]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: move lruvec stats update functions to vmstat.h
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
37d5985c
RG
76/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
f7e1cb6e
JW
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
04823c83
VD
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
21afa38e 85/* Whether the swap controller is active */
c255a458 86#ifdef CONFIG_MEMCG_SWAP
eccb52e7 87bool cgroup_memory_noswap __read_mostly;
c077719b 88#else
eccb52e7 89#define cgroup_memory_noswap 1
2d1c4980 90#endif
c077719b 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
eccb52e7 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
510fc4e1 208 _KMEM,
d55f90bf 209 _TCP,
86ae53e1
GC
210};
211
a0db00fc
KS
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 214#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
8c7c6e34 217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
7775face
TH
233static inline bool should_force_charge(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
253extern spinlock_t css_set_lock;
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
55007d84 345/*
9855609b 346 * This will be used as a shrinker list's index.
b8627835
LZ
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
55007d84 352 *
dbcf73e2
VD
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
55007d84 355 */
dbcf73e2
VD
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
749c5415 358
05257a1a
VD
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
55007d84
GC
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
b8627835 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
b8627835 385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 386
d7f25f8a
GC
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
272911a4 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
ef12947c 393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 394EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 395#endif
17cc4dfe 396
0a4465d3
KT
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
86daf94e 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
86daf94e 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 497 goto unlock;
75866af6 498 }
0a4465d3
KT
499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
fae91d6d
KT
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
fae91d6d
KT
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
ad7fa852
TH
521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
ad7fa852
TH
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
ad7fa852
TH
536 memcg = page->mem_cgroup;
537
9e10a130 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
539 memcg = root_mem_cgroup;
540
ad7fa852
TH
541 return &memcg->css;
542}
543
2fc04524
VD
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
9855609b 563 memcg = page->mem_cgroup;
286e04b8 564
9855609b
RG
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
286e04b8 573
2fc04524
VD
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580}
581
ef8f2327
MG
582static struct mem_cgroup_per_node *
583mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 584{
97a6c37b 585 int nid = page_to_nid(page);
f64c3f54 586
ef8f2327 587 return memcg->nodeinfo[nid];
f64c3f54
BS
588}
589
ef8f2327
MG
590static struct mem_cgroup_tree_per_node *
591soft_limit_tree_node(int nid)
bb4cc1a8 592{
ef8f2327 593 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
594}
595
ef8f2327 596static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
597soft_limit_tree_from_page(struct page *page)
598{
599 int nid = page_to_nid(page);
bb4cc1a8 600
ef8f2327 601 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
602}
603
ef8f2327
MG
604static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 606 unsigned long new_usage_in_excess)
bb4cc1a8
AM
607{
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
ef8f2327 610 struct mem_cgroup_per_node *mz_node;
fa90b2fd 611 bool rightmost = true;
bb4cc1a8
AM
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
ef8f2327 621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 622 tree_node);
fa90b2fd 623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 624 p = &(*p)->rb_left;
fa90b2fd 625 rightmost = false;
378876b0 626 } else {
bb4cc1a8 627 p = &(*p)->rb_right;
378876b0 628 }
bb4cc1a8 629 }
fa90b2fd
DB
630
631 if (rightmost)
632 mctz->rb_rightmost = &mz->tree_node;
633
bb4cc1a8
AM
634 rb_link_node(&mz->tree_node, parent, p);
635 rb_insert_color(&mz->tree_node, &mctz->rb_root);
636 mz->on_tree = true;
637}
638
ef8f2327
MG
639static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
640 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
641{
642 if (!mz->on_tree)
643 return;
fa90b2fd
DB
644
645 if (&mz->tree_node == mctz->rb_rightmost)
646 mctz->rb_rightmost = rb_prev(&mz->tree_node);
647
bb4cc1a8
AM
648 rb_erase(&mz->tree_node, &mctz->rb_root);
649 mz->on_tree = false;
650}
651
ef8f2327
MG
652static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
653 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 654{
0a31bc97
JW
655 unsigned long flags;
656
657 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 658 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 659 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
660}
661
3e32cb2e
JW
662static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
663{
664 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 665 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
666 unsigned long excess = 0;
667
668 if (nr_pages > soft_limit)
669 excess = nr_pages - soft_limit;
670
671 return excess;
672}
bb4cc1a8
AM
673
674static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
675{
3e32cb2e 676 unsigned long excess;
ef8f2327
MG
677 struct mem_cgroup_per_node *mz;
678 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 679
e231875b 680 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
681 if (!mctz)
682 return;
bb4cc1a8
AM
683 /*
684 * Necessary to update all ancestors when hierarchy is used.
685 * because their event counter is not touched.
686 */
687 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 688 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 689 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
690 /*
691 * We have to update the tree if mz is on RB-tree or
692 * mem is over its softlimit.
693 */
694 if (excess || mz->on_tree) {
0a31bc97
JW
695 unsigned long flags;
696
697 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
698 /* if on-tree, remove it */
699 if (mz->on_tree)
cf2c8127 700 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
701 /*
702 * Insert again. mz->usage_in_excess will be updated.
703 * If excess is 0, no tree ops.
704 */
cf2c8127 705 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707 }
708 }
709}
710
711static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
712{
ef8f2327
MG
713 struct mem_cgroup_tree_per_node *mctz;
714 struct mem_cgroup_per_node *mz;
715 int nid;
bb4cc1a8 716
e231875b 717 for_each_node(nid) {
ef8f2327
MG
718 mz = mem_cgroup_nodeinfo(memcg, nid);
719 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
720 if (mctz)
721 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
722 }
723}
724
ef8f2327
MG
725static struct mem_cgroup_per_node *
726__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 727{
ef8f2327 728 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
729
730retry:
731 mz = NULL;
fa90b2fd 732 if (!mctz->rb_rightmost)
bb4cc1a8
AM
733 goto done; /* Nothing to reclaim from */
734
fa90b2fd
DB
735 mz = rb_entry(mctz->rb_rightmost,
736 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
737 /*
738 * Remove the node now but someone else can add it back,
739 * we will to add it back at the end of reclaim to its correct
740 * position in the tree.
741 */
cf2c8127 742 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 743 if (!soft_limit_excess(mz->memcg) ||
8965aa28 744 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
745 goto retry;
746done:
747 return mz;
748}
749
ef8f2327
MG
750static struct mem_cgroup_per_node *
751mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 752{
ef8f2327 753 struct mem_cgroup_per_node *mz;
bb4cc1a8 754
0a31bc97 755 spin_lock_irq(&mctz->lock);
bb4cc1a8 756 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 757 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
758 return mz;
759}
760
db9adbcb
JW
761/**
762 * __mod_memcg_state - update cgroup memory statistics
763 * @memcg: the memory cgroup
764 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
765 * @val: delta to add to the counter, can be negative
766 */
767void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
768{
ea426c2a 769 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
770
771 if (mem_cgroup_disabled())
772 return;
773
772616b0 774 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
775 threshold <<= PAGE_SHIFT;
776
db9adbcb 777 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 778 if (unlikely(abs(x) > threshold)) {
42a30035
JW
779 struct mem_cgroup *mi;
780
766a4c19
YS
781 /*
782 * Batch local counters to keep them in sync with
783 * the hierarchical ones.
784 */
785 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
788 x = 0;
789 }
790 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
791}
792
42a30035
JW
793static struct mem_cgroup_per_node *
794parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
795{
796 struct mem_cgroup *parent;
797
798 parent = parent_mem_cgroup(pn->memcg);
799 if (!parent)
800 return NULL;
801 return mem_cgroup_nodeinfo(parent, nid);
802}
803
eedc4e5a
RG
804void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805 int val)
db9adbcb
JW
806{
807 struct mem_cgroup_per_node *pn;
42a30035 808 struct mem_cgroup *memcg;
ea426c2a 809 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 810
db9adbcb 811 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 812 memcg = pn->memcg;
db9adbcb
JW
813
814 /* Update memcg */
42a30035 815 __mod_memcg_state(memcg, idx, val);
db9adbcb 816
b4c46484
RG
817 /* Update lruvec */
818 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
819
ea426c2a
RG
820 if (vmstat_item_in_bytes(idx))
821 threshold <<= PAGE_SHIFT;
822
db9adbcb 823 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 824 if (unlikely(abs(x) > threshold)) {
eedc4e5a 825 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
826 struct mem_cgroup_per_node *pi;
827
42a30035
JW
828 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
829 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
830 x = 0;
831 }
832 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
833}
834
eedc4e5a
RG
835/**
836 * __mod_lruvec_state - update lruvec memory statistics
837 * @lruvec: the lruvec
838 * @idx: the stat item
839 * @val: delta to add to the counter, can be negative
840 *
841 * The lruvec is the intersection of the NUMA node and a cgroup. This
842 * function updates the all three counters that are affected by a
843 * change of state at this level: per-node, per-cgroup, per-lruvec.
844 */
845void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
846 int val)
847{
848 /* Update node */
849 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
850
851 /* Update memcg and lruvec */
852 if (!mem_cgroup_disabled())
853 __mod_memcg_lruvec_state(lruvec, idx, val);
854}
855
c47d5032
SB
856void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
857 int val)
858{
859 struct page *head = compound_head(page); /* rmap on tail pages */
860 pg_data_t *pgdat = page_pgdat(page);
861 struct lruvec *lruvec;
862
863 /* Untracked pages have no memcg, no lruvec. Update only the node */
864 if (!head->mem_cgroup) {
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871}
872
da3ceeff 873void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 874{
4f103c63 875 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
876 struct mem_cgroup *memcg;
877 struct lruvec *lruvec;
878
879 rcu_read_lock();
4f103c63 880 memcg = mem_cgroup_from_obj(p);
ec9f0238 881
8faeb1ff
MS
882 /*
883 * Untracked pages have no memcg, no lruvec. Update only the
884 * node. If we reparent the slab objects to the root memcg,
885 * when we free the slab object, we need to update the per-memcg
886 * vmstats to keep it correct for the root memcg.
887 */
888 if (!memcg) {
ec9f0238
RG
889 __mod_node_page_state(pgdat, idx, val);
890 } else {
867e5e1d 891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
892 __mod_lruvec_state(lruvec, idx, val);
893 }
894 rcu_read_unlock();
895}
896
db9adbcb
JW
897/**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
903void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905{
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
913 struct mem_cgroup *mi;
914
766a4c19
YS
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925}
926
42a30035 927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 928{
871789d4 929 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
930}
931
42a30035
JW
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
815744d7
JW
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
42a30035
JW
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
3fba69a5 944 int nr_pages)
d52aa412 945{
e401f176
KH
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
c9019e9b 948 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 949 else {
c9019e9b 950 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
951 nr_pages = -nr_pages; /* for event */
952 }
e401f176 953
871789d4 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
955}
956
f53d7ce3
JW
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
7a159cc9
JW
959{
960 unsigned long val, next;
961
871789d4
CD
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 964 /* from time_after() in jiffies.h */
6a1a8b80 965 if ((long)(next - val) < 0) {
f53d7ce3
JW
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
bb4cc1a8
AM
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
f53d7ce3
JW
973 default:
974 break;
975 }
871789d4 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
f53d7ce3 992
bb4cc1a8
AM
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 995 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
0a31bc97 998 }
d2265e6f
KH
999}
1000
cf475ad2 1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1002{
31a78f23
BS
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
073219e9 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1012}
33398cf2 1013EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1014
d46eb14b
SB
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
d46eb14b
SB
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
0b7f569e 1029
54595fe2
KH
1030 rcu_read_lock();
1031 do {
6f6acb00
MH
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
df381975 1038 memcg = root_mem_cgroup;
6f6acb00
MH
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
f745c6f5
SB
1050/**
1051 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1052 * @page: page from which memcg should be extracted.
1053 *
1054 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1055 * root_mem_cgroup is returned.
1056 */
1057struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1058{
1059 struct mem_cgroup *memcg = page->mem_cgroup;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 rcu_read_lock();
8965aa28
SB
1065 /* Page should not get uncharged and freed memcg under us. */
1066 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1067 memcg = root_mem_cgroup;
1068 rcu_read_unlock();
1069 return memcg;
1070}
1071EXPORT_SYMBOL(get_mem_cgroup_from_page);
1072
37d5985c 1073static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1074{
37d5985c
RG
1075 if (in_interrupt())
1076 return this_cpu_read(int_active_memcg);
1077 else
1078 return current->active_memcg;
1079}
279c3393 1080
37d5985c
RG
1081static __always_inline struct mem_cgroup *get_active_memcg(void)
1082{
1083 struct mem_cgroup *memcg;
d46eb14b 1084
37d5985c
RG
1085 rcu_read_lock();
1086 memcg = active_memcg();
1087 if (memcg) {
8965aa28 1088 /* current->active_memcg must hold a ref. */
37d5985c 1089 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1090 memcg = root_mem_cgroup;
1091 else
d46eb14b 1092 memcg = current->active_memcg;
d46eb14b 1093 }
37d5985c
RG
1094 rcu_read_unlock();
1095
1096 return memcg;
1097}
1098
4127c650
RG
1099static __always_inline bool memcg_kmem_bypass(void)
1100{
1101 /* Allow remote memcg charging from any context. */
1102 if (unlikely(active_memcg()))
1103 return false;
1104
1105 /* Memcg to charge can't be determined. */
1106 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1107 return true;
1108
1109 return false;
1110}
1111
37d5985c
RG
1112/**
1113 * If active memcg is set, do not fallback to current->mm->memcg.
1114 */
1115static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1116{
1117 if (memcg_kmem_bypass())
1118 return NULL;
1119
1120 if (unlikely(active_memcg()))
1121 return get_active_memcg();
1122
d46eb14b
SB
1123 return get_mem_cgroup_from_mm(current->mm);
1124}
54595fe2 1125
5660048c
JW
1126/**
1127 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1128 * @root: hierarchy root
1129 * @prev: previously returned memcg, NULL on first invocation
1130 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1131 *
1132 * Returns references to children of the hierarchy below @root, or
1133 * @root itself, or %NULL after a full round-trip.
1134 *
1135 * Caller must pass the return value in @prev on subsequent
1136 * invocations for reference counting, or use mem_cgroup_iter_break()
1137 * to cancel a hierarchy walk before the round-trip is complete.
1138 *
05bdc520
ML
1139 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1140 * in the hierarchy among all concurrent reclaimers operating on the
1141 * same node.
5660048c 1142 */
694fbc0f 1143struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1144 struct mem_cgroup *prev,
694fbc0f 1145 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1146{
3f649ab7 1147 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1148 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1149 struct mem_cgroup *memcg = NULL;
5ac8fb31 1150 struct mem_cgroup *pos = NULL;
711d3d2c 1151
694fbc0f
AM
1152 if (mem_cgroup_disabled())
1153 return NULL;
5660048c 1154
9f3a0d09
JW
1155 if (!root)
1156 root = root_mem_cgroup;
7d74b06f 1157
9f3a0d09 1158 if (prev && !reclaim)
5ac8fb31 1159 pos = prev;
14067bb3 1160
542f85f9 1161 rcu_read_lock();
5f578161 1162
5ac8fb31 1163 if (reclaim) {
ef8f2327 1164 struct mem_cgroup_per_node *mz;
5ac8fb31 1165
ef8f2327 1166 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1167 iter = &mz->iter;
5ac8fb31
JW
1168
1169 if (prev && reclaim->generation != iter->generation)
1170 goto out_unlock;
1171
6df38689 1172 while (1) {
4db0c3c2 1173 pos = READ_ONCE(iter->position);
6df38689
VD
1174 if (!pos || css_tryget(&pos->css))
1175 break;
5ac8fb31 1176 /*
6df38689
VD
1177 * css reference reached zero, so iter->position will
1178 * be cleared by ->css_released. However, we should not
1179 * rely on this happening soon, because ->css_released
1180 * is called from a work queue, and by busy-waiting we
1181 * might block it. So we clear iter->position right
1182 * away.
5ac8fb31 1183 */
6df38689
VD
1184 (void)cmpxchg(&iter->position, pos, NULL);
1185 }
5ac8fb31
JW
1186 }
1187
1188 if (pos)
1189 css = &pos->css;
1190
1191 for (;;) {
1192 css = css_next_descendant_pre(css, &root->css);
1193 if (!css) {
1194 /*
1195 * Reclaimers share the hierarchy walk, and a
1196 * new one might jump in right at the end of
1197 * the hierarchy - make sure they see at least
1198 * one group and restart from the beginning.
1199 */
1200 if (!prev)
1201 continue;
1202 break;
527a5ec9 1203 }
7d74b06f 1204
5ac8fb31
JW
1205 /*
1206 * Verify the css and acquire a reference. The root
1207 * is provided by the caller, so we know it's alive
1208 * and kicking, and don't take an extra reference.
1209 */
1210 memcg = mem_cgroup_from_css(css);
14067bb3 1211
5ac8fb31
JW
1212 if (css == &root->css)
1213 break;
14067bb3 1214
0b8f73e1
JW
1215 if (css_tryget(css))
1216 break;
9f3a0d09 1217
5ac8fb31 1218 memcg = NULL;
9f3a0d09 1219 }
5ac8fb31
JW
1220
1221 if (reclaim) {
5ac8fb31 1222 /*
6df38689
VD
1223 * The position could have already been updated by a competing
1224 * thread, so check that the value hasn't changed since we read
1225 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1226 */
6df38689
VD
1227 (void)cmpxchg(&iter->position, pos, memcg);
1228
5ac8fb31
JW
1229 if (pos)
1230 css_put(&pos->css);
1231
1232 if (!memcg)
1233 iter->generation++;
1234 else if (!prev)
1235 reclaim->generation = iter->generation;
9f3a0d09 1236 }
5ac8fb31 1237
542f85f9
MH
1238out_unlock:
1239 rcu_read_unlock();
c40046f3
MH
1240 if (prev && prev != root)
1241 css_put(&prev->css);
1242
9f3a0d09 1243 return memcg;
14067bb3 1244}
7d74b06f 1245
5660048c
JW
1246/**
1247 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1248 * @root: hierarchy root
1249 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1250 */
1251void mem_cgroup_iter_break(struct mem_cgroup *root,
1252 struct mem_cgroup *prev)
9f3a0d09
JW
1253{
1254 if (!root)
1255 root = root_mem_cgroup;
1256 if (prev && prev != root)
1257 css_put(&prev->css);
1258}
7d74b06f 1259
54a83d6b
MC
1260static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1261 struct mem_cgroup *dead_memcg)
6df38689 1262{
6df38689 1263 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1264 struct mem_cgroup_per_node *mz;
1265 int nid;
6df38689 1266
54a83d6b
MC
1267 for_each_node(nid) {
1268 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1269 iter = &mz->iter;
1270 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1271 }
1272}
1273
54a83d6b
MC
1274static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1275{
1276 struct mem_cgroup *memcg = dead_memcg;
1277 struct mem_cgroup *last;
1278
1279 do {
1280 __invalidate_reclaim_iterators(memcg, dead_memcg);
1281 last = memcg;
1282 } while ((memcg = parent_mem_cgroup(memcg)));
1283
1284 /*
1285 * When cgruop1 non-hierarchy mode is used,
1286 * parent_mem_cgroup() does not walk all the way up to the
1287 * cgroup root (root_mem_cgroup). So we have to handle
1288 * dead_memcg from cgroup root separately.
1289 */
1290 if (last != root_mem_cgroup)
1291 __invalidate_reclaim_iterators(root_mem_cgroup,
1292 dead_memcg);
1293}
1294
7c5f64f8
VD
1295/**
1296 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1297 * @memcg: hierarchy root
1298 * @fn: function to call for each task
1299 * @arg: argument passed to @fn
1300 *
1301 * This function iterates over tasks attached to @memcg or to any of its
1302 * descendants and calls @fn for each task. If @fn returns a non-zero
1303 * value, the function breaks the iteration loop and returns the value.
1304 * Otherwise, it will iterate over all tasks and return 0.
1305 *
1306 * This function must not be called for the root memory cgroup.
1307 */
1308int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1309 int (*fn)(struct task_struct *, void *), void *arg)
1310{
1311 struct mem_cgroup *iter;
1312 int ret = 0;
1313
1314 BUG_ON(memcg == root_mem_cgroup);
1315
1316 for_each_mem_cgroup_tree(iter, memcg) {
1317 struct css_task_iter it;
1318 struct task_struct *task;
1319
f168a9a5 1320 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1321 while (!ret && (task = css_task_iter_next(&it)))
1322 ret = fn(task, arg);
1323 css_task_iter_end(&it);
1324 if (ret) {
1325 mem_cgroup_iter_break(memcg, iter);
1326 break;
1327 }
1328 }
1329 return ret;
1330}
1331
925b7673 1332/**
dfe0e773 1333 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1334 * @page: the page
f144c390 1335 * @pgdat: pgdat of the page
dfe0e773 1336 *
a5eb011a 1337 * This function relies on page's memcg being stable - see the
a0b5b414 1338 * access rules in commit_charge().
925b7673 1339 */
599d0c95 1340struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1341{
ef8f2327 1342 struct mem_cgroup_per_node *mz;
925b7673 1343 struct mem_cgroup *memcg;
bea8c150 1344 struct lruvec *lruvec;
6d12e2d8 1345
bea8c150 1346 if (mem_cgroup_disabled()) {
867e5e1d 1347 lruvec = &pgdat->__lruvec;
bea8c150
HD
1348 goto out;
1349 }
925b7673 1350
1306a85a 1351 memcg = page->mem_cgroup;
7512102c 1352 /*
dfe0e773 1353 * Swapcache readahead pages are added to the LRU - and
29833315 1354 * possibly migrated - before they are charged.
7512102c 1355 */
29833315
JW
1356 if (!memcg)
1357 memcg = root_mem_cgroup;
7512102c 1358
ef8f2327 1359 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1360 lruvec = &mz->lruvec;
1361out:
1362 /*
1363 * Since a node can be onlined after the mem_cgroup was created,
1364 * we have to be prepared to initialize lruvec->zone here;
1365 * and if offlined then reonlined, we need to reinitialize it.
1366 */
599d0c95
MG
1367 if (unlikely(lruvec->pgdat != pgdat))
1368 lruvec->pgdat = pgdat;
bea8c150 1369 return lruvec;
08e552c6 1370}
b69408e8 1371
925b7673 1372/**
fa9add64
HD
1373 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1374 * @lruvec: mem_cgroup per zone lru vector
1375 * @lru: index of lru list the page is sitting on
b4536f0c 1376 * @zid: zone id of the accounted pages
fa9add64 1377 * @nr_pages: positive when adding or negative when removing
925b7673 1378 *
ca707239
HD
1379 * This function must be called under lru_lock, just before a page is added
1380 * to or just after a page is removed from an lru list (that ordering being
1381 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1382 */
fa9add64 1383void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1384 int zid, int nr_pages)
3f58a829 1385{
ef8f2327 1386 struct mem_cgroup_per_node *mz;
fa9add64 1387 unsigned long *lru_size;
ca707239 1388 long size;
3f58a829
MK
1389
1390 if (mem_cgroup_disabled())
1391 return;
1392
ef8f2327 1393 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1394 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1395
1396 if (nr_pages < 0)
1397 *lru_size += nr_pages;
1398
1399 size = *lru_size;
b4536f0c
MH
1400 if (WARN_ONCE(size < 0,
1401 "%s(%p, %d, %d): lru_size %ld\n",
1402 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1403 VM_BUG_ON(1);
1404 *lru_size = 0;
1405 }
1406
1407 if (nr_pages > 0)
1408 *lru_size += nr_pages;
08e552c6 1409}
544122e5 1410
19942822 1411/**
9d11ea9f 1412 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1413 * @memcg: the memory cgroup
19942822 1414 *
9d11ea9f 1415 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1416 * pages.
19942822 1417 */
c0ff4b85 1418static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1419{
3e32cb2e
JW
1420 unsigned long margin = 0;
1421 unsigned long count;
1422 unsigned long limit;
9d11ea9f 1423
3e32cb2e 1424 count = page_counter_read(&memcg->memory);
bbec2e15 1425 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1426 if (count < limit)
1427 margin = limit - count;
1428
7941d214 1429 if (do_memsw_account()) {
3e32cb2e 1430 count = page_counter_read(&memcg->memsw);
bbec2e15 1431 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1432 if (count < limit)
3e32cb2e 1433 margin = min(margin, limit - count);
cbedbac3
LR
1434 else
1435 margin = 0;
3e32cb2e
JW
1436 }
1437
1438 return margin;
19942822
JW
1439}
1440
32047e2a 1441/*
bdcbb659 1442 * A routine for checking "mem" is under move_account() or not.
32047e2a 1443 *
bdcbb659
QH
1444 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1445 * moving cgroups. This is for waiting at high-memory pressure
1446 * caused by "move".
32047e2a 1447 */
c0ff4b85 1448static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1449{
2bd9bb20
KH
1450 struct mem_cgroup *from;
1451 struct mem_cgroup *to;
4b534334 1452 bool ret = false;
2bd9bb20
KH
1453 /*
1454 * Unlike task_move routines, we access mc.to, mc.from not under
1455 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1456 */
1457 spin_lock(&mc.lock);
1458 from = mc.from;
1459 to = mc.to;
1460 if (!from)
1461 goto unlock;
3e92041d 1462
2314b42d
JW
1463 ret = mem_cgroup_is_descendant(from, memcg) ||
1464 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1465unlock:
1466 spin_unlock(&mc.lock);
4b534334
KH
1467 return ret;
1468}
1469
c0ff4b85 1470static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1471{
1472 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1473 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1474 DEFINE_WAIT(wait);
1475 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1476 /* moving charge context might have finished. */
1477 if (mc.moving_task)
1478 schedule();
1479 finish_wait(&mc.waitq, &wait);
1480 return true;
1481 }
1482 }
1483 return false;
1484}
1485
5f9a4f4a
MS
1486struct memory_stat {
1487 const char *name;
1488 unsigned int ratio;
1489 unsigned int idx;
1490};
1491
1492static struct memory_stat memory_stats[] = {
1493 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1494 { "file", PAGE_SIZE, NR_FILE_PAGES },
1495 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1496 { "percpu", 1, MEMCG_PERCPU_B },
1497 { "sock", PAGE_SIZE, MEMCG_SOCK },
1498 { "shmem", PAGE_SIZE, NR_SHMEM },
1499 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1500 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1501 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1502#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503 /*
1504 * The ratio will be initialized in memory_stats_init(). Because
1505 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1506 * constant(e.g. powerpc).
1507 */
1508 { "anon_thp", 0, NR_ANON_THPS },
b8eddff8
JW
1509 { "file_thp", 0, NR_FILE_THPS },
1510 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1511#endif
1512 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1513 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1514 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1515 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1516 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1517
1518 /*
1519 * Note: The slab_reclaimable and slab_unreclaimable must be
1520 * together and slab_reclaimable must be in front.
1521 */
1522 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1523 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1524
1525 /* The memory events */
1526 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1527 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1528 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1529 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1530 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1531 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1532 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1533};
1534
1535static int __init memory_stats_init(void)
1536{
1537 int i;
1538
1539 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
b8eddff8
JW
1541 if (memory_stats[i].idx == NR_ANON_THPS ||
1542 memory_stats[i].idx == NR_FILE_THPS ||
1543 memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1544 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1545#endif
1546 VM_BUG_ON(!memory_stats[i].ratio);
1547 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1548 }
1549
1550 return 0;
1551}
1552pure_initcall(memory_stats_init);
1553
c8713d0b
JW
1554static char *memory_stat_format(struct mem_cgroup *memcg)
1555{
1556 struct seq_buf s;
1557 int i;
71cd3113 1558
c8713d0b
JW
1559 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1560 if (!s.buffer)
1561 return NULL;
1562
1563 /*
1564 * Provide statistics on the state of the memory subsystem as
1565 * well as cumulative event counters that show past behavior.
1566 *
1567 * This list is ordered following a combination of these gradients:
1568 * 1) generic big picture -> specifics and details
1569 * 2) reflecting userspace activity -> reflecting kernel heuristics
1570 *
1571 * Current memory state:
1572 */
1573
5f9a4f4a
MS
1574 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1575 u64 size;
c8713d0b 1576
5f9a4f4a
MS
1577 size = memcg_page_state(memcg, memory_stats[i].idx);
1578 size *= memory_stats[i].ratio;
1579 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1580
5f9a4f4a
MS
1581 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1582 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1583 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1584 seq_buf_printf(&s, "slab %llu\n", size);
1585 }
1586 }
c8713d0b
JW
1587
1588 /* Accumulated memory events */
1589
ebc5d83d
KK
1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1591 memcg_events(memcg, PGFAULT));
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1593 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1595 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1596 seq_buf_printf(&s, "pgscan %lu\n",
1597 memcg_events(memcg, PGSCAN_KSWAPD) +
1598 memcg_events(memcg, PGSCAN_DIRECT));
1599 seq_buf_printf(&s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1603 memcg_events(memcg, PGACTIVATE));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1605 memcg_events(memcg, PGDEACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1607 memcg_events(memcg, PGLAZYFREE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1609 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1610
1611#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1613 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1615 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1616#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1617
1618 /* The above should easily fit into one page */
1619 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1620
1621 return s.buffer;
1622}
71cd3113 1623
58cf188e 1624#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1625/**
f0c867d9 1626 * mem_cgroup_print_oom_context: Print OOM information relevant to
1627 * memory controller.
e222432b
BS
1628 * @memcg: The memory cgroup that went over limit
1629 * @p: Task that is going to be killed
1630 *
1631 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1632 * enabled
1633 */
f0c867d9 1634void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1635{
e222432b
BS
1636 rcu_read_lock();
1637
f0c867d9 1638 if (memcg) {
1639 pr_cont(",oom_memcg=");
1640 pr_cont_cgroup_path(memcg->css.cgroup);
1641 } else
1642 pr_cont(",global_oom");
2415b9f5 1643 if (p) {
f0c867d9 1644 pr_cont(",task_memcg=");
2415b9f5 1645 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1646 }
e222432b 1647 rcu_read_unlock();
f0c867d9 1648}
1649
1650/**
1651 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1652 * memory controller.
1653 * @memcg: The memory cgroup that went over limit
1654 */
1655void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1656{
c8713d0b 1657 char *buf;
e222432b 1658
3e32cb2e
JW
1659 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1660 K((u64)page_counter_read(&memcg->memory)),
15b42562 1661 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1662 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1663 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1664 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1665 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1666 else {
1667 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memsw)),
1669 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1670 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1671 K((u64)page_counter_read(&memcg->kmem)),
1672 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1673 }
c8713d0b
JW
1674
1675 pr_info("Memory cgroup stats for ");
1676 pr_cont_cgroup_path(memcg->css.cgroup);
1677 pr_cont(":");
1678 buf = memory_stat_format(memcg);
1679 if (!buf)
1680 return;
1681 pr_info("%s", buf);
1682 kfree(buf);
e222432b
BS
1683}
1684
a63d83f4
DR
1685/*
1686 * Return the memory (and swap, if configured) limit for a memcg.
1687 */
bbec2e15 1688unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1689{
8d387a5f
WL
1690 unsigned long max = READ_ONCE(memcg->memory.max);
1691
1692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1693 if (mem_cgroup_swappiness(memcg))
1694 max += min(READ_ONCE(memcg->swap.max),
1695 (unsigned long)total_swap_pages);
1696 } else { /* v1 */
1697 if (mem_cgroup_swappiness(memcg)) {
1698 /* Calculate swap excess capacity from memsw limit */
1699 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1700
1701 max += min(swap, (unsigned long)total_swap_pages);
1702 }
9a5a8f19 1703 }
bbec2e15 1704 return max;
a63d83f4
DR
1705}
1706
9783aa99
CD
1707unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1708{
1709 return page_counter_read(&memcg->memory);
1710}
1711
b6e6edcf 1712static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1713 int order)
9cbb78bb 1714{
6e0fc46d
DR
1715 struct oom_control oc = {
1716 .zonelist = NULL,
1717 .nodemask = NULL,
2a966b77 1718 .memcg = memcg,
6e0fc46d
DR
1719 .gfp_mask = gfp_mask,
1720 .order = order,
6e0fc46d 1721 };
1378b37d 1722 bool ret = true;
9cbb78bb 1723
7775face
TH
1724 if (mutex_lock_killable(&oom_lock))
1725 return true;
1378b37d
YS
1726
1727 if (mem_cgroup_margin(memcg) >= (1 << order))
1728 goto unlock;
1729
7775face
TH
1730 /*
1731 * A few threads which were not waiting at mutex_lock_killable() can
1732 * fail to bail out. Therefore, check again after holding oom_lock.
1733 */
1734 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1735
1736unlock:
dc56401f 1737 mutex_unlock(&oom_lock);
7c5f64f8 1738 return ret;
9cbb78bb
DR
1739}
1740
0608f43d 1741static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1742 pg_data_t *pgdat,
0608f43d
AM
1743 gfp_t gfp_mask,
1744 unsigned long *total_scanned)
1745{
1746 struct mem_cgroup *victim = NULL;
1747 int total = 0;
1748 int loop = 0;
1749 unsigned long excess;
1750 unsigned long nr_scanned;
1751 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1752 .pgdat = pgdat,
0608f43d
AM
1753 };
1754
3e32cb2e 1755 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1756
1757 while (1) {
1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 if (!victim) {
1760 loop++;
1761 if (loop >= 2) {
1762 /*
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1766 */
1767 if (!total)
1768 break;
1769 /*
1770 * We want to do more targeted reclaim.
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1774 */
1775 if (total >= (excess >> 2) ||
1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 break;
1778 }
1779 continue;
1780 }
a9dd0a83 1781 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1782 pgdat, &nr_scanned);
0608f43d 1783 *total_scanned += nr_scanned;
3e32cb2e 1784 if (!soft_limit_excess(root_memcg))
0608f43d 1785 break;
6d61ef40 1786 }
0608f43d
AM
1787 mem_cgroup_iter_break(root_memcg, victim);
1788 return total;
6d61ef40
BS
1789}
1790
0056f4e6
JW
1791#ifdef CONFIG_LOCKDEP
1792static struct lockdep_map memcg_oom_lock_dep_map = {
1793 .name = "memcg_oom_lock",
1794};
1795#endif
1796
fb2a6fc5
JW
1797static DEFINE_SPINLOCK(memcg_oom_lock);
1798
867578cb
KH
1799/*
1800 * Check OOM-Killer is already running under our hierarchy.
1801 * If someone is running, return false.
1802 */
fb2a6fc5 1803static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1804{
79dfdacc 1805 struct mem_cgroup *iter, *failed = NULL;
a636b327 1806
fb2a6fc5
JW
1807 spin_lock(&memcg_oom_lock);
1808
9f3a0d09 1809 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1810 if (iter->oom_lock) {
79dfdacc
MH
1811 /*
1812 * this subtree of our hierarchy is already locked
1813 * so we cannot give a lock.
1814 */
79dfdacc 1815 failed = iter;
9f3a0d09
JW
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
23751be0
JW
1818 } else
1819 iter->oom_lock = true;
7d74b06f 1820 }
867578cb 1821
fb2a6fc5
JW
1822 if (failed) {
1823 /*
1824 * OK, we failed to lock the whole subtree so we have
1825 * to clean up what we set up to the failing subtree
1826 */
1827 for_each_mem_cgroup_tree(iter, memcg) {
1828 if (iter == failed) {
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
1831 }
1832 iter->oom_lock = false;
79dfdacc 1833 }
0056f4e6
JW
1834 } else
1835 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1836
1837 spin_unlock(&memcg_oom_lock);
1838
1839 return !failed;
a636b327 1840}
0b7f569e 1841
fb2a6fc5 1842static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1843{
7d74b06f
KH
1844 struct mem_cgroup *iter;
1845
fb2a6fc5 1846 spin_lock(&memcg_oom_lock);
5facae4f 1847 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1849 iter->oom_lock = false;
fb2a6fc5 1850 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1851}
1852
c0ff4b85 1853static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
c2b42d3c 1857 spin_lock(&memcg_oom_lock);
c0ff4b85 1858 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1859 iter->under_oom++;
1860 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1861}
1862
c0ff4b85 1863static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1864{
1865 struct mem_cgroup *iter;
1866
867578cb 1867 /*
7a52d4d8
ML
1868 * Be careful about under_oom underflows becase a child memcg
1869 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1870 */
c2b42d3c 1871 spin_lock(&memcg_oom_lock);
c0ff4b85 1872 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1873 if (iter->under_oom > 0)
1874 iter->under_oom--;
1875 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1876}
1877
867578cb
KH
1878static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1879
dc98df5a 1880struct oom_wait_info {
d79154bb 1881 struct mem_cgroup *memcg;
ac6424b9 1882 wait_queue_entry_t wait;
dc98df5a
KH
1883};
1884
ac6424b9 1885static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1886 unsigned mode, int sync, void *arg)
1887{
d79154bb
HD
1888 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1889 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1890 struct oom_wait_info *oom_wait_info;
1891
1892 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1893 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1894
2314b42d
JW
1895 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1896 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1897 return 0;
dc98df5a
KH
1898 return autoremove_wake_function(wait, mode, sync, arg);
1899}
1900
c0ff4b85 1901static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1902{
c2b42d3c
TH
1903 /*
1904 * For the following lockless ->under_oom test, the only required
1905 * guarantee is that it must see the state asserted by an OOM when
1906 * this function is called as a result of userland actions
1907 * triggered by the notification of the OOM. This is trivially
1908 * achieved by invoking mem_cgroup_mark_under_oom() before
1909 * triggering notification.
1910 */
1911 if (memcg && memcg->under_oom)
f4b90b70 1912 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1913}
1914
29ef680a
MH
1915enum oom_status {
1916 OOM_SUCCESS,
1917 OOM_FAILED,
1918 OOM_ASYNC,
1919 OOM_SKIPPED
1920};
1921
1922static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1923{
7056d3a3
MH
1924 enum oom_status ret;
1925 bool locked;
1926
29ef680a
MH
1927 if (order > PAGE_ALLOC_COSTLY_ORDER)
1928 return OOM_SKIPPED;
1929
7a1adfdd
RG
1930 memcg_memory_event(memcg, MEMCG_OOM);
1931
867578cb 1932 /*
49426420
JW
1933 * We are in the middle of the charge context here, so we
1934 * don't want to block when potentially sitting on a callstack
1935 * that holds all kinds of filesystem and mm locks.
1936 *
29ef680a
MH
1937 * cgroup1 allows disabling the OOM killer and waiting for outside
1938 * handling until the charge can succeed; remember the context and put
1939 * the task to sleep at the end of the page fault when all locks are
1940 * released.
49426420 1941 *
29ef680a
MH
1942 * On the other hand, in-kernel OOM killer allows for an async victim
1943 * memory reclaim (oom_reaper) and that means that we are not solely
1944 * relying on the oom victim to make a forward progress and we can
1945 * invoke the oom killer here.
1946 *
1947 * Please note that mem_cgroup_out_of_memory might fail to find a
1948 * victim and then we have to bail out from the charge path.
867578cb 1949 */
29ef680a
MH
1950 if (memcg->oom_kill_disable) {
1951 if (!current->in_user_fault)
1952 return OOM_SKIPPED;
1953 css_get(&memcg->css);
1954 current->memcg_in_oom = memcg;
1955 current->memcg_oom_gfp_mask = mask;
1956 current->memcg_oom_order = order;
1957
1958 return OOM_ASYNC;
1959 }
1960
7056d3a3
MH
1961 mem_cgroup_mark_under_oom(memcg);
1962
1963 locked = mem_cgroup_oom_trylock(memcg);
1964
1965 if (locked)
1966 mem_cgroup_oom_notify(memcg);
1967
1968 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1969 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1970 ret = OOM_SUCCESS;
1971 else
1972 ret = OOM_FAILED;
1973
1974 if (locked)
1975 mem_cgroup_oom_unlock(memcg);
29ef680a 1976
7056d3a3 1977 return ret;
3812c8c8
JW
1978}
1979
1980/**
1981 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1982 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1983 *
49426420
JW
1984 * This has to be called at the end of a page fault if the memcg OOM
1985 * handler was enabled.
3812c8c8 1986 *
49426420 1987 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1988 * sleep on a waitqueue until the userspace task resolves the
1989 * situation. Sleeping directly in the charge context with all kinds
1990 * of locks held is not a good idea, instead we remember an OOM state
1991 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1992 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1993 *
1994 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1995 * completed, %false otherwise.
3812c8c8 1996 */
49426420 1997bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1998{
626ebc41 1999 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2000 struct oom_wait_info owait;
49426420 2001 bool locked;
3812c8c8
JW
2002
2003 /* OOM is global, do not handle */
3812c8c8 2004 if (!memcg)
49426420 2005 return false;
3812c8c8 2006
7c5f64f8 2007 if (!handle)
49426420 2008 goto cleanup;
3812c8c8
JW
2009
2010 owait.memcg = memcg;
2011 owait.wait.flags = 0;
2012 owait.wait.func = memcg_oom_wake_function;
2013 owait.wait.private = current;
2055da97 2014 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2015
3812c8c8 2016 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2017 mem_cgroup_mark_under_oom(memcg);
2018
2019 locked = mem_cgroup_oom_trylock(memcg);
2020
2021 if (locked)
2022 mem_cgroup_oom_notify(memcg);
2023
2024 if (locked && !memcg->oom_kill_disable) {
2025 mem_cgroup_unmark_under_oom(memcg);
2026 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2027 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2028 current->memcg_oom_order);
49426420 2029 } else {
3812c8c8 2030 schedule();
49426420
JW
2031 mem_cgroup_unmark_under_oom(memcg);
2032 finish_wait(&memcg_oom_waitq, &owait.wait);
2033 }
2034
2035 if (locked) {
fb2a6fc5
JW
2036 mem_cgroup_oom_unlock(memcg);
2037 /*
2038 * There is no guarantee that an OOM-lock contender
2039 * sees the wakeups triggered by the OOM kill
2040 * uncharges. Wake any sleepers explicitely.
2041 */
2042 memcg_oom_recover(memcg);
2043 }
49426420 2044cleanup:
626ebc41 2045 current->memcg_in_oom = NULL;
3812c8c8 2046 css_put(&memcg->css);
867578cb 2047 return true;
0b7f569e
KH
2048}
2049
3d8b38eb
RG
2050/**
2051 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2052 * @victim: task to be killed by the OOM killer
2053 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2054 *
2055 * Returns a pointer to a memory cgroup, which has to be cleaned up
2056 * by killing all belonging OOM-killable tasks.
2057 *
2058 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2059 */
2060struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2061 struct mem_cgroup *oom_domain)
2062{
2063 struct mem_cgroup *oom_group = NULL;
2064 struct mem_cgroup *memcg;
2065
2066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2067 return NULL;
2068
2069 if (!oom_domain)
2070 oom_domain = root_mem_cgroup;
2071
2072 rcu_read_lock();
2073
2074 memcg = mem_cgroup_from_task(victim);
2075 if (memcg == root_mem_cgroup)
2076 goto out;
2077
48fe267c
RG
2078 /*
2079 * If the victim task has been asynchronously moved to a different
2080 * memory cgroup, we might end up killing tasks outside oom_domain.
2081 * In this case it's better to ignore memory.group.oom.
2082 */
2083 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2084 goto out;
2085
3d8b38eb
RG
2086 /*
2087 * Traverse the memory cgroup hierarchy from the victim task's
2088 * cgroup up to the OOMing cgroup (or root) to find the
2089 * highest-level memory cgroup with oom.group set.
2090 */
2091 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2092 if (memcg->oom_group)
2093 oom_group = memcg;
2094
2095 if (memcg == oom_domain)
2096 break;
2097 }
2098
2099 if (oom_group)
2100 css_get(&oom_group->css);
2101out:
2102 rcu_read_unlock();
2103
2104 return oom_group;
2105}
2106
2107void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2108{
2109 pr_info("Tasks in ");
2110 pr_cont_cgroup_path(memcg->css.cgroup);
2111 pr_cont(" are going to be killed due to memory.oom.group set\n");
2112}
2113
d7365e78 2114/**
81f8c3a4
JW
2115 * lock_page_memcg - lock a page->mem_cgroup binding
2116 * @page: the page
32047e2a 2117 *
81f8c3a4 2118 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2119 * another cgroup.
2120 *
2121 * It ensures lifetime of the returned memcg. Caller is responsible
2122 * for the lifetime of the page; __unlock_page_memcg() is available
2123 * when @page might get freed inside the locked section.
d69b042f 2124 */
739f79fc 2125struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2126{
9da7b521 2127 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2128 struct mem_cgroup *memcg;
6de22619 2129 unsigned long flags;
89c06bd5 2130
6de22619
JW
2131 /*
2132 * The RCU lock is held throughout the transaction. The fast
2133 * path can get away without acquiring the memcg->move_lock
2134 * because page moving starts with an RCU grace period.
739f79fc
JW
2135 *
2136 * The RCU lock also protects the memcg from being freed when
2137 * the page state that is going to change is the only thing
2138 * preventing the page itself from being freed. E.g. writeback
2139 * doesn't hold a page reference and relies on PG_writeback to
2140 * keep off truncation, migration and so forth.
2141 */
d7365e78
JW
2142 rcu_read_lock();
2143
2144 if (mem_cgroup_disabled())
739f79fc 2145 return NULL;
89c06bd5 2146again:
9da7b521 2147 memcg = head->mem_cgroup;
29833315 2148 if (unlikely(!memcg))
739f79fc 2149 return NULL;
d7365e78 2150
bdcbb659 2151 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2152 return memcg;
89c06bd5 2153
6de22619 2154 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2155 if (memcg != head->mem_cgroup) {
6de22619 2156 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2157 goto again;
2158 }
6de22619
JW
2159
2160 /*
2161 * When charge migration first begins, we can have locked and
2162 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2163 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2164 */
2165 memcg->move_lock_task = current;
2166 memcg->move_lock_flags = flags;
d7365e78 2167
739f79fc 2168 return memcg;
89c06bd5 2169}
81f8c3a4 2170EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2171
d7365e78 2172/**
739f79fc
JW
2173 * __unlock_page_memcg - unlock and unpin a memcg
2174 * @memcg: the memcg
2175 *
2176 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2177 */
739f79fc 2178void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2179{
6de22619
JW
2180 if (memcg && memcg->move_lock_task == current) {
2181 unsigned long flags = memcg->move_lock_flags;
2182
2183 memcg->move_lock_task = NULL;
2184 memcg->move_lock_flags = 0;
2185
2186 spin_unlock_irqrestore(&memcg->move_lock, flags);
2187 }
89c06bd5 2188
d7365e78 2189 rcu_read_unlock();
89c06bd5 2190}
739f79fc
JW
2191
2192/**
2193 * unlock_page_memcg - unlock a page->mem_cgroup binding
2194 * @page: the page
2195 */
2196void unlock_page_memcg(struct page *page)
2197{
9da7b521
JW
2198 struct page *head = compound_head(page);
2199
2200 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2201}
81f8c3a4 2202EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2203
cdec2e42
KH
2204struct memcg_stock_pcp {
2205 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2206 unsigned int nr_pages;
bf4f0599
RG
2207
2208#ifdef CONFIG_MEMCG_KMEM
2209 struct obj_cgroup *cached_objcg;
2210 unsigned int nr_bytes;
2211#endif
2212
cdec2e42 2213 struct work_struct work;
26fe6168 2214 unsigned long flags;
a0db00fc 2215#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2216};
2217static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2218static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2219
bf4f0599
RG
2220#ifdef CONFIG_MEMCG_KMEM
2221static void drain_obj_stock(struct memcg_stock_pcp *stock);
2222static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2223 struct mem_cgroup *root_memcg);
2224
2225#else
2226static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2227{
2228}
2229static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2230 struct mem_cgroup *root_memcg)
2231{
2232 return false;
2233}
2234#endif
2235
a0956d54
SS
2236/**
2237 * consume_stock: Try to consume stocked charge on this cpu.
2238 * @memcg: memcg to consume from.
2239 * @nr_pages: how many pages to charge.
2240 *
2241 * The charges will only happen if @memcg matches the current cpu's memcg
2242 * stock, and at least @nr_pages are available in that stock. Failure to
2243 * service an allocation will refill the stock.
2244 *
2245 * returns true if successful, false otherwise.
cdec2e42 2246 */
a0956d54 2247static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2248{
2249 struct memcg_stock_pcp *stock;
db2ba40c 2250 unsigned long flags;
3e32cb2e 2251 bool ret = false;
cdec2e42 2252
a983b5eb 2253 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2254 return ret;
a0956d54 2255
db2ba40c
JW
2256 local_irq_save(flags);
2257
2258 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2259 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2260 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2261 ret = true;
2262 }
db2ba40c
JW
2263
2264 local_irq_restore(flags);
2265
cdec2e42
KH
2266 return ret;
2267}
2268
2269/*
3e32cb2e 2270 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2271 */
2272static void drain_stock(struct memcg_stock_pcp *stock)
2273{
2274 struct mem_cgroup *old = stock->cached;
2275
1a3e1f40
JW
2276 if (!old)
2277 return;
2278
11c9ea4e 2279 if (stock->nr_pages) {
3e32cb2e 2280 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2281 if (do_memsw_account())
3e32cb2e 2282 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2283 stock->nr_pages = 0;
cdec2e42 2284 }
1a3e1f40
JW
2285
2286 css_put(&old->css);
cdec2e42 2287 stock->cached = NULL;
cdec2e42
KH
2288}
2289
cdec2e42
KH
2290static void drain_local_stock(struct work_struct *dummy)
2291{
db2ba40c
JW
2292 struct memcg_stock_pcp *stock;
2293 unsigned long flags;
2294
72f0184c
MH
2295 /*
2296 * The only protection from memory hotplug vs. drain_stock races is
2297 * that we always operate on local CPU stock here with IRQ disabled
2298 */
db2ba40c
JW
2299 local_irq_save(flags);
2300
2301 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2302 drain_obj_stock(stock);
cdec2e42 2303 drain_stock(stock);
26fe6168 2304 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2305
2306 local_irq_restore(flags);
cdec2e42
KH
2307}
2308
2309/*
3e32cb2e 2310 * Cache charges(val) to local per_cpu area.
320cc51d 2311 * This will be consumed by consume_stock() function, later.
cdec2e42 2312 */
c0ff4b85 2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2314{
db2ba40c
JW
2315 struct memcg_stock_pcp *stock;
2316 unsigned long flags;
2317
2318 local_irq_save(flags);
cdec2e42 2319
db2ba40c 2320 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2321 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2322 drain_stock(stock);
1a3e1f40 2323 css_get(&memcg->css);
c0ff4b85 2324 stock->cached = memcg;
cdec2e42 2325 }
11c9ea4e 2326 stock->nr_pages += nr_pages;
db2ba40c 2327
a983b5eb 2328 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2329 drain_stock(stock);
2330
db2ba40c 2331 local_irq_restore(flags);
cdec2e42
KH
2332}
2333
2334/*
c0ff4b85 2335 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2336 * of the hierarchy under it.
cdec2e42 2337 */
6d3d6aa2 2338static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2339{
26fe6168 2340 int cpu, curcpu;
d38144b7 2341
6d3d6aa2
JW
2342 /* If someone's already draining, avoid adding running more workers. */
2343 if (!mutex_trylock(&percpu_charge_mutex))
2344 return;
72f0184c
MH
2345 /*
2346 * Notify other cpus that system-wide "drain" is running
2347 * We do not care about races with the cpu hotplug because cpu down
2348 * as well as workers from this path always operate on the local
2349 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2350 */
5af12d0e 2351 curcpu = get_cpu();
cdec2e42
KH
2352 for_each_online_cpu(cpu) {
2353 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2354 struct mem_cgroup *memcg;
e1a366be 2355 bool flush = false;
26fe6168 2356
e1a366be 2357 rcu_read_lock();
c0ff4b85 2358 memcg = stock->cached;
e1a366be
RG
2359 if (memcg && stock->nr_pages &&
2360 mem_cgroup_is_descendant(memcg, root_memcg))
2361 flush = true;
bf4f0599
RG
2362 if (obj_stock_flush_required(stock, root_memcg))
2363 flush = true;
e1a366be
RG
2364 rcu_read_unlock();
2365
2366 if (flush &&
2367 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2368 if (cpu == curcpu)
2369 drain_local_stock(&stock->work);
2370 else
2371 schedule_work_on(cpu, &stock->work);
2372 }
cdec2e42 2373 }
5af12d0e 2374 put_cpu();
9f50fad6 2375 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2376}
2377
308167fc 2378static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2379{
cdec2e42 2380 struct memcg_stock_pcp *stock;
42a30035 2381 struct mem_cgroup *memcg, *mi;
cdec2e42 2382
cdec2e42
KH
2383 stock = &per_cpu(memcg_stock, cpu);
2384 drain_stock(stock);
a983b5eb
JW
2385
2386 for_each_mem_cgroup(memcg) {
2387 int i;
2388
2389 for (i = 0; i < MEMCG_NR_STAT; i++) {
2390 int nid;
2391 long x;
2392
871789d4 2393 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2394 if (x)
42a30035
JW
2395 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2396 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2397
2398 if (i >= NR_VM_NODE_STAT_ITEMS)
2399 continue;
2400
2401 for_each_node(nid) {
2402 struct mem_cgroup_per_node *pn;
2403
2404 pn = mem_cgroup_nodeinfo(memcg, nid);
2405 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2406 if (x)
42a30035
JW
2407 do {
2408 atomic_long_add(x, &pn->lruvec_stat[i]);
2409 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2410 }
2411 }
2412
e27be240 2413 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2414 long x;
2415
871789d4 2416 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2417 if (x)
42a30035
JW
2418 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2419 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2420 }
2421 }
2422
308167fc 2423 return 0;
cdec2e42
KH
2424}
2425
b3ff9291
CD
2426static unsigned long reclaim_high(struct mem_cgroup *memcg,
2427 unsigned int nr_pages,
2428 gfp_t gfp_mask)
f7e1cb6e 2429{
b3ff9291
CD
2430 unsigned long nr_reclaimed = 0;
2431
f7e1cb6e 2432 do {
e22c6ed9
JW
2433 unsigned long pflags;
2434
d1663a90
JK
2435 if (page_counter_read(&memcg->memory) <=
2436 READ_ONCE(memcg->memory.high))
f7e1cb6e 2437 continue;
e22c6ed9 2438
e27be240 2439 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2440
2441 psi_memstall_enter(&pflags);
b3ff9291
CD
2442 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2443 gfp_mask, true);
e22c6ed9 2444 psi_memstall_leave(&pflags);
4bf17307
CD
2445 } while ((memcg = parent_mem_cgroup(memcg)) &&
2446 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2447
2448 return nr_reclaimed;
f7e1cb6e
JW
2449}
2450
2451static void high_work_func(struct work_struct *work)
2452{
2453 struct mem_cgroup *memcg;
2454
2455 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2456 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2457}
2458
0e4b01df
CD
2459/*
2460 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2461 * enough to still cause a significant slowdown in most cases, while still
2462 * allowing diagnostics and tracing to proceed without becoming stuck.
2463 */
2464#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2465
2466/*
2467 * When calculating the delay, we use these either side of the exponentiation to
2468 * maintain precision and scale to a reasonable number of jiffies (see the table
2469 * below.
2470 *
2471 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2472 * overage ratio to a delay.
ac5ddd0f 2473 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2474 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2475 * to produce a reasonable delay curve.
2476 *
2477 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2478 * reasonable delay curve compared to precision-adjusted overage, not
2479 * penalising heavily at first, but still making sure that growth beyond the
2480 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2481 * example, with a high of 100 megabytes:
2482 *
2483 * +-------+------------------------+
2484 * | usage | time to allocate in ms |
2485 * +-------+------------------------+
2486 * | 100M | 0 |
2487 * | 101M | 6 |
2488 * | 102M | 25 |
2489 * | 103M | 57 |
2490 * | 104M | 102 |
2491 * | 105M | 159 |
2492 * | 106M | 230 |
2493 * | 107M | 313 |
2494 * | 108M | 409 |
2495 * | 109M | 518 |
2496 * | 110M | 639 |
2497 * | 111M | 774 |
2498 * | 112M | 921 |
2499 * | 113M | 1081 |
2500 * | 114M | 1254 |
2501 * | 115M | 1439 |
2502 * | 116M | 1638 |
2503 * | 117M | 1849 |
2504 * | 118M | 2000 |
2505 * | 119M | 2000 |
2506 * | 120M | 2000 |
2507 * +-------+------------------------+
2508 */
2509 #define MEMCG_DELAY_PRECISION_SHIFT 20
2510 #define MEMCG_DELAY_SCALING_SHIFT 14
2511
8a5dbc65 2512static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2513{
8a5dbc65 2514 u64 overage;
b23afb93 2515
8a5dbc65
JK
2516 if (usage <= high)
2517 return 0;
e26733e0 2518
8a5dbc65
JK
2519 /*
2520 * Prevent division by 0 in overage calculation by acting as if
2521 * it was a threshold of 1 page
2522 */
2523 high = max(high, 1UL);
9b8b1754 2524
8a5dbc65
JK
2525 overage = usage - high;
2526 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2527 return div64_u64(overage, high);
2528}
e26733e0 2529
8a5dbc65
JK
2530static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2531{
2532 u64 overage, max_overage = 0;
e26733e0 2533
8a5dbc65
JK
2534 do {
2535 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2536 READ_ONCE(memcg->memory.high));
8a5dbc65 2537 max_overage = max(overage, max_overage);
e26733e0
CD
2538 } while ((memcg = parent_mem_cgroup(memcg)) &&
2539 !mem_cgroup_is_root(memcg));
2540
8a5dbc65
JK
2541 return max_overage;
2542}
2543
4b82ab4f
JK
2544static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2545{
2546 u64 overage, max_overage = 0;
2547
2548 do {
2549 overage = calculate_overage(page_counter_read(&memcg->swap),
2550 READ_ONCE(memcg->swap.high));
2551 if (overage)
2552 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2553 max_overage = max(overage, max_overage);
2554 } while ((memcg = parent_mem_cgroup(memcg)) &&
2555 !mem_cgroup_is_root(memcg));
2556
2557 return max_overage;
2558}
2559
8a5dbc65
JK
2560/*
2561 * Get the number of jiffies that we should penalise a mischievous cgroup which
2562 * is exceeding its memory.high by checking both it and its ancestors.
2563 */
2564static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2565 unsigned int nr_pages,
2566 u64 max_overage)
2567{
2568 unsigned long penalty_jiffies;
2569
e26733e0
CD
2570 if (!max_overage)
2571 return 0;
0e4b01df
CD
2572
2573 /*
0e4b01df
CD
2574 * We use overage compared to memory.high to calculate the number of
2575 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2576 * fairly lenient on small overages, and increasingly harsh when the
2577 * memcg in question makes it clear that it has no intention of stopping
2578 * its crazy behaviour, so we exponentially increase the delay based on
2579 * overage amount.
2580 */
e26733e0
CD
2581 penalty_jiffies = max_overage * max_overage * HZ;
2582 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2583 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2584
2585 /*
2586 * Factor in the task's own contribution to the overage, such that four
2587 * N-sized allocations are throttled approximately the same as one
2588 * 4N-sized allocation.
2589 *
2590 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2591 * larger the current charge patch is than that.
2592 */
ff144e69 2593 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2594}
2595
2596/*
2597 * Scheduled by try_charge() to be executed from the userland return path
2598 * and reclaims memory over the high limit.
2599 */
2600void mem_cgroup_handle_over_high(void)
2601{
2602 unsigned long penalty_jiffies;
2603 unsigned long pflags;
b3ff9291 2604 unsigned long nr_reclaimed;
e26733e0 2605 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2606 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2607 struct mem_cgroup *memcg;
b3ff9291 2608 bool in_retry = false;
e26733e0
CD
2609
2610 if (likely(!nr_pages))
2611 return;
2612
2613 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2614 current->memcg_nr_pages_over_high = 0;
2615
b3ff9291
CD
2616retry_reclaim:
2617 /*
2618 * The allocating task should reclaim at least the batch size, but for
2619 * subsequent retries we only want to do what's necessary to prevent oom
2620 * or breaching resource isolation.
2621 *
2622 * This is distinct from memory.max or page allocator behaviour because
2623 * memory.high is currently batched, whereas memory.max and the page
2624 * allocator run every time an allocation is made.
2625 */
2626 nr_reclaimed = reclaim_high(memcg,
2627 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2628 GFP_KERNEL);
2629
e26733e0
CD
2630 /*
2631 * memory.high is breached and reclaim is unable to keep up. Throttle
2632 * allocators proactively to slow down excessive growth.
2633 */
8a5dbc65
JK
2634 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2635 mem_find_max_overage(memcg));
0e4b01df 2636
4b82ab4f
JK
2637 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2638 swap_find_max_overage(memcg));
2639
ff144e69
JK
2640 /*
2641 * Clamp the max delay per usermode return so as to still keep the
2642 * application moving forwards and also permit diagnostics, albeit
2643 * extremely slowly.
2644 */
2645 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2646
0e4b01df
CD
2647 /*
2648 * Don't sleep if the amount of jiffies this memcg owes us is so low
2649 * that it's not even worth doing, in an attempt to be nice to those who
2650 * go only a small amount over their memory.high value and maybe haven't
2651 * been aggressively reclaimed enough yet.
2652 */
2653 if (penalty_jiffies <= HZ / 100)
2654 goto out;
2655
b3ff9291
CD
2656 /*
2657 * If reclaim is making forward progress but we're still over
2658 * memory.high, we want to encourage that rather than doing allocator
2659 * throttling.
2660 */
2661 if (nr_reclaimed || nr_retries--) {
2662 in_retry = true;
2663 goto retry_reclaim;
2664 }
2665
0e4b01df
CD
2666 /*
2667 * If we exit early, we're guaranteed to die (since
2668 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2669 * need to account for any ill-begotten jiffies to pay them off later.
2670 */
2671 psi_memstall_enter(&pflags);
2672 schedule_timeout_killable(penalty_jiffies);
2673 psi_memstall_leave(&pflags);
2674
2675out:
2676 css_put(&memcg->css);
b23afb93
TH
2677}
2678
00501b53
JW
2679static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2680 unsigned int nr_pages)
8a9f3ccd 2681{
a983b5eb 2682 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2683 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2684 struct mem_cgroup *mem_over_limit;
3e32cb2e 2685 struct page_counter *counter;
e22c6ed9 2686 enum oom_status oom_status;
6539cc05 2687 unsigned long nr_reclaimed;
b70a2a21
JW
2688 bool may_swap = true;
2689 bool drained = false;
e22c6ed9 2690 unsigned long pflags;
a636b327 2691
ce00a967 2692 if (mem_cgroup_is_root(memcg))
10d53c74 2693 return 0;
6539cc05 2694retry:
b6b6cc72 2695 if (consume_stock(memcg, nr_pages))
10d53c74 2696 return 0;
8a9f3ccd 2697
7941d214 2698 if (!do_memsw_account() ||
6071ca52
JW
2699 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2700 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2701 goto done_restock;
7941d214 2702 if (do_memsw_account())
3e32cb2e
JW
2703 page_counter_uncharge(&memcg->memsw, batch);
2704 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2705 } else {
3e32cb2e 2706 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2707 may_swap = false;
3fbe7244 2708 }
7a81b88c 2709
6539cc05
JW
2710 if (batch > nr_pages) {
2711 batch = nr_pages;
2712 goto retry;
2713 }
6d61ef40 2714
869712fd
JW
2715 /*
2716 * Memcg doesn't have a dedicated reserve for atomic
2717 * allocations. But like the global atomic pool, we need to
2718 * put the burden of reclaim on regular allocation requests
2719 * and let these go through as privileged allocations.
2720 */
2721 if (gfp_mask & __GFP_ATOMIC)
2722 goto force;
2723
06b078fc
JW
2724 /*
2725 * Unlike in global OOM situations, memcg is not in a physical
2726 * memory shortage. Allow dying and OOM-killed tasks to
2727 * bypass the last charges so that they can exit quickly and
2728 * free their memory.
2729 */
7775face 2730 if (unlikely(should_force_charge()))
10d53c74 2731 goto force;
06b078fc 2732
89a28483
JW
2733 /*
2734 * Prevent unbounded recursion when reclaim operations need to
2735 * allocate memory. This might exceed the limits temporarily,
2736 * but we prefer facilitating memory reclaim and getting back
2737 * under the limit over triggering OOM kills in these cases.
2738 */
2739 if (unlikely(current->flags & PF_MEMALLOC))
2740 goto force;
2741
06b078fc
JW
2742 if (unlikely(task_in_memcg_oom(current)))
2743 goto nomem;
2744
d0164adc 2745 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2746 goto nomem;
4b534334 2747
e27be240 2748 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2749
e22c6ed9 2750 psi_memstall_enter(&pflags);
b70a2a21
JW
2751 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2752 gfp_mask, may_swap);
e22c6ed9 2753 psi_memstall_leave(&pflags);
6539cc05 2754
61e02c74 2755 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2756 goto retry;
28c34c29 2757
b70a2a21 2758 if (!drained) {
6d3d6aa2 2759 drain_all_stock(mem_over_limit);
b70a2a21
JW
2760 drained = true;
2761 goto retry;
2762 }
2763
28c34c29
JW
2764 if (gfp_mask & __GFP_NORETRY)
2765 goto nomem;
6539cc05
JW
2766 /*
2767 * Even though the limit is exceeded at this point, reclaim
2768 * may have been able to free some pages. Retry the charge
2769 * before killing the task.
2770 *
2771 * Only for regular pages, though: huge pages are rather
2772 * unlikely to succeed so close to the limit, and we fall back
2773 * to regular pages anyway in case of failure.
2774 */
61e02c74 2775 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2776 goto retry;
2777 /*
2778 * At task move, charge accounts can be doubly counted. So, it's
2779 * better to wait until the end of task_move if something is going on.
2780 */
2781 if (mem_cgroup_wait_acct_move(mem_over_limit))
2782 goto retry;
2783
9b130619
JW
2784 if (nr_retries--)
2785 goto retry;
2786
38d38493 2787 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2788 goto nomem;
2789
06b078fc 2790 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2791 goto force;
06b078fc 2792
6539cc05 2793 if (fatal_signal_pending(current))
10d53c74 2794 goto force;
6539cc05 2795
29ef680a
MH
2796 /*
2797 * keep retrying as long as the memcg oom killer is able to make
2798 * a forward progress or bypass the charge if the oom killer
2799 * couldn't make any progress.
2800 */
2801 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2802 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2803 switch (oom_status) {
2804 case OOM_SUCCESS:
d977aa93 2805 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2806 goto retry;
2807 case OOM_FAILED:
2808 goto force;
2809 default:
2810 goto nomem;
2811 }
7a81b88c 2812nomem:
6d1fdc48 2813 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2814 return -ENOMEM;
10d53c74
TH
2815force:
2816 /*
2817 * The allocation either can't fail or will lead to more memory
2818 * being freed very soon. Allow memory usage go over the limit
2819 * temporarily by force charging it.
2820 */
2821 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2822 if (do_memsw_account())
10d53c74 2823 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2824
2825 return 0;
6539cc05
JW
2826
2827done_restock:
2828 if (batch > nr_pages)
2829 refill_stock(memcg, batch - nr_pages);
b23afb93 2830
241994ed 2831 /*
b23afb93
TH
2832 * If the hierarchy is above the normal consumption range, schedule
2833 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2834 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2835 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2836 * not recorded as it most likely matches current's and won't
2837 * change in the meantime. As high limit is checked again before
2838 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2839 */
2840 do {
4b82ab4f
JK
2841 bool mem_high, swap_high;
2842
2843 mem_high = page_counter_read(&memcg->memory) >
2844 READ_ONCE(memcg->memory.high);
2845 swap_high = page_counter_read(&memcg->swap) >
2846 READ_ONCE(memcg->swap.high);
2847
2848 /* Don't bother a random interrupted task */
2849 if (in_interrupt()) {
2850 if (mem_high) {
f7e1cb6e
JW
2851 schedule_work(&memcg->high_work);
2852 break;
2853 }
4b82ab4f
JK
2854 continue;
2855 }
2856
2857 if (mem_high || swap_high) {
2858 /*
2859 * The allocating tasks in this cgroup will need to do
2860 * reclaim or be throttled to prevent further growth
2861 * of the memory or swap footprints.
2862 *
2863 * Target some best-effort fairness between the tasks,
2864 * and distribute reclaim work and delay penalties
2865 * based on how much each task is actually allocating.
2866 */
9516a18a 2867 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2868 set_notify_resume(current);
2869 break;
2870 }
241994ed 2871 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2872
2873 return 0;
7a81b88c 2874}
8a9f3ccd 2875
f0e45fb4 2876#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2877static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2878{
ce00a967
JW
2879 if (mem_cgroup_is_root(memcg))
2880 return;
2881
3e32cb2e 2882 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2883 if (do_memsw_account())
3e32cb2e 2884 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2885}
f0e45fb4 2886#endif
d01dd17f 2887
d9eb1ea2 2888static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2889{
1306a85a 2890 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2891 /*
a5eb011a 2892 * Any of the following ensures page's memcg stability:
0a31bc97 2893 *
a0b5b414
JW
2894 * - the page lock
2895 * - LRU isolation
2896 * - lock_page_memcg()
2897 * - exclusive reference
0a31bc97 2898 */
1306a85a 2899 page->mem_cgroup = memcg;
7a81b88c 2900}
66e1707b 2901
84c07d11 2902#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2903int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2904 gfp_t gfp)
2905{
2906 unsigned int objects = objs_per_slab_page(s, page);
2907 void *vec;
2908
2909 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2910 page_to_nid(page));
2911 if (!vec)
2912 return -ENOMEM;
2913
2914 if (cmpxchg(&page->obj_cgroups, NULL,
2915 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2916 kfree(vec);
2917 else
2918 kmemleak_not_leak(vec);
2919
2920 return 0;
2921}
2922
8380ce47
RG
2923/*
2924 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2925 *
2926 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2927 * cgroup_mutex, etc.
2928 */
2929struct mem_cgroup *mem_cgroup_from_obj(void *p)
2930{
2931 struct page *page;
2932
2933 if (mem_cgroup_disabled())
2934 return NULL;
2935
2936 page = virt_to_head_page(p);
2937
19b629c9
RG
2938 /*
2939 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2940 * or a pointer to obj_cgroup vector. In the latter case the lowest
2941 * bit of the pointer is set.
2942 * The page->mem_cgroup pointer can be asynchronously changed
2943 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2944 * from a valid memcg pointer to objcg vector or back.
2945 */
2946 if (!page->mem_cgroup)
2947 return NULL;
2948
8380ce47 2949 /*
9855609b
RG
2950 * Slab objects are accounted individually, not per-page.
2951 * Memcg membership data for each individual object is saved in
2952 * the page->obj_cgroups.
8380ce47 2953 */
9855609b
RG
2954 if (page_has_obj_cgroups(page)) {
2955 struct obj_cgroup *objcg;
2956 unsigned int off;
2957
2958 off = obj_to_index(page->slab_cache, page, p);
2959 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2960 if (objcg)
2961 return obj_cgroup_memcg(objcg);
2962
2963 return NULL;
9855609b 2964 }
8380ce47
RG
2965
2966 /* All other pages use page->mem_cgroup */
2967 return page->mem_cgroup;
2968}
2969
bf4f0599
RG
2970__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2971{
2972 struct obj_cgroup *objcg = NULL;
2973 struct mem_cgroup *memcg;
2974
279c3393
RG
2975 if (memcg_kmem_bypass())
2976 return NULL;
2977
bf4f0599 2978 rcu_read_lock();
37d5985c
RG
2979 if (unlikely(active_memcg()))
2980 memcg = active_memcg();
bf4f0599
RG
2981 else
2982 memcg = mem_cgroup_from_task(current);
2983
2984 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2985 objcg = rcu_dereference(memcg->objcg);
2986 if (objcg && obj_cgroup_tryget(objcg))
2987 break;
2f7659a3 2988 objcg = NULL;
bf4f0599
RG
2989 }
2990 rcu_read_unlock();
2991
2992 return objcg;
2993}
2994
f3bb3043 2995static int memcg_alloc_cache_id(void)
55007d84 2996{
f3bb3043
VD
2997 int id, size;
2998 int err;
2999
dbcf73e2 3000 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3001 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3002 if (id < 0)
3003 return id;
55007d84 3004
dbcf73e2 3005 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3006 return id;
3007
3008 /*
3009 * There's no space for the new id in memcg_caches arrays,
3010 * so we have to grow them.
3011 */
05257a1a 3012 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3013
3014 size = 2 * (id + 1);
55007d84
GC
3015 if (size < MEMCG_CACHES_MIN_SIZE)
3016 size = MEMCG_CACHES_MIN_SIZE;
3017 else if (size > MEMCG_CACHES_MAX_SIZE)
3018 size = MEMCG_CACHES_MAX_SIZE;
3019
9855609b 3020 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3021 if (!err)
3022 memcg_nr_cache_ids = size;
3023
3024 up_write(&memcg_cache_ids_sem);
3025
f3bb3043 3026 if (err) {
dbcf73e2 3027 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3028 return err;
3029 }
3030 return id;
3031}
3032
3033static void memcg_free_cache_id(int id)
3034{
dbcf73e2 3035 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3036}
3037
45264778 3038/**
4b13f64d 3039 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3040 * @memcg: memory cgroup to charge
45264778 3041 * @gfp: reclaim mode
92d0510c 3042 * @nr_pages: number of pages to charge
45264778
VD
3043 *
3044 * Returns 0 on success, an error code on failure.
3045 */
4b13f64d
RG
3046int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3047 unsigned int nr_pages)
7ae1e1d0 3048{
f3ccb2c4 3049 struct page_counter *counter;
7ae1e1d0
GC
3050 int ret;
3051
f3ccb2c4 3052 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3053 if (ret)
f3ccb2c4 3054 return ret;
52c29b04
JW
3055
3056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3057 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3058
3059 /*
3060 * Enforce __GFP_NOFAIL allocation because callers are not
3061 * prepared to see failures and likely do not have any failure
3062 * handling code.
3063 */
3064 if (gfp & __GFP_NOFAIL) {
3065 page_counter_charge(&memcg->kmem, nr_pages);
3066 return 0;
3067 }
52c29b04
JW
3068 cancel_charge(memcg, nr_pages);
3069 return -ENOMEM;
7ae1e1d0 3070 }
f3ccb2c4 3071 return 0;
7ae1e1d0
GC
3072}
3073
4b13f64d
RG
3074/**
3075 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3076 * @memcg: memcg to uncharge
3077 * @nr_pages: number of pages to uncharge
3078 */
3079void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3080{
3081 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3082 page_counter_uncharge(&memcg->kmem, nr_pages);
3083
3084 page_counter_uncharge(&memcg->memory, nr_pages);
3085 if (do_memsw_account())
3086 page_counter_uncharge(&memcg->memsw, nr_pages);
3087}
3088
45264778 3089/**
f4b00eab 3090 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3091 * @page: page to charge
3092 * @gfp: reclaim mode
3093 * @order: allocation order
3094 *
3095 * Returns 0 on success, an error code on failure.
3096 */
f4b00eab 3097int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3098{
f3ccb2c4 3099 struct mem_cgroup *memcg;
fcff7d7e 3100 int ret = 0;
7ae1e1d0 3101
d46eb14b 3102 memcg = get_mem_cgroup_from_current();
279c3393 3103 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3104 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3105 if (!ret) {
3106 page->mem_cgroup = memcg;
c4159a75 3107 __SetPageKmemcg(page);
1a3e1f40 3108 return 0;
4d96ba35 3109 }
279c3393 3110 css_put(&memcg->css);
c4159a75 3111 }
d05e83a6 3112 return ret;
7ae1e1d0 3113}
49a18eae 3114
45264778 3115/**
f4b00eab 3116 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3117 * @page: page to uncharge
3118 * @order: allocation order
3119 */
f4b00eab 3120void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3121{
1306a85a 3122 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3123 unsigned int nr_pages = 1 << order;
7ae1e1d0 3124
7ae1e1d0
GC
3125 if (!memcg)
3126 return;
3127
309381fe 3128 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3129 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3130 page->mem_cgroup = NULL;
1a3e1f40 3131 css_put(&memcg->css);
c4159a75
VD
3132
3133 /* slab pages do not have PageKmemcg flag set */
3134 if (PageKmemcg(page))
3135 __ClearPageKmemcg(page);
60d3fd32 3136}
bf4f0599
RG
3137
3138static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3139{
3140 struct memcg_stock_pcp *stock;
3141 unsigned long flags;
3142 bool ret = false;
3143
3144 local_irq_save(flags);
3145
3146 stock = this_cpu_ptr(&memcg_stock);
3147 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3148 stock->nr_bytes -= nr_bytes;
3149 ret = true;
3150 }
3151
3152 local_irq_restore(flags);
3153
3154 return ret;
3155}
3156
3157static void drain_obj_stock(struct memcg_stock_pcp *stock)
3158{
3159 struct obj_cgroup *old = stock->cached_objcg;
3160
3161 if (!old)
3162 return;
3163
3164 if (stock->nr_bytes) {
3165 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3166 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3167
3168 if (nr_pages) {
3169 rcu_read_lock();
3170 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3171 rcu_read_unlock();
3172 }
3173
3174 /*
3175 * The leftover is flushed to the centralized per-memcg value.
3176 * On the next attempt to refill obj stock it will be moved
3177 * to a per-cpu stock (probably, on an other CPU), see
3178 * refill_obj_stock().
3179 *
3180 * How often it's flushed is a trade-off between the memory
3181 * limit enforcement accuracy and potential CPU contention,
3182 * so it might be changed in the future.
3183 */
3184 atomic_add(nr_bytes, &old->nr_charged_bytes);
3185 stock->nr_bytes = 0;
3186 }
3187
3188 obj_cgroup_put(old);
3189 stock->cached_objcg = NULL;
3190}
3191
3192static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3193 struct mem_cgroup *root_memcg)
3194{
3195 struct mem_cgroup *memcg;
3196
3197 if (stock->cached_objcg) {
3198 memcg = obj_cgroup_memcg(stock->cached_objcg);
3199 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3200 return true;
3201 }
3202
3203 return false;
3204}
3205
3206static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3207{
3208 struct memcg_stock_pcp *stock;
3209 unsigned long flags;
3210
3211 local_irq_save(flags);
3212
3213 stock = this_cpu_ptr(&memcg_stock);
3214 if (stock->cached_objcg != objcg) { /* reset if necessary */
3215 drain_obj_stock(stock);
3216 obj_cgroup_get(objcg);
3217 stock->cached_objcg = objcg;
3218 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3219 }
3220 stock->nr_bytes += nr_bytes;
3221
3222 if (stock->nr_bytes > PAGE_SIZE)
3223 drain_obj_stock(stock);
3224
3225 local_irq_restore(flags);
3226}
3227
3228int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3229{
3230 struct mem_cgroup *memcg;
3231 unsigned int nr_pages, nr_bytes;
3232 int ret;
3233
3234 if (consume_obj_stock(objcg, size))
3235 return 0;
3236
3237 /*
3238 * In theory, memcg->nr_charged_bytes can have enough
3239 * pre-charged bytes to satisfy the allocation. However,
3240 * flushing memcg->nr_charged_bytes requires two atomic
3241 * operations, and memcg->nr_charged_bytes can't be big,
3242 * so it's better to ignore it and try grab some new pages.
3243 * memcg->nr_charged_bytes will be flushed in
3244 * refill_obj_stock(), called from this function or
3245 * independently later.
3246 */
3247 rcu_read_lock();
eefbfa7f 3248retry:
bf4f0599 3249 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3250 if (unlikely(!css_tryget(&memcg->css)))
3251 goto retry;
bf4f0599
RG
3252 rcu_read_unlock();
3253
3254 nr_pages = size >> PAGE_SHIFT;
3255 nr_bytes = size & (PAGE_SIZE - 1);
3256
3257 if (nr_bytes)
3258 nr_pages += 1;
3259
3260 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3261 if (!ret && nr_bytes)
3262 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3263
3264 css_put(&memcg->css);
3265 return ret;
3266}
3267
3268void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3269{
3270 refill_obj_stock(objcg, size);
3271}
3272
84c07d11 3273#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3274
ca3e0214
KH
3275#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3276
ca3e0214
KH
3277/*
3278 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3279 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3280 */
e94c8a9c 3281void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3282{
1a3e1f40 3283 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3284 int i;
ca3e0214 3285
3d37c4a9
KH
3286 if (mem_cgroup_disabled())
3287 return;
b070e65c 3288
1a3e1f40
JW
3289 for (i = 1; i < HPAGE_PMD_NR; i++) {
3290 css_get(&memcg->css);
3291 head[i].mem_cgroup = memcg;
3292 }
ca3e0214 3293}
12d27107 3294#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3295
c255a458 3296#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3297/**
3298 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3299 * @entry: swap entry to be moved
3300 * @from: mem_cgroup which the entry is moved from
3301 * @to: mem_cgroup which the entry is moved to
3302 *
3303 * It succeeds only when the swap_cgroup's record for this entry is the same
3304 * as the mem_cgroup's id of @from.
3305 *
3306 * Returns 0 on success, -EINVAL on failure.
3307 *
3e32cb2e 3308 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3309 * both res and memsw, and called css_get().
3310 */
3311static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3312 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3313{
3314 unsigned short old_id, new_id;
3315
34c00c31
LZ
3316 old_id = mem_cgroup_id(from);
3317 new_id = mem_cgroup_id(to);
02491447
DN
3318
3319 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3320 mod_memcg_state(from, MEMCG_SWAP, -1);
3321 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3322 return 0;
3323 }
3324 return -EINVAL;
3325}
3326#else
3327static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3328 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3329{
3330 return -EINVAL;
3331}
8c7c6e34 3332#endif
d13d1443 3333
bbec2e15 3334static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3335
bbec2e15
RG
3336static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3337 unsigned long max, bool memsw)
628f4235 3338{
3e32cb2e 3339 bool enlarge = false;
bb4a7ea2 3340 bool drained = false;
3e32cb2e 3341 int ret;
c054a78c
YZ
3342 bool limits_invariant;
3343 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3344
3e32cb2e 3345 do {
628f4235
KH
3346 if (signal_pending(current)) {
3347 ret = -EINTR;
3348 break;
3349 }
3e32cb2e 3350
bbec2e15 3351 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3352 /*
3353 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3354 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3355 */
15b42562 3356 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3357 max <= memcg->memsw.max;
c054a78c 3358 if (!limits_invariant) {
bbec2e15 3359 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3360 ret = -EINVAL;
8c7c6e34
KH
3361 break;
3362 }
bbec2e15 3363 if (max > counter->max)
3e32cb2e 3364 enlarge = true;
bbec2e15
RG
3365 ret = page_counter_set_max(counter, max);
3366 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3367
3368 if (!ret)
3369 break;
3370
bb4a7ea2
SB
3371 if (!drained) {
3372 drain_all_stock(memcg);
3373 drained = true;
3374 continue;
3375 }
3376
1ab5c056
AR
3377 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3378 GFP_KERNEL, !memsw)) {
3379 ret = -EBUSY;
3380 break;
3381 }
3382 } while (true);
3e32cb2e 3383
3c11ecf4
KH
3384 if (!ret && enlarge)
3385 memcg_oom_recover(memcg);
3e32cb2e 3386
628f4235
KH
3387 return ret;
3388}
3389
ef8f2327 3390unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3391 gfp_t gfp_mask,
3392 unsigned long *total_scanned)
3393{
3394 unsigned long nr_reclaimed = 0;
ef8f2327 3395 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3396 unsigned long reclaimed;
3397 int loop = 0;
ef8f2327 3398 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3399 unsigned long excess;
0608f43d
AM
3400 unsigned long nr_scanned;
3401
3402 if (order > 0)
3403 return 0;
3404
ef8f2327 3405 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3406
3407 /*
3408 * Do not even bother to check the largest node if the root
3409 * is empty. Do it lockless to prevent lock bouncing. Races
3410 * are acceptable as soft limit is best effort anyway.
3411 */
bfc7228b 3412 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3413 return 0;
3414
0608f43d
AM
3415 /*
3416 * This loop can run a while, specially if mem_cgroup's continuously
3417 * keep exceeding their soft limit and putting the system under
3418 * pressure
3419 */
3420 do {
3421 if (next_mz)
3422 mz = next_mz;
3423 else
3424 mz = mem_cgroup_largest_soft_limit_node(mctz);
3425 if (!mz)
3426 break;
3427
3428 nr_scanned = 0;
ef8f2327 3429 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3430 gfp_mask, &nr_scanned);
3431 nr_reclaimed += reclaimed;
3432 *total_scanned += nr_scanned;
0a31bc97 3433 spin_lock_irq(&mctz->lock);
bc2f2e7f 3434 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3435
3436 /*
3437 * If we failed to reclaim anything from this memory cgroup
3438 * it is time to move on to the next cgroup
3439 */
3440 next_mz = NULL;
bc2f2e7f
VD
3441 if (!reclaimed)
3442 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3443
3e32cb2e 3444 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3445 /*
3446 * One school of thought says that we should not add
3447 * back the node to the tree if reclaim returns 0.
3448 * But our reclaim could return 0, simply because due
3449 * to priority we are exposing a smaller subset of
3450 * memory to reclaim from. Consider this as a longer
3451 * term TODO.
3452 */
3453 /* If excess == 0, no tree ops */
cf2c8127 3454 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3455 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3456 css_put(&mz->memcg->css);
3457 loop++;
3458 /*
3459 * Could not reclaim anything and there are no more
3460 * mem cgroups to try or we seem to be looping without
3461 * reclaiming anything.
3462 */
3463 if (!nr_reclaimed &&
3464 (next_mz == NULL ||
3465 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3466 break;
3467 } while (!nr_reclaimed);
3468 if (next_mz)
3469 css_put(&next_mz->memcg->css);
3470 return nr_reclaimed;
3471}
3472
c26251f9 3473/*
51038171 3474 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3475 *
3476 * Caller is responsible for holding css reference for memcg.
3477 */
3478static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3479{
d977aa93 3480 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3481
c1e862c1
KH
3482 /* we call try-to-free pages for make this cgroup empty */
3483 lru_add_drain_all();
d12c60f6
JS
3484
3485 drain_all_stock(memcg);
3486
f817ed48 3487 /* try to free all pages in this cgroup */
3e32cb2e 3488 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3489 int progress;
c1e862c1 3490
c26251f9
MH
3491 if (signal_pending(current))
3492 return -EINTR;
3493
b70a2a21
JW
3494 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3495 GFP_KERNEL, true);
c1e862c1 3496 if (!progress) {
f817ed48 3497 nr_retries--;
c1e862c1 3498 /* maybe some writeback is necessary */
8aa7e847 3499 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3500 }
f817ed48
KH
3501
3502 }
ab5196c2
MH
3503
3504 return 0;
cc847582
KH
3505}
3506
6770c64e
TH
3507static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3508 char *buf, size_t nbytes,
3509 loff_t off)
c1e862c1 3510{
6770c64e 3511 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3512
d8423011
MH
3513 if (mem_cgroup_is_root(memcg))
3514 return -EINVAL;
6770c64e 3515 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3516}
3517
182446d0
TH
3518static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3519 struct cftype *cft)
18f59ea7 3520{
bef8620c 3521 return 1;
18f59ea7
BS
3522}
3523
182446d0
TH
3524static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3525 struct cftype *cft, u64 val)
18f59ea7 3526{
bef8620c 3527 if (val == 1)
0b8f73e1 3528 return 0;
567fb435 3529
bef8620c
RG
3530 pr_warn_once("Non-hierarchical mode is deprecated. "
3531 "Please report your usecase to linux-mm@kvack.org if you "
3532 "depend on this functionality.\n");
567fb435 3533
bef8620c 3534 return -EINVAL;
18f59ea7
BS
3535}
3536
6f646156 3537static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3538{
42a30035 3539 unsigned long val;
ce00a967 3540
3e32cb2e 3541 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3542 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3543 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3544 if (swap)
3545 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3546 } else {
ce00a967 3547 if (!swap)
3e32cb2e 3548 val = page_counter_read(&memcg->memory);
ce00a967 3549 else
3e32cb2e 3550 val = page_counter_read(&memcg->memsw);
ce00a967 3551 }
c12176d3 3552 return val;
ce00a967
JW
3553}
3554
3e32cb2e
JW
3555enum {
3556 RES_USAGE,
3557 RES_LIMIT,
3558 RES_MAX_USAGE,
3559 RES_FAILCNT,
3560 RES_SOFT_LIMIT,
3561};
ce00a967 3562
791badbd 3563static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3564 struct cftype *cft)
8cdea7c0 3565{
182446d0 3566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3567 struct page_counter *counter;
af36f906 3568
3e32cb2e 3569 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3570 case _MEM:
3e32cb2e
JW
3571 counter = &memcg->memory;
3572 break;
8c7c6e34 3573 case _MEMSWAP:
3e32cb2e
JW
3574 counter = &memcg->memsw;
3575 break;
510fc4e1 3576 case _KMEM:
3e32cb2e 3577 counter = &memcg->kmem;
510fc4e1 3578 break;
d55f90bf 3579 case _TCP:
0db15298 3580 counter = &memcg->tcpmem;
d55f90bf 3581 break;
8c7c6e34
KH
3582 default:
3583 BUG();
8c7c6e34 3584 }
3e32cb2e
JW
3585
3586 switch (MEMFILE_ATTR(cft->private)) {
3587 case RES_USAGE:
3588 if (counter == &memcg->memory)
c12176d3 3589 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3590 if (counter == &memcg->memsw)
c12176d3 3591 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3592 return (u64)page_counter_read(counter) * PAGE_SIZE;
3593 case RES_LIMIT:
bbec2e15 3594 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3595 case RES_MAX_USAGE:
3596 return (u64)counter->watermark * PAGE_SIZE;
3597 case RES_FAILCNT:
3598 return counter->failcnt;
3599 case RES_SOFT_LIMIT:
3600 return (u64)memcg->soft_limit * PAGE_SIZE;
3601 default:
3602 BUG();
3603 }
8cdea7c0 3604}
510fc4e1 3605
4a87e2a2 3606static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3607{
4a87e2a2 3608 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3609 struct mem_cgroup *mi;
3610 int node, cpu, i;
c350a99e
RG
3611
3612 for_each_online_cpu(cpu)
4a87e2a2 3613 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3614 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3615
3616 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3617 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3618 atomic_long_add(stat[i], &mi->vmstats[i]);
3619
3620 for_each_node(node) {
3621 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3622 struct mem_cgroup_per_node *pi;
3623
4a87e2a2 3624 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3625 stat[i] = 0;
3626
3627 for_each_online_cpu(cpu)
4a87e2a2 3628 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3629 stat[i] += per_cpu(
3630 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3631
3632 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3633 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3634 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3635 }
3636}
3637
bb65f89b
RG
3638static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3639{
3640 unsigned long events[NR_VM_EVENT_ITEMS];
3641 struct mem_cgroup *mi;
3642 int cpu, i;
3643
3644 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3645 events[i] = 0;
3646
3647 for_each_online_cpu(cpu)
3648 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3649 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3650 cpu);
bb65f89b
RG
3651
3652 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3653 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3654 atomic_long_add(events[i], &mi->vmevents[i]);
3655}
3656
84c07d11 3657#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3658static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3659{
bf4f0599 3660 struct obj_cgroup *objcg;
d6441637
VD
3661 int memcg_id;
3662
b313aeee
VD
3663 if (cgroup_memory_nokmem)
3664 return 0;
3665
2a4db7eb 3666 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3667 BUG_ON(memcg->kmem_state);
d6441637 3668
f3bb3043 3669 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3670 if (memcg_id < 0)
3671 return memcg_id;
d6441637 3672
bf4f0599
RG
3673 objcg = obj_cgroup_alloc();
3674 if (!objcg) {
3675 memcg_free_cache_id(memcg_id);
3676 return -ENOMEM;
3677 }
3678 objcg->memcg = memcg;
3679 rcu_assign_pointer(memcg->objcg, objcg);
3680
d648bcc7
RG
3681 static_branch_enable(&memcg_kmem_enabled_key);
3682
900a38f0 3683 memcg->kmemcg_id = memcg_id;
567e9ab2 3684 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3685
3686 return 0;
d6441637
VD
3687}
3688
8e0a8912
JW
3689static void memcg_offline_kmem(struct mem_cgroup *memcg)
3690{
3691 struct cgroup_subsys_state *css;
3692 struct mem_cgroup *parent, *child;
3693 int kmemcg_id;
3694
3695 if (memcg->kmem_state != KMEM_ONLINE)
3696 return;
9855609b 3697
8e0a8912
JW
3698 memcg->kmem_state = KMEM_ALLOCATED;
3699
8e0a8912
JW
3700 parent = parent_mem_cgroup(memcg);
3701 if (!parent)
3702 parent = root_mem_cgroup;
3703
bf4f0599 3704 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3705
3706 kmemcg_id = memcg->kmemcg_id;
3707 BUG_ON(kmemcg_id < 0);
3708
8e0a8912
JW
3709 /*
3710 * Change kmemcg_id of this cgroup and all its descendants to the
3711 * parent's id, and then move all entries from this cgroup's list_lrus
3712 * to ones of the parent. After we have finished, all list_lrus
3713 * corresponding to this cgroup are guaranteed to remain empty. The
3714 * ordering is imposed by list_lru_node->lock taken by
3715 * memcg_drain_all_list_lrus().
3716 */
3a06bb78 3717 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3718 css_for_each_descendant_pre(css, &memcg->css) {
3719 child = mem_cgroup_from_css(css);
3720 BUG_ON(child->kmemcg_id != kmemcg_id);
3721 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3722 }
3a06bb78
TH
3723 rcu_read_unlock();
3724
9bec5c35 3725 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3726
3727 memcg_free_cache_id(kmemcg_id);
3728}
3729
3730static void memcg_free_kmem(struct mem_cgroup *memcg)
3731{
0b8f73e1
JW
3732 /* css_alloc() failed, offlining didn't happen */
3733 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3734 memcg_offline_kmem(memcg);
8e0a8912 3735}
d6441637 3736#else
0b8f73e1 3737static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3738{
3739 return 0;
3740}
3741static void memcg_offline_kmem(struct mem_cgroup *memcg)
3742{
3743}
3744static void memcg_free_kmem(struct mem_cgroup *memcg)
3745{
3746}
84c07d11 3747#endif /* CONFIG_MEMCG_KMEM */
127424c8 3748
bbec2e15
RG
3749static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3750 unsigned long max)
d6441637 3751{
b313aeee 3752 int ret;
127424c8 3753
bbec2e15
RG
3754 mutex_lock(&memcg_max_mutex);
3755 ret = page_counter_set_max(&memcg->kmem, max);
3756 mutex_unlock(&memcg_max_mutex);
127424c8 3757 return ret;
d6441637 3758}
510fc4e1 3759
bbec2e15 3760static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3761{
3762 int ret;
3763
bbec2e15 3764 mutex_lock(&memcg_max_mutex);
d55f90bf 3765
bbec2e15 3766 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3767 if (ret)
3768 goto out;
3769
0db15298 3770 if (!memcg->tcpmem_active) {
d55f90bf
VD
3771 /*
3772 * The active flag needs to be written after the static_key
3773 * update. This is what guarantees that the socket activation
2d758073
JW
3774 * function is the last one to run. See mem_cgroup_sk_alloc()
3775 * for details, and note that we don't mark any socket as
3776 * belonging to this memcg until that flag is up.
d55f90bf
VD
3777 *
3778 * We need to do this, because static_keys will span multiple
3779 * sites, but we can't control their order. If we mark a socket
3780 * as accounted, but the accounting functions are not patched in
3781 * yet, we'll lose accounting.
3782 *
2d758073 3783 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3784 * because when this value change, the code to process it is not
3785 * patched in yet.
3786 */
3787 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3788 memcg->tcpmem_active = true;
d55f90bf
VD
3789 }
3790out:
bbec2e15 3791 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3792 return ret;
3793}
d55f90bf 3794
628f4235
KH
3795/*
3796 * The user of this function is...
3797 * RES_LIMIT.
3798 */
451af504
TH
3799static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3800 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3801{
451af504 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3803 unsigned long nr_pages;
628f4235
KH
3804 int ret;
3805
451af504 3806 buf = strstrip(buf);
650c5e56 3807 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3808 if (ret)
3809 return ret;
af36f906 3810
3e32cb2e 3811 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3812 case RES_LIMIT:
4b3bde4c
BS
3813 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3814 ret = -EINVAL;
3815 break;
3816 }
3e32cb2e
JW
3817 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3818 case _MEM:
bbec2e15 3819 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3820 break;
3e32cb2e 3821 case _MEMSWAP:
bbec2e15 3822 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3823 break;
3e32cb2e 3824 case _KMEM:
0158115f
MH
3825 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3826 "Please report your usecase to linux-mm@kvack.org if you "
3827 "depend on this functionality.\n");
bbec2e15 3828 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3829 break;
d55f90bf 3830 case _TCP:
bbec2e15 3831 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3832 break;
3e32cb2e 3833 }
296c81d8 3834 break;
3e32cb2e
JW
3835 case RES_SOFT_LIMIT:
3836 memcg->soft_limit = nr_pages;
3837 ret = 0;
628f4235
KH
3838 break;
3839 }
451af504 3840 return ret ?: nbytes;
8cdea7c0
BS
3841}
3842
6770c64e
TH
3843static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3844 size_t nbytes, loff_t off)
c84872e1 3845{
6770c64e 3846 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3847 struct page_counter *counter;
c84872e1 3848
3e32cb2e
JW
3849 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3850 case _MEM:
3851 counter = &memcg->memory;
3852 break;
3853 case _MEMSWAP:
3854 counter = &memcg->memsw;
3855 break;
3856 case _KMEM:
3857 counter = &memcg->kmem;
3858 break;
d55f90bf 3859 case _TCP:
0db15298 3860 counter = &memcg->tcpmem;
d55f90bf 3861 break;
3e32cb2e
JW
3862 default:
3863 BUG();
3864 }
af36f906 3865
3e32cb2e 3866 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3867 case RES_MAX_USAGE:
3e32cb2e 3868 page_counter_reset_watermark(counter);
29f2a4da
PE
3869 break;
3870 case RES_FAILCNT:
3e32cb2e 3871 counter->failcnt = 0;
29f2a4da 3872 break;
3e32cb2e
JW
3873 default:
3874 BUG();
29f2a4da 3875 }
f64c3f54 3876
6770c64e 3877 return nbytes;
c84872e1
PE
3878}
3879
182446d0 3880static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3881 struct cftype *cft)
3882{
182446d0 3883 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3884}
3885
02491447 3886#ifdef CONFIG_MMU
182446d0 3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3888 struct cftype *cft, u64 val)
3889{
182446d0 3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3891
1dfab5ab 3892 if (val & ~MOVE_MASK)
7dc74be0 3893 return -EINVAL;
ee5e8472 3894
7dc74be0 3895 /*
ee5e8472
GC
3896 * No kind of locking is needed in here, because ->can_attach() will
3897 * check this value once in the beginning of the process, and then carry
3898 * on with stale data. This means that changes to this value will only
3899 * affect task migrations starting after the change.
7dc74be0 3900 */
c0ff4b85 3901 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3902 return 0;
3903}
02491447 3904#else
182446d0 3905static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3906 struct cftype *cft, u64 val)
3907{
3908 return -ENOSYS;
3909}
3910#endif
7dc74be0 3911
406eb0c9 3912#ifdef CONFIG_NUMA
113b7dfd
JW
3913
3914#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3915#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3916#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3917
3918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3919 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3920{
867e5e1d 3921 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3922 unsigned long nr = 0;
3923 enum lru_list lru;
3924
3925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3926
3927 for_each_lru(lru) {
3928 if (!(BIT(lru) & lru_mask))
3929 continue;
dd8657b6
SB
3930 if (tree)
3931 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3932 else
3933 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3934 }
3935 return nr;
3936}
3937
3938static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3939 unsigned int lru_mask,
3940 bool tree)
113b7dfd
JW
3941{
3942 unsigned long nr = 0;
3943 enum lru_list lru;
3944
3945 for_each_lru(lru) {
3946 if (!(BIT(lru) & lru_mask))
3947 continue;
dd8657b6
SB
3948 if (tree)
3949 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3950 else
3951 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3952 }
3953 return nr;
3954}
3955
2da8ca82 3956static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3957{
25485de6
GT
3958 struct numa_stat {
3959 const char *name;
3960 unsigned int lru_mask;
3961 };
3962
3963 static const struct numa_stat stats[] = {
3964 { "total", LRU_ALL },
3965 { "file", LRU_ALL_FILE },
3966 { "anon", LRU_ALL_ANON },
3967 { "unevictable", BIT(LRU_UNEVICTABLE) },
3968 };
3969 const struct numa_stat *stat;
406eb0c9 3970 int nid;
aa9694bb 3971 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3972
25485de6 3973 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3974 seq_printf(m, "%s=%lu", stat->name,
3975 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3976 false));
3977 for_each_node_state(nid, N_MEMORY)
3978 seq_printf(m, " N%d=%lu", nid,
3979 mem_cgroup_node_nr_lru_pages(memcg, nid,
3980 stat->lru_mask, false));
25485de6 3981 seq_putc(m, '\n');
406eb0c9 3982 }
406eb0c9 3983
071aee13 3984 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3985
3986 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3987 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3988 true));
3989 for_each_node_state(nid, N_MEMORY)
3990 seq_printf(m, " N%d=%lu", nid,
3991 mem_cgroup_node_nr_lru_pages(memcg, nid,
3992 stat->lru_mask, true));
071aee13 3993 seq_putc(m, '\n');
406eb0c9 3994 }
406eb0c9 3995
406eb0c9
YH
3996 return 0;
3997}
3998#endif /* CONFIG_NUMA */
3999
c8713d0b 4000static const unsigned int memcg1_stats[] = {
0d1c2072 4001 NR_FILE_PAGES,
be5d0a74 4002 NR_ANON_MAPPED,
468c3982
JW
4003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004 NR_ANON_THPS,
4005#endif
c8713d0b
JW
4006 NR_SHMEM,
4007 NR_FILE_MAPPED,
4008 NR_FILE_DIRTY,
4009 NR_WRITEBACK,
4010 MEMCG_SWAP,
4011};
4012
4013static const char *const memcg1_stat_names[] = {
4014 "cache",
4015 "rss",
468c3982 4016#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4017 "rss_huge",
468c3982 4018#endif
c8713d0b
JW
4019 "shmem",
4020 "mapped_file",
4021 "dirty",
4022 "writeback",
4023 "swap",
4024};
4025
df0e53d0 4026/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4027static const unsigned int memcg1_events[] = {
df0e53d0
JW
4028 PGPGIN,
4029 PGPGOUT,
4030 PGFAULT,
4031 PGMAJFAULT,
4032};
4033
2da8ca82 4034static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4035{
aa9694bb 4036 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4037 unsigned long memory, memsw;
af7c4b0e
JW
4038 struct mem_cgroup *mi;
4039 unsigned int i;
406eb0c9 4040
71cd3113 4041 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4042
71cd3113 4043 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4044 unsigned long nr;
4045
71cd3113 4046 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4047 continue;
468c3982
JW
4048 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4049#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4050 if (memcg1_stats[i] == NR_ANON_THPS)
4051 nr *= HPAGE_PMD_NR;
4052#endif
4053 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4054 }
7b854121 4055
df0e53d0 4056 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4057 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4058 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4059
4060 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4061 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4062 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4063 PAGE_SIZE);
af7c4b0e 4064
14067bb3 4065 /* Hierarchical information */
3e32cb2e
JW
4066 memory = memsw = PAGE_COUNTER_MAX;
4067 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4068 memory = min(memory, READ_ONCE(mi->memory.max));
4069 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4070 }
3e32cb2e
JW
4071 seq_printf(m, "hierarchical_memory_limit %llu\n",
4072 (u64)memory * PAGE_SIZE);
7941d214 4073 if (do_memsw_account())
3e32cb2e
JW
4074 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4075 (u64)memsw * PAGE_SIZE);
7f016ee8 4076
8de7ecc6 4077 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4078 unsigned long nr;
4079
71cd3113 4080 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4081 continue;
7de2e9f1 4082 nr = memcg_page_state(memcg, memcg1_stats[i]);
4083#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4084 if (memcg1_stats[i] == NR_ANON_THPS)
4085 nr *= HPAGE_PMD_NR;
4086#endif
8de7ecc6 4087 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4088 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4089 }
4090
8de7ecc6 4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4092 seq_printf(m, "total_%s %llu\n",
4093 vm_event_name(memcg1_events[i]),
dd923990 4094 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4095
8de7ecc6 4096 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4097 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4098 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4099 PAGE_SIZE);
14067bb3 4100
7f016ee8 4101#ifdef CONFIG_DEBUG_VM
7f016ee8 4102 {
ef8f2327
MG
4103 pg_data_t *pgdat;
4104 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4105 unsigned long anon_cost = 0;
4106 unsigned long file_cost = 0;
7f016ee8 4107
ef8f2327
MG
4108 for_each_online_pgdat(pgdat) {
4109 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4110
1431d4d1
JW
4111 anon_cost += mz->lruvec.anon_cost;
4112 file_cost += mz->lruvec.file_cost;
ef8f2327 4113 }
1431d4d1
JW
4114 seq_printf(m, "anon_cost %lu\n", anon_cost);
4115 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4116 }
4117#endif
4118
d2ceb9b7
KH
4119 return 0;
4120}
4121
182446d0
TH
4122static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4123 struct cftype *cft)
a7885eb8 4124{
182446d0 4125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4126
1f4c025b 4127 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4128}
4129
182446d0
TH
4130static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4131 struct cftype *cft, u64 val)
a7885eb8 4132{
182446d0 4133 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4134
3dae7fec 4135 if (val > 100)
a7885eb8
KM
4136 return -EINVAL;
4137
14208b0e 4138 if (css->parent)
3dae7fec
JW
4139 memcg->swappiness = val;
4140 else
4141 vm_swappiness = val;
068b38c1 4142
a7885eb8
KM
4143 return 0;
4144}
4145
2e72b634
KS
4146static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4147{
4148 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4149 unsigned long usage;
2e72b634
KS
4150 int i;
4151
4152 rcu_read_lock();
4153 if (!swap)
2c488db2 4154 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4155 else
2c488db2 4156 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4157
4158 if (!t)
4159 goto unlock;
4160
ce00a967 4161 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4162
4163 /*
748dad36 4164 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4165 * If it's not true, a threshold was crossed after last
4166 * call of __mem_cgroup_threshold().
4167 */
5407a562 4168 i = t->current_threshold;
2e72b634
KS
4169
4170 /*
4171 * Iterate backward over array of thresholds starting from
4172 * current_threshold and check if a threshold is crossed.
4173 * If none of thresholds below usage is crossed, we read
4174 * only one element of the array here.
4175 */
4176 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4177 eventfd_signal(t->entries[i].eventfd, 1);
4178
4179 /* i = current_threshold + 1 */
4180 i++;
4181
4182 /*
4183 * Iterate forward over array of thresholds starting from
4184 * current_threshold+1 and check if a threshold is crossed.
4185 * If none of thresholds above usage is crossed, we read
4186 * only one element of the array here.
4187 */
4188 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4189 eventfd_signal(t->entries[i].eventfd, 1);
4190
4191 /* Update current_threshold */
5407a562 4192 t->current_threshold = i - 1;
2e72b634
KS
4193unlock:
4194 rcu_read_unlock();
4195}
4196
4197static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4198{
ad4ca5f4
KS
4199 while (memcg) {
4200 __mem_cgroup_threshold(memcg, false);
7941d214 4201 if (do_memsw_account())
ad4ca5f4
KS
4202 __mem_cgroup_threshold(memcg, true);
4203
4204 memcg = parent_mem_cgroup(memcg);
4205 }
2e72b634
KS
4206}
4207
4208static int compare_thresholds(const void *a, const void *b)
4209{
4210 const struct mem_cgroup_threshold *_a = a;
4211 const struct mem_cgroup_threshold *_b = b;
4212
2bff24a3
GT
4213 if (_a->threshold > _b->threshold)
4214 return 1;
4215
4216 if (_a->threshold < _b->threshold)
4217 return -1;
4218
4219 return 0;
2e72b634
KS
4220}
4221
c0ff4b85 4222static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4223{
4224 struct mem_cgroup_eventfd_list *ev;
4225
2bcf2e92
MH
4226 spin_lock(&memcg_oom_lock);
4227
c0ff4b85 4228 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4229 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4230
4231 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4232 return 0;
4233}
4234
c0ff4b85 4235static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4236{
7d74b06f
KH
4237 struct mem_cgroup *iter;
4238
c0ff4b85 4239 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4240 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4241}
4242
59b6f873 4243static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4244 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4245{
2c488db2
KS
4246 struct mem_cgroup_thresholds *thresholds;
4247 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4248 unsigned long threshold;
4249 unsigned long usage;
2c488db2 4250 int i, size, ret;
2e72b634 4251
650c5e56 4252 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4253 if (ret)
4254 return ret;
4255
4256 mutex_lock(&memcg->thresholds_lock);
2c488db2 4257
05b84301 4258 if (type == _MEM) {
2c488db2 4259 thresholds = &memcg->thresholds;
ce00a967 4260 usage = mem_cgroup_usage(memcg, false);
05b84301 4261 } else if (type == _MEMSWAP) {
2c488db2 4262 thresholds = &memcg->memsw_thresholds;
ce00a967 4263 usage = mem_cgroup_usage(memcg, true);
05b84301 4264 } else
2e72b634
KS
4265 BUG();
4266
2e72b634 4267 /* Check if a threshold crossed before adding a new one */
2c488db2 4268 if (thresholds->primary)
2e72b634
KS
4269 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4270
2c488db2 4271 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4272
4273 /* Allocate memory for new array of thresholds */
67b8046f 4274 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4275 if (!new) {
2e72b634
KS
4276 ret = -ENOMEM;
4277 goto unlock;
4278 }
2c488db2 4279 new->size = size;
2e72b634
KS
4280
4281 /* Copy thresholds (if any) to new array */
e90342e6
GS
4282 if (thresholds->primary)
4283 memcpy(new->entries, thresholds->primary->entries,
4284 flex_array_size(new, entries, size - 1));
2c488db2 4285
2e72b634 4286 /* Add new threshold */
2c488db2
KS
4287 new->entries[size - 1].eventfd = eventfd;
4288 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4289
4290 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4291 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4292 compare_thresholds, NULL);
4293
4294 /* Find current threshold */
2c488db2 4295 new->current_threshold = -1;
2e72b634 4296 for (i = 0; i < size; i++) {
748dad36 4297 if (new->entries[i].threshold <= usage) {
2e72b634 4298 /*
2c488db2
KS
4299 * new->current_threshold will not be used until
4300 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4301 * it here.
4302 */
2c488db2 4303 ++new->current_threshold;
748dad36
SZ
4304 } else
4305 break;
2e72b634
KS
4306 }
4307
2c488db2
KS
4308 /* Free old spare buffer and save old primary buffer as spare */
4309 kfree(thresholds->spare);
4310 thresholds->spare = thresholds->primary;
4311
4312 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4313
907860ed 4314 /* To be sure that nobody uses thresholds */
2e72b634
KS
4315 synchronize_rcu();
4316
2e72b634
KS
4317unlock:
4318 mutex_unlock(&memcg->thresholds_lock);
4319
4320 return ret;
4321}
4322
59b6f873 4323static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4324 struct eventfd_ctx *eventfd, const char *args)
4325{
59b6f873 4326 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4327}
4328
59b6f873 4329static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4330 struct eventfd_ctx *eventfd, const char *args)
4331{
59b6f873 4332 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4333}
4334
59b6f873 4335static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4336 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4337{
2c488db2
KS
4338 struct mem_cgroup_thresholds *thresholds;
4339 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4340 unsigned long usage;
7d36665a 4341 int i, j, size, entries;
2e72b634
KS
4342
4343 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4344
4345 if (type == _MEM) {
2c488db2 4346 thresholds = &memcg->thresholds;
ce00a967 4347 usage = mem_cgroup_usage(memcg, false);
05b84301 4348 } else if (type == _MEMSWAP) {
2c488db2 4349 thresholds = &memcg->memsw_thresholds;
ce00a967 4350 usage = mem_cgroup_usage(memcg, true);
05b84301 4351 } else
2e72b634
KS
4352 BUG();
4353
371528ca
AV
4354 if (!thresholds->primary)
4355 goto unlock;
4356
2e72b634
KS
4357 /* Check if a threshold crossed before removing */
4358 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4359
4360 /* Calculate new number of threshold */
7d36665a 4361 size = entries = 0;
2c488db2
KS
4362 for (i = 0; i < thresholds->primary->size; i++) {
4363 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4364 size++;
7d36665a
CX
4365 else
4366 entries++;
2e72b634
KS
4367 }
4368
2c488db2 4369 new = thresholds->spare;
907860ed 4370
7d36665a
CX
4371 /* If no items related to eventfd have been cleared, nothing to do */
4372 if (!entries)
4373 goto unlock;
4374
2e72b634
KS
4375 /* Set thresholds array to NULL if we don't have thresholds */
4376 if (!size) {
2c488db2
KS
4377 kfree(new);
4378 new = NULL;
907860ed 4379 goto swap_buffers;
2e72b634
KS
4380 }
4381
2c488db2 4382 new->size = size;
2e72b634
KS
4383
4384 /* Copy thresholds and find current threshold */
2c488db2
KS
4385 new->current_threshold = -1;
4386 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4387 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4388 continue;
4389
2c488db2 4390 new->entries[j] = thresholds->primary->entries[i];
748dad36 4391 if (new->entries[j].threshold <= usage) {
2e72b634 4392 /*
2c488db2 4393 * new->current_threshold will not be used
2e72b634
KS
4394 * until rcu_assign_pointer(), so it's safe to increment
4395 * it here.
4396 */
2c488db2 4397 ++new->current_threshold;
2e72b634
KS
4398 }
4399 j++;
4400 }
4401
907860ed 4402swap_buffers:
2c488db2
KS
4403 /* Swap primary and spare array */
4404 thresholds->spare = thresholds->primary;
8c757763 4405
2c488db2 4406 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4407
907860ed 4408 /* To be sure that nobody uses thresholds */
2e72b634 4409 synchronize_rcu();
6611d8d7
MC
4410
4411 /* If all events are unregistered, free the spare array */
4412 if (!new) {
4413 kfree(thresholds->spare);
4414 thresholds->spare = NULL;
4415 }
371528ca 4416unlock:
2e72b634 4417 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4418}
c1e862c1 4419
59b6f873 4420static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4421 struct eventfd_ctx *eventfd)
4422{
59b6f873 4423 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4424}
4425
59b6f873 4426static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4427 struct eventfd_ctx *eventfd)
4428{
59b6f873 4429 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4430}
4431
59b6f873 4432static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4433 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4434{
9490ff27 4435 struct mem_cgroup_eventfd_list *event;
9490ff27 4436
9490ff27
KH
4437 event = kmalloc(sizeof(*event), GFP_KERNEL);
4438 if (!event)
4439 return -ENOMEM;
4440
1af8efe9 4441 spin_lock(&memcg_oom_lock);
9490ff27
KH
4442
4443 event->eventfd = eventfd;
4444 list_add(&event->list, &memcg->oom_notify);
4445
4446 /* already in OOM ? */
c2b42d3c 4447 if (memcg->under_oom)
9490ff27 4448 eventfd_signal(eventfd, 1);
1af8efe9 4449 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4450
4451 return 0;
4452}
4453
59b6f873 4454static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4455 struct eventfd_ctx *eventfd)
9490ff27 4456{
9490ff27 4457 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4458
1af8efe9 4459 spin_lock(&memcg_oom_lock);
9490ff27 4460
c0ff4b85 4461 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4462 if (ev->eventfd == eventfd) {
4463 list_del(&ev->list);
4464 kfree(ev);
4465 }
4466 }
4467
1af8efe9 4468 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4469}
4470
2da8ca82 4471static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4472{
aa9694bb 4473 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4474
791badbd 4475 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4476 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4477 seq_printf(sf, "oom_kill %lu\n",
4478 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4479 return 0;
4480}
4481
182446d0 4482static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4483 struct cftype *cft, u64 val)
4484{
182446d0 4485 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4486
4487 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4488 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4489 return -EINVAL;
4490
c0ff4b85 4491 memcg->oom_kill_disable = val;
4d845ebf 4492 if (!val)
c0ff4b85 4493 memcg_oom_recover(memcg);
3dae7fec 4494
3c11ecf4
KH
4495 return 0;
4496}
4497
52ebea74
TH
4498#ifdef CONFIG_CGROUP_WRITEBACK
4499
3a8e9ac8
TH
4500#include <trace/events/writeback.h>
4501
841710aa
TH
4502static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4503{
4504 return wb_domain_init(&memcg->cgwb_domain, gfp);
4505}
4506
4507static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4508{
4509 wb_domain_exit(&memcg->cgwb_domain);
4510}
4511
2529bb3a
TH
4512static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4513{
4514 wb_domain_size_changed(&memcg->cgwb_domain);
4515}
4516
841710aa
TH
4517struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4518{
4519 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4520
4521 if (!memcg->css.parent)
4522 return NULL;
4523
4524 return &memcg->cgwb_domain;
4525}
4526
0b3d6e6f
GT
4527/*
4528 * idx can be of type enum memcg_stat_item or node_stat_item.
4529 * Keep in sync with memcg_exact_page().
4530 */
4531static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4532{
871789d4 4533 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4534 int cpu;
4535
4536 for_each_online_cpu(cpu)
871789d4 4537 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4538 if (x < 0)
4539 x = 0;
4540 return x;
4541}
4542
c2aa723a
TH
4543/**
4544 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4545 * @wb: bdi_writeback in question
c5edf9cd
TH
4546 * @pfilepages: out parameter for number of file pages
4547 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4548 * @pdirty: out parameter for number of dirty pages
4549 * @pwriteback: out parameter for number of pages under writeback
4550 *
c5edf9cd
TH
4551 * Determine the numbers of file, headroom, dirty, and writeback pages in
4552 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4553 * is a bit more involved.
c2aa723a 4554 *
c5edf9cd
TH
4555 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4556 * headroom is calculated as the lowest headroom of itself and the
4557 * ancestors. Note that this doesn't consider the actual amount of
4558 * available memory in the system. The caller should further cap
4559 * *@pheadroom accordingly.
c2aa723a 4560 */
c5edf9cd
TH
4561void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4562 unsigned long *pheadroom, unsigned long *pdirty,
4563 unsigned long *pwriteback)
c2aa723a
TH
4564{
4565 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4566 struct mem_cgroup *parent;
c2aa723a 4567
0b3d6e6f 4568 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4569
0b3d6e6f 4570 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4571 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4572 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4573 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4574
c2aa723a 4575 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4576 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4577 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4578 unsigned long used = page_counter_read(&memcg->memory);
4579
c5edf9cd 4580 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4581 memcg = parent;
4582 }
c2aa723a
TH
4583}
4584
97b27821
TH
4585/*
4586 * Foreign dirty flushing
4587 *
4588 * There's an inherent mismatch between memcg and writeback. The former
4589 * trackes ownership per-page while the latter per-inode. This was a
4590 * deliberate design decision because honoring per-page ownership in the
4591 * writeback path is complicated, may lead to higher CPU and IO overheads
4592 * and deemed unnecessary given that write-sharing an inode across
4593 * different cgroups isn't a common use-case.
4594 *
4595 * Combined with inode majority-writer ownership switching, this works well
4596 * enough in most cases but there are some pathological cases. For
4597 * example, let's say there are two cgroups A and B which keep writing to
4598 * different but confined parts of the same inode. B owns the inode and
4599 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4600 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4601 * triggering background writeback. A will be slowed down without a way to
4602 * make writeback of the dirty pages happen.
4603 *
4604 * Conditions like the above can lead to a cgroup getting repatedly and
4605 * severely throttled after making some progress after each
4606 * dirty_expire_interval while the underyling IO device is almost
4607 * completely idle.
4608 *
4609 * Solving this problem completely requires matching the ownership tracking
4610 * granularities between memcg and writeback in either direction. However,
4611 * the more egregious behaviors can be avoided by simply remembering the
4612 * most recent foreign dirtying events and initiating remote flushes on
4613 * them when local writeback isn't enough to keep the memory clean enough.
4614 *
4615 * The following two functions implement such mechanism. When a foreign
4616 * page - a page whose memcg and writeback ownerships don't match - is
4617 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4618 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4619 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4620 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4621 * foreign bdi_writebacks which haven't expired. Both the numbers of
4622 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4623 * limited to MEMCG_CGWB_FRN_CNT.
4624 *
4625 * The mechanism only remembers IDs and doesn't hold any object references.
4626 * As being wrong occasionally doesn't matter, updates and accesses to the
4627 * records are lockless and racy.
4628 */
4629void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4630 struct bdi_writeback *wb)
4631{
4632 struct mem_cgroup *memcg = page->mem_cgroup;
4633 struct memcg_cgwb_frn *frn;
4634 u64 now = get_jiffies_64();
4635 u64 oldest_at = now;
4636 int oldest = -1;
4637 int i;
4638
3a8e9ac8
TH
4639 trace_track_foreign_dirty(page, wb);
4640
97b27821
TH
4641 /*
4642 * Pick the slot to use. If there is already a slot for @wb, keep
4643 * using it. If not replace the oldest one which isn't being
4644 * written out.
4645 */
4646 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4647 frn = &memcg->cgwb_frn[i];
4648 if (frn->bdi_id == wb->bdi->id &&
4649 frn->memcg_id == wb->memcg_css->id)
4650 break;
4651 if (time_before64(frn->at, oldest_at) &&
4652 atomic_read(&frn->done.cnt) == 1) {
4653 oldest = i;
4654 oldest_at = frn->at;
4655 }
4656 }
4657
4658 if (i < MEMCG_CGWB_FRN_CNT) {
4659 /*
4660 * Re-using an existing one. Update timestamp lazily to
4661 * avoid making the cacheline hot. We want them to be
4662 * reasonably up-to-date and significantly shorter than
4663 * dirty_expire_interval as that's what expires the record.
4664 * Use the shorter of 1s and dirty_expire_interval / 8.
4665 */
4666 unsigned long update_intv =
4667 min_t(unsigned long, HZ,
4668 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4669
4670 if (time_before64(frn->at, now - update_intv))
4671 frn->at = now;
4672 } else if (oldest >= 0) {
4673 /* replace the oldest free one */
4674 frn = &memcg->cgwb_frn[oldest];
4675 frn->bdi_id = wb->bdi->id;
4676 frn->memcg_id = wb->memcg_css->id;
4677 frn->at = now;
4678 }
4679}
4680
4681/* issue foreign writeback flushes for recorded foreign dirtying events */
4682void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4683{
4684 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4685 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4686 u64 now = jiffies_64;
4687 int i;
4688
4689 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4690 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4691
4692 /*
4693 * If the record is older than dirty_expire_interval,
4694 * writeback on it has already started. No need to kick it
4695 * off again. Also, don't start a new one if there's
4696 * already one in flight.
4697 */
4698 if (time_after64(frn->at, now - intv) &&
4699 atomic_read(&frn->done.cnt) == 1) {
4700 frn->at = 0;
3a8e9ac8 4701 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4702 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4703 WB_REASON_FOREIGN_FLUSH,
4704 &frn->done);
4705 }
4706 }
4707}
4708
841710aa
TH
4709#else /* CONFIG_CGROUP_WRITEBACK */
4710
4711static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4712{
4713 return 0;
4714}
4715
4716static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4717{
4718}
4719
2529bb3a
TH
4720static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4721{
4722}
4723
52ebea74
TH
4724#endif /* CONFIG_CGROUP_WRITEBACK */
4725
3bc942f3
TH
4726/*
4727 * DO NOT USE IN NEW FILES.
4728 *
4729 * "cgroup.event_control" implementation.
4730 *
4731 * This is way over-engineered. It tries to support fully configurable
4732 * events for each user. Such level of flexibility is completely
4733 * unnecessary especially in the light of the planned unified hierarchy.
4734 *
4735 * Please deprecate this and replace with something simpler if at all
4736 * possible.
4737 */
4738
79bd9814
TH
4739/*
4740 * Unregister event and free resources.
4741 *
4742 * Gets called from workqueue.
4743 */
3bc942f3 4744static void memcg_event_remove(struct work_struct *work)
79bd9814 4745{
3bc942f3
TH
4746 struct mem_cgroup_event *event =
4747 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4748 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4749
4750 remove_wait_queue(event->wqh, &event->wait);
4751
59b6f873 4752 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4753
4754 /* Notify userspace the event is going away. */
4755 eventfd_signal(event->eventfd, 1);
4756
4757 eventfd_ctx_put(event->eventfd);
4758 kfree(event);
59b6f873 4759 css_put(&memcg->css);
79bd9814
TH
4760}
4761
4762/*
a9a08845 4763 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4764 *
4765 * Called with wqh->lock held and interrupts disabled.
4766 */
ac6424b9 4767static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4768 int sync, void *key)
79bd9814 4769{
3bc942f3
TH
4770 struct mem_cgroup_event *event =
4771 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4772 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4773 __poll_t flags = key_to_poll(key);
79bd9814 4774
a9a08845 4775 if (flags & EPOLLHUP) {
79bd9814
TH
4776 /*
4777 * If the event has been detached at cgroup removal, we
4778 * can simply return knowing the other side will cleanup
4779 * for us.
4780 *
4781 * We can't race against event freeing since the other
4782 * side will require wqh->lock via remove_wait_queue(),
4783 * which we hold.
4784 */
fba94807 4785 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4786 if (!list_empty(&event->list)) {
4787 list_del_init(&event->list);
4788 /*
4789 * We are in atomic context, but cgroup_event_remove()
4790 * may sleep, so we have to call it in workqueue.
4791 */
4792 schedule_work(&event->remove);
4793 }
fba94807 4794 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4795 }
4796
4797 return 0;
4798}
4799
3bc942f3 4800static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4801 wait_queue_head_t *wqh, poll_table *pt)
4802{
3bc942f3
TH
4803 struct mem_cgroup_event *event =
4804 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4805
4806 event->wqh = wqh;
4807 add_wait_queue(wqh, &event->wait);
4808}
4809
4810/*
3bc942f3
TH
4811 * DO NOT USE IN NEW FILES.
4812 *
79bd9814
TH
4813 * Parse input and register new cgroup event handler.
4814 *
4815 * Input must be in format '<event_fd> <control_fd> <args>'.
4816 * Interpretation of args is defined by control file implementation.
4817 */
451af504
TH
4818static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4819 char *buf, size_t nbytes, loff_t off)
79bd9814 4820{
451af504 4821 struct cgroup_subsys_state *css = of_css(of);
fba94807 4822 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4823 struct mem_cgroup_event *event;
79bd9814
TH
4824 struct cgroup_subsys_state *cfile_css;
4825 unsigned int efd, cfd;
4826 struct fd efile;
4827 struct fd cfile;
fba94807 4828 const char *name;
79bd9814
TH
4829 char *endp;
4830 int ret;
4831
451af504
TH
4832 buf = strstrip(buf);
4833
4834 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4835 if (*endp != ' ')
4836 return -EINVAL;
451af504 4837 buf = endp + 1;
79bd9814 4838
451af504 4839 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4840 if ((*endp != ' ') && (*endp != '\0'))
4841 return -EINVAL;
451af504 4842 buf = endp + 1;
79bd9814
TH
4843
4844 event = kzalloc(sizeof(*event), GFP_KERNEL);
4845 if (!event)
4846 return -ENOMEM;
4847
59b6f873 4848 event->memcg = memcg;
79bd9814 4849 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4850 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4851 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4852 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4853
4854 efile = fdget(efd);
4855 if (!efile.file) {
4856 ret = -EBADF;
4857 goto out_kfree;
4858 }
4859
4860 event->eventfd = eventfd_ctx_fileget(efile.file);
4861 if (IS_ERR(event->eventfd)) {
4862 ret = PTR_ERR(event->eventfd);
4863 goto out_put_efile;
4864 }
4865
4866 cfile = fdget(cfd);
4867 if (!cfile.file) {
4868 ret = -EBADF;
4869 goto out_put_eventfd;
4870 }
4871
4872 /* the process need read permission on control file */
4873 /* AV: shouldn't we check that it's been opened for read instead? */
4874 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4875 if (ret < 0)
4876 goto out_put_cfile;
4877
fba94807
TH
4878 /*
4879 * Determine the event callbacks and set them in @event. This used
4880 * to be done via struct cftype but cgroup core no longer knows
4881 * about these events. The following is crude but the whole thing
4882 * is for compatibility anyway.
3bc942f3
TH
4883 *
4884 * DO NOT ADD NEW FILES.
fba94807 4885 */
b583043e 4886 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4887
4888 if (!strcmp(name, "memory.usage_in_bytes")) {
4889 event->register_event = mem_cgroup_usage_register_event;
4890 event->unregister_event = mem_cgroup_usage_unregister_event;
4891 } else if (!strcmp(name, "memory.oom_control")) {
4892 event->register_event = mem_cgroup_oom_register_event;
4893 event->unregister_event = mem_cgroup_oom_unregister_event;
4894 } else if (!strcmp(name, "memory.pressure_level")) {
4895 event->register_event = vmpressure_register_event;
4896 event->unregister_event = vmpressure_unregister_event;
4897 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4898 event->register_event = memsw_cgroup_usage_register_event;
4899 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4900 } else {
4901 ret = -EINVAL;
4902 goto out_put_cfile;
4903 }
4904
79bd9814 4905 /*
b5557c4c
TH
4906 * Verify @cfile should belong to @css. Also, remaining events are
4907 * automatically removed on cgroup destruction but the removal is
4908 * asynchronous, so take an extra ref on @css.
79bd9814 4909 */
b583043e 4910 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4911 &memory_cgrp_subsys);
79bd9814 4912 ret = -EINVAL;
5a17f543 4913 if (IS_ERR(cfile_css))
79bd9814 4914 goto out_put_cfile;
5a17f543
TH
4915 if (cfile_css != css) {
4916 css_put(cfile_css);
79bd9814 4917 goto out_put_cfile;
5a17f543 4918 }
79bd9814 4919
451af504 4920 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4921 if (ret)
4922 goto out_put_css;
4923
9965ed17 4924 vfs_poll(efile.file, &event->pt);
79bd9814 4925
fba94807
TH
4926 spin_lock(&memcg->event_list_lock);
4927 list_add(&event->list, &memcg->event_list);
4928 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4929
4930 fdput(cfile);
4931 fdput(efile);
4932
451af504 4933 return nbytes;
79bd9814
TH
4934
4935out_put_css:
b5557c4c 4936 css_put(css);
79bd9814
TH
4937out_put_cfile:
4938 fdput(cfile);
4939out_put_eventfd:
4940 eventfd_ctx_put(event->eventfd);
4941out_put_efile:
4942 fdput(efile);
4943out_kfree:
4944 kfree(event);
4945
4946 return ret;
4947}
4948
241994ed 4949static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4950 {
0eea1030 4951 .name = "usage_in_bytes",
8c7c6e34 4952 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4953 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4954 },
c84872e1
PE
4955 {
4956 .name = "max_usage_in_bytes",
8c7c6e34 4957 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4958 .write = mem_cgroup_reset,
791badbd 4959 .read_u64 = mem_cgroup_read_u64,
c84872e1 4960 },
8cdea7c0 4961 {
0eea1030 4962 .name = "limit_in_bytes",
8c7c6e34 4963 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4964 .write = mem_cgroup_write,
791badbd 4965 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4966 },
296c81d8
BS
4967 {
4968 .name = "soft_limit_in_bytes",
4969 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4970 .write = mem_cgroup_write,
791badbd 4971 .read_u64 = mem_cgroup_read_u64,
296c81d8 4972 },
8cdea7c0
BS
4973 {
4974 .name = "failcnt",
8c7c6e34 4975 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4976 .write = mem_cgroup_reset,
791badbd 4977 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4978 },
d2ceb9b7
KH
4979 {
4980 .name = "stat",
2da8ca82 4981 .seq_show = memcg_stat_show,
d2ceb9b7 4982 },
c1e862c1
KH
4983 {
4984 .name = "force_empty",
6770c64e 4985 .write = mem_cgroup_force_empty_write,
c1e862c1 4986 },
18f59ea7
BS
4987 {
4988 .name = "use_hierarchy",
4989 .write_u64 = mem_cgroup_hierarchy_write,
4990 .read_u64 = mem_cgroup_hierarchy_read,
4991 },
79bd9814 4992 {
3bc942f3 4993 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4994 .write = memcg_write_event_control,
7dbdb199 4995 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4996 },
a7885eb8
KM
4997 {
4998 .name = "swappiness",
4999 .read_u64 = mem_cgroup_swappiness_read,
5000 .write_u64 = mem_cgroup_swappiness_write,
5001 },
7dc74be0
DN
5002 {
5003 .name = "move_charge_at_immigrate",
5004 .read_u64 = mem_cgroup_move_charge_read,
5005 .write_u64 = mem_cgroup_move_charge_write,
5006 },
9490ff27
KH
5007 {
5008 .name = "oom_control",
2da8ca82 5009 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5010 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5011 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5012 },
70ddf637
AV
5013 {
5014 .name = "pressure_level",
70ddf637 5015 },
406eb0c9
YH
5016#ifdef CONFIG_NUMA
5017 {
5018 .name = "numa_stat",
2da8ca82 5019 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5020 },
5021#endif
510fc4e1
GC
5022 {
5023 .name = "kmem.limit_in_bytes",
5024 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5025 .write = mem_cgroup_write,
791badbd 5026 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5027 },
5028 {
5029 .name = "kmem.usage_in_bytes",
5030 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5031 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5032 },
5033 {
5034 .name = "kmem.failcnt",
5035 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5036 .write = mem_cgroup_reset,
791badbd 5037 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5038 },
5039 {
5040 .name = "kmem.max_usage_in_bytes",
5041 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5042 .write = mem_cgroup_reset,
791badbd 5043 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5044 },
a87425a3
YS
5045#if defined(CONFIG_MEMCG_KMEM) && \
5046 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5047 {
5048 .name = "kmem.slabinfo",
b047501c 5049 .seq_show = memcg_slab_show,
749c5415
GC
5050 },
5051#endif
d55f90bf
VD
5052 {
5053 .name = "kmem.tcp.limit_in_bytes",
5054 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5055 .write = mem_cgroup_write,
5056 .read_u64 = mem_cgroup_read_u64,
5057 },
5058 {
5059 .name = "kmem.tcp.usage_in_bytes",
5060 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.tcp.failcnt",
5065 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5066 .write = mem_cgroup_reset,
5067 .read_u64 = mem_cgroup_read_u64,
5068 },
5069 {
5070 .name = "kmem.tcp.max_usage_in_bytes",
5071 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5072 .write = mem_cgroup_reset,
5073 .read_u64 = mem_cgroup_read_u64,
5074 },
6bc10349 5075 { }, /* terminate */
af36f906 5076};
8c7c6e34 5077
73f576c0
JW
5078/*
5079 * Private memory cgroup IDR
5080 *
5081 * Swap-out records and page cache shadow entries need to store memcg
5082 * references in constrained space, so we maintain an ID space that is
5083 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5084 * memory-controlled cgroups to 64k.
5085 *
b8f2935f 5086 * However, there usually are many references to the offline CSS after
73f576c0
JW
5087 * the cgroup has been destroyed, such as page cache or reclaimable
5088 * slab objects, that don't need to hang on to the ID. We want to keep
5089 * those dead CSS from occupying IDs, or we might quickly exhaust the
5090 * relatively small ID space and prevent the creation of new cgroups
5091 * even when there are much fewer than 64k cgroups - possibly none.
5092 *
5093 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5094 * be freed and recycled when it's no longer needed, which is usually
5095 * when the CSS is offlined.
5096 *
5097 * The only exception to that are records of swapped out tmpfs/shmem
5098 * pages that need to be attributed to live ancestors on swapin. But
5099 * those references are manageable from userspace.
5100 */
5101
5102static DEFINE_IDR(mem_cgroup_idr);
5103
7e97de0b
KT
5104static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5105{
5106 if (memcg->id.id > 0) {
5107 idr_remove(&mem_cgroup_idr, memcg->id.id);
5108 memcg->id.id = 0;
5109 }
5110}
5111
c1514c0a
VF
5112static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5113 unsigned int n)
73f576c0 5114{
1c2d479a 5115 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5116}
5117
615d66c3 5118static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5119{
1c2d479a 5120 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5121 mem_cgroup_id_remove(memcg);
73f576c0
JW
5122
5123 /* Memcg ID pins CSS */
5124 css_put(&memcg->css);
5125 }
5126}
5127
615d66c3
VD
5128static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5129{
5130 mem_cgroup_id_put_many(memcg, 1);
5131}
5132
73f576c0
JW
5133/**
5134 * mem_cgroup_from_id - look up a memcg from a memcg id
5135 * @id: the memcg id to look up
5136 *
5137 * Caller must hold rcu_read_lock().
5138 */
5139struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5140{
5141 WARN_ON_ONCE(!rcu_read_lock_held());
5142 return idr_find(&mem_cgroup_idr, id);
5143}
5144
ef8f2327 5145static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5146{
5147 struct mem_cgroup_per_node *pn;
ef8f2327 5148 int tmp = node;
1ecaab2b
KH
5149 /*
5150 * This routine is called against possible nodes.
5151 * But it's BUG to call kmalloc() against offline node.
5152 *
5153 * TODO: this routine can waste much memory for nodes which will
5154 * never be onlined. It's better to use memory hotplug callback
5155 * function.
5156 */
41e3355d
KH
5157 if (!node_state(node, N_NORMAL_MEMORY))
5158 tmp = -1;
17295c88 5159 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5160 if (!pn)
5161 return 1;
1ecaab2b 5162
3e38e0aa
RG
5163 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5164 GFP_KERNEL_ACCOUNT);
815744d7
JW
5165 if (!pn->lruvec_stat_local) {
5166 kfree(pn);
5167 return 1;
5168 }
5169
3e38e0aa
RG
5170 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5171 GFP_KERNEL_ACCOUNT);
a983b5eb 5172 if (!pn->lruvec_stat_cpu) {
815744d7 5173 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5174 kfree(pn);
5175 return 1;
5176 }
5177
ef8f2327
MG
5178 lruvec_init(&pn->lruvec);
5179 pn->usage_in_excess = 0;
5180 pn->on_tree = false;
5181 pn->memcg = memcg;
5182
54f72fe0 5183 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5184 return 0;
5185}
5186
ef8f2327 5187static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5188{
00f3ca2c
JW
5189 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5190
4eaf431f
MH
5191 if (!pn)
5192 return;
5193
a983b5eb 5194 free_percpu(pn->lruvec_stat_cpu);
815744d7 5195 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5196 kfree(pn);
1ecaab2b
KH
5197}
5198
40e952f9 5199static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5200{
c8b2a36f 5201 int node;
59927fb9 5202
c8b2a36f 5203 for_each_node(node)
ef8f2327 5204 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5205 free_percpu(memcg->vmstats_percpu);
815744d7 5206 free_percpu(memcg->vmstats_local);
8ff69e2c 5207 kfree(memcg);
59927fb9 5208}
3afe36b1 5209
40e952f9
TE
5210static void mem_cgroup_free(struct mem_cgroup *memcg)
5211{
5212 memcg_wb_domain_exit(memcg);
7961eee3
SB
5213 /*
5214 * Flush percpu vmstats and vmevents to guarantee the value correctness
5215 * on parent's and all ancestor levels.
5216 */
4a87e2a2 5217 memcg_flush_percpu_vmstats(memcg);
7961eee3 5218 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5219 __mem_cgroup_free(memcg);
5220}
5221
0b8f73e1 5222static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5223{
d142e3e6 5224 struct mem_cgroup *memcg;
b9726c26 5225 unsigned int size;
6d12e2d8 5226 int node;
97b27821 5227 int __maybe_unused i;
11d67612 5228 long error = -ENOMEM;
8cdea7c0 5229
0b8f73e1
JW
5230 size = sizeof(struct mem_cgroup);
5231 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5232
5233 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5234 if (!memcg)
11d67612 5235 return ERR_PTR(error);
0b8f73e1 5236
73f576c0
JW
5237 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5238 1, MEM_CGROUP_ID_MAX,
5239 GFP_KERNEL);
11d67612
YS
5240 if (memcg->id.id < 0) {
5241 error = memcg->id.id;
73f576c0 5242 goto fail;
11d67612 5243 }
73f576c0 5244
3e38e0aa
RG
5245 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5246 GFP_KERNEL_ACCOUNT);
815744d7
JW
5247 if (!memcg->vmstats_local)
5248 goto fail;
5249
3e38e0aa
RG
5250 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5251 GFP_KERNEL_ACCOUNT);
871789d4 5252 if (!memcg->vmstats_percpu)
0b8f73e1 5253 goto fail;
78fb7466 5254
3ed28fa1 5255 for_each_node(node)
ef8f2327 5256 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5257 goto fail;
f64c3f54 5258
0b8f73e1
JW
5259 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5260 goto fail;
28dbc4b6 5261
f7e1cb6e 5262 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5263 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5264 mutex_init(&memcg->thresholds_lock);
5265 spin_lock_init(&memcg->move_lock);
70ddf637 5266 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5267 INIT_LIST_HEAD(&memcg->event_list);
5268 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5269 memcg->socket_pressure = jiffies;
84c07d11 5270#ifdef CONFIG_MEMCG_KMEM
900a38f0 5271 memcg->kmemcg_id = -1;
bf4f0599 5272 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5273#endif
52ebea74
TH
5274#ifdef CONFIG_CGROUP_WRITEBACK
5275 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5276 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5277 memcg->cgwb_frn[i].done =
5278 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5279#endif
5280#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5282 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5283 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5284#endif
73f576c0 5285 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5286 return memcg;
5287fail:
7e97de0b 5288 mem_cgroup_id_remove(memcg);
40e952f9 5289 __mem_cgroup_free(memcg);
11d67612 5290 return ERR_PTR(error);
d142e3e6
GC
5291}
5292
0b8f73e1
JW
5293static struct cgroup_subsys_state * __ref
5294mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5295{
0b8f73e1 5296 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5297 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5298 long error = -ENOMEM;
d142e3e6 5299
b87d8cef 5300 old_memcg = set_active_memcg(parent);
0b8f73e1 5301 memcg = mem_cgroup_alloc();
b87d8cef 5302 set_active_memcg(old_memcg);
11d67612
YS
5303 if (IS_ERR(memcg))
5304 return ERR_CAST(memcg);
d142e3e6 5305
d1663a90 5306 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5307 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5308 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5309 if (parent) {
5310 memcg->swappiness = mem_cgroup_swappiness(parent);
5311 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5312
3e32cb2e 5313 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5314 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5315 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5316 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5317 } else {
bef8620c
RG
5318 page_counter_init(&memcg->memory, NULL);
5319 page_counter_init(&memcg->swap, NULL);
5320 page_counter_init(&memcg->kmem, NULL);
5321 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5322
0b8f73e1
JW
5323 root_mem_cgroup = memcg;
5324 return &memcg->css;
5325 }
5326
bef8620c 5327 /* The following stuff does not apply to the root */
b313aeee 5328 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5329 if (error)
5330 goto fail;
127424c8 5331
f7e1cb6e 5332 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5333 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5334
0b8f73e1
JW
5335 return &memcg->css;
5336fail:
7e97de0b 5337 mem_cgroup_id_remove(memcg);
0b8f73e1 5338 mem_cgroup_free(memcg);
11d67612 5339 return ERR_PTR(error);
0b8f73e1
JW
5340}
5341
73f576c0 5342static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5343{
58fa2a55
VD
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5345
0a4465d3
KT
5346 /*
5347 * A memcg must be visible for memcg_expand_shrinker_maps()
5348 * by the time the maps are allocated. So, we allocate maps
5349 * here, when for_each_mem_cgroup() can't skip it.
5350 */
5351 if (memcg_alloc_shrinker_maps(memcg)) {
5352 mem_cgroup_id_remove(memcg);
5353 return -ENOMEM;
5354 }
5355
73f576c0 5356 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5357 refcount_set(&memcg->id.ref, 1);
73f576c0 5358 css_get(css);
2f7dd7a4 5359 return 0;
8cdea7c0
BS
5360}
5361
eb95419b 5362static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5363{
eb95419b 5364 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5365 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5366
5367 /*
5368 * Unregister events and notify userspace.
5369 * Notify userspace about cgroup removing only after rmdir of cgroup
5370 * directory to avoid race between userspace and kernelspace.
5371 */
fba94807
TH
5372 spin_lock(&memcg->event_list_lock);
5373 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5374 list_del_init(&event->list);
5375 schedule_work(&event->remove);
5376 }
fba94807 5377 spin_unlock(&memcg->event_list_lock);
ec64f515 5378
bf8d5d52 5379 page_counter_set_min(&memcg->memory, 0);
23067153 5380 page_counter_set_low(&memcg->memory, 0);
63677c74 5381
567e9ab2 5382 memcg_offline_kmem(memcg);
52ebea74 5383 wb_memcg_offline(memcg);
73f576c0 5384
591edfb1
RG
5385 drain_all_stock(memcg);
5386
73f576c0 5387 mem_cgroup_id_put(memcg);
df878fb0
KH
5388}
5389
6df38689
VD
5390static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5391{
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393
5394 invalidate_reclaim_iterators(memcg);
5395}
5396
eb95419b 5397static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5398{
eb95419b 5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5400 int __maybe_unused i;
c268e994 5401
97b27821
TH
5402#ifdef CONFIG_CGROUP_WRITEBACK
5403 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5404 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5405#endif
f7e1cb6e 5406 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5407 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5408
0db15298 5409 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5410 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5411
0b8f73e1
JW
5412 vmpressure_cleanup(&memcg->vmpressure);
5413 cancel_work_sync(&memcg->high_work);
5414 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5415 memcg_free_shrinker_maps(memcg);
d886f4e4 5416 memcg_free_kmem(memcg);
0b8f73e1 5417 mem_cgroup_free(memcg);
8cdea7c0
BS
5418}
5419
1ced953b
TH
5420/**
5421 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5422 * @css: the target css
5423 *
5424 * Reset the states of the mem_cgroup associated with @css. This is
5425 * invoked when the userland requests disabling on the default hierarchy
5426 * but the memcg is pinned through dependency. The memcg should stop
5427 * applying policies and should revert to the vanilla state as it may be
5428 * made visible again.
5429 *
5430 * The current implementation only resets the essential configurations.
5431 * This needs to be expanded to cover all the visible parts.
5432 */
5433static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5434{
5435 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436
bbec2e15
RG
5437 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5438 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5439 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5440 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5441 page_counter_set_min(&memcg->memory, 0);
23067153 5442 page_counter_set_low(&memcg->memory, 0);
d1663a90 5443 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5444 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5445 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5446 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5447}
5448
02491447 5449#ifdef CONFIG_MMU
7dc74be0 5450/* Handlers for move charge at task migration. */
854ffa8d 5451static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5452{
05b84301 5453 int ret;
9476db97 5454
d0164adc
MG
5455 /* Try a single bulk charge without reclaim first, kswapd may wake */
5456 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5457 if (!ret) {
854ffa8d 5458 mc.precharge += count;
854ffa8d
DN
5459 return ret;
5460 }
9476db97 5461
3674534b 5462 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5463 while (count--) {
3674534b 5464 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5465 if (ret)
38c5d72f 5466 return ret;
854ffa8d 5467 mc.precharge++;
9476db97 5468 cond_resched();
854ffa8d 5469 }
9476db97 5470 return 0;
4ffef5fe
DN
5471}
5472
4ffef5fe
DN
5473union mc_target {
5474 struct page *page;
02491447 5475 swp_entry_t ent;
4ffef5fe
DN
5476};
5477
4ffef5fe 5478enum mc_target_type {
8d32ff84 5479 MC_TARGET_NONE = 0,
4ffef5fe 5480 MC_TARGET_PAGE,
02491447 5481 MC_TARGET_SWAP,
c733a828 5482 MC_TARGET_DEVICE,
4ffef5fe
DN
5483};
5484
90254a65
DN
5485static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5486 unsigned long addr, pte_t ptent)
4ffef5fe 5487{
25b2995a 5488 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5489
90254a65
DN
5490 if (!page || !page_mapped(page))
5491 return NULL;
5492 if (PageAnon(page)) {
1dfab5ab 5493 if (!(mc.flags & MOVE_ANON))
90254a65 5494 return NULL;
1dfab5ab
JW
5495 } else {
5496 if (!(mc.flags & MOVE_FILE))
5497 return NULL;
5498 }
90254a65
DN
5499 if (!get_page_unless_zero(page))
5500 return NULL;
5501
5502 return page;
5503}
5504
c733a828 5505#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5506static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5507 pte_t ptent, swp_entry_t *entry)
90254a65 5508{
90254a65
DN
5509 struct page *page = NULL;
5510 swp_entry_t ent = pte_to_swp_entry(ptent);
5511
9a137153 5512 if (!(mc.flags & MOVE_ANON))
90254a65 5513 return NULL;
c733a828
JG
5514
5515 /*
5516 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5517 * a device and because they are not accessible by CPU they are store
5518 * as special swap entry in the CPU page table.
5519 */
5520 if (is_device_private_entry(ent)) {
5521 page = device_private_entry_to_page(ent);
5522 /*
5523 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5524 * a refcount of 1 when free (unlike normal page)
5525 */
5526 if (!page_ref_add_unless(page, 1, 1))
5527 return NULL;
5528 return page;
5529 }
5530
9a137153
RC
5531 if (non_swap_entry(ent))
5532 return NULL;
5533
4b91355e
KH
5534 /*
5535 * Because lookup_swap_cache() updates some statistics counter,
5536 * we call find_get_page() with swapper_space directly.
5537 */
f6ab1f7f 5538 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5539 entry->val = ent.val;
90254a65
DN
5540
5541 return page;
5542}
4b91355e
KH
5543#else
5544static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5545 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5546{
5547 return NULL;
5548}
5549#endif
90254a65 5550
87946a72
DN
5551static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5552 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5553{
87946a72
DN
5554 if (!vma->vm_file) /* anonymous vma */
5555 return NULL;
1dfab5ab 5556 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5557 return NULL;
5558
87946a72 5559 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5560 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5561 return find_get_incore_page(vma->vm_file->f_mapping,
5562 linear_page_index(vma, addr));
87946a72
DN
5563}
5564
b1b0deab
CG
5565/**
5566 * mem_cgroup_move_account - move account of the page
5567 * @page: the page
25843c2b 5568 * @compound: charge the page as compound or small page
b1b0deab
CG
5569 * @from: mem_cgroup which the page is moved from.
5570 * @to: mem_cgroup which the page is moved to. @from != @to.
5571 *
3ac808fd 5572 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5573 *
5574 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5575 * from old cgroup.
5576 */
5577static int mem_cgroup_move_account(struct page *page,
f627c2f5 5578 bool compound,
b1b0deab
CG
5579 struct mem_cgroup *from,
5580 struct mem_cgroup *to)
5581{
ae8af438
KK
5582 struct lruvec *from_vec, *to_vec;
5583 struct pglist_data *pgdat;
6c357848 5584 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5585 int ret;
5586
5587 VM_BUG_ON(from == to);
5588 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5589 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5590
5591 /*
6a93ca8f 5592 * Prevent mem_cgroup_migrate() from looking at
45637bab 5593 * page->mem_cgroup of its source page while we change it.
b1b0deab 5594 */
f627c2f5 5595 ret = -EBUSY;
b1b0deab
CG
5596 if (!trylock_page(page))
5597 goto out;
5598
5599 ret = -EINVAL;
5600 if (page->mem_cgroup != from)
5601 goto out_unlock;
5602
ae8af438 5603 pgdat = page_pgdat(page);
867e5e1d
JW
5604 from_vec = mem_cgroup_lruvec(from, pgdat);
5605 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5606
abb242f5 5607 lock_page_memcg(page);
b1b0deab 5608
be5d0a74
JW
5609 if (PageAnon(page)) {
5610 if (page_mapped(page)) {
5611 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5612 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5613 if (PageTransHuge(page)) {
5614 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5615 -nr_pages);
5616 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5617 nr_pages);
5618 }
5619
be5d0a74
JW
5620 }
5621 } else {
0d1c2072
JW
5622 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5623 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5624
5625 if (PageSwapBacked(page)) {
5626 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5627 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5628 }
5629
49e50d27
JW
5630 if (page_mapped(page)) {
5631 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5632 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5633 }
b1b0deab 5634
49e50d27
JW
5635 if (PageDirty(page)) {
5636 struct address_space *mapping = page_mapping(page);
c4843a75 5637
f56753ac 5638 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5639 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5640 -nr_pages);
5641 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5642 nr_pages);
5643 }
c4843a75
GT
5644 }
5645 }
5646
b1b0deab 5647 if (PageWriteback(page)) {
ae8af438
KK
5648 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5649 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5650 }
5651
5652 /*
abb242f5
JW
5653 * All state has been migrated, let's switch to the new memcg.
5654 *
b1b0deab 5655 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5656 * is referenced, charged, isolated, and locked: we can't race
5657 * with (un)charging, migration, LRU putback, or anything else
5658 * that would rely on a stable page->mem_cgroup.
5659 *
5660 * Note that lock_page_memcg is a memcg lock, not a page lock,
5661 * to save space. As soon as we switch page->mem_cgroup to a
5662 * new memcg that isn't locked, the above state can change
5663 * concurrently again. Make sure we're truly done with it.
b1b0deab 5664 */
abb242f5 5665 smp_mb();
b1b0deab 5666
1a3e1f40
JW
5667 css_get(&to->css);
5668 css_put(&from->css);
5669
5670 page->mem_cgroup = to;
87eaceb3 5671
abb242f5 5672 __unlock_page_memcg(from);
b1b0deab
CG
5673
5674 ret = 0;
5675
5676 local_irq_disable();
3fba69a5 5677 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5678 memcg_check_events(to, page);
3fba69a5 5679 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5680 memcg_check_events(from, page);
5681 local_irq_enable();
5682out_unlock:
5683 unlock_page(page);
5684out:
5685 return ret;
5686}
5687
7cf7806c
LR
5688/**
5689 * get_mctgt_type - get target type of moving charge
5690 * @vma: the vma the pte to be checked belongs
5691 * @addr: the address corresponding to the pte to be checked
5692 * @ptent: the pte to be checked
5693 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5694 *
5695 * Returns
5696 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5697 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5698 * move charge. if @target is not NULL, the page is stored in target->page
5699 * with extra refcnt got(Callers should handle it).
5700 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5701 * target for charge migration. if @target is not NULL, the entry is stored
5702 * in target->ent.
25b2995a
CH
5703 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5704 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5705 * For now we such page is charge like a regular page would be as for all
5706 * intent and purposes it is just special memory taking the place of a
5707 * regular page.
c733a828
JG
5708 *
5709 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5710 *
5711 * Called with pte lock held.
5712 */
5713
8d32ff84 5714static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5715 unsigned long addr, pte_t ptent, union mc_target *target)
5716{
5717 struct page *page = NULL;
8d32ff84 5718 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5719 swp_entry_t ent = { .val = 0 };
5720
5721 if (pte_present(ptent))
5722 page = mc_handle_present_pte(vma, addr, ptent);
5723 else if (is_swap_pte(ptent))
48406ef8 5724 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5725 else if (pte_none(ptent))
87946a72 5726 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5727
5728 if (!page && !ent.val)
8d32ff84 5729 return ret;
02491447 5730 if (page) {
02491447 5731 /*
0a31bc97 5732 * Do only loose check w/o serialization.
1306a85a 5733 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5734 * not under LRU exclusion.
02491447 5735 */
1306a85a 5736 if (page->mem_cgroup == mc.from) {
02491447 5737 ret = MC_TARGET_PAGE;
25b2995a 5738 if (is_device_private_page(page))
c733a828 5739 ret = MC_TARGET_DEVICE;
02491447
DN
5740 if (target)
5741 target->page = page;
5742 }
5743 if (!ret || !target)
5744 put_page(page);
5745 }
3e14a57b
HY
5746 /*
5747 * There is a swap entry and a page doesn't exist or isn't charged.
5748 * But we cannot move a tail-page in a THP.
5749 */
5750 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5751 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5752 ret = MC_TARGET_SWAP;
5753 if (target)
5754 target->ent = ent;
4ffef5fe 5755 }
4ffef5fe
DN
5756 return ret;
5757}
5758
12724850
NH
5759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5760/*
d6810d73
HY
5761 * We don't consider PMD mapped swapping or file mapped pages because THP does
5762 * not support them for now.
12724850
NH
5763 * Caller should make sure that pmd_trans_huge(pmd) is true.
5764 */
5765static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5766 unsigned long addr, pmd_t pmd, union mc_target *target)
5767{
5768 struct page *page = NULL;
12724850
NH
5769 enum mc_target_type ret = MC_TARGET_NONE;
5770
84c3fc4e
ZY
5771 if (unlikely(is_swap_pmd(pmd))) {
5772 VM_BUG_ON(thp_migration_supported() &&
5773 !is_pmd_migration_entry(pmd));
5774 return ret;
5775 }
12724850 5776 page = pmd_page(pmd);
309381fe 5777 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5778 if (!(mc.flags & MOVE_ANON))
12724850 5779 return ret;
1306a85a 5780 if (page->mem_cgroup == mc.from) {
12724850
NH
5781 ret = MC_TARGET_PAGE;
5782 if (target) {
5783 get_page(page);
5784 target->page = page;
5785 }
5786 }
5787 return ret;
5788}
5789#else
5790static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5791 unsigned long addr, pmd_t pmd, union mc_target *target)
5792{
5793 return MC_TARGET_NONE;
5794}
5795#endif
5796
4ffef5fe
DN
5797static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5798 unsigned long addr, unsigned long end,
5799 struct mm_walk *walk)
5800{
26bcd64a 5801 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5802 pte_t *pte;
5803 spinlock_t *ptl;
5804
b6ec57f4
KS
5805 ptl = pmd_trans_huge_lock(pmd, vma);
5806 if (ptl) {
c733a828
JG
5807 /*
5808 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5809 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5810 * this might change.
c733a828 5811 */
12724850
NH
5812 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5813 mc.precharge += HPAGE_PMD_NR;
bf929152 5814 spin_unlock(ptl);
1a5a9906 5815 return 0;
12724850 5816 }
03319327 5817
45f83cef
AA
5818 if (pmd_trans_unstable(pmd))
5819 return 0;
4ffef5fe
DN
5820 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5821 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5822 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5823 mc.precharge++; /* increment precharge temporarily */
5824 pte_unmap_unlock(pte - 1, ptl);
5825 cond_resched();
5826
7dc74be0
DN
5827 return 0;
5828}
5829
7b86ac33
CH
5830static const struct mm_walk_ops precharge_walk_ops = {
5831 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5832};
5833
4ffef5fe
DN
5834static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5835{
5836 unsigned long precharge;
4ffef5fe 5837
d8ed45c5 5838 mmap_read_lock(mm);
7b86ac33 5839 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5840 mmap_read_unlock(mm);
4ffef5fe
DN
5841
5842 precharge = mc.precharge;
5843 mc.precharge = 0;
5844
5845 return precharge;
5846}
5847
4ffef5fe
DN
5848static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5849{
dfe076b0
DN
5850 unsigned long precharge = mem_cgroup_count_precharge(mm);
5851
5852 VM_BUG_ON(mc.moving_task);
5853 mc.moving_task = current;
5854 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5855}
5856
dfe076b0
DN
5857/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5858static void __mem_cgroup_clear_mc(void)
4ffef5fe 5859{
2bd9bb20
KH
5860 struct mem_cgroup *from = mc.from;
5861 struct mem_cgroup *to = mc.to;
5862
4ffef5fe 5863 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5864 if (mc.precharge) {
00501b53 5865 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5866 mc.precharge = 0;
5867 }
5868 /*
5869 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5870 * we must uncharge here.
5871 */
5872 if (mc.moved_charge) {
00501b53 5873 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5874 mc.moved_charge = 0;
4ffef5fe 5875 }
483c30b5
DN
5876 /* we must fixup refcnts and charges */
5877 if (mc.moved_swap) {
483c30b5 5878 /* uncharge swap account from the old cgroup */
ce00a967 5879 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5880 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5881
615d66c3
VD
5882 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5883
05b84301 5884 /*
3e32cb2e
JW
5885 * we charged both to->memory and to->memsw, so we
5886 * should uncharge to->memory.
05b84301 5887 */
ce00a967 5888 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5889 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5890
483c30b5
DN
5891 mc.moved_swap = 0;
5892 }
dfe076b0
DN
5893 memcg_oom_recover(from);
5894 memcg_oom_recover(to);
5895 wake_up_all(&mc.waitq);
5896}
5897
5898static void mem_cgroup_clear_mc(void)
5899{
264a0ae1
TH
5900 struct mm_struct *mm = mc.mm;
5901
dfe076b0
DN
5902 /*
5903 * we must clear moving_task before waking up waiters at the end of
5904 * task migration.
5905 */
5906 mc.moving_task = NULL;
5907 __mem_cgroup_clear_mc();
2bd9bb20 5908 spin_lock(&mc.lock);
4ffef5fe
DN
5909 mc.from = NULL;
5910 mc.to = NULL;
264a0ae1 5911 mc.mm = NULL;
2bd9bb20 5912 spin_unlock(&mc.lock);
264a0ae1
TH
5913
5914 mmput(mm);
4ffef5fe
DN
5915}
5916
1f7dd3e5 5917static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5918{
1f7dd3e5 5919 struct cgroup_subsys_state *css;
eed67d75 5920 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5921 struct mem_cgroup *from;
4530eddb 5922 struct task_struct *leader, *p;
9f2115f9 5923 struct mm_struct *mm;
1dfab5ab 5924 unsigned long move_flags;
9f2115f9 5925 int ret = 0;
7dc74be0 5926
1f7dd3e5
TH
5927 /* charge immigration isn't supported on the default hierarchy */
5928 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5929 return 0;
5930
4530eddb
TH
5931 /*
5932 * Multi-process migrations only happen on the default hierarchy
5933 * where charge immigration is not used. Perform charge
5934 * immigration if @tset contains a leader and whine if there are
5935 * multiple.
5936 */
5937 p = NULL;
1f7dd3e5 5938 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5939 WARN_ON_ONCE(p);
5940 p = leader;
1f7dd3e5 5941 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5942 }
5943 if (!p)
5944 return 0;
5945
1f7dd3e5
TH
5946 /*
5947 * We are now commited to this value whatever it is. Changes in this
5948 * tunable will only affect upcoming migrations, not the current one.
5949 * So we need to save it, and keep it going.
5950 */
5951 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5952 if (!move_flags)
5953 return 0;
5954
9f2115f9
TH
5955 from = mem_cgroup_from_task(p);
5956
5957 VM_BUG_ON(from == memcg);
5958
5959 mm = get_task_mm(p);
5960 if (!mm)
5961 return 0;
5962 /* We move charges only when we move a owner of the mm */
5963 if (mm->owner == p) {
5964 VM_BUG_ON(mc.from);
5965 VM_BUG_ON(mc.to);
5966 VM_BUG_ON(mc.precharge);
5967 VM_BUG_ON(mc.moved_charge);
5968 VM_BUG_ON(mc.moved_swap);
5969
5970 spin_lock(&mc.lock);
264a0ae1 5971 mc.mm = mm;
9f2115f9
TH
5972 mc.from = from;
5973 mc.to = memcg;
5974 mc.flags = move_flags;
5975 spin_unlock(&mc.lock);
5976 /* We set mc.moving_task later */
5977
5978 ret = mem_cgroup_precharge_mc(mm);
5979 if (ret)
5980 mem_cgroup_clear_mc();
264a0ae1
TH
5981 } else {
5982 mmput(mm);
7dc74be0
DN
5983 }
5984 return ret;
5985}
5986
1f7dd3e5 5987static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5988{
4e2f245d
JW
5989 if (mc.to)
5990 mem_cgroup_clear_mc();
7dc74be0
DN
5991}
5992
4ffef5fe
DN
5993static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5994 unsigned long addr, unsigned long end,
5995 struct mm_walk *walk)
7dc74be0 5996{
4ffef5fe 5997 int ret = 0;
26bcd64a 5998 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5999 pte_t *pte;
6000 spinlock_t *ptl;
12724850
NH
6001 enum mc_target_type target_type;
6002 union mc_target target;
6003 struct page *page;
4ffef5fe 6004
b6ec57f4
KS
6005 ptl = pmd_trans_huge_lock(pmd, vma);
6006 if (ptl) {
62ade86a 6007 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6008 spin_unlock(ptl);
12724850
NH
6009 return 0;
6010 }
6011 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6012 if (target_type == MC_TARGET_PAGE) {
6013 page = target.page;
6014 if (!isolate_lru_page(page)) {
f627c2f5 6015 if (!mem_cgroup_move_account(page, true,
1306a85a 6016 mc.from, mc.to)) {
12724850
NH
6017 mc.precharge -= HPAGE_PMD_NR;
6018 mc.moved_charge += HPAGE_PMD_NR;
6019 }
6020 putback_lru_page(page);
6021 }
6022 put_page(page);
c733a828
JG
6023 } else if (target_type == MC_TARGET_DEVICE) {
6024 page = target.page;
6025 if (!mem_cgroup_move_account(page, true,
6026 mc.from, mc.to)) {
6027 mc.precharge -= HPAGE_PMD_NR;
6028 mc.moved_charge += HPAGE_PMD_NR;
6029 }
6030 put_page(page);
12724850 6031 }
bf929152 6032 spin_unlock(ptl);
1a5a9906 6033 return 0;
12724850
NH
6034 }
6035
45f83cef
AA
6036 if (pmd_trans_unstable(pmd))
6037 return 0;
4ffef5fe
DN
6038retry:
6039 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6040 for (; addr != end; addr += PAGE_SIZE) {
6041 pte_t ptent = *(pte++);
c733a828 6042 bool device = false;
02491447 6043 swp_entry_t ent;
4ffef5fe
DN
6044
6045 if (!mc.precharge)
6046 break;
6047
8d32ff84 6048 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6049 case MC_TARGET_DEVICE:
6050 device = true;
e4a9bc58 6051 fallthrough;
4ffef5fe
DN
6052 case MC_TARGET_PAGE:
6053 page = target.page;
53f9263b
KS
6054 /*
6055 * We can have a part of the split pmd here. Moving it
6056 * can be done but it would be too convoluted so simply
6057 * ignore such a partial THP and keep it in original
6058 * memcg. There should be somebody mapping the head.
6059 */
6060 if (PageTransCompound(page))
6061 goto put;
c733a828 6062 if (!device && isolate_lru_page(page))
4ffef5fe 6063 goto put;
f627c2f5
KS
6064 if (!mem_cgroup_move_account(page, false,
6065 mc.from, mc.to)) {
4ffef5fe 6066 mc.precharge--;
854ffa8d
DN
6067 /* we uncharge from mc.from later. */
6068 mc.moved_charge++;
4ffef5fe 6069 }
c733a828
JG
6070 if (!device)
6071 putback_lru_page(page);
8d32ff84 6072put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6073 put_page(page);
6074 break;
02491447
DN
6075 case MC_TARGET_SWAP:
6076 ent = target.ent;
e91cbb42 6077 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6078 mc.precharge--;
8d22a935
HD
6079 mem_cgroup_id_get_many(mc.to, 1);
6080 /* we fixup other refcnts and charges later. */
483c30b5
DN
6081 mc.moved_swap++;
6082 }
02491447 6083 break;
4ffef5fe
DN
6084 default:
6085 break;
6086 }
6087 }
6088 pte_unmap_unlock(pte - 1, ptl);
6089 cond_resched();
6090
6091 if (addr != end) {
6092 /*
6093 * We have consumed all precharges we got in can_attach().
6094 * We try charge one by one, but don't do any additional
6095 * charges to mc.to if we have failed in charge once in attach()
6096 * phase.
6097 */
854ffa8d 6098 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6099 if (!ret)
6100 goto retry;
6101 }
6102
6103 return ret;
6104}
6105
7b86ac33
CH
6106static const struct mm_walk_ops charge_walk_ops = {
6107 .pmd_entry = mem_cgroup_move_charge_pte_range,
6108};
6109
264a0ae1 6110static void mem_cgroup_move_charge(void)
4ffef5fe 6111{
4ffef5fe 6112 lru_add_drain_all();
312722cb 6113 /*
81f8c3a4
JW
6114 * Signal lock_page_memcg() to take the memcg's move_lock
6115 * while we're moving its pages to another memcg. Then wait
6116 * for already started RCU-only updates to finish.
312722cb
JW
6117 */
6118 atomic_inc(&mc.from->moving_account);
6119 synchronize_rcu();
dfe076b0 6120retry:
d8ed45c5 6121 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6122 /*
c1e8d7c6 6123 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6124 * waitq. So we cancel all extra charges, wake up all waiters,
6125 * and retry. Because we cancel precharges, we might not be able
6126 * to move enough charges, but moving charge is a best-effort
6127 * feature anyway, so it wouldn't be a big problem.
6128 */
6129 __mem_cgroup_clear_mc();
6130 cond_resched();
6131 goto retry;
6132 }
26bcd64a
NH
6133 /*
6134 * When we have consumed all precharges and failed in doing
6135 * additional charge, the page walk just aborts.
6136 */
7b86ac33
CH
6137 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6138 NULL);
0247f3f4 6139
d8ed45c5 6140 mmap_read_unlock(mc.mm);
312722cb 6141 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6142}
6143
264a0ae1 6144static void mem_cgroup_move_task(void)
67e465a7 6145{
264a0ae1
TH
6146 if (mc.to) {
6147 mem_cgroup_move_charge();
a433658c 6148 mem_cgroup_clear_mc();
264a0ae1 6149 }
67e465a7 6150}
5cfb80a7 6151#else /* !CONFIG_MMU */
1f7dd3e5 6152static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6153{
6154 return 0;
6155}
1f7dd3e5 6156static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6157{
6158}
264a0ae1 6159static void mem_cgroup_move_task(void)
5cfb80a7
DN
6160{
6161}
6162#endif
67e465a7 6163
677dc973
CD
6164static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6165{
6166 if (value == PAGE_COUNTER_MAX)
6167 seq_puts(m, "max\n");
6168 else
6169 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6170
6171 return 0;
6172}
6173
241994ed
JW
6174static u64 memory_current_read(struct cgroup_subsys_state *css,
6175 struct cftype *cft)
6176{
f5fc3c5d
JW
6177 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6178
6179 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6180}
6181
bf8d5d52
RG
6182static int memory_min_show(struct seq_file *m, void *v)
6183{
677dc973
CD
6184 return seq_puts_memcg_tunable(m,
6185 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6186}
6187
6188static ssize_t memory_min_write(struct kernfs_open_file *of,
6189 char *buf, size_t nbytes, loff_t off)
6190{
6191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6192 unsigned long min;
6193 int err;
6194
6195 buf = strstrip(buf);
6196 err = page_counter_memparse(buf, "max", &min);
6197 if (err)
6198 return err;
6199
6200 page_counter_set_min(&memcg->memory, min);
6201
6202 return nbytes;
6203}
6204
241994ed
JW
6205static int memory_low_show(struct seq_file *m, void *v)
6206{
677dc973
CD
6207 return seq_puts_memcg_tunable(m,
6208 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6209}
6210
6211static ssize_t memory_low_write(struct kernfs_open_file *of,
6212 char *buf, size_t nbytes, loff_t off)
6213{
6214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6215 unsigned long low;
6216 int err;
6217
6218 buf = strstrip(buf);
d2973697 6219 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6220 if (err)
6221 return err;
6222
23067153 6223 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6224
6225 return nbytes;
6226}
6227
6228static int memory_high_show(struct seq_file *m, void *v)
6229{
d1663a90
JK
6230 return seq_puts_memcg_tunable(m,
6231 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6232}
6233
6234static ssize_t memory_high_write(struct kernfs_open_file *of,
6235 char *buf, size_t nbytes, loff_t off)
6236{
6237 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6238 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6239 bool drained = false;
241994ed
JW
6240 unsigned long high;
6241 int err;
6242
6243 buf = strstrip(buf);
d2973697 6244 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6245 if (err)
6246 return err;
6247
8c8c383c
JW
6248 for (;;) {
6249 unsigned long nr_pages = page_counter_read(&memcg->memory);
6250 unsigned long reclaimed;
6251
6252 if (nr_pages <= high)
6253 break;
6254
6255 if (signal_pending(current))
6256 break;
6257
6258 if (!drained) {
6259 drain_all_stock(memcg);
6260 drained = true;
6261 continue;
6262 }
6263
6264 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6265 GFP_KERNEL, true);
6266
6267 if (!reclaimed && !nr_retries--)
6268 break;
6269 }
588083bb 6270
536d3bf2
RG
6271 page_counter_set_high(&memcg->memory, high);
6272
19ce33ac
JW
6273 memcg_wb_domain_size_changed(memcg);
6274
241994ed
JW
6275 return nbytes;
6276}
6277
6278static int memory_max_show(struct seq_file *m, void *v)
6279{
677dc973
CD
6280 return seq_puts_memcg_tunable(m,
6281 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6282}
6283
6284static ssize_t memory_max_write(struct kernfs_open_file *of,
6285 char *buf, size_t nbytes, loff_t off)
6286{
6287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6288 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6289 bool drained = false;
241994ed
JW
6290 unsigned long max;
6291 int err;
6292
6293 buf = strstrip(buf);
d2973697 6294 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6295 if (err)
6296 return err;
6297
bbec2e15 6298 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6299
6300 for (;;) {
6301 unsigned long nr_pages = page_counter_read(&memcg->memory);
6302
6303 if (nr_pages <= max)
6304 break;
6305
7249c9f0 6306 if (signal_pending(current))
b6e6edcf 6307 break;
b6e6edcf
JW
6308
6309 if (!drained) {
6310 drain_all_stock(memcg);
6311 drained = true;
6312 continue;
6313 }
6314
6315 if (nr_reclaims) {
6316 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6317 GFP_KERNEL, true))
6318 nr_reclaims--;
6319 continue;
6320 }
6321
e27be240 6322 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6323 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6324 break;
6325 }
241994ed 6326
2529bb3a 6327 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6328 return nbytes;
6329}
6330
1e577f97
SB
6331static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6332{
6333 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6334 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6335 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6336 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6337 seq_printf(m, "oom_kill %lu\n",
6338 atomic_long_read(&events[MEMCG_OOM_KILL]));
6339}
6340
241994ed
JW
6341static int memory_events_show(struct seq_file *m, void *v)
6342{
aa9694bb 6343 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6344
1e577f97
SB
6345 __memory_events_show(m, memcg->memory_events);
6346 return 0;
6347}
6348
6349static int memory_events_local_show(struct seq_file *m, void *v)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6352
1e577f97 6353 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6354 return 0;
6355}
6356
587d9f72
JW
6357static int memory_stat_show(struct seq_file *m, void *v)
6358{
aa9694bb 6359 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6360 char *buf;
1ff9e6e1 6361
c8713d0b
JW
6362 buf = memory_stat_format(memcg);
6363 if (!buf)
6364 return -ENOMEM;
6365 seq_puts(m, buf);
6366 kfree(buf);
587d9f72
JW
6367 return 0;
6368}
6369
5f9a4f4a
MS
6370#ifdef CONFIG_NUMA
6371static int memory_numa_stat_show(struct seq_file *m, void *v)
6372{
6373 int i;
6374 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6375
6376 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6377 int nid;
6378
6379 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6380 continue;
6381
6382 seq_printf(m, "%s", memory_stats[i].name);
6383 for_each_node_state(nid, N_MEMORY) {
6384 u64 size;
6385 struct lruvec *lruvec;
6386
6387 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6388 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6389 size *= memory_stats[i].ratio;
6390 seq_printf(m, " N%d=%llu", nid, size);
6391 }
6392 seq_putc(m, '\n');
6393 }
6394
6395 return 0;
6396}
6397#endif
6398
3d8b38eb
RG
6399static int memory_oom_group_show(struct seq_file *m, void *v)
6400{
aa9694bb 6401 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6402
6403 seq_printf(m, "%d\n", memcg->oom_group);
6404
6405 return 0;
6406}
6407
6408static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6409 char *buf, size_t nbytes, loff_t off)
6410{
6411 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6412 int ret, oom_group;
6413
6414 buf = strstrip(buf);
6415 if (!buf)
6416 return -EINVAL;
6417
6418 ret = kstrtoint(buf, 0, &oom_group);
6419 if (ret)
6420 return ret;
6421
6422 if (oom_group != 0 && oom_group != 1)
6423 return -EINVAL;
6424
6425 memcg->oom_group = oom_group;
6426
6427 return nbytes;
6428}
6429
241994ed
JW
6430static struct cftype memory_files[] = {
6431 {
6432 .name = "current",
f5fc3c5d 6433 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6434 .read_u64 = memory_current_read,
6435 },
bf8d5d52
RG
6436 {
6437 .name = "min",
6438 .flags = CFTYPE_NOT_ON_ROOT,
6439 .seq_show = memory_min_show,
6440 .write = memory_min_write,
6441 },
241994ed
JW
6442 {
6443 .name = "low",
6444 .flags = CFTYPE_NOT_ON_ROOT,
6445 .seq_show = memory_low_show,
6446 .write = memory_low_write,
6447 },
6448 {
6449 .name = "high",
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_high_show,
6452 .write = memory_high_write,
6453 },
6454 {
6455 .name = "max",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_max_show,
6458 .write = memory_max_write,
6459 },
6460 {
6461 .name = "events",
6462 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6463 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6464 .seq_show = memory_events_show,
6465 },
1e577f97
SB
6466 {
6467 .name = "events.local",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6470 .seq_show = memory_events_local_show,
6471 },
587d9f72
JW
6472 {
6473 .name = "stat",
587d9f72
JW
6474 .seq_show = memory_stat_show,
6475 },
5f9a4f4a
MS
6476#ifdef CONFIG_NUMA
6477 {
6478 .name = "numa_stat",
6479 .seq_show = memory_numa_stat_show,
6480 },
6481#endif
3d8b38eb
RG
6482 {
6483 .name = "oom.group",
6484 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6485 .seq_show = memory_oom_group_show,
6486 .write = memory_oom_group_write,
6487 },
241994ed
JW
6488 { } /* terminate */
6489};
6490
073219e9 6491struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6492 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6493 .css_online = mem_cgroup_css_online,
92fb9748 6494 .css_offline = mem_cgroup_css_offline,
6df38689 6495 .css_released = mem_cgroup_css_released,
92fb9748 6496 .css_free = mem_cgroup_css_free,
1ced953b 6497 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6498 .can_attach = mem_cgroup_can_attach,
6499 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6500 .post_attach = mem_cgroup_move_task,
241994ed
JW
6501 .dfl_cftypes = memory_files,
6502 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6503 .early_init = 0,
8cdea7c0 6504};
c077719b 6505
bc50bcc6
JW
6506/*
6507 * This function calculates an individual cgroup's effective
6508 * protection which is derived from its own memory.min/low, its
6509 * parent's and siblings' settings, as well as the actual memory
6510 * distribution in the tree.
6511 *
6512 * The following rules apply to the effective protection values:
6513 *
6514 * 1. At the first level of reclaim, effective protection is equal to
6515 * the declared protection in memory.min and memory.low.
6516 *
6517 * 2. To enable safe delegation of the protection configuration, at
6518 * subsequent levels the effective protection is capped to the
6519 * parent's effective protection.
6520 *
6521 * 3. To make complex and dynamic subtrees easier to configure, the
6522 * user is allowed to overcommit the declared protection at a given
6523 * level. If that is the case, the parent's effective protection is
6524 * distributed to the children in proportion to how much protection
6525 * they have declared and how much of it they are utilizing.
6526 *
6527 * This makes distribution proportional, but also work-conserving:
6528 * if one cgroup claims much more protection than it uses memory,
6529 * the unused remainder is available to its siblings.
6530 *
6531 * 4. Conversely, when the declared protection is undercommitted at a
6532 * given level, the distribution of the larger parental protection
6533 * budget is NOT proportional. A cgroup's protection from a sibling
6534 * is capped to its own memory.min/low setting.
6535 *
8a931f80
JW
6536 * 5. However, to allow protecting recursive subtrees from each other
6537 * without having to declare each individual cgroup's fixed share
6538 * of the ancestor's claim to protection, any unutilized -
6539 * "floating" - protection from up the tree is distributed in
6540 * proportion to each cgroup's *usage*. This makes the protection
6541 * neutral wrt sibling cgroups and lets them compete freely over
6542 * the shared parental protection budget, but it protects the
6543 * subtree as a whole from neighboring subtrees.
6544 *
6545 * Note that 4. and 5. are not in conflict: 4. is about protecting
6546 * against immediate siblings whereas 5. is about protecting against
6547 * neighboring subtrees.
bc50bcc6
JW
6548 */
6549static unsigned long effective_protection(unsigned long usage,
8a931f80 6550 unsigned long parent_usage,
bc50bcc6
JW
6551 unsigned long setting,
6552 unsigned long parent_effective,
6553 unsigned long siblings_protected)
6554{
6555 unsigned long protected;
8a931f80 6556 unsigned long ep;
bc50bcc6
JW
6557
6558 protected = min(usage, setting);
6559 /*
6560 * If all cgroups at this level combined claim and use more
6561 * protection then what the parent affords them, distribute
6562 * shares in proportion to utilization.
6563 *
6564 * We are using actual utilization rather than the statically
6565 * claimed protection in order to be work-conserving: claimed
6566 * but unused protection is available to siblings that would
6567 * otherwise get a smaller chunk than what they claimed.
6568 */
6569 if (siblings_protected > parent_effective)
6570 return protected * parent_effective / siblings_protected;
6571
6572 /*
6573 * Ok, utilized protection of all children is within what the
6574 * parent affords them, so we know whatever this child claims
6575 * and utilizes is effectively protected.
6576 *
6577 * If there is unprotected usage beyond this value, reclaim
6578 * will apply pressure in proportion to that amount.
6579 *
6580 * If there is unutilized protection, the cgroup will be fully
6581 * shielded from reclaim, but we do return a smaller value for
6582 * protection than what the group could enjoy in theory. This
6583 * is okay. With the overcommit distribution above, effective
6584 * protection is always dependent on how memory is actually
6585 * consumed among the siblings anyway.
6586 */
8a931f80
JW
6587 ep = protected;
6588
6589 /*
6590 * If the children aren't claiming (all of) the protection
6591 * afforded to them by the parent, distribute the remainder in
6592 * proportion to the (unprotected) memory of each cgroup. That
6593 * way, cgroups that aren't explicitly prioritized wrt each
6594 * other compete freely over the allowance, but they are
6595 * collectively protected from neighboring trees.
6596 *
6597 * We're using unprotected memory for the weight so that if
6598 * some cgroups DO claim explicit protection, we don't protect
6599 * the same bytes twice.
cd324edc
JW
6600 *
6601 * Check both usage and parent_usage against the respective
6602 * protected values. One should imply the other, but they
6603 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6604 */
6605 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6606 return ep;
cd324edc
JW
6607 if (parent_effective > siblings_protected &&
6608 parent_usage > siblings_protected &&
6609 usage > protected) {
8a931f80
JW
6610 unsigned long unclaimed;
6611
6612 unclaimed = parent_effective - siblings_protected;
6613 unclaimed *= usage - protected;
6614 unclaimed /= parent_usage - siblings_protected;
6615
6616 ep += unclaimed;
6617 }
6618
6619 return ep;
bc50bcc6
JW
6620}
6621
241994ed 6622/**
bf8d5d52 6623 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6624 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6625 * @memcg: the memory cgroup to check
6626 *
23067153
RG
6627 * WARNING: This function is not stateless! It can only be used as part
6628 * of a top-down tree iteration, not for isolated queries.
241994ed 6629 */
45c7f7e1
CD
6630void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6631 struct mem_cgroup *memcg)
241994ed 6632{
8a931f80 6633 unsigned long usage, parent_usage;
23067153
RG
6634 struct mem_cgroup *parent;
6635
241994ed 6636 if (mem_cgroup_disabled())
45c7f7e1 6637 return;
241994ed 6638
34c81057
SC
6639 if (!root)
6640 root = root_mem_cgroup;
22f7496f
YS
6641
6642 /*
6643 * Effective values of the reclaim targets are ignored so they
6644 * can be stale. Have a look at mem_cgroup_protection for more
6645 * details.
6646 * TODO: calculation should be more robust so that we do not need
6647 * that special casing.
6648 */
34c81057 6649 if (memcg == root)
45c7f7e1 6650 return;
241994ed 6651
23067153 6652 usage = page_counter_read(&memcg->memory);
bf8d5d52 6653 if (!usage)
45c7f7e1 6654 return;
bf8d5d52 6655
bf8d5d52 6656 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6657 /* No parent means a non-hierarchical mode on v1 memcg */
6658 if (!parent)
45c7f7e1 6659 return;
df2a4196 6660
bc50bcc6 6661 if (parent == root) {
c3d53200 6662 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6663 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6664 return;
bf8d5d52
RG
6665 }
6666
8a931f80
JW
6667 parent_usage = page_counter_read(&parent->memory);
6668
b3a7822e 6669 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6670 READ_ONCE(memcg->memory.min),
6671 READ_ONCE(parent->memory.emin),
b3a7822e 6672 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6673
b3a7822e 6674 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6675 READ_ONCE(memcg->memory.low),
6676 READ_ONCE(parent->memory.elow),
b3a7822e 6677 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6678}
6679
00501b53 6680/**
f0e45fb4 6681 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6682 * @page: page to charge
6683 * @mm: mm context of the victim
6684 * @gfp_mask: reclaim mode
00501b53
JW
6685 *
6686 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6687 * pages according to @gfp_mask if necessary.
6688 *
f0e45fb4 6689 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6690 */
d9eb1ea2 6691int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6692{
6c357848 6693 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6694 struct mem_cgroup *memcg = NULL;
00501b53
JW
6695 int ret = 0;
6696
6697 if (mem_cgroup_disabled())
6698 goto out;
6699
6700 if (PageSwapCache(page)) {
2d1c4980
JW
6701 swp_entry_t ent = { .val = page_private(page), };
6702 unsigned short id;
6703
00501b53
JW
6704 /*
6705 * Every swap fault against a single page tries to charge the
6706 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6707 * already charged pages, too. page->mem_cgroup is protected
6708 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6709 * in turn serializes uncharging.
6710 */
e993d905 6711 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6712 if (compound_head(page)->mem_cgroup)
00501b53 6713 goto out;
e993d905 6714
2d1c4980
JW
6715 id = lookup_swap_cgroup_id(ent);
6716 rcu_read_lock();
6717 memcg = mem_cgroup_from_id(id);
6718 if (memcg && !css_tryget_online(&memcg->css))
6719 memcg = NULL;
6720 rcu_read_unlock();
00501b53
JW
6721 }
6722
00501b53
JW
6723 if (!memcg)
6724 memcg = get_mem_cgroup_from_mm(mm);
6725
6726 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6727 if (ret)
6728 goto out_put;
00501b53 6729
1a3e1f40 6730 css_get(&memcg->css);
d9eb1ea2 6731 commit_charge(page, memcg);
6abb5a86 6732
6abb5a86 6733 local_irq_disable();
3fba69a5 6734 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6735 memcg_check_events(memcg, page);
6736 local_irq_enable();
00501b53 6737
2d1c4980 6738 if (PageSwapCache(page)) {
00501b53
JW
6739 swp_entry_t entry = { .val = page_private(page) };
6740 /*
6741 * The swap entry might not get freed for a long time,
6742 * let's not wait for it. The page already received a
6743 * memory+swap charge, drop the swap entry duplicate.
6744 */
38d8b4e6 6745 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6746 }
00501b53 6747
f0e45fb4
JW
6748out_put:
6749 css_put(&memcg->css);
6750out:
6751 return ret;
3fea5a49
JW
6752}
6753
a9d5adee
JG
6754struct uncharge_gather {
6755 struct mem_cgroup *memcg;
9f762dbe 6756 unsigned long nr_pages;
a9d5adee 6757 unsigned long pgpgout;
a9d5adee 6758 unsigned long nr_kmem;
a9d5adee
JG
6759 struct page *dummy_page;
6760};
6761
6762static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6763{
a9d5adee
JG
6764 memset(ug, 0, sizeof(*ug));
6765}
6766
6767static void uncharge_batch(const struct uncharge_gather *ug)
6768{
747db954
JW
6769 unsigned long flags;
6770
a9d5adee 6771 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6772 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6773 if (do_memsw_account())
9f762dbe 6774 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6776 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6777 memcg_oom_recover(ug->memcg);
ce00a967 6778 }
747db954
JW
6779
6780 local_irq_save(flags);
c9019e9b 6781 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6782 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6783 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6784 local_irq_restore(flags);
f1796544
MH
6785
6786 /* drop reference from uncharge_page */
6787 css_put(&ug->memcg->css);
a9d5adee
JG
6788}
6789
6790static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6791{
9f762dbe
JW
6792 unsigned long nr_pages;
6793
a9d5adee 6794 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6795
6796 if (!page->mem_cgroup)
6797 return;
6798
6799 /*
6800 * Nobody should be changing or seriously looking at
6801 * page->mem_cgroup at this point, we have fully
6802 * exclusive access to the page.
6803 */
6804
6805 if (ug->memcg != page->mem_cgroup) {
6806 if (ug->memcg) {
6807 uncharge_batch(ug);
6808 uncharge_gather_clear(ug);
6809 }
6810 ug->memcg = page->mem_cgroup;
f1796544
MH
6811
6812 /* pairs with css_put in uncharge_batch */
6813 css_get(&ug->memcg->css);
a9d5adee
JG
6814 }
6815
9f762dbe
JW
6816 nr_pages = compound_nr(page);
6817 ug->nr_pages += nr_pages;
a9d5adee 6818
9f762dbe 6819 if (!PageKmemcg(page)) {
a9d5adee
JG
6820 ug->pgpgout++;
6821 } else {
9f762dbe 6822 ug->nr_kmem += nr_pages;
a9d5adee
JG
6823 __ClearPageKmemcg(page);
6824 }
6825
6826 ug->dummy_page = page;
6827 page->mem_cgroup = NULL;
1a3e1f40 6828 css_put(&ug->memcg->css);
747db954
JW
6829}
6830
6831static void uncharge_list(struct list_head *page_list)
6832{
a9d5adee 6833 struct uncharge_gather ug;
747db954 6834 struct list_head *next;
a9d5adee
JG
6835
6836 uncharge_gather_clear(&ug);
747db954 6837
8b592656
JW
6838 /*
6839 * Note that the list can be a single page->lru; hence the
6840 * do-while loop instead of a simple list_for_each_entry().
6841 */
747db954
JW
6842 next = page_list->next;
6843 do {
a9d5adee
JG
6844 struct page *page;
6845
747db954
JW
6846 page = list_entry(next, struct page, lru);
6847 next = page->lru.next;
6848
a9d5adee 6849 uncharge_page(page, &ug);
747db954
JW
6850 } while (next != page_list);
6851
a9d5adee
JG
6852 if (ug.memcg)
6853 uncharge_batch(&ug);
747db954
JW
6854}
6855
0a31bc97
JW
6856/**
6857 * mem_cgroup_uncharge - uncharge a page
6858 * @page: page to uncharge
6859 *
f0e45fb4 6860 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6861 */
6862void mem_cgroup_uncharge(struct page *page)
6863{
a9d5adee
JG
6864 struct uncharge_gather ug;
6865
0a31bc97
JW
6866 if (mem_cgroup_disabled())
6867 return;
6868
747db954 6869 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6870 if (!page->mem_cgroup)
0a31bc97
JW
6871 return;
6872
a9d5adee
JG
6873 uncharge_gather_clear(&ug);
6874 uncharge_page(page, &ug);
6875 uncharge_batch(&ug);
747db954 6876}
0a31bc97 6877
747db954
JW
6878/**
6879 * mem_cgroup_uncharge_list - uncharge a list of page
6880 * @page_list: list of pages to uncharge
6881 *
6882 * Uncharge a list of pages previously charged with
f0e45fb4 6883 * mem_cgroup_charge().
747db954
JW
6884 */
6885void mem_cgroup_uncharge_list(struct list_head *page_list)
6886{
6887 if (mem_cgroup_disabled())
6888 return;
0a31bc97 6889
747db954
JW
6890 if (!list_empty(page_list))
6891 uncharge_list(page_list);
0a31bc97
JW
6892}
6893
6894/**
6a93ca8f
JW
6895 * mem_cgroup_migrate - charge a page's replacement
6896 * @oldpage: currently circulating page
6897 * @newpage: replacement page
0a31bc97 6898 *
6a93ca8f
JW
6899 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6900 * be uncharged upon free.
0a31bc97
JW
6901 *
6902 * Both pages must be locked, @newpage->mapping must be set up.
6903 */
6a93ca8f 6904void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6905{
29833315 6906 struct mem_cgroup *memcg;
44b7a8d3 6907 unsigned int nr_pages;
d93c4130 6908 unsigned long flags;
0a31bc97
JW
6909
6910 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6911 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6912 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6913 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6914 newpage);
0a31bc97
JW
6915
6916 if (mem_cgroup_disabled())
6917 return;
6918
6919 /* Page cache replacement: new page already charged? */
1306a85a 6920 if (newpage->mem_cgroup)
0a31bc97
JW
6921 return;
6922
1306a85a 6923 memcg = oldpage->mem_cgroup;
29833315 6924 if (!memcg)
0a31bc97
JW
6925 return;
6926
44b7a8d3 6927 /* Force-charge the new page. The old one will be freed soon */
6c357848 6928 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6929
6930 page_counter_charge(&memcg->memory, nr_pages);
6931 if (do_memsw_account())
6932 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6933
1a3e1f40 6934 css_get(&memcg->css);
d9eb1ea2 6935 commit_charge(newpage, memcg);
44b7a8d3 6936
d93c4130 6937 local_irq_save(flags);
3fba69a5 6938 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6939 memcg_check_events(memcg, newpage);
d93c4130 6940 local_irq_restore(flags);
0a31bc97
JW
6941}
6942
ef12947c 6943DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6944EXPORT_SYMBOL(memcg_sockets_enabled_key);
6945
2d758073 6946void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6947{
6948 struct mem_cgroup *memcg;
6949
2d758073
JW
6950 if (!mem_cgroup_sockets_enabled)
6951 return;
6952
e876ecc6
SB
6953 /* Do not associate the sock with unrelated interrupted task's memcg. */
6954 if (in_interrupt())
6955 return;
6956
11092087
JW
6957 rcu_read_lock();
6958 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6959 if (memcg == root_mem_cgroup)
6960 goto out;
0db15298 6961 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6962 goto out;
8965aa28 6963 if (css_tryget(&memcg->css))
11092087 6964 sk->sk_memcg = memcg;
f7e1cb6e 6965out:
11092087
JW
6966 rcu_read_unlock();
6967}
11092087 6968
2d758073 6969void mem_cgroup_sk_free(struct sock *sk)
11092087 6970{
2d758073
JW
6971 if (sk->sk_memcg)
6972 css_put(&sk->sk_memcg->css);
11092087
JW
6973}
6974
6975/**
6976 * mem_cgroup_charge_skmem - charge socket memory
6977 * @memcg: memcg to charge
6978 * @nr_pages: number of pages to charge
6979 *
6980 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6981 * @memcg's configured limit, %false if the charge had to be forced.
6982 */
6983bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6984{
f7e1cb6e 6985 gfp_t gfp_mask = GFP_KERNEL;
11092087 6986
f7e1cb6e 6987 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6988 struct page_counter *fail;
f7e1cb6e 6989
0db15298
JW
6990 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6991 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6992 return true;
6993 }
0db15298
JW
6994 page_counter_charge(&memcg->tcpmem, nr_pages);
6995 memcg->tcpmem_pressure = 1;
f7e1cb6e 6996 return false;
11092087 6997 }
d886f4e4 6998
f7e1cb6e
JW
6999 /* Don't block in the packet receive path */
7000 if (in_softirq())
7001 gfp_mask = GFP_NOWAIT;
7002
c9019e9b 7003 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7004
f7e1cb6e
JW
7005 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7006 return true;
7007
7008 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7009 return false;
7010}
7011
7012/**
7013 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7014 * @memcg: memcg to uncharge
7015 * @nr_pages: number of pages to uncharge
11092087
JW
7016 */
7017void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7018{
f7e1cb6e 7019 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7020 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7021 return;
7022 }
d886f4e4 7023
c9019e9b 7024 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7025
475d0487 7026 refill_stock(memcg, nr_pages);
11092087
JW
7027}
7028
f7e1cb6e
JW
7029static int __init cgroup_memory(char *s)
7030{
7031 char *token;
7032
7033 while ((token = strsep(&s, ",")) != NULL) {
7034 if (!*token)
7035 continue;
7036 if (!strcmp(token, "nosocket"))
7037 cgroup_memory_nosocket = true;
04823c83
VD
7038 if (!strcmp(token, "nokmem"))
7039 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7040 }
7041 return 0;
7042}
7043__setup("cgroup.memory=", cgroup_memory);
11092087 7044
2d11085e 7045/*
1081312f
MH
7046 * subsys_initcall() for memory controller.
7047 *
308167fc
SAS
7048 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7049 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7050 * basically everything that doesn't depend on a specific mem_cgroup structure
7051 * should be initialized from here.
2d11085e
MH
7052 */
7053static int __init mem_cgroup_init(void)
7054{
95a045f6
JW
7055 int cpu, node;
7056
308167fc
SAS
7057 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7058 memcg_hotplug_cpu_dead);
95a045f6
JW
7059
7060 for_each_possible_cpu(cpu)
7061 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7062 drain_local_stock);
7063
7064 for_each_node(node) {
7065 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7066
7067 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7068 node_online(node) ? node : NUMA_NO_NODE);
7069
ef8f2327 7070 rtpn->rb_root = RB_ROOT;
fa90b2fd 7071 rtpn->rb_rightmost = NULL;
ef8f2327 7072 spin_lock_init(&rtpn->lock);
95a045f6
JW
7073 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7074 }
7075
2d11085e
MH
7076 return 0;
7077}
7078subsys_initcall(mem_cgroup_init);
21afa38e
JW
7079
7080#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7081static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7082{
1c2d479a 7083 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7084 /*
7085 * The root cgroup cannot be destroyed, so it's refcount must
7086 * always be >= 1.
7087 */
7088 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7089 VM_BUG_ON(1);
7090 break;
7091 }
7092 memcg = parent_mem_cgroup(memcg);
7093 if (!memcg)
7094 memcg = root_mem_cgroup;
7095 }
7096 return memcg;
7097}
7098
21afa38e
JW
7099/**
7100 * mem_cgroup_swapout - transfer a memsw charge to swap
7101 * @page: page whose memsw charge to transfer
7102 * @entry: swap entry to move the charge to
7103 *
7104 * Transfer the memsw charge of @page to @entry.
7105 */
7106void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7107{
1f47b61f 7108 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7109 unsigned int nr_entries;
21afa38e
JW
7110 unsigned short oldid;
7111
7112 VM_BUG_ON_PAGE(PageLRU(page), page);
7113 VM_BUG_ON_PAGE(page_count(page), page);
7114
2d1c4980 7115 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7116 return;
7117
7118 memcg = page->mem_cgroup;
7119
7120 /* Readahead page, never charged */
7121 if (!memcg)
7122 return;
7123
1f47b61f
VD
7124 /*
7125 * In case the memcg owning these pages has been offlined and doesn't
7126 * have an ID allocated to it anymore, charge the closest online
7127 * ancestor for the swap instead and transfer the memory+swap charge.
7128 */
7129 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7130 nr_entries = thp_nr_pages(page);
d6810d73
HY
7131 /* Get references for the tail pages, too */
7132 if (nr_entries > 1)
7133 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7134 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7135 nr_entries);
21afa38e 7136 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7137 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7138
7139 page->mem_cgroup = NULL;
7140
7141 if (!mem_cgroup_is_root(memcg))
d6810d73 7142 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7143
2d1c4980 7144 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7145 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7146 page_counter_charge(&swap_memcg->memsw, nr_entries);
7147 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7148 }
7149
ce9ce665
SAS
7150 /*
7151 * Interrupts should be disabled here because the caller holds the
b93b0163 7152 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7153 * important here to have the interrupts disabled because it is the
b93b0163 7154 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7155 */
7156 VM_BUG_ON(!irqs_disabled());
3fba69a5 7157 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7158 memcg_check_events(memcg, page);
73f576c0 7159
1a3e1f40 7160 css_put(&memcg->css);
21afa38e
JW
7161}
7162
38d8b4e6
HY
7163/**
7164 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7165 * @page: page being added to swap
7166 * @entry: swap entry to charge
7167 *
38d8b4e6 7168 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7169 *
7170 * Returns 0 on success, -ENOMEM on failure.
7171 */
7172int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7173{
6c357848 7174 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7175 struct page_counter *counter;
38d8b4e6 7176 struct mem_cgroup *memcg;
37e84351
VD
7177 unsigned short oldid;
7178
2d1c4980 7179 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7180 return 0;
7181
7182 memcg = page->mem_cgroup;
7183
7184 /* Readahead page, never charged */
7185 if (!memcg)
7186 return 0;
7187
f3a53a3a
TH
7188 if (!entry.val) {
7189 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7190 return 0;
f3a53a3a 7191 }
bb98f2c5 7192
1f47b61f
VD
7193 memcg = mem_cgroup_id_get_online(memcg);
7194
2d1c4980 7195 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7196 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7197 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7198 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7199 mem_cgroup_id_put(memcg);
37e84351 7200 return -ENOMEM;
1f47b61f 7201 }
37e84351 7202
38d8b4e6
HY
7203 /* Get references for the tail pages, too */
7204 if (nr_pages > 1)
7205 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7206 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7207 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7208 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7209
37e84351
VD
7210 return 0;
7211}
7212
21afa38e 7213/**
38d8b4e6 7214 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7215 * @entry: swap entry to uncharge
38d8b4e6 7216 * @nr_pages: the amount of swap space to uncharge
21afa38e 7217 */
38d8b4e6 7218void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7219{
7220 struct mem_cgroup *memcg;
7221 unsigned short id;
7222
38d8b4e6 7223 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7224 rcu_read_lock();
adbe427b 7225 memcg = mem_cgroup_from_id(id);
21afa38e 7226 if (memcg) {
2d1c4980 7227 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7229 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7230 else
38d8b4e6 7231 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7232 }
c9019e9b 7233 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7234 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7235 }
7236 rcu_read_unlock();
7237}
7238
d8b38438
VD
7239long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7240{
7241 long nr_swap_pages = get_nr_swap_pages();
7242
eccb52e7 7243 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7244 return nr_swap_pages;
7245 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7246 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7247 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7248 page_counter_read(&memcg->swap));
7249 return nr_swap_pages;
7250}
7251
5ccc5aba
VD
7252bool mem_cgroup_swap_full(struct page *page)
7253{
7254 struct mem_cgroup *memcg;
7255
7256 VM_BUG_ON_PAGE(!PageLocked(page), page);
7257
7258 if (vm_swap_full())
7259 return true;
eccb52e7 7260 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7261 return false;
7262
7263 memcg = page->mem_cgroup;
7264 if (!memcg)
7265 return false;
7266
4b82ab4f
JK
7267 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7268 unsigned long usage = page_counter_read(&memcg->swap);
7269
7270 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7271 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7272 return true;
4b82ab4f 7273 }
5ccc5aba
VD
7274
7275 return false;
7276}
7277
eccb52e7 7278static int __init setup_swap_account(char *s)
21afa38e
JW
7279{
7280 if (!strcmp(s, "1"))
5ab92901 7281 cgroup_memory_noswap = false;
21afa38e 7282 else if (!strcmp(s, "0"))
5ab92901 7283 cgroup_memory_noswap = true;
21afa38e
JW
7284 return 1;
7285}
eccb52e7 7286__setup("swapaccount=", setup_swap_account);
21afa38e 7287
37e84351
VD
7288static u64 swap_current_read(struct cgroup_subsys_state *css,
7289 struct cftype *cft)
7290{
7291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7292
7293 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7294}
7295
4b82ab4f
JK
7296static int swap_high_show(struct seq_file *m, void *v)
7297{
7298 return seq_puts_memcg_tunable(m,
7299 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7300}
7301
7302static ssize_t swap_high_write(struct kernfs_open_file *of,
7303 char *buf, size_t nbytes, loff_t off)
7304{
7305 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7306 unsigned long high;
7307 int err;
7308
7309 buf = strstrip(buf);
7310 err = page_counter_memparse(buf, "max", &high);
7311 if (err)
7312 return err;
7313
7314 page_counter_set_high(&memcg->swap, high);
7315
7316 return nbytes;
7317}
7318
37e84351
VD
7319static int swap_max_show(struct seq_file *m, void *v)
7320{
677dc973
CD
7321 return seq_puts_memcg_tunable(m,
7322 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7323}
7324
7325static ssize_t swap_max_write(struct kernfs_open_file *of,
7326 char *buf, size_t nbytes, loff_t off)
7327{
7328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7329 unsigned long max;
7330 int err;
7331
7332 buf = strstrip(buf);
7333 err = page_counter_memparse(buf, "max", &max);
7334 if (err)
7335 return err;
7336
be09102b 7337 xchg(&memcg->swap.max, max);
37e84351
VD
7338
7339 return nbytes;
7340}
7341
f3a53a3a
TH
7342static int swap_events_show(struct seq_file *m, void *v)
7343{
aa9694bb 7344 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7345
4b82ab4f
JK
7346 seq_printf(m, "high %lu\n",
7347 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7348 seq_printf(m, "max %lu\n",
7349 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7350 seq_printf(m, "fail %lu\n",
7351 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7352
7353 return 0;
7354}
7355
37e84351
VD
7356static struct cftype swap_files[] = {
7357 {
7358 .name = "swap.current",
7359 .flags = CFTYPE_NOT_ON_ROOT,
7360 .read_u64 = swap_current_read,
7361 },
4b82ab4f
JK
7362 {
7363 .name = "swap.high",
7364 .flags = CFTYPE_NOT_ON_ROOT,
7365 .seq_show = swap_high_show,
7366 .write = swap_high_write,
7367 },
37e84351
VD
7368 {
7369 .name = "swap.max",
7370 .flags = CFTYPE_NOT_ON_ROOT,
7371 .seq_show = swap_max_show,
7372 .write = swap_max_write,
7373 },
f3a53a3a
TH
7374 {
7375 .name = "swap.events",
7376 .flags = CFTYPE_NOT_ON_ROOT,
7377 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7378 .seq_show = swap_events_show,
7379 },
37e84351
VD
7380 { } /* terminate */
7381};
7382
eccb52e7 7383static struct cftype memsw_files[] = {
21afa38e
JW
7384 {
7385 .name = "memsw.usage_in_bytes",
7386 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7387 .read_u64 = mem_cgroup_read_u64,
7388 },
7389 {
7390 .name = "memsw.max_usage_in_bytes",
7391 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7392 .write = mem_cgroup_reset,
7393 .read_u64 = mem_cgroup_read_u64,
7394 },
7395 {
7396 .name = "memsw.limit_in_bytes",
7397 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7398 .write = mem_cgroup_write,
7399 .read_u64 = mem_cgroup_read_u64,
7400 },
7401 {
7402 .name = "memsw.failcnt",
7403 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7404 .write = mem_cgroup_reset,
7405 .read_u64 = mem_cgroup_read_u64,
7406 },
7407 { }, /* terminate */
7408};
7409
82ff165c
BS
7410/*
7411 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7412 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7413 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7414 * boot parameter. This may result in premature OOPS inside
7415 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7416 */
21afa38e
JW
7417static int __init mem_cgroup_swap_init(void)
7418{
2d1c4980
JW
7419 /* No memory control -> no swap control */
7420 if (mem_cgroup_disabled())
7421 cgroup_memory_noswap = true;
7422
7423 if (cgroup_memory_noswap)
eccb52e7
JW
7424 return 0;
7425
7426 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7427 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7428
21afa38e
JW
7429 return 0;
7430}
82ff165c 7431core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7432
7433#endif /* CONFIG_MEMCG_SWAP */