]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
revert "memcg: get rid of soft-limit tree infrastructure"
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
af7c4b0e
JW
88static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
b070e65c 91 "rss_huge",
af7c4b0e 92 "mapped_file",
3ea67d06 93 "writeback",
af7c4b0e
JW
94 "swap",
95};
96
e9f8974f
JW
97enum mem_cgroup_events_index {
98 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
99 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
af7c4b0e
JW
104
105static const char * const mem_cgroup_events_names[] = {
106 "pgpgin",
107 "pgpgout",
108 "pgfault",
109 "pgmajfault",
110};
111
58cf188e
SZ
112static const char * const mem_cgroup_lru_names[] = {
113 "inactive_anon",
114 "active_anon",
115 "inactive_file",
116 "active_file",
117 "unevictable",
118};
119
7a159cc9
JW
120/*
121 * Per memcg event counter is incremented at every pagein/pageout. With THP,
122 * it will be incremated by the number of pages. This counter is used for
123 * for trigger some periodic events. This is straightforward and better
124 * than using jiffies etc. to handle periodic memcg event.
125 */
126enum mem_cgroup_events_target {
127 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 128 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 129 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
130 MEM_CGROUP_NTARGETS,
131};
a0db00fc
KS
132#define THRESHOLDS_EVENTS_TARGET 128
133#define SOFTLIMIT_EVENTS_TARGET 1024
134#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 135
d52aa412 136struct mem_cgroup_stat_cpu {
7a159cc9 137 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 138 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 139 unsigned long nr_page_events;
7a159cc9 140 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
141};
142
527a5ec9 143struct mem_cgroup_reclaim_iter {
5f578161
MH
144 /*
145 * last scanned hierarchy member. Valid only if last_dead_count
146 * matches memcg->dead_count of the hierarchy root group.
147 */
542f85f9 148 struct mem_cgroup *last_visited;
5f578161
MH
149 unsigned long last_dead_count;
150
527a5ec9
JW
151 /* scan generation, increased every round-trip */
152 unsigned int generation;
153};
154
6d12e2d8
KH
155/*
156 * per-zone information in memory controller.
157 */
6d12e2d8 158struct mem_cgroup_per_zone {
6290df54 159 struct lruvec lruvec;
1eb49272 160 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 161
527a5ec9
JW
162 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
163
bb4cc1a8
AM
164 struct rb_node tree_node; /* RB tree node */
165 unsigned long long usage_in_excess;/* Set to the value by which */
166 /* the soft limit is exceeded*/
167 bool on_tree;
d79154bb 168 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 169 /* use container_of */
6d12e2d8 170};
6d12e2d8
KH
171
172struct mem_cgroup_per_node {
173 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
174};
175
bb4cc1a8
AM
176/*
177 * Cgroups above their limits are maintained in a RB-Tree, independent of
178 * their hierarchy representation
179 */
180
181struct mem_cgroup_tree_per_zone {
182 struct rb_root rb_root;
183 spinlock_t lock;
184};
185
186struct mem_cgroup_tree_per_node {
187 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
188};
189
190struct mem_cgroup_tree {
191 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
192};
193
194static struct mem_cgroup_tree soft_limit_tree __read_mostly;
195
2e72b634
KS
196struct mem_cgroup_threshold {
197 struct eventfd_ctx *eventfd;
198 u64 threshold;
199};
200
9490ff27 201/* For threshold */
2e72b634 202struct mem_cgroup_threshold_ary {
748dad36 203 /* An array index points to threshold just below or equal to usage. */
5407a562 204 int current_threshold;
2e72b634
KS
205 /* Size of entries[] */
206 unsigned int size;
207 /* Array of thresholds */
208 struct mem_cgroup_threshold entries[0];
209};
2c488db2
KS
210
211struct mem_cgroup_thresholds {
212 /* Primary thresholds array */
213 struct mem_cgroup_threshold_ary *primary;
214 /*
215 * Spare threshold array.
216 * This is needed to make mem_cgroup_unregister_event() "never fail".
217 * It must be able to store at least primary->size - 1 entries.
218 */
219 struct mem_cgroup_threshold_ary *spare;
220};
221
9490ff27
KH
222/* for OOM */
223struct mem_cgroup_eventfd_list {
224 struct list_head list;
225 struct eventfd_ctx *eventfd;
226};
2e72b634 227
c0ff4b85
R
228static void mem_cgroup_threshold(struct mem_cgroup *memcg);
229static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 230
8cdea7c0
BS
231/*
232 * The memory controller data structure. The memory controller controls both
233 * page cache and RSS per cgroup. We would eventually like to provide
234 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
235 * to help the administrator determine what knobs to tune.
236 *
237 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
238 * we hit the water mark. May be even add a low water mark, such that
239 * no reclaim occurs from a cgroup at it's low water mark, this is
240 * a feature that will be implemented much later in the future.
8cdea7c0
BS
241 */
242struct mem_cgroup {
243 struct cgroup_subsys_state css;
244 /*
245 * the counter to account for memory usage
246 */
247 struct res_counter res;
59927fb9 248
70ddf637
AV
249 /* vmpressure notifications */
250 struct vmpressure vmpressure;
251
465939a1
LZ
252 /*
253 * the counter to account for mem+swap usage.
254 */
255 struct res_counter memsw;
59927fb9 256
510fc4e1
GC
257 /*
258 * the counter to account for kernel memory usage.
259 */
260 struct res_counter kmem;
18f59ea7
BS
261 /*
262 * Should the accounting and control be hierarchical, per subtree?
263 */
264 bool use_hierarchy;
510fc4e1 265 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
266
267 bool oom_lock;
268 atomic_t under_oom;
3812c8c8 269 atomic_t oom_wakeups;
79dfdacc 270
1f4c025b 271 int swappiness;
3c11ecf4
KH
272 /* OOM-Killer disable */
273 int oom_kill_disable;
a7885eb8 274
22a668d7
KH
275 /* set when res.limit == memsw.limit */
276 bool memsw_is_minimum;
277
2e72b634
KS
278 /* protect arrays of thresholds */
279 struct mutex thresholds_lock;
280
281 /* thresholds for memory usage. RCU-protected */
2c488db2 282 struct mem_cgroup_thresholds thresholds;
907860ed 283
2e72b634 284 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 286
9490ff27
KH
287 /* For oom notifier event fd */
288 struct list_head oom_notify;
185efc0f 289
7dc74be0
DN
290 /*
291 * Should we move charges of a task when a task is moved into this
292 * mem_cgroup ? And what type of charges should we move ?
293 */
f894ffa8 294 unsigned long move_charge_at_immigrate;
619d094b
KH
295 /*
296 * set > 0 if pages under this cgroup are moving to other cgroup.
297 */
298 atomic_t moving_account;
312734c0
KH
299 /* taken only while moving_account > 0 */
300 spinlock_t move_lock;
d52aa412 301 /*
c62b1a3b 302 * percpu counter.
d52aa412 303 */
3a7951b4 304 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
305 /*
306 * used when a cpu is offlined or other synchronizations
307 * See mem_cgroup_read_stat().
308 */
309 struct mem_cgroup_stat_cpu nocpu_base;
310 spinlock_t pcp_counter_lock;
d1a4c0b3 311
5f578161 312 atomic_t dead_count;
4bd2c1ee 313#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
314 struct tcp_memcontrol tcp_mem;
315#endif
2633d7a0
GC
316#if defined(CONFIG_MEMCG_KMEM)
317 /* analogous to slab_common's slab_caches list. per-memcg */
318 struct list_head memcg_slab_caches;
319 /* Not a spinlock, we can take a lot of time walking the list */
320 struct mutex slab_caches_mutex;
321 /* Index in the kmem_cache->memcg_params->memcg_caches array */
322 int kmemcg_id;
323#endif
45cf7ebd
GC
324
325 int last_scanned_node;
326#if MAX_NUMNODES > 1
327 nodemask_t scan_nodes;
328 atomic_t numainfo_events;
329 atomic_t numainfo_updating;
330#endif
70ddf637 331
54f72fe0
JW
332 struct mem_cgroup_per_node *nodeinfo[0];
333 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
334};
335
45cf7ebd
GC
336static size_t memcg_size(void)
337{
338 return sizeof(struct mem_cgroup) +
339 nr_node_ids * sizeof(struct mem_cgroup_per_node);
340}
341
510fc4e1
GC
342/* internal only representation about the status of kmem accounting. */
343enum {
344 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 345 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 346 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
347};
348
a8964b9b
GC
349/* We account when limit is on, but only after call sites are patched */
350#define KMEM_ACCOUNTED_MASK \
351 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
352
353#ifdef CONFIG_MEMCG_KMEM
354static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
355{
356 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
357}
7de37682
GC
358
359static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
360{
361 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
362}
363
a8964b9b
GC
364static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
365{
366 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
367}
368
55007d84
GC
369static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
370{
371 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
372}
373
7de37682
GC
374static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
375{
10d5ebf4
LZ
376 /*
377 * Our caller must use css_get() first, because memcg_uncharge_kmem()
378 * will call css_put() if it sees the memcg is dead.
379 */
380 smp_wmb();
7de37682
GC
381 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
382 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
383}
384
385static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
386{
387 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
388 &memcg->kmem_account_flags);
389}
510fc4e1
GC
390#endif
391
7dc74be0
DN
392/* Stuffs for move charges at task migration. */
393/*
ee5e8472
GC
394 * Types of charges to be moved. "move_charge_at_immitgrate" and
395 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
396 */
397enum move_type {
4ffef5fe 398 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 399 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
400 NR_MOVE_TYPE,
401};
402
4ffef5fe
DN
403/* "mc" and its members are protected by cgroup_mutex */
404static struct move_charge_struct {
b1dd693e 405 spinlock_t lock; /* for from, to */
4ffef5fe
DN
406 struct mem_cgroup *from;
407 struct mem_cgroup *to;
ee5e8472 408 unsigned long immigrate_flags;
4ffef5fe 409 unsigned long precharge;
854ffa8d 410 unsigned long moved_charge;
483c30b5 411 unsigned long moved_swap;
8033b97c
DN
412 struct task_struct *moving_task; /* a task moving charges */
413 wait_queue_head_t waitq; /* a waitq for other context */
414} mc = {
2bd9bb20 415 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
416 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
417};
4ffef5fe 418
90254a65
DN
419static bool move_anon(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
422}
423
87946a72
DN
424static bool move_file(void)
425{
ee5e8472 426 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
427}
428
4e416953
BS
429/*
430 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
431 * limit reclaim to prevent infinite loops, if they ever occur.
432 */
a0db00fc 433#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 434#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 435
217bc319
KH
436enum charge_type {
437 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 438 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 439 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 440 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
441 NR_CHARGE_TYPE,
442};
443
8c7c6e34 444/* for encoding cft->private value on file */
86ae53e1
GC
445enum res_type {
446 _MEM,
447 _MEMSWAP,
448 _OOM_TYPE,
510fc4e1 449 _KMEM,
86ae53e1
GC
450};
451
a0db00fc
KS
452#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
453#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 454#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
455/* Used for OOM nofiier */
456#define OOM_CONTROL (0)
8c7c6e34 457
75822b44
BS
458/*
459 * Reclaim flags for mem_cgroup_hierarchical_reclaim
460 */
461#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
462#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
463#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
464#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
465
0999821b
GC
466/*
467 * The memcg_create_mutex will be held whenever a new cgroup is created.
468 * As a consequence, any change that needs to protect against new child cgroups
469 * appearing has to hold it as well.
470 */
471static DEFINE_MUTEX(memcg_create_mutex);
472
b2145145
WL
473struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
474{
a7c6d554 475 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
476}
477
70ddf637
AV
478/* Some nice accessors for the vmpressure. */
479struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
480{
481 if (!memcg)
482 memcg = root_mem_cgroup;
483 return &memcg->vmpressure;
484}
485
486struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
487{
488 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
489}
490
491struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
492{
493 return &mem_cgroup_from_css(css)->vmpressure;
494}
495
7ffc0edc
MH
496static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
497{
498 return (memcg == root_mem_cgroup);
499}
500
e1aab161 501/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 502#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 503
e1aab161
GC
504void sock_update_memcg(struct sock *sk)
505{
376be5ff 506 if (mem_cgroup_sockets_enabled) {
e1aab161 507 struct mem_cgroup *memcg;
3f134619 508 struct cg_proto *cg_proto;
e1aab161
GC
509
510 BUG_ON(!sk->sk_prot->proto_cgroup);
511
f3f511e1
GC
512 /* Socket cloning can throw us here with sk_cgrp already
513 * filled. It won't however, necessarily happen from
514 * process context. So the test for root memcg given
515 * the current task's memcg won't help us in this case.
516 *
517 * Respecting the original socket's memcg is a better
518 * decision in this case.
519 */
520 if (sk->sk_cgrp) {
521 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 522 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
523 return;
524 }
525
e1aab161
GC
526 rcu_read_lock();
527 memcg = mem_cgroup_from_task(current);
3f134619 528 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
529 if (!mem_cgroup_is_root(memcg) &&
530 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 531 sk->sk_cgrp = cg_proto;
e1aab161
GC
532 }
533 rcu_read_unlock();
534 }
535}
536EXPORT_SYMBOL(sock_update_memcg);
537
538void sock_release_memcg(struct sock *sk)
539{
376be5ff 540 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
541 struct mem_cgroup *memcg;
542 WARN_ON(!sk->sk_cgrp->memcg);
543 memcg = sk->sk_cgrp->memcg;
5347e5ae 544 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
545 }
546}
d1a4c0b3
GC
547
548struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
549{
550 if (!memcg || mem_cgroup_is_root(memcg))
551 return NULL;
552
553 return &memcg->tcp_mem.cg_proto;
554}
555EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 556
3f134619
GC
557static void disarm_sock_keys(struct mem_cgroup *memcg)
558{
559 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
560 return;
561 static_key_slow_dec(&memcg_socket_limit_enabled);
562}
563#else
564static void disarm_sock_keys(struct mem_cgroup *memcg)
565{
566}
567#endif
568
a8964b9b 569#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
570/*
571 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
572 * There are two main reasons for not using the css_id for this:
573 * 1) this works better in sparse environments, where we have a lot of memcgs,
574 * but only a few kmem-limited. Or also, if we have, for instance, 200
575 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
576 * 200 entry array for that.
577 *
578 * 2) In order not to violate the cgroup API, we would like to do all memory
579 * allocation in ->create(). At that point, we haven't yet allocated the
580 * css_id. Having a separate index prevents us from messing with the cgroup
581 * core for this
582 *
583 * The current size of the caches array is stored in
584 * memcg_limited_groups_array_size. It will double each time we have to
585 * increase it.
586 */
587static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
588int memcg_limited_groups_array_size;
589
55007d84
GC
590/*
591 * MIN_SIZE is different than 1, because we would like to avoid going through
592 * the alloc/free process all the time. In a small machine, 4 kmem-limited
593 * cgroups is a reasonable guess. In the future, it could be a parameter or
594 * tunable, but that is strictly not necessary.
595 *
596 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
597 * this constant directly from cgroup, but it is understandable that this is
598 * better kept as an internal representation in cgroup.c. In any case, the
599 * css_id space is not getting any smaller, and we don't have to necessarily
600 * increase ours as well if it increases.
601 */
602#define MEMCG_CACHES_MIN_SIZE 4
603#define MEMCG_CACHES_MAX_SIZE 65535
604
d7f25f8a
GC
605/*
606 * A lot of the calls to the cache allocation functions are expected to be
607 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
608 * conditional to this static branch, we'll have to allow modules that does
609 * kmem_cache_alloc and the such to see this symbol as well
610 */
a8964b9b 611struct static_key memcg_kmem_enabled_key;
d7f25f8a 612EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
613
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
55007d84 616 if (memcg_kmem_is_active(memcg)) {
a8964b9b 617 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
618 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
619 }
bea207c8
GC
620 /*
621 * This check can't live in kmem destruction function,
622 * since the charges will outlive the cgroup
623 */
624 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
625}
626#else
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
629}
630#endif /* CONFIG_MEMCG_KMEM */
631
632static void disarm_static_keys(struct mem_cgroup *memcg)
633{
634 disarm_sock_keys(memcg);
635 disarm_kmem_keys(memcg);
636}
637
c0ff4b85 638static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 639
f64c3f54 640static struct mem_cgroup_per_zone *
c0ff4b85 641mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 642{
45cf7ebd 643 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 644 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
645}
646
c0ff4b85 647struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 648{
c0ff4b85 649 return &memcg->css;
d324236b
WF
650}
651
f64c3f54 652static struct mem_cgroup_per_zone *
c0ff4b85 653page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 654{
97a6c37b
JW
655 int nid = page_to_nid(page);
656 int zid = page_zonenum(page);
f64c3f54 657
c0ff4b85 658 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
659}
660
bb4cc1a8
AM
661static struct mem_cgroup_tree_per_zone *
662soft_limit_tree_node_zone(int nid, int zid)
663{
664 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
665}
666
667static struct mem_cgroup_tree_per_zone *
668soft_limit_tree_from_page(struct page *page)
669{
670 int nid = page_to_nid(page);
671 int zid = page_zonenum(page);
672
673 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
674}
675
676static void
677__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
678 struct mem_cgroup_per_zone *mz,
679 struct mem_cgroup_tree_per_zone *mctz,
680 unsigned long long new_usage_in_excess)
681{
682 struct rb_node **p = &mctz->rb_root.rb_node;
683 struct rb_node *parent = NULL;
684 struct mem_cgroup_per_zone *mz_node;
685
686 if (mz->on_tree)
687 return;
688
689 mz->usage_in_excess = new_usage_in_excess;
690 if (!mz->usage_in_excess)
691 return;
692 while (*p) {
693 parent = *p;
694 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
695 tree_node);
696 if (mz->usage_in_excess < mz_node->usage_in_excess)
697 p = &(*p)->rb_left;
698 /*
699 * We can't avoid mem cgroups that are over their soft
700 * limit by the same amount
701 */
702 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
703 p = &(*p)->rb_right;
704 }
705 rb_link_node(&mz->tree_node, parent, p);
706 rb_insert_color(&mz->tree_node, &mctz->rb_root);
707 mz->on_tree = true;
708}
709
710static void
711__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
712 struct mem_cgroup_per_zone *mz,
713 struct mem_cgroup_tree_per_zone *mctz)
714{
715 if (!mz->on_tree)
716 return;
717 rb_erase(&mz->tree_node, &mctz->rb_root);
718 mz->on_tree = false;
719}
720
721static void
722mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
723 struct mem_cgroup_per_zone *mz,
724 struct mem_cgroup_tree_per_zone *mctz)
725{
726 spin_lock(&mctz->lock);
727 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
728 spin_unlock(&mctz->lock);
729}
730
731
732static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
733{
734 unsigned long long excess;
735 struct mem_cgroup_per_zone *mz;
736 struct mem_cgroup_tree_per_zone *mctz;
737 int nid = page_to_nid(page);
738 int zid = page_zonenum(page);
739 mctz = soft_limit_tree_from_page(page);
740
741 /*
742 * Necessary to update all ancestors when hierarchy is used.
743 * because their event counter is not touched.
744 */
745 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
746 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
747 excess = res_counter_soft_limit_excess(&memcg->res);
748 /*
749 * We have to update the tree if mz is on RB-tree or
750 * mem is over its softlimit.
751 */
752 if (excess || mz->on_tree) {
753 spin_lock(&mctz->lock);
754 /* if on-tree, remove it */
755 if (mz->on_tree)
756 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
757 /*
758 * Insert again. mz->usage_in_excess will be updated.
759 * If excess is 0, no tree ops.
760 */
761 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
762 spin_unlock(&mctz->lock);
763 }
764 }
765}
766
767static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
768{
769 int node, zone;
770 struct mem_cgroup_per_zone *mz;
771 struct mem_cgroup_tree_per_zone *mctz;
772
773 for_each_node(node) {
774 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
775 mz = mem_cgroup_zoneinfo(memcg, node, zone);
776 mctz = soft_limit_tree_node_zone(node, zone);
777 mem_cgroup_remove_exceeded(memcg, mz, mctz);
778 }
779 }
780}
781
782static struct mem_cgroup_per_zone *
783__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
784{
785 struct rb_node *rightmost = NULL;
786 struct mem_cgroup_per_zone *mz;
787
788retry:
789 mz = NULL;
790 rightmost = rb_last(&mctz->rb_root);
791 if (!rightmost)
792 goto done; /* Nothing to reclaim from */
793
794 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
795 /*
796 * Remove the node now but someone else can add it back,
797 * we will to add it back at the end of reclaim to its correct
798 * position in the tree.
799 */
800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
801 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
802 !css_tryget(&mz->memcg->css))
803 goto retry;
804done:
805 return mz;
806}
807
808static struct mem_cgroup_per_zone *
809mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
810{
811 struct mem_cgroup_per_zone *mz;
812
813 spin_lock(&mctz->lock);
814 mz = __mem_cgroup_largest_soft_limit_node(mctz);
815 spin_unlock(&mctz->lock);
816 return mz;
817}
818
711d3d2c
KH
819/*
820 * Implementation Note: reading percpu statistics for memcg.
821 *
822 * Both of vmstat[] and percpu_counter has threshold and do periodic
823 * synchronization to implement "quick" read. There are trade-off between
824 * reading cost and precision of value. Then, we may have a chance to implement
825 * a periodic synchronizion of counter in memcg's counter.
826 *
827 * But this _read() function is used for user interface now. The user accounts
828 * memory usage by memory cgroup and he _always_ requires exact value because
829 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
830 * have to visit all online cpus and make sum. So, for now, unnecessary
831 * synchronization is not implemented. (just implemented for cpu hotplug)
832 *
833 * If there are kernel internal actions which can make use of some not-exact
834 * value, and reading all cpu value can be performance bottleneck in some
835 * common workload, threashold and synchonization as vmstat[] should be
836 * implemented.
837 */
c0ff4b85 838static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 839 enum mem_cgroup_stat_index idx)
c62b1a3b 840{
7a159cc9 841 long val = 0;
c62b1a3b 842 int cpu;
c62b1a3b 843
711d3d2c
KH
844 get_online_cpus();
845 for_each_online_cpu(cpu)
c0ff4b85 846 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 847#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
848 spin_lock(&memcg->pcp_counter_lock);
849 val += memcg->nocpu_base.count[idx];
850 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
851#endif
852 put_online_cpus();
c62b1a3b
KH
853 return val;
854}
855
c0ff4b85 856static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
857 bool charge)
858{
859 int val = (charge) ? 1 : -1;
bff6bb83 860 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
861}
862
c0ff4b85 863static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
864 enum mem_cgroup_events_index idx)
865{
866 unsigned long val = 0;
867 int cpu;
868
869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
875#endif
876 return val;
877}
878
c0ff4b85 879static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 880 struct page *page,
b2402857 881 bool anon, int nr_pages)
d52aa412 882{
c62b1a3b
KH
883 preempt_disable();
884
b2402857
KH
885 /*
886 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
887 * counted as CACHE even if it's on ANON LRU.
888 */
889 if (anon)
890 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 891 nr_pages);
d52aa412 892 else
b2402857 893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 894 nr_pages);
55e462b0 895
b070e65c
DR
896 if (PageTransHuge(page))
897 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
898 nr_pages);
899
e401f176
KH
900 /* pagein of a big page is an event. So, ignore page size */
901 if (nr_pages > 0)
c0ff4b85 902 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 903 else {
c0ff4b85 904 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
905 nr_pages = -nr_pages; /* for event */
906 }
e401f176 907
13114716 908 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 909
c62b1a3b 910 preempt_enable();
6d12e2d8
KH
911}
912
bb2a0de9 913unsigned long
4d7dcca2 914mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
915{
916 struct mem_cgroup_per_zone *mz;
917
918 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
919 return mz->lru_size[lru];
920}
921
922static unsigned long
c0ff4b85 923mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 924 unsigned int lru_mask)
889976db
YH
925{
926 struct mem_cgroup_per_zone *mz;
f156ab93 927 enum lru_list lru;
bb2a0de9
KH
928 unsigned long ret = 0;
929
c0ff4b85 930 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 931
f156ab93
HD
932 for_each_lru(lru) {
933 if (BIT(lru) & lru_mask)
934 ret += mz->lru_size[lru];
bb2a0de9
KH
935 }
936 return ret;
937}
938
939static unsigned long
c0ff4b85 940mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
941 int nid, unsigned int lru_mask)
942{
889976db
YH
943 u64 total = 0;
944 int zid;
945
bb2a0de9 946 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
947 total += mem_cgroup_zone_nr_lru_pages(memcg,
948 nid, zid, lru_mask);
bb2a0de9 949
889976db
YH
950 return total;
951}
bb2a0de9 952
c0ff4b85 953static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 954 unsigned int lru_mask)
6d12e2d8 955{
889976db 956 int nid;
6d12e2d8
KH
957 u64 total = 0;
958
31aaea4a 959 for_each_node_state(nid, N_MEMORY)
c0ff4b85 960 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 961 return total;
d52aa412
KH
962}
963
f53d7ce3
JW
964static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
965 enum mem_cgroup_events_target target)
7a159cc9
JW
966{
967 unsigned long val, next;
968
13114716 969 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 970 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 971 /* from time_after() in jiffies.h */
f53d7ce3
JW
972 if ((long)next - (long)val < 0) {
973 switch (target) {
974 case MEM_CGROUP_TARGET_THRESH:
975 next = val + THRESHOLDS_EVENTS_TARGET;
976 break;
bb4cc1a8
AM
977 case MEM_CGROUP_TARGET_SOFTLIMIT:
978 next = val + SOFTLIMIT_EVENTS_TARGET;
979 break;
f53d7ce3
JW
980 case MEM_CGROUP_TARGET_NUMAINFO:
981 next = val + NUMAINFO_EVENTS_TARGET;
982 break;
983 default:
984 break;
985 }
986 __this_cpu_write(memcg->stat->targets[target], next);
987 return true;
7a159cc9 988 }
f53d7ce3 989 return false;
d2265e6f
KH
990}
991
992/*
993 * Check events in order.
994 *
995 */
c0ff4b85 996static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 997{
4799401f 998 preempt_disable();
d2265e6f 999 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1000 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1001 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1002 bool do_softlimit;
82b3f2a7 1003 bool do_numainfo __maybe_unused;
f53d7ce3 1004
bb4cc1a8
AM
1005 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1006 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1007#if MAX_NUMNODES > 1
1008 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_NUMAINFO);
1010#endif
1011 preempt_enable();
1012
c0ff4b85 1013 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1014 if (unlikely(do_softlimit))
1015 mem_cgroup_update_tree(memcg, page);
453a9bf3 1016#if MAX_NUMNODES > 1
f53d7ce3 1017 if (unlikely(do_numainfo))
c0ff4b85 1018 atomic_inc(&memcg->numainfo_events);
453a9bf3 1019#endif
f53d7ce3
JW
1020 } else
1021 preempt_enable();
d2265e6f
KH
1022}
1023
cf475ad2 1024struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1025{
31a78f23
BS
1026 /*
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1030 */
1031 if (unlikely(!p))
1032 return NULL;
1033
8af01f56 1034 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1035}
1036
a433658c 1037struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1038{
c0ff4b85 1039 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1040
1041 if (!mm)
1042 return NULL;
54595fe2
KH
1043 /*
1044 * Because we have no locks, mm->owner's may be being moved to other
1045 * cgroup. We use css_tryget() here even if this looks
1046 * pessimistic (rather than adding locks here).
1047 */
1048 rcu_read_lock();
1049 do {
c0ff4b85
R
1050 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1051 if (unlikely(!memcg))
54595fe2 1052 break;
c0ff4b85 1053 } while (!css_tryget(&memcg->css));
54595fe2 1054 rcu_read_unlock();
c0ff4b85 1055 return memcg;
54595fe2
KH
1056}
1057
16248d8f
MH
1058/*
1059 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1060 * ref. count) or NULL if the whole root's subtree has been visited.
1061 *
1062 * helper function to be used by mem_cgroup_iter
1063 */
1064static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1065 struct mem_cgroup *last_visited)
16248d8f 1066{
492eb21b 1067 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1068
bd8815a6 1069 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1070skip_node:
492eb21b 1071 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1072
1073 /*
1074 * Even if we found a group we have to make sure it is
1075 * alive. css && !memcg means that the groups should be
1076 * skipped and we should continue the tree walk.
1077 * last_visited css is safe to use because it is
1078 * protected by css_get and the tree walk is rcu safe.
1079 */
492eb21b
TH
1080 if (next_css) {
1081 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1082
694fbc0f
AM
1083 if (css_tryget(&mem->css))
1084 return mem;
1085 else {
492eb21b 1086 prev_css = next_css;
16248d8f
MH
1087 goto skip_node;
1088 }
1089 }
1090
1091 return NULL;
1092}
1093
519ebea3
JW
1094static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1095{
1096 /*
1097 * When a group in the hierarchy below root is destroyed, the
1098 * hierarchy iterator can no longer be trusted since it might
1099 * have pointed to the destroyed group. Invalidate it.
1100 */
1101 atomic_inc(&root->dead_count);
1102}
1103
1104static struct mem_cgroup *
1105mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1106 struct mem_cgroup *root,
1107 int *sequence)
1108{
1109 struct mem_cgroup *position = NULL;
1110 /*
1111 * A cgroup destruction happens in two stages: offlining and
1112 * release. They are separated by a RCU grace period.
1113 *
1114 * If the iterator is valid, we may still race with an
1115 * offlining. The RCU lock ensures the object won't be
1116 * released, tryget will fail if we lost the race.
1117 */
1118 *sequence = atomic_read(&root->dead_count);
1119 if (iter->last_dead_count == *sequence) {
1120 smp_rmb();
1121 position = iter->last_visited;
1122 if (position && !css_tryget(&position->css))
1123 position = NULL;
1124 }
1125 return position;
1126}
1127
1128static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1129 struct mem_cgroup *last_visited,
1130 struct mem_cgroup *new_position,
1131 int sequence)
1132{
1133 if (last_visited)
1134 css_put(&last_visited->css);
1135 /*
1136 * We store the sequence count from the time @last_visited was
1137 * loaded successfully instead of rereading it here so that we
1138 * don't lose destruction events in between. We could have
1139 * raced with the destruction of @new_position after all.
1140 */
1141 iter->last_visited = new_position;
1142 smp_wmb();
1143 iter->last_dead_count = sequence;
1144}
1145
5660048c
JW
1146/**
1147 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1148 * @root: hierarchy root
1149 * @prev: previously returned memcg, NULL on first invocation
1150 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1151 *
1152 * Returns references to children of the hierarchy below @root, or
1153 * @root itself, or %NULL after a full round-trip.
1154 *
1155 * Caller must pass the return value in @prev on subsequent
1156 * invocations for reference counting, or use mem_cgroup_iter_break()
1157 * to cancel a hierarchy walk before the round-trip is complete.
1158 *
1159 * Reclaimers can specify a zone and a priority level in @reclaim to
1160 * divide up the memcgs in the hierarchy among all concurrent
1161 * reclaimers operating on the same zone and priority.
1162 */
694fbc0f 1163struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1164 struct mem_cgroup *prev,
694fbc0f 1165 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1166{
9f3a0d09 1167 struct mem_cgroup *memcg = NULL;
542f85f9 1168 struct mem_cgroup *last_visited = NULL;
711d3d2c 1169
694fbc0f
AM
1170 if (mem_cgroup_disabled())
1171 return NULL;
5660048c 1172
9f3a0d09
JW
1173 if (!root)
1174 root = root_mem_cgroup;
7d74b06f 1175
9f3a0d09 1176 if (prev && !reclaim)
542f85f9 1177 last_visited = prev;
14067bb3 1178
9f3a0d09
JW
1179 if (!root->use_hierarchy && root != root_mem_cgroup) {
1180 if (prev)
c40046f3 1181 goto out_css_put;
694fbc0f 1182 return root;
9f3a0d09 1183 }
14067bb3 1184
542f85f9 1185 rcu_read_lock();
9f3a0d09 1186 while (!memcg) {
527a5ec9 1187 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1188 int uninitialized_var(seq);
711d3d2c 1189
527a5ec9
JW
1190 if (reclaim) {
1191 int nid = zone_to_nid(reclaim->zone);
1192 int zid = zone_idx(reclaim->zone);
1193 struct mem_cgroup_per_zone *mz;
1194
1195 mz = mem_cgroup_zoneinfo(root, nid, zid);
1196 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1197 if (prev && reclaim->generation != iter->generation) {
5f578161 1198 iter->last_visited = NULL;
542f85f9
MH
1199 goto out_unlock;
1200 }
5f578161 1201
519ebea3 1202 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1203 }
7d74b06f 1204
694fbc0f 1205 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1206
527a5ec9 1207 if (reclaim) {
519ebea3 1208 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1209
19f39402 1210 if (!memcg)
527a5ec9
JW
1211 iter->generation++;
1212 else if (!prev && memcg)
1213 reclaim->generation = iter->generation;
1214 }
9f3a0d09 1215
694fbc0f 1216 if (prev && !memcg)
542f85f9 1217 goto out_unlock;
9f3a0d09 1218 }
542f85f9
MH
1219out_unlock:
1220 rcu_read_unlock();
c40046f3
MH
1221out_css_put:
1222 if (prev && prev != root)
1223 css_put(&prev->css);
1224
9f3a0d09 1225 return memcg;
14067bb3 1226}
7d74b06f 1227
5660048c
JW
1228/**
1229 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1230 * @root: hierarchy root
1231 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1232 */
1233void mem_cgroup_iter_break(struct mem_cgroup *root,
1234 struct mem_cgroup *prev)
9f3a0d09
JW
1235{
1236 if (!root)
1237 root = root_mem_cgroup;
1238 if (prev && prev != root)
1239 css_put(&prev->css);
1240}
7d74b06f 1241
9f3a0d09
JW
1242/*
1243 * Iteration constructs for visiting all cgroups (under a tree). If
1244 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1245 * be used for reference counting.
1246 */
1247#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1248 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1249 iter != NULL; \
527a5ec9 1250 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1251
9f3a0d09 1252#define for_each_mem_cgroup(iter) \
527a5ec9 1253 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1254 iter != NULL; \
527a5ec9 1255 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1256
68ae564b 1257void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1258{
c0ff4b85 1259 struct mem_cgroup *memcg;
456f998e 1260
456f998e 1261 rcu_read_lock();
c0ff4b85
R
1262 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1263 if (unlikely(!memcg))
456f998e
YH
1264 goto out;
1265
1266 switch (idx) {
456f998e 1267 case PGFAULT:
0e574a93
JW
1268 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1269 break;
1270 case PGMAJFAULT:
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1272 break;
1273 default:
1274 BUG();
1275 }
1276out:
1277 rcu_read_unlock();
1278}
68ae564b 1279EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1280
925b7673
JW
1281/**
1282 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1283 * @zone: zone of the wanted lruvec
fa9add64 1284 * @memcg: memcg of the wanted lruvec
925b7673
JW
1285 *
1286 * Returns the lru list vector holding pages for the given @zone and
1287 * @mem. This can be the global zone lruvec, if the memory controller
1288 * is disabled.
1289 */
1290struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1291 struct mem_cgroup *memcg)
1292{
1293 struct mem_cgroup_per_zone *mz;
bea8c150 1294 struct lruvec *lruvec;
925b7673 1295
bea8c150
HD
1296 if (mem_cgroup_disabled()) {
1297 lruvec = &zone->lruvec;
1298 goto out;
1299 }
925b7673
JW
1300
1301 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1302 lruvec = &mz->lruvec;
1303out:
1304 /*
1305 * Since a node can be onlined after the mem_cgroup was created,
1306 * we have to be prepared to initialize lruvec->zone here;
1307 * and if offlined then reonlined, we need to reinitialize it.
1308 */
1309 if (unlikely(lruvec->zone != zone))
1310 lruvec->zone = zone;
1311 return lruvec;
925b7673
JW
1312}
1313
08e552c6
KH
1314/*
1315 * Following LRU functions are allowed to be used without PCG_LOCK.
1316 * Operations are called by routine of global LRU independently from memcg.
1317 * What we have to take care of here is validness of pc->mem_cgroup.
1318 *
1319 * Changes to pc->mem_cgroup happens when
1320 * 1. charge
1321 * 2. moving account
1322 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1323 * It is added to LRU before charge.
1324 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1325 * When moving account, the page is not on LRU. It's isolated.
1326 */
4f98a2fe 1327
925b7673 1328/**
fa9add64 1329 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1330 * @page: the page
fa9add64 1331 * @zone: zone of the page
925b7673 1332 */
fa9add64 1333struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1334{
08e552c6 1335 struct mem_cgroup_per_zone *mz;
925b7673
JW
1336 struct mem_cgroup *memcg;
1337 struct page_cgroup *pc;
bea8c150 1338 struct lruvec *lruvec;
6d12e2d8 1339
bea8c150
HD
1340 if (mem_cgroup_disabled()) {
1341 lruvec = &zone->lruvec;
1342 goto out;
1343 }
925b7673 1344
08e552c6 1345 pc = lookup_page_cgroup(page);
38c5d72f 1346 memcg = pc->mem_cgroup;
7512102c
HD
1347
1348 /*
fa9add64 1349 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1350 * an uncharged page off lru does nothing to secure
1351 * its former mem_cgroup from sudden removal.
1352 *
1353 * Our caller holds lru_lock, and PageCgroupUsed is updated
1354 * under page_cgroup lock: between them, they make all uses
1355 * of pc->mem_cgroup safe.
1356 */
fa9add64 1357 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1358 pc->mem_cgroup = memcg = root_mem_cgroup;
1359
925b7673 1360 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1361 lruvec = &mz->lruvec;
1362out:
1363 /*
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1367 */
1368 if (unlikely(lruvec->zone != zone))
1369 lruvec->zone = zone;
1370 return lruvec;
08e552c6 1371}
b69408e8 1372
925b7673 1373/**
fa9add64
HD
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
1377 * @nr_pages: positive when adding or negative when removing
925b7673 1378 *
fa9add64
HD
1379 * This function must be called when a page is added to or removed from an
1380 * lru list.
3f58a829 1381 */
fa9add64
HD
1382void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1383 int nr_pages)
3f58a829
MK
1384{
1385 struct mem_cgroup_per_zone *mz;
fa9add64 1386 unsigned long *lru_size;
3f58a829
MK
1387
1388 if (mem_cgroup_disabled())
1389 return;
1390
fa9add64
HD
1391 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1392 lru_size = mz->lru_size + lru;
1393 *lru_size += nr_pages;
1394 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1395}
544122e5 1396
3e92041d 1397/*
c0ff4b85 1398 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1399 * hierarchy subtree
1400 */
c3ac9a8a
JW
1401bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1402 struct mem_cgroup *memcg)
3e92041d 1403{
91c63734
JW
1404 if (root_memcg == memcg)
1405 return true;
3a981f48 1406 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1407 return false;
c3ac9a8a
JW
1408 return css_is_ancestor(&memcg->css, &root_memcg->css);
1409}
1410
1411static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1412 struct mem_cgroup *memcg)
1413{
1414 bool ret;
1415
91c63734 1416 rcu_read_lock();
c3ac9a8a 1417 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1418 rcu_read_unlock();
1419 return ret;
3e92041d
MH
1420}
1421
ffbdccf5
DR
1422bool task_in_mem_cgroup(struct task_struct *task,
1423 const struct mem_cgroup *memcg)
4c4a2214 1424{
0b7f569e 1425 struct mem_cgroup *curr = NULL;
158e0a2d 1426 struct task_struct *p;
ffbdccf5 1427 bool ret;
4c4a2214 1428
158e0a2d 1429 p = find_lock_task_mm(task);
de077d22
DR
1430 if (p) {
1431 curr = try_get_mem_cgroup_from_mm(p->mm);
1432 task_unlock(p);
1433 } else {
1434 /*
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1438 */
ffbdccf5 1439 rcu_read_lock();
de077d22
DR
1440 curr = mem_cgroup_from_task(task);
1441 if (curr)
1442 css_get(&curr->css);
ffbdccf5 1443 rcu_read_unlock();
de077d22 1444 }
0b7f569e 1445 if (!curr)
ffbdccf5 1446 return false;
d31f56db 1447 /*
c0ff4b85 1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1449 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1452 */
c0ff4b85 1453 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1454 css_put(&curr->css);
4c4a2214
DR
1455 return ret;
1456}
1457
c56d5c7d 1458int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1459{
9b272977 1460 unsigned long inactive_ratio;
14797e23 1461 unsigned long inactive;
9b272977 1462 unsigned long active;
c772be93 1463 unsigned long gb;
14797e23 1464
4d7dcca2
HD
1465 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1467
c772be93
KM
1468 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 if (gb)
1470 inactive_ratio = int_sqrt(10 * gb);
1471 else
1472 inactive_ratio = 1;
1473
9b272977 1474 return inactive * inactive_ratio < active;
14797e23
KM
1475}
1476
6d61ef40
BS
1477#define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1479
19942822 1480/**
9d11ea9f 1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1482 * @memcg: the memory cgroup
19942822 1483 *
9d11ea9f 1484 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1485 * pages.
19942822 1486 */
c0ff4b85 1487static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1488{
9d11ea9f
JW
1489 unsigned long long margin;
1490
c0ff4b85 1491 margin = res_counter_margin(&memcg->res);
9d11ea9f 1492 if (do_swap_account)
c0ff4b85 1493 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1494 return margin >> PAGE_SHIFT;
19942822
JW
1495}
1496
1f4c025b 1497int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1498{
a7885eb8 1499 /* root ? */
63876986 1500 if (!css_parent(&memcg->css))
a7885eb8
KM
1501 return vm_swappiness;
1502
bf1ff263 1503 return memcg->swappiness;
a7885eb8
KM
1504}
1505
619d094b
KH
1506/*
1507 * memcg->moving_account is used for checking possibility that some thread is
1508 * calling move_account(). When a thread on CPU-A starts moving pages under
1509 * a memcg, other threads should check memcg->moving_account under
1510 * rcu_read_lock(), like this:
1511 *
1512 * CPU-A CPU-B
1513 * rcu_read_lock()
1514 * memcg->moving_account+1 if (memcg->mocing_account)
1515 * take heavy locks.
1516 * synchronize_rcu() update something.
1517 * rcu_read_unlock()
1518 * start move here.
1519 */
4331f7d3
KH
1520
1521/* for quick checking without looking up memcg */
1522atomic_t memcg_moving __read_mostly;
1523
c0ff4b85 1524static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1525{
4331f7d3 1526 atomic_inc(&memcg_moving);
619d094b 1527 atomic_inc(&memcg->moving_account);
32047e2a
KH
1528 synchronize_rcu();
1529}
1530
c0ff4b85 1531static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1532{
619d094b
KH
1533 /*
1534 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1535 * We check NULL in callee rather than caller.
1536 */
4331f7d3
KH
1537 if (memcg) {
1538 atomic_dec(&memcg_moving);
619d094b 1539 atomic_dec(&memcg->moving_account);
4331f7d3 1540 }
32047e2a 1541}
619d094b 1542
32047e2a
KH
1543/*
1544 * 2 routines for checking "mem" is under move_account() or not.
1545 *
13fd1dd9
AM
1546 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1547 * is used for avoiding races in accounting. If true,
32047e2a
KH
1548 * pc->mem_cgroup may be overwritten.
1549 *
1550 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1551 * under hierarchy of moving cgroups. This is for
1552 * waiting at hith-memory prressure caused by "move".
1553 */
1554
13fd1dd9 1555static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1556{
1557 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1558 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1559}
4b534334 1560
c0ff4b85 1561static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1562{
2bd9bb20
KH
1563 struct mem_cgroup *from;
1564 struct mem_cgroup *to;
4b534334 1565 bool ret = false;
2bd9bb20
KH
1566 /*
1567 * Unlike task_move routines, we access mc.to, mc.from not under
1568 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1569 */
1570 spin_lock(&mc.lock);
1571 from = mc.from;
1572 to = mc.to;
1573 if (!from)
1574 goto unlock;
3e92041d 1575
c0ff4b85
R
1576 ret = mem_cgroup_same_or_subtree(memcg, from)
1577 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1578unlock:
1579 spin_unlock(&mc.lock);
4b534334
KH
1580 return ret;
1581}
1582
c0ff4b85 1583static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1584{
1585 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1586 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1587 DEFINE_WAIT(wait);
1588 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1589 /* moving charge context might have finished. */
1590 if (mc.moving_task)
1591 schedule();
1592 finish_wait(&mc.waitq, &wait);
1593 return true;
1594 }
1595 }
1596 return false;
1597}
1598
312734c0
KH
1599/*
1600 * Take this lock when
1601 * - a code tries to modify page's memcg while it's USED.
1602 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1603 * see mem_cgroup_stolen(), too.
312734c0
KH
1604 */
1605static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1606 unsigned long *flags)
1607{
1608 spin_lock_irqsave(&memcg->move_lock, *flags);
1609}
1610
1611static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1612 unsigned long *flags)
1613{
1614 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1615}
1616
58cf188e 1617#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1618/**
58cf188e 1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1620 * @memcg: The memory cgroup that went over limit
1621 * @p: Task that is going to be killed
1622 *
1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1624 * enabled
1625 */
1626void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1627{
1628 struct cgroup *task_cgrp;
1629 struct cgroup *mem_cgrp;
1630 /*
1631 * Need a buffer in BSS, can't rely on allocations. The code relies
1632 * on the assumption that OOM is serialized for memory controller.
1633 * If this assumption is broken, revisit this code.
1634 */
1635 static char memcg_name[PATH_MAX];
1636 int ret;
58cf188e
SZ
1637 struct mem_cgroup *iter;
1638 unsigned int i;
e222432b 1639
58cf188e 1640 if (!p)
e222432b
BS
1641 return;
1642
e222432b
BS
1643 rcu_read_lock();
1644
1645 mem_cgrp = memcg->css.cgroup;
1646 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1647
1648 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1649 if (ret < 0) {
1650 /*
1651 * Unfortunately, we are unable to convert to a useful name
1652 * But we'll still print out the usage information
1653 */
1654 rcu_read_unlock();
1655 goto done;
1656 }
1657 rcu_read_unlock();
1658
d045197f 1659 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1660
1661 rcu_read_lock();
1662 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1663 if (ret < 0) {
1664 rcu_read_unlock();
1665 goto done;
1666 }
1667 rcu_read_unlock();
1668
1669 /*
1670 * Continues from above, so we don't need an KERN_ level
1671 */
d045197f 1672 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1673done:
1674
d045197f 1675 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1676 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1677 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1678 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1679 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1680 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1681 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1682 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1683 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1684 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1685 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1686 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1687
1688 for_each_mem_cgroup_tree(iter, memcg) {
1689 pr_info("Memory cgroup stats");
1690
1691 rcu_read_lock();
1692 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1693 if (!ret)
1694 pr_cont(" for %s", memcg_name);
1695 rcu_read_unlock();
1696 pr_cont(":");
1697
1698 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1699 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1700 continue;
1701 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1702 K(mem_cgroup_read_stat(iter, i)));
1703 }
1704
1705 for (i = 0; i < NR_LRU_LISTS; i++)
1706 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1707 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1708
1709 pr_cont("\n");
1710 }
e222432b
BS
1711}
1712
81d39c20
KH
1713/*
1714 * This function returns the number of memcg under hierarchy tree. Returns
1715 * 1(self count) if no children.
1716 */
c0ff4b85 1717static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1718{
1719 int num = 0;
7d74b06f
KH
1720 struct mem_cgroup *iter;
1721
c0ff4b85 1722 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1723 num++;
81d39c20
KH
1724 return num;
1725}
1726
a63d83f4
DR
1727/*
1728 * Return the memory (and swap, if configured) limit for a memcg.
1729 */
9cbb78bb 1730static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1731{
1732 u64 limit;
a63d83f4 1733
f3e8eb70 1734 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1735
a63d83f4 1736 /*
9a5a8f19 1737 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1738 */
9a5a8f19
MH
1739 if (mem_cgroup_swappiness(memcg)) {
1740 u64 memsw;
1741
1742 limit += total_swap_pages << PAGE_SHIFT;
1743 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1744
1745 /*
1746 * If memsw is finite and limits the amount of swap space
1747 * available to this memcg, return that limit.
1748 */
1749 limit = min(limit, memsw);
1750 }
1751
1752 return limit;
a63d83f4
DR
1753}
1754
19965460
DR
1755static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1756 int order)
9cbb78bb
DR
1757{
1758 struct mem_cgroup *iter;
1759 unsigned long chosen_points = 0;
1760 unsigned long totalpages;
1761 unsigned int points = 0;
1762 struct task_struct *chosen = NULL;
1763
876aafbf 1764 /*
465adcf1
DR
1765 * If current has a pending SIGKILL or is exiting, then automatically
1766 * select it. The goal is to allow it to allocate so that it may
1767 * quickly exit and free its memory.
876aafbf 1768 */
465adcf1 1769 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1770 set_thread_flag(TIF_MEMDIE);
1771 return;
1772 }
1773
1774 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1775 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1776 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1777 struct css_task_iter it;
9cbb78bb
DR
1778 struct task_struct *task;
1779
72ec7029
TH
1780 css_task_iter_start(&iter->css, &it);
1781 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1782 switch (oom_scan_process_thread(task, totalpages, NULL,
1783 false)) {
1784 case OOM_SCAN_SELECT:
1785 if (chosen)
1786 put_task_struct(chosen);
1787 chosen = task;
1788 chosen_points = ULONG_MAX;
1789 get_task_struct(chosen);
1790 /* fall through */
1791 case OOM_SCAN_CONTINUE:
1792 continue;
1793 case OOM_SCAN_ABORT:
72ec7029 1794 css_task_iter_end(&it);
9cbb78bb
DR
1795 mem_cgroup_iter_break(memcg, iter);
1796 if (chosen)
1797 put_task_struct(chosen);
1798 return;
1799 case OOM_SCAN_OK:
1800 break;
1801 };
1802 points = oom_badness(task, memcg, NULL, totalpages);
1803 if (points > chosen_points) {
1804 if (chosen)
1805 put_task_struct(chosen);
1806 chosen = task;
1807 chosen_points = points;
1808 get_task_struct(chosen);
1809 }
1810 }
72ec7029 1811 css_task_iter_end(&it);
9cbb78bb
DR
1812 }
1813
1814 if (!chosen)
1815 return;
1816 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1817 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1818 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1819}
1820
5660048c
JW
1821static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1822 gfp_t gfp_mask,
1823 unsigned long flags)
1824{
1825 unsigned long total = 0;
1826 bool noswap = false;
1827 int loop;
1828
1829 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1830 noswap = true;
1831 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1832 noswap = true;
1833
1834 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1835 if (loop)
1836 drain_all_stock_async(memcg);
1837 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1838 /*
1839 * Allow limit shrinkers, which are triggered directly
1840 * by userspace, to catch signals and stop reclaim
1841 * after minimal progress, regardless of the margin.
1842 */
1843 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1844 break;
1845 if (mem_cgroup_margin(memcg))
1846 break;
1847 /*
1848 * If nothing was reclaimed after two attempts, there
1849 * may be no reclaimable pages in this hierarchy.
1850 */
1851 if (loop && !total)
1852 break;
1853 }
1854 return total;
1855}
1856
4d0c066d
KH
1857/**
1858 * test_mem_cgroup_node_reclaimable
dad7557e 1859 * @memcg: the target memcg
4d0c066d
KH
1860 * @nid: the node ID to be checked.
1861 * @noswap : specify true here if the user wants flle only information.
1862 *
1863 * This function returns whether the specified memcg contains any
1864 * reclaimable pages on a node. Returns true if there are any reclaimable
1865 * pages in the node.
1866 */
c0ff4b85 1867static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1868 int nid, bool noswap)
1869{
c0ff4b85 1870 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1871 return true;
1872 if (noswap || !total_swap_pages)
1873 return false;
c0ff4b85 1874 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1875 return true;
1876 return false;
1877
1878}
bb4cc1a8 1879#if MAX_NUMNODES > 1
889976db
YH
1880
1881/*
1882 * Always updating the nodemask is not very good - even if we have an empty
1883 * list or the wrong list here, we can start from some node and traverse all
1884 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1885 *
1886 */
c0ff4b85 1887static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1888{
1889 int nid;
453a9bf3
KH
1890 /*
1891 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1892 * pagein/pageout changes since the last update.
1893 */
c0ff4b85 1894 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1895 return;
c0ff4b85 1896 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1897 return;
1898
889976db 1899 /* make a nodemask where this memcg uses memory from */
31aaea4a 1900 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1901
31aaea4a 1902 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1903
c0ff4b85
R
1904 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1905 node_clear(nid, memcg->scan_nodes);
889976db 1906 }
453a9bf3 1907
c0ff4b85
R
1908 atomic_set(&memcg->numainfo_events, 0);
1909 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1910}
1911
1912/*
1913 * Selecting a node where we start reclaim from. Because what we need is just
1914 * reducing usage counter, start from anywhere is O,K. Considering
1915 * memory reclaim from current node, there are pros. and cons.
1916 *
1917 * Freeing memory from current node means freeing memory from a node which
1918 * we'll use or we've used. So, it may make LRU bad. And if several threads
1919 * hit limits, it will see a contention on a node. But freeing from remote
1920 * node means more costs for memory reclaim because of memory latency.
1921 *
1922 * Now, we use round-robin. Better algorithm is welcomed.
1923 */
c0ff4b85 1924int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1925{
1926 int node;
1927
c0ff4b85
R
1928 mem_cgroup_may_update_nodemask(memcg);
1929 node = memcg->last_scanned_node;
889976db 1930
c0ff4b85 1931 node = next_node(node, memcg->scan_nodes);
889976db 1932 if (node == MAX_NUMNODES)
c0ff4b85 1933 node = first_node(memcg->scan_nodes);
889976db
YH
1934 /*
1935 * We call this when we hit limit, not when pages are added to LRU.
1936 * No LRU may hold pages because all pages are UNEVICTABLE or
1937 * memcg is too small and all pages are not on LRU. In that case,
1938 * we use curret node.
1939 */
1940 if (unlikely(node == MAX_NUMNODES))
1941 node = numa_node_id();
1942
c0ff4b85 1943 memcg->last_scanned_node = node;
889976db
YH
1944 return node;
1945}
1946
bb4cc1a8
AM
1947/*
1948 * Check all nodes whether it contains reclaimable pages or not.
1949 * For quick scan, we make use of scan_nodes. This will allow us to skip
1950 * unused nodes. But scan_nodes is lazily updated and may not cotain
1951 * enough new information. We need to do double check.
1952 */
1953static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1954{
1955 int nid;
1956
1957 /*
1958 * quick check...making use of scan_node.
1959 * We can skip unused nodes.
1960 */
1961 if (!nodes_empty(memcg->scan_nodes)) {
1962 for (nid = first_node(memcg->scan_nodes);
1963 nid < MAX_NUMNODES;
1964 nid = next_node(nid, memcg->scan_nodes)) {
1965
1966 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1967 return true;
1968 }
1969 }
1970 /*
1971 * Check rest of nodes.
1972 */
1973 for_each_node_state(nid, N_MEMORY) {
1974 if (node_isset(nid, memcg->scan_nodes))
1975 continue;
1976 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1977 return true;
1978 }
1979 return false;
1980}
1981
889976db 1982#else
c0ff4b85 1983int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1984{
1985 return 0;
1986}
4d0c066d 1987
bb4cc1a8
AM
1988static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1989{
1990 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1991}
889976db
YH
1992#endif
1993
3b38722e 1994/*
b1aff7fc
AM
1995 * A group is eligible for the soft limit reclaim if
1996 * a) it is over its soft limit
f894ffa8 1997 * b) any parent up the hierarchy is over its soft limit
3b38722e 1998 */
b1aff7fc 1999bool mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg)
3b38722e 2000{
3120055e 2001 struct mem_cgroup *parent = memcg;
3b38722e
MH
2002
2003 if (res_counter_soft_limit_excess(&memcg->res))
694fbc0f 2004 return true;
3b38722e
MH
2005
2006 /*
b1aff7fc
AM
2007 * If any parent up the hierarchy is over its soft limit then we
2008 * have to obey and reclaim from this group as well.
3b38722e 2009 */
f894ffa8 2010 while ((parent = parent_mem_cgroup(parent))) {
3b38722e 2011 if (res_counter_soft_limit_excess(&parent->res))
694fbc0f 2012 return true;
6d61ef40 2013 }
3b38722e 2014
694fbc0f 2015 return false;
6d61ef40
BS
2016}
2017
fb2a6fc5
JW
2018static DEFINE_SPINLOCK(memcg_oom_lock);
2019
867578cb
KH
2020/*
2021 * Check OOM-Killer is already running under our hierarchy.
2022 * If someone is running, return false.
2023 */
fb2a6fc5 2024static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2025{
79dfdacc 2026 struct mem_cgroup *iter, *failed = NULL;
a636b327 2027
fb2a6fc5
JW
2028 spin_lock(&memcg_oom_lock);
2029
9f3a0d09 2030 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2031 if (iter->oom_lock) {
79dfdacc
MH
2032 /*
2033 * this subtree of our hierarchy is already locked
2034 * so we cannot give a lock.
2035 */
79dfdacc 2036 failed = iter;
9f3a0d09
JW
2037 mem_cgroup_iter_break(memcg, iter);
2038 break;
23751be0
JW
2039 } else
2040 iter->oom_lock = true;
7d74b06f 2041 }
867578cb 2042
fb2a6fc5
JW
2043 if (failed) {
2044 /*
2045 * OK, we failed to lock the whole subtree so we have
2046 * to clean up what we set up to the failing subtree
2047 */
2048 for_each_mem_cgroup_tree(iter, memcg) {
2049 if (iter == failed) {
2050 mem_cgroup_iter_break(memcg, iter);
2051 break;
2052 }
2053 iter->oom_lock = false;
79dfdacc 2054 }
79dfdacc 2055 }
fb2a6fc5
JW
2056
2057 spin_unlock(&memcg_oom_lock);
2058
2059 return !failed;
a636b327 2060}
0b7f569e 2061
fb2a6fc5 2062static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2063{
7d74b06f
KH
2064 struct mem_cgroup *iter;
2065
fb2a6fc5 2066 spin_lock(&memcg_oom_lock);
c0ff4b85 2067 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2068 iter->oom_lock = false;
fb2a6fc5 2069 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2070}
2071
c0ff4b85 2072static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2073{
2074 struct mem_cgroup *iter;
2075
c0ff4b85 2076 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2077 atomic_inc(&iter->under_oom);
2078}
2079
c0ff4b85 2080static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2081{
2082 struct mem_cgroup *iter;
2083
867578cb
KH
2084 /*
2085 * When a new child is created while the hierarchy is under oom,
2086 * mem_cgroup_oom_lock() may not be called. We have to use
2087 * atomic_add_unless() here.
2088 */
c0ff4b85 2089 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2090 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2091}
2092
867578cb
KH
2093static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2094
dc98df5a 2095struct oom_wait_info {
d79154bb 2096 struct mem_cgroup *memcg;
dc98df5a
KH
2097 wait_queue_t wait;
2098};
2099
2100static int memcg_oom_wake_function(wait_queue_t *wait,
2101 unsigned mode, int sync, void *arg)
2102{
d79154bb
HD
2103 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2104 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2105 struct oom_wait_info *oom_wait_info;
2106
2107 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2108 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2109
dc98df5a 2110 /*
d79154bb 2111 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2112 * Then we can use css_is_ancestor without taking care of RCU.
2113 */
c0ff4b85
R
2114 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2115 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2116 return 0;
dc98df5a
KH
2117 return autoremove_wake_function(wait, mode, sync, arg);
2118}
2119
c0ff4b85 2120static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2121{
3812c8c8 2122 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2123 /* for filtering, pass "memcg" as argument. */
2124 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2125}
2126
c0ff4b85 2127static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2128{
c0ff4b85
R
2129 if (memcg && atomic_read(&memcg->under_oom))
2130 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2131}
2132
867578cb 2133/*
3812c8c8 2134 * try to call OOM killer
867578cb 2135 */
3812c8c8 2136static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2137{
fb2a6fc5 2138 bool locked;
3812c8c8 2139 int wakeups;
867578cb 2140
3812c8c8
JW
2141 if (!current->memcg_oom.may_oom)
2142 return;
2143
2144 current->memcg_oom.in_memcg_oom = 1;
79dfdacc 2145
867578cb 2146 /*
fb2a6fc5
JW
2147 * As with any blocking lock, a contender needs to start
2148 * listening for wakeups before attempting the trylock,
2149 * otherwise it can miss the wakeup from the unlock and sleep
2150 * indefinitely. This is just open-coded because our locking
2151 * is so particular to memcg hierarchies.
867578cb 2152 */
3812c8c8 2153 wakeups = atomic_read(&memcg->oom_wakeups);
fb2a6fc5
JW
2154 mem_cgroup_mark_under_oom(memcg);
2155
2156 locked = mem_cgroup_oom_trylock(memcg);
2157
3c11ecf4 2158 if (locked)
c0ff4b85 2159 mem_cgroup_oom_notify(memcg);
867578cb 2160
fb2a6fc5
JW
2161 if (locked && !memcg->oom_kill_disable) {
2162 mem_cgroup_unmark_under_oom(memcg);
e845e199 2163 mem_cgroup_out_of_memory(memcg, mask, order);
3812c8c8
JW
2164 mem_cgroup_oom_unlock(memcg);
2165 /*
2166 * There is no guarantee that an OOM-lock contender
2167 * sees the wakeups triggered by the OOM kill
2168 * uncharges. Wake any sleepers explicitely.
2169 */
2170 memcg_oom_recover(memcg);
3c11ecf4 2171 } else {
3812c8c8
JW
2172 /*
2173 * A system call can just return -ENOMEM, but if this
2174 * is a page fault and somebody else is handling the
2175 * OOM already, we need to sleep on the OOM waitqueue
2176 * for this memcg until the situation is resolved.
2177 * Which can take some time because it might be
2178 * handled by a userspace task.
2179 *
2180 * However, this is the charge context, which means
2181 * that we may sit on a large call stack and hold
2182 * various filesystem locks, the mmap_sem etc. and we
2183 * don't want the OOM handler to deadlock on them
2184 * while we sit here and wait. Store the current OOM
2185 * context in the task_struct, then return -ENOMEM.
2186 * At the end of the page fault handler, with the
2187 * stack unwound, pagefault_out_of_memory() will check
2188 * back with us by calling
2189 * mem_cgroup_oom_synchronize(), possibly putting the
2190 * task to sleep.
2191 */
2192 current->memcg_oom.oom_locked = locked;
2193 current->memcg_oom.wakeups = wakeups;
2194 css_get(&memcg->css);
2195 current->memcg_oom.wait_on_memcg = memcg;
867578cb 2196 }
3812c8c8
JW
2197}
2198
2199/**
2200 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2201 *
2202 * This has to be called at the end of a page fault if the the memcg
2203 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2204 *
2205 * Memcg supports userspace OOM handling, so failed allocations must
2206 * sleep on a waitqueue until the userspace task resolves the
2207 * situation. Sleeping directly in the charge context with all kinds
2208 * of locks held is not a good idea, instead we remember an OOM state
2209 * in the task and mem_cgroup_oom_synchronize() has to be called at
2210 * the end of the page fault to put the task to sleep and clean up the
2211 * OOM state.
2212 *
2213 * Returns %true if an ongoing memcg OOM situation was detected and
2214 * finalized, %false otherwise.
2215 */
2216bool mem_cgroup_oom_synchronize(void)
2217{
2218 struct oom_wait_info owait;
2219 struct mem_cgroup *memcg;
2220
2221 /* OOM is global, do not handle */
2222 if (!current->memcg_oom.in_memcg_oom)
2223 return false;
2224
2225 /*
2226 * We invoked the OOM killer but there is a chance that a kill
2227 * did not free up any charges. Everybody else might already
2228 * be sleeping, so restart the fault and keep the rampage
2229 * going until some charges are released.
2230 */
2231 memcg = current->memcg_oom.wait_on_memcg;
2232 if (!memcg)
2233 goto out;
2234
2235 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2236 goto out_memcg;
2237
2238 owait.memcg = memcg;
2239 owait.wait.flags = 0;
2240 owait.wait.func = memcg_oom_wake_function;
2241 owait.wait.private = current;
2242 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2243
3812c8c8
JW
2244 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2245 /* Only sleep if we didn't miss any wakeups since OOM */
2246 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2247 schedule();
2248 finish_wait(&memcg_oom_waitq, &owait.wait);
2249out_memcg:
2250 mem_cgroup_unmark_under_oom(memcg);
2251 if (current->memcg_oom.oom_locked) {
fb2a6fc5
JW
2252 mem_cgroup_oom_unlock(memcg);
2253 /*
2254 * There is no guarantee that an OOM-lock contender
2255 * sees the wakeups triggered by the OOM kill
2256 * uncharges. Wake any sleepers explicitely.
2257 */
2258 memcg_oom_recover(memcg);
2259 }
3812c8c8
JW
2260 css_put(&memcg->css);
2261 current->memcg_oom.wait_on_memcg = NULL;
2262out:
2263 current->memcg_oom.in_memcg_oom = 0;
867578cb 2264 return true;
0b7f569e
KH
2265}
2266
d69b042f
BS
2267/*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
32047e2a
KH
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
d69b042f 2289 */
26174efd 2290
89c06bd5
KH
2291void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 bool *locked, unsigned long *flags)
2293{
2294 struct mem_cgroup *memcg;
2295 struct page_cgroup *pc;
2296
2297 pc = lookup_page_cgroup(page);
2298again:
2299 memcg = pc->mem_cgroup;
2300 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 return;
2302 /*
2303 * If this memory cgroup is not under account moving, we don't
da92c47d 2304 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2305 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2306 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2307 */
13fd1dd9 2308 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317}
2318
2319void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320{
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2326 * should take move_lock_mem_cgroup().
89c06bd5
KH
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329}
2330
2a7106f2 2331void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2332 enum mem_cgroup_stat_index idx, int val)
d69b042f 2333{
c0ff4b85 2334 struct mem_cgroup *memcg;
32047e2a 2335 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2336 unsigned long uninitialized_var(flags);
d69b042f 2337
cfa44946 2338 if (mem_cgroup_disabled())
d69b042f 2339 return;
89c06bd5 2340
658b72c5 2341 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2344 return;
26174efd 2345
c0ff4b85 2346 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2347}
26174efd 2348
cdec2e42
KH
2349/*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
7ec99d62 2353#define CHARGE_BATCH 32U
cdec2e42
KH
2354struct memcg_stock_pcp {
2355 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2356 unsigned int nr_pages;
cdec2e42 2357 struct work_struct work;
26fe6168 2358 unsigned long flags;
a0db00fc 2359#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2360};
2361static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2362static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2363
a0956d54
SS
2364/**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
cdec2e42 2374 */
a0956d54 2375static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2376{
2377 struct memcg_stock_pcp *stock;
2378 bool ret = true;
2379
a0956d54
SS
2380 if (nr_pages > CHARGE_BATCH)
2381 return false;
2382
cdec2e42 2383 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 stock->nr_pages -= nr_pages;
cdec2e42
KH
2386 else /* need to call res_counter_charge */
2387 ret = false;
2388 put_cpu_var(memcg_stock);
2389 return ret;
2390}
2391
2392/*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395static void drain_stock(struct memcg_stock_pcp *stock)
2396{
2397 struct mem_cgroup *old = stock->cached;
2398
11c9ea4e
JW
2399 if (stock->nr_pages) {
2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402 res_counter_uncharge(&old->res, bytes);
cdec2e42 2403 if (do_swap_account)
11c9ea4e
JW
2404 res_counter_uncharge(&old->memsw, bytes);
2405 stock->nr_pages = 0;
cdec2e42
KH
2406 }
2407 stock->cached = NULL;
cdec2e42
KH
2408}
2409
2410/*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414static void drain_local_stock(struct work_struct *dummy)
2415{
2416 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417 drain_stock(stock);
26fe6168 2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2419}
2420
e4777496
MH
2421static void __init memcg_stock_init(void)
2422{
2423 int cpu;
2424
2425 for_each_possible_cpu(cpu) {
2426 struct memcg_stock_pcp *stock =
2427 &per_cpu(memcg_stock, cpu);
2428 INIT_WORK(&stock->work, drain_local_stock);
2429 }
2430}
2431
cdec2e42
KH
2432/*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2434 * This will be consumed by consume_stock() function, later.
cdec2e42 2435 */
c0ff4b85 2436static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2437{
2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
c0ff4b85 2440 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2441 drain_stock(stock);
c0ff4b85 2442 stock->cached = memcg;
cdec2e42 2443 }
11c9ea4e 2444 stock->nr_pages += nr_pages;
cdec2e42
KH
2445 put_cpu_var(memcg_stock);
2446}
2447
2448/*
c0ff4b85 2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
cdec2e42 2452 */
c0ff4b85 2453static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2454{
26fe6168 2455 int cpu, curcpu;
d38144b7 2456
cdec2e42 2457 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2458 get_online_cpus();
5af12d0e 2459 curcpu = get_cpu();
cdec2e42
KH
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2462 struct mem_cgroup *memcg;
26fe6168 2463
c0ff4b85
R
2464 memcg = stock->cached;
2465 if (!memcg || !stock->nr_pages)
26fe6168 2466 continue;
c0ff4b85 2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2468 continue;
d1a05b69
MH
2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 if (cpu == curcpu)
2471 drain_local_stock(&stock->work);
2472 else
2473 schedule_work_on(cpu, &stock->work);
2474 }
cdec2e42 2475 }
5af12d0e 2476 put_cpu();
d38144b7
MH
2477
2478 if (!sync)
2479 goto out;
2480
2481 for_each_online_cpu(cpu) {
2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2484 flush_work(&stock->work);
2485 }
2486out:
f894ffa8 2487 put_online_cpus();
d38144b7
MH
2488}
2489
2490/*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
c0ff4b85 2496static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2497{
9f50fad6
MH
2498 /*
2499 * If someone calls draining, avoid adding more kworker runs.
2500 */
2501 if (!mutex_trylock(&percpu_charge_mutex))
2502 return;
c0ff4b85 2503 drain_all_stock(root_memcg, false);
9f50fad6 2504 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2505}
2506
2507/* This is a synchronous drain interface. */
c0ff4b85 2508static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2509{
2510 /* called when force_empty is called */
9f50fad6 2511 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2512 drain_all_stock(root_memcg, true);
9f50fad6 2513 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2514}
2515
711d3d2c
KH
2516/*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
c0ff4b85 2520static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2521{
2522 int i;
2523
c0ff4b85 2524 spin_lock(&memcg->pcp_counter_lock);
6104621d 2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2526 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2527
c0ff4b85
R
2528 per_cpu(memcg->stat->count[i], cpu) = 0;
2529 memcg->nocpu_base.count[i] += x;
711d3d2c 2530 }
e9f8974f 2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2533
c0ff4b85
R
2534 per_cpu(memcg->stat->events[i], cpu) = 0;
2535 memcg->nocpu_base.events[i] += x;
e9f8974f 2536 }
c0ff4b85 2537 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2538}
2539
0db0628d 2540static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2541 unsigned long action,
2542 void *hcpu)
2543{
2544 int cpu = (unsigned long)hcpu;
2545 struct memcg_stock_pcp *stock;
711d3d2c 2546 struct mem_cgroup *iter;
cdec2e42 2547
619d094b 2548 if (action == CPU_ONLINE)
1489ebad 2549 return NOTIFY_OK;
1489ebad 2550
d833049b 2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2552 return NOTIFY_OK;
711d3d2c 2553
9f3a0d09 2554 for_each_mem_cgroup(iter)
711d3d2c
KH
2555 mem_cgroup_drain_pcp_counter(iter, cpu);
2556
cdec2e42
KH
2557 stock = &per_cpu(memcg_stock, cpu);
2558 drain_stock(stock);
2559 return NOTIFY_OK;
2560}
2561
4b534334
KH
2562
2563/* See __mem_cgroup_try_charge() for details */
2564enum {
2565 CHARGE_OK, /* success */
2566 CHARGE_RETRY, /* need to retry but retry is not bad */
2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2569};
2570
c0ff4b85 2571static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2572 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2573 bool invoke_oom)
4b534334 2574{
7ec99d62 2575 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2576 struct mem_cgroup *mem_over_limit;
2577 struct res_counter *fail_res;
2578 unsigned long flags = 0;
2579 int ret;
2580
c0ff4b85 2581 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2582
2583 if (likely(!ret)) {
2584 if (!do_swap_account)
2585 return CHARGE_OK;
c0ff4b85 2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2587 if (likely(!ret))
2588 return CHARGE_OK;
2589
c0ff4b85 2590 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 } else
2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2595 /*
9221edb7
JW
2596 * Never reclaim on behalf of optional batching, retry with a
2597 * single page instead.
2598 */
4c9c5359 2599 if (nr_pages > min_pages)
4b534334
KH
2600 return CHARGE_RETRY;
2601
2602 if (!(gfp_mask & __GFP_WAIT))
2603 return CHARGE_WOULDBLOCK;
2604
4c9c5359
SS
2605 if (gfp_mask & __GFP_NORETRY)
2606 return CHARGE_NOMEM;
2607
5660048c 2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2610 return CHARGE_RETRY;
4b534334 2611 /*
19942822
JW
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
4b534334 2619 */
4c9c5359 2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2621 return CHARGE_RETRY;
2622
2623 /*
2624 * At task move, charge accounts can be doubly counted. So, it's
2625 * better to wait until the end of task_move if something is going on.
2626 */
2627 if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 return CHARGE_RETRY;
2629
3812c8c8
JW
2630 if (invoke_oom)
2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2632
3812c8c8 2633 return CHARGE_NOMEM;
4b534334
KH
2634}
2635
f817ed48 2636/*
38c5d72f
KH
2637 * __mem_cgroup_try_charge() does
2638 * 1. detect memcg to be charged against from passed *mm and *ptr,
2639 * 2. update res_counter
2640 * 3. call memory reclaim if necessary.
2641 *
2642 * In some special case, if the task is fatal, fatal_signal_pending() or
2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645 * as possible without any hazards. 2: all pages should have a valid
2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647 * pointer, that is treated as a charge to root_mem_cgroup.
2648 *
2649 * So __mem_cgroup_try_charge() will return
2650 * 0 ... on success, filling *ptr with a valid memcg pointer.
2651 * -ENOMEM ... charge failure because of resource limits.
2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2653 *
2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655 * the oom-killer can be invoked.
8a9f3ccd 2656 */
f817ed48 2657static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2658 gfp_t gfp_mask,
7ec99d62 2659 unsigned int nr_pages,
c0ff4b85 2660 struct mem_cgroup **ptr,
7ec99d62 2661 bool oom)
8a9f3ccd 2662{
7ec99d62 2663 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2665 struct mem_cgroup *memcg = NULL;
4b534334 2666 int ret;
a636b327 2667
867578cb
KH
2668 /*
2669 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670 * in system level. So, allow to go ahead dying process in addition to
2671 * MEMDIE process.
2672 */
2673 if (unlikely(test_thread_flag(TIF_MEMDIE)
2674 || fatal_signal_pending(current)))
2675 goto bypass;
a636b327 2676
8a9f3ccd 2677 /*
3be91277
HD
2678 * We always charge the cgroup the mm_struct belongs to.
2679 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2680 * thread group leader migrates. It's possible that mm is not
24467cac 2681 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2682 */
c0ff4b85 2683 if (!*ptr && !mm)
38c5d72f 2684 *ptr = root_mem_cgroup;
f75ca962 2685again:
c0ff4b85
R
2686 if (*ptr) { /* css should be a valid one */
2687 memcg = *ptr;
c0ff4b85 2688 if (mem_cgroup_is_root(memcg))
f75ca962 2689 goto done;
a0956d54 2690 if (consume_stock(memcg, nr_pages))
f75ca962 2691 goto done;
c0ff4b85 2692 css_get(&memcg->css);
4b534334 2693 } else {
f75ca962 2694 struct task_struct *p;
54595fe2 2695
f75ca962
KH
2696 rcu_read_lock();
2697 p = rcu_dereference(mm->owner);
f75ca962 2698 /*
ebb76ce1 2699 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2700 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2701 * race with swapoff. Then, we have small risk of mis-accouning.
2702 * But such kind of mis-account by race always happens because
2703 * we don't have cgroup_mutex(). It's overkill and we allo that
2704 * small race, here.
2705 * (*) swapoff at el will charge against mm-struct not against
2706 * task-struct. So, mm->owner can be NULL.
f75ca962 2707 */
c0ff4b85 2708 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2709 if (!memcg)
2710 memcg = root_mem_cgroup;
2711 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2712 rcu_read_unlock();
2713 goto done;
2714 }
a0956d54 2715 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2716 /*
2717 * It seems dagerous to access memcg without css_get().
2718 * But considering how consume_stok works, it's not
2719 * necessary. If consume_stock success, some charges
2720 * from this memcg are cached on this cpu. So, we
2721 * don't need to call css_get()/css_tryget() before
2722 * calling consume_stock().
2723 */
2724 rcu_read_unlock();
2725 goto done;
2726 }
2727 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2728 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2729 rcu_read_unlock();
2730 goto again;
2731 }
2732 rcu_read_unlock();
2733 }
8a9f3ccd 2734
4b534334 2735 do {
3812c8c8 2736 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2737
4b534334 2738 /* If killed, bypass charge */
f75ca962 2739 if (fatal_signal_pending(current)) {
c0ff4b85 2740 css_put(&memcg->css);
4b534334 2741 goto bypass;
f75ca962 2742 }
6d61ef40 2743
3812c8c8
JW
2744 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2745 nr_pages, invoke_oom);
4b534334
KH
2746 switch (ret) {
2747 case CHARGE_OK:
2748 break;
2749 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2750 batch = nr_pages;
c0ff4b85
R
2751 css_put(&memcg->css);
2752 memcg = NULL;
f75ca962 2753 goto again;
4b534334 2754 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2755 css_put(&memcg->css);
4b534334
KH
2756 goto nomem;
2757 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2758 if (!oom || invoke_oom) {
c0ff4b85 2759 css_put(&memcg->css);
867578cb 2760 goto nomem;
f75ca962 2761 }
4b534334
KH
2762 nr_oom_retries--;
2763 break;
66e1707b 2764 }
4b534334
KH
2765 } while (ret != CHARGE_OK);
2766
7ec99d62 2767 if (batch > nr_pages)
c0ff4b85
R
2768 refill_stock(memcg, batch - nr_pages);
2769 css_put(&memcg->css);
0c3e73e8 2770done:
c0ff4b85 2771 *ptr = memcg;
7a81b88c
KH
2772 return 0;
2773nomem:
c0ff4b85 2774 *ptr = NULL;
7a81b88c 2775 return -ENOMEM;
867578cb 2776bypass:
38c5d72f
KH
2777 *ptr = root_mem_cgroup;
2778 return -EINTR;
7a81b88c 2779}
8a9f3ccd 2780
a3032a2c
DN
2781/*
2782 * Somemtimes we have to undo a charge we got by try_charge().
2783 * This function is for that and do uncharge, put css's refcnt.
2784 * gotten by try_charge().
2785 */
c0ff4b85 2786static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2787 unsigned int nr_pages)
a3032a2c 2788{
c0ff4b85 2789 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2790 unsigned long bytes = nr_pages * PAGE_SIZE;
2791
c0ff4b85 2792 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2793 if (do_swap_account)
c0ff4b85 2794 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2795 }
854ffa8d
DN
2796}
2797
d01dd17f
KH
2798/*
2799 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2800 * This is useful when moving usage to parent cgroup.
2801 */
2802static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2803 unsigned int nr_pages)
2804{
2805 unsigned long bytes = nr_pages * PAGE_SIZE;
2806
2807 if (mem_cgroup_is_root(memcg))
2808 return;
2809
2810 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2811 if (do_swap_account)
2812 res_counter_uncharge_until(&memcg->memsw,
2813 memcg->memsw.parent, bytes);
2814}
2815
a3b2d692
KH
2816/*
2817 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2818 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2819 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2820 * called against removed memcg.)
a3b2d692
KH
2821 */
2822static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2823{
2824 struct cgroup_subsys_state *css;
2825
2826 /* ID 0 is unused ID */
2827 if (!id)
2828 return NULL;
2829 css = css_lookup(&mem_cgroup_subsys, id);
2830 if (!css)
2831 return NULL;
b2145145 2832 return mem_cgroup_from_css(css);
a3b2d692
KH
2833}
2834
e42d9d5d 2835struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2836{
c0ff4b85 2837 struct mem_cgroup *memcg = NULL;
3c776e64 2838 struct page_cgroup *pc;
a3b2d692 2839 unsigned short id;
b5a84319
KH
2840 swp_entry_t ent;
2841
3c776e64
DN
2842 VM_BUG_ON(!PageLocked(page));
2843
3c776e64 2844 pc = lookup_page_cgroup(page);
c0bd3f63 2845 lock_page_cgroup(pc);
a3b2d692 2846 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2847 memcg = pc->mem_cgroup;
2848 if (memcg && !css_tryget(&memcg->css))
2849 memcg = NULL;
e42d9d5d 2850 } else if (PageSwapCache(page)) {
3c776e64 2851 ent.val = page_private(page);
9fb4b7cc 2852 id = lookup_swap_cgroup_id(ent);
a3b2d692 2853 rcu_read_lock();
c0ff4b85
R
2854 memcg = mem_cgroup_lookup(id);
2855 if (memcg && !css_tryget(&memcg->css))
2856 memcg = NULL;
a3b2d692 2857 rcu_read_unlock();
3c776e64 2858 }
c0bd3f63 2859 unlock_page_cgroup(pc);
c0ff4b85 2860 return memcg;
b5a84319
KH
2861}
2862
c0ff4b85 2863static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2864 struct page *page,
7ec99d62 2865 unsigned int nr_pages,
9ce70c02
HD
2866 enum charge_type ctype,
2867 bool lrucare)
7a81b88c 2868{
ce587e65 2869 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2870 struct zone *uninitialized_var(zone);
fa9add64 2871 struct lruvec *lruvec;
9ce70c02 2872 bool was_on_lru = false;
b2402857 2873 bool anon;
9ce70c02 2874
ca3e0214 2875 lock_page_cgroup(pc);
90deb788 2876 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2877 /*
2878 * we don't need page_cgroup_lock about tail pages, becase they are not
2879 * accessed by any other context at this point.
2880 */
9ce70c02
HD
2881
2882 /*
2883 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2884 * may already be on some other mem_cgroup's LRU. Take care of it.
2885 */
2886 if (lrucare) {
2887 zone = page_zone(page);
2888 spin_lock_irq(&zone->lru_lock);
2889 if (PageLRU(page)) {
fa9add64 2890 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2891 ClearPageLRU(page);
fa9add64 2892 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2893 was_on_lru = true;
2894 }
2895 }
2896
c0ff4b85 2897 pc->mem_cgroup = memcg;
261fb61a
KH
2898 /*
2899 * We access a page_cgroup asynchronously without lock_page_cgroup().
2900 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2901 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2902 * before USED bit, we need memory barrier here.
2903 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2904 */
08e552c6 2905 smp_wmb();
b2402857 2906 SetPageCgroupUsed(pc);
3be91277 2907
9ce70c02
HD
2908 if (lrucare) {
2909 if (was_on_lru) {
fa9add64 2910 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2911 VM_BUG_ON(PageLRU(page));
2912 SetPageLRU(page);
fa9add64 2913 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2914 }
2915 spin_unlock_irq(&zone->lru_lock);
2916 }
2917
41326c17 2918 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2919 anon = true;
2920 else
2921 anon = false;
2922
b070e65c 2923 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2924 unlock_page_cgroup(pc);
9ce70c02 2925
430e4863 2926 /*
bb4cc1a8
AM
2927 * "charge_statistics" updated event counter. Then, check it.
2928 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2929 * if they exceeds softlimit.
430e4863 2930 */
c0ff4b85 2931 memcg_check_events(memcg, page);
7a81b88c 2932}
66e1707b 2933
7cf27982
GC
2934static DEFINE_MUTEX(set_limit_mutex);
2935
7ae1e1d0
GC
2936#ifdef CONFIG_MEMCG_KMEM
2937static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2938{
2939 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2940 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2941}
2942
1f458cbf
GC
2943/*
2944 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2945 * in the memcg_cache_params struct.
2946 */
2947static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2948{
2949 struct kmem_cache *cachep;
2950
2951 VM_BUG_ON(p->is_root_cache);
2952 cachep = p->root_cache;
2953 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2954}
2955
749c5415 2956#ifdef CONFIG_SLABINFO
182446d0
TH
2957static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2958 struct cftype *cft, struct seq_file *m)
749c5415 2959{
182446d0 2960 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2961 struct memcg_cache_params *params;
2962
2963 if (!memcg_can_account_kmem(memcg))
2964 return -EIO;
2965
2966 print_slabinfo_header(m);
2967
2968 mutex_lock(&memcg->slab_caches_mutex);
2969 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2970 cache_show(memcg_params_to_cache(params), m);
2971 mutex_unlock(&memcg->slab_caches_mutex);
2972
2973 return 0;
2974}
2975#endif
2976
7ae1e1d0
GC
2977static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2978{
2979 struct res_counter *fail_res;
2980 struct mem_cgroup *_memcg;
2981 int ret = 0;
2982 bool may_oom;
2983
2984 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2985 if (ret)
2986 return ret;
2987
2988 /*
2989 * Conditions under which we can wait for the oom_killer. Those are
2990 * the same conditions tested by the core page allocator
2991 */
2992 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2993
2994 _memcg = memcg;
2995 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2996 &_memcg, may_oom);
2997
2998 if (ret == -EINTR) {
2999 /*
3000 * __mem_cgroup_try_charge() chosed to bypass to root due to
3001 * OOM kill or fatal signal. Since our only options are to
3002 * either fail the allocation or charge it to this cgroup, do
3003 * it as a temporary condition. But we can't fail. From a
3004 * kmem/slab perspective, the cache has already been selected,
3005 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3006 * our minds.
3007 *
3008 * This condition will only trigger if the task entered
3009 * memcg_charge_kmem in a sane state, but was OOM-killed during
3010 * __mem_cgroup_try_charge() above. Tasks that were already
3011 * dying when the allocation triggers should have been already
3012 * directed to the root cgroup in memcontrol.h
3013 */
3014 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3015 if (do_swap_account)
3016 res_counter_charge_nofail(&memcg->memsw, size,
3017 &fail_res);
3018 ret = 0;
3019 } else if (ret)
3020 res_counter_uncharge(&memcg->kmem, size);
3021
3022 return ret;
3023}
3024
3025static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3026{
7ae1e1d0
GC
3027 res_counter_uncharge(&memcg->res, size);
3028 if (do_swap_account)
3029 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3030
3031 /* Not down to 0 */
3032 if (res_counter_uncharge(&memcg->kmem, size))
3033 return;
3034
10d5ebf4
LZ
3035 /*
3036 * Releases a reference taken in kmem_cgroup_css_offline in case
3037 * this last uncharge is racing with the offlining code or it is
3038 * outliving the memcg existence.
3039 *
3040 * The memory barrier imposed by test&clear is paired with the
3041 * explicit one in memcg_kmem_mark_dead().
3042 */
7de37682 3043 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3044 css_put(&memcg->css);
7ae1e1d0
GC
3045}
3046
2633d7a0
GC
3047void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3048{
3049 if (!memcg)
3050 return;
3051
3052 mutex_lock(&memcg->slab_caches_mutex);
3053 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3054 mutex_unlock(&memcg->slab_caches_mutex);
3055}
3056
3057/*
3058 * helper for acessing a memcg's index. It will be used as an index in the
3059 * child cache array in kmem_cache, and also to derive its name. This function
3060 * will return -1 when this is not a kmem-limited memcg.
3061 */
3062int memcg_cache_id(struct mem_cgroup *memcg)
3063{
3064 return memcg ? memcg->kmemcg_id : -1;
3065}
3066
55007d84
GC
3067/*
3068 * This ends up being protected by the set_limit mutex, during normal
3069 * operation, because that is its main call site.
3070 *
3071 * But when we create a new cache, we can call this as well if its parent
3072 * is kmem-limited. That will have to hold set_limit_mutex as well.
3073 */
3074int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3075{
3076 int num, ret;
3077
3078 num = ida_simple_get(&kmem_limited_groups,
3079 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3080 if (num < 0)
3081 return num;
3082 /*
3083 * After this point, kmem_accounted (that we test atomically in
3084 * the beginning of this conditional), is no longer 0. This
3085 * guarantees only one process will set the following boolean
3086 * to true. We don't need test_and_set because we're protected
3087 * by the set_limit_mutex anyway.
3088 */
3089 memcg_kmem_set_activated(memcg);
3090
3091 ret = memcg_update_all_caches(num+1);
3092 if (ret) {
3093 ida_simple_remove(&kmem_limited_groups, num);
3094 memcg_kmem_clear_activated(memcg);
3095 return ret;
3096 }
3097
3098 memcg->kmemcg_id = num;
3099 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3100 mutex_init(&memcg->slab_caches_mutex);
3101 return 0;
3102}
3103
3104static size_t memcg_caches_array_size(int num_groups)
3105{
3106 ssize_t size;
3107 if (num_groups <= 0)
3108 return 0;
3109
3110 size = 2 * num_groups;
3111 if (size < MEMCG_CACHES_MIN_SIZE)
3112 size = MEMCG_CACHES_MIN_SIZE;
3113 else if (size > MEMCG_CACHES_MAX_SIZE)
3114 size = MEMCG_CACHES_MAX_SIZE;
3115
3116 return size;
3117}
3118
3119/*
3120 * We should update the current array size iff all caches updates succeed. This
3121 * can only be done from the slab side. The slab mutex needs to be held when
3122 * calling this.
3123 */
3124void memcg_update_array_size(int num)
3125{
3126 if (num > memcg_limited_groups_array_size)
3127 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3128}
3129
15cf17d2
KK
3130static void kmem_cache_destroy_work_func(struct work_struct *w);
3131
55007d84
GC
3132int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3133{
3134 struct memcg_cache_params *cur_params = s->memcg_params;
3135
3136 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3137
3138 if (num_groups > memcg_limited_groups_array_size) {
3139 int i;
3140 ssize_t size = memcg_caches_array_size(num_groups);
3141
3142 size *= sizeof(void *);
90c7a79c 3143 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3144
3145 s->memcg_params = kzalloc(size, GFP_KERNEL);
3146 if (!s->memcg_params) {
3147 s->memcg_params = cur_params;
3148 return -ENOMEM;
3149 }
3150
3151 s->memcg_params->is_root_cache = true;
3152
3153 /*
3154 * There is the chance it will be bigger than
3155 * memcg_limited_groups_array_size, if we failed an allocation
3156 * in a cache, in which case all caches updated before it, will
3157 * have a bigger array.
3158 *
3159 * But if that is the case, the data after
3160 * memcg_limited_groups_array_size is certainly unused
3161 */
3162 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3163 if (!cur_params->memcg_caches[i])
3164 continue;
3165 s->memcg_params->memcg_caches[i] =
3166 cur_params->memcg_caches[i];
3167 }
3168
3169 /*
3170 * Ideally, we would wait until all caches succeed, and only
3171 * then free the old one. But this is not worth the extra
3172 * pointer per-cache we'd have to have for this.
3173 *
3174 * It is not a big deal if some caches are left with a size
3175 * bigger than the others. And all updates will reset this
3176 * anyway.
3177 */
3178 kfree(cur_params);
3179 }
3180 return 0;
3181}
3182
943a451a
GC
3183int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3184 struct kmem_cache *root_cache)
2633d7a0 3185{
90c7a79c 3186 size_t size;
2633d7a0
GC
3187
3188 if (!memcg_kmem_enabled())
3189 return 0;
3190
90c7a79c
AV
3191 if (!memcg) {
3192 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3193 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3194 } else
3195 size = sizeof(struct memcg_cache_params);
55007d84 3196
2633d7a0
GC
3197 s->memcg_params = kzalloc(size, GFP_KERNEL);
3198 if (!s->memcg_params)
3199 return -ENOMEM;
3200
943a451a 3201 if (memcg) {
2633d7a0 3202 s->memcg_params->memcg = memcg;
943a451a 3203 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3204 INIT_WORK(&s->memcg_params->destroy,
3205 kmem_cache_destroy_work_func);
4ba902b5
GC
3206 } else
3207 s->memcg_params->is_root_cache = true;
3208
2633d7a0
GC
3209 return 0;
3210}
3211
3212void memcg_release_cache(struct kmem_cache *s)
3213{
d7f25f8a
GC
3214 struct kmem_cache *root;
3215 struct mem_cgroup *memcg;
3216 int id;
3217
3218 /*
3219 * This happens, for instance, when a root cache goes away before we
3220 * add any memcg.
3221 */
3222 if (!s->memcg_params)
3223 return;
3224
3225 if (s->memcg_params->is_root_cache)
3226 goto out;
3227
3228 memcg = s->memcg_params->memcg;
3229 id = memcg_cache_id(memcg);
3230
3231 root = s->memcg_params->root_cache;
3232 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3233
3234 mutex_lock(&memcg->slab_caches_mutex);
3235 list_del(&s->memcg_params->list);
3236 mutex_unlock(&memcg->slab_caches_mutex);
3237
20f05310 3238 css_put(&memcg->css);
d7f25f8a 3239out:
2633d7a0
GC
3240 kfree(s->memcg_params);
3241}
3242
0e9d92f2
GC
3243/*
3244 * During the creation a new cache, we need to disable our accounting mechanism
3245 * altogether. This is true even if we are not creating, but rather just
3246 * enqueing new caches to be created.
3247 *
3248 * This is because that process will trigger allocations; some visible, like
3249 * explicit kmallocs to auxiliary data structures, name strings and internal
3250 * cache structures; some well concealed, like INIT_WORK() that can allocate
3251 * objects during debug.
3252 *
3253 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3254 * to it. This may not be a bounded recursion: since the first cache creation
3255 * failed to complete (waiting on the allocation), we'll just try to create the
3256 * cache again, failing at the same point.
3257 *
3258 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3259 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3260 * inside the following two functions.
3261 */
3262static inline void memcg_stop_kmem_account(void)
3263{
3264 VM_BUG_ON(!current->mm);
3265 current->memcg_kmem_skip_account++;
3266}
3267
3268static inline void memcg_resume_kmem_account(void)
3269{
3270 VM_BUG_ON(!current->mm);
3271 current->memcg_kmem_skip_account--;
3272}
3273
1f458cbf
GC
3274static void kmem_cache_destroy_work_func(struct work_struct *w)
3275{
3276 struct kmem_cache *cachep;
3277 struct memcg_cache_params *p;
3278
3279 p = container_of(w, struct memcg_cache_params, destroy);
3280
3281 cachep = memcg_params_to_cache(p);
3282
22933152
GC
3283 /*
3284 * If we get down to 0 after shrink, we could delete right away.
3285 * However, memcg_release_pages() already puts us back in the workqueue
3286 * in that case. If we proceed deleting, we'll get a dangling
3287 * reference, and removing the object from the workqueue in that case
3288 * is unnecessary complication. We are not a fast path.
3289 *
3290 * Note that this case is fundamentally different from racing with
3291 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3292 * kmem_cache_shrink, not only we would be reinserting a dead cache
3293 * into the queue, but doing so from inside the worker racing to
3294 * destroy it.
3295 *
3296 * So if we aren't down to zero, we'll just schedule a worker and try
3297 * again
3298 */
3299 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3300 kmem_cache_shrink(cachep);
3301 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3302 return;
3303 } else
1f458cbf
GC
3304 kmem_cache_destroy(cachep);
3305}
3306
3307void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3308{
3309 if (!cachep->memcg_params->dead)
3310 return;
3311
22933152
GC
3312 /*
3313 * There are many ways in which we can get here.
3314 *
3315 * We can get to a memory-pressure situation while the delayed work is
3316 * still pending to run. The vmscan shrinkers can then release all
3317 * cache memory and get us to destruction. If this is the case, we'll
3318 * be executed twice, which is a bug (the second time will execute over
3319 * bogus data). In this case, cancelling the work should be fine.
3320 *
3321 * But we can also get here from the worker itself, if
3322 * kmem_cache_shrink is enough to shake all the remaining objects and
3323 * get the page count to 0. In this case, we'll deadlock if we try to
3324 * cancel the work (the worker runs with an internal lock held, which
3325 * is the same lock we would hold for cancel_work_sync().)
3326 *
3327 * Since we can't possibly know who got us here, just refrain from
3328 * running if there is already work pending
3329 */
3330 if (work_pending(&cachep->memcg_params->destroy))
3331 return;
1f458cbf
GC
3332 /*
3333 * We have to defer the actual destroying to a workqueue, because
3334 * we might currently be in a context that cannot sleep.
3335 */
3336 schedule_work(&cachep->memcg_params->destroy);
3337}
3338
d9c10ddd
MH
3339/*
3340 * This lock protects updaters, not readers. We want readers to be as fast as
3341 * they can, and they will either see NULL or a valid cache value. Our model
3342 * allow them to see NULL, in which case the root memcg will be selected.
3343 *
3344 * We need this lock because multiple allocations to the same cache from a non
3345 * will span more than one worker. Only one of them can create the cache.
3346 */
3347static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3348
d9c10ddd
MH
3349/*
3350 * Called with memcg_cache_mutex held
3351 */
d7f25f8a
GC
3352static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3353 struct kmem_cache *s)
3354{
d7f25f8a 3355 struct kmem_cache *new;
d9c10ddd 3356 static char *tmp_name = NULL;
d7f25f8a 3357
d9c10ddd
MH
3358 lockdep_assert_held(&memcg_cache_mutex);
3359
3360 /*
3361 * kmem_cache_create_memcg duplicates the given name and
3362 * cgroup_name for this name requires RCU context.
3363 * This static temporary buffer is used to prevent from
3364 * pointless shortliving allocation.
3365 */
3366 if (!tmp_name) {
3367 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3368 if (!tmp_name)
3369 return NULL;
3370 }
3371
3372 rcu_read_lock();
3373 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3374 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3375 rcu_read_unlock();
d7f25f8a 3376
d9c10ddd 3377 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3378 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3379
d79923fa
GC
3380 if (new)
3381 new->allocflags |= __GFP_KMEMCG;
3382
d7f25f8a
GC
3383 return new;
3384}
3385
d7f25f8a
GC
3386static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3387 struct kmem_cache *cachep)
3388{
3389 struct kmem_cache *new_cachep;
3390 int idx;
3391
3392 BUG_ON(!memcg_can_account_kmem(memcg));
3393
3394 idx = memcg_cache_id(memcg);
3395
3396 mutex_lock(&memcg_cache_mutex);
3397 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3398 if (new_cachep) {
3399 css_put(&memcg->css);
d7f25f8a 3400 goto out;
20f05310 3401 }
d7f25f8a
GC
3402
3403 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3404 if (new_cachep == NULL) {
3405 new_cachep = cachep;
20f05310 3406 css_put(&memcg->css);
d7f25f8a
GC
3407 goto out;
3408 }
3409
1f458cbf 3410 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3411
3412 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3413 /*
3414 * the readers won't lock, make sure everybody sees the updated value,
3415 * so they won't put stuff in the queue again for no reason
3416 */
3417 wmb();
3418out:
3419 mutex_unlock(&memcg_cache_mutex);
3420 return new_cachep;
3421}
3422
7cf27982
GC
3423void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3424{
3425 struct kmem_cache *c;
3426 int i;
3427
3428 if (!s->memcg_params)
3429 return;
3430 if (!s->memcg_params->is_root_cache)
3431 return;
3432
3433 /*
3434 * If the cache is being destroyed, we trust that there is no one else
3435 * requesting objects from it. Even if there are, the sanity checks in
3436 * kmem_cache_destroy should caught this ill-case.
3437 *
3438 * Still, we don't want anyone else freeing memcg_caches under our
3439 * noses, which can happen if a new memcg comes to life. As usual,
3440 * we'll take the set_limit_mutex to protect ourselves against this.
3441 */
3442 mutex_lock(&set_limit_mutex);
3443 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3444 c = s->memcg_params->memcg_caches[i];
3445 if (!c)
3446 continue;
3447
3448 /*
3449 * We will now manually delete the caches, so to avoid races
3450 * we need to cancel all pending destruction workers and
3451 * proceed with destruction ourselves.
3452 *
3453 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3454 * and that could spawn the workers again: it is likely that
3455 * the cache still have active pages until this very moment.
3456 * This would lead us back to mem_cgroup_destroy_cache.
3457 *
3458 * But that will not execute at all if the "dead" flag is not
3459 * set, so flip it down to guarantee we are in control.
3460 */
3461 c->memcg_params->dead = false;
22933152 3462 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3463 kmem_cache_destroy(c);
3464 }
3465 mutex_unlock(&set_limit_mutex);
3466}
3467
d7f25f8a
GC
3468struct create_work {
3469 struct mem_cgroup *memcg;
3470 struct kmem_cache *cachep;
3471 struct work_struct work;
3472};
3473
1f458cbf
GC
3474static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3475{
3476 struct kmem_cache *cachep;
3477 struct memcg_cache_params *params;
3478
3479 if (!memcg_kmem_is_active(memcg))
3480 return;
3481
3482 mutex_lock(&memcg->slab_caches_mutex);
3483 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3484 cachep = memcg_params_to_cache(params);
3485 cachep->memcg_params->dead = true;
1f458cbf
GC
3486 schedule_work(&cachep->memcg_params->destroy);
3487 }
3488 mutex_unlock(&memcg->slab_caches_mutex);
3489}
3490
d7f25f8a
GC
3491static void memcg_create_cache_work_func(struct work_struct *w)
3492{
3493 struct create_work *cw;
3494
3495 cw = container_of(w, struct create_work, work);
3496 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3497 kfree(cw);
3498}
3499
3500/*
3501 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3502 */
0e9d92f2
GC
3503static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3504 struct kmem_cache *cachep)
d7f25f8a
GC
3505{
3506 struct create_work *cw;
3507
3508 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3509 if (cw == NULL) {
3510 css_put(&memcg->css);
d7f25f8a
GC
3511 return;
3512 }
3513
3514 cw->memcg = memcg;
3515 cw->cachep = cachep;
3516
3517 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3518 schedule_work(&cw->work);
3519}
3520
0e9d92f2
GC
3521static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3522 struct kmem_cache *cachep)
3523{
3524 /*
3525 * We need to stop accounting when we kmalloc, because if the
3526 * corresponding kmalloc cache is not yet created, the first allocation
3527 * in __memcg_create_cache_enqueue will recurse.
3528 *
3529 * However, it is better to enclose the whole function. Depending on
3530 * the debugging options enabled, INIT_WORK(), for instance, can
3531 * trigger an allocation. This too, will make us recurse. Because at
3532 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3533 * the safest choice is to do it like this, wrapping the whole function.
3534 */
3535 memcg_stop_kmem_account();
3536 __memcg_create_cache_enqueue(memcg, cachep);
3537 memcg_resume_kmem_account();
3538}
d7f25f8a
GC
3539/*
3540 * Return the kmem_cache we're supposed to use for a slab allocation.
3541 * We try to use the current memcg's version of the cache.
3542 *
3543 * If the cache does not exist yet, if we are the first user of it,
3544 * we either create it immediately, if possible, or create it asynchronously
3545 * in a workqueue.
3546 * In the latter case, we will let the current allocation go through with
3547 * the original cache.
3548 *
3549 * Can't be called in interrupt context or from kernel threads.
3550 * This function needs to be called with rcu_read_lock() held.
3551 */
3552struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3553 gfp_t gfp)
3554{
3555 struct mem_cgroup *memcg;
3556 int idx;
3557
3558 VM_BUG_ON(!cachep->memcg_params);
3559 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3560
0e9d92f2
GC
3561 if (!current->mm || current->memcg_kmem_skip_account)
3562 return cachep;
3563
d7f25f8a
GC
3564 rcu_read_lock();
3565 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3566
3567 if (!memcg_can_account_kmem(memcg))
ca0dde97 3568 goto out;
d7f25f8a
GC
3569
3570 idx = memcg_cache_id(memcg);
3571
3572 /*
3573 * barrier to mare sure we're always seeing the up to date value. The
3574 * code updating memcg_caches will issue a write barrier to match this.
3575 */
3576 read_barrier_depends();
ca0dde97
LZ
3577 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3578 cachep = cachep->memcg_params->memcg_caches[idx];
3579 goto out;
d7f25f8a
GC
3580 }
3581
ca0dde97
LZ
3582 /* The corresponding put will be done in the workqueue. */
3583 if (!css_tryget(&memcg->css))
3584 goto out;
3585 rcu_read_unlock();
3586
3587 /*
3588 * If we are in a safe context (can wait, and not in interrupt
3589 * context), we could be be predictable and return right away.
3590 * This would guarantee that the allocation being performed
3591 * already belongs in the new cache.
3592 *
3593 * However, there are some clashes that can arrive from locking.
3594 * For instance, because we acquire the slab_mutex while doing
3595 * kmem_cache_dup, this means no further allocation could happen
3596 * with the slab_mutex held.
3597 *
3598 * Also, because cache creation issue get_online_cpus(), this
3599 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3600 * that ends up reversed during cpu hotplug. (cpuset allocates
3601 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3602 * better to defer everything.
3603 */
3604 memcg_create_cache_enqueue(memcg, cachep);
3605 return cachep;
3606out:
3607 rcu_read_unlock();
3608 return cachep;
d7f25f8a
GC
3609}
3610EXPORT_SYMBOL(__memcg_kmem_get_cache);
3611
7ae1e1d0
GC
3612/*
3613 * We need to verify if the allocation against current->mm->owner's memcg is
3614 * possible for the given order. But the page is not allocated yet, so we'll
3615 * need a further commit step to do the final arrangements.
3616 *
3617 * It is possible for the task to switch cgroups in this mean time, so at
3618 * commit time, we can't rely on task conversion any longer. We'll then use
3619 * the handle argument to return to the caller which cgroup we should commit
3620 * against. We could also return the memcg directly and avoid the pointer
3621 * passing, but a boolean return value gives better semantics considering
3622 * the compiled-out case as well.
3623 *
3624 * Returning true means the allocation is possible.
3625 */
3626bool
3627__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3628{
3629 struct mem_cgroup *memcg;
3630 int ret;
3631
3632 *_memcg = NULL;
6d42c232
GC
3633
3634 /*
3635 * Disabling accounting is only relevant for some specific memcg
3636 * internal allocations. Therefore we would initially not have such
3637 * check here, since direct calls to the page allocator that are marked
3638 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3639 * concerned with cache allocations, and by having this test at
3640 * memcg_kmem_get_cache, we are already able to relay the allocation to
3641 * the root cache and bypass the memcg cache altogether.
3642 *
3643 * There is one exception, though: the SLUB allocator does not create
3644 * large order caches, but rather service large kmallocs directly from
3645 * the page allocator. Therefore, the following sequence when backed by
3646 * the SLUB allocator:
3647 *
f894ffa8
AM
3648 * memcg_stop_kmem_account();
3649 * kmalloc(<large_number>)
3650 * memcg_resume_kmem_account();
6d42c232
GC
3651 *
3652 * would effectively ignore the fact that we should skip accounting,
3653 * since it will drive us directly to this function without passing
3654 * through the cache selector memcg_kmem_get_cache. Such large
3655 * allocations are extremely rare but can happen, for instance, for the
3656 * cache arrays. We bring this test here.
3657 */
3658 if (!current->mm || current->memcg_kmem_skip_account)
3659 return true;
3660
7ae1e1d0
GC
3661 memcg = try_get_mem_cgroup_from_mm(current->mm);
3662
3663 /*
3664 * very rare case described in mem_cgroup_from_task. Unfortunately there
3665 * isn't much we can do without complicating this too much, and it would
3666 * be gfp-dependent anyway. Just let it go
3667 */
3668 if (unlikely(!memcg))
3669 return true;
3670
3671 if (!memcg_can_account_kmem(memcg)) {
3672 css_put(&memcg->css);
3673 return true;
3674 }
3675
7ae1e1d0
GC
3676 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3677 if (!ret)
3678 *_memcg = memcg;
7ae1e1d0
GC
3679
3680 css_put(&memcg->css);
3681 return (ret == 0);
3682}
3683
3684void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3685 int order)
3686{
3687 struct page_cgroup *pc;
3688
3689 VM_BUG_ON(mem_cgroup_is_root(memcg));
3690
3691 /* The page allocation failed. Revert */
3692 if (!page) {
3693 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3694 return;
3695 }
3696
3697 pc = lookup_page_cgroup(page);
3698 lock_page_cgroup(pc);
3699 pc->mem_cgroup = memcg;
3700 SetPageCgroupUsed(pc);
3701 unlock_page_cgroup(pc);
3702}
3703
3704void __memcg_kmem_uncharge_pages(struct page *page, int order)
3705{
3706 struct mem_cgroup *memcg = NULL;
3707 struct page_cgroup *pc;
3708
3709
3710 pc = lookup_page_cgroup(page);
3711 /*
3712 * Fast unlocked return. Theoretically might have changed, have to
3713 * check again after locking.
3714 */
3715 if (!PageCgroupUsed(pc))
3716 return;
3717
3718 lock_page_cgroup(pc);
3719 if (PageCgroupUsed(pc)) {
3720 memcg = pc->mem_cgroup;
3721 ClearPageCgroupUsed(pc);
3722 }
3723 unlock_page_cgroup(pc);
3724
3725 /*
3726 * We trust that only if there is a memcg associated with the page, it
3727 * is a valid allocation
3728 */
3729 if (!memcg)
3730 return;
3731
3732 VM_BUG_ON(mem_cgroup_is_root(memcg));
3733 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3734}
1f458cbf
GC
3735#else
3736static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3737{
3738}
7ae1e1d0
GC
3739#endif /* CONFIG_MEMCG_KMEM */
3740
ca3e0214
KH
3741#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3742
a0db00fc 3743#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3744/*
3745 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3746 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3747 * charge/uncharge will be never happen and move_account() is done under
3748 * compound_lock(), so we don't have to take care of races.
ca3e0214 3749 */
e94c8a9c 3750void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3751{
3752 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3753 struct page_cgroup *pc;
b070e65c 3754 struct mem_cgroup *memcg;
e94c8a9c 3755 int i;
ca3e0214 3756
3d37c4a9
KH
3757 if (mem_cgroup_disabled())
3758 return;
b070e65c
DR
3759
3760 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3761 for (i = 1; i < HPAGE_PMD_NR; i++) {
3762 pc = head_pc + i;
b070e65c 3763 pc->mem_cgroup = memcg;
e94c8a9c 3764 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3765 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3766 }
b070e65c
DR
3767 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3768 HPAGE_PMD_NR);
ca3e0214 3769}
12d27107 3770#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3771
3ea67d06
SZ
3772static inline
3773void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3774 struct mem_cgroup *to,
3775 unsigned int nr_pages,
3776 enum mem_cgroup_stat_index idx)
3777{
3778 /* Update stat data for mem_cgroup */
3779 preempt_disable();
3780 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3781 __this_cpu_add(from->stat->count[idx], -nr_pages);
3782 __this_cpu_add(to->stat->count[idx], nr_pages);
3783 preempt_enable();
3784}
3785
f817ed48 3786/**
de3638d9 3787 * mem_cgroup_move_account - move account of the page
5564e88b 3788 * @page: the page
7ec99d62 3789 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3790 * @pc: page_cgroup of the page.
3791 * @from: mem_cgroup which the page is moved from.
3792 * @to: mem_cgroup which the page is moved to. @from != @to.
3793 *
3794 * The caller must confirm following.
08e552c6 3795 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3796 * - compound_lock is held when nr_pages > 1
f817ed48 3797 *
2f3479b1
KH
3798 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3799 * from old cgroup.
f817ed48 3800 */
7ec99d62
JW
3801static int mem_cgroup_move_account(struct page *page,
3802 unsigned int nr_pages,
3803 struct page_cgroup *pc,
3804 struct mem_cgroup *from,
2f3479b1 3805 struct mem_cgroup *to)
f817ed48 3806{
de3638d9
JW
3807 unsigned long flags;
3808 int ret;
b2402857 3809 bool anon = PageAnon(page);
987eba66 3810
f817ed48 3811 VM_BUG_ON(from == to);
5564e88b 3812 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3813 /*
3814 * The page is isolated from LRU. So, collapse function
3815 * will not handle this page. But page splitting can happen.
3816 * Do this check under compound_page_lock(). The caller should
3817 * hold it.
3818 */
3819 ret = -EBUSY;
7ec99d62 3820 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3821 goto out;
3822
3823 lock_page_cgroup(pc);
3824
3825 ret = -EINVAL;
3826 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3827 goto unlock;
3828
312734c0 3829 move_lock_mem_cgroup(from, &flags);
f817ed48 3830
3ea67d06
SZ
3831 if (!anon && page_mapped(page))
3832 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3833 MEM_CGROUP_STAT_FILE_MAPPED);
3834
3835 if (PageWriteback(page))
3836 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3837 MEM_CGROUP_STAT_WRITEBACK);
3838
b070e65c 3839 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3840
854ffa8d 3841 /* caller should have done css_get */
08e552c6 3842 pc->mem_cgroup = to;
b070e65c 3843 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3844 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3845 ret = 0;
3846unlock:
57f9fd7d 3847 unlock_page_cgroup(pc);
d2265e6f
KH
3848 /*
3849 * check events
3850 */
5564e88b
JW
3851 memcg_check_events(to, page);
3852 memcg_check_events(from, page);
de3638d9 3853out:
f817ed48
KH
3854 return ret;
3855}
3856
2ef37d3f
MH
3857/**
3858 * mem_cgroup_move_parent - moves page to the parent group
3859 * @page: the page to move
3860 * @pc: page_cgroup of the page
3861 * @child: page's cgroup
3862 *
3863 * move charges to its parent or the root cgroup if the group has no
3864 * parent (aka use_hierarchy==0).
3865 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3866 * mem_cgroup_move_account fails) the failure is always temporary and
3867 * it signals a race with a page removal/uncharge or migration. In the
3868 * first case the page is on the way out and it will vanish from the LRU
3869 * on the next attempt and the call should be retried later.
3870 * Isolation from the LRU fails only if page has been isolated from
3871 * the LRU since we looked at it and that usually means either global
3872 * reclaim or migration going on. The page will either get back to the
3873 * LRU or vanish.
3874 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3875 * (!PageCgroupUsed) or moved to a different group. The page will
3876 * disappear in the next attempt.
f817ed48 3877 */
5564e88b
JW
3878static int mem_cgroup_move_parent(struct page *page,
3879 struct page_cgroup *pc,
6068bf01 3880 struct mem_cgroup *child)
f817ed48 3881{
f817ed48 3882 struct mem_cgroup *parent;
7ec99d62 3883 unsigned int nr_pages;
4be4489f 3884 unsigned long uninitialized_var(flags);
f817ed48
KH
3885 int ret;
3886
d8423011 3887 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3888
57f9fd7d
DN
3889 ret = -EBUSY;
3890 if (!get_page_unless_zero(page))
3891 goto out;
3892 if (isolate_lru_page(page))
3893 goto put;
52dbb905 3894
7ec99d62 3895 nr_pages = hpage_nr_pages(page);
08e552c6 3896
cc926f78
KH
3897 parent = parent_mem_cgroup(child);
3898 /*
3899 * If no parent, move charges to root cgroup.
3900 */
3901 if (!parent)
3902 parent = root_mem_cgroup;
f817ed48 3903
2ef37d3f
MH
3904 if (nr_pages > 1) {
3905 VM_BUG_ON(!PageTransHuge(page));
987eba66 3906 flags = compound_lock_irqsave(page);
2ef37d3f 3907 }
987eba66 3908
cc926f78 3909 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3910 pc, child, parent);
cc926f78
KH
3911 if (!ret)
3912 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3913
7ec99d62 3914 if (nr_pages > 1)
987eba66 3915 compound_unlock_irqrestore(page, flags);
08e552c6 3916 putback_lru_page(page);
57f9fd7d 3917put:
40d58138 3918 put_page(page);
57f9fd7d 3919out:
f817ed48
KH
3920 return ret;
3921}
3922
7a81b88c
KH
3923/*
3924 * Charge the memory controller for page usage.
3925 * Return
3926 * 0 if the charge was successful
3927 * < 0 if the cgroup is over its limit
3928 */
3929static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3930 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3931{
c0ff4b85 3932 struct mem_cgroup *memcg = NULL;
7ec99d62 3933 unsigned int nr_pages = 1;
8493ae43 3934 bool oom = true;
7a81b88c 3935 int ret;
ec168510 3936
37c2ac78 3937 if (PageTransHuge(page)) {
7ec99d62 3938 nr_pages <<= compound_order(page);
37c2ac78 3939 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3940 /*
3941 * Never OOM-kill a process for a huge page. The
3942 * fault handler will fall back to regular pages.
3943 */
3944 oom = false;
37c2ac78 3945 }
7a81b88c 3946
c0ff4b85 3947 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3948 if (ret == -ENOMEM)
7a81b88c 3949 return ret;
ce587e65 3950 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3951 return 0;
8a9f3ccd
BS
3952}
3953
7a81b88c
KH
3954int mem_cgroup_newpage_charge(struct page *page,
3955 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3956{
f8d66542 3957 if (mem_cgroup_disabled())
cede86ac 3958 return 0;
7a0524cf
JW
3959 VM_BUG_ON(page_mapped(page));
3960 VM_BUG_ON(page->mapping && !PageAnon(page));
3961 VM_BUG_ON(!mm);
217bc319 3962 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3963 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3964}
3965
54595fe2
KH
3966/*
3967 * While swap-in, try_charge -> commit or cancel, the page is locked.
3968 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3969 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3970 * "commit()" or removed by "cancel()"
3971 */
0435a2fd
JW
3972static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3973 struct page *page,
3974 gfp_t mask,
3975 struct mem_cgroup **memcgp)
8c7c6e34 3976{
c0ff4b85 3977 struct mem_cgroup *memcg;
90deb788 3978 struct page_cgroup *pc;
54595fe2 3979 int ret;
8c7c6e34 3980
90deb788
JW
3981 pc = lookup_page_cgroup(page);
3982 /*
3983 * Every swap fault against a single page tries to charge the
3984 * page, bail as early as possible. shmem_unuse() encounters
3985 * already charged pages, too. The USED bit is protected by
3986 * the page lock, which serializes swap cache removal, which
3987 * in turn serializes uncharging.
3988 */
3989 if (PageCgroupUsed(pc))
3990 return 0;
8c7c6e34
KH
3991 if (!do_swap_account)
3992 goto charge_cur_mm;
c0ff4b85
R
3993 memcg = try_get_mem_cgroup_from_page(page);
3994 if (!memcg)
54595fe2 3995 goto charge_cur_mm;
72835c86
JW
3996 *memcgp = memcg;
3997 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3998 css_put(&memcg->css);
38c5d72f
KH
3999 if (ret == -EINTR)
4000 ret = 0;
54595fe2 4001 return ret;
8c7c6e34 4002charge_cur_mm:
38c5d72f
KH
4003 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4004 if (ret == -EINTR)
4005 ret = 0;
4006 return ret;
8c7c6e34
KH
4007}
4008
0435a2fd
JW
4009int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4010 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4011{
4012 *memcgp = NULL;
4013 if (mem_cgroup_disabled())
4014 return 0;
bdf4f4d2
JW
4015 /*
4016 * A racing thread's fault, or swapoff, may have already
4017 * updated the pte, and even removed page from swap cache: in
4018 * those cases unuse_pte()'s pte_same() test will fail; but
4019 * there's also a KSM case which does need to charge the page.
4020 */
4021 if (!PageSwapCache(page)) {
4022 int ret;
4023
4024 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4025 if (ret == -EINTR)
4026 ret = 0;
4027 return ret;
4028 }
0435a2fd
JW
4029 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4030}
4031
827a03d2
JW
4032void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4033{
4034 if (mem_cgroup_disabled())
4035 return;
4036 if (!memcg)
4037 return;
4038 __mem_cgroup_cancel_charge(memcg, 1);
4039}
4040
83aae4c7 4041static void
72835c86 4042__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4043 enum charge_type ctype)
7a81b88c 4044{
f8d66542 4045 if (mem_cgroup_disabled())
7a81b88c 4046 return;
72835c86 4047 if (!memcg)
7a81b88c 4048 return;
5a6475a4 4049
ce587e65 4050 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4051 /*
4052 * Now swap is on-memory. This means this page may be
4053 * counted both as mem and swap....double count.
03f3c433
KH
4054 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4055 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4056 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4057 */
03f3c433 4058 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4059 swp_entry_t ent = {.val = page_private(page)};
86493009 4060 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4061 }
7a81b88c
KH
4062}
4063
72835c86
JW
4064void mem_cgroup_commit_charge_swapin(struct page *page,
4065 struct mem_cgroup *memcg)
83aae4c7 4066{
72835c86 4067 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4068 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4069}
4070
827a03d2
JW
4071int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4072 gfp_t gfp_mask)
7a81b88c 4073{
827a03d2
JW
4074 struct mem_cgroup *memcg = NULL;
4075 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4076 int ret;
4077
f8d66542 4078 if (mem_cgroup_disabled())
827a03d2
JW
4079 return 0;
4080 if (PageCompound(page))
4081 return 0;
4082
827a03d2
JW
4083 if (!PageSwapCache(page))
4084 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4085 else { /* page is swapcache/shmem */
0435a2fd
JW
4086 ret = __mem_cgroup_try_charge_swapin(mm, page,
4087 gfp_mask, &memcg);
827a03d2
JW
4088 if (!ret)
4089 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4090 }
4091 return ret;
7a81b88c
KH
4092}
4093
c0ff4b85 4094static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4095 unsigned int nr_pages,
4096 const enum charge_type ctype)
569b846d
KH
4097{
4098 struct memcg_batch_info *batch = NULL;
4099 bool uncharge_memsw = true;
7ec99d62 4100
569b846d
KH
4101 /* If swapout, usage of swap doesn't decrease */
4102 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4103 uncharge_memsw = false;
569b846d
KH
4104
4105 batch = &current->memcg_batch;
4106 /*
4107 * In usual, we do css_get() when we remember memcg pointer.
4108 * But in this case, we keep res->usage until end of a series of
4109 * uncharges. Then, it's ok to ignore memcg's refcnt.
4110 */
4111 if (!batch->memcg)
c0ff4b85 4112 batch->memcg = memcg;
3c11ecf4
KH
4113 /*
4114 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4115 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4116 * the same cgroup and we have chance to coalesce uncharges.
4117 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4118 * because we want to do uncharge as soon as possible.
4119 */
4120
4121 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4122 goto direct_uncharge;
4123
7ec99d62 4124 if (nr_pages > 1)
ec168510
AA
4125 goto direct_uncharge;
4126
569b846d
KH
4127 /*
4128 * In typical case, batch->memcg == mem. This means we can
4129 * merge a series of uncharges to an uncharge of res_counter.
4130 * If not, we uncharge res_counter ony by one.
4131 */
c0ff4b85 4132 if (batch->memcg != memcg)
569b846d
KH
4133 goto direct_uncharge;
4134 /* remember freed charge and uncharge it later */
7ffd4ca7 4135 batch->nr_pages++;
569b846d 4136 if (uncharge_memsw)
7ffd4ca7 4137 batch->memsw_nr_pages++;
569b846d
KH
4138 return;
4139direct_uncharge:
c0ff4b85 4140 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4141 if (uncharge_memsw)
c0ff4b85
R
4142 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4143 if (unlikely(batch->memcg != memcg))
4144 memcg_oom_recover(memcg);
569b846d 4145}
7a81b88c 4146
8a9f3ccd 4147/*
69029cd5 4148 * uncharge if !page_mapped(page)
8a9f3ccd 4149 */
8c7c6e34 4150static struct mem_cgroup *
0030f535
JW
4151__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4152 bool end_migration)
8a9f3ccd 4153{
c0ff4b85 4154 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4155 unsigned int nr_pages = 1;
4156 struct page_cgroup *pc;
b2402857 4157 bool anon;
8a9f3ccd 4158
f8d66542 4159 if (mem_cgroup_disabled())
8c7c6e34 4160 return NULL;
4077960e 4161
37c2ac78 4162 if (PageTransHuge(page)) {
7ec99d62 4163 nr_pages <<= compound_order(page);
37c2ac78
AA
4164 VM_BUG_ON(!PageTransHuge(page));
4165 }
8697d331 4166 /*
3c541e14 4167 * Check if our page_cgroup is valid
8697d331 4168 */
52d4b9ac 4169 pc = lookup_page_cgroup(page);
cfa44946 4170 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4171 return NULL;
b9c565d5 4172
52d4b9ac 4173 lock_page_cgroup(pc);
d13d1443 4174
c0ff4b85 4175 memcg = pc->mem_cgroup;
8c7c6e34 4176
d13d1443
KH
4177 if (!PageCgroupUsed(pc))
4178 goto unlock_out;
4179
b2402857
KH
4180 anon = PageAnon(page);
4181
d13d1443 4182 switch (ctype) {
41326c17 4183 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4184 /*
4185 * Generally PageAnon tells if it's the anon statistics to be
4186 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4187 * used before page reached the stage of being marked PageAnon.
4188 */
b2402857
KH
4189 anon = true;
4190 /* fallthrough */
8a9478ca 4191 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4192 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4193 if (page_mapped(page))
4194 goto unlock_out;
4195 /*
4196 * Pages under migration may not be uncharged. But
4197 * end_migration() /must/ be the one uncharging the
4198 * unused post-migration page and so it has to call
4199 * here with the migration bit still set. See the
4200 * res_counter handling below.
4201 */
4202 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4203 goto unlock_out;
4204 break;
4205 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4206 if (!PageAnon(page)) { /* Shared memory */
4207 if (page->mapping && !page_is_file_cache(page))
4208 goto unlock_out;
4209 } else if (page_mapped(page)) /* Anon */
4210 goto unlock_out;
4211 break;
4212 default:
4213 break;
52d4b9ac 4214 }
d13d1443 4215
b070e65c 4216 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4217
52d4b9ac 4218 ClearPageCgroupUsed(pc);
544122e5
KH
4219 /*
4220 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4221 * freed from LRU. This is safe because uncharged page is expected not
4222 * to be reused (freed soon). Exception is SwapCache, it's handled by
4223 * special functions.
4224 */
b9c565d5 4225
52d4b9ac 4226 unlock_page_cgroup(pc);
f75ca962 4227 /*
c0ff4b85 4228 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4229 * will never be freed, so it's safe to call css_get().
f75ca962 4230 */
c0ff4b85 4231 memcg_check_events(memcg, page);
f75ca962 4232 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4233 mem_cgroup_swap_statistics(memcg, true);
4050377b 4234 css_get(&memcg->css);
f75ca962 4235 }
0030f535
JW
4236 /*
4237 * Migration does not charge the res_counter for the
4238 * replacement page, so leave it alone when phasing out the
4239 * page that is unused after the migration.
4240 */
4241 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4242 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4243
c0ff4b85 4244 return memcg;
d13d1443
KH
4245
4246unlock_out:
4247 unlock_page_cgroup(pc);
8c7c6e34 4248 return NULL;
3c541e14
BS
4249}
4250
69029cd5
KH
4251void mem_cgroup_uncharge_page(struct page *page)
4252{
52d4b9ac
KH
4253 /* early check. */
4254 if (page_mapped(page))
4255 return;
40f23a21 4256 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4257 /*
4258 * If the page is in swap cache, uncharge should be deferred
4259 * to the swap path, which also properly accounts swap usage
4260 * and handles memcg lifetime.
4261 *
4262 * Note that this check is not stable and reclaim may add the
4263 * page to swap cache at any time after this. However, if the
4264 * page is not in swap cache by the time page->mapcount hits
4265 * 0, there won't be any page table references to the swap
4266 * slot, and reclaim will free it and not actually write the
4267 * page to disk.
4268 */
0c59b89c
JW
4269 if (PageSwapCache(page))
4270 return;
0030f535 4271 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4272}
4273
4274void mem_cgroup_uncharge_cache_page(struct page *page)
4275{
4276 VM_BUG_ON(page_mapped(page));
b7abea96 4277 VM_BUG_ON(page->mapping);
0030f535 4278 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4279}
4280
569b846d
KH
4281/*
4282 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4283 * In that cases, pages are freed continuously and we can expect pages
4284 * are in the same memcg. All these calls itself limits the number of
4285 * pages freed at once, then uncharge_start/end() is called properly.
4286 * This may be called prural(2) times in a context,
4287 */
4288
4289void mem_cgroup_uncharge_start(void)
4290{
4291 current->memcg_batch.do_batch++;
4292 /* We can do nest. */
4293 if (current->memcg_batch.do_batch == 1) {
4294 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4295 current->memcg_batch.nr_pages = 0;
4296 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4297 }
4298}
4299
4300void mem_cgroup_uncharge_end(void)
4301{
4302 struct memcg_batch_info *batch = &current->memcg_batch;
4303
4304 if (!batch->do_batch)
4305 return;
4306
4307 batch->do_batch--;
4308 if (batch->do_batch) /* If stacked, do nothing. */
4309 return;
4310
4311 if (!batch->memcg)
4312 return;
4313 /*
4314 * This "batch->memcg" is valid without any css_get/put etc...
4315 * bacause we hide charges behind us.
4316 */
7ffd4ca7
JW
4317 if (batch->nr_pages)
4318 res_counter_uncharge(&batch->memcg->res,
4319 batch->nr_pages * PAGE_SIZE);
4320 if (batch->memsw_nr_pages)
4321 res_counter_uncharge(&batch->memcg->memsw,
4322 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4323 memcg_oom_recover(batch->memcg);
569b846d
KH
4324 /* forget this pointer (for sanity check) */
4325 batch->memcg = NULL;
4326}
4327
e767e056 4328#ifdef CONFIG_SWAP
8c7c6e34 4329/*
e767e056 4330 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4331 * memcg information is recorded to swap_cgroup of "ent"
4332 */
8a9478ca
KH
4333void
4334mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4335{
4336 struct mem_cgroup *memcg;
8a9478ca
KH
4337 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4338
4339 if (!swapout) /* this was a swap cache but the swap is unused ! */
4340 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4341
0030f535 4342 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4343
f75ca962
KH
4344 /*
4345 * record memcg information, if swapout && memcg != NULL,
4050377b 4346 * css_get() was called in uncharge().
f75ca962
KH
4347 */
4348 if (do_swap_account && swapout && memcg)
a3b2d692 4349 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4350}
e767e056 4351#endif
8c7c6e34 4352
c255a458 4353#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4354/*
4355 * called from swap_entry_free(). remove record in swap_cgroup and
4356 * uncharge "memsw" account.
4357 */
4358void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4359{
8c7c6e34 4360 struct mem_cgroup *memcg;
a3b2d692 4361 unsigned short id;
8c7c6e34
KH
4362
4363 if (!do_swap_account)
4364 return;
4365
a3b2d692
KH
4366 id = swap_cgroup_record(ent, 0);
4367 rcu_read_lock();
4368 memcg = mem_cgroup_lookup(id);
8c7c6e34 4369 if (memcg) {
a3b2d692
KH
4370 /*
4371 * We uncharge this because swap is freed.
4372 * This memcg can be obsolete one. We avoid calling css_tryget
4373 */
0c3e73e8 4374 if (!mem_cgroup_is_root(memcg))
4e649152 4375 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4376 mem_cgroup_swap_statistics(memcg, false);
4050377b 4377 css_put(&memcg->css);
8c7c6e34 4378 }
a3b2d692 4379 rcu_read_unlock();
d13d1443 4380}
02491447
DN
4381
4382/**
4383 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4384 * @entry: swap entry to be moved
4385 * @from: mem_cgroup which the entry is moved from
4386 * @to: mem_cgroup which the entry is moved to
4387 *
4388 * It succeeds only when the swap_cgroup's record for this entry is the same
4389 * as the mem_cgroup's id of @from.
4390 *
4391 * Returns 0 on success, -EINVAL on failure.
4392 *
4393 * The caller must have charged to @to, IOW, called res_counter_charge() about
4394 * both res and memsw, and called css_get().
4395 */
4396static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4397 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4398{
4399 unsigned short old_id, new_id;
4400
4401 old_id = css_id(&from->css);
4402 new_id = css_id(&to->css);
4403
4404 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4405 mem_cgroup_swap_statistics(from, false);
483c30b5 4406 mem_cgroup_swap_statistics(to, true);
02491447 4407 /*
483c30b5
DN
4408 * This function is only called from task migration context now.
4409 * It postpones res_counter and refcount handling till the end
4410 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4411 * improvement. But we cannot postpone css_get(to) because if
4412 * the process that has been moved to @to does swap-in, the
4413 * refcount of @to might be decreased to 0.
4414 *
4415 * We are in attach() phase, so the cgroup is guaranteed to be
4416 * alive, so we can just call css_get().
02491447 4417 */
4050377b 4418 css_get(&to->css);
02491447
DN
4419 return 0;
4420 }
4421 return -EINVAL;
4422}
4423#else
4424static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4425 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4426{
4427 return -EINVAL;
4428}
8c7c6e34 4429#endif
d13d1443 4430
ae41be37 4431/*
01b1ae63
KH
4432 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4433 * page belongs to.
ae41be37 4434 */
0030f535
JW
4435void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4436 struct mem_cgroup **memcgp)
ae41be37 4437{
c0ff4b85 4438 struct mem_cgroup *memcg = NULL;
b32967ff 4439 unsigned int nr_pages = 1;
7ec99d62 4440 struct page_cgroup *pc;
ac39cf8c 4441 enum charge_type ctype;
8869b8f6 4442
72835c86 4443 *memcgp = NULL;
56039efa 4444
f8d66542 4445 if (mem_cgroup_disabled())
0030f535 4446 return;
4077960e 4447
b32967ff
MG
4448 if (PageTransHuge(page))
4449 nr_pages <<= compound_order(page);
4450
52d4b9ac
KH
4451 pc = lookup_page_cgroup(page);
4452 lock_page_cgroup(pc);
4453 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4454 memcg = pc->mem_cgroup;
4455 css_get(&memcg->css);
ac39cf8c
AM
4456 /*
4457 * At migrating an anonymous page, its mapcount goes down
4458 * to 0 and uncharge() will be called. But, even if it's fully
4459 * unmapped, migration may fail and this page has to be
4460 * charged again. We set MIGRATION flag here and delay uncharge
4461 * until end_migration() is called
4462 *
4463 * Corner Case Thinking
4464 * A)
4465 * When the old page was mapped as Anon and it's unmap-and-freed
4466 * while migration was ongoing.
4467 * If unmap finds the old page, uncharge() of it will be delayed
4468 * until end_migration(). If unmap finds a new page, it's
4469 * uncharged when it make mapcount to be 1->0. If unmap code
4470 * finds swap_migration_entry, the new page will not be mapped
4471 * and end_migration() will find it(mapcount==0).
4472 *
4473 * B)
4474 * When the old page was mapped but migraion fails, the kernel
4475 * remaps it. A charge for it is kept by MIGRATION flag even
4476 * if mapcount goes down to 0. We can do remap successfully
4477 * without charging it again.
4478 *
4479 * C)
4480 * The "old" page is under lock_page() until the end of
4481 * migration, so, the old page itself will not be swapped-out.
4482 * If the new page is swapped out before end_migraton, our
4483 * hook to usual swap-out path will catch the event.
4484 */
4485 if (PageAnon(page))
4486 SetPageCgroupMigration(pc);
e8589cc1 4487 }
52d4b9ac 4488 unlock_page_cgroup(pc);
ac39cf8c
AM
4489 /*
4490 * If the page is not charged at this point,
4491 * we return here.
4492 */
c0ff4b85 4493 if (!memcg)
0030f535 4494 return;
01b1ae63 4495
72835c86 4496 *memcgp = memcg;
ac39cf8c
AM
4497 /*
4498 * We charge new page before it's used/mapped. So, even if unlock_page()
4499 * is called before end_migration, we can catch all events on this new
4500 * page. In the case new page is migrated but not remapped, new page's
4501 * mapcount will be finally 0 and we call uncharge in end_migration().
4502 */
ac39cf8c 4503 if (PageAnon(page))
41326c17 4504 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4505 else
62ba7442 4506 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4507 /*
4508 * The page is committed to the memcg, but it's not actually
4509 * charged to the res_counter since we plan on replacing the
4510 * old one and only one page is going to be left afterwards.
4511 */
b32967ff 4512 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4513}
8869b8f6 4514
69029cd5 4515/* remove redundant charge if migration failed*/
c0ff4b85 4516void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4517 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4518{
ac39cf8c 4519 struct page *used, *unused;
01b1ae63 4520 struct page_cgroup *pc;
b2402857 4521 bool anon;
01b1ae63 4522
c0ff4b85 4523 if (!memcg)
01b1ae63 4524 return;
b25ed609 4525
50de1dd9 4526 if (!migration_ok) {
ac39cf8c
AM
4527 used = oldpage;
4528 unused = newpage;
01b1ae63 4529 } else {
ac39cf8c 4530 used = newpage;
01b1ae63
KH
4531 unused = oldpage;
4532 }
0030f535 4533 anon = PageAnon(used);
7d188958
JW
4534 __mem_cgroup_uncharge_common(unused,
4535 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4536 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4537 true);
0030f535 4538 css_put(&memcg->css);
69029cd5 4539 /*
ac39cf8c
AM
4540 * We disallowed uncharge of pages under migration because mapcount
4541 * of the page goes down to zero, temporarly.
4542 * Clear the flag and check the page should be charged.
01b1ae63 4543 */
ac39cf8c
AM
4544 pc = lookup_page_cgroup(oldpage);
4545 lock_page_cgroup(pc);
4546 ClearPageCgroupMigration(pc);
4547 unlock_page_cgroup(pc);
ac39cf8c 4548
01b1ae63 4549 /*
ac39cf8c
AM
4550 * If a page is a file cache, radix-tree replacement is very atomic
4551 * and we can skip this check. When it was an Anon page, its mapcount
4552 * goes down to 0. But because we added MIGRATION flage, it's not
4553 * uncharged yet. There are several case but page->mapcount check
4554 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4555 * check. (see prepare_charge() also)
69029cd5 4556 */
b2402857 4557 if (anon)
ac39cf8c 4558 mem_cgroup_uncharge_page(used);
ae41be37 4559}
78fb7466 4560
ab936cbc
KH
4561/*
4562 * At replace page cache, newpage is not under any memcg but it's on
4563 * LRU. So, this function doesn't touch res_counter but handles LRU
4564 * in correct way. Both pages are locked so we cannot race with uncharge.
4565 */
4566void mem_cgroup_replace_page_cache(struct page *oldpage,
4567 struct page *newpage)
4568{
bde05d1c 4569 struct mem_cgroup *memcg = NULL;
ab936cbc 4570 struct page_cgroup *pc;
ab936cbc 4571 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4572
4573 if (mem_cgroup_disabled())
4574 return;
4575
4576 pc = lookup_page_cgroup(oldpage);
4577 /* fix accounting on old pages */
4578 lock_page_cgroup(pc);
bde05d1c
HD
4579 if (PageCgroupUsed(pc)) {
4580 memcg = pc->mem_cgroup;
b070e65c 4581 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4582 ClearPageCgroupUsed(pc);
4583 }
ab936cbc
KH
4584 unlock_page_cgroup(pc);
4585
bde05d1c
HD
4586 /*
4587 * When called from shmem_replace_page(), in some cases the
4588 * oldpage has already been charged, and in some cases not.
4589 */
4590 if (!memcg)
4591 return;
ab936cbc
KH
4592 /*
4593 * Even if newpage->mapping was NULL before starting replacement,
4594 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4595 * LRU while we overwrite pc->mem_cgroup.
4596 */
ce587e65 4597 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4598}
4599
f212ad7c
DN
4600#ifdef CONFIG_DEBUG_VM
4601static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4602{
4603 struct page_cgroup *pc;
4604
4605 pc = lookup_page_cgroup(page);
cfa44946
JW
4606 /*
4607 * Can be NULL while feeding pages into the page allocator for
4608 * the first time, i.e. during boot or memory hotplug;
4609 * or when mem_cgroup_disabled().
4610 */
f212ad7c
DN
4611 if (likely(pc) && PageCgroupUsed(pc))
4612 return pc;
4613 return NULL;
4614}
4615
4616bool mem_cgroup_bad_page_check(struct page *page)
4617{
4618 if (mem_cgroup_disabled())
4619 return false;
4620
4621 return lookup_page_cgroup_used(page) != NULL;
4622}
4623
4624void mem_cgroup_print_bad_page(struct page *page)
4625{
4626 struct page_cgroup *pc;
4627
4628 pc = lookup_page_cgroup_used(page);
4629 if (pc) {
d045197f
AM
4630 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4631 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4632 }
4633}
4634#endif
4635
d38d2a75 4636static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4637 unsigned long long val)
628f4235 4638{
81d39c20 4639 int retry_count;
3c11ecf4 4640 u64 memswlimit, memlimit;
628f4235 4641 int ret = 0;
81d39c20
KH
4642 int children = mem_cgroup_count_children(memcg);
4643 u64 curusage, oldusage;
3c11ecf4 4644 int enlarge;
81d39c20
KH
4645
4646 /*
4647 * For keeping hierarchical_reclaim simple, how long we should retry
4648 * is depends on callers. We set our retry-count to be function
4649 * of # of children which we should visit in this loop.
4650 */
4651 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4652
4653 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4654
3c11ecf4 4655 enlarge = 0;
8c7c6e34 4656 while (retry_count) {
628f4235
KH
4657 if (signal_pending(current)) {
4658 ret = -EINTR;
4659 break;
4660 }
8c7c6e34
KH
4661 /*
4662 * Rather than hide all in some function, I do this in
4663 * open coded manner. You see what this really does.
aaad153e 4664 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4665 */
4666 mutex_lock(&set_limit_mutex);
4667 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4668 if (memswlimit < val) {
4669 ret = -EINVAL;
4670 mutex_unlock(&set_limit_mutex);
628f4235
KH
4671 break;
4672 }
3c11ecf4
KH
4673
4674 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4675 if (memlimit < val)
4676 enlarge = 1;
4677
8c7c6e34 4678 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4679 if (!ret) {
4680 if (memswlimit == val)
4681 memcg->memsw_is_minimum = true;
4682 else
4683 memcg->memsw_is_minimum = false;
4684 }
8c7c6e34
KH
4685 mutex_unlock(&set_limit_mutex);
4686
4687 if (!ret)
4688 break;
4689
5660048c
JW
4690 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4691 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4692 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4693 /* Usage is reduced ? */
f894ffa8 4694 if (curusage >= oldusage)
81d39c20
KH
4695 retry_count--;
4696 else
4697 oldusage = curusage;
8c7c6e34 4698 }
3c11ecf4
KH
4699 if (!ret && enlarge)
4700 memcg_oom_recover(memcg);
14797e23 4701
8c7c6e34
KH
4702 return ret;
4703}
4704
338c8431
LZ
4705static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4706 unsigned long long val)
8c7c6e34 4707{
81d39c20 4708 int retry_count;
3c11ecf4 4709 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4710 int children = mem_cgroup_count_children(memcg);
4711 int ret = -EBUSY;
3c11ecf4 4712 int enlarge = 0;
8c7c6e34 4713
81d39c20 4714 /* see mem_cgroup_resize_res_limit */
f894ffa8 4715 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4716 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4717 while (retry_count) {
4718 if (signal_pending(current)) {
4719 ret = -EINTR;
4720 break;
4721 }
4722 /*
4723 * Rather than hide all in some function, I do this in
4724 * open coded manner. You see what this really does.
aaad153e 4725 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4726 */
4727 mutex_lock(&set_limit_mutex);
4728 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4729 if (memlimit > val) {
4730 ret = -EINVAL;
4731 mutex_unlock(&set_limit_mutex);
4732 break;
4733 }
3c11ecf4
KH
4734 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4735 if (memswlimit < val)
4736 enlarge = 1;
8c7c6e34 4737 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4738 if (!ret) {
4739 if (memlimit == val)
4740 memcg->memsw_is_minimum = true;
4741 else
4742 memcg->memsw_is_minimum = false;
4743 }
8c7c6e34
KH
4744 mutex_unlock(&set_limit_mutex);
4745
4746 if (!ret)
4747 break;
4748
5660048c
JW
4749 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4750 MEM_CGROUP_RECLAIM_NOSWAP |
4751 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4752 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4753 /* Usage is reduced ? */
8c7c6e34 4754 if (curusage >= oldusage)
628f4235 4755 retry_count--;
81d39c20
KH
4756 else
4757 oldusage = curusage;
628f4235 4758 }
3c11ecf4
KH
4759 if (!ret && enlarge)
4760 memcg_oom_recover(memcg);
628f4235
KH
4761 return ret;
4762}
4763
2ef37d3f
MH
4764/**
4765 * mem_cgroup_force_empty_list - clears LRU of a group
4766 * @memcg: group to clear
4767 * @node: NUMA node
4768 * @zid: zone id
4769 * @lru: lru to to clear
4770 *
3c935d18 4771 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4772 * reclaim the pages page themselves - pages are moved to the parent (or root)
4773 * group.
cc847582 4774 */
2ef37d3f 4775static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4776 int node, int zid, enum lru_list lru)
cc847582 4777{
bea8c150 4778 struct lruvec *lruvec;
2ef37d3f 4779 unsigned long flags;
072c56c1 4780 struct list_head *list;
925b7673
JW
4781 struct page *busy;
4782 struct zone *zone;
072c56c1 4783
08e552c6 4784 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4785 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4786 list = &lruvec->lists[lru];
cc847582 4787
f817ed48 4788 busy = NULL;
2ef37d3f 4789 do {
925b7673 4790 struct page_cgroup *pc;
5564e88b
JW
4791 struct page *page;
4792
08e552c6 4793 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4794 if (list_empty(list)) {
08e552c6 4795 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4796 break;
f817ed48 4797 }
925b7673
JW
4798 page = list_entry(list->prev, struct page, lru);
4799 if (busy == page) {
4800 list_move(&page->lru, list);
648bcc77 4801 busy = NULL;
08e552c6 4802 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4803 continue;
4804 }
08e552c6 4805 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4806
925b7673 4807 pc = lookup_page_cgroup(page);
5564e88b 4808
3c935d18 4809 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4810 /* found lock contention or "pc" is obsolete. */
925b7673 4811 busy = page;
f817ed48
KH
4812 cond_resched();
4813 } else
4814 busy = NULL;
2ef37d3f 4815 } while (!list_empty(list));
cc847582
KH
4816}
4817
4818/*
c26251f9
MH
4819 * make mem_cgroup's charge to be 0 if there is no task by moving
4820 * all the charges and pages to the parent.
cc847582 4821 * This enables deleting this mem_cgroup.
c26251f9
MH
4822 *
4823 * Caller is responsible for holding css reference on the memcg.
cc847582 4824 */
ab5196c2 4825static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4826{
c26251f9 4827 int node, zid;
bea207c8 4828 u64 usage;
f817ed48 4829
fce66477 4830 do {
52d4b9ac
KH
4831 /* This is for making all *used* pages to be on LRU. */
4832 lru_add_drain_all();
c0ff4b85 4833 drain_all_stock_sync(memcg);
c0ff4b85 4834 mem_cgroup_start_move(memcg);
31aaea4a 4835 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4836 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4837 enum lru_list lru;
4838 for_each_lru(lru) {
2ef37d3f 4839 mem_cgroup_force_empty_list(memcg,
f156ab93 4840 node, zid, lru);
f817ed48 4841 }
1ecaab2b 4842 }
f817ed48 4843 }
c0ff4b85
R
4844 mem_cgroup_end_move(memcg);
4845 memcg_oom_recover(memcg);
52d4b9ac 4846 cond_resched();
f817ed48 4847
2ef37d3f 4848 /*
bea207c8
GC
4849 * Kernel memory may not necessarily be trackable to a specific
4850 * process. So they are not migrated, and therefore we can't
4851 * expect their value to drop to 0 here.
4852 * Having res filled up with kmem only is enough.
4853 *
2ef37d3f
MH
4854 * This is a safety check because mem_cgroup_force_empty_list
4855 * could have raced with mem_cgroup_replace_page_cache callers
4856 * so the lru seemed empty but the page could have been added
4857 * right after the check. RES_USAGE should be safe as we always
4858 * charge before adding to the LRU.
4859 */
bea207c8
GC
4860 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4861 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4862 } while (usage > 0);
c26251f9
MH
4863}
4864
b5f99b53
GC
4865/*
4866 * This mainly exists for tests during the setting of set of use_hierarchy.
4867 * Since this is the very setting we are changing, the current hierarchy value
4868 * is meaningless
4869 */
4870static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4871{
492eb21b 4872 struct cgroup_subsys_state *pos;
b5f99b53
GC
4873
4874 /* bounce at first found */
492eb21b 4875 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4876 return true;
4877 return false;
4878}
4879
4880/*
0999821b
GC
4881 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4882 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4883 * from mem_cgroup_count_children(), in the sense that we don't really care how
4884 * many children we have; we only need to know if we have any. It also counts
4885 * any memcg without hierarchy as infertile.
4886 */
4887static inline bool memcg_has_children(struct mem_cgroup *memcg)
4888{
4889 return memcg->use_hierarchy && __memcg_has_children(memcg);
4890}
4891
c26251f9
MH
4892/*
4893 * Reclaims as many pages from the given memcg as possible and moves
4894 * the rest to the parent.
4895 *
4896 * Caller is responsible for holding css reference for memcg.
4897 */
4898static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4899{
4900 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4901 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4902
c1e862c1 4903 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4904 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4905 return -EBUSY;
4906
c1e862c1
KH
4907 /* we call try-to-free pages for make this cgroup empty */
4908 lru_add_drain_all();
f817ed48 4909 /* try to free all pages in this cgroup */
569530fb 4910 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4911 int progress;
c1e862c1 4912
c26251f9
MH
4913 if (signal_pending(current))
4914 return -EINTR;
4915
c0ff4b85 4916 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4917 false);
c1e862c1 4918 if (!progress) {
f817ed48 4919 nr_retries--;
c1e862c1 4920 /* maybe some writeback is necessary */
8aa7e847 4921 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4922 }
f817ed48
KH
4923
4924 }
08e552c6 4925 lru_add_drain();
ab5196c2
MH
4926 mem_cgroup_reparent_charges(memcg);
4927
4928 return 0;
cc847582
KH
4929}
4930
182446d0
TH
4931static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4932 unsigned int event)
c1e862c1 4933{
182446d0 4934 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4935
d8423011
MH
4936 if (mem_cgroup_is_root(memcg))
4937 return -EINVAL;
c33bd835 4938 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4939}
4940
182446d0
TH
4941static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4942 struct cftype *cft)
18f59ea7 4943{
182446d0 4944 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4945}
4946
182446d0
TH
4947static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4948 struct cftype *cft, u64 val)
18f59ea7
BS
4949{
4950 int retval = 0;
182446d0 4951 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4952 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4953
0999821b 4954 mutex_lock(&memcg_create_mutex);
567fb435
GC
4955
4956 if (memcg->use_hierarchy == val)
4957 goto out;
4958
18f59ea7 4959 /*
af901ca1 4960 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4961 * in the child subtrees. If it is unset, then the change can
4962 * occur, provided the current cgroup has no children.
4963 *
4964 * For the root cgroup, parent_mem is NULL, we allow value to be
4965 * set if there are no children.
4966 */
c0ff4b85 4967 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4968 (val == 1 || val == 0)) {
b5f99b53 4969 if (!__memcg_has_children(memcg))
c0ff4b85 4970 memcg->use_hierarchy = val;
18f59ea7
BS
4971 else
4972 retval = -EBUSY;
4973 } else
4974 retval = -EINVAL;
567fb435
GC
4975
4976out:
0999821b 4977 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4978
4979 return retval;
4980}
4981
0c3e73e8 4982
c0ff4b85 4983static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4984 enum mem_cgroup_stat_index idx)
0c3e73e8 4985{
7d74b06f 4986 struct mem_cgroup *iter;
7a159cc9 4987 long val = 0;
0c3e73e8 4988
7a159cc9 4989 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4990 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4991 val += mem_cgroup_read_stat(iter, idx);
4992
4993 if (val < 0) /* race ? */
4994 val = 0;
4995 return val;
0c3e73e8
BS
4996}
4997
c0ff4b85 4998static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4999{
7d74b06f 5000 u64 val;
104f3928 5001
c0ff4b85 5002 if (!mem_cgroup_is_root(memcg)) {
104f3928 5003 if (!swap)
65c64ce8 5004 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5005 else
65c64ce8 5006 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5007 }
5008
b070e65c
DR
5009 /*
5010 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5011 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5012 */
c0ff4b85
R
5013 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5014 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5015
7d74b06f 5016 if (swap)
bff6bb83 5017 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5018
5019 return val << PAGE_SHIFT;
5020}
5021
182446d0
TH
5022static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5023 struct cftype *cft, struct file *file,
5024 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5025{
182446d0 5026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5027 char str[64];
104f3928 5028 u64 val;
86ae53e1
GC
5029 int name, len;
5030 enum res_type type;
8c7c6e34
KH
5031
5032 type = MEMFILE_TYPE(cft->private);
5033 name = MEMFILE_ATTR(cft->private);
af36f906 5034
8c7c6e34
KH
5035 switch (type) {
5036 case _MEM:
104f3928 5037 if (name == RES_USAGE)
c0ff4b85 5038 val = mem_cgroup_usage(memcg, false);
104f3928 5039 else
c0ff4b85 5040 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5041 break;
5042 case _MEMSWAP:
104f3928 5043 if (name == RES_USAGE)
c0ff4b85 5044 val = mem_cgroup_usage(memcg, true);
104f3928 5045 else
c0ff4b85 5046 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5047 break;
510fc4e1
GC
5048 case _KMEM:
5049 val = res_counter_read_u64(&memcg->kmem, name);
5050 break;
8c7c6e34
KH
5051 default:
5052 BUG();
8c7c6e34 5053 }
af36f906
TH
5054
5055 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5056 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5057}
510fc4e1 5058
182446d0 5059static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5060{
5061 int ret = -EINVAL;
5062#ifdef CONFIG_MEMCG_KMEM
182446d0 5063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5064 /*
5065 * For simplicity, we won't allow this to be disabled. It also can't
5066 * be changed if the cgroup has children already, or if tasks had
5067 * already joined.
5068 *
5069 * If tasks join before we set the limit, a person looking at
5070 * kmem.usage_in_bytes will have no way to determine when it took
5071 * place, which makes the value quite meaningless.
5072 *
5073 * After it first became limited, changes in the value of the limit are
5074 * of course permitted.
510fc4e1 5075 */
0999821b 5076 mutex_lock(&memcg_create_mutex);
510fc4e1 5077 mutex_lock(&set_limit_mutex);
6de5a8bf 5078 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5079 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5080 ret = -EBUSY;
5081 goto out;
5082 }
5083 ret = res_counter_set_limit(&memcg->kmem, val);
5084 VM_BUG_ON(ret);
5085
55007d84
GC
5086 ret = memcg_update_cache_sizes(memcg);
5087 if (ret) {
6de5a8bf 5088 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5089 goto out;
5090 }
692e89ab
GC
5091 static_key_slow_inc(&memcg_kmem_enabled_key);
5092 /*
5093 * setting the active bit after the inc will guarantee no one
5094 * starts accounting before all call sites are patched
5095 */
5096 memcg_kmem_set_active(memcg);
510fc4e1
GC
5097 } else
5098 ret = res_counter_set_limit(&memcg->kmem, val);
5099out:
5100 mutex_unlock(&set_limit_mutex);
0999821b 5101 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5102#endif
5103 return ret;
5104}
5105
6d043990 5106#ifdef CONFIG_MEMCG_KMEM
55007d84 5107static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5108{
55007d84 5109 int ret = 0;
510fc4e1
GC
5110 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5111 if (!parent)
55007d84
GC
5112 goto out;
5113
510fc4e1 5114 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5115 /*
5116 * When that happen, we need to disable the static branch only on those
5117 * memcgs that enabled it. To achieve this, we would be forced to
5118 * complicate the code by keeping track of which memcgs were the ones
5119 * that actually enabled limits, and which ones got it from its
5120 * parents.
5121 *
5122 * It is a lot simpler just to do static_key_slow_inc() on every child
5123 * that is accounted.
5124 */
55007d84
GC
5125 if (!memcg_kmem_is_active(memcg))
5126 goto out;
5127
5128 /*
10d5ebf4
LZ
5129 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5130 * memcg is active already. If the later initialization fails then the
5131 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5132 */
55007d84
GC
5133 static_key_slow_inc(&memcg_kmem_enabled_key);
5134
5135 mutex_lock(&set_limit_mutex);
425c598d 5136 memcg_stop_kmem_account();
55007d84 5137 ret = memcg_update_cache_sizes(memcg);
425c598d 5138 memcg_resume_kmem_account();
55007d84 5139 mutex_unlock(&set_limit_mutex);
55007d84
GC
5140out:
5141 return ret;
510fc4e1 5142}
6d043990 5143#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5144
628f4235
KH
5145/*
5146 * The user of this function is...
5147 * RES_LIMIT.
5148 */
182446d0 5149static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5150 const char *buffer)
8cdea7c0 5151{
182446d0 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5153 enum res_type type;
5154 int name;
628f4235
KH
5155 unsigned long long val;
5156 int ret;
5157
8c7c6e34
KH
5158 type = MEMFILE_TYPE(cft->private);
5159 name = MEMFILE_ATTR(cft->private);
af36f906 5160
8c7c6e34 5161 switch (name) {
628f4235 5162 case RES_LIMIT:
4b3bde4c
BS
5163 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5164 ret = -EINVAL;
5165 break;
5166 }
628f4235
KH
5167 /* This function does all necessary parse...reuse it */
5168 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5169 if (ret)
5170 break;
5171 if (type == _MEM)
628f4235 5172 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5173 else if (type == _MEMSWAP)
8c7c6e34 5174 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5175 else if (type == _KMEM)
182446d0 5176 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5177 else
5178 return -EINVAL;
628f4235 5179 break;
296c81d8
BS
5180 case RES_SOFT_LIMIT:
5181 ret = res_counter_memparse_write_strategy(buffer, &val);
5182 if (ret)
5183 break;
5184 /*
5185 * For memsw, soft limits are hard to implement in terms
5186 * of semantics, for now, we support soft limits for
5187 * control without swap
5188 */
5189 if (type == _MEM)
5190 ret = res_counter_set_soft_limit(&memcg->res, val);
5191 else
5192 ret = -EINVAL;
5193 break;
628f4235
KH
5194 default:
5195 ret = -EINVAL; /* should be BUG() ? */
5196 break;
5197 }
5198 return ret;
8cdea7c0
BS
5199}
5200
fee7b548
KH
5201static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5202 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5203{
fee7b548
KH
5204 unsigned long long min_limit, min_memsw_limit, tmp;
5205
5206 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5207 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5208 if (!memcg->use_hierarchy)
5209 goto out;
5210
63876986
TH
5211 while (css_parent(&memcg->css)) {
5212 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5213 if (!memcg->use_hierarchy)
5214 break;
5215 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5216 min_limit = min(min_limit, tmp);
5217 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5218 min_memsw_limit = min(min_memsw_limit, tmp);
5219 }
5220out:
5221 *mem_limit = min_limit;
5222 *memsw_limit = min_memsw_limit;
fee7b548
KH
5223}
5224
182446d0 5225static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5226{
182446d0 5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5228 int name;
5229 enum res_type type;
c84872e1 5230
8c7c6e34
KH
5231 type = MEMFILE_TYPE(event);
5232 name = MEMFILE_ATTR(event);
af36f906 5233
8c7c6e34 5234 switch (name) {
29f2a4da 5235 case RES_MAX_USAGE:
8c7c6e34 5236 if (type == _MEM)
c0ff4b85 5237 res_counter_reset_max(&memcg->res);
510fc4e1 5238 else if (type == _MEMSWAP)
c0ff4b85 5239 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5240 else if (type == _KMEM)
5241 res_counter_reset_max(&memcg->kmem);
5242 else
5243 return -EINVAL;
29f2a4da
PE
5244 break;
5245 case RES_FAILCNT:
8c7c6e34 5246 if (type == _MEM)
c0ff4b85 5247 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5248 else if (type == _MEMSWAP)
c0ff4b85 5249 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5250 else if (type == _KMEM)
5251 res_counter_reset_failcnt(&memcg->kmem);
5252 else
5253 return -EINVAL;
29f2a4da
PE
5254 break;
5255 }
f64c3f54 5256
85cc59db 5257 return 0;
c84872e1
PE
5258}
5259
182446d0 5260static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5261 struct cftype *cft)
5262{
182446d0 5263 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5264}
5265
02491447 5266#ifdef CONFIG_MMU
182446d0 5267static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5268 struct cftype *cft, u64 val)
5269{
182446d0 5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5271
5272 if (val >= (1 << NR_MOVE_TYPE))
5273 return -EINVAL;
ee5e8472 5274
7dc74be0 5275 /*
ee5e8472
GC
5276 * No kind of locking is needed in here, because ->can_attach() will
5277 * check this value once in the beginning of the process, and then carry
5278 * on with stale data. This means that changes to this value will only
5279 * affect task migrations starting after the change.
7dc74be0 5280 */
c0ff4b85 5281 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5282 return 0;
5283}
02491447 5284#else
182446d0 5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5286 struct cftype *cft, u64 val)
5287{
5288 return -ENOSYS;
5289}
5290#endif
7dc74be0 5291
406eb0c9 5292#ifdef CONFIG_NUMA
182446d0
TH
5293static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5294 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5295{
5296 int nid;
5297 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5298 unsigned long node_nr;
182446d0 5299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5300
d79154bb 5301 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5302 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5303 for_each_node_state(nid, N_MEMORY) {
d79154bb 5304 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5305 seq_printf(m, " N%d=%lu", nid, node_nr);
5306 }
5307 seq_putc(m, '\n');
5308
d79154bb 5309 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5310 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5311 for_each_node_state(nid, N_MEMORY) {
d79154bb 5312 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5313 LRU_ALL_FILE);
406eb0c9
YH
5314 seq_printf(m, " N%d=%lu", nid, node_nr);
5315 }
5316 seq_putc(m, '\n');
5317
d79154bb 5318 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5319 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5320 for_each_node_state(nid, N_MEMORY) {
d79154bb 5321 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5322 LRU_ALL_ANON);
406eb0c9
YH
5323 seq_printf(m, " N%d=%lu", nid, node_nr);
5324 }
5325 seq_putc(m, '\n');
5326
d79154bb 5327 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5328 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5329 for_each_node_state(nid, N_MEMORY) {
d79154bb 5330 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5331 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5332 seq_printf(m, " N%d=%lu", nid, node_nr);
5333 }
5334 seq_putc(m, '\n');
5335 return 0;
5336}
5337#endif /* CONFIG_NUMA */
5338
af7c4b0e
JW
5339static inline void mem_cgroup_lru_names_not_uptodate(void)
5340{
5341 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5342}
5343
182446d0 5344static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5345 struct seq_file *m)
d2ceb9b7 5346{
182446d0 5347 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5348 struct mem_cgroup *mi;
5349 unsigned int i;
406eb0c9 5350
af7c4b0e 5351 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5352 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5353 continue;
af7c4b0e
JW
5354 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5355 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5356 }
7b854121 5357
af7c4b0e
JW
5358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5359 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5360 mem_cgroup_read_events(memcg, i));
5361
5362 for (i = 0; i < NR_LRU_LISTS; i++)
5363 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5364 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5365
14067bb3 5366 /* Hierarchical information */
fee7b548
KH
5367 {
5368 unsigned long long limit, memsw_limit;
d79154bb 5369 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5370 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5371 if (do_swap_account)
78ccf5b5
JW
5372 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5373 memsw_limit);
fee7b548 5374 }
7f016ee8 5375
af7c4b0e
JW
5376 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5377 long long val = 0;
5378
bff6bb83 5379 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5380 continue;
af7c4b0e
JW
5381 for_each_mem_cgroup_tree(mi, memcg)
5382 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5383 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5384 }
5385
5386 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5387 unsigned long long val = 0;
5388
5389 for_each_mem_cgroup_tree(mi, memcg)
5390 val += mem_cgroup_read_events(mi, i);
5391 seq_printf(m, "total_%s %llu\n",
5392 mem_cgroup_events_names[i], val);
5393 }
5394
5395 for (i = 0; i < NR_LRU_LISTS; i++) {
5396 unsigned long long val = 0;
5397
5398 for_each_mem_cgroup_tree(mi, memcg)
5399 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5400 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5401 }
14067bb3 5402
7f016ee8 5403#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5404 {
5405 int nid, zid;
5406 struct mem_cgroup_per_zone *mz;
89abfab1 5407 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5408 unsigned long recent_rotated[2] = {0, 0};
5409 unsigned long recent_scanned[2] = {0, 0};
5410
5411 for_each_online_node(nid)
5412 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5413 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5414 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5415
89abfab1
HD
5416 recent_rotated[0] += rstat->recent_rotated[0];
5417 recent_rotated[1] += rstat->recent_rotated[1];
5418 recent_scanned[0] += rstat->recent_scanned[0];
5419 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5420 }
78ccf5b5
JW
5421 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5422 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5423 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5424 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5425 }
5426#endif
5427
d2ceb9b7
KH
5428 return 0;
5429}
5430
182446d0
TH
5431static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5432 struct cftype *cft)
a7885eb8 5433{
182446d0 5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5435
1f4c025b 5436 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5437}
5438
182446d0
TH
5439static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5440 struct cftype *cft, u64 val)
a7885eb8 5441{
182446d0 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5443 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5444
63876986 5445 if (val > 100 || !parent)
a7885eb8
KM
5446 return -EINVAL;
5447
0999821b 5448 mutex_lock(&memcg_create_mutex);
068b38c1 5449
a7885eb8 5450 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5451 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5452 mutex_unlock(&memcg_create_mutex);
a7885eb8 5453 return -EINVAL;
068b38c1 5454 }
a7885eb8 5455
a7885eb8 5456 memcg->swappiness = val;
a7885eb8 5457
0999821b 5458 mutex_unlock(&memcg_create_mutex);
068b38c1 5459
a7885eb8
KM
5460 return 0;
5461}
5462
2e72b634
KS
5463static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5464{
5465 struct mem_cgroup_threshold_ary *t;
5466 u64 usage;
5467 int i;
5468
5469 rcu_read_lock();
5470 if (!swap)
2c488db2 5471 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5472 else
2c488db2 5473 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5474
5475 if (!t)
5476 goto unlock;
5477
5478 usage = mem_cgroup_usage(memcg, swap);
5479
5480 /*
748dad36 5481 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5482 * If it's not true, a threshold was crossed after last
5483 * call of __mem_cgroup_threshold().
5484 */
5407a562 5485 i = t->current_threshold;
2e72b634
KS
5486
5487 /*
5488 * Iterate backward over array of thresholds starting from
5489 * current_threshold and check if a threshold is crossed.
5490 * If none of thresholds below usage is crossed, we read
5491 * only one element of the array here.
5492 */
5493 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5494 eventfd_signal(t->entries[i].eventfd, 1);
5495
5496 /* i = current_threshold + 1 */
5497 i++;
5498
5499 /*
5500 * Iterate forward over array of thresholds starting from
5501 * current_threshold+1 and check if a threshold is crossed.
5502 * If none of thresholds above usage is crossed, we read
5503 * only one element of the array here.
5504 */
5505 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5506 eventfd_signal(t->entries[i].eventfd, 1);
5507
5508 /* Update current_threshold */
5407a562 5509 t->current_threshold = i - 1;
2e72b634
KS
5510unlock:
5511 rcu_read_unlock();
5512}
5513
5514static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5515{
ad4ca5f4
KS
5516 while (memcg) {
5517 __mem_cgroup_threshold(memcg, false);
5518 if (do_swap_account)
5519 __mem_cgroup_threshold(memcg, true);
5520
5521 memcg = parent_mem_cgroup(memcg);
5522 }
2e72b634
KS
5523}
5524
5525static int compare_thresholds(const void *a, const void *b)
5526{
5527 const struct mem_cgroup_threshold *_a = a;
5528 const struct mem_cgroup_threshold *_b = b;
5529
2bff24a3
GT
5530 if (_a->threshold > _b->threshold)
5531 return 1;
5532
5533 if (_a->threshold < _b->threshold)
5534 return -1;
5535
5536 return 0;
2e72b634
KS
5537}
5538
c0ff4b85 5539static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5540{
5541 struct mem_cgroup_eventfd_list *ev;
5542
c0ff4b85 5543 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5544 eventfd_signal(ev->eventfd, 1);
5545 return 0;
5546}
5547
c0ff4b85 5548static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5549{
7d74b06f
KH
5550 struct mem_cgroup *iter;
5551
c0ff4b85 5552 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5553 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5554}
5555
81eeaf04 5556static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5557 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5558{
81eeaf04 5559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5560 struct mem_cgroup_thresholds *thresholds;
5561 struct mem_cgroup_threshold_ary *new;
86ae53e1 5562 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5563 u64 threshold, usage;
2c488db2 5564 int i, size, ret;
2e72b634
KS
5565
5566 ret = res_counter_memparse_write_strategy(args, &threshold);
5567 if (ret)
5568 return ret;
5569
5570 mutex_lock(&memcg->thresholds_lock);
2c488db2 5571
2e72b634 5572 if (type == _MEM)
2c488db2 5573 thresholds = &memcg->thresholds;
2e72b634 5574 else if (type == _MEMSWAP)
2c488db2 5575 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5576 else
5577 BUG();
5578
5579 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5580
5581 /* Check if a threshold crossed before adding a new one */
2c488db2 5582 if (thresholds->primary)
2e72b634
KS
5583 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5584
2c488db2 5585 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5586
5587 /* Allocate memory for new array of thresholds */
2c488db2 5588 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5589 GFP_KERNEL);
2c488db2 5590 if (!new) {
2e72b634
KS
5591 ret = -ENOMEM;
5592 goto unlock;
5593 }
2c488db2 5594 new->size = size;
2e72b634
KS
5595
5596 /* Copy thresholds (if any) to new array */
2c488db2
KS
5597 if (thresholds->primary) {
5598 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5599 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5600 }
5601
2e72b634 5602 /* Add new threshold */
2c488db2
KS
5603 new->entries[size - 1].eventfd = eventfd;
5604 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5605
5606 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5607 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5608 compare_thresholds, NULL);
5609
5610 /* Find current threshold */
2c488db2 5611 new->current_threshold = -1;
2e72b634 5612 for (i = 0; i < size; i++) {
748dad36 5613 if (new->entries[i].threshold <= usage) {
2e72b634 5614 /*
2c488db2
KS
5615 * new->current_threshold will not be used until
5616 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5617 * it here.
5618 */
2c488db2 5619 ++new->current_threshold;
748dad36
SZ
5620 } else
5621 break;
2e72b634
KS
5622 }
5623
2c488db2
KS
5624 /* Free old spare buffer and save old primary buffer as spare */
5625 kfree(thresholds->spare);
5626 thresholds->spare = thresholds->primary;
5627
5628 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5629
907860ed 5630 /* To be sure that nobody uses thresholds */
2e72b634
KS
5631 synchronize_rcu();
5632
2e72b634
KS
5633unlock:
5634 mutex_unlock(&memcg->thresholds_lock);
5635
5636 return ret;
5637}
5638
81eeaf04 5639static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5640 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5641{
81eeaf04 5642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5643 struct mem_cgroup_thresholds *thresholds;
5644 struct mem_cgroup_threshold_ary *new;
86ae53e1 5645 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5646 u64 usage;
2c488db2 5647 int i, j, size;
2e72b634
KS
5648
5649 mutex_lock(&memcg->thresholds_lock);
5650 if (type == _MEM)
2c488db2 5651 thresholds = &memcg->thresholds;
2e72b634 5652 else if (type == _MEMSWAP)
2c488db2 5653 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5654 else
5655 BUG();
5656
371528ca
AV
5657 if (!thresholds->primary)
5658 goto unlock;
5659
2e72b634
KS
5660 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5661
5662 /* Check if a threshold crossed before removing */
5663 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5664
5665 /* Calculate new number of threshold */
2c488db2
KS
5666 size = 0;
5667 for (i = 0; i < thresholds->primary->size; i++) {
5668 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5669 size++;
5670 }
5671
2c488db2 5672 new = thresholds->spare;
907860ed 5673
2e72b634
KS
5674 /* Set thresholds array to NULL if we don't have thresholds */
5675 if (!size) {
2c488db2
KS
5676 kfree(new);
5677 new = NULL;
907860ed 5678 goto swap_buffers;
2e72b634
KS
5679 }
5680
2c488db2 5681 new->size = size;
2e72b634
KS
5682
5683 /* Copy thresholds and find current threshold */
2c488db2
KS
5684 new->current_threshold = -1;
5685 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5686 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5687 continue;
5688
2c488db2 5689 new->entries[j] = thresholds->primary->entries[i];
748dad36 5690 if (new->entries[j].threshold <= usage) {
2e72b634 5691 /*
2c488db2 5692 * new->current_threshold will not be used
2e72b634
KS
5693 * until rcu_assign_pointer(), so it's safe to increment
5694 * it here.
5695 */
2c488db2 5696 ++new->current_threshold;
2e72b634
KS
5697 }
5698 j++;
5699 }
5700
907860ed 5701swap_buffers:
2c488db2
KS
5702 /* Swap primary and spare array */
5703 thresholds->spare = thresholds->primary;
8c757763
SZ
5704 /* If all events are unregistered, free the spare array */
5705 if (!new) {
5706 kfree(thresholds->spare);
5707 thresholds->spare = NULL;
5708 }
5709
2c488db2 5710 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5711
907860ed 5712 /* To be sure that nobody uses thresholds */
2e72b634 5713 synchronize_rcu();
371528ca 5714unlock:
2e72b634 5715 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5716}
c1e862c1 5717
81eeaf04 5718static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5719 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5720{
81eeaf04 5721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5722 struct mem_cgroup_eventfd_list *event;
86ae53e1 5723 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5724
5725 BUG_ON(type != _OOM_TYPE);
5726 event = kmalloc(sizeof(*event), GFP_KERNEL);
5727 if (!event)
5728 return -ENOMEM;
5729
1af8efe9 5730 spin_lock(&memcg_oom_lock);
9490ff27
KH
5731
5732 event->eventfd = eventfd;
5733 list_add(&event->list, &memcg->oom_notify);
5734
5735 /* already in OOM ? */
79dfdacc 5736 if (atomic_read(&memcg->under_oom))
9490ff27 5737 eventfd_signal(eventfd, 1);
1af8efe9 5738 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5739
5740 return 0;
5741}
5742
81eeaf04 5743static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5744 struct cftype *cft, struct eventfd_ctx *eventfd)
5745{
81eeaf04 5746 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5747 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5748 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5749
5750 BUG_ON(type != _OOM_TYPE);
5751
1af8efe9 5752 spin_lock(&memcg_oom_lock);
9490ff27 5753
c0ff4b85 5754 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5755 if (ev->eventfd == eventfd) {
5756 list_del(&ev->list);
5757 kfree(ev);
5758 }
5759 }
5760
1af8efe9 5761 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5762}
5763
182446d0 5764static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5765 struct cftype *cft, struct cgroup_map_cb *cb)
5766{
182446d0 5767 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5768
c0ff4b85 5769 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5770
c0ff4b85 5771 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5772 cb->fill(cb, "under_oom", 1);
5773 else
5774 cb->fill(cb, "under_oom", 0);
5775 return 0;
5776}
5777
182446d0 5778static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5779 struct cftype *cft, u64 val)
5780{
182446d0 5781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5782 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5783
5784 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5785 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5786 return -EINVAL;
5787
0999821b 5788 mutex_lock(&memcg_create_mutex);
3c11ecf4 5789 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5790 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5791 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5792 return -EINVAL;
5793 }
c0ff4b85 5794 memcg->oom_kill_disable = val;
4d845ebf 5795 if (!val)
c0ff4b85 5796 memcg_oom_recover(memcg);
0999821b 5797 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5798 return 0;
5799}
5800
c255a458 5801#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5802static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5803{
55007d84
GC
5804 int ret;
5805
2633d7a0 5806 memcg->kmemcg_id = -1;
55007d84
GC
5807 ret = memcg_propagate_kmem(memcg);
5808 if (ret)
5809 return ret;
2633d7a0 5810
1d62e436 5811 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5812}
e5671dfa 5813
10d5ebf4 5814static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5815{
1d62e436 5816 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5817}
5818
5819static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5820{
5821 if (!memcg_kmem_is_active(memcg))
5822 return;
5823
5824 /*
5825 * kmem charges can outlive the cgroup. In the case of slab
5826 * pages, for instance, a page contain objects from various
5827 * processes. As we prevent from taking a reference for every
5828 * such allocation we have to be careful when doing uncharge
5829 * (see memcg_uncharge_kmem) and here during offlining.
5830 *
5831 * The idea is that that only the _last_ uncharge which sees
5832 * the dead memcg will drop the last reference. An additional
5833 * reference is taken here before the group is marked dead
5834 * which is then paired with css_put during uncharge resp. here.
5835 *
5836 * Although this might sound strange as this path is called from
5837 * css_offline() when the referencemight have dropped down to 0
5838 * and shouldn't be incremented anymore (css_tryget would fail)
5839 * we do not have other options because of the kmem allocations
5840 * lifetime.
5841 */
5842 css_get(&memcg->css);
7de37682
GC
5843
5844 memcg_kmem_mark_dead(memcg);
5845
5846 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5847 return;
5848
7de37682 5849 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5850 css_put(&memcg->css);
d1a4c0b3 5851}
e5671dfa 5852#else
cbe128e3 5853static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5854{
5855 return 0;
5856}
d1a4c0b3 5857
10d5ebf4
LZ
5858static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5859{
5860}
5861
5862static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5863{
5864}
e5671dfa
GC
5865#endif
5866
8cdea7c0
BS
5867static struct cftype mem_cgroup_files[] = {
5868 {
0eea1030 5869 .name = "usage_in_bytes",
8c7c6e34 5870 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5871 .read = mem_cgroup_read,
9490ff27
KH
5872 .register_event = mem_cgroup_usage_register_event,
5873 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5874 },
c84872e1
PE
5875 {
5876 .name = "max_usage_in_bytes",
8c7c6e34 5877 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5878 .trigger = mem_cgroup_reset,
af36f906 5879 .read = mem_cgroup_read,
c84872e1 5880 },
8cdea7c0 5881 {
0eea1030 5882 .name = "limit_in_bytes",
8c7c6e34 5883 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5884 .write_string = mem_cgroup_write,
af36f906 5885 .read = mem_cgroup_read,
8cdea7c0 5886 },
296c81d8
BS
5887 {
5888 .name = "soft_limit_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5890 .write_string = mem_cgroup_write,
af36f906 5891 .read = mem_cgroup_read,
296c81d8 5892 },
8cdea7c0
BS
5893 {
5894 .name = "failcnt",
8c7c6e34 5895 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5896 .trigger = mem_cgroup_reset,
af36f906 5897 .read = mem_cgroup_read,
8cdea7c0 5898 },
d2ceb9b7
KH
5899 {
5900 .name = "stat",
ab215884 5901 .read_seq_string = memcg_stat_show,
d2ceb9b7 5902 },
c1e862c1
KH
5903 {
5904 .name = "force_empty",
5905 .trigger = mem_cgroup_force_empty_write,
5906 },
18f59ea7
BS
5907 {
5908 .name = "use_hierarchy",
f00baae7 5909 .flags = CFTYPE_INSANE,
18f59ea7
BS
5910 .write_u64 = mem_cgroup_hierarchy_write,
5911 .read_u64 = mem_cgroup_hierarchy_read,
5912 },
a7885eb8
KM
5913 {
5914 .name = "swappiness",
5915 .read_u64 = mem_cgroup_swappiness_read,
5916 .write_u64 = mem_cgroup_swappiness_write,
5917 },
7dc74be0
DN
5918 {
5919 .name = "move_charge_at_immigrate",
5920 .read_u64 = mem_cgroup_move_charge_read,
5921 .write_u64 = mem_cgroup_move_charge_write,
5922 },
9490ff27
KH
5923 {
5924 .name = "oom_control",
3c11ecf4
KH
5925 .read_map = mem_cgroup_oom_control_read,
5926 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5927 .register_event = mem_cgroup_oom_register_event,
5928 .unregister_event = mem_cgroup_oom_unregister_event,
5929 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5930 },
70ddf637
AV
5931 {
5932 .name = "pressure_level",
5933 .register_event = vmpressure_register_event,
5934 .unregister_event = vmpressure_unregister_event,
5935 },
406eb0c9
YH
5936#ifdef CONFIG_NUMA
5937 {
5938 .name = "numa_stat",
ab215884 5939 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5940 },
5941#endif
510fc4e1
GC
5942#ifdef CONFIG_MEMCG_KMEM
5943 {
5944 .name = "kmem.limit_in_bytes",
5945 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5946 .write_string = mem_cgroup_write,
5947 .read = mem_cgroup_read,
5948 },
5949 {
5950 .name = "kmem.usage_in_bytes",
5951 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5952 .read = mem_cgroup_read,
5953 },
5954 {
5955 .name = "kmem.failcnt",
5956 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5957 .trigger = mem_cgroup_reset,
5958 .read = mem_cgroup_read,
5959 },
5960 {
5961 .name = "kmem.max_usage_in_bytes",
5962 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5963 .trigger = mem_cgroup_reset,
5964 .read = mem_cgroup_read,
5965 },
749c5415
GC
5966#ifdef CONFIG_SLABINFO
5967 {
5968 .name = "kmem.slabinfo",
5969 .read_seq_string = mem_cgroup_slabinfo_read,
5970 },
5971#endif
8c7c6e34 5972#endif
6bc10349 5973 { }, /* terminate */
af36f906 5974};
8c7c6e34 5975
2d11085e
MH
5976#ifdef CONFIG_MEMCG_SWAP
5977static struct cftype memsw_cgroup_files[] = {
5978 {
5979 .name = "memsw.usage_in_bytes",
5980 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5981 .read = mem_cgroup_read,
5982 .register_event = mem_cgroup_usage_register_event,
5983 .unregister_event = mem_cgroup_usage_unregister_event,
5984 },
5985 {
5986 .name = "memsw.max_usage_in_bytes",
5987 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5988 .trigger = mem_cgroup_reset,
5989 .read = mem_cgroup_read,
5990 },
5991 {
5992 .name = "memsw.limit_in_bytes",
5993 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5994 .write_string = mem_cgroup_write,
5995 .read = mem_cgroup_read,
5996 },
5997 {
5998 .name = "memsw.failcnt",
5999 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6000 .trigger = mem_cgroup_reset,
6001 .read = mem_cgroup_read,
6002 },
6003 { }, /* terminate */
6004};
6005#endif
c0ff4b85 6006static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6007{
6008 struct mem_cgroup_per_node *pn;
1ecaab2b 6009 struct mem_cgroup_per_zone *mz;
41e3355d 6010 int zone, tmp = node;
1ecaab2b
KH
6011 /*
6012 * This routine is called against possible nodes.
6013 * But it's BUG to call kmalloc() against offline node.
6014 *
6015 * TODO: this routine can waste much memory for nodes which will
6016 * never be onlined. It's better to use memory hotplug callback
6017 * function.
6018 */
41e3355d
KH
6019 if (!node_state(node, N_NORMAL_MEMORY))
6020 tmp = -1;
17295c88 6021 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6022 if (!pn)
6023 return 1;
1ecaab2b 6024
1ecaab2b
KH
6025 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6026 mz = &pn->zoneinfo[zone];
bea8c150 6027 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6028 mz->usage_in_excess = 0;
6029 mz->on_tree = false;
d79154bb 6030 mz->memcg = memcg;
1ecaab2b 6031 }
54f72fe0 6032 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6033 return 0;
6034}
6035
c0ff4b85 6036static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6037{
54f72fe0 6038 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6039}
6040
33327948
KH
6041static struct mem_cgroup *mem_cgroup_alloc(void)
6042{
d79154bb 6043 struct mem_cgroup *memcg;
45cf7ebd 6044 size_t size = memcg_size();
33327948 6045
45cf7ebd 6046 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6047 if (size < PAGE_SIZE)
d79154bb 6048 memcg = kzalloc(size, GFP_KERNEL);
33327948 6049 else
d79154bb 6050 memcg = vzalloc(size);
33327948 6051
d79154bb 6052 if (!memcg)
e7bbcdf3
DC
6053 return NULL;
6054
d79154bb
HD
6055 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6056 if (!memcg->stat)
d2e61b8d 6057 goto out_free;
d79154bb
HD
6058 spin_lock_init(&memcg->pcp_counter_lock);
6059 return memcg;
d2e61b8d
DC
6060
6061out_free:
6062 if (size < PAGE_SIZE)
d79154bb 6063 kfree(memcg);
d2e61b8d 6064 else
d79154bb 6065 vfree(memcg);
d2e61b8d 6066 return NULL;
33327948
KH
6067}
6068
59927fb9 6069/*
c8b2a36f
GC
6070 * At destroying mem_cgroup, references from swap_cgroup can remain.
6071 * (scanning all at force_empty is too costly...)
6072 *
6073 * Instead of clearing all references at force_empty, we remember
6074 * the number of reference from swap_cgroup and free mem_cgroup when
6075 * it goes down to 0.
6076 *
6077 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6078 */
c8b2a36f
GC
6079
6080static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6081{
c8b2a36f 6082 int node;
45cf7ebd 6083 size_t size = memcg_size();
59927fb9 6084
bb4cc1a8 6085 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6086 free_css_id(&mem_cgroup_subsys, &memcg->css);
6087
6088 for_each_node(node)
6089 free_mem_cgroup_per_zone_info(memcg, node);
6090
6091 free_percpu(memcg->stat);
6092
3f134619
GC
6093 /*
6094 * We need to make sure that (at least for now), the jump label
6095 * destruction code runs outside of the cgroup lock. This is because
6096 * get_online_cpus(), which is called from the static_branch update,
6097 * can't be called inside the cgroup_lock. cpusets are the ones
6098 * enforcing this dependency, so if they ever change, we might as well.
6099 *
6100 * schedule_work() will guarantee this happens. Be careful if you need
6101 * to move this code around, and make sure it is outside
6102 * the cgroup_lock.
6103 */
a8964b9b 6104 disarm_static_keys(memcg);
3afe36b1
GC
6105 if (size < PAGE_SIZE)
6106 kfree(memcg);
6107 else
6108 vfree(memcg);
59927fb9 6109}
3afe36b1 6110
7bcc1bb1
DN
6111/*
6112 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6113 */
e1aab161 6114struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6115{
c0ff4b85 6116 if (!memcg->res.parent)
7bcc1bb1 6117 return NULL;
c0ff4b85 6118 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6119}
e1aab161 6120EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6121
bb4cc1a8
AM
6122static void __init mem_cgroup_soft_limit_tree_init(void)
6123{
6124 struct mem_cgroup_tree_per_node *rtpn;
6125 struct mem_cgroup_tree_per_zone *rtpz;
6126 int tmp, node, zone;
6127
6128 for_each_node(node) {
6129 tmp = node;
6130 if (!node_state(node, N_NORMAL_MEMORY))
6131 tmp = -1;
6132 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6133 BUG_ON(!rtpn);
6134
6135 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6136
6137 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6138 rtpz = &rtpn->rb_tree_per_zone[zone];
6139 rtpz->rb_root = RB_ROOT;
6140 spin_lock_init(&rtpz->lock);
6141 }
6142 }
6143}
6144
0eb253e2 6145static struct cgroup_subsys_state * __ref
eb95419b 6146mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6147{
d142e3e6 6148 struct mem_cgroup *memcg;
04046e1a 6149 long error = -ENOMEM;
6d12e2d8 6150 int node;
8cdea7c0 6151
c0ff4b85
R
6152 memcg = mem_cgroup_alloc();
6153 if (!memcg)
04046e1a 6154 return ERR_PTR(error);
78fb7466 6155
3ed28fa1 6156 for_each_node(node)
c0ff4b85 6157 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6158 goto free_out;
f64c3f54 6159
c077719b 6160 /* root ? */
eb95419b 6161 if (parent_css == NULL) {
a41c58a6 6162 root_mem_cgroup = memcg;
d142e3e6
GC
6163 res_counter_init(&memcg->res, NULL);
6164 res_counter_init(&memcg->memsw, NULL);
6165 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6166 }
28dbc4b6 6167
d142e3e6
GC
6168 memcg->last_scanned_node = MAX_NUMNODES;
6169 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6170 memcg->move_charge_at_immigrate = 0;
6171 mutex_init(&memcg->thresholds_lock);
6172 spin_lock_init(&memcg->move_lock);
70ddf637 6173 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6174
6175 return &memcg->css;
6176
6177free_out:
6178 __mem_cgroup_free(memcg);
6179 return ERR_PTR(error);
6180}
6181
6182static int
eb95419b 6183mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6184{
eb95419b
TH
6185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6186 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6187 int error = 0;
6188
63876986 6189 if (!parent)
d142e3e6
GC
6190 return 0;
6191
0999821b 6192 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6193
6194 memcg->use_hierarchy = parent->use_hierarchy;
6195 memcg->oom_kill_disable = parent->oom_kill_disable;
6196 memcg->swappiness = mem_cgroup_swappiness(parent);
6197
6198 if (parent->use_hierarchy) {
c0ff4b85
R
6199 res_counter_init(&memcg->res, &parent->res);
6200 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6201 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6202
7bcc1bb1 6203 /*
8d76a979
LZ
6204 * No need to take a reference to the parent because cgroup
6205 * core guarantees its existence.
7bcc1bb1 6206 */
18f59ea7 6207 } else {
c0ff4b85
R
6208 res_counter_init(&memcg->res, NULL);
6209 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6210 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6211 /*
6212 * Deeper hierachy with use_hierarchy == false doesn't make
6213 * much sense so let cgroup subsystem know about this
6214 * unfortunate state in our controller.
6215 */
d142e3e6 6216 if (parent != root_mem_cgroup)
8c7f6edb 6217 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6218 }
cbe128e3
GC
6219
6220 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6221 mutex_unlock(&memcg_create_mutex);
d142e3e6 6222 return error;
8cdea7c0
BS
6223}
6224
5f578161
MH
6225/*
6226 * Announce all parents that a group from their hierarchy is gone.
6227 */
6228static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6229{
6230 struct mem_cgroup *parent = memcg;
6231
6232 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6233 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6234
6235 /*
6236 * if the root memcg is not hierarchical we have to check it
6237 * explicitely.
6238 */
6239 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6240 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6241}
6242
eb95419b 6243static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6244{
eb95419b 6245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6246
10d5ebf4
LZ
6247 kmem_cgroup_css_offline(memcg);
6248
5f578161 6249 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6250 mem_cgroup_reparent_charges(memcg);
1f458cbf 6251 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6252 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6253}
6254
eb95419b 6255static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6256{
eb95419b 6257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6258
10d5ebf4 6259 memcg_destroy_kmem(memcg);
465939a1 6260 __mem_cgroup_free(memcg);
8cdea7c0
BS
6261}
6262
02491447 6263#ifdef CONFIG_MMU
7dc74be0 6264/* Handlers for move charge at task migration. */
854ffa8d
DN
6265#define PRECHARGE_COUNT_AT_ONCE 256
6266static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6267{
854ffa8d
DN
6268 int ret = 0;
6269 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6270 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6271
c0ff4b85 6272 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6273 mc.precharge += count;
6274 /* we don't need css_get for root */
6275 return ret;
6276 }
6277 /* try to charge at once */
6278 if (count > 1) {
6279 struct res_counter *dummy;
6280 /*
c0ff4b85 6281 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6282 * by cgroup_lock_live_cgroup() that it is not removed and we
6283 * are still under the same cgroup_mutex. So we can postpone
6284 * css_get().
6285 */
c0ff4b85 6286 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6287 goto one_by_one;
c0ff4b85 6288 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6289 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6290 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6291 goto one_by_one;
6292 }
6293 mc.precharge += count;
854ffa8d
DN
6294 return ret;
6295 }
6296one_by_one:
6297 /* fall back to one by one charge */
6298 while (count--) {
6299 if (signal_pending(current)) {
6300 ret = -EINTR;
6301 break;
6302 }
6303 if (!batch_count--) {
6304 batch_count = PRECHARGE_COUNT_AT_ONCE;
6305 cond_resched();
6306 }
c0ff4b85
R
6307 ret = __mem_cgroup_try_charge(NULL,
6308 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6309 if (ret)
854ffa8d 6310 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6311 return ret;
854ffa8d
DN
6312 mc.precharge++;
6313 }
4ffef5fe
DN
6314 return ret;
6315}
6316
6317/**
8d32ff84 6318 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6319 * @vma: the vma the pte to be checked belongs
6320 * @addr: the address corresponding to the pte to be checked
6321 * @ptent: the pte to be checked
02491447 6322 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6323 *
6324 * Returns
6325 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6326 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6327 * move charge. if @target is not NULL, the page is stored in target->page
6328 * with extra refcnt got(Callers should handle it).
02491447
DN
6329 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6330 * target for charge migration. if @target is not NULL, the entry is stored
6331 * in target->ent.
4ffef5fe
DN
6332 *
6333 * Called with pte lock held.
6334 */
4ffef5fe
DN
6335union mc_target {
6336 struct page *page;
02491447 6337 swp_entry_t ent;
4ffef5fe
DN
6338};
6339
4ffef5fe 6340enum mc_target_type {
8d32ff84 6341 MC_TARGET_NONE = 0,
4ffef5fe 6342 MC_TARGET_PAGE,
02491447 6343 MC_TARGET_SWAP,
4ffef5fe
DN
6344};
6345
90254a65
DN
6346static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6347 unsigned long addr, pte_t ptent)
4ffef5fe 6348{
90254a65 6349 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6350
90254a65
DN
6351 if (!page || !page_mapped(page))
6352 return NULL;
6353 if (PageAnon(page)) {
6354 /* we don't move shared anon */
4b91355e 6355 if (!move_anon())
90254a65 6356 return NULL;
87946a72
DN
6357 } else if (!move_file())
6358 /* we ignore mapcount for file pages */
90254a65
DN
6359 return NULL;
6360 if (!get_page_unless_zero(page))
6361 return NULL;
6362
6363 return page;
6364}
6365
4b91355e 6366#ifdef CONFIG_SWAP
90254a65
DN
6367static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6368 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6369{
90254a65
DN
6370 struct page *page = NULL;
6371 swp_entry_t ent = pte_to_swp_entry(ptent);
6372
6373 if (!move_anon() || non_swap_entry(ent))
6374 return NULL;
4b91355e
KH
6375 /*
6376 * Because lookup_swap_cache() updates some statistics counter,
6377 * we call find_get_page() with swapper_space directly.
6378 */
33806f06 6379 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6380 if (do_swap_account)
6381 entry->val = ent.val;
6382
6383 return page;
6384}
4b91355e
KH
6385#else
6386static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6387 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6388{
6389 return NULL;
6390}
6391#endif
90254a65 6392
87946a72
DN
6393static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6394 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6395{
6396 struct page *page = NULL;
87946a72
DN
6397 struct address_space *mapping;
6398 pgoff_t pgoff;
6399
6400 if (!vma->vm_file) /* anonymous vma */
6401 return NULL;
6402 if (!move_file())
6403 return NULL;
6404
87946a72
DN
6405 mapping = vma->vm_file->f_mapping;
6406 if (pte_none(ptent))
6407 pgoff = linear_page_index(vma, addr);
6408 else /* pte_file(ptent) is true */
6409 pgoff = pte_to_pgoff(ptent);
6410
6411 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6412 page = find_get_page(mapping, pgoff);
6413
6414#ifdef CONFIG_SWAP
6415 /* shmem/tmpfs may report page out on swap: account for that too. */
6416 if (radix_tree_exceptional_entry(page)) {
6417 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6418 if (do_swap_account)
aa3b1895 6419 *entry = swap;
33806f06 6420 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6421 }
aa3b1895 6422#endif
87946a72
DN
6423 return page;
6424}
6425
8d32ff84 6426static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6427 unsigned long addr, pte_t ptent, union mc_target *target)
6428{
6429 struct page *page = NULL;
6430 struct page_cgroup *pc;
8d32ff84 6431 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6432 swp_entry_t ent = { .val = 0 };
6433
6434 if (pte_present(ptent))
6435 page = mc_handle_present_pte(vma, addr, ptent);
6436 else if (is_swap_pte(ptent))
6437 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6438 else if (pte_none(ptent) || pte_file(ptent))
6439 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6440
6441 if (!page && !ent.val)
8d32ff84 6442 return ret;
02491447
DN
6443 if (page) {
6444 pc = lookup_page_cgroup(page);
6445 /*
6446 * Do only loose check w/o page_cgroup lock.
6447 * mem_cgroup_move_account() checks the pc is valid or not under
6448 * the lock.
6449 */
6450 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6451 ret = MC_TARGET_PAGE;
6452 if (target)
6453 target->page = page;
6454 }
6455 if (!ret || !target)
6456 put_page(page);
6457 }
90254a65
DN
6458 /* There is a swap entry and a page doesn't exist or isn't charged */
6459 if (ent.val && !ret &&
9fb4b7cc 6460 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6461 ret = MC_TARGET_SWAP;
6462 if (target)
6463 target->ent = ent;
4ffef5fe 6464 }
4ffef5fe
DN
6465 return ret;
6466}
6467
12724850
NH
6468#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6469/*
6470 * We don't consider swapping or file mapped pages because THP does not
6471 * support them for now.
6472 * Caller should make sure that pmd_trans_huge(pmd) is true.
6473 */
6474static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6475 unsigned long addr, pmd_t pmd, union mc_target *target)
6476{
6477 struct page *page = NULL;
6478 struct page_cgroup *pc;
6479 enum mc_target_type ret = MC_TARGET_NONE;
6480
6481 page = pmd_page(pmd);
6482 VM_BUG_ON(!page || !PageHead(page));
6483 if (!move_anon())
6484 return ret;
6485 pc = lookup_page_cgroup(page);
6486 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6487 ret = MC_TARGET_PAGE;
6488 if (target) {
6489 get_page(page);
6490 target->page = page;
6491 }
6492 }
6493 return ret;
6494}
6495#else
6496static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6497 unsigned long addr, pmd_t pmd, union mc_target *target)
6498{
6499 return MC_TARGET_NONE;
6500}
6501#endif
6502
4ffef5fe
DN
6503static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6504 unsigned long addr, unsigned long end,
6505 struct mm_walk *walk)
6506{
6507 struct vm_area_struct *vma = walk->private;
6508 pte_t *pte;
6509 spinlock_t *ptl;
6510
12724850
NH
6511 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6512 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6513 mc.precharge += HPAGE_PMD_NR;
6514 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6515 return 0;
12724850 6516 }
03319327 6517
45f83cef
AA
6518 if (pmd_trans_unstable(pmd))
6519 return 0;
4ffef5fe
DN
6520 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6521 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6522 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6523 mc.precharge++; /* increment precharge temporarily */
6524 pte_unmap_unlock(pte - 1, ptl);
6525 cond_resched();
6526
7dc74be0
DN
6527 return 0;
6528}
6529
4ffef5fe
DN
6530static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6531{
6532 unsigned long precharge;
6533 struct vm_area_struct *vma;
6534
dfe076b0 6535 down_read(&mm->mmap_sem);
4ffef5fe
DN
6536 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6537 struct mm_walk mem_cgroup_count_precharge_walk = {
6538 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6539 .mm = mm,
6540 .private = vma,
6541 };
6542 if (is_vm_hugetlb_page(vma))
6543 continue;
4ffef5fe
DN
6544 walk_page_range(vma->vm_start, vma->vm_end,
6545 &mem_cgroup_count_precharge_walk);
6546 }
dfe076b0 6547 up_read(&mm->mmap_sem);
4ffef5fe
DN
6548
6549 precharge = mc.precharge;
6550 mc.precharge = 0;
6551
6552 return precharge;
6553}
6554
4ffef5fe
DN
6555static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6556{
dfe076b0
DN
6557 unsigned long precharge = mem_cgroup_count_precharge(mm);
6558
6559 VM_BUG_ON(mc.moving_task);
6560 mc.moving_task = current;
6561 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6562}
6563
dfe076b0
DN
6564/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6565static void __mem_cgroup_clear_mc(void)
4ffef5fe 6566{
2bd9bb20
KH
6567 struct mem_cgroup *from = mc.from;
6568 struct mem_cgroup *to = mc.to;
4050377b 6569 int i;
2bd9bb20 6570
4ffef5fe 6571 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6572 if (mc.precharge) {
6573 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6574 mc.precharge = 0;
6575 }
6576 /*
6577 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6578 * we must uncharge here.
6579 */
6580 if (mc.moved_charge) {
6581 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6582 mc.moved_charge = 0;
4ffef5fe 6583 }
483c30b5
DN
6584 /* we must fixup refcnts and charges */
6585 if (mc.moved_swap) {
483c30b5
DN
6586 /* uncharge swap account from the old cgroup */
6587 if (!mem_cgroup_is_root(mc.from))
6588 res_counter_uncharge(&mc.from->memsw,
6589 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6590
6591 for (i = 0; i < mc.moved_swap; i++)
6592 css_put(&mc.from->css);
483c30b5
DN
6593
6594 if (!mem_cgroup_is_root(mc.to)) {
6595 /*
6596 * we charged both to->res and to->memsw, so we should
6597 * uncharge to->res.
6598 */
6599 res_counter_uncharge(&mc.to->res,
6600 PAGE_SIZE * mc.moved_swap);
483c30b5 6601 }
4050377b 6602 /* we've already done css_get(mc.to) */
483c30b5
DN
6603 mc.moved_swap = 0;
6604 }
dfe076b0
DN
6605 memcg_oom_recover(from);
6606 memcg_oom_recover(to);
6607 wake_up_all(&mc.waitq);
6608}
6609
6610static void mem_cgroup_clear_mc(void)
6611{
6612 struct mem_cgroup *from = mc.from;
6613
6614 /*
6615 * we must clear moving_task before waking up waiters at the end of
6616 * task migration.
6617 */
6618 mc.moving_task = NULL;
6619 __mem_cgroup_clear_mc();
2bd9bb20 6620 spin_lock(&mc.lock);
4ffef5fe
DN
6621 mc.from = NULL;
6622 mc.to = NULL;
2bd9bb20 6623 spin_unlock(&mc.lock);
32047e2a 6624 mem_cgroup_end_move(from);
4ffef5fe
DN
6625}
6626
eb95419b 6627static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6628 struct cgroup_taskset *tset)
7dc74be0 6629{
2f7ee569 6630 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6631 int ret = 0;
eb95419b 6632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6633 unsigned long move_charge_at_immigrate;
7dc74be0 6634
ee5e8472
GC
6635 /*
6636 * We are now commited to this value whatever it is. Changes in this
6637 * tunable will only affect upcoming migrations, not the current one.
6638 * So we need to save it, and keep it going.
6639 */
6640 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6641 if (move_charge_at_immigrate) {
7dc74be0
DN
6642 struct mm_struct *mm;
6643 struct mem_cgroup *from = mem_cgroup_from_task(p);
6644
c0ff4b85 6645 VM_BUG_ON(from == memcg);
7dc74be0
DN
6646
6647 mm = get_task_mm(p);
6648 if (!mm)
6649 return 0;
7dc74be0 6650 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6651 if (mm->owner == p) {
6652 VM_BUG_ON(mc.from);
6653 VM_BUG_ON(mc.to);
6654 VM_BUG_ON(mc.precharge);
854ffa8d 6655 VM_BUG_ON(mc.moved_charge);
483c30b5 6656 VM_BUG_ON(mc.moved_swap);
32047e2a 6657 mem_cgroup_start_move(from);
2bd9bb20 6658 spin_lock(&mc.lock);
4ffef5fe 6659 mc.from = from;
c0ff4b85 6660 mc.to = memcg;
ee5e8472 6661 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6662 spin_unlock(&mc.lock);
dfe076b0 6663 /* We set mc.moving_task later */
4ffef5fe
DN
6664
6665 ret = mem_cgroup_precharge_mc(mm);
6666 if (ret)
6667 mem_cgroup_clear_mc();
dfe076b0
DN
6668 }
6669 mmput(mm);
7dc74be0
DN
6670 }
6671 return ret;
6672}
6673
eb95419b 6674static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6675 struct cgroup_taskset *tset)
7dc74be0 6676{
4ffef5fe 6677 mem_cgroup_clear_mc();
7dc74be0
DN
6678}
6679
4ffef5fe
DN
6680static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6681 unsigned long addr, unsigned long end,
6682 struct mm_walk *walk)
7dc74be0 6683{
4ffef5fe
DN
6684 int ret = 0;
6685 struct vm_area_struct *vma = walk->private;
6686 pte_t *pte;
6687 spinlock_t *ptl;
12724850
NH
6688 enum mc_target_type target_type;
6689 union mc_target target;
6690 struct page *page;
6691 struct page_cgroup *pc;
4ffef5fe 6692
12724850
NH
6693 /*
6694 * We don't take compound_lock() here but no race with splitting thp
6695 * happens because:
6696 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6697 * under splitting, which means there's no concurrent thp split,
6698 * - if another thread runs into split_huge_page() just after we
6699 * entered this if-block, the thread must wait for page table lock
6700 * to be unlocked in __split_huge_page_splitting(), where the main
6701 * part of thp split is not executed yet.
6702 */
6703 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6704 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6705 spin_unlock(&vma->vm_mm->page_table_lock);
6706 return 0;
6707 }
6708 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6709 if (target_type == MC_TARGET_PAGE) {
6710 page = target.page;
6711 if (!isolate_lru_page(page)) {
6712 pc = lookup_page_cgroup(page);
6713 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6714 pc, mc.from, mc.to)) {
12724850
NH
6715 mc.precharge -= HPAGE_PMD_NR;
6716 mc.moved_charge += HPAGE_PMD_NR;
6717 }
6718 putback_lru_page(page);
6719 }
6720 put_page(page);
6721 }
6722 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6723 return 0;
12724850
NH
6724 }
6725
45f83cef
AA
6726 if (pmd_trans_unstable(pmd))
6727 return 0;
4ffef5fe
DN
6728retry:
6729 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6730 for (; addr != end; addr += PAGE_SIZE) {
6731 pte_t ptent = *(pte++);
02491447 6732 swp_entry_t ent;
4ffef5fe
DN
6733
6734 if (!mc.precharge)
6735 break;
6736
8d32ff84 6737 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6738 case MC_TARGET_PAGE:
6739 page = target.page;
6740 if (isolate_lru_page(page))
6741 goto put;
6742 pc = lookup_page_cgroup(page);
7ec99d62 6743 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6744 mc.from, mc.to)) {
4ffef5fe 6745 mc.precharge--;
854ffa8d
DN
6746 /* we uncharge from mc.from later. */
6747 mc.moved_charge++;
4ffef5fe
DN
6748 }
6749 putback_lru_page(page);
8d32ff84 6750put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6751 put_page(page);
6752 break;
02491447
DN
6753 case MC_TARGET_SWAP:
6754 ent = target.ent;
e91cbb42 6755 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6756 mc.precharge--;
483c30b5
DN
6757 /* we fixup refcnts and charges later. */
6758 mc.moved_swap++;
6759 }
02491447 6760 break;
4ffef5fe
DN
6761 default:
6762 break;
6763 }
6764 }
6765 pte_unmap_unlock(pte - 1, ptl);
6766 cond_resched();
6767
6768 if (addr != end) {
6769 /*
6770 * We have consumed all precharges we got in can_attach().
6771 * We try charge one by one, but don't do any additional
6772 * charges to mc.to if we have failed in charge once in attach()
6773 * phase.
6774 */
854ffa8d 6775 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6776 if (!ret)
6777 goto retry;
6778 }
6779
6780 return ret;
6781}
6782
6783static void mem_cgroup_move_charge(struct mm_struct *mm)
6784{
6785 struct vm_area_struct *vma;
6786
6787 lru_add_drain_all();
dfe076b0
DN
6788retry:
6789 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6790 /*
6791 * Someone who are holding the mmap_sem might be waiting in
6792 * waitq. So we cancel all extra charges, wake up all waiters,
6793 * and retry. Because we cancel precharges, we might not be able
6794 * to move enough charges, but moving charge is a best-effort
6795 * feature anyway, so it wouldn't be a big problem.
6796 */
6797 __mem_cgroup_clear_mc();
6798 cond_resched();
6799 goto retry;
6800 }
4ffef5fe
DN
6801 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6802 int ret;
6803 struct mm_walk mem_cgroup_move_charge_walk = {
6804 .pmd_entry = mem_cgroup_move_charge_pte_range,
6805 .mm = mm,
6806 .private = vma,
6807 };
6808 if (is_vm_hugetlb_page(vma))
6809 continue;
4ffef5fe
DN
6810 ret = walk_page_range(vma->vm_start, vma->vm_end,
6811 &mem_cgroup_move_charge_walk);
6812 if (ret)
6813 /*
6814 * means we have consumed all precharges and failed in
6815 * doing additional charge. Just abandon here.
6816 */
6817 break;
6818 }
dfe076b0 6819 up_read(&mm->mmap_sem);
7dc74be0
DN
6820}
6821
eb95419b 6822static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6823 struct cgroup_taskset *tset)
67e465a7 6824{
2f7ee569 6825 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6826 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6827
dfe076b0 6828 if (mm) {
a433658c
KM
6829 if (mc.to)
6830 mem_cgroup_move_charge(mm);
dfe076b0
DN
6831 mmput(mm);
6832 }
a433658c
KM
6833 if (mc.to)
6834 mem_cgroup_clear_mc();
67e465a7 6835}
5cfb80a7 6836#else /* !CONFIG_MMU */
eb95419b 6837static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6838 struct cgroup_taskset *tset)
5cfb80a7
DN
6839{
6840 return 0;
6841}
eb95419b 6842static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6843 struct cgroup_taskset *tset)
5cfb80a7
DN
6844{
6845}
eb95419b 6846static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6847 struct cgroup_taskset *tset)
5cfb80a7
DN
6848{
6849}
6850#endif
67e465a7 6851
f00baae7
TH
6852/*
6853 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6854 * to verify sane_behavior flag on each mount attempt.
6855 */
eb95419b 6856static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6857{
6858 /*
6859 * use_hierarchy is forced with sane_behavior. cgroup core
6860 * guarantees that @root doesn't have any children, so turning it
6861 * on for the root memcg is enough.
6862 */
eb95419b
TH
6863 if (cgroup_sane_behavior(root_css->cgroup))
6864 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6865}
6866
8cdea7c0
BS
6867struct cgroup_subsys mem_cgroup_subsys = {
6868 .name = "memory",
6869 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6870 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6871 .css_online = mem_cgroup_css_online,
92fb9748
TH
6872 .css_offline = mem_cgroup_css_offline,
6873 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6874 .can_attach = mem_cgroup_can_attach,
6875 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6876 .attach = mem_cgroup_move_task,
f00baae7 6877 .bind = mem_cgroup_bind,
6bc10349 6878 .base_cftypes = mem_cgroup_files,
6d12e2d8 6879 .early_init = 0,
04046e1a 6880 .use_id = 1,
8cdea7c0 6881};
c077719b 6882
c255a458 6883#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6884static int __init enable_swap_account(char *s)
6885{
a2c8990a 6886 if (!strcmp(s, "1"))
a42c390c 6887 really_do_swap_account = 1;
a2c8990a 6888 else if (!strcmp(s, "0"))
a42c390c
MH
6889 really_do_swap_account = 0;
6890 return 1;
6891}
a2c8990a 6892__setup("swapaccount=", enable_swap_account);
c077719b 6893
2d11085e
MH
6894static void __init memsw_file_init(void)
6895{
6acc8b02
MH
6896 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6897}
6898
6899static void __init enable_swap_cgroup(void)
6900{
6901 if (!mem_cgroup_disabled() && really_do_swap_account) {
6902 do_swap_account = 1;
6903 memsw_file_init();
6904 }
2d11085e 6905}
6acc8b02 6906
2d11085e 6907#else
6acc8b02 6908static void __init enable_swap_cgroup(void)
2d11085e
MH
6909{
6910}
c077719b 6911#endif
2d11085e
MH
6912
6913/*
1081312f
MH
6914 * subsys_initcall() for memory controller.
6915 *
6916 * Some parts like hotcpu_notifier() have to be initialized from this context
6917 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6918 * everything that doesn't depend on a specific mem_cgroup structure should
6919 * be initialized from here.
2d11085e
MH
6920 */
6921static int __init mem_cgroup_init(void)
6922{
6923 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6924 enable_swap_cgroup();
bb4cc1a8 6925 mem_cgroup_soft_limit_tree_init();
e4777496 6926 memcg_stock_init();
2d11085e
MH
6927 return 0;
6928}
6929subsys_initcall(mem_cgroup_init);