]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: keep prev's css alive for the whole mem_cgroup_iter
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
58cf188e
SZ
123static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129};
130
7a159cc9
JW
131/*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 140 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
141 MEM_CGROUP_NTARGETS,
142};
a0db00fc
KS
143#define THRESHOLDS_EVENTS_TARGET 128
144#define SOFTLIMIT_EVENTS_TARGET 1024
145#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 146
d52aa412 147struct mem_cgroup_stat_cpu {
7a159cc9 148 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 150 unsigned long nr_page_events;
7a159cc9 151 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
152};
153
527a5ec9
JW
154struct mem_cgroup_reclaim_iter {
155 /* css_id of the last scanned hierarchy member */
156 int position;
157 /* scan generation, increased every round-trip */
158 unsigned int generation;
159};
160
6d12e2d8
KH
161/*
162 * per-zone information in memory controller.
163 */
6d12e2d8 164struct mem_cgroup_per_zone {
6290df54 165 struct lruvec lruvec;
1eb49272 166 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 167
527a5ec9
JW
168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
169
f64c3f54
BS
170 struct rb_node tree_node; /* RB tree node */
171 unsigned long long usage_in_excess;/* Set to the value by which */
172 /* the soft limit is exceeded*/
173 bool on_tree;
d79154bb 174 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 175 /* use container_of */
6d12e2d8 176};
6d12e2d8
KH
177
178struct mem_cgroup_per_node {
179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
180};
181
182struct mem_cgroup_lru_info {
45cf7ebd 183 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
184};
185
f64c3f54
BS
186/*
187 * Cgroups above their limits are maintained in a RB-Tree, independent of
188 * their hierarchy representation
189 */
190
191struct mem_cgroup_tree_per_zone {
192 struct rb_root rb_root;
193 spinlock_t lock;
194};
195
196struct mem_cgroup_tree_per_node {
197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
198};
199
200struct mem_cgroup_tree {
201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
202};
203
204static struct mem_cgroup_tree soft_limit_tree __read_mostly;
205
2e72b634
KS
206struct mem_cgroup_threshold {
207 struct eventfd_ctx *eventfd;
208 u64 threshold;
209};
210
9490ff27 211/* For threshold */
2e72b634 212struct mem_cgroup_threshold_ary {
748dad36 213 /* An array index points to threshold just below or equal to usage. */
5407a562 214 int current_threshold;
2e72b634
KS
215 /* Size of entries[] */
216 unsigned int size;
217 /* Array of thresholds */
218 struct mem_cgroup_threshold entries[0];
219};
2c488db2
KS
220
221struct mem_cgroup_thresholds {
222 /* Primary thresholds array */
223 struct mem_cgroup_threshold_ary *primary;
224 /*
225 * Spare threshold array.
226 * This is needed to make mem_cgroup_unregister_event() "never fail".
227 * It must be able to store at least primary->size - 1 entries.
228 */
229 struct mem_cgroup_threshold_ary *spare;
230};
231
9490ff27
KH
232/* for OOM */
233struct mem_cgroup_eventfd_list {
234 struct list_head list;
235 struct eventfd_ctx *eventfd;
236};
2e72b634 237
c0ff4b85
R
238static void mem_cgroup_threshold(struct mem_cgroup *memcg);
239static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 240
8cdea7c0
BS
241/*
242 * The memory controller data structure. The memory controller controls both
243 * page cache and RSS per cgroup. We would eventually like to provide
244 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
245 * to help the administrator determine what knobs to tune.
246 *
247 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
248 * we hit the water mark. May be even add a low water mark, such that
249 * no reclaim occurs from a cgroup at it's low water mark, this is
250 * a feature that will be implemented much later in the future.
8cdea7c0
BS
251 */
252struct mem_cgroup {
253 struct cgroup_subsys_state css;
254 /*
255 * the counter to account for memory usage
256 */
257 struct res_counter res;
59927fb9
HD
258
259 union {
260 /*
261 * the counter to account for mem+swap usage.
262 */
263 struct res_counter memsw;
264
265 /*
266 * rcu_freeing is used only when freeing struct mem_cgroup,
267 * so put it into a union to avoid wasting more memory.
268 * It must be disjoint from the css field. It could be
269 * in a union with the res field, but res plays a much
270 * larger part in mem_cgroup life than memsw, and might
271 * be of interest, even at time of free, when debugging.
272 * So share rcu_head with the less interesting memsw.
273 */
274 struct rcu_head rcu_freeing;
275 /*
3afe36b1
GC
276 * We also need some space for a worker in deferred freeing.
277 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
278 */
279 struct work_struct work_freeing;
280 };
281
510fc4e1
GC
282 /*
283 * the counter to account for kernel memory usage.
284 */
285 struct res_counter kmem;
18f59ea7
BS
286 /*
287 * Should the accounting and control be hierarchical, per subtree?
288 */
289 bool use_hierarchy;
510fc4e1 290 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
291
292 bool oom_lock;
293 atomic_t under_oom;
294
8c7c6e34 295 atomic_t refcnt;
14797e23 296
1f4c025b 297 int swappiness;
3c11ecf4
KH
298 /* OOM-Killer disable */
299 int oom_kill_disable;
a7885eb8 300
22a668d7
KH
301 /* set when res.limit == memsw.limit */
302 bool memsw_is_minimum;
303
2e72b634
KS
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
306
307 /* thresholds for memory usage. RCU-protected */
2c488db2 308 struct mem_cgroup_thresholds thresholds;
907860ed 309
2e72b634 310 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 312
9490ff27
KH
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
185efc0f 315
7dc74be0
DN
316 /*
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
319 */
320 unsigned long move_charge_at_immigrate;
619d094b
KH
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
324 atomic_t moving_account;
312734c0
KH
325 /* taken only while moving_account > 0 */
326 spinlock_t move_lock;
d52aa412 327 /*
c62b1a3b 328 * percpu counter.
d52aa412 329 */
3a7951b4 330 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
331 /*
332 * used when a cpu is offlined or other synchronizations
333 * See mem_cgroup_read_stat().
334 */
335 struct mem_cgroup_stat_cpu nocpu_base;
336 spinlock_t pcp_counter_lock;
d1a4c0b3 337
4bd2c1ee 338#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
339 struct tcp_memcontrol tcp_mem;
340#endif
2633d7a0
GC
341#if defined(CONFIG_MEMCG_KMEM)
342 /* analogous to slab_common's slab_caches list. per-memcg */
343 struct list_head memcg_slab_caches;
344 /* Not a spinlock, we can take a lot of time walking the list */
345 struct mutex slab_caches_mutex;
346 /* Index in the kmem_cache->memcg_params->memcg_caches array */
347 int kmemcg_id;
348#endif
45cf7ebd
GC
349
350 int last_scanned_node;
351#if MAX_NUMNODES > 1
352 nodemask_t scan_nodes;
353 atomic_t numainfo_events;
354 atomic_t numainfo_updating;
355#endif
356 /*
357 * Per cgroup active and inactive list, similar to the
358 * per zone LRU lists.
359 *
360 * WARNING: This has to be the last element of the struct. Don't
361 * add new fields after this point.
362 */
363 struct mem_cgroup_lru_info info;
8cdea7c0
BS
364};
365
45cf7ebd
GC
366static size_t memcg_size(void)
367{
368 return sizeof(struct mem_cgroup) +
369 nr_node_ids * sizeof(struct mem_cgroup_per_node);
370}
371
510fc4e1
GC
372/* internal only representation about the status of kmem accounting. */
373enum {
374 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 375 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 376 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
377};
378
a8964b9b
GC
379/* We account when limit is on, but only after call sites are patched */
380#define KMEM_ACCOUNTED_MASK \
381 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
382
383#ifdef CONFIG_MEMCG_KMEM
384static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
385{
386 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
387}
7de37682
GC
388
389static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
390{
391 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
393
a8964b9b
GC
394static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
395{
396 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
397}
398
55007d84
GC
399static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
400{
401 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
402}
403
7de37682
GC
404static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
405{
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc
KS
458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
c0ff4b85
R
498static void mem_cgroup_get(struct mem_cgroup *memcg);
499static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 500
b2145145
WL
501static inline
502struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
503{
504 return container_of(s, struct mem_cgroup, css);
505}
506
7ffc0edc
MH
507static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
508{
509 return (memcg == root_mem_cgroup);
510}
511
e1aab161 512/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 513#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 514
e1aab161
GC
515void sock_update_memcg(struct sock *sk)
516{
376be5ff 517 if (mem_cgroup_sockets_enabled) {
e1aab161 518 struct mem_cgroup *memcg;
3f134619 519 struct cg_proto *cg_proto;
e1aab161
GC
520
521 BUG_ON(!sk->sk_prot->proto_cgroup);
522
f3f511e1
GC
523 /* Socket cloning can throw us here with sk_cgrp already
524 * filled. It won't however, necessarily happen from
525 * process context. So the test for root memcg given
526 * the current task's memcg won't help us in this case.
527 *
528 * Respecting the original socket's memcg is a better
529 * decision in this case.
530 */
531 if (sk->sk_cgrp) {
532 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
533 mem_cgroup_get(sk->sk_cgrp->memcg);
534 return;
535 }
536
e1aab161
GC
537 rcu_read_lock();
538 memcg = mem_cgroup_from_task(current);
3f134619
GC
539 cg_proto = sk->sk_prot->proto_cgroup(memcg);
540 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 541 mem_cgroup_get(memcg);
3f134619 542 sk->sk_cgrp = cg_proto;
e1aab161
GC
543 }
544 rcu_read_unlock();
545 }
546}
547EXPORT_SYMBOL(sock_update_memcg);
548
549void sock_release_memcg(struct sock *sk)
550{
376be5ff 551 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
552 struct mem_cgroup *memcg;
553 WARN_ON(!sk->sk_cgrp->memcg);
554 memcg = sk->sk_cgrp->memcg;
555 mem_cgroup_put(memcg);
556 }
557}
d1a4c0b3
GC
558
559struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
560{
561 if (!memcg || mem_cgroup_is_root(memcg))
562 return NULL;
563
564 return &memcg->tcp_mem.cg_proto;
565}
566EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 567
3f134619
GC
568static void disarm_sock_keys(struct mem_cgroup *memcg)
569{
570 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
571 return;
572 static_key_slow_dec(&memcg_socket_limit_enabled);
573}
574#else
575static void disarm_sock_keys(struct mem_cgroup *memcg)
576{
577}
578#endif
579
a8964b9b 580#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
581/*
582 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
583 * There are two main reasons for not using the css_id for this:
584 * 1) this works better in sparse environments, where we have a lot of memcgs,
585 * but only a few kmem-limited. Or also, if we have, for instance, 200
586 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
587 * 200 entry array for that.
588 *
589 * 2) In order not to violate the cgroup API, we would like to do all memory
590 * allocation in ->create(). At that point, we haven't yet allocated the
591 * css_id. Having a separate index prevents us from messing with the cgroup
592 * core for this
593 *
594 * The current size of the caches array is stored in
595 * memcg_limited_groups_array_size. It will double each time we have to
596 * increase it.
597 */
598static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
599int memcg_limited_groups_array_size;
600
55007d84
GC
601/*
602 * MIN_SIZE is different than 1, because we would like to avoid going through
603 * the alloc/free process all the time. In a small machine, 4 kmem-limited
604 * cgroups is a reasonable guess. In the future, it could be a parameter or
605 * tunable, but that is strictly not necessary.
606 *
607 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
608 * this constant directly from cgroup, but it is understandable that this is
609 * better kept as an internal representation in cgroup.c. In any case, the
610 * css_id space is not getting any smaller, and we don't have to necessarily
611 * increase ours as well if it increases.
612 */
613#define MEMCG_CACHES_MIN_SIZE 4
614#define MEMCG_CACHES_MAX_SIZE 65535
615
d7f25f8a
GC
616/*
617 * A lot of the calls to the cache allocation functions are expected to be
618 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
619 * conditional to this static branch, we'll have to allow modules that does
620 * kmem_cache_alloc and the such to see this symbol as well
621 */
a8964b9b 622struct static_key memcg_kmem_enabled_key;
d7f25f8a 623EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
624
625static void disarm_kmem_keys(struct mem_cgroup *memcg)
626{
55007d84 627 if (memcg_kmem_is_active(memcg)) {
a8964b9b 628 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
629 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
630 }
bea207c8
GC
631 /*
632 * This check can't live in kmem destruction function,
633 * since the charges will outlive the cgroup
634 */
635 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
636}
637#else
638static void disarm_kmem_keys(struct mem_cgroup *memcg)
639{
640}
641#endif /* CONFIG_MEMCG_KMEM */
642
643static void disarm_static_keys(struct mem_cgroup *memcg)
644{
645 disarm_sock_keys(memcg);
646 disarm_kmem_keys(memcg);
647}
648
c0ff4b85 649static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 650
f64c3f54 651static struct mem_cgroup_per_zone *
c0ff4b85 652mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 653{
45cf7ebd 654 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 655 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
656}
657
c0ff4b85 658struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 659{
c0ff4b85 660 return &memcg->css;
d324236b
WF
661}
662
f64c3f54 663static struct mem_cgroup_per_zone *
c0ff4b85 664page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 665{
97a6c37b
JW
666 int nid = page_to_nid(page);
667 int zid = page_zonenum(page);
f64c3f54 668
c0ff4b85 669 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
670}
671
672static struct mem_cgroup_tree_per_zone *
673soft_limit_tree_node_zone(int nid, int zid)
674{
675 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
676}
677
678static struct mem_cgroup_tree_per_zone *
679soft_limit_tree_from_page(struct page *page)
680{
681 int nid = page_to_nid(page);
682 int zid = page_zonenum(page);
683
684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
685}
686
687static void
c0ff4b85 688__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 689 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
690 struct mem_cgroup_tree_per_zone *mctz,
691 unsigned long long new_usage_in_excess)
f64c3f54
BS
692{
693 struct rb_node **p = &mctz->rb_root.rb_node;
694 struct rb_node *parent = NULL;
695 struct mem_cgroup_per_zone *mz_node;
696
697 if (mz->on_tree)
698 return;
699
ef8745c1
KH
700 mz->usage_in_excess = new_usage_in_excess;
701 if (!mz->usage_in_excess)
702 return;
f64c3f54
BS
703 while (*p) {
704 parent = *p;
705 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
706 tree_node);
707 if (mz->usage_in_excess < mz_node->usage_in_excess)
708 p = &(*p)->rb_left;
709 /*
710 * We can't avoid mem cgroups that are over their soft
711 * limit by the same amount
712 */
713 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
714 p = &(*p)->rb_right;
715 }
716 rb_link_node(&mz->tree_node, parent, p);
717 rb_insert_color(&mz->tree_node, &mctz->rb_root);
718 mz->on_tree = true;
4e416953
BS
719}
720
721static void
c0ff4b85 722__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
723 struct mem_cgroup_per_zone *mz,
724 struct mem_cgroup_tree_per_zone *mctz)
725{
726 if (!mz->on_tree)
727 return;
728 rb_erase(&mz->tree_node, &mctz->rb_root);
729 mz->on_tree = false;
730}
731
f64c3f54 732static void
c0ff4b85 733mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
734 struct mem_cgroup_per_zone *mz,
735 struct mem_cgroup_tree_per_zone *mctz)
736{
737 spin_lock(&mctz->lock);
c0ff4b85 738 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
739 spin_unlock(&mctz->lock);
740}
741
f64c3f54 742
c0ff4b85 743static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 744{
ef8745c1 745 unsigned long long excess;
f64c3f54
BS
746 struct mem_cgroup_per_zone *mz;
747 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
748 int nid = page_to_nid(page);
749 int zid = page_zonenum(page);
f64c3f54
BS
750 mctz = soft_limit_tree_from_page(page);
751
752 /*
4e649152
KH
753 * Necessary to update all ancestors when hierarchy is used.
754 * because their event counter is not touched.
f64c3f54 755 */
c0ff4b85
R
756 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
757 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
758 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
759 /*
760 * We have to update the tree if mz is on RB-tree or
761 * mem is over its softlimit.
762 */
ef8745c1 763 if (excess || mz->on_tree) {
4e649152
KH
764 spin_lock(&mctz->lock);
765 /* if on-tree, remove it */
766 if (mz->on_tree)
c0ff4b85 767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 768 /*
ef8745c1
KH
769 * Insert again. mz->usage_in_excess will be updated.
770 * If excess is 0, no tree ops.
4e649152 771 */
c0ff4b85 772 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
773 spin_unlock(&mctz->lock);
774 }
f64c3f54
BS
775 }
776}
777
c0ff4b85 778static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
779{
780 int node, zone;
781 struct mem_cgroup_per_zone *mz;
782 struct mem_cgroup_tree_per_zone *mctz;
783
3ed28fa1 784 for_each_node(node) {
f64c3f54 785 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 786 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 787 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 788 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
789 }
790 }
791}
792
4e416953
BS
793static struct mem_cgroup_per_zone *
794__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
795{
796 struct rb_node *rightmost = NULL;
26251eaf 797 struct mem_cgroup_per_zone *mz;
4e416953
BS
798
799retry:
26251eaf 800 mz = NULL;
4e416953
BS
801 rightmost = rb_last(&mctz->rb_root);
802 if (!rightmost)
803 goto done; /* Nothing to reclaim from */
804
805 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
806 /*
807 * Remove the node now but someone else can add it back,
808 * we will to add it back at the end of reclaim to its correct
809 * position in the tree.
810 */
d79154bb
HD
811 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
812 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
813 !css_tryget(&mz->memcg->css))
4e416953
BS
814 goto retry;
815done:
816 return mz;
817}
818
819static struct mem_cgroup_per_zone *
820mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
821{
822 struct mem_cgroup_per_zone *mz;
823
824 spin_lock(&mctz->lock);
825 mz = __mem_cgroup_largest_soft_limit_node(mctz);
826 spin_unlock(&mctz->lock);
827 return mz;
828}
829
711d3d2c
KH
830/*
831 * Implementation Note: reading percpu statistics for memcg.
832 *
833 * Both of vmstat[] and percpu_counter has threshold and do periodic
834 * synchronization to implement "quick" read. There are trade-off between
835 * reading cost and precision of value. Then, we may have a chance to implement
836 * a periodic synchronizion of counter in memcg's counter.
837 *
838 * But this _read() function is used for user interface now. The user accounts
839 * memory usage by memory cgroup and he _always_ requires exact value because
840 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
841 * have to visit all online cpus and make sum. So, for now, unnecessary
842 * synchronization is not implemented. (just implemented for cpu hotplug)
843 *
844 * If there are kernel internal actions which can make use of some not-exact
845 * value, and reading all cpu value can be performance bottleneck in some
846 * common workload, threashold and synchonization as vmstat[] should be
847 * implemented.
848 */
c0ff4b85 849static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 850 enum mem_cgroup_stat_index idx)
c62b1a3b 851{
7a159cc9 852 long val = 0;
c62b1a3b 853 int cpu;
c62b1a3b 854
711d3d2c
KH
855 get_online_cpus();
856 for_each_online_cpu(cpu)
c0ff4b85 857 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 858#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
859 spin_lock(&memcg->pcp_counter_lock);
860 val += memcg->nocpu_base.count[idx];
861 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
862#endif
863 put_online_cpus();
c62b1a3b
KH
864 return val;
865}
866
c0ff4b85 867static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
868 bool charge)
869{
870 int val = (charge) ? 1 : -1;
bff6bb83 871 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
872}
873
c0ff4b85 874static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
875 enum mem_cgroup_events_index idx)
876{
877 unsigned long val = 0;
878 int cpu;
879
880 for_each_online_cpu(cpu)
c0ff4b85 881 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 882#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
883 spin_lock(&memcg->pcp_counter_lock);
884 val += memcg->nocpu_base.events[idx];
885 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
886#endif
887 return val;
888}
889
c0ff4b85 890static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 891 bool anon, int nr_pages)
d52aa412 892{
c62b1a3b
KH
893 preempt_disable();
894
b2402857
KH
895 /*
896 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
897 * counted as CACHE even if it's on ANON LRU.
898 */
899 if (anon)
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 901 nr_pages);
d52aa412 902 else
b2402857 903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 904 nr_pages);
55e462b0 905
e401f176
KH
906 /* pagein of a big page is an event. So, ignore page size */
907 if (nr_pages > 0)
c0ff4b85 908 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 909 else {
c0ff4b85 910 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
911 nr_pages = -nr_pages; /* for event */
912 }
e401f176 913
13114716 914 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 915
c62b1a3b 916 preempt_enable();
6d12e2d8
KH
917}
918
bb2a0de9 919unsigned long
4d7dcca2 920mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
921{
922 struct mem_cgroup_per_zone *mz;
923
924 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
925 return mz->lru_size[lru];
926}
927
928static unsigned long
c0ff4b85 929mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 930 unsigned int lru_mask)
889976db
YH
931{
932 struct mem_cgroup_per_zone *mz;
f156ab93 933 enum lru_list lru;
bb2a0de9
KH
934 unsigned long ret = 0;
935
c0ff4b85 936 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 937
f156ab93
HD
938 for_each_lru(lru) {
939 if (BIT(lru) & lru_mask)
940 ret += mz->lru_size[lru];
bb2a0de9
KH
941 }
942 return ret;
943}
944
945static unsigned long
c0ff4b85 946mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
947 int nid, unsigned int lru_mask)
948{
889976db
YH
949 u64 total = 0;
950 int zid;
951
bb2a0de9 952 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
953 total += mem_cgroup_zone_nr_lru_pages(memcg,
954 nid, zid, lru_mask);
bb2a0de9 955
889976db
YH
956 return total;
957}
bb2a0de9 958
c0ff4b85 959static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 960 unsigned int lru_mask)
6d12e2d8 961{
889976db 962 int nid;
6d12e2d8
KH
963 u64 total = 0;
964
31aaea4a 965 for_each_node_state(nid, N_MEMORY)
c0ff4b85 966 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 967 return total;
d52aa412
KH
968}
969
f53d7ce3
JW
970static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
971 enum mem_cgroup_events_target target)
7a159cc9
JW
972{
973 unsigned long val, next;
974
13114716 975 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 976 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 977 /* from time_after() in jiffies.h */
f53d7ce3
JW
978 if ((long)next - (long)val < 0) {
979 switch (target) {
980 case MEM_CGROUP_TARGET_THRESH:
981 next = val + THRESHOLDS_EVENTS_TARGET;
982 break;
983 case MEM_CGROUP_TARGET_SOFTLIMIT:
984 next = val + SOFTLIMIT_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_NUMAINFO:
987 next = val + NUMAINFO_EVENTS_TARGET;
988 break;
989 default:
990 break;
991 }
992 __this_cpu_write(memcg->stat->targets[target], next);
993 return true;
7a159cc9 994 }
f53d7ce3 995 return false;
d2265e6f
KH
996}
997
998/*
999 * Check events in order.
1000 *
1001 */
c0ff4b85 1002static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1003{
4799401f 1004 preempt_disable();
d2265e6f 1005 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1008 bool do_softlimit;
1009 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1010
1011 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_SOFTLIMIT);
1013#if MAX_NUMNODES > 1
1014 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_NUMAINFO);
1016#endif
1017 preempt_enable();
1018
c0ff4b85 1019 mem_cgroup_threshold(memcg);
f53d7ce3 1020 if (unlikely(do_softlimit))
c0ff4b85 1021 mem_cgroup_update_tree(memcg, page);
453a9bf3 1022#if MAX_NUMNODES > 1
f53d7ce3 1023 if (unlikely(do_numainfo))
c0ff4b85 1024 atomic_inc(&memcg->numainfo_events);
453a9bf3 1025#endif
f53d7ce3
JW
1026 } else
1027 preempt_enable();
d2265e6f
KH
1028}
1029
d1a4c0b3 1030struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1031{
b2145145
WL
1032 return mem_cgroup_from_css(
1033 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1034}
1035
cf475ad2 1036struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1037{
31a78f23
BS
1038 /*
1039 * mm_update_next_owner() may clear mm->owner to NULL
1040 * if it races with swapoff, page migration, etc.
1041 * So this can be called with p == NULL.
1042 */
1043 if (unlikely(!p))
1044 return NULL;
1045
b2145145 1046 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1047}
1048
a433658c 1049struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1050{
c0ff4b85 1051 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1052
1053 if (!mm)
1054 return NULL;
54595fe2
KH
1055 /*
1056 * Because we have no locks, mm->owner's may be being moved to other
1057 * cgroup. We use css_tryget() here even if this looks
1058 * pessimistic (rather than adding locks here).
1059 */
1060 rcu_read_lock();
1061 do {
c0ff4b85
R
1062 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1063 if (unlikely(!memcg))
54595fe2 1064 break;
c0ff4b85 1065 } while (!css_tryget(&memcg->css));
54595fe2 1066 rcu_read_unlock();
c0ff4b85 1067 return memcg;
54595fe2
KH
1068}
1069
5660048c
JW
1070/**
1071 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1072 * @root: hierarchy root
1073 * @prev: previously returned memcg, NULL on first invocation
1074 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1075 *
1076 * Returns references to children of the hierarchy below @root, or
1077 * @root itself, or %NULL after a full round-trip.
1078 *
1079 * Caller must pass the return value in @prev on subsequent
1080 * invocations for reference counting, or use mem_cgroup_iter_break()
1081 * to cancel a hierarchy walk before the round-trip is complete.
1082 *
1083 * Reclaimers can specify a zone and a priority level in @reclaim to
1084 * divide up the memcgs in the hierarchy among all concurrent
1085 * reclaimers operating on the same zone and priority.
1086 */
1087struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1088 struct mem_cgroup *prev,
1089 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1090{
9f3a0d09
JW
1091 struct mem_cgroup *memcg = NULL;
1092 int id = 0;
711d3d2c 1093
5660048c
JW
1094 if (mem_cgroup_disabled())
1095 return NULL;
1096
9f3a0d09
JW
1097 if (!root)
1098 root = root_mem_cgroup;
7d74b06f 1099
9f3a0d09
JW
1100 if (prev && !reclaim)
1101 id = css_id(&prev->css);
14067bb3 1102
9f3a0d09
JW
1103 if (!root->use_hierarchy && root != root_mem_cgroup) {
1104 if (prev)
c40046f3 1105 goto out_css_put;
9f3a0d09
JW
1106 return root;
1107 }
14067bb3 1108
9f3a0d09 1109 while (!memcg) {
527a5ec9 1110 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 1111 struct cgroup_subsys_state *css;
711d3d2c 1112
527a5ec9
JW
1113 if (reclaim) {
1114 int nid = zone_to_nid(reclaim->zone);
1115 int zid = zone_idx(reclaim->zone);
1116 struct mem_cgroup_per_zone *mz;
1117
1118 mz = mem_cgroup_zoneinfo(root, nid, zid);
1119 iter = &mz->reclaim_iter[reclaim->priority];
1120 if (prev && reclaim->generation != iter->generation)
c40046f3 1121 goto out_css_put;
527a5ec9
JW
1122 id = iter->position;
1123 }
7d74b06f 1124
9f3a0d09
JW
1125 rcu_read_lock();
1126 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1127 if (css) {
1128 if (css == &root->css || css_tryget(css))
b2145145 1129 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
1130 } else
1131 id = 0;
14067bb3 1132 rcu_read_unlock();
14067bb3 1133
527a5ec9
JW
1134 if (reclaim) {
1135 iter->position = id;
1136 if (!css)
1137 iter->generation++;
1138 else if (!prev && memcg)
1139 reclaim->generation = iter->generation;
1140 }
9f3a0d09
JW
1141
1142 if (prev && !css)
c40046f3 1143 goto out_css_put;
9f3a0d09 1144 }
c40046f3
MH
1145out_css_put:
1146 if (prev && prev != root)
1147 css_put(&prev->css);
1148
9f3a0d09 1149 return memcg;
14067bb3 1150}
7d74b06f 1151
5660048c
JW
1152/**
1153 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1154 * @root: hierarchy root
1155 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1156 */
1157void mem_cgroup_iter_break(struct mem_cgroup *root,
1158 struct mem_cgroup *prev)
9f3a0d09
JW
1159{
1160 if (!root)
1161 root = root_mem_cgroup;
1162 if (prev && prev != root)
1163 css_put(&prev->css);
1164}
7d74b06f 1165
9f3a0d09
JW
1166/*
1167 * Iteration constructs for visiting all cgroups (under a tree). If
1168 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1169 * be used for reference counting.
1170 */
1171#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1172 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1173 iter != NULL; \
527a5ec9 1174 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1175
9f3a0d09 1176#define for_each_mem_cgroup(iter) \
527a5ec9 1177 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1178 iter != NULL; \
527a5ec9 1179 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1180
68ae564b 1181void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1182{
c0ff4b85 1183 struct mem_cgroup *memcg;
456f998e 1184
456f998e 1185 rcu_read_lock();
c0ff4b85
R
1186 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1187 if (unlikely(!memcg))
456f998e
YH
1188 goto out;
1189
1190 switch (idx) {
456f998e 1191 case PGFAULT:
0e574a93
JW
1192 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1193 break;
1194 case PGMAJFAULT:
1195 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1196 break;
1197 default:
1198 BUG();
1199 }
1200out:
1201 rcu_read_unlock();
1202}
68ae564b 1203EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1204
925b7673
JW
1205/**
1206 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1207 * @zone: zone of the wanted lruvec
fa9add64 1208 * @memcg: memcg of the wanted lruvec
925b7673
JW
1209 *
1210 * Returns the lru list vector holding pages for the given @zone and
1211 * @mem. This can be the global zone lruvec, if the memory controller
1212 * is disabled.
1213 */
1214struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1215 struct mem_cgroup *memcg)
1216{
1217 struct mem_cgroup_per_zone *mz;
bea8c150 1218 struct lruvec *lruvec;
925b7673 1219
bea8c150
HD
1220 if (mem_cgroup_disabled()) {
1221 lruvec = &zone->lruvec;
1222 goto out;
1223 }
925b7673
JW
1224
1225 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1226 lruvec = &mz->lruvec;
1227out:
1228 /*
1229 * Since a node can be onlined after the mem_cgroup was created,
1230 * we have to be prepared to initialize lruvec->zone here;
1231 * and if offlined then reonlined, we need to reinitialize it.
1232 */
1233 if (unlikely(lruvec->zone != zone))
1234 lruvec->zone = zone;
1235 return lruvec;
925b7673
JW
1236}
1237
08e552c6
KH
1238/*
1239 * Following LRU functions are allowed to be used without PCG_LOCK.
1240 * Operations are called by routine of global LRU independently from memcg.
1241 * What we have to take care of here is validness of pc->mem_cgroup.
1242 *
1243 * Changes to pc->mem_cgroup happens when
1244 * 1. charge
1245 * 2. moving account
1246 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1247 * It is added to LRU before charge.
1248 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1249 * When moving account, the page is not on LRU. It's isolated.
1250 */
4f98a2fe 1251
925b7673 1252/**
fa9add64 1253 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1254 * @page: the page
fa9add64 1255 * @zone: zone of the page
925b7673 1256 */
fa9add64 1257struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1258{
08e552c6 1259 struct mem_cgroup_per_zone *mz;
925b7673
JW
1260 struct mem_cgroup *memcg;
1261 struct page_cgroup *pc;
bea8c150 1262 struct lruvec *lruvec;
6d12e2d8 1263
bea8c150
HD
1264 if (mem_cgroup_disabled()) {
1265 lruvec = &zone->lruvec;
1266 goto out;
1267 }
925b7673 1268
08e552c6 1269 pc = lookup_page_cgroup(page);
38c5d72f 1270 memcg = pc->mem_cgroup;
7512102c
HD
1271
1272 /*
fa9add64 1273 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1274 * an uncharged page off lru does nothing to secure
1275 * its former mem_cgroup from sudden removal.
1276 *
1277 * Our caller holds lru_lock, and PageCgroupUsed is updated
1278 * under page_cgroup lock: between them, they make all uses
1279 * of pc->mem_cgroup safe.
1280 */
fa9add64 1281 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1282 pc->mem_cgroup = memcg = root_mem_cgroup;
1283
925b7673 1284 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1285 lruvec = &mz->lruvec;
1286out:
1287 /*
1288 * Since a node can be onlined after the mem_cgroup was created,
1289 * we have to be prepared to initialize lruvec->zone here;
1290 * and if offlined then reonlined, we need to reinitialize it.
1291 */
1292 if (unlikely(lruvec->zone != zone))
1293 lruvec->zone = zone;
1294 return lruvec;
08e552c6 1295}
b69408e8 1296
925b7673 1297/**
fa9add64
HD
1298 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1299 * @lruvec: mem_cgroup per zone lru vector
1300 * @lru: index of lru list the page is sitting on
1301 * @nr_pages: positive when adding or negative when removing
925b7673 1302 *
fa9add64
HD
1303 * This function must be called when a page is added to or removed from an
1304 * lru list.
3f58a829 1305 */
fa9add64
HD
1306void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1307 int nr_pages)
3f58a829
MK
1308{
1309 struct mem_cgroup_per_zone *mz;
fa9add64 1310 unsigned long *lru_size;
3f58a829
MK
1311
1312 if (mem_cgroup_disabled())
1313 return;
1314
fa9add64
HD
1315 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1316 lru_size = mz->lru_size + lru;
1317 *lru_size += nr_pages;
1318 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1319}
544122e5 1320
3e92041d 1321/*
c0ff4b85 1322 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1323 * hierarchy subtree
1324 */
c3ac9a8a
JW
1325bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1326 struct mem_cgroup *memcg)
3e92041d 1327{
91c63734
JW
1328 if (root_memcg == memcg)
1329 return true;
3a981f48 1330 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1331 return false;
c3ac9a8a
JW
1332 return css_is_ancestor(&memcg->css, &root_memcg->css);
1333}
1334
1335static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
1337{
1338 bool ret;
1339
91c63734 1340 rcu_read_lock();
c3ac9a8a 1341 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1342 rcu_read_unlock();
1343 return ret;
3e92041d
MH
1344}
1345
c0ff4b85 1346int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1347{
1348 int ret;
0b7f569e 1349 struct mem_cgroup *curr = NULL;
158e0a2d 1350 struct task_struct *p;
4c4a2214 1351
158e0a2d 1352 p = find_lock_task_mm(task);
de077d22
DR
1353 if (p) {
1354 curr = try_get_mem_cgroup_from_mm(p->mm);
1355 task_unlock(p);
1356 } else {
1357 /*
1358 * All threads may have already detached their mm's, but the oom
1359 * killer still needs to detect if they have already been oom
1360 * killed to prevent needlessly killing additional tasks.
1361 */
1362 task_lock(task);
1363 curr = mem_cgroup_from_task(task);
1364 if (curr)
1365 css_get(&curr->css);
1366 task_unlock(task);
1367 }
0b7f569e
KH
1368 if (!curr)
1369 return 0;
d31f56db 1370 /*
c0ff4b85 1371 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1372 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1373 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1374 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1375 */
c0ff4b85 1376 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1377 css_put(&curr->css);
4c4a2214
DR
1378 return ret;
1379}
1380
c56d5c7d 1381int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1382{
9b272977 1383 unsigned long inactive_ratio;
14797e23 1384 unsigned long inactive;
9b272977 1385 unsigned long active;
c772be93 1386 unsigned long gb;
14797e23 1387
4d7dcca2
HD
1388 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1389 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1390
c772be93
KM
1391 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1392 if (gb)
1393 inactive_ratio = int_sqrt(10 * gb);
1394 else
1395 inactive_ratio = 1;
1396
9b272977 1397 return inactive * inactive_ratio < active;
14797e23
KM
1398}
1399
6d61ef40
BS
1400#define mem_cgroup_from_res_counter(counter, member) \
1401 container_of(counter, struct mem_cgroup, member)
1402
19942822 1403/**
9d11ea9f 1404 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1405 * @memcg: the memory cgroup
19942822 1406 *
9d11ea9f 1407 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1408 * pages.
19942822 1409 */
c0ff4b85 1410static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1411{
9d11ea9f
JW
1412 unsigned long long margin;
1413
c0ff4b85 1414 margin = res_counter_margin(&memcg->res);
9d11ea9f 1415 if (do_swap_account)
c0ff4b85 1416 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1417 return margin >> PAGE_SHIFT;
19942822
JW
1418}
1419
1f4c025b 1420int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1421{
1422 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1423
1424 /* root ? */
1425 if (cgrp->parent == NULL)
1426 return vm_swappiness;
1427
bf1ff263 1428 return memcg->swappiness;
a7885eb8
KM
1429}
1430
619d094b
KH
1431/*
1432 * memcg->moving_account is used for checking possibility that some thread is
1433 * calling move_account(). When a thread on CPU-A starts moving pages under
1434 * a memcg, other threads should check memcg->moving_account under
1435 * rcu_read_lock(), like this:
1436 *
1437 * CPU-A CPU-B
1438 * rcu_read_lock()
1439 * memcg->moving_account+1 if (memcg->mocing_account)
1440 * take heavy locks.
1441 * synchronize_rcu() update something.
1442 * rcu_read_unlock()
1443 * start move here.
1444 */
4331f7d3
KH
1445
1446/* for quick checking without looking up memcg */
1447atomic_t memcg_moving __read_mostly;
1448
c0ff4b85 1449static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1450{
4331f7d3 1451 atomic_inc(&memcg_moving);
619d094b 1452 atomic_inc(&memcg->moving_account);
32047e2a
KH
1453 synchronize_rcu();
1454}
1455
c0ff4b85 1456static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1457{
619d094b
KH
1458 /*
1459 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1460 * We check NULL in callee rather than caller.
1461 */
4331f7d3
KH
1462 if (memcg) {
1463 atomic_dec(&memcg_moving);
619d094b 1464 atomic_dec(&memcg->moving_account);
4331f7d3 1465 }
32047e2a 1466}
619d094b 1467
32047e2a
KH
1468/*
1469 * 2 routines for checking "mem" is under move_account() or not.
1470 *
13fd1dd9
AM
1471 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1472 * is used for avoiding races in accounting. If true,
32047e2a
KH
1473 * pc->mem_cgroup may be overwritten.
1474 *
1475 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1476 * under hierarchy of moving cgroups. This is for
1477 * waiting at hith-memory prressure caused by "move".
1478 */
1479
13fd1dd9 1480static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1481{
1482 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1483 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1484}
4b534334 1485
c0ff4b85 1486static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1487{
2bd9bb20
KH
1488 struct mem_cgroup *from;
1489 struct mem_cgroup *to;
4b534334 1490 bool ret = false;
2bd9bb20
KH
1491 /*
1492 * Unlike task_move routines, we access mc.to, mc.from not under
1493 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1494 */
1495 spin_lock(&mc.lock);
1496 from = mc.from;
1497 to = mc.to;
1498 if (!from)
1499 goto unlock;
3e92041d 1500
c0ff4b85
R
1501 ret = mem_cgroup_same_or_subtree(memcg, from)
1502 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1503unlock:
1504 spin_unlock(&mc.lock);
4b534334
KH
1505 return ret;
1506}
1507
c0ff4b85 1508static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1509{
1510 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1511 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1512 DEFINE_WAIT(wait);
1513 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1514 /* moving charge context might have finished. */
1515 if (mc.moving_task)
1516 schedule();
1517 finish_wait(&mc.waitq, &wait);
1518 return true;
1519 }
1520 }
1521 return false;
1522}
1523
312734c0
KH
1524/*
1525 * Take this lock when
1526 * - a code tries to modify page's memcg while it's USED.
1527 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1528 * see mem_cgroup_stolen(), too.
312734c0
KH
1529 */
1530static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1531 unsigned long *flags)
1532{
1533 spin_lock_irqsave(&memcg->move_lock, *flags);
1534}
1535
1536static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1537 unsigned long *flags)
1538{
1539 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1540}
1541
58cf188e 1542#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1543/**
58cf188e 1544 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1545 * @memcg: The memory cgroup that went over limit
1546 * @p: Task that is going to be killed
1547 *
1548 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1549 * enabled
1550 */
1551void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1552{
1553 struct cgroup *task_cgrp;
1554 struct cgroup *mem_cgrp;
1555 /*
1556 * Need a buffer in BSS, can't rely on allocations. The code relies
1557 * on the assumption that OOM is serialized for memory controller.
1558 * If this assumption is broken, revisit this code.
1559 */
1560 static char memcg_name[PATH_MAX];
1561 int ret;
58cf188e
SZ
1562 struct mem_cgroup *iter;
1563 unsigned int i;
e222432b 1564
58cf188e 1565 if (!p)
e222432b
BS
1566 return;
1567
e222432b
BS
1568 rcu_read_lock();
1569
1570 mem_cgrp = memcg->css.cgroup;
1571 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1572
1573 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1574 if (ret < 0) {
1575 /*
1576 * Unfortunately, we are unable to convert to a useful name
1577 * But we'll still print out the usage information
1578 */
1579 rcu_read_unlock();
1580 goto done;
1581 }
1582 rcu_read_unlock();
1583
d045197f 1584 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1585
1586 rcu_read_lock();
1587 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1588 if (ret < 0) {
1589 rcu_read_unlock();
1590 goto done;
1591 }
1592 rcu_read_unlock();
1593
1594 /*
1595 * Continues from above, so we don't need an KERN_ level
1596 */
d045197f 1597 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1598done:
1599
d045197f 1600 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1601 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1602 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1603 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1604 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1605 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1606 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1607 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1608 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1609 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1610 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1611 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1612
1613 for_each_mem_cgroup_tree(iter, memcg) {
1614 pr_info("Memory cgroup stats");
1615
1616 rcu_read_lock();
1617 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1618 if (!ret)
1619 pr_cont(" for %s", memcg_name);
1620 rcu_read_unlock();
1621 pr_cont(":");
1622
1623 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1624 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1625 continue;
1626 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1627 K(mem_cgroup_read_stat(iter, i)));
1628 }
1629
1630 for (i = 0; i < NR_LRU_LISTS; i++)
1631 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1632 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1633
1634 pr_cont("\n");
1635 }
e222432b
BS
1636}
1637
81d39c20
KH
1638/*
1639 * This function returns the number of memcg under hierarchy tree. Returns
1640 * 1(self count) if no children.
1641 */
c0ff4b85 1642static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1643{
1644 int num = 0;
7d74b06f
KH
1645 struct mem_cgroup *iter;
1646
c0ff4b85 1647 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1648 num++;
81d39c20
KH
1649 return num;
1650}
1651
a63d83f4
DR
1652/*
1653 * Return the memory (and swap, if configured) limit for a memcg.
1654 */
9cbb78bb 1655static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1656{
1657 u64 limit;
a63d83f4 1658
f3e8eb70 1659 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1660
a63d83f4 1661 /*
9a5a8f19 1662 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1663 */
9a5a8f19
MH
1664 if (mem_cgroup_swappiness(memcg)) {
1665 u64 memsw;
1666
1667 limit += total_swap_pages << PAGE_SHIFT;
1668 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1669
1670 /*
1671 * If memsw is finite and limits the amount of swap space
1672 * available to this memcg, return that limit.
1673 */
1674 limit = min(limit, memsw);
1675 }
1676
1677 return limit;
a63d83f4
DR
1678}
1679
19965460
DR
1680static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1681 int order)
9cbb78bb
DR
1682{
1683 struct mem_cgroup *iter;
1684 unsigned long chosen_points = 0;
1685 unsigned long totalpages;
1686 unsigned int points = 0;
1687 struct task_struct *chosen = NULL;
1688
876aafbf
DR
1689 /*
1690 * If current has a pending SIGKILL, then automatically select it. The
1691 * goal is to allow it to allocate so that it may quickly exit and free
1692 * its memory.
1693 */
1694 if (fatal_signal_pending(current)) {
1695 set_thread_flag(TIF_MEMDIE);
1696 return;
1697 }
1698
1699 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1700 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1701 for_each_mem_cgroup_tree(iter, memcg) {
1702 struct cgroup *cgroup = iter->css.cgroup;
1703 struct cgroup_iter it;
1704 struct task_struct *task;
1705
1706 cgroup_iter_start(cgroup, &it);
1707 while ((task = cgroup_iter_next(cgroup, &it))) {
1708 switch (oom_scan_process_thread(task, totalpages, NULL,
1709 false)) {
1710 case OOM_SCAN_SELECT:
1711 if (chosen)
1712 put_task_struct(chosen);
1713 chosen = task;
1714 chosen_points = ULONG_MAX;
1715 get_task_struct(chosen);
1716 /* fall through */
1717 case OOM_SCAN_CONTINUE:
1718 continue;
1719 case OOM_SCAN_ABORT:
1720 cgroup_iter_end(cgroup, &it);
1721 mem_cgroup_iter_break(memcg, iter);
1722 if (chosen)
1723 put_task_struct(chosen);
1724 return;
1725 case OOM_SCAN_OK:
1726 break;
1727 };
1728 points = oom_badness(task, memcg, NULL, totalpages);
1729 if (points > chosen_points) {
1730 if (chosen)
1731 put_task_struct(chosen);
1732 chosen = task;
1733 chosen_points = points;
1734 get_task_struct(chosen);
1735 }
1736 }
1737 cgroup_iter_end(cgroup, &it);
1738 }
1739
1740 if (!chosen)
1741 return;
1742 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1743 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1744 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1745}
1746
5660048c
JW
1747static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1748 gfp_t gfp_mask,
1749 unsigned long flags)
1750{
1751 unsigned long total = 0;
1752 bool noswap = false;
1753 int loop;
1754
1755 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1756 noswap = true;
1757 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1758 noswap = true;
1759
1760 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1761 if (loop)
1762 drain_all_stock_async(memcg);
1763 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1764 /*
1765 * Allow limit shrinkers, which are triggered directly
1766 * by userspace, to catch signals and stop reclaim
1767 * after minimal progress, regardless of the margin.
1768 */
1769 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1770 break;
1771 if (mem_cgroup_margin(memcg))
1772 break;
1773 /*
1774 * If nothing was reclaimed after two attempts, there
1775 * may be no reclaimable pages in this hierarchy.
1776 */
1777 if (loop && !total)
1778 break;
1779 }
1780 return total;
1781}
1782
4d0c066d
KH
1783/**
1784 * test_mem_cgroup_node_reclaimable
dad7557e 1785 * @memcg: the target memcg
4d0c066d
KH
1786 * @nid: the node ID to be checked.
1787 * @noswap : specify true here if the user wants flle only information.
1788 *
1789 * This function returns whether the specified memcg contains any
1790 * reclaimable pages on a node. Returns true if there are any reclaimable
1791 * pages in the node.
1792 */
c0ff4b85 1793static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1794 int nid, bool noswap)
1795{
c0ff4b85 1796 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1797 return true;
1798 if (noswap || !total_swap_pages)
1799 return false;
c0ff4b85 1800 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1801 return true;
1802 return false;
1803
1804}
889976db
YH
1805#if MAX_NUMNODES > 1
1806
1807/*
1808 * Always updating the nodemask is not very good - even if we have an empty
1809 * list or the wrong list here, we can start from some node and traverse all
1810 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1811 *
1812 */
c0ff4b85 1813static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1814{
1815 int nid;
453a9bf3
KH
1816 /*
1817 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1818 * pagein/pageout changes since the last update.
1819 */
c0ff4b85 1820 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1821 return;
c0ff4b85 1822 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1823 return;
1824
889976db 1825 /* make a nodemask where this memcg uses memory from */
31aaea4a 1826 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1827
31aaea4a 1828 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1829
c0ff4b85
R
1830 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1831 node_clear(nid, memcg->scan_nodes);
889976db 1832 }
453a9bf3 1833
c0ff4b85
R
1834 atomic_set(&memcg->numainfo_events, 0);
1835 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1836}
1837
1838/*
1839 * Selecting a node where we start reclaim from. Because what we need is just
1840 * reducing usage counter, start from anywhere is O,K. Considering
1841 * memory reclaim from current node, there are pros. and cons.
1842 *
1843 * Freeing memory from current node means freeing memory from a node which
1844 * we'll use or we've used. So, it may make LRU bad. And if several threads
1845 * hit limits, it will see a contention on a node. But freeing from remote
1846 * node means more costs for memory reclaim because of memory latency.
1847 *
1848 * Now, we use round-robin. Better algorithm is welcomed.
1849 */
c0ff4b85 1850int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1851{
1852 int node;
1853
c0ff4b85
R
1854 mem_cgroup_may_update_nodemask(memcg);
1855 node = memcg->last_scanned_node;
889976db 1856
c0ff4b85 1857 node = next_node(node, memcg->scan_nodes);
889976db 1858 if (node == MAX_NUMNODES)
c0ff4b85 1859 node = first_node(memcg->scan_nodes);
889976db
YH
1860 /*
1861 * We call this when we hit limit, not when pages are added to LRU.
1862 * No LRU may hold pages because all pages are UNEVICTABLE or
1863 * memcg is too small and all pages are not on LRU. In that case,
1864 * we use curret node.
1865 */
1866 if (unlikely(node == MAX_NUMNODES))
1867 node = numa_node_id();
1868
c0ff4b85 1869 memcg->last_scanned_node = node;
889976db
YH
1870 return node;
1871}
1872
4d0c066d
KH
1873/*
1874 * Check all nodes whether it contains reclaimable pages or not.
1875 * For quick scan, we make use of scan_nodes. This will allow us to skip
1876 * unused nodes. But scan_nodes is lazily updated and may not cotain
1877 * enough new information. We need to do double check.
1878 */
6bbda35c 1879static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1880{
1881 int nid;
1882
1883 /*
1884 * quick check...making use of scan_node.
1885 * We can skip unused nodes.
1886 */
c0ff4b85
R
1887 if (!nodes_empty(memcg->scan_nodes)) {
1888 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1889 nid < MAX_NUMNODES;
c0ff4b85 1890 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1891
c0ff4b85 1892 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1893 return true;
1894 }
1895 }
1896 /*
1897 * Check rest of nodes.
1898 */
31aaea4a 1899 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1900 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1901 continue;
c0ff4b85 1902 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1903 return true;
1904 }
1905 return false;
1906}
1907
889976db 1908#else
c0ff4b85 1909int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1910{
1911 return 0;
1912}
4d0c066d 1913
6bbda35c 1914static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1915{
c0ff4b85 1916 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1917}
889976db
YH
1918#endif
1919
5660048c
JW
1920static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1921 struct zone *zone,
1922 gfp_t gfp_mask,
1923 unsigned long *total_scanned)
6d61ef40 1924{
9f3a0d09 1925 struct mem_cgroup *victim = NULL;
5660048c 1926 int total = 0;
04046e1a 1927 int loop = 0;
9d11ea9f 1928 unsigned long excess;
185efc0f 1929 unsigned long nr_scanned;
527a5ec9
JW
1930 struct mem_cgroup_reclaim_cookie reclaim = {
1931 .zone = zone,
1932 .priority = 0,
1933 };
9d11ea9f 1934
c0ff4b85 1935 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1936
4e416953 1937 while (1) {
527a5ec9 1938 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1939 if (!victim) {
04046e1a 1940 loop++;
4e416953
BS
1941 if (loop >= 2) {
1942 /*
1943 * If we have not been able to reclaim
1944 * anything, it might because there are
1945 * no reclaimable pages under this hierarchy
1946 */
5660048c 1947 if (!total)
4e416953 1948 break;
4e416953 1949 /*
25985edc 1950 * We want to do more targeted reclaim.
4e416953
BS
1951 * excess >> 2 is not to excessive so as to
1952 * reclaim too much, nor too less that we keep
1953 * coming back to reclaim from this cgroup
1954 */
1955 if (total >= (excess >> 2) ||
9f3a0d09 1956 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1957 break;
4e416953 1958 }
9f3a0d09 1959 continue;
4e416953 1960 }
5660048c 1961 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1962 continue;
5660048c
JW
1963 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1964 zone, &nr_scanned);
1965 *total_scanned += nr_scanned;
1966 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1967 break;
6d61ef40 1968 }
9f3a0d09 1969 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1970 return total;
6d61ef40
BS
1971}
1972
867578cb
KH
1973/*
1974 * Check OOM-Killer is already running under our hierarchy.
1975 * If someone is running, return false.
1af8efe9 1976 * Has to be called with memcg_oom_lock
867578cb 1977 */
c0ff4b85 1978static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1979{
79dfdacc 1980 struct mem_cgroup *iter, *failed = NULL;
a636b327 1981
9f3a0d09 1982 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1983 if (iter->oom_lock) {
79dfdacc
MH
1984 /*
1985 * this subtree of our hierarchy is already locked
1986 * so we cannot give a lock.
1987 */
79dfdacc 1988 failed = iter;
9f3a0d09
JW
1989 mem_cgroup_iter_break(memcg, iter);
1990 break;
23751be0
JW
1991 } else
1992 iter->oom_lock = true;
7d74b06f 1993 }
867578cb 1994
79dfdacc 1995 if (!failed)
23751be0 1996 return true;
79dfdacc
MH
1997
1998 /*
1999 * OK, we failed to lock the whole subtree so we have to clean up
2000 * what we set up to the failing subtree
2001 */
9f3a0d09 2002 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2003 if (iter == failed) {
9f3a0d09
JW
2004 mem_cgroup_iter_break(memcg, iter);
2005 break;
79dfdacc
MH
2006 }
2007 iter->oom_lock = false;
2008 }
23751be0 2009 return false;
a636b327 2010}
0b7f569e 2011
79dfdacc 2012/*
1af8efe9 2013 * Has to be called with memcg_oom_lock
79dfdacc 2014 */
c0ff4b85 2015static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2016{
7d74b06f
KH
2017 struct mem_cgroup *iter;
2018
c0ff4b85 2019 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2020 iter->oom_lock = false;
2021 return 0;
2022}
2023
c0ff4b85 2024static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2025{
2026 struct mem_cgroup *iter;
2027
c0ff4b85 2028 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2029 atomic_inc(&iter->under_oom);
2030}
2031
c0ff4b85 2032static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2033{
2034 struct mem_cgroup *iter;
2035
867578cb
KH
2036 /*
2037 * When a new child is created while the hierarchy is under oom,
2038 * mem_cgroup_oom_lock() may not be called. We have to use
2039 * atomic_add_unless() here.
2040 */
c0ff4b85 2041 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2042 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2043}
2044
1af8efe9 2045static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2046static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2047
dc98df5a 2048struct oom_wait_info {
d79154bb 2049 struct mem_cgroup *memcg;
dc98df5a
KH
2050 wait_queue_t wait;
2051};
2052
2053static int memcg_oom_wake_function(wait_queue_t *wait,
2054 unsigned mode, int sync, void *arg)
2055{
d79154bb
HD
2056 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2057 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2058 struct oom_wait_info *oom_wait_info;
2059
2060 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2061 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2062
dc98df5a 2063 /*
d79154bb 2064 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2065 * Then we can use css_is_ancestor without taking care of RCU.
2066 */
c0ff4b85
R
2067 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2068 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2069 return 0;
dc98df5a
KH
2070 return autoremove_wake_function(wait, mode, sync, arg);
2071}
2072
c0ff4b85 2073static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2074{
c0ff4b85
R
2075 /* for filtering, pass "memcg" as argument. */
2076 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2077}
2078
c0ff4b85 2079static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2080{
c0ff4b85
R
2081 if (memcg && atomic_read(&memcg->under_oom))
2082 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2083}
2084
867578cb
KH
2085/*
2086 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2087 */
6bbda35c
KS
2088static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2089 int order)
0b7f569e 2090{
dc98df5a 2091 struct oom_wait_info owait;
3c11ecf4 2092 bool locked, need_to_kill;
867578cb 2093
d79154bb 2094 owait.memcg = memcg;
dc98df5a
KH
2095 owait.wait.flags = 0;
2096 owait.wait.func = memcg_oom_wake_function;
2097 owait.wait.private = current;
2098 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2099 need_to_kill = true;
c0ff4b85 2100 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2101
c0ff4b85 2102 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2103 spin_lock(&memcg_oom_lock);
c0ff4b85 2104 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2105 /*
2106 * Even if signal_pending(), we can't quit charge() loop without
2107 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2108 * under OOM is always welcomed, use TASK_KILLABLE here.
2109 */
3c11ecf4 2110 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2111 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2112 need_to_kill = false;
2113 if (locked)
c0ff4b85 2114 mem_cgroup_oom_notify(memcg);
1af8efe9 2115 spin_unlock(&memcg_oom_lock);
867578cb 2116
3c11ecf4
KH
2117 if (need_to_kill) {
2118 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2119 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2120 } else {
867578cb 2121 schedule();
dc98df5a 2122 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2123 }
1af8efe9 2124 spin_lock(&memcg_oom_lock);
79dfdacc 2125 if (locked)
c0ff4b85
R
2126 mem_cgroup_oom_unlock(memcg);
2127 memcg_wakeup_oom(memcg);
1af8efe9 2128 spin_unlock(&memcg_oom_lock);
867578cb 2129
c0ff4b85 2130 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2131
867578cb
KH
2132 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2133 return false;
2134 /* Give chance to dying process */
715a5ee8 2135 schedule_timeout_uninterruptible(1);
867578cb 2136 return true;
0b7f569e
KH
2137}
2138
d69b042f
BS
2139/*
2140 * Currently used to update mapped file statistics, but the routine can be
2141 * generalized to update other statistics as well.
32047e2a
KH
2142 *
2143 * Notes: Race condition
2144 *
2145 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2146 * it tends to be costly. But considering some conditions, we doesn't need
2147 * to do so _always_.
2148 *
2149 * Considering "charge", lock_page_cgroup() is not required because all
2150 * file-stat operations happen after a page is attached to radix-tree. There
2151 * are no race with "charge".
2152 *
2153 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2154 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2155 * if there are race with "uncharge". Statistics itself is properly handled
2156 * by flags.
2157 *
2158 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2159 * small, we check mm->moving_account and detect there are possibility of race
2160 * If there is, we take a lock.
d69b042f 2161 */
26174efd 2162
89c06bd5
KH
2163void __mem_cgroup_begin_update_page_stat(struct page *page,
2164 bool *locked, unsigned long *flags)
2165{
2166 struct mem_cgroup *memcg;
2167 struct page_cgroup *pc;
2168
2169 pc = lookup_page_cgroup(page);
2170again:
2171 memcg = pc->mem_cgroup;
2172 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2173 return;
2174 /*
2175 * If this memory cgroup is not under account moving, we don't
da92c47d 2176 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2177 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2178 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2179 */
13fd1dd9 2180 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2181 return;
2182
2183 move_lock_mem_cgroup(memcg, flags);
2184 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2185 move_unlock_mem_cgroup(memcg, flags);
2186 goto again;
2187 }
2188 *locked = true;
2189}
2190
2191void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2192{
2193 struct page_cgroup *pc = lookup_page_cgroup(page);
2194
2195 /*
2196 * It's guaranteed that pc->mem_cgroup never changes while
2197 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2198 * should take move_lock_mem_cgroup().
89c06bd5
KH
2199 */
2200 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2201}
2202
2a7106f2
GT
2203void mem_cgroup_update_page_stat(struct page *page,
2204 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2205{
c0ff4b85 2206 struct mem_cgroup *memcg;
32047e2a 2207 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2208 unsigned long uninitialized_var(flags);
d69b042f 2209
cfa44946 2210 if (mem_cgroup_disabled())
d69b042f 2211 return;
89c06bd5 2212
c0ff4b85
R
2213 memcg = pc->mem_cgroup;
2214 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2215 return;
26174efd 2216
26174efd 2217 switch (idx) {
2a7106f2 2218 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2219 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2220 break;
2221 default:
2222 BUG();
8725d541 2223 }
d69b042f 2224
c0ff4b85 2225 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2226}
26174efd 2227
cdec2e42
KH
2228/*
2229 * size of first charge trial. "32" comes from vmscan.c's magic value.
2230 * TODO: maybe necessary to use big numbers in big irons.
2231 */
7ec99d62 2232#define CHARGE_BATCH 32U
cdec2e42
KH
2233struct memcg_stock_pcp {
2234 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2235 unsigned int nr_pages;
cdec2e42 2236 struct work_struct work;
26fe6168 2237 unsigned long flags;
a0db00fc 2238#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2239};
2240static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2241static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2242
a0956d54
SS
2243/**
2244 * consume_stock: Try to consume stocked charge on this cpu.
2245 * @memcg: memcg to consume from.
2246 * @nr_pages: how many pages to charge.
2247 *
2248 * The charges will only happen if @memcg matches the current cpu's memcg
2249 * stock, and at least @nr_pages are available in that stock. Failure to
2250 * service an allocation will refill the stock.
2251 *
2252 * returns true if successful, false otherwise.
cdec2e42 2253 */
a0956d54 2254static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2255{
2256 struct memcg_stock_pcp *stock;
2257 bool ret = true;
2258
a0956d54
SS
2259 if (nr_pages > CHARGE_BATCH)
2260 return false;
2261
cdec2e42 2262 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2263 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2264 stock->nr_pages -= nr_pages;
cdec2e42
KH
2265 else /* need to call res_counter_charge */
2266 ret = false;
2267 put_cpu_var(memcg_stock);
2268 return ret;
2269}
2270
2271/*
2272 * Returns stocks cached in percpu to res_counter and reset cached information.
2273 */
2274static void drain_stock(struct memcg_stock_pcp *stock)
2275{
2276 struct mem_cgroup *old = stock->cached;
2277
11c9ea4e
JW
2278 if (stock->nr_pages) {
2279 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2280
2281 res_counter_uncharge(&old->res, bytes);
cdec2e42 2282 if (do_swap_account)
11c9ea4e
JW
2283 res_counter_uncharge(&old->memsw, bytes);
2284 stock->nr_pages = 0;
cdec2e42
KH
2285 }
2286 stock->cached = NULL;
cdec2e42
KH
2287}
2288
2289/*
2290 * This must be called under preempt disabled or must be called by
2291 * a thread which is pinned to local cpu.
2292 */
2293static void drain_local_stock(struct work_struct *dummy)
2294{
2295 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2296 drain_stock(stock);
26fe6168 2297 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2298}
2299
e4777496
MH
2300static void __init memcg_stock_init(void)
2301{
2302 int cpu;
2303
2304 for_each_possible_cpu(cpu) {
2305 struct memcg_stock_pcp *stock =
2306 &per_cpu(memcg_stock, cpu);
2307 INIT_WORK(&stock->work, drain_local_stock);
2308 }
2309}
2310
cdec2e42
KH
2311/*
2312 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2313 * This will be consumed by consume_stock() function, later.
cdec2e42 2314 */
c0ff4b85 2315static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2316{
2317 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2318
c0ff4b85 2319 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2320 drain_stock(stock);
c0ff4b85 2321 stock->cached = memcg;
cdec2e42 2322 }
11c9ea4e 2323 stock->nr_pages += nr_pages;
cdec2e42
KH
2324 put_cpu_var(memcg_stock);
2325}
2326
2327/*
c0ff4b85 2328 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2329 * of the hierarchy under it. sync flag says whether we should block
2330 * until the work is done.
cdec2e42 2331 */
c0ff4b85 2332static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2333{
26fe6168 2334 int cpu, curcpu;
d38144b7 2335
cdec2e42 2336 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2337 get_online_cpus();
5af12d0e 2338 curcpu = get_cpu();
cdec2e42
KH
2339 for_each_online_cpu(cpu) {
2340 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2341 struct mem_cgroup *memcg;
26fe6168 2342
c0ff4b85
R
2343 memcg = stock->cached;
2344 if (!memcg || !stock->nr_pages)
26fe6168 2345 continue;
c0ff4b85 2346 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2347 continue;
d1a05b69
MH
2348 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2349 if (cpu == curcpu)
2350 drain_local_stock(&stock->work);
2351 else
2352 schedule_work_on(cpu, &stock->work);
2353 }
cdec2e42 2354 }
5af12d0e 2355 put_cpu();
d38144b7
MH
2356
2357 if (!sync)
2358 goto out;
2359
2360 for_each_online_cpu(cpu) {
2361 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2362 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2363 flush_work(&stock->work);
2364 }
2365out:
cdec2e42 2366 put_online_cpus();
d38144b7
MH
2367}
2368
2369/*
2370 * Tries to drain stocked charges in other cpus. This function is asynchronous
2371 * and just put a work per cpu for draining localy on each cpu. Caller can
2372 * expects some charges will be back to res_counter later but cannot wait for
2373 * it.
2374 */
c0ff4b85 2375static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2376{
9f50fad6
MH
2377 /*
2378 * If someone calls draining, avoid adding more kworker runs.
2379 */
2380 if (!mutex_trylock(&percpu_charge_mutex))
2381 return;
c0ff4b85 2382 drain_all_stock(root_memcg, false);
9f50fad6 2383 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2384}
2385
2386/* This is a synchronous drain interface. */
c0ff4b85 2387static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2388{
2389 /* called when force_empty is called */
9f50fad6 2390 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2391 drain_all_stock(root_memcg, true);
9f50fad6 2392 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2393}
2394
711d3d2c
KH
2395/*
2396 * This function drains percpu counter value from DEAD cpu and
2397 * move it to local cpu. Note that this function can be preempted.
2398 */
c0ff4b85 2399static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2400{
2401 int i;
2402
c0ff4b85 2403 spin_lock(&memcg->pcp_counter_lock);
6104621d 2404 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2405 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2406
c0ff4b85
R
2407 per_cpu(memcg->stat->count[i], cpu) = 0;
2408 memcg->nocpu_base.count[i] += x;
711d3d2c 2409 }
e9f8974f 2410 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2411 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2412
c0ff4b85
R
2413 per_cpu(memcg->stat->events[i], cpu) = 0;
2414 memcg->nocpu_base.events[i] += x;
e9f8974f 2415 }
c0ff4b85 2416 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2417}
2418
2419static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2420 unsigned long action,
2421 void *hcpu)
2422{
2423 int cpu = (unsigned long)hcpu;
2424 struct memcg_stock_pcp *stock;
711d3d2c 2425 struct mem_cgroup *iter;
cdec2e42 2426
619d094b 2427 if (action == CPU_ONLINE)
1489ebad 2428 return NOTIFY_OK;
1489ebad 2429
d833049b 2430 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2431 return NOTIFY_OK;
711d3d2c 2432
9f3a0d09 2433 for_each_mem_cgroup(iter)
711d3d2c
KH
2434 mem_cgroup_drain_pcp_counter(iter, cpu);
2435
cdec2e42
KH
2436 stock = &per_cpu(memcg_stock, cpu);
2437 drain_stock(stock);
2438 return NOTIFY_OK;
2439}
2440
4b534334
KH
2441
2442/* See __mem_cgroup_try_charge() for details */
2443enum {
2444 CHARGE_OK, /* success */
2445 CHARGE_RETRY, /* need to retry but retry is not bad */
2446 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2447 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2448 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2449};
2450
c0ff4b85 2451static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2452 unsigned int nr_pages, unsigned int min_pages,
2453 bool oom_check)
4b534334 2454{
7ec99d62 2455 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2456 struct mem_cgroup *mem_over_limit;
2457 struct res_counter *fail_res;
2458 unsigned long flags = 0;
2459 int ret;
2460
c0ff4b85 2461 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2462
2463 if (likely(!ret)) {
2464 if (!do_swap_account)
2465 return CHARGE_OK;
c0ff4b85 2466 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2467 if (likely(!ret))
2468 return CHARGE_OK;
2469
c0ff4b85 2470 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2471 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2472 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2473 } else
2474 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2475 /*
9221edb7
JW
2476 * Never reclaim on behalf of optional batching, retry with a
2477 * single page instead.
2478 */
4c9c5359 2479 if (nr_pages > min_pages)
4b534334
KH
2480 return CHARGE_RETRY;
2481
2482 if (!(gfp_mask & __GFP_WAIT))
2483 return CHARGE_WOULDBLOCK;
2484
4c9c5359
SS
2485 if (gfp_mask & __GFP_NORETRY)
2486 return CHARGE_NOMEM;
2487
5660048c 2488 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2489 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2490 return CHARGE_RETRY;
4b534334 2491 /*
19942822
JW
2492 * Even though the limit is exceeded at this point, reclaim
2493 * may have been able to free some pages. Retry the charge
2494 * before killing the task.
2495 *
2496 * Only for regular pages, though: huge pages are rather
2497 * unlikely to succeed so close to the limit, and we fall back
2498 * to regular pages anyway in case of failure.
4b534334 2499 */
4c9c5359 2500 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2501 return CHARGE_RETRY;
2502
2503 /*
2504 * At task move, charge accounts can be doubly counted. So, it's
2505 * better to wait until the end of task_move if something is going on.
2506 */
2507 if (mem_cgroup_wait_acct_move(mem_over_limit))
2508 return CHARGE_RETRY;
2509
2510 /* If we don't need to call oom-killer at el, return immediately */
2511 if (!oom_check)
2512 return CHARGE_NOMEM;
2513 /* check OOM */
e845e199 2514 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2515 return CHARGE_OOM_DIE;
2516
2517 return CHARGE_RETRY;
2518}
2519
f817ed48 2520/*
38c5d72f
KH
2521 * __mem_cgroup_try_charge() does
2522 * 1. detect memcg to be charged against from passed *mm and *ptr,
2523 * 2. update res_counter
2524 * 3. call memory reclaim if necessary.
2525 *
2526 * In some special case, if the task is fatal, fatal_signal_pending() or
2527 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2528 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2529 * as possible without any hazards. 2: all pages should have a valid
2530 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2531 * pointer, that is treated as a charge to root_mem_cgroup.
2532 *
2533 * So __mem_cgroup_try_charge() will return
2534 * 0 ... on success, filling *ptr with a valid memcg pointer.
2535 * -ENOMEM ... charge failure because of resource limits.
2536 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2537 *
2538 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2539 * the oom-killer can be invoked.
8a9f3ccd 2540 */
f817ed48 2541static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2542 gfp_t gfp_mask,
7ec99d62 2543 unsigned int nr_pages,
c0ff4b85 2544 struct mem_cgroup **ptr,
7ec99d62 2545 bool oom)
8a9f3ccd 2546{
7ec99d62 2547 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2548 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2549 struct mem_cgroup *memcg = NULL;
4b534334 2550 int ret;
a636b327 2551
867578cb
KH
2552 /*
2553 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2554 * in system level. So, allow to go ahead dying process in addition to
2555 * MEMDIE process.
2556 */
2557 if (unlikely(test_thread_flag(TIF_MEMDIE)
2558 || fatal_signal_pending(current)))
2559 goto bypass;
a636b327 2560
8a9f3ccd 2561 /*
3be91277
HD
2562 * We always charge the cgroup the mm_struct belongs to.
2563 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2564 * thread group leader migrates. It's possible that mm is not
24467cac 2565 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2566 */
c0ff4b85 2567 if (!*ptr && !mm)
38c5d72f 2568 *ptr = root_mem_cgroup;
f75ca962 2569again:
c0ff4b85
R
2570 if (*ptr) { /* css should be a valid one */
2571 memcg = *ptr;
c0ff4b85 2572 if (mem_cgroup_is_root(memcg))
f75ca962 2573 goto done;
a0956d54 2574 if (consume_stock(memcg, nr_pages))
f75ca962 2575 goto done;
c0ff4b85 2576 css_get(&memcg->css);
4b534334 2577 } else {
f75ca962 2578 struct task_struct *p;
54595fe2 2579
f75ca962
KH
2580 rcu_read_lock();
2581 p = rcu_dereference(mm->owner);
f75ca962 2582 /*
ebb76ce1 2583 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2584 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2585 * race with swapoff. Then, we have small risk of mis-accouning.
2586 * But such kind of mis-account by race always happens because
2587 * we don't have cgroup_mutex(). It's overkill and we allo that
2588 * small race, here.
2589 * (*) swapoff at el will charge against mm-struct not against
2590 * task-struct. So, mm->owner can be NULL.
f75ca962 2591 */
c0ff4b85 2592 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2593 if (!memcg)
2594 memcg = root_mem_cgroup;
2595 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2596 rcu_read_unlock();
2597 goto done;
2598 }
a0956d54 2599 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2600 /*
2601 * It seems dagerous to access memcg without css_get().
2602 * But considering how consume_stok works, it's not
2603 * necessary. If consume_stock success, some charges
2604 * from this memcg are cached on this cpu. So, we
2605 * don't need to call css_get()/css_tryget() before
2606 * calling consume_stock().
2607 */
2608 rcu_read_unlock();
2609 goto done;
2610 }
2611 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2612 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2613 rcu_read_unlock();
2614 goto again;
2615 }
2616 rcu_read_unlock();
2617 }
8a9f3ccd 2618
4b534334
KH
2619 do {
2620 bool oom_check;
7a81b88c 2621
4b534334 2622 /* If killed, bypass charge */
f75ca962 2623 if (fatal_signal_pending(current)) {
c0ff4b85 2624 css_put(&memcg->css);
4b534334 2625 goto bypass;
f75ca962 2626 }
6d61ef40 2627
4b534334
KH
2628 oom_check = false;
2629 if (oom && !nr_oom_retries) {
2630 oom_check = true;
2631 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2632 }
66e1707b 2633
4c9c5359
SS
2634 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2635 oom_check);
4b534334
KH
2636 switch (ret) {
2637 case CHARGE_OK:
2638 break;
2639 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2640 batch = nr_pages;
c0ff4b85
R
2641 css_put(&memcg->css);
2642 memcg = NULL;
f75ca962 2643 goto again;
4b534334 2644 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2645 css_put(&memcg->css);
4b534334
KH
2646 goto nomem;
2647 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2648 if (!oom) {
c0ff4b85 2649 css_put(&memcg->css);
867578cb 2650 goto nomem;
f75ca962 2651 }
4b534334
KH
2652 /* If oom, we never return -ENOMEM */
2653 nr_oom_retries--;
2654 break;
2655 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2656 css_put(&memcg->css);
867578cb 2657 goto bypass;
66e1707b 2658 }
4b534334
KH
2659 } while (ret != CHARGE_OK);
2660
7ec99d62 2661 if (batch > nr_pages)
c0ff4b85
R
2662 refill_stock(memcg, batch - nr_pages);
2663 css_put(&memcg->css);
0c3e73e8 2664done:
c0ff4b85 2665 *ptr = memcg;
7a81b88c
KH
2666 return 0;
2667nomem:
c0ff4b85 2668 *ptr = NULL;
7a81b88c 2669 return -ENOMEM;
867578cb 2670bypass:
38c5d72f
KH
2671 *ptr = root_mem_cgroup;
2672 return -EINTR;
7a81b88c 2673}
8a9f3ccd 2674
a3032a2c
DN
2675/*
2676 * Somemtimes we have to undo a charge we got by try_charge().
2677 * This function is for that and do uncharge, put css's refcnt.
2678 * gotten by try_charge().
2679 */
c0ff4b85 2680static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2681 unsigned int nr_pages)
a3032a2c 2682{
c0ff4b85 2683 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2684 unsigned long bytes = nr_pages * PAGE_SIZE;
2685
c0ff4b85 2686 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2687 if (do_swap_account)
c0ff4b85 2688 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2689 }
854ffa8d
DN
2690}
2691
d01dd17f
KH
2692/*
2693 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2694 * This is useful when moving usage to parent cgroup.
2695 */
2696static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2697 unsigned int nr_pages)
2698{
2699 unsigned long bytes = nr_pages * PAGE_SIZE;
2700
2701 if (mem_cgroup_is_root(memcg))
2702 return;
2703
2704 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2705 if (do_swap_account)
2706 res_counter_uncharge_until(&memcg->memsw,
2707 memcg->memsw.parent, bytes);
2708}
2709
a3b2d692
KH
2710/*
2711 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2712 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2713 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2714 * called against removed memcg.)
a3b2d692
KH
2715 */
2716static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2717{
2718 struct cgroup_subsys_state *css;
2719
2720 /* ID 0 is unused ID */
2721 if (!id)
2722 return NULL;
2723 css = css_lookup(&mem_cgroup_subsys, id);
2724 if (!css)
2725 return NULL;
b2145145 2726 return mem_cgroup_from_css(css);
a3b2d692
KH
2727}
2728
e42d9d5d 2729struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2730{
c0ff4b85 2731 struct mem_cgroup *memcg = NULL;
3c776e64 2732 struct page_cgroup *pc;
a3b2d692 2733 unsigned short id;
b5a84319
KH
2734 swp_entry_t ent;
2735
3c776e64
DN
2736 VM_BUG_ON(!PageLocked(page));
2737
3c776e64 2738 pc = lookup_page_cgroup(page);
c0bd3f63 2739 lock_page_cgroup(pc);
a3b2d692 2740 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2741 memcg = pc->mem_cgroup;
2742 if (memcg && !css_tryget(&memcg->css))
2743 memcg = NULL;
e42d9d5d 2744 } else if (PageSwapCache(page)) {
3c776e64 2745 ent.val = page_private(page);
9fb4b7cc 2746 id = lookup_swap_cgroup_id(ent);
a3b2d692 2747 rcu_read_lock();
c0ff4b85
R
2748 memcg = mem_cgroup_lookup(id);
2749 if (memcg && !css_tryget(&memcg->css))
2750 memcg = NULL;
a3b2d692 2751 rcu_read_unlock();
3c776e64 2752 }
c0bd3f63 2753 unlock_page_cgroup(pc);
c0ff4b85 2754 return memcg;
b5a84319
KH
2755}
2756
c0ff4b85 2757static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2758 struct page *page,
7ec99d62 2759 unsigned int nr_pages,
9ce70c02
HD
2760 enum charge_type ctype,
2761 bool lrucare)
7a81b88c 2762{
ce587e65 2763 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2764 struct zone *uninitialized_var(zone);
fa9add64 2765 struct lruvec *lruvec;
9ce70c02 2766 bool was_on_lru = false;
b2402857 2767 bool anon;
9ce70c02 2768
ca3e0214 2769 lock_page_cgroup(pc);
90deb788 2770 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2771 /*
2772 * we don't need page_cgroup_lock about tail pages, becase they are not
2773 * accessed by any other context at this point.
2774 */
9ce70c02
HD
2775
2776 /*
2777 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2778 * may already be on some other mem_cgroup's LRU. Take care of it.
2779 */
2780 if (lrucare) {
2781 zone = page_zone(page);
2782 spin_lock_irq(&zone->lru_lock);
2783 if (PageLRU(page)) {
fa9add64 2784 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2785 ClearPageLRU(page);
fa9add64 2786 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2787 was_on_lru = true;
2788 }
2789 }
2790
c0ff4b85 2791 pc->mem_cgroup = memcg;
261fb61a
KH
2792 /*
2793 * We access a page_cgroup asynchronously without lock_page_cgroup().
2794 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2795 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2796 * before USED bit, we need memory barrier here.
2797 * See mem_cgroup_add_lru_list(), etc.
2798 */
08e552c6 2799 smp_wmb();
b2402857 2800 SetPageCgroupUsed(pc);
3be91277 2801
9ce70c02
HD
2802 if (lrucare) {
2803 if (was_on_lru) {
fa9add64 2804 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2805 VM_BUG_ON(PageLRU(page));
2806 SetPageLRU(page);
fa9add64 2807 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2808 }
2809 spin_unlock_irq(&zone->lru_lock);
2810 }
2811
41326c17 2812 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2813 anon = true;
2814 else
2815 anon = false;
2816
2817 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2818 unlock_page_cgroup(pc);
9ce70c02 2819
430e4863
KH
2820 /*
2821 * "charge_statistics" updated event counter. Then, check it.
2822 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2823 * if they exceeds softlimit.
2824 */
c0ff4b85 2825 memcg_check_events(memcg, page);
7a81b88c 2826}
66e1707b 2827
7cf27982
GC
2828static DEFINE_MUTEX(set_limit_mutex);
2829
7ae1e1d0
GC
2830#ifdef CONFIG_MEMCG_KMEM
2831static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2832{
2833 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2834 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2835}
2836
1f458cbf
GC
2837/*
2838 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2839 * in the memcg_cache_params struct.
2840 */
2841static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2842{
2843 struct kmem_cache *cachep;
2844
2845 VM_BUG_ON(p->is_root_cache);
2846 cachep = p->root_cache;
2847 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2848}
2849
749c5415
GC
2850#ifdef CONFIG_SLABINFO
2851static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2852 struct seq_file *m)
2853{
2854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2855 struct memcg_cache_params *params;
2856
2857 if (!memcg_can_account_kmem(memcg))
2858 return -EIO;
2859
2860 print_slabinfo_header(m);
2861
2862 mutex_lock(&memcg->slab_caches_mutex);
2863 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2864 cache_show(memcg_params_to_cache(params), m);
2865 mutex_unlock(&memcg->slab_caches_mutex);
2866
2867 return 0;
2868}
2869#endif
2870
7ae1e1d0
GC
2871static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2872{
2873 struct res_counter *fail_res;
2874 struct mem_cgroup *_memcg;
2875 int ret = 0;
2876 bool may_oom;
2877
2878 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2879 if (ret)
2880 return ret;
2881
2882 /*
2883 * Conditions under which we can wait for the oom_killer. Those are
2884 * the same conditions tested by the core page allocator
2885 */
2886 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2887
2888 _memcg = memcg;
2889 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2890 &_memcg, may_oom);
2891
2892 if (ret == -EINTR) {
2893 /*
2894 * __mem_cgroup_try_charge() chosed to bypass to root due to
2895 * OOM kill or fatal signal. Since our only options are to
2896 * either fail the allocation or charge it to this cgroup, do
2897 * it as a temporary condition. But we can't fail. From a
2898 * kmem/slab perspective, the cache has already been selected,
2899 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2900 * our minds.
2901 *
2902 * This condition will only trigger if the task entered
2903 * memcg_charge_kmem in a sane state, but was OOM-killed during
2904 * __mem_cgroup_try_charge() above. Tasks that were already
2905 * dying when the allocation triggers should have been already
2906 * directed to the root cgroup in memcontrol.h
2907 */
2908 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2909 if (do_swap_account)
2910 res_counter_charge_nofail(&memcg->memsw, size,
2911 &fail_res);
2912 ret = 0;
2913 } else if (ret)
2914 res_counter_uncharge(&memcg->kmem, size);
2915
2916 return ret;
2917}
2918
2919static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2920{
7ae1e1d0
GC
2921 res_counter_uncharge(&memcg->res, size);
2922 if (do_swap_account)
2923 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2924
2925 /* Not down to 0 */
2926 if (res_counter_uncharge(&memcg->kmem, size))
2927 return;
2928
2929 if (memcg_kmem_test_and_clear_dead(memcg))
2930 mem_cgroup_put(memcg);
7ae1e1d0
GC
2931}
2932
2633d7a0
GC
2933void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2934{
2935 if (!memcg)
2936 return;
2937
2938 mutex_lock(&memcg->slab_caches_mutex);
2939 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2940 mutex_unlock(&memcg->slab_caches_mutex);
2941}
2942
2943/*
2944 * helper for acessing a memcg's index. It will be used as an index in the
2945 * child cache array in kmem_cache, and also to derive its name. This function
2946 * will return -1 when this is not a kmem-limited memcg.
2947 */
2948int memcg_cache_id(struct mem_cgroup *memcg)
2949{
2950 return memcg ? memcg->kmemcg_id : -1;
2951}
2952
55007d84
GC
2953/*
2954 * This ends up being protected by the set_limit mutex, during normal
2955 * operation, because that is its main call site.
2956 *
2957 * But when we create a new cache, we can call this as well if its parent
2958 * is kmem-limited. That will have to hold set_limit_mutex as well.
2959 */
2960int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2961{
2962 int num, ret;
2963
2964 num = ida_simple_get(&kmem_limited_groups,
2965 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2966 if (num < 0)
2967 return num;
2968 /*
2969 * After this point, kmem_accounted (that we test atomically in
2970 * the beginning of this conditional), is no longer 0. This
2971 * guarantees only one process will set the following boolean
2972 * to true. We don't need test_and_set because we're protected
2973 * by the set_limit_mutex anyway.
2974 */
2975 memcg_kmem_set_activated(memcg);
2976
2977 ret = memcg_update_all_caches(num+1);
2978 if (ret) {
2979 ida_simple_remove(&kmem_limited_groups, num);
2980 memcg_kmem_clear_activated(memcg);
2981 return ret;
2982 }
2983
2984 memcg->kmemcg_id = num;
2985 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2986 mutex_init(&memcg->slab_caches_mutex);
2987 return 0;
2988}
2989
2990static size_t memcg_caches_array_size(int num_groups)
2991{
2992 ssize_t size;
2993 if (num_groups <= 0)
2994 return 0;
2995
2996 size = 2 * num_groups;
2997 if (size < MEMCG_CACHES_MIN_SIZE)
2998 size = MEMCG_CACHES_MIN_SIZE;
2999 else if (size > MEMCG_CACHES_MAX_SIZE)
3000 size = MEMCG_CACHES_MAX_SIZE;
3001
3002 return size;
3003}
3004
3005/*
3006 * We should update the current array size iff all caches updates succeed. This
3007 * can only be done from the slab side. The slab mutex needs to be held when
3008 * calling this.
3009 */
3010void memcg_update_array_size(int num)
3011{
3012 if (num > memcg_limited_groups_array_size)
3013 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3014}
3015
15cf17d2
KK
3016static void kmem_cache_destroy_work_func(struct work_struct *w);
3017
55007d84
GC
3018int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3019{
3020 struct memcg_cache_params *cur_params = s->memcg_params;
3021
3022 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3023
3024 if (num_groups > memcg_limited_groups_array_size) {
3025 int i;
3026 ssize_t size = memcg_caches_array_size(num_groups);
3027
3028 size *= sizeof(void *);
3029 size += sizeof(struct memcg_cache_params);
3030
3031 s->memcg_params = kzalloc(size, GFP_KERNEL);
3032 if (!s->memcg_params) {
3033 s->memcg_params = cur_params;
3034 return -ENOMEM;
3035 }
3036
15cf17d2
KK
3037 INIT_WORK(&s->memcg_params->destroy,
3038 kmem_cache_destroy_work_func);
55007d84
GC
3039 s->memcg_params->is_root_cache = true;
3040
3041 /*
3042 * There is the chance it will be bigger than
3043 * memcg_limited_groups_array_size, if we failed an allocation
3044 * in a cache, in which case all caches updated before it, will
3045 * have a bigger array.
3046 *
3047 * But if that is the case, the data after
3048 * memcg_limited_groups_array_size is certainly unused
3049 */
3050 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3051 if (!cur_params->memcg_caches[i])
3052 continue;
3053 s->memcg_params->memcg_caches[i] =
3054 cur_params->memcg_caches[i];
3055 }
3056
3057 /*
3058 * Ideally, we would wait until all caches succeed, and only
3059 * then free the old one. But this is not worth the extra
3060 * pointer per-cache we'd have to have for this.
3061 *
3062 * It is not a big deal if some caches are left with a size
3063 * bigger than the others. And all updates will reset this
3064 * anyway.
3065 */
3066 kfree(cur_params);
3067 }
3068 return 0;
3069}
3070
943a451a
GC
3071int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3072 struct kmem_cache *root_cache)
2633d7a0
GC
3073{
3074 size_t size = sizeof(struct memcg_cache_params);
3075
3076 if (!memcg_kmem_enabled())
3077 return 0;
3078
55007d84
GC
3079 if (!memcg)
3080 size += memcg_limited_groups_array_size * sizeof(void *);
3081
2633d7a0
GC
3082 s->memcg_params = kzalloc(size, GFP_KERNEL);
3083 if (!s->memcg_params)
3084 return -ENOMEM;
3085
15cf17d2
KK
3086 INIT_WORK(&s->memcg_params->destroy,
3087 kmem_cache_destroy_work_func);
943a451a 3088 if (memcg) {
2633d7a0 3089 s->memcg_params->memcg = memcg;
943a451a 3090 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3091 } else
3092 s->memcg_params->is_root_cache = true;
3093
2633d7a0
GC
3094 return 0;
3095}
3096
3097void memcg_release_cache(struct kmem_cache *s)
3098{
d7f25f8a
GC
3099 struct kmem_cache *root;
3100 struct mem_cgroup *memcg;
3101 int id;
3102
3103 /*
3104 * This happens, for instance, when a root cache goes away before we
3105 * add any memcg.
3106 */
3107 if (!s->memcg_params)
3108 return;
3109
3110 if (s->memcg_params->is_root_cache)
3111 goto out;
3112
3113 memcg = s->memcg_params->memcg;
3114 id = memcg_cache_id(memcg);
3115
3116 root = s->memcg_params->root_cache;
3117 root->memcg_params->memcg_caches[id] = NULL;
3118 mem_cgroup_put(memcg);
3119
3120 mutex_lock(&memcg->slab_caches_mutex);
3121 list_del(&s->memcg_params->list);
3122 mutex_unlock(&memcg->slab_caches_mutex);
3123
3124out:
2633d7a0
GC
3125 kfree(s->memcg_params);
3126}
3127
0e9d92f2
GC
3128/*
3129 * During the creation a new cache, we need to disable our accounting mechanism
3130 * altogether. This is true even if we are not creating, but rather just
3131 * enqueing new caches to be created.
3132 *
3133 * This is because that process will trigger allocations; some visible, like
3134 * explicit kmallocs to auxiliary data structures, name strings and internal
3135 * cache structures; some well concealed, like INIT_WORK() that can allocate
3136 * objects during debug.
3137 *
3138 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3139 * to it. This may not be a bounded recursion: since the first cache creation
3140 * failed to complete (waiting on the allocation), we'll just try to create the
3141 * cache again, failing at the same point.
3142 *
3143 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3144 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3145 * inside the following two functions.
3146 */
3147static inline void memcg_stop_kmem_account(void)
3148{
3149 VM_BUG_ON(!current->mm);
3150 current->memcg_kmem_skip_account++;
3151}
3152
3153static inline void memcg_resume_kmem_account(void)
3154{
3155 VM_BUG_ON(!current->mm);
3156 current->memcg_kmem_skip_account--;
3157}
3158
1f458cbf
GC
3159static void kmem_cache_destroy_work_func(struct work_struct *w)
3160{
3161 struct kmem_cache *cachep;
3162 struct memcg_cache_params *p;
3163
3164 p = container_of(w, struct memcg_cache_params, destroy);
3165
3166 cachep = memcg_params_to_cache(p);
3167
22933152
GC
3168 /*
3169 * If we get down to 0 after shrink, we could delete right away.
3170 * However, memcg_release_pages() already puts us back in the workqueue
3171 * in that case. If we proceed deleting, we'll get a dangling
3172 * reference, and removing the object from the workqueue in that case
3173 * is unnecessary complication. We are not a fast path.
3174 *
3175 * Note that this case is fundamentally different from racing with
3176 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3177 * kmem_cache_shrink, not only we would be reinserting a dead cache
3178 * into the queue, but doing so from inside the worker racing to
3179 * destroy it.
3180 *
3181 * So if we aren't down to zero, we'll just schedule a worker and try
3182 * again
3183 */
3184 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3185 kmem_cache_shrink(cachep);
3186 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3187 return;
3188 } else
1f458cbf
GC
3189 kmem_cache_destroy(cachep);
3190}
3191
3192void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3193{
3194 if (!cachep->memcg_params->dead)
3195 return;
3196
22933152
GC
3197 /*
3198 * There are many ways in which we can get here.
3199 *
3200 * We can get to a memory-pressure situation while the delayed work is
3201 * still pending to run. The vmscan shrinkers can then release all
3202 * cache memory and get us to destruction. If this is the case, we'll
3203 * be executed twice, which is a bug (the second time will execute over
3204 * bogus data). In this case, cancelling the work should be fine.
3205 *
3206 * But we can also get here from the worker itself, if
3207 * kmem_cache_shrink is enough to shake all the remaining objects and
3208 * get the page count to 0. In this case, we'll deadlock if we try to
3209 * cancel the work (the worker runs with an internal lock held, which
3210 * is the same lock we would hold for cancel_work_sync().)
3211 *
3212 * Since we can't possibly know who got us here, just refrain from
3213 * running if there is already work pending
3214 */
3215 if (work_pending(&cachep->memcg_params->destroy))
3216 return;
1f458cbf
GC
3217 /*
3218 * We have to defer the actual destroying to a workqueue, because
3219 * we might currently be in a context that cannot sleep.
3220 */
3221 schedule_work(&cachep->memcg_params->destroy);
3222}
3223
d7f25f8a
GC
3224static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3225{
3226 char *name;
3227 struct dentry *dentry;
3228
3229 rcu_read_lock();
3230 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3231 rcu_read_unlock();
3232
3233 BUG_ON(dentry == NULL);
3234
3235 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3236 memcg_cache_id(memcg), dentry->d_name.name);
3237
3238 return name;
3239}
3240
3241static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3242 struct kmem_cache *s)
3243{
3244 char *name;
3245 struct kmem_cache *new;
3246
3247 name = memcg_cache_name(memcg, s);
3248 if (!name)
3249 return NULL;
3250
3251 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
943a451a 3252 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3253
d79923fa
GC
3254 if (new)
3255 new->allocflags |= __GFP_KMEMCG;
3256
d7f25f8a
GC
3257 kfree(name);
3258 return new;
3259}
3260
3261/*
3262 * This lock protects updaters, not readers. We want readers to be as fast as
3263 * they can, and they will either see NULL or a valid cache value. Our model
3264 * allow them to see NULL, in which case the root memcg will be selected.
3265 *
3266 * We need this lock because multiple allocations to the same cache from a non
3267 * will span more than one worker. Only one of them can create the cache.
3268 */
3269static DEFINE_MUTEX(memcg_cache_mutex);
3270static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3271 struct kmem_cache *cachep)
3272{
3273 struct kmem_cache *new_cachep;
3274 int idx;
3275
3276 BUG_ON(!memcg_can_account_kmem(memcg));
3277
3278 idx = memcg_cache_id(memcg);
3279
3280 mutex_lock(&memcg_cache_mutex);
3281 new_cachep = cachep->memcg_params->memcg_caches[idx];
3282 if (new_cachep)
3283 goto out;
3284
3285 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3286 if (new_cachep == NULL) {
3287 new_cachep = cachep;
3288 goto out;
3289 }
3290
3291 mem_cgroup_get(memcg);
1f458cbf 3292 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3293
3294 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3295 /*
3296 * the readers won't lock, make sure everybody sees the updated value,
3297 * so they won't put stuff in the queue again for no reason
3298 */
3299 wmb();
3300out:
3301 mutex_unlock(&memcg_cache_mutex);
3302 return new_cachep;
3303}
3304
7cf27982
GC
3305void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3306{
3307 struct kmem_cache *c;
3308 int i;
3309
3310 if (!s->memcg_params)
3311 return;
3312 if (!s->memcg_params->is_root_cache)
3313 return;
3314
3315 /*
3316 * If the cache is being destroyed, we trust that there is no one else
3317 * requesting objects from it. Even if there are, the sanity checks in
3318 * kmem_cache_destroy should caught this ill-case.
3319 *
3320 * Still, we don't want anyone else freeing memcg_caches under our
3321 * noses, which can happen if a new memcg comes to life. As usual,
3322 * we'll take the set_limit_mutex to protect ourselves against this.
3323 */
3324 mutex_lock(&set_limit_mutex);
3325 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3326 c = s->memcg_params->memcg_caches[i];
3327 if (!c)
3328 continue;
3329
3330 /*
3331 * We will now manually delete the caches, so to avoid races
3332 * we need to cancel all pending destruction workers and
3333 * proceed with destruction ourselves.
3334 *
3335 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3336 * and that could spawn the workers again: it is likely that
3337 * the cache still have active pages until this very moment.
3338 * This would lead us back to mem_cgroup_destroy_cache.
3339 *
3340 * But that will not execute at all if the "dead" flag is not
3341 * set, so flip it down to guarantee we are in control.
3342 */
3343 c->memcg_params->dead = false;
22933152 3344 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3345 kmem_cache_destroy(c);
3346 }
3347 mutex_unlock(&set_limit_mutex);
3348}
3349
d7f25f8a
GC
3350struct create_work {
3351 struct mem_cgroup *memcg;
3352 struct kmem_cache *cachep;
3353 struct work_struct work;
3354};
3355
1f458cbf
GC
3356static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3357{
3358 struct kmem_cache *cachep;
3359 struct memcg_cache_params *params;
3360
3361 if (!memcg_kmem_is_active(memcg))
3362 return;
3363
3364 mutex_lock(&memcg->slab_caches_mutex);
3365 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3366 cachep = memcg_params_to_cache(params);
3367 cachep->memcg_params->dead = true;
1f458cbf
GC
3368 schedule_work(&cachep->memcg_params->destroy);
3369 }
3370 mutex_unlock(&memcg->slab_caches_mutex);
3371}
3372
d7f25f8a
GC
3373static void memcg_create_cache_work_func(struct work_struct *w)
3374{
3375 struct create_work *cw;
3376
3377 cw = container_of(w, struct create_work, work);
3378 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3379 /* Drop the reference gotten when we enqueued. */
3380 css_put(&cw->memcg->css);
3381 kfree(cw);
3382}
3383
3384/*
3385 * Enqueue the creation of a per-memcg kmem_cache.
3386 * Called with rcu_read_lock.
3387 */
0e9d92f2
GC
3388static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3389 struct kmem_cache *cachep)
d7f25f8a
GC
3390{
3391 struct create_work *cw;
3392
3393 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3394 if (cw == NULL)
3395 return;
3396
3397 /* The corresponding put will be done in the workqueue. */
3398 if (!css_tryget(&memcg->css)) {
3399 kfree(cw);
3400 return;
3401 }
3402
3403 cw->memcg = memcg;
3404 cw->cachep = cachep;
3405
3406 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3407 schedule_work(&cw->work);
3408}
3409
0e9d92f2
GC
3410static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3411 struct kmem_cache *cachep)
3412{
3413 /*
3414 * We need to stop accounting when we kmalloc, because if the
3415 * corresponding kmalloc cache is not yet created, the first allocation
3416 * in __memcg_create_cache_enqueue will recurse.
3417 *
3418 * However, it is better to enclose the whole function. Depending on
3419 * the debugging options enabled, INIT_WORK(), for instance, can
3420 * trigger an allocation. This too, will make us recurse. Because at
3421 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3422 * the safest choice is to do it like this, wrapping the whole function.
3423 */
3424 memcg_stop_kmem_account();
3425 __memcg_create_cache_enqueue(memcg, cachep);
3426 memcg_resume_kmem_account();
3427}
d7f25f8a
GC
3428/*
3429 * Return the kmem_cache we're supposed to use for a slab allocation.
3430 * We try to use the current memcg's version of the cache.
3431 *
3432 * If the cache does not exist yet, if we are the first user of it,
3433 * we either create it immediately, if possible, or create it asynchronously
3434 * in a workqueue.
3435 * In the latter case, we will let the current allocation go through with
3436 * the original cache.
3437 *
3438 * Can't be called in interrupt context or from kernel threads.
3439 * This function needs to be called with rcu_read_lock() held.
3440 */
3441struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3442 gfp_t gfp)
3443{
3444 struct mem_cgroup *memcg;
3445 int idx;
3446
3447 VM_BUG_ON(!cachep->memcg_params);
3448 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3449
0e9d92f2
GC
3450 if (!current->mm || current->memcg_kmem_skip_account)
3451 return cachep;
3452
d7f25f8a
GC
3453 rcu_read_lock();
3454 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3455 rcu_read_unlock();
3456
3457 if (!memcg_can_account_kmem(memcg))
3458 return cachep;
3459
3460 idx = memcg_cache_id(memcg);
3461
3462 /*
3463 * barrier to mare sure we're always seeing the up to date value. The
3464 * code updating memcg_caches will issue a write barrier to match this.
3465 */
3466 read_barrier_depends();
3467 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3468 /*
3469 * If we are in a safe context (can wait, and not in interrupt
3470 * context), we could be be predictable and return right away.
3471 * This would guarantee that the allocation being performed
3472 * already belongs in the new cache.
3473 *
3474 * However, there are some clashes that can arrive from locking.
3475 * For instance, because we acquire the slab_mutex while doing
3476 * kmem_cache_dup, this means no further allocation could happen
3477 * with the slab_mutex held.
3478 *
3479 * Also, because cache creation issue get_online_cpus(), this
3480 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3481 * that ends up reversed during cpu hotplug. (cpuset allocates
3482 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3483 * better to defer everything.
3484 */
3485 memcg_create_cache_enqueue(memcg, cachep);
3486 return cachep;
3487 }
3488
3489 return cachep->memcg_params->memcg_caches[idx];
3490}
3491EXPORT_SYMBOL(__memcg_kmem_get_cache);
3492
7ae1e1d0
GC
3493/*
3494 * We need to verify if the allocation against current->mm->owner's memcg is
3495 * possible for the given order. But the page is not allocated yet, so we'll
3496 * need a further commit step to do the final arrangements.
3497 *
3498 * It is possible for the task to switch cgroups in this mean time, so at
3499 * commit time, we can't rely on task conversion any longer. We'll then use
3500 * the handle argument to return to the caller which cgroup we should commit
3501 * against. We could also return the memcg directly and avoid the pointer
3502 * passing, but a boolean return value gives better semantics considering
3503 * the compiled-out case as well.
3504 *
3505 * Returning true means the allocation is possible.
3506 */
3507bool
3508__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3509{
3510 struct mem_cgroup *memcg;
3511 int ret;
3512
3513 *_memcg = NULL;
3514 memcg = try_get_mem_cgroup_from_mm(current->mm);
3515
3516 /*
3517 * very rare case described in mem_cgroup_from_task. Unfortunately there
3518 * isn't much we can do without complicating this too much, and it would
3519 * be gfp-dependent anyway. Just let it go
3520 */
3521 if (unlikely(!memcg))
3522 return true;
3523
3524 if (!memcg_can_account_kmem(memcg)) {
3525 css_put(&memcg->css);
3526 return true;
3527 }
3528
7ae1e1d0
GC
3529 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3530 if (!ret)
3531 *_memcg = memcg;
7ae1e1d0
GC
3532
3533 css_put(&memcg->css);
3534 return (ret == 0);
3535}
3536
3537void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3538 int order)
3539{
3540 struct page_cgroup *pc;
3541
3542 VM_BUG_ON(mem_cgroup_is_root(memcg));
3543
3544 /* The page allocation failed. Revert */
3545 if (!page) {
3546 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3547 return;
3548 }
3549
3550 pc = lookup_page_cgroup(page);
3551 lock_page_cgroup(pc);
3552 pc->mem_cgroup = memcg;
3553 SetPageCgroupUsed(pc);
3554 unlock_page_cgroup(pc);
3555}
3556
3557void __memcg_kmem_uncharge_pages(struct page *page, int order)
3558{
3559 struct mem_cgroup *memcg = NULL;
3560 struct page_cgroup *pc;
3561
3562
3563 pc = lookup_page_cgroup(page);
3564 /*
3565 * Fast unlocked return. Theoretically might have changed, have to
3566 * check again after locking.
3567 */
3568 if (!PageCgroupUsed(pc))
3569 return;
3570
3571 lock_page_cgroup(pc);
3572 if (PageCgroupUsed(pc)) {
3573 memcg = pc->mem_cgroup;
3574 ClearPageCgroupUsed(pc);
3575 }
3576 unlock_page_cgroup(pc);
3577
3578 /*
3579 * We trust that only if there is a memcg associated with the page, it
3580 * is a valid allocation
3581 */
3582 if (!memcg)
3583 return;
3584
3585 VM_BUG_ON(mem_cgroup_is_root(memcg));
3586 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3587}
1f458cbf
GC
3588#else
3589static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3590{
3591}
7ae1e1d0
GC
3592#endif /* CONFIG_MEMCG_KMEM */
3593
ca3e0214
KH
3594#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3595
a0db00fc 3596#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3597/*
3598 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3599 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3600 * charge/uncharge will be never happen and move_account() is done under
3601 * compound_lock(), so we don't have to take care of races.
ca3e0214 3602 */
e94c8a9c 3603void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3604{
3605 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3606 struct page_cgroup *pc;
3607 int i;
ca3e0214 3608
3d37c4a9
KH
3609 if (mem_cgroup_disabled())
3610 return;
e94c8a9c
KH
3611 for (i = 1; i < HPAGE_PMD_NR; i++) {
3612 pc = head_pc + i;
3613 pc->mem_cgroup = head_pc->mem_cgroup;
3614 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3615 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3616 }
ca3e0214 3617}
12d27107 3618#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3619
f817ed48 3620/**
de3638d9 3621 * mem_cgroup_move_account - move account of the page
5564e88b 3622 * @page: the page
7ec99d62 3623 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3624 * @pc: page_cgroup of the page.
3625 * @from: mem_cgroup which the page is moved from.
3626 * @to: mem_cgroup which the page is moved to. @from != @to.
3627 *
3628 * The caller must confirm following.
08e552c6 3629 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3630 * - compound_lock is held when nr_pages > 1
f817ed48 3631 *
2f3479b1
KH
3632 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3633 * from old cgroup.
f817ed48 3634 */
7ec99d62
JW
3635static int mem_cgroup_move_account(struct page *page,
3636 unsigned int nr_pages,
3637 struct page_cgroup *pc,
3638 struct mem_cgroup *from,
2f3479b1 3639 struct mem_cgroup *to)
f817ed48 3640{
de3638d9
JW
3641 unsigned long flags;
3642 int ret;
b2402857 3643 bool anon = PageAnon(page);
987eba66 3644
f817ed48 3645 VM_BUG_ON(from == to);
5564e88b 3646 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3647 /*
3648 * The page is isolated from LRU. So, collapse function
3649 * will not handle this page. But page splitting can happen.
3650 * Do this check under compound_page_lock(). The caller should
3651 * hold it.
3652 */
3653 ret = -EBUSY;
7ec99d62 3654 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3655 goto out;
3656
3657 lock_page_cgroup(pc);
3658
3659 ret = -EINVAL;
3660 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3661 goto unlock;
3662
312734c0 3663 move_lock_mem_cgroup(from, &flags);
f817ed48 3664
2ff76f11 3665 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3666 /* Update mapped_file data for mem_cgroup */
3667 preempt_disable();
3668 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3669 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3670 preempt_enable();
d69b042f 3671 }
b2402857 3672 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3673
854ffa8d 3674 /* caller should have done css_get */
08e552c6 3675 pc->mem_cgroup = to;
b2402857 3676 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3677 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3678 ret = 0;
3679unlock:
57f9fd7d 3680 unlock_page_cgroup(pc);
d2265e6f
KH
3681 /*
3682 * check events
3683 */
5564e88b
JW
3684 memcg_check_events(to, page);
3685 memcg_check_events(from, page);
de3638d9 3686out:
f817ed48
KH
3687 return ret;
3688}
3689
2ef37d3f
MH
3690/**
3691 * mem_cgroup_move_parent - moves page to the parent group
3692 * @page: the page to move
3693 * @pc: page_cgroup of the page
3694 * @child: page's cgroup
3695 *
3696 * move charges to its parent or the root cgroup if the group has no
3697 * parent (aka use_hierarchy==0).
3698 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3699 * mem_cgroup_move_account fails) the failure is always temporary and
3700 * it signals a race with a page removal/uncharge or migration. In the
3701 * first case the page is on the way out and it will vanish from the LRU
3702 * on the next attempt and the call should be retried later.
3703 * Isolation from the LRU fails only if page has been isolated from
3704 * the LRU since we looked at it and that usually means either global
3705 * reclaim or migration going on. The page will either get back to the
3706 * LRU or vanish.
3707 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3708 * (!PageCgroupUsed) or moved to a different group. The page will
3709 * disappear in the next attempt.
f817ed48 3710 */
5564e88b
JW
3711static int mem_cgroup_move_parent(struct page *page,
3712 struct page_cgroup *pc,
6068bf01 3713 struct mem_cgroup *child)
f817ed48 3714{
f817ed48 3715 struct mem_cgroup *parent;
7ec99d62 3716 unsigned int nr_pages;
4be4489f 3717 unsigned long uninitialized_var(flags);
f817ed48
KH
3718 int ret;
3719
d8423011 3720 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3721
57f9fd7d
DN
3722 ret = -EBUSY;
3723 if (!get_page_unless_zero(page))
3724 goto out;
3725 if (isolate_lru_page(page))
3726 goto put;
52dbb905 3727
7ec99d62 3728 nr_pages = hpage_nr_pages(page);
08e552c6 3729
cc926f78
KH
3730 parent = parent_mem_cgroup(child);
3731 /*
3732 * If no parent, move charges to root cgroup.
3733 */
3734 if (!parent)
3735 parent = root_mem_cgroup;
f817ed48 3736
2ef37d3f
MH
3737 if (nr_pages > 1) {
3738 VM_BUG_ON(!PageTransHuge(page));
987eba66 3739 flags = compound_lock_irqsave(page);
2ef37d3f 3740 }
987eba66 3741
cc926f78 3742 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3743 pc, child, parent);
cc926f78
KH
3744 if (!ret)
3745 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3746
7ec99d62 3747 if (nr_pages > 1)
987eba66 3748 compound_unlock_irqrestore(page, flags);
08e552c6 3749 putback_lru_page(page);
57f9fd7d 3750put:
40d58138 3751 put_page(page);
57f9fd7d 3752out:
f817ed48
KH
3753 return ret;
3754}
3755
7a81b88c
KH
3756/*
3757 * Charge the memory controller for page usage.
3758 * Return
3759 * 0 if the charge was successful
3760 * < 0 if the cgroup is over its limit
3761 */
3762static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3763 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3764{
c0ff4b85 3765 struct mem_cgroup *memcg = NULL;
7ec99d62 3766 unsigned int nr_pages = 1;
8493ae43 3767 bool oom = true;
7a81b88c 3768 int ret;
ec168510 3769
37c2ac78 3770 if (PageTransHuge(page)) {
7ec99d62 3771 nr_pages <<= compound_order(page);
37c2ac78 3772 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3773 /*
3774 * Never OOM-kill a process for a huge page. The
3775 * fault handler will fall back to regular pages.
3776 */
3777 oom = false;
37c2ac78 3778 }
7a81b88c 3779
c0ff4b85 3780 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3781 if (ret == -ENOMEM)
7a81b88c 3782 return ret;
ce587e65 3783 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3784 return 0;
8a9f3ccd
BS
3785}
3786
7a81b88c
KH
3787int mem_cgroup_newpage_charge(struct page *page,
3788 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3789{
f8d66542 3790 if (mem_cgroup_disabled())
cede86ac 3791 return 0;
7a0524cf
JW
3792 VM_BUG_ON(page_mapped(page));
3793 VM_BUG_ON(page->mapping && !PageAnon(page));
3794 VM_BUG_ON(!mm);
217bc319 3795 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3796 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3797}
3798
54595fe2
KH
3799/*
3800 * While swap-in, try_charge -> commit or cancel, the page is locked.
3801 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3802 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3803 * "commit()" or removed by "cancel()"
3804 */
0435a2fd
JW
3805static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3806 struct page *page,
3807 gfp_t mask,
3808 struct mem_cgroup **memcgp)
8c7c6e34 3809{
c0ff4b85 3810 struct mem_cgroup *memcg;
90deb788 3811 struct page_cgroup *pc;
54595fe2 3812 int ret;
8c7c6e34 3813
90deb788
JW
3814 pc = lookup_page_cgroup(page);
3815 /*
3816 * Every swap fault against a single page tries to charge the
3817 * page, bail as early as possible. shmem_unuse() encounters
3818 * already charged pages, too. The USED bit is protected by
3819 * the page lock, which serializes swap cache removal, which
3820 * in turn serializes uncharging.
3821 */
3822 if (PageCgroupUsed(pc))
3823 return 0;
8c7c6e34
KH
3824 if (!do_swap_account)
3825 goto charge_cur_mm;
c0ff4b85
R
3826 memcg = try_get_mem_cgroup_from_page(page);
3827 if (!memcg)
54595fe2 3828 goto charge_cur_mm;
72835c86
JW
3829 *memcgp = memcg;
3830 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3831 css_put(&memcg->css);
38c5d72f
KH
3832 if (ret == -EINTR)
3833 ret = 0;
54595fe2 3834 return ret;
8c7c6e34 3835charge_cur_mm:
38c5d72f
KH
3836 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3837 if (ret == -EINTR)
3838 ret = 0;
3839 return ret;
8c7c6e34
KH
3840}
3841
0435a2fd
JW
3842int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3843 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3844{
3845 *memcgp = NULL;
3846 if (mem_cgroup_disabled())
3847 return 0;
bdf4f4d2
JW
3848 /*
3849 * A racing thread's fault, or swapoff, may have already
3850 * updated the pte, and even removed page from swap cache: in
3851 * those cases unuse_pte()'s pte_same() test will fail; but
3852 * there's also a KSM case which does need to charge the page.
3853 */
3854 if (!PageSwapCache(page)) {
3855 int ret;
3856
3857 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3858 if (ret == -EINTR)
3859 ret = 0;
3860 return ret;
3861 }
0435a2fd
JW
3862 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3863}
3864
827a03d2
JW
3865void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3866{
3867 if (mem_cgroup_disabled())
3868 return;
3869 if (!memcg)
3870 return;
3871 __mem_cgroup_cancel_charge(memcg, 1);
3872}
3873
83aae4c7 3874static void
72835c86 3875__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3876 enum charge_type ctype)
7a81b88c 3877{
f8d66542 3878 if (mem_cgroup_disabled())
7a81b88c 3879 return;
72835c86 3880 if (!memcg)
7a81b88c 3881 return;
5a6475a4 3882
ce587e65 3883 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3884 /*
3885 * Now swap is on-memory. This means this page may be
3886 * counted both as mem and swap....double count.
03f3c433
KH
3887 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3888 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3889 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3890 */
03f3c433 3891 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3892 swp_entry_t ent = {.val = page_private(page)};
86493009 3893 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3894 }
7a81b88c
KH
3895}
3896
72835c86
JW
3897void mem_cgroup_commit_charge_swapin(struct page *page,
3898 struct mem_cgroup *memcg)
83aae4c7 3899{
72835c86 3900 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3901 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3902}
3903
827a03d2
JW
3904int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3905 gfp_t gfp_mask)
7a81b88c 3906{
827a03d2
JW
3907 struct mem_cgroup *memcg = NULL;
3908 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3909 int ret;
3910
f8d66542 3911 if (mem_cgroup_disabled())
827a03d2
JW
3912 return 0;
3913 if (PageCompound(page))
3914 return 0;
3915
827a03d2
JW
3916 if (!PageSwapCache(page))
3917 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3918 else { /* page is swapcache/shmem */
0435a2fd
JW
3919 ret = __mem_cgroup_try_charge_swapin(mm, page,
3920 gfp_mask, &memcg);
827a03d2
JW
3921 if (!ret)
3922 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3923 }
3924 return ret;
7a81b88c
KH
3925}
3926
c0ff4b85 3927static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3928 unsigned int nr_pages,
3929 const enum charge_type ctype)
569b846d
KH
3930{
3931 struct memcg_batch_info *batch = NULL;
3932 bool uncharge_memsw = true;
7ec99d62 3933
569b846d
KH
3934 /* If swapout, usage of swap doesn't decrease */
3935 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3936 uncharge_memsw = false;
569b846d
KH
3937
3938 batch = &current->memcg_batch;
3939 /*
3940 * In usual, we do css_get() when we remember memcg pointer.
3941 * But in this case, we keep res->usage until end of a series of
3942 * uncharges. Then, it's ok to ignore memcg's refcnt.
3943 */
3944 if (!batch->memcg)
c0ff4b85 3945 batch->memcg = memcg;
3c11ecf4
KH
3946 /*
3947 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3948 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3949 * the same cgroup and we have chance to coalesce uncharges.
3950 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3951 * because we want to do uncharge as soon as possible.
3952 */
3953
3954 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3955 goto direct_uncharge;
3956
7ec99d62 3957 if (nr_pages > 1)
ec168510
AA
3958 goto direct_uncharge;
3959
569b846d
KH
3960 /*
3961 * In typical case, batch->memcg == mem. This means we can
3962 * merge a series of uncharges to an uncharge of res_counter.
3963 * If not, we uncharge res_counter ony by one.
3964 */
c0ff4b85 3965 if (batch->memcg != memcg)
569b846d
KH
3966 goto direct_uncharge;
3967 /* remember freed charge and uncharge it later */
7ffd4ca7 3968 batch->nr_pages++;
569b846d 3969 if (uncharge_memsw)
7ffd4ca7 3970 batch->memsw_nr_pages++;
569b846d
KH
3971 return;
3972direct_uncharge:
c0ff4b85 3973 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3974 if (uncharge_memsw)
c0ff4b85
R
3975 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3976 if (unlikely(batch->memcg != memcg))
3977 memcg_oom_recover(memcg);
569b846d 3978}
7a81b88c 3979
8a9f3ccd 3980/*
69029cd5 3981 * uncharge if !page_mapped(page)
8a9f3ccd 3982 */
8c7c6e34 3983static struct mem_cgroup *
0030f535
JW
3984__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3985 bool end_migration)
8a9f3ccd 3986{
c0ff4b85 3987 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3988 unsigned int nr_pages = 1;
3989 struct page_cgroup *pc;
b2402857 3990 bool anon;
8a9f3ccd 3991
f8d66542 3992 if (mem_cgroup_disabled())
8c7c6e34 3993 return NULL;
4077960e 3994
0c59b89c 3995 VM_BUG_ON(PageSwapCache(page));
d13d1443 3996
37c2ac78 3997 if (PageTransHuge(page)) {
7ec99d62 3998 nr_pages <<= compound_order(page);
37c2ac78
AA
3999 VM_BUG_ON(!PageTransHuge(page));
4000 }
8697d331 4001 /*
3c541e14 4002 * Check if our page_cgroup is valid
8697d331 4003 */
52d4b9ac 4004 pc = lookup_page_cgroup(page);
cfa44946 4005 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4006 return NULL;
b9c565d5 4007
52d4b9ac 4008 lock_page_cgroup(pc);
d13d1443 4009
c0ff4b85 4010 memcg = pc->mem_cgroup;
8c7c6e34 4011
d13d1443
KH
4012 if (!PageCgroupUsed(pc))
4013 goto unlock_out;
4014
b2402857
KH
4015 anon = PageAnon(page);
4016
d13d1443 4017 switch (ctype) {
41326c17 4018 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4019 /*
4020 * Generally PageAnon tells if it's the anon statistics to be
4021 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4022 * used before page reached the stage of being marked PageAnon.
4023 */
b2402857
KH
4024 anon = true;
4025 /* fallthrough */
8a9478ca 4026 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4027 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4028 if (page_mapped(page))
4029 goto unlock_out;
4030 /*
4031 * Pages under migration may not be uncharged. But
4032 * end_migration() /must/ be the one uncharging the
4033 * unused post-migration page and so it has to call
4034 * here with the migration bit still set. See the
4035 * res_counter handling below.
4036 */
4037 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4038 goto unlock_out;
4039 break;
4040 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4041 if (!PageAnon(page)) { /* Shared memory */
4042 if (page->mapping && !page_is_file_cache(page))
4043 goto unlock_out;
4044 } else if (page_mapped(page)) /* Anon */
4045 goto unlock_out;
4046 break;
4047 default:
4048 break;
52d4b9ac 4049 }
d13d1443 4050
b2402857 4051 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 4052
52d4b9ac 4053 ClearPageCgroupUsed(pc);
544122e5
KH
4054 /*
4055 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4056 * freed from LRU. This is safe because uncharged page is expected not
4057 * to be reused (freed soon). Exception is SwapCache, it's handled by
4058 * special functions.
4059 */
b9c565d5 4060
52d4b9ac 4061 unlock_page_cgroup(pc);
f75ca962 4062 /*
c0ff4b85 4063 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4064 * will never be freed.
4065 */
c0ff4b85 4066 memcg_check_events(memcg, page);
f75ca962 4067 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4068 mem_cgroup_swap_statistics(memcg, true);
4069 mem_cgroup_get(memcg);
f75ca962 4070 }
0030f535
JW
4071 /*
4072 * Migration does not charge the res_counter for the
4073 * replacement page, so leave it alone when phasing out the
4074 * page that is unused after the migration.
4075 */
4076 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4077 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4078
c0ff4b85 4079 return memcg;
d13d1443
KH
4080
4081unlock_out:
4082 unlock_page_cgroup(pc);
8c7c6e34 4083 return NULL;
3c541e14
BS
4084}
4085
69029cd5
KH
4086void mem_cgroup_uncharge_page(struct page *page)
4087{
52d4b9ac
KH
4088 /* early check. */
4089 if (page_mapped(page))
4090 return;
40f23a21 4091 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4092 if (PageSwapCache(page))
4093 return;
0030f535 4094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4095}
4096
4097void mem_cgroup_uncharge_cache_page(struct page *page)
4098{
4099 VM_BUG_ON(page_mapped(page));
b7abea96 4100 VM_BUG_ON(page->mapping);
0030f535 4101 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4102}
4103
569b846d
KH
4104/*
4105 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4106 * In that cases, pages are freed continuously and we can expect pages
4107 * are in the same memcg. All these calls itself limits the number of
4108 * pages freed at once, then uncharge_start/end() is called properly.
4109 * This may be called prural(2) times in a context,
4110 */
4111
4112void mem_cgroup_uncharge_start(void)
4113{
4114 current->memcg_batch.do_batch++;
4115 /* We can do nest. */
4116 if (current->memcg_batch.do_batch == 1) {
4117 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4118 current->memcg_batch.nr_pages = 0;
4119 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4120 }
4121}
4122
4123void mem_cgroup_uncharge_end(void)
4124{
4125 struct memcg_batch_info *batch = &current->memcg_batch;
4126
4127 if (!batch->do_batch)
4128 return;
4129
4130 batch->do_batch--;
4131 if (batch->do_batch) /* If stacked, do nothing. */
4132 return;
4133
4134 if (!batch->memcg)
4135 return;
4136 /*
4137 * This "batch->memcg" is valid without any css_get/put etc...
4138 * bacause we hide charges behind us.
4139 */
7ffd4ca7
JW
4140 if (batch->nr_pages)
4141 res_counter_uncharge(&batch->memcg->res,
4142 batch->nr_pages * PAGE_SIZE);
4143 if (batch->memsw_nr_pages)
4144 res_counter_uncharge(&batch->memcg->memsw,
4145 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4146 memcg_oom_recover(batch->memcg);
569b846d
KH
4147 /* forget this pointer (for sanity check) */
4148 batch->memcg = NULL;
4149}
4150
e767e056 4151#ifdef CONFIG_SWAP
8c7c6e34 4152/*
e767e056 4153 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4154 * memcg information is recorded to swap_cgroup of "ent"
4155 */
8a9478ca
KH
4156void
4157mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4158{
4159 struct mem_cgroup *memcg;
8a9478ca
KH
4160 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4161
4162 if (!swapout) /* this was a swap cache but the swap is unused ! */
4163 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4164
0030f535 4165 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4166
f75ca962
KH
4167 /*
4168 * record memcg information, if swapout && memcg != NULL,
4169 * mem_cgroup_get() was called in uncharge().
4170 */
4171 if (do_swap_account && swapout && memcg)
a3b2d692 4172 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4173}
e767e056 4174#endif
8c7c6e34 4175
c255a458 4176#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4177/*
4178 * called from swap_entry_free(). remove record in swap_cgroup and
4179 * uncharge "memsw" account.
4180 */
4181void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4182{
8c7c6e34 4183 struct mem_cgroup *memcg;
a3b2d692 4184 unsigned short id;
8c7c6e34
KH
4185
4186 if (!do_swap_account)
4187 return;
4188
a3b2d692
KH
4189 id = swap_cgroup_record(ent, 0);
4190 rcu_read_lock();
4191 memcg = mem_cgroup_lookup(id);
8c7c6e34 4192 if (memcg) {
a3b2d692
KH
4193 /*
4194 * We uncharge this because swap is freed.
4195 * This memcg can be obsolete one. We avoid calling css_tryget
4196 */
0c3e73e8 4197 if (!mem_cgroup_is_root(memcg))
4e649152 4198 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4199 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4200 mem_cgroup_put(memcg);
4201 }
a3b2d692 4202 rcu_read_unlock();
d13d1443 4203}
02491447
DN
4204
4205/**
4206 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4207 * @entry: swap entry to be moved
4208 * @from: mem_cgroup which the entry is moved from
4209 * @to: mem_cgroup which the entry is moved to
4210 *
4211 * It succeeds only when the swap_cgroup's record for this entry is the same
4212 * as the mem_cgroup's id of @from.
4213 *
4214 * Returns 0 on success, -EINVAL on failure.
4215 *
4216 * The caller must have charged to @to, IOW, called res_counter_charge() about
4217 * both res and memsw, and called css_get().
4218 */
4219static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4220 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4221{
4222 unsigned short old_id, new_id;
4223
4224 old_id = css_id(&from->css);
4225 new_id = css_id(&to->css);
4226
4227 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4228 mem_cgroup_swap_statistics(from, false);
483c30b5 4229 mem_cgroup_swap_statistics(to, true);
02491447 4230 /*
483c30b5
DN
4231 * This function is only called from task migration context now.
4232 * It postpones res_counter and refcount handling till the end
4233 * of task migration(mem_cgroup_clear_mc()) for performance
4234 * improvement. But we cannot postpone mem_cgroup_get(to)
4235 * because if the process that has been moved to @to does
4236 * swap-in, the refcount of @to might be decreased to 0.
02491447 4237 */
02491447 4238 mem_cgroup_get(to);
02491447
DN
4239 return 0;
4240 }
4241 return -EINVAL;
4242}
4243#else
4244static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4245 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4246{
4247 return -EINVAL;
4248}
8c7c6e34 4249#endif
d13d1443 4250
ae41be37 4251/*
01b1ae63
KH
4252 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4253 * page belongs to.
ae41be37 4254 */
0030f535
JW
4255void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4256 struct mem_cgroup **memcgp)
ae41be37 4257{
c0ff4b85 4258 struct mem_cgroup *memcg = NULL;
b32967ff 4259 unsigned int nr_pages = 1;
7ec99d62 4260 struct page_cgroup *pc;
ac39cf8c 4261 enum charge_type ctype;
8869b8f6 4262
72835c86 4263 *memcgp = NULL;
56039efa 4264
f8d66542 4265 if (mem_cgroup_disabled())
0030f535 4266 return;
4077960e 4267
b32967ff
MG
4268 if (PageTransHuge(page))
4269 nr_pages <<= compound_order(page);
4270
52d4b9ac
KH
4271 pc = lookup_page_cgroup(page);
4272 lock_page_cgroup(pc);
4273 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4274 memcg = pc->mem_cgroup;
4275 css_get(&memcg->css);
ac39cf8c
AM
4276 /*
4277 * At migrating an anonymous page, its mapcount goes down
4278 * to 0 and uncharge() will be called. But, even if it's fully
4279 * unmapped, migration may fail and this page has to be
4280 * charged again. We set MIGRATION flag here and delay uncharge
4281 * until end_migration() is called
4282 *
4283 * Corner Case Thinking
4284 * A)
4285 * When the old page was mapped as Anon and it's unmap-and-freed
4286 * while migration was ongoing.
4287 * If unmap finds the old page, uncharge() of it will be delayed
4288 * until end_migration(). If unmap finds a new page, it's
4289 * uncharged when it make mapcount to be 1->0. If unmap code
4290 * finds swap_migration_entry, the new page will not be mapped
4291 * and end_migration() will find it(mapcount==0).
4292 *
4293 * B)
4294 * When the old page was mapped but migraion fails, the kernel
4295 * remaps it. A charge for it is kept by MIGRATION flag even
4296 * if mapcount goes down to 0. We can do remap successfully
4297 * without charging it again.
4298 *
4299 * C)
4300 * The "old" page is under lock_page() until the end of
4301 * migration, so, the old page itself will not be swapped-out.
4302 * If the new page is swapped out before end_migraton, our
4303 * hook to usual swap-out path will catch the event.
4304 */
4305 if (PageAnon(page))
4306 SetPageCgroupMigration(pc);
e8589cc1 4307 }
52d4b9ac 4308 unlock_page_cgroup(pc);
ac39cf8c
AM
4309 /*
4310 * If the page is not charged at this point,
4311 * we return here.
4312 */
c0ff4b85 4313 if (!memcg)
0030f535 4314 return;
01b1ae63 4315
72835c86 4316 *memcgp = memcg;
ac39cf8c
AM
4317 /*
4318 * We charge new page before it's used/mapped. So, even if unlock_page()
4319 * is called before end_migration, we can catch all events on this new
4320 * page. In the case new page is migrated but not remapped, new page's
4321 * mapcount will be finally 0 and we call uncharge in end_migration().
4322 */
ac39cf8c 4323 if (PageAnon(page))
41326c17 4324 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4325 else
62ba7442 4326 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4327 /*
4328 * The page is committed to the memcg, but it's not actually
4329 * charged to the res_counter since we plan on replacing the
4330 * old one and only one page is going to be left afterwards.
4331 */
b32967ff 4332 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4333}
8869b8f6 4334
69029cd5 4335/* remove redundant charge if migration failed*/
c0ff4b85 4336void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4337 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4338{
ac39cf8c 4339 struct page *used, *unused;
01b1ae63 4340 struct page_cgroup *pc;
b2402857 4341 bool anon;
01b1ae63 4342
c0ff4b85 4343 if (!memcg)
01b1ae63 4344 return;
b25ed609 4345
50de1dd9 4346 if (!migration_ok) {
ac39cf8c
AM
4347 used = oldpage;
4348 unused = newpage;
01b1ae63 4349 } else {
ac39cf8c 4350 used = newpage;
01b1ae63
KH
4351 unused = oldpage;
4352 }
0030f535 4353 anon = PageAnon(used);
7d188958
JW
4354 __mem_cgroup_uncharge_common(unused,
4355 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4356 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4357 true);
0030f535 4358 css_put(&memcg->css);
69029cd5 4359 /*
ac39cf8c
AM
4360 * We disallowed uncharge of pages under migration because mapcount
4361 * of the page goes down to zero, temporarly.
4362 * Clear the flag and check the page should be charged.
01b1ae63 4363 */
ac39cf8c
AM
4364 pc = lookup_page_cgroup(oldpage);
4365 lock_page_cgroup(pc);
4366 ClearPageCgroupMigration(pc);
4367 unlock_page_cgroup(pc);
ac39cf8c 4368
01b1ae63 4369 /*
ac39cf8c
AM
4370 * If a page is a file cache, radix-tree replacement is very atomic
4371 * and we can skip this check. When it was an Anon page, its mapcount
4372 * goes down to 0. But because we added MIGRATION flage, it's not
4373 * uncharged yet. There are several case but page->mapcount check
4374 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4375 * check. (see prepare_charge() also)
69029cd5 4376 */
b2402857 4377 if (anon)
ac39cf8c 4378 mem_cgroup_uncharge_page(used);
ae41be37 4379}
78fb7466 4380
ab936cbc
KH
4381/*
4382 * At replace page cache, newpage is not under any memcg but it's on
4383 * LRU. So, this function doesn't touch res_counter but handles LRU
4384 * in correct way. Both pages are locked so we cannot race with uncharge.
4385 */
4386void mem_cgroup_replace_page_cache(struct page *oldpage,
4387 struct page *newpage)
4388{
bde05d1c 4389 struct mem_cgroup *memcg = NULL;
ab936cbc 4390 struct page_cgroup *pc;
ab936cbc 4391 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4392
4393 if (mem_cgroup_disabled())
4394 return;
4395
4396 pc = lookup_page_cgroup(oldpage);
4397 /* fix accounting on old pages */
4398 lock_page_cgroup(pc);
bde05d1c
HD
4399 if (PageCgroupUsed(pc)) {
4400 memcg = pc->mem_cgroup;
4401 mem_cgroup_charge_statistics(memcg, false, -1);
4402 ClearPageCgroupUsed(pc);
4403 }
ab936cbc
KH
4404 unlock_page_cgroup(pc);
4405
bde05d1c
HD
4406 /*
4407 * When called from shmem_replace_page(), in some cases the
4408 * oldpage has already been charged, and in some cases not.
4409 */
4410 if (!memcg)
4411 return;
ab936cbc
KH
4412 /*
4413 * Even if newpage->mapping was NULL before starting replacement,
4414 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4415 * LRU while we overwrite pc->mem_cgroup.
4416 */
ce587e65 4417 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4418}
4419
f212ad7c
DN
4420#ifdef CONFIG_DEBUG_VM
4421static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4422{
4423 struct page_cgroup *pc;
4424
4425 pc = lookup_page_cgroup(page);
cfa44946
JW
4426 /*
4427 * Can be NULL while feeding pages into the page allocator for
4428 * the first time, i.e. during boot or memory hotplug;
4429 * or when mem_cgroup_disabled().
4430 */
f212ad7c
DN
4431 if (likely(pc) && PageCgroupUsed(pc))
4432 return pc;
4433 return NULL;
4434}
4435
4436bool mem_cgroup_bad_page_check(struct page *page)
4437{
4438 if (mem_cgroup_disabled())
4439 return false;
4440
4441 return lookup_page_cgroup_used(page) != NULL;
4442}
4443
4444void mem_cgroup_print_bad_page(struct page *page)
4445{
4446 struct page_cgroup *pc;
4447
4448 pc = lookup_page_cgroup_used(page);
4449 if (pc) {
d045197f
AM
4450 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4451 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4452 }
4453}
4454#endif
4455
d38d2a75 4456static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4457 unsigned long long val)
628f4235 4458{
81d39c20 4459 int retry_count;
3c11ecf4 4460 u64 memswlimit, memlimit;
628f4235 4461 int ret = 0;
81d39c20
KH
4462 int children = mem_cgroup_count_children(memcg);
4463 u64 curusage, oldusage;
3c11ecf4 4464 int enlarge;
81d39c20
KH
4465
4466 /*
4467 * For keeping hierarchical_reclaim simple, how long we should retry
4468 * is depends on callers. We set our retry-count to be function
4469 * of # of children which we should visit in this loop.
4470 */
4471 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4472
4473 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4474
3c11ecf4 4475 enlarge = 0;
8c7c6e34 4476 while (retry_count) {
628f4235
KH
4477 if (signal_pending(current)) {
4478 ret = -EINTR;
4479 break;
4480 }
8c7c6e34
KH
4481 /*
4482 * Rather than hide all in some function, I do this in
4483 * open coded manner. You see what this really does.
aaad153e 4484 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4485 */
4486 mutex_lock(&set_limit_mutex);
4487 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4488 if (memswlimit < val) {
4489 ret = -EINVAL;
4490 mutex_unlock(&set_limit_mutex);
628f4235
KH
4491 break;
4492 }
3c11ecf4
KH
4493
4494 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4495 if (memlimit < val)
4496 enlarge = 1;
4497
8c7c6e34 4498 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4499 if (!ret) {
4500 if (memswlimit == val)
4501 memcg->memsw_is_minimum = true;
4502 else
4503 memcg->memsw_is_minimum = false;
4504 }
8c7c6e34
KH
4505 mutex_unlock(&set_limit_mutex);
4506
4507 if (!ret)
4508 break;
4509
5660048c
JW
4510 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4511 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4512 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4513 /* Usage is reduced ? */
4514 if (curusage >= oldusage)
4515 retry_count--;
4516 else
4517 oldusage = curusage;
8c7c6e34 4518 }
3c11ecf4
KH
4519 if (!ret && enlarge)
4520 memcg_oom_recover(memcg);
14797e23 4521
8c7c6e34
KH
4522 return ret;
4523}
4524
338c8431
LZ
4525static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4526 unsigned long long val)
8c7c6e34 4527{
81d39c20 4528 int retry_count;
3c11ecf4 4529 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4530 int children = mem_cgroup_count_children(memcg);
4531 int ret = -EBUSY;
3c11ecf4 4532 int enlarge = 0;
8c7c6e34 4533
81d39c20
KH
4534 /* see mem_cgroup_resize_res_limit */
4535 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4536 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4537 while (retry_count) {
4538 if (signal_pending(current)) {
4539 ret = -EINTR;
4540 break;
4541 }
4542 /*
4543 * Rather than hide all in some function, I do this in
4544 * open coded manner. You see what this really does.
aaad153e 4545 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4546 */
4547 mutex_lock(&set_limit_mutex);
4548 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4549 if (memlimit > val) {
4550 ret = -EINVAL;
4551 mutex_unlock(&set_limit_mutex);
4552 break;
4553 }
3c11ecf4
KH
4554 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4555 if (memswlimit < val)
4556 enlarge = 1;
8c7c6e34 4557 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4558 if (!ret) {
4559 if (memlimit == val)
4560 memcg->memsw_is_minimum = true;
4561 else
4562 memcg->memsw_is_minimum = false;
4563 }
8c7c6e34
KH
4564 mutex_unlock(&set_limit_mutex);
4565
4566 if (!ret)
4567 break;
4568
5660048c
JW
4569 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4570 MEM_CGROUP_RECLAIM_NOSWAP |
4571 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4572 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4573 /* Usage is reduced ? */
8c7c6e34 4574 if (curusage >= oldusage)
628f4235 4575 retry_count--;
81d39c20
KH
4576 else
4577 oldusage = curusage;
628f4235 4578 }
3c11ecf4
KH
4579 if (!ret && enlarge)
4580 memcg_oom_recover(memcg);
628f4235
KH
4581 return ret;
4582}
4583
4e416953 4584unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4585 gfp_t gfp_mask,
4586 unsigned long *total_scanned)
4e416953
BS
4587{
4588 unsigned long nr_reclaimed = 0;
4589 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4590 unsigned long reclaimed;
4591 int loop = 0;
4592 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4593 unsigned long long excess;
0ae5e89c 4594 unsigned long nr_scanned;
4e416953
BS
4595
4596 if (order > 0)
4597 return 0;
4598
00918b6a 4599 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4600 /*
4601 * This loop can run a while, specially if mem_cgroup's continuously
4602 * keep exceeding their soft limit and putting the system under
4603 * pressure
4604 */
4605 do {
4606 if (next_mz)
4607 mz = next_mz;
4608 else
4609 mz = mem_cgroup_largest_soft_limit_node(mctz);
4610 if (!mz)
4611 break;
4612
0ae5e89c 4613 nr_scanned = 0;
d79154bb 4614 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4615 gfp_mask, &nr_scanned);
4e416953 4616 nr_reclaimed += reclaimed;
0ae5e89c 4617 *total_scanned += nr_scanned;
4e416953
BS
4618 spin_lock(&mctz->lock);
4619
4620 /*
4621 * If we failed to reclaim anything from this memory cgroup
4622 * it is time to move on to the next cgroup
4623 */
4624 next_mz = NULL;
4625 if (!reclaimed) {
4626 do {
4627 /*
4628 * Loop until we find yet another one.
4629 *
4630 * By the time we get the soft_limit lock
4631 * again, someone might have aded the
4632 * group back on the RB tree. Iterate to
4633 * make sure we get a different mem.
4634 * mem_cgroup_largest_soft_limit_node returns
4635 * NULL if no other cgroup is present on
4636 * the tree
4637 */
4638 next_mz =
4639 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4640 if (next_mz == mz)
d79154bb 4641 css_put(&next_mz->memcg->css);
39cc98f1 4642 else /* next_mz == NULL or other memcg */
4e416953
BS
4643 break;
4644 } while (1);
4645 }
d79154bb
HD
4646 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4647 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4648 /*
4649 * One school of thought says that we should not add
4650 * back the node to the tree if reclaim returns 0.
4651 * But our reclaim could return 0, simply because due
4652 * to priority we are exposing a smaller subset of
4653 * memory to reclaim from. Consider this as a longer
4654 * term TODO.
4655 */
ef8745c1 4656 /* If excess == 0, no tree ops */
d79154bb 4657 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4658 spin_unlock(&mctz->lock);
d79154bb 4659 css_put(&mz->memcg->css);
4e416953
BS
4660 loop++;
4661 /*
4662 * Could not reclaim anything and there are no more
4663 * mem cgroups to try or we seem to be looping without
4664 * reclaiming anything.
4665 */
4666 if (!nr_reclaimed &&
4667 (next_mz == NULL ||
4668 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4669 break;
4670 } while (!nr_reclaimed);
4671 if (next_mz)
d79154bb 4672 css_put(&next_mz->memcg->css);
4e416953
BS
4673 return nr_reclaimed;
4674}
4675
2ef37d3f
MH
4676/**
4677 * mem_cgroup_force_empty_list - clears LRU of a group
4678 * @memcg: group to clear
4679 * @node: NUMA node
4680 * @zid: zone id
4681 * @lru: lru to to clear
4682 *
3c935d18 4683 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4684 * reclaim the pages page themselves - pages are moved to the parent (or root)
4685 * group.
cc847582 4686 */
2ef37d3f 4687static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4688 int node, int zid, enum lru_list lru)
cc847582 4689{
bea8c150 4690 struct lruvec *lruvec;
2ef37d3f 4691 unsigned long flags;
072c56c1 4692 struct list_head *list;
925b7673
JW
4693 struct page *busy;
4694 struct zone *zone;
072c56c1 4695
08e552c6 4696 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4697 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4698 list = &lruvec->lists[lru];
cc847582 4699
f817ed48 4700 busy = NULL;
2ef37d3f 4701 do {
925b7673 4702 struct page_cgroup *pc;
5564e88b
JW
4703 struct page *page;
4704
08e552c6 4705 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4706 if (list_empty(list)) {
08e552c6 4707 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4708 break;
f817ed48 4709 }
925b7673
JW
4710 page = list_entry(list->prev, struct page, lru);
4711 if (busy == page) {
4712 list_move(&page->lru, list);
648bcc77 4713 busy = NULL;
08e552c6 4714 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4715 continue;
4716 }
08e552c6 4717 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4718
925b7673 4719 pc = lookup_page_cgroup(page);
5564e88b 4720
3c935d18 4721 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4722 /* found lock contention or "pc" is obsolete. */
925b7673 4723 busy = page;
f817ed48
KH
4724 cond_resched();
4725 } else
4726 busy = NULL;
2ef37d3f 4727 } while (!list_empty(list));
cc847582
KH
4728}
4729
4730/*
c26251f9
MH
4731 * make mem_cgroup's charge to be 0 if there is no task by moving
4732 * all the charges and pages to the parent.
cc847582 4733 * This enables deleting this mem_cgroup.
c26251f9
MH
4734 *
4735 * Caller is responsible for holding css reference on the memcg.
cc847582 4736 */
ab5196c2 4737static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4738{
c26251f9 4739 int node, zid;
bea207c8 4740 u64 usage;
f817ed48 4741
fce66477 4742 do {
52d4b9ac
KH
4743 /* This is for making all *used* pages to be on LRU. */
4744 lru_add_drain_all();
c0ff4b85 4745 drain_all_stock_sync(memcg);
c0ff4b85 4746 mem_cgroup_start_move(memcg);
31aaea4a 4747 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4748 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4749 enum lru_list lru;
4750 for_each_lru(lru) {
2ef37d3f 4751 mem_cgroup_force_empty_list(memcg,
f156ab93 4752 node, zid, lru);
f817ed48 4753 }
1ecaab2b 4754 }
f817ed48 4755 }
c0ff4b85
R
4756 mem_cgroup_end_move(memcg);
4757 memcg_oom_recover(memcg);
52d4b9ac 4758 cond_resched();
f817ed48 4759
2ef37d3f 4760 /*
bea207c8
GC
4761 * Kernel memory may not necessarily be trackable to a specific
4762 * process. So they are not migrated, and therefore we can't
4763 * expect their value to drop to 0 here.
4764 * Having res filled up with kmem only is enough.
4765 *
2ef37d3f
MH
4766 * This is a safety check because mem_cgroup_force_empty_list
4767 * could have raced with mem_cgroup_replace_page_cache callers
4768 * so the lru seemed empty but the page could have been added
4769 * right after the check. RES_USAGE should be safe as we always
4770 * charge before adding to the LRU.
4771 */
bea207c8
GC
4772 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4773 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4774 } while (usage > 0);
c26251f9
MH
4775}
4776
b5f99b53
GC
4777/*
4778 * This mainly exists for tests during the setting of set of use_hierarchy.
4779 * Since this is the very setting we are changing, the current hierarchy value
4780 * is meaningless
4781 */
4782static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4783{
4784 struct cgroup *pos;
4785
4786 /* bounce at first found */
4787 cgroup_for_each_child(pos, memcg->css.cgroup)
4788 return true;
4789 return false;
4790}
4791
4792/*
0999821b
GC
4793 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4794 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4795 * from mem_cgroup_count_children(), in the sense that we don't really care how
4796 * many children we have; we only need to know if we have any. It also counts
4797 * any memcg without hierarchy as infertile.
4798 */
4799static inline bool memcg_has_children(struct mem_cgroup *memcg)
4800{
4801 return memcg->use_hierarchy && __memcg_has_children(memcg);
4802}
4803
c26251f9
MH
4804/*
4805 * Reclaims as many pages from the given memcg as possible and moves
4806 * the rest to the parent.
4807 *
4808 * Caller is responsible for holding css reference for memcg.
4809 */
4810static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4811{
4812 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4813 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4814
c1e862c1 4815 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4816 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4817 return -EBUSY;
4818
c1e862c1
KH
4819 /* we call try-to-free pages for make this cgroup empty */
4820 lru_add_drain_all();
f817ed48 4821 /* try to free all pages in this cgroup */
569530fb 4822 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4823 int progress;
c1e862c1 4824
c26251f9
MH
4825 if (signal_pending(current))
4826 return -EINTR;
4827
c0ff4b85 4828 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4829 false);
c1e862c1 4830 if (!progress) {
f817ed48 4831 nr_retries--;
c1e862c1 4832 /* maybe some writeback is necessary */
8aa7e847 4833 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4834 }
f817ed48
KH
4835
4836 }
08e552c6 4837 lru_add_drain();
ab5196c2
MH
4838 mem_cgroup_reparent_charges(memcg);
4839
4840 return 0;
cc847582
KH
4841}
4842
6bbda35c 4843static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4844{
c26251f9
MH
4845 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4846 int ret;
4847
d8423011
MH
4848 if (mem_cgroup_is_root(memcg))
4849 return -EINVAL;
c26251f9
MH
4850 css_get(&memcg->css);
4851 ret = mem_cgroup_force_empty(memcg);
4852 css_put(&memcg->css);
4853
4854 return ret;
c1e862c1
KH
4855}
4856
4857
18f59ea7
BS
4858static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4859{
4860 return mem_cgroup_from_cont(cont)->use_hierarchy;
4861}
4862
4863static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4864 u64 val)
4865{
4866 int retval = 0;
c0ff4b85 4867 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4868 struct cgroup *parent = cont->parent;
c0ff4b85 4869 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4870
4871 if (parent)
c0ff4b85 4872 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 4873
0999821b 4874 mutex_lock(&memcg_create_mutex);
567fb435
GC
4875
4876 if (memcg->use_hierarchy == val)
4877 goto out;
4878
18f59ea7 4879 /*
af901ca1 4880 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4881 * in the child subtrees. If it is unset, then the change can
4882 * occur, provided the current cgroup has no children.
4883 *
4884 * For the root cgroup, parent_mem is NULL, we allow value to be
4885 * set if there are no children.
4886 */
c0ff4b85 4887 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4888 (val == 1 || val == 0)) {
b5f99b53 4889 if (!__memcg_has_children(memcg))
c0ff4b85 4890 memcg->use_hierarchy = val;
18f59ea7
BS
4891 else
4892 retval = -EBUSY;
4893 } else
4894 retval = -EINVAL;
567fb435
GC
4895
4896out:
0999821b 4897 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4898
4899 return retval;
4900}
4901
0c3e73e8 4902
c0ff4b85 4903static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4904 enum mem_cgroup_stat_index idx)
0c3e73e8 4905{
7d74b06f 4906 struct mem_cgroup *iter;
7a159cc9 4907 long val = 0;
0c3e73e8 4908
7a159cc9 4909 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4910 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4911 val += mem_cgroup_read_stat(iter, idx);
4912
4913 if (val < 0) /* race ? */
4914 val = 0;
4915 return val;
0c3e73e8
BS
4916}
4917
c0ff4b85 4918static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4919{
7d74b06f 4920 u64 val;
104f3928 4921
c0ff4b85 4922 if (!mem_cgroup_is_root(memcg)) {
104f3928 4923 if (!swap)
65c64ce8 4924 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4925 else
65c64ce8 4926 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4927 }
4928
c0ff4b85
R
4929 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4930 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4931
7d74b06f 4932 if (swap)
bff6bb83 4933 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4934
4935 return val << PAGE_SHIFT;
4936}
4937
af36f906
TH
4938static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4939 struct file *file, char __user *buf,
4940 size_t nbytes, loff_t *ppos)
8cdea7c0 4941{
c0ff4b85 4942 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 4943 char str[64];
104f3928 4944 u64 val;
86ae53e1
GC
4945 int name, len;
4946 enum res_type type;
8c7c6e34
KH
4947
4948 type = MEMFILE_TYPE(cft->private);
4949 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4950
4951 if (!do_swap_account && type == _MEMSWAP)
4952 return -EOPNOTSUPP;
4953
8c7c6e34
KH
4954 switch (type) {
4955 case _MEM:
104f3928 4956 if (name == RES_USAGE)
c0ff4b85 4957 val = mem_cgroup_usage(memcg, false);
104f3928 4958 else
c0ff4b85 4959 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4960 break;
4961 case _MEMSWAP:
104f3928 4962 if (name == RES_USAGE)
c0ff4b85 4963 val = mem_cgroup_usage(memcg, true);
104f3928 4964 else
c0ff4b85 4965 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4966 break;
510fc4e1
GC
4967 case _KMEM:
4968 val = res_counter_read_u64(&memcg->kmem, name);
4969 break;
8c7c6e34
KH
4970 default:
4971 BUG();
8c7c6e34 4972 }
af36f906
TH
4973
4974 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4975 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4976}
510fc4e1
GC
4977
4978static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4979{
4980 int ret = -EINVAL;
4981#ifdef CONFIG_MEMCG_KMEM
4982 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4983 /*
4984 * For simplicity, we won't allow this to be disabled. It also can't
4985 * be changed if the cgroup has children already, or if tasks had
4986 * already joined.
4987 *
4988 * If tasks join before we set the limit, a person looking at
4989 * kmem.usage_in_bytes will have no way to determine when it took
4990 * place, which makes the value quite meaningless.
4991 *
4992 * After it first became limited, changes in the value of the limit are
4993 * of course permitted.
510fc4e1 4994 */
0999821b 4995 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
4996 mutex_lock(&set_limit_mutex);
4997 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 4998 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
4999 ret = -EBUSY;
5000 goto out;
5001 }
5002 ret = res_counter_set_limit(&memcg->kmem, val);
5003 VM_BUG_ON(ret);
5004
55007d84
GC
5005 ret = memcg_update_cache_sizes(memcg);
5006 if (ret) {
5007 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5008 goto out;
5009 }
692e89ab
GC
5010 static_key_slow_inc(&memcg_kmem_enabled_key);
5011 /*
5012 * setting the active bit after the inc will guarantee no one
5013 * starts accounting before all call sites are patched
5014 */
5015 memcg_kmem_set_active(memcg);
5016
7de37682
GC
5017 /*
5018 * kmem charges can outlive the cgroup. In the case of slab
5019 * pages, for instance, a page contain objects from various
5020 * processes, so it is unfeasible to migrate them away. We
5021 * need to reference count the memcg because of that.
5022 */
5023 mem_cgroup_get(memcg);
510fc4e1
GC
5024 } else
5025 ret = res_counter_set_limit(&memcg->kmem, val);
5026out:
5027 mutex_unlock(&set_limit_mutex);
0999821b 5028 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5029#endif
5030 return ret;
5031}
5032
6d043990 5033#ifdef CONFIG_MEMCG_KMEM
55007d84 5034static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5035{
55007d84 5036 int ret = 0;
510fc4e1
GC
5037 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5038 if (!parent)
55007d84
GC
5039 goto out;
5040
510fc4e1 5041 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5042 /*
5043 * When that happen, we need to disable the static branch only on those
5044 * memcgs that enabled it. To achieve this, we would be forced to
5045 * complicate the code by keeping track of which memcgs were the ones
5046 * that actually enabled limits, and which ones got it from its
5047 * parents.
5048 *
5049 * It is a lot simpler just to do static_key_slow_inc() on every child
5050 * that is accounted.
5051 */
55007d84
GC
5052 if (!memcg_kmem_is_active(memcg))
5053 goto out;
5054
5055 /*
5056 * destroy(), called if we fail, will issue static_key_slow_inc() and
5057 * mem_cgroup_put() if kmem is enabled. We have to either call them
5058 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5059 * this more consistent, since it always leads to the same destroy path
5060 */
5061 mem_cgroup_get(memcg);
5062 static_key_slow_inc(&memcg_kmem_enabled_key);
5063
5064 mutex_lock(&set_limit_mutex);
5065 ret = memcg_update_cache_sizes(memcg);
5066 mutex_unlock(&set_limit_mutex);
55007d84
GC
5067out:
5068 return ret;
510fc4e1 5069}
6d043990 5070#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5071
628f4235
KH
5072/*
5073 * The user of this function is...
5074 * RES_LIMIT.
5075 */
856c13aa
PM
5076static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5077 const char *buffer)
8cdea7c0 5078{
628f4235 5079 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5080 enum res_type type;
5081 int name;
628f4235
KH
5082 unsigned long long val;
5083 int ret;
5084
8c7c6e34
KH
5085 type = MEMFILE_TYPE(cft->private);
5086 name = MEMFILE_ATTR(cft->private);
af36f906
TH
5087
5088 if (!do_swap_account && type == _MEMSWAP)
5089 return -EOPNOTSUPP;
5090
8c7c6e34 5091 switch (name) {
628f4235 5092 case RES_LIMIT:
4b3bde4c
BS
5093 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5094 ret = -EINVAL;
5095 break;
5096 }
628f4235
KH
5097 /* This function does all necessary parse...reuse it */
5098 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5099 if (ret)
5100 break;
5101 if (type == _MEM)
628f4235 5102 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5103 else if (type == _MEMSWAP)
8c7c6e34 5104 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5105 else if (type == _KMEM)
5106 ret = memcg_update_kmem_limit(cont, val);
5107 else
5108 return -EINVAL;
628f4235 5109 break;
296c81d8
BS
5110 case RES_SOFT_LIMIT:
5111 ret = res_counter_memparse_write_strategy(buffer, &val);
5112 if (ret)
5113 break;
5114 /*
5115 * For memsw, soft limits are hard to implement in terms
5116 * of semantics, for now, we support soft limits for
5117 * control without swap
5118 */
5119 if (type == _MEM)
5120 ret = res_counter_set_soft_limit(&memcg->res, val);
5121 else
5122 ret = -EINVAL;
5123 break;
628f4235
KH
5124 default:
5125 ret = -EINVAL; /* should be BUG() ? */
5126 break;
5127 }
5128 return ret;
8cdea7c0
BS
5129}
5130
fee7b548
KH
5131static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5132 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5133{
5134 struct cgroup *cgroup;
5135 unsigned long long min_limit, min_memsw_limit, tmp;
5136
5137 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5138 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5139 cgroup = memcg->css.cgroup;
5140 if (!memcg->use_hierarchy)
5141 goto out;
5142
5143 while (cgroup->parent) {
5144 cgroup = cgroup->parent;
5145 memcg = mem_cgroup_from_cont(cgroup);
5146 if (!memcg->use_hierarchy)
5147 break;
5148 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5149 min_limit = min(min_limit, tmp);
5150 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5151 min_memsw_limit = min(min_memsw_limit, tmp);
5152 }
5153out:
5154 *mem_limit = min_limit;
5155 *memsw_limit = min_memsw_limit;
fee7b548
KH
5156}
5157
29f2a4da 5158static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5159{
af36f906 5160 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5161 int name;
5162 enum res_type type;
c84872e1 5163
8c7c6e34
KH
5164 type = MEMFILE_TYPE(event);
5165 name = MEMFILE_ATTR(event);
af36f906
TH
5166
5167 if (!do_swap_account && type == _MEMSWAP)
5168 return -EOPNOTSUPP;
5169
8c7c6e34 5170 switch (name) {
29f2a4da 5171 case RES_MAX_USAGE:
8c7c6e34 5172 if (type == _MEM)
c0ff4b85 5173 res_counter_reset_max(&memcg->res);
510fc4e1 5174 else if (type == _MEMSWAP)
c0ff4b85 5175 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5176 else if (type == _KMEM)
5177 res_counter_reset_max(&memcg->kmem);
5178 else
5179 return -EINVAL;
29f2a4da
PE
5180 break;
5181 case RES_FAILCNT:
8c7c6e34 5182 if (type == _MEM)
c0ff4b85 5183 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5184 else if (type == _MEMSWAP)
c0ff4b85 5185 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5186 else if (type == _KMEM)
5187 res_counter_reset_failcnt(&memcg->kmem);
5188 else
5189 return -EINVAL;
29f2a4da
PE
5190 break;
5191 }
f64c3f54 5192
85cc59db 5193 return 0;
c84872e1
PE
5194}
5195
7dc74be0
DN
5196static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5197 struct cftype *cft)
5198{
5199 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5200}
5201
02491447 5202#ifdef CONFIG_MMU
7dc74be0
DN
5203static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5204 struct cftype *cft, u64 val)
5205{
c0ff4b85 5206 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5207
5208 if (val >= (1 << NR_MOVE_TYPE))
5209 return -EINVAL;
ee5e8472 5210
7dc74be0 5211 /*
ee5e8472
GC
5212 * No kind of locking is needed in here, because ->can_attach() will
5213 * check this value once in the beginning of the process, and then carry
5214 * on with stale data. This means that changes to this value will only
5215 * affect task migrations starting after the change.
7dc74be0 5216 */
c0ff4b85 5217 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5218 return 0;
5219}
02491447
DN
5220#else
5221static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5222 struct cftype *cft, u64 val)
5223{
5224 return -ENOSYS;
5225}
5226#endif
7dc74be0 5227
406eb0c9 5228#ifdef CONFIG_NUMA
ab215884 5229static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5230 struct seq_file *m)
406eb0c9
YH
5231{
5232 int nid;
5233 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5234 unsigned long node_nr;
d79154bb 5235 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5236
d79154bb 5237 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5238 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5239 for_each_node_state(nid, N_MEMORY) {
d79154bb 5240 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5241 seq_printf(m, " N%d=%lu", nid, node_nr);
5242 }
5243 seq_putc(m, '\n');
5244
d79154bb 5245 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5246 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5247 for_each_node_state(nid, N_MEMORY) {
d79154bb 5248 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5249 LRU_ALL_FILE);
406eb0c9
YH
5250 seq_printf(m, " N%d=%lu", nid, node_nr);
5251 }
5252 seq_putc(m, '\n');
5253
d79154bb 5254 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5255 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5256 for_each_node_state(nid, N_MEMORY) {
d79154bb 5257 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5258 LRU_ALL_ANON);
406eb0c9
YH
5259 seq_printf(m, " N%d=%lu", nid, node_nr);
5260 }
5261 seq_putc(m, '\n');
5262
d79154bb 5263 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5264 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5265 for_each_node_state(nid, N_MEMORY) {
d79154bb 5266 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5267 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5268 seq_printf(m, " N%d=%lu", nid, node_nr);
5269 }
5270 seq_putc(m, '\n');
5271 return 0;
5272}
5273#endif /* CONFIG_NUMA */
5274
af7c4b0e
JW
5275static inline void mem_cgroup_lru_names_not_uptodate(void)
5276{
5277 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5278}
5279
ab215884 5280static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5281 struct seq_file *m)
d2ceb9b7 5282{
d79154bb 5283 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5284 struct mem_cgroup *mi;
5285 unsigned int i;
406eb0c9 5286
af7c4b0e 5287 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5288 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5289 continue;
af7c4b0e
JW
5290 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5291 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5292 }
7b854121 5293
af7c4b0e
JW
5294 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5295 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5296 mem_cgroup_read_events(memcg, i));
5297
5298 for (i = 0; i < NR_LRU_LISTS; i++)
5299 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5300 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5301
14067bb3 5302 /* Hierarchical information */
fee7b548
KH
5303 {
5304 unsigned long long limit, memsw_limit;
d79154bb 5305 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5306 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5307 if (do_swap_account)
78ccf5b5
JW
5308 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5309 memsw_limit);
fee7b548 5310 }
7f016ee8 5311
af7c4b0e
JW
5312 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5313 long long val = 0;
5314
bff6bb83 5315 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5316 continue;
af7c4b0e
JW
5317 for_each_mem_cgroup_tree(mi, memcg)
5318 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5319 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5320 }
5321
5322 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5323 unsigned long long val = 0;
5324
5325 for_each_mem_cgroup_tree(mi, memcg)
5326 val += mem_cgroup_read_events(mi, i);
5327 seq_printf(m, "total_%s %llu\n",
5328 mem_cgroup_events_names[i], val);
5329 }
5330
5331 for (i = 0; i < NR_LRU_LISTS; i++) {
5332 unsigned long long val = 0;
5333
5334 for_each_mem_cgroup_tree(mi, memcg)
5335 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5336 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5337 }
14067bb3 5338
7f016ee8 5339#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5340 {
5341 int nid, zid;
5342 struct mem_cgroup_per_zone *mz;
89abfab1 5343 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5344 unsigned long recent_rotated[2] = {0, 0};
5345 unsigned long recent_scanned[2] = {0, 0};
5346
5347 for_each_online_node(nid)
5348 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5349 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5350 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5351
89abfab1
HD
5352 recent_rotated[0] += rstat->recent_rotated[0];
5353 recent_rotated[1] += rstat->recent_rotated[1];
5354 recent_scanned[0] += rstat->recent_scanned[0];
5355 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5356 }
78ccf5b5
JW
5357 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5358 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5359 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5360 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5361 }
5362#endif
5363
d2ceb9b7
KH
5364 return 0;
5365}
5366
a7885eb8
KM
5367static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5368{
5369 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5370
1f4c025b 5371 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5372}
5373
5374static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5375 u64 val)
5376{
5377 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5378 struct mem_cgroup *parent;
068b38c1 5379
a7885eb8
KM
5380 if (val > 100)
5381 return -EINVAL;
5382
5383 if (cgrp->parent == NULL)
5384 return -EINVAL;
5385
5386 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5387
0999821b 5388 mutex_lock(&memcg_create_mutex);
068b38c1 5389
a7885eb8 5390 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5391 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5392 mutex_unlock(&memcg_create_mutex);
a7885eb8 5393 return -EINVAL;
068b38c1 5394 }
a7885eb8 5395
a7885eb8 5396 memcg->swappiness = val;
a7885eb8 5397
0999821b 5398 mutex_unlock(&memcg_create_mutex);
068b38c1 5399
a7885eb8
KM
5400 return 0;
5401}
5402
2e72b634
KS
5403static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5404{
5405 struct mem_cgroup_threshold_ary *t;
5406 u64 usage;
5407 int i;
5408
5409 rcu_read_lock();
5410 if (!swap)
2c488db2 5411 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5412 else
2c488db2 5413 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5414
5415 if (!t)
5416 goto unlock;
5417
5418 usage = mem_cgroup_usage(memcg, swap);
5419
5420 /*
748dad36 5421 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5422 * If it's not true, a threshold was crossed after last
5423 * call of __mem_cgroup_threshold().
5424 */
5407a562 5425 i = t->current_threshold;
2e72b634
KS
5426
5427 /*
5428 * Iterate backward over array of thresholds starting from
5429 * current_threshold and check if a threshold is crossed.
5430 * If none of thresholds below usage is crossed, we read
5431 * only one element of the array here.
5432 */
5433 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5434 eventfd_signal(t->entries[i].eventfd, 1);
5435
5436 /* i = current_threshold + 1 */
5437 i++;
5438
5439 /*
5440 * Iterate forward over array of thresholds starting from
5441 * current_threshold+1 and check if a threshold is crossed.
5442 * If none of thresholds above usage is crossed, we read
5443 * only one element of the array here.
5444 */
5445 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5446 eventfd_signal(t->entries[i].eventfd, 1);
5447
5448 /* Update current_threshold */
5407a562 5449 t->current_threshold = i - 1;
2e72b634
KS
5450unlock:
5451 rcu_read_unlock();
5452}
5453
5454static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5455{
ad4ca5f4
KS
5456 while (memcg) {
5457 __mem_cgroup_threshold(memcg, false);
5458 if (do_swap_account)
5459 __mem_cgroup_threshold(memcg, true);
5460
5461 memcg = parent_mem_cgroup(memcg);
5462 }
2e72b634
KS
5463}
5464
5465static int compare_thresholds(const void *a, const void *b)
5466{
5467 const struct mem_cgroup_threshold *_a = a;
5468 const struct mem_cgroup_threshold *_b = b;
5469
5470 return _a->threshold - _b->threshold;
5471}
5472
c0ff4b85 5473static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5474{
5475 struct mem_cgroup_eventfd_list *ev;
5476
c0ff4b85 5477 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5478 eventfd_signal(ev->eventfd, 1);
5479 return 0;
5480}
5481
c0ff4b85 5482static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5483{
7d74b06f
KH
5484 struct mem_cgroup *iter;
5485
c0ff4b85 5486 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5487 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5488}
5489
5490static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5492{
5493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5494 struct mem_cgroup_thresholds *thresholds;
5495 struct mem_cgroup_threshold_ary *new;
86ae53e1 5496 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5497 u64 threshold, usage;
2c488db2 5498 int i, size, ret;
2e72b634
KS
5499
5500 ret = res_counter_memparse_write_strategy(args, &threshold);
5501 if (ret)
5502 return ret;
5503
5504 mutex_lock(&memcg->thresholds_lock);
2c488db2 5505
2e72b634 5506 if (type == _MEM)
2c488db2 5507 thresholds = &memcg->thresholds;
2e72b634 5508 else if (type == _MEMSWAP)
2c488db2 5509 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5510 else
5511 BUG();
5512
5513 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5514
5515 /* Check if a threshold crossed before adding a new one */
2c488db2 5516 if (thresholds->primary)
2e72b634
KS
5517 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5518
2c488db2 5519 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5520
5521 /* Allocate memory for new array of thresholds */
2c488db2 5522 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5523 GFP_KERNEL);
2c488db2 5524 if (!new) {
2e72b634
KS
5525 ret = -ENOMEM;
5526 goto unlock;
5527 }
2c488db2 5528 new->size = size;
2e72b634
KS
5529
5530 /* Copy thresholds (if any) to new array */
2c488db2
KS
5531 if (thresholds->primary) {
5532 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5533 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5534 }
5535
2e72b634 5536 /* Add new threshold */
2c488db2
KS
5537 new->entries[size - 1].eventfd = eventfd;
5538 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5539
5540 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5541 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5542 compare_thresholds, NULL);
5543
5544 /* Find current threshold */
2c488db2 5545 new->current_threshold = -1;
2e72b634 5546 for (i = 0; i < size; i++) {
748dad36 5547 if (new->entries[i].threshold <= usage) {
2e72b634 5548 /*
2c488db2
KS
5549 * new->current_threshold will not be used until
5550 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5551 * it here.
5552 */
2c488db2 5553 ++new->current_threshold;
748dad36
SZ
5554 } else
5555 break;
2e72b634
KS
5556 }
5557
2c488db2
KS
5558 /* Free old spare buffer and save old primary buffer as spare */
5559 kfree(thresholds->spare);
5560 thresholds->spare = thresholds->primary;
5561
5562 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5563
907860ed 5564 /* To be sure that nobody uses thresholds */
2e72b634
KS
5565 synchronize_rcu();
5566
2e72b634
KS
5567unlock:
5568 mutex_unlock(&memcg->thresholds_lock);
5569
5570 return ret;
5571}
5572
907860ed 5573static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5574 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5575{
5576 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5577 struct mem_cgroup_thresholds *thresholds;
5578 struct mem_cgroup_threshold_ary *new;
86ae53e1 5579 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5580 u64 usage;
2c488db2 5581 int i, j, size;
2e72b634
KS
5582
5583 mutex_lock(&memcg->thresholds_lock);
5584 if (type == _MEM)
2c488db2 5585 thresholds = &memcg->thresholds;
2e72b634 5586 else if (type == _MEMSWAP)
2c488db2 5587 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5588 else
5589 BUG();
5590
371528ca
AV
5591 if (!thresholds->primary)
5592 goto unlock;
5593
2e72b634
KS
5594 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5595
5596 /* Check if a threshold crossed before removing */
5597 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5598
5599 /* Calculate new number of threshold */
2c488db2
KS
5600 size = 0;
5601 for (i = 0; i < thresholds->primary->size; i++) {
5602 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5603 size++;
5604 }
5605
2c488db2 5606 new = thresholds->spare;
907860ed 5607
2e72b634
KS
5608 /* Set thresholds array to NULL if we don't have thresholds */
5609 if (!size) {
2c488db2
KS
5610 kfree(new);
5611 new = NULL;
907860ed 5612 goto swap_buffers;
2e72b634
KS
5613 }
5614
2c488db2 5615 new->size = size;
2e72b634
KS
5616
5617 /* Copy thresholds and find current threshold */
2c488db2
KS
5618 new->current_threshold = -1;
5619 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5620 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5621 continue;
5622
2c488db2 5623 new->entries[j] = thresholds->primary->entries[i];
748dad36 5624 if (new->entries[j].threshold <= usage) {
2e72b634 5625 /*
2c488db2 5626 * new->current_threshold will not be used
2e72b634
KS
5627 * until rcu_assign_pointer(), so it's safe to increment
5628 * it here.
5629 */
2c488db2 5630 ++new->current_threshold;
2e72b634
KS
5631 }
5632 j++;
5633 }
5634
907860ed 5635swap_buffers:
2c488db2
KS
5636 /* Swap primary and spare array */
5637 thresholds->spare = thresholds->primary;
8c757763
SZ
5638 /* If all events are unregistered, free the spare array */
5639 if (!new) {
5640 kfree(thresholds->spare);
5641 thresholds->spare = NULL;
5642 }
5643
2c488db2 5644 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5645
907860ed 5646 /* To be sure that nobody uses thresholds */
2e72b634 5647 synchronize_rcu();
371528ca 5648unlock:
2e72b634 5649 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5650}
c1e862c1 5651
9490ff27
KH
5652static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5653 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5654{
5655 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5656 struct mem_cgroup_eventfd_list *event;
86ae53e1 5657 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5658
5659 BUG_ON(type != _OOM_TYPE);
5660 event = kmalloc(sizeof(*event), GFP_KERNEL);
5661 if (!event)
5662 return -ENOMEM;
5663
1af8efe9 5664 spin_lock(&memcg_oom_lock);
9490ff27
KH
5665
5666 event->eventfd = eventfd;
5667 list_add(&event->list, &memcg->oom_notify);
5668
5669 /* already in OOM ? */
79dfdacc 5670 if (atomic_read(&memcg->under_oom))
9490ff27 5671 eventfd_signal(eventfd, 1);
1af8efe9 5672 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5673
5674 return 0;
5675}
5676
907860ed 5677static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5678 struct cftype *cft, struct eventfd_ctx *eventfd)
5679{
c0ff4b85 5680 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5681 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5682 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5683
5684 BUG_ON(type != _OOM_TYPE);
5685
1af8efe9 5686 spin_lock(&memcg_oom_lock);
9490ff27 5687
c0ff4b85 5688 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5689 if (ev->eventfd == eventfd) {
5690 list_del(&ev->list);
5691 kfree(ev);
5692 }
5693 }
5694
1af8efe9 5695 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5696}
5697
3c11ecf4
KH
5698static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5699 struct cftype *cft, struct cgroup_map_cb *cb)
5700{
c0ff4b85 5701 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5702
c0ff4b85 5703 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5704
c0ff4b85 5705 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5706 cb->fill(cb, "under_oom", 1);
5707 else
5708 cb->fill(cb, "under_oom", 0);
5709 return 0;
5710}
5711
3c11ecf4
KH
5712static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5713 struct cftype *cft, u64 val)
5714{
c0ff4b85 5715 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5716 struct mem_cgroup *parent;
5717
5718 /* cannot set to root cgroup and only 0 and 1 are allowed */
5719 if (!cgrp->parent || !((val == 0) || (val == 1)))
5720 return -EINVAL;
5721
5722 parent = mem_cgroup_from_cont(cgrp->parent);
5723
0999821b 5724 mutex_lock(&memcg_create_mutex);
3c11ecf4 5725 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5726 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5727 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5728 return -EINVAL;
5729 }
c0ff4b85 5730 memcg->oom_kill_disable = val;
4d845ebf 5731 if (!val)
c0ff4b85 5732 memcg_oom_recover(memcg);
0999821b 5733 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5734 return 0;
5735}
5736
c255a458 5737#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5738static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5739{
55007d84
GC
5740 int ret;
5741
2633d7a0 5742 memcg->kmemcg_id = -1;
55007d84
GC
5743 ret = memcg_propagate_kmem(memcg);
5744 if (ret)
5745 return ret;
2633d7a0 5746
1d62e436 5747 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
5748};
5749
1d62e436 5750static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5751{
1d62e436 5752 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5753
5754 memcg_kmem_mark_dead(memcg);
5755
5756 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5757 return;
5758
5759 /*
5760 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5761 * path here, being careful not to race with memcg_uncharge_kmem: it is
5762 * possible that the charges went down to 0 between mark_dead and the
5763 * res_counter read, so in that case, we don't need the put
5764 */
5765 if (memcg_kmem_test_and_clear_dead(memcg))
5766 mem_cgroup_put(memcg);
d1a4c0b3 5767}
e5671dfa 5768#else
cbe128e3 5769static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5770{
5771 return 0;
5772}
d1a4c0b3 5773
1d62e436 5774static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5775{
5776}
e5671dfa
GC
5777#endif
5778
8cdea7c0
BS
5779static struct cftype mem_cgroup_files[] = {
5780 {
0eea1030 5781 .name = "usage_in_bytes",
8c7c6e34 5782 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5783 .read = mem_cgroup_read,
9490ff27
KH
5784 .register_event = mem_cgroup_usage_register_event,
5785 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5786 },
c84872e1
PE
5787 {
5788 .name = "max_usage_in_bytes",
8c7c6e34 5789 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5790 .trigger = mem_cgroup_reset,
af36f906 5791 .read = mem_cgroup_read,
c84872e1 5792 },
8cdea7c0 5793 {
0eea1030 5794 .name = "limit_in_bytes",
8c7c6e34 5795 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5796 .write_string = mem_cgroup_write,
af36f906 5797 .read = mem_cgroup_read,
8cdea7c0 5798 },
296c81d8
BS
5799 {
5800 .name = "soft_limit_in_bytes",
5801 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5802 .write_string = mem_cgroup_write,
af36f906 5803 .read = mem_cgroup_read,
296c81d8 5804 },
8cdea7c0
BS
5805 {
5806 .name = "failcnt",
8c7c6e34 5807 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5808 .trigger = mem_cgroup_reset,
af36f906 5809 .read = mem_cgroup_read,
8cdea7c0 5810 },
d2ceb9b7
KH
5811 {
5812 .name = "stat",
ab215884 5813 .read_seq_string = memcg_stat_show,
d2ceb9b7 5814 },
c1e862c1
KH
5815 {
5816 .name = "force_empty",
5817 .trigger = mem_cgroup_force_empty_write,
5818 },
18f59ea7
BS
5819 {
5820 .name = "use_hierarchy",
5821 .write_u64 = mem_cgroup_hierarchy_write,
5822 .read_u64 = mem_cgroup_hierarchy_read,
5823 },
a7885eb8
KM
5824 {
5825 .name = "swappiness",
5826 .read_u64 = mem_cgroup_swappiness_read,
5827 .write_u64 = mem_cgroup_swappiness_write,
5828 },
7dc74be0
DN
5829 {
5830 .name = "move_charge_at_immigrate",
5831 .read_u64 = mem_cgroup_move_charge_read,
5832 .write_u64 = mem_cgroup_move_charge_write,
5833 },
9490ff27
KH
5834 {
5835 .name = "oom_control",
3c11ecf4
KH
5836 .read_map = mem_cgroup_oom_control_read,
5837 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5838 .register_event = mem_cgroup_oom_register_event,
5839 .unregister_event = mem_cgroup_oom_unregister_event,
5840 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5841 },
406eb0c9
YH
5842#ifdef CONFIG_NUMA
5843 {
5844 .name = "numa_stat",
ab215884 5845 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5846 },
5847#endif
510fc4e1
GC
5848#ifdef CONFIG_MEMCG_KMEM
5849 {
5850 .name = "kmem.limit_in_bytes",
5851 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5852 .write_string = mem_cgroup_write,
5853 .read = mem_cgroup_read,
5854 },
5855 {
5856 .name = "kmem.usage_in_bytes",
5857 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5858 .read = mem_cgroup_read,
5859 },
5860 {
5861 .name = "kmem.failcnt",
5862 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5863 .trigger = mem_cgroup_reset,
5864 .read = mem_cgroup_read,
5865 },
5866 {
5867 .name = "kmem.max_usage_in_bytes",
5868 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5869 .trigger = mem_cgroup_reset,
5870 .read = mem_cgroup_read,
5871 },
749c5415
GC
5872#ifdef CONFIG_SLABINFO
5873 {
5874 .name = "kmem.slabinfo",
5875 .read_seq_string = mem_cgroup_slabinfo_read,
5876 },
5877#endif
8c7c6e34 5878#endif
6bc10349 5879 { }, /* terminate */
af36f906 5880};
8c7c6e34 5881
2d11085e
MH
5882#ifdef CONFIG_MEMCG_SWAP
5883static struct cftype memsw_cgroup_files[] = {
5884 {
5885 .name = "memsw.usage_in_bytes",
5886 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5887 .read = mem_cgroup_read,
5888 .register_event = mem_cgroup_usage_register_event,
5889 .unregister_event = mem_cgroup_usage_unregister_event,
5890 },
5891 {
5892 .name = "memsw.max_usage_in_bytes",
5893 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5894 .trigger = mem_cgroup_reset,
5895 .read = mem_cgroup_read,
5896 },
5897 {
5898 .name = "memsw.limit_in_bytes",
5899 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5900 .write_string = mem_cgroup_write,
5901 .read = mem_cgroup_read,
5902 },
5903 {
5904 .name = "memsw.failcnt",
5905 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5906 .trigger = mem_cgroup_reset,
5907 .read = mem_cgroup_read,
5908 },
5909 { }, /* terminate */
5910};
5911#endif
c0ff4b85 5912static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5913{
5914 struct mem_cgroup_per_node *pn;
1ecaab2b 5915 struct mem_cgroup_per_zone *mz;
41e3355d 5916 int zone, tmp = node;
1ecaab2b
KH
5917 /*
5918 * This routine is called against possible nodes.
5919 * But it's BUG to call kmalloc() against offline node.
5920 *
5921 * TODO: this routine can waste much memory for nodes which will
5922 * never be onlined. It's better to use memory hotplug callback
5923 * function.
5924 */
41e3355d
KH
5925 if (!node_state(node, N_NORMAL_MEMORY))
5926 tmp = -1;
17295c88 5927 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5928 if (!pn)
5929 return 1;
1ecaab2b 5930
1ecaab2b
KH
5931 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5932 mz = &pn->zoneinfo[zone];
bea8c150 5933 lruvec_init(&mz->lruvec);
f64c3f54 5934 mz->usage_in_excess = 0;
4e416953 5935 mz->on_tree = false;
d79154bb 5936 mz->memcg = memcg;
1ecaab2b 5937 }
0a619e58 5938 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
5939 return 0;
5940}
5941
c0ff4b85 5942static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5943{
c0ff4b85 5944 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
5945}
5946
33327948
KH
5947static struct mem_cgroup *mem_cgroup_alloc(void)
5948{
d79154bb 5949 struct mem_cgroup *memcg;
45cf7ebd 5950 size_t size = memcg_size();
33327948 5951
45cf7ebd 5952 /* Can be very big if nr_node_ids is very big */
c8dad2bb 5953 if (size < PAGE_SIZE)
d79154bb 5954 memcg = kzalloc(size, GFP_KERNEL);
33327948 5955 else
d79154bb 5956 memcg = vzalloc(size);
33327948 5957
d79154bb 5958 if (!memcg)
e7bbcdf3
DC
5959 return NULL;
5960
d79154bb
HD
5961 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5962 if (!memcg->stat)
d2e61b8d 5963 goto out_free;
d79154bb
HD
5964 spin_lock_init(&memcg->pcp_counter_lock);
5965 return memcg;
d2e61b8d
DC
5966
5967out_free:
5968 if (size < PAGE_SIZE)
d79154bb 5969 kfree(memcg);
d2e61b8d 5970 else
d79154bb 5971 vfree(memcg);
d2e61b8d 5972 return NULL;
33327948
KH
5973}
5974
59927fb9 5975/*
c8b2a36f
GC
5976 * At destroying mem_cgroup, references from swap_cgroup can remain.
5977 * (scanning all at force_empty is too costly...)
5978 *
5979 * Instead of clearing all references at force_empty, we remember
5980 * the number of reference from swap_cgroup and free mem_cgroup when
5981 * it goes down to 0.
5982 *
5983 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5984 */
c8b2a36f
GC
5985
5986static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5987{
c8b2a36f 5988 int node;
45cf7ebd 5989 size_t size = memcg_size();
59927fb9 5990
c8b2a36f
GC
5991 mem_cgroup_remove_from_trees(memcg);
5992 free_css_id(&mem_cgroup_subsys, &memcg->css);
5993
5994 for_each_node(node)
5995 free_mem_cgroup_per_zone_info(memcg, node);
5996
5997 free_percpu(memcg->stat);
5998
3f134619
GC
5999 /*
6000 * We need to make sure that (at least for now), the jump label
6001 * destruction code runs outside of the cgroup lock. This is because
6002 * get_online_cpus(), which is called from the static_branch update,
6003 * can't be called inside the cgroup_lock. cpusets are the ones
6004 * enforcing this dependency, so if they ever change, we might as well.
6005 *
6006 * schedule_work() will guarantee this happens. Be careful if you need
6007 * to move this code around, and make sure it is outside
6008 * the cgroup_lock.
6009 */
a8964b9b 6010 disarm_static_keys(memcg);
3afe36b1
GC
6011 if (size < PAGE_SIZE)
6012 kfree(memcg);
6013 else
6014 vfree(memcg);
59927fb9 6015}
3afe36b1 6016
59927fb9 6017
8c7c6e34 6018/*
c8b2a36f
GC
6019 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6020 * but in process context. The work_freeing structure is overlaid
6021 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6022 */
c8b2a36f 6023static void free_work(struct work_struct *work)
33327948 6024{
c8b2a36f 6025 struct mem_cgroup *memcg;
08e552c6 6026
c8b2a36f
GC
6027 memcg = container_of(work, struct mem_cgroup, work_freeing);
6028 __mem_cgroup_free(memcg);
6029}
04046e1a 6030
c8b2a36f
GC
6031static void free_rcu(struct rcu_head *rcu_head)
6032{
6033 struct mem_cgroup *memcg;
08e552c6 6034
c8b2a36f
GC
6035 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6036 INIT_WORK(&memcg->work_freeing, free_work);
6037 schedule_work(&memcg->work_freeing);
33327948
KH
6038}
6039
c0ff4b85 6040static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6041{
c0ff4b85 6042 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6043}
6044
c0ff4b85 6045static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6046{
c0ff4b85
R
6047 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6048 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6049 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6050 if (parent)
6051 mem_cgroup_put(parent);
6052 }
8c7c6e34
KH
6053}
6054
c0ff4b85 6055static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6056{
c0ff4b85 6057 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6058}
6059
7bcc1bb1
DN
6060/*
6061 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6062 */
e1aab161 6063struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6064{
c0ff4b85 6065 if (!memcg->res.parent)
7bcc1bb1 6066 return NULL;
c0ff4b85 6067 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6068}
e1aab161 6069EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6070
8787a1df 6071static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6072{
6073 struct mem_cgroup_tree_per_node *rtpn;
6074 struct mem_cgroup_tree_per_zone *rtpz;
6075 int tmp, node, zone;
6076
3ed28fa1 6077 for_each_node(node) {
f64c3f54
BS
6078 tmp = node;
6079 if (!node_state(node, N_NORMAL_MEMORY))
6080 tmp = -1;
6081 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6082 BUG_ON(!rtpn);
f64c3f54
BS
6083
6084 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6085
6086 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6087 rtpz = &rtpn->rb_tree_per_zone[zone];
6088 rtpz->rb_root = RB_ROOT;
6089 spin_lock_init(&rtpz->lock);
6090 }
6091 }
f64c3f54
BS
6092}
6093
0eb253e2 6094static struct cgroup_subsys_state * __ref
92fb9748 6095mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6096{
d142e3e6 6097 struct mem_cgroup *memcg;
04046e1a 6098 long error = -ENOMEM;
6d12e2d8 6099 int node;
8cdea7c0 6100
c0ff4b85
R
6101 memcg = mem_cgroup_alloc();
6102 if (!memcg)
04046e1a 6103 return ERR_PTR(error);
78fb7466 6104
3ed28fa1 6105 for_each_node(node)
c0ff4b85 6106 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6107 goto free_out;
f64c3f54 6108
c077719b 6109 /* root ? */
28dbc4b6 6110 if (cont->parent == NULL) {
a41c58a6 6111 root_mem_cgroup = memcg;
d142e3e6
GC
6112 res_counter_init(&memcg->res, NULL);
6113 res_counter_init(&memcg->memsw, NULL);
6114 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6115 }
28dbc4b6 6116
d142e3e6
GC
6117 memcg->last_scanned_node = MAX_NUMNODES;
6118 INIT_LIST_HEAD(&memcg->oom_notify);
6119 atomic_set(&memcg->refcnt, 1);
6120 memcg->move_charge_at_immigrate = 0;
6121 mutex_init(&memcg->thresholds_lock);
6122 spin_lock_init(&memcg->move_lock);
6123
6124 return &memcg->css;
6125
6126free_out:
6127 __mem_cgroup_free(memcg);
6128 return ERR_PTR(error);
6129}
6130
6131static int
6132mem_cgroup_css_online(struct cgroup *cont)
6133{
6134 struct mem_cgroup *memcg, *parent;
6135 int error = 0;
6136
6137 if (!cont->parent)
6138 return 0;
6139
0999821b 6140 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6141 memcg = mem_cgroup_from_cont(cont);
6142 parent = mem_cgroup_from_cont(cont->parent);
6143
6144 memcg->use_hierarchy = parent->use_hierarchy;
6145 memcg->oom_kill_disable = parent->oom_kill_disable;
6146 memcg->swappiness = mem_cgroup_swappiness(parent);
6147
6148 if (parent->use_hierarchy) {
c0ff4b85
R
6149 res_counter_init(&memcg->res, &parent->res);
6150 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6151 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6152
7bcc1bb1
DN
6153 /*
6154 * We increment refcnt of the parent to ensure that we can
6155 * safely access it on res_counter_charge/uncharge.
6156 * This refcnt will be decremented when freeing this
6157 * mem_cgroup(see mem_cgroup_put).
6158 */
6159 mem_cgroup_get(parent);
18f59ea7 6160 } else {
c0ff4b85
R
6161 res_counter_init(&memcg->res, NULL);
6162 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6163 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6164 /*
6165 * Deeper hierachy with use_hierarchy == false doesn't make
6166 * much sense so let cgroup subsystem know about this
6167 * unfortunate state in our controller.
6168 */
d142e3e6 6169 if (parent != root_mem_cgroup)
8c7f6edb 6170 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6171 }
cbe128e3
GC
6172
6173 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6174 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6175 if (error) {
6176 /*
6177 * We call put now because our (and parent's) refcnts
6178 * are already in place. mem_cgroup_put() will internally
6179 * call __mem_cgroup_free, so return directly
6180 */
6181 mem_cgroup_put(memcg);
e4715f01
GC
6182 if (parent->use_hierarchy)
6183 mem_cgroup_put(parent);
cbe128e3 6184 }
d142e3e6 6185 return error;
8cdea7c0
BS
6186}
6187
92fb9748 6188static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6189{
c0ff4b85 6190 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6191
ab5196c2 6192 mem_cgroup_reparent_charges(memcg);
1f458cbf 6193 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6194}
6195
92fb9748 6196static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6197{
c0ff4b85 6198 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6199
1d62e436 6200 kmem_cgroup_destroy(memcg);
d1a4c0b3 6201
c0ff4b85 6202 mem_cgroup_put(memcg);
8cdea7c0
BS
6203}
6204
02491447 6205#ifdef CONFIG_MMU
7dc74be0 6206/* Handlers for move charge at task migration. */
854ffa8d
DN
6207#define PRECHARGE_COUNT_AT_ONCE 256
6208static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6209{
854ffa8d
DN
6210 int ret = 0;
6211 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6212 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6213
c0ff4b85 6214 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6215 mc.precharge += count;
6216 /* we don't need css_get for root */
6217 return ret;
6218 }
6219 /* try to charge at once */
6220 if (count > 1) {
6221 struct res_counter *dummy;
6222 /*
c0ff4b85 6223 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6224 * by cgroup_lock_live_cgroup() that it is not removed and we
6225 * are still under the same cgroup_mutex. So we can postpone
6226 * css_get().
6227 */
c0ff4b85 6228 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6229 goto one_by_one;
c0ff4b85 6230 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6231 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6232 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6233 goto one_by_one;
6234 }
6235 mc.precharge += count;
854ffa8d
DN
6236 return ret;
6237 }
6238one_by_one:
6239 /* fall back to one by one charge */
6240 while (count--) {
6241 if (signal_pending(current)) {
6242 ret = -EINTR;
6243 break;
6244 }
6245 if (!batch_count--) {
6246 batch_count = PRECHARGE_COUNT_AT_ONCE;
6247 cond_resched();
6248 }
c0ff4b85
R
6249 ret = __mem_cgroup_try_charge(NULL,
6250 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6251 if (ret)
854ffa8d 6252 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6253 return ret;
854ffa8d
DN
6254 mc.precharge++;
6255 }
4ffef5fe
DN
6256 return ret;
6257}
6258
6259/**
8d32ff84 6260 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6261 * @vma: the vma the pte to be checked belongs
6262 * @addr: the address corresponding to the pte to be checked
6263 * @ptent: the pte to be checked
02491447 6264 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6265 *
6266 * Returns
6267 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6268 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6269 * move charge. if @target is not NULL, the page is stored in target->page
6270 * with extra refcnt got(Callers should handle it).
02491447
DN
6271 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6272 * target for charge migration. if @target is not NULL, the entry is stored
6273 * in target->ent.
4ffef5fe
DN
6274 *
6275 * Called with pte lock held.
6276 */
4ffef5fe
DN
6277union mc_target {
6278 struct page *page;
02491447 6279 swp_entry_t ent;
4ffef5fe
DN
6280};
6281
4ffef5fe 6282enum mc_target_type {
8d32ff84 6283 MC_TARGET_NONE = 0,
4ffef5fe 6284 MC_TARGET_PAGE,
02491447 6285 MC_TARGET_SWAP,
4ffef5fe
DN
6286};
6287
90254a65
DN
6288static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6289 unsigned long addr, pte_t ptent)
4ffef5fe 6290{
90254a65 6291 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6292
90254a65
DN
6293 if (!page || !page_mapped(page))
6294 return NULL;
6295 if (PageAnon(page)) {
6296 /* we don't move shared anon */
4b91355e 6297 if (!move_anon())
90254a65 6298 return NULL;
87946a72
DN
6299 } else if (!move_file())
6300 /* we ignore mapcount for file pages */
90254a65
DN
6301 return NULL;
6302 if (!get_page_unless_zero(page))
6303 return NULL;
6304
6305 return page;
6306}
6307
4b91355e 6308#ifdef CONFIG_SWAP
90254a65
DN
6309static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6310 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6311{
90254a65
DN
6312 struct page *page = NULL;
6313 swp_entry_t ent = pte_to_swp_entry(ptent);
6314
6315 if (!move_anon() || non_swap_entry(ent))
6316 return NULL;
4b91355e
KH
6317 /*
6318 * Because lookup_swap_cache() updates some statistics counter,
6319 * we call find_get_page() with swapper_space directly.
6320 */
33806f06 6321 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6322 if (do_swap_account)
6323 entry->val = ent.val;
6324
6325 return page;
6326}
4b91355e
KH
6327#else
6328static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6329 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6330{
6331 return NULL;
6332}
6333#endif
90254a65 6334
87946a72
DN
6335static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6336 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6337{
6338 struct page *page = NULL;
87946a72
DN
6339 struct address_space *mapping;
6340 pgoff_t pgoff;
6341
6342 if (!vma->vm_file) /* anonymous vma */
6343 return NULL;
6344 if (!move_file())
6345 return NULL;
6346
87946a72
DN
6347 mapping = vma->vm_file->f_mapping;
6348 if (pte_none(ptent))
6349 pgoff = linear_page_index(vma, addr);
6350 else /* pte_file(ptent) is true */
6351 pgoff = pte_to_pgoff(ptent);
6352
6353 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6354 page = find_get_page(mapping, pgoff);
6355
6356#ifdef CONFIG_SWAP
6357 /* shmem/tmpfs may report page out on swap: account for that too. */
6358 if (radix_tree_exceptional_entry(page)) {
6359 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6360 if (do_swap_account)
aa3b1895 6361 *entry = swap;
33806f06 6362 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6363 }
aa3b1895 6364#endif
87946a72
DN
6365 return page;
6366}
6367
8d32ff84 6368static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6369 unsigned long addr, pte_t ptent, union mc_target *target)
6370{
6371 struct page *page = NULL;
6372 struct page_cgroup *pc;
8d32ff84 6373 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6374 swp_entry_t ent = { .val = 0 };
6375
6376 if (pte_present(ptent))
6377 page = mc_handle_present_pte(vma, addr, ptent);
6378 else if (is_swap_pte(ptent))
6379 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6380 else if (pte_none(ptent) || pte_file(ptent))
6381 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6382
6383 if (!page && !ent.val)
8d32ff84 6384 return ret;
02491447
DN
6385 if (page) {
6386 pc = lookup_page_cgroup(page);
6387 /*
6388 * Do only loose check w/o page_cgroup lock.
6389 * mem_cgroup_move_account() checks the pc is valid or not under
6390 * the lock.
6391 */
6392 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6393 ret = MC_TARGET_PAGE;
6394 if (target)
6395 target->page = page;
6396 }
6397 if (!ret || !target)
6398 put_page(page);
6399 }
90254a65
DN
6400 /* There is a swap entry and a page doesn't exist or isn't charged */
6401 if (ent.val && !ret &&
9fb4b7cc 6402 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6403 ret = MC_TARGET_SWAP;
6404 if (target)
6405 target->ent = ent;
4ffef5fe 6406 }
4ffef5fe
DN
6407 return ret;
6408}
6409
12724850
NH
6410#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6411/*
6412 * We don't consider swapping or file mapped pages because THP does not
6413 * support them for now.
6414 * Caller should make sure that pmd_trans_huge(pmd) is true.
6415 */
6416static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6417 unsigned long addr, pmd_t pmd, union mc_target *target)
6418{
6419 struct page *page = NULL;
6420 struct page_cgroup *pc;
6421 enum mc_target_type ret = MC_TARGET_NONE;
6422
6423 page = pmd_page(pmd);
6424 VM_BUG_ON(!page || !PageHead(page));
6425 if (!move_anon())
6426 return ret;
6427 pc = lookup_page_cgroup(page);
6428 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6429 ret = MC_TARGET_PAGE;
6430 if (target) {
6431 get_page(page);
6432 target->page = page;
6433 }
6434 }
6435 return ret;
6436}
6437#else
6438static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6439 unsigned long addr, pmd_t pmd, union mc_target *target)
6440{
6441 return MC_TARGET_NONE;
6442}
6443#endif
6444
4ffef5fe
DN
6445static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6446 unsigned long addr, unsigned long end,
6447 struct mm_walk *walk)
6448{
6449 struct vm_area_struct *vma = walk->private;
6450 pte_t *pte;
6451 spinlock_t *ptl;
6452
12724850
NH
6453 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6454 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6455 mc.precharge += HPAGE_PMD_NR;
6456 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6457 return 0;
12724850 6458 }
03319327 6459
45f83cef
AA
6460 if (pmd_trans_unstable(pmd))
6461 return 0;
4ffef5fe
DN
6462 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6463 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6464 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6465 mc.precharge++; /* increment precharge temporarily */
6466 pte_unmap_unlock(pte - 1, ptl);
6467 cond_resched();
6468
7dc74be0
DN
6469 return 0;
6470}
6471
4ffef5fe
DN
6472static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6473{
6474 unsigned long precharge;
6475 struct vm_area_struct *vma;
6476
dfe076b0 6477 down_read(&mm->mmap_sem);
4ffef5fe
DN
6478 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6479 struct mm_walk mem_cgroup_count_precharge_walk = {
6480 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6481 .mm = mm,
6482 .private = vma,
6483 };
6484 if (is_vm_hugetlb_page(vma))
6485 continue;
4ffef5fe
DN
6486 walk_page_range(vma->vm_start, vma->vm_end,
6487 &mem_cgroup_count_precharge_walk);
6488 }
dfe076b0 6489 up_read(&mm->mmap_sem);
4ffef5fe
DN
6490
6491 precharge = mc.precharge;
6492 mc.precharge = 0;
6493
6494 return precharge;
6495}
6496
4ffef5fe
DN
6497static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6498{
dfe076b0
DN
6499 unsigned long precharge = mem_cgroup_count_precharge(mm);
6500
6501 VM_BUG_ON(mc.moving_task);
6502 mc.moving_task = current;
6503 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6504}
6505
dfe076b0
DN
6506/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6507static void __mem_cgroup_clear_mc(void)
4ffef5fe 6508{
2bd9bb20
KH
6509 struct mem_cgroup *from = mc.from;
6510 struct mem_cgroup *to = mc.to;
6511
4ffef5fe 6512 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6513 if (mc.precharge) {
6514 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6515 mc.precharge = 0;
6516 }
6517 /*
6518 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6519 * we must uncharge here.
6520 */
6521 if (mc.moved_charge) {
6522 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6523 mc.moved_charge = 0;
4ffef5fe 6524 }
483c30b5
DN
6525 /* we must fixup refcnts and charges */
6526 if (mc.moved_swap) {
483c30b5
DN
6527 /* uncharge swap account from the old cgroup */
6528 if (!mem_cgroup_is_root(mc.from))
6529 res_counter_uncharge(&mc.from->memsw,
6530 PAGE_SIZE * mc.moved_swap);
6531 __mem_cgroup_put(mc.from, mc.moved_swap);
6532
6533 if (!mem_cgroup_is_root(mc.to)) {
6534 /*
6535 * we charged both to->res and to->memsw, so we should
6536 * uncharge to->res.
6537 */
6538 res_counter_uncharge(&mc.to->res,
6539 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6540 }
6541 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6542 mc.moved_swap = 0;
6543 }
dfe076b0
DN
6544 memcg_oom_recover(from);
6545 memcg_oom_recover(to);
6546 wake_up_all(&mc.waitq);
6547}
6548
6549static void mem_cgroup_clear_mc(void)
6550{
6551 struct mem_cgroup *from = mc.from;
6552
6553 /*
6554 * we must clear moving_task before waking up waiters at the end of
6555 * task migration.
6556 */
6557 mc.moving_task = NULL;
6558 __mem_cgroup_clear_mc();
2bd9bb20 6559 spin_lock(&mc.lock);
4ffef5fe
DN
6560 mc.from = NULL;
6561 mc.to = NULL;
2bd9bb20 6562 spin_unlock(&mc.lock);
32047e2a 6563 mem_cgroup_end_move(from);
4ffef5fe
DN
6564}
6565
761b3ef5
LZ
6566static int mem_cgroup_can_attach(struct cgroup *cgroup,
6567 struct cgroup_taskset *tset)
7dc74be0 6568{
2f7ee569 6569 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6570 int ret = 0;
c0ff4b85 6571 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6572 unsigned long move_charge_at_immigrate;
7dc74be0 6573
ee5e8472
GC
6574 /*
6575 * We are now commited to this value whatever it is. Changes in this
6576 * tunable will only affect upcoming migrations, not the current one.
6577 * So we need to save it, and keep it going.
6578 */
6579 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6580 if (move_charge_at_immigrate) {
7dc74be0
DN
6581 struct mm_struct *mm;
6582 struct mem_cgroup *from = mem_cgroup_from_task(p);
6583
c0ff4b85 6584 VM_BUG_ON(from == memcg);
7dc74be0
DN
6585
6586 mm = get_task_mm(p);
6587 if (!mm)
6588 return 0;
7dc74be0 6589 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6590 if (mm->owner == p) {
6591 VM_BUG_ON(mc.from);
6592 VM_BUG_ON(mc.to);
6593 VM_BUG_ON(mc.precharge);
854ffa8d 6594 VM_BUG_ON(mc.moved_charge);
483c30b5 6595 VM_BUG_ON(mc.moved_swap);
32047e2a 6596 mem_cgroup_start_move(from);
2bd9bb20 6597 spin_lock(&mc.lock);
4ffef5fe 6598 mc.from = from;
c0ff4b85 6599 mc.to = memcg;
ee5e8472 6600 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6601 spin_unlock(&mc.lock);
dfe076b0 6602 /* We set mc.moving_task later */
4ffef5fe
DN
6603
6604 ret = mem_cgroup_precharge_mc(mm);
6605 if (ret)
6606 mem_cgroup_clear_mc();
dfe076b0
DN
6607 }
6608 mmput(mm);
7dc74be0
DN
6609 }
6610 return ret;
6611}
6612
761b3ef5
LZ
6613static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6614 struct cgroup_taskset *tset)
7dc74be0 6615{
4ffef5fe 6616 mem_cgroup_clear_mc();
7dc74be0
DN
6617}
6618
4ffef5fe
DN
6619static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6620 unsigned long addr, unsigned long end,
6621 struct mm_walk *walk)
7dc74be0 6622{
4ffef5fe
DN
6623 int ret = 0;
6624 struct vm_area_struct *vma = walk->private;
6625 pte_t *pte;
6626 spinlock_t *ptl;
12724850
NH
6627 enum mc_target_type target_type;
6628 union mc_target target;
6629 struct page *page;
6630 struct page_cgroup *pc;
4ffef5fe 6631
12724850
NH
6632 /*
6633 * We don't take compound_lock() here but no race with splitting thp
6634 * happens because:
6635 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6636 * under splitting, which means there's no concurrent thp split,
6637 * - if another thread runs into split_huge_page() just after we
6638 * entered this if-block, the thread must wait for page table lock
6639 * to be unlocked in __split_huge_page_splitting(), where the main
6640 * part of thp split is not executed yet.
6641 */
6642 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6643 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6644 spin_unlock(&vma->vm_mm->page_table_lock);
6645 return 0;
6646 }
6647 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6648 if (target_type == MC_TARGET_PAGE) {
6649 page = target.page;
6650 if (!isolate_lru_page(page)) {
6651 pc = lookup_page_cgroup(page);
6652 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6653 pc, mc.from, mc.to)) {
12724850
NH
6654 mc.precharge -= HPAGE_PMD_NR;
6655 mc.moved_charge += HPAGE_PMD_NR;
6656 }
6657 putback_lru_page(page);
6658 }
6659 put_page(page);
6660 }
6661 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6662 return 0;
12724850
NH
6663 }
6664
45f83cef
AA
6665 if (pmd_trans_unstable(pmd))
6666 return 0;
4ffef5fe
DN
6667retry:
6668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6669 for (; addr != end; addr += PAGE_SIZE) {
6670 pte_t ptent = *(pte++);
02491447 6671 swp_entry_t ent;
4ffef5fe
DN
6672
6673 if (!mc.precharge)
6674 break;
6675
8d32ff84 6676 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6677 case MC_TARGET_PAGE:
6678 page = target.page;
6679 if (isolate_lru_page(page))
6680 goto put;
6681 pc = lookup_page_cgroup(page);
7ec99d62 6682 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6683 mc.from, mc.to)) {
4ffef5fe 6684 mc.precharge--;
854ffa8d
DN
6685 /* we uncharge from mc.from later. */
6686 mc.moved_charge++;
4ffef5fe
DN
6687 }
6688 putback_lru_page(page);
8d32ff84 6689put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6690 put_page(page);
6691 break;
02491447
DN
6692 case MC_TARGET_SWAP:
6693 ent = target.ent;
e91cbb42 6694 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6695 mc.precharge--;
483c30b5
DN
6696 /* we fixup refcnts and charges later. */
6697 mc.moved_swap++;
6698 }
02491447 6699 break;
4ffef5fe
DN
6700 default:
6701 break;
6702 }
6703 }
6704 pte_unmap_unlock(pte - 1, ptl);
6705 cond_resched();
6706
6707 if (addr != end) {
6708 /*
6709 * We have consumed all precharges we got in can_attach().
6710 * We try charge one by one, but don't do any additional
6711 * charges to mc.to if we have failed in charge once in attach()
6712 * phase.
6713 */
854ffa8d 6714 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6715 if (!ret)
6716 goto retry;
6717 }
6718
6719 return ret;
6720}
6721
6722static void mem_cgroup_move_charge(struct mm_struct *mm)
6723{
6724 struct vm_area_struct *vma;
6725
6726 lru_add_drain_all();
dfe076b0
DN
6727retry:
6728 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6729 /*
6730 * Someone who are holding the mmap_sem might be waiting in
6731 * waitq. So we cancel all extra charges, wake up all waiters,
6732 * and retry. Because we cancel precharges, we might not be able
6733 * to move enough charges, but moving charge is a best-effort
6734 * feature anyway, so it wouldn't be a big problem.
6735 */
6736 __mem_cgroup_clear_mc();
6737 cond_resched();
6738 goto retry;
6739 }
4ffef5fe
DN
6740 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6741 int ret;
6742 struct mm_walk mem_cgroup_move_charge_walk = {
6743 .pmd_entry = mem_cgroup_move_charge_pte_range,
6744 .mm = mm,
6745 .private = vma,
6746 };
6747 if (is_vm_hugetlb_page(vma))
6748 continue;
4ffef5fe
DN
6749 ret = walk_page_range(vma->vm_start, vma->vm_end,
6750 &mem_cgroup_move_charge_walk);
6751 if (ret)
6752 /*
6753 * means we have consumed all precharges and failed in
6754 * doing additional charge. Just abandon here.
6755 */
6756 break;
6757 }
dfe076b0 6758 up_read(&mm->mmap_sem);
7dc74be0
DN
6759}
6760
761b3ef5
LZ
6761static void mem_cgroup_move_task(struct cgroup *cont,
6762 struct cgroup_taskset *tset)
67e465a7 6763{
2f7ee569 6764 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6765 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6766
dfe076b0 6767 if (mm) {
a433658c
KM
6768 if (mc.to)
6769 mem_cgroup_move_charge(mm);
dfe076b0
DN
6770 mmput(mm);
6771 }
a433658c
KM
6772 if (mc.to)
6773 mem_cgroup_clear_mc();
67e465a7 6774}
5cfb80a7 6775#else /* !CONFIG_MMU */
761b3ef5
LZ
6776static int mem_cgroup_can_attach(struct cgroup *cgroup,
6777 struct cgroup_taskset *tset)
5cfb80a7
DN
6778{
6779 return 0;
6780}
761b3ef5
LZ
6781static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6782 struct cgroup_taskset *tset)
5cfb80a7
DN
6783{
6784}
761b3ef5
LZ
6785static void mem_cgroup_move_task(struct cgroup *cont,
6786 struct cgroup_taskset *tset)
5cfb80a7
DN
6787{
6788}
6789#endif
67e465a7 6790
8cdea7c0
BS
6791struct cgroup_subsys mem_cgroup_subsys = {
6792 .name = "memory",
6793 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6794 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6795 .css_online = mem_cgroup_css_online,
92fb9748
TH
6796 .css_offline = mem_cgroup_css_offline,
6797 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6798 .can_attach = mem_cgroup_can_attach,
6799 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6800 .attach = mem_cgroup_move_task,
6bc10349 6801 .base_cftypes = mem_cgroup_files,
6d12e2d8 6802 .early_init = 0,
04046e1a 6803 .use_id = 1,
8cdea7c0 6804};
c077719b 6805
c255a458 6806#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6807static int __init enable_swap_account(char *s)
6808{
6809 /* consider enabled if no parameter or 1 is given */
a2c8990a 6810 if (!strcmp(s, "1"))
a42c390c 6811 really_do_swap_account = 1;
a2c8990a 6812 else if (!strcmp(s, "0"))
a42c390c
MH
6813 really_do_swap_account = 0;
6814 return 1;
6815}
a2c8990a 6816__setup("swapaccount=", enable_swap_account);
c077719b 6817
2d11085e
MH
6818static void __init memsw_file_init(void)
6819{
6acc8b02
MH
6820 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6821}
6822
6823static void __init enable_swap_cgroup(void)
6824{
6825 if (!mem_cgroup_disabled() && really_do_swap_account) {
6826 do_swap_account = 1;
6827 memsw_file_init();
6828 }
2d11085e 6829}
6acc8b02 6830
2d11085e 6831#else
6acc8b02 6832static void __init enable_swap_cgroup(void)
2d11085e
MH
6833{
6834}
c077719b 6835#endif
2d11085e
MH
6836
6837/*
1081312f
MH
6838 * subsys_initcall() for memory controller.
6839 *
6840 * Some parts like hotcpu_notifier() have to be initialized from this context
6841 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6842 * everything that doesn't depend on a specific mem_cgroup structure should
6843 * be initialized from here.
2d11085e
MH
6844 */
6845static int __init mem_cgroup_init(void)
6846{
6847 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6848 enable_swap_cgroup();
8787a1df 6849 mem_cgroup_soft_limit_tree_init();
e4777496 6850 memcg_stock_init();
2d11085e
MH
6851 return 0;
6852}
6853subsys_initcall(mem_cgroup_init);