]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
revert "vmscan, memcg: do softlimit reclaim also for targeted reclaim"
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
b6ac57d5 42#include <linux/slab.h>
66e1707b 43#include <linux/swap.h>
02491447 44#include <linux/swapops.h>
66e1707b 45#include <linux/spinlock.h>
2e72b634
KS
46#include <linux/eventfd.h>
47#include <linux/sort.h>
66e1707b 48#include <linux/fs.h>
d2ceb9b7 49#include <linux/seq_file.h>
33327948 50#include <linux/vmalloc.h>
70ddf637 51#include <linux/vmpressure.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
af7c4b0e
JW
87static const char * const mem_cgroup_stat_names[] = {
88 "cache",
89 "rss",
b070e65c 90 "rss_huge",
af7c4b0e 91 "mapped_file",
3ea67d06 92 "writeback",
af7c4b0e
JW
93 "swap",
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
af7c4b0e
JW
103
104static const char * const mem_cgroup_events_names[] = {
105 "pgpgin",
106 "pgpgout",
107 "pgfault",
108 "pgmajfault",
109};
110
58cf188e
SZ
111static const char * const mem_cgroup_lru_names[] = {
112 "inactive_anon",
113 "active_anon",
114 "inactive_file",
115 "active_file",
116 "unevictable",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
453a9bf3 127 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
128 MEM_CGROUP_NTARGETS,
129};
a0db00fc
KS
130#define THRESHOLDS_EVENTS_TARGET 128
131#define SOFTLIMIT_EVENTS_TARGET 1024
132#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 133
d52aa412 134struct mem_cgroup_stat_cpu {
7a159cc9 135 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 136 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 137 unsigned long nr_page_events;
7a159cc9 138 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
139};
140
527a5ec9 141struct mem_cgroup_reclaim_iter {
5f578161
MH
142 /*
143 * last scanned hierarchy member. Valid only if last_dead_count
144 * matches memcg->dead_count of the hierarchy root group.
145 */
542f85f9 146 struct mem_cgroup *last_visited;
5f578161
MH
147 unsigned long last_dead_count;
148
527a5ec9
JW
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
151};
152
6d12e2d8
KH
153/*
154 * per-zone information in memory controller.
155 */
6d12e2d8 156struct mem_cgroup_per_zone {
6290df54 157 struct lruvec lruvec;
1eb49272 158 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 159
527a5ec9
JW
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
161
d79154bb 162 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 163 /* use container_of */
6d12e2d8 164};
6d12e2d8
KH
165
166struct mem_cgroup_per_node {
167 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
168};
169
2e72b634
KS
170struct mem_cgroup_threshold {
171 struct eventfd_ctx *eventfd;
172 u64 threshold;
173};
174
9490ff27 175/* For threshold */
2e72b634 176struct mem_cgroup_threshold_ary {
748dad36 177 /* An array index points to threshold just below or equal to usage. */
5407a562 178 int current_threshold;
2e72b634
KS
179 /* Size of entries[] */
180 unsigned int size;
181 /* Array of thresholds */
182 struct mem_cgroup_threshold entries[0];
183};
2c488db2
KS
184
185struct mem_cgroup_thresholds {
186 /* Primary thresholds array */
187 struct mem_cgroup_threshold_ary *primary;
188 /*
189 * Spare threshold array.
190 * This is needed to make mem_cgroup_unregister_event() "never fail".
191 * It must be able to store at least primary->size - 1 entries.
192 */
193 struct mem_cgroup_threshold_ary *spare;
194};
195
9490ff27
KH
196/* for OOM */
197struct mem_cgroup_eventfd_list {
198 struct list_head list;
199 struct eventfd_ctx *eventfd;
200};
2e72b634 201
c0ff4b85
R
202static void mem_cgroup_threshold(struct mem_cgroup *memcg);
203static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 204
8cdea7c0
BS
205/*
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
210 *
211 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
212 * we hit the water mark. May be even add a low water mark, such that
213 * no reclaim occurs from a cgroup at it's low water mark, this is
214 * a feature that will be implemented much later in the future.
8cdea7c0
BS
215 */
216struct mem_cgroup {
217 struct cgroup_subsys_state css;
218 /*
219 * the counter to account for memory usage
220 */
221 struct res_counter res;
59927fb9 222
70ddf637
AV
223 /* vmpressure notifications */
224 struct vmpressure vmpressure;
225
465939a1
LZ
226 /*
227 * the counter to account for mem+swap usage.
228 */
229 struct res_counter memsw;
59927fb9 230
510fc4e1
GC
231 /*
232 * the counter to account for kernel memory usage.
233 */
234 struct res_counter kmem;
18f59ea7
BS
235 /*
236 * Should the accounting and control be hierarchical, per subtree?
237 */
238 bool use_hierarchy;
510fc4e1 239 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
240
241 bool oom_lock;
242 atomic_t under_oom;
3812c8c8 243 atomic_t oom_wakeups;
79dfdacc 244
1f4c025b 245 int swappiness;
3c11ecf4
KH
246 /* OOM-Killer disable */
247 int oom_kill_disable;
a7885eb8 248
22a668d7
KH
249 /* set when res.limit == memsw.limit */
250 bool memsw_is_minimum;
251
2e72b634
KS
252 /* protect arrays of thresholds */
253 struct mutex thresholds_lock;
254
255 /* thresholds for memory usage. RCU-protected */
2c488db2 256 struct mem_cgroup_thresholds thresholds;
907860ed 257
2e72b634 258 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 259 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 260
9490ff27
KH
261 /* For oom notifier event fd */
262 struct list_head oom_notify;
185efc0f 263
7dc74be0
DN
264 /*
265 * Should we move charges of a task when a task is moved into this
266 * mem_cgroup ? And what type of charges should we move ?
267 */
f894ffa8 268 unsigned long move_charge_at_immigrate;
619d094b
KH
269 /*
270 * set > 0 if pages under this cgroup are moving to other cgroup.
271 */
272 atomic_t moving_account;
312734c0
KH
273 /* taken only while moving_account > 0 */
274 spinlock_t move_lock;
d52aa412 275 /*
c62b1a3b 276 * percpu counter.
d52aa412 277 */
3a7951b4 278 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
279 /*
280 * used when a cpu is offlined or other synchronizations
281 * See mem_cgroup_read_stat().
282 */
283 struct mem_cgroup_stat_cpu nocpu_base;
284 spinlock_t pcp_counter_lock;
d1a4c0b3 285
5f578161 286 atomic_t dead_count;
4bd2c1ee 287#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
288 struct tcp_memcontrol tcp_mem;
289#endif
2633d7a0
GC
290#if defined(CONFIG_MEMCG_KMEM)
291 /* analogous to slab_common's slab_caches list. per-memcg */
292 struct list_head memcg_slab_caches;
293 /* Not a spinlock, we can take a lot of time walking the list */
294 struct mutex slab_caches_mutex;
295 /* Index in the kmem_cache->memcg_params->memcg_caches array */
296 int kmemcg_id;
297#endif
45cf7ebd
GC
298
299 int last_scanned_node;
300#if MAX_NUMNODES > 1
301 nodemask_t scan_nodes;
302 atomic_t numainfo_events;
303 atomic_t numainfo_updating;
304#endif
70ddf637 305
54f72fe0
JW
306 struct mem_cgroup_per_node *nodeinfo[0];
307 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
308};
309
45cf7ebd
GC
310static size_t memcg_size(void)
311{
312 return sizeof(struct mem_cgroup) +
313 nr_node_ids * sizeof(struct mem_cgroup_per_node);
314}
315
510fc4e1
GC
316/* internal only representation about the status of kmem accounting. */
317enum {
318 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 319 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 320 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
321};
322
a8964b9b
GC
323/* We account when limit is on, but only after call sites are patched */
324#define KMEM_ACCOUNTED_MASK \
325 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
326
327#ifdef CONFIG_MEMCG_KMEM
328static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
329{
330 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
331}
7de37682
GC
332
333static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
334{
335 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
336}
337
a8964b9b
GC
338static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
339{
340 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
341}
342
55007d84
GC
343static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
344{
345 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
346}
347
7de37682
GC
348static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
349{
10d5ebf4
LZ
350 /*
351 * Our caller must use css_get() first, because memcg_uncharge_kmem()
352 * will call css_put() if it sees the memcg is dead.
353 */
354 smp_wmb();
7de37682
GC
355 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
356 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
357}
358
359static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
360{
361 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
362 &memcg->kmem_account_flags);
363}
510fc4e1
GC
364#endif
365
7dc74be0
DN
366/* Stuffs for move charges at task migration. */
367/*
ee5e8472
GC
368 * Types of charges to be moved. "move_charge_at_immitgrate" and
369 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
370 */
371enum move_type {
4ffef5fe 372 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 373 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
374 NR_MOVE_TYPE,
375};
376
4ffef5fe
DN
377/* "mc" and its members are protected by cgroup_mutex */
378static struct move_charge_struct {
b1dd693e 379 spinlock_t lock; /* for from, to */
4ffef5fe
DN
380 struct mem_cgroup *from;
381 struct mem_cgroup *to;
ee5e8472 382 unsigned long immigrate_flags;
4ffef5fe 383 unsigned long precharge;
854ffa8d 384 unsigned long moved_charge;
483c30b5 385 unsigned long moved_swap;
8033b97c
DN
386 struct task_struct *moving_task; /* a task moving charges */
387 wait_queue_head_t waitq; /* a waitq for other context */
388} mc = {
2bd9bb20 389 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
390 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
391};
4ffef5fe 392
90254a65
DN
393static bool move_anon(void)
394{
ee5e8472 395 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
396}
397
87946a72
DN
398static bool move_file(void)
399{
ee5e8472 400 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
401}
402
4e416953
BS
403/*
404 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
405 * limit reclaim to prevent infinite loops, if they ever occur.
406 */
a0db00fc 407#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
4e416953 408
217bc319
KH
409enum charge_type {
410 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 411 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 412 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 413 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
414 NR_CHARGE_TYPE,
415};
416
8c7c6e34 417/* for encoding cft->private value on file */
86ae53e1
GC
418enum res_type {
419 _MEM,
420 _MEMSWAP,
421 _OOM_TYPE,
510fc4e1 422 _KMEM,
86ae53e1
GC
423};
424
a0db00fc
KS
425#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
426#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 427#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
428/* Used for OOM nofiier */
429#define OOM_CONTROL (0)
8c7c6e34 430
75822b44
BS
431/*
432 * Reclaim flags for mem_cgroup_hierarchical_reclaim
433 */
434#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
435#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
436#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
437#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
438
0999821b
GC
439/*
440 * The memcg_create_mutex will be held whenever a new cgroup is created.
441 * As a consequence, any change that needs to protect against new child cgroups
442 * appearing has to hold it as well.
443 */
444static DEFINE_MUTEX(memcg_create_mutex);
445
b2145145
WL
446struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
447{
a7c6d554 448 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
449}
450
70ddf637
AV
451/* Some nice accessors for the vmpressure. */
452struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
453{
454 if (!memcg)
455 memcg = root_mem_cgroup;
456 return &memcg->vmpressure;
457}
458
459struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
460{
461 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
462}
463
464struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
465{
466 return &mem_cgroup_from_css(css)->vmpressure;
467}
468
7ffc0edc
MH
469static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
470{
471 return (memcg == root_mem_cgroup);
472}
473
e1aab161 474/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 475#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 476
e1aab161
GC
477void sock_update_memcg(struct sock *sk)
478{
376be5ff 479 if (mem_cgroup_sockets_enabled) {
e1aab161 480 struct mem_cgroup *memcg;
3f134619 481 struct cg_proto *cg_proto;
e1aab161
GC
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
f3f511e1
GC
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 495 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
496 return;
497 }
498
e1aab161
GC
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
3f134619 501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
502 if (!mem_cgroup_is_root(memcg) &&
503 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 504 sk->sk_cgrp = cg_proto;
e1aab161
GC
505 }
506 rcu_read_unlock();
507 }
508}
509EXPORT_SYMBOL(sock_update_memcg);
510
511void sock_release_memcg(struct sock *sk)
512{
376be5ff 513 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
514 struct mem_cgroup *memcg;
515 WARN_ON(!sk->sk_cgrp->memcg);
516 memcg = sk->sk_cgrp->memcg;
5347e5ae 517 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
518 }
519}
d1a4c0b3
GC
520
521struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
522{
523 if (!memcg || mem_cgroup_is_root(memcg))
524 return NULL;
525
526 return &memcg->tcp_mem.cg_proto;
527}
528EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 529
3f134619
GC
530static void disarm_sock_keys(struct mem_cgroup *memcg)
531{
532 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
533 return;
534 static_key_slow_dec(&memcg_socket_limit_enabled);
535}
536#else
537static void disarm_sock_keys(struct mem_cgroup *memcg)
538{
539}
540#endif
541
a8964b9b 542#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
543/*
544 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
545 * There are two main reasons for not using the css_id for this:
546 * 1) this works better in sparse environments, where we have a lot of memcgs,
547 * but only a few kmem-limited. Or also, if we have, for instance, 200
548 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
549 * 200 entry array for that.
550 *
551 * 2) In order not to violate the cgroup API, we would like to do all memory
552 * allocation in ->create(). At that point, we haven't yet allocated the
553 * css_id. Having a separate index prevents us from messing with the cgroup
554 * core for this
555 *
556 * The current size of the caches array is stored in
557 * memcg_limited_groups_array_size. It will double each time we have to
558 * increase it.
559 */
560static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
561int memcg_limited_groups_array_size;
562
55007d84
GC
563/*
564 * MIN_SIZE is different than 1, because we would like to avoid going through
565 * the alloc/free process all the time. In a small machine, 4 kmem-limited
566 * cgroups is a reasonable guess. In the future, it could be a parameter or
567 * tunable, but that is strictly not necessary.
568 *
569 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
570 * this constant directly from cgroup, but it is understandable that this is
571 * better kept as an internal representation in cgroup.c. In any case, the
572 * css_id space is not getting any smaller, and we don't have to necessarily
573 * increase ours as well if it increases.
574 */
575#define MEMCG_CACHES_MIN_SIZE 4
576#define MEMCG_CACHES_MAX_SIZE 65535
577
d7f25f8a
GC
578/*
579 * A lot of the calls to the cache allocation functions are expected to be
580 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
581 * conditional to this static branch, we'll have to allow modules that does
582 * kmem_cache_alloc and the such to see this symbol as well
583 */
a8964b9b 584struct static_key memcg_kmem_enabled_key;
d7f25f8a 585EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
586
587static void disarm_kmem_keys(struct mem_cgroup *memcg)
588{
55007d84 589 if (memcg_kmem_is_active(memcg)) {
a8964b9b 590 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
591 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
592 }
bea207c8
GC
593 /*
594 * This check can't live in kmem destruction function,
595 * since the charges will outlive the cgroup
596 */
597 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
598}
599#else
600static void disarm_kmem_keys(struct mem_cgroup *memcg)
601{
602}
603#endif /* CONFIG_MEMCG_KMEM */
604
605static void disarm_static_keys(struct mem_cgroup *memcg)
606{
607 disarm_sock_keys(memcg);
608 disarm_kmem_keys(memcg);
609}
610
c0ff4b85 611static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 612
f64c3f54 613static struct mem_cgroup_per_zone *
c0ff4b85 614mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 615{
45cf7ebd 616 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 617 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
618}
619
c0ff4b85 620struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 621{
c0ff4b85 622 return &memcg->css;
d324236b
WF
623}
624
f64c3f54 625static struct mem_cgroup_per_zone *
c0ff4b85 626page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 627{
97a6c37b
JW
628 int nid = page_to_nid(page);
629 int zid = page_zonenum(page);
f64c3f54 630
c0ff4b85 631 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
632}
633
711d3d2c
KH
634/*
635 * Implementation Note: reading percpu statistics for memcg.
636 *
637 * Both of vmstat[] and percpu_counter has threshold and do periodic
638 * synchronization to implement "quick" read. There are trade-off between
639 * reading cost and precision of value. Then, we may have a chance to implement
640 * a periodic synchronizion of counter in memcg's counter.
641 *
642 * But this _read() function is used for user interface now. The user accounts
643 * memory usage by memory cgroup and he _always_ requires exact value because
644 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
645 * have to visit all online cpus and make sum. So, for now, unnecessary
646 * synchronization is not implemented. (just implemented for cpu hotplug)
647 *
648 * If there are kernel internal actions which can make use of some not-exact
649 * value, and reading all cpu value can be performance bottleneck in some
650 * common workload, threashold and synchonization as vmstat[] should be
651 * implemented.
652 */
c0ff4b85 653static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 654 enum mem_cgroup_stat_index idx)
c62b1a3b 655{
7a159cc9 656 long val = 0;
c62b1a3b 657 int cpu;
c62b1a3b 658
711d3d2c
KH
659 get_online_cpus();
660 for_each_online_cpu(cpu)
c0ff4b85 661 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 662#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
663 spin_lock(&memcg->pcp_counter_lock);
664 val += memcg->nocpu_base.count[idx];
665 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
666#endif
667 put_online_cpus();
c62b1a3b
KH
668 return val;
669}
670
c0ff4b85 671static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
672 bool charge)
673{
674 int val = (charge) ? 1 : -1;
bff6bb83 675 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
676}
677
c0ff4b85 678static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
679 enum mem_cgroup_events_index idx)
680{
681 unsigned long val = 0;
682 int cpu;
683
684 for_each_online_cpu(cpu)
c0ff4b85 685 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 686#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
687 spin_lock(&memcg->pcp_counter_lock);
688 val += memcg->nocpu_base.events[idx];
689 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
690#endif
691 return val;
692}
693
c0ff4b85 694static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 695 struct page *page,
b2402857 696 bool anon, int nr_pages)
d52aa412 697{
c62b1a3b
KH
698 preempt_disable();
699
b2402857
KH
700 /*
701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 * counted as CACHE even if it's on ANON LRU.
703 */
704 if (anon)
705 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 706 nr_pages);
d52aa412 707 else
b2402857 708 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 709 nr_pages);
55e462b0 710
b070e65c
DR
711 if (PageTransHuge(page))
712 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
713 nr_pages);
714
e401f176
KH
715 /* pagein of a big page is an event. So, ignore page size */
716 if (nr_pages > 0)
c0ff4b85 717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 718 else {
c0ff4b85 719 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
720 nr_pages = -nr_pages; /* for event */
721 }
e401f176 722
13114716 723 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 724
c62b1a3b 725 preempt_enable();
6d12e2d8
KH
726}
727
bb2a0de9 728unsigned long
4d7dcca2 729mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
730{
731 struct mem_cgroup_per_zone *mz;
732
733 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
734 return mz->lru_size[lru];
735}
736
737static unsigned long
c0ff4b85 738mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 739 unsigned int lru_mask)
889976db
YH
740{
741 struct mem_cgroup_per_zone *mz;
f156ab93 742 enum lru_list lru;
bb2a0de9
KH
743 unsigned long ret = 0;
744
c0ff4b85 745 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 746
f156ab93
HD
747 for_each_lru(lru) {
748 if (BIT(lru) & lru_mask)
749 ret += mz->lru_size[lru];
bb2a0de9
KH
750 }
751 return ret;
752}
753
754static unsigned long
c0ff4b85 755mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
756 int nid, unsigned int lru_mask)
757{
889976db
YH
758 u64 total = 0;
759 int zid;
760
bb2a0de9 761 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
762 total += mem_cgroup_zone_nr_lru_pages(memcg,
763 nid, zid, lru_mask);
bb2a0de9 764
889976db
YH
765 return total;
766}
bb2a0de9 767
c0ff4b85 768static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 769 unsigned int lru_mask)
6d12e2d8 770{
889976db 771 int nid;
6d12e2d8
KH
772 u64 total = 0;
773
31aaea4a 774 for_each_node_state(nid, N_MEMORY)
c0ff4b85 775 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 776 return total;
d52aa412
KH
777}
778
f53d7ce3
JW
779static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
780 enum mem_cgroup_events_target target)
7a159cc9
JW
781{
782 unsigned long val, next;
783
13114716 784 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 785 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 786 /* from time_after() in jiffies.h */
f53d7ce3
JW
787 if ((long)next - (long)val < 0) {
788 switch (target) {
789 case MEM_CGROUP_TARGET_THRESH:
790 next = val + THRESHOLDS_EVENTS_TARGET;
791 break;
f53d7ce3
JW
792 case MEM_CGROUP_TARGET_NUMAINFO:
793 next = val + NUMAINFO_EVENTS_TARGET;
794 break;
795 default:
796 break;
797 }
798 __this_cpu_write(memcg->stat->targets[target], next);
799 return true;
7a159cc9 800 }
f53d7ce3 801 return false;
d2265e6f
KH
802}
803
804/*
805 * Check events in order.
806 *
807 */
c0ff4b85 808static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 809{
4799401f 810 preempt_disable();
d2265e6f 811 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7 814 bool do_numainfo __maybe_unused;
f53d7ce3 815
f53d7ce3
JW
816#if MAX_NUMNODES > 1
817 do_numainfo = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_NUMAINFO);
819#endif
820 preempt_enable();
821
c0ff4b85 822 mem_cgroup_threshold(memcg);
453a9bf3 823#if MAX_NUMNODES > 1
f53d7ce3 824 if (unlikely(do_numainfo))
c0ff4b85 825 atomic_inc(&memcg->numainfo_events);
453a9bf3 826#endif
f53d7ce3
JW
827 } else
828 preempt_enable();
d2265e6f
KH
829}
830
cf475ad2 831struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 832{
31a78f23
BS
833 /*
834 * mm_update_next_owner() may clear mm->owner to NULL
835 * if it races with swapoff, page migration, etc.
836 * So this can be called with p == NULL.
837 */
838 if (unlikely(!p))
839 return NULL;
840
8af01f56 841 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
842}
843
a433658c 844struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 845{
c0ff4b85 846 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
847
848 if (!mm)
849 return NULL;
54595fe2
KH
850 /*
851 * Because we have no locks, mm->owner's may be being moved to other
852 * cgroup. We use css_tryget() here even if this looks
853 * pessimistic (rather than adding locks here).
854 */
855 rcu_read_lock();
856 do {
c0ff4b85
R
857 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
858 if (unlikely(!memcg))
54595fe2 859 break;
c0ff4b85 860 } while (!css_tryget(&memcg->css));
54595fe2 861 rcu_read_unlock();
c0ff4b85 862 return memcg;
54595fe2
KH
863}
864
16248d8f
MH
865/*
866 * Returns a next (in a pre-order walk) alive memcg (with elevated css
867 * ref. count) or NULL if the whole root's subtree has been visited.
868 *
869 * helper function to be used by mem_cgroup_iter
870 */
871static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 872 struct mem_cgroup *last_visited)
16248d8f 873{
492eb21b 874 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 875
bd8815a6 876 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 877skip_node:
492eb21b 878 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
879
880 /*
881 * Even if we found a group we have to make sure it is
882 * alive. css && !memcg means that the groups should be
883 * skipped and we should continue the tree walk.
884 * last_visited css is safe to use because it is
885 * protected by css_get and the tree walk is rcu safe.
886 */
492eb21b
TH
887 if (next_css) {
888 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
889
694fbc0f
AM
890 if (css_tryget(&mem->css))
891 return mem;
892 else {
492eb21b 893 prev_css = next_css;
16248d8f
MH
894 goto skip_node;
895 }
896 }
897
898 return NULL;
899}
900
519ebea3
JW
901static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
902{
903 /*
904 * When a group in the hierarchy below root is destroyed, the
905 * hierarchy iterator can no longer be trusted since it might
906 * have pointed to the destroyed group. Invalidate it.
907 */
908 atomic_inc(&root->dead_count);
909}
910
911static struct mem_cgroup *
912mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
913 struct mem_cgroup *root,
914 int *sequence)
915{
916 struct mem_cgroup *position = NULL;
917 /*
918 * A cgroup destruction happens in two stages: offlining and
919 * release. They are separated by a RCU grace period.
920 *
921 * If the iterator is valid, we may still race with an
922 * offlining. The RCU lock ensures the object won't be
923 * released, tryget will fail if we lost the race.
924 */
925 *sequence = atomic_read(&root->dead_count);
926 if (iter->last_dead_count == *sequence) {
927 smp_rmb();
928 position = iter->last_visited;
929 if (position && !css_tryget(&position->css))
930 position = NULL;
931 }
932 return position;
933}
934
935static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
936 struct mem_cgroup *last_visited,
937 struct mem_cgroup *new_position,
938 int sequence)
939{
940 if (last_visited)
941 css_put(&last_visited->css);
942 /*
943 * We store the sequence count from the time @last_visited was
944 * loaded successfully instead of rereading it here so that we
945 * don't lose destruction events in between. We could have
946 * raced with the destruction of @new_position after all.
947 */
948 iter->last_visited = new_position;
949 smp_wmb();
950 iter->last_dead_count = sequence;
951}
952
5660048c
JW
953/**
954 * mem_cgroup_iter - iterate over memory cgroup hierarchy
955 * @root: hierarchy root
956 * @prev: previously returned memcg, NULL on first invocation
957 * @reclaim: cookie for shared reclaim walks, NULL for full walks
958 *
959 * Returns references to children of the hierarchy below @root, or
960 * @root itself, or %NULL after a full round-trip.
961 *
962 * Caller must pass the return value in @prev on subsequent
963 * invocations for reference counting, or use mem_cgroup_iter_break()
964 * to cancel a hierarchy walk before the round-trip is complete.
965 *
966 * Reclaimers can specify a zone and a priority level in @reclaim to
967 * divide up the memcgs in the hierarchy among all concurrent
968 * reclaimers operating on the same zone and priority.
969 */
694fbc0f 970struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 971 struct mem_cgroup *prev,
694fbc0f 972 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 973{
9f3a0d09 974 struct mem_cgroup *memcg = NULL;
542f85f9 975 struct mem_cgroup *last_visited = NULL;
711d3d2c 976
694fbc0f
AM
977 if (mem_cgroup_disabled())
978 return NULL;
5660048c 979
9f3a0d09
JW
980 if (!root)
981 root = root_mem_cgroup;
7d74b06f 982
9f3a0d09 983 if (prev && !reclaim)
542f85f9 984 last_visited = prev;
14067bb3 985
9f3a0d09
JW
986 if (!root->use_hierarchy && root != root_mem_cgroup) {
987 if (prev)
c40046f3 988 goto out_css_put;
694fbc0f 989 return root;
9f3a0d09 990 }
14067bb3 991
542f85f9 992 rcu_read_lock();
9f3a0d09 993 while (!memcg) {
527a5ec9 994 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 995 int uninitialized_var(seq);
711d3d2c 996
527a5ec9
JW
997 if (reclaim) {
998 int nid = zone_to_nid(reclaim->zone);
999 int zid = zone_idx(reclaim->zone);
1000 struct mem_cgroup_per_zone *mz;
1001
1002 mz = mem_cgroup_zoneinfo(root, nid, zid);
1003 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1004 if (prev && reclaim->generation != iter->generation) {
5f578161 1005 iter->last_visited = NULL;
542f85f9
MH
1006 goto out_unlock;
1007 }
5f578161 1008
519ebea3 1009 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1010 }
7d74b06f 1011
694fbc0f 1012 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1013
527a5ec9 1014 if (reclaim) {
519ebea3 1015 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1016
19f39402 1017 if (!memcg)
527a5ec9
JW
1018 iter->generation++;
1019 else if (!prev && memcg)
1020 reclaim->generation = iter->generation;
1021 }
9f3a0d09 1022
694fbc0f 1023 if (prev && !memcg)
542f85f9 1024 goto out_unlock;
9f3a0d09 1025 }
542f85f9
MH
1026out_unlock:
1027 rcu_read_unlock();
c40046f3
MH
1028out_css_put:
1029 if (prev && prev != root)
1030 css_put(&prev->css);
1031
9f3a0d09 1032 return memcg;
14067bb3 1033}
7d74b06f 1034
5660048c
JW
1035/**
1036 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1037 * @root: hierarchy root
1038 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1039 */
1040void mem_cgroup_iter_break(struct mem_cgroup *root,
1041 struct mem_cgroup *prev)
9f3a0d09
JW
1042{
1043 if (!root)
1044 root = root_mem_cgroup;
1045 if (prev && prev != root)
1046 css_put(&prev->css);
1047}
7d74b06f 1048
9f3a0d09
JW
1049/*
1050 * Iteration constructs for visiting all cgroups (under a tree). If
1051 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1052 * be used for reference counting.
1053 */
1054#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1055 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1056 iter != NULL; \
527a5ec9 1057 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1058
9f3a0d09 1059#define for_each_mem_cgroup(iter) \
527a5ec9 1060 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1061 iter != NULL; \
527a5ec9 1062 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1063
68ae564b 1064void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1065{
c0ff4b85 1066 struct mem_cgroup *memcg;
456f998e 1067
456f998e 1068 rcu_read_lock();
c0ff4b85
R
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
456f998e
YH
1071 goto out;
1072
1073 switch (idx) {
456f998e 1074 case PGFAULT:
0e574a93
JW
1075 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1076 break;
1077 case PGMAJFAULT:
1078 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1079 break;
1080 default:
1081 BUG();
1082 }
1083out:
1084 rcu_read_unlock();
1085}
68ae564b 1086EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1087
925b7673
JW
1088/**
1089 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1090 * @zone: zone of the wanted lruvec
fa9add64 1091 * @memcg: memcg of the wanted lruvec
925b7673
JW
1092 *
1093 * Returns the lru list vector holding pages for the given @zone and
1094 * @mem. This can be the global zone lruvec, if the memory controller
1095 * is disabled.
1096 */
1097struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1098 struct mem_cgroup *memcg)
1099{
1100 struct mem_cgroup_per_zone *mz;
bea8c150 1101 struct lruvec *lruvec;
925b7673 1102
bea8c150
HD
1103 if (mem_cgroup_disabled()) {
1104 lruvec = &zone->lruvec;
1105 goto out;
1106 }
925b7673
JW
1107
1108 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1109 lruvec = &mz->lruvec;
1110out:
1111 /*
1112 * Since a node can be onlined after the mem_cgroup was created,
1113 * we have to be prepared to initialize lruvec->zone here;
1114 * and if offlined then reonlined, we need to reinitialize it.
1115 */
1116 if (unlikely(lruvec->zone != zone))
1117 lruvec->zone = zone;
1118 return lruvec;
925b7673
JW
1119}
1120
08e552c6
KH
1121/*
1122 * Following LRU functions are allowed to be used without PCG_LOCK.
1123 * Operations are called by routine of global LRU independently from memcg.
1124 * What we have to take care of here is validness of pc->mem_cgroup.
1125 *
1126 * Changes to pc->mem_cgroup happens when
1127 * 1. charge
1128 * 2. moving account
1129 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1130 * It is added to LRU before charge.
1131 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1132 * When moving account, the page is not on LRU. It's isolated.
1133 */
4f98a2fe 1134
925b7673 1135/**
fa9add64 1136 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1137 * @page: the page
fa9add64 1138 * @zone: zone of the page
925b7673 1139 */
fa9add64 1140struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1141{
08e552c6 1142 struct mem_cgroup_per_zone *mz;
925b7673
JW
1143 struct mem_cgroup *memcg;
1144 struct page_cgroup *pc;
bea8c150 1145 struct lruvec *lruvec;
6d12e2d8 1146
bea8c150
HD
1147 if (mem_cgroup_disabled()) {
1148 lruvec = &zone->lruvec;
1149 goto out;
1150 }
925b7673 1151
08e552c6 1152 pc = lookup_page_cgroup(page);
38c5d72f 1153 memcg = pc->mem_cgroup;
7512102c
HD
1154
1155 /*
fa9add64 1156 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1157 * an uncharged page off lru does nothing to secure
1158 * its former mem_cgroup from sudden removal.
1159 *
1160 * Our caller holds lru_lock, and PageCgroupUsed is updated
1161 * under page_cgroup lock: between them, they make all uses
1162 * of pc->mem_cgroup safe.
1163 */
fa9add64 1164 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1165 pc->mem_cgroup = memcg = root_mem_cgroup;
1166
925b7673 1167 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1168 lruvec = &mz->lruvec;
1169out:
1170 /*
1171 * Since a node can be onlined after the mem_cgroup was created,
1172 * we have to be prepared to initialize lruvec->zone here;
1173 * and if offlined then reonlined, we need to reinitialize it.
1174 */
1175 if (unlikely(lruvec->zone != zone))
1176 lruvec->zone = zone;
1177 return lruvec;
08e552c6 1178}
b69408e8 1179
925b7673 1180/**
fa9add64
HD
1181 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1182 * @lruvec: mem_cgroup per zone lru vector
1183 * @lru: index of lru list the page is sitting on
1184 * @nr_pages: positive when adding or negative when removing
925b7673 1185 *
fa9add64
HD
1186 * This function must be called when a page is added to or removed from an
1187 * lru list.
3f58a829 1188 */
fa9add64
HD
1189void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1190 int nr_pages)
3f58a829
MK
1191{
1192 struct mem_cgroup_per_zone *mz;
fa9add64 1193 unsigned long *lru_size;
3f58a829
MK
1194
1195 if (mem_cgroup_disabled())
1196 return;
1197
fa9add64
HD
1198 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1199 lru_size = mz->lru_size + lru;
1200 *lru_size += nr_pages;
1201 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1202}
544122e5 1203
3e92041d 1204/*
c0ff4b85 1205 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1206 * hierarchy subtree
1207 */
c3ac9a8a
JW
1208bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1209 struct mem_cgroup *memcg)
3e92041d 1210{
91c63734
JW
1211 if (root_memcg == memcg)
1212 return true;
3a981f48 1213 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1214 return false;
c3ac9a8a
JW
1215 return css_is_ancestor(&memcg->css, &root_memcg->css);
1216}
1217
1218static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1219 struct mem_cgroup *memcg)
1220{
1221 bool ret;
1222
91c63734 1223 rcu_read_lock();
c3ac9a8a 1224 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1225 rcu_read_unlock();
1226 return ret;
3e92041d
MH
1227}
1228
ffbdccf5
DR
1229bool task_in_mem_cgroup(struct task_struct *task,
1230 const struct mem_cgroup *memcg)
4c4a2214 1231{
0b7f569e 1232 struct mem_cgroup *curr = NULL;
158e0a2d 1233 struct task_struct *p;
ffbdccf5 1234 bool ret;
4c4a2214 1235
158e0a2d 1236 p = find_lock_task_mm(task);
de077d22
DR
1237 if (p) {
1238 curr = try_get_mem_cgroup_from_mm(p->mm);
1239 task_unlock(p);
1240 } else {
1241 /*
1242 * All threads may have already detached their mm's, but the oom
1243 * killer still needs to detect if they have already been oom
1244 * killed to prevent needlessly killing additional tasks.
1245 */
ffbdccf5 1246 rcu_read_lock();
de077d22
DR
1247 curr = mem_cgroup_from_task(task);
1248 if (curr)
1249 css_get(&curr->css);
ffbdccf5 1250 rcu_read_unlock();
de077d22 1251 }
0b7f569e 1252 if (!curr)
ffbdccf5 1253 return false;
d31f56db 1254 /*
c0ff4b85 1255 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1256 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1257 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1258 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1259 */
c0ff4b85 1260 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1261 css_put(&curr->css);
4c4a2214
DR
1262 return ret;
1263}
1264
c56d5c7d 1265int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1266{
9b272977 1267 unsigned long inactive_ratio;
14797e23 1268 unsigned long inactive;
9b272977 1269 unsigned long active;
c772be93 1270 unsigned long gb;
14797e23 1271
4d7dcca2
HD
1272 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1273 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1274
c772be93
KM
1275 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1276 if (gb)
1277 inactive_ratio = int_sqrt(10 * gb);
1278 else
1279 inactive_ratio = 1;
1280
9b272977 1281 return inactive * inactive_ratio < active;
14797e23
KM
1282}
1283
6d61ef40
BS
1284#define mem_cgroup_from_res_counter(counter, member) \
1285 container_of(counter, struct mem_cgroup, member)
1286
19942822 1287/**
9d11ea9f 1288 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1289 * @memcg: the memory cgroup
19942822 1290 *
9d11ea9f 1291 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1292 * pages.
19942822 1293 */
c0ff4b85 1294static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1295{
9d11ea9f
JW
1296 unsigned long long margin;
1297
c0ff4b85 1298 margin = res_counter_margin(&memcg->res);
9d11ea9f 1299 if (do_swap_account)
c0ff4b85 1300 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1301 return margin >> PAGE_SHIFT;
19942822
JW
1302}
1303
1f4c025b 1304int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1305{
a7885eb8 1306 /* root ? */
63876986 1307 if (!css_parent(&memcg->css))
a7885eb8
KM
1308 return vm_swappiness;
1309
bf1ff263 1310 return memcg->swappiness;
a7885eb8
KM
1311}
1312
619d094b
KH
1313/*
1314 * memcg->moving_account is used for checking possibility that some thread is
1315 * calling move_account(). When a thread on CPU-A starts moving pages under
1316 * a memcg, other threads should check memcg->moving_account under
1317 * rcu_read_lock(), like this:
1318 *
1319 * CPU-A CPU-B
1320 * rcu_read_lock()
1321 * memcg->moving_account+1 if (memcg->mocing_account)
1322 * take heavy locks.
1323 * synchronize_rcu() update something.
1324 * rcu_read_unlock()
1325 * start move here.
1326 */
4331f7d3
KH
1327
1328/* for quick checking without looking up memcg */
1329atomic_t memcg_moving __read_mostly;
1330
c0ff4b85 1331static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1332{
4331f7d3 1333 atomic_inc(&memcg_moving);
619d094b 1334 atomic_inc(&memcg->moving_account);
32047e2a
KH
1335 synchronize_rcu();
1336}
1337
c0ff4b85 1338static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1339{
619d094b
KH
1340 /*
1341 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1342 * We check NULL in callee rather than caller.
1343 */
4331f7d3
KH
1344 if (memcg) {
1345 atomic_dec(&memcg_moving);
619d094b 1346 atomic_dec(&memcg->moving_account);
4331f7d3 1347 }
32047e2a 1348}
619d094b 1349
32047e2a
KH
1350/*
1351 * 2 routines for checking "mem" is under move_account() or not.
1352 *
13fd1dd9
AM
1353 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1354 * is used for avoiding races in accounting. If true,
32047e2a
KH
1355 * pc->mem_cgroup may be overwritten.
1356 *
1357 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1358 * under hierarchy of moving cgroups. This is for
1359 * waiting at hith-memory prressure caused by "move".
1360 */
1361
13fd1dd9 1362static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1363{
1364 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1365 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1366}
4b534334 1367
c0ff4b85 1368static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1369{
2bd9bb20
KH
1370 struct mem_cgroup *from;
1371 struct mem_cgroup *to;
4b534334 1372 bool ret = false;
2bd9bb20
KH
1373 /*
1374 * Unlike task_move routines, we access mc.to, mc.from not under
1375 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1376 */
1377 spin_lock(&mc.lock);
1378 from = mc.from;
1379 to = mc.to;
1380 if (!from)
1381 goto unlock;
3e92041d 1382
c0ff4b85
R
1383 ret = mem_cgroup_same_or_subtree(memcg, from)
1384 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1385unlock:
1386 spin_unlock(&mc.lock);
4b534334
KH
1387 return ret;
1388}
1389
c0ff4b85 1390static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1391{
1392 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1393 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1394 DEFINE_WAIT(wait);
1395 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1396 /* moving charge context might have finished. */
1397 if (mc.moving_task)
1398 schedule();
1399 finish_wait(&mc.waitq, &wait);
1400 return true;
1401 }
1402 }
1403 return false;
1404}
1405
312734c0
KH
1406/*
1407 * Take this lock when
1408 * - a code tries to modify page's memcg while it's USED.
1409 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1410 * see mem_cgroup_stolen(), too.
312734c0
KH
1411 */
1412static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1413 unsigned long *flags)
1414{
1415 spin_lock_irqsave(&memcg->move_lock, *flags);
1416}
1417
1418static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1419 unsigned long *flags)
1420{
1421 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1422}
1423
58cf188e 1424#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1425/**
58cf188e 1426 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1427 * @memcg: The memory cgroup that went over limit
1428 * @p: Task that is going to be killed
1429 *
1430 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1431 * enabled
1432 */
1433void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1434{
1435 struct cgroup *task_cgrp;
1436 struct cgroup *mem_cgrp;
1437 /*
1438 * Need a buffer in BSS, can't rely on allocations. The code relies
1439 * on the assumption that OOM is serialized for memory controller.
1440 * If this assumption is broken, revisit this code.
1441 */
1442 static char memcg_name[PATH_MAX];
1443 int ret;
58cf188e
SZ
1444 struct mem_cgroup *iter;
1445 unsigned int i;
e222432b 1446
58cf188e 1447 if (!p)
e222432b
BS
1448 return;
1449
e222432b
BS
1450 rcu_read_lock();
1451
1452 mem_cgrp = memcg->css.cgroup;
1453 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1454
1455 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1456 if (ret < 0) {
1457 /*
1458 * Unfortunately, we are unable to convert to a useful name
1459 * But we'll still print out the usage information
1460 */
1461 rcu_read_unlock();
1462 goto done;
1463 }
1464 rcu_read_unlock();
1465
d045197f 1466 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1467
1468 rcu_read_lock();
1469 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1470 if (ret < 0) {
1471 rcu_read_unlock();
1472 goto done;
1473 }
1474 rcu_read_unlock();
1475
1476 /*
1477 * Continues from above, so we don't need an KERN_ level
1478 */
d045197f 1479 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1480done:
1481
d045197f 1482 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1483 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1484 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1485 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1487 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1488 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1489 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1490 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1491 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1492 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1493 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1494
1495 for_each_mem_cgroup_tree(iter, memcg) {
1496 pr_info("Memory cgroup stats");
1497
1498 rcu_read_lock();
1499 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1500 if (!ret)
1501 pr_cont(" for %s", memcg_name);
1502 rcu_read_unlock();
1503 pr_cont(":");
1504
1505 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1506 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1507 continue;
1508 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1509 K(mem_cgroup_read_stat(iter, i)));
1510 }
1511
1512 for (i = 0; i < NR_LRU_LISTS; i++)
1513 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1514 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1515
1516 pr_cont("\n");
1517 }
e222432b
BS
1518}
1519
81d39c20
KH
1520/*
1521 * This function returns the number of memcg under hierarchy tree. Returns
1522 * 1(self count) if no children.
1523 */
c0ff4b85 1524static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1525{
1526 int num = 0;
7d74b06f
KH
1527 struct mem_cgroup *iter;
1528
c0ff4b85 1529 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1530 num++;
81d39c20
KH
1531 return num;
1532}
1533
a63d83f4
DR
1534/*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
9cbb78bb 1537static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1538{
1539 u64 limit;
a63d83f4 1540
f3e8eb70 1541 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1542
a63d83f4 1543 /*
9a5a8f19 1544 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1545 */
9a5a8f19
MH
1546 if (mem_cgroup_swappiness(memcg)) {
1547 u64 memsw;
1548
1549 limit += total_swap_pages << PAGE_SHIFT;
1550 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1551
1552 /*
1553 * If memsw is finite and limits the amount of swap space
1554 * available to this memcg, return that limit.
1555 */
1556 limit = min(limit, memsw);
1557 }
1558
1559 return limit;
a63d83f4
DR
1560}
1561
19965460
DR
1562static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1563 int order)
9cbb78bb
DR
1564{
1565 struct mem_cgroup *iter;
1566 unsigned long chosen_points = 0;
1567 unsigned long totalpages;
1568 unsigned int points = 0;
1569 struct task_struct *chosen = NULL;
1570
876aafbf 1571 /*
465adcf1
DR
1572 * If current has a pending SIGKILL or is exiting, then automatically
1573 * select it. The goal is to allow it to allocate so that it may
1574 * quickly exit and free its memory.
876aafbf 1575 */
465adcf1 1576 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1577 set_thread_flag(TIF_MEMDIE);
1578 return;
1579 }
1580
1581 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1582 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1583 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1584 struct css_task_iter it;
9cbb78bb
DR
1585 struct task_struct *task;
1586
72ec7029
TH
1587 css_task_iter_start(&iter->css, &it);
1588 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1589 switch (oom_scan_process_thread(task, totalpages, NULL,
1590 false)) {
1591 case OOM_SCAN_SELECT:
1592 if (chosen)
1593 put_task_struct(chosen);
1594 chosen = task;
1595 chosen_points = ULONG_MAX;
1596 get_task_struct(chosen);
1597 /* fall through */
1598 case OOM_SCAN_CONTINUE:
1599 continue;
1600 case OOM_SCAN_ABORT:
72ec7029 1601 css_task_iter_end(&it);
9cbb78bb
DR
1602 mem_cgroup_iter_break(memcg, iter);
1603 if (chosen)
1604 put_task_struct(chosen);
1605 return;
1606 case OOM_SCAN_OK:
1607 break;
1608 };
1609 points = oom_badness(task, memcg, NULL, totalpages);
1610 if (points > chosen_points) {
1611 if (chosen)
1612 put_task_struct(chosen);
1613 chosen = task;
1614 chosen_points = points;
1615 get_task_struct(chosen);
1616 }
1617 }
72ec7029 1618 css_task_iter_end(&it);
9cbb78bb
DR
1619 }
1620
1621 if (!chosen)
1622 return;
1623 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1624 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1625 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1626}
1627
5660048c
JW
1628static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1629 gfp_t gfp_mask,
1630 unsigned long flags)
1631{
1632 unsigned long total = 0;
1633 bool noswap = false;
1634 int loop;
1635
1636 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1637 noswap = true;
1638 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1639 noswap = true;
1640
1641 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1642 if (loop)
1643 drain_all_stock_async(memcg);
1644 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1645 /*
1646 * Allow limit shrinkers, which are triggered directly
1647 * by userspace, to catch signals and stop reclaim
1648 * after minimal progress, regardless of the margin.
1649 */
1650 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1651 break;
1652 if (mem_cgroup_margin(memcg))
1653 break;
1654 /*
1655 * If nothing was reclaimed after two attempts, there
1656 * may be no reclaimable pages in this hierarchy.
1657 */
1658 if (loop && !total)
1659 break;
1660 }
1661 return total;
1662}
1663
e883110a 1664#if MAX_NUMNODES > 1
4d0c066d
KH
1665/**
1666 * test_mem_cgroup_node_reclaimable
dad7557e 1667 * @memcg: the target memcg
4d0c066d
KH
1668 * @nid: the node ID to be checked.
1669 * @noswap : specify true here if the user wants flle only information.
1670 *
1671 * This function returns whether the specified memcg contains any
1672 * reclaimable pages on a node. Returns true if there are any reclaimable
1673 * pages in the node.
1674 */
c0ff4b85 1675static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1676 int nid, bool noswap)
1677{
c0ff4b85 1678 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1679 return true;
1680 if (noswap || !total_swap_pages)
1681 return false;
c0ff4b85 1682 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1683 return true;
1684 return false;
1685
1686}
889976db
YH
1687
1688/*
1689 * Always updating the nodemask is not very good - even if we have an empty
1690 * list or the wrong list here, we can start from some node and traverse all
1691 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1692 *
1693 */
c0ff4b85 1694static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1695{
1696 int nid;
453a9bf3
KH
1697 /*
1698 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1699 * pagein/pageout changes since the last update.
1700 */
c0ff4b85 1701 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1702 return;
c0ff4b85 1703 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1704 return;
1705
889976db 1706 /* make a nodemask where this memcg uses memory from */
31aaea4a 1707 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1708
31aaea4a 1709 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1710
c0ff4b85
R
1711 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1712 node_clear(nid, memcg->scan_nodes);
889976db 1713 }
453a9bf3 1714
c0ff4b85
R
1715 atomic_set(&memcg->numainfo_events, 0);
1716 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1717}
1718
1719/*
1720 * Selecting a node where we start reclaim from. Because what we need is just
1721 * reducing usage counter, start from anywhere is O,K. Considering
1722 * memory reclaim from current node, there are pros. and cons.
1723 *
1724 * Freeing memory from current node means freeing memory from a node which
1725 * we'll use or we've used. So, it may make LRU bad. And if several threads
1726 * hit limits, it will see a contention on a node. But freeing from remote
1727 * node means more costs for memory reclaim because of memory latency.
1728 *
1729 * Now, we use round-robin. Better algorithm is welcomed.
1730 */
c0ff4b85 1731int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1732{
1733 int node;
1734
c0ff4b85
R
1735 mem_cgroup_may_update_nodemask(memcg);
1736 node = memcg->last_scanned_node;
889976db 1737
c0ff4b85 1738 node = next_node(node, memcg->scan_nodes);
889976db 1739 if (node == MAX_NUMNODES)
c0ff4b85 1740 node = first_node(memcg->scan_nodes);
889976db
YH
1741 /*
1742 * We call this when we hit limit, not when pages are added to LRU.
1743 * No LRU may hold pages because all pages are UNEVICTABLE or
1744 * memcg is too small and all pages are not on LRU. In that case,
1745 * we use curret node.
1746 */
1747 if (unlikely(node == MAX_NUMNODES))
1748 node = numa_node_id();
1749
c0ff4b85 1750 memcg->last_scanned_node = node;
889976db
YH
1751 return node;
1752}
1753
1754#else
c0ff4b85 1755int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1756{
1757 return 0;
1758}
4d0c066d 1759
889976db
YH
1760#endif
1761
3b38722e 1762/*
b1aff7fc
AM
1763 * A group is eligible for the soft limit reclaim if
1764 * a) it is over its soft limit
f894ffa8 1765 * b) any parent up the hierarchy is over its soft limit
3b38722e 1766 */
b1aff7fc 1767bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg)
3b38722e 1768{
3120055e 1769 struct mem_cgroup *parent = memcg;
3b38722e
MH
1770
1771 if (res_counter_soft_limit_excess(&memcg->res))
694fbc0f 1772 return true;
3b38722e
MH
1773
1774 /*
b1aff7fc
AM
1775 * If any parent up the hierarchy is over its soft limit then we
1776 * have to obey and reclaim from this group as well.
3b38722e 1777 */
f894ffa8 1778 while ((parent = parent_mem_cgroup(parent))) {
3b38722e 1779 if (res_counter_soft_limit_excess(&parent->res))
694fbc0f 1780 return true;
6d61ef40 1781 }
3b38722e 1782
694fbc0f 1783 return false;
6d61ef40
BS
1784}
1785
fb2a6fc5
JW
1786static DEFINE_SPINLOCK(memcg_oom_lock);
1787
867578cb
KH
1788/*
1789 * Check OOM-Killer is already running under our hierarchy.
1790 * If someone is running, return false.
1791 */
fb2a6fc5 1792static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1793{
79dfdacc 1794 struct mem_cgroup *iter, *failed = NULL;
a636b327 1795
fb2a6fc5
JW
1796 spin_lock(&memcg_oom_lock);
1797
9f3a0d09 1798 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1799 if (iter->oom_lock) {
79dfdacc
MH
1800 /*
1801 * this subtree of our hierarchy is already locked
1802 * so we cannot give a lock.
1803 */
79dfdacc 1804 failed = iter;
9f3a0d09
JW
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
23751be0
JW
1807 } else
1808 iter->oom_lock = true;
7d74b06f 1809 }
867578cb 1810
fb2a6fc5
JW
1811 if (failed) {
1812 /*
1813 * OK, we failed to lock the whole subtree so we have
1814 * to clean up what we set up to the failing subtree
1815 */
1816 for_each_mem_cgroup_tree(iter, memcg) {
1817 if (iter == failed) {
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
1820 }
1821 iter->oom_lock = false;
79dfdacc 1822 }
79dfdacc 1823 }
fb2a6fc5
JW
1824
1825 spin_unlock(&memcg_oom_lock);
1826
1827 return !failed;
a636b327 1828}
0b7f569e 1829
fb2a6fc5 1830static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1831{
7d74b06f
KH
1832 struct mem_cgroup *iter;
1833
fb2a6fc5 1834 spin_lock(&memcg_oom_lock);
c0ff4b85 1835 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1836 iter->oom_lock = false;
fb2a6fc5 1837 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1838}
1839
c0ff4b85 1840static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1841{
1842 struct mem_cgroup *iter;
1843
c0ff4b85 1844 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1845 atomic_inc(&iter->under_oom);
1846}
1847
c0ff4b85 1848static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1849{
1850 struct mem_cgroup *iter;
1851
867578cb
KH
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
c0ff4b85 1857 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1858 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
dc98df5a
KH
1865 wait_queue_t wait;
1866};
1867
1868static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
dc98df5a 1878 /*
d79154bb 1879 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1880 * Then we can use css_is_ancestor without taking care of RCU.
1881 */
c0ff4b85
R
1882 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1883 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1884 return 0;
dc98df5a
KH
1885 return autoremove_wake_function(wait, mode, sync, arg);
1886}
1887
c0ff4b85 1888static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1889{
3812c8c8 1890 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1891 /* for filtering, pass "memcg" as argument. */
1892 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1893}
1894
c0ff4b85 1895static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1896{
c0ff4b85
R
1897 if (memcg && atomic_read(&memcg->under_oom))
1898 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1899}
1900
867578cb 1901/*
3812c8c8 1902 * try to call OOM killer
867578cb 1903 */
3812c8c8 1904static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1905{
fb2a6fc5 1906 bool locked;
3812c8c8 1907 int wakeups;
867578cb 1908
3812c8c8
JW
1909 if (!current->memcg_oom.may_oom)
1910 return;
1911
1912 current->memcg_oom.in_memcg_oom = 1;
79dfdacc 1913
867578cb 1914 /*
fb2a6fc5
JW
1915 * As with any blocking lock, a contender needs to start
1916 * listening for wakeups before attempting the trylock,
1917 * otherwise it can miss the wakeup from the unlock and sleep
1918 * indefinitely. This is just open-coded because our locking
1919 * is so particular to memcg hierarchies.
867578cb 1920 */
3812c8c8 1921 wakeups = atomic_read(&memcg->oom_wakeups);
fb2a6fc5
JW
1922 mem_cgroup_mark_under_oom(memcg);
1923
1924 locked = mem_cgroup_oom_trylock(memcg);
1925
3c11ecf4 1926 if (locked)
c0ff4b85 1927 mem_cgroup_oom_notify(memcg);
867578cb 1928
fb2a6fc5
JW
1929 if (locked && !memcg->oom_kill_disable) {
1930 mem_cgroup_unmark_under_oom(memcg);
e845e199 1931 mem_cgroup_out_of_memory(memcg, mask, order);
3812c8c8
JW
1932 mem_cgroup_oom_unlock(memcg);
1933 /*
1934 * There is no guarantee that an OOM-lock contender
1935 * sees the wakeups triggered by the OOM kill
1936 * uncharges. Wake any sleepers explicitely.
1937 */
1938 memcg_oom_recover(memcg);
3c11ecf4 1939 } else {
3812c8c8
JW
1940 /*
1941 * A system call can just return -ENOMEM, but if this
1942 * is a page fault and somebody else is handling the
1943 * OOM already, we need to sleep on the OOM waitqueue
1944 * for this memcg until the situation is resolved.
1945 * Which can take some time because it might be
1946 * handled by a userspace task.
1947 *
1948 * However, this is the charge context, which means
1949 * that we may sit on a large call stack and hold
1950 * various filesystem locks, the mmap_sem etc. and we
1951 * don't want the OOM handler to deadlock on them
1952 * while we sit here and wait. Store the current OOM
1953 * context in the task_struct, then return -ENOMEM.
1954 * At the end of the page fault handler, with the
1955 * stack unwound, pagefault_out_of_memory() will check
1956 * back with us by calling
1957 * mem_cgroup_oom_synchronize(), possibly putting the
1958 * task to sleep.
1959 */
1960 current->memcg_oom.oom_locked = locked;
1961 current->memcg_oom.wakeups = wakeups;
1962 css_get(&memcg->css);
1963 current->memcg_oom.wait_on_memcg = memcg;
867578cb 1964 }
3812c8c8
JW
1965}
1966
1967/**
1968 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1969 *
1970 * This has to be called at the end of a page fault if the the memcg
1971 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
1972 *
1973 * Memcg supports userspace OOM handling, so failed allocations must
1974 * sleep on a waitqueue until the userspace task resolves the
1975 * situation. Sleeping directly in the charge context with all kinds
1976 * of locks held is not a good idea, instead we remember an OOM state
1977 * in the task and mem_cgroup_oom_synchronize() has to be called at
1978 * the end of the page fault to put the task to sleep and clean up the
1979 * OOM state.
1980 *
1981 * Returns %true if an ongoing memcg OOM situation was detected and
1982 * finalized, %false otherwise.
1983 */
1984bool mem_cgroup_oom_synchronize(void)
1985{
1986 struct oom_wait_info owait;
1987 struct mem_cgroup *memcg;
1988
1989 /* OOM is global, do not handle */
1990 if (!current->memcg_oom.in_memcg_oom)
1991 return false;
1992
1993 /*
1994 * We invoked the OOM killer but there is a chance that a kill
1995 * did not free up any charges. Everybody else might already
1996 * be sleeping, so restart the fault and keep the rampage
1997 * going until some charges are released.
1998 */
1999 memcg = current->memcg_oom.wait_on_memcg;
2000 if (!memcg)
2001 goto out;
2002
2003 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2004 goto out_memcg;
2005
2006 owait.memcg = memcg;
2007 owait.wait.flags = 0;
2008 owait.wait.func = memcg_oom_wake_function;
2009 owait.wait.private = current;
2010 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2011
3812c8c8
JW
2012 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2013 /* Only sleep if we didn't miss any wakeups since OOM */
2014 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2015 schedule();
2016 finish_wait(&memcg_oom_waitq, &owait.wait);
2017out_memcg:
2018 mem_cgroup_unmark_under_oom(memcg);
2019 if (current->memcg_oom.oom_locked) {
fb2a6fc5
JW
2020 mem_cgroup_oom_unlock(memcg);
2021 /*
2022 * There is no guarantee that an OOM-lock contender
2023 * sees the wakeups triggered by the OOM kill
2024 * uncharges. Wake any sleepers explicitely.
2025 */
2026 memcg_oom_recover(memcg);
2027 }
3812c8c8
JW
2028 css_put(&memcg->css);
2029 current->memcg_oom.wait_on_memcg = NULL;
2030out:
2031 current->memcg_oom.in_memcg_oom = 0;
867578cb 2032 return true;
0b7f569e
KH
2033}
2034
d69b042f
BS
2035/*
2036 * Currently used to update mapped file statistics, but the routine can be
2037 * generalized to update other statistics as well.
32047e2a
KH
2038 *
2039 * Notes: Race condition
2040 *
2041 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2042 * it tends to be costly. But considering some conditions, we doesn't need
2043 * to do so _always_.
2044 *
2045 * Considering "charge", lock_page_cgroup() is not required because all
2046 * file-stat operations happen after a page is attached to radix-tree. There
2047 * are no race with "charge".
2048 *
2049 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2050 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2051 * if there are race with "uncharge". Statistics itself is properly handled
2052 * by flags.
2053 *
2054 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2055 * small, we check mm->moving_account and detect there are possibility of race
2056 * If there is, we take a lock.
d69b042f 2057 */
26174efd 2058
89c06bd5
KH
2059void __mem_cgroup_begin_update_page_stat(struct page *page,
2060 bool *locked, unsigned long *flags)
2061{
2062 struct mem_cgroup *memcg;
2063 struct page_cgroup *pc;
2064
2065 pc = lookup_page_cgroup(page);
2066again:
2067 memcg = pc->mem_cgroup;
2068 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2069 return;
2070 /*
2071 * If this memory cgroup is not under account moving, we don't
da92c47d 2072 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2073 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2074 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2075 */
13fd1dd9 2076 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2077 return;
2078
2079 move_lock_mem_cgroup(memcg, flags);
2080 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2081 move_unlock_mem_cgroup(memcg, flags);
2082 goto again;
2083 }
2084 *locked = true;
2085}
2086
2087void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2088{
2089 struct page_cgroup *pc = lookup_page_cgroup(page);
2090
2091 /*
2092 * It's guaranteed that pc->mem_cgroup never changes while
2093 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2094 * should take move_lock_mem_cgroup().
89c06bd5
KH
2095 */
2096 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2097}
2098
2a7106f2 2099void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2100 enum mem_cgroup_stat_index idx, int val)
d69b042f 2101{
c0ff4b85 2102 struct mem_cgroup *memcg;
32047e2a 2103 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2104 unsigned long uninitialized_var(flags);
d69b042f 2105
cfa44946 2106 if (mem_cgroup_disabled())
d69b042f 2107 return;
89c06bd5 2108
658b72c5 2109 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2110 memcg = pc->mem_cgroup;
2111 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2112 return;
26174efd 2113
c0ff4b85 2114 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2115}
26174efd 2116
cdec2e42
KH
2117/*
2118 * size of first charge trial. "32" comes from vmscan.c's magic value.
2119 * TODO: maybe necessary to use big numbers in big irons.
2120 */
7ec99d62 2121#define CHARGE_BATCH 32U
cdec2e42
KH
2122struct memcg_stock_pcp {
2123 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2124 unsigned int nr_pages;
cdec2e42 2125 struct work_struct work;
26fe6168 2126 unsigned long flags;
a0db00fc 2127#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2128};
2129static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2130static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2131
a0956d54
SS
2132/**
2133 * consume_stock: Try to consume stocked charge on this cpu.
2134 * @memcg: memcg to consume from.
2135 * @nr_pages: how many pages to charge.
2136 *
2137 * The charges will only happen if @memcg matches the current cpu's memcg
2138 * stock, and at least @nr_pages are available in that stock. Failure to
2139 * service an allocation will refill the stock.
2140 *
2141 * returns true if successful, false otherwise.
cdec2e42 2142 */
a0956d54 2143static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2144{
2145 struct memcg_stock_pcp *stock;
2146 bool ret = true;
2147
a0956d54
SS
2148 if (nr_pages > CHARGE_BATCH)
2149 return false;
2150
cdec2e42 2151 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2152 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2153 stock->nr_pages -= nr_pages;
cdec2e42
KH
2154 else /* need to call res_counter_charge */
2155 ret = false;
2156 put_cpu_var(memcg_stock);
2157 return ret;
2158}
2159
2160/*
2161 * Returns stocks cached in percpu to res_counter and reset cached information.
2162 */
2163static void drain_stock(struct memcg_stock_pcp *stock)
2164{
2165 struct mem_cgroup *old = stock->cached;
2166
11c9ea4e
JW
2167 if (stock->nr_pages) {
2168 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2169
2170 res_counter_uncharge(&old->res, bytes);
cdec2e42 2171 if (do_swap_account)
11c9ea4e
JW
2172 res_counter_uncharge(&old->memsw, bytes);
2173 stock->nr_pages = 0;
cdec2e42
KH
2174 }
2175 stock->cached = NULL;
cdec2e42
KH
2176}
2177
2178/*
2179 * This must be called under preempt disabled or must be called by
2180 * a thread which is pinned to local cpu.
2181 */
2182static void drain_local_stock(struct work_struct *dummy)
2183{
2184 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2185 drain_stock(stock);
26fe6168 2186 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2187}
2188
e4777496
MH
2189static void __init memcg_stock_init(void)
2190{
2191 int cpu;
2192
2193 for_each_possible_cpu(cpu) {
2194 struct memcg_stock_pcp *stock =
2195 &per_cpu(memcg_stock, cpu);
2196 INIT_WORK(&stock->work, drain_local_stock);
2197 }
2198}
2199
cdec2e42
KH
2200/*
2201 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2202 * This will be consumed by consume_stock() function, later.
cdec2e42 2203 */
c0ff4b85 2204static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2205{
2206 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2207
c0ff4b85 2208 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2209 drain_stock(stock);
c0ff4b85 2210 stock->cached = memcg;
cdec2e42 2211 }
11c9ea4e 2212 stock->nr_pages += nr_pages;
cdec2e42
KH
2213 put_cpu_var(memcg_stock);
2214}
2215
2216/*
c0ff4b85 2217 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2218 * of the hierarchy under it. sync flag says whether we should block
2219 * until the work is done.
cdec2e42 2220 */
c0ff4b85 2221static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2222{
26fe6168 2223 int cpu, curcpu;
d38144b7 2224
cdec2e42 2225 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2226 get_online_cpus();
5af12d0e 2227 curcpu = get_cpu();
cdec2e42
KH
2228 for_each_online_cpu(cpu) {
2229 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2230 struct mem_cgroup *memcg;
26fe6168 2231
c0ff4b85
R
2232 memcg = stock->cached;
2233 if (!memcg || !stock->nr_pages)
26fe6168 2234 continue;
c0ff4b85 2235 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2236 continue;
d1a05b69
MH
2237 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2238 if (cpu == curcpu)
2239 drain_local_stock(&stock->work);
2240 else
2241 schedule_work_on(cpu, &stock->work);
2242 }
cdec2e42 2243 }
5af12d0e 2244 put_cpu();
d38144b7
MH
2245
2246 if (!sync)
2247 goto out;
2248
2249 for_each_online_cpu(cpu) {
2250 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2251 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2252 flush_work(&stock->work);
2253 }
2254out:
f894ffa8 2255 put_online_cpus();
d38144b7
MH
2256}
2257
2258/*
2259 * Tries to drain stocked charges in other cpus. This function is asynchronous
2260 * and just put a work per cpu for draining localy on each cpu. Caller can
2261 * expects some charges will be back to res_counter later but cannot wait for
2262 * it.
2263 */
c0ff4b85 2264static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2265{
9f50fad6
MH
2266 /*
2267 * If someone calls draining, avoid adding more kworker runs.
2268 */
2269 if (!mutex_trylock(&percpu_charge_mutex))
2270 return;
c0ff4b85 2271 drain_all_stock(root_memcg, false);
9f50fad6 2272 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2273}
2274
2275/* This is a synchronous drain interface. */
c0ff4b85 2276static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2277{
2278 /* called when force_empty is called */
9f50fad6 2279 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2280 drain_all_stock(root_memcg, true);
9f50fad6 2281 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2282}
2283
711d3d2c
KH
2284/*
2285 * This function drains percpu counter value from DEAD cpu and
2286 * move it to local cpu. Note that this function can be preempted.
2287 */
c0ff4b85 2288static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2289{
2290 int i;
2291
c0ff4b85 2292 spin_lock(&memcg->pcp_counter_lock);
6104621d 2293 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2294 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2295
c0ff4b85
R
2296 per_cpu(memcg->stat->count[i], cpu) = 0;
2297 memcg->nocpu_base.count[i] += x;
711d3d2c 2298 }
e9f8974f 2299 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2300 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2301
c0ff4b85
R
2302 per_cpu(memcg->stat->events[i], cpu) = 0;
2303 memcg->nocpu_base.events[i] += x;
e9f8974f 2304 }
c0ff4b85 2305 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2306}
2307
0db0628d 2308static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2309 unsigned long action,
2310 void *hcpu)
2311{
2312 int cpu = (unsigned long)hcpu;
2313 struct memcg_stock_pcp *stock;
711d3d2c 2314 struct mem_cgroup *iter;
cdec2e42 2315
619d094b 2316 if (action == CPU_ONLINE)
1489ebad 2317 return NOTIFY_OK;
1489ebad 2318
d833049b 2319 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2320 return NOTIFY_OK;
711d3d2c 2321
9f3a0d09 2322 for_each_mem_cgroup(iter)
711d3d2c
KH
2323 mem_cgroup_drain_pcp_counter(iter, cpu);
2324
cdec2e42
KH
2325 stock = &per_cpu(memcg_stock, cpu);
2326 drain_stock(stock);
2327 return NOTIFY_OK;
2328}
2329
4b534334
KH
2330
2331/* See __mem_cgroup_try_charge() for details */
2332enum {
2333 CHARGE_OK, /* success */
2334 CHARGE_RETRY, /* need to retry but retry is not bad */
2335 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2336 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2337};
2338
c0ff4b85 2339static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2340 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2341 bool invoke_oom)
4b534334 2342{
7ec99d62 2343 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2344 struct mem_cgroup *mem_over_limit;
2345 struct res_counter *fail_res;
2346 unsigned long flags = 0;
2347 int ret;
2348
c0ff4b85 2349 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2350
2351 if (likely(!ret)) {
2352 if (!do_swap_account)
2353 return CHARGE_OK;
c0ff4b85 2354 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2355 if (likely(!ret))
2356 return CHARGE_OK;
2357
c0ff4b85 2358 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2359 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2360 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2361 } else
2362 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2363 /*
9221edb7
JW
2364 * Never reclaim on behalf of optional batching, retry with a
2365 * single page instead.
2366 */
4c9c5359 2367 if (nr_pages > min_pages)
4b534334
KH
2368 return CHARGE_RETRY;
2369
2370 if (!(gfp_mask & __GFP_WAIT))
2371 return CHARGE_WOULDBLOCK;
2372
4c9c5359
SS
2373 if (gfp_mask & __GFP_NORETRY)
2374 return CHARGE_NOMEM;
2375
5660048c 2376 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2377 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2378 return CHARGE_RETRY;
4b534334 2379 /*
19942822
JW
2380 * Even though the limit is exceeded at this point, reclaim
2381 * may have been able to free some pages. Retry the charge
2382 * before killing the task.
2383 *
2384 * Only for regular pages, though: huge pages are rather
2385 * unlikely to succeed so close to the limit, and we fall back
2386 * to regular pages anyway in case of failure.
4b534334 2387 */
4c9c5359 2388 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2389 return CHARGE_RETRY;
2390
2391 /*
2392 * At task move, charge accounts can be doubly counted. So, it's
2393 * better to wait until the end of task_move if something is going on.
2394 */
2395 if (mem_cgroup_wait_acct_move(mem_over_limit))
2396 return CHARGE_RETRY;
2397
3812c8c8
JW
2398 if (invoke_oom)
2399 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2400
3812c8c8 2401 return CHARGE_NOMEM;
4b534334
KH
2402}
2403
f817ed48 2404/*
38c5d72f
KH
2405 * __mem_cgroup_try_charge() does
2406 * 1. detect memcg to be charged against from passed *mm and *ptr,
2407 * 2. update res_counter
2408 * 3. call memory reclaim if necessary.
2409 *
2410 * In some special case, if the task is fatal, fatal_signal_pending() or
2411 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2412 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2413 * as possible without any hazards. 2: all pages should have a valid
2414 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2415 * pointer, that is treated as a charge to root_mem_cgroup.
2416 *
2417 * So __mem_cgroup_try_charge() will return
2418 * 0 ... on success, filling *ptr with a valid memcg pointer.
2419 * -ENOMEM ... charge failure because of resource limits.
2420 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2421 *
2422 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2423 * the oom-killer can be invoked.
8a9f3ccd 2424 */
f817ed48 2425static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2426 gfp_t gfp_mask,
7ec99d62 2427 unsigned int nr_pages,
c0ff4b85 2428 struct mem_cgroup **ptr,
7ec99d62 2429 bool oom)
8a9f3ccd 2430{
7ec99d62 2431 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2432 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2433 struct mem_cgroup *memcg = NULL;
4b534334 2434 int ret;
a636b327 2435
867578cb
KH
2436 /*
2437 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2438 * in system level. So, allow to go ahead dying process in addition to
2439 * MEMDIE process.
2440 */
2441 if (unlikely(test_thread_flag(TIF_MEMDIE)
2442 || fatal_signal_pending(current)))
2443 goto bypass;
a636b327 2444
8a9f3ccd 2445 /*
3be91277
HD
2446 * We always charge the cgroup the mm_struct belongs to.
2447 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2448 * thread group leader migrates. It's possible that mm is not
24467cac 2449 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2450 */
c0ff4b85 2451 if (!*ptr && !mm)
38c5d72f 2452 *ptr = root_mem_cgroup;
f75ca962 2453again:
c0ff4b85
R
2454 if (*ptr) { /* css should be a valid one */
2455 memcg = *ptr;
c0ff4b85 2456 if (mem_cgroup_is_root(memcg))
f75ca962 2457 goto done;
a0956d54 2458 if (consume_stock(memcg, nr_pages))
f75ca962 2459 goto done;
c0ff4b85 2460 css_get(&memcg->css);
4b534334 2461 } else {
f75ca962 2462 struct task_struct *p;
54595fe2 2463
f75ca962
KH
2464 rcu_read_lock();
2465 p = rcu_dereference(mm->owner);
f75ca962 2466 /*
ebb76ce1 2467 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2468 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2469 * race with swapoff. Then, we have small risk of mis-accouning.
2470 * But such kind of mis-account by race always happens because
2471 * we don't have cgroup_mutex(). It's overkill and we allo that
2472 * small race, here.
2473 * (*) swapoff at el will charge against mm-struct not against
2474 * task-struct. So, mm->owner can be NULL.
f75ca962 2475 */
c0ff4b85 2476 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2477 if (!memcg)
2478 memcg = root_mem_cgroup;
2479 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2480 rcu_read_unlock();
2481 goto done;
2482 }
a0956d54 2483 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2484 /*
2485 * It seems dagerous to access memcg without css_get().
2486 * But considering how consume_stok works, it's not
2487 * necessary. If consume_stock success, some charges
2488 * from this memcg are cached on this cpu. So, we
2489 * don't need to call css_get()/css_tryget() before
2490 * calling consume_stock().
2491 */
2492 rcu_read_unlock();
2493 goto done;
2494 }
2495 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2496 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2497 rcu_read_unlock();
2498 goto again;
2499 }
2500 rcu_read_unlock();
2501 }
8a9f3ccd 2502
4b534334 2503 do {
3812c8c8 2504 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2505
4b534334 2506 /* If killed, bypass charge */
f75ca962 2507 if (fatal_signal_pending(current)) {
c0ff4b85 2508 css_put(&memcg->css);
4b534334 2509 goto bypass;
f75ca962 2510 }
6d61ef40 2511
3812c8c8
JW
2512 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2513 nr_pages, invoke_oom);
4b534334
KH
2514 switch (ret) {
2515 case CHARGE_OK:
2516 break;
2517 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2518 batch = nr_pages;
c0ff4b85
R
2519 css_put(&memcg->css);
2520 memcg = NULL;
f75ca962 2521 goto again;
4b534334 2522 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2523 css_put(&memcg->css);
4b534334
KH
2524 goto nomem;
2525 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2526 if (!oom || invoke_oom) {
c0ff4b85 2527 css_put(&memcg->css);
867578cb 2528 goto nomem;
f75ca962 2529 }
4b534334
KH
2530 nr_oom_retries--;
2531 break;
66e1707b 2532 }
4b534334
KH
2533 } while (ret != CHARGE_OK);
2534
7ec99d62 2535 if (batch > nr_pages)
c0ff4b85
R
2536 refill_stock(memcg, batch - nr_pages);
2537 css_put(&memcg->css);
0c3e73e8 2538done:
c0ff4b85 2539 *ptr = memcg;
7a81b88c
KH
2540 return 0;
2541nomem:
c0ff4b85 2542 *ptr = NULL;
7a81b88c 2543 return -ENOMEM;
867578cb 2544bypass:
38c5d72f
KH
2545 *ptr = root_mem_cgroup;
2546 return -EINTR;
7a81b88c 2547}
8a9f3ccd 2548
a3032a2c
DN
2549/*
2550 * Somemtimes we have to undo a charge we got by try_charge().
2551 * This function is for that and do uncharge, put css's refcnt.
2552 * gotten by try_charge().
2553 */
c0ff4b85 2554static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2555 unsigned int nr_pages)
a3032a2c 2556{
c0ff4b85 2557 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2558 unsigned long bytes = nr_pages * PAGE_SIZE;
2559
c0ff4b85 2560 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2561 if (do_swap_account)
c0ff4b85 2562 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2563 }
854ffa8d
DN
2564}
2565
d01dd17f
KH
2566/*
2567 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2568 * This is useful when moving usage to parent cgroup.
2569 */
2570static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2571 unsigned int nr_pages)
2572{
2573 unsigned long bytes = nr_pages * PAGE_SIZE;
2574
2575 if (mem_cgroup_is_root(memcg))
2576 return;
2577
2578 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2579 if (do_swap_account)
2580 res_counter_uncharge_until(&memcg->memsw,
2581 memcg->memsw.parent, bytes);
2582}
2583
a3b2d692
KH
2584/*
2585 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2586 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2587 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2588 * called against removed memcg.)
a3b2d692
KH
2589 */
2590static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2591{
2592 struct cgroup_subsys_state *css;
2593
2594 /* ID 0 is unused ID */
2595 if (!id)
2596 return NULL;
2597 css = css_lookup(&mem_cgroup_subsys, id);
2598 if (!css)
2599 return NULL;
b2145145 2600 return mem_cgroup_from_css(css);
a3b2d692
KH
2601}
2602
e42d9d5d 2603struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2604{
c0ff4b85 2605 struct mem_cgroup *memcg = NULL;
3c776e64 2606 struct page_cgroup *pc;
a3b2d692 2607 unsigned short id;
b5a84319
KH
2608 swp_entry_t ent;
2609
3c776e64
DN
2610 VM_BUG_ON(!PageLocked(page));
2611
3c776e64 2612 pc = lookup_page_cgroup(page);
c0bd3f63 2613 lock_page_cgroup(pc);
a3b2d692 2614 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2615 memcg = pc->mem_cgroup;
2616 if (memcg && !css_tryget(&memcg->css))
2617 memcg = NULL;
e42d9d5d 2618 } else if (PageSwapCache(page)) {
3c776e64 2619 ent.val = page_private(page);
9fb4b7cc 2620 id = lookup_swap_cgroup_id(ent);
a3b2d692 2621 rcu_read_lock();
c0ff4b85
R
2622 memcg = mem_cgroup_lookup(id);
2623 if (memcg && !css_tryget(&memcg->css))
2624 memcg = NULL;
a3b2d692 2625 rcu_read_unlock();
3c776e64 2626 }
c0bd3f63 2627 unlock_page_cgroup(pc);
c0ff4b85 2628 return memcg;
b5a84319
KH
2629}
2630
c0ff4b85 2631static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2632 struct page *page,
7ec99d62 2633 unsigned int nr_pages,
9ce70c02
HD
2634 enum charge_type ctype,
2635 bool lrucare)
7a81b88c 2636{
ce587e65 2637 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2638 struct zone *uninitialized_var(zone);
fa9add64 2639 struct lruvec *lruvec;
9ce70c02 2640 bool was_on_lru = false;
b2402857 2641 bool anon;
9ce70c02 2642
ca3e0214 2643 lock_page_cgroup(pc);
90deb788 2644 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2645 /*
2646 * we don't need page_cgroup_lock about tail pages, becase they are not
2647 * accessed by any other context at this point.
2648 */
9ce70c02
HD
2649
2650 /*
2651 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2652 * may already be on some other mem_cgroup's LRU. Take care of it.
2653 */
2654 if (lrucare) {
2655 zone = page_zone(page);
2656 spin_lock_irq(&zone->lru_lock);
2657 if (PageLRU(page)) {
fa9add64 2658 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2659 ClearPageLRU(page);
fa9add64 2660 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2661 was_on_lru = true;
2662 }
2663 }
2664
c0ff4b85 2665 pc->mem_cgroup = memcg;
261fb61a
KH
2666 /*
2667 * We access a page_cgroup asynchronously without lock_page_cgroup().
2668 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2669 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2670 * before USED bit, we need memory barrier here.
2671 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2672 */
08e552c6 2673 smp_wmb();
b2402857 2674 SetPageCgroupUsed(pc);
3be91277 2675
9ce70c02
HD
2676 if (lrucare) {
2677 if (was_on_lru) {
fa9add64 2678 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2679 VM_BUG_ON(PageLRU(page));
2680 SetPageLRU(page);
fa9add64 2681 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2682 }
2683 spin_unlock_irq(&zone->lru_lock);
2684 }
2685
41326c17 2686 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2687 anon = true;
2688 else
2689 anon = false;
2690
b070e65c 2691 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2692 unlock_page_cgroup(pc);
9ce70c02 2693
430e4863 2694 /*
e883110a 2695 * "charge_statistics" updated event counter.
430e4863 2696 */
c0ff4b85 2697 memcg_check_events(memcg, page);
7a81b88c 2698}
66e1707b 2699
7cf27982
GC
2700static DEFINE_MUTEX(set_limit_mutex);
2701
7ae1e1d0
GC
2702#ifdef CONFIG_MEMCG_KMEM
2703static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2704{
2705 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2706 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2707}
2708
1f458cbf
GC
2709/*
2710 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2711 * in the memcg_cache_params struct.
2712 */
2713static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2714{
2715 struct kmem_cache *cachep;
2716
2717 VM_BUG_ON(p->is_root_cache);
2718 cachep = p->root_cache;
2719 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2720}
2721
749c5415 2722#ifdef CONFIG_SLABINFO
182446d0
TH
2723static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2724 struct cftype *cft, struct seq_file *m)
749c5415 2725{
182446d0 2726 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2727 struct memcg_cache_params *params;
2728
2729 if (!memcg_can_account_kmem(memcg))
2730 return -EIO;
2731
2732 print_slabinfo_header(m);
2733
2734 mutex_lock(&memcg->slab_caches_mutex);
2735 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2736 cache_show(memcg_params_to_cache(params), m);
2737 mutex_unlock(&memcg->slab_caches_mutex);
2738
2739 return 0;
2740}
2741#endif
2742
7ae1e1d0
GC
2743static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2744{
2745 struct res_counter *fail_res;
2746 struct mem_cgroup *_memcg;
2747 int ret = 0;
2748 bool may_oom;
2749
2750 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2751 if (ret)
2752 return ret;
2753
2754 /*
2755 * Conditions under which we can wait for the oom_killer. Those are
2756 * the same conditions tested by the core page allocator
2757 */
2758 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2759
2760 _memcg = memcg;
2761 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2762 &_memcg, may_oom);
2763
2764 if (ret == -EINTR) {
2765 /*
2766 * __mem_cgroup_try_charge() chosed to bypass to root due to
2767 * OOM kill or fatal signal. Since our only options are to
2768 * either fail the allocation or charge it to this cgroup, do
2769 * it as a temporary condition. But we can't fail. From a
2770 * kmem/slab perspective, the cache has already been selected,
2771 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2772 * our minds.
2773 *
2774 * This condition will only trigger if the task entered
2775 * memcg_charge_kmem in a sane state, but was OOM-killed during
2776 * __mem_cgroup_try_charge() above. Tasks that were already
2777 * dying when the allocation triggers should have been already
2778 * directed to the root cgroup in memcontrol.h
2779 */
2780 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2781 if (do_swap_account)
2782 res_counter_charge_nofail(&memcg->memsw, size,
2783 &fail_res);
2784 ret = 0;
2785 } else if (ret)
2786 res_counter_uncharge(&memcg->kmem, size);
2787
2788 return ret;
2789}
2790
2791static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2792{
7ae1e1d0
GC
2793 res_counter_uncharge(&memcg->res, size);
2794 if (do_swap_account)
2795 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2796
2797 /* Not down to 0 */
2798 if (res_counter_uncharge(&memcg->kmem, size))
2799 return;
2800
10d5ebf4
LZ
2801 /*
2802 * Releases a reference taken in kmem_cgroup_css_offline in case
2803 * this last uncharge is racing with the offlining code or it is
2804 * outliving the memcg existence.
2805 *
2806 * The memory barrier imposed by test&clear is paired with the
2807 * explicit one in memcg_kmem_mark_dead().
2808 */
7de37682 2809 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2810 css_put(&memcg->css);
7ae1e1d0
GC
2811}
2812
2633d7a0
GC
2813void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2814{
2815 if (!memcg)
2816 return;
2817
2818 mutex_lock(&memcg->slab_caches_mutex);
2819 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2820 mutex_unlock(&memcg->slab_caches_mutex);
2821}
2822
2823/*
2824 * helper for acessing a memcg's index. It will be used as an index in the
2825 * child cache array in kmem_cache, and also to derive its name. This function
2826 * will return -1 when this is not a kmem-limited memcg.
2827 */
2828int memcg_cache_id(struct mem_cgroup *memcg)
2829{
2830 return memcg ? memcg->kmemcg_id : -1;
2831}
2832
55007d84
GC
2833/*
2834 * This ends up being protected by the set_limit mutex, during normal
2835 * operation, because that is its main call site.
2836 *
2837 * But when we create a new cache, we can call this as well if its parent
2838 * is kmem-limited. That will have to hold set_limit_mutex as well.
2839 */
2840int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2841{
2842 int num, ret;
2843
2844 num = ida_simple_get(&kmem_limited_groups,
2845 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2846 if (num < 0)
2847 return num;
2848 /*
2849 * After this point, kmem_accounted (that we test atomically in
2850 * the beginning of this conditional), is no longer 0. This
2851 * guarantees only one process will set the following boolean
2852 * to true. We don't need test_and_set because we're protected
2853 * by the set_limit_mutex anyway.
2854 */
2855 memcg_kmem_set_activated(memcg);
2856
2857 ret = memcg_update_all_caches(num+1);
2858 if (ret) {
2859 ida_simple_remove(&kmem_limited_groups, num);
2860 memcg_kmem_clear_activated(memcg);
2861 return ret;
2862 }
2863
2864 memcg->kmemcg_id = num;
2865 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2866 mutex_init(&memcg->slab_caches_mutex);
2867 return 0;
2868}
2869
2870static size_t memcg_caches_array_size(int num_groups)
2871{
2872 ssize_t size;
2873 if (num_groups <= 0)
2874 return 0;
2875
2876 size = 2 * num_groups;
2877 if (size < MEMCG_CACHES_MIN_SIZE)
2878 size = MEMCG_CACHES_MIN_SIZE;
2879 else if (size > MEMCG_CACHES_MAX_SIZE)
2880 size = MEMCG_CACHES_MAX_SIZE;
2881
2882 return size;
2883}
2884
2885/*
2886 * We should update the current array size iff all caches updates succeed. This
2887 * can only be done from the slab side. The slab mutex needs to be held when
2888 * calling this.
2889 */
2890void memcg_update_array_size(int num)
2891{
2892 if (num > memcg_limited_groups_array_size)
2893 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2894}
2895
15cf17d2
KK
2896static void kmem_cache_destroy_work_func(struct work_struct *w);
2897
55007d84
GC
2898int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2899{
2900 struct memcg_cache_params *cur_params = s->memcg_params;
2901
2902 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2903
2904 if (num_groups > memcg_limited_groups_array_size) {
2905 int i;
2906 ssize_t size = memcg_caches_array_size(num_groups);
2907
2908 size *= sizeof(void *);
90c7a79c 2909 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
2910
2911 s->memcg_params = kzalloc(size, GFP_KERNEL);
2912 if (!s->memcg_params) {
2913 s->memcg_params = cur_params;
2914 return -ENOMEM;
2915 }
2916
2917 s->memcg_params->is_root_cache = true;
2918
2919 /*
2920 * There is the chance it will be bigger than
2921 * memcg_limited_groups_array_size, if we failed an allocation
2922 * in a cache, in which case all caches updated before it, will
2923 * have a bigger array.
2924 *
2925 * But if that is the case, the data after
2926 * memcg_limited_groups_array_size is certainly unused
2927 */
2928 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2929 if (!cur_params->memcg_caches[i])
2930 continue;
2931 s->memcg_params->memcg_caches[i] =
2932 cur_params->memcg_caches[i];
2933 }
2934
2935 /*
2936 * Ideally, we would wait until all caches succeed, and only
2937 * then free the old one. But this is not worth the extra
2938 * pointer per-cache we'd have to have for this.
2939 *
2940 * It is not a big deal if some caches are left with a size
2941 * bigger than the others. And all updates will reset this
2942 * anyway.
2943 */
2944 kfree(cur_params);
2945 }
2946 return 0;
2947}
2948
943a451a
GC
2949int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
2950 struct kmem_cache *root_cache)
2633d7a0 2951{
90c7a79c 2952 size_t size;
2633d7a0
GC
2953
2954 if (!memcg_kmem_enabled())
2955 return 0;
2956
90c7a79c
AV
2957 if (!memcg) {
2958 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2959 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
2960 } else
2961 size = sizeof(struct memcg_cache_params);
55007d84 2962
2633d7a0
GC
2963 s->memcg_params = kzalloc(size, GFP_KERNEL);
2964 if (!s->memcg_params)
2965 return -ENOMEM;
2966
943a451a 2967 if (memcg) {
2633d7a0 2968 s->memcg_params->memcg = memcg;
943a451a 2969 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
2970 INIT_WORK(&s->memcg_params->destroy,
2971 kmem_cache_destroy_work_func);
4ba902b5
GC
2972 } else
2973 s->memcg_params->is_root_cache = true;
2974
2633d7a0
GC
2975 return 0;
2976}
2977
2978void memcg_release_cache(struct kmem_cache *s)
2979{
d7f25f8a
GC
2980 struct kmem_cache *root;
2981 struct mem_cgroup *memcg;
2982 int id;
2983
2984 /*
2985 * This happens, for instance, when a root cache goes away before we
2986 * add any memcg.
2987 */
2988 if (!s->memcg_params)
2989 return;
2990
2991 if (s->memcg_params->is_root_cache)
2992 goto out;
2993
2994 memcg = s->memcg_params->memcg;
2995 id = memcg_cache_id(memcg);
2996
2997 root = s->memcg_params->root_cache;
2998 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
2999
3000 mutex_lock(&memcg->slab_caches_mutex);
3001 list_del(&s->memcg_params->list);
3002 mutex_unlock(&memcg->slab_caches_mutex);
3003
20f05310 3004 css_put(&memcg->css);
d7f25f8a 3005out:
2633d7a0
GC
3006 kfree(s->memcg_params);
3007}
3008
0e9d92f2
GC
3009/*
3010 * During the creation a new cache, we need to disable our accounting mechanism
3011 * altogether. This is true even if we are not creating, but rather just
3012 * enqueing new caches to be created.
3013 *
3014 * This is because that process will trigger allocations; some visible, like
3015 * explicit kmallocs to auxiliary data structures, name strings and internal
3016 * cache structures; some well concealed, like INIT_WORK() that can allocate
3017 * objects during debug.
3018 *
3019 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3020 * to it. This may not be a bounded recursion: since the first cache creation
3021 * failed to complete (waiting on the allocation), we'll just try to create the
3022 * cache again, failing at the same point.
3023 *
3024 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3025 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3026 * inside the following two functions.
3027 */
3028static inline void memcg_stop_kmem_account(void)
3029{
3030 VM_BUG_ON(!current->mm);
3031 current->memcg_kmem_skip_account++;
3032}
3033
3034static inline void memcg_resume_kmem_account(void)
3035{
3036 VM_BUG_ON(!current->mm);
3037 current->memcg_kmem_skip_account--;
3038}
3039
1f458cbf
GC
3040static void kmem_cache_destroy_work_func(struct work_struct *w)
3041{
3042 struct kmem_cache *cachep;
3043 struct memcg_cache_params *p;
3044
3045 p = container_of(w, struct memcg_cache_params, destroy);
3046
3047 cachep = memcg_params_to_cache(p);
3048
22933152
GC
3049 /*
3050 * If we get down to 0 after shrink, we could delete right away.
3051 * However, memcg_release_pages() already puts us back in the workqueue
3052 * in that case. If we proceed deleting, we'll get a dangling
3053 * reference, and removing the object from the workqueue in that case
3054 * is unnecessary complication. We are not a fast path.
3055 *
3056 * Note that this case is fundamentally different from racing with
3057 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3058 * kmem_cache_shrink, not only we would be reinserting a dead cache
3059 * into the queue, but doing so from inside the worker racing to
3060 * destroy it.
3061 *
3062 * So if we aren't down to zero, we'll just schedule a worker and try
3063 * again
3064 */
3065 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3066 kmem_cache_shrink(cachep);
3067 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3068 return;
3069 } else
1f458cbf
GC
3070 kmem_cache_destroy(cachep);
3071}
3072
3073void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3074{
3075 if (!cachep->memcg_params->dead)
3076 return;
3077
22933152
GC
3078 /*
3079 * There are many ways in which we can get here.
3080 *
3081 * We can get to a memory-pressure situation while the delayed work is
3082 * still pending to run. The vmscan shrinkers can then release all
3083 * cache memory and get us to destruction. If this is the case, we'll
3084 * be executed twice, which is a bug (the second time will execute over
3085 * bogus data). In this case, cancelling the work should be fine.
3086 *
3087 * But we can also get here from the worker itself, if
3088 * kmem_cache_shrink is enough to shake all the remaining objects and
3089 * get the page count to 0. In this case, we'll deadlock if we try to
3090 * cancel the work (the worker runs with an internal lock held, which
3091 * is the same lock we would hold for cancel_work_sync().)
3092 *
3093 * Since we can't possibly know who got us here, just refrain from
3094 * running if there is already work pending
3095 */
3096 if (work_pending(&cachep->memcg_params->destroy))
3097 return;
1f458cbf
GC
3098 /*
3099 * We have to defer the actual destroying to a workqueue, because
3100 * we might currently be in a context that cannot sleep.
3101 */
3102 schedule_work(&cachep->memcg_params->destroy);
3103}
3104
d9c10ddd
MH
3105/*
3106 * This lock protects updaters, not readers. We want readers to be as fast as
3107 * they can, and they will either see NULL or a valid cache value. Our model
3108 * allow them to see NULL, in which case the root memcg will be selected.
3109 *
3110 * We need this lock because multiple allocations to the same cache from a non
3111 * will span more than one worker. Only one of them can create the cache.
3112 */
3113static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3114
d9c10ddd
MH
3115/*
3116 * Called with memcg_cache_mutex held
3117 */
d7f25f8a
GC
3118static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3119 struct kmem_cache *s)
3120{
d7f25f8a 3121 struct kmem_cache *new;
d9c10ddd 3122 static char *tmp_name = NULL;
d7f25f8a 3123
d9c10ddd
MH
3124 lockdep_assert_held(&memcg_cache_mutex);
3125
3126 /*
3127 * kmem_cache_create_memcg duplicates the given name and
3128 * cgroup_name for this name requires RCU context.
3129 * This static temporary buffer is used to prevent from
3130 * pointless shortliving allocation.
3131 */
3132 if (!tmp_name) {
3133 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3134 if (!tmp_name)
3135 return NULL;
3136 }
3137
3138 rcu_read_lock();
3139 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3140 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3141 rcu_read_unlock();
d7f25f8a 3142
d9c10ddd 3143 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3144 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3145
d79923fa
GC
3146 if (new)
3147 new->allocflags |= __GFP_KMEMCG;
3148
d7f25f8a
GC
3149 return new;
3150}
3151
d7f25f8a
GC
3152static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3153 struct kmem_cache *cachep)
3154{
3155 struct kmem_cache *new_cachep;
3156 int idx;
3157
3158 BUG_ON(!memcg_can_account_kmem(memcg));
3159
3160 idx = memcg_cache_id(memcg);
3161
3162 mutex_lock(&memcg_cache_mutex);
3163 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3164 if (new_cachep) {
3165 css_put(&memcg->css);
d7f25f8a 3166 goto out;
20f05310 3167 }
d7f25f8a
GC
3168
3169 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3170 if (new_cachep == NULL) {
3171 new_cachep = cachep;
20f05310 3172 css_put(&memcg->css);
d7f25f8a
GC
3173 goto out;
3174 }
3175
1f458cbf 3176 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3177
3178 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3179 /*
3180 * the readers won't lock, make sure everybody sees the updated value,
3181 * so they won't put stuff in the queue again for no reason
3182 */
3183 wmb();
3184out:
3185 mutex_unlock(&memcg_cache_mutex);
3186 return new_cachep;
3187}
3188
7cf27982
GC
3189void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3190{
3191 struct kmem_cache *c;
3192 int i;
3193
3194 if (!s->memcg_params)
3195 return;
3196 if (!s->memcg_params->is_root_cache)
3197 return;
3198
3199 /*
3200 * If the cache is being destroyed, we trust that there is no one else
3201 * requesting objects from it. Even if there are, the sanity checks in
3202 * kmem_cache_destroy should caught this ill-case.
3203 *
3204 * Still, we don't want anyone else freeing memcg_caches under our
3205 * noses, which can happen if a new memcg comes to life. As usual,
3206 * we'll take the set_limit_mutex to protect ourselves against this.
3207 */
3208 mutex_lock(&set_limit_mutex);
3209 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3210 c = s->memcg_params->memcg_caches[i];
3211 if (!c)
3212 continue;
3213
3214 /*
3215 * We will now manually delete the caches, so to avoid races
3216 * we need to cancel all pending destruction workers and
3217 * proceed with destruction ourselves.
3218 *
3219 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3220 * and that could spawn the workers again: it is likely that
3221 * the cache still have active pages until this very moment.
3222 * This would lead us back to mem_cgroup_destroy_cache.
3223 *
3224 * But that will not execute at all if the "dead" flag is not
3225 * set, so flip it down to guarantee we are in control.
3226 */
3227 c->memcg_params->dead = false;
22933152 3228 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3229 kmem_cache_destroy(c);
3230 }
3231 mutex_unlock(&set_limit_mutex);
3232}
3233
d7f25f8a
GC
3234struct create_work {
3235 struct mem_cgroup *memcg;
3236 struct kmem_cache *cachep;
3237 struct work_struct work;
3238};
3239
1f458cbf
GC
3240static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3241{
3242 struct kmem_cache *cachep;
3243 struct memcg_cache_params *params;
3244
3245 if (!memcg_kmem_is_active(memcg))
3246 return;
3247
3248 mutex_lock(&memcg->slab_caches_mutex);
3249 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3250 cachep = memcg_params_to_cache(params);
3251 cachep->memcg_params->dead = true;
1f458cbf
GC
3252 schedule_work(&cachep->memcg_params->destroy);
3253 }
3254 mutex_unlock(&memcg->slab_caches_mutex);
3255}
3256
d7f25f8a
GC
3257static void memcg_create_cache_work_func(struct work_struct *w)
3258{
3259 struct create_work *cw;
3260
3261 cw = container_of(w, struct create_work, work);
3262 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3263 kfree(cw);
3264}
3265
3266/*
3267 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3268 */
0e9d92f2
GC
3269static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3270 struct kmem_cache *cachep)
d7f25f8a
GC
3271{
3272 struct create_work *cw;
3273
3274 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3275 if (cw == NULL) {
3276 css_put(&memcg->css);
d7f25f8a
GC
3277 return;
3278 }
3279
3280 cw->memcg = memcg;
3281 cw->cachep = cachep;
3282
3283 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3284 schedule_work(&cw->work);
3285}
3286
0e9d92f2
GC
3287static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3288 struct kmem_cache *cachep)
3289{
3290 /*
3291 * We need to stop accounting when we kmalloc, because if the
3292 * corresponding kmalloc cache is not yet created, the first allocation
3293 * in __memcg_create_cache_enqueue will recurse.
3294 *
3295 * However, it is better to enclose the whole function. Depending on
3296 * the debugging options enabled, INIT_WORK(), for instance, can
3297 * trigger an allocation. This too, will make us recurse. Because at
3298 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3299 * the safest choice is to do it like this, wrapping the whole function.
3300 */
3301 memcg_stop_kmem_account();
3302 __memcg_create_cache_enqueue(memcg, cachep);
3303 memcg_resume_kmem_account();
3304}
d7f25f8a
GC
3305/*
3306 * Return the kmem_cache we're supposed to use for a slab allocation.
3307 * We try to use the current memcg's version of the cache.
3308 *
3309 * If the cache does not exist yet, if we are the first user of it,
3310 * we either create it immediately, if possible, or create it asynchronously
3311 * in a workqueue.
3312 * In the latter case, we will let the current allocation go through with
3313 * the original cache.
3314 *
3315 * Can't be called in interrupt context or from kernel threads.
3316 * This function needs to be called with rcu_read_lock() held.
3317 */
3318struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3319 gfp_t gfp)
3320{
3321 struct mem_cgroup *memcg;
3322 int idx;
3323
3324 VM_BUG_ON(!cachep->memcg_params);
3325 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3326
0e9d92f2
GC
3327 if (!current->mm || current->memcg_kmem_skip_account)
3328 return cachep;
3329
d7f25f8a
GC
3330 rcu_read_lock();
3331 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3332
3333 if (!memcg_can_account_kmem(memcg))
ca0dde97 3334 goto out;
d7f25f8a
GC
3335
3336 idx = memcg_cache_id(memcg);
3337
3338 /*
3339 * barrier to mare sure we're always seeing the up to date value. The
3340 * code updating memcg_caches will issue a write barrier to match this.
3341 */
3342 read_barrier_depends();
ca0dde97
LZ
3343 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3344 cachep = cachep->memcg_params->memcg_caches[idx];
3345 goto out;
d7f25f8a
GC
3346 }
3347
ca0dde97
LZ
3348 /* The corresponding put will be done in the workqueue. */
3349 if (!css_tryget(&memcg->css))
3350 goto out;
3351 rcu_read_unlock();
3352
3353 /*
3354 * If we are in a safe context (can wait, and not in interrupt
3355 * context), we could be be predictable and return right away.
3356 * This would guarantee that the allocation being performed
3357 * already belongs in the new cache.
3358 *
3359 * However, there are some clashes that can arrive from locking.
3360 * For instance, because we acquire the slab_mutex while doing
3361 * kmem_cache_dup, this means no further allocation could happen
3362 * with the slab_mutex held.
3363 *
3364 * Also, because cache creation issue get_online_cpus(), this
3365 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3366 * that ends up reversed during cpu hotplug. (cpuset allocates
3367 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3368 * better to defer everything.
3369 */
3370 memcg_create_cache_enqueue(memcg, cachep);
3371 return cachep;
3372out:
3373 rcu_read_unlock();
3374 return cachep;
d7f25f8a
GC
3375}
3376EXPORT_SYMBOL(__memcg_kmem_get_cache);
3377
7ae1e1d0
GC
3378/*
3379 * We need to verify if the allocation against current->mm->owner's memcg is
3380 * possible for the given order. But the page is not allocated yet, so we'll
3381 * need a further commit step to do the final arrangements.
3382 *
3383 * It is possible for the task to switch cgroups in this mean time, so at
3384 * commit time, we can't rely on task conversion any longer. We'll then use
3385 * the handle argument to return to the caller which cgroup we should commit
3386 * against. We could also return the memcg directly and avoid the pointer
3387 * passing, but a boolean return value gives better semantics considering
3388 * the compiled-out case as well.
3389 *
3390 * Returning true means the allocation is possible.
3391 */
3392bool
3393__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3394{
3395 struct mem_cgroup *memcg;
3396 int ret;
3397
3398 *_memcg = NULL;
6d42c232
GC
3399
3400 /*
3401 * Disabling accounting is only relevant for some specific memcg
3402 * internal allocations. Therefore we would initially not have such
3403 * check here, since direct calls to the page allocator that are marked
3404 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3405 * concerned with cache allocations, and by having this test at
3406 * memcg_kmem_get_cache, we are already able to relay the allocation to
3407 * the root cache and bypass the memcg cache altogether.
3408 *
3409 * There is one exception, though: the SLUB allocator does not create
3410 * large order caches, but rather service large kmallocs directly from
3411 * the page allocator. Therefore, the following sequence when backed by
3412 * the SLUB allocator:
3413 *
f894ffa8
AM
3414 * memcg_stop_kmem_account();
3415 * kmalloc(<large_number>)
3416 * memcg_resume_kmem_account();
6d42c232
GC
3417 *
3418 * would effectively ignore the fact that we should skip accounting,
3419 * since it will drive us directly to this function without passing
3420 * through the cache selector memcg_kmem_get_cache. Such large
3421 * allocations are extremely rare but can happen, for instance, for the
3422 * cache arrays. We bring this test here.
3423 */
3424 if (!current->mm || current->memcg_kmem_skip_account)
3425 return true;
3426
7ae1e1d0
GC
3427 memcg = try_get_mem_cgroup_from_mm(current->mm);
3428
3429 /*
3430 * very rare case described in mem_cgroup_from_task. Unfortunately there
3431 * isn't much we can do without complicating this too much, and it would
3432 * be gfp-dependent anyway. Just let it go
3433 */
3434 if (unlikely(!memcg))
3435 return true;
3436
3437 if (!memcg_can_account_kmem(memcg)) {
3438 css_put(&memcg->css);
3439 return true;
3440 }
3441
7ae1e1d0
GC
3442 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3443 if (!ret)
3444 *_memcg = memcg;
7ae1e1d0
GC
3445
3446 css_put(&memcg->css);
3447 return (ret == 0);
3448}
3449
3450void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3451 int order)
3452{
3453 struct page_cgroup *pc;
3454
3455 VM_BUG_ON(mem_cgroup_is_root(memcg));
3456
3457 /* The page allocation failed. Revert */
3458 if (!page) {
3459 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3460 return;
3461 }
3462
3463 pc = lookup_page_cgroup(page);
3464 lock_page_cgroup(pc);
3465 pc->mem_cgroup = memcg;
3466 SetPageCgroupUsed(pc);
3467 unlock_page_cgroup(pc);
3468}
3469
3470void __memcg_kmem_uncharge_pages(struct page *page, int order)
3471{
3472 struct mem_cgroup *memcg = NULL;
3473 struct page_cgroup *pc;
3474
3475
3476 pc = lookup_page_cgroup(page);
3477 /*
3478 * Fast unlocked return. Theoretically might have changed, have to
3479 * check again after locking.
3480 */
3481 if (!PageCgroupUsed(pc))
3482 return;
3483
3484 lock_page_cgroup(pc);
3485 if (PageCgroupUsed(pc)) {
3486 memcg = pc->mem_cgroup;
3487 ClearPageCgroupUsed(pc);
3488 }
3489 unlock_page_cgroup(pc);
3490
3491 /*
3492 * We trust that only if there is a memcg associated with the page, it
3493 * is a valid allocation
3494 */
3495 if (!memcg)
3496 return;
3497
3498 VM_BUG_ON(mem_cgroup_is_root(memcg));
3499 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3500}
1f458cbf
GC
3501#else
3502static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3503{
3504}
7ae1e1d0
GC
3505#endif /* CONFIG_MEMCG_KMEM */
3506
ca3e0214
KH
3507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3508
a0db00fc 3509#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3510/*
3511 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3512 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3513 * charge/uncharge will be never happen and move_account() is done under
3514 * compound_lock(), so we don't have to take care of races.
ca3e0214 3515 */
e94c8a9c 3516void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3517{
3518 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3519 struct page_cgroup *pc;
b070e65c 3520 struct mem_cgroup *memcg;
e94c8a9c 3521 int i;
ca3e0214 3522
3d37c4a9
KH
3523 if (mem_cgroup_disabled())
3524 return;
b070e65c
DR
3525
3526 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3527 for (i = 1; i < HPAGE_PMD_NR; i++) {
3528 pc = head_pc + i;
b070e65c 3529 pc->mem_cgroup = memcg;
e94c8a9c 3530 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3531 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3532 }
b070e65c
DR
3533 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3534 HPAGE_PMD_NR);
ca3e0214 3535}
12d27107 3536#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3537
3ea67d06
SZ
3538static inline
3539void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3540 struct mem_cgroup *to,
3541 unsigned int nr_pages,
3542 enum mem_cgroup_stat_index idx)
3543{
3544 /* Update stat data for mem_cgroup */
3545 preempt_disable();
3546 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3547 __this_cpu_add(from->stat->count[idx], -nr_pages);
3548 __this_cpu_add(to->stat->count[idx], nr_pages);
3549 preempt_enable();
3550}
3551
f817ed48 3552/**
de3638d9 3553 * mem_cgroup_move_account - move account of the page
5564e88b 3554 * @page: the page
7ec99d62 3555 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3556 * @pc: page_cgroup of the page.
3557 * @from: mem_cgroup which the page is moved from.
3558 * @to: mem_cgroup which the page is moved to. @from != @to.
3559 *
3560 * The caller must confirm following.
08e552c6 3561 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3562 * - compound_lock is held when nr_pages > 1
f817ed48 3563 *
2f3479b1
KH
3564 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3565 * from old cgroup.
f817ed48 3566 */
7ec99d62
JW
3567static int mem_cgroup_move_account(struct page *page,
3568 unsigned int nr_pages,
3569 struct page_cgroup *pc,
3570 struct mem_cgroup *from,
2f3479b1 3571 struct mem_cgroup *to)
f817ed48 3572{
de3638d9
JW
3573 unsigned long flags;
3574 int ret;
b2402857 3575 bool anon = PageAnon(page);
987eba66 3576
f817ed48 3577 VM_BUG_ON(from == to);
5564e88b 3578 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3579 /*
3580 * The page is isolated from LRU. So, collapse function
3581 * will not handle this page. But page splitting can happen.
3582 * Do this check under compound_page_lock(). The caller should
3583 * hold it.
3584 */
3585 ret = -EBUSY;
7ec99d62 3586 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3587 goto out;
3588
3589 lock_page_cgroup(pc);
3590
3591 ret = -EINVAL;
3592 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3593 goto unlock;
3594
312734c0 3595 move_lock_mem_cgroup(from, &flags);
f817ed48 3596
3ea67d06
SZ
3597 if (!anon && page_mapped(page))
3598 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3599 MEM_CGROUP_STAT_FILE_MAPPED);
3600
3601 if (PageWriteback(page))
3602 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3603 MEM_CGROUP_STAT_WRITEBACK);
3604
b070e65c 3605 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3606
854ffa8d 3607 /* caller should have done css_get */
08e552c6 3608 pc->mem_cgroup = to;
b070e65c 3609 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3610 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3611 ret = 0;
3612unlock:
57f9fd7d 3613 unlock_page_cgroup(pc);
d2265e6f
KH
3614 /*
3615 * check events
3616 */
5564e88b
JW
3617 memcg_check_events(to, page);
3618 memcg_check_events(from, page);
de3638d9 3619out:
f817ed48
KH
3620 return ret;
3621}
3622
2ef37d3f
MH
3623/**
3624 * mem_cgroup_move_parent - moves page to the parent group
3625 * @page: the page to move
3626 * @pc: page_cgroup of the page
3627 * @child: page's cgroup
3628 *
3629 * move charges to its parent or the root cgroup if the group has no
3630 * parent (aka use_hierarchy==0).
3631 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3632 * mem_cgroup_move_account fails) the failure is always temporary and
3633 * it signals a race with a page removal/uncharge or migration. In the
3634 * first case the page is on the way out and it will vanish from the LRU
3635 * on the next attempt and the call should be retried later.
3636 * Isolation from the LRU fails only if page has been isolated from
3637 * the LRU since we looked at it and that usually means either global
3638 * reclaim or migration going on. The page will either get back to the
3639 * LRU or vanish.
3640 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3641 * (!PageCgroupUsed) or moved to a different group. The page will
3642 * disappear in the next attempt.
f817ed48 3643 */
5564e88b
JW
3644static int mem_cgroup_move_parent(struct page *page,
3645 struct page_cgroup *pc,
6068bf01 3646 struct mem_cgroup *child)
f817ed48 3647{
f817ed48 3648 struct mem_cgroup *parent;
7ec99d62 3649 unsigned int nr_pages;
4be4489f 3650 unsigned long uninitialized_var(flags);
f817ed48
KH
3651 int ret;
3652
d8423011 3653 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3654
57f9fd7d
DN
3655 ret = -EBUSY;
3656 if (!get_page_unless_zero(page))
3657 goto out;
3658 if (isolate_lru_page(page))
3659 goto put;
52dbb905 3660
7ec99d62 3661 nr_pages = hpage_nr_pages(page);
08e552c6 3662
cc926f78
KH
3663 parent = parent_mem_cgroup(child);
3664 /*
3665 * If no parent, move charges to root cgroup.
3666 */
3667 if (!parent)
3668 parent = root_mem_cgroup;
f817ed48 3669
2ef37d3f
MH
3670 if (nr_pages > 1) {
3671 VM_BUG_ON(!PageTransHuge(page));
987eba66 3672 flags = compound_lock_irqsave(page);
2ef37d3f 3673 }
987eba66 3674
cc926f78 3675 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3676 pc, child, parent);
cc926f78
KH
3677 if (!ret)
3678 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3679
7ec99d62 3680 if (nr_pages > 1)
987eba66 3681 compound_unlock_irqrestore(page, flags);
08e552c6 3682 putback_lru_page(page);
57f9fd7d 3683put:
40d58138 3684 put_page(page);
57f9fd7d 3685out:
f817ed48
KH
3686 return ret;
3687}
3688
7a81b88c
KH
3689/*
3690 * Charge the memory controller for page usage.
3691 * Return
3692 * 0 if the charge was successful
3693 * < 0 if the cgroup is over its limit
3694 */
3695static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3696 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3697{
c0ff4b85 3698 struct mem_cgroup *memcg = NULL;
7ec99d62 3699 unsigned int nr_pages = 1;
8493ae43 3700 bool oom = true;
7a81b88c 3701 int ret;
ec168510 3702
37c2ac78 3703 if (PageTransHuge(page)) {
7ec99d62 3704 nr_pages <<= compound_order(page);
37c2ac78 3705 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3706 /*
3707 * Never OOM-kill a process for a huge page. The
3708 * fault handler will fall back to regular pages.
3709 */
3710 oom = false;
37c2ac78 3711 }
7a81b88c 3712
c0ff4b85 3713 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3714 if (ret == -ENOMEM)
7a81b88c 3715 return ret;
ce587e65 3716 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3717 return 0;
8a9f3ccd
BS
3718}
3719
7a81b88c
KH
3720int mem_cgroup_newpage_charge(struct page *page,
3721 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3722{
f8d66542 3723 if (mem_cgroup_disabled())
cede86ac 3724 return 0;
7a0524cf
JW
3725 VM_BUG_ON(page_mapped(page));
3726 VM_BUG_ON(page->mapping && !PageAnon(page));
3727 VM_BUG_ON(!mm);
217bc319 3728 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3729 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3730}
3731
54595fe2
KH
3732/*
3733 * While swap-in, try_charge -> commit or cancel, the page is locked.
3734 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3735 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3736 * "commit()" or removed by "cancel()"
3737 */
0435a2fd
JW
3738static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3739 struct page *page,
3740 gfp_t mask,
3741 struct mem_cgroup **memcgp)
8c7c6e34 3742{
c0ff4b85 3743 struct mem_cgroup *memcg;
90deb788 3744 struct page_cgroup *pc;
54595fe2 3745 int ret;
8c7c6e34 3746
90deb788
JW
3747 pc = lookup_page_cgroup(page);
3748 /*
3749 * Every swap fault against a single page tries to charge the
3750 * page, bail as early as possible. shmem_unuse() encounters
3751 * already charged pages, too. The USED bit is protected by
3752 * the page lock, which serializes swap cache removal, which
3753 * in turn serializes uncharging.
3754 */
3755 if (PageCgroupUsed(pc))
3756 return 0;
8c7c6e34
KH
3757 if (!do_swap_account)
3758 goto charge_cur_mm;
c0ff4b85
R
3759 memcg = try_get_mem_cgroup_from_page(page);
3760 if (!memcg)
54595fe2 3761 goto charge_cur_mm;
72835c86
JW
3762 *memcgp = memcg;
3763 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3764 css_put(&memcg->css);
38c5d72f
KH
3765 if (ret == -EINTR)
3766 ret = 0;
54595fe2 3767 return ret;
8c7c6e34 3768charge_cur_mm:
38c5d72f
KH
3769 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3770 if (ret == -EINTR)
3771 ret = 0;
3772 return ret;
8c7c6e34
KH
3773}
3774
0435a2fd
JW
3775int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3776 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3777{
3778 *memcgp = NULL;
3779 if (mem_cgroup_disabled())
3780 return 0;
bdf4f4d2
JW
3781 /*
3782 * A racing thread's fault, or swapoff, may have already
3783 * updated the pte, and even removed page from swap cache: in
3784 * those cases unuse_pte()'s pte_same() test will fail; but
3785 * there's also a KSM case which does need to charge the page.
3786 */
3787 if (!PageSwapCache(page)) {
3788 int ret;
3789
3790 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3791 if (ret == -EINTR)
3792 ret = 0;
3793 return ret;
3794 }
0435a2fd
JW
3795 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3796}
3797
827a03d2
JW
3798void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3799{
3800 if (mem_cgroup_disabled())
3801 return;
3802 if (!memcg)
3803 return;
3804 __mem_cgroup_cancel_charge(memcg, 1);
3805}
3806
83aae4c7 3807static void
72835c86 3808__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3809 enum charge_type ctype)
7a81b88c 3810{
f8d66542 3811 if (mem_cgroup_disabled())
7a81b88c 3812 return;
72835c86 3813 if (!memcg)
7a81b88c 3814 return;
5a6475a4 3815
ce587e65 3816 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3817 /*
3818 * Now swap is on-memory. This means this page may be
3819 * counted both as mem and swap....double count.
03f3c433
KH
3820 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3821 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3822 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3823 */
03f3c433 3824 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3825 swp_entry_t ent = {.val = page_private(page)};
86493009 3826 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3827 }
7a81b88c
KH
3828}
3829
72835c86
JW
3830void mem_cgroup_commit_charge_swapin(struct page *page,
3831 struct mem_cgroup *memcg)
83aae4c7 3832{
72835c86 3833 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3834 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3835}
3836
827a03d2
JW
3837int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3838 gfp_t gfp_mask)
7a81b88c 3839{
827a03d2
JW
3840 struct mem_cgroup *memcg = NULL;
3841 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3842 int ret;
3843
f8d66542 3844 if (mem_cgroup_disabled())
827a03d2
JW
3845 return 0;
3846 if (PageCompound(page))
3847 return 0;
3848
827a03d2
JW
3849 if (!PageSwapCache(page))
3850 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3851 else { /* page is swapcache/shmem */
0435a2fd
JW
3852 ret = __mem_cgroup_try_charge_swapin(mm, page,
3853 gfp_mask, &memcg);
827a03d2
JW
3854 if (!ret)
3855 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3856 }
3857 return ret;
7a81b88c
KH
3858}
3859
c0ff4b85 3860static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3861 unsigned int nr_pages,
3862 const enum charge_type ctype)
569b846d
KH
3863{
3864 struct memcg_batch_info *batch = NULL;
3865 bool uncharge_memsw = true;
7ec99d62 3866
569b846d
KH
3867 /* If swapout, usage of swap doesn't decrease */
3868 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3869 uncharge_memsw = false;
569b846d
KH
3870
3871 batch = &current->memcg_batch;
3872 /*
3873 * In usual, we do css_get() when we remember memcg pointer.
3874 * But in this case, we keep res->usage until end of a series of
3875 * uncharges. Then, it's ok to ignore memcg's refcnt.
3876 */
3877 if (!batch->memcg)
c0ff4b85 3878 batch->memcg = memcg;
3c11ecf4
KH
3879 /*
3880 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3881 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3882 * the same cgroup and we have chance to coalesce uncharges.
3883 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3884 * because we want to do uncharge as soon as possible.
3885 */
3886
3887 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3888 goto direct_uncharge;
3889
7ec99d62 3890 if (nr_pages > 1)
ec168510
AA
3891 goto direct_uncharge;
3892
569b846d
KH
3893 /*
3894 * In typical case, batch->memcg == mem. This means we can
3895 * merge a series of uncharges to an uncharge of res_counter.
3896 * If not, we uncharge res_counter ony by one.
3897 */
c0ff4b85 3898 if (batch->memcg != memcg)
569b846d
KH
3899 goto direct_uncharge;
3900 /* remember freed charge and uncharge it later */
7ffd4ca7 3901 batch->nr_pages++;
569b846d 3902 if (uncharge_memsw)
7ffd4ca7 3903 batch->memsw_nr_pages++;
569b846d
KH
3904 return;
3905direct_uncharge:
c0ff4b85 3906 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3907 if (uncharge_memsw)
c0ff4b85
R
3908 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3909 if (unlikely(batch->memcg != memcg))
3910 memcg_oom_recover(memcg);
569b846d 3911}
7a81b88c 3912
8a9f3ccd 3913/*
69029cd5 3914 * uncharge if !page_mapped(page)
8a9f3ccd 3915 */
8c7c6e34 3916static struct mem_cgroup *
0030f535
JW
3917__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3918 bool end_migration)
8a9f3ccd 3919{
c0ff4b85 3920 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3921 unsigned int nr_pages = 1;
3922 struct page_cgroup *pc;
b2402857 3923 bool anon;
8a9f3ccd 3924
f8d66542 3925 if (mem_cgroup_disabled())
8c7c6e34 3926 return NULL;
4077960e 3927
37c2ac78 3928 if (PageTransHuge(page)) {
7ec99d62 3929 nr_pages <<= compound_order(page);
37c2ac78
AA
3930 VM_BUG_ON(!PageTransHuge(page));
3931 }
8697d331 3932 /*
3c541e14 3933 * Check if our page_cgroup is valid
8697d331 3934 */
52d4b9ac 3935 pc = lookup_page_cgroup(page);
cfa44946 3936 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3937 return NULL;
b9c565d5 3938
52d4b9ac 3939 lock_page_cgroup(pc);
d13d1443 3940
c0ff4b85 3941 memcg = pc->mem_cgroup;
8c7c6e34 3942
d13d1443
KH
3943 if (!PageCgroupUsed(pc))
3944 goto unlock_out;
3945
b2402857
KH
3946 anon = PageAnon(page);
3947
d13d1443 3948 switch (ctype) {
41326c17 3949 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3950 /*
3951 * Generally PageAnon tells if it's the anon statistics to be
3952 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3953 * used before page reached the stage of being marked PageAnon.
3954 */
b2402857
KH
3955 anon = true;
3956 /* fallthrough */
8a9478ca 3957 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3958 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3959 if (page_mapped(page))
3960 goto unlock_out;
3961 /*
3962 * Pages under migration may not be uncharged. But
3963 * end_migration() /must/ be the one uncharging the
3964 * unused post-migration page and so it has to call
3965 * here with the migration bit still set. See the
3966 * res_counter handling below.
3967 */
3968 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3969 goto unlock_out;
3970 break;
3971 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3972 if (!PageAnon(page)) { /* Shared memory */
3973 if (page->mapping && !page_is_file_cache(page))
3974 goto unlock_out;
3975 } else if (page_mapped(page)) /* Anon */
3976 goto unlock_out;
3977 break;
3978 default:
3979 break;
52d4b9ac 3980 }
d13d1443 3981
b070e65c 3982 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 3983
52d4b9ac 3984 ClearPageCgroupUsed(pc);
544122e5
KH
3985 /*
3986 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3987 * freed from LRU. This is safe because uncharged page is expected not
3988 * to be reused (freed soon). Exception is SwapCache, it's handled by
3989 * special functions.
3990 */
b9c565d5 3991
52d4b9ac 3992 unlock_page_cgroup(pc);
f75ca962 3993 /*
c0ff4b85 3994 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 3995 * will never be freed, so it's safe to call css_get().
f75ca962 3996 */
c0ff4b85 3997 memcg_check_events(memcg, page);
f75ca962 3998 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 3999 mem_cgroup_swap_statistics(memcg, true);
4050377b 4000 css_get(&memcg->css);
f75ca962 4001 }
0030f535
JW
4002 /*
4003 * Migration does not charge the res_counter for the
4004 * replacement page, so leave it alone when phasing out the
4005 * page that is unused after the migration.
4006 */
4007 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4008 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4009
c0ff4b85 4010 return memcg;
d13d1443
KH
4011
4012unlock_out:
4013 unlock_page_cgroup(pc);
8c7c6e34 4014 return NULL;
3c541e14
BS
4015}
4016
69029cd5
KH
4017void mem_cgroup_uncharge_page(struct page *page)
4018{
52d4b9ac
KH
4019 /* early check. */
4020 if (page_mapped(page))
4021 return;
40f23a21 4022 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4023 /*
4024 * If the page is in swap cache, uncharge should be deferred
4025 * to the swap path, which also properly accounts swap usage
4026 * and handles memcg lifetime.
4027 *
4028 * Note that this check is not stable and reclaim may add the
4029 * page to swap cache at any time after this. However, if the
4030 * page is not in swap cache by the time page->mapcount hits
4031 * 0, there won't be any page table references to the swap
4032 * slot, and reclaim will free it and not actually write the
4033 * page to disk.
4034 */
0c59b89c
JW
4035 if (PageSwapCache(page))
4036 return;
0030f535 4037 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4038}
4039
4040void mem_cgroup_uncharge_cache_page(struct page *page)
4041{
4042 VM_BUG_ON(page_mapped(page));
b7abea96 4043 VM_BUG_ON(page->mapping);
0030f535 4044 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4045}
4046
569b846d
KH
4047/*
4048 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4049 * In that cases, pages are freed continuously and we can expect pages
4050 * are in the same memcg. All these calls itself limits the number of
4051 * pages freed at once, then uncharge_start/end() is called properly.
4052 * This may be called prural(2) times in a context,
4053 */
4054
4055void mem_cgroup_uncharge_start(void)
4056{
4057 current->memcg_batch.do_batch++;
4058 /* We can do nest. */
4059 if (current->memcg_batch.do_batch == 1) {
4060 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4061 current->memcg_batch.nr_pages = 0;
4062 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4063 }
4064}
4065
4066void mem_cgroup_uncharge_end(void)
4067{
4068 struct memcg_batch_info *batch = &current->memcg_batch;
4069
4070 if (!batch->do_batch)
4071 return;
4072
4073 batch->do_batch--;
4074 if (batch->do_batch) /* If stacked, do nothing. */
4075 return;
4076
4077 if (!batch->memcg)
4078 return;
4079 /*
4080 * This "batch->memcg" is valid without any css_get/put etc...
4081 * bacause we hide charges behind us.
4082 */
7ffd4ca7
JW
4083 if (batch->nr_pages)
4084 res_counter_uncharge(&batch->memcg->res,
4085 batch->nr_pages * PAGE_SIZE);
4086 if (batch->memsw_nr_pages)
4087 res_counter_uncharge(&batch->memcg->memsw,
4088 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4089 memcg_oom_recover(batch->memcg);
569b846d
KH
4090 /* forget this pointer (for sanity check) */
4091 batch->memcg = NULL;
4092}
4093
e767e056 4094#ifdef CONFIG_SWAP
8c7c6e34 4095/*
e767e056 4096 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4097 * memcg information is recorded to swap_cgroup of "ent"
4098 */
8a9478ca
KH
4099void
4100mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4101{
4102 struct mem_cgroup *memcg;
8a9478ca
KH
4103 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4104
4105 if (!swapout) /* this was a swap cache but the swap is unused ! */
4106 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4107
0030f535 4108 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4109
f75ca962
KH
4110 /*
4111 * record memcg information, if swapout && memcg != NULL,
4050377b 4112 * css_get() was called in uncharge().
f75ca962
KH
4113 */
4114 if (do_swap_account && swapout && memcg)
a3b2d692 4115 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4116}
e767e056 4117#endif
8c7c6e34 4118
c255a458 4119#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4120/*
4121 * called from swap_entry_free(). remove record in swap_cgroup and
4122 * uncharge "memsw" account.
4123 */
4124void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4125{
8c7c6e34 4126 struct mem_cgroup *memcg;
a3b2d692 4127 unsigned short id;
8c7c6e34
KH
4128
4129 if (!do_swap_account)
4130 return;
4131
a3b2d692
KH
4132 id = swap_cgroup_record(ent, 0);
4133 rcu_read_lock();
4134 memcg = mem_cgroup_lookup(id);
8c7c6e34 4135 if (memcg) {
a3b2d692
KH
4136 /*
4137 * We uncharge this because swap is freed.
4138 * This memcg can be obsolete one. We avoid calling css_tryget
4139 */
0c3e73e8 4140 if (!mem_cgroup_is_root(memcg))
4e649152 4141 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4142 mem_cgroup_swap_statistics(memcg, false);
4050377b 4143 css_put(&memcg->css);
8c7c6e34 4144 }
a3b2d692 4145 rcu_read_unlock();
d13d1443 4146}
02491447
DN
4147
4148/**
4149 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4150 * @entry: swap entry to be moved
4151 * @from: mem_cgroup which the entry is moved from
4152 * @to: mem_cgroup which the entry is moved to
4153 *
4154 * It succeeds only when the swap_cgroup's record for this entry is the same
4155 * as the mem_cgroup's id of @from.
4156 *
4157 * Returns 0 on success, -EINVAL on failure.
4158 *
4159 * The caller must have charged to @to, IOW, called res_counter_charge() about
4160 * both res and memsw, and called css_get().
4161 */
4162static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4163 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4164{
4165 unsigned short old_id, new_id;
4166
4167 old_id = css_id(&from->css);
4168 new_id = css_id(&to->css);
4169
4170 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4171 mem_cgroup_swap_statistics(from, false);
483c30b5 4172 mem_cgroup_swap_statistics(to, true);
02491447 4173 /*
483c30b5
DN
4174 * This function is only called from task migration context now.
4175 * It postpones res_counter and refcount handling till the end
4176 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4177 * improvement. But we cannot postpone css_get(to) because if
4178 * the process that has been moved to @to does swap-in, the
4179 * refcount of @to might be decreased to 0.
4180 *
4181 * We are in attach() phase, so the cgroup is guaranteed to be
4182 * alive, so we can just call css_get().
02491447 4183 */
4050377b 4184 css_get(&to->css);
02491447
DN
4185 return 0;
4186 }
4187 return -EINVAL;
4188}
4189#else
4190static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4191 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4192{
4193 return -EINVAL;
4194}
8c7c6e34 4195#endif
d13d1443 4196
ae41be37 4197/*
01b1ae63
KH
4198 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4199 * page belongs to.
ae41be37 4200 */
0030f535
JW
4201void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4202 struct mem_cgroup **memcgp)
ae41be37 4203{
c0ff4b85 4204 struct mem_cgroup *memcg = NULL;
b32967ff 4205 unsigned int nr_pages = 1;
7ec99d62 4206 struct page_cgroup *pc;
ac39cf8c 4207 enum charge_type ctype;
8869b8f6 4208
72835c86 4209 *memcgp = NULL;
56039efa 4210
f8d66542 4211 if (mem_cgroup_disabled())
0030f535 4212 return;
4077960e 4213
b32967ff
MG
4214 if (PageTransHuge(page))
4215 nr_pages <<= compound_order(page);
4216
52d4b9ac
KH
4217 pc = lookup_page_cgroup(page);
4218 lock_page_cgroup(pc);
4219 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4220 memcg = pc->mem_cgroup;
4221 css_get(&memcg->css);
ac39cf8c
AM
4222 /*
4223 * At migrating an anonymous page, its mapcount goes down
4224 * to 0 and uncharge() will be called. But, even if it's fully
4225 * unmapped, migration may fail and this page has to be
4226 * charged again. We set MIGRATION flag here and delay uncharge
4227 * until end_migration() is called
4228 *
4229 * Corner Case Thinking
4230 * A)
4231 * When the old page was mapped as Anon and it's unmap-and-freed
4232 * while migration was ongoing.
4233 * If unmap finds the old page, uncharge() of it will be delayed
4234 * until end_migration(). If unmap finds a new page, it's
4235 * uncharged when it make mapcount to be 1->0. If unmap code
4236 * finds swap_migration_entry, the new page will not be mapped
4237 * and end_migration() will find it(mapcount==0).
4238 *
4239 * B)
4240 * When the old page was mapped but migraion fails, the kernel
4241 * remaps it. A charge for it is kept by MIGRATION flag even
4242 * if mapcount goes down to 0. We can do remap successfully
4243 * without charging it again.
4244 *
4245 * C)
4246 * The "old" page is under lock_page() until the end of
4247 * migration, so, the old page itself will not be swapped-out.
4248 * If the new page is swapped out before end_migraton, our
4249 * hook to usual swap-out path will catch the event.
4250 */
4251 if (PageAnon(page))
4252 SetPageCgroupMigration(pc);
e8589cc1 4253 }
52d4b9ac 4254 unlock_page_cgroup(pc);
ac39cf8c
AM
4255 /*
4256 * If the page is not charged at this point,
4257 * we return here.
4258 */
c0ff4b85 4259 if (!memcg)
0030f535 4260 return;
01b1ae63 4261
72835c86 4262 *memcgp = memcg;
ac39cf8c
AM
4263 /*
4264 * We charge new page before it's used/mapped. So, even if unlock_page()
4265 * is called before end_migration, we can catch all events on this new
4266 * page. In the case new page is migrated but not remapped, new page's
4267 * mapcount will be finally 0 and we call uncharge in end_migration().
4268 */
ac39cf8c 4269 if (PageAnon(page))
41326c17 4270 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4271 else
62ba7442 4272 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4273 /*
4274 * The page is committed to the memcg, but it's not actually
4275 * charged to the res_counter since we plan on replacing the
4276 * old one and only one page is going to be left afterwards.
4277 */
b32967ff 4278 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4279}
8869b8f6 4280
69029cd5 4281/* remove redundant charge if migration failed*/
c0ff4b85 4282void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4283 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4284{
ac39cf8c 4285 struct page *used, *unused;
01b1ae63 4286 struct page_cgroup *pc;
b2402857 4287 bool anon;
01b1ae63 4288
c0ff4b85 4289 if (!memcg)
01b1ae63 4290 return;
b25ed609 4291
50de1dd9 4292 if (!migration_ok) {
ac39cf8c
AM
4293 used = oldpage;
4294 unused = newpage;
01b1ae63 4295 } else {
ac39cf8c 4296 used = newpage;
01b1ae63
KH
4297 unused = oldpage;
4298 }
0030f535 4299 anon = PageAnon(used);
7d188958
JW
4300 __mem_cgroup_uncharge_common(unused,
4301 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4302 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4303 true);
0030f535 4304 css_put(&memcg->css);
69029cd5 4305 /*
ac39cf8c
AM
4306 * We disallowed uncharge of pages under migration because mapcount
4307 * of the page goes down to zero, temporarly.
4308 * Clear the flag and check the page should be charged.
01b1ae63 4309 */
ac39cf8c
AM
4310 pc = lookup_page_cgroup(oldpage);
4311 lock_page_cgroup(pc);
4312 ClearPageCgroupMigration(pc);
4313 unlock_page_cgroup(pc);
ac39cf8c 4314
01b1ae63 4315 /*
ac39cf8c
AM
4316 * If a page is a file cache, radix-tree replacement is very atomic
4317 * and we can skip this check. When it was an Anon page, its mapcount
4318 * goes down to 0. But because we added MIGRATION flage, it's not
4319 * uncharged yet. There are several case but page->mapcount check
4320 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4321 * check. (see prepare_charge() also)
69029cd5 4322 */
b2402857 4323 if (anon)
ac39cf8c 4324 mem_cgroup_uncharge_page(used);
ae41be37 4325}
78fb7466 4326
ab936cbc
KH
4327/*
4328 * At replace page cache, newpage is not under any memcg but it's on
4329 * LRU. So, this function doesn't touch res_counter but handles LRU
4330 * in correct way. Both pages are locked so we cannot race with uncharge.
4331 */
4332void mem_cgroup_replace_page_cache(struct page *oldpage,
4333 struct page *newpage)
4334{
bde05d1c 4335 struct mem_cgroup *memcg = NULL;
ab936cbc 4336 struct page_cgroup *pc;
ab936cbc 4337 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4338
4339 if (mem_cgroup_disabled())
4340 return;
4341
4342 pc = lookup_page_cgroup(oldpage);
4343 /* fix accounting on old pages */
4344 lock_page_cgroup(pc);
bde05d1c
HD
4345 if (PageCgroupUsed(pc)) {
4346 memcg = pc->mem_cgroup;
b070e65c 4347 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4348 ClearPageCgroupUsed(pc);
4349 }
ab936cbc
KH
4350 unlock_page_cgroup(pc);
4351
bde05d1c
HD
4352 /*
4353 * When called from shmem_replace_page(), in some cases the
4354 * oldpage has already been charged, and in some cases not.
4355 */
4356 if (!memcg)
4357 return;
ab936cbc
KH
4358 /*
4359 * Even if newpage->mapping was NULL before starting replacement,
4360 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4361 * LRU while we overwrite pc->mem_cgroup.
4362 */
ce587e65 4363 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4364}
4365
f212ad7c
DN
4366#ifdef CONFIG_DEBUG_VM
4367static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4368{
4369 struct page_cgroup *pc;
4370
4371 pc = lookup_page_cgroup(page);
cfa44946
JW
4372 /*
4373 * Can be NULL while feeding pages into the page allocator for
4374 * the first time, i.e. during boot or memory hotplug;
4375 * or when mem_cgroup_disabled().
4376 */
f212ad7c
DN
4377 if (likely(pc) && PageCgroupUsed(pc))
4378 return pc;
4379 return NULL;
4380}
4381
4382bool mem_cgroup_bad_page_check(struct page *page)
4383{
4384 if (mem_cgroup_disabled())
4385 return false;
4386
4387 return lookup_page_cgroup_used(page) != NULL;
4388}
4389
4390void mem_cgroup_print_bad_page(struct page *page)
4391{
4392 struct page_cgroup *pc;
4393
4394 pc = lookup_page_cgroup_used(page);
4395 if (pc) {
d045197f
AM
4396 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4397 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4398 }
4399}
4400#endif
4401
d38d2a75 4402static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4403 unsigned long long val)
628f4235 4404{
81d39c20 4405 int retry_count;
3c11ecf4 4406 u64 memswlimit, memlimit;
628f4235 4407 int ret = 0;
81d39c20
KH
4408 int children = mem_cgroup_count_children(memcg);
4409 u64 curusage, oldusage;
3c11ecf4 4410 int enlarge;
81d39c20
KH
4411
4412 /*
4413 * For keeping hierarchical_reclaim simple, how long we should retry
4414 * is depends on callers. We set our retry-count to be function
4415 * of # of children which we should visit in this loop.
4416 */
4417 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4418
4419 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4420
3c11ecf4 4421 enlarge = 0;
8c7c6e34 4422 while (retry_count) {
628f4235
KH
4423 if (signal_pending(current)) {
4424 ret = -EINTR;
4425 break;
4426 }
8c7c6e34
KH
4427 /*
4428 * Rather than hide all in some function, I do this in
4429 * open coded manner. You see what this really does.
aaad153e 4430 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4431 */
4432 mutex_lock(&set_limit_mutex);
4433 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4434 if (memswlimit < val) {
4435 ret = -EINVAL;
4436 mutex_unlock(&set_limit_mutex);
628f4235
KH
4437 break;
4438 }
3c11ecf4
KH
4439
4440 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4441 if (memlimit < val)
4442 enlarge = 1;
4443
8c7c6e34 4444 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4445 if (!ret) {
4446 if (memswlimit == val)
4447 memcg->memsw_is_minimum = true;
4448 else
4449 memcg->memsw_is_minimum = false;
4450 }
8c7c6e34
KH
4451 mutex_unlock(&set_limit_mutex);
4452
4453 if (!ret)
4454 break;
4455
5660048c
JW
4456 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4457 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4458 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4459 /* Usage is reduced ? */
f894ffa8 4460 if (curusage >= oldusage)
81d39c20
KH
4461 retry_count--;
4462 else
4463 oldusage = curusage;
8c7c6e34 4464 }
3c11ecf4
KH
4465 if (!ret && enlarge)
4466 memcg_oom_recover(memcg);
14797e23 4467
8c7c6e34
KH
4468 return ret;
4469}
4470
338c8431
LZ
4471static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4472 unsigned long long val)
8c7c6e34 4473{
81d39c20 4474 int retry_count;
3c11ecf4 4475 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4476 int children = mem_cgroup_count_children(memcg);
4477 int ret = -EBUSY;
3c11ecf4 4478 int enlarge = 0;
8c7c6e34 4479
81d39c20 4480 /* see mem_cgroup_resize_res_limit */
f894ffa8 4481 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4482 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4483 while (retry_count) {
4484 if (signal_pending(current)) {
4485 ret = -EINTR;
4486 break;
4487 }
4488 /*
4489 * Rather than hide all in some function, I do this in
4490 * open coded manner. You see what this really does.
aaad153e 4491 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4492 */
4493 mutex_lock(&set_limit_mutex);
4494 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4495 if (memlimit > val) {
4496 ret = -EINVAL;
4497 mutex_unlock(&set_limit_mutex);
4498 break;
4499 }
3c11ecf4
KH
4500 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4501 if (memswlimit < val)
4502 enlarge = 1;
8c7c6e34 4503 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4504 if (!ret) {
4505 if (memlimit == val)
4506 memcg->memsw_is_minimum = true;
4507 else
4508 memcg->memsw_is_minimum = false;
4509 }
8c7c6e34
KH
4510 mutex_unlock(&set_limit_mutex);
4511
4512 if (!ret)
4513 break;
4514
5660048c
JW
4515 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4516 MEM_CGROUP_RECLAIM_NOSWAP |
4517 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4518 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4519 /* Usage is reduced ? */
8c7c6e34 4520 if (curusage >= oldusage)
628f4235 4521 retry_count--;
81d39c20
KH
4522 else
4523 oldusage = curusage;
628f4235 4524 }
3c11ecf4
KH
4525 if (!ret && enlarge)
4526 memcg_oom_recover(memcg);
628f4235
KH
4527 return ret;
4528}
4529
2ef37d3f
MH
4530/**
4531 * mem_cgroup_force_empty_list - clears LRU of a group
4532 * @memcg: group to clear
4533 * @node: NUMA node
4534 * @zid: zone id
4535 * @lru: lru to to clear
4536 *
3c935d18 4537 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4538 * reclaim the pages page themselves - pages are moved to the parent (or root)
4539 * group.
cc847582 4540 */
2ef37d3f 4541static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4542 int node, int zid, enum lru_list lru)
cc847582 4543{
bea8c150 4544 struct lruvec *lruvec;
2ef37d3f 4545 unsigned long flags;
072c56c1 4546 struct list_head *list;
925b7673
JW
4547 struct page *busy;
4548 struct zone *zone;
072c56c1 4549
08e552c6 4550 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4551 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4552 list = &lruvec->lists[lru];
cc847582 4553
f817ed48 4554 busy = NULL;
2ef37d3f 4555 do {
925b7673 4556 struct page_cgroup *pc;
5564e88b
JW
4557 struct page *page;
4558
08e552c6 4559 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4560 if (list_empty(list)) {
08e552c6 4561 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4562 break;
f817ed48 4563 }
925b7673
JW
4564 page = list_entry(list->prev, struct page, lru);
4565 if (busy == page) {
4566 list_move(&page->lru, list);
648bcc77 4567 busy = NULL;
08e552c6 4568 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4569 continue;
4570 }
08e552c6 4571 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4572
925b7673 4573 pc = lookup_page_cgroup(page);
5564e88b 4574
3c935d18 4575 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4576 /* found lock contention or "pc" is obsolete. */
925b7673 4577 busy = page;
f817ed48
KH
4578 cond_resched();
4579 } else
4580 busy = NULL;
2ef37d3f 4581 } while (!list_empty(list));
cc847582
KH
4582}
4583
4584/*
c26251f9
MH
4585 * make mem_cgroup's charge to be 0 if there is no task by moving
4586 * all the charges and pages to the parent.
cc847582 4587 * This enables deleting this mem_cgroup.
c26251f9
MH
4588 *
4589 * Caller is responsible for holding css reference on the memcg.
cc847582 4590 */
ab5196c2 4591static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4592{
c26251f9 4593 int node, zid;
bea207c8 4594 u64 usage;
f817ed48 4595
fce66477 4596 do {
52d4b9ac
KH
4597 /* This is for making all *used* pages to be on LRU. */
4598 lru_add_drain_all();
c0ff4b85 4599 drain_all_stock_sync(memcg);
c0ff4b85 4600 mem_cgroup_start_move(memcg);
31aaea4a 4601 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4603 enum lru_list lru;
4604 for_each_lru(lru) {
2ef37d3f 4605 mem_cgroup_force_empty_list(memcg,
f156ab93 4606 node, zid, lru);
f817ed48 4607 }
1ecaab2b 4608 }
f817ed48 4609 }
c0ff4b85
R
4610 mem_cgroup_end_move(memcg);
4611 memcg_oom_recover(memcg);
52d4b9ac 4612 cond_resched();
f817ed48 4613
2ef37d3f 4614 /*
bea207c8
GC
4615 * Kernel memory may not necessarily be trackable to a specific
4616 * process. So they are not migrated, and therefore we can't
4617 * expect their value to drop to 0 here.
4618 * Having res filled up with kmem only is enough.
4619 *
2ef37d3f
MH
4620 * This is a safety check because mem_cgroup_force_empty_list
4621 * could have raced with mem_cgroup_replace_page_cache callers
4622 * so the lru seemed empty but the page could have been added
4623 * right after the check. RES_USAGE should be safe as we always
4624 * charge before adding to the LRU.
4625 */
bea207c8
GC
4626 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4627 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4628 } while (usage > 0);
c26251f9
MH
4629}
4630
b5f99b53
GC
4631/*
4632 * This mainly exists for tests during the setting of set of use_hierarchy.
4633 * Since this is the very setting we are changing, the current hierarchy value
4634 * is meaningless
4635 */
4636static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4637{
492eb21b 4638 struct cgroup_subsys_state *pos;
b5f99b53
GC
4639
4640 /* bounce at first found */
492eb21b 4641 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4642 return true;
4643 return false;
4644}
4645
4646/*
0999821b
GC
4647 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4648 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4649 * from mem_cgroup_count_children(), in the sense that we don't really care how
4650 * many children we have; we only need to know if we have any. It also counts
4651 * any memcg without hierarchy as infertile.
4652 */
4653static inline bool memcg_has_children(struct mem_cgroup *memcg)
4654{
4655 return memcg->use_hierarchy && __memcg_has_children(memcg);
4656}
4657
c26251f9
MH
4658/*
4659 * Reclaims as many pages from the given memcg as possible and moves
4660 * the rest to the parent.
4661 *
4662 * Caller is responsible for holding css reference for memcg.
4663 */
4664static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4665{
4666 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4667 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4668
c1e862c1 4669 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4670 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4671 return -EBUSY;
4672
c1e862c1
KH
4673 /* we call try-to-free pages for make this cgroup empty */
4674 lru_add_drain_all();
f817ed48 4675 /* try to free all pages in this cgroup */
569530fb 4676 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4677 int progress;
c1e862c1 4678
c26251f9
MH
4679 if (signal_pending(current))
4680 return -EINTR;
4681
c0ff4b85 4682 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4683 false);
c1e862c1 4684 if (!progress) {
f817ed48 4685 nr_retries--;
c1e862c1 4686 /* maybe some writeback is necessary */
8aa7e847 4687 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4688 }
f817ed48
KH
4689
4690 }
08e552c6 4691 lru_add_drain();
ab5196c2
MH
4692 mem_cgroup_reparent_charges(memcg);
4693
4694 return 0;
cc847582
KH
4695}
4696
182446d0
TH
4697static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4698 unsigned int event)
c1e862c1 4699{
182446d0 4700 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4701
d8423011
MH
4702 if (mem_cgroup_is_root(memcg))
4703 return -EINVAL;
c33bd835 4704 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4705}
4706
182446d0
TH
4707static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4708 struct cftype *cft)
18f59ea7 4709{
182446d0 4710 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4711}
4712
182446d0
TH
4713static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4714 struct cftype *cft, u64 val)
18f59ea7
BS
4715{
4716 int retval = 0;
182446d0 4717 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4718 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4719
0999821b 4720 mutex_lock(&memcg_create_mutex);
567fb435
GC
4721
4722 if (memcg->use_hierarchy == val)
4723 goto out;
4724
18f59ea7 4725 /*
af901ca1 4726 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4727 * in the child subtrees. If it is unset, then the change can
4728 * occur, provided the current cgroup has no children.
4729 *
4730 * For the root cgroup, parent_mem is NULL, we allow value to be
4731 * set if there are no children.
4732 */
c0ff4b85 4733 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4734 (val == 1 || val == 0)) {
b5f99b53 4735 if (!__memcg_has_children(memcg))
c0ff4b85 4736 memcg->use_hierarchy = val;
18f59ea7
BS
4737 else
4738 retval = -EBUSY;
4739 } else
4740 retval = -EINVAL;
567fb435
GC
4741
4742out:
0999821b 4743 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4744
4745 return retval;
4746}
4747
0c3e73e8 4748
c0ff4b85 4749static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4750 enum mem_cgroup_stat_index idx)
0c3e73e8 4751{
7d74b06f 4752 struct mem_cgroup *iter;
7a159cc9 4753 long val = 0;
0c3e73e8 4754
7a159cc9 4755 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4756 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4757 val += mem_cgroup_read_stat(iter, idx);
4758
4759 if (val < 0) /* race ? */
4760 val = 0;
4761 return val;
0c3e73e8
BS
4762}
4763
c0ff4b85 4764static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4765{
7d74b06f 4766 u64 val;
104f3928 4767
c0ff4b85 4768 if (!mem_cgroup_is_root(memcg)) {
104f3928 4769 if (!swap)
65c64ce8 4770 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4771 else
65c64ce8 4772 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4773 }
4774
b070e65c
DR
4775 /*
4776 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4777 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4778 */
c0ff4b85
R
4779 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4780 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4781
7d74b06f 4782 if (swap)
bff6bb83 4783 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4784
4785 return val << PAGE_SHIFT;
4786}
4787
182446d0
TH
4788static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4789 struct cftype *cft, struct file *file,
4790 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 4791{
182446d0 4792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 4793 char str[64];
104f3928 4794 u64 val;
86ae53e1
GC
4795 int name, len;
4796 enum res_type type;
8c7c6e34
KH
4797
4798 type = MEMFILE_TYPE(cft->private);
4799 name = MEMFILE_ATTR(cft->private);
af36f906 4800
8c7c6e34
KH
4801 switch (type) {
4802 case _MEM:
104f3928 4803 if (name == RES_USAGE)
c0ff4b85 4804 val = mem_cgroup_usage(memcg, false);
104f3928 4805 else
c0ff4b85 4806 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4807 break;
4808 case _MEMSWAP:
104f3928 4809 if (name == RES_USAGE)
c0ff4b85 4810 val = mem_cgroup_usage(memcg, true);
104f3928 4811 else
c0ff4b85 4812 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4813 break;
510fc4e1
GC
4814 case _KMEM:
4815 val = res_counter_read_u64(&memcg->kmem, name);
4816 break;
8c7c6e34
KH
4817 default:
4818 BUG();
8c7c6e34 4819 }
af36f906
TH
4820
4821 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4822 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4823}
510fc4e1 4824
182446d0 4825static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
4826{
4827 int ret = -EINVAL;
4828#ifdef CONFIG_MEMCG_KMEM
182446d0 4829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
4830 /*
4831 * For simplicity, we won't allow this to be disabled. It also can't
4832 * be changed if the cgroup has children already, or if tasks had
4833 * already joined.
4834 *
4835 * If tasks join before we set the limit, a person looking at
4836 * kmem.usage_in_bytes will have no way to determine when it took
4837 * place, which makes the value quite meaningless.
4838 *
4839 * After it first became limited, changes in the value of the limit are
4840 * of course permitted.
510fc4e1 4841 */
0999821b 4842 mutex_lock(&memcg_create_mutex);
510fc4e1 4843 mutex_lock(&set_limit_mutex);
6de5a8bf 4844 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 4845 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
4846 ret = -EBUSY;
4847 goto out;
4848 }
4849 ret = res_counter_set_limit(&memcg->kmem, val);
4850 VM_BUG_ON(ret);
4851
55007d84
GC
4852 ret = memcg_update_cache_sizes(memcg);
4853 if (ret) {
6de5a8bf 4854 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
4855 goto out;
4856 }
692e89ab
GC
4857 static_key_slow_inc(&memcg_kmem_enabled_key);
4858 /*
4859 * setting the active bit after the inc will guarantee no one
4860 * starts accounting before all call sites are patched
4861 */
4862 memcg_kmem_set_active(memcg);
510fc4e1
GC
4863 } else
4864 ret = res_counter_set_limit(&memcg->kmem, val);
4865out:
4866 mutex_unlock(&set_limit_mutex);
0999821b 4867 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
4868#endif
4869 return ret;
4870}
4871
6d043990 4872#ifdef CONFIG_MEMCG_KMEM
55007d84 4873static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4874{
55007d84 4875 int ret = 0;
510fc4e1
GC
4876 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4877 if (!parent)
55007d84
GC
4878 goto out;
4879
510fc4e1 4880 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
4881 /*
4882 * When that happen, we need to disable the static branch only on those
4883 * memcgs that enabled it. To achieve this, we would be forced to
4884 * complicate the code by keeping track of which memcgs were the ones
4885 * that actually enabled limits, and which ones got it from its
4886 * parents.
4887 *
4888 * It is a lot simpler just to do static_key_slow_inc() on every child
4889 * that is accounted.
4890 */
55007d84
GC
4891 if (!memcg_kmem_is_active(memcg))
4892 goto out;
4893
4894 /*
10d5ebf4
LZ
4895 * __mem_cgroup_free() will issue static_key_slow_dec() because this
4896 * memcg is active already. If the later initialization fails then the
4897 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 4898 */
55007d84
GC
4899 static_key_slow_inc(&memcg_kmem_enabled_key);
4900
4901 mutex_lock(&set_limit_mutex);
425c598d 4902 memcg_stop_kmem_account();
55007d84 4903 ret = memcg_update_cache_sizes(memcg);
425c598d 4904 memcg_resume_kmem_account();
55007d84 4905 mutex_unlock(&set_limit_mutex);
55007d84
GC
4906out:
4907 return ret;
510fc4e1 4908}
6d043990 4909#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4910
628f4235
KH
4911/*
4912 * The user of this function is...
4913 * RES_LIMIT.
4914 */
182446d0 4915static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 4916 const char *buffer)
8cdea7c0 4917{
182446d0 4918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
4919 enum res_type type;
4920 int name;
628f4235
KH
4921 unsigned long long val;
4922 int ret;
4923
8c7c6e34
KH
4924 type = MEMFILE_TYPE(cft->private);
4925 name = MEMFILE_ATTR(cft->private);
af36f906 4926
8c7c6e34 4927 switch (name) {
628f4235 4928 case RES_LIMIT:
4b3bde4c
BS
4929 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4930 ret = -EINVAL;
4931 break;
4932 }
628f4235
KH
4933 /* This function does all necessary parse...reuse it */
4934 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4935 if (ret)
4936 break;
4937 if (type == _MEM)
628f4235 4938 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4939 else if (type == _MEMSWAP)
8c7c6e34 4940 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4941 else if (type == _KMEM)
182446d0 4942 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
4943 else
4944 return -EINVAL;
628f4235 4945 break;
296c81d8
BS
4946 case RES_SOFT_LIMIT:
4947 ret = res_counter_memparse_write_strategy(buffer, &val);
4948 if (ret)
4949 break;
4950 /*
4951 * For memsw, soft limits are hard to implement in terms
4952 * of semantics, for now, we support soft limits for
4953 * control without swap
4954 */
4955 if (type == _MEM)
4956 ret = res_counter_set_soft_limit(&memcg->res, val);
4957 else
4958 ret = -EINVAL;
4959 break;
628f4235
KH
4960 default:
4961 ret = -EINVAL; /* should be BUG() ? */
4962 break;
4963 }
4964 return ret;
8cdea7c0
BS
4965}
4966
fee7b548
KH
4967static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4968 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4969{
fee7b548
KH
4970 unsigned long long min_limit, min_memsw_limit, tmp;
4971
4972 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4973 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4974 if (!memcg->use_hierarchy)
4975 goto out;
4976
63876986
TH
4977 while (css_parent(&memcg->css)) {
4978 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
4979 if (!memcg->use_hierarchy)
4980 break;
4981 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4982 min_limit = min(min_limit, tmp);
4983 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4984 min_memsw_limit = min(min_memsw_limit, tmp);
4985 }
4986out:
4987 *mem_limit = min_limit;
4988 *memsw_limit = min_memsw_limit;
fee7b548
KH
4989}
4990
182446d0 4991static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 4992{
182446d0 4993 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
4994 int name;
4995 enum res_type type;
c84872e1 4996
8c7c6e34
KH
4997 type = MEMFILE_TYPE(event);
4998 name = MEMFILE_ATTR(event);
af36f906 4999
8c7c6e34 5000 switch (name) {
29f2a4da 5001 case RES_MAX_USAGE:
8c7c6e34 5002 if (type == _MEM)
c0ff4b85 5003 res_counter_reset_max(&memcg->res);
510fc4e1 5004 else if (type == _MEMSWAP)
c0ff4b85 5005 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5006 else if (type == _KMEM)
5007 res_counter_reset_max(&memcg->kmem);
5008 else
5009 return -EINVAL;
29f2a4da
PE
5010 break;
5011 case RES_FAILCNT:
8c7c6e34 5012 if (type == _MEM)
c0ff4b85 5013 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5014 else if (type == _MEMSWAP)
c0ff4b85 5015 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5016 else if (type == _KMEM)
5017 res_counter_reset_failcnt(&memcg->kmem);
5018 else
5019 return -EINVAL;
29f2a4da
PE
5020 break;
5021 }
f64c3f54 5022
85cc59db 5023 return 0;
c84872e1
PE
5024}
5025
182446d0 5026static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5027 struct cftype *cft)
5028{
182446d0 5029 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5030}
5031
02491447 5032#ifdef CONFIG_MMU
182446d0 5033static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5034 struct cftype *cft, u64 val)
5035{
182446d0 5036 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5037
5038 if (val >= (1 << NR_MOVE_TYPE))
5039 return -EINVAL;
ee5e8472 5040
7dc74be0 5041 /*
ee5e8472
GC
5042 * No kind of locking is needed in here, because ->can_attach() will
5043 * check this value once in the beginning of the process, and then carry
5044 * on with stale data. This means that changes to this value will only
5045 * affect task migrations starting after the change.
7dc74be0 5046 */
c0ff4b85 5047 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5048 return 0;
5049}
02491447 5050#else
182446d0 5051static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5052 struct cftype *cft, u64 val)
5053{
5054 return -ENOSYS;
5055}
5056#endif
7dc74be0 5057
406eb0c9 5058#ifdef CONFIG_NUMA
182446d0
TH
5059static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5060 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5061{
5062 int nid;
5063 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5064 unsigned long node_nr;
182446d0 5065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5066
d79154bb 5067 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5068 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5069 for_each_node_state(nid, N_MEMORY) {
d79154bb 5070 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5071 seq_printf(m, " N%d=%lu", nid, node_nr);
5072 }
5073 seq_putc(m, '\n');
5074
d79154bb 5075 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5076 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5077 for_each_node_state(nid, N_MEMORY) {
d79154bb 5078 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5079 LRU_ALL_FILE);
406eb0c9
YH
5080 seq_printf(m, " N%d=%lu", nid, node_nr);
5081 }
5082 seq_putc(m, '\n');
5083
d79154bb 5084 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5085 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5086 for_each_node_state(nid, N_MEMORY) {
d79154bb 5087 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5088 LRU_ALL_ANON);
406eb0c9
YH
5089 seq_printf(m, " N%d=%lu", nid, node_nr);
5090 }
5091 seq_putc(m, '\n');
5092
d79154bb 5093 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5094 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5095 for_each_node_state(nid, N_MEMORY) {
d79154bb 5096 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5097 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5098 seq_printf(m, " N%d=%lu", nid, node_nr);
5099 }
5100 seq_putc(m, '\n');
5101 return 0;
5102}
5103#endif /* CONFIG_NUMA */
5104
af7c4b0e
JW
5105static inline void mem_cgroup_lru_names_not_uptodate(void)
5106{
5107 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5108}
5109
182446d0 5110static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5111 struct seq_file *m)
d2ceb9b7 5112{
182446d0 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5114 struct mem_cgroup *mi;
5115 unsigned int i;
406eb0c9 5116
af7c4b0e 5117 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5118 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5119 continue;
af7c4b0e
JW
5120 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5121 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5122 }
7b854121 5123
af7c4b0e
JW
5124 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5125 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5126 mem_cgroup_read_events(memcg, i));
5127
5128 for (i = 0; i < NR_LRU_LISTS; i++)
5129 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5130 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5131
14067bb3 5132 /* Hierarchical information */
fee7b548
KH
5133 {
5134 unsigned long long limit, memsw_limit;
d79154bb 5135 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5136 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5137 if (do_swap_account)
78ccf5b5
JW
5138 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5139 memsw_limit);
fee7b548 5140 }
7f016ee8 5141
af7c4b0e
JW
5142 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5143 long long val = 0;
5144
bff6bb83 5145 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5146 continue;
af7c4b0e
JW
5147 for_each_mem_cgroup_tree(mi, memcg)
5148 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5149 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5150 }
5151
5152 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5153 unsigned long long val = 0;
5154
5155 for_each_mem_cgroup_tree(mi, memcg)
5156 val += mem_cgroup_read_events(mi, i);
5157 seq_printf(m, "total_%s %llu\n",
5158 mem_cgroup_events_names[i], val);
5159 }
5160
5161 for (i = 0; i < NR_LRU_LISTS; i++) {
5162 unsigned long long val = 0;
5163
5164 for_each_mem_cgroup_tree(mi, memcg)
5165 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5166 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5167 }
14067bb3 5168
7f016ee8 5169#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5170 {
5171 int nid, zid;
5172 struct mem_cgroup_per_zone *mz;
89abfab1 5173 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5174 unsigned long recent_rotated[2] = {0, 0};
5175 unsigned long recent_scanned[2] = {0, 0};
5176
5177 for_each_online_node(nid)
5178 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5179 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5180 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5181
89abfab1
HD
5182 recent_rotated[0] += rstat->recent_rotated[0];
5183 recent_rotated[1] += rstat->recent_rotated[1];
5184 recent_scanned[0] += rstat->recent_scanned[0];
5185 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5186 }
78ccf5b5
JW
5187 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5188 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5189 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5190 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5191 }
5192#endif
5193
d2ceb9b7
KH
5194 return 0;
5195}
5196
182446d0
TH
5197static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5198 struct cftype *cft)
a7885eb8 5199{
182446d0 5200 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5201
1f4c025b 5202 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5203}
5204
182446d0
TH
5205static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5206 struct cftype *cft, u64 val)
a7885eb8 5207{
182446d0 5208 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5209 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5210
63876986 5211 if (val > 100 || !parent)
a7885eb8
KM
5212 return -EINVAL;
5213
0999821b 5214 mutex_lock(&memcg_create_mutex);
068b38c1 5215
a7885eb8 5216 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5217 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5218 mutex_unlock(&memcg_create_mutex);
a7885eb8 5219 return -EINVAL;
068b38c1 5220 }
a7885eb8 5221
a7885eb8 5222 memcg->swappiness = val;
a7885eb8 5223
0999821b 5224 mutex_unlock(&memcg_create_mutex);
068b38c1 5225
a7885eb8
KM
5226 return 0;
5227}
5228
2e72b634
KS
5229static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5230{
5231 struct mem_cgroup_threshold_ary *t;
5232 u64 usage;
5233 int i;
5234
5235 rcu_read_lock();
5236 if (!swap)
2c488db2 5237 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5238 else
2c488db2 5239 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5240
5241 if (!t)
5242 goto unlock;
5243
5244 usage = mem_cgroup_usage(memcg, swap);
5245
5246 /*
748dad36 5247 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5248 * If it's not true, a threshold was crossed after last
5249 * call of __mem_cgroup_threshold().
5250 */
5407a562 5251 i = t->current_threshold;
2e72b634
KS
5252
5253 /*
5254 * Iterate backward over array of thresholds starting from
5255 * current_threshold and check if a threshold is crossed.
5256 * If none of thresholds below usage is crossed, we read
5257 * only one element of the array here.
5258 */
5259 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5260 eventfd_signal(t->entries[i].eventfd, 1);
5261
5262 /* i = current_threshold + 1 */
5263 i++;
5264
5265 /*
5266 * Iterate forward over array of thresholds starting from
5267 * current_threshold+1 and check if a threshold is crossed.
5268 * If none of thresholds above usage is crossed, we read
5269 * only one element of the array here.
5270 */
5271 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5272 eventfd_signal(t->entries[i].eventfd, 1);
5273
5274 /* Update current_threshold */
5407a562 5275 t->current_threshold = i - 1;
2e72b634
KS
5276unlock:
5277 rcu_read_unlock();
5278}
5279
5280static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5281{
ad4ca5f4
KS
5282 while (memcg) {
5283 __mem_cgroup_threshold(memcg, false);
5284 if (do_swap_account)
5285 __mem_cgroup_threshold(memcg, true);
5286
5287 memcg = parent_mem_cgroup(memcg);
5288 }
2e72b634
KS
5289}
5290
5291static int compare_thresholds(const void *a, const void *b)
5292{
5293 const struct mem_cgroup_threshold *_a = a;
5294 const struct mem_cgroup_threshold *_b = b;
5295
2bff24a3
GT
5296 if (_a->threshold > _b->threshold)
5297 return 1;
5298
5299 if (_a->threshold < _b->threshold)
5300 return -1;
5301
5302 return 0;
2e72b634
KS
5303}
5304
c0ff4b85 5305static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5306{
5307 struct mem_cgroup_eventfd_list *ev;
5308
c0ff4b85 5309 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5310 eventfd_signal(ev->eventfd, 1);
5311 return 0;
5312}
5313
c0ff4b85 5314static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5315{
7d74b06f
KH
5316 struct mem_cgroup *iter;
5317
c0ff4b85 5318 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5319 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5320}
5321
81eeaf04 5322static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5323 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5324{
81eeaf04 5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5326 struct mem_cgroup_thresholds *thresholds;
5327 struct mem_cgroup_threshold_ary *new;
86ae53e1 5328 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5329 u64 threshold, usage;
2c488db2 5330 int i, size, ret;
2e72b634
KS
5331
5332 ret = res_counter_memparse_write_strategy(args, &threshold);
5333 if (ret)
5334 return ret;
5335
5336 mutex_lock(&memcg->thresholds_lock);
2c488db2 5337
2e72b634 5338 if (type == _MEM)
2c488db2 5339 thresholds = &memcg->thresholds;
2e72b634 5340 else if (type == _MEMSWAP)
2c488db2 5341 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5342 else
5343 BUG();
5344
5345 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5346
5347 /* Check if a threshold crossed before adding a new one */
2c488db2 5348 if (thresholds->primary)
2e72b634
KS
5349 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5350
2c488db2 5351 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5352
5353 /* Allocate memory for new array of thresholds */
2c488db2 5354 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5355 GFP_KERNEL);
2c488db2 5356 if (!new) {
2e72b634
KS
5357 ret = -ENOMEM;
5358 goto unlock;
5359 }
2c488db2 5360 new->size = size;
2e72b634
KS
5361
5362 /* Copy thresholds (if any) to new array */
2c488db2
KS
5363 if (thresholds->primary) {
5364 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5365 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5366 }
5367
2e72b634 5368 /* Add new threshold */
2c488db2
KS
5369 new->entries[size - 1].eventfd = eventfd;
5370 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5371
5372 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5373 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5374 compare_thresholds, NULL);
5375
5376 /* Find current threshold */
2c488db2 5377 new->current_threshold = -1;
2e72b634 5378 for (i = 0; i < size; i++) {
748dad36 5379 if (new->entries[i].threshold <= usage) {
2e72b634 5380 /*
2c488db2
KS
5381 * new->current_threshold will not be used until
5382 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5383 * it here.
5384 */
2c488db2 5385 ++new->current_threshold;
748dad36
SZ
5386 } else
5387 break;
2e72b634
KS
5388 }
5389
2c488db2
KS
5390 /* Free old spare buffer and save old primary buffer as spare */
5391 kfree(thresholds->spare);
5392 thresholds->spare = thresholds->primary;
5393
5394 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5395
907860ed 5396 /* To be sure that nobody uses thresholds */
2e72b634
KS
5397 synchronize_rcu();
5398
2e72b634
KS
5399unlock:
5400 mutex_unlock(&memcg->thresholds_lock);
5401
5402 return ret;
5403}
5404
81eeaf04 5405static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5406 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5407{
81eeaf04 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5409 struct mem_cgroup_thresholds *thresholds;
5410 struct mem_cgroup_threshold_ary *new;
86ae53e1 5411 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5412 u64 usage;
2c488db2 5413 int i, j, size;
2e72b634
KS
5414
5415 mutex_lock(&memcg->thresholds_lock);
5416 if (type == _MEM)
2c488db2 5417 thresholds = &memcg->thresholds;
2e72b634 5418 else if (type == _MEMSWAP)
2c488db2 5419 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5420 else
5421 BUG();
5422
371528ca
AV
5423 if (!thresholds->primary)
5424 goto unlock;
5425
2e72b634
KS
5426 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5427
5428 /* Check if a threshold crossed before removing */
5429 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5430
5431 /* Calculate new number of threshold */
2c488db2
KS
5432 size = 0;
5433 for (i = 0; i < thresholds->primary->size; i++) {
5434 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5435 size++;
5436 }
5437
2c488db2 5438 new = thresholds->spare;
907860ed 5439
2e72b634
KS
5440 /* Set thresholds array to NULL if we don't have thresholds */
5441 if (!size) {
2c488db2
KS
5442 kfree(new);
5443 new = NULL;
907860ed 5444 goto swap_buffers;
2e72b634
KS
5445 }
5446
2c488db2 5447 new->size = size;
2e72b634
KS
5448
5449 /* Copy thresholds and find current threshold */
2c488db2
KS
5450 new->current_threshold = -1;
5451 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5452 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5453 continue;
5454
2c488db2 5455 new->entries[j] = thresholds->primary->entries[i];
748dad36 5456 if (new->entries[j].threshold <= usage) {
2e72b634 5457 /*
2c488db2 5458 * new->current_threshold will not be used
2e72b634
KS
5459 * until rcu_assign_pointer(), so it's safe to increment
5460 * it here.
5461 */
2c488db2 5462 ++new->current_threshold;
2e72b634
KS
5463 }
5464 j++;
5465 }
5466
907860ed 5467swap_buffers:
2c488db2
KS
5468 /* Swap primary and spare array */
5469 thresholds->spare = thresholds->primary;
8c757763
SZ
5470 /* If all events are unregistered, free the spare array */
5471 if (!new) {
5472 kfree(thresholds->spare);
5473 thresholds->spare = NULL;
5474 }
5475
2c488db2 5476 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5477
907860ed 5478 /* To be sure that nobody uses thresholds */
2e72b634 5479 synchronize_rcu();
371528ca 5480unlock:
2e72b634 5481 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5482}
c1e862c1 5483
81eeaf04 5484static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5485 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5486{
81eeaf04 5487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5488 struct mem_cgroup_eventfd_list *event;
86ae53e1 5489 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5490
5491 BUG_ON(type != _OOM_TYPE);
5492 event = kmalloc(sizeof(*event), GFP_KERNEL);
5493 if (!event)
5494 return -ENOMEM;
5495
1af8efe9 5496 spin_lock(&memcg_oom_lock);
9490ff27
KH
5497
5498 event->eventfd = eventfd;
5499 list_add(&event->list, &memcg->oom_notify);
5500
5501 /* already in OOM ? */
79dfdacc 5502 if (atomic_read(&memcg->under_oom))
9490ff27 5503 eventfd_signal(eventfd, 1);
1af8efe9 5504 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5505
5506 return 0;
5507}
5508
81eeaf04 5509static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5510 struct cftype *cft, struct eventfd_ctx *eventfd)
5511{
81eeaf04 5512 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5513 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5514 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5515
5516 BUG_ON(type != _OOM_TYPE);
5517
1af8efe9 5518 spin_lock(&memcg_oom_lock);
9490ff27 5519
c0ff4b85 5520 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5521 if (ev->eventfd == eventfd) {
5522 list_del(&ev->list);
5523 kfree(ev);
5524 }
5525 }
5526
1af8efe9 5527 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5528}
5529
182446d0 5530static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5531 struct cftype *cft, struct cgroup_map_cb *cb)
5532{
182446d0 5533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5534
c0ff4b85 5535 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5536
c0ff4b85 5537 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5538 cb->fill(cb, "under_oom", 1);
5539 else
5540 cb->fill(cb, "under_oom", 0);
5541 return 0;
5542}
5543
182446d0 5544static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5545 struct cftype *cft, u64 val)
5546{
182446d0 5547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5548 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5549
5550 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5551 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5552 return -EINVAL;
5553
0999821b 5554 mutex_lock(&memcg_create_mutex);
3c11ecf4 5555 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5556 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5557 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5558 return -EINVAL;
5559 }
c0ff4b85 5560 memcg->oom_kill_disable = val;
4d845ebf 5561 if (!val)
c0ff4b85 5562 memcg_oom_recover(memcg);
0999821b 5563 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5564 return 0;
5565}
5566
c255a458 5567#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5568static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5569{
55007d84
GC
5570 int ret;
5571
2633d7a0 5572 memcg->kmemcg_id = -1;
55007d84
GC
5573 ret = memcg_propagate_kmem(memcg);
5574 if (ret)
5575 return ret;
2633d7a0 5576
1d62e436 5577 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5578}
e5671dfa 5579
10d5ebf4 5580static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5581{
1d62e436 5582 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5583}
5584
5585static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5586{
5587 if (!memcg_kmem_is_active(memcg))
5588 return;
5589
5590 /*
5591 * kmem charges can outlive the cgroup. In the case of slab
5592 * pages, for instance, a page contain objects from various
5593 * processes. As we prevent from taking a reference for every
5594 * such allocation we have to be careful when doing uncharge
5595 * (see memcg_uncharge_kmem) and here during offlining.
5596 *
5597 * The idea is that that only the _last_ uncharge which sees
5598 * the dead memcg will drop the last reference. An additional
5599 * reference is taken here before the group is marked dead
5600 * which is then paired with css_put during uncharge resp. here.
5601 *
5602 * Although this might sound strange as this path is called from
5603 * css_offline() when the referencemight have dropped down to 0
5604 * and shouldn't be incremented anymore (css_tryget would fail)
5605 * we do not have other options because of the kmem allocations
5606 * lifetime.
5607 */
5608 css_get(&memcg->css);
7de37682
GC
5609
5610 memcg_kmem_mark_dead(memcg);
5611
5612 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5613 return;
5614
7de37682 5615 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5616 css_put(&memcg->css);
d1a4c0b3 5617}
e5671dfa 5618#else
cbe128e3 5619static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5620{
5621 return 0;
5622}
d1a4c0b3 5623
10d5ebf4
LZ
5624static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5625{
5626}
5627
5628static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5629{
5630}
e5671dfa
GC
5631#endif
5632
8cdea7c0
BS
5633static struct cftype mem_cgroup_files[] = {
5634 {
0eea1030 5635 .name = "usage_in_bytes",
8c7c6e34 5636 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5637 .read = mem_cgroup_read,
9490ff27
KH
5638 .register_event = mem_cgroup_usage_register_event,
5639 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5640 },
c84872e1
PE
5641 {
5642 .name = "max_usage_in_bytes",
8c7c6e34 5643 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5644 .trigger = mem_cgroup_reset,
af36f906 5645 .read = mem_cgroup_read,
c84872e1 5646 },
8cdea7c0 5647 {
0eea1030 5648 .name = "limit_in_bytes",
8c7c6e34 5649 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5650 .write_string = mem_cgroup_write,
af36f906 5651 .read = mem_cgroup_read,
8cdea7c0 5652 },
296c81d8
BS
5653 {
5654 .name = "soft_limit_in_bytes",
5655 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5656 .write_string = mem_cgroup_write,
af36f906 5657 .read = mem_cgroup_read,
296c81d8 5658 },
8cdea7c0
BS
5659 {
5660 .name = "failcnt",
8c7c6e34 5661 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5662 .trigger = mem_cgroup_reset,
af36f906 5663 .read = mem_cgroup_read,
8cdea7c0 5664 },
d2ceb9b7
KH
5665 {
5666 .name = "stat",
ab215884 5667 .read_seq_string = memcg_stat_show,
d2ceb9b7 5668 },
c1e862c1
KH
5669 {
5670 .name = "force_empty",
5671 .trigger = mem_cgroup_force_empty_write,
5672 },
18f59ea7
BS
5673 {
5674 .name = "use_hierarchy",
f00baae7 5675 .flags = CFTYPE_INSANE,
18f59ea7
BS
5676 .write_u64 = mem_cgroup_hierarchy_write,
5677 .read_u64 = mem_cgroup_hierarchy_read,
5678 },
a7885eb8
KM
5679 {
5680 .name = "swappiness",
5681 .read_u64 = mem_cgroup_swappiness_read,
5682 .write_u64 = mem_cgroup_swappiness_write,
5683 },
7dc74be0
DN
5684 {
5685 .name = "move_charge_at_immigrate",
5686 .read_u64 = mem_cgroup_move_charge_read,
5687 .write_u64 = mem_cgroup_move_charge_write,
5688 },
9490ff27
KH
5689 {
5690 .name = "oom_control",
3c11ecf4
KH
5691 .read_map = mem_cgroup_oom_control_read,
5692 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5693 .register_event = mem_cgroup_oom_register_event,
5694 .unregister_event = mem_cgroup_oom_unregister_event,
5695 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5696 },
70ddf637
AV
5697 {
5698 .name = "pressure_level",
5699 .register_event = vmpressure_register_event,
5700 .unregister_event = vmpressure_unregister_event,
5701 },
406eb0c9
YH
5702#ifdef CONFIG_NUMA
5703 {
5704 .name = "numa_stat",
ab215884 5705 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5706 },
5707#endif
510fc4e1
GC
5708#ifdef CONFIG_MEMCG_KMEM
5709 {
5710 .name = "kmem.limit_in_bytes",
5711 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5712 .write_string = mem_cgroup_write,
5713 .read = mem_cgroup_read,
5714 },
5715 {
5716 .name = "kmem.usage_in_bytes",
5717 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5718 .read = mem_cgroup_read,
5719 },
5720 {
5721 .name = "kmem.failcnt",
5722 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5723 .trigger = mem_cgroup_reset,
5724 .read = mem_cgroup_read,
5725 },
5726 {
5727 .name = "kmem.max_usage_in_bytes",
5728 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5729 .trigger = mem_cgroup_reset,
5730 .read = mem_cgroup_read,
5731 },
749c5415
GC
5732#ifdef CONFIG_SLABINFO
5733 {
5734 .name = "kmem.slabinfo",
5735 .read_seq_string = mem_cgroup_slabinfo_read,
5736 },
5737#endif
8c7c6e34 5738#endif
6bc10349 5739 { }, /* terminate */
af36f906 5740};
8c7c6e34 5741
2d11085e
MH
5742#ifdef CONFIG_MEMCG_SWAP
5743static struct cftype memsw_cgroup_files[] = {
5744 {
5745 .name = "memsw.usage_in_bytes",
5746 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5747 .read = mem_cgroup_read,
5748 .register_event = mem_cgroup_usage_register_event,
5749 .unregister_event = mem_cgroup_usage_unregister_event,
5750 },
5751 {
5752 .name = "memsw.max_usage_in_bytes",
5753 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5754 .trigger = mem_cgroup_reset,
5755 .read = mem_cgroup_read,
5756 },
5757 {
5758 .name = "memsw.limit_in_bytes",
5759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5760 .write_string = mem_cgroup_write,
5761 .read = mem_cgroup_read,
5762 },
5763 {
5764 .name = "memsw.failcnt",
5765 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5766 .trigger = mem_cgroup_reset,
5767 .read = mem_cgroup_read,
5768 },
5769 { }, /* terminate */
5770};
5771#endif
c0ff4b85 5772static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5773{
5774 struct mem_cgroup_per_node *pn;
1ecaab2b 5775 struct mem_cgroup_per_zone *mz;
41e3355d 5776 int zone, tmp = node;
1ecaab2b
KH
5777 /*
5778 * This routine is called against possible nodes.
5779 * But it's BUG to call kmalloc() against offline node.
5780 *
5781 * TODO: this routine can waste much memory for nodes which will
5782 * never be onlined. It's better to use memory hotplug callback
5783 * function.
5784 */
41e3355d
KH
5785 if (!node_state(node, N_NORMAL_MEMORY))
5786 tmp = -1;
17295c88 5787 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5788 if (!pn)
5789 return 1;
1ecaab2b 5790
1ecaab2b
KH
5791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5792 mz = &pn->zoneinfo[zone];
bea8c150 5793 lruvec_init(&mz->lruvec);
d79154bb 5794 mz->memcg = memcg;
1ecaab2b 5795 }
54f72fe0 5796 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5797 return 0;
5798}
5799
c0ff4b85 5800static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5801{
54f72fe0 5802 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5803}
5804
33327948
KH
5805static struct mem_cgroup *mem_cgroup_alloc(void)
5806{
d79154bb 5807 struct mem_cgroup *memcg;
45cf7ebd 5808 size_t size = memcg_size();
33327948 5809
45cf7ebd 5810 /* Can be very big if nr_node_ids is very big */
c8dad2bb 5811 if (size < PAGE_SIZE)
d79154bb 5812 memcg = kzalloc(size, GFP_KERNEL);
33327948 5813 else
d79154bb 5814 memcg = vzalloc(size);
33327948 5815
d79154bb 5816 if (!memcg)
e7bbcdf3
DC
5817 return NULL;
5818
d79154bb
HD
5819 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5820 if (!memcg->stat)
d2e61b8d 5821 goto out_free;
d79154bb
HD
5822 spin_lock_init(&memcg->pcp_counter_lock);
5823 return memcg;
d2e61b8d
DC
5824
5825out_free:
5826 if (size < PAGE_SIZE)
d79154bb 5827 kfree(memcg);
d2e61b8d 5828 else
d79154bb 5829 vfree(memcg);
d2e61b8d 5830 return NULL;
33327948
KH
5831}
5832
59927fb9 5833/*
c8b2a36f
GC
5834 * At destroying mem_cgroup, references from swap_cgroup can remain.
5835 * (scanning all at force_empty is too costly...)
5836 *
5837 * Instead of clearing all references at force_empty, we remember
5838 * the number of reference from swap_cgroup and free mem_cgroup when
5839 * it goes down to 0.
5840 *
5841 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5842 */
c8b2a36f
GC
5843
5844static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5845{
c8b2a36f 5846 int node;
45cf7ebd 5847 size_t size = memcg_size();
59927fb9 5848
c8b2a36f
GC
5849 free_css_id(&mem_cgroup_subsys, &memcg->css);
5850
5851 for_each_node(node)
5852 free_mem_cgroup_per_zone_info(memcg, node);
5853
5854 free_percpu(memcg->stat);
5855
3f134619
GC
5856 /*
5857 * We need to make sure that (at least for now), the jump label
5858 * destruction code runs outside of the cgroup lock. This is because
5859 * get_online_cpus(), which is called from the static_branch update,
5860 * can't be called inside the cgroup_lock. cpusets are the ones
5861 * enforcing this dependency, so if they ever change, we might as well.
5862 *
5863 * schedule_work() will guarantee this happens. Be careful if you need
5864 * to move this code around, and make sure it is outside
5865 * the cgroup_lock.
5866 */
a8964b9b 5867 disarm_static_keys(memcg);
3afe36b1
GC
5868 if (size < PAGE_SIZE)
5869 kfree(memcg);
5870 else
5871 vfree(memcg);
59927fb9 5872}
3afe36b1 5873
7bcc1bb1
DN
5874/*
5875 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5876 */
e1aab161 5877struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5878{
c0ff4b85 5879 if (!memcg->res.parent)
7bcc1bb1 5880 return NULL;
c0ff4b85 5881 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5882}
e1aab161 5883EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5884
0eb253e2 5885static struct cgroup_subsys_state * __ref
eb95419b 5886mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5887{
d142e3e6 5888 struct mem_cgroup *memcg;
04046e1a 5889 long error = -ENOMEM;
6d12e2d8 5890 int node;
8cdea7c0 5891
c0ff4b85
R
5892 memcg = mem_cgroup_alloc();
5893 if (!memcg)
04046e1a 5894 return ERR_PTR(error);
78fb7466 5895
3ed28fa1 5896 for_each_node(node)
c0ff4b85 5897 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5898 goto free_out;
f64c3f54 5899
c077719b 5900 /* root ? */
eb95419b 5901 if (parent_css == NULL) {
a41c58a6 5902 root_mem_cgroup = memcg;
d142e3e6
GC
5903 res_counter_init(&memcg->res, NULL);
5904 res_counter_init(&memcg->memsw, NULL);
5905 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5906 }
28dbc4b6 5907
d142e3e6
GC
5908 memcg->last_scanned_node = MAX_NUMNODES;
5909 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5910 memcg->move_charge_at_immigrate = 0;
5911 mutex_init(&memcg->thresholds_lock);
5912 spin_lock_init(&memcg->move_lock);
70ddf637 5913 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
5914
5915 return &memcg->css;
5916
5917free_out:
5918 __mem_cgroup_free(memcg);
5919 return ERR_PTR(error);
5920}
5921
5922static int
eb95419b 5923mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5924{
eb95419b
TH
5925 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5926 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
5927 int error = 0;
5928
63876986 5929 if (!parent)
d142e3e6
GC
5930 return 0;
5931
0999821b 5932 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5933
5934 memcg->use_hierarchy = parent->use_hierarchy;
5935 memcg->oom_kill_disable = parent->oom_kill_disable;
5936 memcg->swappiness = mem_cgroup_swappiness(parent);
5937
5938 if (parent->use_hierarchy) {
c0ff4b85
R
5939 res_counter_init(&memcg->res, &parent->res);
5940 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5941 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5942
7bcc1bb1 5943 /*
8d76a979
LZ
5944 * No need to take a reference to the parent because cgroup
5945 * core guarantees its existence.
7bcc1bb1 5946 */
18f59ea7 5947 } else {
c0ff4b85
R
5948 res_counter_init(&memcg->res, NULL);
5949 res_counter_init(&memcg->memsw, NULL);
510fc4e1 5950 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5951 /*
5952 * Deeper hierachy with use_hierarchy == false doesn't make
5953 * much sense so let cgroup subsystem know about this
5954 * unfortunate state in our controller.
5955 */
d142e3e6 5956 if (parent != root_mem_cgroup)
8c7f6edb 5957 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5958 }
cbe128e3
GC
5959
5960 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 5961 mutex_unlock(&memcg_create_mutex);
d142e3e6 5962 return error;
8cdea7c0
BS
5963}
5964
5f578161
MH
5965/*
5966 * Announce all parents that a group from their hierarchy is gone.
5967 */
5968static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5969{
5970 struct mem_cgroup *parent = memcg;
5971
5972 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5973 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5974
5975 /*
5976 * if the root memcg is not hierarchical we have to check it
5977 * explicitely.
5978 */
5979 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5980 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5981}
5982
eb95419b 5983static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5984{
eb95419b 5985 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 5986
10d5ebf4
LZ
5987 kmem_cgroup_css_offline(memcg);
5988
5f578161 5989 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 5990 mem_cgroup_reparent_charges(memcg);
1f458cbf 5991 mem_cgroup_destroy_all_caches(memcg);
33cb876e 5992 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5993}
5994
eb95419b 5995static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5996{
eb95419b 5997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 5998
10d5ebf4 5999 memcg_destroy_kmem(memcg);
465939a1 6000 __mem_cgroup_free(memcg);
8cdea7c0
BS
6001}
6002
02491447 6003#ifdef CONFIG_MMU
7dc74be0 6004/* Handlers for move charge at task migration. */
854ffa8d
DN
6005#define PRECHARGE_COUNT_AT_ONCE 256
6006static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6007{
854ffa8d
DN
6008 int ret = 0;
6009 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6010 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6011
c0ff4b85 6012 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6013 mc.precharge += count;
6014 /* we don't need css_get for root */
6015 return ret;
6016 }
6017 /* try to charge at once */
6018 if (count > 1) {
6019 struct res_counter *dummy;
6020 /*
c0ff4b85 6021 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6022 * by cgroup_lock_live_cgroup() that it is not removed and we
6023 * are still under the same cgroup_mutex. So we can postpone
6024 * css_get().
6025 */
c0ff4b85 6026 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6027 goto one_by_one;
c0ff4b85 6028 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6029 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6030 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6031 goto one_by_one;
6032 }
6033 mc.precharge += count;
854ffa8d
DN
6034 return ret;
6035 }
6036one_by_one:
6037 /* fall back to one by one charge */
6038 while (count--) {
6039 if (signal_pending(current)) {
6040 ret = -EINTR;
6041 break;
6042 }
6043 if (!batch_count--) {
6044 batch_count = PRECHARGE_COUNT_AT_ONCE;
6045 cond_resched();
6046 }
c0ff4b85
R
6047 ret = __mem_cgroup_try_charge(NULL,
6048 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6049 if (ret)
854ffa8d 6050 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6051 return ret;
854ffa8d
DN
6052 mc.precharge++;
6053 }
4ffef5fe
DN
6054 return ret;
6055}
6056
6057/**
8d32ff84 6058 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6059 * @vma: the vma the pte to be checked belongs
6060 * @addr: the address corresponding to the pte to be checked
6061 * @ptent: the pte to be checked
02491447 6062 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6063 *
6064 * Returns
6065 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6066 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6067 * move charge. if @target is not NULL, the page is stored in target->page
6068 * with extra refcnt got(Callers should handle it).
02491447
DN
6069 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6070 * target for charge migration. if @target is not NULL, the entry is stored
6071 * in target->ent.
4ffef5fe
DN
6072 *
6073 * Called with pte lock held.
6074 */
4ffef5fe
DN
6075union mc_target {
6076 struct page *page;
02491447 6077 swp_entry_t ent;
4ffef5fe
DN
6078};
6079
4ffef5fe 6080enum mc_target_type {
8d32ff84 6081 MC_TARGET_NONE = 0,
4ffef5fe 6082 MC_TARGET_PAGE,
02491447 6083 MC_TARGET_SWAP,
4ffef5fe
DN
6084};
6085
90254a65
DN
6086static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6087 unsigned long addr, pte_t ptent)
4ffef5fe 6088{
90254a65 6089 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6090
90254a65
DN
6091 if (!page || !page_mapped(page))
6092 return NULL;
6093 if (PageAnon(page)) {
6094 /* we don't move shared anon */
4b91355e 6095 if (!move_anon())
90254a65 6096 return NULL;
87946a72
DN
6097 } else if (!move_file())
6098 /* we ignore mapcount for file pages */
90254a65
DN
6099 return NULL;
6100 if (!get_page_unless_zero(page))
6101 return NULL;
6102
6103 return page;
6104}
6105
4b91355e 6106#ifdef CONFIG_SWAP
90254a65
DN
6107static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6108 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6109{
90254a65
DN
6110 struct page *page = NULL;
6111 swp_entry_t ent = pte_to_swp_entry(ptent);
6112
6113 if (!move_anon() || non_swap_entry(ent))
6114 return NULL;
4b91355e
KH
6115 /*
6116 * Because lookup_swap_cache() updates some statistics counter,
6117 * we call find_get_page() with swapper_space directly.
6118 */
33806f06 6119 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6120 if (do_swap_account)
6121 entry->val = ent.val;
6122
6123 return page;
6124}
4b91355e
KH
6125#else
6126static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6127 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6128{
6129 return NULL;
6130}
6131#endif
90254a65 6132
87946a72
DN
6133static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6134 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6135{
6136 struct page *page = NULL;
87946a72
DN
6137 struct address_space *mapping;
6138 pgoff_t pgoff;
6139
6140 if (!vma->vm_file) /* anonymous vma */
6141 return NULL;
6142 if (!move_file())
6143 return NULL;
6144
87946a72
DN
6145 mapping = vma->vm_file->f_mapping;
6146 if (pte_none(ptent))
6147 pgoff = linear_page_index(vma, addr);
6148 else /* pte_file(ptent) is true */
6149 pgoff = pte_to_pgoff(ptent);
6150
6151 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6152 page = find_get_page(mapping, pgoff);
6153
6154#ifdef CONFIG_SWAP
6155 /* shmem/tmpfs may report page out on swap: account for that too. */
6156 if (radix_tree_exceptional_entry(page)) {
6157 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6158 if (do_swap_account)
aa3b1895 6159 *entry = swap;
33806f06 6160 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6161 }
aa3b1895 6162#endif
87946a72
DN
6163 return page;
6164}
6165
8d32ff84 6166static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6167 unsigned long addr, pte_t ptent, union mc_target *target)
6168{
6169 struct page *page = NULL;
6170 struct page_cgroup *pc;
8d32ff84 6171 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6172 swp_entry_t ent = { .val = 0 };
6173
6174 if (pte_present(ptent))
6175 page = mc_handle_present_pte(vma, addr, ptent);
6176 else if (is_swap_pte(ptent))
6177 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6178 else if (pte_none(ptent) || pte_file(ptent))
6179 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6180
6181 if (!page && !ent.val)
8d32ff84 6182 return ret;
02491447
DN
6183 if (page) {
6184 pc = lookup_page_cgroup(page);
6185 /*
6186 * Do only loose check w/o page_cgroup lock.
6187 * mem_cgroup_move_account() checks the pc is valid or not under
6188 * the lock.
6189 */
6190 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6191 ret = MC_TARGET_PAGE;
6192 if (target)
6193 target->page = page;
6194 }
6195 if (!ret || !target)
6196 put_page(page);
6197 }
90254a65
DN
6198 /* There is a swap entry and a page doesn't exist or isn't charged */
6199 if (ent.val && !ret &&
9fb4b7cc 6200 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6201 ret = MC_TARGET_SWAP;
6202 if (target)
6203 target->ent = ent;
4ffef5fe 6204 }
4ffef5fe
DN
6205 return ret;
6206}
6207
12724850
NH
6208#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6209/*
6210 * We don't consider swapping or file mapped pages because THP does not
6211 * support them for now.
6212 * Caller should make sure that pmd_trans_huge(pmd) is true.
6213 */
6214static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6215 unsigned long addr, pmd_t pmd, union mc_target *target)
6216{
6217 struct page *page = NULL;
6218 struct page_cgroup *pc;
6219 enum mc_target_type ret = MC_TARGET_NONE;
6220
6221 page = pmd_page(pmd);
6222 VM_BUG_ON(!page || !PageHead(page));
6223 if (!move_anon())
6224 return ret;
6225 pc = lookup_page_cgroup(page);
6226 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6227 ret = MC_TARGET_PAGE;
6228 if (target) {
6229 get_page(page);
6230 target->page = page;
6231 }
6232 }
6233 return ret;
6234}
6235#else
6236static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6237 unsigned long addr, pmd_t pmd, union mc_target *target)
6238{
6239 return MC_TARGET_NONE;
6240}
6241#endif
6242
4ffef5fe
DN
6243static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6244 unsigned long addr, unsigned long end,
6245 struct mm_walk *walk)
6246{
6247 struct vm_area_struct *vma = walk->private;
6248 pte_t *pte;
6249 spinlock_t *ptl;
6250
12724850
NH
6251 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6252 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6253 mc.precharge += HPAGE_PMD_NR;
6254 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6255 return 0;
12724850 6256 }
03319327 6257
45f83cef
AA
6258 if (pmd_trans_unstable(pmd))
6259 return 0;
4ffef5fe
DN
6260 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6261 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6262 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6263 mc.precharge++; /* increment precharge temporarily */
6264 pte_unmap_unlock(pte - 1, ptl);
6265 cond_resched();
6266
7dc74be0
DN
6267 return 0;
6268}
6269
4ffef5fe
DN
6270static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6271{
6272 unsigned long precharge;
6273 struct vm_area_struct *vma;
6274
dfe076b0 6275 down_read(&mm->mmap_sem);
4ffef5fe
DN
6276 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6277 struct mm_walk mem_cgroup_count_precharge_walk = {
6278 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6279 .mm = mm,
6280 .private = vma,
6281 };
6282 if (is_vm_hugetlb_page(vma))
6283 continue;
4ffef5fe
DN
6284 walk_page_range(vma->vm_start, vma->vm_end,
6285 &mem_cgroup_count_precharge_walk);
6286 }
dfe076b0 6287 up_read(&mm->mmap_sem);
4ffef5fe
DN
6288
6289 precharge = mc.precharge;
6290 mc.precharge = 0;
6291
6292 return precharge;
6293}
6294
4ffef5fe
DN
6295static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6296{
dfe076b0
DN
6297 unsigned long precharge = mem_cgroup_count_precharge(mm);
6298
6299 VM_BUG_ON(mc.moving_task);
6300 mc.moving_task = current;
6301 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6302}
6303
dfe076b0
DN
6304/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6305static void __mem_cgroup_clear_mc(void)
4ffef5fe 6306{
2bd9bb20
KH
6307 struct mem_cgroup *from = mc.from;
6308 struct mem_cgroup *to = mc.to;
4050377b 6309 int i;
2bd9bb20 6310
4ffef5fe 6311 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6312 if (mc.precharge) {
6313 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6314 mc.precharge = 0;
6315 }
6316 /*
6317 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6318 * we must uncharge here.
6319 */
6320 if (mc.moved_charge) {
6321 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6322 mc.moved_charge = 0;
4ffef5fe 6323 }
483c30b5
DN
6324 /* we must fixup refcnts and charges */
6325 if (mc.moved_swap) {
483c30b5
DN
6326 /* uncharge swap account from the old cgroup */
6327 if (!mem_cgroup_is_root(mc.from))
6328 res_counter_uncharge(&mc.from->memsw,
6329 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6330
6331 for (i = 0; i < mc.moved_swap; i++)
6332 css_put(&mc.from->css);
483c30b5
DN
6333
6334 if (!mem_cgroup_is_root(mc.to)) {
6335 /*
6336 * we charged both to->res and to->memsw, so we should
6337 * uncharge to->res.
6338 */
6339 res_counter_uncharge(&mc.to->res,
6340 PAGE_SIZE * mc.moved_swap);
483c30b5 6341 }
4050377b 6342 /* we've already done css_get(mc.to) */
483c30b5
DN
6343 mc.moved_swap = 0;
6344 }
dfe076b0
DN
6345 memcg_oom_recover(from);
6346 memcg_oom_recover(to);
6347 wake_up_all(&mc.waitq);
6348}
6349
6350static void mem_cgroup_clear_mc(void)
6351{
6352 struct mem_cgroup *from = mc.from;
6353
6354 /*
6355 * we must clear moving_task before waking up waiters at the end of
6356 * task migration.
6357 */
6358 mc.moving_task = NULL;
6359 __mem_cgroup_clear_mc();
2bd9bb20 6360 spin_lock(&mc.lock);
4ffef5fe
DN
6361 mc.from = NULL;
6362 mc.to = NULL;
2bd9bb20 6363 spin_unlock(&mc.lock);
32047e2a 6364 mem_cgroup_end_move(from);
4ffef5fe
DN
6365}
6366
eb95419b 6367static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6368 struct cgroup_taskset *tset)
7dc74be0 6369{
2f7ee569 6370 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6371 int ret = 0;
eb95419b 6372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6373 unsigned long move_charge_at_immigrate;
7dc74be0 6374
ee5e8472
GC
6375 /*
6376 * We are now commited to this value whatever it is. Changes in this
6377 * tunable will only affect upcoming migrations, not the current one.
6378 * So we need to save it, and keep it going.
6379 */
6380 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6381 if (move_charge_at_immigrate) {
7dc74be0
DN
6382 struct mm_struct *mm;
6383 struct mem_cgroup *from = mem_cgroup_from_task(p);
6384
c0ff4b85 6385 VM_BUG_ON(from == memcg);
7dc74be0
DN
6386
6387 mm = get_task_mm(p);
6388 if (!mm)
6389 return 0;
7dc74be0 6390 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6391 if (mm->owner == p) {
6392 VM_BUG_ON(mc.from);
6393 VM_BUG_ON(mc.to);
6394 VM_BUG_ON(mc.precharge);
854ffa8d 6395 VM_BUG_ON(mc.moved_charge);
483c30b5 6396 VM_BUG_ON(mc.moved_swap);
32047e2a 6397 mem_cgroup_start_move(from);
2bd9bb20 6398 spin_lock(&mc.lock);
4ffef5fe 6399 mc.from = from;
c0ff4b85 6400 mc.to = memcg;
ee5e8472 6401 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6402 spin_unlock(&mc.lock);
dfe076b0 6403 /* We set mc.moving_task later */
4ffef5fe
DN
6404
6405 ret = mem_cgroup_precharge_mc(mm);
6406 if (ret)
6407 mem_cgroup_clear_mc();
dfe076b0
DN
6408 }
6409 mmput(mm);
7dc74be0
DN
6410 }
6411 return ret;
6412}
6413
eb95419b 6414static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6415 struct cgroup_taskset *tset)
7dc74be0 6416{
4ffef5fe 6417 mem_cgroup_clear_mc();
7dc74be0
DN
6418}
6419
4ffef5fe
DN
6420static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6421 unsigned long addr, unsigned long end,
6422 struct mm_walk *walk)
7dc74be0 6423{
4ffef5fe
DN
6424 int ret = 0;
6425 struct vm_area_struct *vma = walk->private;
6426 pte_t *pte;
6427 spinlock_t *ptl;
12724850
NH
6428 enum mc_target_type target_type;
6429 union mc_target target;
6430 struct page *page;
6431 struct page_cgroup *pc;
4ffef5fe 6432
12724850
NH
6433 /*
6434 * We don't take compound_lock() here but no race with splitting thp
6435 * happens because:
6436 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6437 * under splitting, which means there's no concurrent thp split,
6438 * - if another thread runs into split_huge_page() just after we
6439 * entered this if-block, the thread must wait for page table lock
6440 * to be unlocked in __split_huge_page_splitting(), where the main
6441 * part of thp split is not executed yet.
6442 */
6443 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6444 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6445 spin_unlock(&vma->vm_mm->page_table_lock);
6446 return 0;
6447 }
6448 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6449 if (target_type == MC_TARGET_PAGE) {
6450 page = target.page;
6451 if (!isolate_lru_page(page)) {
6452 pc = lookup_page_cgroup(page);
6453 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6454 pc, mc.from, mc.to)) {
12724850
NH
6455 mc.precharge -= HPAGE_PMD_NR;
6456 mc.moved_charge += HPAGE_PMD_NR;
6457 }
6458 putback_lru_page(page);
6459 }
6460 put_page(page);
6461 }
6462 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6463 return 0;
12724850
NH
6464 }
6465
45f83cef
AA
6466 if (pmd_trans_unstable(pmd))
6467 return 0;
4ffef5fe
DN
6468retry:
6469 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6470 for (; addr != end; addr += PAGE_SIZE) {
6471 pte_t ptent = *(pte++);
02491447 6472 swp_entry_t ent;
4ffef5fe
DN
6473
6474 if (!mc.precharge)
6475 break;
6476
8d32ff84 6477 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6478 case MC_TARGET_PAGE:
6479 page = target.page;
6480 if (isolate_lru_page(page))
6481 goto put;
6482 pc = lookup_page_cgroup(page);
7ec99d62 6483 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6484 mc.from, mc.to)) {
4ffef5fe 6485 mc.precharge--;
854ffa8d
DN
6486 /* we uncharge from mc.from later. */
6487 mc.moved_charge++;
4ffef5fe
DN
6488 }
6489 putback_lru_page(page);
8d32ff84 6490put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6491 put_page(page);
6492 break;
02491447
DN
6493 case MC_TARGET_SWAP:
6494 ent = target.ent;
e91cbb42 6495 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6496 mc.precharge--;
483c30b5
DN
6497 /* we fixup refcnts and charges later. */
6498 mc.moved_swap++;
6499 }
02491447 6500 break;
4ffef5fe
DN
6501 default:
6502 break;
6503 }
6504 }
6505 pte_unmap_unlock(pte - 1, ptl);
6506 cond_resched();
6507
6508 if (addr != end) {
6509 /*
6510 * We have consumed all precharges we got in can_attach().
6511 * We try charge one by one, but don't do any additional
6512 * charges to mc.to if we have failed in charge once in attach()
6513 * phase.
6514 */
854ffa8d 6515 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6516 if (!ret)
6517 goto retry;
6518 }
6519
6520 return ret;
6521}
6522
6523static void mem_cgroup_move_charge(struct mm_struct *mm)
6524{
6525 struct vm_area_struct *vma;
6526
6527 lru_add_drain_all();
dfe076b0
DN
6528retry:
6529 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6530 /*
6531 * Someone who are holding the mmap_sem might be waiting in
6532 * waitq. So we cancel all extra charges, wake up all waiters,
6533 * and retry. Because we cancel precharges, we might not be able
6534 * to move enough charges, but moving charge is a best-effort
6535 * feature anyway, so it wouldn't be a big problem.
6536 */
6537 __mem_cgroup_clear_mc();
6538 cond_resched();
6539 goto retry;
6540 }
4ffef5fe
DN
6541 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6542 int ret;
6543 struct mm_walk mem_cgroup_move_charge_walk = {
6544 .pmd_entry = mem_cgroup_move_charge_pte_range,
6545 .mm = mm,
6546 .private = vma,
6547 };
6548 if (is_vm_hugetlb_page(vma))
6549 continue;
4ffef5fe
DN
6550 ret = walk_page_range(vma->vm_start, vma->vm_end,
6551 &mem_cgroup_move_charge_walk);
6552 if (ret)
6553 /*
6554 * means we have consumed all precharges and failed in
6555 * doing additional charge. Just abandon here.
6556 */
6557 break;
6558 }
dfe076b0 6559 up_read(&mm->mmap_sem);
7dc74be0
DN
6560}
6561
eb95419b 6562static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6563 struct cgroup_taskset *tset)
67e465a7 6564{
2f7ee569 6565 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6566 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6567
dfe076b0 6568 if (mm) {
a433658c
KM
6569 if (mc.to)
6570 mem_cgroup_move_charge(mm);
dfe076b0
DN
6571 mmput(mm);
6572 }
a433658c
KM
6573 if (mc.to)
6574 mem_cgroup_clear_mc();
67e465a7 6575}
5cfb80a7 6576#else /* !CONFIG_MMU */
eb95419b 6577static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6578 struct cgroup_taskset *tset)
5cfb80a7
DN
6579{
6580 return 0;
6581}
eb95419b 6582static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6583 struct cgroup_taskset *tset)
5cfb80a7
DN
6584{
6585}
eb95419b 6586static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6587 struct cgroup_taskset *tset)
5cfb80a7
DN
6588{
6589}
6590#endif
67e465a7 6591
f00baae7
TH
6592/*
6593 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6594 * to verify sane_behavior flag on each mount attempt.
6595 */
eb95419b 6596static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6597{
6598 /*
6599 * use_hierarchy is forced with sane_behavior. cgroup core
6600 * guarantees that @root doesn't have any children, so turning it
6601 * on for the root memcg is enough.
6602 */
eb95419b
TH
6603 if (cgroup_sane_behavior(root_css->cgroup))
6604 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6605}
6606
8cdea7c0
BS
6607struct cgroup_subsys mem_cgroup_subsys = {
6608 .name = "memory",
6609 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6610 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6611 .css_online = mem_cgroup_css_online,
92fb9748
TH
6612 .css_offline = mem_cgroup_css_offline,
6613 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6614 .can_attach = mem_cgroup_can_attach,
6615 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6616 .attach = mem_cgroup_move_task,
f00baae7 6617 .bind = mem_cgroup_bind,
6bc10349 6618 .base_cftypes = mem_cgroup_files,
6d12e2d8 6619 .early_init = 0,
04046e1a 6620 .use_id = 1,
8cdea7c0 6621};
c077719b 6622
c255a458 6623#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6624static int __init enable_swap_account(char *s)
6625{
a2c8990a 6626 if (!strcmp(s, "1"))
a42c390c 6627 really_do_swap_account = 1;
a2c8990a 6628 else if (!strcmp(s, "0"))
a42c390c
MH
6629 really_do_swap_account = 0;
6630 return 1;
6631}
a2c8990a 6632__setup("swapaccount=", enable_swap_account);
c077719b 6633
2d11085e
MH
6634static void __init memsw_file_init(void)
6635{
6acc8b02
MH
6636 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6637}
6638
6639static void __init enable_swap_cgroup(void)
6640{
6641 if (!mem_cgroup_disabled() && really_do_swap_account) {
6642 do_swap_account = 1;
6643 memsw_file_init();
6644 }
2d11085e 6645}
6acc8b02 6646
2d11085e 6647#else
6acc8b02 6648static void __init enable_swap_cgroup(void)
2d11085e
MH
6649{
6650}
c077719b 6651#endif
2d11085e
MH
6652
6653/*
1081312f
MH
6654 * subsys_initcall() for memory controller.
6655 *
6656 * Some parts like hotcpu_notifier() have to be initialized from this context
6657 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6658 * everything that doesn't depend on a specific mem_cgroup structure should
6659 * be initialized from here.
2d11085e
MH
6660 */
6661static int __init mem_cgroup_init(void)
6662{
6663 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6664 enable_swap_cgroup();
e4777496 6665 memcg_stock_init();
2d11085e
MH
6666 return 0;
6667}
6668subsys_initcall(mem_cgroup_init);