]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg: memory swap controller: fix limit check
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
8cdea7c0
BS
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
8cdea7c0
BS
128 */
129struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
8c7c6e34
KH
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
78fb7466
PE
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
78fb7466 142 */
6d12e2d8 143 struct mem_cgroup_lru_info info;
072c56c1 144
6c48a1d0 145 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
146
147 /*
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
150 */
151 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
152 /*
153 * Should the accounting and control be hierarchical, per subtree?
154 */
155 bool use_hierarchy;
a636b327 156 unsigned long last_oom_jiffies;
8c7c6e34
KH
157 int obsolete;
158 atomic_t refcnt;
d52aa412 159 /*
c8dad2bb 160 * statistics. This must be placed at the end of memcg.
d52aa412
KH
161 */
162 struct mem_cgroup_stat stat;
8cdea7c0
BS
163};
164
217bc319
KH
165enum charge_type {
166 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 168 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 169 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 170 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
171 NR_CHARGE_TYPE,
172};
173
52d4b9ac
KH
174/* only for here (for easy reading.) */
175#define PCGF_CACHE (1UL << PCG_CACHE)
176#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 177#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
178static const unsigned long
179pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
180 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181 PCGF_USED | PCGF_LOCK, /* Anon */
182 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 183 0, /* FORCE */
217bc319
KH
184};
185
8c7c6e34
KH
186
187/* for encoding cft->private value on file */
188#define _MEM (0)
189#define _MEMSWAP (1)
190#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
191#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
192#define MEMFILE_ATTR(val) ((val) & 0xffff)
193
194static void mem_cgroup_get(struct mem_cgroup *mem);
195static void mem_cgroup_put(struct mem_cgroup *mem);
196
c05555b5
KH
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198 struct page_cgroup *pc,
199 bool charge)
d52aa412
KH
200{
201 int val = (charge)? 1 : -1;
202 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 203 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 204 int cpu = get_cpu();
d52aa412 205
08e552c6 206 cpustat = &stat->cpustat[cpu];
c05555b5 207 if (PageCgroupCache(pc))
addb9efe 208 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 209 else
addb9efe 210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
211
212 if (charge)
addb9efe 213 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
214 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215 else
addb9efe 216 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 217 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 218 put_cpu();
6d12e2d8
KH
219}
220
d5b69e38 221static struct mem_cgroup_per_zone *
6d12e2d8
KH
222mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223{
6d12e2d8
KH
224 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225}
226
d5b69e38 227static struct mem_cgroup_per_zone *
6d12e2d8
KH
228page_cgroup_zoneinfo(struct page_cgroup *pc)
229{
230 struct mem_cgroup *mem = pc->mem_cgroup;
231 int nid = page_cgroup_nid(pc);
232 int zid = page_cgroup_zid(pc);
d52aa412 233
6d12e2d8
KH
234 return mem_cgroup_zoneinfo(mem, nid, zid);
235}
236
237static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 238 enum lru_list idx)
6d12e2d8
KH
239{
240 int nid, zid;
241 struct mem_cgroup_per_zone *mz;
242 u64 total = 0;
243
244 for_each_online_node(nid)
245 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
246 mz = mem_cgroup_zoneinfo(mem, nid, zid);
247 total += MEM_CGROUP_ZSTAT(mz, idx);
248 }
249 return total;
d52aa412
KH
250}
251
d5b69e38 252static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
253{
254 return container_of(cgroup_subsys_state(cont,
255 mem_cgroup_subsys_id), struct mem_cgroup,
256 css);
257}
258
cf475ad2 259struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 260{
31a78f23
BS
261 /*
262 * mm_update_next_owner() may clear mm->owner to NULL
263 * if it races with swapoff, page migration, etc.
264 * So this can be called with p == NULL.
265 */
266 if (unlikely(!p))
267 return NULL;
268
78fb7466
PE
269 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
270 struct mem_cgroup, css);
271}
272
08e552c6
KH
273/*
274 * Following LRU functions are allowed to be used without PCG_LOCK.
275 * Operations are called by routine of global LRU independently from memcg.
276 * What we have to take care of here is validness of pc->mem_cgroup.
277 *
278 * Changes to pc->mem_cgroup happens when
279 * 1. charge
280 * 2. moving account
281 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
282 * It is added to LRU before charge.
283 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
284 * When moving account, the page is not on LRU. It's isolated.
285 */
4f98a2fe 286
08e552c6
KH
287void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
288{
289 struct page_cgroup *pc;
290 struct mem_cgroup *mem;
291 struct mem_cgroup_per_zone *mz;
6d12e2d8 292
f8d66542 293 if (mem_cgroup_disabled())
08e552c6
KH
294 return;
295 pc = lookup_page_cgroup(page);
296 /* can happen while we handle swapcache. */
297 if (list_empty(&pc->lru))
298 return;
299 mz = page_cgroup_zoneinfo(pc);
300 mem = pc->mem_cgroup;
b69408e8 301 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
302 list_del_init(&pc->lru);
303 return;
6d12e2d8
KH
304}
305
08e552c6 306void mem_cgroup_del_lru(struct page *page)
6d12e2d8 307{
08e552c6
KH
308 mem_cgroup_del_lru_list(page, page_lru(page));
309}
b69408e8 310
08e552c6
KH
311void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
312{
313 struct mem_cgroup_per_zone *mz;
314 struct page_cgroup *pc;
b69408e8 315
f8d66542 316 if (mem_cgroup_disabled())
08e552c6 317 return;
6d12e2d8 318
08e552c6
KH
319 pc = lookup_page_cgroup(page);
320 smp_rmb();
321 /* unused page is not rotated. */
322 if (!PageCgroupUsed(pc))
323 return;
324 mz = page_cgroup_zoneinfo(pc);
325 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
326}
327
08e552c6 328void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 329{
08e552c6
KH
330 struct page_cgroup *pc;
331 struct mem_cgroup_per_zone *mz;
6d12e2d8 332
f8d66542 333 if (mem_cgroup_disabled())
08e552c6
KH
334 return;
335 pc = lookup_page_cgroup(page);
336 /* barrier to sync with "charge" */
337 smp_rmb();
338 if (!PageCgroupUsed(pc))
894bc310 339 return;
b69408e8 340
08e552c6 341 mz = page_cgroup_zoneinfo(pc);
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
343 list_add(&pc->lru, &mz->lists[lru]);
344}
345/*
346 * To add swapcache into LRU. Be careful to all this function.
347 * zone->lru_lock shouldn't be held and irq must not be disabled.
348 */
349static void mem_cgroup_lru_fixup(struct page *page)
350{
351 if (!isolate_lru_page(page))
352 putback_lru_page(page);
353}
354
355void mem_cgroup_move_lists(struct page *page,
356 enum lru_list from, enum lru_list to)
357{
f8d66542 358 if (mem_cgroup_disabled())
08e552c6
KH
359 return;
360 mem_cgroup_del_lru_list(page, from);
361 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
362}
363
4c4a2214
DR
364int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
365{
366 int ret;
367
368 task_lock(task);
bd845e38 369 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
370 task_unlock(task);
371 return ret;
372}
373
58ae83db
KH
374/*
375 * Calculate mapped_ratio under memory controller. This will be used in
376 * vmscan.c for deteremining we have to reclaim mapped pages.
377 */
378int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
379{
380 long total, rss;
381
382 /*
383 * usage is recorded in bytes. But, here, we assume the number of
384 * physical pages can be represented by "long" on any arch.
385 */
386 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
387 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
388 return (int)((rss * 100L) / total);
389}
8869b8f6 390
6c48a1d0
KH
391/*
392 * prev_priority control...this will be used in memory reclaim path.
393 */
394int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
395{
396 return mem->prev_priority;
397}
398
399void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
400{
401 if (priority < mem->prev_priority)
402 mem->prev_priority = priority;
403}
404
405void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
406{
407 mem->prev_priority = priority;
408}
409
cc38108e
KH
410/*
411 * Calculate # of pages to be scanned in this priority/zone.
412 * See also vmscan.c
413 *
414 * priority starts from "DEF_PRIORITY" and decremented in each loop.
415 * (see include/linux/mmzone.h)
416 */
417
b69408e8
CL
418long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
419 int priority, enum lru_list lru)
cc38108e 420{
b69408e8 421 long nr_pages;
cc38108e
KH
422 int nid = zone->zone_pgdat->node_id;
423 int zid = zone_idx(zone);
424 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
425
b69408e8 426 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 427
b69408e8 428 return (nr_pages >> priority);
cc38108e
KH
429}
430
66e1707b
BS
431unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
432 struct list_head *dst,
433 unsigned long *scanned, int order,
434 int mode, struct zone *z,
435 struct mem_cgroup *mem_cont,
4f98a2fe 436 int active, int file)
66e1707b
BS
437{
438 unsigned long nr_taken = 0;
439 struct page *page;
440 unsigned long scan;
441 LIST_HEAD(pc_list);
442 struct list_head *src;
ff7283fa 443 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
444 int nid = z->zone_pgdat->node_id;
445 int zid = zone_idx(z);
446 struct mem_cgroup_per_zone *mz;
4f98a2fe 447 int lru = LRU_FILE * !!file + !!active;
66e1707b 448
cf475ad2 449 BUG_ON(!mem_cont);
1ecaab2b 450 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 451 src = &mz->lists[lru];
66e1707b 452
ff7283fa
KH
453 scan = 0;
454 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 455 if (scan >= nr_to_scan)
ff7283fa 456 break;
08e552c6
KH
457
458 page = pc->page;
52d4b9ac
KH
459 if (unlikely(!PageCgroupUsed(pc)))
460 continue;
436c6541 461 if (unlikely(!PageLRU(page)))
ff7283fa 462 continue;
ff7283fa 463
436c6541 464 scan++;
4f98a2fe 465 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
466 list_move(&page->lru, dst);
467 nr_taken++;
468 }
469 }
470
66e1707b
BS
471 *scanned = scan;
472 return nr_taken;
473}
474
6d61ef40
BS
475#define mem_cgroup_from_res_counter(counter, member) \
476 container_of(counter, struct mem_cgroup, member)
477
478/*
479 * This routine finds the DFS walk successor. This routine should be
480 * called with cgroup_mutex held
481 */
482static struct mem_cgroup *
483mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
484{
485 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
486
487 curr_cgroup = curr->css.cgroup;
488 root_cgroup = root_mem->css.cgroup;
489
490 if (!list_empty(&curr_cgroup->children)) {
491 /*
492 * Walk down to children
493 */
494 mem_cgroup_put(curr);
495 cgroup = list_entry(curr_cgroup->children.next,
496 struct cgroup, sibling);
497 curr = mem_cgroup_from_cont(cgroup);
498 mem_cgroup_get(curr);
499 goto done;
500 }
501
502visit_parent:
503 if (curr_cgroup == root_cgroup) {
504 mem_cgroup_put(curr);
505 curr = root_mem;
506 mem_cgroup_get(curr);
507 goto done;
508 }
509
510 /*
511 * Goto next sibling
512 */
513 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
514 mem_cgroup_put(curr);
515 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
516 sibling);
517 curr = mem_cgroup_from_cont(cgroup);
518 mem_cgroup_get(curr);
519 goto done;
520 }
521
522 /*
523 * Go up to next parent and next parent's sibling if need be
524 */
525 curr_cgroup = curr_cgroup->parent;
526 goto visit_parent;
527
528done:
529 root_mem->last_scanned_child = curr;
530 return curr;
531}
532
533/*
534 * Visit the first child (need not be the first child as per the ordering
535 * of the cgroup list, since we track last_scanned_child) of @mem and use
536 * that to reclaim free pages from.
537 */
538static struct mem_cgroup *
539mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
540{
541 struct cgroup *cgroup;
542 struct mem_cgroup *ret;
543 bool obsolete = (root_mem->last_scanned_child &&
544 root_mem->last_scanned_child->obsolete);
545
546 /*
547 * Scan all children under the mem_cgroup mem
548 */
549 cgroup_lock();
550 if (list_empty(&root_mem->css.cgroup->children)) {
551 ret = root_mem;
552 goto done;
553 }
554
555 if (!root_mem->last_scanned_child || obsolete) {
556
557 if (obsolete)
558 mem_cgroup_put(root_mem->last_scanned_child);
559
560 cgroup = list_first_entry(&root_mem->css.cgroup->children,
561 struct cgroup, sibling);
562 ret = mem_cgroup_from_cont(cgroup);
563 mem_cgroup_get(ret);
564 } else
565 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
566 root_mem);
567
568done:
569 root_mem->last_scanned_child = ret;
570 cgroup_unlock();
571 return ret;
572}
573
b85a96c0
DN
574static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
575{
576 if (do_swap_account) {
577 if (res_counter_check_under_limit(&mem->res) &&
578 res_counter_check_under_limit(&mem->memsw))
579 return true;
580 } else
581 if (res_counter_check_under_limit(&mem->res))
582 return true;
583 return false;
584}
585
6d61ef40
BS
586/*
587 * Dance down the hierarchy if needed to reclaim memory. We remember the
588 * last child we reclaimed from, so that we don't end up penalizing
589 * one child extensively based on its position in the children list.
590 *
591 * root_mem is the original ancestor that we've been reclaim from.
592 */
593static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
594 gfp_t gfp_mask, bool noswap)
595{
596 struct mem_cgroup *next_mem;
597 int ret = 0;
598
599 /*
600 * Reclaim unconditionally and don't check for return value.
601 * We need to reclaim in the current group and down the tree.
602 * One might think about checking for children before reclaiming,
603 * but there might be left over accounting, even after children
604 * have left.
605 */
606 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 607 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
608 return 0;
609
610 next_mem = mem_cgroup_get_first_node(root_mem);
611
612 while (next_mem != root_mem) {
613 if (next_mem->obsolete) {
614 mem_cgroup_put(next_mem);
615 cgroup_lock();
616 next_mem = mem_cgroup_get_first_node(root_mem);
617 cgroup_unlock();
618 continue;
619 }
620 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 621 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
622 return 0;
623 cgroup_lock();
624 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
625 cgroup_unlock();
626 }
627 return ret;
628}
629
a636b327
KH
630bool mem_cgroup_oom_called(struct task_struct *task)
631{
632 bool ret = false;
633 struct mem_cgroup *mem;
634 struct mm_struct *mm;
635
636 rcu_read_lock();
637 mm = task->mm;
638 if (!mm)
639 mm = &init_mm;
640 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
641 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
642 ret = true;
643 rcu_read_unlock();
644 return ret;
645}
f817ed48
KH
646/*
647 * Unlike exported interface, "oom" parameter is added. if oom==true,
648 * oom-killer can be invoked.
8a9f3ccd 649 */
f817ed48 650static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
651 gfp_t gfp_mask, struct mem_cgroup **memcg,
652 bool oom)
8a9f3ccd 653{
6d61ef40 654 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 655 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 656 struct res_counter *fail_res;
a636b327
KH
657
658 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
659 /* Don't account this! */
660 *memcg = NULL;
661 return 0;
662 }
663
8a9f3ccd 664 /*
3be91277
HD
665 * We always charge the cgroup the mm_struct belongs to.
666 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
667 * thread group leader migrates. It's possible that mm is not
668 * set, if so charge the init_mm (happens for pagecache usage).
669 */
7a81b88c 670 if (likely(!*memcg)) {
e8589cc1
KH
671 rcu_read_lock();
672 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
673 if (unlikely(!mem)) {
674 rcu_read_unlock();
31a78f23
BS
675 return 0;
676 }
e8589cc1
KH
677 /*
678 * For every charge from the cgroup, increment reference count
679 */
680 css_get(&mem->css);
7a81b88c 681 *memcg = mem;
e8589cc1
KH
682 rcu_read_unlock();
683 } else {
7a81b88c
KH
684 mem = *memcg;
685 css_get(&mem->css);
e8589cc1 686 }
8a9f3ccd 687
8c7c6e34
KH
688 while (1) {
689 int ret;
690 bool noswap = false;
7a81b88c 691
28dbc4b6 692 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
693 if (likely(!ret)) {
694 if (!do_swap_account)
695 break;
28dbc4b6
BS
696 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
697 &fail_res);
8c7c6e34
KH
698 if (likely(!ret))
699 break;
700 /* mem+swap counter fails */
701 res_counter_uncharge(&mem->res, PAGE_SIZE);
702 noswap = true;
6d61ef40
BS
703 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
704 memsw);
705 } else
706 /* mem counter fails */
707 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
708 res);
709
3be91277 710 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 711 goto nomem;
e1a1cd59 712
6d61ef40
BS
713 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
714 noswap);
66e1707b
BS
715
716 /*
8869b8f6
HD
717 * try_to_free_mem_cgroup_pages() might not give us a full
718 * picture of reclaim. Some pages are reclaimed and might be
719 * moved to swap cache or just unmapped from the cgroup.
720 * Check the limit again to see if the reclaim reduced the
721 * current usage of the cgroup before giving up
8c7c6e34 722 *
8869b8f6 723 */
b85a96c0
DN
724 if (mem_cgroup_check_under_limit(mem_over_limit))
725 continue;
3be91277
HD
726
727 if (!nr_retries--) {
a636b327 728 if (oom) {
88700756
KH
729 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
730 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 731 }
7a81b88c 732 goto nomem;
66e1707b 733 }
8a9f3ccd 734 }
7a81b88c
KH
735 return 0;
736nomem:
737 css_put(&mem->css);
738 return -ENOMEM;
739}
8a9f3ccd 740
f817ed48
KH
741/**
742 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
743 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
744 * @gfp_mask: gfp_mask for reclaim.
745 * @memcg: a pointer to memory cgroup which is charged against.
746 *
747 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
748 * memory cgroup from @mm is got and stored in *memcg.
749 *
750 * Returns 0 if success. -ENOMEM at failure.
751 * This call can invoke OOM-Killer.
752 */
753
754int mem_cgroup_try_charge(struct mm_struct *mm,
755 gfp_t mask, struct mem_cgroup **memcg)
756{
757 return __mem_cgroup_try_charge(mm, mask, memcg, true);
758}
759
7a81b88c
KH
760/*
761 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
762 * USED state. If already USED, uncharge and return.
763 */
764
765static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
766 struct page_cgroup *pc,
767 enum charge_type ctype)
768{
7a81b88c
KH
769 /* try_charge() can return NULL to *memcg, taking care of it. */
770 if (!mem)
771 return;
52d4b9ac
KH
772
773 lock_page_cgroup(pc);
774 if (unlikely(PageCgroupUsed(pc))) {
775 unlock_page_cgroup(pc);
776 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
777 if (do_swap_account)
778 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 779 css_put(&mem->css);
7a81b88c 780 return;
52d4b9ac 781 }
8a9f3ccd 782 pc->mem_cgroup = mem;
08e552c6 783 smp_wmb();
c05555b5 784 pc->flags = pcg_default_flags[ctype];
3be91277 785
08e552c6 786 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 787
52d4b9ac 788 unlock_page_cgroup(pc);
7a81b88c 789}
66e1707b 790
f817ed48
KH
791/**
792 * mem_cgroup_move_account - move account of the page
793 * @pc: page_cgroup of the page.
794 * @from: mem_cgroup which the page is moved from.
795 * @to: mem_cgroup which the page is moved to. @from != @to.
796 *
797 * The caller must confirm following.
08e552c6 798 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
799 *
800 * returns 0 at success,
801 * returns -EBUSY when lock is busy or "pc" is unstable.
802 *
803 * This function does "uncharge" from old cgroup but doesn't do "charge" to
804 * new cgroup. It should be done by a caller.
805 */
806
807static int mem_cgroup_move_account(struct page_cgroup *pc,
808 struct mem_cgroup *from, struct mem_cgroup *to)
809{
810 struct mem_cgroup_per_zone *from_mz, *to_mz;
811 int nid, zid;
812 int ret = -EBUSY;
813
f817ed48 814 VM_BUG_ON(from == to);
08e552c6 815 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
816
817 nid = page_cgroup_nid(pc);
818 zid = page_cgroup_zid(pc);
819 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
820 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
821
f817ed48
KH
822 if (!trylock_page_cgroup(pc))
823 return ret;
824
825 if (!PageCgroupUsed(pc))
826 goto out;
827
828 if (pc->mem_cgroup != from)
829 goto out;
830
08e552c6
KH
831 css_put(&from->css);
832 res_counter_uncharge(&from->res, PAGE_SIZE);
833 mem_cgroup_charge_statistics(from, pc, false);
834 if (do_swap_account)
835 res_counter_uncharge(&from->memsw, PAGE_SIZE);
836 pc->mem_cgroup = to;
837 mem_cgroup_charge_statistics(to, pc, true);
838 css_get(&to->css);
839 ret = 0;
f817ed48
KH
840out:
841 unlock_page_cgroup(pc);
842 return ret;
843}
844
845/*
846 * move charges to its parent.
847 */
848
849static int mem_cgroup_move_parent(struct page_cgroup *pc,
850 struct mem_cgroup *child,
851 gfp_t gfp_mask)
852{
08e552c6 853 struct page *page = pc->page;
f817ed48
KH
854 struct cgroup *cg = child->css.cgroup;
855 struct cgroup *pcg = cg->parent;
856 struct mem_cgroup *parent;
f817ed48
KH
857 int ret;
858
859 /* Is ROOT ? */
860 if (!pcg)
861 return -EINVAL;
862
08e552c6 863
f817ed48
KH
864 parent = mem_cgroup_from_cont(pcg);
865
08e552c6 866
f817ed48 867 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 868 if (ret || !parent)
f817ed48
KH
869 return ret;
870
08e552c6
KH
871 if (!get_page_unless_zero(page))
872 return -EBUSY;
873
874 ret = isolate_lru_page(page);
875
876 if (ret)
877 goto cancel;
f817ed48 878
f817ed48 879 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 880
08e552c6 881 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 882 css_put(&parent->css);
08e552c6
KH
883 putback_lru_page(page);
884 if (!ret) {
885 put_page(page);
886 return 0;
8c7c6e34 887 }
08e552c6
KH
888 /* uncharge if move fails */
889cancel:
890 res_counter_uncharge(&parent->res, PAGE_SIZE);
891 if (do_swap_account)
892 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
893 put_page(page);
f817ed48
KH
894 return ret;
895}
896
7a81b88c
KH
897/*
898 * Charge the memory controller for page usage.
899 * Return
900 * 0 if the charge was successful
901 * < 0 if the cgroup is over its limit
902 */
903static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
904 gfp_t gfp_mask, enum charge_type ctype,
905 struct mem_cgroup *memcg)
906{
907 struct mem_cgroup *mem;
908 struct page_cgroup *pc;
909 int ret;
910
911 pc = lookup_page_cgroup(page);
912 /* can happen at boot */
913 if (unlikely(!pc))
914 return 0;
915 prefetchw(pc);
916
917 mem = memcg;
f817ed48 918 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 919 if (ret || !mem)
7a81b88c
KH
920 return ret;
921
922 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 923 return 0;
8a9f3ccd
BS
924}
925
7a81b88c
KH
926int mem_cgroup_newpage_charge(struct page *page,
927 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 928{
f8d66542 929 if (mem_cgroup_disabled())
cede86ac 930 return 0;
52d4b9ac
KH
931 if (PageCompound(page))
932 return 0;
69029cd5
KH
933 /*
934 * If already mapped, we don't have to account.
935 * If page cache, page->mapping has address_space.
936 * But page->mapping may have out-of-use anon_vma pointer,
937 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
938 * is NULL.
939 */
940 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
941 return 0;
942 if (unlikely(!mm))
943 mm = &init_mm;
217bc319 944 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 945 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
946}
947
e1a1cd59
BS
948int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
949 gfp_t gfp_mask)
8697d331 950{
f8d66542 951 if (mem_cgroup_disabled())
cede86ac 952 return 0;
52d4b9ac
KH
953 if (PageCompound(page))
954 return 0;
accf163e
KH
955 /*
956 * Corner case handling. This is called from add_to_page_cache()
957 * in usual. But some FS (shmem) precharges this page before calling it
958 * and call add_to_page_cache() with GFP_NOWAIT.
959 *
960 * For GFP_NOWAIT case, the page may be pre-charged before calling
961 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
962 * charge twice. (It works but has to pay a bit larger cost.)
963 */
964 if (!(gfp_mask & __GFP_WAIT)) {
965 struct page_cgroup *pc;
966
52d4b9ac
KH
967
968 pc = lookup_page_cgroup(page);
969 if (!pc)
970 return 0;
971 lock_page_cgroup(pc);
972 if (PageCgroupUsed(pc)) {
973 unlock_page_cgroup(pc);
accf163e
KH
974 return 0;
975 }
52d4b9ac 976 unlock_page_cgroup(pc);
accf163e
KH
977 }
978
69029cd5 979 if (unlikely(!mm))
8697d331 980 mm = &init_mm;
accf163e 981
c05555b5
KH
982 if (page_is_file_cache(page))
983 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 984 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
985 else
986 return mem_cgroup_charge_common(page, mm, gfp_mask,
987 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
988}
989
8c7c6e34
KH
990int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
991 struct page *page,
992 gfp_t mask, struct mem_cgroup **ptr)
993{
994 struct mem_cgroup *mem;
995 swp_entry_t ent;
996
f8d66542 997 if (mem_cgroup_disabled())
8c7c6e34
KH
998 return 0;
999
1000 if (!do_swap_account)
1001 goto charge_cur_mm;
1002
1003 /*
1004 * A racing thread's fault, or swapoff, may have already updated
1005 * the pte, and even removed page from swap cache: return success
1006 * to go on to do_swap_page()'s pte_same() test, which should fail.
1007 */
1008 if (!PageSwapCache(page))
1009 return 0;
1010
1011 ent.val = page_private(page);
1012
1013 mem = lookup_swap_cgroup(ent);
1014 if (!mem || mem->obsolete)
1015 goto charge_cur_mm;
1016 *ptr = mem;
1017 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1018charge_cur_mm:
1019 if (unlikely(!mm))
1020 mm = &init_mm;
1021 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1022}
1023
d13d1443 1024#ifdef CONFIG_SWAP
8c7c6e34 1025
d13d1443
KH
1026int mem_cgroup_cache_charge_swapin(struct page *page,
1027 struct mm_struct *mm, gfp_t mask, bool locked)
1028{
1029 int ret = 0;
1030
f8d66542 1031 if (mem_cgroup_disabled())
d13d1443
KH
1032 return 0;
1033 if (unlikely(!mm))
1034 mm = &init_mm;
1035 if (!locked)
1036 lock_page(page);
1037 /*
1038 * If not locked, the page can be dropped from SwapCache until
1039 * we reach here.
1040 */
1041 if (PageSwapCache(page)) {
8c7c6e34
KH
1042 struct mem_cgroup *mem = NULL;
1043 swp_entry_t ent;
1044
1045 ent.val = page_private(page);
1046 if (do_swap_account) {
1047 mem = lookup_swap_cgroup(ent);
1048 if (mem && mem->obsolete)
1049 mem = NULL;
1050 if (mem)
1051 mm = NULL;
1052 }
d13d1443 1053 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1054 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1055
1056 if (!ret && do_swap_account) {
1057 /* avoid double counting */
1058 mem = swap_cgroup_record(ent, NULL);
1059 if (mem) {
1060 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1061 mem_cgroup_put(mem);
1062 }
1063 }
d13d1443
KH
1064 }
1065 if (!locked)
1066 unlock_page(page);
08e552c6
KH
1067 /* add this page(page_cgroup) to the LRU we want. */
1068 mem_cgroup_lru_fixup(page);
d13d1443
KH
1069
1070 return ret;
1071}
1072#endif
1073
7a81b88c
KH
1074void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1075{
1076 struct page_cgroup *pc;
1077
f8d66542 1078 if (mem_cgroup_disabled())
7a81b88c
KH
1079 return;
1080 if (!ptr)
1081 return;
1082 pc = lookup_page_cgroup(page);
1083 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1084 /*
1085 * Now swap is on-memory. This means this page may be
1086 * counted both as mem and swap....double count.
1087 * Fix it by uncharging from memsw. This SwapCache is stable
1088 * because we're still under lock_page().
1089 */
1090 if (do_swap_account) {
1091 swp_entry_t ent = {.val = page_private(page)};
1092 struct mem_cgroup *memcg;
1093 memcg = swap_cgroup_record(ent, NULL);
1094 if (memcg) {
1095 /* If memcg is obsolete, memcg can be != ptr */
1096 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1097 mem_cgroup_put(memcg);
1098 }
1099
1100 }
08e552c6
KH
1101 /* add this page(page_cgroup) to the LRU we want. */
1102 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1103}
1104
1105void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1106{
f8d66542 1107 if (mem_cgroup_disabled())
7a81b88c
KH
1108 return;
1109 if (!mem)
1110 return;
1111 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1112 if (do_swap_account)
1113 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1114 css_put(&mem->css);
1115}
1116
1117
8a9f3ccd 1118/*
69029cd5 1119 * uncharge if !page_mapped(page)
8a9f3ccd 1120 */
8c7c6e34 1121static struct mem_cgroup *
69029cd5 1122__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1123{
8289546e 1124 struct page_cgroup *pc;
8c7c6e34 1125 struct mem_cgroup *mem = NULL;
072c56c1 1126 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1127
f8d66542 1128 if (mem_cgroup_disabled())
8c7c6e34 1129 return NULL;
4077960e 1130
d13d1443 1131 if (PageSwapCache(page))
8c7c6e34 1132 return NULL;
d13d1443 1133
8697d331 1134 /*
3c541e14 1135 * Check if our page_cgroup is valid
8697d331 1136 */
52d4b9ac
KH
1137 pc = lookup_page_cgroup(page);
1138 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1139 return NULL;
b9c565d5 1140
52d4b9ac 1141 lock_page_cgroup(pc);
d13d1443 1142
8c7c6e34
KH
1143 mem = pc->mem_cgroup;
1144
d13d1443
KH
1145 if (!PageCgroupUsed(pc))
1146 goto unlock_out;
1147
1148 switch (ctype) {
1149 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1150 if (page_mapped(page))
1151 goto unlock_out;
1152 break;
1153 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1154 if (!PageAnon(page)) { /* Shared memory */
1155 if (page->mapping && !page_is_file_cache(page))
1156 goto unlock_out;
1157 } else if (page_mapped(page)) /* Anon */
1158 goto unlock_out;
1159 break;
1160 default:
1161 break;
52d4b9ac 1162 }
d13d1443 1163
8c7c6e34
KH
1164 res_counter_uncharge(&mem->res, PAGE_SIZE);
1165 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1166 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1167
08e552c6 1168 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1169 ClearPageCgroupUsed(pc);
b9c565d5 1170
69029cd5 1171 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1172 unlock_page_cgroup(pc);
fb59e9f1 1173
69029cd5 1174 css_put(&mem->css);
6d12e2d8 1175
8c7c6e34 1176 return mem;
d13d1443
KH
1177
1178unlock_out:
1179 unlock_page_cgroup(pc);
8c7c6e34 1180 return NULL;
3c541e14
BS
1181}
1182
69029cd5
KH
1183void mem_cgroup_uncharge_page(struct page *page)
1184{
52d4b9ac
KH
1185 /* early check. */
1186 if (page_mapped(page))
1187 return;
1188 if (page->mapping && !PageAnon(page))
1189 return;
69029cd5
KH
1190 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1191}
1192
1193void mem_cgroup_uncharge_cache_page(struct page *page)
1194{
1195 VM_BUG_ON(page_mapped(page));
b7abea96 1196 VM_BUG_ON(page->mapping);
69029cd5
KH
1197 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1198}
1199
8c7c6e34
KH
1200/*
1201 * called from __delete_from_swap_cache() and drop "page" account.
1202 * memcg information is recorded to swap_cgroup of "ent"
1203 */
1204void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1205{
1206 struct mem_cgroup *memcg;
1207
1208 memcg = __mem_cgroup_uncharge_common(page,
1209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1210 /* record memcg information */
1211 if (do_swap_account && memcg) {
1212 swap_cgroup_record(ent, memcg);
1213 mem_cgroup_get(memcg);
1214 }
1215}
1216
1217#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1218/*
1219 * called from swap_entry_free(). remove record in swap_cgroup and
1220 * uncharge "memsw" account.
1221 */
1222void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1223{
8c7c6e34
KH
1224 struct mem_cgroup *memcg;
1225
1226 if (!do_swap_account)
1227 return;
1228
1229 memcg = swap_cgroup_record(ent, NULL);
1230 if (memcg) {
1231 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1232 mem_cgroup_put(memcg);
1233 }
d13d1443 1234}
8c7c6e34 1235#endif
d13d1443 1236
ae41be37 1237/*
01b1ae63
KH
1238 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1239 * page belongs to.
ae41be37 1240 */
01b1ae63 1241int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1242{
1243 struct page_cgroup *pc;
e8589cc1 1244 struct mem_cgroup *mem = NULL;
e8589cc1 1245 int ret = 0;
8869b8f6 1246
f8d66542 1247 if (mem_cgroup_disabled())
4077960e
BS
1248 return 0;
1249
52d4b9ac
KH
1250 pc = lookup_page_cgroup(page);
1251 lock_page_cgroup(pc);
1252 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1253 mem = pc->mem_cgroup;
1254 css_get(&mem->css);
e8589cc1 1255 }
52d4b9ac 1256 unlock_page_cgroup(pc);
01b1ae63 1257
e8589cc1 1258 if (mem) {
2c26fdd7 1259 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1260 css_put(&mem->css);
1261 }
01b1ae63 1262 *ptr = mem;
e8589cc1 1263 return ret;
ae41be37 1264}
8869b8f6 1265
69029cd5 1266/* remove redundant charge if migration failed*/
01b1ae63
KH
1267void mem_cgroup_end_migration(struct mem_cgroup *mem,
1268 struct page *oldpage, struct page *newpage)
ae41be37 1269{
01b1ae63
KH
1270 struct page *target, *unused;
1271 struct page_cgroup *pc;
1272 enum charge_type ctype;
1273
1274 if (!mem)
1275 return;
1276
1277 /* at migration success, oldpage->mapping is NULL. */
1278 if (oldpage->mapping) {
1279 target = oldpage;
1280 unused = NULL;
1281 } else {
1282 target = newpage;
1283 unused = oldpage;
1284 }
1285
1286 if (PageAnon(target))
1287 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1288 else if (page_is_file_cache(target))
1289 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1290 else
1291 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1292
1293 /* unused page is not on radix-tree now. */
d13d1443 1294 if (unused)
01b1ae63
KH
1295 __mem_cgroup_uncharge_common(unused, ctype);
1296
1297 pc = lookup_page_cgroup(target);
69029cd5 1298 /*
01b1ae63
KH
1299 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1300 * So, double-counting is effectively avoided.
1301 */
1302 __mem_cgroup_commit_charge(mem, pc, ctype);
1303
1304 /*
1305 * Both of oldpage and newpage are still under lock_page().
1306 * Then, we don't have to care about race in radix-tree.
1307 * But we have to be careful that this page is unmapped or not.
1308 *
1309 * There is a case for !page_mapped(). At the start of
1310 * migration, oldpage was mapped. But now, it's zapped.
1311 * But we know *target* page is not freed/reused under us.
1312 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1313 */
01b1ae63
KH
1314 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1315 mem_cgroup_uncharge_page(target);
ae41be37 1316}
78fb7466 1317
c9b0ed51
KH
1318/*
1319 * A call to try to shrink memory usage under specified resource controller.
1320 * This is typically used for page reclaiming for shmem for reducing side
1321 * effect of page allocation from shmem, which is used by some mem_cgroup.
1322 */
1323int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1324{
1325 struct mem_cgroup *mem;
1326 int progress = 0;
1327 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1328
f8d66542 1329 if (mem_cgroup_disabled())
cede86ac 1330 return 0;
9623e078
HD
1331 if (!mm)
1332 return 0;
cede86ac 1333
c9b0ed51
KH
1334 rcu_read_lock();
1335 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1336 if (unlikely(!mem)) {
1337 rcu_read_unlock();
1338 return 0;
1339 }
c9b0ed51
KH
1340 css_get(&mem->css);
1341 rcu_read_unlock();
1342
1343 do {
8c7c6e34 1344 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1345 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1346 } while (!progress && --retry);
1347
1348 css_put(&mem->css);
1349 if (!retry)
1350 return -ENOMEM;
1351 return 0;
1352}
1353
8c7c6e34
KH
1354static DEFINE_MUTEX(set_limit_mutex);
1355
d38d2a75 1356static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1357 unsigned long long val)
628f4235
KH
1358{
1359
1360 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1361 int progress;
8c7c6e34 1362 u64 memswlimit;
628f4235
KH
1363 int ret = 0;
1364
8c7c6e34 1365 while (retry_count) {
628f4235
KH
1366 if (signal_pending(current)) {
1367 ret = -EINTR;
1368 break;
1369 }
8c7c6e34
KH
1370 /*
1371 * Rather than hide all in some function, I do this in
1372 * open coded manner. You see what this really does.
1373 * We have to guarantee mem->res.limit < mem->memsw.limit.
1374 */
1375 mutex_lock(&set_limit_mutex);
1376 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1377 if (memswlimit < val) {
1378 ret = -EINVAL;
1379 mutex_unlock(&set_limit_mutex);
628f4235
KH
1380 break;
1381 }
8c7c6e34
KH
1382 ret = res_counter_set_limit(&memcg->res, val);
1383 mutex_unlock(&set_limit_mutex);
1384
1385 if (!ret)
1386 break;
1387
bced0520 1388 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1389 GFP_KERNEL, false);
8c7c6e34
KH
1390 if (!progress) retry_count--;
1391 }
1392 return ret;
1393}
1394
1395int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1396 unsigned long long val)
1397{
1398 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1399 u64 memlimit, oldusage, curusage;
1400 int ret;
1401
1402 if (!do_swap_account)
1403 return -EINVAL;
1404
1405 while (retry_count) {
1406 if (signal_pending(current)) {
1407 ret = -EINTR;
1408 break;
1409 }
1410 /*
1411 * Rather than hide all in some function, I do this in
1412 * open coded manner. You see what this really does.
1413 * We have to guarantee mem->res.limit < mem->memsw.limit.
1414 */
1415 mutex_lock(&set_limit_mutex);
1416 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1417 if (memlimit > val) {
1418 ret = -EINVAL;
1419 mutex_unlock(&set_limit_mutex);
1420 break;
1421 }
1422 ret = res_counter_set_limit(&memcg->memsw, val);
1423 mutex_unlock(&set_limit_mutex);
1424
1425 if (!ret)
1426 break;
1427
1428 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1429 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1430 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1431 if (curusage >= oldusage)
628f4235
KH
1432 retry_count--;
1433 }
1434 return ret;
1435}
1436
cc847582
KH
1437/*
1438 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1439 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1440 */
f817ed48 1441static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1442 int node, int zid, enum lru_list lru)
cc847582 1443{
08e552c6
KH
1444 struct zone *zone;
1445 struct mem_cgroup_per_zone *mz;
f817ed48 1446 struct page_cgroup *pc, *busy;
08e552c6 1447 unsigned long flags, loop;
072c56c1 1448 struct list_head *list;
f817ed48 1449 int ret = 0;
072c56c1 1450
08e552c6
KH
1451 zone = &NODE_DATA(node)->node_zones[zid];
1452 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1453 list = &mz->lists[lru];
cc847582 1454
f817ed48
KH
1455 loop = MEM_CGROUP_ZSTAT(mz, lru);
1456 /* give some margin against EBUSY etc...*/
1457 loop += 256;
1458 busy = NULL;
1459 while (loop--) {
1460 ret = 0;
08e552c6 1461 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1462 if (list_empty(list)) {
08e552c6 1463 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1464 break;
f817ed48
KH
1465 }
1466 pc = list_entry(list->prev, struct page_cgroup, lru);
1467 if (busy == pc) {
1468 list_move(&pc->lru, list);
1469 busy = 0;
08e552c6 1470 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1471 continue;
1472 }
08e552c6 1473 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1474
2c26fdd7 1475 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1476 if (ret == -ENOMEM)
52d4b9ac 1477 break;
f817ed48
KH
1478
1479 if (ret == -EBUSY || ret == -EINVAL) {
1480 /* found lock contention or "pc" is obsolete. */
1481 busy = pc;
1482 cond_resched();
1483 } else
1484 busy = NULL;
cc847582 1485 }
08e552c6 1486
f817ed48
KH
1487 if (!ret && !list_empty(list))
1488 return -EBUSY;
1489 return ret;
cc847582
KH
1490}
1491
1492/*
1493 * make mem_cgroup's charge to be 0 if there is no task.
1494 * This enables deleting this mem_cgroup.
1495 */
c1e862c1 1496static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1497{
f817ed48
KH
1498 int ret;
1499 int node, zid, shrink;
1500 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1501 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1502
cc847582 1503 css_get(&mem->css);
f817ed48
KH
1504
1505 shrink = 0;
c1e862c1
KH
1506 /* should free all ? */
1507 if (free_all)
1508 goto try_to_free;
f817ed48 1509move_account:
1ecaab2b 1510 while (mem->res.usage > 0) {
f817ed48 1511 ret = -EBUSY;
c1e862c1
KH
1512 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1513 goto out;
1514 ret = -EINTR;
1515 if (signal_pending(current))
cc847582 1516 goto out;
52d4b9ac
KH
1517 /* This is for making all *used* pages to be on LRU. */
1518 lru_add_drain_all();
f817ed48
KH
1519 ret = 0;
1520 for_each_node_state(node, N_POSSIBLE) {
1521 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1522 enum lru_list l;
f817ed48
KH
1523 for_each_lru(l) {
1524 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1525 node, zid, l);
f817ed48
KH
1526 if (ret)
1527 break;
1528 }
1ecaab2b 1529 }
f817ed48
KH
1530 if (ret)
1531 break;
1532 }
1533 /* it seems parent cgroup doesn't have enough mem */
1534 if (ret == -ENOMEM)
1535 goto try_to_free;
52d4b9ac 1536 cond_resched();
cc847582
KH
1537 }
1538 ret = 0;
1539out:
1540 css_put(&mem->css);
1541 return ret;
f817ed48
KH
1542
1543try_to_free:
c1e862c1
KH
1544 /* returns EBUSY if there is a task or if we come here twice. */
1545 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1546 ret = -EBUSY;
1547 goto out;
1548 }
c1e862c1
KH
1549 /* we call try-to-free pages for make this cgroup empty */
1550 lru_add_drain_all();
f817ed48
KH
1551 /* try to free all pages in this cgroup */
1552 shrink = 1;
1553 while (nr_retries && mem->res.usage > 0) {
1554 int progress;
c1e862c1
KH
1555
1556 if (signal_pending(current)) {
1557 ret = -EINTR;
1558 goto out;
1559 }
f817ed48 1560 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1561 GFP_KERNEL, false);
c1e862c1 1562 if (!progress) {
f817ed48 1563 nr_retries--;
c1e862c1
KH
1564 /* maybe some writeback is necessary */
1565 congestion_wait(WRITE, HZ/10);
1566 }
f817ed48
KH
1567
1568 }
08e552c6 1569 lru_add_drain();
f817ed48
KH
1570 /* try move_account...there may be some *locked* pages. */
1571 if (mem->res.usage)
1572 goto move_account;
1573 ret = 0;
1574 goto out;
cc847582
KH
1575}
1576
c1e862c1
KH
1577int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1578{
1579 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1580}
1581
1582
18f59ea7
BS
1583static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1584{
1585 return mem_cgroup_from_cont(cont)->use_hierarchy;
1586}
1587
1588static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1589 u64 val)
1590{
1591 int retval = 0;
1592 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1593 struct cgroup *parent = cont->parent;
1594 struct mem_cgroup *parent_mem = NULL;
1595
1596 if (parent)
1597 parent_mem = mem_cgroup_from_cont(parent);
1598
1599 cgroup_lock();
1600 /*
1601 * If parent's use_hiearchy is set, we can't make any modifications
1602 * in the child subtrees. If it is unset, then the change can
1603 * occur, provided the current cgroup has no children.
1604 *
1605 * For the root cgroup, parent_mem is NULL, we allow value to be
1606 * set if there are no children.
1607 */
1608 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1609 (val == 1 || val == 0)) {
1610 if (list_empty(&cont->children))
1611 mem->use_hierarchy = val;
1612 else
1613 retval = -EBUSY;
1614 } else
1615 retval = -EINVAL;
1616 cgroup_unlock();
1617
1618 return retval;
1619}
1620
2c3daa72 1621static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1622{
8c7c6e34
KH
1623 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1624 u64 val = 0;
1625 int type, name;
1626
1627 type = MEMFILE_TYPE(cft->private);
1628 name = MEMFILE_ATTR(cft->private);
1629 switch (type) {
1630 case _MEM:
1631 val = res_counter_read_u64(&mem->res, name);
1632 break;
1633 case _MEMSWAP:
1634 if (do_swap_account)
1635 val = res_counter_read_u64(&mem->memsw, name);
1636 break;
1637 default:
1638 BUG();
1639 break;
1640 }
1641 return val;
8cdea7c0 1642}
628f4235
KH
1643/*
1644 * The user of this function is...
1645 * RES_LIMIT.
1646 */
856c13aa
PM
1647static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1648 const char *buffer)
8cdea7c0 1649{
628f4235 1650 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1651 int type, name;
628f4235
KH
1652 unsigned long long val;
1653 int ret;
1654
8c7c6e34
KH
1655 type = MEMFILE_TYPE(cft->private);
1656 name = MEMFILE_ATTR(cft->private);
1657 switch (name) {
628f4235
KH
1658 case RES_LIMIT:
1659 /* This function does all necessary parse...reuse it */
1660 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1661 if (ret)
1662 break;
1663 if (type == _MEM)
628f4235 1664 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1665 else
1666 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1667 break;
1668 default:
1669 ret = -EINVAL; /* should be BUG() ? */
1670 break;
1671 }
1672 return ret;
8cdea7c0
BS
1673}
1674
29f2a4da 1675static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1676{
1677 struct mem_cgroup *mem;
8c7c6e34 1678 int type, name;
c84872e1
PE
1679
1680 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1681 type = MEMFILE_TYPE(event);
1682 name = MEMFILE_ATTR(event);
1683 switch (name) {
29f2a4da 1684 case RES_MAX_USAGE:
8c7c6e34
KH
1685 if (type == _MEM)
1686 res_counter_reset_max(&mem->res);
1687 else
1688 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1689 break;
1690 case RES_FAILCNT:
8c7c6e34
KH
1691 if (type == _MEM)
1692 res_counter_reset_failcnt(&mem->res);
1693 else
1694 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1695 break;
1696 }
85cc59db 1697 return 0;
c84872e1
PE
1698}
1699
d2ceb9b7
KH
1700static const struct mem_cgroup_stat_desc {
1701 const char *msg;
1702 u64 unit;
1703} mem_cgroup_stat_desc[] = {
1704 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1705 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1706 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1707 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1708};
1709
c64745cf
PM
1710static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1711 struct cgroup_map_cb *cb)
d2ceb9b7 1712{
d2ceb9b7
KH
1713 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1714 struct mem_cgroup_stat *stat = &mem_cont->stat;
1715 int i;
1716
1717 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1718 s64 val;
1719
1720 val = mem_cgroup_read_stat(stat, i);
1721 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1722 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1723 }
6d12e2d8
KH
1724 /* showing # of active pages */
1725 {
4f98a2fe
RR
1726 unsigned long active_anon, inactive_anon;
1727 unsigned long active_file, inactive_file;
7b854121 1728 unsigned long unevictable;
4f98a2fe
RR
1729
1730 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1731 LRU_INACTIVE_ANON);
1732 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1733 LRU_ACTIVE_ANON);
1734 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1735 LRU_INACTIVE_FILE);
1736 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1737 LRU_ACTIVE_FILE);
7b854121
LS
1738 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1739 LRU_UNEVICTABLE);
1740
4f98a2fe
RR
1741 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1742 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1743 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1744 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1745 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1746
6d12e2d8 1747 }
d2ceb9b7
KH
1748 return 0;
1749}
1750
c1e862c1 1751
8cdea7c0
BS
1752static struct cftype mem_cgroup_files[] = {
1753 {
0eea1030 1754 .name = "usage_in_bytes",
8c7c6e34 1755 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1756 .read_u64 = mem_cgroup_read,
8cdea7c0 1757 },
c84872e1
PE
1758 {
1759 .name = "max_usage_in_bytes",
8c7c6e34 1760 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1761 .trigger = mem_cgroup_reset,
c84872e1
PE
1762 .read_u64 = mem_cgroup_read,
1763 },
8cdea7c0 1764 {
0eea1030 1765 .name = "limit_in_bytes",
8c7c6e34 1766 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1767 .write_string = mem_cgroup_write,
2c3daa72 1768 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1769 },
1770 {
1771 .name = "failcnt",
8c7c6e34 1772 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1773 .trigger = mem_cgroup_reset,
2c3daa72 1774 .read_u64 = mem_cgroup_read,
8cdea7c0 1775 },
d2ceb9b7
KH
1776 {
1777 .name = "stat",
c64745cf 1778 .read_map = mem_control_stat_show,
d2ceb9b7 1779 },
c1e862c1
KH
1780 {
1781 .name = "force_empty",
1782 .trigger = mem_cgroup_force_empty_write,
1783 },
18f59ea7
BS
1784 {
1785 .name = "use_hierarchy",
1786 .write_u64 = mem_cgroup_hierarchy_write,
1787 .read_u64 = mem_cgroup_hierarchy_read,
1788 },
8cdea7c0
BS
1789};
1790
8c7c6e34
KH
1791#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1792static struct cftype memsw_cgroup_files[] = {
1793 {
1794 .name = "memsw.usage_in_bytes",
1795 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1796 .read_u64 = mem_cgroup_read,
1797 },
1798 {
1799 .name = "memsw.max_usage_in_bytes",
1800 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1801 .trigger = mem_cgroup_reset,
1802 .read_u64 = mem_cgroup_read,
1803 },
1804 {
1805 .name = "memsw.limit_in_bytes",
1806 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1807 .write_string = mem_cgroup_write,
1808 .read_u64 = mem_cgroup_read,
1809 },
1810 {
1811 .name = "memsw.failcnt",
1812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1813 .trigger = mem_cgroup_reset,
1814 .read_u64 = mem_cgroup_read,
1815 },
1816};
1817
1818static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1819{
1820 if (!do_swap_account)
1821 return 0;
1822 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1823 ARRAY_SIZE(memsw_cgroup_files));
1824};
1825#else
1826static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1827{
1828 return 0;
1829}
1830#endif
1831
6d12e2d8
KH
1832static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1833{
1834 struct mem_cgroup_per_node *pn;
1ecaab2b 1835 struct mem_cgroup_per_zone *mz;
b69408e8 1836 enum lru_list l;
41e3355d 1837 int zone, tmp = node;
1ecaab2b
KH
1838 /*
1839 * This routine is called against possible nodes.
1840 * But it's BUG to call kmalloc() against offline node.
1841 *
1842 * TODO: this routine can waste much memory for nodes which will
1843 * never be onlined. It's better to use memory hotplug callback
1844 * function.
1845 */
41e3355d
KH
1846 if (!node_state(node, N_NORMAL_MEMORY))
1847 tmp = -1;
1848 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1849 if (!pn)
1850 return 1;
1ecaab2b 1851
6d12e2d8
KH
1852 mem->info.nodeinfo[node] = pn;
1853 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1854
1855 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1856 mz = &pn->zoneinfo[zone];
b69408e8
CL
1857 for_each_lru(l)
1858 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1859 }
6d12e2d8
KH
1860 return 0;
1861}
1862
1ecaab2b
KH
1863static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1864{
1865 kfree(mem->info.nodeinfo[node]);
1866}
1867
c8dad2bb
JB
1868static int mem_cgroup_size(void)
1869{
1870 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1871 return sizeof(struct mem_cgroup) + cpustat_size;
1872}
1873
33327948
KH
1874static struct mem_cgroup *mem_cgroup_alloc(void)
1875{
1876 struct mem_cgroup *mem;
c8dad2bb 1877 int size = mem_cgroup_size();
33327948 1878
c8dad2bb
JB
1879 if (size < PAGE_SIZE)
1880 mem = kmalloc(size, GFP_KERNEL);
33327948 1881 else
c8dad2bb 1882 mem = vmalloc(size);
33327948
KH
1883
1884 if (mem)
c8dad2bb 1885 memset(mem, 0, size);
33327948
KH
1886 return mem;
1887}
1888
8c7c6e34
KH
1889/*
1890 * At destroying mem_cgroup, references from swap_cgroup can remain.
1891 * (scanning all at force_empty is too costly...)
1892 *
1893 * Instead of clearing all references at force_empty, we remember
1894 * the number of reference from swap_cgroup and free mem_cgroup when
1895 * it goes down to 0.
1896 *
1897 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1898 * entry which points to this memcg will be ignore at swapin.
1899 *
1900 * Removal of cgroup itself succeeds regardless of refs from swap.
1901 */
1902
33327948
KH
1903static void mem_cgroup_free(struct mem_cgroup *mem)
1904{
08e552c6
KH
1905 int node;
1906
8c7c6e34
KH
1907 if (atomic_read(&mem->refcnt) > 0)
1908 return;
08e552c6
KH
1909
1910
1911 for_each_node_state(node, N_POSSIBLE)
1912 free_mem_cgroup_per_zone_info(mem, node);
1913
c8dad2bb 1914 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1915 kfree(mem);
1916 else
1917 vfree(mem);
1918}
1919
8c7c6e34
KH
1920static void mem_cgroup_get(struct mem_cgroup *mem)
1921{
1922 atomic_inc(&mem->refcnt);
1923}
1924
1925static void mem_cgroup_put(struct mem_cgroup *mem)
1926{
1927 if (atomic_dec_and_test(&mem->refcnt)) {
1928 if (!mem->obsolete)
1929 return;
1930 mem_cgroup_free(mem);
1931 }
1932}
1933
33327948 1934
c077719b
KH
1935#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1936static void __init enable_swap_cgroup(void)
1937{
f8d66542 1938 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
1939 do_swap_account = 1;
1940}
1941#else
1942static void __init enable_swap_cgroup(void)
1943{
1944}
1945#endif
1946
8cdea7c0
BS
1947static struct cgroup_subsys_state *
1948mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1949{
28dbc4b6 1950 struct mem_cgroup *mem, *parent;
6d12e2d8 1951 int node;
8cdea7c0 1952
c8dad2bb
JB
1953 mem = mem_cgroup_alloc();
1954 if (!mem)
1955 return ERR_PTR(-ENOMEM);
78fb7466 1956
6d12e2d8
KH
1957 for_each_node_state(node, N_POSSIBLE)
1958 if (alloc_mem_cgroup_per_zone_info(mem, node))
1959 goto free_out;
c077719b 1960 /* root ? */
28dbc4b6 1961 if (cont->parent == NULL) {
c077719b 1962 enable_swap_cgroup();
28dbc4b6 1963 parent = NULL;
18f59ea7 1964 } else {
28dbc4b6 1965 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
1966 mem->use_hierarchy = parent->use_hierarchy;
1967 }
28dbc4b6 1968
18f59ea7
BS
1969 if (parent && parent->use_hierarchy) {
1970 res_counter_init(&mem->res, &parent->res);
1971 res_counter_init(&mem->memsw, &parent->memsw);
1972 } else {
1973 res_counter_init(&mem->res, NULL);
1974 res_counter_init(&mem->memsw, NULL);
1975 }
6d12e2d8 1976
6d61ef40
BS
1977 mem->last_scanned_child = NULL;
1978
8cdea7c0 1979 return &mem->css;
6d12e2d8
KH
1980free_out:
1981 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1982 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1983 mem_cgroup_free(mem);
2dda81ca 1984 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1985}
1986
df878fb0
KH
1987static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1988 struct cgroup *cont)
1989{
1990 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 1991 mem->obsolete = 1;
c1e862c1 1992 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1993}
1994
8cdea7c0
BS
1995static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1996 struct cgroup *cont)
1997{
33327948 1998 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1999}
2000
2001static int mem_cgroup_populate(struct cgroup_subsys *ss,
2002 struct cgroup *cont)
2003{
8c7c6e34
KH
2004 int ret;
2005
2006 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2007 ARRAY_SIZE(mem_cgroup_files));
2008
2009 if (!ret)
2010 ret = register_memsw_files(cont, ss);
2011 return ret;
8cdea7c0
BS
2012}
2013
67e465a7
BS
2014static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2015 struct cgroup *cont,
2016 struct cgroup *old_cont,
2017 struct task_struct *p)
2018{
67e465a7 2019 /*
f9717d28
NK
2020 * FIXME: It's better to move charges of this process from old
2021 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2022 */
67e465a7
BS
2023}
2024
8cdea7c0
BS
2025struct cgroup_subsys mem_cgroup_subsys = {
2026 .name = "memory",
2027 .subsys_id = mem_cgroup_subsys_id,
2028 .create = mem_cgroup_create,
df878fb0 2029 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2030 .destroy = mem_cgroup_destroy,
2031 .populate = mem_cgroup_populate,
67e465a7 2032 .attach = mem_cgroup_move_task,
6d12e2d8 2033 .early_init = 0,
8cdea7c0 2034};
c077719b
KH
2035
2036#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2037
2038static int __init disable_swap_account(char *s)
2039{
2040 really_do_swap_account = 0;
2041 return 1;
2042}
2043__setup("noswapaccount", disable_swap_account);
2044#endif