]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: do not replicate get_mem_cgroup_from_mm in __mem_cgroup_try_charge
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
073219e9 541 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
b2402857
KH
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 930 nr_pages);
d52aa412 931 else
b2402857 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 933 nr_pages);
55e462b0 934
b070e65c
DR
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
e401f176
KH
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
c0ff4b85 941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 942 else {
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
944 nr_pages = -nr_pages; /* for event */
945 }
e401f176 946
13114716 947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
948}
949
bb2a0de9 950unsigned long
4d7dcca2 951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
952{
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957}
958
959static unsigned long
c0ff4b85 960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 961 unsigned int lru_mask)
889976db
YH
962{
963 struct mem_cgroup_per_zone *mz;
f156ab93 964 enum lru_list lru;
bb2a0de9
KH
965 unsigned long ret = 0;
966
c0ff4b85 967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 968
f156ab93
HD
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
bb2a0de9
KH
972 }
973 return ret;
974}
975
976static unsigned long
c0ff4b85 977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
978 int nid, unsigned int lru_mask)
979{
889976db
YH
980 u64 total = 0;
981 int zid;
982
bb2a0de9 983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
bb2a0de9 986
889976db
YH
987 return total;
988}
bb2a0de9 989
c0ff4b85 990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 991 unsigned int lru_mask)
6d12e2d8 992{
889976db 993 int nid;
6d12e2d8
KH
994 u64 total = 0;
995
31aaea4a 996 for_each_node_state(nid, N_MEMORY)
c0ff4b85 997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 998 return total;
d52aa412
KH
999}
1000
f53d7ce3
JW
1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
7a159cc9
JW
1003{
1004 unsigned long val, next;
1005
13114716 1006 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1007 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1008 /* from time_after() in jiffies.h */
f53d7ce3
JW
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
bb4cc1a8
AM
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
f53d7ce3
JW
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
7a159cc9 1025 }
f53d7ce3 1026 return false;
d2265e6f
KH
1027}
1028
1029/*
1030 * Check events in order.
1031 *
1032 */
c0ff4b85 1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1034{
4799401f 1035 preempt_disable();
d2265e6f 1036 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1039 bool do_softlimit;
82b3f2a7 1040 bool do_numainfo __maybe_unused;
f53d7ce3 1041
bb4cc1a8
AM
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1044#if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047#endif
1048 preempt_enable();
1049
c0ff4b85 1050 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
453a9bf3 1053#if MAX_NUMNODES > 1
f53d7ce3 1054 if (unlikely(do_numainfo))
c0ff4b85 1055 atomic_inc(&memcg->numainfo_events);
453a9bf3 1056#endif
f53d7ce3
JW
1057 } else
1058 preempt_enable();
d2265e6f
KH
1059}
1060
cf475ad2 1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1062{
31a78f23
BS
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
073219e9 1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1072}
1073
df381975 1074static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1075{
c0ff4b85 1076 struct mem_cgroup *memcg = NULL;
0b7f569e 1077
54595fe2
KH
1078 rcu_read_lock();
1079 do {
c0ff4b85
R
1080 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1081 if (unlikely(!memcg))
df381975 1082 memcg = root_mem_cgroup;
c0ff4b85 1083 } while (!css_tryget(&memcg->css));
54595fe2 1084 rcu_read_unlock();
c0ff4b85 1085 return memcg;
54595fe2
KH
1086}
1087
16248d8f
MH
1088/*
1089 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1090 * ref. count) or NULL if the whole root's subtree has been visited.
1091 *
1092 * helper function to be used by mem_cgroup_iter
1093 */
1094static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1095 struct mem_cgroup *last_visited)
16248d8f 1096{
492eb21b 1097 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1098
bd8815a6 1099 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1100skip_node:
492eb21b 1101 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1102
1103 /*
1104 * Even if we found a group we have to make sure it is
1105 * alive. css && !memcg means that the groups should be
1106 * skipped and we should continue the tree walk.
1107 * last_visited css is safe to use because it is
1108 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1109 *
1110 * We do not take a reference on the root of the tree walk
1111 * because we might race with the root removal when it would
1112 * be the only node in the iterated hierarchy and mem_cgroup_iter
1113 * would end up in an endless loop because it expects that at
1114 * least one valid node will be returned. Root cannot disappear
1115 * because caller of the iterator should hold it already so
1116 * skipping css reference should be safe.
16248d8f 1117 */
492eb21b 1118 if (next_css) {
ce48225f
HD
1119 if ((next_css == &root->css) ||
1120 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1121 return mem_cgroup_from_css(next_css);
0eef6156
MH
1122
1123 prev_css = next_css;
1124 goto skip_node;
16248d8f
MH
1125 }
1126
1127 return NULL;
1128}
1129
519ebea3
JW
1130static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1131{
1132 /*
1133 * When a group in the hierarchy below root is destroyed, the
1134 * hierarchy iterator can no longer be trusted since it might
1135 * have pointed to the destroyed group. Invalidate it.
1136 */
1137 atomic_inc(&root->dead_count);
1138}
1139
1140static struct mem_cgroup *
1141mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1142 struct mem_cgroup *root,
1143 int *sequence)
1144{
1145 struct mem_cgroup *position = NULL;
1146 /*
1147 * A cgroup destruction happens in two stages: offlining and
1148 * release. They are separated by a RCU grace period.
1149 *
1150 * If the iterator is valid, we may still race with an
1151 * offlining. The RCU lock ensures the object won't be
1152 * released, tryget will fail if we lost the race.
1153 */
1154 *sequence = atomic_read(&root->dead_count);
1155 if (iter->last_dead_count == *sequence) {
1156 smp_rmb();
1157 position = iter->last_visited;
ecc736fc
MH
1158
1159 /*
1160 * We cannot take a reference to root because we might race
1161 * with root removal and returning NULL would end up in
1162 * an endless loop on the iterator user level when root
1163 * would be returned all the time.
1164 */
1165 if (position && position != root &&
1166 !css_tryget(&position->css))
519ebea3
JW
1167 position = NULL;
1168 }
1169 return position;
1170}
1171
1172static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1173 struct mem_cgroup *last_visited,
1174 struct mem_cgroup *new_position,
ecc736fc 1175 struct mem_cgroup *root,
519ebea3
JW
1176 int sequence)
1177{
ecc736fc
MH
1178 /* root reference counting symmetric to mem_cgroup_iter_load */
1179 if (last_visited && last_visited != root)
519ebea3
JW
1180 css_put(&last_visited->css);
1181 /*
1182 * We store the sequence count from the time @last_visited was
1183 * loaded successfully instead of rereading it here so that we
1184 * don't lose destruction events in between. We could have
1185 * raced with the destruction of @new_position after all.
1186 */
1187 iter->last_visited = new_position;
1188 smp_wmb();
1189 iter->last_dead_count = sequence;
1190}
1191
5660048c
JW
1192/**
1193 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1194 * @root: hierarchy root
1195 * @prev: previously returned memcg, NULL on first invocation
1196 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1197 *
1198 * Returns references to children of the hierarchy below @root, or
1199 * @root itself, or %NULL after a full round-trip.
1200 *
1201 * Caller must pass the return value in @prev on subsequent
1202 * invocations for reference counting, or use mem_cgroup_iter_break()
1203 * to cancel a hierarchy walk before the round-trip is complete.
1204 *
1205 * Reclaimers can specify a zone and a priority level in @reclaim to
1206 * divide up the memcgs in the hierarchy among all concurrent
1207 * reclaimers operating on the same zone and priority.
1208 */
694fbc0f 1209struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1210 struct mem_cgroup *prev,
694fbc0f 1211 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1212{
9f3a0d09 1213 struct mem_cgroup *memcg = NULL;
542f85f9 1214 struct mem_cgroup *last_visited = NULL;
711d3d2c 1215
694fbc0f
AM
1216 if (mem_cgroup_disabled())
1217 return NULL;
5660048c 1218
9f3a0d09
JW
1219 if (!root)
1220 root = root_mem_cgroup;
7d74b06f 1221
9f3a0d09 1222 if (prev && !reclaim)
542f85f9 1223 last_visited = prev;
14067bb3 1224
9f3a0d09
JW
1225 if (!root->use_hierarchy && root != root_mem_cgroup) {
1226 if (prev)
c40046f3 1227 goto out_css_put;
694fbc0f 1228 return root;
9f3a0d09 1229 }
14067bb3 1230
542f85f9 1231 rcu_read_lock();
9f3a0d09 1232 while (!memcg) {
527a5ec9 1233 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1234 int uninitialized_var(seq);
711d3d2c 1235
527a5ec9
JW
1236 if (reclaim) {
1237 int nid = zone_to_nid(reclaim->zone);
1238 int zid = zone_idx(reclaim->zone);
1239 struct mem_cgroup_per_zone *mz;
1240
1241 mz = mem_cgroup_zoneinfo(root, nid, zid);
1242 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1243 if (prev && reclaim->generation != iter->generation) {
5f578161 1244 iter->last_visited = NULL;
542f85f9
MH
1245 goto out_unlock;
1246 }
5f578161 1247
519ebea3 1248 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1249 }
7d74b06f 1250
694fbc0f 1251 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1252
527a5ec9 1253 if (reclaim) {
ecc736fc
MH
1254 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1255 seq);
542f85f9 1256
19f39402 1257 if (!memcg)
527a5ec9
JW
1258 iter->generation++;
1259 else if (!prev && memcg)
1260 reclaim->generation = iter->generation;
1261 }
9f3a0d09 1262
694fbc0f 1263 if (prev && !memcg)
542f85f9 1264 goto out_unlock;
9f3a0d09 1265 }
542f85f9
MH
1266out_unlock:
1267 rcu_read_unlock();
c40046f3
MH
1268out_css_put:
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1271
9f3a0d09 1272 return memcg;
14067bb3 1273}
7d74b06f 1274
5660048c
JW
1275/**
1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1277 * @root: hierarchy root
1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1279 */
1280void mem_cgroup_iter_break(struct mem_cgroup *root,
1281 struct mem_cgroup *prev)
9f3a0d09
JW
1282{
1283 if (!root)
1284 root = root_mem_cgroup;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287}
7d74b06f 1288
9f3a0d09
JW
1289/*
1290 * Iteration constructs for visiting all cgroups (under a tree). If
1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1292 * be used for reference counting.
1293 */
1294#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1296 iter != NULL; \
527a5ec9 1297 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1298
9f3a0d09 1299#define for_each_mem_cgroup(iter) \
527a5ec9 1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1301 iter != NULL; \
527a5ec9 1302 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1303
68ae564b 1304void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1305{
c0ff4b85 1306 struct mem_cgroup *memcg;
456f998e 1307
456f998e 1308 rcu_read_lock();
c0ff4b85
R
1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1310 if (unlikely(!memcg))
456f998e
YH
1311 goto out;
1312
1313 switch (idx) {
456f998e 1314 case PGFAULT:
0e574a93
JW
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1316 break;
1317 case PGMAJFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1319 break;
1320 default:
1321 BUG();
1322 }
1323out:
1324 rcu_read_unlock();
1325}
68ae564b 1326EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1327
925b7673
JW
1328/**
1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1330 * @zone: zone of the wanted lruvec
fa9add64 1331 * @memcg: memcg of the wanted lruvec
925b7673
JW
1332 *
1333 * Returns the lru list vector holding pages for the given @zone and
1334 * @mem. This can be the global zone lruvec, if the memory controller
1335 * is disabled.
1336 */
1337struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1338 struct mem_cgroup *memcg)
1339{
1340 struct mem_cgroup_per_zone *mz;
bea8c150 1341 struct lruvec *lruvec;
925b7673 1342
bea8c150
HD
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
925b7673
JW
1347
1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1349 lruvec = &mz->lruvec;
1350out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
925b7673
JW
1359}
1360
08e552c6
KH
1361/*
1362 * Following LRU functions are allowed to be used without PCG_LOCK.
1363 * Operations are called by routine of global LRU independently from memcg.
1364 * What we have to take care of here is validness of pc->mem_cgroup.
1365 *
1366 * Changes to pc->mem_cgroup happens when
1367 * 1. charge
1368 * 2. moving account
1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1370 * It is added to LRU before charge.
1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1372 * When moving account, the page is not on LRU. It's isolated.
1373 */
4f98a2fe 1374
925b7673 1375/**
fa9add64 1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1377 * @page: the page
fa9add64 1378 * @zone: zone of the page
925b7673 1379 */
fa9add64 1380struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1381{
08e552c6 1382 struct mem_cgroup_per_zone *mz;
925b7673
JW
1383 struct mem_cgroup *memcg;
1384 struct page_cgroup *pc;
bea8c150 1385 struct lruvec *lruvec;
6d12e2d8 1386
bea8c150
HD
1387 if (mem_cgroup_disabled()) {
1388 lruvec = &zone->lruvec;
1389 goto out;
1390 }
925b7673 1391
08e552c6 1392 pc = lookup_page_cgroup(page);
38c5d72f 1393 memcg = pc->mem_cgroup;
7512102c
HD
1394
1395 /*
fa9add64 1396 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1397 * an uncharged page off lru does nothing to secure
1398 * its former mem_cgroup from sudden removal.
1399 *
1400 * Our caller holds lru_lock, and PageCgroupUsed is updated
1401 * under page_cgroup lock: between them, they make all uses
1402 * of pc->mem_cgroup safe.
1403 */
fa9add64 1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1405 pc->mem_cgroup = memcg = root_mem_cgroup;
1406
925b7673 1407 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1408 lruvec = &mz->lruvec;
1409out:
1410 /*
1411 * Since a node can be onlined after the mem_cgroup was created,
1412 * we have to be prepared to initialize lruvec->zone here;
1413 * and if offlined then reonlined, we need to reinitialize it.
1414 */
1415 if (unlikely(lruvec->zone != zone))
1416 lruvec->zone = zone;
1417 return lruvec;
08e552c6 1418}
b69408e8 1419
925b7673 1420/**
fa9add64
HD
1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1422 * @lruvec: mem_cgroup per zone lru vector
1423 * @lru: index of lru list the page is sitting on
1424 * @nr_pages: positive when adding or negative when removing
925b7673 1425 *
fa9add64
HD
1426 * This function must be called when a page is added to or removed from an
1427 * lru list.
3f58a829 1428 */
fa9add64
HD
1429void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1430 int nr_pages)
3f58a829
MK
1431{
1432 struct mem_cgroup_per_zone *mz;
fa9add64 1433 unsigned long *lru_size;
3f58a829
MK
1434
1435 if (mem_cgroup_disabled())
1436 return;
1437
fa9add64
HD
1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1439 lru_size = mz->lru_size + lru;
1440 *lru_size += nr_pages;
1441 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1442}
544122e5 1443
3e92041d 1444/*
c0ff4b85 1445 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1446 * hierarchy subtree
1447 */
c3ac9a8a
JW
1448bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
3e92041d 1450{
91c63734
JW
1451 if (root_memcg == memcg)
1452 return true;
3a981f48 1453 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1454 return false;
b47f77b5 1455 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1456}
1457
1458static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1460{
1461 bool ret;
1462
91c63734 1463 rcu_read_lock();
c3ac9a8a 1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1465 rcu_read_unlock();
1466 return ret;
3e92041d
MH
1467}
1468
ffbdccf5
DR
1469bool task_in_mem_cgroup(struct task_struct *task,
1470 const struct mem_cgroup *memcg)
4c4a2214 1471{
0b7f569e 1472 struct mem_cgroup *curr = NULL;
158e0a2d 1473 struct task_struct *p;
ffbdccf5 1474 bool ret;
4c4a2214 1475
158e0a2d 1476 p = find_lock_task_mm(task);
de077d22 1477 if (p) {
df381975 1478 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1479 task_unlock(p);
1480 } else {
1481 /*
1482 * All threads may have already detached their mm's, but the oom
1483 * killer still needs to detect if they have already been oom
1484 * killed to prevent needlessly killing additional tasks.
1485 */
ffbdccf5 1486 rcu_read_lock();
de077d22
DR
1487 curr = mem_cgroup_from_task(task);
1488 if (curr)
1489 css_get(&curr->css);
ffbdccf5 1490 rcu_read_unlock();
de077d22 1491 }
d31f56db 1492 /*
c0ff4b85 1493 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1494 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1495 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1496 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1497 */
c0ff4b85 1498 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1499 css_put(&curr->css);
4c4a2214
DR
1500 return ret;
1501}
1502
c56d5c7d 1503int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1504{
9b272977 1505 unsigned long inactive_ratio;
14797e23 1506 unsigned long inactive;
9b272977 1507 unsigned long active;
c772be93 1508 unsigned long gb;
14797e23 1509
4d7dcca2
HD
1510 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1511 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1512
c772be93
KM
1513 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1514 if (gb)
1515 inactive_ratio = int_sqrt(10 * gb);
1516 else
1517 inactive_ratio = 1;
1518
9b272977 1519 return inactive * inactive_ratio < active;
14797e23
KM
1520}
1521
6d61ef40
BS
1522#define mem_cgroup_from_res_counter(counter, member) \
1523 container_of(counter, struct mem_cgroup, member)
1524
19942822 1525/**
9d11ea9f 1526 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1527 * @memcg: the memory cgroup
19942822 1528 *
9d11ea9f 1529 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1530 * pages.
19942822 1531 */
c0ff4b85 1532static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1533{
9d11ea9f
JW
1534 unsigned long long margin;
1535
c0ff4b85 1536 margin = res_counter_margin(&memcg->res);
9d11ea9f 1537 if (do_swap_account)
c0ff4b85 1538 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1539 return margin >> PAGE_SHIFT;
19942822
JW
1540}
1541
1f4c025b 1542int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1543{
a7885eb8 1544 /* root ? */
63876986 1545 if (!css_parent(&memcg->css))
a7885eb8
KM
1546 return vm_swappiness;
1547
bf1ff263 1548 return memcg->swappiness;
a7885eb8
KM
1549}
1550
619d094b
KH
1551/*
1552 * memcg->moving_account is used for checking possibility that some thread is
1553 * calling move_account(). When a thread on CPU-A starts moving pages under
1554 * a memcg, other threads should check memcg->moving_account under
1555 * rcu_read_lock(), like this:
1556 *
1557 * CPU-A CPU-B
1558 * rcu_read_lock()
1559 * memcg->moving_account+1 if (memcg->mocing_account)
1560 * take heavy locks.
1561 * synchronize_rcu() update something.
1562 * rcu_read_unlock()
1563 * start move here.
1564 */
4331f7d3
KH
1565
1566/* for quick checking without looking up memcg */
1567atomic_t memcg_moving __read_mostly;
1568
c0ff4b85 1569static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1570{
4331f7d3 1571 atomic_inc(&memcg_moving);
619d094b 1572 atomic_inc(&memcg->moving_account);
32047e2a
KH
1573 synchronize_rcu();
1574}
1575
c0ff4b85 1576static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1577{
619d094b
KH
1578 /*
1579 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1580 * We check NULL in callee rather than caller.
1581 */
4331f7d3
KH
1582 if (memcg) {
1583 atomic_dec(&memcg_moving);
619d094b 1584 atomic_dec(&memcg->moving_account);
4331f7d3 1585 }
32047e2a 1586}
619d094b 1587
32047e2a
KH
1588/*
1589 * 2 routines for checking "mem" is under move_account() or not.
1590 *
13fd1dd9
AM
1591 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1592 * is used for avoiding races in accounting. If true,
32047e2a
KH
1593 * pc->mem_cgroup may be overwritten.
1594 *
1595 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1596 * under hierarchy of moving cgroups. This is for
1597 * waiting at hith-memory prressure caused by "move".
1598 */
1599
13fd1dd9 1600static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1601{
1602 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1603 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1604}
4b534334 1605
c0ff4b85 1606static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1607{
2bd9bb20
KH
1608 struct mem_cgroup *from;
1609 struct mem_cgroup *to;
4b534334 1610 bool ret = false;
2bd9bb20
KH
1611 /*
1612 * Unlike task_move routines, we access mc.to, mc.from not under
1613 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1614 */
1615 spin_lock(&mc.lock);
1616 from = mc.from;
1617 to = mc.to;
1618 if (!from)
1619 goto unlock;
3e92041d 1620
c0ff4b85
R
1621 ret = mem_cgroup_same_or_subtree(memcg, from)
1622 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1623unlock:
1624 spin_unlock(&mc.lock);
4b534334
KH
1625 return ret;
1626}
1627
c0ff4b85 1628static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1629{
1630 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1631 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1632 DEFINE_WAIT(wait);
1633 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1634 /* moving charge context might have finished. */
1635 if (mc.moving_task)
1636 schedule();
1637 finish_wait(&mc.waitq, &wait);
1638 return true;
1639 }
1640 }
1641 return false;
1642}
1643
312734c0
KH
1644/*
1645 * Take this lock when
1646 * - a code tries to modify page's memcg while it's USED.
1647 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1648 * see mem_cgroup_stolen(), too.
312734c0
KH
1649 */
1650static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1651 unsigned long *flags)
1652{
1653 spin_lock_irqsave(&memcg->move_lock, *flags);
1654}
1655
1656static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1657 unsigned long *flags)
1658{
1659 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1660}
1661
58cf188e 1662#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1663/**
58cf188e 1664 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1665 * @memcg: The memory cgroup that went over limit
1666 * @p: Task that is going to be killed
1667 *
1668 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1669 * enabled
1670 */
1671void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1672{
e61734c5 1673 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1674 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1675 struct mem_cgroup *iter;
1676 unsigned int i;
e222432b 1677
58cf188e 1678 if (!p)
e222432b
BS
1679 return;
1680
08088cb9 1681 mutex_lock(&oom_info_lock);
e222432b
BS
1682 rcu_read_lock();
1683
e61734c5
TH
1684 pr_info("Task in ");
1685 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1686 pr_info(" killed as a result of limit of ");
1687 pr_cont_cgroup_path(memcg->css.cgroup);
1688 pr_info("\n");
e222432b 1689
e222432b
BS
1690 rcu_read_unlock();
1691
d045197f 1692 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1693 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1696 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1697 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1700 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1701 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1704
1705 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1706 pr_info("Memory cgroup stats for ");
1707 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1708 pr_cont(":");
1709
1710 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1711 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1712 continue;
1713 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1714 K(mem_cgroup_read_stat(iter, i)));
1715 }
1716
1717 for (i = 0; i < NR_LRU_LISTS; i++)
1718 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1719 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1720
1721 pr_cont("\n");
1722 }
08088cb9 1723 mutex_unlock(&oom_info_lock);
e222432b
BS
1724}
1725
81d39c20
KH
1726/*
1727 * This function returns the number of memcg under hierarchy tree. Returns
1728 * 1(self count) if no children.
1729 */
c0ff4b85 1730static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1731{
1732 int num = 0;
7d74b06f
KH
1733 struct mem_cgroup *iter;
1734
c0ff4b85 1735 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1736 num++;
81d39c20
KH
1737 return num;
1738}
1739
a63d83f4
DR
1740/*
1741 * Return the memory (and swap, if configured) limit for a memcg.
1742 */
9cbb78bb 1743static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1744{
1745 u64 limit;
a63d83f4 1746
f3e8eb70 1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1748
a63d83f4 1749 /*
9a5a8f19 1750 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1751 */
9a5a8f19
MH
1752 if (mem_cgroup_swappiness(memcg)) {
1753 u64 memsw;
1754
1755 limit += total_swap_pages << PAGE_SHIFT;
1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1757
1758 /*
1759 * If memsw is finite and limits the amount of swap space
1760 * available to this memcg, return that limit.
1761 */
1762 limit = min(limit, memsw);
1763 }
1764
1765 return limit;
a63d83f4
DR
1766}
1767
19965460
DR
1768static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1769 int order)
9cbb78bb
DR
1770{
1771 struct mem_cgroup *iter;
1772 unsigned long chosen_points = 0;
1773 unsigned long totalpages;
1774 unsigned int points = 0;
1775 struct task_struct *chosen = NULL;
1776
876aafbf 1777 /*
465adcf1
DR
1778 * If current has a pending SIGKILL or is exiting, then automatically
1779 * select it. The goal is to allow it to allocate so that it may
1780 * quickly exit and free its memory.
876aafbf 1781 */
465adcf1 1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1783 set_thread_flag(TIF_MEMDIE);
1784 return;
1785 }
1786
1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1789 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1790 struct css_task_iter it;
9cbb78bb
DR
1791 struct task_struct *task;
1792
72ec7029
TH
1793 css_task_iter_start(&iter->css, &it);
1794 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1795 switch (oom_scan_process_thread(task, totalpages, NULL,
1796 false)) {
1797 case OOM_SCAN_SELECT:
1798 if (chosen)
1799 put_task_struct(chosen);
1800 chosen = task;
1801 chosen_points = ULONG_MAX;
1802 get_task_struct(chosen);
1803 /* fall through */
1804 case OOM_SCAN_CONTINUE:
1805 continue;
1806 case OOM_SCAN_ABORT:
72ec7029 1807 css_task_iter_end(&it);
9cbb78bb
DR
1808 mem_cgroup_iter_break(memcg, iter);
1809 if (chosen)
1810 put_task_struct(chosen);
1811 return;
1812 case OOM_SCAN_OK:
1813 break;
1814 };
1815 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1816 if (!points || points < chosen_points)
1817 continue;
1818 /* Prefer thread group leaders for display purposes */
1819 if (points == chosen_points &&
1820 thread_group_leader(chosen))
1821 continue;
1822
1823 if (chosen)
1824 put_task_struct(chosen);
1825 chosen = task;
1826 chosen_points = points;
1827 get_task_struct(chosen);
9cbb78bb 1828 }
72ec7029 1829 css_task_iter_end(&it);
9cbb78bb
DR
1830 }
1831
1832 if (!chosen)
1833 return;
1834 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1835 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1836 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1837}
1838
5660048c
JW
1839static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1840 gfp_t gfp_mask,
1841 unsigned long flags)
1842{
1843 unsigned long total = 0;
1844 bool noswap = false;
1845 int loop;
1846
1847 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1848 noswap = true;
1849 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1850 noswap = true;
1851
1852 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1853 if (loop)
1854 drain_all_stock_async(memcg);
1855 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1856 /*
1857 * Allow limit shrinkers, which are triggered directly
1858 * by userspace, to catch signals and stop reclaim
1859 * after minimal progress, regardless of the margin.
1860 */
1861 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1862 break;
1863 if (mem_cgroup_margin(memcg))
1864 break;
1865 /*
1866 * If nothing was reclaimed after two attempts, there
1867 * may be no reclaimable pages in this hierarchy.
1868 */
1869 if (loop && !total)
1870 break;
1871 }
1872 return total;
1873}
1874
4d0c066d
KH
1875/**
1876 * test_mem_cgroup_node_reclaimable
dad7557e 1877 * @memcg: the target memcg
4d0c066d
KH
1878 * @nid: the node ID to be checked.
1879 * @noswap : specify true here if the user wants flle only information.
1880 *
1881 * This function returns whether the specified memcg contains any
1882 * reclaimable pages on a node. Returns true if there are any reclaimable
1883 * pages in the node.
1884 */
c0ff4b85 1885static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1886 int nid, bool noswap)
1887{
c0ff4b85 1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1889 return true;
1890 if (noswap || !total_swap_pages)
1891 return false;
c0ff4b85 1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1893 return true;
1894 return false;
1895
1896}
bb4cc1a8 1897#if MAX_NUMNODES > 1
889976db
YH
1898
1899/*
1900 * Always updating the nodemask is not very good - even if we have an empty
1901 * list or the wrong list here, we can start from some node and traverse all
1902 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1903 *
1904 */
c0ff4b85 1905static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1906{
1907 int nid;
453a9bf3
KH
1908 /*
1909 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1910 * pagein/pageout changes since the last update.
1911 */
c0ff4b85 1912 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1913 return;
c0ff4b85 1914 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1915 return;
1916
889976db 1917 /* make a nodemask where this memcg uses memory from */
31aaea4a 1918 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1919
31aaea4a 1920 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1921
c0ff4b85
R
1922 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1923 node_clear(nid, memcg->scan_nodes);
889976db 1924 }
453a9bf3 1925
c0ff4b85
R
1926 atomic_set(&memcg->numainfo_events, 0);
1927 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1928}
1929
1930/*
1931 * Selecting a node where we start reclaim from. Because what we need is just
1932 * reducing usage counter, start from anywhere is O,K. Considering
1933 * memory reclaim from current node, there are pros. and cons.
1934 *
1935 * Freeing memory from current node means freeing memory from a node which
1936 * we'll use or we've used. So, it may make LRU bad. And if several threads
1937 * hit limits, it will see a contention on a node. But freeing from remote
1938 * node means more costs for memory reclaim because of memory latency.
1939 *
1940 * Now, we use round-robin. Better algorithm is welcomed.
1941 */
c0ff4b85 1942int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1943{
1944 int node;
1945
c0ff4b85
R
1946 mem_cgroup_may_update_nodemask(memcg);
1947 node = memcg->last_scanned_node;
889976db 1948
c0ff4b85 1949 node = next_node(node, memcg->scan_nodes);
889976db 1950 if (node == MAX_NUMNODES)
c0ff4b85 1951 node = first_node(memcg->scan_nodes);
889976db
YH
1952 /*
1953 * We call this when we hit limit, not when pages are added to LRU.
1954 * No LRU may hold pages because all pages are UNEVICTABLE or
1955 * memcg is too small and all pages are not on LRU. In that case,
1956 * we use curret node.
1957 */
1958 if (unlikely(node == MAX_NUMNODES))
1959 node = numa_node_id();
1960
c0ff4b85 1961 memcg->last_scanned_node = node;
889976db
YH
1962 return node;
1963}
1964
bb4cc1a8
AM
1965/*
1966 * Check all nodes whether it contains reclaimable pages or not.
1967 * For quick scan, we make use of scan_nodes. This will allow us to skip
1968 * unused nodes. But scan_nodes is lazily updated and may not cotain
1969 * enough new information. We need to do double check.
1970 */
1971static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1972{
1973 int nid;
1974
1975 /*
1976 * quick check...making use of scan_node.
1977 * We can skip unused nodes.
1978 */
1979 if (!nodes_empty(memcg->scan_nodes)) {
1980 for (nid = first_node(memcg->scan_nodes);
1981 nid < MAX_NUMNODES;
1982 nid = next_node(nid, memcg->scan_nodes)) {
1983
1984 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1985 return true;
1986 }
1987 }
1988 /*
1989 * Check rest of nodes.
1990 */
1991 for_each_node_state(nid, N_MEMORY) {
1992 if (node_isset(nid, memcg->scan_nodes))
1993 continue;
1994 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1995 return true;
1996 }
1997 return false;
1998}
1999
889976db 2000#else
c0ff4b85 2001int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2002{
2003 return 0;
2004}
4d0c066d 2005
bb4cc1a8
AM
2006static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2007{
2008 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2009}
889976db
YH
2010#endif
2011
0608f43d
AM
2012static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2013 struct zone *zone,
2014 gfp_t gfp_mask,
2015 unsigned long *total_scanned)
2016{
2017 struct mem_cgroup *victim = NULL;
2018 int total = 0;
2019 int loop = 0;
2020 unsigned long excess;
2021 unsigned long nr_scanned;
2022 struct mem_cgroup_reclaim_cookie reclaim = {
2023 .zone = zone,
2024 .priority = 0,
2025 };
2026
2027 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2028
2029 while (1) {
2030 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2031 if (!victim) {
2032 loop++;
2033 if (loop >= 2) {
2034 /*
2035 * If we have not been able to reclaim
2036 * anything, it might because there are
2037 * no reclaimable pages under this hierarchy
2038 */
2039 if (!total)
2040 break;
2041 /*
2042 * We want to do more targeted reclaim.
2043 * excess >> 2 is not to excessive so as to
2044 * reclaim too much, nor too less that we keep
2045 * coming back to reclaim from this cgroup
2046 */
2047 if (total >= (excess >> 2) ||
2048 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2049 break;
2050 }
2051 continue;
2052 }
2053 if (!mem_cgroup_reclaimable(victim, false))
2054 continue;
2055 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2056 zone, &nr_scanned);
2057 *total_scanned += nr_scanned;
2058 if (!res_counter_soft_limit_excess(&root_memcg->res))
2059 break;
6d61ef40 2060 }
0608f43d
AM
2061 mem_cgroup_iter_break(root_memcg, victim);
2062 return total;
6d61ef40
BS
2063}
2064
0056f4e6
JW
2065#ifdef CONFIG_LOCKDEP
2066static struct lockdep_map memcg_oom_lock_dep_map = {
2067 .name = "memcg_oom_lock",
2068};
2069#endif
2070
fb2a6fc5
JW
2071static DEFINE_SPINLOCK(memcg_oom_lock);
2072
867578cb
KH
2073/*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
2076 */
fb2a6fc5 2077static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2078{
79dfdacc 2079 struct mem_cgroup *iter, *failed = NULL;
a636b327 2080
fb2a6fc5
JW
2081 spin_lock(&memcg_oom_lock);
2082
9f3a0d09 2083 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2084 if (iter->oom_lock) {
79dfdacc
MH
2085 /*
2086 * this subtree of our hierarchy is already locked
2087 * so we cannot give a lock.
2088 */
79dfdacc 2089 failed = iter;
9f3a0d09
JW
2090 mem_cgroup_iter_break(memcg, iter);
2091 break;
23751be0
JW
2092 } else
2093 iter->oom_lock = true;
7d74b06f 2094 }
867578cb 2095
fb2a6fc5
JW
2096 if (failed) {
2097 /*
2098 * OK, we failed to lock the whole subtree so we have
2099 * to clean up what we set up to the failing subtree
2100 */
2101 for_each_mem_cgroup_tree(iter, memcg) {
2102 if (iter == failed) {
2103 mem_cgroup_iter_break(memcg, iter);
2104 break;
2105 }
2106 iter->oom_lock = false;
79dfdacc 2107 }
0056f4e6
JW
2108 } else
2109 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2110
2111 spin_unlock(&memcg_oom_lock);
2112
2113 return !failed;
a636b327 2114}
0b7f569e 2115
fb2a6fc5 2116static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2117{
7d74b06f
KH
2118 struct mem_cgroup *iter;
2119
fb2a6fc5 2120 spin_lock(&memcg_oom_lock);
0056f4e6 2121 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2122 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2123 iter->oom_lock = false;
fb2a6fc5 2124 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2125}
2126
c0ff4b85 2127static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2128{
2129 struct mem_cgroup *iter;
2130
c0ff4b85 2131 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2132 atomic_inc(&iter->under_oom);
2133}
2134
c0ff4b85 2135static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2136{
2137 struct mem_cgroup *iter;
2138
867578cb
KH
2139 /*
2140 * When a new child is created while the hierarchy is under oom,
2141 * mem_cgroup_oom_lock() may not be called. We have to use
2142 * atomic_add_unless() here.
2143 */
c0ff4b85 2144 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2145 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2146}
2147
867578cb
KH
2148static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2149
dc98df5a 2150struct oom_wait_info {
d79154bb 2151 struct mem_cgroup *memcg;
dc98df5a
KH
2152 wait_queue_t wait;
2153};
2154
2155static int memcg_oom_wake_function(wait_queue_t *wait,
2156 unsigned mode, int sync, void *arg)
2157{
d79154bb
HD
2158 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2159 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2160 struct oom_wait_info *oom_wait_info;
2161
2162 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2163 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2164
dc98df5a 2165 /*
d79154bb 2166 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2167 * Then we can use css_is_ancestor without taking care of RCU.
2168 */
c0ff4b85
R
2169 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2170 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2171 return 0;
dc98df5a
KH
2172 return autoremove_wake_function(wait, mode, sync, arg);
2173}
2174
c0ff4b85 2175static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2176{
3812c8c8 2177 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2178 /* for filtering, pass "memcg" as argument. */
2179 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2180}
2181
c0ff4b85 2182static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2183{
c0ff4b85
R
2184 if (memcg && atomic_read(&memcg->under_oom))
2185 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2186}
2187
3812c8c8 2188static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2189{
3812c8c8
JW
2190 if (!current->memcg_oom.may_oom)
2191 return;
867578cb 2192 /*
49426420
JW
2193 * We are in the middle of the charge context here, so we
2194 * don't want to block when potentially sitting on a callstack
2195 * that holds all kinds of filesystem and mm locks.
2196 *
2197 * Also, the caller may handle a failed allocation gracefully
2198 * (like optional page cache readahead) and so an OOM killer
2199 * invocation might not even be necessary.
2200 *
2201 * That's why we don't do anything here except remember the
2202 * OOM context and then deal with it at the end of the page
2203 * fault when the stack is unwound, the locks are released,
2204 * and when we know whether the fault was overall successful.
867578cb 2205 */
49426420
JW
2206 css_get(&memcg->css);
2207 current->memcg_oom.memcg = memcg;
2208 current->memcg_oom.gfp_mask = mask;
2209 current->memcg_oom.order = order;
3812c8c8
JW
2210}
2211
2212/**
2213 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2214 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2215 *
49426420
JW
2216 * This has to be called at the end of a page fault if the memcg OOM
2217 * handler was enabled.
3812c8c8 2218 *
49426420 2219 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2220 * sleep on a waitqueue until the userspace task resolves the
2221 * situation. Sleeping directly in the charge context with all kinds
2222 * of locks held is not a good idea, instead we remember an OOM state
2223 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2224 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2225 *
2226 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2227 * completed, %false otherwise.
3812c8c8 2228 */
49426420 2229bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2230{
49426420 2231 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2232 struct oom_wait_info owait;
49426420 2233 bool locked;
3812c8c8
JW
2234
2235 /* OOM is global, do not handle */
3812c8c8 2236 if (!memcg)
49426420 2237 return false;
3812c8c8 2238
49426420
JW
2239 if (!handle)
2240 goto cleanup;
3812c8c8
JW
2241
2242 owait.memcg = memcg;
2243 owait.wait.flags = 0;
2244 owait.wait.func = memcg_oom_wake_function;
2245 owait.wait.private = current;
2246 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2247
3812c8c8 2248 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2249 mem_cgroup_mark_under_oom(memcg);
2250
2251 locked = mem_cgroup_oom_trylock(memcg);
2252
2253 if (locked)
2254 mem_cgroup_oom_notify(memcg);
2255
2256 if (locked && !memcg->oom_kill_disable) {
2257 mem_cgroup_unmark_under_oom(memcg);
2258 finish_wait(&memcg_oom_waitq, &owait.wait);
2259 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2260 current->memcg_oom.order);
2261 } else {
3812c8c8 2262 schedule();
49426420
JW
2263 mem_cgroup_unmark_under_oom(memcg);
2264 finish_wait(&memcg_oom_waitq, &owait.wait);
2265 }
2266
2267 if (locked) {
fb2a6fc5
JW
2268 mem_cgroup_oom_unlock(memcg);
2269 /*
2270 * There is no guarantee that an OOM-lock contender
2271 * sees the wakeups triggered by the OOM kill
2272 * uncharges. Wake any sleepers explicitely.
2273 */
2274 memcg_oom_recover(memcg);
2275 }
49426420
JW
2276cleanup:
2277 current->memcg_oom.memcg = NULL;
3812c8c8 2278 css_put(&memcg->css);
867578cb 2279 return true;
0b7f569e
KH
2280}
2281
d69b042f
BS
2282/*
2283 * Currently used to update mapped file statistics, but the routine can be
2284 * generalized to update other statistics as well.
32047e2a
KH
2285 *
2286 * Notes: Race condition
2287 *
2288 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2289 * it tends to be costly. But considering some conditions, we doesn't need
2290 * to do so _always_.
2291 *
2292 * Considering "charge", lock_page_cgroup() is not required because all
2293 * file-stat operations happen after a page is attached to radix-tree. There
2294 * are no race with "charge".
2295 *
2296 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2297 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2298 * if there are race with "uncharge". Statistics itself is properly handled
2299 * by flags.
2300 *
2301 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2302 * small, we check mm->moving_account and detect there are possibility of race
2303 * If there is, we take a lock.
d69b042f 2304 */
26174efd 2305
89c06bd5
KH
2306void __mem_cgroup_begin_update_page_stat(struct page *page,
2307 bool *locked, unsigned long *flags)
2308{
2309 struct mem_cgroup *memcg;
2310 struct page_cgroup *pc;
2311
2312 pc = lookup_page_cgroup(page);
2313again:
2314 memcg = pc->mem_cgroup;
2315 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2316 return;
2317 /*
2318 * If this memory cgroup is not under account moving, we don't
da92c47d 2319 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2320 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2321 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2322 */
13fd1dd9 2323 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2324 return;
2325
2326 move_lock_mem_cgroup(memcg, flags);
2327 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2328 move_unlock_mem_cgroup(memcg, flags);
2329 goto again;
2330 }
2331 *locked = true;
2332}
2333
2334void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2335{
2336 struct page_cgroup *pc = lookup_page_cgroup(page);
2337
2338 /*
2339 * It's guaranteed that pc->mem_cgroup never changes while
2340 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2341 * should take move_lock_mem_cgroup().
89c06bd5
KH
2342 */
2343 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2344}
2345
2a7106f2 2346void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2347 enum mem_cgroup_stat_index idx, int val)
d69b042f 2348{
c0ff4b85 2349 struct mem_cgroup *memcg;
32047e2a 2350 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2351 unsigned long uninitialized_var(flags);
d69b042f 2352
cfa44946 2353 if (mem_cgroup_disabled())
d69b042f 2354 return;
89c06bd5 2355
658b72c5 2356 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2357 memcg = pc->mem_cgroup;
2358 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2359 return;
26174efd 2360
c0ff4b85 2361 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2362}
26174efd 2363
cdec2e42
KH
2364/*
2365 * size of first charge trial. "32" comes from vmscan.c's magic value.
2366 * TODO: maybe necessary to use big numbers in big irons.
2367 */
7ec99d62 2368#define CHARGE_BATCH 32U
cdec2e42
KH
2369struct memcg_stock_pcp {
2370 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2371 unsigned int nr_pages;
cdec2e42 2372 struct work_struct work;
26fe6168 2373 unsigned long flags;
a0db00fc 2374#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2375};
2376static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2377static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2378
a0956d54
SS
2379/**
2380 * consume_stock: Try to consume stocked charge on this cpu.
2381 * @memcg: memcg to consume from.
2382 * @nr_pages: how many pages to charge.
2383 *
2384 * The charges will only happen if @memcg matches the current cpu's memcg
2385 * stock, and at least @nr_pages are available in that stock. Failure to
2386 * service an allocation will refill the stock.
2387 *
2388 * returns true if successful, false otherwise.
cdec2e42 2389 */
a0956d54 2390static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2391{
2392 struct memcg_stock_pcp *stock;
2393 bool ret = true;
2394
a0956d54
SS
2395 if (nr_pages > CHARGE_BATCH)
2396 return false;
2397
cdec2e42 2398 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2399 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2400 stock->nr_pages -= nr_pages;
cdec2e42
KH
2401 else /* need to call res_counter_charge */
2402 ret = false;
2403 put_cpu_var(memcg_stock);
2404 return ret;
2405}
2406
2407/*
2408 * Returns stocks cached in percpu to res_counter and reset cached information.
2409 */
2410static void drain_stock(struct memcg_stock_pcp *stock)
2411{
2412 struct mem_cgroup *old = stock->cached;
2413
11c9ea4e
JW
2414 if (stock->nr_pages) {
2415 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2416
2417 res_counter_uncharge(&old->res, bytes);
cdec2e42 2418 if (do_swap_account)
11c9ea4e
JW
2419 res_counter_uncharge(&old->memsw, bytes);
2420 stock->nr_pages = 0;
cdec2e42
KH
2421 }
2422 stock->cached = NULL;
cdec2e42
KH
2423}
2424
2425/*
2426 * This must be called under preempt disabled or must be called by
2427 * a thread which is pinned to local cpu.
2428 */
2429static void drain_local_stock(struct work_struct *dummy)
2430{
2431 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2432 drain_stock(stock);
26fe6168 2433 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2434}
2435
e4777496
MH
2436static void __init memcg_stock_init(void)
2437{
2438 int cpu;
2439
2440 for_each_possible_cpu(cpu) {
2441 struct memcg_stock_pcp *stock =
2442 &per_cpu(memcg_stock, cpu);
2443 INIT_WORK(&stock->work, drain_local_stock);
2444 }
2445}
2446
cdec2e42
KH
2447/*
2448 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2449 * This will be consumed by consume_stock() function, later.
cdec2e42 2450 */
c0ff4b85 2451static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2452{
2453 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2454
c0ff4b85 2455 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2456 drain_stock(stock);
c0ff4b85 2457 stock->cached = memcg;
cdec2e42 2458 }
11c9ea4e 2459 stock->nr_pages += nr_pages;
cdec2e42
KH
2460 put_cpu_var(memcg_stock);
2461}
2462
2463/*
c0ff4b85 2464 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2465 * of the hierarchy under it. sync flag says whether we should block
2466 * until the work is done.
cdec2e42 2467 */
c0ff4b85 2468static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2469{
26fe6168 2470 int cpu, curcpu;
d38144b7 2471
cdec2e42 2472 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2473 get_online_cpus();
5af12d0e 2474 curcpu = get_cpu();
cdec2e42
KH
2475 for_each_online_cpu(cpu) {
2476 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2477 struct mem_cgroup *memcg;
26fe6168 2478
c0ff4b85
R
2479 memcg = stock->cached;
2480 if (!memcg || !stock->nr_pages)
26fe6168 2481 continue;
c0ff4b85 2482 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2483 continue;
d1a05b69
MH
2484 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2485 if (cpu == curcpu)
2486 drain_local_stock(&stock->work);
2487 else
2488 schedule_work_on(cpu, &stock->work);
2489 }
cdec2e42 2490 }
5af12d0e 2491 put_cpu();
d38144b7
MH
2492
2493 if (!sync)
2494 goto out;
2495
2496 for_each_online_cpu(cpu) {
2497 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2498 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2499 flush_work(&stock->work);
2500 }
2501out:
f894ffa8 2502 put_online_cpus();
d38144b7
MH
2503}
2504
2505/*
2506 * Tries to drain stocked charges in other cpus. This function is asynchronous
2507 * and just put a work per cpu for draining localy on each cpu. Caller can
2508 * expects some charges will be back to res_counter later but cannot wait for
2509 * it.
2510 */
c0ff4b85 2511static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2512{
9f50fad6
MH
2513 /*
2514 * If someone calls draining, avoid adding more kworker runs.
2515 */
2516 if (!mutex_trylock(&percpu_charge_mutex))
2517 return;
c0ff4b85 2518 drain_all_stock(root_memcg, false);
9f50fad6 2519 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2520}
2521
2522/* This is a synchronous drain interface. */
c0ff4b85 2523static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2524{
2525 /* called when force_empty is called */
9f50fad6 2526 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2527 drain_all_stock(root_memcg, true);
9f50fad6 2528 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2529}
2530
711d3d2c
KH
2531/*
2532 * This function drains percpu counter value from DEAD cpu and
2533 * move it to local cpu. Note that this function can be preempted.
2534 */
c0ff4b85 2535static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2536{
2537 int i;
2538
c0ff4b85 2539 spin_lock(&memcg->pcp_counter_lock);
6104621d 2540 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2541 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2542
c0ff4b85
R
2543 per_cpu(memcg->stat->count[i], cpu) = 0;
2544 memcg->nocpu_base.count[i] += x;
711d3d2c 2545 }
e9f8974f 2546 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2547 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2548
c0ff4b85
R
2549 per_cpu(memcg->stat->events[i], cpu) = 0;
2550 memcg->nocpu_base.events[i] += x;
e9f8974f 2551 }
c0ff4b85 2552 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2553}
2554
0db0628d 2555static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2556 unsigned long action,
2557 void *hcpu)
2558{
2559 int cpu = (unsigned long)hcpu;
2560 struct memcg_stock_pcp *stock;
711d3d2c 2561 struct mem_cgroup *iter;
cdec2e42 2562
619d094b 2563 if (action == CPU_ONLINE)
1489ebad 2564 return NOTIFY_OK;
1489ebad 2565
d833049b 2566 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2567 return NOTIFY_OK;
711d3d2c 2568
9f3a0d09 2569 for_each_mem_cgroup(iter)
711d3d2c
KH
2570 mem_cgroup_drain_pcp_counter(iter, cpu);
2571
cdec2e42
KH
2572 stock = &per_cpu(memcg_stock, cpu);
2573 drain_stock(stock);
2574 return NOTIFY_OK;
2575}
2576
4b534334
KH
2577
2578/* See __mem_cgroup_try_charge() for details */
2579enum {
2580 CHARGE_OK, /* success */
2581 CHARGE_RETRY, /* need to retry but retry is not bad */
2582 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2583 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2584};
2585
c0ff4b85 2586static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2587 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2588 bool invoke_oom)
4b534334 2589{
7ec99d62 2590 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2591 struct mem_cgroup *mem_over_limit;
2592 struct res_counter *fail_res;
2593 unsigned long flags = 0;
2594 int ret;
2595
c0ff4b85 2596 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2597
2598 if (likely(!ret)) {
2599 if (!do_swap_account)
2600 return CHARGE_OK;
c0ff4b85 2601 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2602 if (likely(!ret))
2603 return CHARGE_OK;
2604
c0ff4b85 2605 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2606 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2607 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2608 } else
2609 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2610 /*
9221edb7
JW
2611 * Never reclaim on behalf of optional batching, retry with a
2612 * single page instead.
2613 */
4c9c5359 2614 if (nr_pages > min_pages)
4b534334
KH
2615 return CHARGE_RETRY;
2616
2617 if (!(gfp_mask & __GFP_WAIT))
2618 return CHARGE_WOULDBLOCK;
2619
4c9c5359
SS
2620 if (gfp_mask & __GFP_NORETRY)
2621 return CHARGE_NOMEM;
2622
5660048c 2623 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2624 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2625 return CHARGE_RETRY;
4b534334 2626 /*
19942822
JW
2627 * Even though the limit is exceeded at this point, reclaim
2628 * may have been able to free some pages. Retry the charge
2629 * before killing the task.
2630 *
2631 * Only for regular pages, though: huge pages are rather
2632 * unlikely to succeed so close to the limit, and we fall back
2633 * to regular pages anyway in case of failure.
4b534334 2634 */
4c9c5359 2635 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2636 return CHARGE_RETRY;
2637
2638 /*
2639 * At task move, charge accounts can be doubly counted. So, it's
2640 * better to wait until the end of task_move if something is going on.
2641 */
2642 if (mem_cgroup_wait_acct_move(mem_over_limit))
2643 return CHARGE_RETRY;
2644
3812c8c8
JW
2645 if (invoke_oom)
2646 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2647
3812c8c8 2648 return CHARGE_NOMEM;
4b534334
KH
2649}
2650
f817ed48 2651/*
38c5d72f
KH
2652 * __mem_cgroup_try_charge() does
2653 * 1. detect memcg to be charged against from passed *mm and *ptr,
2654 * 2. update res_counter
2655 * 3. call memory reclaim if necessary.
2656 *
2657 * In some special case, if the task is fatal, fatal_signal_pending() or
2658 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2659 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2660 * as possible without any hazards. 2: all pages should have a valid
2661 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2662 * pointer, that is treated as a charge to root_mem_cgroup.
2663 *
2664 * So __mem_cgroup_try_charge() will return
2665 * 0 ... on success, filling *ptr with a valid memcg pointer.
2666 * -ENOMEM ... charge failure because of resource limits.
2667 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2668 *
2669 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2670 * the oom-killer can be invoked.
8a9f3ccd 2671 */
f817ed48 2672static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2673 gfp_t gfp_mask,
7ec99d62 2674 unsigned int nr_pages,
c0ff4b85 2675 struct mem_cgroup **ptr,
7ec99d62 2676 bool oom)
8a9f3ccd 2677{
7ec99d62 2678 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2679 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2680 struct mem_cgroup *memcg = NULL;
4b534334 2681 int ret;
a636b327 2682
867578cb
KH
2683 /*
2684 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2685 * in system level. So, allow to go ahead dying process in addition to
2686 * MEMDIE process.
2687 */
2688 if (unlikely(test_thread_flag(TIF_MEMDIE)
2689 || fatal_signal_pending(current)))
2690 goto bypass;
a636b327 2691
49426420 2692 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2693 goto nomem;
49426420 2694
a0d8b00a
JW
2695 if (gfp_mask & __GFP_NOFAIL)
2696 oom = false;
f75ca962 2697again:
c0ff4b85
R
2698 if (*ptr) { /* css should be a valid one */
2699 memcg = *ptr;
c0ff4b85 2700 css_get(&memcg->css);
4b534334 2701 } else {
b6b6cc72 2702 memcg = get_mem_cgroup_from_mm(mm);
f75ca962 2703 }
b6b6cc72
MH
2704 if (mem_cgroup_is_root(memcg))
2705 goto done;
2706 if (consume_stock(memcg, nr_pages))
2707 goto done;
8a9f3ccd 2708
4b534334 2709 do {
3812c8c8 2710 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2711
4b534334 2712 /* If killed, bypass charge */
f75ca962 2713 if (fatal_signal_pending(current)) {
c0ff4b85 2714 css_put(&memcg->css);
4b534334 2715 goto bypass;
f75ca962 2716 }
6d61ef40 2717
3812c8c8
JW
2718 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2719 nr_pages, invoke_oom);
4b534334
KH
2720 switch (ret) {
2721 case CHARGE_OK:
2722 break;
2723 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2724 batch = nr_pages;
c0ff4b85
R
2725 css_put(&memcg->css);
2726 memcg = NULL;
f75ca962 2727 goto again;
4b534334 2728 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2729 css_put(&memcg->css);
4b534334
KH
2730 goto nomem;
2731 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2732 if (!oom || invoke_oom) {
c0ff4b85 2733 css_put(&memcg->css);
867578cb 2734 goto nomem;
f75ca962 2735 }
4b534334
KH
2736 nr_oom_retries--;
2737 break;
66e1707b 2738 }
4b534334
KH
2739 } while (ret != CHARGE_OK);
2740
7ec99d62 2741 if (batch > nr_pages)
c0ff4b85 2742 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2743done:
b6b6cc72 2744 css_put(&memcg->css);
c0ff4b85 2745 *ptr = memcg;
7a81b88c
KH
2746 return 0;
2747nomem:
3168ecbe
JW
2748 if (!(gfp_mask & __GFP_NOFAIL)) {
2749 *ptr = NULL;
2750 return -ENOMEM;
2751 }
867578cb 2752bypass:
38c5d72f
KH
2753 *ptr = root_mem_cgroup;
2754 return -EINTR;
7a81b88c 2755}
8a9f3ccd 2756
a3032a2c
DN
2757/*
2758 * Somemtimes we have to undo a charge we got by try_charge().
2759 * This function is for that and do uncharge, put css's refcnt.
2760 * gotten by try_charge().
2761 */
c0ff4b85 2762static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2763 unsigned int nr_pages)
a3032a2c 2764{
c0ff4b85 2765 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2766 unsigned long bytes = nr_pages * PAGE_SIZE;
2767
c0ff4b85 2768 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2769 if (do_swap_account)
c0ff4b85 2770 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2771 }
854ffa8d
DN
2772}
2773
d01dd17f
KH
2774/*
2775 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2776 * This is useful when moving usage to parent cgroup.
2777 */
2778static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2779 unsigned int nr_pages)
2780{
2781 unsigned long bytes = nr_pages * PAGE_SIZE;
2782
2783 if (mem_cgroup_is_root(memcg))
2784 return;
2785
2786 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2787 if (do_swap_account)
2788 res_counter_uncharge_until(&memcg->memsw,
2789 memcg->memsw.parent, bytes);
2790}
2791
a3b2d692
KH
2792/*
2793 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2794 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2795 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2796 * called against removed memcg.)
a3b2d692
KH
2797 */
2798static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2799{
a3b2d692
KH
2800 /* ID 0 is unused ID */
2801 if (!id)
2802 return NULL;
34c00c31 2803 return mem_cgroup_from_id(id);
a3b2d692
KH
2804}
2805
e42d9d5d 2806struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2807{
c0ff4b85 2808 struct mem_cgroup *memcg = NULL;
3c776e64 2809 struct page_cgroup *pc;
a3b2d692 2810 unsigned short id;
b5a84319
KH
2811 swp_entry_t ent;
2812
309381fe 2813 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2814
3c776e64 2815 pc = lookup_page_cgroup(page);
c0bd3f63 2816 lock_page_cgroup(pc);
a3b2d692 2817 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2818 memcg = pc->mem_cgroup;
2819 if (memcg && !css_tryget(&memcg->css))
2820 memcg = NULL;
e42d9d5d 2821 } else if (PageSwapCache(page)) {
3c776e64 2822 ent.val = page_private(page);
9fb4b7cc 2823 id = lookup_swap_cgroup_id(ent);
a3b2d692 2824 rcu_read_lock();
c0ff4b85
R
2825 memcg = mem_cgroup_lookup(id);
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
a3b2d692 2828 rcu_read_unlock();
3c776e64 2829 }
c0bd3f63 2830 unlock_page_cgroup(pc);
c0ff4b85 2831 return memcg;
b5a84319
KH
2832}
2833
c0ff4b85 2834static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2835 struct page *page,
7ec99d62 2836 unsigned int nr_pages,
9ce70c02
HD
2837 enum charge_type ctype,
2838 bool lrucare)
7a81b88c 2839{
ce587e65 2840 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2841 struct zone *uninitialized_var(zone);
fa9add64 2842 struct lruvec *lruvec;
9ce70c02 2843 bool was_on_lru = false;
b2402857 2844 bool anon;
9ce70c02 2845
ca3e0214 2846 lock_page_cgroup(pc);
309381fe 2847 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2848 /*
2849 * we don't need page_cgroup_lock about tail pages, becase they are not
2850 * accessed by any other context at this point.
2851 */
9ce70c02
HD
2852
2853 /*
2854 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2855 * may already be on some other mem_cgroup's LRU. Take care of it.
2856 */
2857 if (lrucare) {
2858 zone = page_zone(page);
2859 spin_lock_irq(&zone->lru_lock);
2860 if (PageLRU(page)) {
fa9add64 2861 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2862 ClearPageLRU(page);
fa9add64 2863 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2864 was_on_lru = true;
2865 }
2866 }
2867
c0ff4b85 2868 pc->mem_cgroup = memcg;
261fb61a
KH
2869 /*
2870 * We access a page_cgroup asynchronously without lock_page_cgroup().
2871 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2872 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2873 * before USED bit, we need memory barrier here.
2874 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2875 */
08e552c6 2876 smp_wmb();
b2402857 2877 SetPageCgroupUsed(pc);
3be91277 2878
9ce70c02
HD
2879 if (lrucare) {
2880 if (was_on_lru) {
fa9add64 2881 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2882 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2883 SetPageLRU(page);
fa9add64 2884 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2885 }
2886 spin_unlock_irq(&zone->lru_lock);
2887 }
2888
41326c17 2889 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2890 anon = true;
2891 else
2892 anon = false;
2893
b070e65c 2894 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2895 unlock_page_cgroup(pc);
9ce70c02 2896
430e4863 2897 /*
bb4cc1a8
AM
2898 * "charge_statistics" updated event counter. Then, check it.
2899 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2900 * if they exceeds softlimit.
430e4863 2901 */
c0ff4b85 2902 memcg_check_events(memcg, page);
7a81b88c 2903}
66e1707b 2904
7cf27982
GC
2905static DEFINE_MUTEX(set_limit_mutex);
2906
7ae1e1d0 2907#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2908static DEFINE_MUTEX(activate_kmem_mutex);
2909
7ae1e1d0
GC
2910static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2911{
2912 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2913 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2914}
2915
1f458cbf
GC
2916/*
2917 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2918 * in the memcg_cache_params struct.
2919 */
2920static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2921{
2922 struct kmem_cache *cachep;
2923
2924 VM_BUG_ON(p->is_root_cache);
2925 cachep = p->root_cache;
7a67d7ab 2926 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2927}
2928
749c5415 2929#ifdef CONFIG_SLABINFO
2da8ca82 2930static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2931{
2da8ca82 2932 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2933 struct memcg_cache_params *params;
2934
2935 if (!memcg_can_account_kmem(memcg))
2936 return -EIO;
2937
2938 print_slabinfo_header(m);
2939
2940 mutex_lock(&memcg->slab_caches_mutex);
2941 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2942 cache_show(memcg_params_to_cache(params), m);
2943 mutex_unlock(&memcg->slab_caches_mutex);
2944
2945 return 0;
2946}
2947#endif
2948
7ae1e1d0
GC
2949static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2950{
2951 struct res_counter *fail_res;
2952 struct mem_cgroup *_memcg;
2953 int ret = 0;
7ae1e1d0
GC
2954
2955 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2956 if (ret)
2957 return ret;
2958
7ae1e1d0
GC
2959 _memcg = memcg;
2960 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 2961 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
2962
2963 if (ret == -EINTR) {
2964 /*
2965 * __mem_cgroup_try_charge() chosed to bypass to root due to
2966 * OOM kill or fatal signal. Since our only options are to
2967 * either fail the allocation or charge it to this cgroup, do
2968 * it as a temporary condition. But we can't fail. From a
2969 * kmem/slab perspective, the cache has already been selected,
2970 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2971 * our minds.
2972 *
2973 * This condition will only trigger if the task entered
2974 * memcg_charge_kmem in a sane state, but was OOM-killed during
2975 * __mem_cgroup_try_charge() above. Tasks that were already
2976 * dying when the allocation triggers should have been already
2977 * directed to the root cgroup in memcontrol.h
2978 */
2979 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2980 if (do_swap_account)
2981 res_counter_charge_nofail(&memcg->memsw, size,
2982 &fail_res);
2983 ret = 0;
2984 } else if (ret)
2985 res_counter_uncharge(&memcg->kmem, size);
2986
2987 return ret;
2988}
2989
2990static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2991{
7ae1e1d0
GC
2992 res_counter_uncharge(&memcg->res, size);
2993 if (do_swap_account)
2994 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2995
2996 /* Not down to 0 */
2997 if (res_counter_uncharge(&memcg->kmem, size))
2998 return;
2999
10d5ebf4
LZ
3000 /*
3001 * Releases a reference taken in kmem_cgroup_css_offline in case
3002 * this last uncharge is racing with the offlining code or it is
3003 * outliving the memcg existence.
3004 *
3005 * The memory barrier imposed by test&clear is paired with the
3006 * explicit one in memcg_kmem_mark_dead().
3007 */
7de37682 3008 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3009 css_put(&memcg->css);
7ae1e1d0
GC
3010}
3011
2633d7a0
GC
3012/*
3013 * helper for acessing a memcg's index. It will be used as an index in the
3014 * child cache array in kmem_cache, and also to derive its name. This function
3015 * will return -1 when this is not a kmem-limited memcg.
3016 */
3017int memcg_cache_id(struct mem_cgroup *memcg)
3018{
3019 return memcg ? memcg->kmemcg_id : -1;
3020}
3021
55007d84
GC
3022static size_t memcg_caches_array_size(int num_groups)
3023{
3024 ssize_t size;
3025 if (num_groups <= 0)
3026 return 0;
3027
3028 size = 2 * num_groups;
3029 if (size < MEMCG_CACHES_MIN_SIZE)
3030 size = MEMCG_CACHES_MIN_SIZE;
3031 else if (size > MEMCG_CACHES_MAX_SIZE)
3032 size = MEMCG_CACHES_MAX_SIZE;
3033
3034 return size;
3035}
3036
3037/*
3038 * We should update the current array size iff all caches updates succeed. This
3039 * can only be done from the slab side. The slab mutex needs to be held when
3040 * calling this.
3041 */
3042void memcg_update_array_size(int num)
3043{
3044 if (num > memcg_limited_groups_array_size)
3045 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3046}
3047
15cf17d2
KK
3048static void kmem_cache_destroy_work_func(struct work_struct *w);
3049
55007d84
GC
3050int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3051{
3052 struct memcg_cache_params *cur_params = s->memcg_params;
3053
f35c3a8e 3054 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3055
3056 if (num_groups > memcg_limited_groups_array_size) {
3057 int i;
f8570263 3058 struct memcg_cache_params *new_params;
55007d84
GC
3059 ssize_t size = memcg_caches_array_size(num_groups);
3060
3061 size *= sizeof(void *);
90c7a79c 3062 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3063
f8570263
VD
3064 new_params = kzalloc(size, GFP_KERNEL);
3065 if (!new_params)
55007d84 3066 return -ENOMEM;
55007d84 3067
f8570263 3068 new_params->is_root_cache = true;
55007d84
GC
3069
3070 /*
3071 * There is the chance it will be bigger than
3072 * memcg_limited_groups_array_size, if we failed an allocation
3073 * in a cache, in which case all caches updated before it, will
3074 * have a bigger array.
3075 *
3076 * But if that is the case, the data after
3077 * memcg_limited_groups_array_size is certainly unused
3078 */
3079 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3080 if (!cur_params->memcg_caches[i])
3081 continue;
f8570263 3082 new_params->memcg_caches[i] =
55007d84
GC
3083 cur_params->memcg_caches[i];
3084 }
3085
3086 /*
3087 * Ideally, we would wait until all caches succeed, and only
3088 * then free the old one. But this is not worth the extra
3089 * pointer per-cache we'd have to have for this.
3090 *
3091 * It is not a big deal if some caches are left with a size
3092 * bigger than the others. And all updates will reset this
3093 * anyway.
3094 */
f8570263
VD
3095 rcu_assign_pointer(s->memcg_params, new_params);
3096 if (cur_params)
3097 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3098 }
3099 return 0;
3100}
3101
363a044f
VD
3102int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3103 struct kmem_cache *root_cache)
2633d7a0 3104{
90c7a79c 3105 size_t size;
2633d7a0
GC
3106
3107 if (!memcg_kmem_enabled())
3108 return 0;
3109
90c7a79c
AV
3110 if (!memcg) {
3111 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3112 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3113 } else
3114 size = sizeof(struct memcg_cache_params);
55007d84 3115
2633d7a0
GC
3116 s->memcg_params = kzalloc(size, GFP_KERNEL);
3117 if (!s->memcg_params)
3118 return -ENOMEM;
3119
943a451a 3120 if (memcg) {
2633d7a0 3121 s->memcg_params->memcg = memcg;
943a451a 3122 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3123 INIT_WORK(&s->memcg_params->destroy,
3124 kmem_cache_destroy_work_func);
4ba902b5
GC
3125 } else
3126 s->memcg_params->is_root_cache = true;
3127
2633d7a0
GC
3128 return 0;
3129}
3130
363a044f
VD
3131void memcg_free_cache_params(struct kmem_cache *s)
3132{
3133 kfree(s->memcg_params);
3134}
3135
1aa13254 3136void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3137{
d7f25f8a
GC
3138 struct kmem_cache *root;
3139 struct mem_cgroup *memcg;
3140 int id;
3141
1aa13254
VD
3142 if (is_root_cache(s))
3143 return;
3144
2edefe11
VD
3145 /*
3146 * Holding the slab_mutex assures nobody will touch the memcg_caches
3147 * array while we are modifying it.
3148 */
3149 lockdep_assert_held(&slab_mutex);
3150
1aa13254
VD
3151 root = s->memcg_params->root_cache;
3152 memcg = s->memcg_params->memcg;
3153 id = memcg_cache_id(memcg);
3154
3155 css_get(&memcg->css);
3156
1aa13254 3157
d7f25f8a 3158 /*
959c8963
VD
3159 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3160 * barrier here to ensure nobody will see the kmem_cache partially
3161 * initialized.
d7f25f8a 3162 */
959c8963
VD
3163 smp_wmb();
3164
96403da2
VD
3165 /*
3166 * Initialize the pointer to this cache in its parent's memcg_params
3167 * before adding it to the memcg_slab_caches list, otherwise we can
3168 * fail to convert memcg_params_to_cache() while traversing the list.
3169 */
2edefe11 3170 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3171 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3172
3173 mutex_lock(&memcg->slab_caches_mutex);
3174 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3175 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3176}
d7f25f8a 3177
1aa13254
VD
3178void memcg_unregister_cache(struct kmem_cache *s)
3179{
3180 struct kmem_cache *root;
3181 struct mem_cgroup *memcg;
3182 int id;
3183
3184 if (is_root_cache(s))
3185 return;
d7f25f8a 3186
2edefe11
VD
3187 /*
3188 * Holding the slab_mutex assures nobody will touch the memcg_caches
3189 * array while we are modifying it.
3190 */
3191 lockdep_assert_held(&slab_mutex);
3192
d7f25f8a 3193 root = s->memcg_params->root_cache;
96403da2
VD
3194 memcg = s->memcg_params->memcg;
3195 id = memcg_cache_id(memcg);
d7f25f8a
GC
3196
3197 mutex_lock(&memcg->slab_caches_mutex);
3198 list_del(&s->memcg_params->list);
3199 mutex_unlock(&memcg->slab_caches_mutex);
3200
96403da2
VD
3201 /*
3202 * Clear the pointer to this cache in its parent's memcg_params only
3203 * after removing it from the memcg_slab_caches list, otherwise we can
3204 * fail to convert memcg_params_to_cache() while traversing the list.
3205 */
2edefe11 3206 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3207 root->memcg_params->memcg_caches[id] = NULL;
3208
20f05310 3209 css_put(&memcg->css);
2633d7a0
GC
3210}
3211
0e9d92f2
GC
3212/*
3213 * During the creation a new cache, we need to disable our accounting mechanism
3214 * altogether. This is true even if we are not creating, but rather just
3215 * enqueing new caches to be created.
3216 *
3217 * This is because that process will trigger allocations; some visible, like
3218 * explicit kmallocs to auxiliary data structures, name strings and internal
3219 * cache structures; some well concealed, like INIT_WORK() that can allocate
3220 * objects during debug.
3221 *
3222 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3223 * to it. This may not be a bounded recursion: since the first cache creation
3224 * failed to complete (waiting on the allocation), we'll just try to create the
3225 * cache again, failing at the same point.
3226 *
3227 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3228 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3229 * inside the following two functions.
3230 */
3231static inline void memcg_stop_kmem_account(void)
3232{
3233 VM_BUG_ON(!current->mm);
3234 current->memcg_kmem_skip_account++;
3235}
3236
3237static inline void memcg_resume_kmem_account(void)
3238{
3239 VM_BUG_ON(!current->mm);
3240 current->memcg_kmem_skip_account--;
3241}
3242
1f458cbf
GC
3243static void kmem_cache_destroy_work_func(struct work_struct *w)
3244{
3245 struct kmem_cache *cachep;
3246 struct memcg_cache_params *p;
3247
3248 p = container_of(w, struct memcg_cache_params, destroy);
3249
3250 cachep = memcg_params_to_cache(p);
3251
22933152
GC
3252 /*
3253 * If we get down to 0 after shrink, we could delete right away.
3254 * However, memcg_release_pages() already puts us back in the workqueue
3255 * in that case. If we proceed deleting, we'll get a dangling
3256 * reference, and removing the object from the workqueue in that case
3257 * is unnecessary complication. We are not a fast path.
3258 *
3259 * Note that this case is fundamentally different from racing with
3260 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3261 * kmem_cache_shrink, not only we would be reinserting a dead cache
3262 * into the queue, but doing so from inside the worker racing to
3263 * destroy it.
3264 *
3265 * So if we aren't down to zero, we'll just schedule a worker and try
3266 * again
3267 */
0d8a4a37 3268 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
22933152 3269 kmem_cache_shrink(cachep);
0d8a4a37 3270 else
1f458cbf
GC
3271 kmem_cache_destroy(cachep);
3272}
3273
3274void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3275{
3276 if (!cachep->memcg_params->dead)
3277 return;
3278
22933152
GC
3279 /*
3280 * There are many ways in which we can get here.
3281 *
3282 * We can get to a memory-pressure situation while the delayed work is
3283 * still pending to run. The vmscan shrinkers can then release all
3284 * cache memory and get us to destruction. If this is the case, we'll
3285 * be executed twice, which is a bug (the second time will execute over
3286 * bogus data). In this case, cancelling the work should be fine.
3287 *
3288 * But we can also get here from the worker itself, if
3289 * kmem_cache_shrink is enough to shake all the remaining objects and
3290 * get the page count to 0. In this case, we'll deadlock if we try to
3291 * cancel the work (the worker runs with an internal lock held, which
3292 * is the same lock we would hold for cancel_work_sync().)
3293 *
3294 * Since we can't possibly know who got us here, just refrain from
3295 * running if there is already work pending
3296 */
3297 if (work_pending(&cachep->memcg_params->destroy))
3298 return;
1f458cbf
GC
3299 /*
3300 * We have to defer the actual destroying to a workqueue, because
3301 * we might currently be in a context that cannot sleep.
3302 */
3303 schedule_work(&cachep->memcg_params->destroy);
3304}
3305
842e2873
VD
3306static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3307 struct kmem_cache *s)
d7f25f8a 3308{
7c094fd6 3309 struct kmem_cache *new = NULL;
e61734c5 3310 static char *tmp_path = NULL, *tmp_name = NULL;
842e2873 3311 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3312
842e2873 3313 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3314
842e2873 3315 mutex_lock(&mutex);
d9c10ddd
MH
3316 /*
3317 * kmem_cache_create_memcg duplicates the given name and
3318 * cgroup_name for this name requires RCU context.
3319 * This static temporary buffer is used to prevent from
3320 * pointless shortliving allocation.
3321 */
e61734c5
TH
3322 if (!tmp_path || !tmp_name) {
3323 if (!tmp_path)
3324 tmp_path = kmalloc(PATH_MAX, GFP_KERNEL);
d9c10ddd 3325 if (!tmp_name)
e61734c5
TH
3326 tmp_name = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3327 if (!tmp_path || !tmp_name)
7c094fd6 3328 goto out;
d9c10ddd
MH
3329 }
3330
e61734c5
TH
3331 cgroup_name(memcg->css.cgroup, tmp_name, NAME_MAX + 1);
3332 snprintf(tmp_path, PATH_MAX, "%s(%d:%s)", s->name,
3333 memcg_cache_id(memcg), tmp_name);
d7f25f8a 3334
e61734c5 3335 new = kmem_cache_create_memcg(memcg, tmp_path, s->object_size, s->align,
943a451a 3336 (s->flags & ~SLAB_PANIC), s->ctor, s);
d79923fa
GC
3337 if (new)
3338 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3339 else
3340 new = s;
7c094fd6 3341out:
842e2873 3342 mutex_unlock(&mutex);
d7f25f8a
GC
3343 return new;
3344}
3345
7cf27982
GC
3346void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3347{
3348 struct kmem_cache *c;
3349 int i;
3350
3351 if (!s->memcg_params)
3352 return;
3353 if (!s->memcg_params->is_root_cache)
3354 return;
3355
3356 /*
3357 * If the cache is being destroyed, we trust that there is no one else
3358 * requesting objects from it. Even if there are, the sanity checks in
3359 * kmem_cache_destroy should caught this ill-case.
3360 *
3361 * Still, we don't want anyone else freeing memcg_caches under our
3362 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3363 * we'll take the activate_kmem_mutex to protect ourselves against
3364 * this.
7cf27982 3365 */
d6441637 3366 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3367 for_each_memcg_cache_index(i) {
3368 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3369 if (!c)
3370 continue;
3371
3372 /*
3373 * We will now manually delete the caches, so to avoid races
3374 * we need to cancel all pending destruction workers and
3375 * proceed with destruction ourselves.
3376 *
3377 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3378 * and that could spawn the workers again: it is likely that
3379 * the cache still have active pages until this very moment.
3380 * This would lead us back to mem_cgroup_destroy_cache.
3381 *
3382 * But that will not execute at all if the "dead" flag is not
3383 * set, so flip it down to guarantee we are in control.
3384 */
3385 c->memcg_params->dead = false;
22933152 3386 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3387 kmem_cache_destroy(c);
3388 }
d6441637 3389 mutex_unlock(&activate_kmem_mutex);
7cf27982
GC
3390}
3391
d7f25f8a
GC
3392struct create_work {
3393 struct mem_cgroup *memcg;
3394 struct kmem_cache *cachep;
3395 struct work_struct work;
3396};
3397
1f458cbf
GC
3398static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3399{
3400 struct kmem_cache *cachep;
3401 struct memcg_cache_params *params;
3402
3403 if (!memcg_kmem_is_active(memcg))
3404 return;
3405
3406 mutex_lock(&memcg->slab_caches_mutex);
3407 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3408 cachep = memcg_params_to_cache(params);
3409 cachep->memcg_params->dead = true;
1f458cbf
GC
3410 schedule_work(&cachep->memcg_params->destroy);
3411 }
3412 mutex_unlock(&memcg->slab_caches_mutex);
3413}
3414
d7f25f8a
GC
3415static void memcg_create_cache_work_func(struct work_struct *w)
3416{
3417 struct create_work *cw;
3418
3419 cw = container_of(w, struct create_work, work);
3420 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3421 css_put(&cw->memcg->css);
d7f25f8a
GC
3422 kfree(cw);
3423}
3424
3425/*
3426 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3427 */
0e9d92f2
GC
3428static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3429 struct kmem_cache *cachep)
d7f25f8a
GC
3430{
3431 struct create_work *cw;
3432
3433 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3434 if (cw == NULL) {
3435 css_put(&memcg->css);
d7f25f8a
GC
3436 return;
3437 }
3438
3439 cw->memcg = memcg;
3440 cw->cachep = cachep;
3441
3442 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3443 schedule_work(&cw->work);
3444}
3445
0e9d92f2
GC
3446static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3447 struct kmem_cache *cachep)
3448{
3449 /*
3450 * We need to stop accounting when we kmalloc, because if the
3451 * corresponding kmalloc cache is not yet created, the first allocation
3452 * in __memcg_create_cache_enqueue will recurse.
3453 *
3454 * However, it is better to enclose the whole function. Depending on
3455 * the debugging options enabled, INIT_WORK(), for instance, can
3456 * trigger an allocation. This too, will make us recurse. Because at
3457 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3458 * the safest choice is to do it like this, wrapping the whole function.
3459 */
3460 memcg_stop_kmem_account();
3461 __memcg_create_cache_enqueue(memcg, cachep);
3462 memcg_resume_kmem_account();
3463}
d7f25f8a
GC
3464/*
3465 * Return the kmem_cache we're supposed to use for a slab allocation.
3466 * We try to use the current memcg's version of the cache.
3467 *
3468 * If the cache does not exist yet, if we are the first user of it,
3469 * we either create it immediately, if possible, or create it asynchronously
3470 * in a workqueue.
3471 * In the latter case, we will let the current allocation go through with
3472 * the original cache.
3473 *
3474 * Can't be called in interrupt context or from kernel threads.
3475 * This function needs to be called with rcu_read_lock() held.
3476 */
3477struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3478 gfp_t gfp)
3479{
3480 struct mem_cgroup *memcg;
959c8963 3481 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3482
3483 VM_BUG_ON(!cachep->memcg_params);
3484 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3485
0e9d92f2
GC
3486 if (!current->mm || current->memcg_kmem_skip_account)
3487 return cachep;
3488
d7f25f8a
GC
3489 rcu_read_lock();
3490 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3491
3492 if (!memcg_can_account_kmem(memcg))
ca0dde97 3493 goto out;
d7f25f8a 3494
959c8963
VD
3495 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3496 if (likely(memcg_cachep)) {
3497 cachep = memcg_cachep;
ca0dde97 3498 goto out;
d7f25f8a
GC
3499 }
3500
ca0dde97
LZ
3501 /* The corresponding put will be done in the workqueue. */
3502 if (!css_tryget(&memcg->css))
3503 goto out;
3504 rcu_read_unlock();
3505
3506 /*
3507 * If we are in a safe context (can wait, and not in interrupt
3508 * context), we could be be predictable and return right away.
3509 * This would guarantee that the allocation being performed
3510 * already belongs in the new cache.
3511 *
3512 * However, there are some clashes that can arrive from locking.
3513 * For instance, because we acquire the slab_mutex while doing
3514 * kmem_cache_dup, this means no further allocation could happen
3515 * with the slab_mutex held.
3516 *
3517 * Also, because cache creation issue get_online_cpus(), this
3518 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3519 * that ends up reversed during cpu hotplug. (cpuset allocates
3520 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3521 * better to defer everything.
3522 */
3523 memcg_create_cache_enqueue(memcg, cachep);
3524 return cachep;
3525out:
3526 rcu_read_unlock();
3527 return cachep;
d7f25f8a
GC
3528}
3529EXPORT_SYMBOL(__memcg_kmem_get_cache);
3530
7ae1e1d0
GC
3531/*
3532 * We need to verify if the allocation against current->mm->owner's memcg is
3533 * possible for the given order. But the page is not allocated yet, so we'll
3534 * need a further commit step to do the final arrangements.
3535 *
3536 * It is possible for the task to switch cgroups in this mean time, so at
3537 * commit time, we can't rely on task conversion any longer. We'll then use
3538 * the handle argument to return to the caller which cgroup we should commit
3539 * against. We could also return the memcg directly and avoid the pointer
3540 * passing, but a boolean return value gives better semantics considering
3541 * the compiled-out case as well.
3542 *
3543 * Returning true means the allocation is possible.
3544 */
3545bool
3546__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3547{
3548 struct mem_cgroup *memcg;
3549 int ret;
3550
3551 *_memcg = NULL;
6d42c232
GC
3552
3553 /*
3554 * Disabling accounting is only relevant for some specific memcg
3555 * internal allocations. Therefore we would initially not have such
3556 * check here, since direct calls to the page allocator that are marked
3557 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3558 * concerned with cache allocations, and by having this test at
3559 * memcg_kmem_get_cache, we are already able to relay the allocation to
3560 * the root cache and bypass the memcg cache altogether.
3561 *
3562 * There is one exception, though: the SLUB allocator does not create
3563 * large order caches, but rather service large kmallocs directly from
3564 * the page allocator. Therefore, the following sequence when backed by
3565 * the SLUB allocator:
3566 *
f894ffa8
AM
3567 * memcg_stop_kmem_account();
3568 * kmalloc(<large_number>)
3569 * memcg_resume_kmem_account();
6d42c232
GC
3570 *
3571 * would effectively ignore the fact that we should skip accounting,
3572 * since it will drive us directly to this function without passing
3573 * through the cache selector memcg_kmem_get_cache. Such large
3574 * allocations are extremely rare but can happen, for instance, for the
3575 * cache arrays. We bring this test here.
3576 */
3577 if (!current->mm || current->memcg_kmem_skip_account)
3578 return true;
3579
df381975 3580 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3581
3582 if (!memcg_can_account_kmem(memcg)) {
3583 css_put(&memcg->css);
3584 return true;
3585 }
3586
7ae1e1d0
GC
3587 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3588 if (!ret)
3589 *_memcg = memcg;
7ae1e1d0
GC
3590
3591 css_put(&memcg->css);
3592 return (ret == 0);
3593}
3594
3595void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3596 int order)
3597{
3598 struct page_cgroup *pc;
3599
3600 VM_BUG_ON(mem_cgroup_is_root(memcg));
3601
3602 /* The page allocation failed. Revert */
3603 if (!page) {
3604 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3605 return;
3606 }
3607
3608 pc = lookup_page_cgroup(page);
3609 lock_page_cgroup(pc);
3610 pc->mem_cgroup = memcg;
3611 SetPageCgroupUsed(pc);
3612 unlock_page_cgroup(pc);
3613}
3614
3615void __memcg_kmem_uncharge_pages(struct page *page, int order)
3616{
3617 struct mem_cgroup *memcg = NULL;
3618 struct page_cgroup *pc;
3619
3620
3621 pc = lookup_page_cgroup(page);
3622 /*
3623 * Fast unlocked return. Theoretically might have changed, have to
3624 * check again after locking.
3625 */
3626 if (!PageCgroupUsed(pc))
3627 return;
3628
3629 lock_page_cgroup(pc);
3630 if (PageCgroupUsed(pc)) {
3631 memcg = pc->mem_cgroup;
3632 ClearPageCgroupUsed(pc);
3633 }
3634 unlock_page_cgroup(pc);
3635
3636 /*
3637 * We trust that only if there is a memcg associated with the page, it
3638 * is a valid allocation
3639 */
3640 if (!memcg)
3641 return;
3642
309381fe 3643 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3644 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3645}
1f458cbf
GC
3646#else
3647static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3648{
3649}
7ae1e1d0
GC
3650#endif /* CONFIG_MEMCG_KMEM */
3651
ca3e0214
KH
3652#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3653
a0db00fc 3654#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3655/*
3656 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3657 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3658 * charge/uncharge will be never happen and move_account() is done under
3659 * compound_lock(), so we don't have to take care of races.
ca3e0214 3660 */
e94c8a9c 3661void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3662{
3663 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3664 struct page_cgroup *pc;
b070e65c 3665 struct mem_cgroup *memcg;
e94c8a9c 3666 int i;
ca3e0214 3667
3d37c4a9
KH
3668 if (mem_cgroup_disabled())
3669 return;
b070e65c
DR
3670
3671 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3672 for (i = 1; i < HPAGE_PMD_NR; i++) {
3673 pc = head_pc + i;
b070e65c 3674 pc->mem_cgroup = memcg;
e94c8a9c 3675 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3676 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3677 }
b070e65c
DR
3678 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3679 HPAGE_PMD_NR);
ca3e0214 3680}
12d27107 3681#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3682
f817ed48 3683/**
de3638d9 3684 * mem_cgroup_move_account - move account of the page
5564e88b 3685 * @page: the page
7ec99d62 3686 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3687 * @pc: page_cgroup of the page.
3688 * @from: mem_cgroup which the page is moved from.
3689 * @to: mem_cgroup which the page is moved to. @from != @to.
3690 *
3691 * The caller must confirm following.
08e552c6 3692 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3693 * - compound_lock is held when nr_pages > 1
f817ed48 3694 *
2f3479b1
KH
3695 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3696 * from old cgroup.
f817ed48 3697 */
7ec99d62
JW
3698static int mem_cgroup_move_account(struct page *page,
3699 unsigned int nr_pages,
3700 struct page_cgroup *pc,
3701 struct mem_cgroup *from,
2f3479b1 3702 struct mem_cgroup *to)
f817ed48 3703{
de3638d9
JW
3704 unsigned long flags;
3705 int ret;
b2402857 3706 bool anon = PageAnon(page);
987eba66 3707
f817ed48 3708 VM_BUG_ON(from == to);
309381fe 3709 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3710 /*
3711 * The page is isolated from LRU. So, collapse function
3712 * will not handle this page. But page splitting can happen.
3713 * Do this check under compound_page_lock(). The caller should
3714 * hold it.
3715 */
3716 ret = -EBUSY;
7ec99d62 3717 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3718 goto out;
3719
3720 lock_page_cgroup(pc);
3721
3722 ret = -EINVAL;
3723 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3724 goto unlock;
3725
312734c0 3726 move_lock_mem_cgroup(from, &flags);
f817ed48 3727
59d1d256
JW
3728 if (!anon && page_mapped(page)) {
3729 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3730 nr_pages);
3731 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3732 nr_pages);
3733 }
3ea67d06 3734
59d1d256
JW
3735 if (PageWriteback(page)) {
3736 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3737 nr_pages);
3738 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3739 nr_pages);
3740 }
3ea67d06 3741
b070e65c 3742 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3743
854ffa8d 3744 /* caller should have done css_get */
08e552c6 3745 pc->mem_cgroup = to;
b070e65c 3746 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3747 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3748 ret = 0;
3749unlock:
57f9fd7d 3750 unlock_page_cgroup(pc);
d2265e6f
KH
3751 /*
3752 * check events
3753 */
5564e88b
JW
3754 memcg_check_events(to, page);
3755 memcg_check_events(from, page);
de3638d9 3756out:
f817ed48
KH
3757 return ret;
3758}
3759
2ef37d3f
MH
3760/**
3761 * mem_cgroup_move_parent - moves page to the parent group
3762 * @page: the page to move
3763 * @pc: page_cgroup of the page
3764 * @child: page's cgroup
3765 *
3766 * move charges to its parent or the root cgroup if the group has no
3767 * parent (aka use_hierarchy==0).
3768 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3769 * mem_cgroup_move_account fails) the failure is always temporary and
3770 * it signals a race with a page removal/uncharge or migration. In the
3771 * first case the page is on the way out and it will vanish from the LRU
3772 * on the next attempt and the call should be retried later.
3773 * Isolation from the LRU fails only if page has been isolated from
3774 * the LRU since we looked at it and that usually means either global
3775 * reclaim or migration going on. The page will either get back to the
3776 * LRU or vanish.
3777 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3778 * (!PageCgroupUsed) or moved to a different group. The page will
3779 * disappear in the next attempt.
f817ed48 3780 */
5564e88b
JW
3781static int mem_cgroup_move_parent(struct page *page,
3782 struct page_cgroup *pc,
6068bf01 3783 struct mem_cgroup *child)
f817ed48 3784{
f817ed48 3785 struct mem_cgroup *parent;
7ec99d62 3786 unsigned int nr_pages;
4be4489f 3787 unsigned long uninitialized_var(flags);
f817ed48
KH
3788 int ret;
3789
d8423011 3790 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3791
57f9fd7d
DN
3792 ret = -EBUSY;
3793 if (!get_page_unless_zero(page))
3794 goto out;
3795 if (isolate_lru_page(page))
3796 goto put;
52dbb905 3797
7ec99d62 3798 nr_pages = hpage_nr_pages(page);
08e552c6 3799
cc926f78
KH
3800 parent = parent_mem_cgroup(child);
3801 /*
3802 * If no parent, move charges to root cgroup.
3803 */
3804 if (!parent)
3805 parent = root_mem_cgroup;
f817ed48 3806
2ef37d3f 3807 if (nr_pages > 1) {
309381fe 3808 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3809 flags = compound_lock_irqsave(page);
2ef37d3f 3810 }
987eba66 3811
cc926f78 3812 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3813 pc, child, parent);
cc926f78
KH
3814 if (!ret)
3815 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3816
7ec99d62 3817 if (nr_pages > 1)
987eba66 3818 compound_unlock_irqrestore(page, flags);
08e552c6 3819 putback_lru_page(page);
57f9fd7d 3820put:
40d58138 3821 put_page(page);
57f9fd7d 3822out:
f817ed48
KH
3823 return ret;
3824}
3825
1bec6b33
JW
3826int mem_cgroup_newpage_charge(struct page *page,
3827 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3828{
c0ff4b85 3829 struct mem_cgroup *memcg = NULL;
7ec99d62 3830 unsigned int nr_pages = 1;
8493ae43 3831 bool oom = true;
7a81b88c 3832 int ret;
ec168510 3833
1bec6b33
JW
3834 if (mem_cgroup_disabled())
3835 return 0;
3836
3837 VM_BUG_ON_PAGE(page_mapped(page), page);
3838 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3839 VM_BUG_ON(!mm);
3840
37c2ac78 3841 if (PageTransHuge(page)) {
7ec99d62 3842 nr_pages <<= compound_order(page);
309381fe 3843 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3844 /*
3845 * Never OOM-kill a process for a huge page. The
3846 * fault handler will fall back to regular pages.
3847 */
3848 oom = false;
37c2ac78 3849 }
7a81b88c 3850
c0ff4b85 3851 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3852 if (ret == -ENOMEM)
7a81b88c 3853 return ret;
1bec6b33
JW
3854 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3855 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3856 return 0;
8a9f3ccd
BS
3857}
3858
54595fe2
KH
3859/*
3860 * While swap-in, try_charge -> commit or cancel, the page is locked.
3861 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3862 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3863 * "commit()" or removed by "cancel()"
3864 */
0435a2fd
JW
3865static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3866 struct page *page,
3867 gfp_t mask,
3868 struct mem_cgroup **memcgp)
8c7c6e34 3869{
c0ff4b85 3870 struct mem_cgroup *memcg;
90deb788 3871 struct page_cgroup *pc;
54595fe2 3872 int ret;
8c7c6e34 3873
90deb788
JW
3874 pc = lookup_page_cgroup(page);
3875 /*
3876 * Every swap fault against a single page tries to charge the
3877 * page, bail as early as possible. shmem_unuse() encounters
3878 * already charged pages, too. The USED bit is protected by
3879 * the page lock, which serializes swap cache removal, which
3880 * in turn serializes uncharging.
3881 */
3882 if (PageCgroupUsed(pc))
3883 return 0;
8c7c6e34
KH
3884 if (!do_swap_account)
3885 goto charge_cur_mm;
c0ff4b85
R
3886 memcg = try_get_mem_cgroup_from_page(page);
3887 if (!memcg)
54595fe2 3888 goto charge_cur_mm;
72835c86
JW
3889 *memcgp = memcg;
3890 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3891 css_put(&memcg->css);
38c5d72f
KH
3892 if (ret == -EINTR)
3893 ret = 0;
54595fe2 3894 return ret;
8c7c6e34 3895charge_cur_mm:
38c5d72f
KH
3896 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3897 if (ret == -EINTR)
3898 ret = 0;
3899 return ret;
8c7c6e34
KH
3900}
3901
0435a2fd
JW
3902int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3903 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3904{
3905 *memcgp = NULL;
3906 if (mem_cgroup_disabled())
3907 return 0;
bdf4f4d2
JW
3908 /*
3909 * A racing thread's fault, or swapoff, may have already
3910 * updated the pte, and even removed page from swap cache: in
3911 * those cases unuse_pte()'s pte_same() test will fail; but
3912 * there's also a KSM case which does need to charge the page.
3913 */
3914 if (!PageSwapCache(page)) {
3915 int ret;
3916
3917 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3918 if (ret == -EINTR)
3919 ret = 0;
3920 return ret;
3921 }
0435a2fd
JW
3922 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3923}
3924
827a03d2
JW
3925void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3926{
3927 if (mem_cgroup_disabled())
3928 return;
3929 if (!memcg)
3930 return;
3931 __mem_cgroup_cancel_charge(memcg, 1);
3932}
3933
83aae4c7 3934static void
72835c86 3935__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3936 enum charge_type ctype)
7a81b88c 3937{
f8d66542 3938 if (mem_cgroup_disabled())
7a81b88c 3939 return;
72835c86 3940 if (!memcg)
7a81b88c 3941 return;
5a6475a4 3942
ce587e65 3943 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3944 /*
3945 * Now swap is on-memory. This means this page may be
3946 * counted both as mem and swap....double count.
03f3c433
KH
3947 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3948 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3949 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3950 */
03f3c433 3951 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3952 swp_entry_t ent = {.val = page_private(page)};
86493009 3953 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3954 }
7a81b88c
KH
3955}
3956
72835c86
JW
3957void mem_cgroup_commit_charge_swapin(struct page *page,
3958 struct mem_cgroup *memcg)
83aae4c7 3959{
72835c86 3960 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3961 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3962}
3963
827a03d2
JW
3964int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3965 gfp_t gfp_mask)
7a81b88c 3966{
827a03d2
JW
3967 struct mem_cgroup *memcg = NULL;
3968 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3969 int ret;
3970
f8d66542 3971 if (mem_cgroup_disabled())
827a03d2
JW
3972 return 0;
3973 if (PageCompound(page))
3974 return 0;
3975
1bec6b33 3976 if (!PageSwapCache(page)) {
284f39af
JW
3977 /*
3978 * Page cache insertions can happen without an actual
3979 * task context, e.g. during disk probing on boot.
3980 */
3981 if (!mm)
3982 memcg = root_mem_cgroup;
1bec6b33
JW
3983 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
3984 if (ret != -ENOMEM)
3985 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3986 } else { /* page is swapcache/shmem */
0435a2fd
JW
3987 ret = __mem_cgroup_try_charge_swapin(mm, page,
3988 gfp_mask, &memcg);
827a03d2
JW
3989 if (!ret)
3990 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3991 }
3992 return ret;
7a81b88c
KH
3993}
3994
c0ff4b85 3995static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3996 unsigned int nr_pages,
3997 const enum charge_type ctype)
569b846d
KH
3998{
3999 struct memcg_batch_info *batch = NULL;
4000 bool uncharge_memsw = true;
7ec99d62 4001
569b846d
KH
4002 /* If swapout, usage of swap doesn't decrease */
4003 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4004 uncharge_memsw = false;
569b846d
KH
4005
4006 batch = &current->memcg_batch;
4007 /*
4008 * In usual, we do css_get() when we remember memcg pointer.
4009 * But in this case, we keep res->usage until end of a series of
4010 * uncharges. Then, it's ok to ignore memcg's refcnt.
4011 */
4012 if (!batch->memcg)
c0ff4b85 4013 batch->memcg = memcg;
3c11ecf4
KH
4014 /*
4015 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4016 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4017 * the same cgroup and we have chance to coalesce uncharges.
4018 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4019 * because we want to do uncharge as soon as possible.
4020 */
4021
4022 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4023 goto direct_uncharge;
4024
7ec99d62 4025 if (nr_pages > 1)
ec168510
AA
4026 goto direct_uncharge;
4027
569b846d
KH
4028 /*
4029 * In typical case, batch->memcg == mem. This means we can
4030 * merge a series of uncharges to an uncharge of res_counter.
4031 * If not, we uncharge res_counter ony by one.
4032 */
c0ff4b85 4033 if (batch->memcg != memcg)
569b846d
KH
4034 goto direct_uncharge;
4035 /* remember freed charge and uncharge it later */
7ffd4ca7 4036 batch->nr_pages++;
569b846d 4037 if (uncharge_memsw)
7ffd4ca7 4038 batch->memsw_nr_pages++;
569b846d
KH
4039 return;
4040direct_uncharge:
c0ff4b85 4041 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4042 if (uncharge_memsw)
c0ff4b85
R
4043 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4044 if (unlikely(batch->memcg != memcg))
4045 memcg_oom_recover(memcg);
569b846d 4046}
7a81b88c 4047
8a9f3ccd 4048/*
69029cd5 4049 * uncharge if !page_mapped(page)
8a9f3ccd 4050 */
8c7c6e34 4051static struct mem_cgroup *
0030f535
JW
4052__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4053 bool end_migration)
8a9f3ccd 4054{
c0ff4b85 4055 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4056 unsigned int nr_pages = 1;
4057 struct page_cgroup *pc;
b2402857 4058 bool anon;
8a9f3ccd 4059
f8d66542 4060 if (mem_cgroup_disabled())
8c7c6e34 4061 return NULL;
4077960e 4062
37c2ac78 4063 if (PageTransHuge(page)) {
7ec99d62 4064 nr_pages <<= compound_order(page);
309381fe 4065 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4066 }
8697d331 4067 /*
3c541e14 4068 * Check if our page_cgroup is valid
8697d331 4069 */
52d4b9ac 4070 pc = lookup_page_cgroup(page);
cfa44946 4071 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4072 return NULL;
b9c565d5 4073
52d4b9ac 4074 lock_page_cgroup(pc);
d13d1443 4075
c0ff4b85 4076 memcg = pc->mem_cgroup;
8c7c6e34 4077
d13d1443
KH
4078 if (!PageCgroupUsed(pc))
4079 goto unlock_out;
4080
b2402857
KH
4081 anon = PageAnon(page);
4082
d13d1443 4083 switch (ctype) {
41326c17 4084 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4085 /*
4086 * Generally PageAnon tells if it's the anon statistics to be
4087 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4088 * used before page reached the stage of being marked PageAnon.
4089 */
b2402857
KH
4090 anon = true;
4091 /* fallthrough */
8a9478ca 4092 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4093 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4094 if (page_mapped(page))
4095 goto unlock_out;
4096 /*
4097 * Pages under migration may not be uncharged. But
4098 * end_migration() /must/ be the one uncharging the
4099 * unused post-migration page and so it has to call
4100 * here with the migration bit still set. See the
4101 * res_counter handling below.
4102 */
4103 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4104 goto unlock_out;
4105 break;
4106 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4107 if (!PageAnon(page)) { /* Shared memory */
4108 if (page->mapping && !page_is_file_cache(page))
4109 goto unlock_out;
4110 } else if (page_mapped(page)) /* Anon */
4111 goto unlock_out;
4112 break;
4113 default:
4114 break;
52d4b9ac 4115 }
d13d1443 4116
b070e65c 4117 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4118
52d4b9ac 4119 ClearPageCgroupUsed(pc);
544122e5
KH
4120 /*
4121 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4122 * freed from LRU. This is safe because uncharged page is expected not
4123 * to be reused (freed soon). Exception is SwapCache, it's handled by
4124 * special functions.
4125 */
b9c565d5 4126
52d4b9ac 4127 unlock_page_cgroup(pc);
f75ca962 4128 /*
c0ff4b85 4129 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4130 * will never be freed, so it's safe to call css_get().
f75ca962 4131 */
c0ff4b85 4132 memcg_check_events(memcg, page);
f75ca962 4133 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4134 mem_cgroup_swap_statistics(memcg, true);
4050377b 4135 css_get(&memcg->css);
f75ca962 4136 }
0030f535
JW
4137 /*
4138 * Migration does not charge the res_counter for the
4139 * replacement page, so leave it alone when phasing out the
4140 * page that is unused after the migration.
4141 */
4142 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4143 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4144
c0ff4b85 4145 return memcg;
d13d1443
KH
4146
4147unlock_out:
4148 unlock_page_cgroup(pc);
8c7c6e34 4149 return NULL;
3c541e14
BS
4150}
4151
69029cd5
KH
4152void mem_cgroup_uncharge_page(struct page *page)
4153{
52d4b9ac
KH
4154 /* early check. */
4155 if (page_mapped(page))
4156 return;
309381fe 4157 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4158 /*
4159 * If the page is in swap cache, uncharge should be deferred
4160 * to the swap path, which also properly accounts swap usage
4161 * and handles memcg lifetime.
4162 *
4163 * Note that this check is not stable and reclaim may add the
4164 * page to swap cache at any time after this. However, if the
4165 * page is not in swap cache by the time page->mapcount hits
4166 * 0, there won't be any page table references to the swap
4167 * slot, and reclaim will free it and not actually write the
4168 * page to disk.
4169 */
0c59b89c
JW
4170 if (PageSwapCache(page))
4171 return;
0030f535 4172 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4173}
4174
4175void mem_cgroup_uncharge_cache_page(struct page *page)
4176{
309381fe
SL
4177 VM_BUG_ON_PAGE(page_mapped(page), page);
4178 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4179 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4180}
4181
569b846d
KH
4182/*
4183 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4184 * In that cases, pages are freed continuously and we can expect pages
4185 * are in the same memcg. All these calls itself limits the number of
4186 * pages freed at once, then uncharge_start/end() is called properly.
4187 * This may be called prural(2) times in a context,
4188 */
4189
4190void mem_cgroup_uncharge_start(void)
4191{
4192 current->memcg_batch.do_batch++;
4193 /* We can do nest. */
4194 if (current->memcg_batch.do_batch == 1) {
4195 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4196 current->memcg_batch.nr_pages = 0;
4197 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4198 }
4199}
4200
4201void mem_cgroup_uncharge_end(void)
4202{
4203 struct memcg_batch_info *batch = &current->memcg_batch;
4204
4205 if (!batch->do_batch)
4206 return;
4207
4208 batch->do_batch--;
4209 if (batch->do_batch) /* If stacked, do nothing. */
4210 return;
4211
4212 if (!batch->memcg)
4213 return;
4214 /*
4215 * This "batch->memcg" is valid without any css_get/put etc...
4216 * bacause we hide charges behind us.
4217 */
7ffd4ca7
JW
4218 if (batch->nr_pages)
4219 res_counter_uncharge(&batch->memcg->res,
4220 batch->nr_pages * PAGE_SIZE);
4221 if (batch->memsw_nr_pages)
4222 res_counter_uncharge(&batch->memcg->memsw,
4223 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4224 memcg_oom_recover(batch->memcg);
569b846d
KH
4225 /* forget this pointer (for sanity check) */
4226 batch->memcg = NULL;
4227}
4228
e767e056 4229#ifdef CONFIG_SWAP
8c7c6e34 4230/*
e767e056 4231 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4232 * memcg information is recorded to swap_cgroup of "ent"
4233 */
8a9478ca
KH
4234void
4235mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4236{
4237 struct mem_cgroup *memcg;
8a9478ca
KH
4238 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4239
4240 if (!swapout) /* this was a swap cache but the swap is unused ! */
4241 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4242
0030f535 4243 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4244
f75ca962
KH
4245 /*
4246 * record memcg information, if swapout && memcg != NULL,
4050377b 4247 * css_get() was called in uncharge().
f75ca962
KH
4248 */
4249 if (do_swap_account && swapout && memcg)
34c00c31 4250 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4251}
e767e056 4252#endif
8c7c6e34 4253
c255a458 4254#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4255/*
4256 * called from swap_entry_free(). remove record in swap_cgroup and
4257 * uncharge "memsw" account.
4258 */
4259void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4260{
8c7c6e34 4261 struct mem_cgroup *memcg;
a3b2d692 4262 unsigned short id;
8c7c6e34
KH
4263
4264 if (!do_swap_account)
4265 return;
4266
a3b2d692
KH
4267 id = swap_cgroup_record(ent, 0);
4268 rcu_read_lock();
4269 memcg = mem_cgroup_lookup(id);
8c7c6e34 4270 if (memcg) {
a3b2d692
KH
4271 /*
4272 * We uncharge this because swap is freed.
4273 * This memcg can be obsolete one. We avoid calling css_tryget
4274 */
0c3e73e8 4275 if (!mem_cgroup_is_root(memcg))
4e649152 4276 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4277 mem_cgroup_swap_statistics(memcg, false);
4050377b 4278 css_put(&memcg->css);
8c7c6e34 4279 }
a3b2d692 4280 rcu_read_unlock();
d13d1443 4281}
02491447
DN
4282
4283/**
4284 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4285 * @entry: swap entry to be moved
4286 * @from: mem_cgroup which the entry is moved from
4287 * @to: mem_cgroup which the entry is moved to
4288 *
4289 * It succeeds only when the swap_cgroup's record for this entry is the same
4290 * as the mem_cgroup's id of @from.
4291 *
4292 * Returns 0 on success, -EINVAL on failure.
4293 *
4294 * The caller must have charged to @to, IOW, called res_counter_charge() about
4295 * both res and memsw, and called css_get().
4296 */
4297static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4298 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4299{
4300 unsigned short old_id, new_id;
4301
34c00c31
LZ
4302 old_id = mem_cgroup_id(from);
4303 new_id = mem_cgroup_id(to);
02491447
DN
4304
4305 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4306 mem_cgroup_swap_statistics(from, false);
483c30b5 4307 mem_cgroup_swap_statistics(to, true);
02491447 4308 /*
483c30b5
DN
4309 * This function is only called from task migration context now.
4310 * It postpones res_counter and refcount handling till the end
4311 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4312 * improvement. But we cannot postpone css_get(to) because if
4313 * the process that has been moved to @to does swap-in, the
4314 * refcount of @to might be decreased to 0.
4315 *
4316 * We are in attach() phase, so the cgroup is guaranteed to be
4317 * alive, so we can just call css_get().
02491447 4318 */
4050377b 4319 css_get(&to->css);
02491447
DN
4320 return 0;
4321 }
4322 return -EINVAL;
4323}
4324#else
4325static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4326 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4327{
4328 return -EINVAL;
4329}
8c7c6e34 4330#endif
d13d1443 4331
ae41be37 4332/*
01b1ae63
KH
4333 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4334 * page belongs to.
ae41be37 4335 */
0030f535
JW
4336void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4337 struct mem_cgroup **memcgp)
ae41be37 4338{
c0ff4b85 4339 struct mem_cgroup *memcg = NULL;
b32967ff 4340 unsigned int nr_pages = 1;
7ec99d62 4341 struct page_cgroup *pc;
ac39cf8c 4342 enum charge_type ctype;
8869b8f6 4343
72835c86 4344 *memcgp = NULL;
56039efa 4345
f8d66542 4346 if (mem_cgroup_disabled())
0030f535 4347 return;
4077960e 4348
b32967ff
MG
4349 if (PageTransHuge(page))
4350 nr_pages <<= compound_order(page);
4351
52d4b9ac
KH
4352 pc = lookup_page_cgroup(page);
4353 lock_page_cgroup(pc);
4354 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4355 memcg = pc->mem_cgroup;
4356 css_get(&memcg->css);
ac39cf8c
AM
4357 /*
4358 * At migrating an anonymous page, its mapcount goes down
4359 * to 0 and uncharge() will be called. But, even if it's fully
4360 * unmapped, migration may fail and this page has to be
4361 * charged again. We set MIGRATION flag here and delay uncharge
4362 * until end_migration() is called
4363 *
4364 * Corner Case Thinking
4365 * A)
4366 * When the old page was mapped as Anon and it's unmap-and-freed
4367 * while migration was ongoing.
4368 * If unmap finds the old page, uncharge() of it will be delayed
4369 * until end_migration(). If unmap finds a new page, it's
4370 * uncharged when it make mapcount to be 1->0. If unmap code
4371 * finds swap_migration_entry, the new page will not be mapped
4372 * and end_migration() will find it(mapcount==0).
4373 *
4374 * B)
4375 * When the old page was mapped but migraion fails, the kernel
4376 * remaps it. A charge for it is kept by MIGRATION flag even
4377 * if mapcount goes down to 0. We can do remap successfully
4378 * without charging it again.
4379 *
4380 * C)
4381 * The "old" page is under lock_page() until the end of
4382 * migration, so, the old page itself will not be swapped-out.
4383 * If the new page is swapped out before end_migraton, our
4384 * hook to usual swap-out path will catch the event.
4385 */
4386 if (PageAnon(page))
4387 SetPageCgroupMigration(pc);
e8589cc1 4388 }
52d4b9ac 4389 unlock_page_cgroup(pc);
ac39cf8c
AM
4390 /*
4391 * If the page is not charged at this point,
4392 * we return here.
4393 */
c0ff4b85 4394 if (!memcg)
0030f535 4395 return;
01b1ae63 4396
72835c86 4397 *memcgp = memcg;
ac39cf8c
AM
4398 /*
4399 * We charge new page before it's used/mapped. So, even if unlock_page()
4400 * is called before end_migration, we can catch all events on this new
4401 * page. In the case new page is migrated but not remapped, new page's
4402 * mapcount will be finally 0 and we call uncharge in end_migration().
4403 */
ac39cf8c 4404 if (PageAnon(page))
41326c17 4405 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4406 else
62ba7442 4407 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4408 /*
4409 * The page is committed to the memcg, but it's not actually
4410 * charged to the res_counter since we plan on replacing the
4411 * old one and only one page is going to be left afterwards.
4412 */
b32967ff 4413 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4414}
8869b8f6 4415
69029cd5 4416/* remove redundant charge if migration failed*/
c0ff4b85 4417void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4418 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4419{
ac39cf8c 4420 struct page *used, *unused;
01b1ae63 4421 struct page_cgroup *pc;
b2402857 4422 bool anon;
01b1ae63 4423
c0ff4b85 4424 if (!memcg)
01b1ae63 4425 return;
b25ed609 4426
50de1dd9 4427 if (!migration_ok) {
ac39cf8c
AM
4428 used = oldpage;
4429 unused = newpage;
01b1ae63 4430 } else {
ac39cf8c 4431 used = newpage;
01b1ae63
KH
4432 unused = oldpage;
4433 }
0030f535 4434 anon = PageAnon(used);
7d188958
JW
4435 __mem_cgroup_uncharge_common(unused,
4436 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4437 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4438 true);
0030f535 4439 css_put(&memcg->css);
69029cd5 4440 /*
ac39cf8c
AM
4441 * We disallowed uncharge of pages under migration because mapcount
4442 * of the page goes down to zero, temporarly.
4443 * Clear the flag and check the page should be charged.
01b1ae63 4444 */
ac39cf8c
AM
4445 pc = lookup_page_cgroup(oldpage);
4446 lock_page_cgroup(pc);
4447 ClearPageCgroupMigration(pc);
4448 unlock_page_cgroup(pc);
ac39cf8c 4449
01b1ae63 4450 /*
ac39cf8c
AM
4451 * If a page is a file cache, radix-tree replacement is very atomic
4452 * and we can skip this check. When it was an Anon page, its mapcount
4453 * goes down to 0. But because we added MIGRATION flage, it's not
4454 * uncharged yet. There are several case but page->mapcount check
4455 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4456 * check. (see prepare_charge() also)
69029cd5 4457 */
b2402857 4458 if (anon)
ac39cf8c 4459 mem_cgroup_uncharge_page(used);
ae41be37 4460}
78fb7466 4461
ab936cbc
KH
4462/*
4463 * At replace page cache, newpage is not under any memcg but it's on
4464 * LRU. So, this function doesn't touch res_counter but handles LRU
4465 * in correct way. Both pages are locked so we cannot race with uncharge.
4466 */
4467void mem_cgroup_replace_page_cache(struct page *oldpage,
4468 struct page *newpage)
4469{
bde05d1c 4470 struct mem_cgroup *memcg = NULL;
ab936cbc 4471 struct page_cgroup *pc;
ab936cbc 4472 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4473
4474 if (mem_cgroup_disabled())
4475 return;
4476
4477 pc = lookup_page_cgroup(oldpage);
4478 /* fix accounting on old pages */
4479 lock_page_cgroup(pc);
bde05d1c
HD
4480 if (PageCgroupUsed(pc)) {
4481 memcg = pc->mem_cgroup;
b070e65c 4482 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4483 ClearPageCgroupUsed(pc);
4484 }
ab936cbc
KH
4485 unlock_page_cgroup(pc);
4486
bde05d1c
HD
4487 /*
4488 * When called from shmem_replace_page(), in some cases the
4489 * oldpage has already been charged, and in some cases not.
4490 */
4491 if (!memcg)
4492 return;
ab936cbc
KH
4493 /*
4494 * Even if newpage->mapping was NULL before starting replacement,
4495 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4496 * LRU while we overwrite pc->mem_cgroup.
4497 */
ce587e65 4498 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4499}
4500
f212ad7c
DN
4501#ifdef CONFIG_DEBUG_VM
4502static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4503{
4504 struct page_cgroup *pc;
4505
4506 pc = lookup_page_cgroup(page);
cfa44946
JW
4507 /*
4508 * Can be NULL while feeding pages into the page allocator for
4509 * the first time, i.e. during boot or memory hotplug;
4510 * or when mem_cgroup_disabled().
4511 */
f212ad7c
DN
4512 if (likely(pc) && PageCgroupUsed(pc))
4513 return pc;
4514 return NULL;
4515}
4516
4517bool mem_cgroup_bad_page_check(struct page *page)
4518{
4519 if (mem_cgroup_disabled())
4520 return false;
4521
4522 return lookup_page_cgroup_used(page) != NULL;
4523}
4524
4525void mem_cgroup_print_bad_page(struct page *page)
4526{
4527 struct page_cgroup *pc;
4528
4529 pc = lookup_page_cgroup_used(page);
4530 if (pc) {
d045197f
AM
4531 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4532 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4533 }
4534}
4535#endif
4536
d38d2a75 4537static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4538 unsigned long long val)
628f4235 4539{
81d39c20 4540 int retry_count;
3c11ecf4 4541 u64 memswlimit, memlimit;
628f4235 4542 int ret = 0;
81d39c20
KH
4543 int children = mem_cgroup_count_children(memcg);
4544 u64 curusage, oldusage;
3c11ecf4 4545 int enlarge;
81d39c20
KH
4546
4547 /*
4548 * For keeping hierarchical_reclaim simple, how long we should retry
4549 * is depends on callers. We set our retry-count to be function
4550 * of # of children which we should visit in this loop.
4551 */
4552 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4553
4554 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4555
3c11ecf4 4556 enlarge = 0;
8c7c6e34 4557 while (retry_count) {
628f4235
KH
4558 if (signal_pending(current)) {
4559 ret = -EINTR;
4560 break;
4561 }
8c7c6e34
KH
4562 /*
4563 * Rather than hide all in some function, I do this in
4564 * open coded manner. You see what this really does.
aaad153e 4565 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4566 */
4567 mutex_lock(&set_limit_mutex);
4568 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4569 if (memswlimit < val) {
4570 ret = -EINVAL;
4571 mutex_unlock(&set_limit_mutex);
628f4235
KH
4572 break;
4573 }
3c11ecf4
KH
4574
4575 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4576 if (memlimit < val)
4577 enlarge = 1;
4578
8c7c6e34 4579 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4580 if (!ret) {
4581 if (memswlimit == val)
4582 memcg->memsw_is_minimum = true;
4583 else
4584 memcg->memsw_is_minimum = false;
4585 }
8c7c6e34
KH
4586 mutex_unlock(&set_limit_mutex);
4587
4588 if (!ret)
4589 break;
4590
5660048c
JW
4591 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4592 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4593 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4594 /* Usage is reduced ? */
f894ffa8 4595 if (curusage >= oldusage)
81d39c20
KH
4596 retry_count--;
4597 else
4598 oldusage = curusage;
8c7c6e34 4599 }
3c11ecf4
KH
4600 if (!ret && enlarge)
4601 memcg_oom_recover(memcg);
14797e23 4602
8c7c6e34
KH
4603 return ret;
4604}
4605
338c8431
LZ
4606static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4607 unsigned long long val)
8c7c6e34 4608{
81d39c20 4609 int retry_count;
3c11ecf4 4610 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4611 int children = mem_cgroup_count_children(memcg);
4612 int ret = -EBUSY;
3c11ecf4 4613 int enlarge = 0;
8c7c6e34 4614
81d39c20 4615 /* see mem_cgroup_resize_res_limit */
f894ffa8 4616 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4617 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4618 while (retry_count) {
4619 if (signal_pending(current)) {
4620 ret = -EINTR;
4621 break;
4622 }
4623 /*
4624 * Rather than hide all in some function, I do this in
4625 * open coded manner. You see what this really does.
aaad153e 4626 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4627 */
4628 mutex_lock(&set_limit_mutex);
4629 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4630 if (memlimit > val) {
4631 ret = -EINVAL;
4632 mutex_unlock(&set_limit_mutex);
4633 break;
4634 }
3c11ecf4
KH
4635 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4636 if (memswlimit < val)
4637 enlarge = 1;
8c7c6e34 4638 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4639 if (!ret) {
4640 if (memlimit == val)
4641 memcg->memsw_is_minimum = true;
4642 else
4643 memcg->memsw_is_minimum = false;
4644 }
8c7c6e34
KH
4645 mutex_unlock(&set_limit_mutex);
4646
4647 if (!ret)
4648 break;
4649
5660048c
JW
4650 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4651 MEM_CGROUP_RECLAIM_NOSWAP |
4652 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4653 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4654 /* Usage is reduced ? */
8c7c6e34 4655 if (curusage >= oldusage)
628f4235 4656 retry_count--;
81d39c20
KH
4657 else
4658 oldusage = curusage;
628f4235 4659 }
3c11ecf4
KH
4660 if (!ret && enlarge)
4661 memcg_oom_recover(memcg);
628f4235
KH
4662 return ret;
4663}
4664
0608f43d
AM
4665unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4666 gfp_t gfp_mask,
4667 unsigned long *total_scanned)
4668{
4669 unsigned long nr_reclaimed = 0;
4670 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4671 unsigned long reclaimed;
4672 int loop = 0;
4673 struct mem_cgroup_tree_per_zone *mctz;
4674 unsigned long long excess;
4675 unsigned long nr_scanned;
4676
4677 if (order > 0)
4678 return 0;
4679
4680 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4681 /*
4682 * This loop can run a while, specially if mem_cgroup's continuously
4683 * keep exceeding their soft limit and putting the system under
4684 * pressure
4685 */
4686 do {
4687 if (next_mz)
4688 mz = next_mz;
4689 else
4690 mz = mem_cgroup_largest_soft_limit_node(mctz);
4691 if (!mz)
4692 break;
4693
4694 nr_scanned = 0;
4695 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4696 gfp_mask, &nr_scanned);
4697 nr_reclaimed += reclaimed;
4698 *total_scanned += nr_scanned;
4699 spin_lock(&mctz->lock);
4700
4701 /*
4702 * If we failed to reclaim anything from this memory cgroup
4703 * it is time to move on to the next cgroup
4704 */
4705 next_mz = NULL;
4706 if (!reclaimed) {
4707 do {
4708 /*
4709 * Loop until we find yet another one.
4710 *
4711 * By the time we get the soft_limit lock
4712 * again, someone might have aded the
4713 * group back on the RB tree. Iterate to
4714 * make sure we get a different mem.
4715 * mem_cgroup_largest_soft_limit_node returns
4716 * NULL if no other cgroup is present on
4717 * the tree
4718 */
4719 next_mz =
4720 __mem_cgroup_largest_soft_limit_node(mctz);
4721 if (next_mz == mz)
4722 css_put(&next_mz->memcg->css);
4723 else /* next_mz == NULL or other memcg */
4724 break;
4725 } while (1);
4726 }
4727 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4728 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4729 /*
4730 * One school of thought says that we should not add
4731 * back the node to the tree if reclaim returns 0.
4732 * But our reclaim could return 0, simply because due
4733 * to priority we are exposing a smaller subset of
4734 * memory to reclaim from. Consider this as a longer
4735 * term TODO.
4736 */
4737 /* If excess == 0, no tree ops */
4738 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4739 spin_unlock(&mctz->lock);
4740 css_put(&mz->memcg->css);
4741 loop++;
4742 /*
4743 * Could not reclaim anything and there are no more
4744 * mem cgroups to try or we seem to be looping without
4745 * reclaiming anything.
4746 */
4747 if (!nr_reclaimed &&
4748 (next_mz == NULL ||
4749 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4750 break;
4751 } while (!nr_reclaimed);
4752 if (next_mz)
4753 css_put(&next_mz->memcg->css);
4754 return nr_reclaimed;
4755}
4756
2ef37d3f
MH
4757/**
4758 * mem_cgroup_force_empty_list - clears LRU of a group
4759 * @memcg: group to clear
4760 * @node: NUMA node
4761 * @zid: zone id
4762 * @lru: lru to to clear
4763 *
3c935d18 4764 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4765 * reclaim the pages page themselves - pages are moved to the parent (or root)
4766 * group.
cc847582 4767 */
2ef37d3f 4768static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4769 int node, int zid, enum lru_list lru)
cc847582 4770{
bea8c150 4771 struct lruvec *lruvec;
2ef37d3f 4772 unsigned long flags;
072c56c1 4773 struct list_head *list;
925b7673
JW
4774 struct page *busy;
4775 struct zone *zone;
072c56c1 4776
08e552c6 4777 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4778 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4779 list = &lruvec->lists[lru];
cc847582 4780
f817ed48 4781 busy = NULL;
2ef37d3f 4782 do {
925b7673 4783 struct page_cgroup *pc;
5564e88b
JW
4784 struct page *page;
4785
08e552c6 4786 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4787 if (list_empty(list)) {
08e552c6 4788 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4789 break;
f817ed48 4790 }
925b7673
JW
4791 page = list_entry(list->prev, struct page, lru);
4792 if (busy == page) {
4793 list_move(&page->lru, list);
648bcc77 4794 busy = NULL;
08e552c6 4795 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4796 continue;
4797 }
08e552c6 4798 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4799
925b7673 4800 pc = lookup_page_cgroup(page);
5564e88b 4801
3c935d18 4802 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4803 /* found lock contention or "pc" is obsolete. */
925b7673 4804 busy = page;
f817ed48
KH
4805 cond_resched();
4806 } else
4807 busy = NULL;
2ef37d3f 4808 } while (!list_empty(list));
cc847582
KH
4809}
4810
4811/*
c26251f9
MH
4812 * make mem_cgroup's charge to be 0 if there is no task by moving
4813 * all the charges and pages to the parent.
cc847582 4814 * This enables deleting this mem_cgroup.
c26251f9
MH
4815 *
4816 * Caller is responsible for holding css reference on the memcg.
cc847582 4817 */
ab5196c2 4818static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4819{
c26251f9 4820 int node, zid;
bea207c8 4821 u64 usage;
f817ed48 4822
fce66477 4823 do {
52d4b9ac
KH
4824 /* This is for making all *used* pages to be on LRU. */
4825 lru_add_drain_all();
c0ff4b85 4826 drain_all_stock_sync(memcg);
c0ff4b85 4827 mem_cgroup_start_move(memcg);
31aaea4a 4828 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4829 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4830 enum lru_list lru;
4831 for_each_lru(lru) {
2ef37d3f 4832 mem_cgroup_force_empty_list(memcg,
f156ab93 4833 node, zid, lru);
f817ed48 4834 }
1ecaab2b 4835 }
f817ed48 4836 }
c0ff4b85
R
4837 mem_cgroup_end_move(memcg);
4838 memcg_oom_recover(memcg);
52d4b9ac 4839 cond_resched();
f817ed48 4840
2ef37d3f 4841 /*
bea207c8
GC
4842 * Kernel memory may not necessarily be trackable to a specific
4843 * process. So they are not migrated, and therefore we can't
4844 * expect their value to drop to 0 here.
4845 * Having res filled up with kmem only is enough.
4846 *
2ef37d3f
MH
4847 * This is a safety check because mem_cgroup_force_empty_list
4848 * could have raced with mem_cgroup_replace_page_cache callers
4849 * so the lru seemed empty but the page could have been added
4850 * right after the check. RES_USAGE should be safe as we always
4851 * charge before adding to the LRU.
4852 */
bea207c8
GC
4853 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4854 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4855 } while (usage > 0);
c26251f9
MH
4856}
4857
b5f99b53
GC
4858static inline bool memcg_has_children(struct mem_cgroup *memcg)
4859{
696ac172
JW
4860 lockdep_assert_held(&memcg_create_mutex);
4861 /*
4862 * The lock does not prevent addition or deletion to the list
4863 * of children, but it prevents a new child from being
4864 * initialized based on this parent in css_online(), so it's
4865 * enough to decide whether hierarchically inherited
4866 * attributes can still be changed or not.
4867 */
4868 return memcg->use_hierarchy &&
4869 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4870}
4871
c26251f9
MH
4872/*
4873 * Reclaims as many pages from the given memcg as possible and moves
4874 * the rest to the parent.
4875 *
4876 * Caller is responsible for holding css reference for memcg.
4877 */
4878static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4879{
4880 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4881 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4882
c1e862c1 4883 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4884 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4885 return -EBUSY;
4886
c1e862c1
KH
4887 /* we call try-to-free pages for make this cgroup empty */
4888 lru_add_drain_all();
f817ed48 4889 /* try to free all pages in this cgroup */
569530fb 4890 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4891 int progress;
c1e862c1 4892
c26251f9
MH
4893 if (signal_pending(current))
4894 return -EINTR;
4895
c0ff4b85 4896 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4897 false);
c1e862c1 4898 if (!progress) {
f817ed48 4899 nr_retries--;
c1e862c1 4900 /* maybe some writeback is necessary */
8aa7e847 4901 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4902 }
f817ed48
KH
4903
4904 }
08e552c6 4905 lru_add_drain();
ab5196c2
MH
4906 mem_cgroup_reparent_charges(memcg);
4907
4908 return 0;
cc847582
KH
4909}
4910
182446d0
TH
4911static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4912 unsigned int event)
c1e862c1 4913{
182446d0 4914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4915
d8423011
MH
4916 if (mem_cgroup_is_root(memcg))
4917 return -EINVAL;
c33bd835 4918 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4919}
4920
182446d0
TH
4921static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4922 struct cftype *cft)
18f59ea7 4923{
182446d0 4924 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4925}
4926
182446d0
TH
4927static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4928 struct cftype *cft, u64 val)
18f59ea7
BS
4929{
4930 int retval = 0;
182446d0 4931 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4932 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4933
0999821b 4934 mutex_lock(&memcg_create_mutex);
567fb435
GC
4935
4936 if (memcg->use_hierarchy == val)
4937 goto out;
4938
18f59ea7 4939 /*
af901ca1 4940 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4941 * in the child subtrees. If it is unset, then the change can
4942 * occur, provided the current cgroup has no children.
4943 *
4944 * For the root cgroup, parent_mem is NULL, we allow value to be
4945 * set if there are no children.
4946 */
c0ff4b85 4947 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4948 (val == 1 || val == 0)) {
696ac172 4949 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4950 memcg->use_hierarchy = val;
18f59ea7
BS
4951 else
4952 retval = -EBUSY;
4953 } else
4954 retval = -EINVAL;
567fb435
GC
4955
4956out:
0999821b 4957 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4958
4959 return retval;
4960}
4961
0c3e73e8 4962
c0ff4b85 4963static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4964 enum mem_cgroup_stat_index idx)
0c3e73e8 4965{
7d74b06f 4966 struct mem_cgroup *iter;
7a159cc9 4967 long val = 0;
0c3e73e8 4968
7a159cc9 4969 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4970 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4971 val += mem_cgroup_read_stat(iter, idx);
4972
4973 if (val < 0) /* race ? */
4974 val = 0;
4975 return val;
0c3e73e8
BS
4976}
4977
c0ff4b85 4978static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4979{
7d74b06f 4980 u64 val;
104f3928 4981
c0ff4b85 4982 if (!mem_cgroup_is_root(memcg)) {
104f3928 4983 if (!swap)
65c64ce8 4984 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4985 else
65c64ce8 4986 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4987 }
4988
b070e65c
DR
4989 /*
4990 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4991 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4992 */
c0ff4b85
R
4993 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4994 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4995
7d74b06f 4996 if (swap)
bff6bb83 4997 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4998
4999 return val << PAGE_SHIFT;
5000}
5001
791badbd
TH
5002static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5003 struct cftype *cft)
8cdea7c0 5004{
182446d0 5005 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5006 u64 val;
791badbd 5007 int name;
86ae53e1 5008 enum res_type type;
8c7c6e34
KH
5009
5010 type = MEMFILE_TYPE(cft->private);
5011 name = MEMFILE_ATTR(cft->private);
af36f906 5012
8c7c6e34
KH
5013 switch (type) {
5014 case _MEM:
104f3928 5015 if (name == RES_USAGE)
c0ff4b85 5016 val = mem_cgroup_usage(memcg, false);
104f3928 5017 else
c0ff4b85 5018 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5019 break;
5020 case _MEMSWAP:
104f3928 5021 if (name == RES_USAGE)
c0ff4b85 5022 val = mem_cgroup_usage(memcg, true);
104f3928 5023 else
c0ff4b85 5024 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5025 break;
510fc4e1
GC
5026 case _KMEM:
5027 val = res_counter_read_u64(&memcg->kmem, name);
5028 break;
8c7c6e34
KH
5029 default:
5030 BUG();
8c7c6e34 5031 }
af36f906 5032
791badbd 5033 return val;
8cdea7c0 5034}
510fc4e1 5035
510fc4e1 5036#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5037/* should be called with activate_kmem_mutex held */
5038static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5039 unsigned long long limit)
5040{
5041 int err = 0;
5042 int memcg_id;
5043
5044 if (memcg_kmem_is_active(memcg))
5045 return 0;
5046
5047 /*
5048 * We are going to allocate memory for data shared by all memory
5049 * cgroups so let's stop accounting here.
5050 */
5051 memcg_stop_kmem_account();
5052
510fc4e1
GC
5053 /*
5054 * For simplicity, we won't allow this to be disabled. It also can't
5055 * be changed if the cgroup has children already, or if tasks had
5056 * already joined.
5057 *
5058 * If tasks join before we set the limit, a person looking at
5059 * kmem.usage_in_bytes will have no way to determine when it took
5060 * place, which makes the value quite meaningless.
5061 *
5062 * After it first became limited, changes in the value of the limit are
5063 * of course permitted.
510fc4e1 5064 */
0999821b 5065 mutex_lock(&memcg_create_mutex);
07bc356e 5066 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
5067 err = -EBUSY;
5068 mutex_unlock(&memcg_create_mutex);
5069 if (err)
5070 goto out;
510fc4e1 5071
d6441637
VD
5072 memcg_id = ida_simple_get(&kmem_limited_groups,
5073 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5074 if (memcg_id < 0) {
5075 err = memcg_id;
5076 goto out;
5077 }
5078
5079 /*
5080 * Make sure we have enough space for this cgroup in each root cache's
5081 * memcg_params.
5082 */
5083 err = memcg_update_all_caches(memcg_id + 1);
5084 if (err)
5085 goto out_rmid;
5086
5087 memcg->kmemcg_id = memcg_id;
5088 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5089 mutex_init(&memcg->slab_caches_mutex);
5090
5091 /*
5092 * We couldn't have accounted to this cgroup, because it hasn't got the
5093 * active bit set yet, so this should succeed.
5094 */
5095 err = res_counter_set_limit(&memcg->kmem, limit);
5096 VM_BUG_ON(err);
5097
5098 static_key_slow_inc(&memcg_kmem_enabled_key);
5099 /*
5100 * Setting the active bit after enabling static branching will
5101 * guarantee no one starts accounting before all call sites are
5102 * patched.
5103 */
5104 memcg_kmem_set_active(memcg);
510fc4e1 5105out:
d6441637
VD
5106 memcg_resume_kmem_account();
5107 return err;
5108
5109out_rmid:
5110 ida_simple_remove(&kmem_limited_groups, memcg_id);
5111 goto out;
5112}
5113
5114static int memcg_activate_kmem(struct mem_cgroup *memcg,
5115 unsigned long long limit)
5116{
5117 int ret;
5118
5119 mutex_lock(&activate_kmem_mutex);
5120 ret = __memcg_activate_kmem(memcg, limit);
5121 mutex_unlock(&activate_kmem_mutex);
5122 return ret;
5123}
5124
5125static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5126 unsigned long long val)
5127{
5128 int ret;
5129
5130 if (!memcg_kmem_is_active(memcg))
5131 ret = memcg_activate_kmem(memcg, val);
5132 else
5133 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5134 return ret;
5135}
5136
55007d84 5137static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5138{
55007d84 5139 int ret = 0;
510fc4e1 5140 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5141
d6441637
VD
5142 if (!parent)
5143 return 0;
55007d84 5144
d6441637 5145 mutex_lock(&activate_kmem_mutex);
55007d84 5146 /*
d6441637
VD
5147 * If the parent cgroup is not kmem-active now, it cannot be activated
5148 * after this point, because it has at least one child already.
55007d84 5149 */
d6441637
VD
5150 if (memcg_kmem_is_active(parent))
5151 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5152 mutex_unlock(&activate_kmem_mutex);
55007d84 5153 return ret;
510fc4e1 5154}
d6441637
VD
5155#else
5156static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5157 unsigned long long val)
5158{
5159 return -EINVAL;
5160}
6d043990 5161#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5162
628f4235
KH
5163/*
5164 * The user of this function is...
5165 * RES_LIMIT.
5166 */
182446d0 5167static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5168 char *buffer)
8cdea7c0 5169{
182446d0 5170 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5171 enum res_type type;
5172 int name;
628f4235
KH
5173 unsigned long long val;
5174 int ret;
5175
8c7c6e34
KH
5176 type = MEMFILE_TYPE(cft->private);
5177 name = MEMFILE_ATTR(cft->private);
af36f906 5178
8c7c6e34 5179 switch (name) {
628f4235 5180 case RES_LIMIT:
4b3bde4c
BS
5181 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5182 ret = -EINVAL;
5183 break;
5184 }
628f4235
KH
5185 /* This function does all necessary parse...reuse it */
5186 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5187 if (ret)
5188 break;
5189 if (type == _MEM)
628f4235 5190 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5191 else if (type == _MEMSWAP)
8c7c6e34 5192 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5193 else if (type == _KMEM)
d6441637 5194 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5195 else
5196 return -EINVAL;
628f4235 5197 break;
296c81d8
BS
5198 case RES_SOFT_LIMIT:
5199 ret = res_counter_memparse_write_strategy(buffer, &val);
5200 if (ret)
5201 break;
5202 /*
5203 * For memsw, soft limits are hard to implement in terms
5204 * of semantics, for now, we support soft limits for
5205 * control without swap
5206 */
5207 if (type == _MEM)
5208 ret = res_counter_set_soft_limit(&memcg->res, val);
5209 else
5210 ret = -EINVAL;
5211 break;
628f4235
KH
5212 default:
5213 ret = -EINVAL; /* should be BUG() ? */
5214 break;
5215 }
5216 return ret;
8cdea7c0
BS
5217}
5218
fee7b548
KH
5219static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5220 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5221{
fee7b548
KH
5222 unsigned long long min_limit, min_memsw_limit, tmp;
5223
5224 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5225 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5226 if (!memcg->use_hierarchy)
5227 goto out;
5228
63876986
TH
5229 while (css_parent(&memcg->css)) {
5230 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5231 if (!memcg->use_hierarchy)
5232 break;
5233 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5234 min_limit = min(min_limit, tmp);
5235 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5236 min_memsw_limit = min(min_memsw_limit, tmp);
5237 }
5238out:
5239 *mem_limit = min_limit;
5240 *memsw_limit = min_memsw_limit;
fee7b548
KH
5241}
5242
182446d0 5243static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5244{
182446d0 5245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5246 int name;
5247 enum res_type type;
c84872e1 5248
8c7c6e34
KH
5249 type = MEMFILE_TYPE(event);
5250 name = MEMFILE_ATTR(event);
af36f906 5251
8c7c6e34 5252 switch (name) {
29f2a4da 5253 case RES_MAX_USAGE:
8c7c6e34 5254 if (type == _MEM)
c0ff4b85 5255 res_counter_reset_max(&memcg->res);
510fc4e1 5256 else if (type == _MEMSWAP)
c0ff4b85 5257 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5258 else if (type == _KMEM)
5259 res_counter_reset_max(&memcg->kmem);
5260 else
5261 return -EINVAL;
29f2a4da
PE
5262 break;
5263 case RES_FAILCNT:
8c7c6e34 5264 if (type == _MEM)
c0ff4b85 5265 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5266 else if (type == _MEMSWAP)
c0ff4b85 5267 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5268 else if (type == _KMEM)
5269 res_counter_reset_failcnt(&memcg->kmem);
5270 else
5271 return -EINVAL;
29f2a4da
PE
5272 break;
5273 }
f64c3f54 5274
85cc59db 5275 return 0;
c84872e1
PE
5276}
5277
182446d0 5278static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5279 struct cftype *cft)
5280{
182446d0 5281 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5282}
5283
02491447 5284#ifdef CONFIG_MMU
182446d0 5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5286 struct cftype *cft, u64 val)
5287{
182446d0 5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5289
5290 if (val >= (1 << NR_MOVE_TYPE))
5291 return -EINVAL;
ee5e8472 5292
7dc74be0 5293 /*
ee5e8472
GC
5294 * No kind of locking is needed in here, because ->can_attach() will
5295 * check this value once in the beginning of the process, and then carry
5296 * on with stale data. This means that changes to this value will only
5297 * affect task migrations starting after the change.
7dc74be0 5298 */
c0ff4b85 5299 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5300 return 0;
5301}
02491447 5302#else
182446d0 5303static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5304 struct cftype *cft, u64 val)
5305{
5306 return -ENOSYS;
5307}
5308#endif
7dc74be0 5309
406eb0c9 5310#ifdef CONFIG_NUMA
2da8ca82 5311static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5312{
25485de6
GT
5313 struct numa_stat {
5314 const char *name;
5315 unsigned int lru_mask;
5316 };
5317
5318 static const struct numa_stat stats[] = {
5319 { "total", LRU_ALL },
5320 { "file", LRU_ALL_FILE },
5321 { "anon", LRU_ALL_ANON },
5322 { "unevictable", BIT(LRU_UNEVICTABLE) },
5323 };
5324 const struct numa_stat *stat;
406eb0c9 5325 int nid;
25485de6 5326 unsigned long nr;
2da8ca82 5327 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5328
25485de6
GT
5329 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5330 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5331 seq_printf(m, "%s=%lu", stat->name, nr);
5332 for_each_node_state(nid, N_MEMORY) {
5333 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5334 stat->lru_mask);
5335 seq_printf(m, " N%d=%lu", nid, nr);
5336 }
5337 seq_putc(m, '\n');
406eb0c9 5338 }
406eb0c9 5339
071aee13
YH
5340 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5341 struct mem_cgroup *iter;
5342
5343 nr = 0;
5344 for_each_mem_cgroup_tree(iter, memcg)
5345 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5346 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5347 for_each_node_state(nid, N_MEMORY) {
5348 nr = 0;
5349 for_each_mem_cgroup_tree(iter, memcg)
5350 nr += mem_cgroup_node_nr_lru_pages(
5351 iter, nid, stat->lru_mask);
5352 seq_printf(m, " N%d=%lu", nid, nr);
5353 }
5354 seq_putc(m, '\n');
406eb0c9 5355 }
406eb0c9 5356
406eb0c9
YH
5357 return 0;
5358}
5359#endif /* CONFIG_NUMA */
5360
af7c4b0e
JW
5361static inline void mem_cgroup_lru_names_not_uptodate(void)
5362{
5363 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5364}
5365
2da8ca82 5366static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5367{
2da8ca82 5368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5369 struct mem_cgroup *mi;
5370 unsigned int i;
406eb0c9 5371
af7c4b0e 5372 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5373 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5374 continue;
af7c4b0e
JW
5375 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5376 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5377 }
7b854121 5378
af7c4b0e
JW
5379 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5380 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5381 mem_cgroup_read_events(memcg, i));
5382
5383 for (i = 0; i < NR_LRU_LISTS; i++)
5384 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5385 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5386
14067bb3 5387 /* Hierarchical information */
fee7b548
KH
5388 {
5389 unsigned long long limit, memsw_limit;
d79154bb 5390 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5391 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5392 if (do_swap_account)
78ccf5b5
JW
5393 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5394 memsw_limit);
fee7b548 5395 }
7f016ee8 5396
af7c4b0e
JW
5397 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5398 long long val = 0;
5399
bff6bb83 5400 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5401 continue;
af7c4b0e
JW
5402 for_each_mem_cgroup_tree(mi, memcg)
5403 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5404 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5405 }
5406
5407 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5408 unsigned long long val = 0;
5409
5410 for_each_mem_cgroup_tree(mi, memcg)
5411 val += mem_cgroup_read_events(mi, i);
5412 seq_printf(m, "total_%s %llu\n",
5413 mem_cgroup_events_names[i], val);
5414 }
5415
5416 for (i = 0; i < NR_LRU_LISTS; i++) {
5417 unsigned long long val = 0;
5418
5419 for_each_mem_cgroup_tree(mi, memcg)
5420 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5421 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5422 }
14067bb3 5423
7f016ee8 5424#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5425 {
5426 int nid, zid;
5427 struct mem_cgroup_per_zone *mz;
89abfab1 5428 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5429 unsigned long recent_rotated[2] = {0, 0};
5430 unsigned long recent_scanned[2] = {0, 0};
5431
5432 for_each_online_node(nid)
5433 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5434 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5435 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5436
89abfab1
HD
5437 recent_rotated[0] += rstat->recent_rotated[0];
5438 recent_rotated[1] += rstat->recent_rotated[1];
5439 recent_scanned[0] += rstat->recent_scanned[0];
5440 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5441 }
78ccf5b5
JW
5442 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5443 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5444 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5445 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5446 }
5447#endif
5448
d2ceb9b7
KH
5449 return 0;
5450}
5451
182446d0
TH
5452static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5453 struct cftype *cft)
a7885eb8 5454{
182446d0 5455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5456
1f4c025b 5457 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5458}
5459
182446d0
TH
5460static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5461 struct cftype *cft, u64 val)
a7885eb8 5462{
182446d0 5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5464 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5465
63876986 5466 if (val > 100 || !parent)
a7885eb8
KM
5467 return -EINVAL;
5468
0999821b 5469 mutex_lock(&memcg_create_mutex);
068b38c1 5470
a7885eb8 5471 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5472 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5473 mutex_unlock(&memcg_create_mutex);
a7885eb8 5474 return -EINVAL;
068b38c1 5475 }
a7885eb8 5476
a7885eb8 5477 memcg->swappiness = val;
a7885eb8 5478
0999821b 5479 mutex_unlock(&memcg_create_mutex);
068b38c1 5480
a7885eb8
KM
5481 return 0;
5482}
5483
2e72b634
KS
5484static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5485{
5486 struct mem_cgroup_threshold_ary *t;
5487 u64 usage;
5488 int i;
5489
5490 rcu_read_lock();
5491 if (!swap)
2c488db2 5492 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5493 else
2c488db2 5494 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5495
5496 if (!t)
5497 goto unlock;
5498
5499 usage = mem_cgroup_usage(memcg, swap);
5500
5501 /*
748dad36 5502 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5503 * If it's not true, a threshold was crossed after last
5504 * call of __mem_cgroup_threshold().
5505 */
5407a562 5506 i = t->current_threshold;
2e72b634
KS
5507
5508 /*
5509 * Iterate backward over array of thresholds starting from
5510 * current_threshold and check if a threshold is crossed.
5511 * If none of thresholds below usage is crossed, we read
5512 * only one element of the array here.
5513 */
5514 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5515 eventfd_signal(t->entries[i].eventfd, 1);
5516
5517 /* i = current_threshold + 1 */
5518 i++;
5519
5520 /*
5521 * Iterate forward over array of thresholds starting from
5522 * current_threshold+1 and check if a threshold is crossed.
5523 * If none of thresholds above usage is crossed, we read
5524 * only one element of the array here.
5525 */
5526 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5527 eventfd_signal(t->entries[i].eventfd, 1);
5528
5529 /* Update current_threshold */
5407a562 5530 t->current_threshold = i - 1;
2e72b634
KS
5531unlock:
5532 rcu_read_unlock();
5533}
5534
5535static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5536{
ad4ca5f4
KS
5537 while (memcg) {
5538 __mem_cgroup_threshold(memcg, false);
5539 if (do_swap_account)
5540 __mem_cgroup_threshold(memcg, true);
5541
5542 memcg = parent_mem_cgroup(memcg);
5543 }
2e72b634
KS
5544}
5545
5546static int compare_thresholds(const void *a, const void *b)
5547{
5548 const struct mem_cgroup_threshold *_a = a;
5549 const struct mem_cgroup_threshold *_b = b;
5550
2bff24a3
GT
5551 if (_a->threshold > _b->threshold)
5552 return 1;
5553
5554 if (_a->threshold < _b->threshold)
5555 return -1;
5556
5557 return 0;
2e72b634
KS
5558}
5559
c0ff4b85 5560static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5561{
5562 struct mem_cgroup_eventfd_list *ev;
5563
c0ff4b85 5564 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5565 eventfd_signal(ev->eventfd, 1);
5566 return 0;
5567}
5568
c0ff4b85 5569static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5570{
7d74b06f
KH
5571 struct mem_cgroup *iter;
5572
c0ff4b85 5573 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5574 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5575}
5576
59b6f873 5577static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5578 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5579{
2c488db2
KS
5580 struct mem_cgroup_thresholds *thresholds;
5581 struct mem_cgroup_threshold_ary *new;
2e72b634 5582 u64 threshold, usage;
2c488db2 5583 int i, size, ret;
2e72b634
KS
5584
5585 ret = res_counter_memparse_write_strategy(args, &threshold);
5586 if (ret)
5587 return ret;
5588
5589 mutex_lock(&memcg->thresholds_lock);
2c488db2 5590
2e72b634 5591 if (type == _MEM)
2c488db2 5592 thresholds = &memcg->thresholds;
2e72b634 5593 else if (type == _MEMSWAP)
2c488db2 5594 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5595 else
5596 BUG();
5597
5598 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5599
5600 /* Check if a threshold crossed before adding a new one */
2c488db2 5601 if (thresholds->primary)
2e72b634
KS
5602 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5603
2c488db2 5604 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5605
5606 /* Allocate memory for new array of thresholds */
2c488db2 5607 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5608 GFP_KERNEL);
2c488db2 5609 if (!new) {
2e72b634
KS
5610 ret = -ENOMEM;
5611 goto unlock;
5612 }
2c488db2 5613 new->size = size;
2e72b634
KS
5614
5615 /* Copy thresholds (if any) to new array */
2c488db2
KS
5616 if (thresholds->primary) {
5617 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5618 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5619 }
5620
2e72b634 5621 /* Add new threshold */
2c488db2
KS
5622 new->entries[size - 1].eventfd = eventfd;
5623 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5624
5625 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5626 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5627 compare_thresholds, NULL);
5628
5629 /* Find current threshold */
2c488db2 5630 new->current_threshold = -1;
2e72b634 5631 for (i = 0; i < size; i++) {
748dad36 5632 if (new->entries[i].threshold <= usage) {
2e72b634 5633 /*
2c488db2
KS
5634 * new->current_threshold will not be used until
5635 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5636 * it here.
5637 */
2c488db2 5638 ++new->current_threshold;
748dad36
SZ
5639 } else
5640 break;
2e72b634
KS
5641 }
5642
2c488db2
KS
5643 /* Free old spare buffer and save old primary buffer as spare */
5644 kfree(thresholds->spare);
5645 thresholds->spare = thresholds->primary;
5646
5647 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5648
907860ed 5649 /* To be sure that nobody uses thresholds */
2e72b634
KS
5650 synchronize_rcu();
5651
2e72b634
KS
5652unlock:
5653 mutex_unlock(&memcg->thresholds_lock);
5654
5655 return ret;
5656}
5657
59b6f873 5658static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5659 struct eventfd_ctx *eventfd, const char *args)
5660{
59b6f873 5661 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5662}
5663
59b6f873 5664static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5665 struct eventfd_ctx *eventfd, const char *args)
5666{
59b6f873 5667 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5668}
5669
59b6f873 5670static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5671 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5672{
2c488db2
KS
5673 struct mem_cgroup_thresholds *thresholds;
5674 struct mem_cgroup_threshold_ary *new;
2e72b634 5675 u64 usage;
2c488db2 5676 int i, j, size;
2e72b634
KS
5677
5678 mutex_lock(&memcg->thresholds_lock);
5679 if (type == _MEM)
2c488db2 5680 thresholds = &memcg->thresholds;
2e72b634 5681 else if (type == _MEMSWAP)
2c488db2 5682 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5683 else
5684 BUG();
5685
371528ca
AV
5686 if (!thresholds->primary)
5687 goto unlock;
5688
2e72b634
KS
5689 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5690
5691 /* Check if a threshold crossed before removing */
5692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5693
5694 /* Calculate new number of threshold */
2c488db2
KS
5695 size = 0;
5696 for (i = 0; i < thresholds->primary->size; i++) {
5697 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5698 size++;
5699 }
5700
2c488db2 5701 new = thresholds->spare;
907860ed 5702
2e72b634
KS
5703 /* Set thresholds array to NULL if we don't have thresholds */
5704 if (!size) {
2c488db2
KS
5705 kfree(new);
5706 new = NULL;
907860ed 5707 goto swap_buffers;
2e72b634
KS
5708 }
5709
2c488db2 5710 new->size = size;
2e72b634
KS
5711
5712 /* Copy thresholds and find current threshold */
2c488db2
KS
5713 new->current_threshold = -1;
5714 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5715 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5716 continue;
5717
2c488db2 5718 new->entries[j] = thresholds->primary->entries[i];
748dad36 5719 if (new->entries[j].threshold <= usage) {
2e72b634 5720 /*
2c488db2 5721 * new->current_threshold will not be used
2e72b634
KS
5722 * until rcu_assign_pointer(), so it's safe to increment
5723 * it here.
5724 */
2c488db2 5725 ++new->current_threshold;
2e72b634
KS
5726 }
5727 j++;
5728 }
5729
907860ed 5730swap_buffers:
2c488db2
KS
5731 /* Swap primary and spare array */
5732 thresholds->spare = thresholds->primary;
8c757763
SZ
5733 /* If all events are unregistered, free the spare array */
5734 if (!new) {
5735 kfree(thresholds->spare);
5736 thresholds->spare = NULL;
5737 }
5738
2c488db2 5739 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5740
907860ed 5741 /* To be sure that nobody uses thresholds */
2e72b634 5742 synchronize_rcu();
371528ca 5743unlock:
2e72b634 5744 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5745}
c1e862c1 5746
59b6f873 5747static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5748 struct eventfd_ctx *eventfd)
5749{
59b6f873 5750 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5751}
5752
59b6f873 5753static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5754 struct eventfd_ctx *eventfd)
5755{
59b6f873 5756 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5757}
5758
59b6f873 5759static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5760 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5761{
9490ff27 5762 struct mem_cgroup_eventfd_list *event;
9490ff27 5763
9490ff27
KH
5764 event = kmalloc(sizeof(*event), GFP_KERNEL);
5765 if (!event)
5766 return -ENOMEM;
5767
1af8efe9 5768 spin_lock(&memcg_oom_lock);
9490ff27
KH
5769
5770 event->eventfd = eventfd;
5771 list_add(&event->list, &memcg->oom_notify);
5772
5773 /* already in OOM ? */
79dfdacc 5774 if (atomic_read(&memcg->under_oom))
9490ff27 5775 eventfd_signal(eventfd, 1);
1af8efe9 5776 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5777
5778 return 0;
5779}
5780
59b6f873 5781static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5782 struct eventfd_ctx *eventfd)
9490ff27 5783{
9490ff27 5784 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5785
1af8efe9 5786 spin_lock(&memcg_oom_lock);
9490ff27 5787
c0ff4b85 5788 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5789 if (ev->eventfd == eventfd) {
5790 list_del(&ev->list);
5791 kfree(ev);
5792 }
5793 }
5794
1af8efe9 5795 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5796}
5797
2da8ca82 5798static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5799{
2da8ca82 5800 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5801
791badbd
TH
5802 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5803 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5804 return 0;
5805}
5806
182446d0 5807static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5808 struct cftype *cft, u64 val)
5809{
182446d0 5810 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5811 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5812
5813 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5814 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5815 return -EINVAL;
5816
0999821b 5817 mutex_lock(&memcg_create_mutex);
3c11ecf4 5818 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5819 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5820 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5821 return -EINVAL;
5822 }
c0ff4b85 5823 memcg->oom_kill_disable = val;
4d845ebf 5824 if (!val)
c0ff4b85 5825 memcg_oom_recover(memcg);
0999821b 5826 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5827 return 0;
5828}
5829
c255a458 5830#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5831static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5832{
55007d84
GC
5833 int ret;
5834
2633d7a0 5835 memcg->kmemcg_id = -1;
55007d84
GC
5836 ret = memcg_propagate_kmem(memcg);
5837 if (ret)
5838 return ret;
2633d7a0 5839
1d62e436 5840 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5841}
e5671dfa 5842
10d5ebf4 5843static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5844{
1d62e436 5845 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5846}
5847
5848static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5849{
5850 if (!memcg_kmem_is_active(memcg))
5851 return;
5852
5853 /*
5854 * kmem charges can outlive the cgroup. In the case of slab
5855 * pages, for instance, a page contain objects from various
5856 * processes. As we prevent from taking a reference for every
5857 * such allocation we have to be careful when doing uncharge
5858 * (see memcg_uncharge_kmem) and here during offlining.
5859 *
5860 * The idea is that that only the _last_ uncharge which sees
5861 * the dead memcg will drop the last reference. An additional
5862 * reference is taken here before the group is marked dead
5863 * which is then paired with css_put during uncharge resp. here.
5864 *
5865 * Although this might sound strange as this path is called from
5866 * css_offline() when the referencemight have dropped down to 0
5867 * and shouldn't be incremented anymore (css_tryget would fail)
5868 * we do not have other options because of the kmem allocations
5869 * lifetime.
5870 */
5871 css_get(&memcg->css);
7de37682
GC
5872
5873 memcg_kmem_mark_dead(memcg);
5874
5875 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5876 return;
5877
7de37682 5878 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5879 css_put(&memcg->css);
d1a4c0b3 5880}
e5671dfa 5881#else
cbe128e3 5882static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5883{
5884 return 0;
5885}
d1a4c0b3 5886
10d5ebf4
LZ
5887static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5888{
5889}
5890
5891static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5892{
5893}
e5671dfa
GC
5894#endif
5895
3bc942f3
TH
5896/*
5897 * DO NOT USE IN NEW FILES.
5898 *
5899 * "cgroup.event_control" implementation.
5900 *
5901 * This is way over-engineered. It tries to support fully configurable
5902 * events for each user. Such level of flexibility is completely
5903 * unnecessary especially in the light of the planned unified hierarchy.
5904 *
5905 * Please deprecate this and replace with something simpler if at all
5906 * possible.
5907 */
5908
79bd9814
TH
5909/*
5910 * Unregister event and free resources.
5911 *
5912 * Gets called from workqueue.
5913 */
3bc942f3 5914static void memcg_event_remove(struct work_struct *work)
79bd9814 5915{
3bc942f3
TH
5916 struct mem_cgroup_event *event =
5917 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5918 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5919
5920 remove_wait_queue(event->wqh, &event->wait);
5921
59b6f873 5922 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5923
5924 /* Notify userspace the event is going away. */
5925 eventfd_signal(event->eventfd, 1);
5926
5927 eventfd_ctx_put(event->eventfd);
5928 kfree(event);
59b6f873 5929 css_put(&memcg->css);
79bd9814
TH
5930}
5931
5932/*
5933 * Gets called on POLLHUP on eventfd when user closes it.
5934 *
5935 * Called with wqh->lock held and interrupts disabled.
5936 */
3bc942f3
TH
5937static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5938 int sync, void *key)
79bd9814 5939{
3bc942f3
TH
5940 struct mem_cgroup_event *event =
5941 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5942 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5943 unsigned long flags = (unsigned long)key;
5944
5945 if (flags & POLLHUP) {
5946 /*
5947 * If the event has been detached at cgroup removal, we
5948 * can simply return knowing the other side will cleanup
5949 * for us.
5950 *
5951 * We can't race against event freeing since the other
5952 * side will require wqh->lock via remove_wait_queue(),
5953 * which we hold.
5954 */
fba94807 5955 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5956 if (!list_empty(&event->list)) {
5957 list_del_init(&event->list);
5958 /*
5959 * We are in atomic context, but cgroup_event_remove()
5960 * may sleep, so we have to call it in workqueue.
5961 */
5962 schedule_work(&event->remove);
5963 }
fba94807 5964 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5965 }
5966
5967 return 0;
5968}
5969
3bc942f3 5970static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5971 wait_queue_head_t *wqh, poll_table *pt)
5972{
3bc942f3
TH
5973 struct mem_cgroup_event *event =
5974 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5975
5976 event->wqh = wqh;
5977 add_wait_queue(wqh, &event->wait);
5978}
5979
5980/*
3bc942f3
TH
5981 * DO NOT USE IN NEW FILES.
5982 *
79bd9814
TH
5983 * Parse input and register new cgroup event handler.
5984 *
5985 * Input must be in format '<event_fd> <control_fd> <args>'.
5986 * Interpretation of args is defined by control file implementation.
5987 */
3bc942f3 5988static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5989 struct cftype *cft, char *buffer)
79bd9814 5990{
fba94807 5991 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5992 struct mem_cgroup_event *event;
79bd9814
TH
5993 struct cgroup_subsys_state *cfile_css;
5994 unsigned int efd, cfd;
5995 struct fd efile;
5996 struct fd cfile;
fba94807 5997 const char *name;
79bd9814
TH
5998 char *endp;
5999 int ret;
6000
6001 efd = simple_strtoul(buffer, &endp, 10);
6002 if (*endp != ' ')
6003 return -EINVAL;
6004 buffer = endp + 1;
6005
6006 cfd = simple_strtoul(buffer, &endp, 10);
6007 if ((*endp != ' ') && (*endp != '\0'))
6008 return -EINVAL;
6009 buffer = endp + 1;
6010
6011 event = kzalloc(sizeof(*event), GFP_KERNEL);
6012 if (!event)
6013 return -ENOMEM;
6014
59b6f873 6015 event->memcg = memcg;
79bd9814 6016 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6017 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6018 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6019 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6020
6021 efile = fdget(efd);
6022 if (!efile.file) {
6023 ret = -EBADF;
6024 goto out_kfree;
6025 }
6026
6027 event->eventfd = eventfd_ctx_fileget(efile.file);
6028 if (IS_ERR(event->eventfd)) {
6029 ret = PTR_ERR(event->eventfd);
6030 goto out_put_efile;
6031 }
6032
6033 cfile = fdget(cfd);
6034 if (!cfile.file) {
6035 ret = -EBADF;
6036 goto out_put_eventfd;
6037 }
6038
6039 /* the process need read permission on control file */
6040 /* AV: shouldn't we check that it's been opened for read instead? */
6041 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6042 if (ret < 0)
6043 goto out_put_cfile;
6044
fba94807
TH
6045 /*
6046 * Determine the event callbacks and set them in @event. This used
6047 * to be done via struct cftype but cgroup core no longer knows
6048 * about these events. The following is crude but the whole thing
6049 * is for compatibility anyway.
3bc942f3
TH
6050 *
6051 * DO NOT ADD NEW FILES.
fba94807
TH
6052 */
6053 name = cfile.file->f_dentry->d_name.name;
6054
6055 if (!strcmp(name, "memory.usage_in_bytes")) {
6056 event->register_event = mem_cgroup_usage_register_event;
6057 event->unregister_event = mem_cgroup_usage_unregister_event;
6058 } else if (!strcmp(name, "memory.oom_control")) {
6059 event->register_event = mem_cgroup_oom_register_event;
6060 event->unregister_event = mem_cgroup_oom_unregister_event;
6061 } else if (!strcmp(name, "memory.pressure_level")) {
6062 event->register_event = vmpressure_register_event;
6063 event->unregister_event = vmpressure_unregister_event;
6064 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6065 event->register_event = memsw_cgroup_usage_register_event;
6066 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6067 } else {
6068 ret = -EINVAL;
6069 goto out_put_cfile;
6070 }
6071
79bd9814 6072 /*
b5557c4c
TH
6073 * Verify @cfile should belong to @css. Also, remaining events are
6074 * automatically removed on cgroup destruction but the removal is
6075 * asynchronous, so take an extra ref on @css.
79bd9814 6076 */
5a17f543
TH
6077 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6078 &memory_cgrp_subsys);
79bd9814 6079 ret = -EINVAL;
5a17f543 6080 if (IS_ERR(cfile_css))
79bd9814 6081 goto out_put_cfile;
5a17f543
TH
6082 if (cfile_css != css) {
6083 css_put(cfile_css);
79bd9814 6084 goto out_put_cfile;
5a17f543 6085 }
79bd9814 6086
59b6f873 6087 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6088 if (ret)
6089 goto out_put_css;
6090
6091 efile.file->f_op->poll(efile.file, &event->pt);
6092
fba94807
TH
6093 spin_lock(&memcg->event_list_lock);
6094 list_add(&event->list, &memcg->event_list);
6095 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6096
6097 fdput(cfile);
6098 fdput(efile);
6099
6100 return 0;
6101
6102out_put_css:
b5557c4c 6103 css_put(css);
79bd9814
TH
6104out_put_cfile:
6105 fdput(cfile);
6106out_put_eventfd:
6107 eventfd_ctx_put(event->eventfd);
6108out_put_efile:
6109 fdput(efile);
6110out_kfree:
6111 kfree(event);
6112
6113 return ret;
6114}
6115
8cdea7c0
BS
6116static struct cftype mem_cgroup_files[] = {
6117 {
0eea1030 6118 .name = "usage_in_bytes",
8c7c6e34 6119 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6120 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6121 },
c84872e1
PE
6122 {
6123 .name = "max_usage_in_bytes",
8c7c6e34 6124 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6125 .trigger = mem_cgroup_reset,
791badbd 6126 .read_u64 = mem_cgroup_read_u64,
c84872e1 6127 },
8cdea7c0 6128 {
0eea1030 6129 .name = "limit_in_bytes",
8c7c6e34 6130 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6131 .write_string = mem_cgroup_write,
791badbd 6132 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6133 },
296c81d8
BS
6134 {
6135 .name = "soft_limit_in_bytes",
6136 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6137 .write_string = mem_cgroup_write,
791badbd 6138 .read_u64 = mem_cgroup_read_u64,
296c81d8 6139 },
8cdea7c0
BS
6140 {
6141 .name = "failcnt",
8c7c6e34 6142 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6143 .trigger = mem_cgroup_reset,
791badbd 6144 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6145 },
d2ceb9b7
KH
6146 {
6147 .name = "stat",
2da8ca82 6148 .seq_show = memcg_stat_show,
d2ceb9b7 6149 },
c1e862c1
KH
6150 {
6151 .name = "force_empty",
6152 .trigger = mem_cgroup_force_empty_write,
6153 },
18f59ea7
BS
6154 {
6155 .name = "use_hierarchy",
f00baae7 6156 .flags = CFTYPE_INSANE,
18f59ea7
BS
6157 .write_u64 = mem_cgroup_hierarchy_write,
6158 .read_u64 = mem_cgroup_hierarchy_read,
6159 },
79bd9814 6160 {
3bc942f3
TH
6161 .name = "cgroup.event_control", /* XXX: for compat */
6162 .write_string = memcg_write_event_control,
79bd9814
TH
6163 .flags = CFTYPE_NO_PREFIX,
6164 .mode = S_IWUGO,
6165 },
a7885eb8
KM
6166 {
6167 .name = "swappiness",
6168 .read_u64 = mem_cgroup_swappiness_read,
6169 .write_u64 = mem_cgroup_swappiness_write,
6170 },
7dc74be0
DN
6171 {
6172 .name = "move_charge_at_immigrate",
6173 .read_u64 = mem_cgroup_move_charge_read,
6174 .write_u64 = mem_cgroup_move_charge_write,
6175 },
9490ff27
KH
6176 {
6177 .name = "oom_control",
2da8ca82 6178 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6179 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6180 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6181 },
70ddf637
AV
6182 {
6183 .name = "pressure_level",
70ddf637 6184 },
406eb0c9
YH
6185#ifdef CONFIG_NUMA
6186 {
6187 .name = "numa_stat",
2da8ca82 6188 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6189 },
6190#endif
510fc4e1
GC
6191#ifdef CONFIG_MEMCG_KMEM
6192 {
6193 .name = "kmem.limit_in_bytes",
6194 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6195 .write_string = mem_cgroup_write,
791badbd 6196 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6197 },
6198 {
6199 .name = "kmem.usage_in_bytes",
6200 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6201 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6202 },
6203 {
6204 .name = "kmem.failcnt",
6205 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6206 .trigger = mem_cgroup_reset,
791badbd 6207 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6208 },
6209 {
6210 .name = "kmem.max_usage_in_bytes",
6211 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6212 .trigger = mem_cgroup_reset,
791badbd 6213 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6214 },
749c5415
GC
6215#ifdef CONFIG_SLABINFO
6216 {
6217 .name = "kmem.slabinfo",
2da8ca82 6218 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6219 },
6220#endif
8c7c6e34 6221#endif
6bc10349 6222 { }, /* terminate */
af36f906 6223};
8c7c6e34 6224
2d11085e
MH
6225#ifdef CONFIG_MEMCG_SWAP
6226static struct cftype memsw_cgroup_files[] = {
6227 {
6228 .name = "memsw.usage_in_bytes",
6229 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6230 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6231 },
6232 {
6233 .name = "memsw.max_usage_in_bytes",
6234 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6235 .trigger = mem_cgroup_reset,
791badbd 6236 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6237 },
6238 {
6239 .name = "memsw.limit_in_bytes",
6240 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6241 .write_string = mem_cgroup_write,
791badbd 6242 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6243 },
6244 {
6245 .name = "memsw.failcnt",
6246 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6247 .trigger = mem_cgroup_reset,
791badbd 6248 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6249 },
6250 { }, /* terminate */
6251};
6252#endif
c0ff4b85 6253static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6254{
6255 struct mem_cgroup_per_node *pn;
1ecaab2b 6256 struct mem_cgroup_per_zone *mz;
41e3355d 6257 int zone, tmp = node;
1ecaab2b
KH
6258 /*
6259 * This routine is called against possible nodes.
6260 * But it's BUG to call kmalloc() against offline node.
6261 *
6262 * TODO: this routine can waste much memory for nodes which will
6263 * never be onlined. It's better to use memory hotplug callback
6264 * function.
6265 */
41e3355d
KH
6266 if (!node_state(node, N_NORMAL_MEMORY))
6267 tmp = -1;
17295c88 6268 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6269 if (!pn)
6270 return 1;
1ecaab2b 6271
1ecaab2b
KH
6272 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6273 mz = &pn->zoneinfo[zone];
bea8c150 6274 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6275 mz->usage_in_excess = 0;
6276 mz->on_tree = false;
d79154bb 6277 mz->memcg = memcg;
1ecaab2b 6278 }
54f72fe0 6279 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6280 return 0;
6281}
6282
c0ff4b85 6283static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6284{
54f72fe0 6285 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6286}
6287
33327948
KH
6288static struct mem_cgroup *mem_cgroup_alloc(void)
6289{
d79154bb 6290 struct mem_cgroup *memcg;
8ff69e2c 6291 size_t size;
33327948 6292
8ff69e2c
VD
6293 size = sizeof(struct mem_cgroup);
6294 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6295
8ff69e2c 6296 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6297 if (!memcg)
e7bbcdf3
DC
6298 return NULL;
6299
d79154bb
HD
6300 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6301 if (!memcg->stat)
d2e61b8d 6302 goto out_free;
d79154bb
HD
6303 spin_lock_init(&memcg->pcp_counter_lock);
6304 return memcg;
d2e61b8d
DC
6305
6306out_free:
8ff69e2c 6307 kfree(memcg);
d2e61b8d 6308 return NULL;
33327948
KH
6309}
6310
59927fb9 6311/*
c8b2a36f
GC
6312 * At destroying mem_cgroup, references from swap_cgroup can remain.
6313 * (scanning all at force_empty is too costly...)
6314 *
6315 * Instead of clearing all references at force_empty, we remember
6316 * the number of reference from swap_cgroup and free mem_cgroup when
6317 * it goes down to 0.
6318 *
6319 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6320 */
c8b2a36f
GC
6321
6322static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6323{
c8b2a36f 6324 int node;
59927fb9 6325
bb4cc1a8 6326 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6327
6328 for_each_node(node)
6329 free_mem_cgroup_per_zone_info(memcg, node);
6330
6331 free_percpu(memcg->stat);
6332
3f134619
GC
6333 /*
6334 * We need to make sure that (at least for now), the jump label
6335 * destruction code runs outside of the cgroup lock. This is because
6336 * get_online_cpus(), which is called from the static_branch update,
6337 * can't be called inside the cgroup_lock. cpusets are the ones
6338 * enforcing this dependency, so if they ever change, we might as well.
6339 *
6340 * schedule_work() will guarantee this happens. Be careful if you need
6341 * to move this code around, and make sure it is outside
6342 * the cgroup_lock.
6343 */
a8964b9b 6344 disarm_static_keys(memcg);
8ff69e2c 6345 kfree(memcg);
59927fb9 6346}
3afe36b1 6347
7bcc1bb1
DN
6348/*
6349 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6350 */
e1aab161 6351struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6352{
c0ff4b85 6353 if (!memcg->res.parent)
7bcc1bb1 6354 return NULL;
c0ff4b85 6355 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6356}
e1aab161 6357EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6358
bb4cc1a8
AM
6359static void __init mem_cgroup_soft_limit_tree_init(void)
6360{
6361 struct mem_cgroup_tree_per_node *rtpn;
6362 struct mem_cgroup_tree_per_zone *rtpz;
6363 int tmp, node, zone;
6364
6365 for_each_node(node) {
6366 tmp = node;
6367 if (!node_state(node, N_NORMAL_MEMORY))
6368 tmp = -1;
6369 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6370 BUG_ON(!rtpn);
6371
6372 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6373
6374 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6375 rtpz = &rtpn->rb_tree_per_zone[zone];
6376 rtpz->rb_root = RB_ROOT;
6377 spin_lock_init(&rtpz->lock);
6378 }
6379 }
6380}
6381
0eb253e2 6382static struct cgroup_subsys_state * __ref
eb95419b 6383mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6384{
d142e3e6 6385 struct mem_cgroup *memcg;
04046e1a 6386 long error = -ENOMEM;
6d12e2d8 6387 int node;
8cdea7c0 6388
c0ff4b85
R
6389 memcg = mem_cgroup_alloc();
6390 if (!memcg)
04046e1a 6391 return ERR_PTR(error);
78fb7466 6392
3ed28fa1 6393 for_each_node(node)
c0ff4b85 6394 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6395 goto free_out;
f64c3f54 6396
c077719b 6397 /* root ? */
eb95419b 6398 if (parent_css == NULL) {
a41c58a6 6399 root_mem_cgroup = memcg;
d142e3e6
GC
6400 res_counter_init(&memcg->res, NULL);
6401 res_counter_init(&memcg->memsw, NULL);
6402 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6403 }
28dbc4b6 6404
d142e3e6
GC
6405 memcg->last_scanned_node = MAX_NUMNODES;
6406 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6407 memcg->move_charge_at_immigrate = 0;
6408 mutex_init(&memcg->thresholds_lock);
6409 spin_lock_init(&memcg->move_lock);
70ddf637 6410 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6411 INIT_LIST_HEAD(&memcg->event_list);
6412 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6413
6414 return &memcg->css;
6415
6416free_out:
6417 __mem_cgroup_free(memcg);
6418 return ERR_PTR(error);
6419}
6420
6421static int
eb95419b 6422mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6423{
eb95419b
TH
6424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6425 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6426
4219b2da
LZ
6427 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6428 return -ENOSPC;
6429
63876986 6430 if (!parent)
d142e3e6
GC
6431 return 0;
6432
0999821b 6433 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6434
6435 memcg->use_hierarchy = parent->use_hierarchy;
6436 memcg->oom_kill_disable = parent->oom_kill_disable;
6437 memcg->swappiness = mem_cgroup_swappiness(parent);
6438
6439 if (parent->use_hierarchy) {
c0ff4b85
R
6440 res_counter_init(&memcg->res, &parent->res);
6441 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6442 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6443
7bcc1bb1 6444 /*
8d76a979
LZ
6445 * No need to take a reference to the parent because cgroup
6446 * core guarantees its existence.
7bcc1bb1 6447 */
18f59ea7 6448 } else {
c0ff4b85
R
6449 res_counter_init(&memcg->res, NULL);
6450 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6451 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6452 /*
6453 * Deeper hierachy with use_hierarchy == false doesn't make
6454 * much sense so let cgroup subsystem know about this
6455 * unfortunate state in our controller.
6456 */
d142e3e6 6457 if (parent != root_mem_cgroup)
073219e9 6458 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6459 }
0999821b 6460 mutex_unlock(&memcg_create_mutex);
d6441637 6461
073219e9 6462 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6463}
6464
5f578161
MH
6465/*
6466 * Announce all parents that a group from their hierarchy is gone.
6467 */
6468static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6469{
6470 struct mem_cgroup *parent = memcg;
6471
6472 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6473 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6474
6475 /*
6476 * if the root memcg is not hierarchical we have to check it
6477 * explicitely.
6478 */
6479 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6480 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6481}
6482
eb95419b 6483static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6484{
eb95419b 6485 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6486 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6487 struct cgroup_subsys_state *iter;
79bd9814
TH
6488
6489 /*
6490 * Unregister events and notify userspace.
6491 * Notify userspace about cgroup removing only after rmdir of cgroup
6492 * directory to avoid race between userspace and kernelspace.
6493 */
fba94807
TH
6494 spin_lock(&memcg->event_list_lock);
6495 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6496 list_del_init(&event->list);
6497 schedule_work(&event->remove);
6498 }
fba94807 6499 spin_unlock(&memcg->event_list_lock);
ec64f515 6500
10d5ebf4
LZ
6501 kmem_cgroup_css_offline(memcg);
6502
5f578161 6503 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6504
6505 /*
6506 * This requires that offlining is serialized. Right now that is
6507 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6508 */
6509 css_for_each_descendant_post(iter, css)
6510 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6511
1f458cbf 6512 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6513 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6514}
6515
eb95419b 6516static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6517{
eb95419b 6518 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6519 /*
6520 * XXX: css_offline() would be where we should reparent all
6521 * memory to prepare the cgroup for destruction. However,
6522 * memcg does not do css_tryget() and res_counter charging
6523 * under the same RCU lock region, which means that charging
6524 * could race with offlining. Offlining only happens to
6525 * cgroups with no tasks in them but charges can show up
6526 * without any tasks from the swapin path when the target
6527 * memcg is looked up from the swapout record and not from the
6528 * current task as it usually is. A race like this can leak
6529 * charges and put pages with stale cgroup pointers into
6530 * circulation:
6531 *
6532 * #0 #1
6533 * lookup_swap_cgroup_id()
6534 * rcu_read_lock()
6535 * mem_cgroup_lookup()
6536 * css_tryget()
6537 * rcu_read_unlock()
6538 * disable css_tryget()
6539 * call_rcu()
6540 * offline_css()
6541 * reparent_charges()
6542 * res_counter_charge()
6543 * css_put()
6544 * css_free()
6545 * pc->mem_cgroup = dead memcg
6546 * add page to lru
6547 *
6548 * The bulk of the charges are still moved in offline_css() to
6549 * avoid pinning a lot of pages in case a long-term reference
6550 * like a swapout record is deferring the css_free() to long
6551 * after offlining. But this makes sure we catch any charges
6552 * made after offlining:
6553 */
6554 mem_cgroup_reparent_charges(memcg);
c268e994 6555
10d5ebf4 6556 memcg_destroy_kmem(memcg);
465939a1 6557 __mem_cgroup_free(memcg);
8cdea7c0
BS
6558}
6559
02491447 6560#ifdef CONFIG_MMU
7dc74be0 6561/* Handlers for move charge at task migration. */
854ffa8d
DN
6562#define PRECHARGE_COUNT_AT_ONCE 256
6563static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6564{
854ffa8d
DN
6565 int ret = 0;
6566 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6567 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6568
c0ff4b85 6569 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6570 mc.precharge += count;
6571 /* we don't need css_get for root */
6572 return ret;
6573 }
6574 /* try to charge at once */
6575 if (count > 1) {
6576 struct res_counter *dummy;
6577 /*
c0ff4b85 6578 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6579 * by cgroup_lock_live_cgroup() that it is not removed and we
6580 * are still under the same cgroup_mutex. So we can postpone
6581 * css_get().
6582 */
c0ff4b85 6583 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6584 goto one_by_one;
c0ff4b85 6585 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6586 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6587 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6588 goto one_by_one;
6589 }
6590 mc.precharge += count;
854ffa8d
DN
6591 return ret;
6592 }
6593one_by_one:
6594 /* fall back to one by one charge */
6595 while (count--) {
6596 if (signal_pending(current)) {
6597 ret = -EINTR;
6598 break;
6599 }
6600 if (!batch_count--) {
6601 batch_count = PRECHARGE_COUNT_AT_ONCE;
6602 cond_resched();
6603 }
c0ff4b85
R
6604 ret = __mem_cgroup_try_charge(NULL,
6605 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6606 if (ret)
854ffa8d 6607 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6608 return ret;
854ffa8d
DN
6609 mc.precharge++;
6610 }
4ffef5fe
DN
6611 return ret;
6612}
6613
6614/**
8d32ff84 6615 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6616 * @vma: the vma the pte to be checked belongs
6617 * @addr: the address corresponding to the pte to be checked
6618 * @ptent: the pte to be checked
02491447 6619 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6620 *
6621 * Returns
6622 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6623 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6624 * move charge. if @target is not NULL, the page is stored in target->page
6625 * with extra refcnt got(Callers should handle it).
02491447
DN
6626 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6627 * target for charge migration. if @target is not NULL, the entry is stored
6628 * in target->ent.
4ffef5fe
DN
6629 *
6630 * Called with pte lock held.
6631 */
4ffef5fe
DN
6632union mc_target {
6633 struct page *page;
02491447 6634 swp_entry_t ent;
4ffef5fe
DN
6635};
6636
4ffef5fe 6637enum mc_target_type {
8d32ff84 6638 MC_TARGET_NONE = 0,
4ffef5fe 6639 MC_TARGET_PAGE,
02491447 6640 MC_TARGET_SWAP,
4ffef5fe
DN
6641};
6642
90254a65
DN
6643static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6644 unsigned long addr, pte_t ptent)
4ffef5fe 6645{
90254a65 6646 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6647
90254a65
DN
6648 if (!page || !page_mapped(page))
6649 return NULL;
6650 if (PageAnon(page)) {
6651 /* we don't move shared anon */
4b91355e 6652 if (!move_anon())
90254a65 6653 return NULL;
87946a72
DN
6654 } else if (!move_file())
6655 /* we ignore mapcount for file pages */
90254a65
DN
6656 return NULL;
6657 if (!get_page_unless_zero(page))
6658 return NULL;
6659
6660 return page;
6661}
6662
4b91355e 6663#ifdef CONFIG_SWAP
90254a65
DN
6664static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6665 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6666{
90254a65
DN
6667 struct page *page = NULL;
6668 swp_entry_t ent = pte_to_swp_entry(ptent);
6669
6670 if (!move_anon() || non_swap_entry(ent))
6671 return NULL;
4b91355e
KH
6672 /*
6673 * Because lookup_swap_cache() updates some statistics counter,
6674 * we call find_get_page() with swapper_space directly.
6675 */
33806f06 6676 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6677 if (do_swap_account)
6678 entry->val = ent.val;
6679
6680 return page;
6681}
4b91355e
KH
6682#else
6683static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6684 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6685{
6686 return NULL;
6687}
6688#endif
90254a65 6689
87946a72
DN
6690static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6691 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6692{
6693 struct page *page = NULL;
87946a72
DN
6694 struct address_space *mapping;
6695 pgoff_t pgoff;
6696
6697 if (!vma->vm_file) /* anonymous vma */
6698 return NULL;
6699 if (!move_file())
6700 return NULL;
6701
87946a72
DN
6702 mapping = vma->vm_file->f_mapping;
6703 if (pte_none(ptent))
6704 pgoff = linear_page_index(vma, addr);
6705 else /* pte_file(ptent) is true */
6706 pgoff = pte_to_pgoff(ptent);
6707
6708 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6709 page = find_get_page(mapping, pgoff);
6710
6711#ifdef CONFIG_SWAP
6712 /* shmem/tmpfs may report page out on swap: account for that too. */
6713 if (radix_tree_exceptional_entry(page)) {
6714 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6715 if (do_swap_account)
aa3b1895 6716 *entry = swap;
33806f06 6717 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6718 }
aa3b1895 6719#endif
87946a72
DN
6720 return page;
6721}
6722
8d32ff84 6723static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6724 unsigned long addr, pte_t ptent, union mc_target *target)
6725{
6726 struct page *page = NULL;
6727 struct page_cgroup *pc;
8d32ff84 6728 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6729 swp_entry_t ent = { .val = 0 };
6730
6731 if (pte_present(ptent))
6732 page = mc_handle_present_pte(vma, addr, ptent);
6733 else if (is_swap_pte(ptent))
6734 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6735 else if (pte_none(ptent) || pte_file(ptent))
6736 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6737
6738 if (!page && !ent.val)
8d32ff84 6739 return ret;
02491447
DN
6740 if (page) {
6741 pc = lookup_page_cgroup(page);
6742 /*
6743 * Do only loose check w/o page_cgroup lock.
6744 * mem_cgroup_move_account() checks the pc is valid or not under
6745 * the lock.
6746 */
6747 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6748 ret = MC_TARGET_PAGE;
6749 if (target)
6750 target->page = page;
6751 }
6752 if (!ret || !target)
6753 put_page(page);
6754 }
90254a65
DN
6755 /* There is a swap entry and a page doesn't exist or isn't charged */
6756 if (ent.val && !ret &&
34c00c31 6757 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6758 ret = MC_TARGET_SWAP;
6759 if (target)
6760 target->ent = ent;
4ffef5fe 6761 }
4ffef5fe
DN
6762 return ret;
6763}
6764
12724850
NH
6765#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6766/*
6767 * We don't consider swapping or file mapped pages because THP does not
6768 * support them for now.
6769 * Caller should make sure that pmd_trans_huge(pmd) is true.
6770 */
6771static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6772 unsigned long addr, pmd_t pmd, union mc_target *target)
6773{
6774 struct page *page = NULL;
6775 struct page_cgroup *pc;
6776 enum mc_target_type ret = MC_TARGET_NONE;
6777
6778 page = pmd_page(pmd);
309381fe 6779 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6780 if (!move_anon())
6781 return ret;
6782 pc = lookup_page_cgroup(page);
6783 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6784 ret = MC_TARGET_PAGE;
6785 if (target) {
6786 get_page(page);
6787 target->page = page;
6788 }
6789 }
6790 return ret;
6791}
6792#else
6793static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6794 unsigned long addr, pmd_t pmd, union mc_target *target)
6795{
6796 return MC_TARGET_NONE;
6797}
6798#endif
6799
4ffef5fe
DN
6800static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6801 unsigned long addr, unsigned long end,
6802 struct mm_walk *walk)
6803{
6804 struct vm_area_struct *vma = walk->private;
6805 pte_t *pte;
6806 spinlock_t *ptl;
6807
bf929152 6808 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6809 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6810 mc.precharge += HPAGE_PMD_NR;
bf929152 6811 spin_unlock(ptl);
1a5a9906 6812 return 0;
12724850 6813 }
03319327 6814
45f83cef
AA
6815 if (pmd_trans_unstable(pmd))
6816 return 0;
4ffef5fe
DN
6817 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6818 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6819 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6820 mc.precharge++; /* increment precharge temporarily */
6821 pte_unmap_unlock(pte - 1, ptl);
6822 cond_resched();
6823
7dc74be0
DN
6824 return 0;
6825}
6826
4ffef5fe
DN
6827static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6828{
6829 unsigned long precharge;
6830 struct vm_area_struct *vma;
6831
dfe076b0 6832 down_read(&mm->mmap_sem);
4ffef5fe
DN
6833 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6834 struct mm_walk mem_cgroup_count_precharge_walk = {
6835 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6836 .mm = mm,
6837 .private = vma,
6838 };
6839 if (is_vm_hugetlb_page(vma))
6840 continue;
4ffef5fe
DN
6841 walk_page_range(vma->vm_start, vma->vm_end,
6842 &mem_cgroup_count_precharge_walk);
6843 }
dfe076b0 6844 up_read(&mm->mmap_sem);
4ffef5fe
DN
6845
6846 precharge = mc.precharge;
6847 mc.precharge = 0;
6848
6849 return precharge;
6850}
6851
4ffef5fe
DN
6852static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6853{
dfe076b0
DN
6854 unsigned long precharge = mem_cgroup_count_precharge(mm);
6855
6856 VM_BUG_ON(mc.moving_task);
6857 mc.moving_task = current;
6858 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6859}
6860
dfe076b0
DN
6861/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6862static void __mem_cgroup_clear_mc(void)
4ffef5fe 6863{
2bd9bb20
KH
6864 struct mem_cgroup *from = mc.from;
6865 struct mem_cgroup *to = mc.to;
4050377b 6866 int i;
2bd9bb20 6867
4ffef5fe 6868 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6869 if (mc.precharge) {
6870 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6871 mc.precharge = 0;
6872 }
6873 /*
6874 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6875 * we must uncharge here.
6876 */
6877 if (mc.moved_charge) {
6878 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6879 mc.moved_charge = 0;
4ffef5fe 6880 }
483c30b5
DN
6881 /* we must fixup refcnts and charges */
6882 if (mc.moved_swap) {
483c30b5
DN
6883 /* uncharge swap account from the old cgroup */
6884 if (!mem_cgroup_is_root(mc.from))
6885 res_counter_uncharge(&mc.from->memsw,
6886 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6887
6888 for (i = 0; i < mc.moved_swap; i++)
6889 css_put(&mc.from->css);
483c30b5
DN
6890
6891 if (!mem_cgroup_is_root(mc.to)) {
6892 /*
6893 * we charged both to->res and to->memsw, so we should
6894 * uncharge to->res.
6895 */
6896 res_counter_uncharge(&mc.to->res,
6897 PAGE_SIZE * mc.moved_swap);
483c30b5 6898 }
4050377b 6899 /* we've already done css_get(mc.to) */
483c30b5
DN
6900 mc.moved_swap = 0;
6901 }
dfe076b0
DN
6902 memcg_oom_recover(from);
6903 memcg_oom_recover(to);
6904 wake_up_all(&mc.waitq);
6905}
6906
6907static void mem_cgroup_clear_mc(void)
6908{
6909 struct mem_cgroup *from = mc.from;
6910
6911 /*
6912 * we must clear moving_task before waking up waiters at the end of
6913 * task migration.
6914 */
6915 mc.moving_task = NULL;
6916 __mem_cgroup_clear_mc();
2bd9bb20 6917 spin_lock(&mc.lock);
4ffef5fe
DN
6918 mc.from = NULL;
6919 mc.to = NULL;
2bd9bb20 6920 spin_unlock(&mc.lock);
32047e2a 6921 mem_cgroup_end_move(from);
4ffef5fe
DN
6922}
6923
eb95419b 6924static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6925 struct cgroup_taskset *tset)
7dc74be0 6926{
2f7ee569 6927 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6928 int ret = 0;
eb95419b 6929 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6930 unsigned long move_charge_at_immigrate;
7dc74be0 6931
ee5e8472
GC
6932 /*
6933 * We are now commited to this value whatever it is. Changes in this
6934 * tunable will only affect upcoming migrations, not the current one.
6935 * So we need to save it, and keep it going.
6936 */
6937 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6938 if (move_charge_at_immigrate) {
7dc74be0
DN
6939 struct mm_struct *mm;
6940 struct mem_cgroup *from = mem_cgroup_from_task(p);
6941
c0ff4b85 6942 VM_BUG_ON(from == memcg);
7dc74be0
DN
6943
6944 mm = get_task_mm(p);
6945 if (!mm)
6946 return 0;
7dc74be0 6947 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6948 if (mm->owner == p) {
6949 VM_BUG_ON(mc.from);
6950 VM_BUG_ON(mc.to);
6951 VM_BUG_ON(mc.precharge);
854ffa8d 6952 VM_BUG_ON(mc.moved_charge);
483c30b5 6953 VM_BUG_ON(mc.moved_swap);
32047e2a 6954 mem_cgroup_start_move(from);
2bd9bb20 6955 spin_lock(&mc.lock);
4ffef5fe 6956 mc.from = from;
c0ff4b85 6957 mc.to = memcg;
ee5e8472 6958 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6959 spin_unlock(&mc.lock);
dfe076b0 6960 /* We set mc.moving_task later */
4ffef5fe
DN
6961
6962 ret = mem_cgroup_precharge_mc(mm);
6963 if (ret)
6964 mem_cgroup_clear_mc();
dfe076b0
DN
6965 }
6966 mmput(mm);
7dc74be0
DN
6967 }
6968 return ret;
6969}
6970
eb95419b 6971static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6972 struct cgroup_taskset *tset)
7dc74be0 6973{
4ffef5fe 6974 mem_cgroup_clear_mc();
7dc74be0
DN
6975}
6976
4ffef5fe
DN
6977static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6978 unsigned long addr, unsigned long end,
6979 struct mm_walk *walk)
7dc74be0 6980{
4ffef5fe
DN
6981 int ret = 0;
6982 struct vm_area_struct *vma = walk->private;
6983 pte_t *pte;
6984 spinlock_t *ptl;
12724850
NH
6985 enum mc_target_type target_type;
6986 union mc_target target;
6987 struct page *page;
6988 struct page_cgroup *pc;
4ffef5fe 6989
12724850
NH
6990 /*
6991 * We don't take compound_lock() here but no race with splitting thp
6992 * happens because:
6993 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6994 * under splitting, which means there's no concurrent thp split,
6995 * - if another thread runs into split_huge_page() just after we
6996 * entered this if-block, the thread must wait for page table lock
6997 * to be unlocked in __split_huge_page_splitting(), where the main
6998 * part of thp split is not executed yet.
6999 */
bf929152 7000 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7001 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7002 spin_unlock(ptl);
12724850
NH
7003 return 0;
7004 }
7005 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7006 if (target_type == MC_TARGET_PAGE) {
7007 page = target.page;
7008 if (!isolate_lru_page(page)) {
7009 pc = lookup_page_cgroup(page);
7010 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7011 pc, mc.from, mc.to)) {
12724850
NH
7012 mc.precharge -= HPAGE_PMD_NR;
7013 mc.moved_charge += HPAGE_PMD_NR;
7014 }
7015 putback_lru_page(page);
7016 }
7017 put_page(page);
7018 }
bf929152 7019 spin_unlock(ptl);
1a5a9906 7020 return 0;
12724850
NH
7021 }
7022
45f83cef
AA
7023 if (pmd_trans_unstable(pmd))
7024 return 0;
4ffef5fe
DN
7025retry:
7026 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7027 for (; addr != end; addr += PAGE_SIZE) {
7028 pte_t ptent = *(pte++);
02491447 7029 swp_entry_t ent;
4ffef5fe
DN
7030
7031 if (!mc.precharge)
7032 break;
7033
8d32ff84 7034 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7035 case MC_TARGET_PAGE:
7036 page = target.page;
7037 if (isolate_lru_page(page))
7038 goto put;
7039 pc = lookup_page_cgroup(page);
7ec99d62 7040 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7041 mc.from, mc.to)) {
4ffef5fe 7042 mc.precharge--;
854ffa8d
DN
7043 /* we uncharge from mc.from later. */
7044 mc.moved_charge++;
4ffef5fe
DN
7045 }
7046 putback_lru_page(page);
8d32ff84 7047put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7048 put_page(page);
7049 break;
02491447
DN
7050 case MC_TARGET_SWAP:
7051 ent = target.ent;
e91cbb42 7052 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7053 mc.precharge--;
483c30b5
DN
7054 /* we fixup refcnts and charges later. */
7055 mc.moved_swap++;
7056 }
02491447 7057 break;
4ffef5fe
DN
7058 default:
7059 break;
7060 }
7061 }
7062 pte_unmap_unlock(pte - 1, ptl);
7063 cond_resched();
7064
7065 if (addr != end) {
7066 /*
7067 * We have consumed all precharges we got in can_attach().
7068 * We try charge one by one, but don't do any additional
7069 * charges to mc.to if we have failed in charge once in attach()
7070 * phase.
7071 */
854ffa8d 7072 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7073 if (!ret)
7074 goto retry;
7075 }
7076
7077 return ret;
7078}
7079
7080static void mem_cgroup_move_charge(struct mm_struct *mm)
7081{
7082 struct vm_area_struct *vma;
7083
7084 lru_add_drain_all();
dfe076b0
DN
7085retry:
7086 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7087 /*
7088 * Someone who are holding the mmap_sem might be waiting in
7089 * waitq. So we cancel all extra charges, wake up all waiters,
7090 * and retry. Because we cancel precharges, we might not be able
7091 * to move enough charges, but moving charge is a best-effort
7092 * feature anyway, so it wouldn't be a big problem.
7093 */
7094 __mem_cgroup_clear_mc();
7095 cond_resched();
7096 goto retry;
7097 }
4ffef5fe
DN
7098 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7099 int ret;
7100 struct mm_walk mem_cgroup_move_charge_walk = {
7101 .pmd_entry = mem_cgroup_move_charge_pte_range,
7102 .mm = mm,
7103 .private = vma,
7104 };
7105 if (is_vm_hugetlb_page(vma))
7106 continue;
4ffef5fe
DN
7107 ret = walk_page_range(vma->vm_start, vma->vm_end,
7108 &mem_cgroup_move_charge_walk);
7109 if (ret)
7110 /*
7111 * means we have consumed all precharges and failed in
7112 * doing additional charge. Just abandon here.
7113 */
7114 break;
7115 }
dfe076b0 7116 up_read(&mm->mmap_sem);
7dc74be0
DN
7117}
7118
eb95419b 7119static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7120 struct cgroup_taskset *tset)
67e465a7 7121{
2f7ee569 7122 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7123 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7124
dfe076b0 7125 if (mm) {
a433658c
KM
7126 if (mc.to)
7127 mem_cgroup_move_charge(mm);
dfe076b0
DN
7128 mmput(mm);
7129 }
a433658c
KM
7130 if (mc.to)
7131 mem_cgroup_clear_mc();
67e465a7 7132}
5cfb80a7 7133#else /* !CONFIG_MMU */
eb95419b 7134static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7135 struct cgroup_taskset *tset)
5cfb80a7
DN
7136{
7137 return 0;
7138}
eb95419b 7139static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7140 struct cgroup_taskset *tset)
5cfb80a7
DN
7141{
7142}
eb95419b 7143static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7144 struct cgroup_taskset *tset)
5cfb80a7
DN
7145{
7146}
7147#endif
67e465a7 7148
f00baae7
TH
7149/*
7150 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7151 * to verify sane_behavior flag on each mount attempt.
7152 */
eb95419b 7153static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7154{
7155 /*
7156 * use_hierarchy is forced with sane_behavior. cgroup core
7157 * guarantees that @root doesn't have any children, so turning it
7158 * on for the root memcg is enough.
7159 */
eb95419b
TH
7160 if (cgroup_sane_behavior(root_css->cgroup))
7161 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7162}
7163
073219e9 7164struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7165 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7166 .css_online = mem_cgroup_css_online,
92fb9748
TH
7167 .css_offline = mem_cgroup_css_offline,
7168 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7169 .can_attach = mem_cgroup_can_attach,
7170 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7171 .attach = mem_cgroup_move_task,
f00baae7 7172 .bind = mem_cgroup_bind,
6bc10349 7173 .base_cftypes = mem_cgroup_files,
6d12e2d8 7174 .early_init = 0,
8cdea7c0 7175};
c077719b 7176
c255a458 7177#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7178static int __init enable_swap_account(char *s)
7179{
a2c8990a 7180 if (!strcmp(s, "1"))
a42c390c 7181 really_do_swap_account = 1;
a2c8990a 7182 else if (!strcmp(s, "0"))
a42c390c
MH
7183 really_do_swap_account = 0;
7184 return 1;
7185}
a2c8990a 7186__setup("swapaccount=", enable_swap_account);
c077719b 7187
2d11085e
MH
7188static void __init memsw_file_init(void)
7189{
073219e9 7190 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7191}
7192
7193static void __init enable_swap_cgroup(void)
7194{
7195 if (!mem_cgroup_disabled() && really_do_swap_account) {
7196 do_swap_account = 1;
7197 memsw_file_init();
7198 }
2d11085e 7199}
6acc8b02 7200
2d11085e 7201#else
6acc8b02 7202static void __init enable_swap_cgroup(void)
2d11085e
MH
7203{
7204}
c077719b 7205#endif
2d11085e
MH
7206
7207/*
1081312f
MH
7208 * subsys_initcall() for memory controller.
7209 *
7210 * Some parts like hotcpu_notifier() have to be initialized from this context
7211 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7212 * everything that doesn't depend on a specific mem_cgroup structure should
7213 * be initialized from here.
2d11085e
MH
7214 */
7215static int __init mem_cgroup_init(void)
7216{
7217 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7218 enable_swap_cgroup();
bb4cc1a8 7219 mem_cgroup_soft_limit_tree_init();
e4777496 7220 memcg_stock_init();
2d11085e
MH
7221 return 0;
7222}
7223subsys_initcall(mem_cgroup_init);