]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
memcg: remove impossible conditional when committing
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
8c7c6e34
KH
330/* for encoding cft->private value on file */
331#define _MEM (0)
332#define _MEMSWAP (1)
9490ff27 333#define _OOM_TYPE (2)
8c7c6e34
KH
334#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
337/* Used for OOM nofiier */
338#define OOM_CONTROL (0)
8c7c6e34 339
75822b44
BS
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
347#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 349
8c7c6e34
KH
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 353static void drain_all_stock_async(void);
8c7c6e34 354
f64c3f54
BS
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
d324236b
WF
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363 return &mem->css;
364}
365
f64c3f54
BS
366static struct mem_cgroup_per_zone *
367page_cgroup_zoneinfo(struct page_cgroup *pc)
368{
369 struct mem_cgroup *mem = pc->mem_cgroup;
370 int nid = page_cgroup_nid(pc);
371 int zid = page_cgroup_zid(pc);
372
373 if (!mem)
374 return NULL;
375
376 return mem_cgroup_zoneinfo(mem, nid, zid);
377}
378
379static struct mem_cgroup_tree_per_zone *
380soft_limit_tree_node_zone(int nid, int zid)
381{
382 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383}
384
385static struct mem_cgroup_tree_per_zone *
386soft_limit_tree_from_page(struct page *page)
387{
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392}
393
394static void
4e416953 395__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 396 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
397 struct mem_cgroup_tree_per_zone *mctz,
398 unsigned long long new_usage_in_excess)
f64c3f54
BS
399{
400 struct rb_node **p = &mctz->rb_root.rb_node;
401 struct rb_node *parent = NULL;
402 struct mem_cgroup_per_zone *mz_node;
403
404 if (mz->on_tree)
405 return;
406
ef8745c1
KH
407 mz->usage_in_excess = new_usage_in_excess;
408 if (!mz->usage_in_excess)
409 return;
f64c3f54
BS
410 while (*p) {
411 parent = *p;
412 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
413 tree_node);
414 if (mz->usage_in_excess < mz_node->usage_in_excess)
415 p = &(*p)->rb_left;
416 /*
417 * We can't avoid mem cgroups that are over their soft
418 * limit by the same amount
419 */
420 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
421 p = &(*p)->rb_right;
422 }
423 rb_link_node(&mz->tree_node, parent, p);
424 rb_insert_color(&mz->tree_node, &mctz->rb_root);
425 mz->on_tree = true;
4e416953
BS
426}
427
428static void
429__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
430 struct mem_cgroup_per_zone *mz,
431 struct mem_cgroup_tree_per_zone *mctz)
432{
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
437}
438
f64c3f54
BS
439static void
440mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 spin_lock(&mctz->lock);
4e416953 445 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
446 spin_unlock(&mctz->lock);
447}
448
f64c3f54
BS
449
450static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
451{
ef8745c1 452 unsigned long long excess;
f64c3f54
BS
453 struct mem_cgroup_per_zone *mz;
454 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
f64c3f54
BS
457 mctz = soft_limit_tree_from_page(page);
458
459 /*
4e649152
KH
460 * Necessary to update all ancestors when hierarchy is used.
461 * because their event counter is not touched.
f64c3f54 462 */
4e649152
KH
463 for (; mem; mem = parent_mem_cgroup(mem)) {
464 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 465 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
466 /*
467 * We have to update the tree if mz is on RB-tree or
468 * mem is over its softlimit.
469 */
ef8745c1 470 if (excess || mz->on_tree) {
4e649152
KH
471 spin_lock(&mctz->lock);
472 /* if on-tree, remove it */
473 if (mz->on_tree)
474 __mem_cgroup_remove_exceeded(mem, mz, mctz);
475 /*
ef8745c1
KH
476 * Insert again. mz->usage_in_excess will be updated.
477 * If excess is 0, no tree ops.
4e649152 478 */
ef8745c1 479 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
480 spin_unlock(&mctz->lock);
481 }
f64c3f54
BS
482 }
483}
484
485static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
486{
487 int node, zone;
488 struct mem_cgroup_per_zone *mz;
489 struct mem_cgroup_tree_per_zone *mctz;
490
491 for_each_node_state(node, N_POSSIBLE) {
492 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
493 mz = mem_cgroup_zoneinfo(mem, node, zone);
494 mctz = soft_limit_tree_node_zone(node, zone);
495 mem_cgroup_remove_exceeded(mem, mz, mctz);
496 }
497 }
498}
499
4e416953
BS
500static struct mem_cgroup_per_zone *
501__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
502{
503 struct rb_node *rightmost = NULL;
26251eaf 504 struct mem_cgroup_per_zone *mz;
4e416953
BS
505
506retry:
26251eaf 507 mz = NULL;
4e416953
BS
508 rightmost = rb_last(&mctz->rb_root);
509 if (!rightmost)
510 goto done; /* Nothing to reclaim from */
511
512 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
513 /*
514 * Remove the node now but someone else can add it back,
515 * we will to add it back at the end of reclaim to its correct
516 * position in the tree.
517 */
518 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
519 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
520 !css_tryget(&mz->mem->css))
521 goto retry;
522done:
523 return mz;
524}
525
526static struct mem_cgroup_per_zone *
527mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
528{
529 struct mem_cgroup_per_zone *mz;
530
531 spin_lock(&mctz->lock);
532 mz = __mem_cgroup_largest_soft_limit_node(mctz);
533 spin_unlock(&mctz->lock);
534 return mz;
535}
536
711d3d2c
KH
537/*
538 * Implementation Note: reading percpu statistics for memcg.
539 *
540 * Both of vmstat[] and percpu_counter has threshold and do periodic
541 * synchronization to implement "quick" read. There are trade-off between
542 * reading cost and precision of value. Then, we may have a chance to implement
543 * a periodic synchronizion of counter in memcg's counter.
544 *
545 * But this _read() function is used for user interface now. The user accounts
546 * memory usage by memory cgroup and he _always_ requires exact value because
547 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
548 * have to visit all online cpus and make sum. So, for now, unnecessary
549 * synchronization is not implemented. (just implemented for cpu hotplug)
550 *
551 * If there are kernel internal actions which can make use of some not-exact
552 * value, and reading all cpu value can be performance bottleneck in some
553 * common workload, threashold and synchonization as vmstat[] should be
554 * implemented.
555 */
c62b1a3b
KH
556static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
557 enum mem_cgroup_stat_index idx)
558{
559 int cpu;
560 s64 val = 0;
561
711d3d2c
KH
562 get_online_cpus();
563 for_each_online_cpu(cpu)
c62b1a3b 564 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
565#ifdef CONFIG_HOTPLUG_CPU
566 spin_lock(&mem->pcp_counter_lock);
567 val += mem->nocpu_base.count[idx];
568 spin_unlock(&mem->pcp_counter_lock);
569#endif
570 put_online_cpus();
c62b1a3b
KH
571 return val;
572}
573
574static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
575{
576 s64 ret;
577
578 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
579 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
580 return ret;
581}
582
0c3e73e8
BS
583static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584 bool charge)
585{
586 int val = (charge) ? 1 : -1;
c62b1a3b 587 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
588}
589
c05555b5 590static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 591 bool file, int nr_pages)
d52aa412 592{
c62b1a3b
KH
593 preempt_disable();
594
e401f176
KH
595 if (file)
596 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 597 else
e401f176 598 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 599
e401f176
KH
600 /* pagein of a big page is an event. So, ignore page size */
601 if (nr_pages > 0)
c62b1a3b 602 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 603 else {
c62b1a3b 604 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
605 nr_pages = -nr_pages; /* for event */
606 }
e401f176
KH
607
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 609
c62b1a3b 610 preempt_enable();
6d12e2d8
KH
611}
612
14067bb3 613static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 614 enum lru_list idx)
6d12e2d8
KH
615{
616 int nid, zid;
617 struct mem_cgroup_per_zone *mz;
618 u64 total = 0;
619
620 for_each_online_node(nid)
621 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
622 mz = mem_cgroup_zoneinfo(mem, nid, zid);
623 total += MEM_CGROUP_ZSTAT(mz, idx);
624 }
625 return total;
d52aa412
KH
626}
627
d2265e6f
KH
628static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
629{
630 s64 val;
631
632 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
633
634 return !(val & ((1 << event_mask_shift) - 1));
635}
636
637/*
638 * Check events in order.
639 *
640 */
641static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
642{
643 /* threshold event is triggered in finer grain than soft limit */
644 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
645 mem_cgroup_threshold(mem);
646 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
647 mem_cgroup_update_tree(mem, page);
648 }
649}
650
d5b69e38 651static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
652{
653 return container_of(cgroup_subsys_state(cont,
654 mem_cgroup_subsys_id), struct mem_cgroup,
655 css);
656}
657
cf475ad2 658struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 659{
31a78f23
BS
660 /*
661 * mm_update_next_owner() may clear mm->owner to NULL
662 * if it races with swapoff, page migration, etc.
663 * So this can be called with p == NULL.
664 */
665 if (unlikely(!p))
666 return NULL;
667
78fb7466
PE
668 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
669 struct mem_cgroup, css);
670}
671
54595fe2
KH
672static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
673{
674 struct mem_cgroup *mem = NULL;
0b7f569e
KH
675
676 if (!mm)
677 return NULL;
54595fe2
KH
678 /*
679 * Because we have no locks, mm->owner's may be being moved to other
680 * cgroup. We use css_tryget() here even if this looks
681 * pessimistic (rather than adding locks here).
682 */
683 rcu_read_lock();
684 do {
685 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
686 if (unlikely(!mem))
687 break;
688 } while (!css_tryget(&mem->css));
689 rcu_read_unlock();
690 return mem;
691}
692
7d74b06f
KH
693/* The caller has to guarantee "mem" exists before calling this */
694static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 695{
711d3d2c
KH
696 struct cgroup_subsys_state *css;
697 int found;
698
699 if (!mem) /* ROOT cgroup has the smallest ID */
700 return root_mem_cgroup; /*css_put/get against root is ignored*/
701 if (!mem->use_hierarchy) {
702 if (css_tryget(&mem->css))
703 return mem;
704 return NULL;
705 }
706 rcu_read_lock();
707 /*
708 * searching a memory cgroup which has the smallest ID under given
709 * ROOT cgroup. (ID >= 1)
710 */
711 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
712 if (css && css_tryget(css))
713 mem = container_of(css, struct mem_cgroup, css);
714 else
715 mem = NULL;
716 rcu_read_unlock();
717 return mem;
7d74b06f
KH
718}
719
720static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
721 struct mem_cgroup *root,
722 bool cond)
723{
724 int nextid = css_id(&iter->css) + 1;
725 int found;
726 int hierarchy_used;
14067bb3 727 struct cgroup_subsys_state *css;
14067bb3 728
7d74b06f 729 hierarchy_used = iter->use_hierarchy;
14067bb3 730
7d74b06f 731 css_put(&iter->css);
711d3d2c
KH
732 /* If no ROOT, walk all, ignore hierarchy */
733 if (!cond || (root && !hierarchy_used))
7d74b06f 734 return NULL;
14067bb3 735
711d3d2c
KH
736 if (!root)
737 root = root_mem_cgroup;
738
7d74b06f
KH
739 do {
740 iter = NULL;
14067bb3 741 rcu_read_lock();
7d74b06f
KH
742
743 css = css_get_next(&mem_cgroup_subsys, nextid,
744 &root->css, &found);
14067bb3 745 if (css && css_tryget(css))
7d74b06f 746 iter = container_of(css, struct mem_cgroup, css);
14067bb3 747 rcu_read_unlock();
7d74b06f 748 /* If css is NULL, no more cgroups will be found */
14067bb3 749 nextid = found + 1;
7d74b06f 750 } while (css && !iter);
14067bb3 751
7d74b06f 752 return iter;
14067bb3 753}
7d74b06f
KH
754/*
755 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
756 * be careful that "break" loop is not allowed. We have reference count.
757 * Instead of that modify "cond" to be false and "continue" to exit the loop.
758 */
759#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
760 for (iter = mem_cgroup_start_loop(root);\
761 iter != NULL;\
762 iter = mem_cgroup_get_next(iter, root, cond))
763
764#define for_each_mem_cgroup_tree(iter, root) \
765 for_each_mem_cgroup_tree_cond(iter, root, true)
766
711d3d2c
KH
767#define for_each_mem_cgroup_all(iter) \
768 for_each_mem_cgroup_tree_cond(iter, NULL, true)
769
14067bb3 770
4b3bde4c
BS
771static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
772{
773 return (mem == root_mem_cgroup);
774}
775
08e552c6
KH
776/*
777 * Following LRU functions are allowed to be used without PCG_LOCK.
778 * Operations are called by routine of global LRU independently from memcg.
779 * What we have to take care of here is validness of pc->mem_cgroup.
780 *
781 * Changes to pc->mem_cgroup happens when
782 * 1. charge
783 * 2. moving account
784 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
785 * It is added to LRU before charge.
786 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
787 * When moving account, the page is not on LRU. It's isolated.
788 */
4f98a2fe 789
08e552c6
KH
790void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
791{
792 struct page_cgroup *pc;
08e552c6 793 struct mem_cgroup_per_zone *mz;
6d12e2d8 794
f8d66542 795 if (mem_cgroup_disabled())
08e552c6
KH
796 return;
797 pc = lookup_page_cgroup(page);
798 /* can happen while we handle swapcache. */
4b3bde4c 799 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 800 return;
4b3bde4c 801 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
802 /*
803 * We don't check PCG_USED bit. It's cleared when the "page" is finally
804 * removed from global LRU.
805 */
08e552c6 806 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
807 /* huge page split is done under lru_lock. so, we have no races. */
808 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
809 if (mem_cgroup_is_root(pc->mem_cgroup))
810 return;
811 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 812 list_del_init(&pc->lru);
6d12e2d8
KH
813}
814
08e552c6 815void mem_cgroup_del_lru(struct page *page)
6d12e2d8 816{
08e552c6
KH
817 mem_cgroup_del_lru_list(page, page_lru(page));
818}
b69408e8 819
3f58a829
MK
820/*
821 * Writeback is about to end against a page which has been marked for immediate
822 * reclaim. If it still appears to be reclaimable, move it to the tail of the
823 * inactive list.
824 */
825void mem_cgroup_rotate_reclaimable_page(struct page *page)
826{
827 struct mem_cgroup_per_zone *mz;
828 struct page_cgroup *pc;
829 enum lru_list lru = page_lru(page);
830
831 if (mem_cgroup_disabled())
832 return;
833
834 pc = lookup_page_cgroup(page);
835 /* unused or root page is not rotated. */
836 if (!PageCgroupUsed(pc))
837 return;
838 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
839 smp_rmb();
840 if (mem_cgroup_is_root(pc->mem_cgroup))
841 return;
842 mz = page_cgroup_zoneinfo(pc);
843 list_move_tail(&pc->lru, &mz->lists[lru]);
844}
845
08e552c6
KH
846void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
847{
848 struct mem_cgroup_per_zone *mz;
849 struct page_cgroup *pc;
b69408e8 850
f8d66542 851 if (mem_cgroup_disabled())
08e552c6 852 return;
6d12e2d8 853
08e552c6 854 pc = lookup_page_cgroup(page);
4b3bde4c 855 /* unused or root page is not rotated. */
713735b4
JW
856 if (!PageCgroupUsed(pc))
857 return;
858 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
859 smp_rmb();
860 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
861 return;
862 mz = page_cgroup_zoneinfo(pc);
863 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
864}
865
08e552c6 866void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 867{
08e552c6
KH
868 struct page_cgroup *pc;
869 struct mem_cgroup_per_zone *mz;
6d12e2d8 870
f8d66542 871 if (mem_cgroup_disabled())
08e552c6
KH
872 return;
873 pc = lookup_page_cgroup(page);
4b3bde4c 874 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 875 if (!PageCgroupUsed(pc))
894bc310 876 return;
713735b4
JW
877 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
878 smp_rmb();
08e552c6 879 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
880 /* huge page split is done under lru_lock. so, we have no races. */
881 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
882 SetPageCgroupAcctLRU(pc);
883 if (mem_cgroup_is_root(pc->mem_cgroup))
884 return;
08e552c6
KH
885 list_add(&pc->lru, &mz->lists[lru]);
886}
544122e5 887
08e552c6 888/*
544122e5
KH
889 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
890 * lru because the page may.be reused after it's fully uncharged (because of
891 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
892 * it again. This function is only used to charge SwapCache. It's done under
893 * lock_page and expected that zone->lru_lock is never held.
08e552c6 894 */
544122e5 895static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 896{
544122e5
KH
897 unsigned long flags;
898 struct zone *zone = page_zone(page);
899 struct page_cgroup *pc = lookup_page_cgroup(page);
900
901 spin_lock_irqsave(&zone->lru_lock, flags);
902 /*
903 * Forget old LRU when this page_cgroup is *not* used. This Used bit
904 * is guarded by lock_page() because the page is SwapCache.
905 */
906 if (!PageCgroupUsed(pc))
907 mem_cgroup_del_lru_list(page, page_lru(page));
908 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
909}
910
544122e5
KH
911static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
912{
913 unsigned long flags;
914 struct zone *zone = page_zone(page);
915 struct page_cgroup *pc = lookup_page_cgroup(page);
916
917 spin_lock_irqsave(&zone->lru_lock, flags);
918 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 919 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
920 mem_cgroup_add_lru_list(page, page_lru(page));
921 spin_unlock_irqrestore(&zone->lru_lock, flags);
922}
923
924
08e552c6
KH
925void mem_cgroup_move_lists(struct page *page,
926 enum lru_list from, enum lru_list to)
927{
f8d66542 928 if (mem_cgroup_disabled())
08e552c6
KH
929 return;
930 mem_cgroup_del_lru_list(page, from);
931 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
932}
933
4c4a2214
DR
934int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
935{
936 int ret;
0b7f569e 937 struct mem_cgroup *curr = NULL;
158e0a2d 938 struct task_struct *p;
4c4a2214 939
158e0a2d
KH
940 p = find_lock_task_mm(task);
941 if (!p)
942 return 0;
943 curr = try_get_mem_cgroup_from_mm(p->mm);
944 task_unlock(p);
0b7f569e
KH
945 if (!curr)
946 return 0;
d31f56db
DN
947 /*
948 * We should check use_hierarchy of "mem" not "curr". Because checking
949 * use_hierarchy of "curr" here make this function true if hierarchy is
950 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
951 * hierarchy(even if use_hierarchy is disabled in "mem").
952 */
953 if (mem->use_hierarchy)
0b7f569e
KH
954 ret = css_is_ancestor(&curr->css, &mem->css);
955 else
956 ret = (curr == mem);
957 css_put(&curr->css);
4c4a2214
DR
958 return ret;
959}
960
c772be93 961static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
962{
963 unsigned long active;
964 unsigned long inactive;
c772be93
KM
965 unsigned long gb;
966 unsigned long inactive_ratio;
14797e23 967
14067bb3
KH
968 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
969 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 970
c772be93
KM
971 gb = (inactive + active) >> (30 - PAGE_SHIFT);
972 if (gb)
973 inactive_ratio = int_sqrt(10 * gb);
974 else
975 inactive_ratio = 1;
976
977 if (present_pages) {
978 present_pages[0] = inactive;
979 present_pages[1] = active;
980 }
981
982 return inactive_ratio;
983}
984
985int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
986{
987 unsigned long active;
988 unsigned long inactive;
989 unsigned long present_pages[2];
990 unsigned long inactive_ratio;
991
992 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
993
994 inactive = present_pages[0];
995 active = present_pages[1];
996
997 if (inactive * inactive_ratio < active)
14797e23
KM
998 return 1;
999
1000 return 0;
1001}
1002
56e49d21
RR
1003int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1004{
1005 unsigned long active;
1006 unsigned long inactive;
1007
1008 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1009 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1010
1011 return (active > inactive);
1012}
1013
a3d8e054
KM
1014unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1015 struct zone *zone,
1016 enum lru_list lru)
1017{
13d7e3a2 1018 int nid = zone_to_nid(zone);
a3d8e054
KM
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return MEM_CGROUP_ZSTAT(mz, lru);
1023}
1024
3e2f41f1
KM
1025struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1026 struct zone *zone)
1027{
13d7e3a2 1028 int nid = zone_to_nid(zone);
3e2f41f1
KM
1029 int zid = zone_idx(zone);
1030 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1031
1032 return &mz->reclaim_stat;
1033}
1034
1035struct zone_reclaim_stat *
1036mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1037{
1038 struct page_cgroup *pc;
1039 struct mem_cgroup_per_zone *mz;
1040
1041 if (mem_cgroup_disabled())
1042 return NULL;
1043
1044 pc = lookup_page_cgroup(page);
bd112db8
DN
1045 if (!PageCgroupUsed(pc))
1046 return NULL;
713735b4
JW
1047 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1048 smp_rmb();
3e2f41f1
KM
1049 mz = page_cgroup_zoneinfo(pc);
1050 if (!mz)
1051 return NULL;
1052
1053 return &mz->reclaim_stat;
1054}
1055
66e1707b
BS
1056unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1057 struct list_head *dst,
1058 unsigned long *scanned, int order,
1059 int mode, struct zone *z,
1060 struct mem_cgroup *mem_cont,
4f98a2fe 1061 int active, int file)
66e1707b
BS
1062{
1063 unsigned long nr_taken = 0;
1064 struct page *page;
1065 unsigned long scan;
1066 LIST_HEAD(pc_list);
1067 struct list_head *src;
ff7283fa 1068 struct page_cgroup *pc, *tmp;
13d7e3a2 1069 int nid = zone_to_nid(z);
1ecaab2b
KH
1070 int zid = zone_idx(z);
1071 struct mem_cgroup_per_zone *mz;
b7c46d15 1072 int lru = LRU_FILE * file + active;
2ffebca6 1073 int ret;
66e1707b 1074
cf475ad2 1075 BUG_ON(!mem_cont);
1ecaab2b 1076 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1077 src = &mz->lists[lru];
66e1707b 1078
ff7283fa
KH
1079 scan = 0;
1080 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1081 if (scan >= nr_to_scan)
ff7283fa 1082 break;
08e552c6
KH
1083
1084 page = pc->page;
52d4b9ac
KH
1085 if (unlikely(!PageCgroupUsed(pc)))
1086 continue;
436c6541 1087 if (unlikely(!PageLRU(page)))
ff7283fa 1088 continue;
ff7283fa 1089
436c6541 1090 scan++;
2ffebca6
KH
1091 ret = __isolate_lru_page(page, mode, file);
1092 switch (ret) {
1093 case 0:
66e1707b 1094 list_move(&page->lru, dst);
2ffebca6 1095 mem_cgroup_del_lru(page);
2c888cfb 1096 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1097 break;
1098 case -EBUSY:
1099 /* we don't affect global LRU but rotate in our LRU */
1100 mem_cgroup_rotate_lru_list(page, page_lru(page));
1101 break;
1102 default:
1103 break;
66e1707b
BS
1104 }
1105 }
1106
66e1707b 1107 *scanned = scan;
cc8e970c
KM
1108
1109 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1110 0, 0, 0, mode);
1111
66e1707b
BS
1112 return nr_taken;
1113}
1114
6d61ef40
BS
1115#define mem_cgroup_from_res_counter(counter, member) \
1116 container_of(counter, struct mem_cgroup, member)
1117
19942822 1118/**
9d11ea9f
JW
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @mem: the memory cgroup
19942822 1121 *
9d11ea9f
JW
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * bytes.
19942822 1124 */
9d11ea9f 1125static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1126{
9d11ea9f
JW
1127 unsigned long long margin;
1128
1129 margin = res_counter_margin(&mem->res);
1130 if (do_swap_account)
1131 margin = min(margin, res_counter_margin(&mem->memsw));
1132 return margin;
19942822
JW
1133}
1134
a7885eb8
KM
1135static unsigned int get_swappiness(struct mem_cgroup *memcg)
1136{
1137 struct cgroup *cgrp = memcg->css.cgroup;
1138 unsigned int swappiness;
1139
1140 /* root ? */
1141 if (cgrp->parent == NULL)
1142 return vm_swappiness;
1143
1144 spin_lock(&memcg->reclaim_param_lock);
1145 swappiness = memcg->swappiness;
1146 spin_unlock(&memcg->reclaim_param_lock);
1147
1148 return swappiness;
1149}
1150
32047e2a
KH
1151static void mem_cgroup_start_move(struct mem_cgroup *mem)
1152{
1153 int cpu;
1489ebad
KH
1154
1155 get_online_cpus();
1156 spin_lock(&mem->pcp_counter_lock);
1157 for_each_online_cpu(cpu)
32047e2a 1158 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1159 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1160 spin_unlock(&mem->pcp_counter_lock);
1161 put_online_cpus();
32047e2a
KH
1162
1163 synchronize_rcu();
1164}
1165
1166static void mem_cgroup_end_move(struct mem_cgroup *mem)
1167{
1168 int cpu;
1169
1170 if (!mem)
1171 return;
1489ebad
KH
1172 get_online_cpus();
1173 spin_lock(&mem->pcp_counter_lock);
1174 for_each_online_cpu(cpu)
32047e2a 1175 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1176 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1177 spin_unlock(&mem->pcp_counter_lock);
1178 put_online_cpus();
32047e2a
KH
1179}
1180/*
1181 * 2 routines for checking "mem" is under move_account() or not.
1182 *
1183 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1184 * for avoiding race in accounting. If true,
1185 * pc->mem_cgroup may be overwritten.
1186 *
1187 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1188 * under hierarchy of moving cgroups. This is for
1189 * waiting at hith-memory prressure caused by "move".
1190 */
1191
1192static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1193{
1194 VM_BUG_ON(!rcu_read_lock_held());
1195 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1196}
4b534334
KH
1197
1198static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1199{
2bd9bb20
KH
1200 struct mem_cgroup *from;
1201 struct mem_cgroup *to;
4b534334 1202 bool ret = false;
2bd9bb20
KH
1203 /*
1204 * Unlike task_move routines, we access mc.to, mc.from not under
1205 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1206 */
1207 spin_lock(&mc.lock);
1208 from = mc.from;
1209 to = mc.to;
1210 if (!from)
1211 goto unlock;
1212 if (from == mem || to == mem
1213 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1214 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1215 ret = true;
1216unlock:
1217 spin_unlock(&mc.lock);
4b534334
KH
1218 return ret;
1219}
1220
1221static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1222{
1223 if (mc.moving_task && current != mc.moving_task) {
1224 if (mem_cgroup_under_move(mem)) {
1225 DEFINE_WAIT(wait);
1226 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1227 /* moving charge context might have finished. */
1228 if (mc.moving_task)
1229 schedule();
1230 finish_wait(&mc.waitq, &wait);
1231 return true;
1232 }
1233 }
1234 return false;
1235}
1236
e222432b 1237/**
6a6135b6 1238 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1239 * @memcg: The memory cgroup that went over limit
1240 * @p: Task that is going to be killed
1241 *
1242 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1243 * enabled
1244 */
1245void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1246{
1247 struct cgroup *task_cgrp;
1248 struct cgroup *mem_cgrp;
1249 /*
1250 * Need a buffer in BSS, can't rely on allocations. The code relies
1251 * on the assumption that OOM is serialized for memory controller.
1252 * If this assumption is broken, revisit this code.
1253 */
1254 static char memcg_name[PATH_MAX];
1255 int ret;
1256
d31f56db 1257 if (!memcg || !p)
e222432b
BS
1258 return;
1259
1260
1261 rcu_read_lock();
1262
1263 mem_cgrp = memcg->css.cgroup;
1264 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1265
1266 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1267 if (ret < 0) {
1268 /*
1269 * Unfortunately, we are unable to convert to a useful name
1270 * But we'll still print out the usage information
1271 */
1272 rcu_read_unlock();
1273 goto done;
1274 }
1275 rcu_read_unlock();
1276
1277 printk(KERN_INFO "Task in %s killed", memcg_name);
1278
1279 rcu_read_lock();
1280 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1281 if (ret < 0) {
1282 rcu_read_unlock();
1283 goto done;
1284 }
1285 rcu_read_unlock();
1286
1287 /*
1288 * Continues from above, so we don't need an KERN_ level
1289 */
1290 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1291done:
1292
1293 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1294 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1295 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1296 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1297 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1298 "failcnt %llu\n",
1299 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1300 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1301 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1302}
1303
81d39c20
KH
1304/*
1305 * This function returns the number of memcg under hierarchy tree. Returns
1306 * 1(self count) if no children.
1307 */
1308static int mem_cgroup_count_children(struct mem_cgroup *mem)
1309{
1310 int num = 0;
7d74b06f
KH
1311 struct mem_cgroup *iter;
1312
1313 for_each_mem_cgroup_tree(iter, mem)
1314 num++;
81d39c20
KH
1315 return num;
1316}
1317
a63d83f4
DR
1318/*
1319 * Return the memory (and swap, if configured) limit for a memcg.
1320 */
1321u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1322{
1323 u64 limit;
1324 u64 memsw;
1325
f3e8eb70
JW
1326 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1327 limit += total_swap_pages << PAGE_SHIFT;
1328
a63d83f4
DR
1329 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1330 /*
1331 * If memsw is finite and limits the amount of swap space available
1332 * to this memcg, return that limit.
1333 */
1334 return min(limit, memsw);
1335}
1336
6d61ef40 1337/*
04046e1a
KH
1338 * Visit the first child (need not be the first child as per the ordering
1339 * of the cgroup list, since we track last_scanned_child) of @mem and use
1340 * that to reclaim free pages from.
1341 */
1342static struct mem_cgroup *
1343mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1344{
1345 struct mem_cgroup *ret = NULL;
1346 struct cgroup_subsys_state *css;
1347 int nextid, found;
1348
1349 if (!root_mem->use_hierarchy) {
1350 css_get(&root_mem->css);
1351 ret = root_mem;
1352 }
1353
1354 while (!ret) {
1355 rcu_read_lock();
1356 nextid = root_mem->last_scanned_child + 1;
1357 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1358 &found);
1359 if (css && css_tryget(css))
1360 ret = container_of(css, struct mem_cgroup, css);
1361
1362 rcu_read_unlock();
1363 /* Updates scanning parameter */
1364 spin_lock(&root_mem->reclaim_param_lock);
1365 if (!css) {
1366 /* this means start scan from ID:1 */
1367 root_mem->last_scanned_child = 0;
1368 } else
1369 root_mem->last_scanned_child = found;
1370 spin_unlock(&root_mem->reclaim_param_lock);
1371 }
1372
1373 return ret;
1374}
1375
1376/*
1377 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1378 * we reclaimed from, so that we don't end up penalizing one child extensively
1379 * based on its position in the children list.
6d61ef40
BS
1380 *
1381 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1382 *
1383 * We give up and return to the caller when we visit root_mem twice.
1384 * (other groups can be removed while we're walking....)
81d39c20
KH
1385 *
1386 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1387 */
1388static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1389 struct zone *zone,
75822b44
BS
1390 gfp_t gfp_mask,
1391 unsigned long reclaim_options)
6d61ef40 1392{
04046e1a
KH
1393 struct mem_cgroup *victim;
1394 int ret, total = 0;
1395 int loop = 0;
75822b44
BS
1396 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1397 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1398 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1399 unsigned long excess;
1400
1401 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1402
22a668d7
KH
1403 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1404 if (root_mem->memsw_is_minimum)
1405 noswap = true;
1406
4e416953 1407 while (1) {
04046e1a 1408 victim = mem_cgroup_select_victim(root_mem);
4e416953 1409 if (victim == root_mem) {
04046e1a 1410 loop++;
cdec2e42
KH
1411 if (loop >= 1)
1412 drain_all_stock_async();
4e416953
BS
1413 if (loop >= 2) {
1414 /*
1415 * If we have not been able to reclaim
1416 * anything, it might because there are
1417 * no reclaimable pages under this hierarchy
1418 */
1419 if (!check_soft || !total) {
1420 css_put(&victim->css);
1421 break;
1422 }
1423 /*
1424 * We want to do more targetted reclaim.
1425 * excess >> 2 is not to excessive so as to
1426 * reclaim too much, nor too less that we keep
1427 * coming back to reclaim from this cgroup
1428 */
1429 if (total >= (excess >> 2) ||
1430 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1431 css_put(&victim->css);
1432 break;
1433 }
1434 }
1435 }
c62b1a3b 1436 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1437 /* this cgroup's local usage == 0 */
1438 css_put(&victim->css);
6d61ef40
BS
1439 continue;
1440 }
04046e1a 1441 /* we use swappiness of local cgroup */
4e416953
BS
1442 if (check_soft)
1443 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1444 noswap, get_swappiness(victim), zone);
4e416953
BS
1445 else
1446 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1447 noswap, get_swappiness(victim));
04046e1a 1448 css_put(&victim->css);
81d39c20
KH
1449 /*
1450 * At shrinking usage, we can't check we should stop here or
1451 * reclaim more. It's depends on callers. last_scanned_child
1452 * will work enough for keeping fairness under tree.
1453 */
1454 if (shrink)
1455 return ret;
04046e1a 1456 total += ret;
4e416953 1457 if (check_soft) {
9d11ea9f 1458 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1459 return total;
9d11ea9f 1460 } else if (mem_cgroup_margin(root_mem))
04046e1a 1461 return 1 + total;
6d61ef40 1462 }
04046e1a 1463 return total;
6d61ef40
BS
1464}
1465
867578cb
KH
1466/*
1467 * Check OOM-Killer is already running under our hierarchy.
1468 * If someone is running, return false.
1469 */
1470static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1471{
7d74b06f
KH
1472 int x, lock_count = 0;
1473 struct mem_cgroup *iter;
a636b327 1474
7d74b06f
KH
1475 for_each_mem_cgroup_tree(iter, mem) {
1476 x = atomic_inc_return(&iter->oom_lock);
1477 lock_count = max(x, lock_count);
1478 }
867578cb
KH
1479
1480 if (lock_count == 1)
1481 return true;
1482 return false;
a636b327 1483}
0b7f569e 1484
7d74b06f 1485static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1486{
7d74b06f
KH
1487 struct mem_cgroup *iter;
1488
867578cb
KH
1489 /*
1490 * When a new child is created while the hierarchy is under oom,
1491 * mem_cgroup_oom_lock() may not be called. We have to use
1492 * atomic_add_unless() here.
1493 */
7d74b06f
KH
1494 for_each_mem_cgroup_tree(iter, mem)
1495 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1496 return 0;
1497}
1498
867578cb
KH
1499
1500static DEFINE_MUTEX(memcg_oom_mutex);
1501static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1502
dc98df5a
KH
1503struct oom_wait_info {
1504 struct mem_cgroup *mem;
1505 wait_queue_t wait;
1506};
1507
1508static int memcg_oom_wake_function(wait_queue_t *wait,
1509 unsigned mode, int sync, void *arg)
1510{
1511 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1512 struct oom_wait_info *oom_wait_info;
1513
1514 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1515
1516 if (oom_wait_info->mem == wake_mem)
1517 goto wakeup;
1518 /* if no hierarchy, no match */
1519 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1520 return 0;
1521 /*
1522 * Both of oom_wait_info->mem and wake_mem are stable under us.
1523 * Then we can use css_is_ancestor without taking care of RCU.
1524 */
1525 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1526 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1527 return 0;
1528
1529wakeup:
1530 return autoremove_wake_function(wait, mode, sync, arg);
1531}
1532
1533static void memcg_wakeup_oom(struct mem_cgroup *mem)
1534{
1535 /* for filtering, pass "mem" as argument. */
1536 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1537}
1538
3c11ecf4
KH
1539static void memcg_oom_recover(struct mem_cgroup *mem)
1540{
2bd9bb20 1541 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1542 memcg_wakeup_oom(mem);
1543}
1544
867578cb
KH
1545/*
1546 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1547 */
1548bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1549{
dc98df5a 1550 struct oom_wait_info owait;
3c11ecf4 1551 bool locked, need_to_kill;
867578cb 1552
dc98df5a
KH
1553 owait.mem = mem;
1554 owait.wait.flags = 0;
1555 owait.wait.func = memcg_oom_wake_function;
1556 owait.wait.private = current;
1557 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1558 need_to_kill = true;
867578cb
KH
1559 /* At first, try to OOM lock hierarchy under mem.*/
1560 mutex_lock(&memcg_oom_mutex);
1561 locked = mem_cgroup_oom_lock(mem);
1562 /*
1563 * Even if signal_pending(), we can't quit charge() loop without
1564 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1565 * under OOM is always welcomed, use TASK_KILLABLE here.
1566 */
3c11ecf4
KH
1567 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1568 if (!locked || mem->oom_kill_disable)
1569 need_to_kill = false;
1570 if (locked)
9490ff27 1571 mem_cgroup_oom_notify(mem);
867578cb
KH
1572 mutex_unlock(&memcg_oom_mutex);
1573
3c11ecf4
KH
1574 if (need_to_kill) {
1575 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1576 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1577 } else {
867578cb 1578 schedule();
dc98df5a 1579 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1580 }
1581 mutex_lock(&memcg_oom_mutex);
1582 mem_cgroup_oom_unlock(mem);
dc98df5a 1583 memcg_wakeup_oom(mem);
867578cb
KH
1584 mutex_unlock(&memcg_oom_mutex);
1585
1586 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1587 return false;
1588 /* Give chance to dying process */
1589 schedule_timeout(1);
1590 return true;
0b7f569e
KH
1591}
1592
d69b042f
BS
1593/*
1594 * Currently used to update mapped file statistics, but the routine can be
1595 * generalized to update other statistics as well.
32047e2a
KH
1596 *
1597 * Notes: Race condition
1598 *
1599 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1600 * it tends to be costly. But considering some conditions, we doesn't need
1601 * to do so _always_.
1602 *
1603 * Considering "charge", lock_page_cgroup() is not required because all
1604 * file-stat operations happen after a page is attached to radix-tree. There
1605 * are no race with "charge".
1606 *
1607 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1608 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1609 * if there are race with "uncharge". Statistics itself is properly handled
1610 * by flags.
1611 *
1612 * Considering "move", this is an only case we see a race. To make the race
1613 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1614 * possibility of race condition. If there is, we take a lock.
d69b042f 1615 */
26174efd 1616
2a7106f2
GT
1617void mem_cgroup_update_page_stat(struct page *page,
1618 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1619{
1620 struct mem_cgroup *mem;
32047e2a
KH
1621 struct page_cgroup *pc = lookup_page_cgroup(page);
1622 bool need_unlock = false;
dbd4ea78 1623 unsigned long uninitialized_var(flags);
d69b042f 1624
d69b042f
BS
1625 if (unlikely(!pc))
1626 return;
1627
32047e2a 1628 rcu_read_lock();
d69b042f 1629 mem = pc->mem_cgroup;
32047e2a
KH
1630 if (unlikely(!mem || !PageCgroupUsed(pc)))
1631 goto out;
1632 /* pc->mem_cgroup is unstable ? */
ca3e0214 1633 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1634 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1635 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1636 need_unlock = true;
1637 mem = pc->mem_cgroup;
1638 if (!mem || !PageCgroupUsed(pc))
1639 goto out;
1640 }
26174efd 1641
26174efd 1642 switch (idx) {
2a7106f2 1643 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1644 if (val > 0)
1645 SetPageCgroupFileMapped(pc);
1646 else if (!page_mapped(page))
0c270f8f 1647 ClearPageCgroupFileMapped(pc);
2a7106f2 1648 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1649 break;
1650 default:
1651 BUG();
8725d541 1652 }
d69b042f 1653
2a7106f2
GT
1654 this_cpu_add(mem->stat->count[idx], val);
1655
32047e2a
KH
1656out:
1657 if (unlikely(need_unlock))
dbd4ea78 1658 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1659 rcu_read_unlock();
1660 return;
d69b042f 1661}
2a7106f2 1662EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1663
cdec2e42
KH
1664/*
1665 * size of first charge trial. "32" comes from vmscan.c's magic value.
1666 * TODO: maybe necessary to use big numbers in big irons.
1667 */
1668#define CHARGE_SIZE (32 * PAGE_SIZE)
1669struct memcg_stock_pcp {
1670 struct mem_cgroup *cached; /* this never be root cgroup */
1671 int charge;
1672 struct work_struct work;
1673};
1674static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675static atomic_t memcg_drain_count;
1676
1677/*
1678 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1679 * from local stock and true is returned. If the stock is 0 or charges from a
1680 * cgroup which is not current target, returns false. This stock will be
1681 * refilled.
1682 */
1683static bool consume_stock(struct mem_cgroup *mem)
1684{
1685 struct memcg_stock_pcp *stock;
1686 bool ret = true;
1687
1688 stock = &get_cpu_var(memcg_stock);
1689 if (mem == stock->cached && stock->charge)
1690 stock->charge -= PAGE_SIZE;
1691 else /* need to call res_counter_charge */
1692 ret = false;
1693 put_cpu_var(memcg_stock);
1694 return ret;
1695}
1696
1697/*
1698 * Returns stocks cached in percpu to res_counter and reset cached information.
1699 */
1700static void drain_stock(struct memcg_stock_pcp *stock)
1701{
1702 struct mem_cgroup *old = stock->cached;
1703
1704 if (stock->charge) {
1705 res_counter_uncharge(&old->res, stock->charge);
1706 if (do_swap_account)
1707 res_counter_uncharge(&old->memsw, stock->charge);
1708 }
1709 stock->cached = NULL;
1710 stock->charge = 0;
1711}
1712
1713/*
1714 * This must be called under preempt disabled or must be called by
1715 * a thread which is pinned to local cpu.
1716 */
1717static void drain_local_stock(struct work_struct *dummy)
1718{
1719 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1720 drain_stock(stock);
1721}
1722
1723/*
1724 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1725 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1726 */
1727static void refill_stock(struct mem_cgroup *mem, int val)
1728{
1729 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1730
1731 if (stock->cached != mem) { /* reset if necessary */
1732 drain_stock(stock);
1733 stock->cached = mem;
1734 }
1735 stock->charge += val;
1736 put_cpu_var(memcg_stock);
1737}
1738
1739/*
1740 * Tries to drain stocked charges in other cpus. This function is asynchronous
1741 * and just put a work per cpu for draining localy on each cpu. Caller can
1742 * expects some charges will be back to res_counter later but cannot wait for
1743 * it.
1744 */
1745static void drain_all_stock_async(void)
1746{
1747 int cpu;
1748 /* This function is for scheduling "drain" in asynchronous way.
1749 * The result of "drain" is not directly handled by callers. Then,
1750 * if someone is calling drain, we don't have to call drain more.
1751 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1752 * there is a race. We just do loose check here.
1753 */
1754 if (atomic_read(&memcg_drain_count))
1755 return;
1756 /* Notify other cpus that system-wide "drain" is running */
1757 atomic_inc(&memcg_drain_count);
1758 get_online_cpus();
1759 for_each_online_cpu(cpu) {
1760 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1761 schedule_work_on(cpu, &stock->work);
1762 }
1763 put_online_cpus();
1764 atomic_dec(&memcg_drain_count);
1765 /* We don't wait for flush_work */
1766}
1767
1768/* This is a synchronous drain interface. */
1769static void drain_all_stock_sync(void)
1770{
1771 /* called when force_empty is called */
1772 atomic_inc(&memcg_drain_count);
1773 schedule_on_each_cpu(drain_local_stock);
1774 atomic_dec(&memcg_drain_count);
1775}
1776
711d3d2c
KH
1777/*
1778 * This function drains percpu counter value from DEAD cpu and
1779 * move it to local cpu. Note that this function can be preempted.
1780 */
1781static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1782{
1783 int i;
1784
1785 spin_lock(&mem->pcp_counter_lock);
1786 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1787 s64 x = per_cpu(mem->stat->count[i], cpu);
1788
1789 per_cpu(mem->stat->count[i], cpu) = 0;
1790 mem->nocpu_base.count[i] += x;
1791 }
1489ebad
KH
1792 /* need to clear ON_MOVE value, works as a kind of lock. */
1793 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1794 spin_unlock(&mem->pcp_counter_lock);
1795}
1796
1797static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1798{
1799 int idx = MEM_CGROUP_ON_MOVE;
1800
1801 spin_lock(&mem->pcp_counter_lock);
1802 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1803 spin_unlock(&mem->pcp_counter_lock);
1804}
1805
1806static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1807 unsigned long action,
1808 void *hcpu)
1809{
1810 int cpu = (unsigned long)hcpu;
1811 struct memcg_stock_pcp *stock;
711d3d2c 1812 struct mem_cgroup *iter;
cdec2e42 1813
1489ebad
KH
1814 if ((action == CPU_ONLINE)) {
1815 for_each_mem_cgroup_all(iter)
1816 synchronize_mem_cgroup_on_move(iter, cpu);
1817 return NOTIFY_OK;
1818 }
1819
711d3d2c 1820 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1821 return NOTIFY_OK;
711d3d2c
KH
1822
1823 for_each_mem_cgroup_all(iter)
1824 mem_cgroup_drain_pcp_counter(iter, cpu);
1825
cdec2e42
KH
1826 stock = &per_cpu(memcg_stock, cpu);
1827 drain_stock(stock);
1828 return NOTIFY_OK;
1829}
1830
4b534334
KH
1831
1832/* See __mem_cgroup_try_charge() for details */
1833enum {
1834 CHARGE_OK, /* success */
1835 CHARGE_RETRY, /* need to retry but retry is not bad */
1836 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1837 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1838 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1839};
1840
1841static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1842 int csize, bool oom_check)
1843{
1844 struct mem_cgroup *mem_over_limit;
1845 struct res_counter *fail_res;
1846 unsigned long flags = 0;
1847 int ret;
1848
1849 ret = res_counter_charge(&mem->res, csize, &fail_res);
1850
1851 if (likely(!ret)) {
1852 if (!do_swap_account)
1853 return CHARGE_OK;
1854 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1855 if (likely(!ret))
1856 return CHARGE_OK;
1857
01c88e2d 1858 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1859 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1860 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1861 } else
1862 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1863 /*
1864 * csize can be either a huge page (HPAGE_SIZE), a batch of
1865 * regular pages (CHARGE_SIZE), or a single regular page
1866 * (PAGE_SIZE).
1867 *
1868 * Never reclaim on behalf of optional batching, retry with a
1869 * single page instead.
1870 */
1871 if (csize == CHARGE_SIZE)
4b534334
KH
1872 return CHARGE_RETRY;
1873
1874 if (!(gfp_mask & __GFP_WAIT))
1875 return CHARGE_WOULDBLOCK;
1876
1877 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1878 gfp_mask, flags);
9d11ea9f 1879 if (mem_cgroup_margin(mem_over_limit) >= csize)
19942822 1880 return CHARGE_RETRY;
4b534334 1881 /*
19942822
JW
1882 * Even though the limit is exceeded at this point, reclaim
1883 * may have been able to free some pages. Retry the charge
1884 * before killing the task.
1885 *
1886 * Only for regular pages, though: huge pages are rather
1887 * unlikely to succeed so close to the limit, and we fall back
1888 * to regular pages anyway in case of failure.
4b534334 1889 */
19942822 1890 if (csize == PAGE_SIZE && ret)
4b534334
KH
1891 return CHARGE_RETRY;
1892
1893 /*
1894 * At task move, charge accounts can be doubly counted. So, it's
1895 * better to wait until the end of task_move if something is going on.
1896 */
1897 if (mem_cgroup_wait_acct_move(mem_over_limit))
1898 return CHARGE_RETRY;
1899
1900 /* If we don't need to call oom-killer at el, return immediately */
1901 if (!oom_check)
1902 return CHARGE_NOMEM;
1903 /* check OOM */
1904 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1905 return CHARGE_OOM_DIE;
1906
1907 return CHARGE_RETRY;
1908}
1909
f817ed48
KH
1910/*
1911 * Unlike exported interface, "oom" parameter is added. if oom==true,
1912 * oom-killer can be invoked.
8a9f3ccd 1913 */
f817ed48 1914static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1915 gfp_t gfp_mask,
1916 struct mem_cgroup **memcg, bool oom,
1917 int page_size)
8a9f3ccd 1918{
4b534334
KH
1919 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1920 struct mem_cgroup *mem = NULL;
1921 int ret;
ec168510 1922 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1923
867578cb
KH
1924 /*
1925 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1926 * in system level. So, allow to go ahead dying process in addition to
1927 * MEMDIE process.
1928 */
1929 if (unlikely(test_thread_flag(TIF_MEMDIE)
1930 || fatal_signal_pending(current)))
1931 goto bypass;
a636b327 1932
8a9f3ccd 1933 /*
3be91277
HD
1934 * We always charge the cgroup the mm_struct belongs to.
1935 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1936 * thread group leader migrates. It's possible that mm is not
1937 * set, if so charge the init_mm (happens for pagecache usage).
1938 */
f75ca962
KH
1939 if (!*memcg && !mm)
1940 goto bypass;
1941again:
1942 if (*memcg) { /* css should be a valid one */
4b534334 1943 mem = *memcg;
f75ca962
KH
1944 VM_BUG_ON(css_is_removed(&mem->css));
1945 if (mem_cgroup_is_root(mem))
1946 goto done;
ec168510 1947 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1948 goto done;
4b534334
KH
1949 css_get(&mem->css);
1950 } else {
f75ca962 1951 struct task_struct *p;
54595fe2 1952
f75ca962
KH
1953 rcu_read_lock();
1954 p = rcu_dereference(mm->owner);
f75ca962 1955 /*
ebb76ce1
KH
1956 * Because we don't have task_lock(), "p" can exit.
1957 * In that case, "mem" can point to root or p can be NULL with
1958 * race with swapoff. Then, we have small risk of mis-accouning.
1959 * But such kind of mis-account by race always happens because
1960 * we don't have cgroup_mutex(). It's overkill and we allo that
1961 * small race, here.
1962 * (*) swapoff at el will charge against mm-struct not against
1963 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1964 */
1965 mem = mem_cgroup_from_task(p);
ebb76ce1 1966 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1967 rcu_read_unlock();
1968 goto done;
1969 }
ec168510 1970 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1971 /*
1972 * It seems dagerous to access memcg without css_get().
1973 * But considering how consume_stok works, it's not
1974 * necessary. If consume_stock success, some charges
1975 * from this memcg are cached on this cpu. So, we
1976 * don't need to call css_get()/css_tryget() before
1977 * calling consume_stock().
1978 */
1979 rcu_read_unlock();
1980 goto done;
1981 }
1982 /* after here, we may be blocked. we need to get refcnt */
1983 if (!css_tryget(&mem->css)) {
1984 rcu_read_unlock();
1985 goto again;
1986 }
1987 rcu_read_unlock();
1988 }
8a9f3ccd 1989
4b534334
KH
1990 do {
1991 bool oom_check;
7a81b88c 1992
4b534334 1993 /* If killed, bypass charge */
f75ca962
KH
1994 if (fatal_signal_pending(current)) {
1995 css_put(&mem->css);
4b534334 1996 goto bypass;
f75ca962 1997 }
6d61ef40 1998
4b534334
KH
1999 oom_check = false;
2000 if (oom && !nr_oom_retries) {
2001 oom_check = true;
2002 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2003 }
66e1707b 2004
4b534334 2005 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 2006
4b534334
KH
2007 switch (ret) {
2008 case CHARGE_OK:
2009 break;
2010 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 2011 csize = page_size;
f75ca962
KH
2012 css_put(&mem->css);
2013 mem = NULL;
2014 goto again;
4b534334 2015 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2016 css_put(&mem->css);
4b534334
KH
2017 goto nomem;
2018 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2019 if (!oom) {
2020 css_put(&mem->css);
867578cb 2021 goto nomem;
f75ca962 2022 }
4b534334
KH
2023 /* If oom, we never return -ENOMEM */
2024 nr_oom_retries--;
2025 break;
2026 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2027 css_put(&mem->css);
867578cb 2028 goto bypass;
66e1707b 2029 }
4b534334
KH
2030 } while (ret != CHARGE_OK);
2031
ec168510
AA
2032 if (csize > page_size)
2033 refill_stock(mem, csize - page_size);
f75ca962 2034 css_put(&mem->css);
0c3e73e8 2035done:
f75ca962 2036 *memcg = mem;
7a81b88c
KH
2037 return 0;
2038nomem:
f75ca962 2039 *memcg = NULL;
7a81b88c 2040 return -ENOMEM;
867578cb
KH
2041bypass:
2042 *memcg = NULL;
2043 return 0;
7a81b88c 2044}
8a9f3ccd 2045
a3032a2c
DN
2046/*
2047 * Somemtimes we have to undo a charge we got by try_charge().
2048 * This function is for that and do uncharge, put css's refcnt.
2049 * gotten by try_charge().
2050 */
854ffa8d
DN
2051static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2052 unsigned long count)
a3032a2c
DN
2053{
2054 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2055 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2056 if (do_swap_account)
854ffa8d 2057 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2058 }
854ffa8d
DN
2059}
2060
ec168510
AA
2061static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2062 int page_size)
854ffa8d 2063{
ec168510 2064 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2065}
2066
a3b2d692
KH
2067/*
2068 * A helper function to get mem_cgroup from ID. must be called under
2069 * rcu_read_lock(). The caller must check css_is_removed() or some if
2070 * it's concern. (dropping refcnt from swap can be called against removed
2071 * memcg.)
2072 */
2073static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2074{
2075 struct cgroup_subsys_state *css;
2076
2077 /* ID 0 is unused ID */
2078 if (!id)
2079 return NULL;
2080 css = css_lookup(&mem_cgroup_subsys, id);
2081 if (!css)
2082 return NULL;
2083 return container_of(css, struct mem_cgroup, css);
2084}
2085
e42d9d5d 2086struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2087{
e42d9d5d 2088 struct mem_cgroup *mem = NULL;
3c776e64 2089 struct page_cgroup *pc;
a3b2d692 2090 unsigned short id;
b5a84319
KH
2091 swp_entry_t ent;
2092
3c776e64
DN
2093 VM_BUG_ON(!PageLocked(page));
2094
3c776e64 2095 pc = lookup_page_cgroup(page);
c0bd3f63 2096 lock_page_cgroup(pc);
a3b2d692 2097 if (PageCgroupUsed(pc)) {
3c776e64 2098 mem = pc->mem_cgroup;
a3b2d692
KH
2099 if (mem && !css_tryget(&mem->css))
2100 mem = NULL;
e42d9d5d 2101 } else if (PageSwapCache(page)) {
3c776e64 2102 ent.val = page_private(page);
a3b2d692
KH
2103 id = lookup_swap_cgroup(ent);
2104 rcu_read_lock();
2105 mem = mem_cgroup_lookup(id);
2106 if (mem && !css_tryget(&mem->css))
2107 mem = NULL;
2108 rcu_read_unlock();
3c776e64 2109 }
c0bd3f63 2110 unlock_page_cgroup(pc);
b5a84319
KH
2111 return mem;
2112}
2113
ca3e0214
KH
2114static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2115 struct page_cgroup *pc,
2116 enum charge_type ctype,
2117 int page_size)
7a81b88c 2118{
ca3e0214
KH
2119 int nr_pages = page_size >> PAGE_SHIFT;
2120
ca3e0214
KH
2121 lock_page_cgroup(pc);
2122 if (unlikely(PageCgroupUsed(pc))) {
2123 unlock_page_cgroup(pc);
2124 mem_cgroup_cancel_charge(mem, page_size);
2125 return;
2126 }
2127 /*
2128 * we don't need page_cgroup_lock about tail pages, becase they are not
2129 * accessed by any other context at this point.
2130 */
8a9f3ccd 2131 pc->mem_cgroup = mem;
261fb61a
KH
2132 /*
2133 * We access a page_cgroup asynchronously without lock_page_cgroup().
2134 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136 * before USED bit, we need memory barrier here.
2137 * See mem_cgroup_add_lru_list(), etc.
2138 */
08e552c6 2139 smp_wmb();
4b3bde4c
BS
2140 switch (ctype) {
2141 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143 SetPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147 ClearPageCgroupCache(pc);
2148 SetPageCgroupUsed(pc);
2149 break;
2150 default:
2151 break;
2152 }
3be91277 2153
ca3e0214 2154 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2155 unlock_page_cgroup(pc);
430e4863
KH
2156 /*
2157 * "charge_statistics" updated event counter. Then, check it.
2158 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159 * if they exceeds softlimit.
2160 */
d2265e6f 2161 memcg_check_events(mem, pc->page);
7a81b88c 2162}
66e1707b 2163
ca3e0214
KH
2164#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165
2166#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168/*
2169 * Because tail pages are not marked as "used", set it. We're under
2170 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171 */
2172void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173{
2174 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176 unsigned long flags;
2177
3d37c4a9
KH
2178 if (mem_cgroup_disabled())
2179 return;
ca3e0214 2180 /*
ece35ca8 2181 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2182 * page state accounting.
2183 */
2184 move_lock_page_cgroup(head_pc, &flags);
2185
2186 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2188 if (PageCgroupAcctLRU(head_pc)) {
2189 enum lru_list lru;
2190 struct mem_cgroup_per_zone *mz;
2191
2192 /*
2193 * LRU flags cannot be copied because we need to add tail
2194 *.page to LRU by generic call and our hook will be called.
2195 * We hold lru_lock, then, reduce counter directly.
2196 */
2197 lru = page_lru(head);
2198 mz = page_cgroup_zoneinfo(head_pc);
2199 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200 }
ca3e0214
KH
2201 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202 move_unlock_page_cgroup(head_pc, &flags);
2203}
2204#endif
2205
f817ed48 2206/**
57f9fd7d 2207 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2208 * @pc: page_cgroup of the page.
2209 * @from: mem_cgroup which the page is moved from.
2210 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2211 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2212 *
2213 * The caller must confirm following.
08e552c6 2214 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2215 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2216 *
854ffa8d
DN
2217 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219 * true, this function does "uncharge" from old cgroup, but it doesn't if
2220 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2221 */
2222
57f9fd7d 2223static void __mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2224 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225 int charge_size)
f817ed48 2226{
987eba66
KH
2227 int nr_pages = charge_size >> PAGE_SHIFT;
2228
f817ed48 2229 VM_BUG_ON(from == to);
08e552c6 2230 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2231 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2232 VM_BUG_ON(!PageCgroupUsed(pc));
2233 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2234
8725d541 2235 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2236 /* Update mapped_file data for mem_cgroup */
2237 preempt_disable();
2238 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240 preempt_enable();
d69b042f 2241 }
987eba66 2242 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2243 if (uncharge)
2244 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2245 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2246
854ffa8d 2247 /* caller should have done css_get */
08e552c6 2248 pc->mem_cgroup = to;
987eba66 2249 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2250 /*
2251 * We charges against "to" which may not have any tasks. Then, "to"
2252 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2253 * this function is just force_empty() and move charge, so it's
2254 * garanteed that "to" is never removed. So, we don't check rmdir
2255 * status here.
88703267 2256 */
57f9fd7d
DN
2257}
2258
2259/*
2260 * check whether the @pc is valid for moving account and call
2261 * __mem_cgroup_move_account()
2262 */
2263static int mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2264 struct mem_cgroup *from, struct mem_cgroup *to,
2265 bool uncharge, int charge_size)
57f9fd7d
DN
2266{
2267 int ret = -EINVAL;
dbd4ea78 2268 unsigned long flags;
52dbb905
KH
2269 /*
2270 * The page is isolated from LRU. So, collapse function
2271 * will not handle this page. But page splitting can happen.
2272 * Do this check under compound_page_lock(). The caller should
2273 * hold it.
2274 */
987eba66
KH
2275 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276 return -EBUSY;
2277
57f9fd7d
DN
2278 lock_page_cgroup(pc);
2279 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2280 move_lock_page_cgroup(pc, &flags);
987eba66 2281 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
dbd4ea78 2282 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2283 ret = 0;
2284 }
2285 unlock_page_cgroup(pc);
d2265e6f
KH
2286 /*
2287 * check events
2288 */
2289 memcg_check_events(to, pc->page);
2290 memcg_check_events(from, pc->page);
f817ed48
KH
2291 return ret;
2292}
2293
2294/*
2295 * move charges to its parent.
2296 */
2297
2298static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299 struct mem_cgroup *child,
2300 gfp_t gfp_mask)
2301{
08e552c6 2302 struct page *page = pc->page;
f817ed48
KH
2303 struct cgroup *cg = child->css.cgroup;
2304 struct cgroup *pcg = cg->parent;
2305 struct mem_cgroup *parent;
52dbb905 2306 int page_size = PAGE_SIZE;
987eba66 2307 unsigned long flags;
f817ed48
KH
2308 int ret;
2309
2310 /* Is ROOT ? */
2311 if (!pcg)
2312 return -EINVAL;
2313
57f9fd7d
DN
2314 ret = -EBUSY;
2315 if (!get_page_unless_zero(page))
2316 goto out;
2317 if (isolate_lru_page(page))
2318 goto put;
52dbb905
KH
2319
2320 if (PageTransHuge(page))
2321 page_size = HPAGE_SIZE;
08e552c6 2322
f817ed48 2323 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2324 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325 &parent, false, page_size);
a636b327 2326 if (ret || !parent)
57f9fd7d 2327 goto put_back;
f817ed48 2328
52dbb905 2329 if (page_size > PAGE_SIZE)
987eba66
KH
2330 flags = compound_lock_irqsave(page);
2331
52dbb905 2332 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
854ffa8d 2333 if (ret)
52dbb905 2334 mem_cgroup_cancel_charge(parent, page_size);
8dba474f 2335
52dbb905 2336 if (page_size > PAGE_SIZE)
987eba66 2337 compound_unlock_irqrestore(page, flags);
8dba474f 2338put_back:
08e552c6 2339 putback_lru_page(page);
57f9fd7d 2340put:
40d58138 2341 put_page(page);
57f9fd7d 2342out:
f817ed48
KH
2343 return ret;
2344}
2345
7a81b88c
KH
2346/*
2347 * Charge the memory controller for page usage.
2348 * Return
2349 * 0 if the charge was successful
2350 * < 0 if the cgroup is over its limit
2351 */
2352static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2353 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2354{
73045c47 2355 struct mem_cgroup *mem = NULL;
8493ae43 2356 int page_size = PAGE_SIZE;
7a81b88c 2357 struct page_cgroup *pc;
8493ae43 2358 bool oom = true;
7a81b88c 2359 int ret;
ec168510 2360
37c2ac78 2361 if (PageTransHuge(page)) {
ec168510 2362 page_size <<= compound_order(page);
37c2ac78 2363 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2364 /*
2365 * Never OOM-kill a process for a huge page. The
2366 * fault handler will fall back to regular pages.
2367 */
2368 oom = false;
37c2ac78 2369 }
7a81b88c
KH
2370
2371 pc = lookup_page_cgroup(page);
2372 /* can happen at boot */
2373 if (unlikely(!pc))
2374 return 0;
2375 prefetchw(pc);
2376
8493ae43 2377 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2378 if (ret || !mem)
7a81b88c
KH
2379 return ret;
2380
ec168510 2381 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2382 return 0;
8a9f3ccd
BS
2383}
2384
7a81b88c
KH
2385int mem_cgroup_newpage_charge(struct page *page,
2386 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2387{
f8d66542 2388 if (mem_cgroup_disabled())
cede86ac 2389 return 0;
69029cd5
KH
2390 /*
2391 * If already mapped, we don't have to account.
2392 * If page cache, page->mapping has address_space.
2393 * But page->mapping may have out-of-use anon_vma pointer,
2394 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2395 * is NULL.
2396 */
2397 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2398 return 0;
2399 if (unlikely(!mm))
2400 mm = &init_mm;
217bc319 2401 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2402 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2403}
2404
83aae4c7
DN
2405static void
2406__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2407 enum charge_type ctype);
2408
e1a1cd59
BS
2409int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2410 gfp_t gfp_mask)
8697d331 2411{
b5a84319
KH
2412 int ret;
2413
f8d66542 2414 if (mem_cgroup_disabled())
cede86ac 2415 return 0;
52d4b9ac
KH
2416 if (PageCompound(page))
2417 return 0;
accf163e
KH
2418 /*
2419 * Corner case handling. This is called from add_to_page_cache()
2420 * in usual. But some FS (shmem) precharges this page before calling it
2421 * and call add_to_page_cache() with GFP_NOWAIT.
2422 *
2423 * For GFP_NOWAIT case, the page may be pre-charged before calling
2424 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2425 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2426 * And when the page is SwapCache, it should take swap information
2427 * into account. This is under lock_page() now.
accf163e
KH
2428 */
2429 if (!(gfp_mask & __GFP_WAIT)) {
2430 struct page_cgroup *pc;
2431
52d4b9ac
KH
2432 pc = lookup_page_cgroup(page);
2433 if (!pc)
2434 return 0;
2435 lock_page_cgroup(pc);
2436 if (PageCgroupUsed(pc)) {
2437 unlock_page_cgroup(pc);
accf163e
KH
2438 return 0;
2439 }
52d4b9ac 2440 unlock_page_cgroup(pc);
accf163e
KH
2441 }
2442
73045c47 2443 if (unlikely(!mm))
8697d331 2444 mm = &init_mm;
accf163e 2445
c05555b5
KH
2446 if (page_is_file_cache(page))
2447 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2448 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2449
83aae4c7
DN
2450 /* shmem */
2451 if (PageSwapCache(page)) {
56039efa 2452 struct mem_cgroup *mem;
73045c47 2453
83aae4c7
DN
2454 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2455 if (!ret)
2456 __mem_cgroup_commit_charge_swapin(page, mem,
2457 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458 } else
2459 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2460 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2461
b5a84319 2462 return ret;
e8589cc1
KH
2463}
2464
54595fe2
KH
2465/*
2466 * While swap-in, try_charge -> commit or cancel, the page is locked.
2467 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2468 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2469 * "commit()" or removed by "cancel()"
2470 */
8c7c6e34
KH
2471int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2472 struct page *page,
2473 gfp_t mask, struct mem_cgroup **ptr)
2474{
2475 struct mem_cgroup *mem;
54595fe2 2476 int ret;
8c7c6e34 2477
56039efa
KH
2478 *ptr = NULL;
2479
f8d66542 2480 if (mem_cgroup_disabled())
8c7c6e34
KH
2481 return 0;
2482
2483 if (!do_swap_account)
2484 goto charge_cur_mm;
8c7c6e34
KH
2485 /*
2486 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2487 * the pte, and even removed page from swap cache: in those cases
2488 * do_swap_page()'s pte_same() test will fail; but there's also a
2489 * KSM case which does need to charge the page.
8c7c6e34
KH
2490 */
2491 if (!PageSwapCache(page))
407f9c8b 2492 goto charge_cur_mm;
e42d9d5d 2493 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2494 if (!mem)
2495 goto charge_cur_mm;
8c7c6e34 2496 *ptr = mem;
ec168510 2497 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2498 css_put(&mem->css);
2499 return ret;
8c7c6e34
KH
2500charge_cur_mm:
2501 if (unlikely(!mm))
2502 mm = &init_mm;
ec168510 2503 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2504}
2505
83aae4c7
DN
2506static void
2507__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2508 enum charge_type ctype)
7a81b88c
KH
2509{
2510 struct page_cgroup *pc;
2511
f8d66542 2512 if (mem_cgroup_disabled())
7a81b88c
KH
2513 return;
2514 if (!ptr)
2515 return;
88703267 2516 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2517 pc = lookup_page_cgroup(page);
544122e5 2518 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2519 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2520 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2521 /*
2522 * Now swap is on-memory. This means this page may be
2523 * counted both as mem and swap....double count.
03f3c433
KH
2524 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2525 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2526 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2527 */
03f3c433 2528 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2529 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2530 unsigned short id;
8c7c6e34 2531 struct mem_cgroup *memcg;
a3b2d692
KH
2532
2533 id = swap_cgroup_record(ent, 0);
2534 rcu_read_lock();
2535 memcg = mem_cgroup_lookup(id);
8c7c6e34 2536 if (memcg) {
a3b2d692
KH
2537 /*
2538 * This recorded memcg can be obsolete one. So, avoid
2539 * calling css_tryget
2540 */
0c3e73e8 2541 if (!mem_cgroup_is_root(memcg))
4e649152 2542 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2543 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2544 mem_cgroup_put(memcg);
2545 }
a3b2d692 2546 rcu_read_unlock();
8c7c6e34 2547 }
88703267
KH
2548 /*
2549 * At swapin, we may charge account against cgroup which has no tasks.
2550 * So, rmdir()->pre_destroy() can be called while we do this charge.
2551 * In that case, we need to call pre_destroy() again. check it here.
2552 */
2553 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2554}
2555
83aae4c7
DN
2556void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2557{
2558 __mem_cgroup_commit_charge_swapin(page, ptr,
2559 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2560}
2561
7a81b88c
KH
2562void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2563{
f8d66542 2564 if (mem_cgroup_disabled())
7a81b88c
KH
2565 return;
2566 if (!mem)
2567 return;
ec168510 2568 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2569}
2570
569b846d 2571static void
ec168510
AA
2572__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2573 int page_size)
569b846d
KH
2574{
2575 struct memcg_batch_info *batch = NULL;
2576 bool uncharge_memsw = true;
2577 /* If swapout, usage of swap doesn't decrease */
2578 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2579 uncharge_memsw = false;
569b846d
KH
2580
2581 batch = &current->memcg_batch;
2582 /*
2583 * In usual, we do css_get() when we remember memcg pointer.
2584 * But in this case, we keep res->usage until end of a series of
2585 * uncharges. Then, it's ok to ignore memcg's refcnt.
2586 */
2587 if (!batch->memcg)
2588 batch->memcg = mem;
3c11ecf4
KH
2589 /*
2590 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2591 * In those cases, all pages freed continously can be expected to be in
2592 * the same cgroup and we have chance to coalesce uncharges.
2593 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2594 * because we want to do uncharge as soon as possible.
2595 */
2596
2597 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2598 goto direct_uncharge;
2599
ec168510
AA
2600 if (page_size != PAGE_SIZE)
2601 goto direct_uncharge;
2602
569b846d
KH
2603 /*
2604 * In typical case, batch->memcg == mem. This means we can
2605 * merge a series of uncharges to an uncharge of res_counter.
2606 * If not, we uncharge res_counter ony by one.
2607 */
2608 if (batch->memcg != mem)
2609 goto direct_uncharge;
2610 /* remember freed charge and uncharge it later */
2611 batch->bytes += PAGE_SIZE;
2612 if (uncharge_memsw)
2613 batch->memsw_bytes += PAGE_SIZE;
2614 return;
2615direct_uncharge:
ec168510 2616 res_counter_uncharge(&mem->res, page_size);
569b846d 2617 if (uncharge_memsw)
ec168510 2618 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2619 if (unlikely(batch->memcg != mem))
2620 memcg_oom_recover(mem);
569b846d
KH
2621 return;
2622}
7a81b88c 2623
8a9f3ccd 2624/*
69029cd5 2625 * uncharge if !page_mapped(page)
8a9f3ccd 2626 */
8c7c6e34 2627static struct mem_cgroup *
69029cd5 2628__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2629{
152c9ccb 2630 int count;
8289546e 2631 struct page_cgroup *pc;
8c7c6e34 2632 struct mem_cgroup *mem = NULL;
ec168510 2633 int page_size = PAGE_SIZE;
8a9f3ccd 2634
f8d66542 2635 if (mem_cgroup_disabled())
8c7c6e34 2636 return NULL;
4077960e 2637
d13d1443 2638 if (PageSwapCache(page))
8c7c6e34 2639 return NULL;
d13d1443 2640
37c2ac78 2641 if (PageTransHuge(page)) {
ec168510 2642 page_size <<= compound_order(page);
37c2ac78
AA
2643 VM_BUG_ON(!PageTransHuge(page));
2644 }
ec168510 2645
152c9ccb 2646 count = page_size >> PAGE_SHIFT;
8697d331 2647 /*
3c541e14 2648 * Check if our page_cgroup is valid
8697d331 2649 */
52d4b9ac
KH
2650 pc = lookup_page_cgroup(page);
2651 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2652 return NULL;
b9c565d5 2653
52d4b9ac 2654 lock_page_cgroup(pc);
d13d1443 2655
8c7c6e34
KH
2656 mem = pc->mem_cgroup;
2657
d13d1443
KH
2658 if (!PageCgroupUsed(pc))
2659 goto unlock_out;
2660
2661 switch (ctype) {
2662 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2663 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2664 /* See mem_cgroup_prepare_migration() */
2665 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2666 goto unlock_out;
2667 break;
2668 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2669 if (!PageAnon(page)) { /* Shared memory */
2670 if (page->mapping && !page_is_file_cache(page))
2671 goto unlock_out;
2672 } else if (page_mapped(page)) /* Anon */
2673 goto unlock_out;
2674 break;
2675 default:
2676 break;
52d4b9ac 2677 }
d13d1443 2678
ca3e0214 2679 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2680
52d4b9ac 2681 ClearPageCgroupUsed(pc);
544122e5
KH
2682 /*
2683 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2684 * freed from LRU. This is safe because uncharged page is expected not
2685 * to be reused (freed soon). Exception is SwapCache, it's handled by
2686 * special functions.
2687 */
b9c565d5 2688
52d4b9ac 2689 unlock_page_cgroup(pc);
f75ca962
KH
2690 /*
2691 * even after unlock, we have mem->res.usage here and this memcg
2692 * will never be freed.
2693 */
d2265e6f 2694 memcg_check_events(mem, page);
f75ca962
KH
2695 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2696 mem_cgroup_swap_statistics(mem, true);
2697 mem_cgroup_get(mem);
2698 }
2699 if (!mem_cgroup_is_root(mem))
ec168510 2700 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2701
8c7c6e34 2702 return mem;
d13d1443
KH
2703
2704unlock_out:
2705 unlock_page_cgroup(pc);
8c7c6e34 2706 return NULL;
3c541e14
BS
2707}
2708
69029cd5
KH
2709void mem_cgroup_uncharge_page(struct page *page)
2710{
52d4b9ac
KH
2711 /* early check. */
2712 if (page_mapped(page))
2713 return;
2714 if (page->mapping && !PageAnon(page))
2715 return;
69029cd5
KH
2716 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2717}
2718
2719void mem_cgroup_uncharge_cache_page(struct page *page)
2720{
2721 VM_BUG_ON(page_mapped(page));
b7abea96 2722 VM_BUG_ON(page->mapping);
69029cd5
KH
2723 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2724}
2725
569b846d
KH
2726/*
2727 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2728 * In that cases, pages are freed continuously and we can expect pages
2729 * are in the same memcg. All these calls itself limits the number of
2730 * pages freed at once, then uncharge_start/end() is called properly.
2731 * This may be called prural(2) times in a context,
2732 */
2733
2734void mem_cgroup_uncharge_start(void)
2735{
2736 current->memcg_batch.do_batch++;
2737 /* We can do nest. */
2738 if (current->memcg_batch.do_batch == 1) {
2739 current->memcg_batch.memcg = NULL;
2740 current->memcg_batch.bytes = 0;
2741 current->memcg_batch.memsw_bytes = 0;
2742 }
2743}
2744
2745void mem_cgroup_uncharge_end(void)
2746{
2747 struct memcg_batch_info *batch = &current->memcg_batch;
2748
2749 if (!batch->do_batch)
2750 return;
2751
2752 batch->do_batch--;
2753 if (batch->do_batch) /* If stacked, do nothing. */
2754 return;
2755
2756 if (!batch->memcg)
2757 return;
2758 /*
2759 * This "batch->memcg" is valid without any css_get/put etc...
2760 * bacause we hide charges behind us.
2761 */
2762 if (batch->bytes)
2763 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2764 if (batch->memsw_bytes)
2765 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2766 memcg_oom_recover(batch->memcg);
569b846d
KH
2767 /* forget this pointer (for sanity check) */
2768 batch->memcg = NULL;
2769}
2770
e767e056 2771#ifdef CONFIG_SWAP
8c7c6e34 2772/*
e767e056 2773 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2774 * memcg information is recorded to swap_cgroup of "ent"
2775 */
8a9478ca
KH
2776void
2777mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2778{
2779 struct mem_cgroup *memcg;
8a9478ca
KH
2780 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2781
2782 if (!swapout) /* this was a swap cache but the swap is unused ! */
2783 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2784
2785 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2786
f75ca962
KH
2787 /*
2788 * record memcg information, if swapout && memcg != NULL,
2789 * mem_cgroup_get() was called in uncharge().
2790 */
2791 if (do_swap_account && swapout && memcg)
a3b2d692 2792 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2793}
e767e056 2794#endif
8c7c6e34
KH
2795
2796#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2797/*
2798 * called from swap_entry_free(). remove record in swap_cgroup and
2799 * uncharge "memsw" account.
2800 */
2801void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2802{
8c7c6e34 2803 struct mem_cgroup *memcg;
a3b2d692 2804 unsigned short id;
8c7c6e34
KH
2805
2806 if (!do_swap_account)
2807 return;
2808
a3b2d692
KH
2809 id = swap_cgroup_record(ent, 0);
2810 rcu_read_lock();
2811 memcg = mem_cgroup_lookup(id);
8c7c6e34 2812 if (memcg) {
a3b2d692
KH
2813 /*
2814 * We uncharge this because swap is freed.
2815 * This memcg can be obsolete one. We avoid calling css_tryget
2816 */
0c3e73e8 2817 if (!mem_cgroup_is_root(memcg))
4e649152 2818 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2819 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2820 mem_cgroup_put(memcg);
2821 }
a3b2d692 2822 rcu_read_unlock();
d13d1443 2823}
02491447
DN
2824
2825/**
2826 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2827 * @entry: swap entry to be moved
2828 * @from: mem_cgroup which the entry is moved from
2829 * @to: mem_cgroup which the entry is moved to
483c30b5 2830 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2831 *
2832 * It succeeds only when the swap_cgroup's record for this entry is the same
2833 * as the mem_cgroup's id of @from.
2834 *
2835 * Returns 0 on success, -EINVAL on failure.
2836 *
2837 * The caller must have charged to @to, IOW, called res_counter_charge() about
2838 * both res and memsw, and called css_get().
2839 */
2840static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2841 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2842{
2843 unsigned short old_id, new_id;
2844
2845 old_id = css_id(&from->css);
2846 new_id = css_id(&to->css);
2847
2848 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2849 mem_cgroup_swap_statistics(from, false);
483c30b5 2850 mem_cgroup_swap_statistics(to, true);
02491447 2851 /*
483c30b5
DN
2852 * This function is only called from task migration context now.
2853 * It postpones res_counter and refcount handling till the end
2854 * of task migration(mem_cgroup_clear_mc()) for performance
2855 * improvement. But we cannot postpone mem_cgroup_get(to)
2856 * because if the process that has been moved to @to does
2857 * swap-in, the refcount of @to might be decreased to 0.
02491447 2858 */
02491447 2859 mem_cgroup_get(to);
483c30b5
DN
2860 if (need_fixup) {
2861 if (!mem_cgroup_is_root(from))
2862 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2863 mem_cgroup_put(from);
2864 /*
2865 * we charged both to->res and to->memsw, so we should
2866 * uncharge to->res.
2867 */
2868 if (!mem_cgroup_is_root(to))
2869 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2870 }
02491447
DN
2871 return 0;
2872 }
2873 return -EINVAL;
2874}
2875#else
2876static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2877 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2878{
2879 return -EINVAL;
2880}
8c7c6e34 2881#endif
d13d1443 2882
ae41be37 2883/*
01b1ae63
KH
2884 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2885 * page belongs to.
ae41be37 2886 */
ac39cf8c 2887int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2888 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2889{
2890 struct page_cgroup *pc;
e8589cc1 2891 struct mem_cgroup *mem = NULL;
ac39cf8c 2892 enum charge_type ctype;
e8589cc1 2893 int ret = 0;
8869b8f6 2894
56039efa
KH
2895 *ptr = NULL;
2896
ec168510 2897 VM_BUG_ON(PageTransHuge(page));
f8d66542 2898 if (mem_cgroup_disabled())
4077960e
BS
2899 return 0;
2900
52d4b9ac
KH
2901 pc = lookup_page_cgroup(page);
2902 lock_page_cgroup(pc);
2903 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2904 mem = pc->mem_cgroup;
2905 css_get(&mem->css);
ac39cf8c 2906 /*
2907 * At migrating an anonymous page, its mapcount goes down
2908 * to 0 and uncharge() will be called. But, even if it's fully
2909 * unmapped, migration may fail and this page has to be
2910 * charged again. We set MIGRATION flag here and delay uncharge
2911 * until end_migration() is called
2912 *
2913 * Corner Case Thinking
2914 * A)
2915 * When the old page was mapped as Anon and it's unmap-and-freed
2916 * while migration was ongoing.
2917 * If unmap finds the old page, uncharge() of it will be delayed
2918 * until end_migration(). If unmap finds a new page, it's
2919 * uncharged when it make mapcount to be 1->0. If unmap code
2920 * finds swap_migration_entry, the new page will not be mapped
2921 * and end_migration() will find it(mapcount==0).
2922 *
2923 * B)
2924 * When the old page was mapped but migraion fails, the kernel
2925 * remaps it. A charge for it is kept by MIGRATION flag even
2926 * if mapcount goes down to 0. We can do remap successfully
2927 * without charging it again.
2928 *
2929 * C)
2930 * The "old" page is under lock_page() until the end of
2931 * migration, so, the old page itself will not be swapped-out.
2932 * If the new page is swapped out before end_migraton, our
2933 * hook to usual swap-out path will catch the event.
2934 */
2935 if (PageAnon(page))
2936 SetPageCgroupMigration(pc);
e8589cc1 2937 }
52d4b9ac 2938 unlock_page_cgroup(pc);
ac39cf8c 2939 /*
2940 * If the page is not charged at this point,
2941 * we return here.
2942 */
2943 if (!mem)
2944 return 0;
01b1ae63 2945
93d5c9be 2946 *ptr = mem;
ef6a3c63 2947 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c 2948 css_put(&mem->css);/* drop extra refcnt */
2949 if (ret || *ptr == NULL) {
2950 if (PageAnon(page)) {
2951 lock_page_cgroup(pc);
2952 ClearPageCgroupMigration(pc);
2953 unlock_page_cgroup(pc);
2954 /*
2955 * The old page may be fully unmapped while we kept it.
2956 */
2957 mem_cgroup_uncharge_page(page);
2958 }
2959 return -ENOMEM;
e8589cc1 2960 }
ac39cf8c 2961 /*
2962 * We charge new page before it's used/mapped. So, even if unlock_page()
2963 * is called before end_migration, we can catch all events on this new
2964 * page. In the case new page is migrated but not remapped, new page's
2965 * mapcount will be finally 0 and we call uncharge in end_migration().
2966 */
2967 pc = lookup_page_cgroup(newpage);
2968 if (PageAnon(page))
2969 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2970 else if (page_is_file_cache(page))
2971 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2972 else
2973 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2974 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2975 return ret;
ae41be37 2976}
8869b8f6 2977
69029cd5 2978/* remove redundant charge if migration failed*/
01b1ae63 2979void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2980 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2981{
ac39cf8c 2982 struct page *used, *unused;
01b1ae63 2983 struct page_cgroup *pc;
01b1ae63
KH
2984
2985 if (!mem)
2986 return;
ac39cf8c 2987 /* blocks rmdir() */
88703267 2988 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2989 if (!migration_ok) {
ac39cf8c 2990 used = oldpage;
2991 unused = newpage;
01b1ae63 2992 } else {
ac39cf8c 2993 used = newpage;
01b1ae63
KH
2994 unused = oldpage;
2995 }
69029cd5 2996 /*
ac39cf8c 2997 * We disallowed uncharge of pages under migration because mapcount
2998 * of the page goes down to zero, temporarly.
2999 * Clear the flag and check the page should be charged.
01b1ae63 3000 */
ac39cf8c 3001 pc = lookup_page_cgroup(oldpage);
3002 lock_page_cgroup(pc);
3003 ClearPageCgroupMigration(pc);
3004 unlock_page_cgroup(pc);
01b1ae63 3005
ac39cf8c 3006 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3007
01b1ae63 3008 /*
ac39cf8c 3009 * If a page is a file cache, radix-tree replacement is very atomic
3010 * and we can skip this check. When it was an Anon page, its mapcount
3011 * goes down to 0. But because we added MIGRATION flage, it's not
3012 * uncharged yet. There are several case but page->mapcount check
3013 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3014 * check. (see prepare_charge() also)
69029cd5 3015 */
ac39cf8c 3016 if (PageAnon(used))
3017 mem_cgroup_uncharge_page(used);
88703267 3018 /*
ac39cf8c 3019 * At migration, we may charge account against cgroup which has no
3020 * tasks.
88703267
KH
3021 * So, rmdir()->pre_destroy() can be called while we do this charge.
3022 * In that case, we need to call pre_destroy() again. check it here.
3023 */
3024 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3025}
78fb7466 3026
c9b0ed51 3027/*
ae3abae6
DN
3028 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3029 * Calling hierarchical_reclaim is not enough because we should update
3030 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3031 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3032 * not from the memcg which this page would be charged to.
3033 * try_charge_swapin does all of these works properly.
c9b0ed51 3034 */
ae3abae6 3035int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3036 struct mm_struct *mm,
3037 gfp_t gfp_mask)
c9b0ed51 3038{
56039efa 3039 struct mem_cgroup *mem;
ae3abae6 3040 int ret;
c9b0ed51 3041
f8d66542 3042 if (mem_cgroup_disabled())
cede86ac 3043 return 0;
c9b0ed51 3044
ae3abae6
DN
3045 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3046 if (!ret)
3047 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3048
ae3abae6 3049 return ret;
c9b0ed51
KH
3050}
3051
8c7c6e34
KH
3052static DEFINE_MUTEX(set_limit_mutex);
3053
d38d2a75 3054static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3055 unsigned long long val)
628f4235 3056{
81d39c20 3057 int retry_count;
3c11ecf4 3058 u64 memswlimit, memlimit;
628f4235 3059 int ret = 0;
81d39c20
KH
3060 int children = mem_cgroup_count_children(memcg);
3061 u64 curusage, oldusage;
3c11ecf4 3062 int enlarge;
81d39c20
KH
3063
3064 /*
3065 * For keeping hierarchical_reclaim simple, how long we should retry
3066 * is depends on callers. We set our retry-count to be function
3067 * of # of children which we should visit in this loop.
3068 */
3069 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3070
3071 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3072
3c11ecf4 3073 enlarge = 0;
8c7c6e34 3074 while (retry_count) {
628f4235
KH
3075 if (signal_pending(current)) {
3076 ret = -EINTR;
3077 break;
3078 }
8c7c6e34
KH
3079 /*
3080 * Rather than hide all in some function, I do this in
3081 * open coded manner. You see what this really does.
3082 * We have to guarantee mem->res.limit < mem->memsw.limit.
3083 */
3084 mutex_lock(&set_limit_mutex);
3085 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3086 if (memswlimit < val) {
3087 ret = -EINVAL;
3088 mutex_unlock(&set_limit_mutex);
628f4235
KH
3089 break;
3090 }
3c11ecf4
KH
3091
3092 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3093 if (memlimit < val)
3094 enlarge = 1;
3095
8c7c6e34 3096 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3097 if (!ret) {
3098 if (memswlimit == val)
3099 memcg->memsw_is_minimum = true;
3100 else
3101 memcg->memsw_is_minimum = false;
3102 }
8c7c6e34
KH
3103 mutex_unlock(&set_limit_mutex);
3104
3105 if (!ret)
3106 break;
3107
aa20d489 3108 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3109 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3110 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3111 /* Usage is reduced ? */
3112 if (curusage >= oldusage)
3113 retry_count--;
3114 else
3115 oldusage = curusage;
8c7c6e34 3116 }
3c11ecf4
KH
3117 if (!ret && enlarge)
3118 memcg_oom_recover(memcg);
14797e23 3119
8c7c6e34
KH
3120 return ret;
3121}
3122
338c8431
LZ
3123static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3124 unsigned long long val)
8c7c6e34 3125{
81d39c20 3126 int retry_count;
3c11ecf4 3127 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3128 int children = mem_cgroup_count_children(memcg);
3129 int ret = -EBUSY;
3c11ecf4 3130 int enlarge = 0;
8c7c6e34 3131
81d39c20
KH
3132 /* see mem_cgroup_resize_res_limit */
3133 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3134 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3135 while (retry_count) {
3136 if (signal_pending(current)) {
3137 ret = -EINTR;
3138 break;
3139 }
3140 /*
3141 * Rather than hide all in some function, I do this in
3142 * open coded manner. You see what this really does.
3143 * We have to guarantee mem->res.limit < mem->memsw.limit.
3144 */
3145 mutex_lock(&set_limit_mutex);
3146 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3147 if (memlimit > val) {
3148 ret = -EINVAL;
3149 mutex_unlock(&set_limit_mutex);
3150 break;
3151 }
3c11ecf4
KH
3152 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3153 if (memswlimit < val)
3154 enlarge = 1;
8c7c6e34 3155 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3156 if (!ret) {
3157 if (memlimit == val)
3158 memcg->memsw_is_minimum = true;
3159 else
3160 memcg->memsw_is_minimum = false;
3161 }
8c7c6e34
KH
3162 mutex_unlock(&set_limit_mutex);
3163
3164 if (!ret)
3165 break;
3166
4e416953 3167 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3168 MEM_CGROUP_RECLAIM_NOSWAP |
3169 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3170 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3171 /* Usage is reduced ? */
8c7c6e34 3172 if (curusage >= oldusage)
628f4235 3173 retry_count--;
81d39c20
KH
3174 else
3175 oldusage = curusage;
628f4235 3176 }
3c11ecf4
KH
3177 if (!ret && enlarge)
3178 memcg_oom_recover(memcg);
628f4235
KH
3179 return ret;
3180}
3181
4e416953 3182unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3183 gfp_t gfp_mask)
4e416953
BS
3184{
3185 unsigned long nr_reclaimed = 0;
3186 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3187 unsigned long reclaimed;
3188 int loop = 0;
3189 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3190 unsigned long long excess;
4e416953
BS
3191
3192 if (order > 0)
3193 return 0;
3194
00918b6a 3195 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3196 /*
3197 * This loop can run a while, specially if mem_cgroup's continuously
3198 * keep exceeding their soft limit and putting the system under
3199 * pressure
3200 */
3201 do {
3202 if (next_mz)
3203 mz = next_mz;
3204 else
3205 mz = mem_cgroup_largest_soft_limit_node(mctz);
3206 if (!mz)
3207 break;
3208
3209 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3210 gfp_mask,
3211 MEM_CGROUP_RECLAIM_SOFT);
3212 nr_reclaimed += reclaimed;
3213 spin_lock(&mctz->lock);
3214
3215 /*
3216 * If we failed to reclaim anything from this memory cgroup
3217 * it is time to move on to the next cgroup
3218 */
3219 next_mz = NULL;
3220 if (!reclaimed) {
3221 do {
3222 /*
3223 * Loop until we find yet another one.
3224 *
3225 * By the time we get the soft_limit lock
3226 * again, someone might have aded the
3227 * group back on the RB tree. Iterate to
3228 * make sure we get a different mem.
3229 * mem_cgroup_largest_soft_limit_node returns
3230 * NULL if no other cgroup is present on
3231 * the tree
3232 */
3233 next_mz =
3234 __mem_cgroup_largest_soft_limit_node(mctz);
3235 if (next_mz == mz) {
3236 css_put(&next_mz->mem->css);
3237 next_mz = NULL;
3238 } else /* next_mz == NULL or other memcg */
3239 break;
3240 } while (1);
3241 }
4e416953 3242 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3243 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3244 /*
3245 * One school of thought says that we should not add
3246 * back the node to the tree if reclaim returns 0.
3247 * But our reclaim could return 0, simply because due
3248 * to priority we are exposing a smaller subset of
3249 * memory to reclaim from. Consider this as a longer
3250 * term TODO.
3251 */
ef8745c1
KH
3252 /* If excess == 0, no tree ops */
3253 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3254 spin_unlock(&mctz->lock);
3255 css_put(&mz->mem->css);
3256 loop++;
3257 /*
3258 * Could not reclaim anything and there are no more
3259 * mem cgroups to try or we seem to be looping without
3260 * reclaiming anything.
3261 */
3262 if (!nr_reclaimed &&
3263 (next_mz == NULL ||
3264 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3265 break;
3266 } while (!nr_reclaimed);
3267 if (next_mz)
3268 css_put(&next_mz->mem->css);
3269 return nr_reclaimed;
3270}
3271
cc847582
KH
3272/*
3273 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3274 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3275 */
f817ed48 3276static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3277 int node, int zid, enum lru_list lru)
cc847582 3278{
08e552c6
KH
3279 struct zone *zone;
3280 struct mem_cgroup_per_zone *mz;
f817ed48 3281 struct page_cgroup *pc, *busy;
08e552c6 3282 unsigned long flags, loop;
072c56c1 3283 struct list_head *list;
f817ed48 3284 int ret = 0;
072c56c1 3285
08e552c6
KH
3286 zone = &NODE_DATA(node)->node_zones[zid];
3287 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3288 list = &mz->lists[lru];
cc847582 3289
f817ed48
KH
3290 loop = MEM_CGROUP_ZSTAT(mz, lru);
3291 /* give some margin against EBUSY etc...*/
3292 loop += 256;
3293 busy = NULL;
3294 while (loop--) {
3295 ret = 0;
08e552c6 3296 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3297 if (list_empty(list)) {
08e552c6 3298 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3299 break;
f817ed48
KH
3300 }
3301 pc = list_entry(list->prev, struct page_cgroup, lru);
3302 if (busy == pc) {
3303 list_move(&pc->lru, list);
648bcc77 3304 busy = NULL;
08e552c6 3305 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3306 continue;
3307 }
08e552c6 3308 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3309
2c26fdd7 3310 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3311 if (ret == -ENOMEM)
52d4b9ac 3312 break;
f817ed48
KH
3313
3314 if (ret == -EBUSY || ret == -EINVAL) {
3315 /* found lock contention or "pc" is obsolete. */
3316 busy = pc;
3317 cond_resched();
3318 } else
3319 busy = NULL;
cc847582 3320 }
08e552c6 3321
f817ed48
KH
3322 if (!ret && !list_empty(list))
3323 return -EBUSY;
3324 return ret;
cc847582
KH
3325}
3326
3327/*
3328 * make mem_cgroup's charge to be 0 if there is no task.
3329 * This enables deleting this mem_cgroup.
3330 */
c1e862c1 3331static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3332{
f817ed48
KH
3333 int ret;
3334 int node, zid, shrink;
3335 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3336 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3337
cc847582 3338 css_get(&mem->css);
f817ed48
KH
3339
3340 shrink = 0;
c1e862c1
KH
3341 /* should free all ? */
3342 if (free_all)
3343 goto try_to_free;
f817ed48 3344move_account:
fce66477 3345 do {
f817ed48 3346 ret = -EBUSY;
c1e862c1
KH
3347 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3348 goto out;
3349 ret = -EINTR;
3350 if (signal_pending(current))
cc847582 3351 goto out;
52d4b9ac
KH
3352 /* This is for making all *used* pages to be on LRU. */
3353 lru_add_drain_all();
cdec2e42 3354 drain_all_stock_sync();
f817ed48 3355 ret = 0;
32047e2a 3356 mem_cgroup_start_move(mem);
299b4eaa 3357 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3358 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3359 enum lru_list l;
f817ed48
KH
3360 for_each_lru(l) {
3361 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3362 node, zid, l);
f817ed48
KH
3363 if (ret)
3364 break;
3365 }
1ecaab2b 3366 }
f817ed48
KH
3367 if (ret)
3368 break;
3369 }
32047e2a 3370 mem_cgroup_end_move(mem);
3c11ecf4 3371 memcg_oom_recover(mem);
f817ed48
KH
3372 /* it seems parent cgroup doesn't have enough mem */
3373 if (ret == -ENOMEM)
3374 goto try_to_free;
52d4b9ac 3375 cond_resched();
fce66477
DN
3376 /* "ret" should also be checked to ensure all lists are empty. */
3377 } while (mem->res.usage > 0 || ret);
cc847582
KH
3378out:
3379 css_put(&mem->css);
3380 return ret;
f817ed48
KH
3381
3382try_to_free:
c1e862c1
KH
3383 /* returns EBUSY if there is a task or if we come here twice. */
3384 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3385 ret = -EBUSY;
3386 goto out;
3387 }
c1e862c1
KH
3388 /* we call try-to-free pages for make this cgroup empty */
3389 lru_add_drain_all();
f817ed48
KH
3390 /* try to free all pages in this cgroup */
3391 shrink = 1;
3392 while (nr_retries && mem->res.usage > 0) {
3393 int progress;
c1e862c1
KH
3394
3395 if (signal_pending(current)) {
3396 ret = -EINTR;
3397 goto out;
3398 }
a7885eb8
KM
3399 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3400 false, get_swappiness(mem));
c1e862c1 3401 if (!progress) {
f817ed48 3402 nr_retries--;
c1e862c1 3403 /* maybe some writeback is necessary */
8aa7e847 3404 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3405 }
f817ed48
KH
3406
3407 }
08e552c6 3408 lru_add_drain();
f817ed48 3409 /* try move_account...there may be some *locked* pages. */
fce66477 3410 goto move_account;
cc847582
KH
3411}
3412
c1e862c1
KH
3413int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3414{
3415 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3416}
3417
3418
18f59ea7
BS
3419static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3420{
3421 return mem_cgroup_from_cont(cont)->use_hierarchy;
3422}
3423
3424static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3425 u64 val)
3426{
3427 int retval = 0;
3428 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3429 struct cgroup *parent = cont->parent;
3430 struct mem_cgroup *parent_mem = NULL;
3431
3432 if (parent)
3433 parent_mem = mem_cgroup_from_cont(parent);
3434
3435 cgroup_lock();
3436 /*
af901ca1 3437 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3438 * in the child subtrees. If it is unset, then the change can
3439 * occur, provided the current cgroup has no children.
3440 *
3441 * For the root cgroup, parent_mem is NULL, we allow value to be
3442 * set if there are no children.
3443 */
3444 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3445 (val == 1 || val == 0)) {
3446 if (list_empty(&cont->children))
3447 mem->use_hierarchy = val;
3448 else
3449 retval = -EBUSY;
3450 } else
3451 retval = -EINVAL;
3452 cgroup_unlock();
3453
3454 return retval;
3455}
3456
0c3e73e8 3457
7d74b06f
KH
3458static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3459 enum mem_cgroup_stat_index idx)
0c3e73e8 3460{
7d74b06f
KH
3461 struct mem_cgroup *iter;
3462 s64 val = 0;
0c3e73e8 3463
7d74b06f
KH
3464 /* each per cpu's value can be minus.Then, use s64 */
3465 for_each_mem_cgroup_tree(iter, mem)
3466 val += mem_cgroup_read_stat(iter, idx);
3467
3468 if (val < 0) /* race ? */
3469 val = 0;
3470 return val;
0c3e73e8
BS
3471}
3472
104f3928
KS
3473static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3474{
7d74b06f 3475 u64 val;
104f3928
KS
3476
3477 if (!mem_cgroup_is_root(mem)) {
3478 if (!swap)
3479 return res_counter_read_u64(&mem->res, RES_USAGE);
3480 else
3481 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3482 }
3483
7d74b06f
KH
3484 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3485 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3486
7d74b06f
KH
3487 if (swap)
3488 val += mem_cgroup_get_recursive_idx_stat(mem,
3489 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3490
3491 return val << PAGE_SHIFT;
3492}
3493
2c3daa72 3494static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3495{
8c7c6e34 3496 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3497 u64 val;
8c7c6e34
KH
3498 int type, name;
3499
3500 type = MEMFILE_TYPE(cft->private);
3501 name = MEMFILE_ATTR(cft->private);
3502 switch (type) {
3503 case _MEM:
104f3928
KS
3504 if (name == RES_USAGE)
3505 val = mem_cgroup_usage(mem, false);
3506 else
0c3e73e8 3507 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3508 break;
3509 case _MEMSWAP:
104f3928
KS
3510 if (name == RES_USAGE)
3511 val = mem_cgroup_usage(mem, true);
3512 else
0c3e73e8 3513 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3514 break;
3515 default:
3516 BUG();
3517 break;
3518 }
3519 return val;
8cdea7c0 3520}
628f4235
KH
3521/*
3522 * The user of this function is...
3523 * RES_LIMIT.
3524 */
856c13aa
PM
3525static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3526 const char *buffer)
8cdea7c0 3527{
628f4235 3528 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3529 int type, name;
628f4235
KH
3530 unsigned long long val;
3531 int ret;
3532
8c7c6e34
KH
3533 type = MEMFILE_TYPE(cft->private);
3534 name = MEMFILE_ATTR(cft->private);
3535 switch (name) {
628f4235 3536 case RES_LIMIT:
4b3bde4c
BS
3537 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3538 ret = -EINVAL;
3539 break;
3540 }
628f4235
KH
3541 /* This function does all necessary parse...reuse it */
3542 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3543 if (ret)
3544 break;
3545 if (type == _MEM)
628f4235 3546 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3547 else
3548 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3549 break;
296c81d8
BS
3550 case RES_SOFT_LIMIT:
3551 ret = res_counter_memparse_write_strategy(buffer, &val);
3552 if (ret)
3553 break;
3554 /*
3555 * For memsw, soft limits are hard to implement in terms
3556 * of semantics, for now, we support soft limits for
3557 * control without swap
3558 */
3559 if (type == _MEM)
3560 ret = res_counter_set_soft_limit(&memcg->res, val);
3561 else
3562 ret = -EINVAL;
3563 break;
628f4235
KH
3564 default:
3565 ret = -EINVAL; /* should be BUG() ? */
3566 break;
3567 }
3568 return ret;
8cdea7c0
BS
3569}
3570
fee7b548
KH
3571static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3572 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3573{
3574 struct cgroup *cgroup;
3575 unsigned long long min_limit, min_memsw_limit, tmp;
3576
3577 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3578 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3579 cgroup = memcg->css.cgroup;
3580 if (!memcg->use_hierarchy)
3581 goto out;
3582
3583 while (cgroup->parent) {
3584 cgroup = cgroup->parent;
3585 memcg = mem_cgroup_from_cont(cgroup);
3586 if (!memcg->use_hierarchy)
3587 break;
3588 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3589 min_limit = min(min_limit, tmp);
3590 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3591 min_memsw_limit = min(min_memsw_limit, tmp);
3592 }
3593out:
3594 *mem_limit = min_limit;
3595 *memsw_limit = min_memsw_limit;
3596 return;
3597}
3598
29f2a4da 3599static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3600{
3601 struct mem_cgroup *mem;
8c7c6e34 3602 int type, name;
c84872e1
PE
3603
3604 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3605 type = MEMFILE_TYPE(event);
3606 name = MEMFILE_ATTR(event);
3607 switch (name) {
29f2a4da 3608 case RES_MAX_USAGE:
8c7c6e34
KH
3609 if (type == _MEM)
3610 res_counter_reset_max(&mem->res);
3611 else
3612 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3613 break;
3614 case RES_FAILCNT:
8c7c6e34
KH
3615 if (type == _MEM)
3616 res_counter_reset_failcnt(&mem->res);
3617 else
3618 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3619 break;
3620 }
f64c3f54 3621
85cc59db 3622 return 0;
c84872e1
PE
3623}
3624
7dc74be0
DN
3625static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3626 struct cftype *cft)
3627{
3628 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3629}
3630
02491447 3631#ifdef CONFIG_MMU
7dc74be0
DN
3632static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3633 struct cftype *cft, u64 val)
3634{
3635 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3636
3637 if (val >= (1 << NR_MOVE_TYPE))
3638 return -EINVAL;
3639 /*
3640 * We check this value several times in both in can_attach() and
3641 * attach(), so we need cgroup lock to prevent this value from being
3642 * inconsistent.
3643 */
3644 cgroup_lock();
3645 mem->move_charge_at_immigrate = val;
3646 cgroup_unlock();
3647
3648 return 0;
3649}
02491447
DN
3650#else
3651static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3652 struct cftype *cft, u64 val)
3653{
3654 return -ENOSYS;
3655}
3656#endif
7dc74be0 3657
14067bb3
KH
3658
3659/* For read statistics */
3660enum {
3661 MCS_CACHE,
3662 MCS_RSS,
d8046582 3663 MCS_FILE_MAPPED,
14067bb3
KH
3664 MCS_PGPGIN,
3665 MCS_PGPGOUT,
1dd3a273 3666 MCS_SWAP,
14067bb3
KH
3667 MCS_INACTIVE_ANON,
3668 MCS_ACTIVE_ANON,
3669 MCS_INACTIVE_FILE,
3670 MCS_ACTIVE_FILE,
3671 MCS_UNEVICTABLE,
3672 NR_MCS_STAT,
3673};
3674
3675struct mcs_total_stat {
3676 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3677};
3678
14067bb3
KH
3679struct {
3680 char *local_name;
3681 char *total_name;
3682} memcg_stat_strings[NR_MCS_STAT] = {
3683 {"cache", "total_cache"},
3684 {"rss", "total_rss"},
d69b042f 3685 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3686 {"pgpgin", "total_pgpgin"},
3687 {"pgpgout", "total_pgpgout"},
1dd3a273 3688 {"swap", "total_swap"},
14067bb3
KH
3689 {"inactive_anon", "total_inactive_anon"},
3690 {"active_anon", "total_active_anon"},
3691 {"inactive_file", "total_inactive_file"},
3692 {"active_file", "total_active_file"},
3693 {"unevictable", "total_unevictable"}
3694};
3695
3696
7d74b06f
KH
3697static void
3698mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3699{
14067bb3
KH
3700 s64 val;
3701
3702 /* per cpu stat */
c62b1a3b 3703 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3704 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3705 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3706 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3707 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3708 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3709 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3710 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3711 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3712 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3713 if (do_swap_account) {
c62b1a3b 3714 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3715 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3716 }
14067bb3
KH
3717
3718 /* per zone stat */
3719 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3720 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3721 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3722 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3723 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3724 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3725 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3726 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3727 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3728 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3729}
3730
3731static void
3732mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3733{
7d74b06f
KH
3734 struct mem_cgroup *iter;
3735
3736 for_each_mem_cgroup_tree(iter, mem)
3737 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3738}
3739
c64745cf
PM
3740static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3741 struct cgroup_map_cb *cb)
d2ceb9b7 3742{
d2ceb9b7 3743 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3744 struct mcs_total_stat mystat;
d2ceb9b7
KH
3745 int i;
3746
14067bb3
KH
3747 memset(&mystat, 0, sizeof(mystat));
3748 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3749
1dd3a273
DN
3750 for (i = 0; i < NR_MCS_STAT; i++) {
3751 if (i == MCS_SWAP && !do_swap_account)
3752 continue;
14067bb3 3753 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3754 }
7b854121 3755
14067bb3 3756 /* Hierarchical information */
fee7b548
KH
3757 {
3758 unsigned long long limit, memsw_limit;
3759 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3760 cb->fill(cb, "hierarchical_memory_limit", limit);
3761 if (do_swap_account)
3762 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3763 }
7f016ee8 3764
14067bb3
KH
3765 memset(&mystat, 0, sizeof(mystat));
3766 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3767 for (i = 0; i < NR_MCS_STAT; i++) {
3768 if (i == MCS_SWAP && !do_swap_account)
3769 continue;
14067bb3 3770 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3771 }
14067bb3 3772
7f016ee8 3773#ifdef CONFIG_DEBUG_VM
c772be93 3774 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3775
3776 {
3777 int nid, zid;
3778 struct mem_cgroup_per_zone *mz;
3779 unsigned long recent_rotated[2] = {0, 0};
3780 unsigned long recent_scanned[2] = {0, 0};
3781
3782 for_each_online_node(nid)
3783 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3784 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3785
3786 recent_rotated[0] +=
3787 mz->reclaim_stat.recent_rotated[0];
3788 recent_rotated[1] +=
3789 mz->reclaim_stat.recent_rotated[1];
3790 recent_scanned[0] +=
3791 mz->reclaim_stat.recent_scanned[0];
3792 recent_scanned[1] +=
3793 mz->reclaim_stat.recent_scanned[1];
3794 }
3795 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3796 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3797 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3798 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3799 }
3800#endif
3801
d2ceb9b7
KH
3802 return 0;
3803}
3804
a7885eb8
KM
3805static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3806{
3807 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3808
3809 return get_swappiness(memcg);
3810}
3811
3812static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3813 u64 val)
3814{
3815 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3816 struct mem_cgroup *parent;
068b38c1 3817
a7885eb8
KM
3818 if (val > 100)
3819 return -EINVAL;
3820
3821 if (cgrp->parent == NULL)
3822 return -EINVAL;
3823
3824 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3825
3826 cgroup_lock();
3827
a7885eb8
KM
3828 /* If under hierarchy, only empty-root can set this value */
3829 if ((parent->use_hierarchy) ||
068b38c1
LZ
3830 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3831 cgroup_unlock();
a7885eb8 3832 return -EINVAL;
068b38c1 3833 }
a7885eb8
KM
3834
3835 spin_lock(&memcg->reclaim_param_lock);
3836 memcg->swappiness = val;
3837 spin_unlock(&memcg->reclaim_param_lock);
3838
068b38c1
LZ
3839 cgroup_unlock();
3840
a7885eb8
KM
3841 return 0;
3842}
3843
2e72b634
KS
3844static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3845{
3846 struct mem_cgroup_threshold_ary *t;
3847 u64 usage;
3848 int i;
3849
3850 rcu_read_lock();
3851 if (!swap)
2c488db2 3852 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3853 else
2c488db2 3854 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3855
3856 if (!t)
3857 goto unlock;
3858
3859 usage = mem_cgroup_usage(memcg, swap);
3860
3861 /*
3862 * current_threshold points to threshold just below usage.
3863 * If it's not true, a threshold was crossed after last
3864 * call of __mem_cgroup_threshold().
3865 */
5407a562 3866 i = t->current_threshold;
2e72b634
KS
3867
3868 /*
3869 * Iterate backward over array of thresholds starting from
3870 * current_threshold and check if a threshold is crossed.
3871 * If none of thresholds below usage is crossed, we read
3872 * only one element of the array here.
3873 */
3874 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3875 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877 /* i = current_threshold + 1 */
3878 i++;
3879
3880 /*
3881 * Iterate forward over array of thresholds starting from
3882 * current_threshold+1 and check if a threshold is crossed.
3883 * If none of thresholds above usage is crossed, we read
3884 * only one element of the array here.
3885 */
3886 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3887 eventfd_signal(t->entries[i].eventfd, 1);
3888
3889 /* Update current_threshold */
5407a562 3890 t->current_threshold = i - 1;
2e72b634
KS
3891unlock:
3892 rcu_read_unlock();
3893}
3894
3895static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3896{
ad4ca5f4
KS
3897 while (memcg) {
3898 __mem_cgroup_threshold(memcg, false);
3899 if (do_swap_account)
3900 __mem_cgroup_threshold(memcg, true);
3901
3902 memcg = parent_mem_cgroup(memcg);
3903 }
2e72b634
KS
3904}
3905
3906static int compare_thresholds(const void *a, const void *b)
3907{
3908 const struct mem_cgroup_threshold *_a = a;
3909 const struct mem_cgroup_threshold *_b = b;
3910
3911 return _a->threshold - _b->threshold;
3912}
3913
7d74b06f 3914static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3915{
3916 struct mem_cgroup_eventfd_list *ev;
3917
3918 list_for_each_entry(ev, &mem->oom_notify, list)
3919 eventfd_signal(ev->eventfd, 1);
3920 return 0;
3921}
3922
3923static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3924{
7d74b06f
KH
3925 struct mem_cgroup *iter;
3926
3927 for_each_mem_cgroup_tree(iter, mem)
3928 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3929}
3930
3931static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3932 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3933{
3934 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3935 struct mem_cgroup_thresholds *thresholds;
3936 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3937 int type = MEMFILE_TYPE(cft->private);
3938 u64 threshold, usage;
2c488db2 3939 int i, size, ret;
2e72b634
KS
3940
3941 ret = res_counter_memparse_write_strategy(args, &threshold);
3942 if (ret)
3943 return ret;
3944
3945 mutex_lock(&memcg->thresholds_lock);
2c488db2 3946
2e72b634 3947 if (type == _MEM)
2c488db2 3948 thresholds = &memcg->thresholds;
2e72b634 3949 else if (type == _MEMSWAP)
2c488db2 3950 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3951 else
3952 BUG();
3953
3954 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3955
3956 /* Check if a threshold crossed before adding a new one */
2c488db2 3957 if (thresholds->primary)
2e72b634
KS
3958 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3959
2c488db2 3960 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3961
3962 /* Allocate memory for new array of thresholds */
2c488db2 3963 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3964 GFP_KERNEL);
2c488db2 3965 if (!new) {
2e72b634
KS
3966 ret = -ENOMEM;
3967 goto unlock;
3968 }
2c488db2 3969 new->size = size;
2e72b634
KS
3970
3971 /* Copy thresholds (if any) to new array */
2c488db2
KS
3972 if (thresholds->primary) {
3973 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3974 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3975 }
3976
2e72b634 3977 /* Add new threshold */
2c488db2
KS
3978 new->entries[size - 1].eventfd = eventfd;
3979 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3980
3981 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3982 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3983 compare_thresholds, NULL);
3984
3985 /* Find current threshold */
2c488db2 3986 new->current_threshold = -1;
2e72b634 3987 for (i = 0; i < size; i++) {
2c488db2 3988 if (new->entries[i].threshold < usage) {
2e72b634 3989 /*
2c488db2
KS
3990 * new->current_threshold will not be used until
3991 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3992 * it here.
3993 */
2c488db2 3994 ++new->current_threshold;
2e72b634
KS
3995 }
3996 }
3997
2c488db2
KS
3998 /* Free old spare buffer and save old primary buffer as spare */
3999 kfree(thresholds->spare);
4000 thresholds->spare = thresholds->primary;
4001
4002 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4003
907860ed 4004 /* To be sure that nobody uses thresholds */
2e72b634
KS
4005 synchronize_rcu();
4006
2e72b634
KS
4007unlock:
4008 mutex_unlock(&memcg->thresholds_lock);
4009
4010 return ret;
4011}
4012
907860ed 4013static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4014 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4015{
4016 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4017 struct mem_cgroup_thresholds *thresholds;
4018 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4019 int type = MEMFILE_TYPE(cft->private);
4020 u64 usage;
2c488db2 4021 int i, j, size;
2e72b634
KS
4022
4023 mutex_lock(&memcg->thresholds_lock);
4024 if (type == _MEM)
2c488db2 4025 thresholds = &memcg->thresholds;
2e72b634 4026 else if (type == _MEMSWAP)
2c488db2 4027 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4028 else
4029 BUG();
4030
4031 /*
4032 * Something went wrong if we trying to unregister a threshold
4033 * if we don't have thresholds
4034 */
4035 BUG_ON(!thresholds);
4036
4037 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4038
4039 /* Check if a threshold crossed before removing */
4040 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4041
4042 /* Calculate new number of threshold */
2c488db2
KS
4043 size = 0;
4044 for (i = 0; i < thresholds->primary->size; i++) {
4045 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4046 size++;
4047 }
4048
2c488db2 4049 new = thresholds->spare;
907860ed 4050
2e72b634
KS
4051 /* Set thresholds array to NULL if we don't have thresholds */
4052 if (!size) {
2c488db2
KS
4053 kfree(new);
4054 new = NULL;
907860ed 4055 goto swap_buffers;
2e72b634
KS
4056 }
4057
2c488db2 4058 new->size = size;
2e72b634
KS
4059
4060 /* Copy thresholds and find current threshold */
2c488db2
KS
4061 new->current_threshold = -1;
4062 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4063 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4064 continue;
4065
2c488db2
KS
4066 new->entries[j] = thresholds->primary->entries[i];
4067 if (new->entries[j].threshold < usage) {
2e72b634 4068 /*
2c488db2 4069 * new->current_threshold will not be used
2e72b634
KS
4070 * until rcu_assign_pointer(), so it's safe to increment
4071 * it here.
4072 */
2c488db2 4073 ++new->current_threshold;
2e72b634
KS
4074 }
4075 j++;
4076 }
4077
907860ed 4078swap_buffers:
2c488db2
KS
4079 /* Swap primary and spare array */
4080 thresholds->spare = thresholds->primary;
4081 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4082
907860ed 4083 /* To be sure that nobody uses thresholds */
2e72b634
KS
4084 synchronize_rcu();
4085
2e72b634 4086 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4087}
c1e862c1 4088
9490ff27
KH
4089static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4090 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4091{
4092 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4093 struct mem_cgroup_eventfd_list *event;
4094 int type = MEMFILE_TYPE(cft->private);
4095
4096 BUG_ON(type != _OOM_TYPE);
4097 event = kmalloc(sizeof(*event), GFP_KERNEL);
4098 if (!event)
4099 return -ENOMEM;
4100
4101 mutex_lock(&memcg_oom_mutex);
4102
4103 event->eventfd = eventfd;
4104 list_add(&event->list, &memcg->oom_notify);
4105
4106 /* already in OOM ? */
4107 if (atomic_read(&memcg->oom_lock))
4108 eventfd_signal(eventfd, 1);
4109 mutex_unlock(&memcg_oom_mutex);
4110
4111 return 0;
4112}
4113
907860ed 4114static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4115 struct cftype *cft, struct eventfd_ctx *eventfd)
4116{
4117 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4118 struct mem_cgroup_eventfd_list *ev, *tmp;
4119 int type = MEMFILE_TYPE(cft->private);
4120
4121 BUG_ON(type != _OOM_TYPE);
4122
4123 mutex_lock(&memcg_oom_mutex);
4124
4125 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4126 if (ev->eventfd == eventfd) {
4127 list_del(&ev->list);
4128 kfree(ev);
4129 }
4130 }
4131
4132 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4133}
4134
3c11ecf4
KH
4135static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4136 struct cftype *cft, struct cgroup_map_cb *cb)
4137{
4138 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4139
4140 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4141
4142 if (atomic_read(&mem->oom_lock))
4143 cb->fill(cb, "under_oom", 1);
4144 else
4145 cb->fill(cb, "under_oom", 0);
4146 return 0;
4147}
4148
3c11ecf4
KH
4149static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4150 struct cftype *cft, u64 val)
4151{
4152 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4153 struct mem_cgroup *parent;
4154
4155 /* cannot set to root cgroup and only 0 and 1 are allowed */
4156 if (!cgrp->parent || !((val == 0) || (val == 1)))
4157 return -EINVAL;
4158
4159 parent = mem_cgroup_from_cont(cgrp->parent);
4160
4161 cgroup_lock();
4162 /* oom-kill-disable is a flag for subhierarchy. */
4163 if ((parent->use_hierarchy) ||
4164 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4165 cgroup_unlock();
4166 return -EINVAL;
4167 }
4168 mem->oom_kill_disable = val;
4d845ebf
KH
4169 if (!val)
4170 memcg_oom_recover(mem);
3c11ecf4
KH
4171 cgroup_unlock();
4172 return 0;
4173}
4174
8cdea7c0
BS
4175static struct cftype mem_cgroup_files[] = {
4176 {
0eea1030 4177 .name = "usage_in_bytes",
8c7c6e34 4178 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4179 .read_u64 = mem_cgroup_read,
9490ff27
KH
4180 .register_event = mem_cgroup_usage_register_event,
4181 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4182 },
c84872e1
PE
4183 {
4184 .name = "max_usage_in_bytes",
8c7c6e34 4185 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4186 .trigger = mem_cgroup_reset,
c84872e1
PE
4187 .read_u64 = mem_cgroup_read,
4188 },
8cdea7c0 4189 {
0eea1030 4190 .name = "limit_in_bytes",
8c7c6e34 4191 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4192 .write_string = mem_cgroup_write,
2c3daa72 4193 .read_u64 = mem_cgroup_read,
8cdea7c0 4194 },
296c81d8
BS
4195 {
4196 .name = "soft_limit_in_bytes",
4197 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4198 .write_string = mem_cgroup_write,
4199 .read_u64 = mem_cgroup_read,
4200 },
8cdea7c0
BS
4201 {
4202 .name = "failcnt",
8c7c6e34 4203 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4204 .trigger = mem_cgroup_reset,
2c3daa72 4205 .read_u64 = mem_cgroup_read,
8cdea7c0 4206 },
d2ceb9b7
KH
4207 {
4208 .name = "stat",
c64745cf 4209 .read_map = mem_control_stat_show,
d2ceb9b7 4210 },
c1e862c1
KH
4211 {
4212 .name = "force_empty",
4213 .trigger = mem_cgroup_force_empty_write,
4214 },
18f59ea7
BS
4215 {
4216 .name = "use_hierarchy",
4217 .write_u64 = mem_cgroup_hierarchy_write,
4218 .read_u64 = mem_cgroup_hierarchy_read,
4219 },
a7885eb8
KM
4220 {
4221 .name = "swappiness",
4222 .read_u64 = mem_cgroup_swappiness_read,
4223 .write_u64 = mem_cgroup_swappiness_write,
4224 },
7dc74be0
DN
4225 {
4226 .name = "move_charge_at_immigrate",
4227 .read_u64 = mem_cgroup_move_charge_read,
4228 .write_u64 = mem_cgroup_move_charge_write,
4229 },
9490ff27
KH
4230 {
4231 .name = "oom_control",
3c11ecf4
KH
4232 .read_map = mem_cgroup_oom_control_read,
4233 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4234 .register_event = mem_cgroup_oom_register_event,
4235 .unregister_event = mem_cgroup_oom_unregister_event,
4236 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4237 },
8cdea7c0
BS
4238};
4239
8c7c6e34
KH
4240#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4241static struct cftype memsw_cgroup_files[] = {
4242 {
4243 .name = "memsw.usage_in_bytes",
4244 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4245 .read_u64 = mem_cgroup_read,
9490ff27
KH
4246 .register_event = mem_cgroup_usage_register_event,
4247 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4248 },
4249 {
4250 .name = "memsw.max_usage_in_bytes",
4251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4252 .trigger = mem_cgroup_reset,
4253 .read_u64 = mem_cgroup_read,
4254 },
4255 {
4256 .name = "memsw.limit_in_bytes",
4257 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4258 .write_string = mem_cgroup_write,
4259 .read_u64 = mem_cgroup_read,
4260 },
4261 {
4262 .name = "memsw.failcnt",
4263 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4264 .trigger = mem_cgroup_reset,
4265 .read_u64 = mem_cgroup_read,
4266 },
4267};
4268
4269static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4270{
4271 if (!do_swap_account)
4272 return 0;
4273 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4274 ARRAY_SIZE(memsw_cgroup_files));
4275};
4276#else
4277static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4278{
4279 return 0;
4280}
4281#endif
4282
6d12e2d8
KH
4283static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4284{
4285 struct mem_cgroup_per_node *pn;
1ecaab2b 4286 struct mem_cgroup_per_zone *mz;
b69408e8 4287 enum lru_list l;
41e3355d 4288 int zone, tmp = node;
1ecaab2b
KH
4289 /*
4290 * This routine is called against possible nodes.
4291 * But it's BUG to call kmalloc() against offline node.
4292 *
4293 * TODO: this routine can waste much memory for nodes which will
4294 * never be onlined. It's better to use memory hotplug callback
4295 * function.
4296 */
41e3355d
KH
4297 if (!node_state(node, N_NORMAL_MEMORY))
4298 tmp = -1;
17295c88 4299 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4300 if (!pn)
4301 return 1;
1ecaab2b 4302
6d12e2d8 4303 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4304 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4305 mz = &pn->zoneinfo[zone];
b69408e8
CL
4306 for_each_lru(l)
4307 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4308 mz->usage_in_excess = 0;
4e416953
BS
4309 mz->on_tree = false;
4310 mz->mem = mem;
1ecaab2b 4311 }
6d12e2d8
KH
4312 return 0;
4313}
4314
1ecaab2b
KH
4315static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4316{
4317 kfree(mem->info.nodeinfo[node]);
4318}
4319
33327948
KH
4320static struct mem_cgroup *mem_cgroup_alloc(void)
4321{
4322 struct mem_cgroup *mem;
c62b1a3b 4323 int size = sizeof(struct mem_cgroup);
33327948 4324
c62b1a3b 4325 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4326 if (size < PAGE_SIZE)
17295c88 4327 mem = kzalloc(size, GFP_KERNEL);
33327948 4328 else
17295c88 4329 mem = vzalloc(size);
33327948 4330
e7bbcdf3
DC
4331 if (!mem)
4332 return NULL;
4333
c62b1a3b 4334 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4335 if (!mem->stat)
4336 goto out_free;
711d3d2c 4337 spin_lock_init(&mem->pcp_counter_lock);
33327948 4338 return mem;
d2e61b8d
DC
4339
4340out_free:
4341 if (size < PAGE_SIZE)
4342 kfree(mem);
4343 else
4344 vfree(mem);
4345 return NULL;
33327948
KH
4346}
4347
8c7c6e34
KH
4348/*
4349 * At destroying mem_cgroup, references from swap_cgroup can remain.
4350 * (scanning all at force_empty is too costly...)
4351 *
4352 * Instead of clearing all references at force_empty, we remember
4353 * the number of reference from swap_cgroup and free mem_cgroup when
4354 * it goes down to 0.
4355 *
8c7c6e34
KH
4356 * Removal of cgroup itself succeeds regardless of refs from swap.
4357 */
4358
a7ba0eef 4359static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4360{
08e552c6
KH
4361 int node;
4362
f64c3f54 4363 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4364 free_css_id(&mem_cgroup_subsys, &mem->css);
4365
08e552c6
KH
4366 for_each_node_state(node, N_POSSIBLE)
4367 free_mem_cgroup_per_zone_info(mem, node);
4368
c62b1a3b
KH
4369 free_percpu(mem->stat);
4370 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4371 kfree(mem);
4372 else
4373 vfree(mem);
4374}
4375
8c7c6e34
KH
4376static void mem_cgroup_get(struct mem_cgroup *mem)
4377{
4378 atomic_inc(&mem->refcnt);
4379}
4380
483c30b5 4381static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4382{
483c30b5 4383 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4384 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4385 __mem_cgroup_free(mem);
7bcc1bb1
DN
4386 if (parent)
4387 mem_cgroup_put(parent);
4388 }
8c7c6e34
KH
4389}
4390
483c30b5
DN
4391static void mem_cgroup_put(struct mem_cgroup *mem)
4392{
4393 __mem_cgroup_put(mem, 1);
4394}
4395
7bcc1bb1
DN
4396/*
4397 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4398 */
4399static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4400{
4401 if (!mem->res.parent)
4402 return NULL;
4403 return mem_cgroup_from_res_counter(mem->res.parent, res);
4404}
33327948 4405
c077719b
KH
4406#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4407static void __init enable_swap_cgroup(void)
4408{
f8d66542 4409 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4410 do_swap_account = 1;
4411}
4412#else
4413static void __init enable_swap_cgroup(void)
4414{
4415}
4416#endif
4417
f64c3f54
BS
4418static int mem_cgroup_soft_limit_tree_init(void)
4419{
4420 struct mem_cgroup_tree_per_node *rtpn;
4421 struct mem_cgroup_tree_per_zone *rtpz;
4422 int tmp, node, zone;
4423
4424 for_each_node_state(node, N_POSSIBLE) {
4425 tmp = node;
4426 if (!node_state(node, N_NORMAL_MEMORY))
4427 tmp = -1;
4428 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4429 if (!rtpn)
4430 return 1;
4431
4432 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4433
4434 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4435 rtpz = &rtpn->rb_tree_per_zone[zone];
4436 rtpz->rb_root = RB_ROOT;
4437 spin_lock_init(&rtpz->lock);
4438 }
4439 }
4440 return 0;
4441}
4442
0eb253e2 4443static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4444mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4445{
28dbc4b6 4446 struct mem_cgroup *mem, *parent;
04046e1a 4447 long error = -ENOMEM;
6d12e2d8 4448 int node;
8cdea7c0 4449
c8dad2bb
JB
4450 mem = mem_cgroup_alloc();
4451 if (!mem)
04046e1a 4452 return ERR_PTR(error);
78fb7466 4453
6d12e2d8
KH
4454 for_each_node_state(node, N_POSSIBLE)
4455 if (alloc_mem_cgroup_per_zone_info(mem, node))
4456 goto free_out;
f64c3f54 4457
c077719b 4458 /* root ? */
28dbc4b6 4459 if (cont->parent == NULL) {
cdec2e42 4460 int cpu;
c077719b 4461 enable_swap_cgroup();
28dbc4b6 4462 parent = NULL;
4b3bde4c 4463 root_mem_cgroup = mem;
f64c3f54
BS
4464 if (mem_cgroup_soft_limit_tree_init())
4465 goto free_out;
cdec2e42
KH
4466 for_each_possible_cpu(cpu) {
4467 struct memcg_stock_pcp *stock =
4468 &per_cpu(memcg_stock, cpu);
4469 INIT_WORK(&stock->work, drain_local_stock);
4470 }
711d3d2c 4471 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4472 } else {
28dbc4b6 4473 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4474 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4475 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4476 }
28dbc4b6 4477
18f59ea7
BS
4478 if (parent && parent->use_hierarchy) {
4479 res_counter_init(&mem->res, &parent->res);
4480 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4481 /*
4482 * We increment refcnt of the parent to ensure that we can
4483 * safely access it on res_counter_charge/uncharge.
4484 * This refcnt will be decremented when freeing this
4485 * mem_cgroup(see mem_cgroup_put).
4486 */
4487 mem_cgroup_get(parent);
18f59ea7
BS
4488 } else {
4489 res_counter_init(&mem->res, NULL);
4490 res_counter_init(&mem->memsw, NULL);
4491 }
04046e1a 4492 mem->last_scanned_child = 0;
2733c06a 4493 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4494 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4495
a7885eb8
KM
4496 if (parent)
4497 mem->swappiness = get_swappiness(parent);
a7ba0eef 4498 atomic_set(&mem->refcnt, 1);
7dc74be0 4499 mem->move_charge_at_immigrate = 0;
2e72b634 4500 mutex_init(&mem->thresholds_lock);
8cdea7c0 4501 return &mem->css;
6d12e2d8 4502free_out:
a7ba0eef 4503 __mem_cgroup_free(mem);
4b3bde4c 4504 root_mem_cgroup = NULL;
04046e1a 4505 return ERR_PTR(error);
8cdea7c0
BS
4506}
4507
ec64f515 4508static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4509 struct cgroup *cont)
4510{
4511 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4512
4513 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4514}
4515
8cdea7c0
BS
4516static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4517 struct cgroup *cont)
4518{
c268e994 4519 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4520
c268e994 4521 mem_cgroup_put(mem);
8cdea7c0
BS
4522}
4523
4524static int mem_cgroup_populate(struct cgroup_subsys *ss,
4525 struct cgroup *cont)
4526{
8c7c6e34
KH
4527 int ret;
4528
4529 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4530 ARRAY_SIZE(mem_cgroup_files));
4531
4532 if (!ret)
4533 ret = register_memsw_files(cont, ss);
4534 return ret;
8cdea7c0
BS
4535}
4536
02491447 4537#ifdef CONFIG_MMU
7dc74be0 4538/* Handlers for move charge at task migration. */
854ffa8d
DN
4539#define PRECHARGE_COUNT_AT_ONCE 256
4540static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4541{
854ffa8d
DN
4542 int ret = 0;
4543 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4544 struct mem_cgroup *mem = mc.to;
4545
854ffa8d
DN
4546 if (mem_cgroup_is_root(mem)) {
4547 mc.precharge += count;
4548 /* we don't need css_get for root */
4549 return ret;
4550 }
4551 /* try to charge at once */
4552 if (count > 1) {
4553 struct res_counter *dummy;
4554 /*
4555 * "mem" cannot be under rmdir() because we've already checked
4556 * by cgroup_lock_live_cgroup() that it is not removed and we
4557 * are still under the same cgroup_mutex. So we can postpone
4558 * css_get().
4559 */
4560 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4561 goto one_by_one;
4562 if (do_swap_account && res_counter_charge(&mem->memsw,
4563 PAGE_SIZE * count, &dummy)) {
4564 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4565 goto one_by_one;
4566 }
4567 mc.precharge += count;
854ffa8d
DN
4568 return ret;
4569 }
4570one_by_one:
4571 /* fall back to one by one charge */
4572 while (count--) {
4573 if (signal_pending(current)) {
4574 ret = -EINTR;
4575 break;
4576 }
4577 if (!batch_count--) {
4578 batch_count = PRECHARGE_COUNT_AT_ONCE;
4579 cond_resched();
4580 }
ec168510
AA
4581 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4582 PAGE_SIZE);
854ffa8d
DN
4583 if (ret || !mem)
4584 /* mem_cgroup_clear_mc() will do uncharge later */
4585 return -ENOMEM;
4586 mc.precharge++;
4587 }
4ffef5fe
DN
4588 return ret;
4589}
4590
4591/**
4592 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4593 * @vma: the vma the pte to be checked belongs
4594 * @addr: the address corresponding to the pte to be checked
4595 * @ptent: the pte to be checked
02491447 4596 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4597 *
4598 * Returns
4599 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4600 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4601 * move charge. if @target is not NULL, the page is stored in target->page
4602 * with extra refcnt got(Callers should handle it).
02491447
DN
4603 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4604 * target for charge migration. if @target is not NULL, the entry is stored
4605 * in target->ent.
4ffef5fe
DN
4606 *
4607 * Called with pte lock held.
4608 */
4ffef5fe
DN
4609union mc_target {
4610 struct page *page;
02491447 4611 swp_entry_t ent;
4ffef5fe
DN
4612};
4613
4ffef5fe
DN
4614enum mc_target_type {
4615 MC_TARGET_NONE, /* not used */
4616 MC_TARGET_PAGE,
02491447 4617 MC_TARGET_SWAP,
4ffef5fe
DN
4618};
4619
90254a65
DN
4620static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4621 unsigned long addr, pte_t ptent)
4ffef5fe 4622{
90254a65 4623 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4624
90254a65
DN
4625 if (!page || !page_mapped(page))
4626 return NULL;
4627 if (PageAnon(page)) {
4628 /* we don't move shared anon */
4629 if (!move_anon() || page_mapcount(page) > 2)
4630 return NULL;
87946a72
DN
4631 } else if (!move_file())
4632 /* we ignore mapcount for file pages */
90254a65
DN
4633 return NULL;
4634 if (!get_page_unless_zero(page))
4635 return NULL;
4636
4637 return page;
4638}
4639
4640static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4641 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4642{
4643 int usage_count;
4644 struct page *page = NULL;
4645 swp_entry_t ent = pte_to_swp_entry(ptent);
4646
4647 if (!move_anon() || non_swap_entry(ent))
4648 return NULL;
4649 usage_count = mem_cgroup_count_swap_user(ent, &page);
4650 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4651 if (page)
4652 put_page(page);
90254a65 4653 return NULL;
02491447 4654 }
90254a65
DN
4655 if (do_swap_account)
4656 entry->val = ent.val;
4657
4658 return page;
4659}
4660
87946a72
DN
4661static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4662 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4663{
4664 struct page *page = NULL;
4665 struct inode *inode;
4666 struct address_space *mapping;
4667 pgoff_t pgoff;
4668
4669 if (!vma->vm_file) /* anonymous vma */
4670 return NULL;
4671 if (!move_file())
4672 return NULL;
4673
4674 inode = vma->vm_file->f_path.dentry->d_inode;
4675 mapping = vma->vm_file->f_mapping;
4676 if (pte_none(ptent))
4677 pgoff = linear_page_index(vma, addr);
4678 else /* pte_file(ptent) is true */
4679 pgoff = pte_to_pgoff(ptent);
4680
4681 /* page is moved even if it's not RSS of this task(page-faulted). */
4682 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4683 page = find_get_page(mapping, pgoff);
4684 } else { /* shmem/tmpfs file. we should take account of swap too. */
4685 swp_entry_t ent;
4686 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4687 if (do_swap_account)
4688 entry->val = ent.val;
4689 }
4690
4691 return page;
4692}
4693
90254a65
DN
4694static int is_target_pte_for_mc(struct vm_area_struct *vma,
4695 unsigned long addr, pte_t ptent, union mc_target *target)
4696{
4697 struct page *page = NULL;
4698 struct page_cgroup *pc;
4699 int ret = 0;
4700 swp_entry_t ent = { .val = 0 };
4701
4702 if (pte_present(ptent))
4703 page = mc_handle_present_pte(vma, addr, ptent);
4704 else if (is_swap_pte(ptent))
4705 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4706 else if (pte_none(ptent) || pte_file(ptent))
4707 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4708
4709 if (!page && !ent.val)
4710 return 0;
02491447
DN
4711 if (page) {
4712 pc = lookup_page_cgroup(page);
4713 /*
4714 * Do only loose check w/o page_cgroup lock.
4715 * mem_cgroup_move_account() checks the pc is valid or not under
4716 * the lock.
4717 */
4718 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4719 ret = MC_TARGET_PAGE;
4720 if (target)
4721 target->page = page;
4722 }
4723 if (!ret || !target)
4724 put_page(page);
4725 }
90254a65
DN
4726 /* There is a swap entry and a page doesn't exist or isn't charged */
4727 if (ent.val && !ret &&
7f0f1546
KH
4728 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4729 ret = MC_TARGET_SWAP;
4730 if (target)
4731 target->ent = ent;
4ffef5fe 4732 }
4ffef5fe
DN
4733 return ret;
4734}
4735
4736static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4737 unsigned long addr, unsigned long end,
4738 struct mm_walk *walk)
4739{
4740 struct vm_area_struct *vma = walk->private;
4741 pte_t *pte;
4742 spinlock_t *ptl;
4743
03319327
DH
4744 split_huge_page_pmd(walk->mm, pmd);
4745
4ffef5fe
DN
4746 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4747 for (; addr != end; pte++, addr += PAGE_SIZE)
4748 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4749 mc.precharge++; /* increment precharge temporarily */
4750 pte_unmap_unlock(pte - 1, ptl);
4751 cond_resched();
4752
7dc74be0
DN
4753 return 0;
4754}
4755
4ffef5fe
DN
4756static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4757{
4758 unsigned long precharge;
4759 struct vm_area_struct *vma;
4760
dfe076b0 4761 down_read(&mm->mmap_sem);
4ffef5fe
DN
4762 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4763 struct mm_walk mem_cgroup_count_precharge_walk = {
4764 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4765 .mm = mm,
4766 .private = vma,
4767 };
4768 if (is_vm_hugetlb_page(vma))
4769 continue;
4ffef5fe
DN
4770 walk_page_range(vma->vm_start, vma->vm_end,
4771 &mem_cgroup_count_precharge_walk);
4772 }
dfe076b0 4773 up_read(&mm->mmap_sem);
4ffef5fe
DN
4774
4775 precharge = mc.precharge;
4776 mc.precharge = 0;
4777
4778 return precharge;
4779}
4780
4ffef5fe
DN
4781static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4782{
dfe076b0
DN
4783 unsigned long precharge = mem_cgroup_count_precharge(mm);
4784
4785 VM_BUG_ON(mc.moving_task);
4786 mc.moving_task = current;
4787 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4788}
4789
dfe076b0
DN
4790/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4791static void __mem_cgroup_clear_mc(void)
4ffef5fe 4792{
2bd9bb20
KH
4793 struct mem_cgroup *from = mc.from;
4794 struct mem_cgroup *to = mc.to;
4795
4ffef5fe 4796 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4797 if (mc.precharge) {
4798 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4799 mc.precharge = 0;
4800 }
4801 /*
4802 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4803 * we must uncharge here.
4804 */
4805 if (mc.moved_charge) {
4806 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4807 mc.moved_charge = 0;
4ffef5fe 4808 }
483c30b5
DN
4809 /* we must fixup refcnts and charges */
4810 if (mc.moved_swap) {
483c30b5
DN
4811 /* uncharge swap account from the old cgroup */
4812 if (!mem_cgroup_is_root(mc.from))
4813 res_counter_uncharge(&mc.from->memsw,
4814 PAGE_SIZE * mc.moved_swap);
4815 __mem_cgroup_put(mc.from, mc.moved_swap);
4816
4817 if (!mem_cgroup_is_root(mc.to)) {
4818 /*
4819 * we charged both to->res and to->memsw, so we should
4820 * uncharge to->res.
4821 */
4822 res_counter_uncharge(&mc.to->res,
4823 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4824 }
4825 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4826 mc.moved_swap = 0;
4827 }
dfe076b0
DN
4828 memcg_oom_recover(from);
4829 memcg_oom_recover(to);
4830 wake_up_all(&mc.waitq);
4831}
4832
4833static void mem_cgroup_clear_mc(void)
4834{
4835 struct mem_cgroup *from = mc.from;
4836
4837 /*
4838 * we must clear moving_task before waking up waiters at the end of
4839 * task migration.
4840 */
4841 mc.moving_task = NULL;
4842 __mem_cgroup_clear_mc();
2bd9bb20 4843 spin_lock(&mc.lock);
4ffef5fe
DN
4844 mc.from = NULL;
4845 mc.to = NULL;
2bd9bb20 4846 spin_unlock(&mc.lock);
32047e2a 4847 mem_cgroup_end_move(from);
4ffef5fe
DN
4848}
4849
7dc74be0
DN
4850static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4851 struct cgroup *cgroup,
4852 struct task_struct *p,
4853 bool threadgroup)
4854{
4855 int ret = 0;
4856 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4857
4858 if (mem->move_charge_at_immigrate) {
4859 struct mm_struct *mm;
4860 struct mem_cgroup *from = mem_cgroup_from_task(p);
4861
4862 VM_BUG_ON(from == mem);
4863
4864 mm = get_task_mm(p);
4865 if (!mm)
4866 return 0;
7dc74be0 4867 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4868 if (mm->owner == p) {
4869 VM_BUG_ON(mc.from);
4870 VM_BUG_ON(mc.to);
4871 VM_BUG_ON(mc.precharge);
854ffa8d 4872 VM_BUG_ON(mc.moved_charge);
483c30b5 4873 VM_BUG_ON(mc.moved_swap);
32047e2a 4874 mem_cgroup_start_move(from);
2bd9bb20 4875 spin_lock(&mc.lock);
4ffef5fe
DN
4876 mc.from = from;
4877 mc.to = mem;
2bd9bb20 4878 spin_unlock(&mc.lock);
dfe076b0 4879 /* We set mc.moving_task later */
4ffef5fe
DN
4880
4881 ret = mem_cgroup_precharge_mc(mm);
4882 if (ret)
4883 mem_cgroup_clear_mc();
dfe076b0
DN
4884 }
4885 mmput(mm);
7dc74be0
DN
4886 }
4887 return ret;
4888}
4889
4890static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4891 struct cgroup *cgroup,
4892 struct task_struct *p,
4893 bool threadgroup)
4894{
4ffef5fe 4895 mem_cgroup_clear_mc();
7dc74be0
DN
4896}
4897
4ffef5fe
DN
4898static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4899 unsigned long addr, unsigned long end,
4900 struct mm_walk *walk)
7dc74be0 4901{
4ffef5fe
DN
4902 int ret = 0;
4903 struct vm_area_struct *vma = walk->private;
4904 pte_t *pte;
4905 spinlock_t *ptl;
4906
03319327 4907 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4908retry:
4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910 for (; addr != end; addr += PAGE_SIZE) {
4911 pte_t ptent = *(pte++);
4912 union mc_target target;
4913 int type;
4914 struct page *page;
4915 struct page_cgroup *pc;
02491447 4916 swp_entry_t ent;
4ffef5fe
DN
4917
4918 if (!mc.precharge)
4919 break;
4920
4921 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4922 switch (type) {
4923 case MC_TARGET_PAGE:
4924 page = target.page;
4925 if (isolate_lru_page(page))
4926 goto put;
4927 pc = lookup_page_cgroup(page);
854ffa8d 4928 if (!mem_cgroup_move_account(pc,
987eba66 4929 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4930 mc.precharge--;
854ffa8d
DN
4931 /* we uncharge from mc.from later. */
4932 mc.moved_charge++;
4ffef5fe
DN
4933 }
4934 putback_lru_page(page);
4935put: /* is_target_pte_for_mc() gets the page */
4936 put_page(page);
4937 break;
02491447
DN
4938 case MC_TARGET_SWAP:
4939 ent = target.ent;
483c30b5
DN
4940 if (!mem_cgroup_move_swap_account(ent,
4941 mc.from, mc.to, false)) {
02491447 4942 mc.precharge--;
483c30b5
DN
4943 /* we fixup refcnts and charges later. */
4944 mc.moved_swap++;
4945 }
02491447 4946 break;
4ffef5fe
DN
4947 default:
4948 break;
4949 }
4950 }
4951 pte_unmap_unlock(pte - 1, ptl);
4952 cond_resched();
4953
4954 if (addr != end) {
4955 /*
4956 * We have consumed all precharges we got in can_attach().
4957 * We try charge one by one, but don't do any additional
4958 * charges to mc.to if we have failed in charge once in attach()
4959 * phase.
4960 */
854ffa8d 4961 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4962 if (!ret)
4963 goto retry;
4964 }
4965
4966 return ret;
4967}
4968
4969static void mem_cgroup_move_charge(struct mm_struct *mm)
4970{
4971 struct vm_area_struct *vma;
4972
4973 lru_add_drain_all();
dfe076b0
DN
4974retry:
4975 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4976 /*
4977 * Someone who are holding the mmap_sem might be waiting in
4978 * waitq. So we cancel all extra charges, wake up all waiters,
4979 * and retry. Because we cancel precharges, we might not be able
4980 * to move enough charges, but moving charge is a best-effort
4981 * feature anyway, so it wouldn't be a big problem.
4982 */
4983 __mem_cgroup_clear_mc();
4984 cond_resched();
4985 goto retry;
4986 }
4ffef5fe
DN
4987 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4988 int ret;
4989 struct mm_walk mem_cgroup_move_charge_walk = {
4990 .pmd_entry = mem_cgroup_move_charge_pte_range,
4991 .mm = mm,
4992 .private = vma,
4993 };
4994 if (is_vm_hugetlb_page(vma))
4995 continue;
4ffef5fe
DN
4996 ret = walk_page_range(vma->vm_start, vma->vm_end,
4997 &mem_cgroup_move_charge_walk);
4998 if (ret)
4999 /*
5000 * means we have consumed all precharges and failed in
5001 * doing additional charge. Just abandon here.
5002 */
5003 break;
5004 }
dfe076b0 5005 up_read(&mm->mmap_sem);
7dc74be0
DN
5006}
5007
67e465a7
BS
5008static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5009 struct cgroup *cont,
5010 struct cgroup *old_cont,
be367d09
BB
5011 struct task_struct *p,
5012 bool threadgroup)
67e465a7 5013{
dfe076b0
DN
5014 struct mm_struct *mm;
5015
5016 if (!mc.to)
4ffef5fe
DN
5017 /* no need to move charge */
5018 return;
5019
dfe076b0
DN
5020 mm = get_task_mm(p);
5021 if (mm) {
5022 mem_cgroup_move_charge(mm);
5023 mmput(mm);
5024 }
4ffef5fe 5025 mem_cgroup_clear_mc();
67e465a7 5026}
5cfb80a7
DN
5027#else /* !CONFIG_MMU */
5028static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5029 struct cgroup *cgroup,
5030 struct task_struct *p,
5031 bool threadgroup)
5032{
5033 return 0;
5034}
5035static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5036 struct cgroup *cgroup,
5037 struct task_struct *p,
5038 bool threadgroup)
5039{
5040}
5041static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5042 struct cgroup *cont,
5043 struct cgroup *old_cont,
5044 struct task_struct *p,
5045 bool threadgroup)
5046{
5047}
5048#endif
67e465a7 5049
8cdea7c0
BS
5050struct cgroup_subsys mem_cgroup_subsys = {
5051 .name = "memory",
5052 .subsys_id = mem_cgroup_subsys_id,
5053 .create = mem_cgroup_create,
df878fb0 5054 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5055 .destroy = mem_cgroup_destroy,
5056 .populate = mem_cgroup_populate,
7dc74be0
DN
5057 .can_attach = mem_cgroup_can_attach,
5058 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5059 .attach = mem_cgroup_move_task,
6d12e2d8 5060 .early_init = 0,
04046e1a 5061 .use_id = 1,
8cdea7c0 5062};
c077719b
KH
5063
5064#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5065static int __init enable_swap_account(char *s)
5066{
5067 /* consider enabled if no parameter or 1 is given */
fceda1bf 5068 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5069 really_do_swap_account = 1;
fceda1bf 5070 else if (!strcmp(s, "=0"))
a42c390c
MH
5071 really_do_swap_account = 0;
5072 return 1;
5073}
5074__setup("swapaccount", enable_swap_account);
c077719b
KH
5075
5076static int __init disable_swap_account(char *s)
5077{
552b372b 5078 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5079 enable_swap_account("=0");
c077719b
KH
5080 return 1;
5081}
5082__setup("noswapaccount", disable_swap_account);
5083#endif