]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: mincore: add hwpoison page handle
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
14067bb3 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
542f85f9 1141
5ac8fb31 1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31 1145 memcg = NULL;
9f3a0d09 1146 }
5ac8fb31
JW
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673 1276 struct mem_cgroup *memcg;
bea8c150 1277 struct lruvec *lruvec;
6d12e2d8 1278
bea8c150
HD
1279 if (mem_cgroup_disabled()) {
1280 lruvec = &zone->lruvec;
1281 goto out;
1282 }
925b7673 1283
1306a85a 1284 memcg = page->mem_cgroup;
7512102c 1285 /*
dfe0e773 1286 * Swapcache readahead pages are added to the LRU - and
29833315 1287 * possibly migrated - before they are charged.
7512102c 1288 */
29833315
JW
1289 if (!memcg)
1290 memcg = root_mem_cgroup;
7512102c 1291
e231875b 1292 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1293 lruvec = &mz->lruvec;
1294out:
1295 /*
1296 * Since a node can be onlined after the mem_cgroup was created,
1297 * we have to be prepared to initialize lruvec->zone here;
1298 * and if offlined then reonlined, we need to reinitialize it.
1299 */
1300 if (unlikely(lruvec->zone != zone))
1301 lruvec->zone = zone;
1302 return lruvec;
08e552c6 1303}
b69408e8 1304
925b7673 1305/**
fa9add64
HD
1306 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1307 * @lruvec: mem_cgroup per zone lru vector
1308 * @lru: index of lru list the page is sitting on
1309 * @nr_pages: positive when adding or negative when removing
925b7673 1310 *
fa9add64
HD
1311 * This function must be called when a page is added to or removed from an
1312 * lru list.
3f58a829 1313 */
fa9add64
HD
1314void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1315 int nr_pages)
3f58a829
MK
1316{
1317 struct mem_cgroup_per_zone *mz;
fa9add64 1318 unsigned long *lru_size;
3f58a829
MK
1319
1320 if (mem_cgroup_disabled())
1321 return;
1322
fa9add64
HD
1323 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1324 lru_size = mz->lru_size + lru;
1325 *lru_size += nr_pages;
1326 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1327}
544122e5 1328
2314b42d 1329bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1330{
2314b42d 1331 if (root == memcg)
91c63734 1332 return true;
2314b42d 1333 if (!root->use_hierarchy)
91c63734 1334 return false;
2314b42d 1335 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1336}
1337
2314b42d 1338bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1339{
2314b42d 1340 struct mem_cgroup *task_memcg;
158e0a2d 1341 struct task_struct *p;
ffbdccf5 1342 bool ret;
4c4a2214 1343
158e0a2d 1344 p = find_lock_task_mm(task);
de077d22 1345 if (p) {
2314b42d 1346 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1347 task_unlock(p);
1348 } else {
1349 /*
1350 * All threads may have already detached their mm's, but the oom
1351 * killer still needs to detect if they have already been oom
1352 * killed to prevent needlessly killing additional tasks.
1353 */
ffbdccf5 1354 rcu_read_lock();
2314b42d
JW
1355 task_memcg = mem_cgroup_from_task(task);
1356 css_get(&task_memcg->css);
ffbdccf5 1357 rcu_read_unlock();
de077d22 1358 }
2314b42d
JW
1359 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1360 css_put(&task_memcg->css);
4c4a2214
DR
1361 return ret;
1362}
1363
c56d5c7d 1364int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1365{
9b272977 1366 unsigned long inactive_ratio;
14797e23 1367 unsigned long inactive;
9b272977 1368 unsigned long active;
c772be93 1369 unsigned long gb;
14797e23 1370
4d7dcca2
HD
1371 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1372 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1373
c772be93
KM
1374 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1375 if (gb)
1376 inactive_ratio = int_sqrt(10 * gb);
1377 else
1378 inactive_ratio = 1;
1379
9b272977 1380 return inactive * inactive_ratio < active;
14797e23
KM
1381}
1382
3e32cb2e 1383#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1384 container_of(counter, struct mem_cgroup, member)
1385
19942822 1386/**
9d11ea9f 1387 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1388 * @memcg: the memory cgroup
19942822 1389 *
9d11ea9f 1390 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1391 * pages.
19942822 1392 */
c0ff4b85 1393static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1394{
3e32cb2e
JW
1395 unsigned long margin = 0;
1396 unsigned long count;
1397 unsigned long limit;
9d11ea9f 1398
3e32cb2e
JW
1399 count = page_counter_read(&memcg->memory);
1400 limit = ACCESS_ONCE(memcg->memory.limit);
1401 if (count < limit)
1402 margin = limit - count;
1403
1404 if (do_swap_account) {
1405 count = page_counter_read(&memcg->memsw);
1406 limit = ACCESS_ONCE(memcg->memsw.limit);
1407 if (count <= limit)
1408 margin = min(margin, limit - count);
1409 }
1410
1411 return margin;
19942822
JW
1412}
1413
1f4c025b 1414int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1415{
a7885eb8 1416 /* root ? */
14208b0e 1417 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1418 return vm_swappiness;
1419
bf1ff263 1420 return memcg->swappiness;
a7885eb8
KM
1421}
1422
32047e2a 1423/*
bdcbb659 1424 * A routine for checking "mem" is under move_account() or not.
32047e2a 1425 *
bdcbb659
QH
1426 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1427 * moving cgroups. This is for waiting at high-memory pressure
1428 * caused by "move".
32047e2a 1429 */
c0ff4b85 1430static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1431{
2bd9bb20
KH
1432 struct mem_cgroup *from;
1433 struct mem_cgroup *to;
4b534334 1434 bool ret = false;
2bd9bb20
KH
1435 /*
1436 * Unlike task_move routines, we access mc.to, mc.from not under
1437 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1438 */
1439 spin_lock(&mc.lock);
1440 from = mc.from;
1441 to = mc.to;
1442 if (!from)
1443 goto unlock;
3e92041d 1444
2314b42d
JW
1445 ret = mem_cgroup_is_descendant(from, memcg) ||
1446 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1447unlock:
1448 spin_unlock(&mc.lock);
4b534334
KH
1449 return ret;
1450}
1451
c0ff4b85 1452static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1453{
1454 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1455 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1456 DEFINE_WAIT(wait);
1457 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1458 /* moving charge context might have finished. */
1459 if (mc.moving_task)
1460 schedule();
1461 finish_wait(&mc.waitq, &wait);
1462 return true;
1463 }
1464 }
1465 return false;
1466}
1467
58cf188e 1468#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1469/**
58cf188e 1470 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
1477void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1478{
e61734c5 1479 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1480 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1481 struct mem_cgroup *iter;
1482 unsigned int i;
e222432b 1483
58cf188e 1484 if (!p)
e222432b
BS
1485 return;
1486
08088cb9 1487 mutex_lock(&oom_info_lock);
e222432b
BS
1488 rcu_read_lock();
1489
e61734c5
TH
1490 pr_info("Task in ");
1491 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1492 pr_info(" killed as a result of limit of ");
1493 pr_cont_cgroup_path(memcg->css.cgroup);
1494 pr_info("\n");
e222432b 1495
e222432b
BS
1496 rcu_read_unlock();
1497
3e32cb2e
JW
1498 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1499 K((u64)page_counter_read(&memcg->memory)),
1500 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1501 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->memsw)),
1503 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1504 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1505 K((u64)page_counter_read(&memcg->kmem)),
1506 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1507
1508 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1509 pr_info("Memory cgroup stats for ");
1510 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1511 pr_cont(":");
1512
1513 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1514 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1515 continue;
1516 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1517 K(mem_cgroup_read_stat(iter, i)));
1518 }
1519
1520 for (i = 0; i < NR_LRU_LISTS; i++)
1521 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1522 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1523
1524 pr_cont("\n");
1525 }
08088cb9 1526 mutex_unlock(&oom_info_lock);
e222432b
BS
1527}
1528
81d39c20
KH
1529/*
1530 * This function returns the number of memcg under hierarchy tree. Returns
1531 * 1(self count) if no children.
1532 */
c0ff4b85 1533static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1534{
1535 int num = 0;
7d74b06f
KH
1536 struct mem_cgroup *iter;
1537
c0ff4b85 1538 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1539 num++;
81d39c20
KH
1540 return num;
1541}
1542
a63d83f4
DR
1543/*
1544 * Return the memory (and swap, if configured) limit for a memcg.
1545 */
3e32cb2e 1546static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1547{
3e32cb2e 1548 unsigned long limit;
f3e8eb70 1549
3e32cb2e 1550 limit = memcg->memory.limit;
9a5a8f19 1551 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1552 unsigned long memsw_limit;
9a5a8f19 1553
3e32cb2e
JW
1554 memsw_limit = memcg->memsw.limit;
1555 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1556 }
9a5a8f19 1557 return limit;
a63d83f4
DR
1558}
1559
19965460
DR
1560static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1561 int order)
9cbb78bb
DR
1562{
1563 struct mem_cgroup *iter;
1564 unsigned long chosen_points = 0;
1565 unsigned long totalpages;
1566 unsigned int points = 0;
1567 struct task_struct *chosen = NULL;
1568
876aafbf 1569 /*
465adcf1
DR
1570 * If current has a pending SIGKILL or is exiting, then automatically
1571 * select it. The goal is to allow it to allocate so that it may
1572 * quickly exit and free its memory.
876aafbf 1573 */
465adcf1 1574 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1575 set_thread_flag(TIF_MEMDIE);
1576 return;
1577 }
1578
1579 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1580 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1581 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1582 struct css_task_iter it;
9cbb78bb
DR
1583 struct task_struct *task;
1584
72ec7029
TH
1585 css_task_iter_start(&iter->css, &it);
1586 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1587 switch (oom_scan_process_thread(task, totalpages, NULL,
1588 false)) {
1589 case OOM_SCAN_SELECT:
1590 if (chosen)
1591 put_task_struct(chosen);
1592 chosen = task;
1593 chosen_points = ULONG_MAX;
1594 get_task_struct(chosen);
1595 /* fall through */
1596 case OOM_SCAN_CONTINUE:
1597 continue;
1598 case OOM_SCAN_ABORT:
72ec7029 1599 css_task_iter_end(&it);
9cbb78bb
DR
1600 mem_cgroup_iter_break(memcg, iter);
1601 if (chosen)
1602 put_task_struct(chosen);
1603 return;
1604 case OOM_SCAN_OK:
1605 break;
1606 };
1607 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1608 if (!points || points < chosen_points)
1609 continue;
1610 /* Prefer thread group leaders for display purposes */
1611 if (points == chosen_points &&
1612 thread_group_leader(chosen))
1613 continue;
1614
1615 if (chosen)
1616 put_task_struct(chosen);
1617 chosen = task;
1618 chosen_points = points;
1619 get_task_struct(chosen);
9cbb78bb 1620 }
72ec7029 1621 css_task_iter_end(&it);
9cbb78bb
DR
1622 }
1623
1624 if (!chosen)
1625 return;
1626 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1627 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1628 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1629}
1630
4d0c066d
KH
1631/**
1632 * test_mem_cgroup_node_reclaimable
dad7557e 1633 * @memcg: the target memcg
4d0c066d
KH
1634 * @nid: the node ID to be checked.
1635 * @noswap : specify true here if the user wants flle only information.
1636 *
1637 * This function returns whether the specified memcg contains any
1638 * reclaimable pages on a node. Returns true if there are any reclaimable
1639 * pages in the node.
1640 */
c0ff4b85 1641static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1642 int nid, bool noswap)
1643{
c0ff4b85 1644 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1645 return true;
1646 if (noswap || !total_swap_pages)
1647 return false;
c0ff4b85 1648 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1649 return true;
1650 return false;
1651
1652}
bb4cc1a8 1653#if MAX_NUMNODES > 1
889976db
YH
1654
1655/*
1656 * Always updating the nodemask is not very good - even if we have an empty
1657 * list or the wrong list here, we can start from some node and traverse all
1658 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1659 *
1660 */
c0ff4b85 1661static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 int nid;
453a9bf3
KH
1664 /*
1665 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1666 * pagein/pageout changes since the last update.
1667 */
c0ff4b85 1668 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1669 return;
c0ff4b85 1670 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1671 return;
1672
889976db 1673 /* make a nodemask where this memcg uses memory from */
31aaea4a 1674 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1675
31aaea4a 1676 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1677
c0ff4b85
R
1678 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1679 node_clear(nid, memcg->scan_nodes);
889976db 1680 }
453a9bf3 1681
c0ff4b85
R
1682 atomic_set(&memcg->numainfo_events, 0);
1683 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1684}
1685
1686/*
1687 * Selecting a node where we start reclaim from. Because what we need is just
1688 * reducing usage counter, start from anywhere is O,K. Considering
1689 * memory reclaim from current node, there are pros. and cons.
1690 *
1691 * Freeing memory from current node means freeing memory from a node which
1692 * we'll use or we've used. So, it may make LRU bad. And if several threads
1693 * hit limits, it will see a contention on a node. But freeing from remote
1694 * node means more costs for memory reclaim because of memory latency.
1695 *
1696 * Now, we use round-robin. Better algorithm is welcomed.
1697 */
c0ff4b85 1698int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1699{
1700 int node;
1701
c0ff4b85
R
1702 mem_cgroup_may_update_nodemask(memcg);
1703 node = memcg->last_scanned_node;
889976db 1704
c0ff4b85 1705 node = next_node(node, memcg->scan_nodes);
889976db 1706 if (node == MAX_NUMNODES)
c0ff4b85 1707 node = first_node(memcg->scan_nodes);
889976db
YH
1708 /*
1709 * We call this when we hit limit, not when pages are added to LRU.
1710 * No LRU may hold pages because all pages are UNEVICTABLE or
1711 * memcg is too small and all pages are not on LRU. In that case,
1712 * we use curret node.
1713 */
1714 if (unlikely(node == MAX_NUMNODES))
1715 node = numa_node_id();
1716
c0ff4b85 1717 memcg->last_scanned_node = node;
889976db
YH
1718 return node;
1719}
889976db 1720#else
c0ff4b85 1721int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1722{
1723 return 0;
1724}
1725#endif
1726
0608f43d
AM
1727static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 struct zone *zone,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731{
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .zone = zone,
1739 .priority = 0,
1740 };
1741
3e32cb2e 1742 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1743
1744 while (1) {
1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1746 if (!victim) {
1747 loop++;
1748 if (loop >= 2) {
1749 /*
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1753 */
1754 if (!total)
1755 break;
1756 /*
1757 * We want to do more targeted reclaim.
1758 * excess >> 2 is not to excessive so as to
1759 * reclaim too much, nor too less that we keep
1760 * coming back to reclaim from this cgroup
1761 */
1762 if (total >= (excess >> 2) ||
1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1764 break;
1765 }
1766 continue;
1767 }
0608f43d
AM
1768 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1769 zone, &nr_scanned);
1770 *total_scanned += nr_scanned;
3e32cb2e 1771 if (!soft_limit_excess(root_memcg))
0608f43d 1772 break;
6d61ef40 1773 }
0608f43d
AM
1774 mem_cgroup_iter_break(root_memcg, victim);
1775 return total;
6d61ef40
BS
1776}
1777
0056f4e6
JW
1778#ifdef CONFIG_LOCKDEP
1779static struct lockdep_map memcg_oom_lock_dep_map = {
1780 .name = "memcg_oom_lock",
1781};
1782#endif
1783
fb2a6fc5
JW
1784static DEFINE_SPINLOCK(memcg_oom_lock);
1785
867578cb
KH
1786/*
1787 * Check OOM-Killer is already running under our hierarchy.
1788 * If someone is running, return false.
1789 */
fb2a6fc5 1790static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1791{
79dfdacc 1792 struct mem_cgroup *iter, *failed = NULL;
a636b327 1793
fb2a6fc5
JW
1794 spin_lock(&memcg_oom_lock);
1795
9f3a0d09 1796 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1797 if (iter->oom_lock) {
79dfdacc
MH
1798 /*
1799 * this subtree of our hierarchy is already locked
1800 * so we cannot give a lock.
1801 */
79dfdacc 1802 failed = iter;
9f3a0d09
JW
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
23751be0
JW
1805 } else
1806 iter->oom_lock = true;
7d74b06f 1807 }
867578cb 1808
fb2a6fc5
JW
1809 if (failed) {
1810 /*
1811 * OK, we failed to lock the whole subtree so we have
1812 * to clean up what we set up to the failing subtree
1813 */
1814 for_each_mem_cgroup_tree(iter, memcg) {
1815 if (iter == failed) {
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 }
1819 iter->oom_lock = false;
79dfdacc 1820 }
0056f4e6
JW
1821 } else
1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1823
1824 spin_unlock(&memcg_oom_lock);
1825
1826 return !failed;
a636b327 1827}
0b7f569e 1828
fb2a6fc5 1829static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1830{
7d74b06f
KH
1831 struct mem_cgroup *iter;
1832
fb2a6fc5 1833 spin_lock(&memcg_oom_lock);
0056f4e6 1834 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1835 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1836 iter->oom_lock = false;
fb2a6fc5 1837 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1838}
1839
c0ff4b85 1840static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1841{
1842 struct mem_cgroup *iter;
1843
c0ff4b85 1844 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1845 atomic_inc(&iter->under_oom);
1846}
1847
c0ff4b85 1848static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1849{
1850 struct mem_cgroup *iter;
1851
867578cb
KH
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
c0ff4b85 1857 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1858 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
dc98df5a
KH
1865 wait_queue_t wait;
1866};
1867
1868static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
2314b42d
JW
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1880 return 0;
dc98df5a
KH
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882}
1883
c0ff4b85 1884static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1885{
3812c8c8 1886 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1887 /* for filtering, pass "memcg" as argument. */
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1889}
1890
c0ff4b85 1891static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1892{
c0ff4b85
R
1893 if (memcg && atomic_read(&memcg->under_oom))
1894 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1895}
1896
3812c8c8 1897static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1898{
3812c8c8
JW
1899 if (!current->memcg_oom.may_oom)
1900 return;
867578cb 1901 /*
49426420
JW
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
867578cb 1914 */
49426420
JW
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
3812c8c8
JW
1919}
1920
1921/**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1923 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1924 *
49426420
JW
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
3812c8c8 1927 *
49426420 1928 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1933 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1936 * completed, %false otherwise.
3812c8c8 1937 */
49426420 1938bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1939{
49426420 1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1941 struct oom_wait_info owait;
49426420 1942 bool locked;
3812c8c8
JW
1943
1944 /* OOM is global, do not handle */
3812c8c8 1945 if (!memcg)
49426420 1946 return false;
3812c8c8 1947
49426420
JW
1948 if (!handle)
1949 goto cleanup;
3812c8c8
JW
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1956
3812c8c8 1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
3812c8c8 1971 schedule();
49426420
JW
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
fb2a6fc5
JW
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
49426420
JW
1985cleanup:
1986 current->memcg_oom.memcg = NULL;
3812c8c8 1987 css_put(&memcg->css);
867578cb 1988 return true;
0b7f569e
KH
1989}
1990
d7365e78
JW
1991/**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
1994 * @locked: &memcg->move_lock slowpath was taken
1995 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1996 *
d7365e78
JW
1997 * This function must mark the beginning of an accounted page state
1998 * change to prevent double accounting when the page is concurrently
1999 * being moved to another memcg:
32047e2a 2000 *
d7365e78
JW
2001 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2002 * if (TestClearPageState(page))
2003 * mem_cgroup_update_page_stat(memcg, state, -1);
2004 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2005 *
d7365e78
JW
2006 * The RCU lock is held throughout the transaction. The fast path can
2007 * get away without acquiring the memcg->move_lock (@locked is false)
2008 * because page moving starts with an RCU grace period.
32047e2a 2009 *
d7365e78
JW
2010 * The RCU lock also protects the memcg from being freed when the page
2011 * state that is going to change is the only thing preventing the page
2012 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2013 * which allows migration to go ahead and uncharge the page before the
2014 * account transaction might be complete.
d69b042f 2015 */
d7365e78
JW
2016struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2017 bool *locked,
2018 unsigned long *flags)
89c06bd5
KH
2019{
2020 struct mem_cgroup *memcg;
89c06bd5 2021
d7365e78
JW
2022 rcu_read_lock();
2023
2024 if (mem_cgroup_disabled())
2025 return NULL;
89c06bd5 2026again:
1306a85a 2027 memcg = page->mem_cgroup;
29833315 2028 if (unlikely(!memcg))
d7365e78
JW
2029 return NULL;
2030
2031 *locked = false;
bdcbb659 2032 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2033 return memcg;
89c06bd5 2034
354a4783 2035 spin_lock_irqsave(&memcg->move_lock, *flags);
1306a85a 2036 if (memcg != page->mem_cgroup) {
354a4783 2037 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2038 goto again;
2039 }
2040 *locked = true;
d7365e78
JW
2041
2042 return memcg;
89c06bd5
KH
2043}
2044
d7365e78
JW
2045/**
2046 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2047 * @memcg: the memcg that was accounted against
2048 * @locked: value received from mem_cgroup_begin_page_stat()
2049 * @flags: value received from mem_cgroup_begin_page_stat()
2050 */
e4bd6a02
MH
2051void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2052 unsigned long *flags)
89c06bd5 2053{
e4bd6a02
MH
2054 if (memcg && *locked)
2055 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5 2056
d7365e78 2057 rcu_read_unlock();
89c06bd5
KH
2058}
2059
d7365e78
JW
2060/**
2061 * mem_cgroup_update_page_stat - update page state statistics
2062 * @memcg: memcg to account against
2063 * @idx: page state item to account
2064 * @val: number of pages (positive or negative)
2065 *
2066 * See mem_cgroup_begin_page_stat() for locking requirements.
2067 */
2068void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2069 enum mem_cgroup_stat_index idx, int val)
d69b042f 2070{
658b72c5 2071 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2072
d7365e78
JW
2073 if (memcg)
2074 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2075}
26174efd 2076
cdec2e42
KH
2077/*
2078 * size of first charge trial. "32" comes from vmscan.c's magic value.
2079 * TODO: maybe necessary to use big numbers in big irons.
2080 */
7ec99d62 2081#define CHARGE_BATCH 32U
cdec2e42
KH
2082struct memcg_stock_pcp {
2083 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2084 unsigned int nr_pages;
cdec2e42 2085 struct work_struct work;
26fe6168 2086 unsigned long flags;
a0db00fc 2087#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2088};
2089static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2090static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2091
a0956d54
SS
2092/**
2093 * consume_stock: Try to consume stocked charge on this cpu.
2094 * @memcg: memcg to consume from.
2095 * @nr_pages: how many pages to charge.
2096 *
2097 * The charges will only happen if @memcg matches the current cpu's memcg
2098 * stock, and at least @nr_pages are available in that stock. Failure to
2099 * service an allocation will refill the stock.
2100 *
2101 * returns true if successful, false otherwise.
cdec2e42 2102 */
a0956d54 2103static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2104{
2105 struct memcg_stock_pcp *stock;
3e32cb2e 2106 bool ret = false;
cdec2e42 2107
a0956d54 2108 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2109 return ret;
a0956d54 2110
cdec2e42 2111 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2112 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2113 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2114 ret = true;
2115 }
cdec2e42
KH
2116 put_cpu_var(memcg_stock);
2117 return ret;
2118}
2119
2120/*
3e32cb2e 2121 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2122 */
2123static void drain_stock(struct memcg_stock_pcp *stock)
2124{
2125 struct mem_cgroup *old = stock->cached;
2126
11c9ea4e 2127 if (stock->nr_pages) {
3e32cb2e 2128 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2129 if (do_swap_account)
3e32cb2e 2130 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2131 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2132 stock->nr_pages = 0;
cdec2e42
KH
2133 }
2134 stock->cached = NULL;
cdec2e42
KH
2135}
2136
2137/*
2138 * This must be called under preempt disabled or must be called by
2139 * a thread which is pinned to local cpu.
2140 */
2141static void drain_local_stock(struct work_struct *dummy)
2142{
7c8e0181 2143 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2144 drain_stock(stock);
26fe6168 2145 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2146}
2147
e4777496
MH
2148static void __init memcg_stock_init(void)
2149{
2150 int cpu;
2151
2152 for_each_possible_cpu(cpu) {
2153 struct memcg_stock_pcp *stock =
2154 &per_cpu(memcg_stock, cpu);
2155 INIT_WORK(&stock->work, drain_local_stock);
2156 }
2157}
2158
cdec2e42 2159/*
3e32cb2e 2160 * Cache charges(val) to local per_cpu area.
320cc51d 2161 * This will be consumed by consume_stock() function, later.
cdec2e42 2162 */
c0ff4b85 2163static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2164{
2165 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2166
c0ff4b85 2167 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2168 drain_stock(stock);
c0ff4b85 2169 stock->cached = memcg;
cdec2e42 2170 }
11c9ea4e 2171 stock->nr_pages += nr_pages;
cdec2e42
KH
2172 put_cpu_var(memcg_stock);
2173}
2174
2175/*
c0ff4b85 2176 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2177 * of the hierarchy under it.
cdec2e42 2178 */
6d3d6aa2 2179static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2180{
26fe6168 2181 int cpu, curcpu;
d38144b7 2182
6d3d6aa2
JW
2183 /* If someone's already draining, avoid adding running more workers. */
2184 if (!mutex_trylock(&percpu_charge_mutex))
2185 return;
cdec2e42 2186 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2187 get_online_cpus();
5af12d0e 2188 curcpu = get_cpu();
cdec2e42
KH
2189 for_each_online_cpu(cpu) {
2190 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2191 struct mem_cgroup *memcg;
26fe6168 2192
c0ff4b85
R
2193 memcg = stock->cached;
2194 if (!memcg || !stock->nr_pages)
26fe6168 2195 continue;
2314b42d 2196 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2197 continue;
d1a05b69
MH
2198 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2199 if (cpu == curcpu)
2200 drain_local_stock(&stock->work);
2201 else
2202 schedule_work_on(cpu, &stock->work);
2203 }
cdec2e42 2204 }
5af12d0e 2205 put_cpu();
f894ffa8 2206 put_online_cpus();
9f50fad6 2207 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2208}
2209
711d3d2c
KH
2210/*
2211 * This function drains percpu counter value from DEAD cpu and
2212 * move it to local cpu. Note that this function can be preempted.
2213 */
c0ff4b85 2214static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2215{
2216 int i;
2217
c0ff4b85 2218 spin_lock(&memcg->pcp_counter_lock);
6104621d 2219 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2220 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2221
c0ff4b85
R
2222 per_cpu(memcg->stat->count[i], cpu) = 0;
2223 memcg->nocpu_base.count[i] += x;
711d3d2c 2224 }
e9f8974f 2225 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2226 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2227
c0ff4b85
R
2228 per_cpu(memcg->stat->events[i], cpu) = 0;
2229 memcg->nocpu_base.events[i] += x;
e9f8974f 2230 }
c0ff4b85 2231 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2232}
2233
0db0628d 2234static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2235 unsigned long action,
2236 void *hcpu)
2237{
2238 int cpu = (unsigned long)hcpu;
2239 struct memcg_stock_pcp *stock;
711d3d2c 2240 struct mem_cgroup *iter;
cdec2e42 2241
619d094b 2242 if (action == CPU_ONLINE)
1489ebad 2243 return NOTIFY_OK;
1489ebad 2244
d833049b 2245 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2246 return NOTIFY_OK;
711d3d2c 2247
9f3a0d09 2248 for_each_mem_cgroup(iter)
711d3d2c
KH
2249 mem_cgroup_drain_pcp_counter(iter, cpu);
2250
cdec2e42
KH
2251 stock = &per_cpu(memcg_stock, cpu);
2252 drain_stock(stock);
2253 return NOTIFY_OK;
2254}
2255
00501b53
JW
2256static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2257 unsigned int nr_pages)
8a9f3ccd 2258{
7ec99d62 2259 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2260 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2261 struct mem_cgroup *mem_over_limit;
3e32cb2e 2262 struct page_counter *counter;
6539cc05 2263 unsigned long nr_reclaimed;
b70a2a21
JW
2264 bool may_swap = true;
2265 bool drained = false;
05b84301 2266 int ret = 0;
a636b327 2267
ce00a967
JW
2268 if (mem_cgroup_is_root(memcg))
2269 goto done;
6539cc05 2270retry:
b6b6cc72
MH
2271 if (consume_stock(memcg, nr_pages))
2272 goto done;
8a9f3ccd 2273
3fbe7244 2274 if (!do_swap_account ||
3e32cb2e
JW
2275 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2276 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2277 goto done_restock;
3fbe7244 2278 if (do_swap_account)
3e32cb2e
JW
2279 page_counter_uncharge(&memcg->memsw, batch);
2280 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2281 } else {
3e32cb2e 2282 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2283 may_swap = false;
3fbe7244 2284 }
7a81b88c 2285
6539cc05
JW
2286 if (batch > nr_pages) {
2287 batch = nr_pages;
2288 goto retry;
2289 }
6d61ef40 2290
06b078fc
JW
2291 /*
2292 * Unlike in global OOM situations, memcg is not in a physical
2293 * memory shortage. Allow dying and OOM-killed tasks to
2294 * bypass the last charges so that they can exit quickly and
2295 * free their memory.
2296 */
2297 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2298 fatal_signal_pending(current) ||
2299 current->flags & PF_EXITING))
2300 goto bypass;
2301
2302 if (unlikely(task_in_memcg_oom(current)))
2303 goto nomem;
2304
6539cc05
JW
2305 if (!(gfp_mask & __GFP_WAIT))
2306 goto nomem;
4b534334 2307
b70a2a21
JW
2308 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2309 gfp_mask, may_swap);
6539cc05 2310
61e02c74 2311 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2312 goto retry;
28c34c29 2313
b70a2a21 2314 if (!drained) {
6d3d6aa2 2315 drain_all_stock(mem_over_limit);
b70a2a21
JW
2316 drained = true;
2317 goto retry;
2318 }
2319
28c34c29
JW
2320 if (gfp_mask & __GFP_NORETRY)
2321 goto nomem;
6539cc05
JW
2322 /*
2323 * Even though the limit is exceeded at this point, reclaim
2324 * may have been able to free some pages. Retry the charge
2325 * before killing the task.
2326 *
2327 * Only for regular pages, though: huge pages are rather
2328 * unlikely to succeed so close to the limit, and we fall back
2329 * to regular pages anyway in case of failure.
2330 */
61e02c74 2331 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2332 goto retry;
2333 /*
2334 * At task move, charge accounts can be doubly counted. So, it's
2335 * better to wait until the end of task_move if something is going on.
2336 */
2337 if (mem_cgroup_wait_acct_move(mem_over_limit))
2338 goto retry;
2339
9b130619
JW
2340 if (nr_retries--)
2341 goto retry;
2342
06b078fc
JW
2343 if (gfp_mask & __GFP_NOFAIL)
2344 goto bypass;
2345
6539cc05
JW
2346 if (fatal_signal_pending(current))
2347 goto bypass;
2348
61e02c74 2349 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2350nomem:
6d1fdc48 2351 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2352 return -ENOMEM;
867578cb 2353bypass:
ce00a967 2354 return -EINTR;
6539cc05
JW
2355
2356done_restock:
e8ea14cc 2357 css_get_many(&memcg->css, batch);
6539cc05
JW
2358 if (batch > nr_pages)
2359 refill_stock(memcg, batch - nr_pages);
2360done:
05b84301 2361 return ret;
7a81b88c 2362}
8a9f3ccd 2363
00501b53 2364static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2365{
ce00a967
JW
2366 if (mem_cgroup_is_root(memcg))
2367 return;
2368
3e32cb2e 2369 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2370 if (do_swap_account)
3e32cb2e 2371 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2372
e8ea14cc 2373 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2374}
2375
a3b2d692
KH
2376/*
2377 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2378 * rcu_read_lock(). The caller is responsible for calling
2379 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2380 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2381 */
2382static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2383{
a3b2d692
KH
2384 /* ID 0 is unused ID */
2385 if (!id)
2386 return NULL;
34c00c31 2387 return mem_cgroup_from_id(id);
a3b2d692
KH
2388}
2389
0a31bc97
JW
2390/*
2391 * try_get_mem_cgroup_from_page - look up page's memcg association
2392 * @page: the page
2393 *
2394 * Look up, get a css reference, and return the memcg that owns @page.
2395 *
2396 * The page must be locked to prevent racing with swap-in and page
2397 * cache charges. If coming from an unlocked page table, the caller
2398 * must ensure the page is on the LRU or this can race with charging.
2399 */
e42d9d5d 2400struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2401{
29833315 2402 struct mem_cgroup *memcg;
a3b2d692 2403 unsigned short id;
b5a84319
KH
2404 swp_entry_t ent;
2405
309381fe 2406 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2407
1306a85a 2408 memcg = page->mem_cgroup;
29833315
JW
2409 if (memcg) {
2410 if (!css_tryget_online(&memcg->css))
c0ff4b85 2411 memcg = NULL;
e42d9d5d 2412 } else if (PageSwapCache(page)) {
3c776e64 2413 ent.val = page_private(page);
9fb4b7cc 2414 id = lookup_swap_cgroup_id(ent);
a3b2d692 2415 rcu_read_lock();
c0ff4b85 2416 memcg = mem_cgroup_lookup(id);
ec903c0c 2417 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2418 memcg = NULL;
a3b2d692 2419 rcu_read_unlock();
3c776e64 2420 }
c0ff4b85 2421 return memcg;
b5a84319
KH
2422}
2423
0a31bc97
JW
2424static void lock_page_lru(struct page *page, int *isolated)
2425{
2426 struct zone *zone = page_zone(page);
2427
2428 spin_lock_irq(&zone->lru_lock);
2429 if (PageLRU(page)) {
2430 struct lruvec *lruvec;
2431
2432 lruvec = mem_cgroup_page_lruvec(page, zone);
2433 ClearPageLRU(page);
2434 del_page_from_lru_list(page, lruvec, page_lru(page));
2435 *isolated = 1;
2436 } else
2437 *isolated = 0;
2438}
2439
2440static void unlock_page_lru(struct page *page, int isolated)
2441{
2442 struct zone *zone = page_zone(page);
2443
2444 if (isolated) {
2445 struct lruvec *lruvec;
2446
2447 lruvec = mem_cgroup_page_lruvec(page, zone);
2448 VM_BUG_ON_PAGE(PageLRU(page), page);
2449 SetPageLRU(page);
2450 add_page_to_lru_list(page, lruvec, page_lru(page));
2451 }
2452 spin_unlock_irq(&zone->lru_lock);
2453}
2454
00501b53 2455static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2456 bool lrucare)
7a81b88c 2457{
0a31bc97 2458 int isolated;
9ce70c02 2459
1306a85a 2460 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2461
2462 /*
2463 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2464 * may already be on some other mem_cgroup's LRU. Take care of it.
2465 */
0a31bc97
JW
2466 if (lrucare)
2467 lock_page_lru(page, &isolated);
9ce70c02 2468
0a31bc97
JW
2469 /*
2470 * Nobody should be changing or seriously looking at
1306a85a 2471 * page->mem_cgroup at this point:
0a31bc97
JW
2472 *
2473 * - the page is uncharged
2474 *
2475 * - the page is off-LRU
2476 *
2477 * - an anonymous fault has exclusive page access, except for
2478 * a locked page table
2479 *
2480 * - a page cache insertion, a swapin fault, or a migration
2481 * have the page locked
2482 */
1306a85a 2483 page->mem_cgroup = memcg;
9ce70c02 2484
0a31bc97
JW
2485 if (lrucare)
2486 unlock_page_lru(page, isolated);
7a81b88c 2487}
66e1707b 2488
7ae1e1d0 2489#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2490/*
2491 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2492 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2493 */
2494static DEFINE_MUTEX(memcg_slab_mutex);
2495
1f458cbf
GC
2496/*
2497 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2498 * in the memcg_cache_params struct.
2499 */
2500static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2501{
2502 struct kmem_cache *cachep;
2503
2504 VM_BUG_ON(p->is_root_cache);
2505 cachep = p->root_cache;
7a67d7ab 2506 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2507}
2508
3e32cb2e
JW
2509static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2510 unsigned long nr_pages)
7ae1e1d0 2511{
3e32cb2e 2512 struct page_counter *counter;
7ae1e1d0 2513 int ret = 0;
7ae1e1d0 2514
3e32cb2e
JW
2515 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2516 if (ret < 0)
7ae1e1d0
GC
2517 return ret;
2518
3e32cb2e 2519 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2520 if (ret == -EINTR) {
2521 /*
00501b53
JW
2522 * try_charge() chose to bypass to root due to OOM kill or
2523 * fatal signal. Since our only options are to either fail
2524 * the allocation or charge it to this cgroup, do it as a
2525 * temporary condition. But we can't fail. From a kmem/slab
2526 * perspective, the cache has already been selected, by
2527 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2528 * our minds.
2529 *
2530 * This condition will only trigger if the task entered
00501b53
JW
2531 * memcg_charge_kmem in a sane state, but was OOM-killed
2532 * during try_charge() above. Tasks that were already dying
2533 * when the allocation triggers should have been already
7ae1e1d0
GC
2534 * directed to the root cgroup in memcontrol.h
2535 */
3e32cb2e 2536 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2537 if (do_swap_account)
3e32cb2e 2538 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2539 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2540 ret = 0;
2541 } else if (ret)
3e32cb2e 2542 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2543
2544 return ret;
2545}
2546
3e32cb2e
JW
2547static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2548 unsigned long nr_pages)
7ae1e1d0 2549{
3e32cb2e 2550 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2551 if (do_swap_account)
3e32cb2e 2552 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2553
64f21993 2554 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2555
e8ea14cc 2556 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2557}
2558
2633d7a0
GC
2559/*
2560 * helper for acessing a memcg's index. It will be used as an index in the
2561 * child cache array in kmem_cache, and also to derive its name. This function
2562 * will return -1 when this is not a kmem-limited memcg.
2563 */
2564int memcg_cache_id(struct mem_cgroup *memcg)
2565{
2566 return memcg ? memcg->kmemcg_id : -1;
2567}
2568
f3bb3043 2569static int memcg_alloc_cache_id(void)
55007d84 2570{
f3bb3043
VD
2571 int id, size;
2572 int err;
2573
2574 id = ida_simple_get(&kmem_limited_groups,
2575 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2576 if (id < 0)
2577 return id;
55007d84 2578
f3bb3043
VD
2579 if (id < memcg_limited_groups_array_size)
2580 return id;
2581
2582 /*
2583 * There's no space for the new id in memcg_caches arrays,
2584 * so we have to grow them.
2585 */
2586
2587 size = 2 * (id + 1);
55007d84
GC
2588 if (size < MEMCG_CACHES_MIN_SIZE)
2589 size = MEMCG_CACHES_MIN_SIZE;
2590 else if (size > MEMCG_CACHES_MAX_SIZE)
2591 size = MEMCG_CACHES_MAX_SIZE;
2592
f3bb3043
VD
2593 mutex_lock(&memcg_slab_mutex);
2594 err = memcg_update_all_caches(size);
2595 mutex_unlock(&memcg_slab_mutex);
2596
2597 if (err) {
2598 ida_simple_remove(&kmem_limited_groups, id);
2599 return err;
2600 }
2601 return id;
2602}
2603
2604static void memcg_free_cache_id(int id)
2605{
2606 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2607}
2608
2609/*
2610 * We should update the current array size iff all caches updates succeed. This
2611 * can only be done from the slab side. The slab mutex needs to be held when
2612 * calling this.
2613 */
2614void memcg_update_array_size(int num)
2615{
f3bb3043 2616 memcg_limited_groups_array_size = num;
55007d84
GC
2617}
2618
776ed0f0
VD
2619static void memcg_register_cache(struct mem_cgroup *memcg,
2620 struct kmem_cache *root_cache)
2633d7a0 2621{
93f39eea
VD
2622 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2623 memcg_slab_mutex */
bd673145 2624 struct kmem_cache *cachep;
d7f25f8a
GC
2625 int id;
2626
bd673145
VD
2627 lockdep_assert_held(&memcg_slab_mutex);
2628
2629 id = memcg_cache_id(memcg);
2630
2631 /*
2632 * Since per-memcg caches are created asynchronously on first
2633 * allocation (see memcg_kmem_get_cache()), several threads can try to
2634 * create the same cache, but only one of them may succeed.
2635 */
2636 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2637 return;
2638
073ee1c6 2639 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2640 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2641 /*
bd673145
VD
2642 * If we could not create a memcg cache, do not complain, because
2643 * that's not critical at all as we can always proceed with the root
2644 * cache.
2edefe11 2645 */
bd673145
VD
2646 if (!cachep)
2647 return;
2edefe11 2648
33a690c4 2649 css_get(&memcg->css);
bd673145 2650 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2651
d7f25f8a 2652 /*
959c8963
VD
2653 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2654 * barrier here to ensure nobody will see the kmem_cache partially
2655 * initialized.
d7f25f8a 2656 */
959c8963
VD
2657 smp_wmb();
2658
bd673145
VD
2659 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2660 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2661}
d7f25f8a 2662
776ed0f0 2663static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2664{
bd673145 2665 struct kmem_cache *root_cache;
1aa13254
VD
2666 struct mem_cgroup *memcg;
2667 int id;
2668
bd673145 2669 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2670
bd673145 2671 BUG_ON(is_root_cache(cachep));
2edefe11 2672
bd673145
VD
2673 root_cache = cachep->memcg_params->root_cache;
2674 memcg = cachep->memcg_params->memcg;
96403da2 2675 id = memcg_cache_id(memcg);
d7f25f8a 2676
bd673145
VD
2677 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2678 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2679
bd673145
VD
2680 list_del(&cachep->memcg_params->list);
2681
2682 kmem_cache_destroy(cachep);
33a690c4
VD
2683
2684 /* drop the reference taken in memcg_register_cache */
2685 css_put(&memcg->css);
2633d7a0
GC
2686}
2687
0e9d92f2
GC
2688/*
2689 * During the creation a new cache, we need to disable our accounting mechanism
2690 * altogether. This is true even if we are not creating, but rather just
2691 * enqueing new caches to be created.
2692 *
2693 * This is because that process will trigger allocations; some visible, like
2694 * explicit kmallocs to auxiliary data structures, name strings and internal
2695 * cache structures; some well concealed, like INIT_WORK() that can allocate
2696 * objects during debug.
2697 *
2698 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2699 * to it. This may not be a bounded recursion: since the first cache creation
2700 * failed to complete (waiting on the allocation), we'll just try to create the
2701 * cache again, failing at the same point.
2702 *
2703 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2704 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2705 * inside the following two functions.
2706 */
2707static inline void memcg_stop_kmem_account(void)
2708{
2709 VM_BUG_ON(!current->mm);
2710 current->memcg_kmem_skip_account++;
2711}
2712
2713static inline void memcg_resume_kmem_account(void)
2714{
2715 VM_BUG_ON(!current->mm);
2716 current->memcg_kmem_skip_account--;
2717}
2718
776ed0f0 2719int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2720{
2721 struct kmem_cache *c;
b8529907 2722 int i, failed = 0;
7cf27982 2723
bd673145 2724 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2725 for_each_memcg_cache_index(i) {
2726 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2727 if (!c)
2728 continue;
2729
776ed0f0 2730 memcg_unregister_cache(c);
b8529907
VD
2731
2732 if (cache_from_memcg_idx(s, i))
2733 failed++;
7cf27982 2734 }
bd673145 2735 mutex_unlock(&memcg_slab_mutex);
b8529907 2736 return failed;
7cf27982
GC
2737}
2738
776ed0f0 2739static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2740{
2741 struct kmem_cache *cachep;
bd673145 2742 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2743
2744 if (!memcg_kmem_is_active(memcg))
2745 return;
2746
bd673145
VD
2747 mutex_lock(&memcg_slab_mutex);
2748 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2749 cachep = memcg_params_to_cache(params);
bd673145
VD
2750 kmem_cache_shrink(cachep);
2751 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2752 memcg_unregister_cache(cachep);
1f458cbf 2753 }
bd673145 2754 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2755}
2756
776ed0f0 2757struct memcg_register_cache_work {
5722d094
VD
2758 struct mem_cgroup *memcg;
2759 struct kmem_cache *cachep;
2760 struct work_struct work;
2761};
2762
776ed0f0 2763static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2764{
776ed0f0
VD
2765 struct memcg_register_cache_work *cw =
2766 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2767 struct mem_cgroup *memcg = cw->memcg;
2768 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2769
bd673145 2770 mutex_lock(&memcg_slab_mutex);
776ed0f0 2771 memcg_register_cache(memcg, cachep);
bd673145
VD
2772 mutex_unlock(&memcg_slab_mutex);
2773
5722d094 2774 css_put(&memcg->css);
d7f25f8a
GC
2775 kfree(cw);
2776}
2777
2778/*
2779 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2780 */
776ed0f0
VD
2781static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2782 struct kmem_cache *cachep)
d7f25f8a 2783{
776ed0f0 2784 struct memcg_register_cache_work *cw;
d7f25f8a 2785
776ed0f0 2786 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2787 if (cw == NULL) {
2788 css_put(&memcg->css);
d7f25f8a
GC
2789 return;
2790 }
2791
2792 cw->memcg = memcg;
2793 cw->cachep = cachep;
2794
776ed0f0 2795 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2796 schedule_work(&cw->work);
2797}
2798
776ed0f0
VD
2799static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2800 struct kmem_cache *cachep)
0e9d92f2
GC
2801{
2802 /*
2803 * We need to stop accounting when we kmalloc, because if the
2804 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2805 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2806 *
2807 * However, it is better to enclose the whole function. Depending on
2808 * the debugging options enabled, INIT_WORK(), for instance, can
2809 * trigger an allocation. This too, will make us recurse. Because at
2810 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2811 * the safest choice is to do it like this, wrapping the whole function.
2812 */
2813 memcg_stop_kmem_account();
776ed0f0 2814 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2815 memcg_resume_kmem_account();
2816}
c67a8a68
VD
2817
2818int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2819{
3e32cb2e 2820 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2821 int res;
2822
3e32cb2e 2823 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2824 if (!res)
3e32cb2e 2825 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2826 return res;
2827}
2828
2829void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2830{
3e32cb2e
JW
2831 unsigned int nr_pages = 1 << order;
2832
2833 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2834 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2835}
2836
d7f25f8a
GC
2837/*
2838 * Return the kmem_cache we're supposed to use for a slab allocation.
2839 * We try to use the current memcg's version of the cache.
2840 *
2841 * If the cache does not exist yet, if we are the first user of it,
2842 * we either create it immediately, if possible, or create it asynchronously
2843 * in a workqueue.
2844 * In the latter case, we will let the current allocation go through with
2845 * the original cache.
2846 *
2847 * Can't be called in interrupt context or from kernel threads.
2848 * This function needs to be called with rcu_read_lock() held.
2849 */
2850struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2851 gfp_t gfp)
2852{
2853 struct mem_cgroup *memcg;
959c8963 2854 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2855
2856 VM_BUG_ON(!cachep->memcg_params);
2857 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2858
9d100c5e 2859 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2860 return cachep;
2861
d7f25f8a
GC
2862 rcu_read_lock();
2863 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2864
cf2b8fbf 2865 if (!memcg_kmem_is_active(memcg))
ca0dde97 2866 goto out;
d7f25f8a 2867
959c8963
VD
2868 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2869 if (likely(memcg_cachep)) {
2870 cachep = memcg_cachep;
ca0dde97 2871 goto out;
d7f25f8a
GC
2872 }
2873
ca0dde97 2874 /* The corresponding put will be done in the workqueue. */
ec903c0c 2875 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2876 goto out;
2877 rcu_read_unlock();
2878
2879 /*
2880 * If we are in a safe context (can wait, and not in interrupt
2881 * context), we could be be predictable and return right away.
2882 * This would guarantee that the allocation being performed
2883 * already belongs in the new cache.
2884 *
2885 * However, there are some clashes that can arrive from locking.
2886 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2887 * memcg_create_kmem_cache, this means no further allocation
2888 * could happen with the slab_mutex held. So it's better to
2889 * defer everything.
ca0dde97 2890 */
776ed0f0 2891 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2892 return cachep;
2893out:
2894 rcu_read_unlock();
2895 return cachep;
d7f25f8a 2896}
d7f25f8a 2897
7ae1e1d0
GC
2898/*
2899 * We need to verify if the allocation against current->mm->owner's memcg is
2900 * possible for the given order. But the page is not allocated yet, so we'll
2901 * need a further commit step to do the final arrangements.
2902 *
2903 * It is possible for the task to switch cgroups in this mean time, so at
2904 * commit time, we can't rely on task conversion any longer. We'll then use
2905 * the handle argument to return to the caller which cgroup we should commit
2906 * against. We could also return the memcg directly and avoid the pointer
2907 * passing, but a boolean return value gives better semantics considering
2908 * the compiled-out case as well.
2909 *
2910 * Returning true means the allocation is possible.
2911 */
2912bool
2913__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2914{
2915 struct mem_cgroup *memcg;
2916 int ret;
2917
2918 *_memcg = NULL;
6d42c232
GC
2919
2920 /*
2921 * Disabling accounting is only relevant for some specific memcg
2922 * internal allocations. Therefore we would initially not have such
52383431
VD
2923 * check here, since direct calls to the page allocator that are
2924 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2925 * outside memcg core. We are mostly concerned with cache allocations,
2926 * and by having this test at memcg_kmem_get_cache, we are already able
2927 * to relay the allocation to the root cache and bypass the memcg cache
2928 * altogether.
6d42c232
GC
2929 *
2930 * There is one exception, though: the SLUB allocator does not create
2931 * large order caches, but rather service large kmallocs directly from
2932 * the page allocator. Therefore, the following sequence when backed by
2933 * the SLUB allocator:
2934 *
f894ffa8
AM
2935 * memcg_stop_kmem_account();
2936 * kmalloc(<large_number>)
2937 * memcg_resume_kmem_account();
6d42c232
GC
2938 *
2939 * would effectively ignore the fact that we should skip accounting,
2940 * since it will drive us directly to this function without passing
2941 * through the cache selector memcg_kmem_get_cache. Such large
2942 * allocations are extremely rare but can happen, for instance, for the
2943 * cache arrays. We bring this test here.
2944 */
9d100c5e 2945 if (current->memcg_kmem_skip_account)
6d42c232
GC
2946 return true;
2947
df381975 2948 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2949
cf2b8fbf 2950 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2951 css_put(&memcg->css);
2952 return true;
2953 }
2954
3e32cb2e 2955 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2956 if (!ret)
2957 *_memcg = memcg;
7ae1e1d0
GC
2958
2959 css_put(&memcg->css);
2960 return (ret == 0);
2961}
2962
2963void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2964 int order)
2965{
7ae1e1d0
GC
2966 VM_BUG_ON(mem_cgroup_is_root(memcg));
2967
2968 /* The page allocation failed. Revert */
2969 if (!page) {
3e32cb2e 2970 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2971 return;
2972 }
1306a85a 2973 page->mem_cgroup = memcg;
7ae1e1d0
GC
2974}
2975
2976void __memcg_kmem_uncharge_pages(struct page *page, int order)
2977{
1306a85a 2978 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2979
7ae1e1d0
GC
2980 if (!memcg)
2981 return;
2982
309381fe 2983 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2984
3e32cb2e 2985 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2986 page->mem_cgroup = NULL;
7ae1e1d0 2987}
1f458cbf 2988#else
776ed0f0 2989static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2990{
2991}
7ae1e1d0
GC
2992#endif /* CONFIG_MEMCG_KMEM */
2993
ca3e0214
KH
2994#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2995
ca3e0214
KH
2996/*
2997 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2998 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2999 * charge/uncharge will be never happen and move_account() is done under
3000 * compound_lock(), so we don't have to take care of races.
ca3e0214 3001 */
e94c8a9c 3002void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3003{
e94c8a9c 3004 int i;
ca3e0214 3005
3d37c4a9
KH
3006 if (mem_cgroup_disabled())
3007 return;
b070e65c 3008
29833315 3009 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3010 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3011
1306a85a 3012 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3013 HPAGE_PMD_NR);
ca3e0214 3014}
12d27107 3015#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3016
f817ed48 3017/**
de3638d9 3018 * mem_cgroup_move_account - move account of the page
5564e88b 3019 * @page: the page
7ec99d62 3020 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3021 * @from: mem_cgroup which the page is moved from.
3022 * @to: mem_cgroup which the page is moved to. @from != @to.
3023 *
3024 * The caller must confirm following.
08e552c6 3025 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3026 * - compound_lock is held when nr_pages > 1
f817ed48 3027 *
2f3479b1
KH
3028 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3029 * from old cgroup.
f817ed48 3030 */
7ec99d62
JW
3031static int mem_cgroup_move_account(struct page *page,
3032 unsigned int nr_pages,
7ec99d62 3033 struct mem_cgroup *from,
2f3479b1 3034 struct mem_cgroup *to)
f817ed48 3035{
de3638d9
JW
3036 unsigned long flags;
3037 int ret;
987eba66 3038
f817ed48 3039 VM_BUG_ON(from == to);
309381fe 3040 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3041 /*
3042 * The page is isolated from LRU. So, collapse function
3043 * will not handle this page. But page splitting can happen.
3044 * Do this check under compound_page_lock(). The caller should
3045 * hold it.
3046 */
3047 ret = -EBUSY;
7ec99d62 3048 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3049 goto out;
3050
0a31bc97 3051 /*
1306a85a 3052 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
3053 * of its source page while we change it: page migration takes
3054 * both pages off the LRU, but page cache replacement doesn't.
3055 */
3056 if (!trylock_page(page))
3057 goto out;
de3638d9
JW
3058
3059 ret = -EINVAL;
1306a85a 3060 if (page->mem_cgroup != from)
0a31bc97 3061 goto out_unlock;
de3638d9 3062
354a4783 3063 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3064
0a31bc97 3065 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3066 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3067 nr_pages);
3068 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3069 nr_pages);
3070 }
3ea67d06 3071
59d1d256
JW
3072 if (PageWriteback(page)) {
3073 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3074 nr_pages);
3075 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3076 nr_pages);
3077 }
3ea67d06 3078
0a31bc97 3079 /*
1306a85a 3080 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
3081 * is referenced, charged, and isolated - we can't race with
3082 * uncharging, charging, migration, or LRU putback.
3083 */
d69b042f 3084
854ffa8d 3085 /* caller should have done css_get */
1306a85a 3086 page->mem_cgroup = to;
354a4783
JW
3087 spin_unlock_irqrestore(&from->move_lock, flags);
3088
de3638d9 3089 ret = 0;
0a31bc97
JW
3090
3091 local_irq_disable();
3092 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3093 memcg_check_events(to, page);
0a31bc97 3094 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3095 memcg_check_events(from, page);
0a31bc97
JW
3096 local_irq_enable();
3097out_unlock:
3098 unlock_page(page);
de3638d9 3099out:
f817ed48
KH
3100 return ret;
3101}
3102
c255a458 3103#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3104static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3105 bool charge)
d13d1443 3106{
0a31bc97
JW
3107 int val = (charge) ? 1 : -1;
3108 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3109}
02491447
DN
3110
3111/**
3112 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3113 * @entry: swap entry to be moved
3114 * @from: mem_cgroup which the entry is moved from
3115 * @to: mem_cgroup which the entry is moved to
3116 *
3117 * It succeeds only when the swap_cgroup's record for this entry is the same
3118 * as the mem_cgroup's id of @from.
3119 *
3120 * Returns 0 on success, -EINVAL on failure.
3121 *
3e32cb2e 3122 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3123 * both res and memsw, and called css_get().
3124 */
3125static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3126 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3127{
3128 unsigned short old_id, new_id;
3129
34c00c31
LZ
3130 old_id = mem_cgroup_id(from);
3131 new_id = mem_cgroup_id(to);
02491447
DN
3132
3133 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3134 mem_cgroup_swap_statistics(from, false);
483c30b5 3135 mem_cgroup_swap_statistics(to, true);
02491447 3136 /*
483c30b5 3137 * This function is only called from task migration context now.
3e32cb2e 3138 * It postpones page_counter and refcount handling till the end
483c30b5 3139 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3140 * improvement. But we cannot postpone css_get(to) because if
3141 * the process that has been moved to @to does swap-in, the
3142 * refcount of @to might be decreased to 0.
3143 *
3144 * We are in attach() phase, so the cgroup is guaranteed to be
3145 * alive, so we can just call css_get().
02491447 3146 */
4050377b 3147 css_get(&to->css);
02491447
DN
3148 return 0;
3149 }
3150 return -EINVAL;
3151}
3152#else
3153static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3154 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3155{
3156 return -EINVAL;
3157}
8c7c6e34 3158#endif
d13d1443 3159
3e32cb2e 3160static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 3161
d38d2a75 3162static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3163 unsigned long limit)
628f4235 3164{
3e32cb2e
JW
3165 unsigned long curusage;
3166 unsigned long oldusage;
3167 bool enlarge = false;
81d39c20 3168 int retry_count;
3e32cb2e 3169 int ret;
81d39c20
KH
3170
3171 /*
3172 * For keeping hierarchical_reclaim simple, how long we should retry
3173 * is depends on callers. We set our retry-count to be function
3174 * of # of children which we should visit in this loop.
3175 */
3e32cb2e
JW
3176 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3177 mem_cgroup_count_children(memcg);
81d39c20 3178
3e32cb2e 3179 oldusage = page_counter_read(&memcg->memory);
628f4235 3180
3e32cb2e 3181 do {
628f4235
KH
3182 if (signal_pending(current)) {
3183 ret = -EINTR;
3184 break;
3185 }
3e32cb2e
JW
3186
3187 mutex_lock(&memcg_limit_mutex);
3188 if (limit > memcg->memsw.limit) {
3189 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3190 ret = -EINVAL;
628f4235
KH
3191 break;
3192 }
3e32cb2e
JW
3193 if (limit > memcg->memory.limit)
3194 enlarge = true;
3195 ret = page_counter_limit(&memcg->memory, limit);
3196 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3197
3198 if (!ret)
3199 break;
3200
b70a2a21
JW
3201 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3202
3e32cb2e 3203 curusage = page_counter_read(&memcg->memory);
81d39c20 3204 /* Usage is reduced ? */
f894ffa8 3205 if (curusage >= oldusage)
81d39c20
KH
3206 retry_count--;
3207 else
3208 oldusage = curusage;
3e32cb2e
JW
3209 } while (retry_count);
3210
3c11ecf4
KH
3211 if (!ret && enlarge)
3212 memcg_oom_recover(memcg);
14797e23 3213
8c7c6e34
KH
3214 return ret;
3215}
3216
338c8431 3217static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3218 unsigned long limit)
8c7c6e34 3219{
3e32cb2e
JW
3220 unsigned long curusage;
3221 unsigned long oldusage;
3222 bool enlarge = false;
81d39c20 3223 int retry_count;
3e32cb2e 3224 int ret;
8c7c6e34 3225
81d39c20 3226 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3227 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3228 mem_cgroup_count_children(memcg);
3229
3230 oldusage = page_counter_read(&memcg->memsw);
3231
3232 do {
8c7c6e34
KH
3233 if (signal_pending(current)) {
3234 ret = -EINTR;
3235 break;
3236 }
3e32cb2e
JW
3237
3238 mutex_lock(&memcg_limit_mutex);
3239 if (limit < memcg->memory.limit) {
3240 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3241 ret = -EINVAL;
8c7c6e34
KH
3242 break;
3243 }
3e32cb2e
JW
3244 if (limit > memcg->memsw.limit)
3245 enlarge = true;
3246 ret = page_counter_limit(&memcg->memsw, limit);
3247 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3248
3249 if (!ret)
3250 break;
3251
b70a2a21
JW
3252 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3253
3e32cb2e 3254 curusage = page_counter_read(&memcg->memsw);
81d39c20 3255 /* Usage is reduced ? */
8c7c6e34 3256 if (curusage >= oldusage)
628f4235 3257 retry_count--;
81d39c20
KH
3258 else
3259 oldusage = curusage;
3e32cb2e
JW
3260 } while (retry_count);
3261
3c11ecf4
KH
3262 if (!ret && enlarge)
3263 memcg_oom_recover(memcg);
3e32cb2e 3264
628f4235
KH
3265 return ret;
3266}
3267
0608f43d
AM
3268unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3269 gfp_t gfp_mask,
3270 unsigned long *total_scanned)
3271{
3272 unsigned long nr_reclaimed = 0;
3273 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3274 unsigned long reclaimed;
3275 int loop = 0;
3276 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3277 unsigned long excess;
0608f43d
AM
3278 unsigned long nr_scanned;
3279
3280 if (order > 0)
3281 return 0;
3282
3283 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3284 /*
3285 * This loop can run a while, specially if mem_cgroup's continuously
3286 * keep exceeding their soft limit and putting the system under
3287 * pressure
3288 */
3289 do {
3290 if (next_mz)
3291 mz = next_mz;
3292 else
3293 mz = mem_cgroup_largest_soft_limit_node(mctz);
3294 if (!mz)
3295 break;
3296
3297 nr_scanned = 0;
3298 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3299 gfp_mask, &nr_scanned);
3300 nr_reclaimed += reclaimed;
3301 *total_scanned += nr_scanned;
0a31bc97 3302 spin_lock_irq(&mctz->lock);
bc2f2e7f 3303 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3304
3305 /*
3306 * If we failed to reclaim anything from this memory cgroup
3307 * it is time to move on to the next cgroup
3308 */
3309 next_mz = NULL;
bc2f2e7f
VD
3310 if (!reclaimed)
3311 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3312
3e32cb2e 3313 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3314 /*
3315 * One school of thought says that we should not add
3316 * back the node to the tree if reclaim returns 0.
3317 * But our reclaim could return 0, simply because due
3318 * to priority we are exposing a smaller subset of
3319 * memory to reclaim from. Consider this as a longer
3320 * term TODO.
3321 */
3322 /* If excess == 0, no tree ops */
cf2c8127 3323 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3324 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3325 css_put(&mz->memcg->css);
3326 loop++;
3327 /*
3328 * Could not reclaim anything and there are no more
3329 * mem cgroups to try or we seem to be looping without
3330 * reclaiming anything.
3331 */
3332 if (!nr_reclaimed &&
3333 (next_mz == NULL ||
3334 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3335 break;
3336 } while (!nr_reclaimed);
3337 if (next_mz)
3338 css_put(&next_mz->memcg->css);
3339 return nr_reclaimed;
3340}
3341
ea280e7b
TH
3342/*
3343 * Test whether @memcg has children, dead or alive. Note that this
3344 * function doesn't care whether @memcg has use_hierarchy enabled and
3345 * returns %true if there are child csses according to the cgroup
3346 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3347 */
b5f99b53
GC
3348static inline bool memcg_has_children(struct mem_cgroup *memcg)
3349{
ea280e7b
TH
3350 bool ret;
3351
696ac172 3352 /*
ea280e7b
TH
3353 * The lock does not prevent addition or deletion of children, but
3354 * it prevents a new child from being initialized based on this
3355 * parent in css_online(), so it's enough to decide whether
3356 * hierarchically inherited attributes can still be changed or not.
696ac172 3357 */
ea280e7b
TH
3358 lockdep_assert_held(&memcg_create_mutex);
3359
3360 rcu_read_lock();
3361 ret = css_next_child(NULL, &memcg->css);
3362 rcu_read_unlock();
3363 return ret;
b5f99b53
GC
3364}
3365
c26251f9
MH
3366/*
3367 * Reclaims as many pages from the given memcg as possible and moves
3368 * the rest to the parent.
3369 *
3370 * Caller is responsible for holding css reference for memcg.
3371 */
3372static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3373{
3374 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3375
c1e862c1
KH
3376 /* we call try-to-free pages for make this cgroup empty */
3377 lru_add_drain_all();
f817ed48 3378 /* try to free all pages in this cgroup */
3e32cb2e 3379 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3380 int progress;
c1e862c1 3381
c26251f9
MH
3382 if (signal_pending(current))
3383 return -EINTR;
3384
b70a2a21
JW
3385 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3386 GFP_KERNEL, true);
c1e862c1 3387 if (!progress) {
f817ed48 3388 nr_retries--;
c1e862c1 3389 /* maybe some writeback is necessary */
8aa7e847 3390 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3391 }
f817ed48
KH
3392
3393 }
ab5196c2
MH
3394
3395 return 0;
cc847582
KH
3396}
3397
6770c64e
TH
3398static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3399 char *buf, size_t nbytes,
3400 loff_t off)
c1e862c1 3401{
6770c64e 3402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3403
d8423011
MH
3404 if (mem_cgroup_is_root(memcg))
3405 return -EINVAL;
6770c64e 3406 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3407}
3408
182446d0
TH
3409static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3410 struct cftype *cft)
18f59ea7 3411{
182446d0 3412 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3413}
3414
182446d0
TH
3415static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3416 struct cftype *cft, u64 val)
18f59ea7
BS
3417{
3418 int retval = 0;
182446d0 3419 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3420 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3421
0999821b 3422 mutex_lock(&memcg_create_mutex);
567fb435
GC
3423
3424 if (memcg->use_hierarchy == val)
3425 goto out;
3426
18f59ea7 3427 /*
af901ca1 3428 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3429 * in the child subtrees. If it is unset, then the change can
3430 * occur, provided the current cgroup has no children.
3431 *
3432 * For the root cgroup, parent_mem is NULL, we allow value to be
3433 * set if there are no children.
3434 */
c0ff4b85 3435 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3436 (val == 1 || val == 0)) {
ea280e7b 3437 if (!memcg_has_children(memcg))
c0ff4b85 3438 memcg->use_hierarchy = val;
18f59ea7
BS
3439 else
3440 retval = -EBUSY;
3441 } else
3442 retval = -EINVAL;
567fb435
GC
3443
3444out:
0999821b 3445 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3446
3447 return retval;
3448}
3449
3e32cb2e
JW
3450static unsigned long tree_stat(struct mem_cgroup *memcg,
3451 enum mem_cgroup_stat_index idx)
ce00a967
JW
3452{
3453 struct mem_cgroup *iter;
3454 long val = 0;
3455
3456 /* Per-cpu values can be negative, use a signed accumulator */
3457 for_each_mem_cgroup_tree(iter, memcg)
3458 val += mem_cgroup_read_stat(iter, idx);
3459
3460 if (val < 0) /* race ? */
3461 val = 0;
3462 return val;
3463}
3464
3465static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3466{
3467 u64 val;
3468
3e32cb2e
JW
3469 if (mem_cgroup_is_root(memcg)) {
3470 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3471 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3472 if (swap)
3473 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3474 } else {
ce00a967 3475 if (!swap)
3e32cb2e 3476 val = page_counter_read(&memcg->memory);
ce00a967 3477 else
3e32cb2e 3478 val = page_counter_read(&memcg->memsw);
ce00a967 3479 }
ce00a967
JW
3480 return val << PAGE_SHIFT;
3481}
3482
3e32cb2e
JW
3483enum {
3484 RES_USAGE,
3485 RES_LIMIT,
3486 RES_MAX_USAGE,
3487 RES_FAILCNT,
3488 RES_SOFT_LIMIT,
3489};
ce00a967 3490
791badbd 3491static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3492 struct cftype *cft)
8cdea7c0 3493{
182446d0 3494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3495 struct page_counter *counter;
af36f906 3496
3e32cb2e 3497 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3498 case _MEM:
3e32cb2e
JW
3499 counter = &memcg->memory;
3500 break;
8c7c6e34 3501 case _MEMSWAP:
3e32cb2e
JW
3502 counter = &memcg->memsw;
3503 break;
510fc4e1 3504 case _KMEM:
3e32cb2e 3505 counter = &memcg->kmem;
510fc4e1 3506 break;
8c7c6e34
KH
3507 default:
3508 BUG();
8c7c6e34 3509 }
3e32cb2e
JW
3510
3511 switch (MEMFILE_ATTR(cft->private)) {
3512 case RES_USAGE:
3513 if (counter == &memcg->memory)
3514 return mem_cgroup_usage(memcg, false);
3515 if (counter == &memcg->memsw)
3516 return mem_cgroup_usage(memcg, true);
3517 return (u64)page_counter_read(counter) * PAGE_SIZE;
3518 case RES_LIMIT:
3519 return (u64)counter->limit * PAGE_SIZE;
3520 case RES_MAX_USAGE:
3521 return (u64)counter->watermark * PAGE_SIZE;
3522 case RES_FAILCNT:
3523 return counter->failcnt;
3524 case RES_SOFT_LIMIT:
3525 return (u64)memcg->soft_limit * PAGE_SIZE;
3526 default:
3527 BUG();
3528 }
8cdea7c0 3529}
510fc4e1 3530
510fc4e1 3531#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3532static int memcg_activate_kmem(struct mem_cgroup *memcg,
3533 unsigned long nr_pages)
d6441637
VD
3534{
3535 int err = 0;
3536 int memcg_id;
3537
3538 if (memcg_kmem_is_active(memcg))
3539 return 0;
3540
510fc4e1
GC
3541 /*
3542 * For simplicity, we won't allow this to be disabled. It also can't
3543 * be changed if the cgroup has children already, or if tasks had
3544 * already joined.
3545 *
3546 * If tasks join before we set the limit, a person looking at
3547 * kmem.usage_in_bytes will have no way to determine when it took
3548 * place, which makes the value quite meaningless.
3549 *
3550 * After it first became limited, changes in the value of the limit are
3551 * of course permitted.
510fc4e1 3552 */
0999821b 3553 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3554 if (cgroup_has_tasks(memcg->css.cgroup) ||
3555 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3556 err = -EBUSY;
3557 mutex_unlock(&memcg_create_mutex);
3558 if (err)
3559 goto out;
510fc4e1 3560
f3bb3043 3561 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3562 if (memcg_id < 0) {
3563 err = memcg_id;
3564 goto out;
3565 }
3566
d6441637
VD
3567 memcg->kmemcg_id = memcg_id;
3568 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3569
3570 /*
3571 * We couldn't have accounted to this cgroup, because it hasn't got the
3572 * active bit set yet, so this should succeed.
3573 */
3e32cb2e 3574 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3575 VM_BUG_ON(err);
3576
3577 static_key_slow_inc(&memcg_kmem_enabled_key);
3578 /*
3579 * Setting the active bit after enabling static branching will
3580 * guarantee no one starts accounting before all call sites are
3581 * patched.
3582 */
3583 memcg_kmem_set_active(memcg);
510fc4e1 3584out:
d6441637 3585 return err;
d6441637
VD
3586}
3587
d6441637 3588static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3589 unsigned long limit)
d6441637
VD
3590{
3591 int ret;
3592
3e32cb2e 3593 mutex_lock(&memcg_limit_mutex);
d6441637 3594 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3595 ret = memcg_activate_kmem(memcg, limit);
d6441637 3596 else
3e32cb2e
JW
3597 ret = page_counter_limit(&memcg->kmem, limit);
3598 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3599 return ret;
3600}
3601
55007d84 3602static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3603{
55007d84 3604 int ret = 0;
510fc4e1 3605 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3606
d6441637
VD
3607 if (!parent)
3608 return 0;
55007d84 3609
8c0145b6 3610 mutex_lock(&memcg_limit_mutex);
55007d84 3611 /*
d6441637
VD
3612 * If the parent cgroup is not kmem-active now, it cannot be activated
3613 * after this point, because it has at least one child already.
55007d84 3614 */
d6441637 3615 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3616 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3617 mutex_unlock(&memcg_limit_mutex);
55007d84 3618 return ret;
510fc4e1 3619}
d6441637
VD
3620#else
3621static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3622 unsigned long limit)
d6441637
VD
3623{
3624 return -EINVAL;
3625}
6d043990 3626#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3627
628f4235
KH
3628/*
3629 * The user of this function is...
3630 * RES_LIMIT.
3631 */
451af504
TH
3632static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3633 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3634{
451af504 3635 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3636 unsigned long nr_pages;
628f4235
KH
3637 int ret;
3638
451af504 3639 buf = strstrip(buf);
3e32cb2e
JW
3640 ret = page_counter_memparse(buf, &nr_pages);
3641 if (ret)
3642 return ret;
af36f906 3643
3e32cb2e 3644 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3645 case RES_LIMIT:
4b3bde4c
BS
3646 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3647 ret = -EINVAL;
3648 break;
3649 }
3e32cb2e
JW
3650 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3651 case _MEM:
3652 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3653 break;
3e32cb2e
JW
3654 case _MEMSWAP:
3655 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3656 break;
3e32cb2e
JW
3657 case _KMEM:
3658 ret = memcg_update_kmem_limit(memcg, nr_pages);
3659 break;
3660 }
296c81d8 3661 break;
3e32cb2e
JW
3662 case RES_SOFT_LIMIT:
3663 memcg->soft_limit = nr_pages;
3664 ret = 0;
628f4235
KH
3665 break;
3666 }
451af504 3667 return ret ?: nbytes;
8cdea7c0
BS
3668}
3669
6770c64e
TH
3670static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3671 size_t nbytes, loff_t off)
c84872e1 3672{
6770c64e 3673 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3674 struct page_counter *counter;
c84872e1 3675
3e32cb2e
JW
3676 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3677 case _MEM:
3678 counter = &memcg->memory;
3679 break;
3680 case _MEMSWAP:
3681 counter = &memcg->memsw;
3682 break;
3683 case _KMEM:
3684 counter = &memcg->kmem;
3685 break;
3686 default:
3687 BUG();
3688 }
af36f906 3689
3e32cb2e 3690 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3691 case RES_MAX_USAGE:
3e32cb2e 3692 page_counter_reset_watermark(counter);
29f2a4da
PE
3693 break;
3694 case RES_FAILCNT:
3e32cb2e 3695 counter->failcnt = 0;
29f2a4da 3696 break;
3e32cb2e
JW
3697 default:
3698 BUG();
29f2a4da 3699 }
f64c3f54 3700
6770c64e 3701 return nbytes;
c84872e1
PE
3702}
3703
182446d0 3704static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3705 struct cftype *cft)
3706{
182446d0 3707 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3708}
3709
02491447 3710#ifdef CONFIG_MMU
182446d0 3711static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3712 struct cftype *cft, u64 val)
3713{
182446d0 3714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3715
3716 if (val >= (1 << NR_MOVE_TYPE))
3717 return -EINVAL;
ee5e8472 3718
7dc74be0 3719 /*
ee5e8472
GC
3720 * No kind of locking is needed in here, because ->can_attach() will
3721 * check this value once in the beginning of the process, and then carry
3722 * on with stale data. This means that changes to this value will only
3723 * affect task migrations starting after the change.
7dc74be0 3724 */
c0ff4b85 3725 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3726 return 0;
3727}
02491447 3728#else
182446d0 3729static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3730 struct cftype *cft, u64 val)
3731{
3732 return -ENOSYS;
3733}
3734#endif
7dc74be0 3735
406eb0c9 3736#ifdef CONFIG_NUMA
2da8ca82 3737static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3738{
25485de6
GT
3739 struct numa_stat {
3740 const char *name;
3741 unsigned int lru_mask;
3742 };
3743
3744 static const struct numa_stat stats[] = {
3745 { "total", LRU_ALL },
3746 { "file", LRU_ALL_FILE },
3747 { "anon", LRU_ALL_ANON },
3748 { "unevictable", BIT(LRU_UNEVICTABLE) },
3749 };
3750 const struct numa_stat *stat;
406eb0c9 3751 int nid;
25485de6 3752 unsigned long nr;
2da8ca82 3753 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3754
25485de6
GT
3755 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3756 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3757 seq_printf(m, "%s=%lu", stat->name, nr);
3758 for_each_node_state(nid, N_MEMORY) {
3759 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3760 stat->lru_mask);
3761 seq_printf(m, " N%d=%lu", nid, nr);
3762 }
3763 seq_putc(m, '\n');
406eb0c9 3764 }
406eb0c9 3765
071aee13
YH
3766 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3767 struct mem_cgroup *iter;
3768
3769 nr = 0;
3770 for_each_mem_cgroup_tree(iter, memcg)
3771 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3772 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3773 for_each_node_state(nid, N_MEMORY) {
3774 nr = 0;
3775 for_each_mem_cgroup_tree(iter, memcg)
3776 nr += mem_cgroup_node_nr_lru_pages(
3777 iter, nid, stat->lru_mask);
3778 seq_printf(m, " N%d=%lu", nid, nr);
3779 }
3780 seq_putc(m, '\n');
406eb0c9 3781 }
406eb0c9 3782
406eb0c9
YH
3783 return 0;
3784}
3785#endif /* CONFIG_NUMA */
3786
af7c4b0e
JW
3787static inline void mem_cgroup_lru_names_not_uptodate(void)
3788{
3789 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3790}
3791
2da8ca82 3792static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3793{
2da8ca82 3794 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3795 unsigned long memory, memsw;
af7c4b0e
JW
3796 struct mem_cgroup *mi;
3797 unsigned int i;
406eb0c9 3798
af7c4b0e 3799 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3800 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3801 continue;
af7c4b0e
JW
3802 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3803 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3804 }
7b854121 3805
af7c4b0e
JW
3806 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3807 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3808 mem_cgroup_read_events(memcg, i));
3809
3810 for (i = 0; i < NR_LRU_LISTS; i++)
3811 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3812 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3813
14067bb3 3814 /* Hierarchical information */
3e32cb2e
JW
3815 memory = memsw = PAGE_COUNTER_MAX;
3816 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3817 memory = min(memory, mi->memory.limit);
3818 memsw = min(memsw, mi->memsw.limit);
fee7b548 3819 }
3e32cb2e
JW
3820 seq_printf(m, "hierarchical_memory_limit %llu\n",
3821 (u64)memory * PAGE_SIZE);
3822 if (do_swap_account)
3823 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3824 (u64)memsw * PAGE_SIZE);
7f016ee8 3825
af7c4b0e
JW
3826 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3827 long long val = 0;
3828
bff6bb83 3829 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3830 continue;
af7c4b0e
JW
3831 for_each_mem_cgroup_tree(mi, memcg)
3832 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3833 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3834 }
3835
3836 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3837 unsigned long long val = 0;
3838
3839 for_each_mem_cgroup_tree(mi, memcg)
3840 val += mem_cgroup_read_events(mi, i);
3841 seq_printf(m, "total_%s %llu\n",
3842 mem_cgroup_events_names[i], val);
3843 }
3844
3845 for (i = 0; i < NR_LRU_LISTS; i++) {
3846 unsigned long long val = 0;
3847
3848 for_each_mem_cgroup_tree(mi, memcg)
3849 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3850 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3851 }
14067bb3 3852
7f016ee8 3853#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3854 {
3855 int nid, zid;
3856 struct mem_cgroup_per_zone *mz;
89abfab1 3857 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3858 unsigned long recent_rotated[2] = {0, 0};
3859 unsigned long recent_scanned[2] = {0, 0};
3860
3861 for_each_online_node(nid)
3862 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3863 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3864 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3865
89abfab1
HD
3866 recent_rotated[0] += rstat->recent_rotated[0];
3867 recent_rotated[1] += rstat->recent_rotated[1];
3868 recent_scanned[0] += rstat->recent_scanned[0];
3869 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3870 }
78ccf5b5
JW
3871 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3872 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3873 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3874 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3875 }
3876#endif
3877
d2ceb9b7
KH
3878 return 0;
3879}
3880
182446d0
TH
3881static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3882 struct cftype *cft)
a7885eb8 3883{
182446d0 3884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3885
1f4c025b 3886 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3887}
3888
182446d0
TH
3889static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3890 struct cftype *cft, u64 val)
a7885eb8 3891{
182446d0 3892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3893
3dae7fec 3894 if (val > 100)
a7885eb8
KM
3895 return -EINVAL;
3896
14208b0e 3897 if (css->parent)
3dae7fec
JW
3898 memcg->swappiness = val;
3899 else
3900 vm_swappiness = val;
068b38c1 3901
a7885eb8
KM
3902 return 0;
3903}
3904
2e72b634
KS
3905static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3906{
3907 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3908 unsigned long usage;
2e72b634
KS
3909 int i;
3910
3911 rcu_read_lock();
3912 if (!swap)
2c488db2 3913 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3914 else
2c488db2 3915 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3916
3917 if (!t)
3918 goto unlock;
3919
ce00a967 3920 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3921
3922 /*
748dad36 3923 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3924 * If it's not true, a threshold was crossed after last
3925 * call of __mem_cgroup_threshold().
3926 */
5407a562 3927 i = t->current_threshold;
2e72b634
KS
3928
3929 /*
3930 * Iterate backward over array of thresholds starting from
3931 * current_threshold and check if a threshold is crossed.
3932 * If none of thresholds below usage is crossed, we read
3933 * only one element of the array here.
3934 */
3935 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3936 eventfd_signal(t->entries[i].eventfd, 1);
3937
3938 /* i = current_threshold + 1 */
3939 i++;
3940
3941 /*
3942 * Iterate forward over array of thresholds starting from
3943 * current_threshold+1 and check if a threshold is crossed.
3944 * If none of thresholds above usage is crossed, we read
3945 * only one element of the array here.
3946 */
3947 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3948 eventfd_signal(t->entries[i].eventfd, 1);
3949
3950 /* Update current_threshold */
5407a562 3951 t->current_threshold = i - 1;
2e72b634
KS
3952unlock:
3953 rcu_read_unlock();
3954}
3955
3956static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3957{
ad4ca5f4
KS
3958 while (memcg) {
3959 __mem_cgroup_threshold(memcg, false);
3960 if (do_swap_account)
3961 __mem_cgroup_threshold(memcg, true);
3962
3963 memcg = parent_mem_cgroup(memcg);
3964 }
2e72b634
KS
3965}
3966
3967static int compare_thresholds(const void *a, const void *b)
3968{
3969 const struct mem_cgroup_threshold *_a = a;
3970 const struct mem_cgroup_threshold *_b = b;
3971
2bff24a3
GT
3972 if (_a->threshold > _b->threshold)
3973 return 1;
3974
3975 if (_a->threshold < _b->threshold)
3976 return -1;
3977
3978 return 0;
2e72b634
KS
3979}
3980
c0ff4b85 3981static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3982{
3983 struct mem_cgroup_eventfd_list *ev;
3984
2bcf2e92
MH
3985 spin_lock(&memcg_oom_lock);
3986
c0ff4b85 3987 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3988 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3989
3990 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3991 return 0;
3992}
3993
c0ff4b85 3994static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3995{
7d74b06f
KH
3996 struct mem_cgroup *iter;
3997
c0ff4b85 3998 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3999 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4000}
4001
59b6f873 4002static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4003 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4004{
2c488db2
KS
4005 struct mem_cgroup_thresholds *thresholds;
4006 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4007 unsigned long threshold;
4008 unsigned long usage;
2c488db2 4009 int i, size, ret;
2e72b634 4010
3e32cb2e 4011 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4012 if (ret)
4013 return ret;
4014
4015 mutex_lock(&memcg->thresholds_lock);
2c488db2 4016
05b84301 4017 if (type == _MEM) {
2c488db2 4018 thresholds = &memcg->thresholds;
ce00a967 4019 usage = mem_cgroup_usage(memcg, false);
05b84301 4020 } else if (type == _MEMSWAP) {
2c488db2 4021 thresholds = &memcg->memsw_thresholds;
ce00a967 4022 usage = mem_cgroup_usage(memcg, true);
05b84301 4023 } else
2e72b634
KS
4024 BUG();
4025
2e72b634 4026 /* Check if a threshold crossed before adding a new one */
2c488db2 4027 if (thresholds->primary)
2e72b634
KS
4028 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4029
2c488db2 4030 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4031
4032 /* Allocate memory for new array of thresholds */
2c488db2 4033 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4034 GFP_KERNEL);
2c488db2 4035 if (!new) {
2e72b634
KS
4036 ret = -ENOMEM;
4037 goto unlock;
4038 }
2c488db2 4039 new->size = size;
2e72b634
KS
4040
4041 /* Copy thresholds (if any) to new array */
2c488db2
KS
4042 if (thresholds->primary) {
4043 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4044 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4045 }
4046
2e72b634 4047 /* Add new threshold */
2c488db2
KS
4048 new->entries[size - 1].eventfd = eventfd;
4049 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4050
4051 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4052 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4053 compare_thresholds, NULL);
4054
4055 /* Find current threshold */
2c488db2 4056 new->current_threshold = -1;
2e72b634 4057 for (i = 0; i < size; i++) {
748dad36 4058 if (new->entries[i].threshold <= usage) {
2e72b634 4059 /*
2c488db2
KS
4060 * new->current_threshold will not be used until
4061 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4062 * it here.
4063 */
2c488db2 4064 ++new->current_threshold;
748dad36
SZ
4065 } else
4066 break;
2e72b634
KS
4067 }
4068
2c488db2
KS
4069 /* Free old spare buffer and save old primary buffer as spare */
4070 kfree(thresholds->spare);
4071 thresholds->spare = thresholds->primary;
4072
4073 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4074
907860ed 4075 /* To be sure that nobody uses thresholds */
2e72b634
KS
4076 synchronize_rcu();
4077
2e72b634
KS
4078unlock:
4079 mutex_unlock(&memcg->thresholds_lock);
4080
4081 return ret;
4082}
4083
59b6f873 4084static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4085 struct eventfd_ctx *eventfd, const char *args)
4086{
59b6f873 4087 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4088}
4089
59b6f873 4090static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4091 struct eventfd_ctx *eventfd, const char *args)
4092{
59b6f873 4093 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4094}
4095
59b6f873 4096static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4097 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4098{
2c488db2
KS
4099 struct mem_cgroup_thresholds *thresholds;
4100 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4101 unsigned long usage;
2c488db2 4102 int i, j, size;
2e72b634
KS
4103
4104 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4105
4106 if (type == _MEM) {
2c488db2 4107 thresholds = &memcg->thresholds;
ce00a967 4108 usage = mem_cgroup_usage(memcg, false);
05b84301 4109 } else if (type == _MEMSWAP) {
2c488db2 4110 thresholds = &memcg->memsw_thresholds;
ce00a967 4111 usage = mem_cgroup_usage(memcg, true);
05b84301 4112 } else
2e72b634
KS
4113 BUG();
4114
371528ca
AV
4115 if (!thresholds->primary)
4116 goto unlock;
4117
2e72b634
KS
4118 /* Check if a threshold crossed before removing */
4119 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4120
4121 /* Calculate new number of threshold */
2c488db2
KS
4122 size = 0;
4123 for (i = 0; i < thresholds->primary->size; i++) {
4124 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4125 size++;
4126 }
4127
2c488db2 4128 new = thresholds->spare;
907860ed 4129
2e72b634
KS
4130 /* Set thresholds array to NULL if we don't have thresholds */
4131 if (!size) {
2c488db2
KS
4132 kfree(new);
4133 new = NULL;
907860ed 4134 goto swap_buffers;
2e72b634
KS
4135 }
4136
2c488db2 4137 new->size = size;
2e72b634
KS
4138
4139 /* Copy thresholds and find current threshold */
2c488db2
KS
4140 new->current_threshold = -1;
4141 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4142 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4143 continue;
4144
2c488db2 4145 new->entries[j] = thresholds->primary->entries[i];
748dad36 4146 if (new->entries[j].threshold <= usage) {
2e72b634 4147 /*
2c488db2 4148 * new->current_threshold will not be used
2e72b634
KS
4149 * until rcu_assign_pointer(), so it's safe to increment
4150 * it here.
4151 */
2c488db2 4152 ++new->current_threshold;
2e72b634
KS
4153 }
4154 j++;
4155 }
4156
907860ed 4157swap_buffers:
2c488db2
KS
4158 /* Swap primary and spare array */
4159 thresholds->spare = thresholds->primary;
8c757763
SZ
4160 /* If all events are unregistered, free the spare array */
4161 if (!new) {
4162 kfree(thresholds->spare);
4163 thresholds->spare = NULL;
4164 }
4165
2c488db2 4166 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4167
907860ed 4168 /* To be sure that nobody uses thresholds */
2e72b634 4169 synchronize_rcu();
371528ca 4170unlock:
2e72b634 4171 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4172}
c1e862c1 4173
59b6f873 4174static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4175 struct eventfd_ctx *eventfd)
4176{
59b6f873 4177 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4178}
4179
59b6f873 4180static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4181 struct eventfd_ctx *eventfd)
4182{
59b6f873 4183 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4184}
4185
59b6f873 4186static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4187 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4188{
9490ff27 4189 struct mem_cgroup_eventfd_list *event;
9490ff27 4190
9490ff27
KH
4191 event = kmalloc(sizeof(*event), GFP_KERNEL);
4192 if (!event)
4193 return -ENOMEM;
4194
1af8efe9 4195 spin_lock(&memcg_oom_lock);
9490ff27
KH
4196
4197 event->eventfd = eventfd;
4198 list_add(&event->list, &memcg->oom_notify);
4199
4200 /* already in OOM ? */
79dfdacc 4201 if (atomic_read(&memcg->under_oom))
9490ff27 4202 eventfd_signal(eventfd, 1);
1af8efe9 4203 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4204
4205 return 0;
4206}
4207
59b6f873 4208static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4209 struct eventfd_ctx *eventfd)
9490ff27 4210{
9490ff27 4211 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4212
1af8efe9 4213 spin_lock(&memcg_oom_lock);
9490ff27 4214
c0ff4b85 4215 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4216 if (ev->eventfd == eventfd) {
4217 list_del(&ev->list);
4218 kfree(ev);
4219 }
4220 }
4221
1af8efe9 4222 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4223}
4224
2da8ca82 4225static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4226{
2da8ca82 4227 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4228
791badbd
TH
4229 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4230 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4231 return 0;
4232}
4233
182446d0 4234static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4235 struct cftype *cft, u64 val)
4236{
182446d0 4237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4238
4239 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4240 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4241 return -EINVAL;
4242
c0ff4b85 4243 memcg->oom_kill_disable = val;
4d845ebf 4244 if (!val)
c0ff4b85 4245 memcg_oom_recover(memcg);
3dae7fec 4246
3c11ecf4
KH
4247 return 0;
4248}
4249
c255a458 4250#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4251static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4252{
55007d84
GC
4253 int ret;
4254
2633d7a0 4255 memcg->kmemcg_id = -1;
55007d84
GC
4256 ret = memcg_propagate_kmem(memcg);
4257 if (ret)
4258 return ret;
2633d7a0 4259
1d62e436 4260 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4261}
e5671dfa 4262
10d5ebf4 4263static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4264{
1d62e436 4265 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4266}
e5671dfa 4267#else
cbe128e3 4268static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4269{
4270 return 0;
4271}
d1a4c0b3 4272
10d5ebf4
LZ
4273static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4274{
4275}
e5671dfa
GC
4276#endif
4277
3bc942f3
TH
4278/*
4279 * DO NOT USE IN NEW FILES.
4280 *
4281 * "cgroup.event_control" implementation.
4282 *
4283 * This is way over-engineered. It tries to support fully configurable
4284 * events for each user. Such level of flexibility is completely
4285 * unnecessary especially in the light of the planned unified hierarchy.
4286 *
4287 * Please deprecate this and replace with something simpler if at all
4288 * possible.
4289 */
4290
79bd9814
TH
4291/*
4292 * Unregister event and free resources.
4293 *
4294 * Gets called from workqueue.
4295 */
3bc942f3 4296static void memcg_event_remove(struct work_struct *work)
79bd9814 4297{
3bc942f3
TH
4298 struct mem_cgroup_event *event =
4299 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4300 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4301
4302 remove_wait_queue(event->wqh, &event->wait);
4303
59b6f873 4304 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4305
4306 /* Notify userspace the event is going away. */
4307 eventfd_signal(event->eventfd, 1);
4308
4309 eventfd_ctx_put(event->eventfd);
4310 kfree(event);
59b6f873 4311 css_put(&memcg->css);
79bd9814
TH
4312}
4313
4314/*
4315 * Gets called on POLLHUP on eventfd when user closes it.
4316 *
4317 * Called with wqh->lock held and interrupts disabled.
4318 */
3bc942f3
TH
4319static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4320 int sync, void *key)
79bd9814 4321{
3bc942f3
TH
4322 struct mem_cgroup_event *event =
4323 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4324 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4325 unsigned long flags = (unsigned long)key;
4326
4327 if (flags & POLLHUP) {
4328 /*
4329 * If the event has been detached at cgroup removal, we
4330 * can simply return knowing the other side will cleanup
4331 * for us.
4332 *
4333 * We can't race against event freeing since the other
4334 * side will require wqh->lock via remove_wait_queue(),
4335 * which we hold.
4336 */
fba94807 4337 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4338 if (!list_empty(&event->list)) {
4339 list_del_init(&event->list);
4340 /*
4341 * We are in atomic context, but cgroup_event_remove()
4342 * may sleep, so we have to call it in workqueue.
4343 */
4344 schedule_work(&event->remove);
4345 }
fba94807 4346 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4347 }
4348
4349 return 0;
4350}
4351
3bc942f3 4352static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4353 wait_queue_head_t *wqh, poll_table *pt)
4354{
3bc942f3
TH
4355 struct mem_cgroup_event *event =
4356 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4357
4358 event->wqh = wqh;
4359 add_wait_queue(wqh, &event->wait);
4360}
4361
4362/*
3bc942f3
TH
4363 * DO NOT USE IN NEW FILES.
4364 *
79bd9814
TH
4365 * Parse input and register new cgroup event handler.
4366 *
4367 * Input must be in format '<event_fd> <control_fd> <args>'.
4368 * Interpretation of args is defined by control file implementation.
4369 */
451af504
TH
4370static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4371 char *buf, size_t nbytes, loff_t off)
79bd9814 4372{
451af504 4373 struct cgroup_subsys_state *css = of_css(of);
fba94807 4374 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4375 struct mem_cgroup_event *event;
79bd9814
TH
4376 struct cgroup_subsys_state *cfile_css;
4377 unsigned int efd, cfd;
4378 struct fd efile;
4379 struct fd cfile;
fba94807 4380 const char *name;
79bd9814
TH
4381 char *endp;
4382 int ret;
4383
451af504
TH
4384 buf = strstrip(buf);
4385
4386 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4387 if (*endp != ' ')
4388 return -EINVAL;
451af504 4389 buf = endp + 1;
79bd9814 4390
451af504 4391 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4392 if ((*endp != ' ') && (*endp != '\0'))
4393 return -EINVAL;
451af504 4394 buf = endp + 1;
79bd9814
TH
4395
4396 event = kzalloc(sizeof(*event), GFP_KERNEL);
4397 if (!event)
4398 return -ENOMEM;
4399
59b6f873 4400 event->memcg = memcg;
79bd9814 4401 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4402 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4403 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4404 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4405
4406 efile = fdget(efd);
4407 if (!efile.file) {
4408 ret = -EBADF;
4409 goto out_kfree;
4410 }
4411
4412 event->eventfd = eventfd_ctx_fileget(efile.file);
4413 if (IS_ERR(event->eventfd)) {
4414 ret = PTR_ERR(event->eventfd);
4415 goto out_put_efile;
4416 }
4417
4418 cfile = fdget(cfd);
4419 if (!cfile.file) {
4420 ret = -EBADF;
4421 goto out_put_eventfd;
4422 }
4423
4424 /* the process need read permission on control file */
4425 /* AV: shouldn't we check that it's been opened for read instead? */
4426 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4427 if (ret < 0)
4428 goto out_put_cfile;
4429
fba94807
TH
4430 /*
4431 * Determine the event callbacks and set them in @event. This used
4432 * to be done via struct cftype but cgroup core no longer knows
4433 * about these events. The following is crude but the whole thing
4434 * is for compatibility anyway.
3bc942f3
TH
4435 *
4436 * DO NOT ADD NEW FILES.
fba94807 4437 */
b583043e 4438 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4439
4440 if (!strcmp(name, "memory.usage_in_bytes")) {
4441 event->register_event = mem_cgroup_usage_register_event;
4442 event->unregister_event = mem_cgroup_usage_unregister_event;
4443 } else if (!strcmp(name, "memory.oom_control")) {
4444 event->register_event = mem_cgroup_oom_register_event;
4445 event->unregister_event = mem_cgroup_oom_unregister_event;
4446 } else if (!strcmp(name, "memory.pressure_level")) {
4447 event->register_event = vmpressure_register_event;
4448 event->unregister_event = vmpressure_unregister_event;
4449 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4450 event->register_event = memsw_cgroup_usage_register_event;
4451 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4452 } else {
4453 ret = -EINVAL;
4454 goto out_put_cfile;
4455 }
4456
79bd9814 4457 /*
b5557c4c
TH
4458 * Verify @cfile should belong to @css. Also, remaining events are
4459 * automatically removed on cgroup destruction but the removal is
4460 * asynchronous, so take an extra ref on @css.
79bd9814 4461 */
b583043e 4462 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4463 &memory_cgrp_subsys);
79bd9814 4464 ret = -EINVAL;
5a17f543 4465 if (IS_ERR(cfile_css))
79bd9814 4466 goto out_put_cfile;
5a17f543
TH
4467 if (cfile_css != css) {
4468 css_put(cfile_css);
79bd9814 4469 goto out_put_cfile;
5a17f543 4470 }
79bd9814 4471
451af504 4472 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4473 if (ret)
4474 goto out_put_css;
4475
4476 efile.file->f_op->poll(efile.file, &event->pt);
4477
fba94807
TH
4478 spin_lock(&memcg->event_list_lock);
4479 list_add(&event->list, &memcg->event_list);
4480 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4481
4482 fdput(cfile);
4483 fdput(efile);
4484
451af504 4485 return nbytes;
79bd9814
TH
4486
4487out_put_css:
b5557c4c 4488 css_put(css);
79bd9814
TH
4489out_put_cfile:
4490 fdput(cfile);
4491out_put_eventfd:
4492 eventfd_ctx_put(event->eventfd);
4493out_put_efile:
4494 fdput(efile);
4495out_kfree:
4496 kfree(event);
4497
4498 return ret;
4499}
4500
8cdea7c0
BS
4501static struct cftype mem_cgroup_files[] = {
4502 {
0eea1030 4503 .name = "usage_in_bytes",
8c7c6e34 4504 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4505 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4506 },
c84872e1
PE
4507 {
4508 .name = "max_usage_in_bytes",
8c7c6e34 4509 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4510 .write = mem_cgroup_reset,
791badbd 4511 .read_u64 = mem_cgroup_read_u64,
c84872e1 4512 },
8cdea7c0 4513 {
0eea1030 4514 .name = "limit_in_bytes",
8c7c6e34 4515 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4516 .write = mem_cgroup_write,
791badbd 4517 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4518 },
296c81d8
BS
4519 {
4520 .name = "soft_limit_in_bytes",
4521 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4522 .write = mem_cgroup_write,
791badbd 4523 .read_u64 = mem_cgroup_read_u64,
296c81d8 4524 },
8cdea7c0
BS
4525 {
4526 .name = "failcnt",
8c7c6e34 4527 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4528 .write = mem_cgroup_reset,
791badbd 4529 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4530 },
d2ceb9b7
KH
4531 {
4532 .name = "stat",
2da8ca82 4533 .seq_show = memcg_stat_show,
d2ceb9b7 4534 },
c1e862c1
KH
4535 {
4536 .name = "force_empty",
6770c64e 4537 .write = mem_cgroup_force_empty_write,
c1e862c1 4538 },
18f59ea7
BS
4539 {
4540 .name = "use_hierarchy",
4541 .write_u64 = mem_cgroup_hierarchy_write,
4542 .read_u64 = mem_cgroup_hierarchy_read,
4543 },
79bd9814 4544 {
3bc942f3 4545 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4546 .write = memcg_write_event_control,
79bd9814
TH
4547 .flags = CFTYPE_NO_PREFIX,
4548 .mode = S_IWUGO,
4549 },
a7885eb8
KM
4550 {
4551 .name = "swappiness",
4552 .read_u64 = mem_cgroup_swappiness_read,
4553 .write_u64 = mem_cgroup_swappiness_write,
4554 },
7dc74be0
DN
4555 {
4556 .name = "move_charge_at_immigrate",
4557 .read_u64 = mem_cgroup_move_charge_read,
4558 .write_u64 = mem_cgroup_move_charge_write,
4559 },
9490ff27
KH
4560 {
4561 .name = "oom_control",
2da8ca82 4562 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4563 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4564 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4565 },
70ddf637
AV
4566 {
4567 .name = "pressure_level",
70ddf637 4568 },
406eb0c9
YH
4569#ifdef CONFIG_NUMA
4570 {
4571 .name = "numa_stat",
2da8ca82 4572 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4573 },
4574#endif
510fc4e1
GC
4575#ifdef CONFIG_MEMCG_KMEM
4576 {
4577 .name = "kmem.limit_in_bytes",
4578 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4579 .write = mem_cgroup_write,
791badbd 4580 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4581 },
4582 {
4583 .name = "kmem.usage_in_bytes",
4584 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4585 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4586 },
4587 {
4588 .name = "kmem.failcnt",
4589 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4590 .write = mem_cgroup_reset,
791badbd 4591 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4592 },
4593 {
4594 .name = "kmem.max_usage_in_bytes",
4595 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4596 .write = mem_cgroup_reset,
791badbd 4597 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4598 },
749c5415
GC
4599#ifdef CONFIG_SLABINFO
4600 {
4601 .name = "kmem.slabinfo",
b047501c
VD
4602 .seq_start = slab_start,
4603 .seq_next = slab_next,
4604 .seq_stop = slab_stop,
4605 .seq_show = memcg_slab_show,
749c5415
GC
4606 },
4607#endif
8c7c6e34 4608#endif
6bc10349 4609 { }, /* terminate */
af36f906 4610};
8c7c6e34 4611
2d11085e
MH
4612#ifdef CONFIG_MEMCG_SWAP
4613static struct cftype memsw_cgroup_files[] = {
4614 {
4615 .name = "memsw.usage_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4617 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4618 },
4619 {
4620 .name = "memsw.max_usage_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4622 .write = mem_cgroup_reset,
791badbd 4623 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4624 },
4625 {
4626 .name = "memsw.limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4628 .write = mem_cgroup_write,
791badbd 4629 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4630 },
4631 {
4632 .name = "memsw.failcnt",
4633 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4634 .write = mem_cgroup_reset,
791badbd 4635 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4636 },
4637 { }, /* terminate */
4638};
4639#endif
c0ff4b85 4640static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4641{
4642 struct mem_cgroup_per_node *pn;
1ecaab2b 4643 struct mem_cgroup_per_zone *mz;
41e3355d 4644 int zone, tmp = node;
1ecaab2b
KH
4645 /*
4646 * This routine is called against possible nodes.
4647 * But it's BUG to call kmalloc() against offline node.
4648 *
4649 * TODO: this routine can waste much memory for nodes which will
4650 * never be onlined. It's better to use memory hotplug callback
4651 * function.
4652 */
41e3355d
KH
4653 if (!node_state(node, N_NORMAL_MEMORY))
4654 tmp = -1;
17295c88 4655 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4656 if (!pn)
4657 return 1;
1ecaab2b 4658
1ecaab2b
KH
4659 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4660 mz = &pn->zoneinfo[zone];
bea8c150 4661 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4662 mz->usage_in_excess = 0;
4663 mz->on_tree = false;
d79154bb 4664 mz->memcg = memcg;
1ecaab2b 4665 }
54f72fe0 4666 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4667 return 0;
4668}
4669
c0ff4b85 4670static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4671{
54f72fe0 4672 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4673}
4674
33327948
KH
4675static struct mem_cgroup *mem_cgroup_alloc(void)
4676{
d79154bb 4677 struct mem_cgroup *memcg;
8ff69e2c 4678 size_t size;
33327948 4679
8ff69e2c
VD
4680 size = sizeof(struct mem_cgroup);
4681 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4682
8ff69e2c 4683 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4684 if (!memcg)
e7bbcdf3
DC
4685 return NULL;
4686
d79154bb
HD
4687 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4688 if (!memcg->stat)
d2e61b8d 4689 goto out_free;
d79154bb
HD
4690 spin_lock_init(&memcg->pcp_counter_lock);
4691 return memcg;
d2e61b8d
DC
4692
4693out_free:
8ff69e2c 4694 kfree(memcg);
d2e61b8d 4695 return NULL;
33327948
KH
4696}
4697
59927fb9 4698/*
c8b2a36f
GC
4699 * At destroying mem_cgroup, references from swap_cgroup can remain.
4700 * (scanning all at force_empty is too costly...)
4701 *
4702 * Instead of clearing all references at force_empty, we remember
4703 * the number of reference from swap_cgroup and free mem_cgroup when
4704 * it goes down to 0.
4705 *
4706 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4707 */
c8b2a36f
GC
4708
4709static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4710{
c8b2a36f 4711 int node;
59927fb9 4712
bb4cc1a8 4713 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4714
4715 for_each_node(node)
4716 free_mem_cgroup_per_zone_info(memcg, node);
4717
4718 free_percpu(memcg->stat);
4719
a8964b9b 4720 disarm_static_keys(memcg);
8ff69e2c 4721 kfree(memcg);
59927fb9 4722}
3afe36b1 4723
7bcc1bb1
DN
4724/*
4725 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4726 */
e1aab161 4727struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4728{
3e32cb2e 4729 if (!memcg->memory.parent)
7bcc1bb1 4730 return NULL;
3e32cb2e 4731 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4732}
e1aab161 4733EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4734
bb4cc1a8
AM
4735static void __init mem_cgroup_soft_limit_tree_init(void)
4736{
4737 struct mem_cgroup_tree_per_node *rtpn;
4738 struct mem_cgroup_tree_per_zone *rtpz;
4739 int tmp, node, zone;
4740
4741 for_each_node(node) {
4742 tmp = node;
4743 if (!node_state(node, N_NORMAL_MEMORY))
4744 tmp = -1;
4745 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4746 BUG_ON(!rtpn);
4747
4748 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4749
4750 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4751 rtpz = &rtpn->rb_tree_per_zone[zone];
4752 rtpz->rb_root = RB_ROOT;
4753 spin_lock_init(&rtpz->lock);
4754 }
4755 }
4756}
4757
0eb253e2 4758static struct cgroup_subsys_state * __ref
eb95419b 4759mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4760{
d142e3e6 4761 struct mem_cgroup *memcg;
04046e1a 4762 long error = -ENOMEM;
6d12e2d8 4763 int node;
8cdea7c0 4764
c0ff4b85
R
4765 memcg = mem_cgroup_alloc();
4766 if (!memcg)
04046e1a 4767 return ERR_PTR(error);
78fb7466 4768
3ed28fa1 4769 for_each_node(node)
c0ff4b85 4770 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4771 goto free_out;
f64c3f54 4772
c077719b 4773 /* root ? */
eb95419b 4774 if (parent_css == NULL) {
a41c58a6 4775 root_mem_cgroup = memcg;
3e32cb2e
JW
4776 page_counter_init(&memcg->memory, NULL);
4777 page_counter_init(&memcg->memsw, NULL);
4778 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4779 }
28dbc4b6 4780
d142e3e6
GC
4781 memcg->last_scanned_node = MAX_NUMNODES;
4782 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4783 memcg->move_charge_at_immigrate = 0;
4784 mutex_init(&memcg->thresholds_lock);
4785 spin_lock_init(&memcg->move_lock);
70ddf637 4786 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4787 INIT_LIST_HEAD(&memcg->event_list);
4788 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4789
4790 return &memcg->css;
4791
4792free_out:
4793 __mem_cgroup_free(memcg);
4794 return ERR_PTR(error);
4795}
4796
4797static int
eb95419b 4798mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4799{
eb95419b 4800 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4801 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4802 int ret;
d142e3e6 4803
15a4c835 4804 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4805 return -ENOSPC;
4806
63876986 4807 if (!parent)
d142e3e6
GC
4808 return 0;
4809
0999821b 4810 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4811
4812 memcg->use_hierarchy = parent->use_hierarchy;
4813 memcg->oom_kill_disable = parent->oom_kill_disable;
4814 memcg->swappiness = mem_cgroup_swappiness(parent);
4815
4816 if (parent->use_hierarchy) {
3e32cb2e
JW
4817 page_counter_init(&memcg->memory, &parent->memory);
4818 page_counter_init(&memcg->memsw, &parent->memsw);
4819 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4820
7bcc1bb1 4821 /*
8d76a979
LZ
4822 * No need to take a reference to the parent because cgroup
4823 * core guarantees its existence.
7bcc1bb1 4824 */
18f59ea7 4825 } else {
3e32cb2e
JW
4826 page_counter_init(&memcg->memory, NULL);
4827 page_counter_init(&memcg->memsw, NULL);
4828 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4829 /*
4830 * Deeper hierachy with use_hierarchy == false doesn't make
4831 * much sense so let cgroup subsystem know about this
4832 * unfortunate state in our controller.
4833 */
d142e3e6 4834 if (parent != root_mem_cgroup)
073219e9 4835 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4836 }
0999821b 4837 mutex_unlock(&memcg_create_mutex);
d6441637 4838
2f7dd7a4
JW
4839 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4840 if (ret)
4841 return ret;
4842
4843 /*
4844 * Make sure the memcg is initialized: mem_cgroup_iter()
4845 * orders reading memcg->initialized against its callers
4846 * reading the memcg members.
4847 */
4848 smp_store_release(&memcg->initialized, 1);
4849
4850 return 0;
8cdea7c0
BS
4851}
4852
eb95419b 4853static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4854{
eb95419b 4855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4856 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4857
4858 /*
4859 * Unregister events and notify userspace.
4860 * Notify userspace about cgroup removing only after rmdir of cgroup
4861 * directory to avoid race between userspace and kernelspace.
4862 */
fba94807
TH
4863 spin_lock(&memcg->event_list_lock);
4864 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4865 list_del_init(&event->list);
4866 schedule_work(&event->remove);
4867 }
fba94807 4868 spin_unlock(&memcg->event_list_lock);
ec64f515 4869
776ed0f0 4870 memcg_unregister_all_caches(memcg);
33cb876e 4871 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4872}
4873
eb95419b 4874static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4875{
eb95419b 4876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4877
10d5ebf4 4878 memcg_destroy_kmem(memcg);
465939a1 4879 __mem_cgroup_free(memcg);
8cdea7c0
BS
4880}
4881
1ced953b
TH
4882/**
4883 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4884 * @css: the target css
4885 *
4886 * Reset the states of the mem_cgroup associated with @css. This is
4887 * invoked when the userland requests disabling on the default hierarchy
4888 * but the memcg is pinned through dependency. The memcg should stop
4889 * applying policies and should revert to the vanilla state as it may be
4890 * made visible again.
4891 *
4892 * The current implementation only resets the essential configurations.
4893 * This needs to be expanded to cover all the visible parts.
4894 */
4895static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4896{
4897 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4898
3e32cb2e
JW
4899 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4900 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4901 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4902 memcg->soft_limit = 0;
1ced953b
TH
4903}
4904
02491447 4905#ifdef CONFIG_MMU
7dc74be0 4906/* Handlers for move charge at task migration. */
854ffa8d 4907static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4908{
05b84301 4909 int ret;
9476db97
JW
4910
4911 /* Try a single bulk charge without reclaim first */
00501b53 4912 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4913 if (!ret) {
854ffa8d 4914 mc.precharge += count;
854ffa8d
DN
4915 return ret;
4916 }
692e7c45 4917 if (ret == -EINTR) {
00501b53 4918 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4919 return ret;
4920 }
9476db97
JW
4921
4922 /* Try charges one by one with reclaim */
854ffa8d 4923 while (count--) {
00501b53 4924 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4925 /*
4926 * In case of failure, any residual charges against
4927 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4928 * later on. However, cancel any charges that are
4929 * bypassed to root right away or they'll be lost.
9476db97 4930 */
692e7c45 4931 if (ret == -EINTR)
00501b53 4932 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4933 if (ret)
38c5d72f 4934 return ret;
854ffa8d 4935 mc.precharge++;
9476db97 4936 cond_resched();
854ffa8d 4937 }
9476db97 4938 return 0;
4ffef5fe
DN
4939}
4940
4941/**
8d32ff84 4942 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4943 * @vma: the vma the pte to be checked belongs
4944 * @addr: the address corresponding to the pte to be checked
4945 * @ptent: the pte to be checked
02491447 4946 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4947 *
4948 * Returns
4949 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4950 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4951 * move charge. if @target is not NULL, the page is stored in target->page
4952 * with extra refcnt got(Callers should handle it).
02491447
DN
4953 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4954 * target for charge migration. if @target is not NULL, the entry is stored
4955 * in target->ent.
4ffef5fe
DN
4956 *
4957 * Called with pte lock held.
4958 */
4ffef5fe
DN
4959union mc_target {
4960 struct page *page;
02491447 4961 swp_entry_t ent;
4ffef5fe
DN
4962};
4963
4ffef5fe 4964enum mc_target_type {
8d32ff84 4965 MC_TARGET_NONE = 0,
4ffef5fe 4966 MC_TARGET_PAGE,
02491447 4967 MC_TARGET_SWAP,
4ffef5fe
DN
4968};
4969
90254a65
DN
4970static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4971 unsigned long addr, pte_t ptent)
4ffef5fe 4972{
90254a65 4973 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4974
90254a65
DN
4975 if (!page || !page_mapped(page))
4976 return NULL;
4977 if (PageAnon(page)) {
4978 /* we don't move shared anon */
4b91355e 4979 if (!move_anon())
90254a65 4980 return NULL;
87946a72
DN
4981 } else if (!move_file())
4982 /* we ignore mapcount for file pages */
90254a65
DN
4983 return NULL;
4984 if (!get_page_unless_zero(page))
4985 return NULL;
4986
4987 return page;
4988}
4989
4b91355e 4990#ifdef CONFIG_SWAP
90254a65
DN
4991static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4992 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4993{
90254a65
DN
4994 struct page *page = NULL;
4995 swp_entry_t ent = pte_to_swp_entry(ptent);
4996
4997 if (!move_anon() || non_swap_entry(ent))
4998 return NULL;
4b91355e
KH
4999 /*
5000 * Because lookup_swap_cache() updates some statistics counter,
5001 * we call find_get_page() with swapper_space directly.
5002 */
33806f06 5003 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5004 if (do_swap_account)
5005 entry->val = ent.val;
5006
5007 return page;
5008}
4b91355e
KH
5009#else
5010static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5011 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5012{
5013 return NULL;
5014}
5015#endif
90254a65 5016
87946a72
DN
5017static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5018 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5019{
5020 struct page *page = NULL;
87946a72
DN
5021 struct address_space *mapping;
5022 pgoff_t pgoff;
5023
5024 if (!vma->vm_file) /* anonymous vma */
5025 return NULL;
5026 if (!move_file())
5027 return NULL;
5028
87946a72
DN
5029 mapping = vma->vm_file->f_mapping;
5030 if (pte_none(ptent))
5031 pgoff = linear_page_index(vma, addr);
5032 else /* pte_file(ptent) is true */
5033 pgoff = pte_to_pgoff(ptent);
5034
5035 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5036#ifdef CONFIG_SWAP
5037 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5038 if (shmem_mapping(mapping)) {
5039 page = find_get_entry(mapping, pgoff);
5040 if (radix_tree_exceptional_entry(page)) {
5041 swp_entry_t swp = radix_to_swp_entry(page);
5042 if (do_swap_account)
5043 *entry = swp;
5044 page = find_get_page(swap_address_space(swp), swp.val);
5045 }
5046 } else
5047 page = find_get_page(mapping, pgoff);
5048#else
5049 page = find_get_page(mapping, pgoff);
aa3b1895 5050#endif
87946a72
DN
5051 return page;
5052}
5053
8d32ff84 5054static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5055 unsigned long addr, pte_t ptent, union mc_target *target)
5056{
5057 struct page *page = NULL;
8d32ff84 5058 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5059 swp_entry_t ent = { .val = 0 };
5060
5061 if (pte_present(ptent))
5062 page = mc_handle_present_pte(vma, addr, ptent);
5063 else if (is_swap_pte(ptent))
5064 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5065 else if (pte_none(ptent) || pte_file(ptent))
5066 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5067
5068 if (!page && !ent.val)
8d32ff84 5069 return ret;
02491447 5070 if (page) {
02491447 5071 /*
0a31bc97 5072 * Do only loose check w/o serialization.
1306a85a 5073 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5074 * not under LRU exclusion.
02491447 5075 */
1306a85a 5076 if (page->mem_cgroup == mc.from) {
02491447
DN
5077 ret = MC_TARGET_PAGE;
5078 if (target)
5079 target->page = page;
5080 }
5081 if (!ret || !target)
5082 put_page(page);
5083 }
90254a65
DN
5084 /* There is a swap entry and a page doesn't exist or isn't charged */
5085 if (ent.val && !ret &&
34c00c31 5086 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5087 ret = MC_TARGET_SWAP;
5088 if (target)
5089 target->ent = ent;
4ffef5fe 5090 }
4ffef5fe
DN
5091 return ret;
5092}
5093
12724850
NH
5094#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5095/*
5096 * We don't consider swapping or file mapped pages because THP does not
5097 * support them for now.
5098 * Caller should make sure that pmd_trans_huge(pmd) is true.
5099 */
5100static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5101 unsigned long addr, pmd_t pmd, union mc_target *target)
5102{
5103 struct page *page = NULL;
12724850
NH
5104 enum mc_target_type ret = MC_TARGET_NONE;
5105
5106 page = pmd_page(pmd);
309381fe 5107 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5108 if (!move_anon())
5109 return ret;
1306a85a 5110 if (page->mem_cgroup == mc.from) {
12724850
NH
5111 ret = MC_TARGET_PAGE;
5112 if (target) {
5113 get_page(page);
5114 target->page = page;
5115 }
5116 }
5117 return ret;
5118}
5119#else
5120static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5121 unsigned long addr, pmd_t pmd, union mc_target *target)
5122{
5123 return MC_TARGET_NONE;
5124}
5125#endif
5126
4ffef5fe
DN
5127static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5128 unsigned long addr, unsigned long end,
5129 struct mm_walk *walk)
5130{
5131 struct vm_area_struct *vma = walk->private;
5132 pte_t *pte;
5133 spinlock_t *ptl;
5134
bf929152 5135 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5136 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5137 mc.precharge += HPAGE_PMD_NR;
bf929152 5138 spin_unlock(ptl);
1a5a9906 5139 return 0;
12724850 5140 }
03319327 5141
45f83cef
AA
5142 if (pmd_trans_unstable(pmd))
5143 return 0;
4ffef5fe
DN
5144 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5145 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5146 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5147 mc.precharge++; /* increment precharge temporarily */
5148 pte_unmap_unlock(pte - 1, ptl);
5149 cond_resched();
5150
7dc74be0
DN
5151 return 0;
5152}
5153
4ffef5fe
DN
5154static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5155{
5156 unsigned long precharge;
5157 struct vm_area_struct *vma;
5158
dfe076b0 5159 down_read(&mm->mmap_sem);
4ffef5fe
DN
5160 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5161 struct mm_walk mem_cgroup_count_precharge_walk = {
5162 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5163 .mm = mm,
5164 .private = vma,
5165 };
5166 if (is_vm_hugetlb_page(vma))
5167 continue;
4ffef5fe
DN
5168 walk_page_range(vma->vm_start, vma->vm_end,
5169 &mem_cgroup_count_precharge_walk);
5170 }
dfe076b0 5171 up_read(&mm->mmap_sem);
4ffef5fe
DN
5172
5173 precharge = mc.precharge;
5174 mc.precharge = 0;
5175
5176 return precharge;
5177}
5178
4ffef5fe
DN
5179static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5180{
dfe076b0
DN
5181 unsigned long precharge = mem_cgroup_count_precharge(mm);
5182
5183 VM_BUG_ON(mc.moving_task);
5184 mc.moving_task = current;
5185 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5186}
5187
dfe076b0
DN
5188/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5189static void __mem_cgroup_clear_mc(void)
4ffef5fe 5190{
2bd9bb20
KH
5191 struct mem_cgroup *from = mc.from;
5192 struct mem_cgroup *to = mc.to;
5193
4ffef5fe 5194 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5195 if (mc.precharge) {
00501b53 5196 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5197 mc.precharge = 0;
5198 }
5199 /*
5200 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5201 * we must uncharge here.
5202 */
5203 if (mc.moved_charge) {
00501b53 5204 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5205 mc.moved_charge = 0;
4ffef5fe 5206 }
483c30b5
DN
5207 /* we must fixup refcnts and charges */
5208 if (mc.moved_swap) {
483c30b5 5209 /* uncharge swap account from the old cgroup */
ce00a967 5210 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5211 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5212
05b84301 5213 /*
3e32cb2e
JW
5214 * we charged both to->memory and to->memsw, so we
5215 * should uncharge to->memory.
05b84301 5216 */
ce00a967 5217 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5218 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5219
e8ea14cc 5220 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5221
4050377b 5222 /* we've already done css_get(mc.to) */
483c30b5
DN
5223 mc.moved_swap = 0;
5224 }
dfe076b0
DN
5225 memcg_oom_recover(from);
5226 memcg_oom_recover(to);
5227 wake_up_all(&mc.waitq);
5228}
5229
5230static void mem_cgroup_clear_mc(void)
5231{
dfe076b0
DN
5232 /*
5233 * we must clear moving_task before waking up waiters at the end of
5234 * task migration.
5235 */
5236 mc.moving_task = NULL;
5237 __mem_cgroup_clear_mc();
2bd9bb20 5238 spin_lock(&mc.lock);
4ffef5fe
DN
5239 mc.from = NULL;
5240 mc.to = NULL;
2bd9bb20 5241 spin_unlock(&mc.lock);
4ffef5fe
DN
5242}
5243
eb95419b 5244static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5245 struct cgroup_taskset *tset)
7dc74be0 5246{
2f7ee569 5247 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5248 int ret = 0;
eb95419b 5249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5250 unsigned long move_charge_at_immigrate;
7dc74be0 5251
ee5e8472
GC
5252 /*
5253 * We are now commited to this value whatever it is. Changes in this
5254 * tunable will only affect upcoming migrations, not the current one.
5255 * So we need to save it, and keep it going.
5256 */
5257 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5258 if (move_charge_at_immigrate) {
7dc74be0
DN
5259 struct mm_struct *mm;
5260 struct mem_cgroup *from = mem_cgroup_from_task(p);
5261
c0ff4b85 5262 VM_BUG_ON(from == memcg);
7dc74be0
DN
5263
5264 mm = get_task_mm(p);
5265 if (!mm)
5266 return 0;
7dc74be0 5267 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5268 if (mm->owner == p) {
5269 VM_BUG_ON(mc.from);
5270 VM_BUG_ON(mc.to);
5271 VM_BUG_ON(mc.precharge);
854ffa8d 5272 VM_BUG_ON(mc.moved_charge);
483c30b5 5273 VM_BUG_ON(mc.moved_swap);
247b1447 5274
2bd9bb20 5275 spin_lock(&mc.lock);
4ffef5fe 5276 mc.from = from;
c0ff4b85 5277 mc.to = memcg;
ee5e8472 5278 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5279 spin_unlock(&mc.lock);
dfe076b0 5280 /* We set mc.moving_task later */
4ffef5fe
DN
5281
5282 ret = mem_cgroup_precharge_mc(mm);
5283 if (ret)
5284 mem_cgroup_clear_mc();
dfe076b0
DN
5285 }
5286 mmput(mm);
7dc74be0
DN
5287 }
5288 return ret;
5289}
5290
eb95419b 5291static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5292 struct cgroup_taskset *tset)
7dc74be0 5293{
4e2f245d
JW
5294 if (mc.to)
5295 mem_cgroup_clear_mc();
7dc74be0
DN
5296}
5297
4ffef5fe
DN
5298static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5299 unsigned long addr, unsigned long end,
5300 struct mm_walk *walk)
7dc74be0 5301{
4ffef5fe
DN
5302 int ret = 0;
5303 struct vm_area_struct *vma = walk->private;
5304 pte_t *pte;
5305 spinlock_t *ptl;
12724850
NH
5306 enum mc_target_type target_type;
5307 union mc_target target;
5308 struct page *page;
4ffef5fe 5309
12724850
NH
5310 /*
5311 * We don't take compound_lock() here but no race with splitting thp
5312 * happens because:
5313 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5314 * under splitting, which means there's no concurrent thp split,
5315 * - if another thread runs into split_huge_page() just after we
5316 * entered this if-block, the thread must wait for page table lock
5317 * to be unlocked in __split_huge_page_splitting(), where the main
5318 * part of thp split is not executed yet.
5319 */
bf929152 5320 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5321 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5322 spin_unlock(ptl);
12724850
NH
5323 return 0;
5324 }
5325 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5326 if (target_type == MC_TARGET_PAGE) {
5327 page = target.page;
5328 if (!isolate_lru_page(page)) {
12724850 5329 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5330 mc.from, mc.to)) {
12724850
NH
5331 mc.precharge -= HPAGE_PMD_NR;
5332 mc.moved_charge += HPAGE_PMD_NR;
5333 }
5334 putback_lru_page(page);
5335 }
5336 put_page(page);
5337 }
bf929152 5338 spin_unlock(ptl);
1a5a9906 5339 return 0;
12724850
NH
5340 }
5341
45f83cef
AA
5342 if (pmd_trans_unstable(pmd))
5343 return 0;
4ffef5fe
DN
5344retry:
5345 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5346 for (; addr != end; addr += PAGE_SIZE) {
5347 pte_t ptent = *(pte++);
02491447 5348 swp_entry_t ent;
4ffef5fe
DN
5349
5350 if (!mc.precharge)
5351 break;
5352
8d32ff84 5353 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5354 case MC_TARGET_PAGE:
5355 page = target.page;
5356 if (isolate_lru_page(page))
5357 goto put;
1306a85a 5358 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5359 mc.precharge--;
854ffa8d
DN
5360 /* we uncharge from mc.from later. */
5361 mc.moved_charge++;
4ffef5fe
DN
5362 }
5363 putback_lru_page(page);
8d32ff84 5364put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5365 put_page(page);
5366 break;
02491447
DN
5367 case MC_TARGET_SWAP:
5368 ent = target.ent;
e91cbb42 5369 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5370 mc.precharge--;
483c30b5
DN
5371 /* we fixup refcnts and charges later. */
5372 mc.moved_swap++;
5373 }
02491447 5374 break;
4ffef5fe
DN
5375 default:
5376 break;
5377 }
5378 }
5379 pte_unmap_unlock(pte - 1, ptl);
5380 cond_resched();
5381
5382 if (addr != end) {
5383 /*
5384 * We have consumed all precharges we got in can_attach().
5385 * We try charge one by one, but don't do any additional
5386 * charges to mc.to if we have failed in charge once in attach()
5387 * phase.
5388 */
854ffa8d 5389 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5390 if (!ret)
5391 goto retry;
5392 }
5393
5394 return ret;
5395}
5396
5397static void mem_cgroup_move_charge(struct mm_struct *mm)
5398{
5399 struct vm_area_struct *vma;
5400
5401 lru_add_drain_all();
312722cb
JW
5402 /*
5403 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5404 * move_lock while we're moving its pages to another memcg.
5405 * Then wait for already started RCU-only updates to finish.
5406 */
5407 atomic_inc(&mc.from->moving_account);
5408 synchronize_rcu();
dfe076b0
DN
5409retry:
5410 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5411 /*
5412 * Someone who are holding the mmap_sem might be waiting in
5413 * waitq. So we cancel all extra charges, wake up all waiters,
5414 * and retry. Because we cancel precharges, we might not be able
5415 * to move enough charges, but moving charge is a best-effort
5416 * feature anyway, so it wouldn't be a big problem.
5417 */
5418 __mem_cgroup_clear_mc();
5419 cond_resched();
5420 goto retry;
5421 }
4ffef5fe
DN
5422 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5423 int ret;
5424 struct mm_walk mem_cgroup_move_charge_walk = {
5425 .pmd_entry = mem_cgroup_move_charge_pte_range,
5426 .mm = mm,
5427 .private = vma,
5428 };
5429 if (is_vm_hugetlb_page(vma))
5430 continue;
4ffef5fe
DN
5431 ret = walk_page_range(vma->vm_start, vma->vm_end,
5432 &mem_cgroup_move_charge_walk);
5433 if (ret)
5434 /*
5435 * means we have consumed all precharges and failed in
5436 * doing additional charge. Just abandon here.
5437 */
5438 break;
5439 }
dfe076b0 5440 up_read(&mm->mmap_sem);
312722cb 5441 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5442}
5443
eb95419b 5444static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5445 struct cgroup_taskset *tset)
67e465a7 5446{
2f7ee569 5447 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5448 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5449
dfe076b0 5450 if (mm) {
a433658c
KM
5451 if (mc.to)
5452 mem_cgroup_move_charge(mm);
dfe076b0
DN
5453 mmput(mm);
5454 }
a433658c
KM
5455 if (mc.to)
5456 mem_cgroup_clear_mc();
67e465a7 5457}
5cfb80a7 5458#else /* !CONFIG_MMU */
eb95419b 5459static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5460 struct cgroup_taskset *tset)
5cfb80a7
DN
5461{
5462 return 0;
5463}
eb95419b 5464static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5465 struct cgroup_taskset *tset)
5cfb80a7
DN
5466{
5467}
eb95419b 5468static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5469 struct cgroup_taskset *tset)
5cfb80a7
DN
5470{
5471}
5472#endif
67e465a7 5473
f00baae7
TH
5474/*
5475 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5476 * to verify whether we're attached to the default hierarchy on each mount
5477 * attempt.
f00baae7 5478 */
eb95419b 5479static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5480{
5481 /*
aa6ec29b 5482 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5483 * guarantees that @root doesn't have any children, so turning it
5484 * on for the root memcg is enough.
5485 */
aa6ec29b 5486 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5487 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5488}
5489
073219e9 5490struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5491 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5492 .css_online = mem_cgroup_css_online,
92fb9748
TH
5493 .css_offline = mem_cgroup_css_offline,
5494 .css_free = mem_cgroup_css_free,
1ced953b 5495 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5496 .can_attach = mem_cgroup_can_attach,
5497 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5498 .attach = mem_cgroup_move_task,
f00baae7 5499 .bind = mem_cgroup_bind,
5577964e 5500 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5501 .early_init = 0,
8cdea7c0 5502};
c077719b 5503
c255a458 5504#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5505static int __init enable_swap_account(char *s)
5506{
a2c8990a 5507 if (!strcmp(s, "1"))
a42c390c 5508 really_do_swap_account = 1;
a2c8990a 5509 else if (!strcmp(s, "0"))
a42c390c
MH
5510 really_do_swap_account = 0;
5511 return 1;
5512}
a2c8990a 5513__setup("swapaccount=", enable_swap_account);
c077719b 5514
2d11085e
MH
5515static void __init memsw_file_init(void)
5516{
2cf669a5
TH
5517 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5518 memsw_cgroup_files));
6acc8b02
MH
5519}
5520
5521static void __init enable_swap_cgroup(void)
5522{
5523 if (!mem_cgroup_disabled() && really_do_swap_account) {
5524 do_swap_account = 1;
5525 memsw_file_init();
5526 }
2d11085e 5527}
6acc8b02 5528
2d11085e 5529#else
6acc8b02 5530static void __init enable_swap_cgroup(void)
2d11085e
MH
5531{
5532}
c077719b 5533#endif
2d11085e 5534
0a31bc97
JW
5535#ifdef CONFIG_MEMCG_SWAP
5536/**
5537 * mem_cgroup_swapout - transfer a memsw charge to swap
5538 * @page: page whose memsw charge to transfer
5539 * @entry: swap entry to move the charge to
5540 *
5541 * Transfer the memsw charge of @page to @entry.
5542 */
5543void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5544{
7bdd143c 5545 struct mem_cgroup *memcg;
0a31bc97
JW
5546 unsigned short oldid;
5547
5548 VM_BUG_ON_PAGE(PageLRU(page), page);
5549 VM_BUG_ON_PAGE(page_count(page), page);
5550
5551 if (!do_swap_account)
5552 return;
5553
1306a85a 5554 memcg = page->mem_cgroup;
0a31bc97
JW
5555
5556 /* Readahead page, never charged */
29833315 5557 if (!memcg)
0a31bc97
JW
5558 return;
5559
7bdd143c 5560 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5561 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5562 mem_cgroup_swap_statistics(memcg, true);
5563
1306a85a 5564 page->mem_cgroup = NULL;
0a31bc97 5565
7bdd143c
JW
5566 if (!mem_cgroup_is_root(memcg))
5567 page_counter_uncharge(&memcg->memory, 1);
5568
5569 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5570 VM_BUG_ON(!irqs_disabled());
0a31bc97 5571
7bdd143c
JW
5572 mem_cgroup_charge_statistics(memcg, page, -1);
5573 memcg_check_events(memcg, page);
0a31bc97
JW
5574}
5575
5576/**
5577 * mem_cgroup_uncharge_swap - uncharge a swap entry
5578 * @entry: swap entry to uncharge
5579 *
5580 * Drop the memsw charge associated with @entry.
5581 */
5582void mem_cgroup_uncharge_swap(swp_entry_t entry)
5583{
5584 struct mem_cgroup *memcg;
5585 unsigned short id;
5586
5587 if (!do_swap_account)
5588 return;
5589
5590 id = swap_cgroup_record(entry, 0);
5591 rcu_read_lock();
5592 memcg = mem_cgroup_lookup(id);
5593 if (memcg) {
ce00a967 5594 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5595 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5596 mem_cgroup_swap_statistics(memcg, false);
5597 css_put(&memcg->css);
5598 }
5599 rcu_read_unlock();
5600}
5601#endif
5602
00501b53
JW
5603/**
5604 * mem_cgroup_try_charge - try charging a page
5605 * @page: page to charge
5606 * @mm: mm context of the victim
5607 * @gfp_mask: reclaim mode
5608 * @memcgp: charged memcg return
5609 *
5610 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5611 * pages according to @gfp_mask if necessary.
5612 *
5613 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5614 * Otherwise, an error code is returned.
5615 *
5616 * After page->mapping has been set up, the caller must finalize the
5617 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5618 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5619 */
5620int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5621 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5622{
5623 struct mem_cgroup *memcg = NULL;
5624 unsigned int nr_pages = 1;
5625 int ret = 0;
5626
5627 if (mem_cgroup_disabled())
5628 goto out;
5629
5630 if (PageSwapCache(page)) {
00501b53
JW
5631 /*
5632 * Every swap fault against a single page tries to charge the
5633 * page, bail as early as possible. shmem_unuse() encounters
5634 * already charged pages, too. The USED bit is protected by
5635 * the page lock, which serializes swap cache removal, which
5636 * in turn serializes uncharging.
5637 */
1306a85a 5638 if (page->mem_cgroup)
00501b53
JW
5639 goto out;
5640 }
5641
5642 if (PageTransHuge(page)) {
5643 nr_pages <<= compound_order(page);
5644 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5645 }
5646
5647 if (do_swap_account && PageSwapCache(page))
5648 memcg = try_get_mem_cgroup_from_page(page);
5649 if (!memcg)
5650 memcg = get_mem_cgroup_from_mm(mm);
5651
5652 ret = try_charge(memcg, gfp_mask, nr_pages);
5653
5654 css_put(&memcg->css);
5655
5656 if (ret == -EINTR) {
5657 memcg = root_mem_cgroup;
5658 ret = 0;
5659 }
5660out:
5661 *memcgp = memcg;
5662 return ret;
5663}
5664
5665/**
5666 * mem_cgroup_commit_charge - commit a page charge
5667 * @page: page to charge
5668 * @memcg: memcg to charge the page to
5669 * @lrucare: page might be on LRU already
5670 *
5671 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5672 * after page->mapping has been set up. This must happen atomically
5673 * as part of the page instantiation, i.e. under the page table lock
5674 * for anonymous pages, under the page lock for page and swap cache.
5675 *
5676 * In addition, the page must not be on the LRU during the commit, to
5677 * prevent racing with task migration. If it might be, use @lrucare.
5678 *
5679 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5680 */
5681void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5682 bool lrucare)
5683{
5684 unsigned int nr_pages = 1;
5685
5686 VM_BUG_ON_PAGE(!page->mapping, page);
5687 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5688
5689 if (mem_cgroup_disabled())
5690 return;
5691 /*
5692 * Swap faults will attempt to charge the same page multiple
5693 * times. But reuse_swap_page() might have removed the page
5694 * from swapcache already, so we can't check PageSwapCache().
5695 */
5696 if (!memcg)
5697 return;
5698
6abb5a86
JW
5699 commit_charge(page, memcg, lrucare);
5700
00501b53
JW
5701 if (PageTransHuge(page)) {
5702 nr_pages <<= compound_order(page);
5703 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5704 }
5705
6abb5a86
JW
5706 local_irq_disable();
5707 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5708 memcg_check_events(memcg, page);
5709 local_irq_enable();
00501b53
JW
5710
5711 if (do_swap_account && PageSwapCache(page)) {
5712 swp_entry_t entry = { .val = page_private(page) };
5713 /*
5714 * The swap entry might not get freed for a long time,
5715 * let's not wait for it. The page already received a
5716 * memory+swap charge, drop the swap entry duplicate.
5717 */
5718 mem_cgroup_uncharge_swap(entry);
5719 }
5720}
5721
5722/**
5723 * mem_cgroup_cancel_charge - cancel a page charge
5724 * @page: page to charge
5725 * @memcg: memcg to charge the page to
5726 *
5727 * Cancel a charge transaction started by mem_cgroup_try_charge().
5728 */
5729void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5730{
5731 unsigned int nr_pages = 1;
5732
5733 if (mem_cgroup_disabled())
5734 return;
5735 /*
5736 * Swap faults will attempt to charge the same page multiple
5737 * times. But reuse_swap_page() might have removed the page
5738 * from swapcache already, so we can't check PageSwapCache().
5739 */
5740 if (!memcg)
5741 return;
5742
5743 if (PageTransHuge(page)) {
5744 nr_pages <<= compound_order(page);
5745 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5746 }
5747
5748 cancel_charge(memcg, nr_pages);
5749}
5750
747db954 5751static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5752 unsigned long nr_anon, unsigned long nr_file,
5753 unsigned long nr_huge, struct page *dummy_page)
5754{
18eca2e6 5755 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5756 unsigned long flags;
5757
ce00a967 5758 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5759 page_counter_uncharge(&memcg->memory, nr_pages);
5760 if (do_swap_account)
5761 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5762 memcg_oom_recover(memcg);
5763 }
747db954
JW
5764
5765 local_irq_save(flags);
5766 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5767 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5768 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5769 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5770 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5771 memcg_check_events(memcg, dummy_page);
5772 local_irq_restore(flags);
e8ea14cc
JW
5773
5774 if (!mem_cgroup_is_root(memcg))
18eca2e6 5775 css_put_many(&memcg->css, nr_pages);
747db954
JW
5776}
5777
5778static void uncharge_list(struct list_head *page_list)
5779{
5780 struct mem_cgroup *memcg = NULL;
747db954
JW
5781 unsigned long nr_anon = 0;
5782 unsigned long nr_file = 0;
5783 unsigned long nr_huge = 0;
5784 unsigned long pgpgout = 0;
747db954
JW
5785 struct list_head *next;
5786 struct page *page;
5787
5788 next = page_list->next;
5789 do {
5790 unsigned int nr_pages = 1;
747db954
JW
5791
5792 page = list_entry(next, struct page, lru);
5793 next = page->lru.next;
5794
5795 VM_BUG_ON_PAGE(PageLRU(page), page);
5796 VM_BUG_ON_PAGE(page_count(page), page);
5797
1306a85a 5798 if (!page->mem_cgroup)
747db954
JW
5799 continue;
5800
5801 /*
5802 * Nobody should be changing or seriously looking at
1306a85a 5803 * page->mem_cgroup at this point, we have fully
29833315 5804 * exclusive access to the page.
747db954
JW
5805 */
5806
1306a85a 5807 if (memcg != page->mem_cgroup) {
747db954 5808 if (memcg) {
18eca2e6
JW
5809 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5810 nr_huge, page);
5811 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5812 }
1306a85a 5813 memcg = page->mem_cgroup;
747db954
JW
5814 }
5815
5816 if (PageTransHuge(page)) {
5817 nr_pages <<= compound_order(page);
5818 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5819 nr_huge += nr_pages;
5820 }
5821
5822 if (PageAnon(page))
5823 nr_anon += nr_pages;
5824 else
5825 nr_file += nr_pages;
5826
1306a85a 5827 page->mem_cgroup = NULL;
747db954
JW
5828
5829 pgpgout++;
5830 } while (next != page_list);
5831
5832 if (memcg)
18eca2e6
JW
5833 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5834 nr_huge, page);
747db954
JW
5835}
5836
0a31bc97
JW
5837/**
5838 * mem_cgroup_uncharge - uncharge a page
5839 * @page: page to uncharge
5840 *
5841 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5842 * mem_cgroup_commit_charge().
5843 */
5844void mem_cgroup_uncharge(struct page *page)
5845{
0a31bc97
JW
5846 if (mem_cgroup_disabled())
5847 return;
5848
747db954 5849 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5850 if (!page->mem_cgroup)
0a31bc97
JW
5851 return;
5852
747db954
JW
5853 INIT_LIST_HEAD(&page->lru);
5854 uncharge_list(&page->lru);
5855}
0a31bc97 5856
747db954
JW
5857/**
5858 * mem_cgroup_uncharge_list - uncharge a list of page
5859 * @page_list: list of pages to uncharge
5860 *
5861 * Uncharge a list of pages previously charged with
5862 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5863 */
5864void mem_cgroup_uncharge_list(struct list_head *page_list)
5865{
5866 if (mem_cgroup_disabled())
5867 return;
0a31bc97 5868
747db954
JW
5869 if (!list_empty(page_list))
5870 uncharge_list(page_list);
0a31bc97
JW
5871}
5872
5873/**
5874 * mem_cgroup_migrate - migrate a charge to another page
5875 * @oldpage: currently charged page
5876 * @newpage: page to transfer the charge to
5877 * @lrucare: both pages might be on the LRU already
5878 *
5879 * Migrate the charge from @oldpage to @newpage.
5880 *
5881 * Both pages must be locked, @newpage->mapping must be set up.
5882 */
5883void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5884 bool lrucare)
5885{
29833315 5886 struct mem_cgroup *memcg;
0a31bc97
JW
5887 int isolated;
5888
5889 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5890 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5891 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5892 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5893 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5894 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5895 newpage);
0a31bc97
JW
5896
5897 if (mem_cgroup_disabled())
5898 return;
5899
5900 /* Page cache replacement: new page already charged? */
1306a85a 5901 if (newpage->mem_cgroup)
0a31bc97
JW
5902 return;
5903
7d5e3245
JW
5904 /*
5905 * Swapcache readahead pages can get migrated before being
5906 * charged, and migration from compaction can happen to an
5907 * uncharged page when the PFN walker finds a page that
5908 * reclaim just put back on the LRU but has not released yet.
5909 */
1306a85a 5910 memcg = oldpage->mem_cgroup;
29833315 5911 if (!memcg)
0a31bc97
JW
5912 return;
5913
0a31bc97
JW
5914 if (lrucare)
5915 lock_page_lru(oldpage, &isolated);
5916
1306a85a 5917 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5918
5919 if (lrucare)
5920 unlock_page_lru(oldpage, isolated);
5921
29833315 5922 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5923}
5924
2d11085e 5925/*
1081312f
MH
5926 * subsys_initcall() for memory controller.
5927 *
5928 * Some parts like hotcpu_notifier() have to be initialized from this context
5929 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5930 * everything that doesn't depend on a specific mem_cgroup structure should
5931 * be initialized from here.
2d11085e
MH
5932 */
5933static int __init mem_cgroup_init(void)
5934{
5935 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5936 enable_swap_cgroup();
bb4cc1a8 5937 mem_cgroup_soft_limit_tree_init();
e4777496 5938 memcg_stock_init();
2d11085e
MH
5939 return 0;
5940}
5941subsys_initcall(mem_cgroup_init);