]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
fs/epoll: use faster rb_first_cached()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
121 struct rb_root rb_root;
122 spinlock_t lock;
123};
124
bb4cc1a8
AM
125struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127};
128
129static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
9490ff27
KH
131/* for OOM */
132struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135};
2e72b634 136
79bd9814
TH
137/*
138 * cgroup_event represents events which userspace want to receive.
139 */
3bc942f3 140struct mem_cgroup_event {
79bd9814 141 /*
59b6f873 142 * memcg which the event belongs to.
79bd9814 143 */
59b6f873 144 struct mem_cgroup *memcg;
79bd9814
TH
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
fba94807
TH
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
59b6f873 158 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 159 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
59b6f873 165 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 166 struct eventfd_ctx *eventfd);
79bd9814
TH
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
ac6424b9 173 wait_queue_entry_t wait;
79bd9814
TH
174 struct work_struct remove;
175};
176
c0ff4b85
R
177static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 179
7dc74be0
DN
180/* Stuffs for move charges at task migration. */
181/*
1dfab5ab 182 * Types of charges to be moved.
7dc74be0 183 */
1dfab5ab
JW
184#define MOVE_ANON 0x1U
185#define MOVE_FILE 0x2U
186#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 187
4ffef5fe
DN
188/* "mc" and its members are protected by cgroup_mutex */
189static struct move_charge_struct {
b1dd693e 190 spinlock_t lock; /* for from, to */
264a0ae1 191 struct mm_struct *mm;
4ffef5fe
DN
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
1dfab5ab 194 unsigned long flags;
4ffef5fe 195 unsigned long precharge;
854ffa8d 196 unsigned long moved_charge;
483c30b5 197 unsigned long moved_swap;
8033b97c
DN
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200} mc = {
2bd9bb20 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203};
4ffef5fe 204
4e416953
BS
205/*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
a0db00fc 209#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 210#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 211
217bc319
KH
212enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 214 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
217 NR_CHARGE_TYPE,
218};
219
8c7c6e34 220/* for encoding cft->private value on file */
86ae53e1
GC
221enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
510fc4e1 225 _KMEM,
d55f90bf 226 _TCP,
86ae53e1
GC
227};
228
a0db00fc
KS
229#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 231#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
232/* Used for OOM nofiier */
233#define OOM_CONTROL (0)
8c7c6e34 234
70ddf637
AV
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
243struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244{
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246}
247
7ffc0edc
MH
248static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249{
250 return (memcg == root_mem_cgroup);
251}
252
127424c8 253#ifndef CONFIG_SLOB
55007d84 254/*
f7ce3190 255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
55007d84 261 *
dbcf73e2
VD
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
55007d84 264 */
dbcf73e2
VD
265static DEFINE_IDA(memcg_cache_ida);
266int memcg_nr_cache_ids;
749c5415 267
05257a1a
VD
268/* Protects memcg_nr_cache_ids */
269static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271void memcg_get_cache_ids(void)
272{
273 down_read(&memcg_cache_ids_sem);
274}
275
276void memcg_put_cache_ids(void)
277{
278 up_read(&memcg_cache_ids_sem);
279}
280
55007d84
GC
281/*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
b8627835 287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
291 * increase ours as well if it increases.
292 */
293#define MEMCG_CACHES_MIN_SIZE 4
b8627835 294#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 295
d7f25f8a
GC
296/*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
ef12947c 302DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 303EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 304
17cc4dfe
TH
305struct workqueue_struct *memcg_kmem_cache_wq;
306
127424c8 307#endif /* !CONFIG_SLOB */
a8964b9b 308
ad7fa852
TH
309/**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
ad7fa852
TH
319 */
320struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321{
322 struct mem_cgroup *memcg;
323
ad7fa852
TH
324 memcg = page->mem_cgroup;
325
9e10a130 326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
327 memcg = root_mem_cgroup;
328
ad7fa852
TH
329 return &memcg->css;
330}
331
2fc04524
VD
332/**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345ino_t page_cgroup_ino(struct page *page)
346{
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358}
359
ef8f2327
MG
360static struct mem_cgroup_per_node *
361mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 362{
97a6c37b 363 int nid = page_to_nid(page);
f64c3f54 364
ef8f2327 365 return memcg->nodeinfo[nid];
f64c3f54
BS
366}
367
ef8f2327
MG
368static struct mem_cgroup_tree_per_node *
369soft_limit_tree_node(int nid)
bb4cc1a8 370{
ef8f2327 371 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
372}
373
ef8f2327 374static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
375soft_limit_tree_from_page(struct page *page)
376{
377 int nid = page_to_nid(page);
bb4cc1a8 378
ef8f2327 379 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
380}
381
ef8f2327
MG
382static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 384 unsigned long new_usage_in_excess)
bb4cc1a8
AM
385{
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
ef8f2327 388 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
ef8f2327 398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412}
413
ef8f2327
MG
414static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
416{
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421}
422
ef8f2327
MG
423static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 425{
0a31bc97
JW
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 429 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 430 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
431}
432
3e32cb2e
JW
433static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434{
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443}
bb4cc1a8
AM
444
445static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446{
3e32cb2e 447 unsigned long excess;
ef8f2327
MG
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 450
e231875b 451 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
452 if (!mctz)
453 return;
bb4cc1a8
AM
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 459 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 460 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
0a31bc97
JW
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
469 /* if on-tree, remove it */
470 if (mz->on_tree)
cf2c8127 471 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
cf2c8127 476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 477 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
478 }
479 }
480}
481
482static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483{
ef8f2327
MG
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
bb4cc1a8 487
e231875b 488 for_each_node(nid) {
ef8f2327
MG
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
493 }
494}
495
ef8f2327
MG
496static struct mem_cgroup_per_node *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
498{
499 struct rb_node *rightmost = NULL;
ef8f2327 500 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
501
502retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
ef8f2327 508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
cf2c8127 514 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 515 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 516 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
517 goto retry;
518done:
519 return mz;
520}
521
ef8f2327
MG
522static struct mem_cgroup_per_node *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 524{
ef8f2327 525 struct mem_cgroup_per_node *mz;
bb4cc1a8 526
0a31bc97 527 spin_lock_irq(&mctz->lock);
bb4cc1a8 528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 529 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
530 return mz;
531}
532
711d3d2c 533/*
484ebb3b
GT
534 * Return page count for single (non recursive) @memcg.
535 *
711d3d2c
KH
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 541 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 551 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c 552 * implemented.
04fecbf5
MK
553 *
554 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
711d3d2c 555 */
c62b1a3b 556
ccda7f43 557static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 558 int event)
e9f8974f
JW
559{
560 unsigned long val = 0;
561 int cpu;
562
733a572e 563 for_each_possible_cpu(cpu)
df0e53d0 564 val += per_cpu(memcg->stat->events[event], cpu);
e9f8974f
JW
565 return val;
566}
567
c0ff4b85 568static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 569 struct page *page,
f627c2f5 570 bool compound, int nr_pages)
d52aa412 571{
b2402857
KH
572 /*
573 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
574 * counted as CACHE even if it's on ANON LRU.
575 */
0a31bc97 576 if (PageAnon(page))
71cd3113 577 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
9a4caf1e 578 else {
71cd3113 579 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
9a4caf1e 580 if (PageSwapBacked(page))
71cd3113 581 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
9a4caf1e 582 }
55e462b0 583
f627c2f5
KS
584 if (compound) {
585 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
71cd3113 586 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
f627c2f5 587 }
b070e65c 588
e401f176
KH
589 /* pagein of a big page is an event. So, ignore page size */
590 if (nr_pages > 0)
df0e53d0 591 __this_cpu_inc(memcg->stat->events[PGPGIN]);
3751d604 592 else {
df0e53d0 593 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
3751d604
KH
594 nr_pages = -nr_pages; /* for event */
595 }
e401f176 596
13114716 597 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
598}
599
0a6b76dd
VD
600unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
601 int nid, unsigned int lru_mask)
bb2a0de9 602{
b4536f0c 603 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 604 unsigned long nr = 0;
ef8f2327 605 enum lru_list lru;
889976db 606
e231875b 607 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 608
ef8f2327
MG
609 for_each_lru(lru) {
610 if (!(BIT(lru) & lru_mask))
611 continue;
b4536f0c 612 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
613 }
614 return nr;
889976db 615}
bb2a0de9 616
c0ff4b85 617static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 618 unsigned int lru_mask)
6d12e2d8 619{
e231875b 620 unsigned long nr = 0;
889976db 621 int nid;
6d12e2d8 622
31aaea4a 623 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
624 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
625 return nr;
d52aa412
KH
626}
627
f53d7ce3
JW
628static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
629 enum mem_cgroup_events_target target)
7a159cc9
JW
630{
631 unsigned long val, next;
632
13114716 633 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 634 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 635 /* from time_after() in jiffies.h */
6a1a8b80 636 if ((long)(next - val) < 0) {
f53d7ce3
JW
637 switch (target) {
638 case MEM_CGROUP_TARGET_THRESH:
639 next = val + THRESHOLDS_EVENTS_TARGET;
640 break;
bb4cc1a8
AM
641 case MEM_CGROUP_TARGET_SOFTLIMIT:
642 next = val + SOFTLIMIT_EVENTS_TARGET;
643 break;
f53d7ce3
JW
644 case MEM_CGROUP_TARGET_NUMAINFO:
645 next = val + NUMAINFO_EVENTS_TARGET;
646 break;
647 default:
648 break;
649 }
650 __this_cpu_write(memcg->stat->targets[target], next);
651 return true;
7a159cc9 652 }
f53d7ce3 653 return false;
d2265e6f
KH
654}
655
656/*
657 * Check events in order.
658 *
659 */
c0ff4b85 660static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
661{
662 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
663 if (unlikely(mem_cgroup_event_ratelimit(memcg,
664 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 665 bool do_softlimit;
82b3f2a7 666 bool do_numainfo __maybe_unused;
f53d7ce3 667
bb4cc1a8
AM
668 do_softlimit = mem_cgroup_event_ratelimit(memcg,
669 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
670#if MAX_NUMNODES > 1
671 do_numainfo = mem_cgroup_event_ratelimit(memcg,
672 MEM_CGROUP_TARGET_NUMAINFO);
673#endif
c0ff4b85 674 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
675 if (unlikely(do_softlimit))
676 mem_cgroup_update_tree(memcg, page);
453a9bf3 677#if MAX_NUMNODES > 1
f53d7ce3 678 if (unlikely(do_numainfo))
c0ff4b85 679 atomic_inc(&memcg->numainfo_events);
453a9bf3 680#endif
0a31bc97 681 }
d2265e6f
KH
682}
683
cf475ad2 684struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 685{
31a78f23
BS
686 /*
687 * mm_update_next_owner() may clear mm->owner to NULL
688 * if it races with swapoff, page migration, etc.
689 * So this can be called with p == NULL.
690 */
691 if (unlikely(!p))
692 return NULL;
693
073219e9 694 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 695}
33398cf2 696EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 697
df381975 698static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 699{
c0ff4b85 700 struct mem_cgroup *memcg = NULL;
0b7f569e 701
54595fe2
KH
702 rcu_read_lock();
703 do {
6f6acb00
MH
704 /*
705 * Page cache insertions can happen withou an
706 * actual mm context, e.g. during disk probing
707 * on boot, loopback IO, acct() writes etc.
708 */
709 if (unlikely(!mm))
df381975 710 memcg = root_mem_cgroup;
6f6acb00
MH
711 else {
712 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
713 if (unlikely(!memcg))
714 memcg = root_mem_cgroup;
715 }
ec903c0c 716 } while (!css_tryget_online(&memcg->css));
54595fe2 717 rcu_read_unlock();
c0ff4b85 718 return memcg;
54595fe2
KH
719}
720
5660048c
JW
721/**
722 * mem_cgroup_iter - iterate over memory cgroup hierarchy
723 * @root: hierarchy root
724 * @prev: previously returned memcg, NULL on first invocation
725 * @reclaim: cookie for shared reclaim walks, NULL for full walks
726 *
727 * Returns references to children of the hierarchy below @root, or
728 * @root itself, or %NULL after a full round-trip.
729 *
730 * Caller must pass the return value in @prev on subsequent
731 * invocations for reference counting, or use mem_cgroup_iter_break()
732 * to cancel a hierarchy walk before the round-trip is complete.
733 *
734 * Reclaimers can specify a zone and a priority level in @reclaim to
735 * divide up the memcgs in the hierarchy among all concurrent
736 * reclaimers operating on the same zone and priority.
737 */
694fbc0f 738struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 739 struct mem_cgroup *prev,
694fbc0f 740 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 741{
33398cf2 742 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 743 struct cgroup_subsys_state *css = NULL;
9f3a0d09 744 struct mem_cgroup *memcg = NULL;
5ac8fb31 745 struct mem_cgroup *pos = NULL;
711d3d2c 746
694fbc0f
AM
747 if (mem_cgroup_disabled())
748 return NULL;
5660048c 749
9f3a0d09
JW
750 if (!root)
751 root = root_mem_cgroup;
7d74b06f 752
9f3a0d09 753 if (prev && !reclaim)
5ac8fb31 754 pos = prev;
14067bb3 755
9f3a0d09
JW
756 if (!root->use_hierarchy && root != root_mem_cgroup) {
757 if (prev)
5ac8fb31 758 goto out;
694fbc0f 759 return root;
9f3a0d09 760 }
14067bb3 761
542f85f9 762 rcu_read_lock();
5f578161 763
5ac8fb31 764 if (reclaim) {
ef8f2327 765 struct mem_cgroup_per_node *mz;
5ac8fb31 766
ef8f2327 767 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
768 iter = &mz->iter[reclaim->priority];
769
770 if (prev && reclaim->generation != iter->generation)
771 goto out_unlock;
772
6df38689 773 while (1) {
4db0c3c2 774 pos = READ_ONCE(iter->position);
6df38689
VD
775 if (!pos || css_tryget(&pos->css))
776 break;
5ac8fb31 777 /*
6df38689
VD
778 * css reference reached zero, so iter->position will
779 * be cleared by ->css_released. However, we should not
780 * rely on this happening soon, because ->css_released
781 * is called from a work queue, and by busy-waiting we
782 * might block it. So we clear iter->position right
783 * away.
5ac8fb31 784 */
6df38689
VD
785 (void)cmpxchg(&iter->position, pos, NULL);
786 }
5ac8fb31
JW
787 }
788
789 if (pos)
790 css = &pos->css;
791
792 for (;;) {
793 css = css_next_descendant_pre(css, &root->css);
794 if (!css) {
795 /*
796 * Reclaimers share the hierarchy walk, and a
797 * new one might jump in right at the end of
798 * the hierarchy - make sure they see at least
799 * one group and restart from the beginning.
800 */
801 if (!prev)
802 continue;
803 break;
527a5ec9 804 }
7d74b06f 805
5ac8fb31
JW
806 /*
807 * Verify the css and acquire a reference. The root
808 * is provided by the caller, so we know it's alive
809 * and kicking, and don't take an extra reference.
810 */
811 memcg = mem_cgroup_from_css(css);
14067bb3 812
5ac8fb31
JW
813 if (css == &root->css)
814 break;
14067bb3 815
0b8f73e1
JW
816 if (css_tryget(css))
817 break;
9f3a0d09 818
5ac8fb31 819 memcg = NULL;
9f3a0d09 820 }
5ac8fb31
JW
821
822 if (reclaim) {
5ac8fb31 823 /*
6df38689
VD
824 * The position could have already been updated by a competing
825 * thread, so check that the value hasn't changed since we read
826 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 827 */
6df38689
VD
828 (void)cmpxchg(&iter->position, pos, memcg);
829
5ac8fb31
JW
830 if (pos)
831 css_put(&pos->css);
832
833 if (!memcg)
834 iter->generation++;
835 else if (!prev)
836 reclaim->generation = iter->generation;
9f3a0d09 837 }
5ac8fb31 838
542f85f9
MH
839out_unlock:
840 rcu_read_unlock();
5ac8fb31 841out:
c40046f3
MH
842 if (prev && prev != root)
843 css_put(&prev->css);
844
9f3a0d09 845 return memcg;
14067bb3 846}
7d74b06f 847
5660048c
JW
848/**
849 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
850 * @root: hierarchy root
851 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
852 */
853void mem_cgroup_iter_break(struct mem_cgroup *root,
854 struct mem_cgroup *prev)
9f3a0d09
JW
855{
856 if (!root)
857 root = root_mem_cgroup;
858 if (prev && prev != root)
859 css_put(&prev->css);
860}
7d74b06f 861
6df38689
VD
862static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
863{
864 struct mem_cgroup *memcg = dead_memcg;
865 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
866 struct mem_cgroup_per_node *mz;
867 int nid;
6df38689
VD
868 int i;
869
870 while ((memcg = parent_mem_cgroup(memcg))) {
871 for_each_node(nid) {
ef8f2327
MG
872 mz = mem_cgroup_nodeinfo(memcg, nid);
873 for (i = 0; i <= DEF_PRIORITY; i++) {
874 iter = &mz->iter[i];
875 cmpxchg(&iter->position,
876 dead_memcg, NULL);
6df38689
VD
877 }
878 }
879 }
880}
881
9f3a0d09
JW
882/*
883 * Iteration constructs for visiting all cgroups (under a tree). If
884 * loops are exited prematurely (break), mem_cgroup_iter_break() must
885 * be used for reference counting.
886 */
887#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 888 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 889 iter != NULL; \
527a5ec9 890 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 891
9f3a0d09 892#define for_each_mem_cgroup(iter) \
527a5ec9 893 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 894 iter != NULL; \
527a5ec9 895 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 896
7c5f64f8
VD
897/**
898 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
899 * @memcg: hierarchy root
900 * @fn: function to call for each task
901 * @arg: argument passed to @fn
902 *
903 * This function iterates over tasks attached to @memcg or to any of its
904 * descendants and calls @fn for each task. If @fn returns a non-zero
905 * value, the function breaks the iteration loop and returns the value.
906 * Otherwise, it will iterate over all tasks and return 0.
907 *
908 * This function must not be called for the root memory cgroup.
909 */
910int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
911 int (*fn)(struct task_struct *, void *), void *arg)
912{
913 struct mem_cgroup *iter;
914 int ret = 0;
915
916 BUG_ON(memcg == root_mem_cgroup);
917
918 for_each_mem_cgroup_tree(iter, memcg) {
919 struct css_task_iter it;
920 struct task_struct *task;
921
bc2fb7ed 922 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
923 while (!ret && (task = css_task_iter_next(&it)))
924 ret = fn(task, arg);
925 css_task_iter_end(&it);
926 if (ret) {
927 mem_cgroup_iter_break(memcg, iter);
928 break;
929 }
930 }
931 return ret;
932}
933
925b7673 934/**
dfe0e773 935 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 936 * @page: the page
fa9add64 937 * @zone: zone of the page
dfe0e773
JW
938 *
939 * This function is only safe when following the LRU page isolation
940 * and putback protocol: the LRU lock must be held, and the page must
941 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 942 */
599d0c95 943struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 944{
ef8f2327 945 struct mem_cgroup_per_node *mz;
925b7673 946 struct mem_cgroup *memcg;
bea8c150 947 struct lruvec *lruvec;
6d12e2d8 948
bea8c150 949 if (mem_cgroup_disabled()) {
599d0c95 950 lruvec = &pgdat->lruvec;
bea8c150
HD
951 goto out;
952 }
925b7673 953
1306a85a 954 memcg = page->mem_cgroup;
7512102c 955 /*
dfe0e773 956 * Swapcache readahead pages are added to the LRU - and
29833315 957 * possibly migrated - before they are charged.
7512102c 958 */
29833315
JW
959 if (!memcg)
960 memcg = root_mem_cgroup;
7512102c 961
ef8f2327 962 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
963 lruvec = &mz->lruvec;
964out:
965 /*
966 * Since a node can be onlined after the mem_cgroup was created,
967 * we have to be prepared to initialize lruvec->zone here;
968 * and if offlined then reonlined, we need to reinitialize it.
969 */
599d0c95
MG
970 if (unlikely(lruvec->pgdat != pgdat))
971 lruvec->pgdat = pgdat;
bea8c150 972 return lruvec;
08e552c6 973}
b69408e8 974
925b7673 975/**
fa9add64
HD
976 * mem_cgroup_update_lru_size - account for adding or removing an lru page
977 * @lruvec: mem_cgroup per zone lru vector
978 * @lru: index of lru list the page is sitting on
b4536f0c 979 * @zid: zone id of the accounted pages
fa9add64 980 * @nr_pages: positive when adding or negative when removing
925b7673 981 *
ca707239
HD
982 * This function must be called under lru_lock, just before a page is added
983 * to or just after a page is removed from an lru list (that ordering being
984 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 985 */
fa9add64 986void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 987 int zid, int nr_pages)
3f58a829 988{
ef8f2327 989 struct mem_cgroup_per_node *mz;
fa9add64 990 unsigned long *lru_size;
ca707239 991 long size;
3f58a829
MK
992
993 if (mem_cgroup_disabled())
994 return;
995
ef8f2327 996 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 997 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
998
999 if (nr_pages < 0)
1000 *lru_size += nr_pages;
1001
1002 size = *lru_size;
b4536f0c
MH
1003 if (WARN_ONCE(size < 0,
1004 "%s(%p, %d, %d): lru_size %ld\n",
1005 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1006 VM_BUG_ON(1);
1007 *lru_size = 0;
1008 }
1009
1010 if (nr_pages > 0)
1011 *lru_size += nr_pages;
08e552c6 1012}
544122e5 1013
2314b42d 1014bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1015{
2314b42d 1016 struct mem_cgroup *task_memcg;
158e0a2d 1017 struct task_struct *p;
ffbdccf5 1018 bool ret;
4c4a2214 1019
158e0a2d 1020 p = find_lock_task_mm(task);
de077d22 1021 if (p) {
2314b42d 1022 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1023 task_unlock(p);
1024 } else {
1025 /*
1026 * All threads may have already detached their mm's, but the oom
1027 * killer still needs to detect if they have already been oom
1028 * killed to prevent needlessly killing additional tasks.
1029 */
ffbdccf5 1030 rcu_read_lock();
2314b42d
JW
1031 task_memcg = mem_cgroup_from_task(task);
1032 css_get(&task_memcg->css);
ffbdccf5 1033 rcu_read_unlock();
de077d22 1034 }
2314b42d
JW
1035 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1036 css_put(&task_memcg->css);
4c4a2214
DR
1037 return ret;
1038}
1039
19942822 1040/**
9d11ea9f 1041 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1042 * @memcg: the memory cgroup
19942822 1043 *
9d11ea9f 1044 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1045 * pages.
19942822 1046 */
c0ff4b85 1047static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1048{
3e32cb2e
JW
1049 unsigned long margin = 0;
1050 unsigned long count;
1051 unsigned long limit;
9d11ea9f 1052
3e32cb2e 1053 count = page_counter_read(&memcg->memory);
4db0c3c2 1054 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1055 if (count < limit)
1056 margin = limit - count;
1057
7941d214 1058 if (do_memsw_account()) {
3e32cb2e 1059 count = page_counter_read(&memcg->memsw);
4db0c3c2 1060 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1061 if (count <= limit)
1062 margin = min(margin, limit - count);
cbedbac3
LR
1063 else
1064 margin = 0;
3e32cb2e
JW
1065 }
1066
1067 return margin;
19942822
JW
1068}
1069
32047e2a 1070/*
bdcbb659 1071 * A routine for checking "mem" is under move_account() or not.
32047e2a 1072 *
bdcbb659
QH
1073 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1074 * moving cgroups. This is for waiting at high-memory pressure
1075 * caused by "move".
32047e2a 1076 */
c0ff4b85 1077static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1078{
2bd9bb20
KH
1079 struct mem_cgroup *from;
1080 struct mem_cgroup *to;
4b534334 1081 bool ret = false;
2bd9bb20
KH
1082 /*
1083 * Unlike task_move routines, we access mc.to, mc.from not under
1084 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1085 */
1086 spin_lock(&mc.lock);
1087 from = mc.from;
1088 to = mc.to;
1089 if (!from)
1090 goto unlock;
3e92041d 1091
2314b42d
JW
1092 ret = mem_cgroup_is_descendant(from, memcg) ||
1093 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1094unlock:
1095 spin_unlock(&mc.lock);
4b534334
KH
1096 return ret;
1097}
1098
c0ff4b85 1099static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1100{
1101 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1102 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1103 DEFINE_WAIT(wait);
1104 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1105 /* moving charge context might have finished. */
1106 if (mc.moving_task)
1107 schedule();
1108 finish_wait(&mc.waitq, &wait);
1109 return true;
1110 }
1111 }
1112 return false;
1113}
1114
71cd3113
JW
1115unsigned int memcg1_stats[] = {
1116 MEMCG_CACHE,
1117 MEMCG_RSS,
1118 MEMCG_RSS_HUGE,
1119 NR_SHMEM,
1120 NR_FILE_MAPPED,
1121 NR_FILE_DIRTY,
1122 NR_WRITEBACK,
1123 MEMCG_SWAP,
1124};
1125
1126static const char *const memcg1_stat_names[] = {
1127 "cache",
1128 "rss",
1129 "rss_huge",
1130 "shmem",
1131 "mapped_file",
1132 "dirty",
1133 "writeback",
1134 "swap",
1135};
1136
58cf188e 1137#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1138/**
58cf188e 1139 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1140 * @memcg: The memory cgroup that went over limit
1141 * @p: Task that is going to be killed
1142 *
1143 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1144 * enabled
1145 */
1146void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1147{
58cf188e
SZ
1148 struct mem_cgroup *iter;
1149 unsigned int i;
e222432b 1150
e222432b
BS
1151 rcu_read_lock();
1152
2415b9f5
BV
1153 if (p) {
1154 pr_info("Task in ");
1155 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1156 pr_cont(" killed as a result of limit of ");
1157 } else {
1158 pr_info("Memory limit reached of cgroup ");
1159 }
1160
e61734c5 1161 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1162 pr_cont("\n");
e222432b 1163
e222432b
BS
1164 rcu_read_unlock();
1165
3e32cb2e
JW
1166 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1167 K((u64)page_counter_read(&memcg->memory)),
1168 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1169 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64)page_counter_read(&memcg->memsw)),
1171 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1172 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->kmem)),
1174 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1175
1176 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1177 pr_info("Memory cgroup stats for ");
1178 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1179 pr_cont(":");
1180
71cd3113
JW
1181 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1182 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1183 continue;
71cd3113 1184 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1185 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1186 }
1187
1188 for (i = 0; i < NR_LRU_LISTS; i++)
1189 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1190 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1191
1192 pr_cont("\n");
1193 }
e222432b
BS
1194}
1195
81d39c20
KH
1196/*
1197 * This function returns the number of memcg under hierarchy tree. Returns
1198 * 1(self count) if no children.
1199 */
c0ff4b85 1200static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1201{
1202 int num = 0;
7d74b06f
KH
1203 struct mem_cgroup *iter;
1204
c0ff4b85 1205 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1206 num++;
81d39c20
KH
1207 return num;
1208}
1209
a63d83f4
DR
1210/*
1211 * Return the memory (and swap, if configured) limit for a memcg.
1212 */
7c5f64f8 1213unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1214{
3e32cb2e 1215 unsigned long limit;
f3e8eb70 1216
3e32cb2e 1217 limit = memcg->memory.limit;
9a5a8f19 1218 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1219 unsigned long memsw_limit;
37e84351 1220 unsigned long swap_limit;
9a5a8f19 1221
3e32cb2e 1222 memsw_limit = memcg->memsw.limit;
37e84351
VD
1223 swap_limit = memcg->swap.limit;
1224 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1225 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1226 }
9a5a8f19 1227 return limit;
a63d83f4
DR
1228}
1229
b6e6edcf 1230static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1231 int order)
9cbb78bb 1232{
6e0fc46d
DR
1233 struct oom_control oc = {
1234 .zonelist = NULL,
1235 .nodemask = NULL,
2a966b77 1236 .memcg = memcg,
6e0fc46d
DR
1237 .gfp_mask = gfp_mask,
1238 .order = order,
6e0fc46d 1239 };
7c5f64f8 1240 bool ret;
9cbb78bb 1241
dc56401f 1242 mutex_lock(&oom_lock);
7c5f64f8 1243 ret = out_of_memory(&oc);
dc56401f 1244 mutex_unlock(&oom_lock);
7c5f64f8 1245 return ret;
9cbb78bb
DR
1246}
1247
ae6e71d3
MC
1248#if MAX_NUMNODES > 1
1249
4d0c066d
KH
1250/**
1251 * test_mem_cgroup_node_reclaimable
dad7557e 1252 * @memcg: the target memcg
4d0c066d
KH
1253 * @nid: the node ID to be checked.
1254 * @noswap : specify true here if the user wants flle only information.
1255 *
1256 * This function returns whether the specified memcg contains any
1257 * reclaimable pages on a node. Returns true if there are any reclaimable
1258 * pages in the node.
1259 */
c0ff4b85 1260static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1261 int nid, bool noswap)
1262{
c0ff4b85 1263 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1264 return true;
1265 if (noswap || !total_swap_pages)
1266 return false;
c0ff4b85 1267 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1268 return true;
1269 return false;
1270
1271}
889976db
YH
1272
1273/*
1274 * Always updating the nodemask is not very good - even if we have an empty
1275 * list or the wrong list here, we can start from some node and traverse all
1276 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1277 *
1278 */
c0ff4b85 1279static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1280{
1281 int nid;
453a9bf3
KH
1282 /*
1283 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1284 * pagein/pageout changes since the last update.
1285 */
c0ff4b85 1286 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1287 return;
c0ff4b85 1288 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1289 return;
1290
889976db 1291 /* make a nodemask where this memcg uses memory from */
31aaea4a 1292 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1293
31aaea4a 1294 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1295
c0ff4b85
R
1296 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1297 node_clear(nid, memcg->scan_nodes);
889976db 1298 }
453a9bf3 1299
c0ff4b85
R
1300 atomic_set(&memcg->numainfo_events, 0);
1301 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1302}
1303
1304/*
1305 * Selecting a node where we start reclaim from. Because what we need is just
1306 * reducing usage counter, start from anywhere is O,K. Considering
1307 * memory reclaim from current node, there are pros. and cons.
1308 *
1309 * Freeing memory from current node means freeing memory from a node which
1310 * we'll use or we've used. So, it may make LRU bad. And if several threads
1311 * hit limits, it will see a contention on a node. But freeing from remote
1312 * node means more costs for memory reclaim because of memory latency.
1313 *
1314 * Now, we use round-robin. Better algorithm is welcomed.
1315 */
c0ff4b85 1316int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1317{
1318 int node;
1319
c0ff4b85
R
1320 mem_cgroup_may_update_nodemask(memcg);
1321 node = memcg->last_scanned_node;
889976db 1322
0edaf86c 1323 node = next_node_in(node, memcg->scan_nodes);
889976db 1324 /*
fda3d69b
MH
1325 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1326 * last time it really checked all the LRUs due to rate limiting.
1327 * Fallback to the current node in that case for simplicity.
889976db
YH
1328 */
1329 if (unlikely(node == MAX_NUMNODES))
1330 node = numa_node_id();
1331
c0ff4b85 1332 memcg->last_scanned_node = node;
889976db
YH
1333 return node;
1334}
889976db 1335#else
c0ff4b85 1336int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1337{
1338 return 0;
1339}
1340#endif
1341
0608f43d 1342static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1343 pg_data_t *pgdat,
0608f43d
AM
1344 gfp_t gfp_mask,
1345 unsigned long *total_scanned)
1346{
1347 struct mem_cgroup *victim = NULL;
1348 int total = 0;
1349 int loop = 0;
1350 unsigned long excess;
1351 unsigned long nr_scanned;
1352 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1353 .pgdat = pgdat,
0608f43d
AM
1354 .priority = 0,
1355 };
1356
3e32cb2e 1357 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1358
1359 while (1) {
1360 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1361 if (!victim) {
1362 loop++;
1363 if (loop >= 2) {
1364 /*
1365 * If we have not been able to reclaim
1366 * anything, it might because there are
1367 * no reclaimable pages under this hierarchy
1368 */
1369 if (!total)
1370 break;
1371 /*
1372 * We want to do more targeted reclaim.
1373 * excess >> 2 is not to excessive so as to
1374 * reclaim too much, nor too less that we keep
1375 * coming back to reclaim from this cgroup
1376 */
1377 if (total >= (excess >> 2) ||
1378 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1379 break;
1380 }
1381 continue;
1382 }
a9dd0a83 1383 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1384 pgdat, &nr_scanned);
0608f43d 1385 *total_scanned += nr_scanned;
3e32cb2e 1386 if (!soft_limit_excess(root_memcg))
0608f43d 1387 break;
6d61ef40 1388 }
0608f43d
AM
1389 mem_cgroup_iter_break(root_memcg, victim);
1390 return total;
6d61ef40
BS
1391}
1392
0056f4e6
JW
1393#ifdef CONFIG_LOCKDEP
1394static struct lockdep_map memcg_oom_lock_dep_map = {
1395 .name = "memcg_oom_lock",
1396};
1397#endif
1398
fb2a6fc5
JW
1399static DEFINE_SPINLOCK(memcg_oom_lock);
1400
867578cb
KH
1401/*
1402 * Check OOM-Killer is already running under our hierarchy.
1403 * If someone is running, return false.
1404 */
fb2a6fc5 1405static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1406{
79dfdacc 1407 struct mem_cgroup *iter, *failed = NULL;
a636b327 1408
fb2a6fc5
JW
1409 spin_lock(&memcg_oom_lock);
1410
9f3a0d09 1411 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1412 if (iter->oom_lock) {
79dfdacc
MH
1413 /*
1414 * this subtree of our hierarchy is already locked
1415 * so we cannot give a lock.
1416 */
79dfdacc 1417 failed = iter;
9f3a0d09
JW
1418 mem_cgroup_iter_break(memcg, iter);
1419 break;
23751be0
JW
1420 } else
1421 iter->oom_lock = true;
7d74b06f 1422 }
867578cb 1423
fb2a6fc5
JW
1424 if (failed) {
1425 /*
1426 * OK, we failed to lock the whole subtree so we have
1427 * to clean up what we set up to the failing subtree
1428 */
1429 for_each_mem_cgroup_tree(iter, memcg) {
1430 if (iter == failed) {
1431 mem_cgroup_iter_break(memcg, iter);
1432 break;
1433 }
1434 iter->oom_lock = false;
79dfdacc 1435 }
0056f4e6
JW
1436 } else
1437 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1438
1439 spin_unlock(&memcg_oom_lock);
1440
1441 return !failed;
a636b327 1442}
0b7f569e 1443
fb2a6fc5 1444static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1445{
7d74b06f
KH
1446 struct mem_cgroup *iter;
1447
fb2a6fc5 1448 spin_lock(&memcg_oom_lock);
0056f4e6 1449 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1450 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1451 iter->oom_lock = false;
fb2a6fc5 1452 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1453}
1454
c0ff4b85 1455static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1456{
1457 struct mem_cgroup *iter;
1458
c2b42d3c 1459 spin_lock(&memcg_oom_lock);
c0ff4b85 1460 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1461 iter->under_oom++;
1462 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1463}
1464
c0ff4b85 1465static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1466{
1467 struct mem_cgroup *iter;
1468
867578cb
KH
1469 /*
1470 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1471 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1472 */
c2b42d3c 1473 spin_lock(&memcg_oom_lock);
c0ff4b85 1474 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1475 if (iter->under_oom > 0)
1476 iter->under_oom--;
1477 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1478}
1479
867578cb
KH
1480static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1481
dc98df5a 1482struct oom_wait_info {
d79154bb 1483 struct mem_cgroup *memcg;
ac6424b9 1484 wait_queue_entry_t wait;
dc98df5a
KH
1485};
1486
ac6424b9 1487static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1488 unsigned mode, int sync, void *arg)
1489{
d79154bb
HD
1490 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1491 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1492 struct oom_wait_info *oom_wait_info;
1493
1494 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1495 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1496
2314b42d
JW
1497 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1498 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1499 return 0;
dc98df5a
KH
1500 return autoremove_wake_function(wait, mode, sync, arg);
1501}
1502
c0ff4b85 1503static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1504{
c2b42d3c
TH
1505 /*
1506 * For the following lockless ->under_oom test, the only required
1507 * guarantee is that it must see the state asserted by an OOM when
1508 * this function is called as a result of userland actions
1509 * triggered by the notification of the OOM. This is trivially
1510 * achieved by invoking mem_cgroup_mark_under_oom() before
1511 * triggering notification.
1512 */
1513 if (memcg && memcg->under_oom)
f4b90b70 1514 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1515}
1516
3812c8c8 1517static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1518{
d0db7afa 1519 if (!current->memcg_may_oom)
3812c8c8 1520 return;
867578cb 1521 /*
49426420
JW
1522 * We are in the middle of the charge context here, so we
1523 * don't want to block when potentially sitting on a callstack
1524 * that holds all kinds of filesystem and mm locks.
1525 *
1526 * Also, the caller may handle a failed allocation gracefully
1527 * (like optional page cache readahead) and so an OOM killer
1528 * invocation might not even be necessary.
1529 *
1530 * That's why we don't do anything here except remember the
1531 * OOM context and then deal with it at the end of the page
1532 * fault when the stack is unwound, the locks are released,
1533 * and when we know whether the fault was overall successful.
867578cb 1534 */
49426420 1535 css_get(&memcg->css);
626ebc41
TH
1536 current->memcg_in_oom = memcg;
1537 current->memcg_oom_gfp_mask = mask;
1538 current->memcg_oom_order = order;
3812c8c8
JW
1539}
1540
1541/**
1542 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1543 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1544 *
49426420
JW
1545 * This has to be called at the end of a page fault if the memcg OOM
1546 * handler was enabled.
3812c8c8 1547 *
49426420 1548 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1549 * sleep on a waitqueue until the userspace task resolves the
1550 * situation. Sleeping directly in the charge context with all kinds
1551 * of locks held is not a good idea, instead we remember an OOM state
1552 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1553 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1554 *
1555 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1556 * completed, %false otherwise.
3812c8c8 1557 */
49426420 1558bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1559{
626ebc41 1560 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1561 struct oom_wait_info owait;
49426420 1562 bool locked;
3812c8c8
JW
1563
1564 /* OOM is global, do not handle */
3812c8c8 1565 if (!memcg)
49426420 1566 return false;
3812c8c8 1567
7c5f64f8 1568 if (!handle)
49426420 1569 goto cleanup;
3812c8c8
JW
1570
1571 owait.memcg = memcg;
1572 owait.wait.flags = 0;
1573 owait.wait.func = memcg_oom_wake_function;
1574 owait.wait.private = current;
2055da97 1575 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1576
3812c8c8 1577 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1578 mem_cgroup_mark_under_oom(memcg);
1579
1580 locked = mem_cgroup_oom_trylock(memcg);
1581
1582 if (locked)
1583 mem_cgroup_oom_notify(memcg);
1584
1585 if (locked && !memcg->oom_kill_disable) {
1586 mem_cgroup_unmark_under_oom(memcg);
1587 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1588 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1589 current->memcg_oom_order);
49426420 1590 } else {
3812c8c8 1591 schedule();
49426420
JW
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1594 }
1595
1596 if (locked) {
fb2a6fc5
JW
1597 mem_cgroup_oom_unlock(memcg);
1598 /*
1599 * There is no guarantee that an OOM-lock contender
1600 * sees the wakeups triggered by the OOM kill
1601 * uncharges. Wake any sleepers explicitely.
1602 */
1603 memcg_oom_recover(memcg);
1604 }
49426420 1605cleanup:
626ebc41 1606 current->memcg_in_oom = NULL;
3812c8c8 1607 css_put(&memcg->css);
867578cb 1608 return true;
0b7f569e
KH
1609}
1610
d7365e78 1611/**
81f8c3a4
JW
1612 * lock_page_memcg - lock a page->mem_cgroup binding
1613 * @page: the page
32047e2a 1614 *
81f8c3a4 1615 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1616 * another cgroup.
1617 *
1618 * It ensures lifetime of the returned memcg. Caller is responsible
1619 * for the lifetime of the page; __unlock_page_memcg() is available
1620 * when @page might get freed inside the locked section.
d69b042f 1621 */
739f79fc 1622struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1623{
1624 struct mem_cgroup *memcg;
6de22619 1625 unsigned long flags;
89c06bd5 1626
6de22619
JW
1627 /*
1628 * The RCU lock is held throughout the transaction. The fast
1629 * path can get away without acquiring the memcg->move_lock
1630 * because page moving starts with an RCU grace period.
739f79fc
JW
1631 *
1632 * The RCU lock also protects the memcg from being freed when
1633 * the page state that is going to change is the only thing
1634 * preventing the page itself from being freed. E.g. writeback
1635 * doesn't hold a page reference and relies on PG_writeback to
1636 * keep off truncation, migration and so forth.
1637 */
d7365e78
JW
1638 rcu_read_lock();
1639
1640 if (mem_cgroup_disabled())
739f79fc 1641 return NULL;
89c06bd5 1642again:
1306a85a 1643 memcg = page->mem_cgroup;
29833315 1644 if (unlikely(!memcg))
739f79fc 1645 return NULL;
d7365e78 1646
bdcbb659 1647 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1648 return memcg;
89c06bd5 1649
6de22619 1650 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1651 if (memcg != page->mem_cgroup) {
6de22619 1652 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1653 goto again;
1654 }
6de22619
JW
1655
1656 /*
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1659 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1660 */
1661 memcg->move_lock_task = current;
1662 memcg->move_lock_flags = flags;
d7365e78 1663
739f79fc 1664 return memcg;
89c06bd5 1665}
81f8c3a4 1666EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1667
d7365e78 1668/**
739f79fc
JW
1669 * __unlock_page_memcg - unlock and unpin a memcg
1670 * @memcg: the memcg
1671 *
1672 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1673 */
739f79fc 1674void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1675{
6de22619
JW
1676 if (memcg && memcg->move_lock_task == current) {
1677 unsigned long flags = memcg->move_lock_flags;
1678
1679 memcg->move_lock_task = NULL;
1680 memcg->move_lock_flags = 0;
1681
1682 spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 }
89c06bd5 1684
d7365e78 1685 rcu_read_unlock();
89c06bd5 1686}
739f79fc
JW
1687
1688/**
1689 * unlock_page_memcg - unlock a page->mem_cgroup binding
1690 * @page: the page
1691 */
1692void unlock_page_memcg(struct page *page)
1693{
1694 __unlock_page_memcg(page->mem_cgroup);
1695}
81f8c3a4 1696EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1697
cdec2e42
KH
1698/*
1699 * size of first charge trial. "32" comes from vmscan.c's magic value.
1700 * TODO: maybe necessary to use big numbers in big irons.
1701 */
7ec99d62 1702#define CHARGE_BATCH 32U
cdec2e42
KH
1703struct memcg_stock_pcp {
1704 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1705 unsigned int nr_pages;
cdec2e42 1706 struct work_struct work;
26fe6168 1707 unsigned long flags;
a0db00fc 1708#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1709};
1710static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1711static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1712
a0956d54
SS
1713/**
1714 * consume_stock: Try to consume stocked charge on this cpu.
1715 * @memcg: memcg to consume from.
1716 * @nr_pages: how many pages to charge.
1717 *
1718 * The charges will only happen if @memcg matches the current cpu's memcg
1719 * stock, and at least @nr_pages are available in that stock. Failure to
1720 * service an allocation will refill the stock.
1721 *
1722 * returns true if successful, false otherwise.
cdec2e42 1723 */
a0956d54 1724static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1725{
1726 struct memcg_stock_pcp *stock;
db2ba40c 1727 unsigned long flags;
3e32cb2e 1728 bool ret = false;
cdec2e42 1729
a0956d54 1730 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1731 return ret;
a0956d54 1732
db2ba40c
JW
1733 local_irq_save(flags);
1734
1735 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1736 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1737 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1738 ret = true;
1739 }
db2ba40c
JW
1740
1741 local_irq_restore(flags);
1742
cdec2e42
KH
1743 return ret;
1744}
1745
1746/*
3e32cb2e 1747 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1748 */
1749static void drain_stock(struct memcg_stock_pcp *stock)
1750{
1751 struct mem_cgroup *old = stock->cached;
1752
11c9ea4e 1753 if (stock->nr_pages) {
3e32cb2e 1754 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1755 if (do_memsw_account())
3e32cb2e 1756 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1757 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1758 stock->nr_pages = 0;
cdec2e42
KH
1759 }
1760 stock->cached = NULL;
cdec2e42
KH
1761}
1762
cdec2e42
KH
1763static void drain_local_stock(struct work_struct *dummy)
1764{
db2ba40c
JW
1765 struct memcg_stock_pcp *stock;
1766 unsigned long flags;
1767
1768 local_irq_save(flags);
1769
1770 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1771 drain_stock(stock);
26fe6168 1772 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1773
1774 local_irq_restore(flags);
cdec2e42
KH
1775}
1776
1777/*
3e32cb2e 1778 * Cache charges(val) to local per_cpu area.
320cc51d 1779 * This will be consumed by consume_stock() function, later.
cdec2e42 1780 */
c0ff4b85 1781static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1782{
db2ba40c
JW
1783 struct memcg_stock_pcp *stock;
1784 unsigned long flags;
1785
1786 local_irq_save(flags);
cdec2e42 1787
db2ba40c 1788 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1789 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1790 drain_stock(stock);
c0ff4b85 1791 stock->cached = memcg;
cdec2e42 1792 }
11c9ea4e 1793 stock->nr_pages += nr_pages;
db2ba40c 1794
475d0487
RG
1795 if (stock->nr_pages > CHARGE_BATCH)
1796 drain_stock(stock);
1797
db2ba40c 1798 local_irq_restore(flags);
cdec2e42
KH
1799}
1800
1801/*
c0ff4b85 1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1803 * of the hierarchy under it.
cdec2e42 1804 */
6d3d6aa2 1805static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1806{
26fe6168 1807 int cpu, curcpu;
d38144b7 1808
6d3d6aa2
JW
1809 /* If someone's already draining, avoid adding running more workers. */
1810 if (!mutex_trylock(&percpu_charge_mutex))
1811 return;
cdec2e42 1812 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1813 get_online_cpus();
5af12d0e 1814 curcpu = get_cpu();
cdec2e42
KH
1815 for_each_online_cpu(cpu) {
1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1817 struct mem_cgroup *memcg;
26fe6168 1818
c0ff4b85
R
1819 memcg = stock->cached;
1820 if (!memcg || !stock->nr_pages)
26fe6168 1821 continue;
2314b42d 1822 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1823 continue;
d1a05b69
MH
1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1825 if (cpu == curcpu)
1826 drain_local_stock(&stock->work);
1827 else
1828 schedule_work_on(cpu, &stock->work);
1829 }
cdec2e42 1830 }
5af12d0e 1831 put_cpu();
f894ffa8 1832 put_online_cpus();
9f50fad6 1833 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1834}
1835
308167fc 1836static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1837{
cdec2e42
KH
1838 struct memcg_stock_pcp *stock;
1839
cdec2e42
KH
1840 stock = &per_cpu(memcg_stock, cpu);
1841 drain_stock(stock);
308167fc 1842 return 0;
cdec2e42
KH
1843}
1844
f7e1cb6e
JW
1845static void reclaim_high(struct mem_cgroup *memcg,
1846 unsigned int nr_pages,
1847 gfp_t gfp_mask)
1848{
1849 do {
1850 if (page_counter_read(&memcg->memory) <= memcg->high)
1851 continue;
31176c78 1852 mem_cgroup_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1853 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1854 } while ((memcg = parent_mem_cgroup(memcg)));
1855}
1856
1857static void high_work_func(struct work_struct *work)
1858{
1859 struct mem_cgroup *memcg;
1860
1861 memcg = container_of(work, struct mem_cgroup, high_work);
1862 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1863}
1864
b23afb93
TH
1865/*
1866 * Scheduled by try_charge() to be executed from the userland return path
1867 * and reclaims memory over the high limit.
1868 */
1869void mem_cgroup_handle_over_high(void)
1870{
1871 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1872 struct mem_cgroup *memcg;
b23afb93
TH
1873
1874 if (likely(!nr_pages))
1875 return;
1876
f7e1cb6e
JW
1877 memcg = get_mem_cgroup_from_mm(current->mm);
1878 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1879 css_put(&memcg->css);
1880 current->memcg_nr_pages_over_high = 0;
1881}
1882
00501b53
JW
1883static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1884 unsigned int nr_pages)
8a9f3ccd 1885{
7ec99d62 1886 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1887 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1888 struct mem_cgroup *mem_over_limit;
3e32cb2e 1889 struct page_counter *counter;
6539cc05 1890 unsigned long nr_reclaimed;
b70a2a21
JW
1891 bool may_swap = true;
1892 bool drained = false;
a636b327 1893
ce00a967 1894 if (mem_cgroup_is_root(memcg))
10d53c74 1895 return 0;
6539cc05 1896retry:
b6b6cc72 1897 if (consume_stock(memcg, nr_pages))
10d53c74 1898 return 0;
8a9f3ccd 1899
7941d214 1900 if (!do_memsw_account() ||
6071ca52
JW
1901 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1902 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1903 goto done_restock;
7941d214 1904 if (do_memsw_account())
3e32cb2e
JW
1905 page_counter_uncharge(&memcg->memsw, batch);
1906 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1907 } else {
3e32cb2e 1908 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1909 may_swap = false;
3fbe7244 1910 }
7a81b88c 1911
6539cc05
JW
1912 if (batch > nr_pages) {
1913 batch = nr_pages;
1914 goto retry;
1915 }
6d61ef40 1916
06b078fc
JW
1917 /*
1918 * Unlike in global OOM situations, memcg is not in a physical
1919 * memory shortage. Allow dying and OOM-killed tasks to
1920 * bypass the last charges so that they can exit quickly and
1921 * free their memory.
1922 */
da99ecf1 1923 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
1924 fatal_signal_pending(current) ||
1925 current->flags & PF_EXITING))
10d53c74 1926 goto force;
06b078fc 1927
89a28483
JW
1928 /*
1929 * Prevent unbounded recursion when reclaim operations need to
1930 * allocate memory. This might exceed the limits temporarily,
1931 * but we prefer facilitating memory reclaim and getting back
1932 * under the limit over triggering OOM kills in these cases.
1933 */
1934 if (unlikely(current->flags & PF_MEMALLOC))
1935 goto force;
1936
06b078fc
JW
1937 if (unlikely(task_in_memcg_oom(current)))
1938 goto nomem;
1939
d0164adc 1940 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1941 goto nomem;
4b534334 1942
31176c78 1943 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
241994ed 1944
b70a2a21
JW
1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1946 gfp_mask, may_swap);
6539cc05 1947
61e02c74 1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1949 goto retry;
28c34c29 1950
b70a2a21 1951 if (!drained) {
6d3d6aa2 1952 drain_all_stock(mem_over_limit);
b70a2a21
JW
1953 drained = true;
1954 goto retry;
1955 }
1956
28c34c29
JW
1957 if (gfp_mask & __GFP_NORETRY)
1958 goto nomem;
6539cc05
JW
1959 /*
1960 * Even though the limit is exceeded at this point, reclaim
1961 * may have been able to free some pages. Retry the charge
1962 * before killing the task.
1963 *
1964 * Only for regular pages, though: huge pages are rather
1965 * unlikely to succeed so close to the limit, and we fall back
1966 * to regular pages anyway in case of failure.
1967 */
61e02c74 1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1969 goto retry;
1970 /*
1971 * At task move, charge accounts can be doubly counted. So, it's
1972 * better to wait until the end of task_move if something is going on.
1973 */
1974 if (mem_cgroup_wait_acct_move(mem_over_limit))
1975 goto retry;
1976
9b130619
JW
1977 if (nr_retries--)
1978 goto retry;
1979
06b078fc 1980 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1981 goto force;
06b078fc 1982
6539cc05 1983 if (fatal_signal_pending(current))
10d53c74 1984 goto force;
6539cc05 1985
31176c78 1986 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
241994ed 1987
3608de07
JM
1988 mem_cgroup_oom(mem_over_limit, gfp_mask,
1989 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1990nomem:
6d1fdc48 1991 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1992 return -ENOMEM;
10d53c74
TH
1993force:
1994 /*
1995 * The allocation either can't fail or will lead to more memory
1996 * being freed very soon. Allow memory usage go over the limit
1997 * temporarily by force charging it.
1998 */
1999 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2000 if (do_memsw_account())
10d53c74
TH
2001 page_counter_charge(&memcg->memsw, nr_pages);
2002 css_get_many(&memcg->css, nr_pages);
2003
2004 return 0;
6539cc05
JW
2005
2006done_restock:
e8ea14cc 2007 css_get_many(&memcg->css, batch);
6539cc05
JW
2008 if (batch > nr_pages)
2009 refill_stock(memcg, batch - nr_pages);
b23afb93 2010
241994ed 2011 /*
b23afb93
TH
2012 * If the hierarchy is above the normal consumption range, schedule
2013 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2016 * not recorded as it most likely matches current's and won't
2017 * change in the meantime. As high limit is checked again before
2018 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2019 */
2020 do {
b23afb93 2021 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2022 /* Don't bother a random interrupted task */
2023 if (in_interrupt()) {
2024 schedule_work(&memcg->high_work);
2025 break;
2026 }
9516a18a 2027 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2028 set_notify_resume(current);
2029 break;
2030 }
241994ed 2031 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2032
2033 return 0;
7a81b88c 2034}
8a9f3ccd 2035
00501b53 2036static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2037{
ce00a967
JW
2038 if (mem_cgroup_is_root(memcg))
2039 return;
2040
3e32cb2e 2041 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2042 if (do_memsw_account())
3e32cb2e 2043 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2044
e8ea14cc 2045 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2046}
2047
0a31bc97
JW
2048static void lock_page_lru(struct page *page, int *isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
a52633d8 2052 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2053 if (PageLRU(page)) {
2054 struct lruvec *lruvec;
2055
599d0c95 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2057 ClearPageLRU(page);
2058 del_page_from_lru_list(page, lruvec, page_lru(page));
2059 *isolated = 1;
2060 } else
2061 *isolated = 0;
2062}
2063
2064static void unlock_page_lru(struct page *page, int isolated)
2065{
2066 struct zone *zone = page_zone(page);
2067
2068 if (isolated) {
2069 struct lruvec *lruvec;
2070
599d0c95 2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2072 VM_BUG_ON_PAGE(PageLRU(page), page);
2073 SetPageLRU(page);
2074 add_page_to_lru_list(page, lruvec, page_lru(page));
2075 }
a52633d8 2076 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2077}
2078
00501b53 2079static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2080 bool lrucare)
7a81b88c 2081{
0a31bc97 2082 int isolated;
9ce70c02 2083
1306a85a 2084 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2085
2086 /*
2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2088 * may already be on some other mem_cgroup's LRU. Take care of it.
2089 */
0a31bc97
JW
2090 if (lrucare)
2091 lock_page_lru(page, &isolated);
9ce70c02 2092
0a31bc97
JW
2093 /*
2094 * Nobody should be changing or seriously looking at
1306a85a 2095 * page->mem_cgroup at this point:
0a31bc97
JW
2096 *
2097 * - the page is uncharged
2098 *
2099 * - the page is off-LRU
2100 *
2101 * - an anonymous fault has exclusive page access, except for
2102 * a locked page table
2103 *
2104 * - a page cache insertion, a swapin fault, or a migration
2105 * have the page locked
2106 */
1306a85a 2107 page->mem_cgroup = memcg;
9ce70c02 2108
0a31bc97
JW
2109 if (lrucare)
2110 unlock_page_lru(page, isolated);
7a81b88c 2111}
66e1707b 2112
127424c8 2113#ifndef CONFIG_SLOB
f3bb3043 2114static int memcg_alloc_cache_id(void)
55007d84 2115{
f3bb3043
VD
2116 int id, size;
2117 int err;
2118
dbcf73e2 2119 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2121 if (id < 0)
2122 return id;
55007d84 2123
dbcf73e2 2124 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2125 return id;
2126
2127 /*
2128 * There's no space for the new id in memcg_caches arrays,
2129 * so we have to grow them.
2130 */
05257a1a 2131 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2132
2133 size = 2 * (id + 1);
55007d84
GC
2134 if (size < MEMCG_CACHES_MIN_SIZE)
2135 size = MEMCG_CACHES_MIN_SIZE;
2136 else if (size > MEMCG_CACHES_MAX_SIZE)
2137 size = MEMCG_CACHES_MAX_SIZE;
2138
f3bb3043 2139 err = memcg_update_all_caches(size);
60d3fd32
VD
2140 if (!err)
2141 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2142 if (!err)
2143 memcg_nr_cache_ids = size;
2144
2145 up_write(&memcg_cache_ids_sem);
2146
f3bb3043 2147 if (err) {
dbcf73e2 2148 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2149 return err;
2150 }
2151 return id;
2152}
2153
2154static void memcg_free_cache_id(int id)
2155{
dbcf73e2 2156 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2157}
2158
d5b3cf71 2159struct memcg_kmem_cache_create_work {
5722d094
VD
2160 struct mem_cgroup *memcg;
2161 struct kmem_cache *cachep;
2162 struct work_struct work;
2163};
2164
d5b3cf71 2165static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2166{
d5b3cf71
VD
2167 struct memcg_kmem_cache_create_work *cw =
2168 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2169 struct mem_cgroup *memcg = cw->memcg;
2170 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2171
d5b3cf71 2172 memcg_create_kmem_cache(memcg, cachep);
bd673145 2173
5722d094 2174 css_put(&memcg->css);
d7f25f8a
GC
2175 kfree(cw);
2176}
2177
2178/*
2179 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2180 */
d5b3cf71
VD
2181static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2182 struct kmem_cache *cachep)
d7f25f8a 2183{
d5b3cf71 2184 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2185
776ed0f0 2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2187 if (!cw)
d7f25f8a 2188 return;
8135be5a
VD
2189
2190 css_get(&memcg->css);
d7f25f8a
GC
2191
2192 cw->memcg = memcg;
2193 cw->cachep = cachep;
d5b3cf71 2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2195
17cc4dfe 2196 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2197}
2198
d5b3cf71
VD
2199static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2200 struct kmem_cache *cachep)
0e9d92f2
GC
2201{
2202 /*
2203 * We need to stop accounting when we kmalloc, because if the
2204 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2205 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2206 *
2207 * However, it is better to enclose the whole function. Depending on
2208 * the debugging options enabled, INIT_WORK(), for instance, can
2209 * trigger an allocation. This too, will make us recurse. Because at
2210 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2211 * the safest choice is to do it like this, wrapping the whole function.
2212 */
6f185c29 2213 current->memcg_kmem_skip_account = 1;
d5b3cf71 2214 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2215 current->memcg_kmem_skip_account = 0;
0e9d92f2 2216}
c67a8a68 2217
45264778
VD
2218static inline bool memcg_kmem_bypass(void)
2219{
2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2221 return true;
2222 return false;
2223}
2224
2225/**
2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2227 * @cachep: the original global kmem cache
2228 *
d7f25f8a
GC
2229 * Return the kmem_cache we're supposed to use for a slab allocation.
2230 * We try to use the current memcg's version of the cache.
2231 *
45264778
VD
2232 * If the cache does not exist yet, if we are the first user of it, we
2233 * create it asynchronously in a workqueue and let the current allocation
2234 * go through with the original cache.
d7f25f8a 2235 *
45264778
VD
2236 * This function takes a reference to the cache it returns to assure it
2237 * won't get destroyed while we are working with it. Once the caller is
2238 * done with it, memcg_kmem_put_cache() must be called to release the
2239 * reference.
d7f25f8a 2240 */
45264778 2241struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2242{
2243 struct mem_cgroup *memcg;
959c8963 2244 struct kmem_cache *memcg_cachep;
2a4db7eb 2245 int kmemcg_id;
d7f25f8a 2246
f7ce3190 2247 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2248
45264778 2249 if (memcg_kmem_bypass())
230e9fc2
VD
2250 return cachep;
2251
9d100c5e 2252 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2253 return cachep;
2254
8135be5a 2255 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2257 if (kmemcg_id < 0)
ca0dde97 2258 goto out;
d7f25f8a 2259
2a4db7eb 2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2261 if (likely(memcg_cachep))
2262 return memcg_cachep;
ca0dde97
LZ
2263
2264 /*
2265 * If we are in a safe context (can wait, and not in interrupt
2266 * context), we could be be predictable and return right away.
2267 * This would guarantee that the allocation being performed
2268 * already belongs in the new cache.
2269 *
2270 * However, there are some clashes that can arrive from locking.
2271 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2272 * memcg_create_kmem_cache, this means no further allocation
2273 * could happen with the slab_mutex held. So it's better to
2274 * defer everything.
ca0dde97 2275 */
d5b3cf71 2276 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2277out:
8135be5a 2278 css_put(&memcg->css);
ca0dde97 2279 return cachep;
d7f25f8a 2280}
d7f25f8a 2281
45264778
VD
2282/**
2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2284 * @cachep: the cache returned by memcg_kmem_get_cache
2285 */
2286void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2287{
2288 if (!is_root_cache(cachep))
f7ce3190 2289 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2290}
2291
45264778
VD
2292/**
2293 * memcg_kmem_charge: charge a kmem page
2294 * @page: page to charge
2295 * @gfp: reclaim mode
2296 * @order: allocation order
2297 * @memcg: memory cgroup to charge
2298 *
2299 * Returns 0 on success, an error code on failure.
2300 */
2301int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2302 struct mem_cgroup *memcg)
7ae1e1d0 2303{
f3ccb2c4
VD
2304 unsigned int nr_pages = 1 << order;
2305 struct page_counter *counter;
7ae1e1d0
GC
2306 int ret;
2307
f3ccb2c4 2308 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2309 if (ret)
f3ccb2c4 2310 return ret;
52c29b04
JW
2311
2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2314 cancel_charge(memcg, nr_pages);
2315 return -ENOMEM;
7ae1e1d0
GC
2316 }
2317
f3ccb2c4 2318 page->mem_cgroup = memcg;
7ae1e1d0 2319
f3ccb2c4 2320 return 0;
7ae1e1d0
GC
2321}
2322
45264778
VD
2323/**
2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 *
2329 * Returns 0 on success, an error code on failure.
2330 */
2331int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2332{
f3ccb2c4 2333 struct mem_cgroup *memcg;
fcff7d7e 2334 int ret = 0;
7ae1e1d0 2335
45264778
VD
2336 if (memcg_kmem_bypass())
2337 return 0;
2338
f3ccb2c4 2339 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2340 if (!mem_cgroup_is_root(memcg)) {
45264778 2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2342 if (!ret)
2343 __SetPageKmemcg(page);
2344 }
7ae1e1d0 2345 css_put(&memcg->css);
d05e83a6 2346 return ret;
7ae1e1d0 2347}
45264778
VD
2348/**
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2352 */
2353void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2354{
1306a85a 2355 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2356 unsigned int nr_pages = 1 << order;
7ae1e1d0 2357
7ae1e1d0
GC
2358 if (!memcg)
2359 return;
2360
309381fe 2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2362
52c29b04
JW
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2365
f3ccb2c4 2366 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2367 if (do_memsw_account())
f3ccb2c4 2368 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2369
1306a85a 2370 page->mem_cgroup = NULL;
c4159a75
VD
2371
2372 /* slab pages do not have PageKmemcg flag set */
2373 if (PageKmemcg(page))
2374 __ClearPageKmemcg(page);
2375
f3ccb2c4 2376 css_put_many(&memcg->css, nr_pages);
60d3fd32 2377}
127424c8 2378#endif /* !CONFIG_SLOB */
7ae1e1d0 2379
ca3e0214
KH
2380#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2381
ca3e0214
KH
2382/*
2383 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2384 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2385 */
e94c8a9c 2386void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2387{
e94c8a9c 2388 int i;
ca3e0214 2389
3d37c4a9
KH
2390 if (mem_cgroup_disabled())
2391 return;
b070e65c 2392
29833315 2393 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2394 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2395
71cd3113 2396 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
b070e65c 2397 HPAGE_PMD_NR);
ca3e0214 2398}
12d27107 2399#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2400
c255a458 2401#ifdef CONFIG_MEMCG_SWAP
0a31bc97 2402static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
38d8b4e6 2403 int nr_entries)
d13d1443 2404{
38d8b4e6 2405 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
d13d1443 2406}
02491447
DN
2407
2408/**
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2413 *
2414 * It succeeds only when the swap_cgroup's record for this entry is the same
2415 * as the mem_cgroup's id of @from.
2416 *
2417 * Returns 0 on success, -EINVAL on failure.
2418 *
3e32cb2e 2419 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2420 * both res and memsw, and called css_get().
2421 */
2422static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2423 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2424{
2425 unsigned short old_id, new_id;
2426
34c00c31
LZ
2427 old_id = mem_cgroup_id(from);
2428 new_id = mem_cgroup_id(to);
02491447
DN
2429
2430 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
38d8b4e6
HY
2431 mem_cgroup_swap_statistics(from, -1);
2432 mem_cgroup_swap_statistics(to, 1);
02491447
DN
2433 return 0;
2434 }
2435 return -EINVAL;
2436}
2437#else
2438static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2439 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2440{
2441 return -EINVAL;
2442}
8c7c6e34 2443#endif
d13d1443 2444
3e32cb2e 2445static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2446
d38d2a75 2447static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2448 unsigned long limit)
628f4235 2449{
3e32cb2e
JW
2450 unsigned long curusage;
2451 unsigned long oldusage;
2452 bool enlarge = false;
81d39c20 2453 int retry_count;
3e32cb2e 2454 int ret;
81d39c20
KH
2455
2456 /*
2457 * For keeping hierarchical_reclaim simple, how long we should retry
2458 * is depends on callers. We set our retry-count to be function
2459 * of # of children which we should visit in this loop.
2460 */
3e32cb2e
JW
2461 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2462 mem_cgroup_count_children(memcg);
81d39c20 2463
3e32cb2e 2464 oldusage = page_counter_read(&memcg->memory);
628f4235 2465
3e32cb2e 2466 do {
628f4235
KH
2467 if (signal_pending(current)) {
2468 ret = -EINTR;
2469 break;
2470 }
3e32cb2e
JW
2471
2472 mutex_lock(&memcg_limit_mutex);
2473 if (limit > memcg->memsw.limit) {
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2475 ret = -EINVAL;
628f4235
KH
2476 break;
2477 }
3e32cb2e
JW
2478 if (limit > memcg->memory.limit)
2479 enlarge = true;
2480 ret = page_counter_limit(&memcg->memory, limit);
2481 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2482
2483 if (!ret)
2484 break;
2485
b70a2a21
JW
2486 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2487
3e32cb2e 2488 curusage = page_counter_read(&memcg->memory);
81d39c20 2489 /* Usage is reduced ? */
f894ffa8 2490 if (curusage >= oldusage)
81d39c20
KH
2491 retry_count--;
2492 else
2493 oldusage = curusage;
3e32cb2e
JW
2494 } while (retry_count);
2495
3c11ecf4
KH
2496 if (!ret && enlarge)
2497 memcg_oom_recover(memcg);
14797e23 2498
8c7c6e34
KH
2499 return ret;
2500}
2501
338c8431 2502static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2503 unsigned long limit)
8c7c6e34 2504{
3e32cb2e
JW
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
81d39c20 2508 int retry_count;
3e32cb2e 2509 int ret;
8c7c6e34 2510
81d39c20 2511 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2514
2515 oldusage = page_counter_read(&memcg->memsw);
2516
2517 do {
8c7c6e34
KH
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2521 }
3e32cb2e
JW
2522
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit < memcg->memory.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2526 ret = -EINVAL;
8c7c6e34
KH
2527 break;
2528 }
3e32cb2e
JW
2529 if (limit > memcg->memsw.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memsw, limit);
2532 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2533
2534 if (!ret)
2535 break;
2536
b70a2a21
JW
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2538
3e32cb2e 2539 curusage = page_counter_read(&memcg->memsw);
81d39c20 2540 /* Usage is reduced ? */
8c7c6e34 2541 if (curusage >= oldusage)
628f4235 2542 retry_count--;
81d39c20
KH
2543 else
2544 oldusage = curusage;
3e32cb2e
JW
2545 } while (retry_count);
2546
3c11ecf4
KH
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
3e32cb2e 2549
628f4235
KH
2550 return ret;
2551}
2552
ef8f2327 2553unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2554 gfp_t gfp_mask,
2555 unsigned long *total_scanned)
2556{
2557 unsigned long nr_reclaimed = 0;
ef8f2327 2558 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2559 unsigned long reclaimed;
2560 int loop = 0;
ef8f2327 2561 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2562 unsigned long excess;
0608f43d
AM
2563 unsigned long nr_scanned;
2564
2565 if (order > 0)
2566 return 0;
2567
ef8f2327 2568 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2569
2570 /*
2571 * Do not even bother to check the largest node if the root
2572 * is empty. Do it lockless to prevent lock bouncing. Races
2573 * are acceptable as soft limit is best effort anyway.
2574 */
bfc7228b 2575 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2576 return 0;
2577
0608f43d
AM
2578 /*
2579 * This loop can run a while, specially if mem_cgroup's continuously
2580 * keep exceeding their soft limit and putting the system under
2581 * pressure
2582 */
2583 do {
2584 if (next_mz)
2585 mz = next_mz;
2586 else
2587 mz = mem_cgroup_largest_soft_limit_node(mctz);
2588 if (!mz)
2589 break;
2590
2591 nr_scanned = 0;
ef8f2327 2592 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2593 gfp_mask, &nr_scanned);
2594 nr_reclaimed += reclaimed;
2595 *total_scanned += nr_scanned;
0a31bc97 2596 spin_lock_irq(&mctz->lock);
bc2f2e7f 2597 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2598
2599 /*
2600 * If we failed to reclaim anything from this memory cgroup
2601 * it is time to move on to the next cgroup
2602 */
2603 next_mz = NULL;
bc2f2e7f
VD
2604 if (!reclaimed)
2605 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2606
3e32cb2e 2607 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2608 /*
2609 * One school of thought says that we should not add
2610 * back the node to the tree if reclaim returns 0.
2611 * But our reclaim could return 0, simply because due
2612 * to priority we are exposing a smaller subset of
2613 * memory to reclaim from. Consider this as a longer
2614 * term TODO.
2615 */
2616 /* If excess == 0, no tree ops */
cf2c8127 2617 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2618 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2619 css_put(&mz->memcg->css);
2620 loop++;
2621 /*
2622 * Could not reclaim anything and there are no more
2623 * mem cgroups to try or we seem to be looping without
2624 * reclaiming anything.
2625 */
2626 if (!nr_reclaimed &&
2627 (next_mz == NULL ||
2628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2629 break;
2630 } while (!nr_reclaimed);
2631 if (next_mz)
2632 css_put(&next_mz->memcg->css);
2633 return nr_reclaimed;
2634}
2635
ea280e7b
TH
2636/*
2637 * Test whether @memcg has children, dead or alive. Note that this
2638 * function doesn't care whether @memcg has use_hierarchy enabled and
2639 * returns %true if there are child csses according to the cgroup
2640 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2641 */
b5f99b53
GC
2642static inline bool memcg_has_children(struct mem_cgroup *memcg)
2643{
ea280e7b
TH
2644 bool ret;
2645
ea280e7b
TH
2646 rcu_read_lock();
2647 ret = css_next_child(NULL, &memcg->css);
2648 rcu_read_unlock();
2649 return ret;
b5f99b53
GC
2650}
2651
c26251f9 2652/*
51038171 2653 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2654 *
2655 * Caller is responsible for holding css reference for memcg.
2656 */
2657static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2658{
2659 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2660
c1e862c1
KH
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
f817ed48 2663 /* try to free all pages in this cgroup */
3e32cb2e 2664 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2665 int progress;
c1e862c1 2666
c26251f9
MH
2667 if (signal_pending(current))
2668 return -EINTR;
2669
b70a2a21
JW
2670 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2671 GFP_KERNEL, true);
c1e862c1 2672 if (!progress) {
f817ed48 2673 nr_retries--;
c1e862c1 2674 /* maybe some writeback is necessary */
8aa7e847 2675 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2676 }
f817ed48
KH
2677
2678 }
ab5196c2
MH
2679
2680 return 0;
cc847582
KH
2681}
2682
6770c64e
TH
2683static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2684 char *buf, size_t nbytes,
2685 loff_t off)
c1e862c1 2686{
6770c64e 2687 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2688
d8423011
MH
2689 if (mem_cgroup_is_root(memcg))
2690 return -EINVAL;
6770c64e 2691 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2692}
2693
182446d0
TH
2694static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2695 struct cftype *cft)
18f59ea7 2696{
182446d0 2697 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2698}
2699
182446d0
TH
2700static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2701 struct cftype *cft, u64 val)
18f59ea7
BS
2702{
2703 int retval = 0;
182446d0 2704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2705 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2706
567fb435 2707 if (memcg->use_hierarchy == val)
0b8f73e1 2708 return 0;
567fb435 2709
18f59ea7 2710 /*
af901ca1 2711 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2712 * in the child subtrees. If it is unset, then the change can
2713 * occur, provided the current cgroup has no children.
2714 *
2715 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 * set if there are no children.
2717 */
c0ff4b85 2718 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2719 (val == 1 || val == 0)) {
ea280e7b 2720 if (!memcg_has_children(memcg))
c0ff4b85 2721 memcg->use_hierarchy = val;
18f59ea7
BS
2722 else
2723 retval = -EBUSY;
2724 } else
2725 retval = -EINVAL;
567fb435 2726
18f59ea7
BS
2727 return retval;
2728}
2729
72b54e73 2730static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2731{
2732 struct mem_cgroup *iter;
72b54e73 2733 int i;
ce00a967 2734
72b54e73 2735 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2736
72b54e73
VD
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2739 stat[i] += memcg_page_state(iter, i);
72b54e73 2740 }
ce00a967
JW
2741}
2742
72b54e73 2743static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2744{
2745 struct mem_cgroup *iter;
72b54e73 2746 int i;
587d9f72 2747
72b54e73 2748 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2749
72b54e73
VD
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 for (i = 0; i < MEMCG_NR_EVENTS; i++)
ccda7f43 2752 events[i] += memcg_sum_events(iter, i);
72b54e73 2753 }
587d9f72
JW
2754}
2755
6f646156 2756static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2757{
72b54e73 2758 unsigned long val = 0;
ce00a967 2759
3e32cb2e 2760 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2761 struct mem_cgroup *iter;
2762
2763 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2764 val += memcg_page_state(iter, MEMCG_CACHE);
2765 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2766 if (swap)
ccda7f43 2767 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2768 }
3e32cb2e 2769 } else {
ce00a967 2770 if (!swap)
3e32cb2e 2771 val = page_counter_read(&memcg->memory);
ce00a967 2772 else
3e32cb2e 2773 val = page_counter_read(&memcg->memsw);
ce00a967 2774 }
c12176d3 2775 return val;
ce00a967
JW
2776}
2777
3e32cb2e
JW
2778enum {
2779 RES_USAGE,
2780 RES_LIMIT,
2781 RES_MAX_USAGE,
2782 RES_FAILCNT,
2783 RES_SOFT_LIMIT,
2784};
ce00a967 2785
791badbd 2786static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2787 struct cftype *cft)
8cdea7c0 2788{
182446d0 2789 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2790 struct page_counter *counter;
af36f906 2791
3e32cb2e 2792 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2793 case _MEM:
3e32cb2e
JW
2794 counter = &memcg->memory;
2795 break;
8c7c6e34 2796 case _MEMSWAP:
3e32cb2e
JW
2797 counter = &memcg->memsw;
2798 break;
510fc4e1 2799 case _KMEM:
3e32cb2e 2800 counter = &memcg->kmem;
510fc4e1 2801 break;
d55f90bf 2802 case _TCP:
0db15298 2803 counter = &memcg->tcpmem;
d55f90bf 2804 break;
8c7c6e34
KH
2805 default:
2806 BUG();
8c7c6e34 2807 }
3e32cb2e
JW
2808
2809 switch (MEMFILE_ATTR(cft->private)) {
2810 case RES_USAGE:
2811 if (counter == &memcg->memory)
c12176d3 2812 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2813 if (counter == &memcg->memsw)
c12176d3 2814 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2815 return (u64)page_counter_read(counter) * PAGE_SIZE;
2816 case RES_LIMIT:
2817 return (u64)counter->limit * PAGE_SIZE;
2818 case RES_MAX_USAGE:
2819 return (u64)counter->watermark * PAGE_SIZE;
2820 case RES_FAILCNT:
2821 return counter->failcnt;
2822 case RES_SOFT_LIMIT:
2823 return (u64)memcg->soft_limit * PAGE_SIZE;
2824 default:
2825 BUG();
2826 }
8cdea7c0 2827}
510fc4e1 2828
127424c8 2829#ifndef CONFIG_SLOB
567e9ab2 2830static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2831{
d6441637
VD
2832 int memcg_id;
2833
b313aeee
VD
2834 if (cgroup_memory_nokmem)
2835 return 0;
2836
2a4db7eb 2837 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2838 BUG_ON(memcg->kmem_state);
d6441637 2839
f3bb3043 2840 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2841 if (memcg_id < 0)
2842 return memcg_id;
d6441637 2843
ef12947c 2844 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2845 /*
567e9ab2 2846 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2847 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2848 * guarantee no one starts accounting before all call sites are
2849 * patched.
2850 */
900a38f0 2851 memcg->kmemcg_id = memcg_id;
567e9ab2 2852 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2853 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2854
2855 return 0;
d6441637
VD
2856}
2857
8e0a8912
JW
2858static void memcg_offline_kmem(struct mem_cgroup *memcg)
2859{
2860 struct cgroup_subsys_state *css;
2861 struct mem_cgroup *parent, *child;
2862 int kmemcg_id;
2863
2864 if (memcg->kmem_state != KMEM_ONLINE)
2865 return;
2866 /*
2867 * Clear the online state before clearing memcg_caches array
2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 * guarantees that no cache will be created for this cgroup
2870 * after we are done (see memcg_create_kmem_cache()).
2871 */
2872 memcg->kmem_state = KMEM_ALLOCATED;
2873
2874 memcg_deactivate_kmem_caches(memcg);
2875
2876 kmemcg_id = memcg->kmemcg_id;
2877 BUG_ON(kmemcg_id < 0);
2878
2879 parent = parent_mem_cgroup(memcg);
2880 if (!parent)
2881 parent = root_mem_cgroup;
2882
2883 /*
2884 * Change kmemcg_id of this cgroup and all its descendants to the
2885 * parent's id, and then move all entries from this cgroup's list_lrus
2886 * to ones of the parent. After we have finished, all list_lrus
2887 * corresponding to this cgroup are guaranteed to remain empty. The
2888 * ordering is imposed by list_lru_node->lock taken by
2889 * memcg_drain_all_list_lrus().
2890 */
3a06bb78 2891 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2892 css_for_each_descendant_pre(css, &memcg->css) {
2893 child = mem_cgroup_from_css(css);
2894 BUG_ON(child->kmemcg_id != kmemcg_id);
2895 child->kmemcg_id = parent->kmemcg_id;
2896 if (!memcg->use_hierarchy)
2897 break;
2898 }
3a06bb78
TH
2899 rcu_read_unlock();
2900
8e0a8912
JW
2901 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2902
2903 memcg_free_cache_id(kmemcg_id);
2904}
2905
2906static void memcg_free_kmem(struct mem_cgroup *memcg)
2907{
0b8f73e1
JW
2908 /* css_alloc() failed, offlining didn't happen */
2909 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2910 memcg_offline_kmem(memcg);
2911
8e0a8912
JW
2912 if (memcg->kmem_state == KMEM_ALLOCATED) {
2913 memcg_destroy_kmem_caches(memcg);
2914 static_branch_dec(&memcg_kmem_enabled_key);
2915 WARN_ON(page_counter_read(&memcg->kmem));
2916 }
8e0a8912 2917}
d6441637 2918#else
0b8f73e1 2919static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2920{
2921 return 0;
2922}
2923static void memcg_offline_kmem(struct mem_cgroup *memcg)
2924{
2925}
2926static void memcg_free_kmem(struct mem_cgroup *memcg)
2927{
2928}
2929#endif /* !CONFIG_SLOB */
2930
d6441637 2931static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2932 unsigned long limit)
d6441637 2933{
b313aeee 2934 int ret;
127424c8
JW
2935
2936 mutex_lock(&memcg_limit_mutex);
127424c8 2937 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2938 mutex_unlock(&memcg_limit_mutex);
2939 return ret;
d6441637 2940}
510fc4e1 2941
d55f90bf
VD
2942static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2943{
2944 int ret;
2945
2946 mutex_lock(&memcg_limit_mutex);
2947
0db15298 2948 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2949 if (ret)
2950 goto out;
2951
0db15298 2952 if (!memcg->tcpmem_active) {
d55f90bf
VD
2953 /*
2954 * The active flag needs to be written after the static_key
2955 * update. This is what guarantees that the socket activation
2d758073
JW
2956 * function is the last one to run. See mem_cgroup_sk_alloc()
2957 * for details, and note that we don't mark any socket as
2958 * belonging to this memcg until that flag is up.
d55f90bf
VD
2959 *
2960 * We need to do this, because static_keys will span multiple
2961 * sites, but we can't control their order. If we mark a socket
2962 * as accounted, but the accounting functions are not patched in
2963 * yet, we'll lose accounting.
2964 *
2d758073 2965 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2966 * because when this value change, the code to process it is not
2967 * patched in yet.
2968 */
2969 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2970 memcg->tcpmem_active = true;
d55f90bf
VD
2971 }
2972out:
2973 mutex_unlock(&memcg_limit_mutex);
2974 return ret;
2975}
d55f90bf 2976
628f4235
KH
2977/*
2978 * The user of this function is...
2979 * RES_LIMIT.
2980 */
451af504
TH
2981static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2982 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2983{
451af504 2984 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2985 unsigned long nr_pages;
628f4235
KH
2986 int ret;
2987
451af504 2988 buf = strstrip(buf);
650c5e56 2989 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2990 if (ret)
2991 return ret;
af36f906 2992
3e32cb2e 2993 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2994 case RES_LIMIT:
4b3bde4c
BS
2995 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2996 ret = -EINVAL;
2997 break;
2998 }
3e32cb2e
JW
2999 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3000 case _MEM:
3001 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3002 break;
3e32cb2e
JW
3003 case _MEMSWAP:
3004 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3005 break;
3e32cb2e
JW
3006 case _KMEM:
3007 ret = memcg_update_kmem_limit(memcg, nr_pages);
3008 break;
d55f90bf
VD
3009 case _TCP:
3010 ret = memcg_update_tcp_limit(memcg, nr_pages);
3011 break;
3e32cb2e 3012 }
296c81d8 3013 break;
3e32cb2e
JW
3014 case RES_SOFT_LIMIT:
3015 memcg->soft_limit = nr_pages;
3016 ret = 0;
628f4235
KH
3017 break;
3018 }
451af504 3019 return ret ?: nbytes;
8cdea7c0
BS
3020}
3021
6770c64e
TH
3022static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3023 size_t nbytes, loff_t off)
c84872e1 3024{
6770c64e 3025 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3026 struct page_counter *counter;
c84872e1 3027
3e32cb2e
JW
3028 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3029 case _MEM:
3030 counter = &memcg->memory;
3031 break;
3032 case _MEMSWAP:
3033 counter = &memcg->memsw;
3034 break;
3035 case _KMEM:
3036 counter = &memcg->kmem;
3037 break;
d55f90bf 3038 case _TCP:
0db15298 3039 counter = &memcg->tcpmem;
d55f90bf 3040 break;
3e32cb2e
JW
3041 default:
3042 BUG();
3043 }
af36f906 3044
3e32cb2e 3045 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3046 case RES_MAX_USAGE:
3e32cb2e 3047 page_counter_reset_watermark(counter);
29f2a4da
PE
3048 break;
3049 case RES_FAILCNT:
3e32cb2e 3050 counter->failcnt = 0;
29f2a4da 3051 break;
3e32cb2e
JW
3052 default:
3053 BUG();
29f2a4da 3054 }
f64c3f54 3055
6770c64e 3056 return nbytes;
c84872e1
PE
3057}
3058
182446d0 3059static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3060 struct cftype *cft)
3061{
182446d0 3062 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3063}
3064
02491447 3065#ifdef CONFIG_MMU
182446d0 3066static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3067 struct cftype *cft, u64 val)
3068{
182446d0 3069 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3070
1dfab5ab 3071 if (val & ~MOVE_MASK)
7dc74be0 3072 return -EINVAL;
ee5e8472 3073
7dc74be0 3074 /*
ee5e8472
GC
3075 * No kind of locking is needed in here, because ->can_attach() will
3076 * check this value once in the beginning of the process, and then carry
3077 * on with stale data. This means that changes to this value will only
3078 * affect task migrations starting after the change.
7dc74be0 3079 */
c0ff4b85 3080 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3081 return 0;
3082}
02491447 3083#else
182446d0 3084static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3085 struct cftype *cft, u64 val)
3086{
3087 return -ENOSYS;
3088}
3089#endif
7dc74be0 3090
406eb0c9 3091#ifdef CONFIG_NUMA
2da8ca82 3092static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3093{
25485de6
GT
3094 struct numa_stat {
3095 const char *name;
3096 unsigned int lru_mask;
3097 };
3098
3099 static const struct numa_stat stats[] = {
3100 { "total", LRU_ALL },
3101 { "file", LRU_ALL_FILE },
3102 { "anon", LRU_ALL_ANON },
3103 { "unevictable", BIT(LRU_UNEVICTABLE) },
3104 };
3105 const struct numa_stat *stat;
406eb0c9 3106 int nid;
25485de6 3107 unsigned long nr;
2da8ca82 3108 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3109
25485de6
GT
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3112 seq_printf(m, "%s=%lu", stat->name, nr);
3113 for_each_node_state(nid, N_MEMORY) {
3114 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3115 stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3117 }
3118 seq_putc(m, '\n');
406eb0c9 3119 }
406eb0c9 3120
071aee13
YH
3121 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3122 struct mem_cgroup *iter;
3123
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3127 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3128 for_each_node_state(nid, N_MEMORY) {
3129 nr = 0;
3130 for_each_mem_cgroup_tree(iter, memcg)
3131 nr += mem_cgroup_node_nr_lru_pages(
3132 iter, nid, stat->lru_mask);
3133 seq_printf(m, " N%d=%lu", nid, nr);
3134 }
3135 seq_putc(m, '\n');
406eb0c9 3136 }
406eb0c9 3137
406eb0c9
YH
3138 return 0;
3139}
3140#endif /* CONFIG_NUMA */
3141
df0e53d0
JW
3142/* Universal VM events cgroup1 shows, original sort order */
3143unsigned int memcg1_events[] = {
3144 PGPGIN,
3145 PGPGOUT,
3146 PGFAULT,
3147 PGMAJFAULT,
3148};
3149
3150static const char *const memcg1_event_names[] = {
3151 "pgpgin",
3152 "pgpgout",
3153 "pgfault",
3154 "pgmajfault",
3155};
3156
2da8ca82 3157static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3158{
2da8ca82 3159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3160 unsigned long memory, memsw;
af7c4b0e
JW
3161 struct mem_cgroup *mi;
3162 unsigned int i;
406eb0c9 3163
71cd3113 3164 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3165 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3166
71cd3113
JW
3167 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3168 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3169 continue;
71cd3113 3170 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3171 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3172 PAGE_SIZE);
1dd3a273 3173 }
7b854121 3174
df0e53d0
JW
3175 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3176 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3177 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3178
3179 for (i = 0; i < NR_LRU_LISTS; i++)
3180 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3181 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3182
14067bb3 3183 /* Hierarchical information */
3e32cb2e
JW
3184 memory = memsw = PAGE_COUNTER_MAX;
3185 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3186 memory = min(memory, mi->memory.limit);
3187 memsw = min(memsw, mi->memsw.limit);
fee7b548 3188 }
3e32cb2e
JW
3189 seq_printf(m, "hierarchical_memory_limit %llu\n",
3190 (u64)memory * PAGE_SIZE);
7941d214 3191 if (do_memsw_account())
3e32cb2e
JW
3192 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3193 (u64)memsw * PAGE_SIZE);
7f016ee8 3194
71cd3113 3195 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3196 unsigned long long val = 0;
af7c4b0e 3197
71cd3113 3198 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3199 continue;
af7c4b0e 3200 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3201 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3202 PAGE_SIZE;
3203 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3204 }
3205
df0e53d0 3206 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3207 unsigned long long val = 0;
3208
3209 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3210 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3211 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3212 }
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++) {
3215 unsigned long long val = 0;
3216
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3220 }
14067bb3 3221
7f016ee8 3222#ifdef CONFIG_DEBUG_VM
7f016ee8 3223 {
ef8f2327
MG
3224 pg_data_t *pgdat;
3225 struct mem_cgroup_per_node *mz;
89abfab1 3226 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3227 unsigned long recent_rotated[2] = {0, 0};
3228 unsigned long recent_scanned[2] = {0, 0};
3229
ef8f2327
MG
3230 for_each_online_pgdat(pgdat) {
3231 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3232 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3233
ef8f2327
MG
3234 recent_rotated[0] += rstat->recent_rotated[0];
3235 recent_rotated[1] += rstat->recent_rotated[1];
3236 recent_scanned[0] += rstat->recent_scanned[0];
3237 recent_scanned[1] += rstat->recent_scanned[1];
3238 }
78ccf5b5
JW
3239 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3240 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3241 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3242 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3243 }
3244#endif
3245
d2ceb9b7
KH
3246 return 0;
3247}
3248
182446d0
TH
3249static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3250 struct cftype *cft)
a7885eb8 3251{
182446d0 3252 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3253
1f4c025b 3254 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3255}
3256
182446d0
TH
3257static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3258 struct cftype *cft, u64 val)
a7885eb8 3259{
182446d0 3260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3261
3dae7fec 3262 if (val > 100)
a7885eb8
KM
3263 return -EINVAL;
3264
14208b0e 3265 if (css->parent)
3dae7fec
JW
3266 memcg->swappiness = val;
3267 else
3268 vm_swappiness = val;
068b38c1 3269
a7885eb8
KM
3270 return 0;
3271}
3272
2e72b634
KS
3273static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3274{
3275 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3276 unsigned long usage;
2e72b634
KS
3277 int i;
3278
3279 rcu_read_lock();
3280 if (!swap)
2c488db2 3281 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3282 else
2c488db2 3283 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3284
3285 if (!t)
3286 goto unlock;
3287
ce00a967 3288 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3289
3290 /*
748dad36 3291 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3292 * If it's not true, a threshold was crossed after last
3293 * call of __mem_cgroup_threshold().
3294 */
5407a562 3295 i = t->current_threshold;
2e72b634
KS
3296
3297 /*
3298 * Iterate backward over array of thresholds starting from
3299 * current_threshold and check if a threshold is crossed.
3300 * If none of thresholds below usage is crossed, we read
3301 * only one element of the array here.
3302 */
3303 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3304 eventfd_signal(t->entries[i].eventfd, 1);
3305
3306 /* i = current_threshold + 1 */
3307 i++;
3308
3309 /*
3310 * Iterate forward over array of thresholds starting from
3311 * current_threshold+1 and check if a threshold is crossed.
3312 * If none of thresholds above usage is crossed, we read
3313 * only one element of the array here.
3314 */
3315 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3316 eventfd_signal(t->entries[i].eventfd, 1);
3317
3318 /* Update current_threshold */
5407a562 3319 t->current_threshold = i - 1;
2e72b634
KS
3320unlock:
3321 rcu_read_unlock();
3322}
3323
3324static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3325{
ad4ca5f4
KS
3326 while (memcg) {
3327 __mem_cgroup_threshold(memcg, false);
7941d214 3328 if (do_memsw_account())
ad4ca5f4
KS
3329 __mem_cgroup_threshold(memcg, true);
3330
3331 memcg = parent_mem_cgroup(memcg);
3332 }
2e72b634
KS
3333}
3334
3335static int compare_thresholds(const void *a, const void *b)
3336{
3337 const struct mem_cgroup_threshold *_a = a;
3338 const struct mem_cgroup_threshold *_b = b;
3339
2bff24a3
GT
3340 if (_a->threshold > _b->threshold)
3341 return 1;
3342
3343 if (_a->threshold < _b->threshold)
3344 return -1;
3345
3346 return 0;
2e72b634
KS
3347}
3348
c0ff4b85 3349static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3350{
3351 struct mem_cgroup_eventfd_list *ev;
3352
2bcf2e92
MH
3353 spin_lock(&memcg_oom_lock);
3354
c0ff4b85 3355 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3356 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3357
3358 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3359 return 0;
3360}
3361
c0ff4b85 3362static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3363{
7d74b06f
KH
3364 struct mem_cgroup *iter;
3365
c0ff4b85 3366 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3367 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3368}
3369
59b6f873 3370static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3371 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3372{
2c488db2
KS
3373 struct mem_cgroup_thresholds *thresholds;
3374 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3375 unsigned long threshold;
3376 unsigned long usage;
2c488db2 3377 int i, size, ret;
2e72b634 3378
650c5e56 3379 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3380 if (ret)
3381 return ret;
3382
3383 mutex_lock(&memcg->thresholds_lock);
2c488db2 3384
05b84301 3385 if (type == _MEM) {
2c488db2 3386 thresholds = &memcg->thresholds;
ce00a967 3387 usage = mem_cgroup_usage(memcg, false);
05b84301 3388 } else if (type == _MEMSWAP) {
2c488db2 3389 thresholds = &memcg->memsw_thresholds;
ce00a967 3390 usage = mem_cgroup_usage(memcg, true);
05b84301 3391 } else
2e72b634
KS
3392 BUG();
3393
2e72b634 3394 /* Check if a threshold crossed before adding a new one */
2c488db2 3395 if (thresholds->primary)
2e72b634
KS
3396 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3397
2c488db2 3398 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3399
3400 /* Allocate memory for new array of thresholds */
2c488db2 3401 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3402 GFP_KERNEL);
2c488db2 3403 if (!new) {
2e72b634
KS
3404 ret = -ENOMEM;
3405 goto unlock;
3406 }
2c488db2 3407 new->size = size;
2e72b634
KS
3408
3409 /* Copy thresholds (if any) to new array */
2c488db2
KS
3410 if (thresholds->primary) {
3411 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3412 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3413 }
3414
2e72b634 3415 /* Add new threshold */
2c488db2
KS
3416 new->entries[size - 1].eventfd = eventfd;
3417 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3418
3419 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3420 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3421 compare_thresholds, NULL);
3422
3423 /* Find current threshold */
2c488db2 3424 new->current_threshold = -1;
2e72b634 3425 for (i = 0; i < size; i++) {
748dad36 3426 if (new->entries[i].threshold <= usage) {
2e72b634 3427 /*
2c488db2
KS
3428 * new->current_threshold will not be used until
3429 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3430 * it here.
3431 */
2c488db2 3432 ++new->current_threshold;
748dad36
SZ
3433 } else
3434 break;
2e72b634
KS
3435 }
3436
2c488db2
KS
3437 /* Free old spare buffer and save old primary buffer as spare */
3438 kfree(thresholds->spare);
3439 thresholds->spare = thresholds->primary;
3440
3441 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3442
907860ed 3443 /* To be sure that nobody uses thresholds */
2e72b634
KS
3444 synchronize_rcu();
3445
2e72b634
KS
3446unlock:
3447 mutex_unlock(&memcg->thresholds_lock);
3448
3449 return ret;
3450}
3451
59b6f873 3452static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3453 struct eventfd_ctx *eventfd, const char *args)
3454{
59b6f873 3455 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3456}
3457
59b6f873 3458static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3459 struct eventfd_ctx *eventfd, const char *args)
3460{
59b6f873 3461 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3462}
3463
59b6f873 3464static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3465 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3466{
2c488db2
KS
3467 struct mem_cgroup_thresholds *thresholds;
3468 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3469 unsigned long usage;
2c488db2 3470 int i, j, size;
2e72b634
KS
3471
3472 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3473
3474 if (type == _MEM) {
2c488db2 3475 thresholds = &memcg->thresholds;
ce00a967 3476 usage = mem_cgroup_usage(memcg, false);
05b84301 3477 } else if (type == _MEMSWAP) {
2c488db2 3478 thresholds = &memcg->memsw_thresholds;
ce00a967 3479 usage = mem_cgroup_usage(memcg, true);
05b84301 3480 } else
2e72b634
KS
3481 BUG();
3482
371528ca
AV
3483 if (!thresholds->primary)
3484 goto unlock;
3485
2e72b634
KS
3486 /* Check if a threshold crossed before removing */
3487 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3488
3489 /* Calculate new number of threshold */
2c488db2
KS
3490 size = 0;
3491 for (i = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3493 size++;
3494 }
3495
2c488db2 3496 new = thresholds->spare;
907860ed 3497
2e72b634
KS
3498 /* Set thresholds array to NULL if we don't have thresholds */
3499 if (!size) {
2c488db2
KS
3500 kfree(new);
3501 new = NULL;
907860ed 3502 goto swap_buffers;
2e72b634
KS
3503 }
3504
2c488db2 3505 new->size = size;
2e72b634
KS
3506
3507 /* Copy thresholds and find current threshold */
2c488db2
KS
3508 new->current_threshold = -1;
3509 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3510 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3511 continue;
3512
2c488db2 3513 new->entries[j] = thresholds->primary->entries[i];
748dad36 3514 if (new->entries[j].threshold <= usage) {
2e72b634 3515 /*
2c488db2 3516 * new->current_threshold will not be used
2e72b634
KS
3517 * until rcu_assign_pointer(), so it's safe to increment
3518 * it here.
3519 */
2c488db2 3520 ++new->current_threshold;
2e72b634
KS
3521 }
3522 j++;
3523 }
3524
907860ed 3525swap_buffers:
2c488db2
KS
3526 /* Swap primary and spare array */
3527 thresholds->spare = thresholds->primary;
8c757763 3528
2c488db2 3529 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3530
907860ed 3531 /* To be sure that nobody uses thresholds */
2e72b634 3532 synchronize_rcu();
6611d8d7
MC
3533
3534 /* If all events are unregistered, free the spare array */
3535 if (!new) {
3536 kfree(thresholds->spare);
3537 thresholds->spare = NULL;
3538 }
371528ca 3539unlock:
2e72b634 3540 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3541}
c1e862c1 3542
59b6f873 3543static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3544 struct eventfd_ctx *eventfd)
3545{
59b6f873 3546 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3547}
3548
59b6f873 3549static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3550 struct eventfd_ctx *eventfd)
3551{
59b6f873 3552 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3553}
3554
59b6f873 3555static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3556 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3557{
9490ff27 3558 struct mem_cgroup_eventfd_list *event;
9490ff27 3559
9490ff27
KH
3560 event = kmalloc(sizeof(*event), GFP_KERNEL);
3561 if (!event)
3562 return -ENOMEM;
3563
1af8efe9 3564 spin_lock(&memcg_oom_lock);
9490ff27
KH
3565
3566 event->eventfd = eventfd;
3567 list_add(&event->list, &memcg->oom_notify);
3568
3569 /* already in OOM ? */
c2b42d3c 3570 if (memcg->under_oom)
9490ff27 3571 eventfd_signal(eventfd, 1);
1af8efe9 3572 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3573
3574 return 0;
3575}
3576
59b6f873 3577static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3578 struct eventfd_ctx *eventfd)
9490ff27 3579{
9490ff27 3580 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3581
1af8efe9 3582 spin_lock(&memcg_oom_lock);
9490ff27 3583
c0ff4b85 3584 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3585 if (ev->eventfd == eventfd) {
3586 list_del(&ev->list);
3587 kfree(ev);
3588 }
3589 }
3590
1af8efe9 3591 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3592}
3593
2da8ca82 3594static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3595{
2da8ca82 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3597
791badbd 3598 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3599 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3600 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3601 return 0;
3602}
3603
182446d0 3604static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3605 struct cftype *cft, u64 val)
3606{
182446d0 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3608
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3610 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3611 return -EINVAL;
3612
c0ff4b85 3613 memcg->oom_kill_disable = val;
4d845ebf 3614 if (!val)
c0ff4b85 3615 memcg_oom_recover(memcg);
3dae7fec 3616
3c11ecf4
KH
3617 return 0;
3618}
3619
52ebea74
TH
3620#ifdef CONFIG_CGROUP_WRITEBACK
3621
3622struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3623{
3624 return &memcg->cgwb_list;
3625}
3626
841710aa
TH
3627static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3628{
3629 return wb_domain_init(&memcg->cgwb_domain, gfp);
3630}
3631
3632static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3633{
3634 wb_domain_exit(&memcg->cgwb_domain);
3635}
3636
2529bb3a
TH
3637static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3638{
3639 wb_domain_size_changed(&memcg->cgwb_domain);
3640}
3641
841710aa
TH
3642struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3643{
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645
3646 if (!memcg->css.parent)
3647 return NULL;
3648
3649 return &memcg->cgwb_domain;
3650}
3651
c2aa723a
TH
3652/**
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
c5edf9cd
TH
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3659 *
c5edf9cd
TH
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
c2aa723a 3663 *
c5edf9cd
TH
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
c2aa723a 3669 */
c5edf9cd
TH
3670void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 unsigned long *pheadroom, unsigned long *pdirty,
3672 unsigned long *pwriteback)
c2aa723a
TH
3673{
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 struct mem_cgroup *parent;
c2aa723a 3676
ccda7f43 3677 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3678
3679 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3680 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 (1 << LRU_ACTIVE_FILE));
3683 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3684
c2aa723a
TH
3685 while ((parent = parent_mem_cgroup(memcg))) {
3686 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3687 unsigned long used = page_counter_read(&memcg->memory);
3688
c5edf9cd 3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3690 memcg = parent;
3691 }
c2aa723a
TH
3692}
3693
841710aa
TH
3694#else /* CONFIG_CGROUP_WRITEBACK */
3695
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return 0;
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703}
3704
2529bb3a
TH
3705static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3706{
3707}
3708
52ebea74
TH
3709#endif /* CONFIG_CGROUP_WRITEBACK */
3710
3bc942f3
TH
3711/*
3712 * DO NOT USE IN NEW FILES.
3713 *
3714 * "cgroup.event_control" implementation.
3715 *
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3719 *
3720 * Please deprecate this and replace with something simpler if at all
3721 * possible.
3722 */
3723
79bd9814
TH
3724/*
3725 * Unregister event and free resources.
3726 *
3727 * Gets called from workqueue.
3728 */
3bc942f3 3729static void memcg_event_remove(struct work_struct *work)
79bd9814 3730{
3bc942f3
TH
3731 struct mem_cgroup_event *event =
3732 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3733 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3734
3735 remove_wait_queue(event->wqh, &event->wait);
3736
59b6f873 3737 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3738
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event->eventfd, 1);
3741
3742 eventfd_ctx_put(event->eventfd);
3743 kfree(event);
59b6f873 3744 css_put(&memcg->css);
79bd9814
TH
3745}
3746
3747/*
3748 * Gets called on POLLHUP on eventfd when user closes it.
3749 *
3750 * Called with wqh->lock held and interrupts disabled.
3751 */
ac6424b9 3752static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3753 int sync, void *key)
79bd9814 3754{
3bc942f3
TH
3755 struct mem_cgroup_event *event =
3756 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3757 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3758 unsigned long flags = (unsigned long)key;
3759
3760 if (flags & POLLHUP) {
3761 /*
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3764 * for us.
3765 *
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3768 * which we hold.
3769 */
fba94807 3770 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3771 if (!list_empty(&event->list)) {
3772 list_del_init(&event->list);
3773 /*
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3776 */
3777 schedule_work(&event->remove);
3778 }
fba94807 3779 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3780 }
3781
3782 return 0;
3783}
3784
3bc942f3 3785static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3786 wait_queue_head_t *wqh, poll_table *pt)
3787{
3bc942f3
TH
3788 struct mem_cgroup_event *event =
3789 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3790
3791 event->wqh = wqh;
3792 add_wait_queue(wqh, &event->wait);
3793}
3794
3795/*
3bc942f3
TH
3796 * DO NOT USE IN NEW FILES.
3797 *
79bd9814
TH
3798 * Parse input and register new cgroup event handler.
3799 *
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3802 */
451af504
TH
3803static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
79bd9814 3805{
451af504 3806 struct cgroup_subsys_state *css = of_css(of);
fba94807 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3808 struct mem_cgroup_event *event;
79bd9814
TH
3809 struct cgroup_subsys_state *cfile_css;
3810 unsigned int efd, cfd;
3811 struct fd efile;
3812 struct fd cfile;
fba94807 3813 const char *name;
79bd9814
TH
3814 char *endp;
3815 int ret;
3816
451af504
TH
3817 buf = strstrip(buf);
3818
3819 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3820 if (*endp != ' ')
3821 return -EINVAL;
451af504 3822 buf = endp + 1;
79bd9814 3823
451af504 3824 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3825 if ((*endp != ' ') && (*endp != '\0'))
3826 return -EINVAL;
451af504 3827 buf = endp + 1;
79bd9814
TH
3828
3829 event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 if (!event)
3831 return -ENOMEM;
3832
59b6f873 3833 event->memcg = memcg;
79bd9814 3834 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3838
3839 efile = fdget(efd);
3840 if (!efile.file) {
3841 ret = -EBADF;
3842 goto out_kfree;
3843 }
3844
3845 event->eventfd = eventfd_ctx_fileget(efile.file);
3846 if (IS_ERR(event->eventfd)) {
3847 ret = PTR_ERR(event->eventfd);
3848 goto out_put_efile;
3849 }
3850
3851 cfile = fdget(cfd);
3852 if (!cfile.file) {
3853 ret = -EBADF;
3854 goto out_put_eventfd;
3855 }
3856
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 if (ret < 0)
3861 goto out_put_cfile;
3862
fba94807
TH
3863 /*
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3bc942f3
TH
3868 *
3869 * DO NOT ADD NEW FILES.
fba94807 3870 */
b583043e 3871 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3872
3873 if (!strcmp(name, "memory.usage_in_bytes")) {
3874 event->register_event = mem_cgroup_usage_register_event;
3875 event->unregister_event = mem_cgroup_usage_unregister_event;
3876 } else if (!strcmp(name, "memory.oom_control")) {
3877 event->register_event = mem_cgroup_oom_register_event;
3878 event->unregister_event = mem_cgroup_oom_unregister_event;
3879 } else if (!strcmp(name, "memory.pressure_level")) {
3880 event->register_event = vmpressure_register_event;
3881 event->unregister_event = vmpressure_unregister_event;
3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3883 event->register_event = memsw_cgroup_usage_register_event;
3884 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3885 } else {
3886 ret = -EINVAL;
3887 goto out_put_cfile;
3888 }
3889
79bd9814 3890 /*
b5557c4c
TH
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
79bd9814 3894 */
b583043e 3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3896 &memory_cgrp_subsys);
79bd9814 3897 ret = -EINVAL;
5a17f543 3898 if (IS_ERR(cfile_css))
79bd9814 3899 goto out_put_cfile;
5a17f543
TH
3900 if (cfile_css != css) {
3901 css_put(cfile_css);
79bd9814 3902 goto out_put_cfile;
5a17f543 3903 }
79bd9814 3904
451af504 3905 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3906 if (ret)
3907 goto out_put_css;
3908
3909 efile.file->f_op->poll(efile.file, &event->pt);
3910
fba94807
TH
3911 spin_lock(&memcg->event_list_lock);
3912 list_add(&event->list, &memcg->event_list);
3913 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3914
3915 fdput(cfile);
3916 fdput(efile);
3917
451af504 3918 return nbytes;
79bd9814
TH
3919
3920out_put_css:
b5557c4c 3921 css_put(css);
79bd9814
TH
3922out_put_cfile:
3923 fdput(cfile);
3924out_put_eventfd:
3925 eventfd_ctx_put(event->eventfd);
3926out_put_efile:
3927 fdput(efile);
3928out_kfree:
3929 kfree(event);
3930
3931 return ret;
3932}
3933
241994ed 3934static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3935 {
0eea1030 3936 .name = "usage_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3938 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3939 },
c84872e1
PE
3940 {
3941 .name = "max_usage_in_bytes",
8c7c6e34 3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3943 .write = mem_cgroup_reset,
791badbd 3944 .read_u64 = mem_cgroup_read_u64,
c84872e1 3945 },
8cdea7c0 3946 {
0eea1030 3947 .name = "limit_in_bytes",
8c7c6e34 3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3949 .write = mem_cgroup_write,
791badbd 3950 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3951 },
296c81d8
BS
3952 {
3953 .name = "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3955 .write = mem_cgroup_write,
791badbd 3956 .read_u64 = mem_cgroup_read_u64,
296c81d8 3957 },
8cdea7c0
BS
3958 {
3959 .name = "failcnt",
8c7c6e34 3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3961 .write = mem_cgroup_reset,
791badbd 3962 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3963 },
d2ceb9b7
KH
3964 {
3965 .name = "stat",
2da8ca82 3966 .seq_show = memcg_stat_show,
d2ceb9b7 3967 },
c1e862c1
KH
3968 {
3969 .name = "force_empty",
6770c64e 3970 .write = mem_cgroup_force_empty_write,
c1e862c1 3971 },
18f59ea7
BS
3972 {
3973 .name = "use_hierarchy",
3974 .write_u64 = mem_cgroup_hierarchy_write,
3975 .read_u64 = mem_cgroup_hierarchy_read,
3976 },
79bd9814 3977 {
3bc942f3 3978 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3979 .write = memcg_write_event_control,
7dbdb199 3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3981 },
a7885eb8
KM
3982 {
3983 .name = "swappiness",
3984 .read_u64 = mem_cgroup_swappiness_read,
3985 .write_u64 = mem_cgroup_swappiness_write,
3986 },
7dc74be0
DN
3987 {
3988 .name = "move_charge_at_immigrate",
3989 .read_u64 = mem_cgroup_move_charge_read,
3990 .write_u64 = mem_cgroup_move_charge_write,
3991 },
9490ff27
KH
3992 {
3993 .name = "oom_control",
2da8ca82 3994 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3995 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 },
70ddf637
AV
3998 {
3999 .name = "pressure_level",
70ddf637 4000 },
406eb0c9
YH
4001#ifdef CONFIG_NUMA
4002 {
4003 .name = "numa_stat",
2da8ca82 4004 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4005 },
4006#endif
510fc4e1
GC
4007 {
4008 .name = "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4010 .write = mem_cgroup_write,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4017 },
4018 {
4019 .name = "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4021 .write = mem_cgroup_reset,
791badbd 4022 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4023 },
4024 {
4025 .name = "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4027 .write = mem_cgroup_reset,
791badbd 4028 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4029 },
749c5415
GC
4030#ifdef CONFIG_SLABINFO
4031 {
4032 .name = "kmem.slabinfo",
bc2791f8
TH
4033 .seq_start = memcg_slab_start,
4034 .seq_next = memcg_slab_next,
4035 .seq_stop = memcg_slab_stop,
b047501c 4036 .seq_show = memcg_slab_show,
749c5415
GC
4037 },
4038#endif
d55f90bf
VD
4039 {
4040 .name = "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 .write = mem_cgroup_write,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 .write = mem_cgroup_reset,
4054 .read_u64 = mem_cgroup_read_u64,
4055 },
4056 {
4057 .name = "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 .write = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
6bc10349 4062 { }, /* terminate */
af36f906 4063};
8c7c6e34 4064
73f576c0
JW
4065/*
4066 * Private memory cgroup IDR
4067 *
4068 * Swap-out records and page cache shadow entries need to store memcg
4069 * references in constrained space, so we maintain an ID space that is
4070 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4071 * memory-controlled cgroups to 64k.
4072 *
4073 * However, there usually are many references to the oflline CSS after
4074 * the cgroup has been destroyed, such as page cache or reclaimable
4075 * slab objects, that don't need to hang on to the ID. We want to keep
4076 * those dead CSS from occupying IDs, or we might quickly exhaust the
4077 * relatively small ID space and prevent the creation of new cgroups
4078 * even when there are much fewer than 64k cgroups - possibly none.
4079 *
4080 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4081 * be freed and recycled when it's no longer needed, which is usually
4082 * when the CSS is offlined.
4083 *
4084 * The only exception to that are records of swapped out tmpfs/shmem
4085 * pages that need to be attributed to live ancestors on swapin. But
4086 * those references are manageable from userspace.
4087 */
4088
4089static DEFINE_IDR(mem_cgroup_idr);
4090
615d66c3 4091static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4092{
58fa2a55 4093 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4094 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4095}
4096
615d66c3 4097static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4098{
58fa2a55 4099 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4100 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4101 idr_remove(&mem_cgroup_idr, memcg->id.id);
4102 memcg->id.id = 0;
4103
4104 /* Memcg ID pins CSS */
4105 css_put(&memcg->css);
4106 }
4107}
4108
615d66c3
VD
4109static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4110{
4111 mem_cgroup_id_get_many(memcg, 1);
4112}
4113
4114static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4115{
4116 mem_cgroup_id_put_many(memcg, 1);
4117}
4118
73f576c0
JW
4119/**
4120 * mem_cgroup_from_id - look up a memcg from a memcg id
4121 * @id: the memcg id to look up
4122 *
4123 * Caller must hold rcu_read_lock().
4124 */
4125struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4126{
4127 WARN_ON_ONCE(!rcu_read_lock_held());
4128 return idr_find(&mem_cgroup_idr, id);
4129}
4130
ef8f2327 4131static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4132{
4133 struct mem_cgroup_per_node *pn;
ef8f2327 4134 int tmp = node;
1ecaab2b
KH
4135 /*
4136 * This routine is called against possible nodes.
4137 * But it's BUG to call kmalloc() against offline node.
4138 *
4139 * TODO: this routine can waste much memory for nodes which will
4140 * never be onlined. It's better to use memory hotplug callback
4141 * function.
4142 */
41e3355d
KH
4143 if (!node_state(node, N_NORMAL_MEMORY))
4144 tmp = -1;
17295c88 4145 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4146 if (!pn)
4147 return 1;
1ecaab2b 4148
00f3ca2c
JW
4149 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4150 if (!pn->lruvec_stat) {
4151 kfree(pn);
4152 return 1;
4153 }
4154
ef8f2327
MG
4155 lruvec_init(&pn->lruvec);
4156 pn->usage_in_excess = 0;
4157 pn->on_tree = false;
4158 pn->memcg = memcg;
4159
54f72fe0 4160 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4161 return 0;
4162}
4163
ef8f2327 4164static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4165{
00f3ca2c
JW
4166 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4167
4168 free_percpu(pn->lruvec_stat);
4169 kfree(pn);
1ecaab2b
KH
4170}
4171
40e952f9 4172static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4173{
c8b2a36f 4174 int node;
59927fb9 4175
c8b2a36f 4176 for_each_node(node)
ef8f2327 4177 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4178 free_percpu(memcg->stat);
8ff69e2c 4179 kfree(memcg);
59927fb9 4180}
3afe36b1 4181
40e952f9
TE
4182static void mem_cgroup_free(struct mem_cgroup *memcg)
4183{
4184 memcg_wb_domain_exit(memcg);
4185 __mem_cgroup_free(memcg);
4186}
4187
0b8f73e1 4188static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4189{
d142e3e6 4190 struct mem_cgroup *memcg;
0b8f73e1 4191 size_t size;
6d12e2d8 4192 int node;
8cdea7c0 4193
0b8f73e1
JW
4194 size = sizeof(struct mem_cgroup);
4195 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4196
4197 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4198 if (!memcg)
0b8f73e1
JW
4199 return NULL;
4200
73f576c0
JW
4201 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4202 1, MEM_CGROUP_ID_MAX,
4203 GFP_KERNEL);
4204 if (memcg->id.id < 0)
4205 goto fail;
4206
0b8f73e1
JW
4207 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4208 if (!memcg->stat)
4209 goto fail;
78fb7466 4210
3ed28fa1 4211 for_each_node(node)
ef8f2327 4212 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4213 goto fail;
f64c3f54 4214
0b8f73e1
JW
4215 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4216 goto fail;
28dbc4b6 4217
f7e1cb6e 4218 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4219 memcg->last_scanned_node = MAX_NUMNODES;
4220 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4221 mutex_init(&memcg->thresholds_lock);
4222 spin_lock_init(&memcg->move_lock);
70ddf637 4223 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4224 INIT_LIST_HEAD(&memcg->event_list);
4225 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4226 memcg->socket_pressure = jiffies;
127424c8 4227#ifndef CONFIG_SLOB
900a38f0 4228 memcg->kmemcg_id = -1;
900a38f0 4229#endif
52ebea74
TH
4230#ifdef CONFIG_CGROUP_WRITEBACK
4231 INIT_LIST_HEAD(&memcg->cgwb_list);
4232#endif
73f576c0 4233 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4234 return memcg;
4235fail:
73f576c0
JW
4236 if (memcg->id.id > 0)
4237 idr_remove(&mem_cgroup_idr, memcg->id.id);
40e952f9 4238 __mem_cgroup_free(memcg);
0b8f73e1 4239 return NULL;
d142e3e6
GC
4240}
4241
0b8f73e1
JW
4242static struct cgroup_subsys_state * __ref
4243mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4244{
0b8f73e1
JW
4245 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4246 struct mem_cgroup *memcg;
4247 long error = -ENOMEM;
d142e3e6 4248
0b8f73e1
JW
4249 memcg = mem_cgroup_alloc();
4250 if (!memcg)
4251 return ERR_PTR(error);
d142e3e6 4252
0b8f73e1
JW
4253 memcg->high = PAGE_COUNTER_MAX;
4254 memcg->soft_limit = PAGE_COUNTER_MAX;
4255 if (parent) {
4256 memcg->swappiness = mem_cgroup_swappiness(parent);
4257 memcg->oom_kill_disable = parent->oom_kill_disable;
4258 }
4259 if (parent && parent->use_hierarchy) {
4260 memcg->use_hierarchy = true;
3e32cb2e 4261 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4262 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4263 page_counter_init(&memcg->memsw, &parent->memsw);
4264 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4265 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4266 } else {
3e32cb2e 4267 page_counter_init(&memcg->memory, NULL);
37e84351 4268 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4269 page_counter_init(&memcg->memsw, NULL);
4270 page_counter_init(&memcg->kmem, NULL);
0db15298 4271 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4272 /*
4273 * Deeper hierachy with use_hierarchy == false doesn't make
4274 * much sense so let cgroup subsystem know about this
4275 * unfortunate state in our controller.
4276 */
d142e3e6 4277 if (parent != root_mem_cgroup)
073219e9 4278 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4279 }
d6441637 4280
0b8f73e1
JW
4281 /* The following stuff does not apply to the root */
4282 if (!parent) {
4283 root_mem_cgroup = memcg;
4284 return &memcg->css;
4285 }
4286
b313aeee 4287 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4288 if (error)
4289 goto fail;
127424c8 4290
f7e1cb6e 4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4292 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4293
0b8f73e1
JW
4294 return &memcg->css;
4295fail:
4296 mem_cgroup_free(memcg);
ea3a9645 4297 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4298}
4299
73f576c0 4300static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4301{
58fa2a55
VD
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
73f576c0 4304 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4305 atomic_set(&memcg->id.ref, 1);
73f576c0 4306 css_get(css);
2f7dd7a4 4307 return 0;
8cdea7c0
BS
4308}
4309
eb95419b 4310static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4311{
eb95419b 4312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4313 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4314
4315 /*
4316 * Unregister events and notify userspace.
4317 * Notify userspace about cgroup removing only after rmdir of cgroup
4318 * directory to avoid race between userspace and kernelspace.
4319 */
fba94807
TH
4320 spin_lock(&memcg->event_list_lock);
4321 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4322 list_del_init(&event->list);
4323 schedule_work(&event->remove);
4324 }
fba94807 4325 spin_unlock(&memcg->event_list_lock);
ec64f515 4326
63677c74
RG
4327 memcg->low = 0;
4328
567e9ab2 4329 memcg_offline_kmem(memcg);
52ebea74 4330 wb_memcg_offline(memcg);
73f576c0
JW
4331
4332 mem_cgroup_id_put(memcg);
df878fb0
KH
4333}
4334
6df38689
VD
4335static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4336{
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338
4339 invalidate_reclaim_iterators(memcg);
4340}
4341
eb95419b 4342static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4343{
eb95419b 4344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4345
f7e1cb6e 4346 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4347 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4348
0db15298 4349 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4350 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4351
0b8f73e1
JW
4352 vmpressure_cleanup(&memcg->vmpressure);
4353 cancel_work_sync(&memcg->high_work);
4354 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4355 memcg_free_kmem(memcg);
0b8f73e1 4356 mem_cgroup_free(memcg);
8cdea7c0
BS
4357}
4358
1ced953b
TH
4359/**
4360 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4361 * @css: the target css
4362 *
4363 * Reset the states of the mem_cgroup associated with @css. This is
4364 * invoked when the userland requests disabling on the default hierarchy
4365 * but the memcg is pinned through dependency. The memcg should stop
4366 * applying policies and should revert to the vanilla state as it may be
4367 * made visible again.
4368 *
4369 * The current implementation only resets the essential configurations.
4370 * This needs to be expanded to cover all the visible parts.
4371 */
4372static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4373{
4374 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4375
d334c9bc
VD
4376 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4377 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4378 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4379 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4380 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4381 memcg->low = 0;
4382 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4383 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4384 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4385}
4386
02491447 4387#ifdef CONFIG_MMU
7dc74be0 4388/* Handlers for move charge at task migration. */
854ffa8d 4389static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4390{
05b84301 4391 int ret;
9476db97 4392
d0164adc
MG
4393 /* Try a single bulk charge without reclaim first, kswapd may wake */
4394 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4395 if (!ret) {
854ffa8d 4396 mc.precharge += count;
854ffa8d
DN
4397 return ret;
4398 }
9476db97 4399
3674534b 4400 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4401 while (count--) {
3674534b 4402 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4403 if (ret)
38c5d72f 4404 return ret;
854ffa8d 4405 mc.precharge++;
9476db97 4406 cond_resched();
854ffa8d 4407 }
9476db97 4408 return 0;
4ffef5fe
DN
4409}
4410
4ffef5fe
DN
4411union mc_target {
4412 struct page *page;
02491447 4413 swp_entry_t ent;
4ffef5fe
DN
4414};
4415
4ffef5fe 4416enum mc_target_type {
8d32ff84 4417 MC_TARGET_NONE = 0,
4ffef5fe 4418 MC_TARGET_PAGE,
02491447 4419 MC_TARGET_SWAP,
c733a828 4420 MC_TARGET_DEVICE,
4ffef5fe
DN
4421};
4422
90254a65
DN
4423static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4424 unsigned long addr, pte_t ptent)
4ffef5fe 4425{
c733a828 4426 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4427
90254a65
DN
4428 if (!page || !page_mapped(page))
4429 return NULL;
4430 if (PageAnon(page)) {
1dfab5ab 4431 if (!(mc.flags & MOVE_ANON))
90254a65 4432 return NULL;
1dfab5ab
JW
4433 } else {
4434 if (!(mc.flags & MOVE_FILE))
4435 return NULL;
4436 }
90254a65
DN
4437 if (!get_page_unless_zero(page))
4438 return NULL;
4439
4440 return page;
4441}
4442
c733a828 4443#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4444static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4445 pte_t ptent, swp_entry_t *entry)
90254a65 4446{
90254a65
DN
4447 struct page *page = NULL;
4448 swp_entry_t ent = pte_to_swp_entry(ptent);
4449
1dfab5ab 4450 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4451 return NULL;
c733a828
JG
4452
4453 /*
4454 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4455 * a device and because they are not accessible by CPU they are store
4456 * as special swap entry in the CPU page table.
4457 */
4458 if (is_device_private_entry(ent)) {
4459 page = device_private_entry_to_page(ent);
4460 /*
4461 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4462 * a refcount of 1 when free (unlike normal page)
4463 */
4464 if (!page_ref_add_unless(page, 1, 1))
4465 return NULL;
4466 return page;
4467 }
4468
4b91355e
KH
4469 /*
4470 * Because lookup_swap_cache() updates some statistics counter,
4471 * we call find_get_page() with swapper_space directly.
4472 */
f6ab1f7f 4473 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4474 if (do_memsw_account())
90254a65
DN
4475 entry->val = ent.val;
4476
4477 return page;
4478}
4b91355e
KH
4479#else
4480static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4481 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4482{
4483 return NULL;
4484}
4485#endif
90254a65 4486
87946a72
DN
4487static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4488 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4489{
4490 struct page *page = NULL;
87946a72
DN
4491 struct address_space *mapping;
4492 pgoff_t pgoff;
4493
4494 if (!vma->vm_file) /* anonymous vma */
4495 return NULL;
1dfab5ab 4496 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4497 return NULL;
4498
87946a72 4499 mapping = vma->vm_file->f_mapping;
0661a336 4500 pgoff = linear_page_index(vma, addr);
87946a72
DN
4501
4502 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4503#ifdef CONFIG_SWAP
4504 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4505 if (shmem_mapping(mapping)) {
4506 page = find_get_entry(mapping, pgoff);
4507 if (radix_tree_exceptional_entry(page)) {
4508 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4509 if (do_memsw_account())
139b6a6f 4510 *entry = swp;
f6ab1f7f
HY
4511 page = find_get_page(swap_address_space(swp),
4512 swp_offset(swp));
139b6a6f
JW
4513 }
4514 } else
4515 page = find_get_page(mapping, pgoff);
4516#else
4517 page = find_get_page(mapping, pgoff);
aa3b1895 4518#endif
87946a72
DN
4519 return page;
4520}
4521
b1b0deab
CG
4522/**
4523 * mem_cgroup_move_account - move account of the page
4524 * @page: the page
25843c2b 4525 * @compound: charge the page as compound or small page
b1b0deab
CG
4526 * @from: mem_cgroup which the page is moved from.
4527 * @to: mem_cgroup which the page is moved to. @from != @to.
4528 *
3ac808fd 4529 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4530 *
4531 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4532 * from old cgroup.
4533 */
4534static int mem_cgroup_move_account(struct page *page,
f627c2f5 4535 bool compound,
b1b0deab
CG
4536 struct mem_cgroup *from,
4537 struct mem_cgroup *to)
4538{
4539 unsigned long flags;
f627c2f5 4540 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4541 int ret;
c4843a75 4542 bool anon;
b1b0deab
CG
4543
4544 VM_BUG_ON(from == to);
4545 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4546 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4547
4548 /*
6a93ca8f 4549 * Prevent mem_cgroup_migrate() from looking at
45637bab 4550 * page->mem_cgroup of its source page while we change it.
b1b0deab 4551 */
f627c2f5 4552 ret = -EBUSY;
b1b0deab
CG
4553 if (!trylock_page(page))
4554 goto out;
4555
4556 ret = -EINVAL;
4557 if (page->mem_cgroup != from)
4558 goto out_unlock;
4559
c4843a75
GT
4560 anon = PageAnon(page);
4561
b1b0deab
CG
4562 spin_lock_irqsave(&from->move_lock, flags);
4563
c4843a75 4564 if (!anon && page_mapped(page)) {
71cd3113
JW
4565 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4566 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
b1b0deab
CG
4567 }
4568
c4843a75
GT
4569 /*
4570 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4571 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4572 * So mapping should be stable for dirty pages.
4573 */
4574 if (!anon && PageDirty(page)) {
4575 struct address_space *mapping = page_mapping(page);
4576
4577 if (mapping_cap_account_dirty(mapping)) {
71cd3113 4578 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
c4843a75 4579 nr_pages);
71cd3113 4580 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
c4843a75
GT
4581 nr_pages);
4582 }
4583 }
4584
b1b0deab 4585 if (PageWriteback(page)) {
71cd3113
JW
4586 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4587 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
b1b0deab
CG
4588 }
4589
4590 /*
4591 * It is safe to change page->mem_cgroup here because the page
4592 * is referenced, charged, and isolated - we can't race with
4593 * uncharging, charging, migration, or LRU putback.
4594 */
4595
4596 /* caller should have done css_get */
4597 page->mem_cgroup = to;
4598 spin_unlock_irqrestore(&from->move_lock, flags);
4599
4600 ret = 0;
4601
4602 local_irq_disable();
f627c2f5 4603 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4604 memcg_check_events(to, page);
f627c2f5 4605 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4606 memcg_check_events(from, page);
4607 local_irq_enable();
4608out_unlock:
4609 unlock_page(page);
4610out:
4611 return ret;
4612}
4613
7cf7806c
LR
4614/**
4615 * get_mctgt_type - get target type of moving charge
4616 * @vma: the vma the pte to be checked belongs
4617 * @addr: the address corresponding to the pte to be checked
4618 * @ptent: the pte to be checked
4619 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4620 *
4621 * Returns
4622 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4623 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4624 * move charge. if @target is not NULL, the page is stored in target->page
4625 * with extra refcnt got(Callers should handle it).
4626 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4627 * target for charge migration. if @target is not NULL, the entry is stored
4628 * in target->ent.
df6ad698
JG
4629 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4630 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4631 * For now we such page is charge like a regular page would be as for all
4632 * intent and purposes it is just special memory taking the place of a
4633 * regular page.
c733a828
JG
4634 *
4635 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4636 *
4637 * Called with pte lock held.
4638 */
4639
8d32ff84 4640static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4641 unsigned long addr, pte_t ptent, union mc_target *target)
4642{
4643 struct page *page = NULL;
8d32ff84 4644 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4645 swp_entry_t ent = { .val = 0 };
4646
4647 if (pte_present(ptent))
4648 page = mc_handle_present_pte(vma, addr, ptent);
4649 else if (is_swap_pte(ptent))
48406ef8 4650 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4651 else if (pte_none(ptent))
87946a72 4652 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4653
4654 if (!page && !ent.val)
8d32ff84 4655 return ret;
02491447 4656 if (page) {
02491447 4657 /*
0a31bc97 4658 * Do only loose check w/o serialization.
1306a85a 4659 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4660 * not under LRU exclusion.
02491447 4661 */
1306a85a 4662 if (page->mem_cgroup == mc.from) {
02491447 4663 ret = MC_TARGET_PAGE;
df6ad698
JG
4664 if (is_device_private_page(page) ||
4665 is_device_public_page(page))
c733a828 4666 ret = MC_TARGET_DEVICE;
02491447
DN
4667 if (target)
4668 target->page = page;
4669 }
4670 if (!ret || !target)
4671 put_page(page);
4672 }
3e14a57b
HY
4673 /*
4674 * There is a swap entry and a page doesn't exist or isn't charged.
4675 * But we cannot move a tail-page in a THP.
4676 */
4677 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4678 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4679 ret = MC_TARGET_SWAP;
4680 if (target)
4681 target->ent = ent;
4ffef5fe 4682 }
4ffef5fe
DN
4683 return ret;
4684}
4685
12724850
NH
4686#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4687/*
d6810d73
HY
4688 * We don't consider PMD mapped swapping or file mapped pages because THP does
4689 * not support them for now.
12724850
NH
4690 * Caller should make sure that pmd_trans_huge(pmd) is true.
4691 */
4692static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4693 unsigned long addr, pmd_t pmd, union mc_target *target)
4694{
4695 struct page *page = NULL;
12724850
NH
4696 enum mc_target_type ret = MC_TARGET_NONE;
4697
84c3fc4e
ZY
4698 if (unlikely(is_swap_pmd(pmd))) {
4699 VM_BUG_ON(thp_migration_supported() &&
4700 !is_pmd_migration_entry(pmd));
4701 return ret;
4702 }
12724850 4703 page = pmd_page(pmd);
309381fe 4704 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4705 if (!(mc.flags & MOVE_ANON))
12724850 4706 return ret;
1306a85a 4707 if (page->mem_cgroup == mc.from) {
12724850
NH
4708 ret = MC_TARGET_PAGE;
4709 if (target) {
4710 get_page(page);
4711 target->page = page;
4712 }
4713 }
4714 return ret;
4715}
4716#else
4717static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4718 unsigned long addr, pmd_t pmd, union mc_target *target)
4719{
4720 return MC_TARGET_NONE;
4721}
4722#endif
4723
4ffef5fe
DN
4724static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4725 unsigned long addr, unsigned long end,
4726 struct mm_walk *walk)
4727{
26bcd64a 4728 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4729 pte_t *pte;
4730 spinlock_t *ptl;
4731
b6ec57f4
KS
4732 ptl = pmd_trans_huge_lock(pmd, vma);
4733 if (ptl) {
c733a828
JG
4734 /*
4735 * Note their can not be MC_TARGET_DEVICE for now as we do not
4736 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4737 * MEMORY_DEVICE_PRIVATE but this might change.
4738 */
12724850
NH
4739 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4740 mc.precharge += HPAGE_PMD_NR;
bf929152 4741 spin_unlock(ptl);
1a5a9906 4742 return 0;
12724850 4743 }
03319327 4744
45f83cef
AA
4745 if (pmd_trans_unstable(pmd))
4746 return 0;
4ffef5fe
DN
4747 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4748 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4749 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4750 mc.precharge++; /* increment precharge temporarily */
4751 pte_unmap_unlock(pte - 1, ptl);
4752 cond_resched();
4753
7dc74be0
DN
4754 return 0;
4755}
4756
4ffef5fe
DN
4757static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4758{
4759 unsigned long precharge;
4ffef5fe 4760
26bcd64a
NH
4761 struct mm_walk mem_cgroup_count_precharge_walk = {
4762 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4763 .mm = mm,
4764 };
dfe076b0 4765 down_read(&mm->mmap_sem);
0247f3f4
JM
4766 walk_page_range(0, mm->highest_vm_end,
4767 &mem_cgroup_count_precharge_walk);
dfe076b0 4768 up_read(&mm->mmap_sem);
4ffef5fe
DN
4769
4770 precharge = mc.precharge;
4771 mc.precharge = 0;
4772
4773 return precharge;
4774}
4775
4ffef5fe
DN
4776static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4777{
dfe076b0
DN
4778 unsigned long precharge = mem_cgroup_count_precharge(mm);
4779
4780 VM_BUG_ON(mc.moving_task);
4781 mc.moving_task = current;
4782 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4783}
4784
dfe076b0
DN
4785/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4786static void __mem_cgroup_clear_mc(void)
4ffef5fe 4787{
2bd9bb20
KH
4788 struct mem_cgroup *from = mc.from;
4789 struct mem_cgroup *to = mc.to;
4790
4ffef5fe 4791 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4792 if (mc.precharge) {
00501b53 4793 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4794 mc.precharge = 0;
4795 }
4796 /*
4797 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4798 * we must uncharge here.
4799 */
4800 if (mc.moved_charge) {
00501b53 4801 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4802 mc.moved_charge = 0;
4ffef5fe 4803 }
483c30b5
DN
4804 /* we must fixup refcnts and charges */
4805 if (mc.moved_swap) {
483c30b5 4806 /* uncharge swap account from the old cgroup */
ce00a967 4807 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4808 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4809
615d66c3
VD
4810 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4811
05b84301 4812 /*
3e32cb2e
JW
4813 * we charged both to->memory and to->memsw, so we
4814 * should uncharge to->memory.
05b84301 4815 */
ce00a967 4816 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4817 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4818
615d66c3
VD
4819 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4820 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4821
483c30b5
DN
4822 mc.moved_swap = 0;
4823 }
dfe076b0
DN
4824 memcg_oom_recover(from);
4825 memcg_oom_recover(to);
4826 wake_up_all(&mc.waitq);
4827}
4828
4829static void mem_cgroup_clear_mc(void)
4830{
264a0ae1
TH
4831 struct mm_struct *mm = mc.mm;
4832
dfe076b0
DN
4833 /*
4834 * we must clear moving_task before waking up waiters at the end of
4835 * task migration.
4836 */
4837 mc.moving_task = NULL;
4838 __mem_cgroup_clear_mc();
2bd9bb20 4839 spin_lock(&mc.lock);
4ffef5fe
DN
4840 mc.from = NULL;
4841 mc.to = NULL;
264a0ae1 4842 mc.mm = NULL;
2bd9bb20 4843 spin_unlock(&mc.lock);
264a0ae1
TH
4844
4845 mmput(mm);
4ffef5fe
DN
4846}
4847
1f7dd3e5 4848static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4849{
1f7dd3e5 4850 struct cgroup_subsys_state *css;
eed67d75 4851 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4852 struct mem_cgroup *from;
4530eddb 4853 struct task_struct *leader, *p;
9f2115f9 4854 struct mm_struct *mm;
1dfab5ab 4855 unsigned long move_flags;
9f2115f9 4856 int ret = 0;
7dc74be0 4857
1f7dd3e5
TH
4858 /* charge immigration isn't supported on the default hierarchy */
4859 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4860 return 0;
4861
4530eddb
TH
4862 /*
4863 * Multi-process migrations only happen on the default hierarchy
4864 * where charge immigration is not used. Perform charge
4865 * immigration if @tset contains a leader and whine if there are
4866 * multiple.
4867 */
4868 p = NULL;
1f7dd3e5 4869 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4870 WARN_ON_ONCE(p);
4871 p = leader;
1f7dd3e5 4872 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4873 }
4874 if (!p)
4875 return 0;
4876
1f7dd3e5
TH
4877 /*
4878 * We are now commited to this value whatever it is. Changes in this
4879 * tunable will only affect upcoming migrations, not the current one.
4880 * So we need to save it, and keep it going.
4881 */
4882 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4883 if (!move_flags)
4884 return 0;
4885
9f2115f9
TH
4886 from = mem_cgroup_from_task(p);
4887
4888 VM_BUG_ON(from == memcg);
4889
4890 mm = get_task_mm(p);
4891 if (!mm)
4892 return 0;
4893 /* We move charges only when we move a owner of the mm */
4894 if (mm->owner == p) {
4895 VM_BUG_ON(mc.from);
4896 VM_BUG_ON(mc.to);
4897 VM_BUG_ON(mc.precharge);
4898 VM_BUG_ON(mc.moved_charge);
4899 VM_BUG_ON(mc.moved_swap);
4900
4901 spin_lock(&mc.lock);
264a0ae1 4902 mc.mm = mm;
9f2115f9
TH
4903 mc.from = from;
4904 mc.to = memcg;
4905 mc.flags = move_flags;
4906 spin_unlock(&mc.lock);
4907 /* We set mc.moving_task later */
4908
4909 ret = mem_cgroup_precharge_mc(mm);
4910 if (ret)
4911 mem_cgroup_clear_mc();
264a0ae1
TH
4912 } else {
4913 mmput(mm);
7dc74be0
DN
4914 }
4915 return ret;
4916}
4917
1f7dd3e5 4918static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4919{
4e2f245d
JW
4920 if (mc.to)
4921 mem_cgroup_clear_mc();
7dc74be0
DN
4922}
4923
4ffef5fe
DN
4924static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4925 unsigned long addr, unsigned long end,
4926 struct mm_walk *walk)
7dc74be0 4927{
4ffef5fe 4928 int ret = 0;
26bcd64a 4929 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4930 pte_t *pte;
4931 spinlock_t *ptl;
12724850
NH
4932 enum mc_target_type target_type;
4933 union mc_target target;
4934 struct page *page;
4ffef5fe 4935
b6ec57f4
KS
4936 ptl = pmd_trans_huge_lock(pmd, vma);
4937 if (ptl) {
62ade86a 4938 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4939 spin_unlock(ptl);
12724850
NH
4940 return 0;
4941 }
4942 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4943 if (target_type == MC_TARGET_PAGE) {
4944 page = target.page;
4945 if (!isolate_lru_page(page)) {
f627c2f5 4946 if (!mem_cgroup_move_account(page, true,
1306a85a 4947 mc.from, mc.to)) {
12724850
NH
4948 mc.precharge -= HPAGE_PMD_NR;
4949 mc.moved_charge += HPAGE_PMD_NR;
4950 }
4951 putback_lru_page(page);
4952 }
4953 put_page(page);
c733a828
JG
4954 } else if (target_type == MC_TARGET_DEVICE) {
4955 page = target.page;
4956 if (!mem_cgroup_move_account(page, true,
4957 mc.from, mc.to)) {
4958 mc.precharge -= HPAGE_PMD_NR;
4959 mc.moved_charge += HPAGE_PMD_NR;
4960 }
4961 put_page(page);
12724850 4962 }
bf929152 4963 spin_unlock(ptl);
1a5a9906 4964 return 0;
12724850
NH
4965 }
4966
45f83cef
AA
4967 if (pmd_trans_unstable(pmd))
4968 return 0;
4ffef5fe
DN
4969retry:
4970 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4971 for (; addr != end; addr += PAGE_SIZE) {
4972 pte_t ptent = *(pte++);
c733a828 4973 bool device = false;
02491447 4974 swp_entry_t ent;
4ffef5fe
DN
4975
4976 if (!mc.precharge)
4977 break;
4978
8d32ff84 4979 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
4980 case MC_TARGET_DEVICE:
4981 device = true;
4982 /* fall through */
4ffef5fe
DN
4983 case MC_TARGET_PAGE:
4984 page = target.page;
53f9263b
KS
4985 /*
4986 * We can have a part of the split pmd here. Moving it
4987 * can be done but it would be too convoluted so simply
4988 * ignore such a partial THP and keep it in original
4989 * memcg. There should be somebody mapping the head.
4990 */
4991 if (PageTransCompound(page))
4992 goto put;
c733a828 4993 if (!device && isolate_lru_page(page))
4ffef5fe 4994 goto put;
f627c2f5
KS
4995 if (!mem_cgroup_move_account(page, false,
4996 mc.from, mc.to)) {
4ffef5fe 4997 mc.precharge--;
854ffa8d
DN
4998 /* we uncharge from mc.from later. */
4999 mc.moved_charge++;
4ffef5fe 5000 }
c733a828
JG
5001 if (!device)
5002 putback_lru_page(page);
8d32ff84 5003put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5004 put_page(page);
5005 break;
02491447
DN
5006 case MC_TARGET_SWAP:
5007 ent = target.ent;
e91cbb42 5008 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5009 mc.precharge--;
483c30b5
DN
5010 /* we fixup refcnts and charges later. */
5011 mc.moved_swap++;
5012 }
02491447 5013 break;
4ffef5fe
DN
5014 default:
5015 break;
5016 }
5017 }
5018 pte_unmap_unlock(pte - 1, ptl);
5019 cond_resched();
5020
5021 if (addr != end) {
5022 /*
5023 * We have consumed all precharges we got in can_attach().
5024 * We try charge one by one, but don't do any additional
5025 * charges to mc.to if we have failed in charge once in attach()
5026 * phase.
5027 */
854ffa8d 5028 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5029 if (!ret)
5030 goto retry;
5031 }
5032
5033 return ret;
5034}
5035
264a0ae1 5036static void mem_cgroup_move_charge(void)
4ffef5fe 5037{
26bcd64a
NH
5038 struct mm_walk mem_cgroup_move_charge_walk = {
5039 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5040 .mm = mc.mm,
26bcd64a 5041 };
4ffef5fe
DN
5042
5043 lru_add_drain_all();
312722cb 5044 /*
81f8c3a4
JW
5045 * Signal lock_page_memcg() to take the memcg's move_lock
5046 * while we're moving its pages to another memcg. Then wait
5047 * for already started RCU-only updates to finish.
312722cb
JW
5048 */
5049 atomic_inc(&mc.from->moving_account);
5050 synchronize_rcu();
dfe076b0 5051retry:
264a0ae1 5052 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5053 /*
5054 * Someone who are holding the mmap_sem might be waiting in
5055 * waitq. So we cancel all extra charges, wake up all waiters,
5056 * and retry. Because we cancel precharges, we might not be able
5057 * to move enough charges, but moving charge is a best-effort
5058 * feature anyway, so it wouldn't be a big problem.
5059 */
5060 __mem_cgroup_clear_mc();
5061 cond_resched();
5062 goto retry;
5063 }
26bcd64a
NH
5064 /*
5065 * When we have consumed all precharges and failed in doing
5066 * additional charge, the page walk just aborts.
5067 */
0247f3f4
JM
5068 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5069
264a0ae1 5070 up_read(&mc.mm->mmap_sem);
312722cb 5071 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5072}
5073
264a0ae1 5074static void mem_cgroup_move_task(void)
67e465a7 5075{
264a0ae1
TH
5076 if (mc.to) {
5077 mem_cgroup_move_charge();
a433658c 5078 mem_cgroup_clear_mc();
264a0ae1 5079 }
67e465a7 5080}
5cfb80a7 5081#else /* !CONFIG_MMU */
1f7dd3e5 5082static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5083{
5084 return 0;
5085}
1f7dd3e5 5086static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5087{
5088}
264a0ae1 5089static void mem_cgroup_move_task(void)
5cfb80a7
DN
5090{
5091}
5092#endif
67e465a7 5093
f00baae7
TH
5094/*
5095 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5096 * to verify whether we're attached to the default hierarchy on each mount
5097 * attempt.
f00baae7 5098 */
eb95419b 5099static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5100{
5101 /*
aa6ec29b 5102 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5103 * guarantees that @root doesn't have any children, so turning it
5104 * on for the root memcg is enough.
5105 */
9e10a130 5106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5107 root_mem_cgroup->use_hierarchy = true;
5108 else
5109 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5110}
5111
241994ed
JW
5112static u64 memory_current_read(struct cgroup_subsys_state *css,
5113 struct cftype *cft)
5114{
f5fc3c5d
JW
5115 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5116
5117 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5118}
5119
5120static int memory_low_show(struct seq_file *m, void *v)
5121{
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5123 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5124
5125 if (low == PAGE_COUNTER_MAX)
d2973697 5126 seq_puts(m, "max\n");
241994ed
JW
5127 else
5128 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5129
5130 return 0;
5131}
5132
5133static ssize_t memory_low_write(struct kernfs_open_file *of,
5134 char *buf, size_t nbytes, loff_t off)
5135{
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5137 unsigned long low;
5138 int err;
5139
5140 buf = strstrip(buf);
d2973697 5141 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5142 if (err)
5143 return err;
5144
5145 memcg->low = low;
5146
5147 return nbytes;
5148}
5149
5150static int memory_high_show(struct seq_file *m, void *v)
5151{
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5153 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5154
5155 if (high == PAGE_COUNTER_MAX)
d2973697 5156 seq_puts(m, "max\n");
241994ed
JW
5157 else
5158 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5159
5160 return 0;
5161}
5162
5163static ssize_t memory_high_write(struct kernfs_open_file *of,
5164 char *buf, size_t nbytes, loff_t off)
5165{
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5167 unsigned long nr_pages;
241994ed
JW
5168 unsigned long high;
5169 int err;
5170
5171 buf = strstrip(buf);
d2973697 5172 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5173 if (err)
5174 return err;
5175
5176 memcg->high = high;
5177
588083bb
JW
5178 nr_pages = page_counter_read(&memcg->memory);
5179 if (nr_pages > high)
5180 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5181 GFP_KERNEL, true);
5182
2529bb3a 5183 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5184 return nbytes;
5185}
5186
5187static int memory_max_show(struct seq_file *m, void *v)
5188{
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5190 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5191
5192 if (max == PAGE_COUNTER_MAX)
d2973697 5193 seq_puts(m, "max\n");
241994ed
JW
5194 else
5195 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5196
5197 return 0;
5198}
5199
5200static ssize_t memory_max_write(struct kernfs_open_file *of,
5201 char *buf, size_t nbytes, loff_t off)
5202{
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5204 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5205 bool drained = false;
241994ed
JW
5206 unsigned long max;
5207 int err;
5208
5209 buf = strstrip(buf);
d2973697 5210 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5211 if (err)
5212 return err;
5213
b6e6edcf
JW
5214 xchg(&memcg->memory.limit, max);
5215
5216 for (;;) {
5217 unsigned long nr_pages = page_counter_read(&memcg->memory);
5218
5219 if (nr_pages <= max)
5220 break;
5221
5222 if (signal_pending(current)) {
5223 err = -EINTR;
5224 break;
5225 }
5226
5227 if (!drained) {
5228 drain_all_stock(memcg);
5229 drained = true;
5230 continue;
5231 }
5232
5233 if (nr_reclaims) {
5234 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5235 GFP_KERNEL, true))
5236 nr_reclaims--;
5237 continue;
5238 }
5239
31176c78 5240 mem_cgroup_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5241 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5242 break;
5243 }
241994ed 5244
2529bb3a 5245 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5246 return nbytes;
5247}
5248
5249static int memory_events_show(struct seq_file *m, void *v)
5250{
5251 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5252
ccda7f43
JW
5253 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5254 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5255 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5256 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
8e675f7a 5257 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5258
5259 return 0;
5260}
5261
587d9f72
JW
5262static int memory_stat_show(struct seq_file *m, void *v)
5263{
5264 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5265 unsigned long stat[MEMCG_NR_STAT];
5266 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5267 int i;
5268
5269 /*
5270 * Provide statistics on the state of the memory subsystem as
5271 * well as cumulative event counters that show past behavior.
5272 *
5273 * This list is ordered following a combination of these gradients:
5274 * 1) generic big picture -> specifics and details
5275 * 2) reflecting userspace activity -> reflecting kernel heuristics
5276 *
5277 * Current memory state:
5278 */
5279
72b54e73
VD
5280 tree_stat(memcg, stat);
5281 tree_events(memcg, events);
5282
587d9f72 5283 seq_printf(m, "anon %llu\n",
71cd3113 5284 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5285 seq_printf(m, "file %llu\n",
71cd3113 5286 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5287 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5288 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5289 seq_printf(m, "slab %llu\n",
32049296
JW
5290 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5291 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5292 seq_printf(m, "sock %llu\n",
72b54e73 5293 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5294
9a4caf1e 5295 seq_printf(m, "shmem %llu\n",
71cd3113 5296 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5297 seq_printf(m, "file_mapped %llu\n",
71cd3113 5298 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5299 seq_printf(m, "file_dirty %llu\n",
71cd3113 5300 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5301 seq_printf(m, "file_writeback %llu\n",
71cd3113 5302 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5303
5304 for (i = 0; i < NR_LRU_LISTS; i++) {
5305 struct mem_cgroup *mi;
5306 unsigned long val = 0;
5307
5308 for_each_mem_cgroup_tree(mi, memcg)
5309 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5310 seq_printf(m, "%s %llu\n",
5311 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5312 }
5313
27ee57c9 5314 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5315 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5316 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5317 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5318
587d9f72
JW
5319 /* Accumulated memory events */
5320
df0e53d0
JW
5321 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5322 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5323
2262185c
RG
5324 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5325 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5326 events[PGSCAN_DIRECT]);
5327 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5328 events[PGSTEAL_DIRECT]);
5329 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5330 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5331 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5332 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5333
2a2e4885 5334 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5335 stat[WORKINGSET_REFAULT]);
2a2e4885 5336 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5337 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5338 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5339 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5340
587d9f72
JW
5341 return 0;
5342}
5343
241994ed
JW
5344static struct cftype memory_files[] = {
5345 {
5346 .name = "current",
f5fc3c5d 5347 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5348 .read_u64 = memory_current_read,
5349 },
5350 {
5351 .name = "low",
5352 .flags = CFTYPE_NOT_ON_ROOT,
5353 .seq_show = memory_low_show,
5354 .write = memory_low_write,
5355 },
5356 {
5357 .name = "high",
5358 .flags = CFTYPE_NOT_ON_ROOT,
5359 .seq_show = memory_high_show,
5360 .write = memory_high_write,
5361 },
5362 {
5363 .name = "max",
5364 .flags = CFTYPE_NOT_ON_ROOT,
5365 .seq_show = memory_max_show,
5366 .write = memory_max_write,
5367 },
5368 {
5369 .name = "events",
5370 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5371 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5372 .seq_show = memory_events_show,
5373 },
587d9f72
JW
5374 {
5375 .name = "stat",
5376 .flags = CFTYPE_NOT_ON_ROOT,
5377 .seq_show = memory_stat_show,
5378 },
241994ed
JW
5379 { } /* terminate */
5380};
5381
073219e9 5382struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5383 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5384 .css_online = mem_cgroup_css_online,
92fb9748 5385 .css_offline = mem_cgroup_css_offline,
6df38689 5386 .css_released = mem_cgroup_css_released,
92fb9748 5387 .css_free = mem_cgroup_css_free,
1ced953b 5388 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5389 .can_attach = mem_cgroup_can_attach,
5390 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5391 .post_attach = mem_cgroup_move_task,
f00baae7 5392 .bind = mem_cgroup_bind,
241994ed
JW
5393 .dfl_cftypes = memory_files,
5394 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5395 .early_init = 0,
8cdea7c0 5396};
c077719b 5397
241994ed
JW
5398/**
5399 * mem_cgroup_low - check if memory consumption is below the normal range
34c81057 5400 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5401 * @memcg: the memory cgroup to check
5402 *
5403 * Returns %true if memory consumption of @memcg, and that of all
34c81057
SC
5404 * ancestors up to (but not including) @root, is below the normal range.
5405 *
5406 * @root is exclusive; it is never low when looked at directly and isn't
5407 * checked when traversing the hierarchy.
5408 *
5409 * Excluding @root enables using memory.low to prioritize memory usage
5410 * between cgroups within a subtree of the hierarchy that is limited by
5411 * memory.high or memory.max.
5412 *
5413 * For example, given cgroup A with children B and C:
5414 *
5415 * A
5416 * / \
5417 * B C
5418 *
5419 * and
5420 *
5421 * 1. A/memory.current > A/memory.high
5422 * 2. A/B/memory.current < A/B/memory.low
5423 * 3. A/C/memory.current >= A/C/memory.low
5424 *
5425 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5426 * should reclaim from 'C' until 'A' is no longer high or until we can
5427 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5428 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5429 * low and we will reclaim indiscriminately from both 'B' and 'C'.
241994ed
JW
5430 */
5431bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5432{
5433 if (mem_cgroup_disabled())
5434 return false;
5435
34c81057
SC
5436 if (!root)
5437 root = root_mem_cgroup;
5438 if (memcg == root)
241994ed
JW
5439 return false;
5440
34c81057 5441 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
4e54dede 5442 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5443 return false;
5444 }
34c81057 5445
241994ed
JW
5446 return true;
5447}
5448
00501b53
JW
5449/**
5450 * mem_cgroup_try_charge - try charging a page
5451 * @page: page to charge
5452 * @mm: mm context of the victim
5453 * @gfp_mask: reclaim mode
5454 * @memcgp: charged memcg return
25843c2b 5455 * @compound: charge the page as compound or small page
00501b53
JW
5456 *
5457 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5458 * pages according to @gfp_mask if necessary.
5459 *
5460 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5461 * Otherwise, an error code is returned.
5462 *
5463 * After page->mapping has been set up, the caller must finalize the
5464 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5465 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5466 */
5467int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5468 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5469 bool compound)
00501b53
JW
5470{
5471 struct mem_cgroup *memcg = NULL;
f627c2f5 5472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5473 int ret = 0;
5474
5475 if (mem_cgroup_disabled())
5476 goto out;
5477
5478 if (PageSwapCache(page)) {
00501b53
JW
5479 /*
5480 * Every swap fault against a single page tries to charge the
5481 * page, bail as early as possible. shmem_unuse() encounters
5482 * already charged pages, too. The USED bit is protected by
5483 * the page lock, which serializes swap cache removal, which
5484 * in turn serializes uncharging.
5485 */
e993d905 5486 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5487 if (compound_head(page)->mem_cgroup)
00501b53 5488 goto out;
e993d905 5489
37e84351 5490 if (do_swap_account) {
e993d905
VD
5491 swp_entry_t ent = { .val = page_private(page), };
5492 unsigned short id = lookup_swap_cgroup_id(ent);
5493
5494 rcu_read_lock();
5495 memcg = mem_cgroup_from_id(id);
5496 if (memcg && !css_tryget_online(&memcg->css))
5497 memcg = NULL;
5498 rcu_read_unlock();
5499 }
00501b53
JW
5500 }
5501
00501b53
JW
5502 if (!memcg)
5503 memcg = get_mem_cgroup_from_mm(mm);
5504
5505 ret = try_charge(memcg, gfp_mask, nr_pages);
5506
5507 css_put(&memcg->css);
00501b53
JW
5508out:
5509 *memcgp = memcg;
5510 return ret;
5511}
5512
5513/**
5514 * mem_cgroup_commit_charge - commit a page charge
5515 * @page: page to charge
5516 * @memcg: memcg to charge the page to
5517 * @lrucare: page might be on LRU already
25843c2b 5518 * @compound: charge the page as compound or small page
00501b53
JW
5519 *
5520 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5521 * after page->mapping has been set up. This must happen atomically
5522 * as part of the page instantiation, i.e. under the page table lock
5523 * for anonymous pages, under the page lock for page and swap cache.
5524 *
5525 * In addition, the page must not be on the LRU during the commit, to
5526 * prevent racing with task migration. If it might be, use @lrucare.
5527 *
5528 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5529 */
5530void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5531 bool lrucare, bool compound)
00501b53 5532{
f627c2f5 5533 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5534
5535 VM_BUG_ON_PAGE(!page->mapping, page);
5536 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5537
5538 if (mem_cgroup_disabled())
5539 return;
5540 /*
5541 * Swap faults will attempt to charge the same page multiple
5542 * times. But reuse_swap_page() might have removed the page
5543 * from swapcache already, so we can't check PageSwapCache().
5544 */
5545 if (!memcg)
5546 return;
5547
6abb5a86
JW
5548 commit_charge(page, memcg, lrucare);
5549
6abb5a86 5550 local_irq_disable();
f627c2f5 5551 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5552 memcg_check_events(memcg, page);
5553 local_irq_enable();
00501b53 5554
7941d214 5555 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5556 swp_entry_t entry = { .val = page_private(page) };
5557 /*
5558 * The swap entry might not get freed for a long time,
5559 * let's not wait for it. The page already received a
5560 * memory+swap charge, drop the swap entry duplicate.
5561 */
38d8b4e6 5562 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5563 }
5564}
5565
5566/**
5567 * mem_cgroup_cancel_charge - cancel a page charge
5568 * @page: page to charge
5569 * @memcg: memcg to charge the page to
25843c2b 5570 * @compound: charge the page as compound or small page
00501b53
JW
5571 *
5572 * Cancel a charge transaction started by mem_cgroup_try_charge().
5573 */
f627c2f5
KS
5574void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5575 bool compound)
00501b53 5576{
f627c2f5 5577 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5578
5579 if (mem_cgroup_disabled())
5580 return;
5581 /*
5582 * Swap faults will attempt to charge the same page multiple
5583 * times. But reuse_swap_page() might have removed the page
5584 * from swapcache already, so we can't check PageSwapCache().
5585 */
5586 if (!memcg)
5587 return;
5588
00501b53
JW
5589 cancel_charge(memcg, nr_pages);
5590}
5591
a9d5adee
JG
5592struct uncharge_gather {
5593 struct mem_cgroup *memcg;
5594 unsigned long pgpgout;
5595 unsigned long nr_anon;
5596 unsigned long nr_file;
5597 unsigned long nr_kmem;
5598 unsigned long nr_huge;
5599 unsigned long nr_shmem;
5600 struct page *dummy_page;
5601};
5602
5603static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5604{
a9d5adee
JG
5605 memset(ug, 0, sizeof(*ug));
5606}
5607
5608static void uncharge_batch(const struct uncharge_gather *ug)
5609{
5610 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5611 unsigned long flags;
5612
a9d5adee
JG
5613 if (!mem_cgroup_is_root(ug->memcg)) {
5614 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5615 if (do_memsw_account())
a9d5adee
JG
5616 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5617 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5618 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5619 memcg_oom_recover(ug->memcg);
ce00a967 5620 }
747db954
JW
5621
5622 local_irq_save(flags);
a9d5adee
JG
5623 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5624 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5625 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5626 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5627 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5628 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5629 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5630 local_irq_restore(flags);
e8ea14cc 5631
a9d5adee
JG
5632 if (!mem_cgroup_is_root(ug->memcg))
5633 css_put_many(&ug->memcg->css, nr_pages);
5634}
5635
5636static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5637{
5638 VM_BUG_ON_PAGE(PageLRU(page), page);
5639 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5640
5641 if (!page->mem_cgroup)
5642 return;
5643
5644 /*
5645 * Nobody should be changing or seriously looking at
5646 * page->mem_cgroup at this point, we have fully
5647 * exclusive access to the page.
5648 */
5649
5650 if (ug->memcg != page->mem_cgroup) {
5651 if (ug->memcg) {
5652 uncharge_batch(ug);
5653 uncharge_gather_clear(ug);
5654 }
5655 ug->memcg = page->mem_cgroup;
5656 }
5657
5658 if (!PageKmemcg(page)) {
5659 unsigned int nr_pages = 1;
5660
5661 if (PageTransHuge(page)) {
5662 nr_pages <<= compound_order(page);
5663 ug->nr_huge += nr_pages;
5664 }
5665 if (PageAnon(page))
5666 ug->nr_anon += nr_pages;
5667 else {
5668 ug->nr_file += nr_pages;
5669 if (PageSwapBacked(page))
5670 ug->nr_shmem += nr_pages;
5671 }
5672 ug->pgpgout++;
5673 } else {
5674 ug->nr_kmem += 1 << compound_order(page);
5675 __ClearPageKmemcg(page);
5676 }
5677
5678 ug->dummy_page = page;
5679 page->mem_cgroup = NULL;
747db954
JW
5680}
5681
5682static void uncharge_list(struct list_head *page_list)
5683{
a9d5adee 5684 struct uncharge_gather ug;
747db954 5685 struct list_head *next;
a9d5adee
JG
5686
5687 uncharge_gather_clear(&ug);
747db954 5688
8b592656
JW
5689 /*
5690 * Note that the list can be a single page->lru; hence the
5691 * do-while loop instead of a simple list_for_each_entry().
5692 */
747db954
JW
5693 next = page_list->next;
5694 do {
a9d5adee
JG
5695 struct page *page;
5696
747db954
JW
5697 page = list_entry(next, struct page, lru);
5698 next = page->lru.next;
5699
a9d5adee 5700 uncharge_page(page, &ug);
747db954
JW
5701 } while (next != page_list);
5702
a9d5adee
JG
5703 if (ug.memcg)
5704 uncharge_batch(&ug);
747db954
JW
5705}
5706
0a31bc97
JW
5707/**
5708 * mem_cgroup_uncharge - uncharge a page
5709 * @page: page to uncharge
5710 *
5711 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5712 * mem_cgroup_commit_charge().
5713 */
5714void mem_cgroup_uncharge(struct page *page)
5715{
a9d5adee
JG
5716 struct uncharge_gather ug;
5717
0a31bc97
JW
5718 if (mem_cgroup_disabled())
5719 return;
5720
747db954 5721 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5722 if (!page->mem_cgroup)
0a31bc97
JW
5723 return;
5724
a9d5adee
JG
5725 uncharge_gather_clear(&ug);
5726 uncharge_page(page, &ug);
5727 uncharge_batch(&ug);
747db954 5728}
0a31bc97 5729
747db954
JW
5730/**
5731 * mem_cgroup_uncharge_list - uncharge a list of page
5732 * @page_list: list of pages to uncharge
5733 *
5734 * Uncharge a list of pages previously charged with
5735 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5736 */
5737void mem_cgroup_uncharge_list(struct list_head *page_list)
5738{
5739 if (mem_cgroup_disabled())
5740 return;
0a31bc97 5741
747db954
JW
5742 if (!list_empty(page_list))
5743 uncharge_list(page_list);
0a31bc97
JW
5744}
5745
5746/**
6a93ca8f
JW
5747 * mem_cgroup_migrate - charge a page's replacement
5748 * @oldpage: currently circulating page
5749 * @newpage: replacement page
0a31bc97 5750 *
6a93ca8f
JW
5751 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5752 * be uncharged upon free.
0a31bc97
JW
5753 *
5754 * Both pages must be locked, @newpage->mapping must be set up.
5755 */
6a93ca8f 5756void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5757{
29833315 5758 struct mem_cgroup *memcg;
44b7a8d3
JW
5759 unsigned int nr_pages;
5760 bool compound;
d93c4130 5761 unsigned long flags;
0a31bc97
JW
5762
5763 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5764 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5765 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5766 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5767 newpage);
0a31bc97
JW
5768
5769 if (mem_cgroup_disabled())
5770 return;
5771
5772 /* Page cache replacement: new page already charged? */
1306a85a 5773 if (newpage->mem_cgroup)
0a31bc97
JW
5774 return;
5775
45637bab 5776 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5777 memcg = oldpage->mem_cgroup;
29833315 5778 if (!memcg)
0a31bc97
JW
5779 return;
5780
44b7a8d3
JW
5781 /* Force-charge the new page. The old one will be freed soon */
5782 compound = PageTransHuge(newpage);
5783 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5784
5785 page_counter_charge(&memcg->memory, nr_pages);
5786 if (do_memsw_account())
5787 page_counter_charge(&memcg->memsw, nr_pages);
5788 css_get_many(&memcg->css, nr_pages);
0a31bc97 5789
9cf7666a 5790 commit_charge(newpage, memcg, false);
44b7a8d3 5791
d93c4130 5792 local_irq_save(flags);
44b7a8d3
JW
5793 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5794 memcg_check_events(memcg, newpage);
d93c4130 5795 local_irq_restore(flags);
0a31bc97
JW
5796}
5797
ef12947c 5798DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5799EXPORT_SYMBOL(memcg_sockets_enabled_key);
5800
2d758073 5801void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5802{
5803 struct mem_cgroup *memcg;
5804
2d758073
JW
5805 if (!mem_cgroup_sockets_enabled)
5806 return;
5807
5808 /*
5809 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5810 * filled. It won't however, necessarily happen from
5811 * process context. So the test for root memcg given
5812 * the current task's memcg won't help us in this case.
5813 *
5814 * Respecting the original socket's memcg is a better
5815 * decision in this case.
5816 */
5817 if (sk->sk_memcg) {
5818 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5819 css_get(&sk->sk_memcg->css);
5820 return;
5821 }
5822
5823 rcu_read_lock();
5824 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5825 if (memcg == root_mem_cgroup)
5826 goto out;
0db15298 5827 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5828 goto out;
f7e1cb6e 5829 if (css_tryget_online(&memcg->css))
11092087 5830 sk->sk_memcg = memcg;
f7e1cb6e 5831out:
11092087
JW
5832 rcu_read_unlock();
5833}
11092087 5834
2d758073 5835void mem_cgroup_sk_free(struct sock *sk)
11092087 5836{
2d758073
JW
5837 if (sk->sk_memcg)
5838 css_put(&sk->sk_memcg->css);
11092087
JW
5839}
5840
5841/**
5842 * mem_cgroup_charge_skmem - charge socket memory
5843 * @memcg: memcg to charge
5844 * @nr_pages: number of pages to charge
5845 *
5846 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5847 * @memcg's configured limit, %false if the charge had to be forced.
5848 */
5849bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5850{
f7e1cb6e 5851 gfp_t gfp_mask = GFP_KERNEL;
11092087 5852
f7e1cb6e 5853 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5854 struct page_counter *fail;
f7e1cb6e 5855
0db15298
JW
5856 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5857 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5858 return true;
5859 }
0db15298
JW
5860 page_counter_charge(&memcg->tcpmem, nr_pages);
5861 memcg->tcpmem_pressure = 1;
f7e1cb6e 5862 return false;
11092087 5863 }
d886f4e4 5864
f7e1cb6e
JW
5865 /* Don't block in the packet receive path */
5866 if (in_softirq())
5867 gfp_mask = GFP_NOWAIT;
5868
b2807f07
JW
5869 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5870
f7e1cb6e
JW
5871 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5872 return true;
5873
5874 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5875 return false;
5876}
5877
5878/**
5879 * mem_cgroup_uncharge_skmem - uncharge socket memory
5880 * @memcg - memcg to uncharge
5881 * @nr_pages - number of pages to uncharge
5882 */
5883void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5884{
f7e1cb6e 5885 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5886 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5887 return;
5888 }
d886f4e4 5889
b2807f07
JW
5890 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5891
475d0487 5892 refill_stock(memcg, nr_pages);
11092087
JW
5893}
5894
f7e1cb6e
JW
5895static int __init cgroup_memory(char *s)
5896{
5897 char *token;
5898
5899 while ((token = strsep(&s, ",")) != NULL) {
5900 if (!*token)
5901 continue;
5902 if (!strcmp(token, "nosocket"))
5903 cgroup_memory_nosocket = true;
04823c83
VD
5904 if (!strcmp(token, "nokmem"))
5905 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5906 }
5907 return 0;
5908}
5909__setup("cgroup.memory=", cgroup_memory);
11092087 5910
2d11085e 5911/*
1081312f
MH
5912 * subsys_initcall() for memory controller.
5913 *
308167fc
SAS
5914 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5915 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5916 * basically everything that doesn't depend on a specific mem_cgroup structure
5917 * should be initialized from here.
2d11085e
MH
5918 */
5919static int __init mem_cgroup_init(void)
5920{
95a045f6
JW
5921 int cpu, node;
5922
13583c3d
VD
5923#ifndef CONFIG_SLOB
5924 /*
5925 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5926 * so use a workqueue with limited concurrency to avoid stalling
5927 * all worker threads in case lots of cgroups are created and
5928 * destroyed simultaneously.
13583c3d 5929 */
17cc4dfe
TH
5930 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5931 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5932#endif
5933
308167fc
SAS
5934 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5935 memcg_hotplug_cpu_dead);
95a045f6
JW
5936
5937 for_each_possible_cpu(cpu)
5938 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5939 drain_local_stock);
5940
5941 for_each_node(node) {
5942 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5943
5944 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5945 node_online(node) ? node : NUMA_NO_NODE);
5946
ef8f2327
MG
5947 rtpn->rb_root = RB_ROOT;
5948 spin_lock_init(&rtpn->lock);
95a045f6
JW
5949 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5950 }
5951
2d11085e
MH
5952 return 0;
5953}
5954subsys_initcall(mem_cgroup_init);
21afa38e
JW
5955
5956#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5957static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5958{
5959 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5960 /*
5961 * The root cgroup cannot be destroyed, so it's refcount must
5962 * always be >= 1.
5963 */
5964 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5965 VM_BUG_ON(1);
5966 break;
5967 }
5968 memcg = parent_mem_cgroup(memcg);
5969 if (!memcg)
5970 memcg = root_mem_cgroup;
5971 }
5972 return memcg;
5973}
5974
21afa38e
JW
5975/**
5976 * mem_cgroup_swapout - transfer a memsw charge to swap
5977 * @page: page whose memsw charge to transfer
5978 * @entry: swap entry to move the charge to
5979 *
5980 * Transfer the memsw charge of @page to @entry.
5981 */
5982void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5983{
1f47b61f 5984 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 5985 unsigned int nr_entries;
21afa38e
JW
5986 unsigned short oldid;
5987
5988 VM_BUG_ON_PAGE(PageLRU(page), page);
5989 VM_BUG_ON_PAGE(page_count(page), page);
5990
7941d214 5991 if (!do_memsw_account())
21afa38e
JW
5992 return;
5993
5994 memcg = page->mem_cgroup;
5995
5996 /* Readahead page, never charged */
5997 if (!memcg)
5998 return;
5999
1f47b61f
VD
6000 /*
6001 * In case the memcg owning these pages has been offlined and doesn't
6002 * have an ID allocated to it anymore, charge the closest online
6003 * ancestor for the swap instead and transfer the memory+swap charge.
6004 */
6005 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6006 nr_entries = hpage_nr_pages(page);
6007 /* Get references for the tail pages, too */
6008 if (nr_entries > 1)
6009 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6010 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6011 nr_entries);
21afa38e 6012 VM_BUG_ON_PAGE(oldid, page);
d6810d73 6013 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
21afa38e
JW
6014
6015 page->mem_cgroup = NULL;
6016
6017 if (!mem_cgroup_is_root(memcg))
d6810d73 6018 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6019
1f47b61f
VD
6020 if (memcg != swap_memcg) {
6021 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6022 page_counter_charge(&swap_memcg->memsw, nr_entries);
6023 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6024 }
6025
ce9ce665
SAS
6026 /*
6027 * Interrupts should be disabled here because the caller holds the
6028 * mapping->tree_lock lock which is taken with interrupts-off. It is
6029 * important here to have the interrupts disabled because it is the
6030 * only synchronisation we have for udpating the per-CPU variables.
6031 */
6032 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6033 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6034 -nr_entries);
21afa38e 6035 memcg_check_events(memcg, page);
73f576c0
JW
6036
6037 if (!mem_cgroup_is_root(memcg))
6038 css_put(&memcg->css);
21afa38e
JW
6039}
6040
38d8b4e6
HY
6041/**
6042 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6043 * @page: page being added to swap
6044 * @entry: swap entry to charge
6045 *
38d8b4e6 6046 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6047 *
6048 * Returns 0 on success, -ENOMEM on failure.
6049 */
6050int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6051{
38d8b4e6 6052 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6053 struct page_counter *counter;
38d8b4e6 6054 struct mem_cgroup *memcg;
37e84351
VD
6055 unsigned short oldid;
6056
6057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6058 return 0;
6059
6060 memcg = page->mem_cgroup;
6061
6062 /* Readahead page, never charged */
6063 if (!memcg)
6064 return 0;
6065
1f47b61f
VD
6066 memcg = mem_cgroup_id_get_online(memcg);
6067
37e84351 6068 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6069 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
1f47b61f 6070 mem_cgroup_id_put(memcg);
37e84351 6071 return -ENOMEM;
1f47b61f 6072 }
37e84351 6073
38d8b4e6
HY
6074 /* Get references for the tail pages, too */
6075 if (nr_pages > 1)
6076 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6077 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6078 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 6079 mem_cgroup_swap_statistics(memcg, nr_pages);
37e84351 6080
37e84351
VD
6081 return 0;
6082}
6083
21afa38e 6084/**
38d8b4e6 6085 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6086 * @entry: swap entry to uncharge
38d8b4e6 6087 * @nr_pages: the amount of swap space to uncharge
21afa38e 6088 */
38d8b4e6 6089void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6090{
6091 struct mem_cgroup *memcg;
6092 unsigned short id;
6093
37e84351 6094 if (!do_swap_account)
21afa38e
JW
6095 return;
6096
38d8b4e6 6097 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6098 rcu_read_lock();
adbe427b 6099 memcg = mem_cgroup_from_id(id);
21afa38e 6100 if (memcg) {
37e84351
VD
6101 if (!mem_cgroup_is_root(memcg)) {
6102 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6103 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6104 else
38d8b4e6 6105 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6106 }
38d8b4e6
HY
6107 mem_cgroup_swap_statistics(memcg, -nr_pages);
6108 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6109 }
6110 rcu_read_unlock();
6111}
6112
d8b38438
VD
6113long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6114{
6115 long nr_swap_pages = get_nr_swap_pages();
6116
6117 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6118 return nr_swap_pages;
6119 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6120 nr_swap_pages = min_t(long, nr_swap_pages,
6121 READ_ONCE(memcg->swap.limit) -
6122 page_counter_read(&memcg->swap));
6123 return nr_swap_pages;
6124}
6125
5ccc5aba
VD
6126bool mem_cgroup_swap_full(struct page *page)
6127{
6128 struct mem_cgroup *memcg;
6129
6130 VM_BUG_ON_PAGE(!PageLocked(page), page);
6131
6132 if (vm_swap_full())
6133 return true;
6134 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6135 return false;
6136
6137 memcg = page->mem_cgroup;
6138 if (!memcg)
6139 return false;
6140
6141 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6142 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6143 return true;
6144
6145 return false;
6146}
6147
21afa38e
JW
6148/* for remember boot option*/
6149#ifdef CONFIG_MEMCG_SWAP_ENABLED
6150static int really_do_swap_account __initdata = 1;
6151#else
6152static int really_do_swap_account __initdata;
6153#endif
6154
6155static int __init enable_swap_account(char *s)
6156{
6157 if (!strcmp(s, "1"))
6158 really_do_swap_account = 1;
6159 else if (!strcmp(s, "0"))
6160 really_do_swap_account = 0;
6161 return 1;
6162}
6163__setup("swapaccount=", enable_swap_account);
6164
37e84351
VD
6165static u64 swap_current_read(struct cgroup_subsys_state *css,
6166 struct cftype *cft)
6167{
6168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6169
6170 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6171}
6172
6173static int swap_max_show(struct seq_file *m, void *v)
6174{
6175 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6176 unsigned long max = READ_ONCE(memcg->swap.limit);
6177
6178 if (max == PAGE_COUNTER_MAX)
6179 seq_puts(m, "max\n");
6180 else
6181 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6182
6183 return 0;
6184}
6185
6186static ssize_t swap_max_write(struct kernfs_open_file *of,
6187 char *buf, size_t nbytes, loff_t off)
6188{
6189 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6190 unsigned long max;
6191 int err;
6192
6193 buf = strstrip(buf);
6194 err = page_counter_memparse(buf, "max", &max);
6195 if (err)
6196 return err;
6197
6198 mutex_lock(&memcg_limit_mutex);
6199 err = page_counter_limit(&memcg->swap, max);
6200 mutex_unlock(&memcg_limit_mutex);
6201 if (err)
6202 return err;
6203
6204 return nbytes;
6205}
6206
6207static struct cftype swap_files[] = {
6208 {
6209 .name = "swap.current",
6210 .flags = CFTYPE_NOT_ON_ROOT,
6211 .read_u64 = swap_current_read,
6212 },
6213 {
6214 .name = "swap.max",
6215 .flags = CFTYPE_NOT_ON_ROOT,
6216 .seq_show = swap_max_show,
6217 .write = swap_max_write,
6218 },
6219 { } /* terminate */
6220};
6221
21afa38e
JW
6222static struct cftype memsw_cgroup_files[] = {
6223 {
6224 .name = "memsw.usage_in_bytes",
6225 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6226 .read_u64 = mem_cgroup_read_u64,
6227 },
6228 {
6229 .name = "memsw.max_usage_in_bytes",
6230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6231 .write = mem_cgroup_reset,
6232 .read_u64 = mem_cgroup_read_u64,
6233 },
6234 {
6235 .name = "memsw.limit_in_bytes",
6236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6237 .write = mem_cgroup_write,
6238 .read_u64 = mem_cgroup_read_u64,
6239 },
6240 {
6241 .name = "memsw.failcnt",
6242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6243 .write = mem_cgroup_reset,
6244 .read_u64 = mem_cgroup_read_u64,
6245 },
6246 { }, /* terminate */
6247};
6248
6249static int __init mem_cgroup_swap_init(void)
6250{
6251 if (!mem_cgroup_disabled() && really_do_swap_account) {
6252 do_swap_account = 1;
37e84351
VD
6253 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6254 swap_files));
21afa38e
JW
6255 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6256 memsw_cgroup_files));
6257 }
6258 return 0;
6259}
6260subsys_initcall(mem_cgroup_swap_init);
6261
6262#endif /* CONFIG_MEMCG_SWAP */