]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: memcontrol: use obj_cgroup APIs to charge kmem pages
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
c1a660de
RG
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
55007d84 353/*
9855609b 354 * This will be used as a shrinker list's index.
b8627835
LZ
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
55007d84 360 *
dbcf73e2
VD
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
55007d84 363 */
dbcf73e2
VD
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
749c5415 366
05257a1a
VD
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
55007d84
GC
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
b8627835 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
b8627835 393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 394
d7f25f8a
GC
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
272911a4 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
ef12947c 401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 402EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 403#endif
17cc4dfe 404
0a4465d3
KT
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
a3747b53 417 struct mem_cgroup_per_node *pn;
0a4465d3
KT
418 int nid;
419
420 lockdep_assert_held(&memcg_shrinker_map_mutex);
421
422 for_each_node(nid) {
a3747b53
JW
423 pn = memcg->nodeinfo[nid];
424 old = rcu_dereference_protected(pn->shrinker_map, true);
0a4465d3
KT
425 /* Not yet online memcg */
426 if (!old)
427 return 0;
428
86daf94e 429 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
430 if (!new)
431 return -ENOMEM;
432
433 /* Set all old bits, clear all new bits */
434 memset(new->map, (int)0xff, old_size);
435 memset((void *)new->map + old_size, 0, size - old_size);
436
a3747b53 437 rcu_assign_pointer(pn->shrinker_map, new);
0a4465d3
KT
438 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
439 }
440
441 return 0;
442}
443
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
445{
446 struct mem_cgroup_per_node *pn;
447 struct memcg_shrinker_map *map;
448 int nid;
449
450 if (mem_cgroup_is_root(memcg))
451 return;
452
453 for_each_node(nid) {
a3747b53 454 pn = memcg->nodeinfo[nid];
0a4465d3 455 map = rcu_dereference_protected(pn->shrinker_map, true);
8a260162 456 kvfree(map);
0a4465d3
KT
457 rcu_assign_pointer(pn->shrinker_map, NULL);
458 }
459}
460
461static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
462{
463 struct memcg_shrinker_map *map;
464 int nid, size, ret = 0;
465
466 if (mem_cgroup_is_root(memcg))
467 return 0;
468
469 mutex_lock(&memcg_shrinker_map_mutex);
470 size = memcg_shrinker_map_size;
471 for_each_node(nid) {
86daf94e 472 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
473 if (!map) {
474 memcg_free_shrinker_maps(memcg);
475 ret = -ENOMEM;
476 break;
477 }
478 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
479 }
480 mutex_unlock(&memcg_shrinker_map_mutex);
481
482 return ret;
483}
484
485int memcg_expand_shrinker_maps(int new_id)
486{
487 int size, old_size, ret = 0;
488 struct mem_cgroup *memcg;
489
490 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
491 old_size = memcg_shrinker_map_size;
492 if (size <= old_size)
493 return 0;
494
495 mutex_lock(&memcg_shrinker_map_mutex);
496 if (!root_mem_cgroup)
497 goto unlock;
498
499 for_each_mem_cgroup(memcg) {
500 if (mem_cgroup_is_root(memcg))
501 continue;
502 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
503 if (ret) {
504 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 505 goto unlock;
75866af6 506 }
0a4465d3
KT
507 }
508unlock:
509 if (!ret)
510 memcg_shrinker_map_size = size;
511 mutex_unlock(&memcg_shrinker_map_mutex);
512 return ret;
513}
fae91d6d
KT
514
515void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
516{
517 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
518 struct memcg_shrinker_map *map;
519
520 rcu_read_lock();
521 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
522 /* Pairs with smp mb in shrink_slab() */
523 smp_mb__before_atomic();
fae91d6d
KT
524 set_bit(shrinker_id, map->map);
525 rcu_read_unlock();
526 }
527}
528
ad7fa852
TH
529/**
530 * mem_cgroup_css_from_page - css of the memcg associated with a page
531 * @page: page of interest
532 *
533 * If memcg is bound to the default hierarchy, css of the memcg associated
534 * with @page is returned. The returned css remains associated with @page
535 * until it is released.
536 *
537 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
538 * is returned.
ad7fa852
TH
539 */
540struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
541{
542 struct mem_cgroup *memcg;
543
bcfe06bf 544 memcg = page_memcg(page);
ad7fa852 545
9e10a130 546 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
547 memcg = root_mem_cgroup;
548
ad7fa852
TH
549 return &memcg->css;
550}
551
2fc04524
VD
552/**
553 * page_cgroup_ino - return inode number of the memcg a page is charged to
554 * @page: the page
555 *
556 * Look up the closest online ancestor of the memory cgroup @page is charged to
557 * and return its inode number or 0 if @page is not charged to any cgroup. It
558 * is safe to call this function without holding a reference to @page.
559 *
560 * Note, this function is inherently racy, because there is nothing to prevent
561 * the cgroup inode from getting torn down and potentially reallocated a moment
562 * after page_cgroup_ino() returns, so it only should be used by callers that
563 * do not care (such as procfs interfaces).
564 */
565ino_t page_cgroup_ino(struct page *page)
566{
567 struct mem_cgroup *memcg;
568 unsigned long ino = 0;
569
570 rcu_read_lock();
bcfe06bf 571 memcg = page_memcg_check(page);
286e04b8 572
2fc04524
VD
573 while (memcg && !(memcg->css.flags & CSS_ONLINE))
574 memcg = parent_mem_cgroup(memcg);
575 if (memcg)
576 ino = cgroup_ino(memcg->css.cgroup);
577 rcu_read_unlock();
578 return ino;
579}
580
ef8f2327
MG
581static struct mem_cgroup_per_node *
582mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 583{
97a6c37b 584 int nid = page_to_nid(page);
f64c3f54 585
ef8f2327 586 return memcg->nodeinfo[nid];
f64c3f54
BS
587}
588
ef8f2327
MG
589static struct mem_cgroup_tree_per_node *
590soft_limit_tree_node(int nid)
bb4cc1a8 591{
ef8f2327 592 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
593}
594
ef8f2327 595static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
596soft_limit_tree_from_page(struct page *page)
597{
598 int nid = page_to_nid(page);
bb4cc1a8 599
ef8f2327 600 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
601}
602
ef8f2327
MG
603static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
604 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 605 unsigned long new_usage_in_excess)
bb4cc1a8
AM
606{
607 struct rb_node **p = &mctz->rb_root.rb_node;
608 struct rb_node *parent = NULL;
ef8f2327 609 struct mem_cgroup_per_node *mz_node;
fa90b2fd 610 bool rightmost = true;
bb4cc1a8
AM
611
612 if (mz->on_tree)
613 return;
614
615 mz->usage_in_excess = new_usage_in_excess;
616 if (!mz->usage_in_excess)
617 return;
618 while (*p) {
619 parent = *p;
ef8f2327 620 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 621 tree_node);
fa90b2fd 622 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 623 p = &(*p)->rb_left;
fa90b2fd 624 rightmost = false;
378876b0 625 } else {
bb4cc1a8 626 p = &(*p)->rb_right;
378876b0 627 }
bb4cc1a8 628 }
fa90b2fd
DB
629
630 if (rightmost)
631 mctz->rb_rightmost = &mz->tree_node;
632
bb4cc1a8
AM
633 rb_link_node(&mz->tree_node, parent, p);
634 rb_insert_color(&mz->tree_node, &mctz->rb_root);
635 mz->on_tree = true;
636}
637
ef8f2327
MG
638static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
639 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
640{
641 if (!mz->on_tree)
642 return;
fa90b2fd
DB
643
644 if (&mz->tree_node == mctz->rb_rightmost)
645 mctz->rb_rightmost = rb_prev(&mz->tree_node);
646
bb4cc1a8
AM
647 rb_erase(&mz->tree_node, &mctz->rb_root);
648 mz->on_tree = false;
649}
650
ef8f2327
MG
651static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
652 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 653{
0a31bc97
JW
654 unsigned long flags;
655
656 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 658 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
659}
660
3e32cb2e
JW
661static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
662{
663 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 664 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
665 unsigned long excess = 0;
666
667 if (nr_pages > soft_limit)
668 excess = nr_pages - soft_limit;
669
670 return excess;
671}
bb4cc1a8
AM
672
673static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
674{
3e32cb2e 675 unsigned long excess;
ef8f2327
MG
676 struct mem_cgroup_per_node *mz;
677 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 678
e231875b 679 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
680 if (!mctz)
681 return;
bb4cc1a8
AM
682 /*
683 * Necessary to update all ancestors when hierarchy is used.
684 * because their event counter is not touched.
685 */
686 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 687 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 688 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
689 /*
690 * We have to update the tree if mz is on RB-tree or
691 * mem is over its softlimit.
692 */
693 if (excess || mz->on_tree) {
0a31bc97
JW
694 unsigned long flags;
695
696 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
697 /* if on-tree, remove it */
698 if (mz->on_tree)
cf2c8127 699 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
700 /*
701 * Insert again. mz->usage_in_excess will be updated.
702 * If excess is 0, no tree ops.
703 */
cf2c8127 704 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 705 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
706 }
707 }
708}
709
710static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
711{
ef8f2327
MG
712 struct mem_cgroup_tree_per_node *mctz;
713 struct mem_cgroup_per_node *mz;
714 int nid;
bb4cc1a8 715
e231875b 716 for_each_node(nid) {
a3747b53 717 mz = memcg->nodeinfo[nid];
ef8f2327 718 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
719 if (mctz)
720 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
721 }
722}
723
ef8f2327
MG
724static struct mem_cgroup_per_node *
725__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 726{
ef8f2327 727 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
728
729retry:
730 mz = NULL;
fa90b2fd 731 if (!mctz->rb_rightmost)
bb4cc1a8
AM
732 goto done; /* Nothing to reclaim from */
733
fa90b2fd
DB
734 mz = rb_entry(mctz->rb_rightmost,
735 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
736 /*
737 * Remove the node now but someone else can add it back,
738 * we will to add it back at the end of reclaim to its correct
739 * position in the tree.
740 */
cf2c8127 741 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 742 if (!soft_limit_excess(mz->memcg) ||
8965aa28 743 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
744 goto retry;
745done:
746 return mz;
747}
748
ef8f2327
MG
749static struct mem_cgroup_per_node *
750mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 751{
ef8f2327 752 struct mem_cgroup_per_node *mz;
bb4cc1a8 753
0a31bc97 754 spin_lock_irq(&mctz->lock);
bb4cc1a8 755 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 756 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
757 return mz;
758}
759
db9adbcb
JW
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
db9adbcb
JW
768 if (mem_cgroup_disabled())
769 return;
770
2d146aa3
JW
771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
773}
774
2d146aa3 775/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
776static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
777{
2d146aa3 778 long x = READ_ONCE(memcg->vmstats.state[idx]);
a18e6e6e
JW
779#ifdef CONFIG_SMP
780 if (x < 0)
781 x = 0;
782#endif
783 return x;
784}
785
2d146aa3 786/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
787static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
788{
789 long x = 0;
790 int cpu;
791
792 for_each_possible_cpu(cpu)
2d146aa3 793 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
794#ifdef CONFIG_SMP
795 if (x < 0)
796 x = 0;
797#endif
798 return x;
799}
800
42a30035
JW
801static struct mem_cgroup_per_node *
802parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
803{
804 struct mem_cgroup *parent;
805
806 parent = parent_mem_cgroup(pn->memcg);
807 if (!parent)
808 return NULL;
a3747b53 809 return parent->nodeinfo[nid];
42a30035
JW
810}
811
eedc4e5a
RG
812void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 int val)
db9adbcb
JW
814{
815 struct mem_cgroup_per_node *pn;
42a30035 816 struct mem_cgroup *memcg;
ea426c2a 817 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 818
db9adbcb 819 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 820 memcg = pn->memcg;
db9adbcb
JW
821
822 /* Update memcg */
42a30035 823 __mod_memcg_state(memcg, idx, val);
db9adbcb 824
b4c46484
RG
825 /* Update lruvec */
826 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
827
ea426c2a
RG
828 if (vmstat_item_in_bytes(idx))
829 threshold <<= PAGE_SHIFT;
830
db9adbcb 831 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 832 if (unlikely(abs(x) > threshold)) {
eedc4e5a 833 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
834 struct mem_cgroup_per_node *pi;
835
42a30035
JW
836 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
837 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
838 x = 0;
839 }
840 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
841}
842
eedc4e5a
RG
843/**
844 * __mod_lruvec_state - update lruvec memory statistics
845 * @lruvec: the lruvec
846 * @idx: the stat item
847 * @val: delta to add to the counter, can be negative
848 *
849 * The lruvec is the intersection of the NUMA node and a cgroup. This
850 * function updates the all three counters that are affected by a
851 * change of state at this level: per-node, per-cgroup, per-lruvec.
852 */
853void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
854 int val)
855{
856 /* Update node */
857 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
858
859 /* Update memcg and lruvec */
860 if (!mem_cgroup_disabled())
861 __mod_memcg_lruvec_state(lruvec, idx, val);
862}
863
c47d5032
SB
864void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
865 int val)
866{
867 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 868 struct mem_cgroup *memcg;
c47d5032
SB
869 pg_data_t *pgdat = page_pgdat(page);
870 struct lruvec *lruvec;
871
b4e0b68f
MS
872 rcu_read_lock();
873 memcg = page_memcg(head);
c47d5032 874 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 875 if (!memcg) {
b4e0b68f 876 rcu_read_unlock();
c47d5032
SB
877 __mod_node_page_state(pgdat, idx, val);
878 return;
879 }
880
d635a69d 881 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 882 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 883 rcu_read_unlock();
c47d5032 884}
f0c0c115 885EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 886
da3ceeff 887void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 888{
4f103c63 889 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
890 struct mem_cgroup *memcg;
891 struct lruvec *lruvec;
892
893 rcu_read_lock();
4f103c63 894 memcg = mem_cgroup_from_obj(p);
ec9f0238 895
8faeb1ff
MS
896 /*
897 * Untracked pages have no memcg, no lruvec. Update only the
898 * node. If we reparent the slab objects to the root memcg,
899 * when we free the slab object, we need to update the per-memcg
900 * vmstats to keep it correct for the root memcg.
901 */
902 if (!memcg) {
ec9f0238
RG
903 __mod_node_page_state(pgdat, idx, val);
904 } else {
867e5e1d 905 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
906 __mod_lruvec_state(lruvec, idx, val);
907 }
908 rcu_read_unlock();
909}
910
db9adbcb
JW
911/**
912 * __count_memcg_events - account VM events in a cgroup
913 * @memcg: the memory cgroup
914 * @idx: the event item
915 * @count: the number of events that occured
916 */
917void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
918 unsigned long count)
919{
db9adbcb
JW
920 if (mem_cgroup_disabled())
921 return;
922
2d146aa3
JW
923 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
924 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
925}
926
42a30035 927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 928{
2d146aa3 929 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
930}
931
42a30035
JW
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
815744d7
JW
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
2d146aa3 938 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 939 return x;
42a30035
JW
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
3fba69a5 944 int nr_pages)
d52aa412 945{
e401f176
KH
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
c9019e9b 948 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 949 else {
c9019e9b 950 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
951 nr_pages = -nr_pages; /* for event */
952 }
e401f176 953
871789d4 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
955}
956
f53d7ce3
JW
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
7a159cc9
JW
959{
960 unsigned long val, next;
961
871789d4
CD
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 964 /* from time_after() in jiffies.h */
6a1a8b80 965 if ((long)(next - val) < 0) {
f53d7ce3
JW
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
bb4cc1a8
AM
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
f53d7ce3
JW
973 default:
974 break;
975 }
871789d4 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
f53d7ce3 992
bb4cc1a8
AM
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 995 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
0a31bc97 998 }
d2265e6f
KH
999}
1000
cf475ad2 1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1002{
31a78f23
BS
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
073219e9 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1012}
33398cf2 1013EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1014
d46eb14b
SB
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
d46eb14b
SB
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
0b7f569e 1029
54595fe2
KH
1030 rcu_read_lock();
1031 do {
6f6acb00
MH
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
df381975 1038 memcg = root_mem_cgroup;
6f6acb00
MH
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
37d5985c 1050static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1051{
37d5985c
RG
1052 if (in_interrupt())
1053 return this_cpu_read(int_active_memcg);
1054 else
1055 return current->active_memcg;
1056}
279c3393 1057
4127c650
RG
1058static __always_inline bool memcg_kmem_bypass(void)
1059{
1060 /* Allow remote memcg charging from any context. */
1061 if (unlikely(active_memcg()))
1062 return false;
1063
1064 /* Memcg to charge can't be determined. */
1065 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1066 return true;
1067
1068 return false;
1069}
1070
5660048c
JW
1071/**
1072 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1073 * @root: hierarchy root
1074 * @prev: previously returned memcg, NULL on first invocation
1075 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1076 *
1077 * Returns references to children of the hierarchy below @root, or
1078 * @root itself, or %NULL after a full round-trip.
1079 *
1080 * Caller must pass the return value in @prev on subsequent
1081 * invocations for reference counting, or use mem_cgroup_iter_break()
1082 * to cancel a hierarchy walk before the round-trip is complete.
1083 *
05bdc520
ML
1084 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1085 * in the hierarchy among all concurrent reclaimers operating on the
1086 * same node.
5660048c 1087 */
694fbc0f 1088struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1089 struct mem_cgroup *prev,
694fbc0f 1090 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1091{
3f649ab7 1092 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1093 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1094 struct mem_cgroup *memcg = NULL;
5ac8fb31 1095 struct mem_cgroup *pos = NULL;
711d3d2c 1096
694fbc0f
AM
1097 if (mem_cgroup_disabled())
1098 return NULL;
5660048c 1099
9f3a0d09
JW
1100 if (!root)
1101 root = root_mem_cgroup;
7d74b06f 1102
9f3a0d09 1103 if (prev && !reclaim)
5ac8fb31 1104 pos = prev;
14067bb3 1105
542f85f9 1106 rcu_read_lock();
5f578161 1107
5ac8fb31 1108 if (reclaim) {
ef8f2327 1109 struct mem_cgroup_per_node *mz;
5ac8fb31 1110
a3747b53 1111 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1112 iter = &mz->iter;
5ac8fb31
JW
1113
1114 if (prev && reclaim->generation != iter->generation)
1115 goto out_unlock;
1116
6df38689 1117 while (1) {
4db0c3c2 1118 pos = READ_ONCE(iter->position);
6df38689
VD
1119 if (!pos || css_tryget(&pos->css))
1120 break;
5ac8fb31 1121 /*
6df38689
VD
1122 * css reference reached zero, so iter->position will
1123 * be cleared by ->css_released. However, we should not
1124 * rely on this happening soon, because ->css_released
1125 * is called from a work queue, and by busy-waiting we
1126 * might block it. So we clear iter->position right
1127 * away.
5ac8fb31 1128 */
6df38689
VD
1129 (void)cmpxchg(&iter->position, pos, NULL);
1130 }
5ac8fb31
JW
1131 }
1132
1133 if (pos)
1134 css = &pos->css;
1135
1136 for (;;) {
1137 css = css_next_descendant_pre(css, &root->css);
1138 if (!css) {
1139 /*
1140 * Reclaimers share the hierarchy walk, and a
1141 * new one might jump in right at the end of
1142 * the hierarchy - make sure they see at least
1143 * one group and restart from the beginning.
1144 */
1145 if (!prev)
1146 continue;
1147 break;
527a5ec9 1148 }
7d74b06f 1149
5ac8fb31
JW
1150 /*
1151 * Verify the css and acquire a reference. The root
1152 * is provided by the caller, so we know it's alive
1153 * and kicking, and don't take an extra reference.
1154 */
1155 memcg = mem_cgroup_from_css(css);
14067bb3 1156
5ac8fb31
JW
1157 if (css == &root->css)
1158 break;
14067bb3 1159
0b8f73e1
JW
1160 if (css_tryget(css))
1161 break;
9f3a0d09 1162
5ac8fb31 1163 memcg = NULL;
9f3a0d09 1164 }
5ac8fb31
JW
1165
1166 if (reclaim) {
5ac8fb31 1167 /*
6df38689
VD
1168 * The position could have already been updated by a competing
1169 * thread, so check that the value hasn't changed since we read
1170 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1171 */
6df38689
VD
1172 (void)cmpxchg(&iter->position, pos, memcg);
1173
5ac8fb31
JW
1174 if (pos)
1175 css_put(&pos->css);
1176
1177 if (!memcg)
1178 iter->generation++;
1179 else if (!prev)
1180 reclaim->generation = iter->generation;
9f3a0d09 1181 }
5ac8fb31 1182
542f85f9
MH
1183out_unlock:
1184 rcu_read_unlock();
c40046f3
MH
1185 if (prev && prev != root)
1186 css_put(&prev->css);
1187
9f3a0d09 1188 return memcg;
14067bb3 1189}
7d74b06f 1190
5660048c
JW
1191/**
1192 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1193 * @root: hierarchy root
1194 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1195 */
1196void mem_cgroup_iter_break(struct mem_cgroup *root,
1197 struct mem_cgroup *prev)
9f3a0d09
JW
1198{
1199 if (!root)
1200 root = root_mem_cgroup;
1201 if (prev && prev != root)
1202 css_put(&prev->css);
1203}
7d74b06f 1204
54a83d6b
MC
1205static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1206 struct mem_cgroup *dead_memcg)
6df38689 1207{
6df38689 1208 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1209 struct mem_cgroup_per_node *mz;
1210 int nid;
6df38689 1211
54a83d6b 1212 for_each_node(nid) {
a3747b53 1213 mz = from->nodeinfo[nid];
9da83f3f
YS
1214 iter = &mz->iter;
1215 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1216 }
1217}
1218
54a83d6b
MC
1219static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1220{
1221 struct mem_cgroup *memcg = dead_memcg;
1222 struct mem_cgroup *last;
1223
1224 do {
1225 __invalidate_reclaim_iterators(memcg, dead_memcg);
1226 last = memcg;
1227 } while ((memcg = parent_mem_cgroup(memcg)));
1228
1229 /*
1230 * When cgruop1 non-hierarchy mode is used,
1231 * parent_mem_cgroup() does not walk all the way up to the
1232 * cgroup root (root_mem_cgroup). So we have to handle
1233 * dead_memcg from cgroup root separately.
1234 */
1235 if (last != root_mem_cgroup)
1236 __invalidate_reclaim_iterators(root_mem_cgroup,
1237 dead_memcg);
1238}
1239
7c5f64f8
VD
1240/**
1241 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1242 * @memcg: hierarchy root
1243 * @fn: function to call for each task
1244 * @arg: argument passed to @fn
1245 *
1246 * This function iterates over tasks attached to @memcg or to any of its
1247 * descendants and calls @fn for each task. If @fn returns a non-zero
1248 * value, the function breaks the iteration loop and returns the value.
1249 * Otherwise, it will iterate over all tasks and return 0.
1250 *
1251 * This function must not be called for the root memory cgroup.
1252 */
1253int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1254 int (*fn)(struct task_struct *, void *), void *arg)
1255{
1256 struct mem_cgroup *iter;
1257 int ret = 0;
1258
1259 BUG_ON(memcg == root_mem_cgroup);
1260
1261 for_each_mem_cgroup_tree(iter, memcg) {
1262 struct css_task_iter it;
1263 struct task_struct *task;
1264
f168a9a5 1265 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1266 while (!ret && (task = css_task_iter_next(&it)))
1267 ret = fn(task, arg);
1268 css_task_iter_end(&it);
1269 if (ret) {
1270 mem_cgroup_iter_break(memcg, iter);
1271 break;
1272 }
1273 }
1274 return ret;
1275}
1276
6168d0da
AS
1277#ifdef CONFIG_DEBUG_VM
1278void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1279{
1280 struct mem_cgroup *memcg;
1281
1282 if (mem_cgroup_disabled())
1283 return;
1284
1285 memcg = page_memcg(page);
1286
1287 if (!memcg)
1288 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1289 else
1290 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1291}
1292#endif
1293
6168d0da
AS
1294/**
1295 * lock_page_lruvec - lock and return lruvec for a given page.
1296 * @page: the page
1297 *
d7e3aba5
AS
1298 * These functions are safe to use under any of the following conditions:
1299 * - page locked
1300 * - PageLRU cleared
1301 * - lock_page_memcg()
1302 * - page->_refcount is zero
6168d0da
AS
1303 */
1304struct lruvec *lock_page_lruvec(struct page *page)
1305{
1306 struct lruvec *lruvec;
1307 struct pglist_data *pgdat = page_pgdat(page);
1308
6168d0da
AS
1309 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1310 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1311
1312 lruvec_memcg_debug(lruvec, page);
1313
1314 return lruvec;
1315}
1316
1317struct lruvec *lock_page_lruvec_irq(struct page *page)
1318{
1319 struct lruvec *lruvec;
1320 struct pglist_data *pgdat = page_pgdat(page);
1321
6168d0da
AS
1322 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1323 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1324
1325 lruvec_memcg_debug(lruvec, page);
1326
1327 return lruvec;
1328}
1329
1330struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1331{
1332 struct lruvec *lruvec;
1333 struct pglist_data *pgdat = page_pgdat(page);
1334
6168d0da
AS
1335 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1336 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1337
1338 lruvec_memcg_debug(lruvec, page);
1339
1340 return lruvec;
1341}
1342
925b7673 1343/**
fa9add64
HD
1344 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1345 * @lruvec: mem_cgroup per zone lru vector
1346 * @lru: index of lru list the page is sitting on
b4536f0c 1347 * @zid: zone id of the accounted pages
fa9add64 1348 * @nr_pages: positive when adding or negative when removing
925b7673 1349 *
ca707239
HD
1350 * This function must be called under lru_lock, just before a page is added
1351 * to or just after a page is removed from an lru list (that ordering being
1352 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1353 */
fa9add64 1354void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1355 int zid, int nr_pages)
3f58a829 1356{
ef8f2327 1357 struct mem_cgroup_per_node *mz;
fa9add64 1358 unsigned long *lru_size;
ca707239 1359 long size;
3f58a829
MK
1360
1361 if (mem_cgroup_disabled())
1362 return;
1363
ef8f2327 1364 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1365 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1366
1367 if (nr_pages < 0)
1368 *lru_size += nr_pages;
1369
1370 size = *lru_size;
b4536f0c
MH
1371 if (WARN_ONCE(size < 0,
1372 "%s(%p, %d, %d): lru_size %ld\n",
1373 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1374 VM_BUG_ON(1);
1375 *lru_size = 0;
1376 }
1377
1378 if (nr_pages > 0)
1379 *lru_size += nr_pages;
08e552c6 1380}
544122e5 1381
19942822 1382/**
9d11ea9f 1383 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1384 * @memcg: the memory cgroup
19942822 1385 *
9d11ea9f 1386 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1387 * pages.
19942822 1388 */
c0ff4b85 1389static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1390{
3e32cb2e
JW
1391 unsigned long margin = 0;
1392 unsigned long count;
1393 unsigned long limit;
9d11ea9f 1394
3e32cb2e 1395 count = page_counter_read(&memcg->memory);
bbec2e15 1396 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1397 if (count < limit)
1398 margin = limit - count;
1399
7941d214 1400 if (do_memsw_account()) {
3e32cb2e 1401 count = page_counter_read(&memcg->memsw);
bbec2e15 1402 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1403 if (count < limit)
3e32cb2e 1404 margin = min(margin, limit - count);
cbedbac3
LR
1405 else
1406 margin = 0;
3e32cb2e
JW
1407 }
1408
1409 return margin;
19942822
JW
1410}
1411
32047e2a 1412/*
bdcbb659 1413 * A routine for checking "mem" is under move_account() or not.
32047e2a 1414 *
bdcbb659
QH
1415 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1416 * moving cgroups. This is for waiting at high-memory pressure
1417 * caused by "move".
32047e2a 1418 */
c0ff4b85 1419static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1420{
2bd9bb20
KH
1421 struct mem_cgroup *from;
1422 struct mem_cgroup *to;
4b534334 1423 bool ret = false;
2bd9bb20
KH
1424 /*
1425 * Unlike task_move routines, we access mc.to, mc.from not under
1426 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1427 */
1428 spin_lock(&mc.lock);
1429 from = mc.from;
1430 to = mc.to;
1431 if (!from)
1432 goto unlock;
3e92041d 1433
2314b42d
JW
1434 ret = mem_cgroup_is_descendant(from, memcg) ||
1435 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1436unlock:
1437 spin_unlock(&mc.lock);
4b534334
KH
1438 return ret;
1439}
1440
c0ff4b85 1441static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1442{
1443 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1444 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1445 DEFINE_WAIT(wait);
1446 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1447 /* moving charge context might have finished. */
1448 if (mc.moving_task)
1449 schedule();
1450 finish_wait(&mc.waitq, &wait);
1451 return true;
1452 }
1453 }
1454 return false;
1455}
1456
5f9a4f4a
MS
1457struct memory_stat {
1458 const char *name;
5f9a4f4a
MS
1459 unsigned int idx;
1460};
1461
57b2847d 1462static const struct memory_stat memory_stats[] = {
fff66b79
MS
1463 { "anon", NR_ANON_MAPPED },
1464 { "file", NR_FILE_PAGES },
1465 { "kernel_stack", NR_KERNEL_STACK_KB },
1466 { "pagetables", NR_PAGETABLE },
1467 { "percpu", MEMCG_PERCPU_B },
1468 { "sock", MEMCG_SOCK },
1469 { "shmem", NR_SHMEM },
1470 { "file_mapped", NR_FILE_MAPPED },
1471 { "file_dirty", NR_FILE_DIRTY },
1472 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1473#ifdef CONFIG_SWAP
1474 { "swapcached", NR_SWAPCACHE },
1475#endif
5f9a4f4a 1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1477 { "anon_thp", NR_ANON_THPS },
1478 { "file_thp", NR_FILE_THPS },
1479 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1480#endif
fff66b79
MS
1481 { "inactive_anon", NR_INACTIVE_ANON },
1482 { "active_anon", NR_ACTIVE_ANON },
1483 { "inactive_file", NR_INACTIVE_FILE },
1484 { "active_file", NR_ACTIVE_FILE },
1485 { "unevictable", NR_UNEVICTABLE },
1486 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1487 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1488
1489 /* The memory events */
fff66b79
MS
1490 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1491 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1492 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1493 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1494 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1495 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1496 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1497};
1498
fff66b79
MS
1499/* Translate stat items to the correct unit for memory.stat output */
1500static int memcg_page_state_unit(int item)
1501{
1502 switch (item) {
1503 case MEMCG_PERCPU_B:
1504 case NR_SLAB_RECLAIMABLE_B:
1505 case NR_SLAB_UNRECLAIMABLE_B:
1506 case WORKINGSET_REFAULT_ANON:
1507 case WORKINGSET_REFAULT_FILE:
1508 case WORKINGSET_ACTIVATE_ANON:
1509 case WORKINGSET_ACTIVATE_FILE:
1510 case WORKINGSET_RESTORE_ANON:
1511 case WORKINGSET_RESTORE_FILE:
1512 case WORKINGSET_NODERECLAIM:
1513 return 1;
1514 case NR_KERNEL_STACK_KB:
1515 return SZ_1K;
1516 default:
1517 return PAGE_SIZE;
1518 }
1519}
1520
1521static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1522 int item)
1523{
1524 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1525}
1526
c8713d0b
JW
1527static char *memory_stat_format(struct mem_cgroup *memcg)
1528{
1529 struct seq_buf s;
1530 int i;
71cd3113 1531
c8713d0b
JW
1532 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1533 if (!s.buffer)
1534 return NULL;
1535
1536 /*
1537 * Provide statistics on the state of the memory subsystem as
1538 * well as cumulative event counters that show past behavior.
1539 *
1540 * This list is ordered following a combination of these gradients:
1541 * 1) generic big picture -> specifics and details
1542 * 2) reflecting userspace activity -> reflecting kernel heuristics
1543 *
1544 * Current memory state:
1545 */
2d146aa3 1546 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1547
5f9a4f4a
MS
1548 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1549 u64 size;
c8713d0b 1550
fff66b79 1551 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1552 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1553
5f9a4f4a 1554 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1555 size += memcg_page_state_output(memcg,
1556 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1557 seq_buf_printf(&s, "slab %llu\n", size);
1558 }
1559 }
c8713d0b
JW
1560
1561 /* Accumulated memory events */
1562
ebc5d83d
KK
1563 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1564 memcg_events(memcg, PGFAULT));
1565 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1566 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1567 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1568 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1569 seq_buf_printf(&s, "pgscan %lu\n",
1570 memcg_events(memcg, PGSCAN_KSWAPD) +
1571 memcg_events(memcg, PGSCAN_DIRECT));
1572 seq_buf_printf(&s, "pgsteal %lu\n",
1573 memcg_events(memcg, PGSTEAL_KSWAPD) +
1574 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1575 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1576 memcg_events(memcg, PGACTIVATE));
1577 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1578 memcg_events(memcg, PGDEACTIVATE));
1579 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1580 memcg_events(memcg, PGLAZYFREE));
1581 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1582 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1583
1584#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1585 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1586 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1587 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1588 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1589#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1590
1591 /* The above should easily fit into one page */
1592 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1593
1594 return s.buffer;
1595}
71cd3113 1596
58cf188e 1597#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1598/**
f0c867d9 1599 * mem_cgroup_print_oom_context: Print OOM information relevant to
1600 * memory controller.
e222432b
BS
1601 * @memcg: The memory cgroup that went over limit
1602 * @p: Task that is going to be killed
1603 *
1604 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1605 * enabled
1606 */
f0c867d9 1607void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1608{
e222432b
BS
1609 rcu_read_lock();
1610
f0c867d9 1611 if (memcg) {
1612 pr_cont(",oom_memcg=");
1613 pr_cont_cgroup_path(memcg->css.cgroup);
1614 } else
1615 pr_cont(",global_oom");
2415b9f5 1616 if (p) {
f0c867d9 1617 pr_cont(",task_memcg=");
2415b9f5 1618 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1619 }
e222432b 1620 rcu_read_unlock();
f0c867d9 1621}
1622
1623/**
1624 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1625 * memory controller.
1626 * @memcg: The memory cgroup that went over limit
1627 */
1628void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1629{
c8713d0b 1630 char *buf;
e222432b 1631
3e32cb2e
JW
1632 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1633 K((u64)page_counter_read(&memcg->memory)),
15b42562 1634 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1635 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1636 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1637 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1638 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1639 else {
1640 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1641 K((u64)page_counter_read(&memcg->memsw)),
1642 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1643 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1644 K((u64)page_counter_read(&memcg->kmem)),
1645 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1646 }
c8713d0b
JW
1647
1648 pr_info("Memory cgroup stats for ");
1649 pr_cont_cgroup_path(memcg->css.cgroup);
1650 pr_cont(":");
1651 buf = memory_stat_format(memcg);
1652 if (!buf)
1653 return;
1654 pr_info("%s", buf);
1655 kfree(buf);
e222432b
BS
1656}
1657
a63d83f4
DR
1658/*
1659 * Return the memory (and swap, if configured) limit for a memcg.
1660 */
bbec2e15 1661unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1662{
8d387a5f
WL
1663 unsigned long max = READ_ONCE(memcg->memory.max);
1664
1665 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1666 if (mem_cgroup_swappiness(memcg))
1667 max += min(READ_ONCE(memcg->swap.max),
1668 (unsigned long)total_swap_pages);
1669 } else { /* v1 */
1670 if (mem_cgroup_swappiness(memcg)) {
1671 /* Calculate swap excess capacity from memsw limit */
1672 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1673
1674 max += min(swap, (unsigned long)total_swap_pages);
1675 }
9a5a8f19 1676 }
bbec2e15 1677 return max;
a63d83f4
DR
1678}
1679
9783aa99
CD
1680unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1681{
1682 return page_counter_read(&memcg->memory);
1683}
1684
b6e6edcf 1685static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1686 int order)
9cbb78bb 1687{
6e0fc46d
DR
1688 struct oom_control oc = {
1689 .zonelist = NULL,
1690 .nodemask = NULL,
2a966b77 1691 .memcg = memcg,
6e0fc46d
DR
1692 .gfp_mask = gfp_mask,
1693 .order = order,
6e0fc46d 1694 };
1378b37d 1695 bool ret = true;
9cbb78bb 1696
7775face
TH
1697 if (mutex_lock_killable(&oom_lock))
1698 return true;
1378b37d
YS
1699
1700 if (mem_cgroup_margin(memcg) >= (1 << order))
1701 goto unlock;
1702
7775face
TH
1703 /*
1704 * A few threads which were not waiting at mutex_lock_killable() can
1705 * fail to bail out. Therefore, check again after holding oom_lock.
1706 */
1707 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1708
1709unlock:
dc56401f 1710 mutex_unlock(&oom_lock);
7c5f64f8 1711 return ret;
9cbb78bb
DR
1712}
1713
0608f43d 1714static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1715 pg_data_t *pgdat,
0608f43d
AM
1716 gfp_t gfp_mask,
1717 unsigned long *total_scanned)
1718{
1719 struct mem_cgroup *victim = NULL;
1720 int total = 0;
1721 int loop = 0;
1722 unsigned long excess;
1723 unsigned long nr_scanned;
1724 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1725 .pgdat = pgdat,
0608f43d
AM
1726 };
1727
3e32cb2e 1728 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1729
1730 while (1) {
1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732 if (!victim) {
1733 loop++;
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
1740 if (!total)
1741 break;
1742 /*
1743 * We want to do more targeted reclaim.
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 break;
1751 }
1752 continue;
1753 }
a9dd0a83 1754 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1755 pgdat, &nr_scanned);
0608f43d 1756 *total_scanned += nr_scanned;
3e32cb2e 1757 if (!soft_limit_excess(root_memcg))
0608f43d 1758 break;
6d61ef40 1759 }
0608f43d
AM
1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total;
6d61ef40
BS
1762}
1763
0056f4e6
JW
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map memcg_oom_lock_dep_map = {
1766 .name = "memcg_oom_lock",
1767};
1768#endif
1769
fb2a6fc5
JW
1770static DEFINE_SPINLOCK(memcg_oom_lock);
1771
867578cb
KH
1772/*
1773 * Check OOM-Killer is already running under our hierarchy.
1774 * If someone is running, return false.
1775 */
fb2a6fc5 1776static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1777{
79dfdacc 1778 struct mem_cgroup *iter, *failed = NULL;
a636b327 1779
fb2a6fc5
JW
1780 spin_lock(&memcg_oom_lock);
1781
9f3a0d09 1782 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1783 if (iter->oom_lock) {
79dfdacc
MH
1784 /*
1785 * this subtree of our hierarchy is already locked
1786 * so we cannot give a lock.
1787 */
79dfdacc 1788 failed = iter;
9f3a0d09
JW
1789 mem_cgroup_iter_break(memcg, iter);
1790 break;
23751be0
JW
1791 } else
1792 iter->oom_lock = true;
7d74b06f 1793 }
867578cb 1794
fb2a6fc5
JW
1795 if (failed) {
1796 /*
1797 * OK, we failed to lock the whole subtree so we have
1798 * to clean up what we set up to the failing subtree
1799 */
1800 for_each_mem_cgroup_tree(iter, memcg) {
1801 if (iter == failed) {
1802 mem_cgroup_iter_break(memcg, iter);
1803 break;
1804 }
1805 iter->oom_lock = false;
79dfdacc 1806 }
0056f4e6
JW
1807 } else
1808 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1809
1810 spin_unlock(&memcg_oom_lock);
1811
1812 return !failed;
a636b327 1813}
0b7f569e 1814
fb2a6fc5 1815static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1816{
7d74b06f
KH
1817 struct mem_cgroup *iter;
1818
fb2a6fc5 1819 spin_lock(&memcg_oom_lock);
5facae4f 1820 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1821 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1822 iter->oom_lock = false;
fb2a6fc5 1823 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1824}
1825
c0ff4b85 1826static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1827{
1828 struct mem_cgroup *iter;
1829
c2b42d3c 1830 spin_lock(&memcg_oom_lock);
c0ff4b85 1831 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1832 iter->under_oom++;
1833 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1834}
1835
c0ff4b85 1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
867578cb 1840 /*
7a52d4d8
ML
1841 * Be careful about under_oom underflows becase a child memcg
1842 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1843 */
c2b42d3c 1844 spin_lock(&memcg_oom_lock);
c0ff4b85 1845 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1846 if (iter->under_oom > 0)
1847 iter->under_oom--;
1848 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1849}
1850
867578cb
KH
1851static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1852
dc98df5a 1853struct oom_wait_info {
d79154bb 1854 struct mem_cgroup *memcg;
ac6424b9 1855 wait_queue_entry_t wait;
dc98df5a
KH
1856};
1857
ac6424b9 1858static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1859 unsigned mode, int sync, void *arg)
1860{
d79154bb
HD
1861 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1862 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1863 struct oom_wait_info *oom_wait_info;
1864
1865 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1866 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1867
2314b42d
JW
1868 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1869 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1870 return 0;
dc98df5a
KH
1871 return autoremove_wake_function(wait, mode, sync, arg);
1872}
1873
c0ff4b85 1874static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1875{
c2b42d3c
TH
1876 /*
1877 * For the following lockless ->under_oom test, the only required
1878 * guarantee is that it must see the state asserted by an OOM when
1879 * this function is called as a result of userland actions
1880 * triggered by the notification of the OOM. This is trivially
1881 * achieved by invoking mem_cgroup_mark_under_oom() before
1882 * triggering notification.
1883 */
1884 if (memcg && memcg->under_oom)
f4b90b70 1885 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1886}
1887
29ef680a
MH
1888enum oom_status {
1889 OOM_SUCCESS,
1890 OOM_FAILED,
1891 OOM_ASYNC,
1892 OOM_SKIPPED
1893};
1894
1895static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1896{
7056d3a3
MH
1897 enum oom_status ret;
1898 bool locked;
1899
29ef680a
MH
1900 if (order > PAGE_ALLOC_COSTLY_ORDER)
1901 return OOM_SKIPPED;
1902
7a1adfdd
RG
1903 memcg_memory_event(memcg, MEMCG_OOM);
1904
867578cb 1905 /*
49426420
JW
1906 * We are in the middle of the charge context here, so we
1907 * don't want to block when potentially sitting on a callstack
1908 * that holds all kinds of filesystem and mm locks.
1909 *
29ef680a
MH
1910 * cgroup1 allows disabling the OOM killer and waiting for outside
1911 * handling until the charge can succeed; remember the context and put
1912 * the task to sleep at the end of the page fault when all locks are
1913 * released.
49426420 1914 *
29ef680a
MH
1915 * On the other hand, in-kernel OOM killer allows for an async victim
1916 * memory reclaim (oom_reaper) and that means that we are not solely
1917 * relying on the oom victim to make a forward progress and we can
1918 * invoke the oom killer here.
1919 *
1920 * Please note that mem_cgroup_out_of_memory might fail to find a
1921 * victim and then we have to bail out from the charge path.
867578cb 1922 */
29ef680a
MH
1923 if (memcg->oom_kill_disable) {
1924 if (!current->in_user_fault)
1925 return OOM_SKIPPED;
1926 css_get(&memcg->css);
1927 current->memcg_in_oom = memcg;
1928 current->memcg_oom_gfp_mask = mask;
1929 current->memcg_oom_order = order;
1930
1931 return OOM_ASYNC;
1932 }
1933
7056d3a3
MH
1934 mem_cgroup_mark_under_oom(memcg);
1935
1936 locked = mem_cgroup_oom_trylock(memcg);
1937
1938 if (locked)
1939 mem_cgroup_oom_notify(memcg);
1940
1941 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1942 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1943 ret = OOM_SUCCESS;
1944 else
1945 ret = OOM_FAILED;
1946
1947 if (locked)
1948 mem_cgroup_oom_unlock(memcg);
29ef680a 1949
7056d3a3 1950 return ret;
3812c8c8
JW
1951}
1952
1953/**
1954 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1955 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1956 *
49426420
JW
1957 * This has to be called at the end of a page fault if the memcg OOM
1958 * handler was enabled.
3812c8c8 1959 *
49426420 1960 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1961 * sleep on a waitqueue until the userspace task resolves the
1962 * situation. Sleeping directly in the charge context with all kinds
1963 * of locks held is not a good idea, instead we remember an OOM state
1964 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1965 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1966 *
1967 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1968 * completed, %false otherwise.
3812c8c8 1969 */
49426420 1970bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1971{
626ebc41 1972 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1973 struct oom_wait_info owait;
49426420 1974 bool locked;
3812c8c8
JW
1975
1976 /* OOM is global, do not handle */
3812c8c8 1977 if (!memcg)
49426420 1978 return false;
3812c8c8 1979
7c5f64f8 1980 if (!handle)
49426420 1981 goto cleanup;
3812c8c8
JW
1982
1983 owait.memcg = memcg;
1984 owait.wait.flags = 0;
1985 owait.wait.func = memcg_oom_wake_function;
1986 owait.wait.private = current;
2055da97 1987 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1988
3812c8c8 1989 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1990 mem_cgroup_mark_under_oom(memcg);
1991
1992 locked = mem_cgroup_oom_trylock(memcg);
1993
1994 if (locked)
1995 mem_cgroup_oom_notify(memcg);
1996
1997 if (locked && !memcg->oom_kill_disable) {
1998 mem_cgroup_unmark_under_oom(memcg);
1999 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2000 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2001 current->memcg_oom_order);
49426420 2002 } else {
3812c8c8 2003 schedule();
49426420
JW
2004 mem_cgroup_unmark_under_oom(memcg);
2005 finish_wait(&memcg_oom_waitq, &owait.wait);
2006 }
2007
2008 if (locked) {
fb2a6fc5
JW
2009 mem_cgroup_oom_unlock(memcg);
2010 /*
2011 * There is no guarantee that an OOM-lock contender
2012 * sees the wakeups triggered by the OOM kill
2013 * uncharges. Wake any sleepers explicitely.
2014 */
2015 memcg_oom_recover(memcg);
2016 }
49426420 2017cleanup:
626ebc41 2018 current->memcg_in_oom = NULL;
3812c8c8 2019 css_put(&memcg->css);
867578cb 2020 return true;
0b7f569e
KH
2021}
2022
3d8b38eb
RG
2023/**
2024 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2025 * @victim: task to be killed by the OOM killer
2026 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2027 *
2028 * Returns a pointer to a memory cgroup, which has to be cleaned up
2029 * by killing all belonging OOM-killable tasks.
2030 *
2031 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2032 */
2033struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2034 struct mem_cgroup *oom_domain)
2035{
2036 struct mem_cgroup *oom_group = NULL;
2037 struct mem_cgroup *memcg;
2038
2039 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2040 return NULL;
2041
2042 if (!oom_domain)
2043 oom_domain = root_mem_cgroup;
2044
2045 rcu_read_lock();
2046
2047 memcg = mem_cgroup_from_task(victim);
2048 if (memcg == root_mem_cgroup)
2049 goto out;
2050
48fe267c
RG
2051 /*
2052 * If the victim task has been asynchronously moved to a different
2053 * memory cgroup, we might end up killing tasks outside oom_domain.
2054 * In this case it's better to ignore memory.group.oom.
2055 */
2056 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2057 goto out;
2058
3d8b38eb
RG
2059 /*
2060 * Traverse the memory cgroup hierarchy from the victim task's
2061 * cgroup up to the OOMing cgroup (or root) to find the
2062 * highest-level memory cgroup with oom.group set.
2063 */
2064 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2065 if (memcg->oom_group)
2066 oom_group = memcg;
2067
2068 if (memcg == oom_domain)
2069 break;
2070 }
2071
2072 if (oom_group)
2073 css_get(&oom_group->css);
2074out:
2075 rcu_read_unlock();
2076
2077 return oom_group;
2078}
2079
2080void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2081{
2082 pr_info("Tasks in ");
2083 pr_cont_cgroup_path(memcg->css.cgroup);
2084 pr_cont(" are going to be killed due to memory.oom.group set\n");
2085}
2086
d7365e78 2087/**
bcfe06bf 2088 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2089 * @page: the page
32047e2a 2090 *
81f8c3a4 2091 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2092 * another cgroup.
2093 *
1c824a68
JW
2094 * It ensures lifetime of the locked memcg. Caller is responsible
2095 * for the lifetime of the page.
d69b042f 2096 */
1c824a68 2097void lock_page_memcg(struct page *page)
89c06bd5 2098{
9da7b521 2099 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2100 struct mem_cgroup *memcg;
6de22619 2101 unsigned long flags;
89c06bd5 2102
6de22619
JW
2103 /*
2104 * The RCU lock is held throughout the transaction. The fast
2105 * path can get away without acquiring the memcg->move_lock
2106 * because page moving starts with an RCU grace period.
739f79fc 2107 */
d7365e78
JW
2108 rcu_read_lock();
2109
2110 if (mem_cgroup_disabled())
1c824a68 2111 return;
89c06bd5 2112again:
bcfe06bf 2113 memcg = page_memcg(head);
29833315 2114 if (unlikely(!memcg))
1c824a68 2115 return;
d7365e78 2116
20ad50d6
AS
2117#ifdef CONFIG_PROVE_LOCKING
2118 local_irq_save(flags);
2119 might_lock(&memcg->move_lock);
2120 local_irq_restore(flags);
2121#endif
2122
bdcbb659 2123 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2124 return;
89c06bd5 2125
6de22619 2126 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2127 if (memcg != page_memcg(head)) {
6de22619 2128 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2129 goto again;
2130 }
6de22619
JW
2131
2132 /*
1c824a68
JW
2133 * When charge migration first begins, we can have multiple
2134 * critical sections holding the fast-path RCU lock and one
2135 * holding the slowpath move_lock. Track the task who has the
2136 * move_lock for unlock_page_memcg().
6de22619
JW
2137 */
2138 memcg->move_lock_task = current;
2139 memcg->move_lock_flags = flags;
89c06bd5 2140}
81f8c3a4 2141EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2142
1c824a68 2143static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2144{
6de22619
JW
2145 if (memcg && memcg->move_lock_task == current) {
2146 unsigned long flags = memcg->move_lock_flags;
2147
2148 memcg->move_lock_task = NULL;
2149 memcg->move_lock_flags = 0;
2150
2151 spin_unlock_irqrestore(&memcg->move_lock, flags);
2152 }
89c06bd5 2153
d7365e78 2154 rcu_read_unlock();
89c06bd5 2155}
739f79fc
JW
2156
2157/**
bcfe06bf 2158 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2159 * @page: the page
2160 */
2161void unlock_page_memcg(struct page *page)
2162{
9da7b521
JW
2163 struct page *head = compound_head(page);
2164
bcfe06bf 2165 __unlock_page_memcg(page_memcg(head));
739f79fc 2166}
81f8c3a4 2167EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2168
cdec2e42
KH
2169struct memcg_stock_pcp {
2170 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2171 unsigned int nr_pages;
bf4f0599
RG
2172
2173#ifdef CONFIG_MEMCG_KMEM
2174 struct obj_cgroup *cached_objcg;
2175 unsigned int nr_bytes;
2176#endif
2177
cdec2e42 2178 struct work_struct work;
26fe6168 2179 unsigned long flags;
a0db00fc 2180#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2181};
2182static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2183static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2184
bf4f0599
RG
2185#ifdef CONFIG_MEMCG_KMEM
2186static void drain_obj_stock(struct memcg_stock_pcp *stock);
2187static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2188 struct mem_cgroup *root_memcg);
2189
2190#else
2191static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2192{
2193}
2194static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2195 struct mem_cgroup *root_memcg)
2196{
2197 return false;
2198}
2199#endif
2200
a0956d54
SS
2201/**
2202 * consume_stock: Try to consume stocked charge on this cpu.
2203 * @memcg: memcg to consume from.
2204 * @nr_pages: how many pages to charge.
2205 *
2206 * The charges will only happen if @memcg matches the current cpu's memcg
2207 * stock, and at least @nr_pages are available in that stock. Failure to
2208 * service an allocation will refill the stock.
2209 *
2210 * returns true if successful, false otherwise.
cdec2e42 2211 */
a0956d54 2212static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2213{
2214 struct memcg_stock_pcp *stock;
db2ba40c 2215 unsigned long flags;
3e32cb2e 2216 bool ret = false;
cdec2e42 2217
a983b5eb 2218 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2219 return ret;
a0956d54 2220
db2ba40c
JW
2221 local_irq_save(flags);
2222
2223 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2224 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2225 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2226 ret = true;
2227 }
db2ba40c
JW
2228
2229 local_irq_restore(flags);
2230
cdec2e42
KH
2231 return ret;
2232}
2233
2234/*
3e32cb2e 2235 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2236 */
2237static void drain_stock(struct memcg_stock_pcp *stock)
2238{
2239 struct mem_cgroup *old = stock->cached;
2240
1a3e1f40
JW
2241 if (!old)
2242 return;
2243
11c9ea4e 2244 if (stock->nr_pages) {
3e32cb2e 2245 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2246 if (do_memsw_account())
3e32cb2e 2247 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2248 stock->nr_pages = 0;
cdec2e42 2249 }
1a3e1f40
JW
2250
2251 css_put(&old->css);
cdec2e42 2252 stock->cached = NULL;
cdec2e42
KH
2253}
2254
cdec2e42
KH
2255static void drain_local_stock(struct work_struct *dummy)
2256{
db2ba40c
JW
2257 struct memcg_stock_pcp *stock;
2258 unsigned long flags;
2259
72f0184c
MH
2260 /*
2261 * The only protection from memory hotplug vs. drain_stock races is
2262 * that we always operate on local CPU stock here with IRQ disabled
2263 */
db2ba40c
JW
2264 local_irq_save(flags);
2265
2266 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2267 drain_obj_stock(stock);
cdec2e42 2268 drain_stock(stock);
26fe6168 2269 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2270
2271 local_irq_restore(flags);
cdec2e42
KH
2272}
2273
2274/*
3e32cb2e 2275 * Cache charges(val) to local per_cpu area.
320cc51d 2276 * This will be consumed by consume_stock() function, later.
cdec2e42 2277 */
c0ff4b85 2278static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2279{
db2ba40c
JW
2280 struct memcg_stock_pcp *stock;
2281 unsigned long flags;
2282
2283 local_irq_save(flags);
cdec2e42 2284
db2ba40c 2285 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2286 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2287 drain_stock(stock);
1a3e1f40 2288 css_get(&memcg->css);
c0ff4b85 2289 stock->cached = memcg;
cdec2e42 2290 }
11c9ea4e 2291 stock->nr_pages += nr_pages;
db2ba40c 2292
a983b5eb 2293 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2294 drain_stock(stock);
2295
db2ba40c 2296 local_irq_restore(flags);
cdec2e42
KH
2297}
2298
2299/*
c0ff4b85 2300 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2301 * of the hierarchy under it.
cdec2e42 2302 */
6d3d6aa2 2303static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2304{
26fe6168 2305 int cpu, curcpu;
d38144b7 2306
6d3d6aa2
JW
2307 /* If someone's already draining, avoid adding running more workers. */
2308 if (!mutex_trylock(&percpu_charge_mutex))
2309 return;
72f0184c
MH
2310 /*
2311 * Notify other cpus that system-wide "drain" is running
2312 * We do not care about races with the cpu hotplug because cpu down
2313 * as well as workers from this path always operate on the local
2314 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2315 */
5af12d0e 2316 curcpu = get_cpu();
cdec2e42
KH
2317 for_each_online_cpu(cpu) {
2318 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2319 struct mem_cgroup *memcg;
e1a366be 2320 bool flush = false;
26fe6168 2321
e1a366be 2322 rcu_read_lock();
c0ff4b85 2323 memcg = stock->cached;
e1a366be
RG
2324 if (memcg && stock->nr_pages &&
2325 mem_cgroup_is_descendant(memcg, root_memcg))
2326 flush = true;
bf4f0599
RG
2327 if (obj_stock_flush_required(stock, root_memcg))
2328 flush = true;
e1a366be
RG
2329 rcu_read_unlock();
2330
2331 if (flush &&
2332 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2333 if (cpu == curcpu)
2334 drain_local_stock(&stock->work);
2335 else
2336 schedule_work_on(cpu, &stock->work);
2337 }
cdec2e42 2338 }
5af12d0e 2339 put_cpu();
9f50fad6 2340 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2341}
2342
2cd21c89 2343static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
cdec2e42 2344{
2cd21c89 2345 int nid;
a983b5eb 2346
2cd21c89
JW
2347 for_each_node(nid) {
2348 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2349 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2350 struct batched_lruvec_stat *lstatc;
a983b5eb
JW
2351 int i;
2352
2cd21c89 2353 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2d146aa3 2354 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2cd21c89
JW
2355 stat[i] = lstatc->count[i];
2356 lstatc->count[i] = 0;
2357 }
a983b5eb 2358
2cd21c89
JW
2359 do {
2360 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2361 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2362 } while ((pn = parent_nodeinfo(pn, nid)));
2363 }
2364}
a983b5eb 2365
2cd21c89
JW
2366static int memcg_hotplug_cpu_dead(unsigned int cpu)
2367{
2368 struct memcg_stock_pcp *stock;
2369 struct mem_cgroup *memcg;
a3d4c05a 2370
2cd21c89
JW
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
a3d4c05a 2373
2cd21c89
JW
2374 for_each_mem_cgroup(memcg)
2375 memcg_flush_lruvec_page_state(memcg, cpu);
a983b5eb 2376
308167fc 2377 return 0;
cdec2e42
KH
2378}
2379
b3ff9291
CD
2380static unsigned long reclaim_high(struct mem_cgroup *memcg,
2381 unsigned int nr_pages,
2382 gfp_t gfp_mask)
f7e1cb6e 2383{
b3ff9291
CD
2384 unsigned long nr_reclaimed = 0;
2385
f7e1cb6e 2386 do {
e22c6ed9
JW
2387 unsigned long pflags;
2388
d1663a90
JK
2389 if (page_counter_read(&memcg->memory) <=
2390 READ_ONCE(memcg->memory.high))
f7e1cb6e 2391 continue;
e22c6ed9 2392
e27be240 2393 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2394
2395 psi_memstall_enter(&pflags);
b3ff9291
CD
2396 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2397 gfp_mask, true);
e22c6ed9 2398 psi_memstall_leave(&pflags);
4bf17307
CD
2399 } while ((memcg = parent_mem_cgroup(memcg)) &&
2400 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2401
2402 return nr_reclaimed;
f7e1cb6e
JW
2403}
2404
2405static void high_work_func(struct work_struct *work)
2406{
2407 struct mem_cgroup *memcg;
2408
2409 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2410 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2411}
2412
0e4b01df
CD
2413/*
2414 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2415 * enough to still cause a significant slowdown in most cases, while still
2416 * allowing diagnostics and tracing to proceed without becoming stuck.
2417 */
2418#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2419
2420/*
2421 * When calculating the delay, we use these either side of the exponentiation to
2422 * maintain precision and scale to a reasonable number of jiffies (see the table
2423 * below.
2424 *
2425 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2426 * overage ratio to a delay.
ac5ddd0f 2427 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2428 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2429 * to produce a reasonable delay curve.
2430 *
2431 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2432 * reasonable delay curve compared to precision-adjusted overage, not
2433 * penalising heavily at first, but still making sure that growth beyond the
2434 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2435 * example, with a high of 100 megabytes:
2436 *
2437 * +-------+------------------------+
2438 * | usage | time to allocate in ms |
2439 * +-------+------------------------+
2440 * | 100M | 0 |
2441 * | 101M | 6 |
2442 * | 102M | 25 |
2443 * | 103M | 57 |
2444 * | 104M | 102 |
2445 * | 105M | 159 |
2446 * | 106M | 230 |
2447 * | 107M | 313 |
2448 * | 108M | 409 |
2449 * | 109M | 518 |
2450 * | 110M | 639 |
2451 * | 111M | 774 |
2452 * | 112M | 921 |
2453 * | 113M | 1081 |
2454 * | 114M | 1254 |
2455 * | 115M | 1439 |
2456 * | 116M | 1638 |
2457 * | 117M | 1849 |
2458 * | 118M | 2000 |
2459 * | 119M | 2000 |
2460 * | 120M | 2000 |
2461 * +-------+------------------------+
2462 */
2463 #define MEMCG_DELAY_PRECISION_SHIFT 20
2464 #define MEMCG_DELAY_SCALING_SHIFT 14
2465
8a5dbc65 2466static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2467{
8a5dbc65 2468 u64 overage;
b23afb93 2469
8a5dbc65
JK
2470 if (usage <= high)
2471 return 0;
e26733e0 2472
8a5dbc65
JK
2473 /*
2474 * Prevent division by 0 in overage calculation by acting as if
2475 * it was a threshold of 1 page
2476 */
2477 high = max(high, 1UL);
9b8b1754 2478
8a5dbc65
JK
2479 overage = usage - high;
2480 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2481 return div64_u64(overage, high);
2482}
e26733e0 2483
8a5dbc65
JK
2484static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2485{
2486 u64 overage, max_overage = 0;
e26733e0 2487
8a5dbc65
JK
2488 do {
2489 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2490 READ_ONCE(memcg->memory.high));
8a5dbc65 2491 max_overage = max(overage, max_overage);
e26733e0
CD
2492 } while ((memcg = parent_mem_cgroup(memcg)) &&
2493 !mem_cgroup_is_root(memcg));
2494
8a5dbc65
JK
2495 return max_overage;
2496}
2497
4b82ab4f
JK
2498static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2499{
2500 u64 overage, max_overage = 0;
2501
2502 do {
2503 overage = calculate_overage(page_counter_read(&memcg->swap),
2504 READ_ONCE(memcg->swap.high));
2505 if (overage)
2506 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2507 max_overage = max(overage, max_overage);
2508 } while ((memcg = parent_mem_cgroup(memcg)) &&
2509 !mem_cgroup_is_root(memcg));
2510
2511 return max_overage;
2512}
2513
8a5dbc65
JK
2514/*
2515 * Get the number of jiffies that we should penalise a mischievous cgroup which
2516 * is exceeding its memory.high by checking both it and its ancestors.
2517 */
2518static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2519 unsigned int nr_pages,
2520 u64 max_overage)
2521{
2522 unsigned long penalty_jiffies;
2523
e26733e0
CD
2524 if (!max_overage)
2525 return 0;
0e4b01df
CD
2526
2527 /*
0e4b01df
CD
2528 * We use overage compared to memory.high to calculate the number of
2529 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2530 * fairly lenient on small overages, and increasingly harsh when the
2531 * memcg in question makes it clear that it has no intention of stopping
2532 * its crazy behaviour, so we exponentially increase the delay based on
2533 * overage amount.
2534 */
e26733e0
CD
2535 penalty_jiffies = max_overage * max_overage * HZ;
2536 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2537 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2538
2539 /*
2540 * Factor in the task's own contribution to the overage, such that four
2541 * N-sized allocations are throttled approximately the same as one
2542 * 4N-sized allocation.
2543 *
2544 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2545 * larger the current charge patch is than that.
2546 */
ff144e69 2547 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2548}
2549
2550/*
2551 * Scheduled by try_charge() to be executed from the userland return path
2552 * and reclaims memory over the high limit.
2553 */
2554void mem_cgroup_handle_over_high(void)
2555{
2556 unsigned long penalty_jiffies;
2557 unsigned long pflags;
b3ff9291 2558 unsigned long nr_reclaimed;
e26733e0 2559 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2560 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2561 struct mem_cgroup *memcg;
b3ff9291 2562 bool in_retry = false;
e26733e0
CD
2563
2564 if (likely(!nr_pages))
2565 return;
2566
2567 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2568 current->memcg_nr_pages_over_high = 0;
2569
b3ff9291
CD
2570retry_reclaim:
2571 /*
2572 * The allocating task should reclaim at least the batch size, but for
2573 * subsequent retries we only want to do what's necessary to prevent oom
2574 * or breaching resource isolation.
2575 *
2576 * This is distinct from memory.max or page allocator behaviour because
2577 * memory.high is currently batched, whereas memory.max and the page
2578 * allocator run every time an allocation is made.
2579 */
2580 nr_reclaimed = reclaim_high(memcg,
2581 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2582 GFP_KERNEL);
2583
e26733e0
CD
2584 /*
2585 * memory.high is breached and reclaim is unable to keep up. Throttle
2586 * allocators proactively to slow down excessive growth.
2587 */
8a5dbc65
JK
2588 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2589 mem_find_max_overage(memcg));
0e4b01df 2590
4b82ab4f
JK
2591 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2592 swap_find_max_overage(memcg));
2593
ff144e69
JK
2594 /*
2595 * Clamp the max delay per usermode return so as to still keep the
2596 * application moving forwards and also permit diagnostics, albeit
2597 * extremely slowly.
2598 */
2599 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2600
0e4b01df
CD
2601 /*
2602 * Don't sleep if the amount of jiffies this memcg owes us is so low
2603 * that it's not even worth doing, in an attempt to be nice to those who
2604 * go only a small amount over their memory.high value and maybe haven't
2605 * been aggressively reclaimed enough yet.
2606 */
2607 if (penalty_jiffies <= HZ / 100)
2608 goto out;
2609
b3ff9291
CD
2610 /*
2611 * If reclaim is making forward progress but we're still over
2612 * memory.high, we want to encourage that rather than doing allocator
2613 * throttling.
2614 */
2615 if (nr_reclaimed || nr_retries--) {
2616 in_retry = true;
2617 goto retry_reclaim;
2618 }
2619
0e4b01df
CD
2620 /*
2621 * If we exit early, we're guaranteed to die (since
2622 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2623 * need to account for any ill-begotten jiffies to pay them off later.
2624 */
2625 psi_memstall_enter(&pflags);
2626 schedule_timeout_killable(penalty_jiffies);
2627 psi_memstall_leave(&pflags);
2628
2629out:
2630 css_put(&memcg->css);
b23afb93
TH
2631}
2632
00501b53
JW
2633static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634 unsigned int nr_pages)
8a9f3ccd 2635{
a983b5eb 2636 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2637 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2638 struct mem_cgroup *mem_over_limit;
3e32cb2e 2639 struct page_counter *counter;
e22c6ed9 2640 enum oom_status oom_status;
6539cc05 2641 unsigned long nr_reclaimed;
b70a2a21
JW
2642 bool may_swap = true;
2643 bool drained = false;
e22c6ed9 2644 unsigned long pflags;
a636b327 2645
ce00a967 2646 if (mem_cgroup_is_root(memcg))
10d53c74 2647 return 0;
6539cc05 2648retry:
b6b6cc72 2649 if (consume_stock(memcg, nr_pages))
10d53c74 2650 return 0;
8a9f3ccd 2651
7941d214 2652 if (!do_memsw_account() ||
6071ca52
JW
2653 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2654 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2655 goto done_restock;
7941d214 2656 if (do_memsw_account())
3e32cb2e
JW
2657 page_counter_uncharge(&memcg->memsw, batch);
2658 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2659 } else {
3e32cb2e 2660 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2661 may_swap = false;
3fbe7244 2662 }
7a81b88c 2663
6539cc05
JW
2664 if (batch > nr_pages) {
2665 batch = nr_pages;
2666 goto retry;
2667 }
6d61ef40 2668
869712fd
JW
2669 /*
2670 * Memcg doesn't have a dedicated reserve for atomic
2671 * allocations. But like the global atomic pool, we need to
2672 * put the burden of reclaim on regular allocation requests
2673 * and let these go through as privileged allocations.
2674 */
2675 if (gfp_mask & __GFP_ATOMIC)
2676 goto force;
2677
06b078fc
JW
2678 /*
2679 * Unlike in global OOM situations, memcg is not in a physical
2680 * memory shortage. Allow dying and OOM-killed tasks to
2681 * bypass the last charges so that they can exit quickly and
2682 * free their memory.
2683 */
7775face 2684 if (unlikely(should_force_charge()))
10d53c74 2685 goto force;
06b078fc 2686
89a28483
JW
2687 /*
2688 * Prevent unbounded recursion when reclaim operations need to
2689 * allocate memory. This might exceed the limits temporarily,
2690 * but we prefer facilitating memory reclaim and getting back
2691 * under the limit over triggering OOM kills in these cases.
2692 */
2693 if (unlikely(current->flags & PF_MEMALLOC))
2694 goto force;
2695
06b078fc
JW
2696 if (unlikely(task_in_memcg_oom(current)))
2697 goto nomem;
2698
d0164adc 2699 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2700 goto nomem;
4b534334 2701
e27be240 2702 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2703
e22c6ed9 2704 psi_memstall_enter(&pflags);
b70a2a21
JW
2705 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2706 gfp_mask, may_swap);
e22c6ed9 2707 psi_memstall_leave(&pflags);
6539cc05 2708
61e02c74 2709 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2710 goto retry;
28c34c29 2711
b70a2a21 2712 if (!drained) {
6d3d6aa2 2713 drain_all_stock(mem_over_limit);
b70a2a21
JW
2714 drained = true;
2715 goto retry;
2716 }
2717
28c34c29
JW
2718 if (gfp_mask & __GFP_NORETRY)
2719 goto nomem;
6539cc05
JW
2720 /*
2721 * Even though the limit is exceeded at this point, reclaim
2722 * may have been able to free some pages. Retry the charge
2723 * before killing the task.
2724 *
2725 * Only for regular pages, though: huge pages are rather
2726 * unlikely to succeed so close to the limit, and we fall back
2727 * to regular pages anyway in case of failure.
2728 */
61e02c74 2729 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2730 goto retry;
2731 /*
2732 * At task move, charge accounts can be doubly counted. So, it's
2733 * better to wait until the end of task_move if something is going on.
2734 */
2735 if (mem_cgroup_wait_acct_move(mem_over_limit))
2736 goto retry;
2737
9b130619
JW
2738 if (nr_retries--)
2739 goto retry;
2740
38d38493 2741 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2742 goto nomem;
2743
6539cc05 2744 if (fatal_signal_pending(current))
10d53c74 2745 goto force;
6539cc05 2746
29ef680a
MH
2747 /*
2748 * keep retrying as long as the memcg oom killer is able to make
2749 * a forward progress or bypass the charge if the oom killer
2750 * couldn't make any progress.
2751 */
2752 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2753 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2754 switch (oom_status) {
2755 case OOM_SUCCESS:
d977aa93 2756 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2757 goto retry;
2758 case OOM_FAILED:
2759 goto force;
2760 default:
2761 goto nomem;
2762 }
7a81b88c 2763nomem:
6d1fdc48 2764 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2765 return -ENOMEM;
10d53c74
TH
2766force:
2767 /*
2768 * The allocation either can't fail or will lead to more memory
2769 * being freed very soon. Allow memory usage go over the limit
2770 * temporarily by force charging it.
2771 */
2772 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2773 if (do_memsw_account())
10d53c74 2774 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2775
2776 return 0;
6539cc05
JW
2777
2778done_restock:
2779 if (batch > nr_pages)
2780 refill_stock(memcg, batch - nr_pages);
b23afb93 2781
241994ed 2782 /*
b23afb93
TH
2783 * If the hierarchy is above the normal consumption range, schedule
2784 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2785 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2786 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2787 * not recorded as it most likely matches current's and won't
2788 * change in the meantime. As high limit is checked again before
2789 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2790 */
2791 do {
4b82ab4f
JK
2792 bool mem_high, swap_high;
2793
2794 mem_high = page_counter_read(&memcg->memory) >
2795 READ_ONCE(memcg->memory.high);
2796 swap_high = page_counter_read(&memcg->swap) >
2797 READ_ONCE(memcg->swap.high);
2798
2799 /* Don't bother a random interrupted task */
2800 if (in_interrupt()) {
2801 if (mem_high) {
f7e1cb6e
JW
2802 schedule_work(&memcg->high_work);
2803 break;
2804 }
4b82ab4f
JK
2805 continue;
2806 }
2807
2808 if (mem_high || swap_high) {
2809 /*
2810 * The allocating tasks in this cgroup will need to do
2811 * reclaim or be throttled to prevent further growth
2812 * of the memory or swap footprints.
2813 *
2814 * Target some best-effort fairness between the tasks,
2815 * and distribute reclaim work and delay penalties
2816 * based on how much each task is actually allocating.
2817 */
9516a18a 2818 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2819 set_notify_resume(current);
2820 break;
2821 }
241994ed 2822 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2823
2824 return 0;
7a81b88c 2825}
8a9f3ccd 2826
f0e45fb4 2827#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2828static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2829{
ce00a967
JW
2830 if (mem_cgroup_is_root(memcg))
2831 return;
2832
3e32cb2e 2833 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2834 if (do_memsw_account())
3e32cb2e 2835 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2836}
f0e45fb4 2837#endif
d01dd17f 2838
d9eb1ea2 2839static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2840{
bcfe06bf 2841 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2842 /*
a5eb011a 2843 * Any of the following ensures page's memcg stability:
0a31bc97 2844 *
a0b5b414
JW
2845 * - the page lock
2846 * - LRU isolation
2847 * - lock_page_memcg()
2848 * - exclusive reference
0a31bc97 2849 */
bcfe06bf 2850 page->memcg_data = (unsigned long)memcg;
7a81b88c 2851}
66e1707b 2852
e74d2259
MS
2853static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2854{
2855 struct mem_cgroup *memcg;
2856
2857 rcu_read_lock();
2858retry:
2859 memcg = obj_cgroup_memcg(objcg);
2860 if (unlikely(!css_tryget(&memcg->css)))
2861 goto retry;
2862 rcu_read_unlock();
2863
2864 return memcg;
2865}
2866
84c07d11 2867#ifdef CONFIG_MEMCG_KMEM
10befea9 2868int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2869 gfp_t gfp, bool new_page)
10befea9
RG
2870{
2871 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2872 unsigned long memcg_data;
10befea9
RG
2873 void *vec;
2874
2875 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2876 page_to_nid(page));
2877 if (!vec)
2878 return -ENOMEM;
2879
2e9bd483
RG
2880 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2881 if (new_page) {
2882 /*
2883 * If the slab page is brand new and nobody can yet access
2884 * it's memcg_data, no synchronization is required and
2885 * memcg_data can be simply assigned.
2886 */
2887 page->memcg_data = memcg_data;
2888 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2889 /*
2890 * If the slab page is already in use, somebody can allocate
2891 * and assign obj_cgroups in parallel. In this case the existing
2892 * objcg vector should be reused.
2893 */
10befea9 2894 kfree(vec);
2e9bd483
RG
2895 return 0;
2896 }
10befea9 2897
2e9bd483 2898 kmemleak_not_leak(vec);
10befea9
RG
2899 return 0;
2900}
2901
8380ce47
RG
2902/*
2903 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2904 *
bcfe06bf
RG
2905 * A passed kernel object can be a slab object or a generic kernel page, so
2906 * different mechanisms for getting the memory cgroup pointer should be used.
2907 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2908 * can not know for sure how the kernel object is implemented.
2909 * mem_cgroup_from_obj() can be safely used in such cases.
2910 *
8380ce47
RG
2911 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2912 * cgroup_mutex, etc.
2913 */
2914struct mem_cgroup *mem_cgroup_from_obj(void *p)
2915{
2916 struct page *page;
2917
2918 if (mem_cgroup_disabled())
2919 return NULL;
2920
2921 page = virt_to_head_page(p);
2922
2923 /*
9855609b
RG
2924 * Slab objects are accounted individually, not per-page.
2925 * Memcg membership data for each individual object is saved in
2926 * the page->obj_cgroups.
8380ce47 2927 */
270c6a71 2928 if (page_objcgs_check(page)) {
9855609b
RG
2929 struct obj_cgroup *objcg;
2930 unsigned int off;
2931
2932 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2933 objcg = page_objcgs(page)[off];
10befea9
RG
2934 if (objcg)
2935 return obj_cgroup_memcg(objcg);
2936
2937 return NULL;
9855609b 2938 }
8380ce47 2939
bcfe06bf
RG
2940 /*
2941 * page_memcg_check() is used here, because page_has_obj_cgroups()
2942 * check above could fail because the object cgroups vector wasn't set
2943 * at that moment, but it can be set concurrently.
2944 * page_memcg_check(page) will guarantee that a proper memory
2945 * cgroup pointer or NULL will be returned.
2946 */
2947 return page_memcg_check(page);
8380ce47
RG
2948}
2949
bf4f0599
RG
2950__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2951{
2952 struct obj_cgroup *objcg = NULL;
2953 struct mem_cgroup *memcg;
2954
279c3393
RG
2955 if (memcg_kmem_bypass())
2956 return NULL;
2957
bf4f0599 2958 rcu_read_lock();
37d5985c
RG
2959 if (unlikely(active_memcg()))
2960 memcg = active_memcg();
bf4f0599
RG
2961 else
2962 memcg = mem_cgroup_from_task(current);
2963
2964 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2965 objcg = rcu_dereference(memcg->objcg);
2966 if (objcg && obj_cgroup_tryget(objcg))
2967 break;
2f7659a3 2968 objcg = NULL;
bf4f0599
RG
2969 }
2970 rcu_read_unlock();
2971
2972 return objcg;
2973}
2974
f3bb3043 2975static int memcg_alloc_cache_id(void)
55007d84 2976{
f3bb3043
VD
2977 int id, size;
2978 int err;
2979
dbcf73e2 2980 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2981 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2982 if (id < 0)
2983 return id;
55007d84 2984
dbcf73e2 2985 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2986 return id;
2987
2988 /*
2989 * There's no space for the new id in memcg_caches arrays,
2990 * so we have to grow them.
2991 */
05257a1a 2992 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2993
2994 size = 2 * (id + 1);
55007d84
GC
2995 if (size < MEMCG_CACHES_MIN_SIZE)
2996 size = MEMCG_CACHES_MIN_SIZE;
2997 else if (size > MEMCG_CACHES_MAX_SIZE)
2998 size = MEMCG_CACHES_MAX_SIZE;
2999
9855609b 3000 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3001 if (!err)
3002 memcg_nr_cache_ids = size;
3003
3004 up_write(&memcg_cache_ids_sem);
3005
f3bb3043 3006 if (err) {
dbcf73e2 3007 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3008 return err;
3009 }
3010 return id;
3011}
3012
3013static void memcg_free_cache_id(int id)
3014{
dbcf73e2 3015 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3016}
3017
e74d2259
MS
3018static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3019 unsigned int nr_pages)
3020{
3021 struct mem_cgroup *memcg;
3022
3023 memcg = get_mem_cgroup_from_objcg(objcg);
3024 __memcg_kmem_uncharge(memcg, nr_pages);
3025 css_put(&memcg->css);
3026}
3027
3028static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3029 unsigned int nr_pages)
3030{
3031 struct mem_cgroup *memcg;
3032 int ret;
3033
3034 memcg = get_mem_cgroup_from_objcg(objcg);
3035 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3036 css_put(&memcg->css);
3037
3038 return ret;
3039}
3040
45264778 3041/**
4b13f64d 3042 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3043 * @memcg: memory cgroup to charge
45264778 3044 * @gfp: reclaim mode
92d0510c 3045 * @nr_pages: number of pages to charge
45264778
VD
3046 *
3047 * Returns 0 on success, an error code on failure.
3048 */
c1a660de
RG
3049static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3050 unsigned int nr_pages)
7ae1e1d0 3051{
f3ccb2c4 3052 struct page_counter *counter;
7ae1e1d0
GC
3053 int ret;
3054
f3ccb2c4 3055 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3056 if (ret)
f3ccb2c4 3057 return ret;
52c29b04
JW
3058
3059 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3060 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3061
3062 /*
3063 * Enforce __GFP_NOFAIL allocation because callers are not
3064 * prepared to see failures and likely do not have any failure
3065 * handling code.
3066 */
3067 if (gfp & __GFP_NOFAIL) {
3068 page_counter_charge(&memcg->kmem, nr_pages);
3069 return 0;
3070 }
52c29b04
JW
3071 cancel_charge(memcg, nr_pages);
3072 return -ENOMEM;
7ae1e1d0 3073 }
f3ccb2c4 3074 return 0;
7ae1e1d0
GC
3075}
3076
4b13f64d
RG
3077/**
3078 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3079 * @memcg: memcg to uncharge
3080 * @nr_pages: number of pages to uncharge
3081 */
c1a660de 3082static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
4b13f64d
RG
3083{
3084 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3085 page_counter_uncharge(&memcg->kmem, nr_pages);
3086
3de7d4f2 3087 refill_stock(memcg, nr_pages);
4b13f64d
RG
3088}
3089
45264778 3090/**
f4b00eab 3091 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3092 * @page: page to charge
3093 * @gfp: reclaim mode
3094 * @order: allocation order
3095 *
3096 * Returns 0 on success, an error code on failure.
3097 */
f4b00eab 3098int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3099{
b4e0b68f 3100 struct obj_cgroup *objcg;
fcff7d7e 3101 int ret = 0;
7ae1e1d0 3102
b4e0b68f
MS
3103 objcg = get_obj_cgroup_from_current();
3104 if (objcg) {
3105 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3106 if (!ret) {
b4e0b68f 3107 page->memcg_data = (unsigned long)objcg |
18b2db3b 3108 MEMCG_DATA_KMEM;
1a3e1f40 3109 return 0;
4d96ba35 3110 }
b4e0b68f 3111 obj_cgroup_put(objcg);
c4159a75 3112 }
d05e83a6 3113 return ret;
7ae1e1d0 3114}
49a18eae 3115
45264778 3116/**
f4b00eab 3117 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3118 * @page: page to uncharge
3119 * @order: allocation order
3120 */
f4b00eab 3121void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3122{
b4e0b68f 3123 struct obj_cgroup *objcg;
f3ccb2c4 3124 unsigned int nr_pages = 1 << order;
7ae1e1d0 3125
b4e0b68f 3126 if (!PageMemcgKmem(page))
7ae1e1d0
GC
3127 return;
3128
b4e0b68f
MS
3129 objcg = __page_objcg(page);
3130 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3131 page->memcg_data = 0;
b4e0b68f 3132 obj_cgroup_put(objcg);
60d3fd32 3133}
bf4f0599
RG
3134
3135static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3136{
3137 struct memcg_stock_pcp *stock;
3138 unsigned long flags;
3139 bool ret = false;
3140
3141 local_irq_save(flags);
3142
3143 stock = this_cpu_ptr(&memcg_stock);
3144 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3145 stock->nr_bytes -= nr_bytes;
3146 ret = true;
3147 }
3148
3149 local_irq_restore(flags);
3150
3151 return ret;
3152}
3153
3154static void drain_obj_stock(struct memcg_stock_pcp *stock)
3155{
3156 struct obj_cgroup *old = stock->cached_objcg;
3157
3158 if (!old)
3159 return;
3160
3161 if (stock->nr_bytes) {
3162 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3163 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3164
e74d2259
MS
3165 if (nr_pages)
3166 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3167
3168 /*
3169 * The leftover is flushed to the centralized per-memcg value.
3170 * On the next attempt to refill obj stock it will be moved
3171 * to a per-cpu stock (probably, on an other CPU), see
3172 * refill_obj_stock().
3173 *
3174 * How often it's flushed is a trade-off between the memory
3175 * limit enforcement accuracy and potential CPU contention,
3176 * so it might be changed in the future.
3177 */
3178 atomic_add(nr_bytes, &old->nr_charged_bytes);
3179 stock->nr_bytes = 0;
3180 }
3181
3182 obj_cgroup_put(old);
3183 stock->cached_objcg = NULL;
3184}
3185
3186static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3187 struct mem_cgroup *root_memcg)
3188{
3189 struct mem_cgroup *memcg;
3190
3191 if (stock->cached_objcg) {
3192 memcg = obj_cgroup_memcg(stock->cached_objcg);
3193 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3194 return true;
3195 }
3196
3197 return false;
3198}
3199
3200static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3201{
3202 struct memcg_stock_pcp *stock;
3203 unsigned long flags;
3204
3205 local_irq_save(flags);
3206
3207 stock = this_cpu_ptr(&memcg_stock);
3208 if (stock->cached_objcg != objcg) { /* reset if necessary */
3209 drain_obj_stock(stock);
3210 obj_cgroup_get(objcg);
3211 stock->cached_objcg = objcg;
3212 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3213 }
3214 stock->nr_bytes += nr_bytes;
3215
3216 if (stock->nr_bytes > PAGE_SIZE)
3217 drain_obj_stock(stock);
3218
3219 local_irq_restore(flags);
3220}
3221
3222int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3223{
bf4f0599
RG
3224 unsigned int nr_pages, nr_bytes;
3225 int ret;
3226
3227 if (consume_obj_stock(objcg, size))
3228 return 0;
3229
3230 /*
3231 * In theory, memcg->nr_charged_bytes can have enough
3232 * pre-charged bytes to satisfy the allocation. However,
3233 * flushing memcg->nr_charged_bytes requires two atomic
3234 * operations, and memcg->nr_charged_bytes can't be big,
3235 * so it's better to ignore it and try grab some new pages.
3236 * memcg->nr_charged_bytes will be flushed in
3237 * refill_obj_stock(), called from this function or
3238 * independently later.
3239 */
bf4f0599
RG
3240 nr_pages = size >> PAGE_SHIFT;
3241 nr_bytes = size & (PAGE_SIZE - 1);
3242
3243 if (nr_bytes)
3244 nr_pages += 1;
3245
e74d2259 3246 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599
RG
3247 if (!ret && nr_bytes)
3248 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3249
bf4f0599
RG
3250 return ret;
3251}
3252
3253void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254{
3255 refill_obj_stock(objcg, size);
3256}
3257
84c07d11 3258#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3259
ca3e0214 3260/*
be6c8982 3261 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3262 */
be6c8982 3263void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3264{
bcfe06bf 3265 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3266 int i;
ca3e0214 3267
be6c8982 3268 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3269 return;
b070e65c 3270
be6c8982
ZG
3271 for (i = 1; i < nr; i++)
3272 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3273
3274 if (PageMemcgKmem(head))
3275 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3276 else
3277 css_get_many(&memcg->css, nr - 1);
ca3e0214 3278}
ca3e0214 3279
c255a458 3280#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3281/**
3282 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3283 * @entry: swap entry to be moved
3284 * @from: mem_cgroup which the entry is moved from
3285 * @to: mem_cgroup which the entry is moved to
3286 *
3287 * It succeeds only when the swap_cgroup's record for this entry is the same
3288 * as the mem_cgroup's id of @from.
3289 *
3290 * Returns 0 on success, -EINVAL on failure.
3291 *
3e32cb2e 3292 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3293 * both res and memsw, and called css_get().
3294 */
3295static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3296 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3297{
3298 unsigned short old_id, new_id;
3299
34c00c31
LZ
3300 old_id = mem_cgroup_id(from);
3301 new_id = mem_cgroup_id(to);
02491447
DN
3302
3303 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3304 mod_memcg_state(from, MEMCG_SWAP, -1);
3305 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3306 return 0;
3307 }
3308 return -EINVAL;
3309}
3310#else
3311static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3312 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3313{
3314 return -EINVAL;
3315}
8c7c6e34 3316#endif
d13d1443 3317
bbec2e15 3318static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3319
bbec2e15
RG
3320static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3321 unsigned long max, bool memsw)
628f4235 3322{
3e32cb2e 3323 bool enlarge = false;
bb4a7ea2 3324 bool drained = false;
3e32cb2e 3325 int ret;
c054a78c
YZ
3326 bool limits_invariant;
3327 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3328
3e32cb2e 3329 do {
628f4235
KH
3330 if (signal_pending(current)) {
3331 ret = -EINTR;
3332 break;
3333 }
3e32cb2e 3334
bbec2e15 3335 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3336 /*
3337 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3338 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3339 */
15b42562 3340 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3341 max <= memcg->memsw.max;
c054a78c 3342 if (!limits_invariant) {
bbec2e15 3343 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3344 ret = -EINVAL;
8c7c6e34
KH
3345 break;
3346 }
bbec2e15 3347 if (max > counter->max)
3e32cb2e 3348 enlarge = true;
bbec2e15
RG
3349 ret = page_counter_set_max(counter, max);
3350 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3351
3352 if (!ret)
3353 break;
3354
bb4a7ea2
SB
3355 if (!drained) {
3356 drain_all_stock(memcg);
3357 drained = true;
3358 continue;
3359 }
3360
1ab5c056
AR
3361 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3362 GFP_KERNEL, !memsw)) {
3363 ret = -EBUSY;
3364 break;
3365 }
3366 } while (true);
3e32cb2e 3367
3c11ecf4
KH
3368 if (!ret && enlarge)
3369 memcg_oom_recover(memcg);
3e32cb2e 3370
628f4235
KH
3371 return ret;
3372}
3373
ef8f2327 3374unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3375 gfp_t gfp_mask,
3376 unsigned long *total_scanned)
3377{
3378 unsigned long nr_reclaimed = 0;
ef8f2327 3379 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3380 unsigned long reclaimed;
3381 int loop = 0;
ef8f2327 3382 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3383 unsigned long excess;
0608f43d
AM
3384 unsigned long nr_scanned;
3385
3386 if (order > 0)
3387 return 0;
3388
ef8f2327 3389 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3390
3391 /*
3392 * Do not even bother to check the largest node if the root
3393 * is empty. Do it lockless to prevent lock bouncing. Races
3394 * are acceptable as soft limit is best effort anyway.
3395 */
bfc7228b 3396 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3397 return 0;
3398
0608f43d
AM
3399 /*
3400 * This loop can run a while, specially if mem_cgroup's continuously
3401 * keep exceeding their soft limit and putting the system under
3402 * pressure
3403 */
3404 do {
3405 if (next_mz)
3406 mz = next_mz;
3407 else
3408 mz = mem_cgroup_largest_soft_limit_node(mctz);
3409 if (!mz)
3410 break;
3411
3412 nr_scanned = 0;
ef8f2327 3413 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3414 gfp_mask, &nr_scanned);
3415 nr_reclaimed += reclaimed;
3416 *total_scanned += nr_scanned;
0a31bc97 3417 spin_lock_irq(&mctz->lock);
bc2f2e7f 3418 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3419
3420 /*
3421 * If we failed to reclaim anything from this memory cgroup
3422 * it is time to move on to the next cgroup
3423 */
3424 next_mz = NULL;
bc2f2e7f
VD
3425 if (!reclaimed)
3426 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3427
3e32cb2e 3428 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3429 /*
3430 * One school of thought says that we should not add
3431 * back the node to the tree if reclaim returns 0.
3432 * But our reclaim could return 0, simply because due
3433 * to priority we are exposing a smaller subset of
3434 * memory to reclaim from. Consider this as a longer
3435 * term TODO.
3436 */
3437 /* If excess == 0, no tree ops */
cf2c8127 3438 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3439 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3440 css_put(&mz->memcg->css);
3441 loop++;
3442 /*
3443 * Could not reclaim anything and there are no more
3444 * mem cgroups to try or we seem to be looping without
3445 * reclaiming anything.
3446 */
3447 if (!nr_reclaimed &&
3448 (next_mz == NULL ||
3449 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3450 break;
3451 } while (!nr_reclaimed);
3452 if (next_mz)
3453 css_put(&next_mz->memcg->css);
3454 return nr_reclaimed;
3455}
3456
c26251f9 3457/*
51038171 3458 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3459 *
3460 * Caller is responsible for holding css reference for memcg.
3461 */
3462static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3463{
d977aa93 3464 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3465
c1e862c1
KH
3466 /* we call try-to-free pages for make this cgroup empty */
3467 lru_add_drain_all();
d12c60f6
JS
3468
3469 drain_all_stock(memcg);
3470
f817ed48 3471 /* try to free all pages in this cgroup */
3e32cb2e 3472 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3473 int progress;
c1e862c1 3474
c26251f9
MH
3475 if (signal_pending(current))
3476 return -EINTR;
3477
b70a2a21
JW
3478 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3479 GFP_KERNEL, true);
c1e862c1 3480 if (!progress) {
f817ed48 3481 nr_retries--;
c1e862c1 3482 /* maybe some writeback is necessary */
8aa7e847 3483 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3484 }
f817ed48
KH
3485
3486 }
ab5196c2
MH
3487
3488 return 0;
cc847582
KH
3489}
3490
6770c64e
TH
3491static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3492 char *buf, size_t nbytes,
3493 loff_t off)
c1e862c1 3494{
6770c64e 3495 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3496
d8423011
MH
3497 if (mem_cgroup_is_root(memcg))
3498 return -EINVAL;
6770c64e 3499 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3500}
3501
182446d0
TH
3502static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3503 struct cftype *cft)
18f59ea7 3504{
bef8620c 3505 return 1;
18f59ea7
BS
3506}
3507
182446d0
TH
3508static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3509 struct cftype *cft, u64 val)
18f59ea7 3510{
bef8620c 3511 if (val == 1)
0b8f73e1 3512 return 0;
567fb435 3513
bef8620c
RG
3514 pr_warn_once("Non-hierarchical mode is deprecated. "
3515 "Please report your usecase to linux-mm@kvack.org if you "
3516 "depend on this functionality.\n");
567fb435 3517
bef8620c 3518 return -EINVAL;
18f59ea7
BS
3519}
3520
6f646156 3521static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3522{
42a30035 3523 unsigned long val;
ce00a967 3524
3e32cb2e 3525 if (mem_cgroup_is_root(memcg)) {
2d146aa3 3526 cgroup_rstat_flush(memcg->css.cgroup);
0d1c2072 3527 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3528 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3529 if (swap)
3530 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3531 } else {
ce00a967 3532 if (!swap)
3e32cb2e 3533 val = page_counter_read(&memcg->memory);
ce00a967 3534 else
3e32cb2e 3535 val = page_counter_read(&memcg->memsw);
ce00a967 3536 }
c12176d3 3537 return val;
ce00a967
JW
3538}
3539
3e32cb2e
JW
3540enum {
3541 RES_USAGE,
3542 RES_LIMIT,
3543 RES_MAX_USAGE,
3544 RES_FAILCNT,
3545 RES_SOFT_LIMIT,
3546};
ce00a967 3547
791badbd 3548static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3549 struct cftype *cft)
8cdea7c0 3550{
182446d0 3551 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3552 struct page_counter *counter;
af36f906 3553
3e32cb2e 3554 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3555 case _MEM:
3e32cb2e
JW
3556 counter = &memcg->memory;
3557 break;
8c7c6e34 3558 case _MEMSWAP:
3e32cb2e
JW
3559 counter = &memcg->memsw;
3560 break;
510fc4e1 3561 case _KMEM:
3e32cb2e 3562 counter = &memcg->kmem;
510fc4e1 3563 break;
d55f90bf 3564 case _TCP:
0db15298 3565 counter = &memcg->tcpmem;
d55f90bf 3566 break;
8c7c6e34
KH
3567 default:
3568 BUG();
8c7c6e34 3569 }
3e32cb2e
JW
3570
3571 switch (MEMFILE_ATTR(cft->private)) {
3572 case RES_USAGE:
3573 if (counter == &memcg->memory)
c12176d3 3574 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3575 if (counter == &memcg->memsw)
c12176d3 3576 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3577 return (u64)page_counter_read(counter) * PAGE_SIZE;
3578 case RES_LIMIT:
bbec2e15 3579 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3580 case RES_MAX_USAGE:
3581 return (u64)counter->watermark * PAGE_SIZE;
3582 case RES_FAILCNT:
3583 return counter->failcnt;
3584 case RES_SOFT_LIMIT:
3585 return (u64)memcg->soft_limit * PAGE_SIZE;
3586 default:
3587 BUG();
3588 }
8cdea7c0 3589}
510fc4e1 3590
84c07d11 3591#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3592static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3593{
bf4f0599 3594 struct obj_cgroup *objcg;
d6441637
VD
3595 int memcg_id;
3596
b313aeee
VD
3597 if (cgroup_memory_nokmem)
3598 return 0;
3599
2a4db7eb 3600 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3601 BUG_ON(memcg->kmem_state);
d6441637 3602
f3bb3043 3603 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3604 if (memcg_id < 0)
3605 return memcg_id;
d6441637 3606
bf4f0599
RG
3607 objcg = obj_cgroup_alloc();
3608 if (!objcg) {
3609 memcg_free_cache_id(memcg_id);
3610 return -ENOMEM;
3611 }
3612 objcg->memcg = memcg;
3613 rcu_assign_pointer(memcg->objcg, objcg);
3614
d648bcc7
RG
3615 static_branch_enable(&memcg_kmem_enabled_key);
3616
900a38f0 3617 memcg->kmemcg_id = memcg_id;
567e9ab2 3618 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3619
3620 return 0;
d6441637
VD
3621}
3622
8e0a8912
JW
3623static void memcg_offline_kmem(struct mem_cgroup *memcg)
3624{
3625 struct cgroup_subsys_state *css;
3626 struct mem_cgroup *parent, *child;
3627 int kmemcg_id;
3628
3629 if (memcg->kmem_state != KMEM_ONLINE)
3630 return;
9855609b 3631
8e0a8912
JW
3632 memcg->kmem_state = KMEM_ALLOCATED;
3633
8e0a8912
JW
3634 parent = parent_mem_cgroup(memcg);
3635 if (!parent)
3636 parent = root_mem_cgroup;
3637
bf4f0599 3638 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3639
3640 kmemcg_id = memcg->kmemcg_id;
3641 BUG_ON(kmemcg_id < 0);
3642
8e0a8912
JW
3643 /*
3644 * Change kmemcg_id of this cgroup and all its descendants to the
3645 * parent's id, and then move all entries from this cgroup's list_lrus
3646 * to ones of the parent. After we have finished, all list_lrus
3647 * corresponding to this cgroup are guaranteed to remain empty. The
3648 * ordering is imposed by list_lru_node->lock taken by
3649 * memcg_drain_all_list_lrus().
3650 */
3a06bb78 3651 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3652 css_for_each_descendant_pre(css, &memcg->css) {
3653 child = mem_cgroup_from_css(css);
3654 BUG_ON(child->kmemcg_id != kmemcg_id);
3655 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3656 }
3a06bb78
TH
3657 rcu_read_unlock();
3658
9bec5c35 3659 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3660
3661 memcg_free_cache_id(kmemcg_id);
3662}
3663
3664static void memcg_free_kmem(struct mem_cgroup *memcg)
3665{
0b8f73e1
JW
3666 /* css_alloc() failed, offlining didn't happen */
3667 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3668 memcg_offline_kmem(memcg);
8e0a8912 3669}
d6441637 3670#else
0b8f73e1 3671static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3672{
3673 return 0;
3674}
3675static void memcg_offline_kmem(struct mem_cgroup *memcg)
3676{
3677}
3678static void memcg_free_kmem(struct mem_cgroup *memcg)
3679{
3680}
84c07d11 3681#endif /* CONFIG_MEMCG_KMEM */
127424c8 3682
bbec2e15
RG
3683static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3684 unsigned long max)
d6441637 3685{
b313aeee 3686 int ret;
127424c8 3687
bbec2e15
RG
3688 mutex_lock(&memcg_max_mutex);
3689 ret = page_counter_set_max(&memcg->kmem, max);
3690 mutex_unlock(&memcg_max_mutex);
127424c8 3691 return ret;
d6441637 3692}
510fc4e1 3693
bbec2e15 3694static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3695{
3696 int ret;
3697
bbec2e15 3698 mutex_lock(&memcg_max_mutex);
d55f90bf 3699
bbec2e15 3700 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3701 if (ret)
3702 goto out;
3703
0db15298 3704 if (!memcg->tcpmem_active) {
d55f90bf
VD
3705 /*
3706 * The active flag needs to be written after the static_key
3707 * update. This is what guarantees that the socket activation
2d758073
JW
3708 * function is the last one to run. See mem_cgroup_sk_alloc()
3709 * for details, and note that we don't mark any socket as
3710 * belonging to this memcg until that flag is up.
d55f90bf
VD
3711 *
3712 * We need to do this, because static_keys will span multiple
3713 * sites, but we can't control their order. If we mark a socket
3714 * as accounted, but the accounting functions are not patched in
3715 * yet, we'll lose accounting.
3716 *
2d758073 3717 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3718 * because when this value change, the code to process it is not
3719 * patched in yet.
3720 */
3721 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3722 memcg->tcpmem_active = true;
d55f90bf
VD
3723 }
3724out:
bbec2e15 3725 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3726 return ret;
3727}
d55f90bf 3728
628f4235
KH
3729/*
3730 * The user of this function is...
3731 * RES_LIMIT.
3732 */
451af504
TH
3733static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3734 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3735{
451af504 3736 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3737 unsigned long nr_pages;
628f4235
KH
3738 int ret;
3739
451af504 3740 buf = strstrip(buf);
650c5e56 3741 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3742 if (ret)
3743 return ret;
af36f906 3744
3e32cb2e 3745 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3746 case RES_LIMIT:
4b3bde4c
BS
3747 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3748 ret = -EINVAL;
3749 break;
3750 }
3e32cb2e
JW
3751 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3752 case _MEM:
bbec2e15 3753 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3754 break;
3e32cb2e 3755 case _MEMSWAP:
bbec2e15 3756 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3757 break;
3e32cb2e 3758 case _KMEM:
0158115f
MH
3759 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3760 "Please report your usecase to linux-mm@kvack.org if you "
3761 "depend on this functionality.\n");
bbec2e15 3762 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3763 break;
d55f90bf 3764 case _TCP:
bbec2e15 3765 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3766 break;
3e32cb2e 3767 }
296c81d8 3768 break;
3e32cb2e
JW
3769 case RES_SOFT_LIMIT:
3770 memcg->soft_limit = nr_pages;
3771 ret = 0;
628f4235
KH
3772 break;
3773 }
451af504 3774 return ret ?: nbytes;
8cdea7c0
BS
3775}
3776
6770c64e
TH
3777static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3778 size_t nbytes, loff_t off)
c84872e1 3779{
6770c64e 3780 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3781 struct page_counter *counter;
c84872e1 3782
3e32cb2e
JW
3783 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3784 case _MEM:
3785 counter = &memcg->memory;
3786 break;
3787 case _MEMSWAP:
3788 counter = &memcg->memsw;
3789 break;
3790 case _KMEM:
3791 counter = &memcg->kmem;
3792 break;
d55f90bf 3793 case _TCP:
0db15298 3794 counter = &memcg->tcpmem;
d55f90bf 3795 break;
3e32cb2e
JW
3796 default:
3797 BUG();
3798 }
af36f906 3799
3e32cb2e 3800 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3801 case RES_MAX_USAGE:
3e32cb2e 3802 page_counter_reset_watermark(counter);
29f2a4da
PE
3803 break;
3804 case RES_FAILCNT:
3e32cb2e 3805 counter->failcnt = 0;
29f2a4da 3806 break;
3e32cb2e
JW
3807 default:
3808 BUG();
29f2a4da 3809 }
f64c3f54 3810
6770c64e 3811 return nbytes;
c84872e1
PE
3812}
3813
182446d0 3814static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3815 struct cftype *cft)
3816{
182446d0 3817 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3818}
3819
02491447 3820#ifdef CONFIG_MMU
182446d0 3821static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3822 struct cftype *cft, u64 val)
3823{
182446d0 3824 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3825
1dfab5ab 3826 if (val & ~MOVE_MASK)
7dc74be0 3827 return -EINVAL;
ee5e8472 3828
7dc74be0 3829 /*
ee5e8472
GC
3830 * No kind of locking is needed in here, because ->can_attach() will
3831 * check this value once in the beginning of the process, and then carry
3832 * on with stale data. This means that changes to this value will only
3833 * affect task migrations starting after the change.
7dc74be0 3834 */
c0ff4b85 3835 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3836 return 0;
3837}
02491447 3838#else
182446d0 3839static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3840 struct cftype *cft, u64 val)
3841{
3842 return -ENOSYS;
3843}
3844#endif
7dc74be0 3845
406eb0c9 3846#ifdef CONFIG_NUMA
113b7dfd
JW
3847
3848#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3849#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3850#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3851
3852static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3853 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3854{
867e5e1d 3855 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3856 unsigned long nr = 0;
3857 enum lru_list lru;
3858
3859 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3860
3861 for_each_lru(lru) {
3862 if (!(BIT(lru) & lru_mask))
3863 continue;
dd8657b6
SB
3864 if (tree)
3865 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3866 else
3867 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3868 }
3869 return nr;
3870}
3871
3872static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3873 unsigned int lru_mask,
3874 bool tree)
113b7dfd
JW
3875{
3876 unsigned long nr = 0;
3877 enum lru_list lru;
3878
3879 for_each_lru(lru) {
3880 if (!(BIT(lru) & lru_mask))
3881 continue;
dd8657b6
SB
3882 if (tree)
3883 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3884 else
3885 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3886 }
3887 return nr;
3888}
3889
2da8ca82 3890static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3891{
25485de6
GT
3892 struct numa_stat {
3893 const char *name;
3894 unsigned int lru_mask;
3895 };
3896
3897 static const struct numa_stat stats[] = {
3898 { "total", LRU_ALL },
3899 { "file", LRU_ALL_FILE },
3900 { "anon", LRU_ALL_ANON },
3901 { "unevictable", BIT(LRU_UNEVICTABLE) },
3902 };
3903 const struct numa_stat *stat;
406eb0c9 3904 int nid;
aa9694bb 3905 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3906
2d146aa3
JW
3907 cgroup_rstat_flush(memcg->css.cgroup);
3908
25485de6 3909 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3910 seq_printf(m, "%s=%lu", stat->name,
3911 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3912 false));
3913 for_each_node_state(nid, N_MEMORY)
3914 seq_printf(m, " N%d=%lu", nid,
3915 mem_cgroup_node_nr_lru_pages(memcg, nid,
3916 stat->lru_mask, false));
25485de6 3917 seq_putc(m, '\n');
406eb0c9 3918 }
406eb0c9 3919
071aee13 3920 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3921
3922 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3923 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3924 true));
3925 for_each_node_state(nid, N_MEMORY)
3926 seq_printf(m, " N%d=%lu", nid,
3927 mem_cgroup_node_nr_lru_pages(memcg, nid,
3928 stat->lru_mask, true));
071aee13 3929 seq_putc(m, '\n');
406eb0c9 3930 }
406eb0c9 3931
406eb0c9
YH
3932 return 0;
3933}
3934#endif /* CONFIG_NUMA */
3935
c8713d0b 3936static const unsigned int memcg1_stats[] = {
0d1c2072 3937 NR_FILE_PAGES,
be5d0a74 3938 NR_ANON_MAPPED,
468c3982
JW
3939#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3940 NR_ANON_THPS,
3941#endif
c8713d0b
JW
3942 NR_SHMEM,
3943 NR_FILE_MAPPED,
3944 NR_FILE_DIRTY,
3945 NR_WRITEBACK,
3946 MEMCG_SWAP,
3947};
3948
3949static const char *const memcg1_stat_names[] = {
3950 "cache",
3951 "rss",
468c3982 3952#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3953 "rss_huge",
468c3982 3954#endif
c8713d0b
JW
3955 "shmem",
3956 "mapped_file",
3957 "dirty",
3958 "writeback",
3959 "swap",
3960};
3961
df0e53d0 3962/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3963static const unsigned int memcg1_events[] = {
df0e53d0
JW
3964 PGPGIN,
3965 PGPGOUT,
3966 PGFAULT,
3967 PGMAJFAULT,
3968};
3969
2da8ca82 3970static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3971{
aa9694bb 3972 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3973 unsigned long memory, memsw;
af7c4b0e
JW
3974 struct mem_cgroup *mi;
3975 unsigned int i;
406eb0c9 3976
71cd3113 3977 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3978
2d146aa3
JW
3979 cgroup_rstat_flush(memcg->css.cgroup);
3980
71cd3113 3981 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3982 unsigned long nr;
3983
71cd3113 3984 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3985 continue;
468c3982 3986 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3987 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3988 }
7b854121 3989
df0e53d0 3990 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3991 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3992 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3993
3994 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3995 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3996 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3997 PAGE_SIZE);
af7c4b0e 3998
14067bb3 3999 /* Hierarchical information */
3e32cb2e
JW
4000 memory = memsw = PAGE_COUNTER_MAX;
4001 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4002 memory = min(memory, READ_ONCE(mi->memory.max));
4003 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4004 }
3e32cb2e
JW
4005 seq_printf(m, "hierarchical_memory_limit %llu\n",
4006 (u64)memory * PAGE_SIZE);
7941d214 4007 if (do_memsw_account())
3e32cb2e
JW
4008 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4009 (u64)memsw * PAGE_SIZE);
7f016ee8 4010
8de7ecc6 4011 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4012 unsigned long nr;
4013
71cd3113 4014 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4015 continue;
7de2e9f1 4016 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4017 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4018 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4019 }
4020
8de7ecc6 4021 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4022 seq_printf(m, "total_%s %llu\n",
4023 vm_event_name(memcg1_events[i]),
dd923990 4024 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4025
8de7ecc6 4026 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4027 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4028 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4029 PAGE_SIZE);
14067bb3 4030
7f016ee8 4031#ifdef CONFIG_DEBUG_VM
7f016ee8 4032 {
ef8f2327
MG
4033 pg_data_t *pgdat;
4034 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4035 unsigned long anon_cost = 0;
4036 unsigned long file_cost = 0;
7f016ee8 4037
ef8f2327 4038 for_each_online_pgdat(pgdat) {
a3747b53 4039 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4040
1431d4d1
JW
4041 anon_cost += mz->lruvec.anon_cost;
4042 file_cost += mz->lruvec.file_cost;
ef8f2327 4043 }
1431d4d1
JW
4044 seq_printf(m, "anon_cost %lu\n", anon_cost);
4045 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4046 }
4047#endif
4048
d2ceb9b7
KH
4049 return 0;
4050}
4051
182446d0
TH
4052static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4053 struct cftype *cft)
a7885eb8 4054{
182446d0 4055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4056
1f4c025b 4057 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4058}
4059
182446d0
TH
4060static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4061 struct cftype *cft, u64 val)
a7885eb8 4062{
182446d0 4063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4064
3dae7fec 4065 if (val > 100)
a7885eb8
KM
4066 return -EINVAL;
4067
a4792030 4068 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4069 memcg->swappiness = val;
4070 else
4071 vm_swappiness = val;
068b38c1 4072
a7885eb8
KM
4073 return 0;
4074}
4075
2e72b634
KS
4076static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4077{
4078 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4079 unsigned long usage;
2e72b634
KS
4080 int i;
4081
4082 rcu_read_lock();
4083 if (!swap)
2c488db2 4084 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4085 else
2c488db2 4086 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4087
4088 if (!t)
4089 goto unlock;
4090
ce00a967 4091 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4092
4093 /*
748dad36 4094 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4095 * If it's not true, a threshold was crossed after last
4096 * call of __mem_cgroup_threshold().
4097 */
5407a562 4098 i = t->current_threshold;
2e72b634
KS
4099
4100 /*
4101 * Iterate backward over array of thresholds starting from
4102 * current_threshold and check if a threshold is crossed.
4103 * If none of thresholds below usage is crossed, we read
4104 * only one element of the array here.
4105 */
4106 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4107 eventfd_signal(t->entries[i].eventfd, 1);
4108
4109 /* i = current_threshold + 1 */
4110 i++;
4111
4112 /*
4113 * Iterate forward over array of thresholds starting from
4114 * current_threshold+1 and check if a threshold is crossed.
4115 * If none of thresholds above usage is crossed, we read
4116 * only one element of the array here.
4117 */
4118 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4119 eventfd_signal(t->entries[i].eventfd, 1);
4120
4121 /* Update current_threshold */
5407a562 4122 t->current_threshold = i - 1;
2e72b634
KS
4123unlock:
4124 rcu_read_unlock();
4125}
4126
4127static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4128{
ad4ca5f4
KS
4129 while (memcg) {
4130 __mem_cgroup_threshold(memcg, false);
7941d214 4131 if (do_memsw_account())
ad4ca5f4
KS
4132 __mem_cgroup_threshold(memcg, true);
4133
4134 memcg = parent_mem_cgroup(memcg);
4135 }
2e72b634
KS
4136}
4137
4138static int compare_thresholds(const void *a, const void *b)
4139{
4140 const struct mem_cgroup_threshold *_a = a;
4141 const struct mem_cgroup_threshold *_b = b;
4142
2bff24a3
GT
4143 if (_a->threshold > _b->threshold)
4144 return 1;
4145
4146 if (_a->threshold < _b->threshold)
4147 return -1;
4148
4149 return 0;
2e72b634
KS
4150}
4151
c0ff4b85 4152static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4153{
4154 struct mem_cgroup_eventfd_list *ev;
4155
2bcf2e92
MH
4156 spin_lock(&memcg_oom_lock);
4157
c0ff4b85 4158 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4159 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4160
4161 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4162 return 0;
4163}
4164
c0ff4b85 4165static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4166{
7d74b06f
KH
4167 struct mem_cgroup *iter;
4168
c0ff4b85 4169 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4170 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4171}
4172
59b6f873 4173static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4174 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4175{
2c488db2
KS
4176 struct mem_cgroup_thresholds *thresholds;
4177 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4178 unsigned long threshold;
4179 unsigned long usage;
2c488db2 4180 int i, size, ret;
2e72b634 4181
650c5e56 4182 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4183 if (ret)
4184 return ret;
4185
4186 mutex_lock(&memcg->thresholds_lock);
2c488db2 4187
05b84301 4188 if (type == _MEM) {
2c488db2 4189 thresholds = &memcg->thresholds;
ce00a967 4190 usage = mem_cgroup_usage(memcg, false);
05b84301 4191 } else if (type == _MEMSWAP) {
2c488db2 4192 thresholds = &memcg->memsw_thresholds;
ce00a967 4193 usage = mem_cgroup_usage(memcg, true);
05b84301 4194 } else
2e72b634
KS
4195 BUG();
4196
2e72b634 4197 /* Check if a threshold crossed before adding a new one */
2c488db2 4198 if (thresholds->primary)
2e72b634
KS
4199 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4200
2c488db2 4201 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4202
4203 /* Allocate memory for new array of thresholds */
67b8046f 4204 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4205 if (!new) {
2e72b634
KS
4206 ret = -ENOMEM;
4207 goto unlock;
4208 }
2c488db2 4209 new->size = size;
2e72b634
KS
4210
4211 /* Copy thresholds (if any) to new array */
e90342e6
GS
4212 if (thresholds->primary)
4213 memcpy(new->entries, thresholds->primary->entries,
4214 flex_array_size(new, entries, size - 1));
2c488db2 4215
2e72b634 4216 /* Add new threshold */
2c488db2
KS
4217 new->entries[size - 1].eventfd = eventfd;
4218 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4219
4220 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4221 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4222 compare_thresholds, NULL);
4223
4224 /* Find current threshold */
2c488db2 4225 new->current_threshold = -1;
2e72b634 4226 for (i = 0; i < size; i++) {
748dad36 4227 if (new->entries[i].threshold <= usage) {
2e72b634 4228 /*
2c488db2
KS
4229 * new->current_threshold will not be used until
4230 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4231 * it here.
4232 */
2c488db2 4233 ++new->current_threshold;
748dad36
SZ
4234 } else
4235 break;
2e72b634
KS
4236 }
4237
2c488db2
KS
4238 /* Free old spare buffer and save old primary buffer as spare */
4239 kfree(thresholds->spare);
4240 thresholds->spare = thresholds->primary;
4241
4242 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4243
907860ed 4244 /* To be sure that nobody uses thresholds */
2e72b634
KS
4245 synchronize_rcu();
4246
2e72b634
KS
4247unlock:
4248 mutex_unlock(&memcg->thresholds_lock);
4249
4250 return ret;
4251}
4252
59b6f873 4253static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4254 struct eventfd_ctx *eventfd, const char *args)
4255{
59b6f873 4256 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4257}
4258
59b6f873 4259static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4260 struct eventfd_ctx *eventfd, const char *args)
4261{
59b6f873 4262 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4263}
4264
59b6f873 4265static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4266 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4267{
2c488db2
KS
4268 struct mem_cgroup_thresholds *thresholds;
4269 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4270 unsigned long usage;
7d36665a 4271 int i, j, size, entries;
2e72b634
KS
4272
4273 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4274
4275 if (type == _MEM) {
2c488db2 4276 thresholds = &memcg->thresholds;
ce00a967 4277 usage = mem_cgroup_usage(memcg, false);
05b84301 4278 } else if (type == _MEMSWAP) {
2c488db2 4279 thresholds = &memcg->memsw_thresholds;
ce00a967 4280 usage = mem_cgroup_usage(memcg, true);
05b84301 4281 } else
2e72b634
KS
4282 BUG();
4283
371528ca
AV
4284 if (!thresholds->primary)
4285 goto unlock;
4286
2e72b634
KS
4287 /* Check if a threshold crossed before removing */
4288 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4289
4290 /* Calculate new number of threshold */
7d36665a 4291 size = entries = 0;
2c488db2
KS
4292 for (i = 0; i < thresholds->primary->size; i++) {
4293 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4294 size++;
7d36665a
CX
4295 else
4296 entries++;
2e72b634
KS
4297 }
4298
2c488db2 4299 new = thresholds->spare;
907860ed 4300
7d36665a
CX
4301 /* If no items related to eventfd have been cleared, nothing to do */
4302 if (!entries)
4303 goto unlock;
4304
2e72b634
KS
4305 /* Set thresholds array to NULL if we don't have thresholds */
4306 if (!size) {
2c488db2
KS
4307 kfree(new);
4308 new = NULL;
907860ed 4309 goto swap_buffers;
2e72b634
KS
4310 }
4311
2c488db2 4312 new->size = size;
2e72b634
KS
4313
4314 /* Copy thresholds and find current threshold */
2c488db2
KS
4315 new->current_threshold = -1;
4316 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4317 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4318 continue;
4319
2c488db2 4320 new->entries[j] = thresholds->primary->entries[i];
748dad36 4321 if (new->entries[j].threshold <= usage) {
2e72b634 4322 /*
2c488db2 4323 * new->current_threshold will not be used
2e72b634
KS
4324 * until rcu_assign_pointer(), so it's safe to increment
4325 * it here.
4326 */
2c488db2 4327 ++new->current_threshold;
2e72b634
KS
4328 }
4329 j++;
4330 }
4331
907860ed 4332swap_buffers:
2c488db2
KS
4333 /* Swap primary and spare array */
4334 thresholds->spare = thresholds->primary;
8c757763 4335
2c488db2 4336 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4337
907860ed 4338 /* To be sure that nobody uses thresholds */
2e72b634 4339 synchronize_rcu();
6611d8d7
MC
4340
4341 /* If all events are unregistered, free the spare array */
4342 if (!new) {
4343 kfree(thresholds->spare);
4344 thresholds->spare = NULL;
4345 }
371528ca 4346unlock:
2e72b634 4347 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4348}
c1e862c1 4349
59b6f873 4350static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4351 struct eventfd_ctx *eventfd)
4352{
59b6f873 4353 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4354}
4355
59b6f873 4356static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4357 struct eventfd_ctx *eventfd)
4358{
59b6f873 4359 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4360}
4361
59b6f873 4362static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4363 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4364{
9490ff27 4365 struct mem_cgroup_eventfd_list *event;
9490ff27 4366
9490ff27
KH
4367 event = kmalloc(sizeof(*event), GFP_KERNEL);
4368 if (!event)
4369 return -ENOMEM;
4370
1af8efe9 4371 spin_lock(&memcg_oom_lock);
9490ff27
KH
4372
4373 event->eventfd = eventfd;
4374 list_add(&event->list, &memcg->oom_notify);
4375
4376 /* already in OOM ? */
c2b42d3c 4377 if (memcg->under_oom)
9490ff27 4378 eventfd_signal(eventfd, 1);
1af8efe9 4379 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4380
4381 return 0;
4382}
4383
59b6f873 4384static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4385 struct eventfd_ctx *eventfd)
9490ff27 4386{
9490ff27 4387 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4388
1af8efe9 4389 spin_lock(&memcg_oom_lock);
9490ff27 4390
c0ff4b85 4391 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4392 if (ev->eventfd == eventfd) {
4393 list_del(&ev->list);
4394 kfree(ev);
4395 }
4396 }
4397
1af8efe9 4398 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4399}
4400
2da8ca82 4401static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4402{
aa9694bb 4403 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4404
791badbd 4405 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4406 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4407 seq_printf(sf, "oom_kill %lu\n",
4408 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4409 return 0;
4410}
4411
182446d0 4412static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4413 struct cftype *cft, u64 val)
4414{
182446d0 4415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4416
4417 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4418 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4419 return -EINVAL;
4420
c0ff4b85 4421 memcg->oom_kill_disable = val;
4d845ebf 4422 if (!val)
c0ff4b85 4423 memcg_oom_recover(memcg);
3dae7fec 4424
3c11ecf4
KH
4425 return 0;
4426}
4427
52ebea74
TH
4428#ifdef CONFIG_CGROUP_WRITEBACK
4429
3a8e9ac8
TH
4430#include <trace/events/writeback.h>
4431
841710aa
TH
4432static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4433{
4434 return wb_domain_init(&memcg->cgwb_domain, gfp);
4435}
4436
4437static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4438{
4439 wb_domain_exit(&memcg->cgwb_domain);
4440}
4441
2529bb3a
TH
4442static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4443{
4444 wb_domain_size_changed(&memcg->cgwb_domain);
4445}
4446
841710aa
TH
4447struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4448{
4449 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4450
4451 if (!memcg->css.parent)
4452 return NULL;
4453
4454 return &memcg->cgwb_domain;
4455}
4456
c2aa723a
TH
4457/**
4458 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4459 * @wb: bdi_writeback in question
c5edf9cd
TH
4460 * @pfilepages: out parameter for number of file pages
4461 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4462 * @pdirty: out parameter for number of dirty pages
4463 * @pwriteback: out parameter for number of pages under writeback
4464 *
c5edf9cd
TH
4465 * Determine the numbers of file, headroom, dirty, and writeback pages in
4466 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4467 * is a bit more involved.
c2aa723a 4468 *
c5edf9cd
TH
4469 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4470 * headroom is calculated as the lowest headroom of itself and the
4471 * ancestors. Note that this doesn't consider the actual amount of
4472 * available memory in the system. The caller should further cap
4473 * *@pheadroom accordingly.
c2aa723a 4474 */
c5edf9cd
TH
4475void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4476 unsigned long *pheadroom, unsigned long *pdirty,
4477 unsigned long *pwriteback)
c2aa723a
TH
4478{
4479 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4480 struct mem_cgroup *parent;
c2aa723a 4481
2d146aa3 4482 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4483
2d146aa3
JW
4484 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4485 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4486 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4487 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4488
2d146aa3 4489 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4490 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4491 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4492 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4493 unsigned long used = page_counter_read(&memcg->memory);
4494
c5edf9cd 4495 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4496 memcg = parent;
4497 }
c2aa723a
TH
4498}
4499
97b27821
TH
4500/*
4501 * Foreign dirty flushing
4502 *
4503 * There's an inherent mismatch between memcg and writeback. The former
4504 * trackes ownership per-page while the latter per-inode. This was a
4505 * deliberate design decision because honoring per-page ownership in the
4506 * writeback path is complicated, may lead to higher CPU and IO overheads
4507 * and deemed unnecessary given that write-sharing an inode across
4508 * different cgroups isn't a common use-case.
4509 *
4510 * Combined with inode majority-writer ownership switching, this works well
4511 * enough in most cases but there are some pathological cases. For
4512 * example, let's say there are two cgroups A and B which keep writing to
4513 * different but confined parts of the same inode. B owns the inode and
4514 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4515 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4516 * triggering background writeback. A will be slowed down without a way to
4517 * make writeback of the dirty pages happen.
4518 *
4519 * Conditions like the above can lead to a cgroup getting repatedly and
4520 * severely throttled after making some progress after each
4521 * dirty_expire_interval while the underyling IO device is almost
4522 * completely idle.
4523 *
4524 * Solving this problem completely requires matching the ownership tracking
4525 * granularities between memcg and writeback in either direction. However,
4526 * the more egregious behaviors can be avoided by simply remembering the
4527 * most recent foreign dirtying events and initiating remote flushes on
4528 * them when local writeback isn't enough to keep the memory clean enough.
4529 *
4530 * The following two functions implement such mechanism. When a foreign
4531 * page - a page whose memcg and writeback ownerships don't match - is
4532 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4533 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4534 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4535 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4536 * foreign bdi_writebacks which haven't expired. Both the numbers of
4537 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4538 * limited to MEMCG_CGWB_FRN_CNT.
4539 *
4540 * The mechanism only remembers IDs and doesn't hold any object references.
4541 * As being wrong occasionally doesn't matter, updates and accesses to the
4542 * records are lockless and racy.
4543 */
4544void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4545 struct bdi_writeback *wb)
4546{
bcfe06bf 4547 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4548 struct memcg_cgwb_frn *frn;
4549 u64 now = get_jiffies_64();
4550 u64 oldest_at = now;
4551 int oldest = -1;
4552 int i;
4553
3a8e9ac8
TH
4554 trace_track_foreign_dirty(page, wb);
4555
97b27821
TH
4556 /*
4557 * Pick the slot to use. If there is already a slot for @wb, keep
4558 * using it. If not replace the oldest one which isn't being
4559 * written out.
4560 */
4561 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4562 frn = &memcg->cgwb_frn[i];
4563 if (frn->bdi_id == wb->bdi->id &&
4564 frn->memcg_id == wb->memcg_css->id)
4565 break;
4566 if (time_before64(frn->at, oldest_at) &&
4567 atomic_read(&frn->done.cnt) == 1) {
4568 oldest = i;
4569 oldest_at = frn->at;
4570 }
4571 }
4572
4573 if (i < MEMCG_CGWB_FRN_CNT) {
4574 /*
4575 * Re-using an existing one. Update timestamp lazily to
4576 * avoid making the cacheline hot. We want them to be
4577 * reasonably up-to-date and significantly shorter than
4578 * dirty_expire_interval as that's what expires the record.
4579 * Use the shorter of 1s and dirty_expire_interval / 8.
4580 */
4581 unsigned long update_intv =
4582 min_t(unsigned long, HZ,
4583 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4584
4585 if (time_before64(frn->at, now - update_intv))
4586 frn->at = now;
4587 } else if (oldest >= 0) {
4588 /* replace the oldest free one */
4589 frn = &memcg->cgwb_frn[oldest];
4590 frn->bdi_id = wb->bdi->id;
4591 frn->memcg_id = wb->memcg_css->id;
4592 frn->at = now;
4593 }
4594}
4595
4596/* issue foreign writeback flushes for recorded foreign dirtying events */
4597void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4598{
4599 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4600 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4601 u64 now = jiffies_64;
4602 int i;
4603
4604 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4605 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4606
4607 /*
4608 * If the record is older than dirty_expire_interval,
4609 * writeback on it has already started. No need to kick it
4610 * off again. Also, don't start a new one if there's
4611 * already one in flight.
4612 */
4613 if (time_after64(frn->at, now - intv) &&
4614 atomic_read(&frn->done.cnt) == 1) {
4615 frn->at = 0;
3a8e9ac8 4616 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4617 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4618 WB_REASON_FOREIGN_FLUSH,
4619 &frn->done);
4620 }
4621 }
4622}
4623
841710aa
TH
4624#else /* CONFIG_CGROUP_WRITEBACK */
4625
4626static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4627{
4628 return 0;
4629}
4630
4631static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4632{
4633}
4634
2529bb3a
TH
4635static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4636{
4637}
4638
52ebea74
TH
4639#endif /* CONFIG_CGROUP_WRITEBACK */
4640
3bc942f3
TH
4641/*
4642 * DO NOT USE IN NEW FILES.
4643 *
4644 * "cgroup.event_control" implementation.
4645 *
4646 * This is way over-engineered. It tries to support fully configurable
4647 * events for each user. Such level of flexibility is completely
4648 * unnecessary especially in the light of the planned unified hierarchy.
4649 *
4650 * Please deprecate this and replace with something simpler if at all
4651 * possible.
4652 */
4653
79bd9814
TH
4654/*
4655 * Unregister event and free resources.
4656 *
4657 * Gets called from workqueue.
4658 */
3bc942f3 4659static void memcg_event_remove(struct work_struct *work)
79bd9814 4660{
3bc942f3
TH
4661 struct mem_cgroup_event *event =
4662 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4663 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4664
4665 remove_wait_queue(event->wqh, &event->wait);
4666
59b6f873 4667 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4668
4669 /* Notify userspace the event is going away. */
4670 eventfd_signal(event->eventfd, 1);
4671
4672 eventfd_ctx_put(event->eventfd);
4673 kfree(event);
59b6f873 4674 css_put(&memcg->css);
79bd9814
TH
4675}
4676
4677/*
a9a08845 4678 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4679 *
4680 * Called with wqh->lock held and interrupts disabled.
4681 */
ac6424b9 4682static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4683 int sync, void *key)
79bd9814 4684{
3bc942f3
TH
4685 struct mem_cgroup_event *event =
4686 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4687 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4688 __poll_t flags = key_to_poll(key);
79bd9814 4689
a9a08845 4690 if (flags & EPOLLHUP) {
79bd9814
TH
4691 /*
4692 * If the event has been detached at cgroup removal, we
4693 * can simply return knowing the other side will cleanup
4694 * for us.
4695 *
4696 * We can't race against event freeing since the other
4697 * side will require wqh->lock via remove_wait_queue(),
4698 * which we hold.
4699 */
fba94807 4700 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4701 if (!list_empty(&event->list)) {
4702 list_del_init(&event->list);
4703 /*
4704 * We are in atomic context, but cgroup_event_remove()
4705 * may sleep, so we have to call it in workqueue.
4706 */
4707 schedule_work(&event->remove);
4708 }
fba94807 4709 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4710 }
4711
4712 return 0;
4713}
4714
3bc942f3 4715static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4716 wait_queue_head_t *wqh, poll_table *pt)
4717{
3bc942f3
TH
4718 struct mem_cgroup_event *event =
4719 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4720
4721 event->wqh = wqh;
4722 add_wait_queue(wqh, &event->wait);
4723}
4724
4725/*
3bc942f3
TH
4726 * DO NOT USE IN NEW FILES.
4727 *
79bd9814
TH
4728 * Parse input and register new cgroup event handler.
4729 *
4730 * Input must be in format '<event_fd> <control_fd> <args>'.
4731 * Interpretation of args is defined by control file implementation.
4732 */
451af504
TH
4733static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4734 char *buf, size_t nbytes, loff_t off)
79bd9814 4735{
451af504 4736 struct cgroup_subsys_state *css = of_css(of);
fba94807 4737 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4738 struct mem_cgroup_event *event;
79bd9814
TH
4739 struct cgroup_subsys_state *cfile_css;
4740 unsigned int efd, cfd;
4741 struct fd efile;
4742 struct fd cfile;
fba94807 4743 const char *name;
79bd9814
TH
4744 char *endp;
4745 int ret;
4746
451af504
TH
4747 buf = strstrip(buf);
4748
4749 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4750 if (*endp != ' ')
4751 return -EINVAL;
451af504 4752 buf = endp + 1;
79bd9814 4753
451af504 4754 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4755 if ((*endp != ' ') && (*endp != '\0'))
4756 return -EINVAL;
451af504 4757 buf = endp + 1;
79bd9814
TH
4758
4759 event = kzalloc(sizeof(*event), GFP_KERNEL);
4760 if (!event)
4761 return -ENOMEM;
4762
59b6f873 4763 event->memcg = memcg;
79bd9814 4764 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4765 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4766 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4767 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4768
4769 efile = fdget(efd);
4770 if (!efile.file) {
4771 ret = -EBADF;
4772 goto out_kfree;
4773 }
4774
4775 event->eventfd = eventfd_ctx_fileget(efile.file);
4776 if (IS_ERR(event->eventfd)) {
4777 ret = PTR_ERR(event->eventfd);
4778 goto out_put_efile;
4779 }
4780
4781 cfile = fdget(cfd);
4782 if (!cfile.file) {
4783 ret = -EBADF;
4784 goto out_put_eventfd;
4785 }
4786
4787 /* the process need read permission on control file */
4788 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4789 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4790 if (ret < 0)
4791 goto out_put_cfile;
4792
fba94807
TH
4793 /*
4794 * Determine the event callbacks and set them in @event. This used
4795 * to be done via struct cftype but cgroup core no longer knows
4796 * about these events. The following is crude but the whole thing
4797 * is for compatibility anyway.
3bc942f3
TH
4798 *
4799 * DO NOT ADD NEW FILES.
fba94807 4800 */
b583043e 4801 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4802
4803 if (!strcmp(name, "memory.usage_in_bytes")) {
4804 event->register_event = mem_cgroup_usage_register_event;
4805 event->unregister_event = mem_cgroup_usage_unregister_event;
4806 } else if (!strcmp(name, "memory.oom_control")) {
4807 event->register_event = mem_cgroup_oom_register_event;
4808 event->unregister_event = mem_cgroup_oom_unregister_event;
4809 } else if (!strcmp(name, "memory.pressure_level")) {
4810 event->register_event = vmpressure_register_event;
4811 event->unregister_event = vmpressure_unregister_event;
4812 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4813 event->register_event = memsw_cgroup_usage_register_event;
4814 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4815 } else {
4816 ret = -EINVAL;
4817 goto out_put_cfile;
4818 }
4819
79bd9814 4820 /*
b5557c4c
TH
4821 * Verify @cfile should belong to @css. Also, remaining events are
4822 * automatically removed on cgroup destruction but the removal is
4823 * asynchronous, so take an extra ref on @css.
79bd9814 4824 */
b583043e 4825 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4826 &memory_cgrp_subsys);
79bd9814 4827 ret = -EINVAL;
5a17f543 4828 if (IS_ERR(cfile_css))
79bd9814 4829 goto out_put_cfile;
5a17f543
TH
4830 if (cfile_css != css) {
4831 css_put(cfile_css);
79bd9814 4832 goto out_put_cfile;
5a17f543 4833 }
79bd9814 4834
451af504 4835 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4836 if (ret)
4837 goto out_put_css;
4838
9965ed17 4839 vfs_poll(efile.file, &event->pt);
79bd9814 4840
fba94807
TH
4841 spin_lock(&memcg->event_list_lock);
4842 list_add(&event->list, &memcg->event_list);
4843 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4844
4845 fdput(cfile);
4846 fdput(efile);
4847
451af504 4848 return nbytes;
79bd9814
TH
4849
4850out_put_css:
b5557c4c 4851 css_put(css);
79bd9814
TH
4852out_put_cfile:
4853 fdput(cfile);
4854out_put_eventfd:
4855 eventfd_ctx_put(event->eventfd);
4856out_put_efile:
4857 fdput(efile);
4858out_kfree:
4859 kfree(event);
4860
4861 return ret;
4862}
4863
241994ed 4864static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4865 {
0eea1030 4866 .name = "usage_in_bytes",
8c7c6e34 4867 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4868 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4869 },
c84872e1
PE
4870 {
4871 .name = "max_usage_in_bytes",
8c7c6e34 4872 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4873 .write = mem_cgroup_reset,
791badbd 4874 .read_u64 = mem_cgroup_read_u64,
c84872e1 4875 },
8cdea7c0 4876 {
0eea1030 4877 .name = "limit_in_bytes",
8c7c6e34 4878 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4879 .write = mem_cgroup_write,
791badbd 4880 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4881 },
296c81d8
BS
4882 {
4883 .name = "soft_limit_in_bytes",
4884 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4885 .write = mem_cgroup_write,
791badbd 4886 .read_u64 = mem_cgroup_read_u64,
296c81d8 4887 },
8cdea7c0
BS
4888 {
4889 .name = "failcnt",
8c7c6e34 4890 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4891 .write = mem_cgroup_reset,
791badbd 4892 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4893 },
d2ceb9b7
KH
4894 {
4895 .name = "stat",
2da8ca82 4896 .seq_show = memcg_stat_show,
d2ceb9b7 4897 },
c1e862c1
KH
4898 {
4899 .name = "force_empty",
6770c64e 4900 .write = mem_cgroup_force_empty_write,
c1e862c1 4901 },
18f59ea7
BS
4902 {
4903 .name = "use_hierarchy",
4904 .write_u64 = mem_cgroup_hierarchy_write,
4905 .read_u64 = mem_cgroup_hierarchy_read,
4906 },
79bd9814 4907 {
3bc942f3 4908 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4909 .write = memcg_write_event_control,
7dbdb199 4910 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4911 },
a7885eb8
KM
4912 {
4913 .name = "swappiness",
4914 .read_u64 = mem_cgroup_swappiness_read,
4915 .write_u64 = mem_cgroup_swappiness_write,
4916 },
7dc74be0
DN
4917 {
4918 .name = "move_charge_at_immigrate",
4919 .read_u64 = mem_cgroup_move_charge_read,
4920 .write_u64 = mem_cgroup_move_charge_write,
4921 },
9490ff27
KH
4922 {
4923 .name = "oom_control",
2da8ca82 4924 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4925 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4926 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4927 },
70ddf637
AV
4928 {
4929 .name = "pressure_level",
70ddf637 4930 },
406eb0c9
YH
4931#ifdef CONFIG_NUMA
4932 {
4933 .name = "numa_stat",
2da8ca82 4934 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4935 },
4936#endif
510fc4e1
GC
4937 {
4938 .name = "kmem.limit_in_bytes",
4939 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4940 .write = mem_cgroup_write,
791badbd 4941 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4942 },
4943 {
4944 .name = "kmem.usage_in_bytes",
4945 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4946 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4947 },
4948 {
4949 .name = "kmem.failcnt",
4950 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4951 .write = mem_cgroup_reset,
791badbd 4952 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4953 },
4954 {
4955 .name = "kmem.max_usage_in_bytes",
4956 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4957 .write = mem_cgroup_reset,
791badbd 4958 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4959 },
a87425a3
YS
4960#if defined(CONFIG_MEMCG_KMEM) && \
4961 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4962 {
4963 .name = "kmem.slabinfo",
b047501c 4964 .seq_show = memcg_slab_show,
749c5415
GC
4965 },
4966#endif
d55f90bf
VD
4967 {
4968 .name = "kmem.tcp.limit_in_bytes",
4969 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4970 .write = mem_cgroup_write,
4971 .read_u64 = mem_cgroup_read_u64,
4972 },
4973 {
4974 .name = "kmem.tcp.usage_in_bytes",
4975 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4976 .read_u64 = mem_cgroup_read_u64,
4977 },
4978 {
4979 .name = "kmem.tcp.failcnt",
4980 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4981 .write = mem_cgroup_reset,
4982 .read_u64 = mem_cgroup_read_u64,
4983 },
4984 {
4985 .name = "kmem.tcp.max_usage_in_bytes",
4986 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4987 .write = mem_cgroup_reset,
4988 .read_u64 = mem_cgroup_read_u64,
4989 },
6bc10349 4990 { }, /* terminate */
af36f906 4991};
8c7c6e34 4992
73f576c0
JW
4993/*
4994 * Private memory cgroup IDR
4995 *
4996 * Swap-out records and page cache shadow entries need to store memcg
4997 * references in constrained space, so we maintain an ID space that is
4998 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4999 * memory-controlled cgroups to 64k.
5000 *
b8f2935f 5001 * However, there usually are many references to the offline CSS after
73f576c0
JW
5002 * the cgroup has been destroyed, such as page cache or reclaimable
5003 * slab objects, that don't need to hang on to the ID. We want to keep
5004 * those dead CSS from occupying IDs, or we might quickly exhaust the
5005 * relatively small ID space and prevent the creation of new cgroups
5006 * even when there are much fewer than 64k cgroups - possibly none.
5007 *
5008 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5009 * be freed and recycled when it's no longer needed, which is usually
5010 * when the CSS is offlined.
5011 *
5012 * The only exception to that are records of swapped out tmpfs/shmem
5013 * pages that need to be attributed to live ancestors on swapin. But
5014 * those references are manageable from userspace.
5015 */
5016
5017static DEFINE_IDR(mem_cgroup_idr);
5018
7e97de0b
KT
5019static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5020{
5021 if (memcg->id.id > 0) {
5022 idr_remove(&mem_cgroup_idr, memcg->id.id);
5023 memcg->id.id = 0;
5024 }
5025}
5026
c1514c0a
VF
5027static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5028 unsigned int n)
73f576c0 5029{
1c2d479a 5030 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5031}
5032
615d66c3 5033static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5034{
1c2d479a 5035 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5036 mem_cgroup_id_remove(memcg);
73f576c0
JW
5037
5038 /* Memcg ID pins CSS */
5039 css_put(&memcg->css);
5040 }
5041}
5042
615d66c3
VD
5043static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5044{
5045 mem_cgroup_id_put_many(memcg, 1);
5046}
5047
73f576c0
JW
5048/**
5049 * mem_cgroup_from_id - look up a memcg from a memcg id
5050 * @id: the memcg id to look up
5051 *
5052 * Caller must hold rcu_read_lock().
5053 */
5054struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5055{
5056 WARN_ON_ONCE(!rcu_read_lock_held());
5057 return idr_find(&mem_cgroup_idr, id);
5058}
5059
ef8f2327 5060static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5061{
5062 struct mem_cgroup_per_node *pn;
ef8f2327 5063 int tmp = node;
1ecaab2b
KH
5064 /*
5065 * This routine is called against possible nodes.
5066 * But it's BUG to call kmalloc() against offline node.
5067 *
5068 * TODO: this routine can waste much memory for nodes which will
5069 * never be onlined. It's better to use memory hotplug callback
5070 * function.
5071 */
41e3355d
KH
5072 if (!node_state(node, N_NORMAL_MEMORY))
5073 tmp = -1;
17295c88 5074 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5075 if (!pn)
5076 return 1;
1ecaab2b 5077
3e38e0aa
RG
5078 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5079 GFP_KERNEL_ACCOUNT);
815744d7
JW
5080 if (!pn->lruvec_stat_local) {
5081 kfree(pn);
5082 return 1;
5083 }
5084
f3344adf 5085 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5086 GFP_KERNEL_ACCOUNT);
a983b5eb 5087 if (!pn->lruvec_stat_cpu) {
815744d7 5088 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5089 kfree(pn);
5090 return 1;
5091 }
5092
ef8f2327
MG
5093 lruvec_init(&pn->lruvec);
5094 pn->usage_in_excess = 0;
5095 pn->on_tree = false;
5096 pn->memcg = memcg;
5097
54f72fe0 5098 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5099 return 0;
5100}
5101
ef8f2327 5102static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5103{
00f3ca2c
JW
5104 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5105
4eaf431f
MH
5106 if (!pn)
5107 return;
5108
a983b5eb 5109 free_percpu(pn->lruvec_stat_cpu);
815744d7 5110 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5111 kfree(pn);
1ecaab2b
KH
5112}
5113
40e952f9 5114static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5115{
c8b2a36f 5116 int node;
59927fb9 5117
c8b2a36f 5118 for_each_node(node)
ef8f2327 5119 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5120 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5121 kfree(memcg);
59927fb9 5122}
3afe36b1 5123
40e952f9
TE
5124static void mem_cgroup_free(struct mem_cgroup *memcg)
5125{
2cd21c89
JW
5126 int cpu;
5127
40e952f9 5128 memcg_wb_domain_exit(memcg);
7961eee3 5129 /*
2d146aa3
JW
5130 * Flush percpu lruvec stats to guarantee the value
5131 * correctness on parent's and all ancestor levels.
7961eee3 5132 */
2cd21c89
JW
5133 for_each_online_cpu(cpu)
5134 memcg_flush_lruvec_page_state(memcg, cpu);
40e952f9
TE
5135 __mem_cgroup_free(memcg);
5136}
5137
0b8f73e1 5138static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5139{
d142e3e6 5140 struct mem_cgroup *memcg;
b9726c26 5141 unsigned int size;
6d12e2d8 5142 int node;
97b27821 5143 int __maybe_unused i;
11d67612 5144 long error = -ENOMEM;
8cdea7c0 5145
0b8f73e1
JW
5146 size = sizeof(struct mem_cgroup);
5147 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5148
5149 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5150 if (!memcg)
11d67612 5151 return ERR_PTR(error);
0b8f73e1 5152
73f576c0
JW
5153 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5154 1, MEM_CGROUP_ID_MAX,
5155 GFP_KERNEL);
11d67612
YS
5156 if (memcg->id.id < 0) {
5157 error = memcg->id.id;
73f576c0 5158 goto fail;
11d67612 5159 }
73f576c0 5160
3e38e0aa
RG
5161 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5162 GFP_KERNEL_ACCOUNT);
871789d4 5163 if (!memcg->vmstats_percpu)
0b8f73e1 5164 goto fail;
78fb7466 5165
3ed28fa1 5166 for_each_node(node)
ef8f2327 5167 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5168 goto fail;
f64c3f54 5169
0b8f73e1
JW
5170 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5171 goto fail;
28dbc4b6 5172
f7e1cb6e 5173 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5174 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5175 mutex_init(&memcg->thresholds_lock);
5176 spin_lock_init(&memcg->move_lock);
70ddf637 5177 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5178 INIT_LIST_HEAD(&memcg->event_list);
5179 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5180 memcg->socket_pressure = jiffies;
84c07d11 5181#ifdef CONFIG_MEMCG_KMEM
900a38f0 5182 memcg->kmemcg_id = -1;
bf4f0599 5183 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5184#endif
52ebea74
TH
5185#ifdef CONFIG_CGROUP_WRITEBACK
5186 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5187 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5188 memcg->cgwb_frn[i].done =
5189 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5190#endif
5191#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5192 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5193 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5194 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5195#endif
73f576c0 5196 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5197 return memcg;
5198fail:
7e97de0b 5199 mem_cgroup_id_remove(memcg);
40e952f9 5200 __mem_cgroup_free(memcg);
11d67612 5201 return ERR_PTR(error);
d142e3e6
GC
5202}
5203
0b8f73e1
JW
5204static struct cgroup_subsys_state * __ref
5205mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5206{
0b8f73e1 5207 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5208 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5209 long error = -ENOMEM;
d142e3e6 5210
b87d8cef 5211 old_memcg = set_active_memcg(parent);
0b8f73e1 5212 memcg = mem_cgroup_alloc();
b87d8cef 5213 set_active_memcg(old_memcg);
11d67612
YS
5214 if (IS_ERR(memcg))
5215 return ERR_CAST(memcg);
d142e3e6 5216
d1663a90 5217 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5218 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5219 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5220 if (parent) {
5221 memcg->swappiness = mem_cgroup_swappiness(parent);
5222 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5223
3e32cb2e 5224 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5225 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5226 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5227 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5228 } else {
bef8620c
RG
5229 page_counter_init(&memcg->memory, NULL);
5230 page_counter_init(&memcg->swap, NULL);
5231 page_counter_init(&memcg->kmem, NULL);
5232 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5233
0b8f73e1
JW
5234 root_mem_cgroup = memcg;
5235 return &memcg->css;
5236 }
5237
bef8620c 5238 /* The following stuff does not apply to the root */
b313aeee 5239 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5240 if (error)
5241 goto fail;
127424c8 5242
f7e1cb6e 5243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5244 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5245
0b8f73e1
JW
5246 return &memcg->css;
5247fail:
7e97de0b 5248 mem_cgroup_id_remove(memcg);
0b8f73e1 5249 mem_cgroup_free(memcg);
11d67612 5250 return ERR_PTR(error);
0b8f73e1
JW
5251}
5252
73f576c0 5253static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5254{
58fa2a55
VD
5255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5256
0a4465d3
KT
5257 /*
5258 * A memcg must be visible for memcg_expand_shrinker_maps()
5259 * by the time the maps are allocated. So, we allocate maps
5260 * here, when for_each_mem_cgroup() can't skip it.
5261 */
5262 if (memcg_alloc_shrinker_maps(memcg)) {
5263 mem_cgroup_id_remove(memcg);
5264 return -ENOMEM;
5265 }
5266
73f576c0 5267 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5268 refcount_set(&memcg->id.ref, 1);
73f576c0 5269 css_get(css);
2f7dd7a4 5270 return 0;
8cdea7c0
BS
5271}
5272
eb95419b 5273static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5274{
eb95419b 5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5276 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5277
5278 /*
5279 * Unregister events and notify userspace.
5280 * Notify userspace about cgroup removing only after rmdir of cgroup
5281 * directory to avoid race between userspace and kernelspace.
5282 */
fba94807
TH
5283 spin_lock(&memcg->event_list_lock);
5284 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5285 list_del_init(&event->list);
5286 schedule_work(&event->remove);
5287 }
fba94807 5288 spin_unlock(&memcg->event_list_lock);
ec64f515 5289
bf8d5d52 5290 page_counter_set_min(&memcg->memory, 0);
23067153 5291 page_counter_set_low(&memcg->memory, 0);
63677c74 5292
567e9ab2 5293 memcg_offline_kmem(memcg);
52ebea74 5294 wb_memcg_offline(memcg);
73f576c0 5295
591edfb1
RG
5296 drain_all_stock(memcg);
5297
73f576c0 5298 mem_cgroup_id_put(memcg);
df878fb0
KH
5299}
5300
6df38689
VD
5301static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5302{
5303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5304
5305 invalidate_reclaim_iterators(memcg);
5306}
5307
eb95419b 5308static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5309{
eb95419b 5310 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5311 int __maybe_unused i;
c268e994 5312
97b27821
TH
5313#ifdef CONFIG_CGROUP_WRITEBACK
5314 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5315 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5316#endif
f7e1cb6e 5317 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5318 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5319
0db15298 5320 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5321 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5322
0b8f73e1
JW
5323 vmpressure_cleanup(&memcg->vmpressure);
5324 cancel_work_sync(&memcg->high_work);
5325 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5326 memcg_free_shrinker_maps(memcg);
d886f4e4 5327 memcg_free_kmem(memcg);
0b8f73e1 5328 mem_cgroup_free(memcg);
8cdea7c0
BS
5329}
5330
1ced953b
TH
5331/**
5332 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5333 * @css: the target css
5334 *
5335 * Reset the states of the mem_cgroup associated with @css. This is
5336 * invoked when the userland requests disabling on the default hierarchy
5337 * but the memcg is pinned through dependency. The memcg should stop
5338 * applying policies and should revert to the vanilla state as it may be
5339 * made visible again.
5340 *
5341 * The current implementation only resets the essential configurations.
5342 * This needs to be expanded to cover all the visible parts.
5343 */
5344static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5345{
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
bbec2e15
RG
5348 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5349 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5350 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5351 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5352 page_counter_set_min(&memcg->memory, 0);
23067153 5353 page_counter_set_low(&memcg->memory, 0);
d1663a90 5354 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5355 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5356 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5357 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5358}
5359
2d146aa3
JW
5360static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5361{
5362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5364 struct memcg_vmstats_percpu *statc;
5365 long delta, v;
5366 int i;
5367
5368 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5369
5370 for (i = 0; i < MEMCG_NR_STAT; i++) {
5371 /*
5372 * Collect the aggregated propagation counts of groups
5373 * below us. We're in a per-cpu loop here and this is
5374 * a global counter, so the first cycle will get them.
5375 */
5376 delta = memcg->vmstats.state_pending[i];
5377 if (delta)
5378 memcg->vmstats.state_pending[i] = 0;
5379
5380 /* Add CPU changes on this level since the last flush */
5381 v = READ_ONCE(statc->state[i]);
5382 if (v != statc->state_prev[i]) {
5383 delta += v - statc->state_prev[i];
5384 statc->state_prev[i] = v;
5385 }
5386
5387 if (!delta)
5388 continue;
5389
5390 /* Aggregate counts on this level and propagate upwards */
5391 memcg->vmstats.state[i] += delta;
5392 if (parent)
5393 parent->vmstats.state_pending[i] += delta;
5394 }
5395
5396 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5397 delta = memcg->vmstats.events_pending[i];
5398 if (delta)
5399 memcg->vmstats.events_pending[i] = 0;
5400
5401 v = READ_ONCE(statc->events[i]);
5402 if (v != statc->events_prev[i]) {
5403 delta += v - statc->events_prev[i];
5404 statc->events_prev[i] = v;
5405 }
5406
5407 if (!delta)
5408 continue;
5409
5410 memcg->vmstats.events[i] += delta;
5411 if (parent)
5412 parent->vmstats.events_pending[i] += delta;
5413 }
5414}
5415
02491447 5416#ifdef CONFIG_MMU
7dc74be0 5417/* Handlers for move charge at task migration. */
854ffa8d 5418static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5419{
05b84301 5420 int ret;
9476db97 5421
d0164adc
MG
5422 /* Try a single bulk charge without reclaim first, kswapd may wake */
5423 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5424 if (!ret) {
854ffa8d 5425 mc.precharge += count;
854ffa8d
DN
5426 return ret;
5427 }
9476db97 5428
3674534b 5429 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5430 while (count--) {
3674534b 5431 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5432 if (ret)
38c5d72f 5433 return ret;
854ffa8d 5434 mc.precharge++;
9476db97 5435 cond_resched();
854ffa8d 5436 }
9476db97 5437 return 0;
4ffef5fe
DN
5438}
5439
4ffef5fe
DN
5440union mc_target {
5441 struct page *page;
02491447 5442 swp_entry_t ent;
4ffef5fe
DN
5443};
5444
4ffef5fe 5445enum mc_target_type {
8d32ff84 5446 MC_TARGET_NONE = 0,
4ffef5fe 5447 MC_TARGET_PAGE,
02491447 5448 MC_TARGET_SWAP,
c733a828 5449 MC_TARGET_DEVICE,
4ffef5fe
DN
5450};
5451
90254a65
DN
5452static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5453 unsigned long addr, pte_t ptent)
4ffef5fe 5454{
25b2995a 5455 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5456
90254a65
DN
5457 if (!page || !page_mapped(page))
5458 return NULL;
5459 if (PageAnon(page)) {
1dfab5ab 5460 if (!(mc.flags & MOVE_ANON))
90254a65 5461 return NULL;
1dfab5ab
JW
5462 } else {
5463 if (!(mc.flags & MOVE_FILE))
5464 return NULL;
5465 }
90254a65
DN
5466 if (!get_page_unless_zero(page))
5467 return NULL;
5468
5469 return page;
5470}
5471
c733a828 5472#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5473static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5474 pte_t ptent, swp_entry_t *entry)
90254a65 5475{
90254a65
DN
5476 struct page *page = NULL;
5477 swp_entry_t ent = pte_to_swp_entry(ptent);
5478
9a137153 5479 if (!(mc.flags & MOVE_ANON))
90254a65 5480 return NULL;
c733a828
JG
5481
5482 /*
5483 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5484 * a device and because they are not accessible by CPU they are store
5485 * as special swap entry in the CPU page table.
5486 */
5487 if (is_device_private_entry(ent)) {
5488 page = device_private_entry_to_page(ent);
5489 /*
5490 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5491 * a refcount of 1 when free (unlike normal page)
5492 */
5493 if (!page_ref_add_unless(page, 1, 1))
5494 return NULL;
5495 return page;
5496 }
5497
9a137153
RC
5498 if (non_swap_entry(ent))
5499 return NULL;
5500
4b91355e
KH
5501 /*
5502 * Because lookup_swap_cache() updates some statistics counter,
5503 * we call find_get_page() with swapper_space directly.
5504 */
f6ab1f7f 5505 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5506 entry->val = ent.val;
90254a65
DN
5507
5508 return page;
5509}
4b91355e
KH
5510#else
5511static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5512 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5513{
5514 return NULL;
5515}
5516#endif
90254a65 5517
87946a72
DN
5518static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5519 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5520{
87946a72
DN
5521 if (!vma->vm_file) /* anonymous vma */
5522 return NULL;
1dfab5ab 5523 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5524 return NULL;
5525
87946a72 5526 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5527 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5528 return find_get_incore_page(vma->vm_file->f_mapping,
5529 linear_page_index(vma, addr));
87946a72
DN
5530}
5531
b1b0deab
CG
5532/**
5533 * mem_cgroup_move_account - move account of the page
5534 * @page: the page
25843c2b 5535 * @compound: charge the page as compound or small page
b1b0deab
CG
5536 * @from: mem_cgroup which the page is moved from.
5537 * @to: mem_cgroup which the page is moved to. @from != @to.
5538 *
3ac808fd 5539 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5540 *
5541 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5542 * from old cgroup.
5543 */
5544static int mem_cgroup_move_account(struct page *page,
f627c2f5 5545 bool compound,
b1b0deab
CG
5546 struct mem_cgroup *from,
5547 struct mem_cgroup *to)
5548{
ae8af438
KK
5549 struct lruvec *from_vec, *to_vec;
5550 struct pglist_data *pgdat;
6c357848 5551 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5552 int ret;
5553
5554 VM_BUG_ON(from == to);
5555 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5556 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5557
5558 /*
6a93ca8f 5559 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5560 * page's memory cgroup of its source page while we change it.
b1b0deab 5561 */
f627c2f5 5562 ret = -EBUSY;
b1b0deab
CG
5563 if (!trylock_page(page))
5564 goto out;
5565
5566 ret = -EINVAL;
bcfe06bf 5567 if (page_memcg(page) != from)
b1b0deab
CG
5568 goto out_unlock;
5569
ae8af438 5570 pgdat = page_pgdat(page);
867e5e1d
JW
5571 from_vec = mem_cgroup_lruvec(from, pgdat);
5572 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5573
abb242f5 5574 lock_page_memcg(page);
b1b0deab 5575
be5d0a74
JW
5576 if (PageAnon(page)) {
5577 if (page_mapped(page)) {
5578 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5579 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5580 if (PageTransHuge(page)) {
69473e5d
MS
5581 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5582 -nr_pages);
5583 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5584 nr_pages);
468c3982 5585 }
be5d0a74
JW
5586 }
5587 } else {
0d1c2072
JW
5588 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5589 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5590
5591 if (PageSwapBacked(page)) {
5592 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5593 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5594 }
5595
49e50d27
JW
5596 if (page_mapped(page)) {
5597 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5598 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5599 }
b1b0deab 5600
49e50d27
JW
5601 if (PageDirty(page)) {
5602 struct address_space *mapping = page_mapping(page);
c4843a75 5603
f56753ac 5604 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5605 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5606 -nr_pages);
5607 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5608 nr_pages);
5609 }
c4843a75
GT
5610 }
5611 }
5612
b1b0deab 5613 if (PageWriteback(page)) {
ae8af438
KK
5614 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5615 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5616 }
5617
5618 /*
abb242f5
JW
5619 * All state has been migrated, let's switch to the new memcg.
5620 *
bcfe06bf 5621 * It is safe to change page's memcg here because the page
abb242f5
JW
5622 * is referenced, charged, isolated, and locked: we can't race
5623 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5624 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5625 *
5626 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5627 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5628 * new memcg that isn't locked, the above state can change
5629 * concurrently again. Make sure we're truly done with it.
b1b0deab 5630 */
abb242f5 5631 smp_mb();
b1b0deab 5632
1a3e1f40
JW
5633 css_get(&to->css);
5634 css_put(&from->css);
5635
bcfe06bf 5636 page->memcg_data = (unsigned long)to;
87eaceb3 5637
abb242f5 5638 __unlock_page_memcg(from);
b1b0deab
CG
5639
5640 ret = 0;
5641
5642 local_irq_disable();
3fba69a5 5643 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5644 memcg_check_events(to, page);
3fba69a5 5645 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5646 memcg_check_events(from, page);
5647 local_irq_enable();
5648out_unlock:
5649 unlock_page(page);
5650out:
5651 return ret;
5652}
5653
7cf7806c
LR
5654/**
5655 * get_mctgt_type - get target type of moving charge
5656 * @vma: the vma the pte to be checked belongs
5657 * @addr: the address corresponding to the pte to be checked
5658 * @ptent: the pte to be checked
5659 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5660 *
5661 * Returns
5662 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5663 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5664 * move charge. if @target is not NULL, the page is stored in target->page
5665 * with extra refcnt got(Callers should handle it).
5666 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5667 * target for charge migration. if @target is not NULL, the entry is stored
5668 * in target->ent.
25b2995a
CH
5669 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5670 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5671 * For now we such page is charge like a regular page would be as for all
5672 * intent and purposes it is just special memory taking the place of a
5673 * regular page.
c733a828
JG
5674 *
5675 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5676 *
5677 * Called with pte lock held.
5678 */
5679
8d32ff84 5680static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5681 unsigned long addr, pte_t ptent, union mc_target *target)
5682{
5683 struct page *page = NULL;
8d32ff84 5684 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5685 swp_entry_t ent = { .val = 0 };
5686
5687 if (pte_present(ptent))
5688 page = mc_handle_present_pte(vma, addr, ptent);
5689 else if (is_swap_pte(ptent))
48406ef8 5690 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5691 else if (pte_none(ptent))
87946a72 5692 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5693
5694 if (!page && !ent.val)
8d32ff84 5695 return ret;
02491447 5696 if (page) {
02491447 5697 /*
0a31bc97 5698 * Do only loose check w/o serialization.
1306a85a 5699 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5700 * not under LRU exclusion.
02491447 5701 */
bcfe06bf 5702 if (page_memcg(page) == mc.from) {
02491447 5703 ret = MC_TARGET_PAGE;
25b2995a 5704 if (is_device_private_page(page))
c733a828 5705 ret = MC_TARGET_DEVICE;
02491447
DN
5706 if (target)
5707 target->page = page;
5708 }
5709 if (!ret || !target)
5710 put_page(page);
5711 }
3e14a57b
HY
5712 /*
5713 * There is a swap entry and a page doesn't exist or isn't charged.
5714 * But we cannot move a tail-page in a THP.
5715 */
5716 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5717 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5718 ret = MC_TARGET_SWAP;
5719 if (target)
5720 target->ent = ent;
4ffef5fe 5721 }
4ffef5fe
DN
5722 return ret;
5723}
5724
12724850
NH
5725#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5726/*
d6810d73
HY
5727 * We don't consider PMD mapped swapping or file mapped pages because THP does
5728 * not support them for now.
12724850
NH
5729 * Caller should make sure that pmd_trans_huge(pmd) is true.
5730 */
5731static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5732 unsigned long addr, pmd_t pmd, union mc_target *target)
5733{
5734 struct page *page = NULL;
12724850
NH
5735 enum mc_target_type ret = MC_TARGET_NONE;
5736
84c3fc4e
ZY
5737 if (unlikely(is_swap_pmd(pmd))) {
5738 VM_BUG_ON(thp_migration_supported() &&
5739 !is_pmd_migration_entry(pmd));
5740 return ret;
5741 }
12724850 5742 page = pmd_page(pmd);
309381fe 5743 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5744 if (!(mc.flags & MOVE_ANON))
12724850 5745 return ret;
bcfe06bf 5746 if (page_memcg(page) == mc.from) {
12724850
NH
5747 ret = MC_TARGET_PAGE;
5748 if (target) {
5749 get_page(page);
5750 target->page = page;
5751 }
5752 }
5753 return ret;
5754}
5755#else
5756static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5757 unsigned long addr, pmd_t pmd, union mc_target *target)
5758{
5759 return MC_TARGET_NONE;
5760}
5761#endif
5762
4ffef5fe
DN
5763static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5764 unsigned long addr, unsigned long end,
5765 struct mm_walk *walk)
5766{
26bcd64a 5767 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5768 pte_t *pte;
5769 spinlock_t *ptl;
5770
b6ec57f4
KS
5771 ptl = pmd_trans_huge_lock(pmd, vma);
5772 if (ptl) {
c733a828
JG
5773 /*
5774 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5775 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5776 * this might change.
c733a828 5777 */
12724850
NH
5778 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5779 mc.precharge += HPAGE_PMD_NR;
bf929152 5780 spin_unlock(ptl);
1a5a9906 5781 return 0;
12724850 5782 }
03319327 5783
45f83cef
AA
5784 if (pmd_trans_unstable(pmd))
5785 return 0;
4ffef5fe
DN
5786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5787 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5788 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5789 mc.precharge++; /* increment precharge temporarily */
5790 pte_unmap_unlock(pte - 1, ptl);
5791 cond_resched();
5792
7dc74be0
DN
5793 return 0;
5794}
5795
7b86ac33
CH
5796static const struct mm_walk_ops precharge_walk_ops = {
5797 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5798};
5799
4ffef5fe
DN
5800static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5801{
5802 unsigned long precharge;
4ffef5fe 5803
d8ed45c5 5804 mmap_read_lock(mm);
7b86ac33 5805 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5806 mmap_read_unlock(mm);
4ffef5fe
DN
5807
5808 precharge = mc.precharge;
5809 mc.precharge = 0;
5810
5811 return precharge;
5812}
5813
4ffef5fe
DN
5814static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5815{
dfe076b0
DN
5816 unsigned long precharge = mem_cgroup_count_precharge(mm);
5817
5818 VM_BUG_ON(mc.moving_task);
5819 mc.moving_task = current;
5820 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5821}
5822
dfe076b0
DN
5823/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5824static void __mem_cgroup_clear_mc(void)
4ffef5fe 5825{
2bd9bb20
KH
5826 struct mem_cgroup *from = mc.from;
5827 struct mem_cgroup *to = mc.to;
5828
4ffef5fe 5829 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5830 if (mc.precharge) {
00501b53 5831 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5832 mc.precharge = 0;
5833 }
5834 /*
5835 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5836 * we must uncharge here.
5837 */
5838 if (mc.moved_charge) {
00501b53 5839 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5840 mc.moved_charge = 0;
4ffef5fe 5841 }
483c30b5
DN
5842 /* we must fixup refcnts and charges */
5843 if (mc.moved_swap) {
483c30b5 5844 /* uncharge swap account from the old cgroup */
ce00a967 5845 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5846 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5847
615d66c3
VD
5848 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5849
05b84301 5850 /*
3e32cb2e
JW
5851 * we charged both to->memory and to->memsw, so we
5852 * should uncharge to->memory.
05b84301 5853 */
ce00a967 5854 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5855 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5856
483c30b5
DN
5857 mc.moved_swap = 0;
5858 }
dfe076b0
DN
5859 memcg_oom_recover(from);
5860 memcg_oom_recover(to);
5861 wake_up_all(&mc.waitq);
5862}
5863
5864static void mem_cgroup_clear_mc(void)
5865{
264a0ae1
TH
5866 struct mm_struct *mm = mc.mm;
5867
dfe076b0
DN
5868 /*
5869 * we must clear moving_task before waking up waiters at the end of
5870 * task migration.
5871 */
5872 mc.moving_task = NULL;
5873 __mem_cgroup_clear_mc();
2bd9bb20 5874 spin_lock(&mc.lock);
4ffef5fe
DN
5875 mc.from = NULL;
5876 mc.to = NULL;
264a0ae1 5877 mc.mm = NULL;
2bd9bb20 5878 spin_unlock(&mc.lock);
264a0ae1
TH
5879
5880 mmput(mm);
4ffef5fe
DN
5881}
5882
1f7dd3e5 5883static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5884{
1f7dd3e5 5885 struct cgroup_subsys_state *css;
eed67d75 5886 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5887 struct mem_cgroup *from;
4530eddb 5888 struct task_struct *leader, *p;
9f2115f9 5889 struct mm_struct *mm;
1dfab5ab 5890 unsigned long move_flags;
9f2115f9 5891 int ret = 0;
7dc74be0 5892
1f7dd3e5
TH
5893 /* charge immigration isn't supported on the default hierarchy */
5894 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5895 return 0;
5896
4530eddb
TH
5897 /*
5898 * Multi-process migrations only happen on the default hierarchy
5899 * where charge immigration is not used. Perform charge
5900 * immigration if @tset contains a leader and whine if there are
5901 * multiple.
5902 */
5903 p = NULL;
1f7dd3e5 5904 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5905 WARN_ON_ONCE(p);
5906 p = leader;
1f7dd3e5 5907 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5908 }
5909 if (!p)
5910 return 0;
5911
1f7dd3e5
TH
5912 /*
5913 * We are now commited to this value whatever it is. Changes in this
5914 * tunable will only affect upcoming migrations, not the current one.
5915 * So we need to save it, and keep it going.
5916 */
5917 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5918 if (!move_flags)
5919 return 0;
5920
9f2115f9
TH
5921 from = mem_cgroup_from_task(p);
5922
5923 VM_BUG_ON(from == memcg);
5924
5925 mm = get_task_mm(p);
5926 if (!mm)
5927 return 0;
5928 /* We move charges only when we move a owner of the mm */
5929 if (mm->owner == p) {
5930 VM_BUG_ON(mc.from);
5931 VM_BUG_ON(mc.to);
5932 VM_BUG_ON(mc.precharge);
5933 VM_BUG_ON(mc.moved_charge);
5934 VM_BUG_ON(mc.moved_swap);
5935
5936 spin_lock(&mc.lock);
264a0ae1 5937 mc.mm = mm;
9f2115f9
TH
5938 mc.from = from;
5939 mc.to = memcg;
5940 mc.flags = move_flags;
5941 spin_unlock(&mc.lock);
5942 /* We set mc.moving_task later */
5943
5944 ret = mem_cgroup_precharge_mc(mm);
5945 if (ret)
5946 mem_cgroup_clear_mc();
264a0ae1
TH
5947 } else {
5948 mmput(mm);
7dc74be0
DN
5949 }
5950 return ret;
5951}
5952
1f7dd3e5 5953static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5954{
4e2f245d
JW
5955 if (mc.to)
5956 mem_cgroup_clear_mc();
7dc74be0
DN
5957}
5958
4ffef5fe
DN
5959static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5960 unsigned long addr, unsigned long end,
5961 struct mm_walk *walk)
7dc74be0 5962{
4ffef5fe 5963 int ret = 0;
26bcd64a 5964 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5965 pte_t *pte;
5966 spinlock_t *ptl;
12724850
NH
5967 enum mc_target_type target_type;
5968 union mc_target target;
5969 struct page *page;
4ffef5fe 5970
b6ec57f4
KS
5971 ptl = pmd_trans_huge_lock(pmd, vma);
5972 if (ptl) {
62ade86a 5973 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5974 spin_unlock(ptl);
12724850
NH
5975 return 0;
5976 }
5977 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5978 if (target_type == MC_TARGET_PAGE) {
5979 page = target.page;
5980 if (!isolate_lru_page(page)) {
f627c2f5 5981 if (!mem_cgroup_move_account(page, true,
1306a85a 5982 mc.from, mc.to)) {
12724850
NH
5983 mc.precharge -= HPAGE_PMD_NR;
5984 mc.moved_charge += HPAGE_PMD_NR;
5985 }
5986 putback_lru_page(page);
5987 }
5988 put_page(page);
c733a828
JG
5989 } else if (target_type == MC_TARGET_DEVICE) {
5990 page = target.page;
5991 if (!mem_cgroup_move_account(page, true,
5992 mc.from, mc.to)) {
5993 mc.precharge -= HPAGE_PMD_NR;
5994 mc.moved_charge += HPAGE_PMD_NR;
5995 }
5996 put_page(page);
12724850 5997 }
bf929152 5998 spin_unlock(ptl);
1a5a9906 5999 return 0;
12724850
NH
6000 }
6001
45f83cef
AA
6002 if (pmd_trans_unstable(pmd))
6003 return 0;
4ffef5fe
DN
6004retry:
6005 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6006 for (; addr != end; addr += PAGE_SIZE) {
6007 pte_t ptent = *(pte++);
c733a828 6008 bool device = false;
02491447 6009 swp_entry_t ent;
4ffef5fe
DN
6010
6011 if (!mc.precharge)
6012 break;
6013
8d32ff84 6014 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6015 case MC_TARGET_DEVICE:
6016 device = true;
e4a9bc58 6017 fallthrough;
4ffef5fe
DN
6018 case MC_TARGET_PAGE:
6019 page = target.page;
53f9263b
KS
6020 /*
6021 * We can have a part of the split pmd here. Moving it
6022 * can be done but it would be too convoluted so simply
6023 * ignore such a partial THP and keep it in original
6024 * memcg. There should be somebody mapping the head.
6025 */
6026 if (PageTransCompound(page))
6027 goto put;
c733a828 6028 if (!device && isolate_lru_page(page))
4ffef5fe 6029 goto put;
f627c2f5
KS
6030 if (!mem_cgroup_move_account(page, false,
6031 mc.from, mc.to)) {
4ffef5fe 6032 mc.precharge--;
854ffa8d
DN
6033 /* we uncharge from mc.from later. */
6034 mc.moved_charge++;
4ffef5fe 6035 }
c733a828
JG
6036 if (!device)
6037 putback_lru_page(page);
8d32ff84 6038put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6039 put_page(page);
6040 break;
02491447
DN
6041 case MC_TARGET_SWAP:
6042 ent = target.ent;
e91cbb42 6043 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6044 mc.precharge--;
8d22a935
HD
6045 mem_cgroup_id_get_many(mc.to, 1);
6046 /* we fixup other refcnts and charges later. */
483c30b5
DN
6047 mc.moved_swap++;
6048 }
02491447 6049 break;
4ffef5fe
DN
6050 default:
6051 break;
6052 }
6053 }
6054 pte_unmap_unlock(pte - 1, ptl);
6055 cond_resched();
6056
6057 if (addr != end) {
6058 /*
6059 * We have consumed all precharges we got in can_attach().
6060 * We try charge one by one, but don't do any additional
6061 * charges to mc.to if we have failed in charge once in attach()
6062 * phase.
6063 */
854ffa8d 6064 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6065 if (!ret)
6066 goto retry;
6067 }
6068
6069 return ret;
6070}
6071
7b86ac33
CH
6072static const struct mm_walk_ops charge_walk_ops = {
6073 .pmd_entry = mem_cgroup_move_charge_pte_range,
6074};
6075
264a0ae1 6076static void mem_cgroup_move_charge(void)
4ffef5fe 6077{
4ffef5fe 6078 lru_add_drain_all();
312722cb 6079 /*
81f8c3a4
JW
6080 * Signal lock_page_memcg() to take the memcg's move_lock
6081 * while we're moving its pages to another memcg. Then wait
6082 * for already started RCU-only updates to finish.
312722cb
JW
6083 */
6084 atomic_inc(&mc.from->moving_account);
6085 synchronize_rcu();
dfe076b0 6086retry:
d8ed45c5 6087 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6088 /*
c1e8d7c6 6089 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6090 * waitq. So we cancel all extra charges, wake up all waiters,
6091 * and retry. Because we cancel precharges, we might not be able
6092 * to move enough charges, but moving charge is a best-effort
6093 * feature anyway, so it wouldn't be a big problem.
6094 */
6095 __mem_cgroup_clear_mc();
6096 cond_resched();
6097 goto retry;
6098 }
26bcd64a
NH
6099 /*
6100 * When we have consumed all precharges and failed in doing
6101 * additional charge, the page walk just aborts.
6102 */
7b86ac33
CH
6103 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6104 NULL);
0247f3f4 6105
d8ed45c5 6106 mmap_read_unlock(mc.mm);
312722cb 6107 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6108}
6109
264a0ae1 6110static void mem_cgroup_move_task(void)
67e465a7 6111{
264a0ae1
TH
6112 if (mc.to) {
6113 mem_cgroup_move_charge();
a433658c 6114 mem_cgroup_clear_mc();
264a0ae1 6115 }
67e465a7 6116}
5cfb80a7 6117#else /* !CONFIG_MMU */
1f7dd3e5 6118static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6119{
6120 return 0;
6121}
1f7dd3e5 6122static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6123{
6124}
264a0ae1 6125static void mem_cgroup_move_task(void)
5cfb80a7
DN
6126{
6127}
6128#endif
67e465a7 6129
677dc973
CD
6130static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6131{
6132 if (value == PAGE_COUNTER_MAX)
6133 seq_puts(m, "max\n");
6134 else
6135 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6136
6137 return 0;
6138}
6139
241994ed
JW
6140static u64 memory_current_read(struct cgroup_subsys_state *css,
6141 struct cftype *cft)
6142{
f5fc3c5d
JW
6143 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6144
6145 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6146}
6147
bf8d5d52
RG
6148static int memory_min_show(struct seq_file *m, void *v)
6149{
677dc973
CD
6150 return seq_puts_memcg_tunable(m,
6151 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6152}
6153
6154static ssize_t memory_min_write(struct kernfs_open_file *of,
6155 char *buf, size_t nbytes, loff_t off)
6156{
6157 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6158 unsigned long min;
6159 int err;
6160
6161 buf = strstrip(buf);
6162 err = page_counter_memparse(buf, "max", &min);
6163 if (err)
6164 return err;
6165
6166 page_counter_set_min(&memcg->memory, min);
6167
6168 return nbytes;
6169}
6170
241994ed
JW
6171static int memory_low_show(struct seq_file *m, void *v)
6172{
677dc973
CD
6173 return seq_puts_memcg_tunable(m,
6174 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6175}
6176
6177static ssize_t memory_low_write(struct kernfs_open_file *of,
6178 char *buf, size_t nbytes, loff_t off)
6179{
6180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6181 unsigned long low;
6182 int err;
6183
6184 buf = strstrip(buf);
d2973697 6185 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6186 if (err)
6187 return err;
6188
23067153 6189 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6190
6191 return nbytes;
6192}
6193
6194static int memory_high_show(struct seq_file *m, void *v)
6195{
d1663a90
JK
6196 return seq_puts_memcg_tunable(m,
6197 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6198}
6199
6200static ssize_t memory_high_write(struct kernfs_open_file *of,
6201 char *buf, size_t nbytes, loff_t off)
6202{
6203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6204 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6205 bool drained = false;
241994ed
JW
6206 unsigned long high;
6207 int err;
6208
6209 buf = strstrip(buf);
d2973697 6210 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6211 if (err)
6212 return err;
6213
e82553c1
JW
6214 page_counter_set_high(&memcg->memory, high);
6215
8c8c383c
JW
6216 for (;;) {
6217 unsigned long nr_pages = page_counter_read(&memcg->memory);
6218 unsigned long reclaimed;
6219
6220 if (nr_pages <= high)
6221 break;
6222
6223 if (signal_pending(current))
6224 break;
6225
6226 if (!drained) {
6227 drain_all_stock(memcg);
6228 drained = true;
6229 continue;
6230 }
6231
6232 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6233 GFP_KERNEL, true);
6234
6235 if (!reclaimed && !nr_retries--)
6236 break;
6237 }
588083bb 6238
19ce33ac 6239 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6240 return nbytes;
6241}
6242
6243static int memory_max_show(struct seq_file *m, void *v)
6244{
677dc973
CD
6245 return seq_puts_memcg_tunable(m,
6246 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6247}
6248
6249static ssize_t memory_max_write(struct kernfs_open_file *of,
6250 char *buf, size_t nbytes, loff_t off)
6251{
6252 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6253 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6254 bool drained = false;
241994ed
JW
6255 unsigned long max;
6256 int err;
6257
6258 buf = strstrip(buf);
d2973697 6259 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6260 if (err)
6261 return err;
6262
bbec2e15 6263 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6264
6265 for (;;) {
6266 unsigned long nr_pages = page_counter_read(&memcg->memory);
6267
6268 if (nr_pages <= max)
6269 break;
6270
7249c9f0 6271 if (signal_pending(current))
b6e6edcf 6272 break;
b6e6edcf
JW
6273
6274 if (!drained) {
6275 drain_all_stock(memcg);
6276 drained = true;
6277 continue;
6278 }
6279
6280 if (nr_reclaims) {
6281 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6282 GFP_KERNEL, true))
6283 nr_reclaims--;
6284 continue;
6285 }
6286
e27be240 6287 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6288 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6289 break;
6290 }
241994ed 6291
2529bb3a 6292 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6293 return nbytes;
6294}
6295
1e577f97
SB
6296static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6297{
6298 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6299 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6300 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6301 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6302 seq_printf(m, "oom_kill %lu\n",
6303 atomic_long_read(&events[MEMCG_OOM_KILL]));
6304}
6305
241994ed
JW
6306static int memory_events_show(struct seq_file *m, void *v)
6307{
aa9694bb 6308 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6309
1e577f97
SB
6310 __memory_events_show(m, memcg->memory_events);
6311 return 0;
6312}
6313
6314static int memory_events_local_show(struct seq_file *m, void *v)
6315{
6316 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6317
1e577f97 6318 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6319 return 0;
6320}
6321
587d9f72
JW
6322static int memory_stat_show(struct seq_file *m, void *v)
6323{
aa9694bb 6324 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6325 char *buf;
1ff9e6e1 6326
c8713d0b
JW
6327 buf = memory_stat_format(memcg);
6328 if (!buf)
6329 return -ENOMEM;
6330 seq_puts(m, buf);
6331 kfree(buf);
587d9f72
JW
6332 return 0;
6333}
6334
5f9a4f4a 6335#ifdef CONFIG_NUMA
fff66b79
MS
6336static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6337 int item)
6338{
6339 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6340}
6341
5f9a4f4a
MS
6342static int memory_numa_stat_show(struct seq_file *m, void *v)
6343{
6344 int i;
6345 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6346
6347 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6348 int nid;
6349
6350 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6351 continue;
6352
6353 seq_printf(m, "%s", memory_stats[i].name);
6354 for_each_node_state(nid, N_MEMORY) {
6355 u64 size;
6356 struct lruvec *lruvec;
6357
6358 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6359 size = lruvec_page_state_output(lruvec,
6360 memory_stats[i].idx);
5f9a4f4a
MS
6361 seq_printf(m, " N%d=%llu", nid, size);
6362 }
6363 seq_putc(m, '\n');
6364 }
6365
6366 return 0;
6367}
6368#endif
6369
3d8b38eb
RG
6370static int memory_oom_group_show(struct seq_file *m, void *v)
6371{
aa9694bb 6372 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6373
6374 seq_printf(m, "%d\n", memcg->oom_group);
6375
6376 return 0;
6377}
6378
6379static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6380 char *buf, size_t nbytes, loff_t off)
6381{
6382 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6383 int ret, oom_group;
6384
6385 buf = strstrip(buf);
6386 if (!buf)
6387 return -EINVAL;
6388
6389 ret = kstrtoint(buf, 0, &oom_group);
6390 if (ret)
6391 return ret;
6392
6393 if (oom_group != 0 && oom_group != 1)
6394 return -EINVAL;
6395
6396 memcg->oom_group = oom_group;
6397
6398 return nbytes;
6399}
6400
241994ed
JW
6401static struct cftype memory_files[] = {
6402 {
6403 .name = "current",
f5fc3c5d 6404 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6405 .read_u64 = memory_current_read,
6406 },
bf8d5d52
RG
6407 {
6408 .name = "min",
6409 .flags = CFTYPE_NOT_ON_ROOT,
6410 .seq_show = memory_min_show,
6411 .write = memory_min_write,
6412 },
241994ed
JW
6413 {
6414 .name = "low",
6415 .flags = CFTYPE_NOT_ON_ROOT,
6416 .seq_show = memory_low_show,
6417 .write = memory_low_write,
6418 },
6419 {
6420 .name = "high",
6421 .flags = CFTYPE_NOT_ON_ROOT,
6422 .seq_show = memory_high_show,
6423 .write = memory_high_write,
6424 },
6425 {
6426 .name = "max",
6427 .flags = CFTYPE_NOT_ON_ROOT,
6428 .seq_show = memory_max_show,
6429 .write = memory_max_write,
6430 },
6431 {
6432 .name = "events",
6433 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6434 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6435 .seq_show = memory_events_show,
6436 },
1e577f97
SB
6437 {
6438 .name = "events.local",
6439 .flags = CFTYPE_NOT_ON_ROOT,
6440 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6441 .seq_show = memory_events_local_show,
6442 },
587d9f72
JW
6443 {
6444 .name = "stat",
587d9f72
JW
6445 .seq_show = memory_stat_show,
6446 },
5f9a4f4a
MS
6447#ifdef CONFIG_NUMA
6448 {
6449 .name = "numa_stat",
6450 .seq_show = memory_numa_stat_show,
6451 },
6452#endif
3d8b38eb
RG
6453 {
6454 .name = "oom.group",
6455 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6456 .seq_show = memory_oom_group_show,
6457 .write = memory_oom_group_write,
6458 },
241994ed
JW
6459 { } /* terminate */
6460};
6461
073219e9 6462struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6463 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6464 .css_online = mem_cgroup_css_online,
92fb9748 6465 .css_offline = mem_cgroup_css_offline,
6df38689 6466 .css_released = mem_cgroup_css_released,
92fb9748 6467 .css_free = mem_cgroup_css_free,
1ced953b 6468 .css_reset = mem_cgroup_css_reset,
2d146aa3 6469 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6470 .can_attach = mem_cgroup_can_attach,
6471 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6472 .post_attach = mem_cgroup_move_task,
241994ed
JW
6473 .dfl_cftypes = memory_files,
6474 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6475 .early_init = 0,
8cdea7c0 6476};
c077719b 6477
bc50bcc6
JW
6478/*
6479 * This function calculates an individual cgroup's effective
6480 * protection which is derived from its own memory.min/low, its
6481 * parent's and siblings' settings, as well as the actual memory
6482 * distribution in the tree.
6483 *
6484 * The following rules apply to the effective protection values:
6485 *
6486 * 1. At the first level of reclaim, effective protection is equal to
6487 * the declared protection in memory.min and memory.low.
6488 *
6489 * 2. To enable safe delegation of the protection configuration, at
6490 * subsequent levels the effective protection is capped to the
6491 * parent's effective protection.
6492 *
6493 * 3. To make complex and dynamic subtrees easier to configure, the
6494 * user is allowed to overcommit the declared protection at a given
6495 * level. If that is the case, the parent's effective protection is
6496 * distributed to the children in proportion to how much protection
6497 * they have declared and how much of it they are utilizing.
6498 *
6499 * This makes distribution proportional, but also work-conserving:
6500 * if one cgroup claims much more protection than it uses memory,
6501 * the unused remainder is available to its siblings.
6502 *
6503 * 4. Conversely, when the declared protection is undercommitted at a
6504 * given level, the distribution of the larger parental protection
6505 * budget is NOT proportional. A cgroup's protection from a sibling
6506 * is capped to its own memory.min/low setting.
6507 *
8a931f80
JW
6508 * 5. However, to allow protecting recursive subtrees from each other
6509 * without having to declare each individual cgroup's fixed share
6510 * of the ancestor's claim to protection, any unutilized -
6511 * "floating" - protection from up the tree is distributed in
6512 * proportion to each cgroup's *usage*. This makes the protection
6513 * neutral wrt sibling cgroups and lets them compete freely over
6514 * the shared parental protection budget, but it protects the
6515 * subtree as a whole from neighboring subtrees.
6516 *
6517 * Note that 4. and 5. are not in conflict: 4. is about protecting
6518 * against immediate siblings whereas 5. is about protecting against
6519 * neighboring subtrees.
bc50bcc6
JW
6520 */
6521static unsigned long effective_protection(unsigned long usage,
8a931f80 6522 unsigned long parent_usage,
bc50bcc6
JW
6523 unsigned long setting,
6524 unsigned long parent_effective,
6525 unsigned long siblings_protected)
6526{
6527 unsigned long protected;
8a931f80 6528 unsigned long ep;
bc50bcc6
JW
6529
6530 protected = min(usage, setting);
6531 /*
6532 * If all cgroups at this level combined claim and use more
6533 * protection then what the parent affords them, distribute
6534 * shares in proportion to utilization.
6535 *
6536 * We are using actual utilization rather than the statically
6537 * claimed protection in order to be work-conserving: claimed
6538 * but unused protection is available to siblings that would
6539 * otherwise get a smaller chunk than what they claimed.
6540 */
6541 if (siblings_protected > parent_effective)
6542 return protected * parent_effective / siblings_protected;
6543
6544 /*
6545 * Ok, utilized protection of all children is within what the
6546 * parent affords them, so we know whatever this child claims
6547 * and utilizes is effectively protected.
6548 *
6549 * If there is unprotected usage beyond this value, reclaim
6550 * will apply pressure in proportion to that amount.
6551 *
6552 * If there is unutilized protection, the cgroup will be fully
6553 * shielded from reclaim, but we do return a smaller value for
6554 * protection than what the group could enjoy in theory. This
6555 * is okay. With the overcommit distribution above, effective
6556 * protection is always dependent on how memory is actually
6557 * consumed among the siblings anyway.
6558 */
8a931f80
JW
6559 ep = protected;
6560
6561 /*
6562 * If the children aren't claiming (all of) the protection
6563 * afforded to them by the parent, distribute the remainder in
6564 * proportion to the (unprotected) memory of each cgroup. That
6565 * way, cgroups that aren't explicitly prioritized wrt each
6566 * other compete freely over the allowance, but they are
6567 * collectively protected from neighboring trees.
6568 *
6569 * We're using unprotected memory for the weight so that if
6570 * some cgroups DO claim explicit protection, we don't protect
6571 * the same bytes twice.
cd324edc
JW
6572 *
6573 * Check both usage and parent_usage against the respective
6574 * protected values. One should imply the other, but they
6575 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6576 */
6577 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6578 return ep;
cd324edc
JW
6579 if (parent_effective > siblings_protected &&
6580 parent_usage > siblings_protected &&
6581 usage > protected) {
8a931f80
JW
6582 unsigned long unclaimed;
6583
6584 unclaimed = parent_effective - siblings_protected;
6585 unclaimed *= usage - protected;
6586 unclaimed /= parent_usage - siblings_protected;
6587
6588 ep += unclaimed;
6589 }
6590
6591 return ep;
bc50bcc6
JW
6592}
6593
241994ed 6594/**
bf8d5d52 6595 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6596 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6597 * @memcg: the memory cgroup to check
6598 *
23067153
RG
6599 * WARNING: This function is not stateless! It can only be used as part
6600 * of a top-down tree iteration, not for isolated queries.
241994ed 6601 */
45c7f7e1
CD
6602void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6603 struct mem_cgroup *memcg)
241994ed 6604{
8a931f80 6605 unsigned long usage, parent_usage;
23067153
RG
6606 struct mem_cgroup *parent;
6607
241994ed 6608 if (mem_cgroup_disabled())
45c7f7e1 6609 return;
241994ed 6610
34c81057
SC
6611 if (!root)
6612 root = root_mem_cgroup;
22f7496f
YS
6613
6614 /*
6615 * Effective values of the reclaim targets are ignored so they
6616 * can be stale. Have a look at mem_cgroup_protection for more
6617 * details.
6618 * TODO: calculation should be more robust so that we do not need
6619 * that special casing.
6620 */
34c81057 6621 if (memcg == root)
45c7f7e1 6622 return;
241994ed 6623
23067153 6624 usage = page_counter_read(&memcg->memory);
bf8d5d52 6625 if (!usage)
45c7f7e1 6626 return;
bf8d5d52 6627
bf8d5d52 6628 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6629 /* No parent means a non-hierarchical mode on v1 memcg */
6630 if (!parent)
45c7f7e1 6631 return;
df2a4196 6632
bc50bcc6 6633 if (parent == root) {
c3d53200 6634 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6635 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6636 return;
bf8d5d52
RG
6637 }
6638
8a931f80
JW
6639 parent_usage = page_counter_read(&parent->memory);
6640
b3a7822e 6641 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6642 READ_ONCE(memcg->memory.min),
6643 READ_ONCE(parent->memory.emin),
b3a7822e 6644 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6645
b3a7822e 6646 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6647 READ_ONCE(memcg->memory.low),
6648 READ_ONCE(parent->memory.elow),
b3a7822e 6649 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6650}
6651
0add0c77
SB
6652static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6653 gfp_t gfp)
6654{
6655 unsigned int nr_pages = thp_nr_pages(page);
6656 int ret;
6657
6658 ret = try_charge(memcg, gfp, nr_pages);
6659 if (ret)
6660 goto out;
6661
6662 css_get(&memcg->css);
6663 commit_charge(page, memcg);
6664
6665 local_irq_disable();
6666 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6667 memcg_check_events(memcg, page);
6668 local_irq_enable();
6669out:
6670 return ret;
6671}
6672
00501b53 6673/**
f0e45fb4 6674 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6675 * @page: page to charge
6676 * @mm: mm context of the victim
6677 * @gfp_mask: reclaim mode
00501b53
JW
6678 *
6679 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6680 * pages according to @gfp_mask if necessary.
6681 *
0add0c77
SB
6682 * Do not use this for pages allocated for swapin.
6683 *
f0e45fb4 6684 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6685 */
d9eb1ea2 6686int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6687{
0add0c77
SB
6688 struct mem_cgroup *memcg;
6689 int ret;
00501b53
JW
6690
6691 if (mem_cgroup_disabled())
0add0c77 6692 return 0;
00501b53 6693
0add0c77
SB
6694 memcg = get_mem_cgroup_from_mm(mm);
6695 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6696 css_put(&memcg->css);
2d1c4980 6697
0add0c77
SB
6698 return ret;
6699}
e993d905 6700
0add0c77
SB
6701/**
6702 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6703 * @page: page to charge
6704 * @mm: mm context of the victim
6705 * @gfp: reclaim mode
6706 * @entry: swap entry for which the page is allocated
6707 *
6708 * This function charges a page allocated for swapin. Please call this before
6709 * adding the page to the swapcache.
6710 *
6711 * Returns 0 on success. Otherwise, an error code is returned.
6712 */
6713int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6714 gfp_t gfp, swp_entry_t entry)
6715{
6716 struct mem_cgroup *memcg;
6717 unsigned short id;
6718 int ret;
00501b53 6719
0add0c77
SB
6720 if (mem_cgroup_disabled())
6721 return 0;
00501b53 6722
0add0c77
SB
6723 id = lookup_swap_cgroup_id(entry);
6724 rcu_read_lock();
6725 memcg = mem_cgroup_from_id(id);
6726 if (!memcg || !css_tryget_online(&memcg->css))
6727 memcg = get_mem_cgroup_from_mm(mm);
6728 rcu_read_unlock();
00501b53 6729
0add0c77 6730 ret = __mem_cgroup_charge(page, memcg, gfp);
6abb5a86 6731
0add0c77
SB
6732 css_put(&memcg->css);
6733 return ret;
6734}
00501b53 6735
0add0c77
SB
6736/*
6737 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6738 * @entry: swap entry for which the page is charged
6739 *
6740 * Call this function after successfully adding the charged page to swapcache.
6741 *
6742 * Note: This function assumes the page for which swap slot is being uncharged
6743 * is order 0 page.
6744 */
6745void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6746{
cae3af62
MS
6747 /*
6748 * Cgroup1's unified memory+swap counter has been charged with the
6749 * new swapcache page, finish the transfer by uncharging the swap
6750 * slot. The swap slot would also get uncharged when it dies, but
6751 * it can stick around indefinitely and we'd count the page twice
6752 * the entire time.
6753 *
6754 * Cgroup2 has separate resource counters for memory and swap,
6755 * so this is a non-issue here. Memory and swap charge lifetimes
6756 * correspond 1:1 to page and swap slot lifetimes: we charge the
6757 * page to memory here, and uncharge swap when the slot is freed.
6758 */
0add0c77 6759 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6760 /*
6761 * The swap entry might not get freed for a long time,
6762 * let's not wait for it. The page already received a
6763 * memory+swap charge, drop the swap entry duplicate.
6764 */
0add0c77 6765 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6766 }
3fea5a49
JW
6767}
6768
a9d5adee
JG
6769struct uncharge_gather {
6770 struct mem_cgroup *memcg;
b4e0b68f 6771 unsigned long nr_memory;
a9d5adee 6772 unsigned long pgpgout;
a9d5adee 6773 unsigned long nr_kmem;
a9d5adee
JG
6774 struct page *dummy_page;
6775};
6776
6777static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6778{
a9d5adee
JG
6779 memset(ug, 0, sizeof(*ug));
6780}
6781
6782static void uncharge_batch(const struct uncharge_gather *ug)
6783{
747db954
JW
6784 unsigned long flags;
6785
b4e0b68f
MS
6786 if (ug->nr_memory) {
6787 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6788 if (do_memsw_account())
b4e0b68f 6789 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6790 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6791 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6792 memcg_oom_recover(ug->memcg);
ce00a967 6793 }
747db954
JW
6794
6795 local_irq_save(flags);
c9019e9b 6796 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6797 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6798 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6799 local_irq_restore(flags);
f1796544
MH
6800
6801 /* drop reference from uncharge_page */
6802 css_put(&ug->memcg->css);
a9d5adee
JG
6803}
6804
6805static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6806{
9f762dbe 6807 unsigned long nr_pages;
b4e0b68f
MS
6808 struct mem_cgroup *memcg;
6809 struct obj_cgroup *objcg;
9f762dbe 6810
a9d5adee 6811 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6812
a9d5adee
JG
6813 /*
6814 * Nobody should be changing or seriously looking at
b4e0b68f 6815 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6816 * exclusive access to the page.
6817 */
b4e0b68f
MS
6818 if (PageMemcgKmem(page)) {
6819 objcg = __page_objcg(page);
6820 /*
6821 * This get matches the put at the end of the function and
6822 * kmem pages do not hold memcg references anymore.
6823 */
6824 memcg = get_mem_cgroup_from_objcg(objcg);
6825 } else {
6826 memcg = __page_memcg(page);
6827 }
a9d5adee 6828
b4e0b68f
MS
6829 if (!memcg)
6830 return;
6831
6832 if (ug->memcg != memcg) {
a9d5adee
JG
6833 if (ug->memcg) {
6834 uncharge_batch(ug);
6835 uncharge_gather_clear(ug);
6836 }
b4e0b68f 6837 ug->memcg = memcg;
7ab345a8 6838 ug->dummy_page = page;
f1796544
MH
6839
6840 /* pairs with css_put in uncharge_batch */
b4e0b68f 6841 css_get(&memcg->css);
a9d5adee
JG
6842 }
6843
9f762dbe 6844 nr_pages = compound_nr(page);
a9d5adee 6845
b4e0b68f
MS
6846 if (PageMemcgKmem(page)) {
6847 ug->nr_memory += nr_pages;
9f762dbe 6848 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6849
6850 page->memcg_data = 0;
6851 obj_cgroup_put(objcg);
6852 } else {
6853 /* LRU pages aren't accounted at the root level */
6854 if (!mem_cgroup_is_root(memcg))
6855 ug->nr_memory += nr_pages;
18b2db3b 6856 ug->pgpgout++;
a9d5adee 6857
b4e0b68f
MS
6858 page->memcg_data = 0;
6859 }
6860
6861 css_put(&memcg->css);
747db954
JW
6862}
6863
0a31bc97
JW
6864/**
6865 * mem_cgroup_uncharge - uncharge a page
6866 * @page: page to uncharge
6867 *
f0e45fb4 6868 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6869 */
6870void mem_cgroup_uncharge(struct page *page)
6871{
a9d5adee
JG
6872 struct uncharge_gather ug;
6873
0a31bc97
JW
6874 if (mem_cgroup_disabled())
6875 return;
6876
747db954 6877 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6878 if (!page_memcg(page))
0a31bc97
JW
6879 return;
6880
a9d5adee
JG
6881 uncharge_gather_clear(&ug);
6882 uncharge_page(page, &ug);
6883 uncharge_batch(&ug);
747db954 6884}
0a31bc97 6885
747db954
JW
6886/**
6887 * mem_cgroup_uncharge_list - uncharge a list of page
6888 * @page_list: list of pages to uncharge
6889 *
6890 * Uncharge a list of pages previously charged with
f0e45fb4 6891 * mem_cgroup_charge().
747db954
JW
6892 */
6893void mem_cgroup_uncharge_list(struct list_head *page_list)
6894{
c41a40b6
MS
6895 struct uncharge_gather ug;
6896 struct page *page;
6897
747db954
JW
6898 if (mem_cgroup_disabled())
6899 return;
0a31bc97 6900
c41a40b6
MS
6901 uncharge_gather_clear(&ug);
6902 list_for_each_entry(page, page_list, lru)
6903 uncharge_page(page, &ug);
6904 if (ug.memcg)
6905 uncharge_batch(&ug);
0a31bc97
JW
6906}
6907
6908/**
6a93ca8f
JW
6909 * mem_cgroup_migrate - charge a page's replacement
6910 * @oldpage: currently circulating page
6911 * @newpage: replacement page
0a31bc97 6912 *
6a93ca8f
JW
6913 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6914 * be uncharged upon free.
0a31bc97
JW
6915 *
6916 * Both pages must be locked, @newpage->mapping must be set up.
6917 */
6a93ca8f 6918void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6919{
29833315 6920 struct mem_cgroup *memcg;
44b7a8d3 6921 unsigned int nr_pages;
d93c4130 6922 unsigned long flags;
0a31bc97
JW
6923
6924 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6925 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6926 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6927 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6928 newpage);
0a31bc97
JW
6929
6930 if (mem_cgroup_disabled())
6931 return;
6932
6933 /* Page cache replacement: new page already charged? */
bcfe06bf 6934 if (page_memcg(newpage))
0a31bc97
JW
6935 return;
6936
bcfe06bf 6937 memcg = page_memcg(oldpage);
a4055888 6938 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6939 if (!memcg)
0a31bc97
JW
6940 return;
6941
44b7a8d3 6942 /* Force-charge the new page. The old one will be freed soon */
6c357848 6943 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6944
6945 page_counter_charge(&memcg->memory, nr_pages);
6946 if (do_memsw_account())
6947 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6948
1a3e1f40 6949 css_get(&memcg->css);
d9eb1ea2 6950 commit_charge(newpage, memcg);
44b7a8d3 6951
d93c4130 6952 local_irq_save(flags);
3fba69a5 6953 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6954 memcg_check_events(memcg, newpage);
d93c4130 6955 local_irq_restore(flags);
0a31bc97
JW
6956}
6957
ef12947c 6958DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6959EXPORT_SYMBOL(memcg_sockets_enabled_key);
6960
2d758073 6961void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6962{
6963 struct mem_cgroup *memcg;
6964
2d758073
JW
6965 if (!mem_cgroup_sockets_enabled)
6966 return;
6967
e876ecc6
SB
6968 /* Do not associate the sock with unrelated interrupted task's memcg. */
6969 if (in_interrupt())
6970 return;
6971
11092087
JW
6972 rcu_read_lock();
6973 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6974 if (memcg == root_mem_cgroup)
6975 goto out;
0db15298 6976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6977 goto out;
8965aa28 6978 if (css_tryget(&memcg->css))
11092087 6979 sk->sk_memcg = memcg;
f7e1cb6e 6980out:
11092087
JW
6981 rcu_read_unlock();
6982}
11092087 6983
2d758073 6984void mem_cgroup_sk_free(struct sock *sk)
11092087 6985{
2d758073
JW
6986 if (sk->sk_memcg)
6987 css_put(&sk->sk_memcg->css);
11092087
JW
6988}
6989
6990/**
6991 * mem_cgroup_charge_skmem - charge socket memory
6992 * @memcg: memcg to charge
6993 * @nr_pages: number of pages to charge
6994 *
6995 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6996 * @memcg's configured limit, %false if the charge had to be forced.
6997 */
6998bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6999{
f7e1cb6e 7000 gfp_t gfp_mask = GFP_KERNEL;
11092087 7001
f7e1cb6e 7002 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7003 struct page_counter *fail;
f7e1cb6e 7004
0db15298
JW
7005 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7006 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7007 return true;
7008 }
0db15298
JW
7009 page_counter_charge(&memcg->tcpmem, nr_pages);
7010 memcg->tcpmem_pressure = 1;
f7e1cb6e 7011 return false;
11092087 7012 }
d886f4e4 7013
f7e1cb6e
JW
7014 /* Don't block in the packet receive path */
7015 if (in_softirq())
7016 gfp_mask = GFP_NOWAIT;
7017
c9019e9b 7018 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7019
f7e1cb6e
JW
7020 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7021 return true;
7022
7023 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7024 return false;
7025}
7026
7027/**
7028 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7029 * @memcg: memcg to uncharge
7030 * @nr_pages: number of pages to uncharge
11092087
JW
7031 */
7032void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7033{
f7e1cb6e 7034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7035 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7036 return;
7037 }
d886f4e4 7038
c9019e9b 7039 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7040
475d0487 7041 refill_stock(memcg, nr_pages);
11092087
JW
7042}
7043
f7e1cb6e
JW
7044static int __init cgroup_memory(char *s)
7045{
7046 char *token;
7047
7048 while ((token = strsep(&s, ",")) != NULL) {
7049 if (!*token)
7050 continue;
7051 if (!strcmp(token, "nosocket"))
7052 cgroup_memory_nosocket = true;
04823c83
VD
7053 if (!strcmp(token, "nokmem"))
7054 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7055 }
7056 return 0;
7057}
7058__setup("cgroup.memory=", cgroup_memory);
11092087 7059
2d11085e 7060/*
1081312f
MH
7061 * subsys_initcall() for memory controller.
7062 *
308167fc
SAS
7063 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7064 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7065 * basically everything that doesn't depend on a specific mem_cgroup structure
7066 * should be initialized from here.
2d11085e
MH
7067 */
7068static int __init mem_cgroup_init(void)
7069{
95a045f6
JW
7070 int cpu, node;
7071
f3344adf
MS
7072 /*
7073 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7074 * used for per-memcg-per-cpu caching of per-node statistics. In order
7075 * to work fine, we should make sure that the overfill threshold can't
7076 * exceed S32_MAX / PAGE_SIZE.
7077 */
7078 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7079
308167fc
SAS
7080 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7081 memcg_hotplug_cpu_dead);
95a045f6
JW
7082
7083 for_each_possible_cpu(cpu)
7084 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7085 drain_local_stock);
7086
7087 for_each_node(node) {
7088 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7089
7090 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7091 node_online(node) ? node : NUMA_NO_NODE);
7092
ef8f2327 7093 rtpn->rb_root = RB_ROOT;
fa90b2fd 7094 rtpn->rb_rightmost = NULL;
ef8f2327 7095 spin_lock_init(&rtpn->lock);
95a045f6
JW
7096 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7097 }
7098
2d11085e
MH
7099 return 0;
7100}
7101subsys_initcall(mem_cgroup_init);
21afa38e
JW
7102
7103#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7104static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7105{
1c2d479a 7106 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7107 /*
7108 * The root cgroup cannot be destroyed, so it's refcount must
7109 * always be >= 1.
7110 */
7111 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7112 VM_BUG_ON(1);
7113 break;
7114 }
7115 memcg = parent_mem_cgroup(memcg);
7116 if (!memcg)
7117 memcg = root_mem_cgroup;
7118 }
7119 return memcg;
7120}
7121
21afa38e
JW
7122/**
7123 * mem_cgroup_swapout - transfer a memsw charge to swap
7124 * @page: page whose memsw charge to transfer
7125 * @entry: swap entry to move the charge to
7126 *
7127 * Transfer the memsw charge of @page to @entry.
7128 */
7129void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7130{
1f47b61f 7131 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7132 unsigned int nr_entries;
21afa38e
JW
7133 unsigned short oldid;
7134
7135 VM_BUG_ON_PAGE(PageLRU(page), page);
7136 VM_BUG_ON_PAGE(page_count(page), page);
7137
76358ab5
AS
7138 if (mem_cgroup_disabled())
7139 return;
7140
2d1c4980 7141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7142 return;
7143
bcfe06bf 7144 memcg = page_memcg(page);
21afa38e 7145
a4055888 7146 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7147 if (!memcg)
7148 return;
7149
1f47b61f
VD
7150 /*
7151 * In case the memcg owning these pages has been offlined and doesn't
7152 * have an ID allocated to it anymore, charge the closest online
7153 * ancestor for the swap instead and transfer the memory+swap charge.
7154 */
7155 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7156 nr_entries = thp_nr_pages(page);
d6810d73
HY
7157 /* Get references for the tail pages, too */
7158 if (nr_entries > 1)
7159 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7160 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7161 nr_entries);
21afa38e 7162 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7163 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7164
bcfe06bf 7165 page->memcg_data = 0;
21afa38e
JW
7166
7167 if (!mem_cgroup_is_root(memcg))
d6810d73 7168 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7169
2d1c4980 7170 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7171 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7172 page_counter_charge(&swap_memcg->memsw, nr_entries);
7173 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7174 }
7175
ce9ce665
SAS
7176 /*
7177 * Interrupts should be disabled here because the caller holds the
b93b0163 7178 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7179 * important here to have the interrupts disabled because it is the
b93b0163 7180 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7181 */
7182 VM_BUG_ON(!irqs_disabled());
3fba69a5 7183 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7184 memcg_check_events(memcg, page);
73f576c0 7185
1a3e1f40 7186 css_put(&memcg->css);
21afa38e
JW
7187}
7188
38d8b4e6
HY
7189/**
7190 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7191 * @page: page being added to swap
7192 * @entry: swap entry to charge
7193 *
38d8b4e6 7194 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7195 *
7196 * Returns 0 on success, -ENOMEM on failure.
7197 */
7198int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7199{
6c357848 7200 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7201 struct page_counter *counter;
38d8b4e6 7202 struct mem_cgroup *memcg;
37e84351
VD
7203 unsigned short oldid;
7204
76358ab5
AS
7205 if (mem_cgroup_disabled())
7206 return 0;
7207
2d1c4980 7208 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7209 return 0;
7210
bcfe06bf 7211 memcg = page_memcg(page);
37e84351 7212
a4055888 7213 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7214 if (!memcg)
7215 return 0;
7216
f3a53a3a
TH
7217 if (!entry.val) {
7218 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7219 return 0;
f3a53a3a 7220 }
bb98f2c5 7221
1f47b61f
VD
7222 memcg = mem_cgroup_id_get_online(memcg);
7223
2d1c4980 7224 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7225 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7226 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7227 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7228 mem_cgroup_id_put(memcg);
37e84351 7229 return -ENOMEM;
1f47b61f 7230 }
37e84351 7231
38d8b4e6
HY
7232 /* Get references for the tail pages, too */
7233 if (nr_pages > 1)
7234 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7235 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7236 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7237 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7238
37e84351
VD
7239 return 0;
7240}
7241
21afa38e 7242/**
38d8b4e6 7243 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7244 * @entry: swap entry to uncharge
38d8b4e6 7245 * @nr_pages: the amount of swap space to uncharge
21afa38e 7246 */
38d8b4e6 7247void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7248{
7249 struct mem_cgroup *memcg;
7250 unsigned short id;
7251
38d8b4e6 7252 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7253 rcu_read_lock();
adbe427b 7254 memcg = mem_cgroup_from_id(id);
21afa38e 7255 if (memcg) {
2d1c4980 7256 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7258 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7259 else
38d8b4e6 7260 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7261 }
c9019e9b 7262 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7263 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7264 }
7265 rcu_read_unlock();
7266}
7267
d8b38438
VD
7268long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7269{
7270 long nr_swap_pages = get_nr_swap_pages();
7271
eccb52e7 7272 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7273 return nr_swap_pages;
7274 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7275 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7276 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7277 page_counter_read(&memcg->swap));
7278 return nr_swap_pages;
7279}
7280
5ccc5aba
VD
7281bool mem_cgroup_swap_full(struct page *page)
7282{
7283 struct mem_cgroup *memcg;
7284
7285 VM_BUG_ON_PAGE(!PageLocked(page), page);
7286
7287 if (vm_swap_full())
7288 return true;
eccb52e7 7289 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7290 return false;
7291
bcfe06bf 7292 memcg = page_memcg(page);
5ccc5aba
VD
7293 if (!memcg)
7294 return false;
7295
4b82ab4f
JK
7296 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7297 unsigned long usage = page_counter_read(&memcg->swap);
7298
7299 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7300 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7301 return true;
4b82ab4f 7302 }
5ccc5aba
VD
7303
7304 return false;
7305}
7306
eccb52e7 7307static int __init setup_swap_account(char *s)
21afa38e
JW
7308{
7309 if (!strcmp(s, "1"))
5ab92901 7310 cgroup_memory_noswap = false;
21afa38e 7311 else if (!strcmp(s, "0"))
5ab92901 7312 cgroup_memory_noswap = true;
21afa38e
JW
7313 return 1;
7314}
eccb52e7 7315__setup("swapaccount=", setup_swap_account);
21afa38e 7316
37e84351
VD
7317static u64 swap_current_read(struct cgroup_subsys_state *css,
7318 struct cftype *cft)
7319{
7320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7321
7322 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7323}
7324
4b82ab4f
JK
7325static int swap_high_show(struct seq_file *m, void *v)
7326{
7327 return seq_puts_memcg_tunable(m,
7328 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7329}
7330
7331static ssize_t swap_high_write(struct kernfs_open_file *of,
7332 char *buf, size_t nbytes, loff_t off)
7333{
7334 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7335 unsigned long high;
7336 int err;
7337
7338 buf = strstrip(buf);
7339 err = page_counter_memparse(buf, "max", &high);
7340 if (err)
7341 return err;
7342
7343 page_counter_set_high(&memcg->swap, high);
7344
7345 return nbytes;
7346}
7347
37e84351
VD
7348static int swap_max_show(struct seq_file *m, void *v)
7349{
677dc973
CD
7350 return seq_puts_memcg_tunable(m,
7351 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7352}
7353
7354static ssize_t swap_max_write(struct kernfs_open_file *of,
7355 char *buf, size_t nbytes, loff_t off)
7356{
7357 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7358 unsigned long max;
7359 int err;
7360
7361 buf = strstrip(buf);
7362 err = page_counter_memparse(buf, "max", &max);
7363 if (err)
7364 return err;
7365
be09102b 7366 xchg(&memcg->swap.max, max);
37e84351
VD
7367
7368 return nbytes;
7369}
7370
f3a53a3a
TH
7371static int swap_events_show(struct seq_file *m, void *v)
7372{
aa9694bb 7373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7374
4b82ab4f
JK
7375 seq_printf(m, "high %lu\n",
7376 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7377 seq_printf(m, "max %lu\n",
7378 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7379 seq_printf(m, "fail %lu\n",
7380 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7381
7382 return 0;
7383}
7384
37e84351
VD
7385static struct cftype swap_files[] = {
7386 {
7387 .name = "swap.current",
7388 .flags = CFTYPE_NOT_ON_ROOT,
7389 .read_u64 = swap_current_read,
7390 },
4b82ab4f
JK
7391 {
7392 .name = "swap.high",
7393 .flags = CFTYPE_NOT_ON_ROOT,
7394 .seq_show = swap_high_show,
7395 .write = swap_high_write,
7396 },
37e84351
VD
7397 {
7398 .name = "swap.max",
7399 .flags = CFTYPE_NOT_ON_ROOT,
7400 .seq_show = swap_max_show,
7401 .write = swap_max_write,
7402 },
f3a53a3a
TH
7403 {
7404 .name = "swap.events",
7405 .flags = CFTYPE_NOT_ON_ROOT,
7406 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7407 .seq_show = swap_events_show,
7408 },
37e84351
VD
7409 { } /* terminate */
7410};
7411
eccb52e7 7412static struct cftype memsw_files[] = {
21afa38e
JW
7413 {
7414 .name = "memsw.usage_in_bytes",
7415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7416 .read_u64 = mem_cgroup_read_u64,
7417 },
7418 {
7419 .name = "memsw.max_usage_in_bytes",
7420 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7421 .write = mem_cgroup_reset,
7422 .read_u64 = mem_cgroup_read_u64,
7423 },
7424 {
7425 .name = "memsw.limit_in_bytes",
7426 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7427 .write = mem_cgroup_write,
7428 .read_u64 = mem_cgroup_read_u64,
7429 },
7430 {
7431 .name = "memsw.failcnt",
7432 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7433 .write = mem_cgroup_reset,
7434 .read_u64 = mem_cgroup_read_u64,
7435 },
7436 { }, /* terminate */
7437};
7438
82ff165c
BS
7439/*
7440 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7441 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7442 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7443 * boot parameter. This may result in premature OOPS inside
7444 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7445 */
21afa38e
JW
7446static int __init mem_cgroup_swap_init(void)
7447{
2d1c4980
JW
7448 /* No memory control -> no swap control */
7449 if (mem_cgroup_disabled())
7450 cgroup_memory_noswap = true;
7451
7452 if (cgroup_memory_noswap)
eccb52e7
JW
7453 return 0;
7454
7455 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7456 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7457
21afa38e
JW
7458 return 0;
7459}
82ff165c 7460core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7461
7462#endif /* CONFIG_MEMCG_SWAP */