;
6416
6417 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6418 continue;
6419
6420 seq_printf(m, "%s", memory_stats[i].name);
6421 for_each_node_state(nid, N_MEMORY) {
6422 u64 size;
6423 struct lruvec *lruvec;
6424
6425 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6426 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6427 size *= memory_stats[i].ratio;
6428 seq_printf(m, " N%d=%llu", nid, size);
6429 }
6430 seq_putc(m, '\n');
6431 }
6432
6433 return 0;
6434}
6435#endif
6436
3d8b38eb
RG
6437static int memory_oom_group_show(struct seq_file *m, void *v)
6438{
aa9694bb 6439 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6440
6441 seq_printf(m, "%d\n", memcg->oom_group);
6442
6443 return 0;
6444}
6445
6446static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6447 char *buf, size_t nbytes, loff_t off)
6448{
6449 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6450 int ret, oom_group;
6451
6452 buf = strstrip(buf);
6453 if (!buf)
6454 return -EINVAL;
6455
6456 ret = kstrtoint(buf, 0, &oom_group);
6457 if (ret)
6458 return ret;
6459
6460 if (oom_group != 0 && oom_group != 1)
6461 return -EINVAL;
6462
6463 memcg->oom_group = oom_group;
6464
6465 return nbytes;
6466}
6467
241994ed
JW
6468static struct cftype memory_files[] = {
6469 {
6470 .name = "current",
f5fc3c5d 6471 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6472 .read_u64 = memory_current_read,
6473 },
bf8d5d52
RG
6474 {
6475 .name = "min",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_min_show,
6478 .write = memory_min_write,
6479 },
241994ed
JW
6480 {
6481 .name = "low",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_low_show,
6484 .write = memory_low_write,
6485 },
6486 {
6487 .name = "high",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .seq_show = memory_high_show,
6490 .write = memory_high_write,
6491 },
6492 {
6493 .name = "max",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .seq_show = memory_max_show,
6496 .write = memory_max_write,
6497 },
6498 {
6499 .name = "events",
6500 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6501 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6502 .seq_show = memory_events_show,
6503 },
1e577f97
SB
6504 {
6505 .name = "events.local",
6506 .flags = CFTYPE_NOT_ON_ROOT,
6507 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6508 .seq_show = memory_events_local_show,
6509 },
587d9f72
JW
6510 {
6511 .name = "stat",
587d9f72
JW
6512 .seq_show = memory_stat_show,
6513 },
5f9a4f4a
MS
6514#ifdef CONFIG_NUMA
6515 {
6516 .name = "numa_stat",
6517 .seq_show = memory_numa_stat_show,
6518 },
6519#endif
3d8b38eb
RG
6520 {
6521 .name = "oom.group",
6522 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6523 .seq_show = memory_oom_group_show,
6524 .write = memory_oom_group_write,
6525 },
241994ed
JW
6526 { } /* terminate */
6527};
6528
073219e9 6529struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6530 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6531 .css_online = mem_cgroup_css_online,
92fb9748 6532 .css_offline = mem_cgroup_css_offline,
6df38689 6533 .css_released = mem_cgroup_css_released,
92fb9748 6534 .css_free = mem_cgroup_css_free,
1ced953b 6535 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6536 .can_attach = mem_cgroup_can_attach,
6537 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6538 .post_attach = mem_cgroup_move_task,
241994ed
JW
6539 .dfl_cftypes = memory_files,
6540 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6541 .early_init = 0,
8cdea7c0 6542};
c077719b 6543
bc50bcc6
JW
6544/*
6545 * This function calculates an individual cgroup's effective
6546 * protection which is derived from its own memory.min/low, its
6547 * parent's and siblings' settings, as well as the actual memory
6548 * distribution in the tree.
6549 *
6550 * The following rules apply to the effective protection values:
6551 *
6552 * 1. At the first level of reclaim, effective protection is equal to
6553 * the declared protection in memory.min and memory.low.
6554 *
6555 * 2. To enable safe delegation of the protection configuration, at
6556 * subsequent levels the effective protection is capped to the
6557 * parent's effective protection.
6558 *
6559 * 3. To make complex and dynamic subtrees easier to configure, the
6560 * user is allowed to overcommit the declared protection at a given
6561 * level. If that is the case, the parent's effective protection is
6562 * distributed to the children in proportion to how much protection
6563 * they have declared and how much of it they are utilizing.
6564 *
6565 * This makes distribution proportional, but also work-conserving:
6566 * if one cgroup claims much more protection than it uses memory,
6567 * the unused remainder is available to its siblings.
6568 *
6569 * 4. Conversely, when the declared protection is undercommitted at a
6570 * given level, the distribution of the larger parental protection
6571 * budget is NOT proportional. A cgroup's protection from a sibling
6572 * is capped to its own memory.min/low setting.
6573 *
8a931f80
JW
6574 * 5. However, to allow protecting recursive subtrees from each other
6575 * without having to declare each individual cgroup's fixed share
6576 * of the ancestor's claim to protection, any unutilized -
6577 * "floating" - protection from up the tree is distributed in
6578 * proportion to each cgroup's *usage*. This makes the protection
6579 * neutral wrt sibling cgroups and lets them compete freely over
6580 * the shared parental protection budget, but it protects the
6581 * subtree as a whole from neighboring subtrees.
6582 *
6583 * Note that 4. and 5. are not in conflict: 4. is about protecting
6584 * against immediate siblings whereas 5. is about protecting against
6585 * neighboring subtrees.
bc50bcc6
JW
6586 */
6587static unsigned long effective_protection(unsigned long usage,
8a931f80 6588 unsigned long parent_usage,
bc50bcc6
JW
6589 unsigned long setting,
6590 unsigned long parent_effective,
6591 unsigned long siblings_protected)
6592{
6593 unsigned long protected;
8a931f80 6594 unsigned long ep;
bc50bcc6
JW
6595
6596 protected = min(usage, setting);
6597 /*
6598 * If all cgroups at this level combined claim and use more
6599 * protection then what the parent affords them, distribute
6600 * shares in proportion to utilization.
6601 *
6602 * We are using actual utilization rather than the statically
6603 * claimed protection in order to be work-conserving: claimed
6604 * but unused protection is available to siblings that would
6605 * otherwise get a smaller chunk than what they claimed.
6606 */
6607 if (siblings_protected > parent_effective)
6608 return protected * parent_effective / siblings_protected;
6609
6610 /*
6611 * Ok, utilized protection of all children is within what the
6612 * parent affords them, so we know whatever this child claims
6613 * and utilizes is effectively protected.
6614 *
6615 * If there is unprotected usage beyond this value, reclaim
6616 * will apply pressure in proportion to that amount.
6617 *
6618 * If there is unutilized protection, the cgroup will be fully
6619 * shielded from reclaim, but we do return a smaller value for
6620 * protection than what the group could enjoy in theory. This
6621 * is okay. With the overcommit distribution above, effective
6622 * protection is always dependent on how memory is actually
6623 * consumed among the siblings anyway.
6624 */
8a931f80
JW
6625 ep = protected;
6626
6627 /*
6628 * If the children aren't claiming (all of) the protection
6629 * afforded to them by the parent, distribute the remainder in
6630 * proportion to the (unprotected) memory of each cgroup. That
6631 * way, cgroups that aren't explicitly prioritized wrt each
6632 * other compete freely over the allowance, but they are
6633 * collectively protected from neighboring trees.
6634 *
6635 * We're using unprotected memory for the weight so that if
6636 * some cgroups DO claim explicit protection, we don't protect
6637 * the same bytes twice.
cd324edc
JW
6638 *
6639 * Check both usage and parent_usage against the respective
6640 * protected values. One should imply the other, but they
6641 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6642 */
6643 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6644 return ep;
cd324edc
JW
6645 if (parent_effective > siblings_protected &&
6646 parent_usage > siblings_protected &&
6647 usage > protected) {
8a931f80
JW
6648 unsigned long unclaimed;
6649
6650 unclaimed = parent_effective - siblings_protected;
6651 unclaimed *= usage - protected;
6652 unclaimed /= parent_usage - siblings_protected;
6653
6654 ep += unclaimed;
6655 }
6656
6657 return ep;
bc50bcc6
JW
6658}
6659
241994ed 6660/**
bf8d5d52 6661 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6662 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6663 * @memcg: the memory cgroup to check
6664 *
23067153
RG
6665 * WARNING: This function is not stateless! It can only be used as part
6666 * of a top-down tree iteration, not for isolated queries.
241994ed 6667 */
45c7f7e1
CD
6668void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6669 struct mem_cgroup *memcg)
241994ed 6670{
8a931f80 6671 unsigned long usage, parent_usage;
23067153
RG
6672 struct mem_cgroup *parent;
6673
241994ed 6674 if (mem_cgroup_disabled())
45c7f7e1 6675 return;
241994ed 6676
34c81057
SC
6677 if (!root)
6678 root = root_mem_cgroup;
22f7496f
YS
6679
6680 /*
6681 * Effective values of the reclaim targets are ignored so they
6682 * can be stale. Have a look at mem_cgroup_protection for more
6683 * details.
6684 * TODO: calculation should be more robust so that we do not need
6685 * that special casing.
6686 */
34c81057 6687 if (memcg == root)
45c7f7e1 6688 return;
241994ed 6689
23067153 6690 usage = page_counter_read(&memcg->memory);
bf8d5d52 6691 if (!usage)
45c7f7e1 6692 return;
bf8d5d52 6693
bf8d5d52 6694 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6695 /* No parent means a non-hierarchical mode on v1 memcg */
6696 if (!parent)
45c7f7e1 6697 return;
df2a4196 6698
bc50bcc6 6699 if (parent == root) {
c3d53200 6700 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6701 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6702 return;
bf8d5d52
RG
6703 }
6704
8a931f80
JW
6705 parent_usage = page_counter_read(&parent->memory);
6706
b3a7822e 6707 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6708 READ_ONCE(memcg->memory.min),
6709 READ_ONCE(parent->memory.emin),
b3a7822e 6710 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6711
b3a7822e 6712 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6713 READ_ONCE(memcg->memory.low),
6714 READ_ONCE(parent->memory.elow),
b3a7822e 6715 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6716}
6717
00501b53 6718/**
f0e45fb4 6719 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6720 * @page: page to charge
6721 * @mm: mm context of the victim
6722 * @gfp_mask: reclaim mode
00501b53
JW
6723 *
6724 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6725 * pages according to @gfp_mask if necessary.
6726 *
f0e45fb4 6727 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6728 */
d9eb1ea2 6729int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6730{
6c357848 6731 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6732 struct mem_cgroup *memcg = NULL;
00501b53
JW
6733 int ret = 0;
6734
6735 if (mem_cgroup_disabled())
6736 goto out;
6737
6738 if (PageSwapCache(page)) {
2d1c4980
JW
6739 swp_entry_t ent = { .val = page_private(page), };
6740 unsigned short id;
6741
00501b53
JW
6742 /*
6743 * Every swap fault against a single page tries to charge the
6744 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6745 * already charged pages, too. page and memcg binding is
6746 * protected by the page lock, which serializes swap cache
6747 * removal, which in turn serializes uncharging.
00501b53 6748 */
e993d905 6749 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6750 if (page_memcg(compound_head(page)))
00501b53 6751 goto out;
e993d905 6752
2d1c4980
JW
6753 id = lookup_swap_cgroup_id(ent);
6754 rcu_read_lock();
6755 memcg = mem_cgroup_from_id(id);
6756 if (memcg && !css_tryget_online(&memcg->css))
6757 memcg = NULL;
6758 rcu_read_unlock();
00501b53
JW
6759 }
6760
00501b53
JW
6761 if (!memcg)
6762 memcg = get_mem_cgroup_from_mm(mm);
6763
6764 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6765 if (ret)
6766 goto out_put;
00501b53 6767
1a3e1f40 6768 css_get(&memcg->css);
d9eb1ea2 6769 commit_charge(page, memcg);
6abb5a86 6770
6abb5a86 6771 local_irq_disable();
3fba69a5 6772 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6773 memcg_check_events(memcg, page);
6774 local_irq_enable();
00501b53 6775
2d1c4980 6776 if (PageSwapCache(page)) {
00501b53
JW
6777 swp_entry_t entry = { .val = page_private(page) };
6778 /*
6779 * The swap entry might not get freed for a long time,
6780 * let's not wait for it. The page already received a
6781 * memory+swap charge, drop the swap entry duplicate.
6782 */
38d8b4e6 6783 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6784 }
00501b53 6785
f0e45fb4
JW
6786out_put:
6787 css_put(&memcg->css);
6788out:
6789 return ret;
3fea5a49
JW
6790}
6791
a9d5adee
JG
6792struct uncharge_gather {
6793 struct mem_cgroup *memcg;
9f762dbe 6794 unsigned long nr_pages;
a9d5adee 6795 unsigned long pgpgout;
a9d5adee 6796 unsigned long nr_kmem;
a9d5adee
JG
6797 struct page *dummy_page;
6798};
6799
6800static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6801{
a9d5adee
JG
6802 memset(ug, 0, sizeof(*ug));
6803}
6804
6805static void uncharge_batch(const struct uncharge_gather *ug)
6806{
747db954
JW
6807 unsigned long flags;
6808
a9d5adee 6809 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6810 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6811 if (do_memsw_account())
9f762dbe 6812 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6813 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6814 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6815 memcg_oom_recover(ug->memcg);
ce00a967 6816 }
747db954
JW
6817
6818 local_irq_save(flags);
c9019e9b 6819 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6820 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6821 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6822 local_irq_restore(flags);
f1796544
MH
6823
6824 /* drop reference from uncharge_page */
6825 css_put(&ug->memcg->css);
a9d5adee
JG
6826}
6827
6828static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6829{
9f762dbe
JW
6830 unsigned long nr_pages;
6831
a9d5adee 6832 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6833
bcfe06bf 6834 if (!page_memcg(page))
a9d5adee
JG
6835 return;
6836
6837 /*
6838 * Nobody should be changing or seriously looking at
bcfe06bf 6839 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6840 * exclusive access to the page.
6841 */
6842
bcfe06bf 6843 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6844 if (ug->memcg) {
6845 uncharge_batch(ug);
6846 uncharge_gather_clear(ug);
6847 }
bcfe06bf 6848 ug->memcg = page_memcg(page);
f1796544
MH
6849
6850 /* pairs with css_put in uncharge_batch */
6851 css_get(&ug->memcg->css);
a9d5adee
JG
6852 }
6853
9f762dbe
JW
6854 nr_pages = compound_nr(page);
6855 ug->nr_pages += nr_pages;
a9d5adee 6856
18b2db3b 6857 if (PageMemcgKmem(page))
9f762dbe 6858 ug->nr_kmem += nr_pages;
18b2db3b
RG
6859 else
6860 ug->pgpgout++;
a9d5adee
JG
6861
6862 ug->dummy_page = page;
bcfe06bf 6863 page->memcg_data = 0;
1a3e1f40 6864 css_put(&ug->memcg->css);
747db954
JW
6865}
6866
6867static void uncharge_list(struct list_head *page_list)
6868{
a9d5adee 6869 struct uncharge_gather ug;
747db954 6870 struct list_head *next;
a9d5adee
JG
6871
6872 uncharge_gather_clear(&ug);
747db954 6873
8b592656
JW
6874 /*
6875 * Note that the list can be a single page->lru; hence the
6876 * do-while loop instead of a simple list_for_each_entry().
6877 */
747db954
JW
6878 next = page_list->next;
6879 do {
a9d5adee
JG
6880 struct page *page;
6881
747db954
JW
6882 page = list_entry(next, struct page, lru);
6883 next = page->lru.next;
6884
a9d5adee 6885 uncharge_page(page, &ug);
747db954
JW
6886 } while (next != page_list);
6887
a9d5adee
JG
6888 if (ug.memcg)
6889 uncharge_batch(&ug);
747db954
JW
6890}
6891
0a31bc97
JW
6892/**
6893 * mem_cgroup_uncharge - uncharge a page
6894 * @page: page to uncharge
6895 *
f0e45fb4 6896 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6897 */
6898void mem_cgroup_uncharge(struct page *page)
6899{
a9d5adee
JG
6900 struct uncharge_gather ug;
6901
0a31bc97
JW
6902 if (mem_cgroup_disabled())
6903 return;
6904
747db954 6905 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6906 if (!page_memcg(page))
0a31bc97
JW
6907 return;
6908
a9d5adee
JG
6909 uncharge_gather_clear(&ug);
6910 uncharge_page(page, &ug);
6911 uncharge_batch(&ug);
747db954 6912}
0a31bc97 6913
747db954
JW
6914/**
6915 * mem_cgroup_uncharge_list - uncharge a list of page
6916 * @page_list: list of pages to uncharge
6917 *
6918 * Uncharge a list of pages previously charged with
f0e45fb4 6919 * mem_cgroup_charge().
747db954
JW
6920 */
6921void mem_cgroup_uncharge_list(struct list_head *page_list)
6922{
6923 if (mem_cgroup_disabled())
6924 return;
0a31bc97 6925
747db954
JW
6926 if (!list_empty(page_list))
6927 uncharge_list(page_list);
0a31bc97
JW
6928}
6929
6930/**
6a93ca8f
JW
6931 * mem_cgroup_migrate - charge a page's replacement
6932 * @oldpage: currently circulating page
6933 * @newpage: replacement page
0a31bc97 6934 *
6a93ca8f
JW
6935 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6936 * be uncharged upon free.
0a31bc97
JW
6937 *
6938 * Both pages must be locked, @newpage->mapping must be set up.
6939 */
6a93ca8f 6940void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6941{
29833315 6942 struct mem_cgroup *memcg;
44b7a8d3 6943 unsigned int nr_pages;
d93c4130 6944 unsigned long flags;
0a31bc97
JW
6945
6946 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6948 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6949 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6950 newpage);
0a31bc97
JW
6951
6952 if (mem_cgroup_disabled())
6953 return;
6954
6955 /* Page cache replacement: new page already charged? */
bcfe06bf 6956 if (page_memcg(newpage))
0a31bc97
JW
6957 return;
6958
bcfe06bf 6959 memcg = page_memcg(oldpage);
a4055888 6960 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6961 if (!memcg)
0a31bc97
JW
6962 return;
6963
44b7a8d3 6964 /* Force-charge the new page. The old one will be freed soon */
6c357848 6965 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6966
6967 page_counter_charge(&memcg->memory, nr_pages);
6968 if (do_memsw_account())
6969 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6970
1a3e1f40 6971 css_get(&memcg->css);
d9eb1ea2 6972 commit_charge(newpage, memcg);
44b7a8d3 6973
d93c4130 6974 local_irq_save(flags);
3fba69a5 6975 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6976 memcg_check_events(memcg, newpage);
d93c4130 6977 local_irq_restore(flags);
0a31bc97
JW
6978}
6979
ef12947c 6980DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6981EXPORT_SYMBOL(memcg_sockets_enabled_key);
6982
2d758073 6983void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6984{
6985 struct mem_cgroup *memcg;
6986
2d758073
JW
6987 if (!mem_cgroup_sockets_enabled)
6988 return;
6989
e876ecc6
SB
6990 /* Do not associate the sock with unrelated interrupted task's memcg. */
6991 if (in_interrupt())
6992 return;
6993
11092087
JW
6994 rcu_read_lock();
6995 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6996 if (memcg == root_mem_cgroup)
6997 goto out;
0db15298 6998 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6999 goto out;
8965aa28 7000 if (css_tryget(&memcg->css))
11092087 7001 sk->sk_memcg = memcg;
f7e1cb6e 7002out:
11092087
JW
7003 rcu_read_unlock();
7004}
11092087 7005
2d758073 7006void mem_cgroup_sk_free(struct sock *sk)
11092087 7007{
2d758073
JW
7008 if (sk->sk_memcg)
7009 css_put(&sk->sk_memcg->css);
11092087
JW
7010}
7011
7012/**
7013 * mem_cgroup_charge_skmem - charge socket memory
7014 * @memcg: memcg to charge
7015 * @nr_pages: number of pages to charge
7016 *
7017 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7018 * @memcg's configured limit, %false if the charge had to be forced.
7019 */
7020bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7021{
f7e1cb6e 7022 gfp_t gfp_mask = GFP_KERNEL;
11092087 7023
f7e1cb6e 7024 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7025 struct page_counter *fail;
f7e1cb6e 7026
0db15298
JW
7027 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7028 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7029 return true;
7030 }
0db15298
JW
7031 page_counter_charge(&memcg->tcpmem, nr_pages);
7032 memcg->tcpmem_pressure = 1;
f7e1cb6e 7033 return false;
11092087 7034 }
d886f4e4 7035
f7e1cb6e
JW
7036 /* Don't block in the packet receive path */
7037 if (in_softirq())
7038 gfp_mask = GFP_NOWAIT;
7039
c9019e9b 7040 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7041
f7e1cb6e
JW
7042 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7043 return true;
7044
7045 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7046 return false;
7047}
7048
7049/**
7050 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7051 * @memcg: memcg to uncharge
7052 * @nr_pages: number of pages to uncharge
11092087
JW
7053 */
7054void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7055{
f7e1cb6e 7056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7057 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7058 return;
7059 }
d886f4e4 7060
c9019e9b 7061 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7062
475d0487 7063 refill_stock(memcg, nr_pages);
11092087
JW
7064}
7065
f7e1cb6e
JW
7066static int __init cgroup_memory(char *s)
7067{
7068 char *token;
7069
7070 while ((token = strsep(&s, ",")) != NULL) {
7071 if (!*token)
7072 continue;
7073 if (!strcmp(token, "nosocket"))
7074 cgroup_memory_nosocket = true;
04823c83
VD
7075 if (!strcmp(token, "nokmem"))
7076 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7077 }
7078 return 0;
7079}
7080__setup("cgroup.memory=", cgroup_memory);
11092087 7081
2d11085e 7082/*
1081312f
MH
7083 * subsys_initcall() for memory controller.
7084 *
308167fc
SAS
7085 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7086 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7087 * basically everything that doesn't depend on a specific mem_cgroup structure
7088 * should be initialized from here.
2d11085e
MH
7089 */
7090static int __init mem_cgroup_init(void)
7091{
95a045f6
JW
7092 int cpu, node;
7093
f3344adf
MS
7094 /*
7095 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7096 * used for per-memcg-per-cpu caching of per-node statistics. In order
7097 * to work fine, we should make sure that the overfill threshold can't
7098 * exceed S32_MAX / PAGE_SIZE.
7099 */
7100 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7101
308167fc
SAS
7102 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7103 memcg_hotplug_cpu_dead);
95a045f6
JW
7104
7105 for_each_possible_cpu(cpu)
7106 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7107 drain_local_stock);
7108
7109 for_each_node(node) {
7110 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7111
7112 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7113 node_online(node) ? node : NUMA_NO_NODE);
7114
ef8f2327 7115 rtpn->rb_root = RB_ROOT;
fa90b2fd 7116 rtpn->rb_rightmost = NULL;
ef8f2327 7117 spin_lock_init(&rtpn->lock);
95a045f6
JW
7118 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7119 }
7120
2d11085e
MH
7121 return 0;
7122}
7123subsys_initcall(mem_cgroup_init);
21afa38e
JW
7124
7125#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7126static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7127{
1c2d479a 7128 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7129 /*
7130 * The root cgroup cannot be destroyed, so it's refcount must
7131 * always be >= 1.
7132 */
7133 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7134 VM_BUG_ON(1);
7135 break;
7136 }
7137 memcg = parent_mem_cgroup(memcg);
7138 if (!memcg)
7139 memcg = root_mem_cgroup;
7140 }
7141 return memcg;
7142}
7143
21afa38e
JW
7144/**
7145 * mem_cgroup_swapout - transfer a memsw charge to swap
7146 * @page: page whose memsw charge to transfer
7147 * @entry: swap entry to move the charge to
7148 *
7149 * Transfer the memsw charge of @page to @entry.
7150 */
7151void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7152{
1f47b61f 7153 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7154 unsigned int nr_entries;
21afa38e
JW
7155 unsigned short oldid;
7156
7157 VM_BUG_ON_PAGE(PageLRU(page), page);
7158 VM_BUG_ON_PAGE(page_count(page), page);
7159
76358ab5
AS
7160 if (mem_cgroup_disabled())
7161 return;
7162
2d1c4980 7163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7164 return;
7165
bcfe06bf 7166 memcg = page_memcg(page);
21afa38e 7167
a4055888 7168 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7169 if (!memcg)
7170 return;
7171
1f47b61f
VD
7172 /*
7173 * In case the memcg owning these pages has been offlined and doesn't
7174 * have an ID allocated to it anymore, charge the closest online
7175 * ancestor for the swap instead and transfer the memory+swap charge.
7176 */
7177 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7178 nr_entries = thp_nr_pages(page);
d6810d73
HY
7179 /* Get references for the tail pages, too */
7180 if (nr_entries > 1)
7181 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7182 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7183 nr_entries);
21afa38e 7184 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7185 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7186
bcfe06bf 7187 page->memcg_data = 0;
21afa38e
JW
7188
7189 if (!mem_cgroup_is_root(memcg))
d6810d73 7190 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7191
2d1c4980 7192 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7193 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7194 page_counter_charge(&swap_memcg->memsw, nr_entries);
7195 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7196 }
7197
ce9ce665
SAS
7198 /*
7199 * Interrupts should be disabled here because the caller holds the
b93b0163 7200 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7201 * important here to have the interrupts disabled because it is the
b93b0163 7202 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7203 */
7204 VM_BUG_ON(!irqs_disabled());
3fba69a5 7205 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7206 memcg_check_events(memcg, page);
73f576c0 7207
1a3e1f40 7208 css_put(&memcg->css);
21afa38e
JW
7209}
7210
38d8b4e6
HY
7211/**
7212 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7213 * @page: page being added to swap
7214 * @entry: swap entry to charge
7215 *
38d8b4e6 7216 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7217 *
7218 * Returns 0 on success, -ENOMEM on failure.
7219 */
7220int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7221{
6c357848 7222 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7223 struct page_counter *counter;
38d8b4e6 7224 struct mem_cgroup *memcg;
37e84351
VD
7225 unsigned short oldid;
7226
76358ab5
AS
7227 if (mem_cgroup_disabled())
7228 return 0;
7229
2d1c4980 7230 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7231 return 0;
7232
bcfe06bf 7233 memcg = page_memcg(page);
37e84351 7234
a4055888 7235 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7236 if (!memcg)
7237 return 0;
7238
f3a53a3a
TH
7239 if (!entry.val) {
7240 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7241 return 0;
f3a53a3a 7242 }
bb98f2c5 7243
1f47b61f
VD
7244 memcg = mem_cgroup_id_get_online(memcg);
7245
2d1c4980 7246 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7247 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7248 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7249 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7250 mem_cgroup_id_put(memcg);
37e84351 7251 return -ENOMEM;
1f47b61f 7252 }
37e84351 7253
38d8b4e6
HY
7254 /* Get references for the tail pages, too */
7255 if (nr_pages > 1)
7256 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7257 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7258 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7259 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7260
37e84351
VD
7261 return 0;
7262}
7263
21afa38e 7264/**
38d8b4e6 7265 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7266 * @entry: swap entry to uncharge
38d8b4e6 7267 * @nr_pages: the amount of swap space to uncharge
21afa38e 7268 */
38d8b4e6 7269void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7270{
7271 struct mem_cgroup *memcg;
7272 unsigned short id;
7273
38d8b4e6 7274 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7275 rcu_read_lock();
adbe427b 7276 memcg = mem_cgroup_from_id(id);
21afa38e 7277 if (memcg) {
2d1c4980 7278 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7279 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7280 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7281 else
38d8b4e6 7282 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7283 }
c9019e9b 7284 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7285 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7286 }
7287 rcu_read_unlock();
7288}
7289
d8b38438
VD
7290long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7291{
7292 long nr_swap_pages = get_nr_swap_pages();
7293
eccb52e7 7294 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7295 return nr_swap_pages;
7296 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7297 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7298 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7299 page_counter_read(&memcg->swap));
7300 return nr_swap_pages;
7301}
7302
5ccc5aba
VD
7303bool mem_cgroup_swap_full(struct page *page)
7304{
7305 struct mem_cgroup *memcg;
7306
7307 VM_BUG_ON_PAGE(!PageLocked(page), page);
7308
7309 if (vm_swap_full())
7310 return true;
eccb52e7 7311 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7312 return false;
7313
bcfe06bf 7314 memcg = page_memcg(page);
5ccc5aba
VD
7315 if (!memcg)
7316 return false;
7317
4b82ab4f
JK
7318 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7319 unsigned long usage = page_counter_read(&memcg->swap);
7320
7321 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7322 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7323 return true;
4b82ab4f 7324 }
5ccc5aba
VD
7325
7326 return false;
7327}
7328
eccb52e7 7329static int __init setup_swap_account(char *s)
21afa38e
JW
7330{
7331 if (!strcmp(s, "1"))
5ab92901 7332 cgroup_memory_noswap = false;
21afa38e 7333 else if (!strcmp(s, "0"))
5ab92901 7334 cgroup_memory_noswap = true;
21afa38e
JW
7335 return 1;
7336}
eccb52e7 7337__setup("swapaccount=", setup_swap_account);
21afa38e 7338
37e84351
VD
7339static u64 swap_current_read(struct cgroup_subsys_state *css,
7340 struct cftype *cft)
7341{
7342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7343
7344 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7345}
7346
4b82ab4f
JK
7347static int swap_high_show(struct seq_file *m, void *v)
7348{
7349 return seq_puts_memcg_tunable(m,
7350 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7351}
7352
7353static ssize_t swap_high_write(struct kernfs_open_file *of,
7354 char *buf, size_t nbytes, loff_t off)
7355{
7356 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7357 unsigned long high;
7358 int err;
7359
7360 buf = strstrip(buf);
7361 err = page_counter_memparse(buf, "max", &high);
7362 if (err)
7363 return err;
7364
7365 page_counter_set_high(&memcg->swap, high);
7366
7367 return nbytes;
7368}
7369
37e84351
VD
7370static int swap_max_show(struct seq_file *m, void *v)
7371{
677dc973
CD
7372 return seq_puts_memcg_tunable(m,
7373 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7374}
7375
7376static ssize_t swap_max_write(struct kernfs_open_file *of,
7377 char *buf, size_t nbytes, loff_t off)
7378{
7379 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7380 unsigned long max;
7381 int err;
7382
7383 buf = strstrip(buf);
7384 err = page_counter_memparse(buf, "max", &max);
7385 if (err)
7386 return err;
7387
be09102b 7388 xchg(&memcg->swap.max, max);
37e84351
VD
7389
7390 return nbytes;
7391}
7392
f3a53a3a
TH
7393static int swap_events_show(struct seq_file *m, void *v)
7394{
aa9694bb 7395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7396
4b82ab4f
JK
7397 seq_printf(m, "high %lu\n",
7398 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7399 seq_printf(m, "max %lu\n",
7400 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7401 seq_printf(m, "fail %lu\n",
7402 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7403
7404 return 0;
7405}
7406
37e84351
VD
7407static struct cftype swap_files[] = {
7408 {
7409 .name = "swap.current",
7410 .flags = CFTYPE_NOT_ON_ROOT,
7411 .read_u64 = swap_current_read,
7412 },
4b82ab4f
JK
7413 {
7414 .name = "swap.high",
7415 .flags = CFTYPE_NOT_ON_ROOT,
7416 .seq_show = swap_high_show,
7417 .write = swap_high_write,
7418 },
37e84351
VD
7419 {
7420 .name = "swap.max",
7421 .flags = CFTYPE_NOT_ON_ROOT,
7422 .seq_show = swap_max_show,
7423 .write = swap_max_write,
7424 },
f3a53a3a
TH
7425 {
7426 .name = "swap.events",
7427 .flags = CFTYPE_NOT_ON_ROOT,
7428 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7429 .seq_show = swap_events_show,
7430 },
37e84351
VD
7431 { } /* terminate */
7432};
7433
eccb52e7 7434static struct cftype memsw_files[] = {
21afa38e
JW
7435 {
7436 .name = "memsw.usage_in_bytes",
7437 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7438 .read_u64 = mem_cgroup_read_u64,
7439 },
7440 {
7441 .name = "memsw.max_usage_in_bytes",
7442 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7443 .write = mem_cgroup_reset,
7444 .read_u64 = mem_cgroup_read_u64,
7445 },
7446 {
7447 .name = "memsw.limit_in_bytes",
7448 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7449 .write = mem_cgroup_write,
7450 .read_u64 = mem_cgroup_read_u64,
7451 },
7452 {
7453 .name = "memsw.failcnt",
7454 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7455 .write = mem_cgroup_reset,
7456 .read_u64 = mem_cgroup_read_u64,
7457 },
7458 { }, /* terminate */
7459};
7460
82ff165c
BS
7461/*
7462 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7463 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7464 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7465 * boot parameter. This may result in premature OOPS inside
7466 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7467 */
21afa38e
JW
7468static int __init mem_cgroup_swap_init(void)
7469{
2d1c4980
JW
7470 /* No memory control -> no swap control */
7471 if (mem_cgroup_disabled())
7472 cgroup_memory_noswap = true;
7473
7474 if (cgroup_memory_noswap)
eccb52e7
JW
7475 return 0;
7476
7477 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7478 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7479
21afa38e
JW
7480 return 0;
7481}
82ff165c 7482core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7483
7484#endif /* CONFIG_MEMCG_SWAP */