]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg: move charges to root cgroup if use_hierarchy=0
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
f64c3f54
BS
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
d79154bb 145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 146 /* use container_of */
6d12e2d8 147};
6d12e2d8
KH
148
149struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
f64c3f54
BS
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
2e72b634
KS
177struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180};
181
9490ff27 182/* For threshold */
2e72b634 183struct mem_cgroup_threshold_ary {
748dad36 184 /* An array index points to threshold just below or equal to usage. */
5407a562 185 int current_threshold;
2e72b634
KS
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190};
2c488db2
KS
191
192struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201};
202
9490ff27
KH
203/* for OOM */
204struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207};
2e72b634 208
c0ff4b85
R
209static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 211
8cdea7c0
BS
212/*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
8cdea7c0
BS
222 */
223struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
59927fb9
HD
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
78fb7466
PE
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
78fb7466 256 */
6d12e2d8 257 struct mem_cgroup_lru_info info;
889976db
YH
258 int last_scanned_node;
259#if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
453a9bf3
KH
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
889976db 263#endif
18f59ea7
BS
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
79dfdacc
MH
268
269 bool oom_lock;
270 atomic_t under_oom;
271
8c7c6e34 272 atomic_t refcnt;
14797e23 273
1f4c025b 274 int swappiness;
3c11ecf4
KH
275 /* OOM-Killer disable */
276 int oom_kill_disable;
a7885eb8 277
22a668d7
KH
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
2e72b634
KS
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds thresholds;
907860ed 286
2e72b634 287 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 288 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 289
9490ff27
KH
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
185efc0f 292
7dc74be0
DN
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
619d094b
KH
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
312734c0
KH
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
d52aa412 304 /*
c62b1a3b 305 * percpu counter.
d52aa412 306 */
3a7951b4 307 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
314
315#ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317#endif
8cdea7c0
BS
318};
319
7dc74be0
DN
320/* Stuffs for move charges at task migration. */
321/*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325enum move_type {
4ffef5fe 326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
328 NR_MOVE_TYPE,
329};
330
4ffef5fe
DN
331/* "mc" and its members are protected by cgroup_mutex */
332static struct move_charge_struct {
b1dd693e 333 spinlock_t lock; /* for from, to */
4ffef5fe
DN
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
854ffa8d 337 unsigned long moved_charge;
483c30b5 338 unsigned long moved_swap;
8033b97c
DN
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341} mc = {
2bd9bb20 342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344};
4ffef5fe 345
90254a65
DN
346static bool move_anon(void)
347{
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350}
351
87946a72
DN
352static bool move_file(void)
353{
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356}
357
4e416953
BS
358/*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
a0db00fc
KS
362#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
363#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 364
217bc319
KH
365enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
372 NR_CHARGE_TYPE,
373};
374
8c7c6e34 375/* for encoding cft->private value on file */
65c64ce8
GC
376#define _MEM (0)
377#define _MEMSWAP (1)
378#define _OOM_TYPE (2)
a0db00fc
KS
379#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
380#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 381#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
382/* Used for OOM nofiier */
383#define OOM_CONTROL (0)
8c7c6e34 384
75822b44
BS
385/*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
c0ff4b85
R
393static void mem_cgroup_get(struct mem_cgroup *memcg);
394static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
395
396/* Writing them here to avoid exposing memcg's inner layout */
397#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 398#include <net/sock.h>
d1a4c0b3 399#include <net/ip.h>
e1aab161
GC
400
401static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402void sock_update_memcg(struct sock *sk)
403{
376be5ff 404 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
f3f511e1
GC
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
e1aab161
GC
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431}
432EXPORT_SYMBOL(sock_update_memcg);
433
434void sock_release_memcg(struct sock *sk)
435{
376be5ff 436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442}
d1a4c0b3 443
319d3b9c 444#ifdef CONFIG_INET
d1a4c0b3
GC
445struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446{
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451}
452EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
453#endif /* CONFIG_INET */
454#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
c0ff4b85 456static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 457
f64c3f54 458static struct mem_cgroup_per_zone *
c0ff4b85 459mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 460{
c0ff4b85 461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
462}
463
c0ff4b85 464struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 465{
c0ff4b85 466 return &memcg->css;
d324236b
WF
467}
468
f64c3f54 469static struct mem_cgroup_per_zone *
c0ff4b85 470page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 471{
97a6c37b
JW
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
f64c3f54 474
c0ff4b85 475 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
476}
477
478static struct mem_cgroup_tree_per_zone *
479soft_limit_tree_node_zone(int nid, int zid)
480{
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
484static struct mem_cgroup_tree_per_zone *
485soft_limit_tree_from_page(struct page *page)
486{
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491}
492
493static void
c0ff4b85 494__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 495 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
f64c3f54
BS
498{
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
ef8745c1
KH
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
f64c3f54
BS
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
4e416953
BS
525}
526
527static void
c0ff4b85 528__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
f64c3f54 538static void
c0ff4b85 539mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542{
543 spin_lock(&mctz->lock);
c0ff4b85 544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
545 spin_unlock(&mctz->lock);
546}
547
f64c3f54 548
c0ff4b85 549static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 550{
ef8745c1 551 unsigned long long excess;
f64c3f54
BS
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
f64c3f54
BS
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
4e649152
KH
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
f64c3f54 561 */
c0ff4b85
R
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
ef8745c1 569 if (excess || mz->on_tree) {
4e649152
KH
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
c0ff4b85 573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 574 /*
ef8745c1
KH
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
4e649152 577 */
c0ff4b85 578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
579 spin_unlock(&mctz->lock);
580 }
f64c3f54
BS
581 }
582}
583
c0ff4b85 584static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
585{
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
3ed28fa1 590 for_each_node(node) {
f64c3f54 591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 593 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
595 }
596 }
597}
598
4e416953
BS
599static struct mem_cgroup_per_zone *
600__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601{
602 struct rb_node *rightmost = NULL;
26251eaf 603 struct mem_cgroup_per_zone *mz;
4e416953
BS
604
605retry:
26251eaf 606 mz = NULL;
4e416953
BS
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
d79154bb
HD
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
4e416953
BS
620 goto retry;
621done:
622 return mz;
623}
624
625static struct mem_cgroup_per_zone *
626mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627{
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634}
635
711d3d2c
KH
636/*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
c0ff4b85 655static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 656 enum mem_cgroup_stat_index idx)
c62b1a3b 657{
7a159cc9 658 long val = 0;
c62b1a3b 659 int cpu;
c62b1a3b 660
711d3d2c
KH
661 get_online_cpus();
662 for_each_online_cpu(cpu)
c0ff4b85 663 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 664#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
668#endif
669 put_online_cpus();
c62b1a3b
KH
670 return val;
671}
672
c0ff4b85 673static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
674 bool charge)
675{
676 int val = (charge) ? 1 : -1;
c0ff4b85 677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
678}
679
c0ff4b85 680static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
681 enum mem_cgroup_events_index idx)
682{
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
c0ff4b85 687 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 688#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
692#endif
693 return val;
694}
695
c0ff4b85 696static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 697 bool anon, int nr_pages)
d52aa412 698{
c62b1a3b
KH
699 preempt_disable();
700
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
e401f176
KH
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
c0ff4b85 714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 715 else {
c0ff4b85 716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
717 nr_pages = -nr_pages; /* for event */
718 }
e401f176 719
c0ff4b85 720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 721
c62b1a3b 722 preempt_enable();
6d12e2d8
KH
723}
724
bb2a0de9 725unsigned long
074291fe
KK
726mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
727{
728 struct mem_cgroup_per_zone *mz;
729
730 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
731 return mz->lru_size[lru];
732}
733
734static unsigned long
c0ff4b85 735mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 736 unsigned int lru_mask)
889976db
YH
737{
738 struct mem_cgroup_per_zone *mz;
f156ab93 739 enum lru_list lru;
bb2a0de9
KH
740 unsigned long ret = 0;
741
c0ff4b85 742 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 743
f156ab93
HD
744 for_each_lru(lru) {
745 if (BIT(lru) & lru_mask)
746 ret += mz->lru_size[lru];
bb2a0de9
KH
747 }
748 return ret;
749}
750
751static unsigned long
c0ff4b85 752mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
753 int nid, unsigned int lru_mask)
754{
889976db
YH
755 u64 total = 0;
756 int zid;
757
bb2a0de9 758 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
759 total += mem_cgroup_zone_nr_lru_pages(memcg,
760 nid, zid, lru_mask);
bb2a0de9 761
889976db
YH
762 return total;
763}
bb2a0de9 764
c0ff4b85 765static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 766 unsigned int lru_mask)
6d12e2d8 767{
889976db 768 int nid;
6d12e2d8
KH
769 u64 total = 0;
770
bb2a0de9 771 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 772 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 773 return total;
d52aa412
KH
774}
775
f53d7ce3
JW
776static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
777 enum mem_cgroup_events_target target)
7a159cc9
JW
778{
779 unsigned long val, next;
780
4799401f
SR
781 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
782 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 783 /* from time_after() in jiffies.h */
f53d7ce3
JW
784 if ((long)next - (long)val < 0) {
785 switch (target) {
786 case MEM_CGROUP_TARGET_THRESH:
787 next = val + THRESHOLDS_EVENTS_TARGET;
788 break;
789 case MEM_CGROUP_TARGET_SOFTLIMIT:
790 next = val + SOFTLIMIT_EVENTS_TARGET;
791 break;
792 case MEM_CGROUP_TARGET_NUMAINFO:
793 next = val + NUMAINFO_EVENTS_TARGET;
794 break;
795 default:
796 break;
797 }
798 __this_cpu_write(memcg->stat->targets[target], next);
799 return true;
7a159cc9 800 }
f53d7ce3 801 return false;
d2265e6f
KH
802}
803
804/*
805 * Check events in order.
806 *
807 */
c0ff4b85 808static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 809{
4799401f 810 preempt_disable();
d2265e6f 811 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
814 bool do_softlimit;
815 bool do_numainfo __maybe_unused;
f53d7ce3
JW
816
817 do_softlimit = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_SOFTLIMIT);
819#if MAX_NUMNODES > 1
820 do_numainfo = mem_cgroup_event_ratelimit(memcg,
821 MEM_CGROUP_TARGET_NUMAINFO);
822#endif
823 preempt_enable();
824
c0ff4b85 825 mem_cgroup_threshold(memcg);
f53d7ce3 826 if (unlikely(do_softlimit))
c0ff4b85 827 mem_cgroup_update_tree(memcg, page);
453a9bf3 828#if MAX_NUMNODES > 1
f53d7ce3 829 if (unlikely(do_numainfo))
c0ff4b85 830 atomic_inc(&memcg->numainfo_events);
453a9bf3 831#endif
f53d7ce3
JW
832 } else
833 preempt_enable();
d2265e6f
KH
834}
835
d1a4c0b3 836struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
837{
838 return container_of(cgroup_subsys_state(cont,
839 mem_cgroup_subsys_id), struct mem_cgroup,
840 css);
841}
842
cf475ad2 843struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 844{
31a78f23
BS
845 /*
846 * mm_update_next_owner() may clear mm->owner to NULL
847 * if it races with swapoff, page migration, etc.
848 * So this can be called with p == NULL.
849 */
850 if (unlikely(!p))
851 return NULL;
852
78fb7466
PE
853 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
854 struct mem_cgroup, css);
855}
856
a433658c 857struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 858{
c0ff4b85 859 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
860
861 if (!mm)
862 return NULL;
54595fe2
KH
863 /*
864 * Because we have no locks, mm->owner's may be being moved to other
865 * cgroup. We use css_tryget() here even if this looks
866 * pessimistic (rather than adding locks here).
867 */
868 rcu_read_lock();
869 do {
c0ff4b85
R
870 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (unlikely(!memcg))
54595fe2 872 break;
c0ff4b85 873 } while (!css_tryget(&memcg->css));
54595fe2 874 rcu_read_unlock();
c0ff4b85 875 return memcg;
54595fe2
KH
876}
877
5660048c
JW
878/**
879 * mem_cgroup_iter - iterate over memory cgroup hierarchy
880 * @root: hierarchy root
881 * @prev: previously returned memcg, NULL on first invocation
882 * @reclaim: cookie for shared reclaim walks, NULL for full walks
883 *
884 * Returns references to children of the hierarchy below @root, or
885 * @root itself, or %NULL after a full round-trip.
886 *
887 * Caller must pass the return value in @prev on subsequent
888 * invocations for reference counting, or use mem_cgroup_iter_break()
889 * to cancel a hierarchy walk before the round-trip is complete.
890 *
891 * Reclaimers can specify a zone and a priority level in @reclaim to
892 * divide up the memcgs in the hierarchy among all concurrent
893 * reclaimers operating on the same zone and priority.
894 */
895struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
896 struct mem_cgroup *prev,
897 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 898{
9f3a0d09
JW
899 struct mem_cgroup *memcg = NULL;
900 int id = 0;
711d3d2c 901
5660048c
JW
902 if (mem_cgroup_disabled())
903 return NULL;
904
9f3a0d09
JW
905 if (!root)
906 root = root_mem_cgroup;
7d74b06f 907
9f3a0d09
JW
908 if (prev && !reclaim)
909 id = css_id(&prev->css);
14067bb3 910
9f3a0d09
JW
911 if (prev && prev != root)
912 css_put(&prev->css);
14067bb3 913
9f3a0d09
JW
914 if (!root->use_hierarchy && root != root_mem_cgroup) {
915 if (prev)
916 return NULL;
917 return root;
918 }
14067bb3 919
9f3a0d09 920 while (!memcg) {
527a5ec9 921 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 922 struct cgroup_subsys_state *css;
711d3d2c 923
527a5ec9
JW
924 if (reclaim) {
925 int nid = zone_to_nid(reclaim->zone);
926 int zid = zone_idx(reclaim->zone);
927 struct mem_cgroup_per_zone *mz;
928
929 mz = mem_cgroup_zoneinfo(root, nid, zid);
930 iter = &mz->reclaim_iter[reclaim->priority];
931 if (prev && reclaim->generation != iter->generation)
932 return NULL;
933 id = iter->position;
934 }
7d74b06f 935
9f3a0d09
JW
936 rcu_read_lock();
937 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
938 if (css) {
939 if (css == &root->css || css_tryget(css))
940 memcg = container_of(css,
941 struct mem_cgroup, css);
942 } else
943 id = 0;
14067bb3 944 rcu_read_unlock();
14067bb3 945
527a5ec9
JW
946 if (reclaim) {
947 iter->position = id;
948 if (!css)
949 iter->generation++;
950 else if (!prev && memcg)
951 reclaim->generation = iter->generation;
952 }
9f3a0d09
JW
953
954 if (prev && !css)
955 return NULL;
956 }
957 return memcg;
14067bb3 958}
7d74b06f 959
5660048c
JW
960/**
961 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
962 * @root: hierarchy root
963 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
964 */
965void mem_cgroup_iter_break(struct mem_cgroup *root,
966 struct mem_cgroup *prev)
9f3a0d09
JW
967{
968 if (!root)
969 root = root_mem_cgroup;
970 if (prev && prev != root)
971 css_put(&prev->css);
972}
7d74b06f 973
9f3a0d09
JW
974/*
975 * Iteration constructs for visiting all cgroups (under a tree). If
976 * loops are exited prematurely (break), mem_cgroup_iter_break() must
977 * be used for reference counting.
978 */
979#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 980 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 981 iter != NULL; \
527a5ec9 982 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 983
9f3a0d09 984#define for_each_mem_cgroup(iter) \
527a5ec9 985 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 986 iter != NULL; \
527a5ec9 987 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 988
c0ff4b85 989static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 990{
c0ff4b85 991 return (memcg == root_mem_cgroup);
4b3bde4c
BS
992}
993
456f998e
YH
994void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
995{
c0ff4b85 996 struct mem_cgroup *memcg;
456f998e
YH
997
998 if (!mm)
999 return;
1000
1001 rcu_read_lock();
c0ff4b85
R
1002 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1003 if (unlikely(!memcg))
456f998e
YH
1004 goto out;
1005
1006 switch (idx) {
456f998e 1007 case PGFAULT:
0e574a93
JW
1008 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1009 break;
1010 case PGMAJFAULT:
1011 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1012 break;
1013 default:
1014 BUG();
1015 }
1016out:
1017 rcu_read_unlock();
1018}
1019EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1020
925b7673
JW
1021/**
1022 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1023 * @zone: zone of the wanted lruvec
1024 * @mem: memcg of the wanted lruvec
1025 *
1026 * Returns the lru list vector holding pages for the given @zone and
1027 * @mem. This can be the global zone lruvec, if the memory controller
1028 * is disabled.
1029 */
1030struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1031 struct mem_cgroup *memcg)
1032{
1033 struct mem_cgroup_per_zone *mz;
1034
1035 if (mem_cgroup_disabled())
1036 return &zone->lruvec;
1037
1038 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1039 return &mz->lruvec;
1040}
1041
08e552c6
KH
1042/*
1043 * Following LRU functions are allowed to be used without PCG_LOCK.
1044 * Operations are called by routine of global LRU independently from memcg.
1045 * What we have to take care of here is validness of pc->mem_cgroup.
1046 *
1047 * Changes to pc->mem_cgroup happens when
1048 * 1. charge
1049 * 2. moving account
1050 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1051 * It is added to LRU before charge.
1052 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1053 * When moving account, the page is not on LRU. It's isolated.
1054 */
4f98a2fe 1055
925b7673
JW
1056/**
1057 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1058 * @zone: zone of the page
1059 * @page: the page
1060 * @lru: current lru
1061 *
1062 * This function accounts for @page being added to @lru, and returns
1063 * the lruvec for the given @zone and the memcg @page is charged to.
1064 *
1065 * The callsite is then responsible for physically linking the page to
1066 * the returned lruvec->lists[@lru].
1067 */
1068struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1069 enum lru_list lru)
08e552c6 1070{
08e552c6 1071 struct mem_cgroup_per_zone *mz;
925b7673
JW
1072 struct mem_cgroup *memcg;
1073 struct page_cgroup *pc;
6d12e2d8 1074
f8d66542 1075 if (mem_cgroup_disabled())
925b7673
JW
1076 return &zone->lruvec;
1077
08e552c6 1078 pc = lookup_page_cgroup(page);
38c5d72f 1079 memcg = pc->mem_cgroup;
7512102c
HD
1080
1081 /*
1082 * Surreptitiously switch any uncharged page to root:
1083 * an uncharged page off lru does nothing to secure
1084 * its former mem_cgroup from sudden removal.
1085 *
1086 * Our caller holds lru_lock, and PageCgroupUsed is updated
1087 * under page_cgroup lock: between them, they make all uses
1088 * of pc->mem_cgroup safe.
1089 */
1090 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1091 pc->mem_cgroup = memcg = root_mem_cgroup;
1092
925b7673
JW
1093 mz = page_cgroup_zoneinfo(memcg, page);
1094 /* compound_order() is stabilized through lru_lock */
1eb49272 1095 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1096 return &mz->lruvec;
08e552c6 1097}
b69408e8 1098
925b7673
JW
1099/**
1100 * mem_cgroup_lru_del_list - account for removing an lru page
1101 * @page: the page
1102 * @lru: target lru
1103 *
1104 * This function accounts for @page being removed from @lru.
1105 *
1106 * The callsite is then responsible for physically unlinking
1107 * @page->lru.
3f58a829 1108 */
925b7673 1109void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1110{
1111 struct mem_cgroup_per_zone *mz;
925b7673 1112 struct mem_cgroup *memcg;
3f58a829 1113 struct page_cgroup *pc;
3f58a829
MK
1114
1115 if (mem_cgroup_disabled())
1116 return;
1117
1118 pc = lookup_page_cgroup(page);
38c5d72f
KH
1119 memcg = pc->mem_cgroup;
1120 VM_BUG_ON(!memcg);
925b7673
JW
1121 mz = page_cgroup_zoneinfo(memcg, page);
1122 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1123 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1124 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1125}
1126
925b7673
JW
1127/**
1128 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1129 * @zone: zone of the page
1130 * @page: the page
1131 * @from: current lru
1132 * @to: target lru
1133 *
1134 * This function accounts for @page being moved between the lrus @from
1135 * and @to, and returns the lruvec for the given @zone and the memcg
1136 * @page is charged to.
1137 *
1138 * The callsite is then responsible for physically relinking
1139 * @page->lru to the returned lruvec->lists[@to].
1140 */
1141struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1142 struct page *page,
1143 enum lru_list from,
1144 enum lru_list to)
66e1707b 1145{
925b7673
JW
1146 /* XXX: Optimize this, especially for @from == @to */
1147 mem_cgroup_lru_del_list(page, from);
1148 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1149}
544122e5 1150
3e92041d 1151/*
c0ff4b85 1152 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1153 * hierarchy subtree
1154 */
c3ac9a8a
JW
1155bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
3e92041d 1157{
91c63734
JW
1158 if (root_memcg == memcg)
1159 return true;
1160 if (!root_memcg->use_hierarchy)
1161 return false;
c3ac9a8a
JW
1162 return css_is_ancestor(&memcg->css, &root_memcg->css);
1163}
1164
1165static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
1167{
1168 bool ret;
1169
91c63734 1170 rcu_read_lock();
c3ac9a8a 1171 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1172 rcu_read_unlock();
1173 return ret;
3e92041d
MH
1174}
1175
c0ff4b85 1176int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1177{
1178 int ret;
0b7f569e 1179 struct mem_cgroup *curr = NULL;
158e0a2d 1180 struct task_struct *p;
4c4a2214 1181
158e0a2d 1182 p = find_lock_task_mm(task);
de077d22
DR
1183 if (p) {
1184 curr = try_get_mem_cgroup_from_mm(p->mm);
1185 task_unlock(p);
1186 } else {
1187 /*
1188 * All threads may have already detached their mm's, but the oom
1189 * killer still needs to detect if they have already been oom
1190 * killed to prevent needlessly killing additional tasks.
1191 */
1192 task_lock(task);
1193 curr = mem_cgroup_from_task(task);
1194 if (curr)
1195 css_get(&curr->css);
1196 task_unlock(task);
1197 }
0b7f569e
KH
1198 if (!curr)
1199 return 0;
d31f56db 1200 /*
c0ff4b85 1201 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1202 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1203 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1204 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1205 */
c0ff4b85 1206 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1207 css_put(&curr->css);
4c4a2214
DR
1208 return ret;
1209}
1210
c56d5c7d 1211int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1212{
9b272977 1213 unsigned long inactive_ratio;
14797e23 1214 unsigned long inactive;
9b272977 1215 unsigned long active;
c772be93 1216 unsigned long gb;
14797e23 1217
c56d5c7d
KK
1218 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1219 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1220
c772be93
KM
1221 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1222 if (gb)
1223 inactive_ratio = int_sqrt(10 * gb);
1224 else
1225 inactive_ratio = 1;
1226
9b272977 1227 return inactive * inactive_ratio < active;
14797e23
KM
1228}
1229
c56d5c7d 1230int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1231{
1232 unsigned long active;
1233 unsigned long inactive;
1234
c56d5c7d
KK
1235 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1236 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1237
1238 return (active > inactive);
1239}
1240
3e2f41f1
KM
1241struct zone_reclaim_stat *
1242mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1243{
1244 struct page_cgroup *pc;
1245 struct mem_cgroup_per_zone *mz;
1246
1247 if (mem_cgroup_disabled())
1248 return NULL;
1249
1250 pc = lookup_page_cgroup(page);
bd112db8
DN
1251 if (!PageCgroupUsed(pc))
1252 return NULL;
713735b4
JW
1253 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1254 smp_rmb();
97a6c37b 1255 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
89abfab1 1256 return &mz->lruvec.reclaim_stat;
3e2f41f1
KM
1257}
1258
6d61ef40
BS
1259#define mem_cgroup_from_res_counter(counter, member) \
1260 container_of(counter, struct mem_cgroup, member)
1261
19942822 1262/**
9d11ea9f
JW
1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1264 * @mem: the memory cgroup
19942822 1265 *
9d11ea9f 1266 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1267 * pages.
19942822 1268 */
c0ff4b85 1269static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1270{
9d11ea9f
JW
1271 unsigned long long margin;
1272
c0ff4b85 1273 margin = res_counter_margin(&memcg->res);
9d11ea9f 1274 if (do_swap_account)
c0ff4b85 1275 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1276 return margin >> PAGE_SHIFT;
19942822
JW
1277}
1278
1f4c025b 1279int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1280{
1281 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1282
1283 /* root ? */
1284 if (cgrp->parent == NULL)
1285 return vm_swappiness;
1286
bf1ff263 1287 return memcg->swappiness;
a7885eb8
KM
1288}
1289
619d094b
KH
1290/*
1291 * memcg->moving_account is used for checking possibility that some thread is
1292 * calling move_account(). When a thread on CPU-A starts moving pages under
1293 * a memcg, other threads should check memcg->moving_account under
1294 * rcu_read_lock(), like this:
1295 *
1296 * CPU-A CPU-B
1297 * rcu_read_lock()
1298 * memcg->moving_account+1 if (memcg->mocing_account)
1299 * take heavy locks.
1300 * synchronize_rcu() update something.
1301 * rcu_read_unlock()
1302 * start move here.
1303 */
4331f7d3
KH
1304
1305/* for quick checking without looking up memcg */
1306atomic_t memcg_moving __read_mostly;
1307
c0ff4b85 1308static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1309{
4331f7d3 1310 atomic_inc(&memcg_moving);
619d094b 1311 atomic_inc(&memcg->moving_account);
32047e2a
KH
1312 synchronize_rcu();
1313}
1314
c0ff4b85 1315static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1316{
619d094b
KH
1317 /*
1318 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1319 * We check NULL in callee rather than caller.
1320 */
4331f7d3
KH
1321 if (memcg) {
1322 atomic_dec(&memcg_moving);
619d094b 1323 atomic_dec(&memcg->moving_account);
4331f7d3 1324 }
32047e2a 1325}
619d094b 1326
32047e2a
KH
1327/*
1328 * 2 routines for checking "mem" is under move_account() or not.
1329 *
13fd1dd9
AM
1330 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1331 * is used for avoiding races in accounting. If true,
32047e2a
KH
1332 * pc->mem_cgroup may be overwritten.
1333 *
1334 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1335 * under hierarchy of moving cgroups. This is for
1336 * waiting at hith-memory prressure caused by "move".
1337 */
1338
13fd1dd9 1339static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1340{
1341 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1342 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1343}
4b534334 1344
c0ff4b85 1345static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1346{
2bd9bb20
KH
1347 struct mem_cgroup *from;
1348 struct mem_cgroup *to;
4b534334 1349 bool ret = false;
2bd9bb20
KH
1350 /*
1351 * Unlike task_move routines, we access mc.to, mc.from not under
1352 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 */
1354 spin_lock(&mc.lock);
1355 from = mc.from;
1356 to = mc.to;
1357 if (!from)
1358 goto unlock;
3e92041d 1359
c0ff4b85
R
1360 ret = mem_cgroup_same_or_subtree(memcg, from)
1361 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1362unlock:
1363 spin_unlock(&mc.lock);
4b534334
KH
1364 return ret;
1365}
1366
c0ff4b85 1367static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1368{
1369 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1370 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1371 DEFINE_WAIT(wait);
1372 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1373 /* moving charge context might have finished. */
1374 if (mc.moving_task)
1375 schedule();
1376 finish_wait(&mc.waitq, &wait);
1377 return true;
1378 }
1379 }
1380 return false;
1381}
1382
312734c0
KH
1383/*
1384 * Take this lock when
1385 * - a code tries to modify page's memcg while it's USED.
1386 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1387 * see mem_cgroup_stolen(), too.
312734c0
KH
1388 */
1389static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1390 unsigned long *flags)
1391{
1392 spin_lock_irqsave(&memcg->move_lock, *flags);
1393}
1394
1395static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1396 unsigned long *flags)
1397{
1398 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1399}
1400
e222432b 1401/**
6a6135b6 1402 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1403 * @memcg: The memory cgroup that went over limit
1404 * @p: Task that is going to be killed
1405 *
1406 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1407 * enabled
1408 */
1409void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1410{
1411 struct cgroup *task_cgrp;
1412 struct cgroup *mem_cgrp;
1413 /*
1414 * Need a buffer in BSS, can't rely on allocations. The code relies
1415 * on the assumption that OOM is serialized for memory controller.
1416 * If this assumption is broken, revisit this code.
1417 */
1418 static char memcg_name[PATH_MAX];
1419 int ret;
1420
d31f56db 1421 if (!memcg || !p)
e222432b
BS
1422 return;
1423
e222432b
BS
1424 rcu_read_lock();
1425
1426 mem_cgrp = memcg->css.cgroup;
1427 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1428
1429 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1430 if (ret < 0) {
1431 /*
1432 * Unfortunately, we are unable to convert to a useful name
1433 * But we'll still print out the usage information
1434 */
1435 rcu_read_unlock();
1436 goto done;
1437 }
1438 rcu_read_unlock();
1439
1440 printk(KERN_INFO "Task in %s killed", memcg_name);
1441
1442 rcu_read_lock();
1443 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1444 if (ret < 0) {
1445 rcu_read_unlock();
1446 goto done;
1447 }
1448 rcu_read_unlock();
1449
1450 /*
1451 * Continues from above, so we don't need an KERN_ level
1452 */
1453 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1454done:
1455
1456 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1457 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1459 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1460 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1461 "failcnt %llu\n",
1462 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1465}
1466
81d39c20
KH
1467/*
1468 * This function returns the number of memcg under hierarchy tree. Returns
1469 * 1(self count) if no children.
1470 */
c0ff4b85 1471static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1472{
1473 int num = 0;
7d74b06f
KH
1474 struct mem_cgroup *iter;
1475
c0ff4b85 1476 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1477 num++;
81d39c20
KH
1478 return num;
1479}
1480
a63d83f4
DR
1481/*
1482 * Return the memory (and swap, if configured) limit for a memcg.
1483 */
1484u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1485{
1486 u64 limit;
1487 u64 memsw;
1488
f3e8eb70
JW
1489 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1490 limit += total_swap_pages << PAGE_SHIFT;
1491
a63d83f4
DR
1492 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1493 /*
1494 * If memsw is finite and limits the amount of swap space available
1495 * to this memcg, return that limit.
1496 */
1497 return min(limit, memsw);
1498}
1499
5660048c
JW
1500static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1501 gfp_t gfp_mask,
1502 unsigned long flags)
1503{
1504 unsigned long total = 0;
1505 bool noswap = false;
1506 int loop;
1507
1508 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1509 noswap = true;
1510 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1511 noswap = true;
1512
1513 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1514 if (loop)
1515 drain_all_stock_async(memcg);
1516 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1517 /*
1518 * Allow limit shrinkers, which are triggered directly
1519 * by userspace, to catch signals and stop reclaim
1520 * after minimal progress, regardless of the margin.
1521 */
1522 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1523 break;
1524 if (mem_cgroup_margin(memcg))
1525 break;
1526 /*
1527 * If nothing was reclaimed after two attempts, there
1528 * may be no reclaimable pages in this hierarchy.
1529 */
1530 if (loop && !total)
1531 break;
1532 }
1533 return total;
1534}
1535
4d0c066d
KH
1536/**
1537 * test_mem_cgroup_node_reclaimable
1538 * @mem: the target memcg
1539 * @nid: the node ID to be checked.
1540 * @noswap : specify true here if the user wants flle only information.
1541 *
1542 * This function returns whether the specified memcg contains any
1543 * reclaimable pages on a node. Returns true if there are any reclaimable
1544 * pages in the node.
1545 */
c0ff4b85 1546static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1547 int nid, bool noswap)
1548{
c0ff4b85 1549 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1550 return true;
1551 if (noswap || !total_swap_pages)
1552 return false;
c0ff4b85 1553 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1554 return true;
1555 return false;
1556
1557}
889976db
YH
1558#if MAX_NUMNODES > 1
1559
1560/*
1561 * Always updating the nodemask is not very good - even if we have an empty
1562 * list or the wrong list here, we can start from some node and traverse all
1563 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1564 *
1565 */
c0ff4b85 1566static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1567{
1568 int nid;
453a9bf3
KH
1569 /*
1570 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1571 * pagein/pageout changes since the last update.
1572 */
c0ff4b85 1573 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1574 return;
c0ff4b85 1575 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1576 return;
1577
889976db 1578 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1579 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1580
1581 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1582
c0ff4b85
R
1583 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1584 node_clear(nid, memcg->scan_nodes);
889976db 1585 }
453a9bf3 1586
c0ff4b85
R
1587 atomic_set(&memcg->numainfo_events, 0);
1588 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1589}
1590
1591/*
1592 * Selecting a node where we start reclaim from. Because what we need is just
1593 * reducing usage counter, start from anywhere is O,K. Considering
1594 * memory reclaim from current node, there are pros. and cons.
1595 *
1596 * Freeing memory from current node means freeing memory from a node which
1597 * we'll use or we've used. So, it may make LRU bad. And if several threads
1598 * hit limits, it will see a contention on a node. But freeing from remote
1599 * node means more costs for memory reclaim because of memory latency.
1600 *
1601 * Now, we use round-robin. Better algorithm is welcomed.
1602 */
c0ff4b85 1603int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1604{
1605 int node;
1606
c0ff4b85
R
1607 mem_cgroup_may_update_nodemask(memcg);
1608 node = memcg->last_scanned_node;
889976db 1609
c0ff4b85 1610 node = next_node(node, memcg->scan_nodes);
889976db 1611 if (node == MAX_NUMNODES)
c0ff4b85 1612 node = first_node(memcg->scan_nodes);
889976db
YH
1613 /*
1614 * We call this when we hit limit, not when pages are added to LRU.
1615 * No LRU may hold pages because all pages are UNEVICTABLE or
1616 * memcg is too small and all pages are not on LRU. In that case,
1617 * we use curret node.
1618 */
1619 if (unlikely(node == MAX_NUMNODES))
1620 node = numa_node_id();
1621
c0ff4b85 1622 memcg->last_scanned_node = node;
889976db
YH
1623 return node;
1624}
1625
4d0c066d
KH
1626/*
1627 * Check all nodes whether it contains reclaimable pages or not.
1628 * For quick scan, we make use of scan_nodes. This will allow us to skip
1629 * unused nodes. But scan_nodes is lazily updated and may not cotain
1630 * enough new information. We need to do double check.
1631 */
6bbda35c 1632static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1633{
1634 int nid;
1635
1636 /*
1637 * quick check...making use of scan_node.
1638 * We can skip unused nodes.
1639 */
c0ff4b85
R
1640 if (!nodes_empty(memcg->scan_nodes)) {
1641 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1642 nid < MAX_NUMNODES;
c0ff4b85 1643 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1644
c0ff4b85 1645 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1646 return true;
1647 }
1648 }
1649 /*
1650 * Check rest of nodes.
1651 */
1652 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1653 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1654 continue;
c0ff4b85 1655 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1656 return true;
1657 }
1658 return false;
1659}
1660
889976db 1661#else
c0ff4b85 1662int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1663{
1664 return 0;
1665}
4d0c066d 1666
6bbda35c 1667static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1668{
c0ff4b85 1669 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1670}
889976db
YH
1671#endif
1672
5660048c
JW
1673static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1674 struct zone *zone,
1675 gfp_t gfp_mask,
1676 unsigned long *total_scanned)
6d61ef40 1677{
9f3a0d09 1678 struct mem_cgroup *victim = NULL;
5660048c 1679 int total = 0;
04046e1a 1680 int loop = 0;
9d11ea9f 1681 unsigned long excess;
185efc0f 1682 unsigned long nr_scanned;
527a5ec9
JW
1683 struct mem_cgroup_reclaim_cookie reclaim = {
1684 .zone = zone,
1685 .priority = 0,
1686 };
9d11ea9f 1687
c0ff4b85 1688 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1689
4e416953 1690 while (1) {
527a5ec9 1691 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1692 if (!victim) {
04046e1a 1693 loop++;
4e416953
BS
1694 if (loop >= 2) {
1695 /*
1696 * If we have not been able to reclaim
1697 * anything, it might because there are
1698 * no reclaimable pages under this hierarchy
1699 */
5660048c 1700 if (!total)
4e416953 1701 break;
4e416953 1702 /*
25985edc 1703 * We want to do more targeted reclaim.
4e416953
BS
1704 * excess >> 2 is not to excessive so as to
1705 * reclaim too much, nor too less that we keep
1706 * coming back to reclaim from this cgroup
1707 */
1708 if (total >= (excess >> 2) ||
9f3a0d09 1709 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1710 break;
4e416953 1711 }
9f3a0d09 1712 continue;
4e416953 1713 }
5660048c 1714 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1715 continue;
5660048c
JW
1716 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1717 zone, &nr_scanned);
1718 *total_scanned += nr_scanned;
1719 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1720 break;
6d61ef40 1721 }
9f3a0d09 1722 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1723 return total;
6d61ef40
BS
1724}
1725
867578cb
KH
1726/*
1727 * Check OOM-Killer is already running under our hierarchy.
1728 * If someone is running, return false.
1af8efe9 1729 * Has to be called with memcg_oom_lock
867578cb 1730 */
c0ff4b85 1731static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1732{
79dfdacc 1733 struct mem_cgroup *iter, *failed = NULL;
a636b327 1734
9f3a0d09 1735 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1736 if (iter->oom_lock) {
79dfdacc
MH
1737 /*
1738 * this subtree of our hierarchy is already locked
1739 * so we cannot give a lock.
1740 */
79dfdacc 1741 failed = iter;
9f3a0d09
JW
1742 mem_cgroup_iter_break(memcg, iter);
1743 break;
23751be0
JW
1744 } else
1745 iter->oom_lock = true;
7d74b06f 1746 }
867578cb 1747
79dfdacc 1748 if (!failed)
23751be0 1749 return true;
79dfdacc
MH
1750
1751 /*
1752 * OK, we failed to lock the whole subtree so we have to clean up
1753 * what we set up to the failing subtree
1754 */
9f3a0d09 1755 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1756 if (iter == failed) {
9f3a0d09
JW
1757 mem_cgroup_iter_break(memcg, iter);
1758 break;
79dfdacc
MH
1759 }
1760 iter->oom_lock = false;
1761 }
23751be0 1762 return false;
a636b327 1763}
0b7f569e 1764
79dfdacc 1765/*
1af8efe9 1766 * Has to be called with memcg_oom_lock
79dfdacc 1767 */
c0ff4b85 1768static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1769{
7d74b06f
KH
1770 struct mem_cgroup *iter;
1771
c0ff4b85 1772 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1773 iter->oom_lock = false;
1774 return 0;
1775}
1776
c0ff4b85 1777static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1778{
1779 struct mem_cgroup *iter;
1780
c0ff4b85 1781 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1782 atomic_inc(&iter->under_oom);
1783}
1784
c0ff4b85 1785static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1786{
1787 struct mem_cgroup *iter;
1788
867578cb
KH
1789 /*
1790 * When a new child is created while the hierarchy is under oom,
1791 * mem_cgroup_oom_lock() may not be called. We have to use
1792 * atomic_add_unless() here.
1793 */
c0ff4b85 1794 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1795 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1796}
1797
1af8efe9 1798static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1799static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1800
dc98df5a 1801struct oom_wait_info {
d79154bb 1802 struct mem_cgroup *memcg;
dc98df5a
KH
1803 wait_queue_t wait;
1804};
1805
1806static int memcg_oom_wake_function(wait_queue_t *wait,
1807 unsigned mode, int sync, void *arg)
1808{
d79154bb
HD
1809 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1810 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1811 struct oom_wait_info *oom_wait_info;
1812
1813 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1814 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1815
dc98df5a 1816 /*
d79154bb 1817 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1818 * Then we can use css_is_ancestor without taking care of RCU.
1819 */
c0ff4b85
R
1820 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1821 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1822 return 0;
dc98df5a
KH
1823 return autoremove_wake_function(wait, mode, sync, arg);
1824}
1825
c0ff4b85 1826static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1827{
c0ff4b85
R
1828 /* for filtering, pass "memcg" as argument. */
1829 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1830}
1831
c0ff4b85 1832static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1833{
c0ff4b85
R
1834 if (memcg && atomic_read(&memcg->under_oom))
1835 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1836}
1837
867578cb
KH
1838/*
1839 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1840 */
6bbda35c
KS
1841static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1842 int order)
0b7f569e 1843{
dc98df5a 1844 struct oom_wait_info owait;
3c11ecf4 1845 bool locked, need_to_kill;
867578cb 1846
d79154bb 1847 owait.memcg = memcg;
dc98df5a
KH
1848 owait.wait.flags = 0;
1849 owait.wait.func = memcg_oom_wake_function;
1850 owait.wait.private = current;
1851 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1852 need_to_kill = true;
c0ff4b85 1853 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1854
c0ff4b85 1855 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1856 spin_lock(&memcg_oom_lock);
c0ff4b85 1857 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1858 /*
1859 * Even if signal_pending(), we can't quit charge() loop without
1860 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1861 * under OOM is always welcomed, use TASK_KILLABLE here.
1862 */
3c11ecf4 1863 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1864 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1865 need_to_kill = false;
1866 if (locked)
c0ff4b85 1867 mem_cgroup_oom_notify(memcg);
1af8efe9 1868 spin_unlock(&memcg_oom_lock);
867578cb 1869
3c11ecf4
KH
1870 if (need_to_kill) {
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1872 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1873 } else {
867578cb 1874 schedule();
dc98df5a 1875 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1876 }
1af8efe9 1877 spin_lock(&memcg_oom_lock);
79dfdacc 1878 if (locked)
c0ff4b85
R
1879 mem_cgroup_oom_unlock(memcg);
1880 memcg_wakeup_oom(memcg);
1af8efe9 1881 spin_unlock(&memcg_oom_lock);
867578cb 1882
c0ff4b85 1883 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1884
867578cb
KH
1885 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1886 return false;
1887 /* Give chance to dying process */
715a5ee8 1888 schedule_timeout_uninterruptible(1);
867578cb 1889 return true;
0b7f569e
KH
1890}
1891
d69b042f
BS
1892/*
1893 * Currently used to update mapped file statistics, but the routine can be
1894 * generalized to update other statistics as well.
32047e2a
KH
1895 *
1896 * Notes: Race condition
1897 *
1898 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1899 * it tends to be costly. But considering some conditions, we doesn't need
1900 * to do so _always_.
1901 *
1902 * Considering "charge", lock_page_cgroup() is not required because all
1903 * file-stat operations happen after a page is attached to radix-tree. There
1904 * are no race with "charge".
1905 *
1906 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1907 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1908 * if there are race with "uncharge". Statistics itself is properly handled
1909 * by flags.
1910 *
1911 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1912 * small, we check mm->moving_account and detect there are possibility of race
1913 * If there is, we take a lock.
d69b042f 1914 */
26174efd 1915
89c06bd5
KH
1916void __mem_cgroup_begin_update_page_stat(struct page *page,
1917 bool *locked, unsigned long *flags)
1918{
1919 struct mem_cgroup *memcg;
1920 struct page_cgroup *pc;
1921
1922 pc = lookup_page_cgroup(page);
1923again:
1924 memcg = pc->mem_cgroup;
1925 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1926 return;
1927 /*
1928 * If this memory cgroup is not under account moving, we don't
1929 * need to take move_lock_page_cgroup(). Because we already hold
1930 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1931 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1932 */
13fd1dd9 1933 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1934 return;
1935
1936 move_lock_mem_cgroup(memcg, flags);
1937 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1938 move_unlock_mem_cgroup(memcg, flags);
1939 goto again;
1940 }
1941 *locked = true;
1942}
1943
1944void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1945{
1946 struct page_cgroup *pc = lookup_page_cgroup(page);
1947
1948 /*
1949 * It's guaranteed that pc->mem_cgroup never changes while
1950 * lock is held because a routine modifies pc->mem_cgroup
1951 * should take move_lock_page_cgroup().
1952 */
1953 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1954}
1955
2a7106f2
GT
1956void mem_cgroup_update_page_stat(struct page *page,
1957 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1958{
c0ff4b85 1959 struct mem_cgroup *memcg;
32047e2a 1960 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1961 unsigned long uninitialized_var(flags);
d69b042f 1962
cfa44946 1963 if (mem_cgroup_disabled())
d69b042f 1964 return;
89c06bd5 1965
c0ff4b85
R
1966 memcg = pc->mem_cgroup;
1967 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1968 return;
26174efd 1969
26174efd 1970 switch (idx) {
2a7106f2 1971 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1972 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1973 break;
1974 default:
1975 BUG();
8725d541 1976 }
d69b042f 1977
c0ff4b85 1978 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1979}
26174efd 1980
cdec2e42
KH
1981/*
1982 * size of first charge trial. "32" comes from vmscan.c's magic value.
1983 * TODO: maybe necessary to use big numbers in big irons.
1984 */
7ec99d62 1985#define CHARGE_BATCH 32U
cdec2e42
KH
1986struct memcg_stock_pcp {
1987 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1988 unsigned int nr_pages;
cdec2e42 1989 struct work_struct work;
26fe6168 1990 unsigned long flags;
a0db00fc 1991#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1992};
1993static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1994static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1995
1996/*
11c9ea4e 1997 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1998 * from local stock and true is returned. If the stock is 0 or charges from a
1999 * cgroup which is not current target, returns false. This stock will be
2000 * refilled.
2001 */
c0ff4b85 2002static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2003{
2004 struct memcg_stock_pcp *stock;
2005 bool ret = true;
2006
2007 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2008 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2009 stock->nr_pages--;
cdec2e42
KH
2010 else /* need to call res_counter_charge */
2011 ret = false;
2012 put_cpu_var(memcg_stock);
2013 return ret;
2014}
2015
2016/*
2017 * Returns stocks cached in percpu to res_counter and reset cached information.
2018 */
2019static void drain_stock(struct memcg_stock_pcp *stock)
2020{
2021 struct mem_cgroup *old = stock->cached;
2022
11c9ea4e
JW
2023 if (stock->nr_pages) {
2024 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2025
2026 res_counter_uncharge(&old->res, bytes);
cdec2e42 2027 if (do_swap_account)
11c9ea4e
JW
2028 res_counter_uncharge(&old->memsw, bytes);
2029 stock->nr_pages = 0;
cdec2e42
KH
2030 }
2031 stock->cached = NULL;
cdec2e42
KH
2032}
2033
2034/*
2035 * This must be called under preempt disabled or must be called by
2036 * a thread which is pinned to local cpu.
2037 */
2038static void drain_local_stock(struct work_struct *dummy)
2039{
2040 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2041 drain_stock(stock);
26fe6168 2042 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2043}
2044
2045/*
2046 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2047 * This will be consumed by consume_stock() function, later.
cdec2e42 2048 */
c0ff4b85 2049static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2050{
2051 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2052
c0ff4b85 2053 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2054 drain_stock(stock);
c0ff4b85 2055 stock->cached = memcg;
cdec2e42 2056 }
11c9ea4e 2057 stock->nr_pages += nr_pages;
cdec2e42
KH
2058 put_cpu_var(memcg_stock);
2059}
2060
2061/*
c0ff4b85 2062 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2063 * of the hierarchy under it. sync flag says whether we should block
2064 * until the work is done.
cdec2e42 2065 */
c0ff4b85 2066static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2067{
26fe6168 2068 int cpu, curcpu;
d38144b7 2069
cdec2e42 2070 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2071 get_online_cpus();
5af12d0e 2072 curcpu = get_cpu();
cdec2e42
KH
2073 for_each_online_cpu(cpu) {
2074 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2075 struct mem_cgroup *memcg;
26fe6168 2076
c0ff4b85
R
2077 memcg = stock->cached;
2078 if (!memcg || !stock->nr_pages)
26fe6168 2079 continue;
c0ff4b85 2080 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2081 continue;
d1a05b69
MH
2082 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2083 if (cpu == curcpu)
2084 drain_local_stock(&stock->work);
2085 else
2086 schedule_work_on(cpu, &stock->work);
2087 }
cdec2e42 2088 }
5af12d0e 2089 put_cpu();
d38144b7
MH
2090
2091 if (!sync)
2092 goto out;
2093
2094 for_each_online_cpu(cpu) {
2095 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2096 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2097 flush_work(&stock->work);
2098 }
2099out:
cdec2e42 2100 put_online_cpus();
d38144b7
MH
2101}
2102
2103/*
2104 * Tries to drain stocked charges in other cpus. This function is asynchronous
2105 * and just put a work per cpu for draining localy on each cpu. Caller can
2106 * expects some charges will be back to res_counter later but cannot wait for
2107 * it.
2108 */
c0ff4b85 2109static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2110{
9f50fad6
MH
2111 /*
2112 * If someone calls draining, avoid adding more kworker runs.
2113 */
2114 if (!mutex_trylock(&percpu_charge_mutex))
2115 return;
c0ff4b85 2116 drain_all_stock(root_memcg, false);
9f50fad6 2117 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2118}
2119
2120/* This is a synchronous drain interface. */
c0ff4b85 2121static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2122{
2123 /* called when force_empty is called */
9f50fad6 2124 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2125 drain_all_stock(root_memcg, true);
9f50fad6 2126 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2127}
2128
711d3d2c
KH
2129/*
2130 * This function drains percpu counter value from DEAD cpu and
2131 * move it to local cpu. Note that this function can be preempted.
2132 */
c0ff4b85 2133static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2134{
2135 int i;
2136
c0ff4b85 2137 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2138 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2139 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2140
c0ff4b85
R
2141 per_cpu(memcg->stat->count[i], cpu) = 0;
2142 memcg->nocpu_base.count[i] += x;
711d3d2c 2143 }
e9f8974f 2144 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2145 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2146
c0ff4b85
R
2147 per_cpu(memcg->stat->events[i], cpu) = 0;
2148 memcg->nocpu_base.events[i] += x;
e9f8974f 2149 }
c0ff4b85 2150 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2151}
2152
2153static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2154 unsigned long action,
2155 void *hcpu)
2156{
2157 int cpu = (unsigned long)hcpu;
2158 struct memcg_stock_pcp *stock;
711d3d2c 2159 struct mem_cgroup *iter;
cdec2e42 2160
619d094b 2161 if (action == CPU_ONLINE)
1489ebad 2162 return NOTIFY_OK;
1489ebad 2163
d833049b 2164 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2165 return NOTIFY_OK;
711d3d2c 2166
9f3a0d09 2167 for_each_mem_cgroup(iter)
711d3d2c
KH
2168 mem_cgroup_drain_pcp_counter(iter, cpu);
2169
cdec2e42
KH
2170 stock = &per_cpu(memcg_stock, cpu);
2171 drain_stock(stock);
2172 return NOTIFY_OK;
2173}
2174
4b534334
KH
2175
2176/* See __mem_cgroup_try_charge() for details */
2177enum {
2178 CHARGE_OK, /* success */
2179 CHARGE_RETRY, /* need to retry but retry is not bad */
2180 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2181 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2182 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2183};
2184
c0ff4b85 2185static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2186 unsigned int nr_pages, bool oom_check)
4b534334 2187{
7ec99d62 2188 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2189 struct mem_cgroup *mem_over_limit;
2190 struct res_counter *fail_res;
2191 unsigned long flags = 0;
2192 int ret;
2193
c0ff4b85 2194 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2195
2196 if (likely(!ret)) {
2197 if (!do_swap_account)
2198 return CHARGE_OK;
c0ff4b85 2199 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2200 if (likely(!ret))
2201 return CHARGE_OK;
2202
c0ff4b85 2203 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2204 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2205 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2206 } else
2207 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2208 /*
7ec99d62
JW
2209 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2210 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2211 *
2212 * Never reclaim on behalf of optional batching, retry with a
2213 * single page instead.
2214 */
7ec99d62 2215 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2216 return CHARGE_RETRY;
2217
2218 if (!(gfp_mask & __GFP_WAIT))
2219 return CHARGE_WOULDBLOCK;
2220
5660048c 2221 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2222 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2223 return CHARGE_RETRY;
4b534334 2224 /*
19942822
JW
2225 * Even though the limit is exceeded at this point, reclaim
2226 * may have been able to free some pages. Retry the charge
2227 * before killing the task.
2228 *
2229 * Only for regular pages, though: huge pages are rather
2230 * unlikely to succeed so close to the limit, and we fall back
2231 * to regular pages anyway in case of failure.
4b534334 2232 */
7ec99d62 2233 if (nr_pages == 1 && ret)
4b534334
KH
2234 return CHARGE_RETRY;
2235
2236 /*
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2239 */
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 return CHARGE_RETRY;
2242
2243 /* If we don't need to call oom-killer at el, return immediately */
2244 if (!oom_check)
2245 return CHARGE_NOMEM;
2246 /* check OOM */
e845e199 2247 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2248 return CHARGE_OOM_DIE;
2249
2250 return CHARGE_RETRY;
2251}
2252
f817ed48 2253/*
38c5d72f
KH
2254 * __mem_cgroup_try_charge() does
2255 * 1. detect memcg to be charged against from passed *mm and *ptr,
2256 * 2. update res_counter
2257 * 3. call memory reclaim if necessary.
2258 *
2259 * In some special case, if the task is fatal, fatal_signal_pending() or
2260 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2261 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2262 * as possible without any hazards. 2: all pages should have a valid
2263 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2264 * pointer, that is treated as a charge to root_mem_cgroup.
2265 *
2266 * So __mem_cgroup_try_charge() will return
2267 * 0 ... on success, filling *ptr with a valid memcg pointer.
2268 * -ENOMEM ... charge failure because of resource limits.
2269 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2270 *
2271 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2272 * the oom-killer can be invoked.
8a9f3ccd 2273 */
f817ed48 2274static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2275 gfp_t gfp_mask,
7ec99d62 2276 unsigned int nr_pages,
c0ff4b85 2277 struct mem_cgroup **ptr,
7ec99d62 2278 bool oom)
8a9f3ccd 2279{
7ec99d62 2280 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2281 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2282 struct mem_cgroup *memcg = NULL;
4b534334 2283 int ret;
a636b327 2284
867578cb
KH
2285 /*
2286 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2287 * in system level. So, allow to go ahead dying process in addition to
2288 * MEMDIE process.
2289 */
2290 if (unlikely(test_thread_flag(TIF_MEMDIE)
2291 || fatal_signal_pending(current)))
2292 goto bypass;
a636b327 2293
8a9f3ccd 2294 /*
3be91277
HD
2295 * We always charge the cgroup the mm_struct belongs to.
2296 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2297 * thread group leader migrates. It's possible that mm is not
2298 * set, if so charge the init_mm (happens for pagecache usage).
2299 */
c0ff4b85 2300 if (!*ptr && !mm)
38c5d72f 2301 *ptr = root_mem_cgroup;
f75ca962 2302again:
c0ff4b85
R
2303 if (*ptr) { /* css should be a valid one */
2304 memcg = *ptr;
2305 VM_BUG_ON(css_is_removed(&memcg->css));
2306 if (mem_cgroup_is_root(memcg))
f75ca962 2307 goto done;
c0ff4b85 2308 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2309 goto done;
c0ff4b85 2310 css_get(&memcg->css);
4b534334 2311 } else {
f75ca962 2312 struct task_struct *p;
54595fe2 2313
f75ca962
KH
2314 rcu_read_lock();
2315 p = rcu_dereference(mm->owner);
f75ca962 2316 /*
ebb76ce1 2317 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2318 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2319 * race with swapoff. Then, we have small risk of mis-accouning.
2320 * But such kind of mis-account by race always happens because
2321 * we don't have cgroup_mutex(). It's overkill and we allo that
2322 * small race, here.
2323 * (*) swapoff at el will charge against mm-struct not against
2324 * task-struct. So, mm->owner can be NULL.
f75ca962 2325 */
c0ff4b85 2326 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2327 if (!memcg)
2328 memcg = root_mem_cgroup;
2329 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2330 rcu_read_unlock();
2331 goto done;
2332 }
c0ff4b85 2333 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2334 /*
2335 * It seems dagerous to access memcg without css_get().
2336 * But considering how consume_stok works, it's not
2337 * necessary. If consume_stock success, some charges
2338 * from this memcg are cached on this cpu. So, we
2339 * don't need to call css_get()/css_tryget() before
2340 * calling consume_stock().
2341 */
2342 rcu_read_unlock();
2343 goto done;
2344 }
2345 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2346 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2347 rcu_read_unlock();
2348 goto again;
2349 }
2350 rcu_read_unlock();
2351 }
8a9f3ccd 2352
4b534334
KH
2353 do {
2354 bool oom_check;
7a81b88c 2355
4b534334 2356 /* If killed, bypass charge */
f75ca962 2357 if (fatal_signal_pending(current)) {
c0ff4b85 2358 css_put(&memcg->css);
4b534334 2359 goto bypass;
f75ca962 2360 }
6d61ef40 2361
4b534334
KH
2362 oom_check = false;
2363 if (oom && !nr_oom_retries) {
2364 oom_check = true;
2365 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2366 }
66e1707b 2367
c0ff4b85 2368 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2369 switch (ret) {
2370 case CHARGE_OK:
2371 break;
2372 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2373 batch = nr_pages;
c0ff4b85
R
2374 css_put(&memcg->css);
2375 memcg = NULL;
f75ca962 2376 goto again;
4b534334 2377 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2378 css_put(&memcg->css);
4b534334
KH
2379 goto nomem;
2380 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2381 if (!oom) {
c0ff4b85 2382 css_put(&memcg->css);
867578cb 2383 goto nomem;
f75ca962 2384 }
4b534334
KH
2385 /* If oom, we never return -ENOMEM */
2386 nr_oom_retries--;
2387 break;
2388 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2389 css_put(&memcg->css);
867578cb 2390 goto bypass;
66e1707b 2391 }
4b534334
KH
2392 } while (ret != CHARGE_OK);
2393
7ec99d62 2394 if (batch > nr_pages)
c0ff4b85
R
2395 refill_stock(memcg, batch - nr_pages);
2396 css_put(&memcg->css);
0c3e73e8 2397done:
c0ff4b85 2398 *ptr = memcg;
7a81b88c
KH
2399 return 0;
2400nomem:
c0ff4b85 2401 *ptr = NULL;
7a81b88c 2402 return -ENOMEM;
867578cb 2403bypass:
38c5d72f
KH
2404 *ptr = root_mem_cgroup;
2405 return -EINTR;
7a81b88c 2406}
8a9f3ccd 2407
a3032a2c
DN
2408/*
2409 * Somemtimes we have to undo a charge we got by try_charge().
2410 * This function is for that and do uncharge, put css's refcnt.
2411 * gotten by try_charge().
2412 */
c0ff4b85 2413static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2414 unsigned int nr_pages)
a3032a2c 2415{
c0ff4b85 2416 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2417 unsigned long bytes = nr_pages * PAGE_SIZE;
2418
c0ff4b85 2419 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2420 if (do_swap_account)
c0ff4b85 2421 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2422 }
854ffa8d
DN
2423}
2424
d01dd17f
KH
2425/*
2426 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2427 * This is useful when moving usage to parent cgroup.
2428 */
2429static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2430 unsigned int nr_pages)
2431{
2432 unsigned long bytes = nr_pages * PAGE_SIZE;
2433
2434 if (mem_cgroup_is_root(memcg))
2435 return;
2436
2437 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2438 if (do_swap_account)
2439 res_counter_uncharge_until(&memcg->memsw,
2440 memcg->memsw.parent, bytes);
2441}
2442
a3b2d692
KH
2443/*
2444 * A helper function to get mem_cgroup from ID. must be called under
2445 * rcu_read_lock(). The caller must check css_is_removed() or some if
2446 * it's concern. (dropping refcnt from swap can be called against removed
2447 * memcg.)
2448 */
2449static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2450{
2451 struct cgroup_subsys_state *css;
2452
2453 /* ID 0 is unused ID */
2454 if (!id)
2455 return NULL;
2456 css = css_lookup(&mem_cgroup_subsys, id);
2457 if (!css)
2458 return NULL;
2459 return container_of(css, struct mem_cgroup, css);
2460}
2461
e42d9d5d 2462struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2463{
c0ff4b85 2464 struct mem_cgroup *memcg = NULL;
3c776e64 2465 struct page_cgroup *pc;
a3b2d692 2466 unsigned short id;
b5a84319
KH
2467 swp_entry_t ent;
2468
3c776e64
DN
2469 VM_BUG_ON(!PageLocked(page));
2470
3c776e64 2471 pc = lookup_page_cgroup(page);
c0bd3f63 2472 lock_page_cgroup(pc);
a3b2d692 2473 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2474 memcg = pc->mem_cgroup;
2475 if (memcg && !css_tryget(&memcg->css))
2476 memcg = NULL;
e42d9d5d 2477 } else if (PageSwapCache(page)) {
3c776e64 2478 ent.val = page_private(page);
9fb4b7cc 2479 id = lookup_swap_cgroup_id(ent);
a3b2d692 2480 rcu_read_lock();
c0ff4b85
R
2481 memcg = mem_cgroup_lookup(id);
2482 if (memcg && !css_tryget(&memcg->css))
2483 memcg = NULL;
a3b2d692 2484 rcu_read_unlock();
3c776e64 2485 }
c0bd3f63 2486 unlock_page_cgroup(pc);
c0ff4b85 2487 return memcg;
b5a84319
KH
2488}
2489
c0ff4b85 2490static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2491 struct page *page,
7ec99d62 2492 unsigned int nr_pages,
9ce70c02
HD
2493 enum charge_type ctype,
2494 bool lrucare)
7a81b88c 2495{
ce587e65 2496 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2497 struct zone *uninitialized_var(zone);
2498 bool was_on_lru = false;
b2402857 2499 bool anon;
9ce70c02 2500
ca3e0214
KH
2501 lock_page_cgroup(pc);
2502 if (unlikely(PageCgroupUsed(pc))) {
2503 unlock_page_cgroup(pc);
c0ff4b85 2504 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2505 return;
2506 }
2507 /*
2508 * we don't need page_cgroup_lock about tail pages, becase they are not
2509 * accessed by any other context at this point.
2510 */
9ce70c02
HD
2511
2512 /*
2513 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2514 * may already be on some other mem_cgroup's LRU. Take care of it.
2515 */
2516 if (lrucare) {
2517 zone = page_zone(page);
2518 spin_lock_irq(&zone->lru_lock);
2519 if (PageLRU(page)) {
2520 ClearPageLRU(page);
2521 del_page_from_lru_list(zone, page, page_lru(page));
2522 was_on_lru = true;
2523 }
2524 }
2525
c0ff4b85 2526 pc->mem_cgroup = memcg;
261fb61a
KH
2527 /*
2528 * We access a page_cgroup asynchronously without lock_page_cgroup().
2529 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2530 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2531 * before USED bit, we need memory barrier here.
2532 * See mem_cgroup_add_lru_list(), etc.
2533 */
08e552c6 2534 smp_wmb();
b2402857 2535 SetPageCgroupUsed(pc);
3be91277 2536
9ce70c02
HD
2537 if (lrucare) {
2538 if (was_on_lru) {
2539 VM_BUG_ON(PageLRU(page));
2540 SetPageLRU(page);
2541 add_page_to_lru_list(zone, page, page_lru(page));
2542 }
2543 spin_unlock_irq(&zone->lru_lock);
2544 }
2545
b2402857
KH
2546 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2547 anon = true;
2548 else
2549 anon = false;
2550
2551 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2552 unlock_page_cgroup(pc);
9ce70c02 2553
430e4863
KH
2554 /*
2555 * "charge_statistics" updated event counter. Then, check it.
2556 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2557 * if they exceeds softlimit.
2558 */
c0ff4b85 2559 memcg_check_events(memcg, page);
7a81b88c 2560}
66e1707b 2561
ca3e0214
KH
2562#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2563
a0db00fc 2564#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2565/*
2566 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2567 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2568 * charge/uncharge will be never happen and move_account() is done under
2569 * compound_lock(), so we don't have to take care of races.
ca3e0214 2570 */
e94c8a9c 2571void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2572{
2573 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2574 struct page_cgroup *pc;
2575 int i;
ca3e0214 2576
3d37c4a9
KH
2577 if (mem_cgroup_disabled())
2578 return;
e94c8a9c
KH
2579 for (i = 1; i < HPAGE_PMD_NR; i++) {
2580 pc = head_pc + i;
2581 pc->mem_cgroup = head_pc->mem_cgroup;
2582 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2583 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2584 }
ca3e0214 2585}
12d27107 2586#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2587
f817ed48 2588/**
de3638d9 2589 * mem_cgroup_move_account - move account of the page
5564e88b 2590 * @page: the page
7ec99d62 2591 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2592 * @pc: page_cgroup of the page.
2593 * @from: mem_cgroup which the page is moved from.
2594 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2595 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2596 *
2597 * The caller must confirm following.
08e552c6 2598 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2599 * - compound_lock is held when nr_pages > 1
f817ed48 2600 *
854ffa8d 2601 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2602 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2603 * true, this function does "uncharge" from old cgroup, but it doesn't if
2604 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2605 */
7ec99d62
JW
2606static int mem_cgroup_move_account(struct page *page,
2607 unsigned int nr_pages,
2608 struct page_cgroup *pc,
2609 struct mem_cgroup *from,
2610 struct mem_cgroup *to,
2611 bool uncharge)
f817ed48 2612{
de3638d9
JW
2613 unsigned long flags;
2614 int ret;
b2402857 2615 bool anon = PageAnon(page);
987eba66 2616
f817ed48 2617 VM_BUG_ON(from == to);
5564e88b 2618 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2619 /*
2620 * The page is isolated from LRU. So, collapse function
2621 * will not handle this page. But page splitting can happen.
2622 * Do this check under compound_page_lock(). The caller should
2623 * hold it.
2624 */
2625 ret = -EBUSY;
7ec99d62 2626 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2627 goto out;
2628
2629 lock_page_cgroup(pc);
2630
2631 ret = -EINVAL;
2632 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2633 goto unlock;
2634
312734c0 2635 move_lock_mem_cgroup(from, &flags);
f817ed48 2636
2ff76f11 2637 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2638 /* Update mapped_file data for mem_cgroup */
2639 preempt_disable();
2640 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2641 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2642 preempt_enable();
d69b042f 2643 }
b2402857 2644 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2645 if (uncharge)
2646 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2647 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2648
854ffa8d 2649 /* caller should have done css_get */
08e552c6 2650 pc->mem_cgroup = to;
b2402857 2651 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2652 /*
2653 * We charges against "to" which may not have any tasks. Then, "to"
2654 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2655 * this function is just force_empty() and move charge, so it's
25985edc 2656 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2657 * status here.
88703267 2658 */
312734c0 2659 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2660 ret = 0;
2661unlock:
57f9fd7d 2662 unlock_page_cgroup(pc);
d2265e6f
KH
2663 /*
2664 * check events
2665 */
5564e88b
JW
2666 memcg_check_events(to, page);
2667 memcg_check_events(from, page);
de3638d9 2668out:
f817ed48
KH
2669 return ret;
2670}
2671
2672/*
2673 * move charges to its parent.
2674 */
2675
5564e88b
JW
2676static int mem_cgroup_move_parent(struct page *page,
2677 struct page_cgroup *pc,
f817ed48
KH
2678 struct mem_cgroup *child,
2679 gfp_t gfp_mask)
2680{
f817ed48 2681 struct mem_cgroup *parent;
7ec99d62 2682 unsigned int nr_pages;
4be4489f 2683 unsigned long uninitialized_var(flags);
f817ed48
KH
2684 int ret;
2685
2686 /* Is ROOT ? */
cc926f78 2687 if (mem_cgroup_is_root(child))
f817ed48
KH
2688 return -EINVAL;
2689
57f9fd7d
DN
2690 ret = -EBUSY;
2691 if (!get_page_unless_zero(page))
2692 goto out;
2693 if (isolate_lru_page(page))
2694 goto put;
52dbb905 2695
7ec99d62 2696 nr_pages = hpage_nr_pages(page);
08e552c6 2697
cc926f78
KH
2698 parent = parent_mem_cgroup(child);
2699 /*
2700 * If no parent, move charges to root cgroup.
2701 */
2702 if (!parent)
2703 parent = root_mem_cgroup;
f817ed48 2704
7ec99d62 2705 if (nr_pages > 1)
987eba66
KH
2706 flags = compound_lock_irqsave(page);
2707
cc926f78
KH
2708 ret = mem_cgroup_move_account(page, nr_pages,
2709 pc, child, parent, false);
2710 if (!ret)
2711 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2712
7ec99d62 2713 if (nr_pages > 1)
987eba66 2714 compound_unlock_irqrestore(page, flags);
08e552c6 2715 putback_lru_page(page);
57f9fd7d 2716put:
40d58138 2717 put_page(page);
57f9fd7d 2718out:
f817ed48
KH
2719 return ret;
2720}
2721
7a81b88c
KH
2722/*
2723 * Charge the memory controller for page usage.
2724 * Return
2725 * 0 if the charge was successful
2726 * < 0 if the cgroup is over its limit
2727 */
2728static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2729 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2730{
c0ff4b85 2731 struct mem_cgroup *memcg = NULL;
7ec99d62 2732 unsigned int nr_pages = 1;
8493ae43 2733 bool oom = true;
7a81b88c 2734 int ret;
ec168510 2735
37c2ac78 2736 if (PageTransHuge(page)) {
7ec99d62 2737 nr_pages <<= compound_order(page);
37c2ac78 2738 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2739 /*
2740 * Never OOM-kill a process for a huge page. The
2741 * fault handler will fall back to regular pages.
2742 */
2743 oom = false;
37c2ac78 2744 }
7a81b88c 2745
c0ff4b85 2746 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2747 if (ret == -ENOMEM)
7a81b88c 2748 return ret;
ce587e65 2749 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2750 return 0;
8a9f3ccd
BS
2751}
2752
7a81b88c
KH
2753int mem_cgroup_newpage_charge(struct page *page,
2754 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2755{
f8d66542 2756 if (mem_cgroup_disabled())
cede86ac 2757 return 0;
7a0524cf
JW
2758 VM_BUG_ON(page_mapped(page));
2759 VM_BUG_ON(page->mapping && !PageAnon(page));
2760 VM_BUG_ON(!mm);
217bc319 2761 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2762 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2763}
2764
83aae4c7
DN
2765static void
2766__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2767 enum charge_type ctype);
2768
e1a1cd59
BS
2769int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2770 gfp_t gfp_mask)
8697d331 2771{
c0ff4b85 2772 struct mem_cgroup *memcg = NULL;
dc67d504 2773 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2774 int ret;
2775
f8d66542 2776 if (mem_cgroup_disabled())
cede86ac 2777 return 0;
52d4b9ac
KH
2778 if (PageCompound(page))
2779 return 0;
accf163e 2780
73045c47 2781 if (unlikely(!mm))
8697d331 2782 mm = &init_mm;
dc67d504
KH
2783 if (!page_is_file_cache(page))
2784 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2785
38c5d72f 2786 if (!PageSwapCache(page))
dc67d504 2787 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2788 else { /* page is swapcache/shmem */
c0ff4b85 2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2790 if (!ret)
dc67d504
KH
2791 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2792 }
b5a84319 2793 return ret;
e8589cc1
KH
2794}
2795
54595fe2
KH
2796/*
2797 * While swap-in, try_charge -> commit or cancel, the page is locked.
2798 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2799 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2800 * "commit()" or removed by "cancel()"
2801 */
8c7c6e34
KH
2802int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2803 struct page *page,
72835c86 2804 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2805{
c0ff4b85 2806 struct mem_cgroup *memcg;
54595fe2 2807 int ret;
8c7c6e34 2808
72835c86 2809 *memcgp = NULL;
56039efa 2810
f8d66542 2811 if (mem_cgroup_disabled())
8c7c6e34
KH
2812 return 0;
2813
2814 if (!do_swap_account)
2815 goto charge_cur_mm;
8c7c6e34
KH
2816 /*
2817 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2818 * the pte, and even removed page from swap cache: in those cases
2819 * do_swap_page()'s pte_same() test will fail; but there's also a
2820 * KSM case which does need to charge the page.
8c7c6e34
KH
2821 */
2822 if (!PageSwapCache(page))
407f9c8b 2823 goto charge_cur_mm;
c0ff4b85
R
2824 memcg = try_get_mem_cgroup_from_page(page);
2825 if (!memcg)
54595fe2 2826 goto charge_cur_mm;
72835c86
JW
2827 *memcgp = memcg;
2828 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2829 css_put(&memcg->css);
38c5d72f
KH
2830 if (ret == -EINTR)
2831 ret = 0;
54595fe2 2832 return ret;
8c7c6e34
KH
2833charge_cur_mm:
2834 if (unlikely(!mm))
2835 mm = &init_mm;
38c5d72f
KH
2836 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2837 if (ret == -EINTR)
2838 ret = 0;
2839 return ret;
8c7c6e34
KH
2840}
2841
83aae4c7 2842static void
72835c86 2843__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2844 enum charge_type ctype)
7a81b88c 2845{
f8d66542 2846 if (mem_cgroup_disabled())
7a81b88c 2847 return;
72835c86 2848 if (!memcg)
7a81b88c 2849 return;
72835c86 2850 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2851
ce587e65 2852 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2853 /*
2854 * Now swap is on-memory. This means this page may be
2855 * counted both as mem and swap....double count.
03f3c433
KH
2856 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2857 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2858 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2859 */
03f3c433 2860 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2861 swp_entry_t ent = {.val = page_private(page)};
86493009 2862 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2863 }
88703267
KH
2864 /*
2865 * At swapin, we may charge account against cgroup which has no tasks.
2866 * So, rmdir()->pre_destroy() can be called while we do this charge.
2867 * In that case, we need to call pre_destroy() again. check it here.
2868 */
72835c86 2869 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2870}
2871
72835c86
JW
2872void mem_cgroup_commit_charge_swapin(struct page *page,
2873 struct mem_cgroup *memcg)
83aae4c7 2874{
72835c86
JW
2875 __mem_cgroup_commit_charge_swapin(page, memcg,
2876 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2877}
2878
c0ff4b85 2879void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2880{
f8d66542 2881 if (mem_cgroup_disabled())
7a81b88c 2882 return;
c0ff4b85 2883 if (!memcg)
7a81b88c 2884 return;
c0ff4b85 2885 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2886}
2887
c0ff4b85 2888static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2889 unsigned int nr_pages,
2890 const enum charge_type ctype)
569b846d
KH
2891{
2892 struct memcg_batch_info *batch = NULL;
2893 bool uncharge_memsw = true;
7ec99d62 2894
569b846d
KH
2895 /* If swapout, usage of swap doesn't decrease */
2896 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2897 uncharge_memsw = false;
569b846d
KH
2898
2899 batch = &current->memcg_batch;
2900 /*
2901 * In usual, we do css_get() when we remember memcg pointer.
2902 * But in this case, we keep res->usage until end of a series of
2903 * uncharges. Then, it's ok to ignore memcg's refcnt.
2904 */
2905 if (!batch->memcg)
c0ff4b85 2906 batch->memcg = memcg;
3c11ecf4
KH
2907 /*
2908 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2909 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2910 * the same cgroup and we have chance to coalesce uncharges.
2911 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2912 * because we want to do uncharge as soon as possible.
2913 */
2914
2915 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2916 goto direct_uncharge;
2917
7ec99d62 2918 if (nr_pages > 1)
ec168510
AA
2919 goto direct_uncharge;
2920
569b846d
KH
2921 /*
2922 * In typical case, batch->memcg == mem. This means we can
2923 * merge a series of uncharges to an uncharge of res_counter.
2924 * If not, we uncharge res_counter ony by one.
2925 */
c0ff4b85 2926 if (batch->memcg != memcg)
569b846d
KH
2927 goto direct_uncharge;
2928 /* remember freed charge and uncharge it later */
7ffd4ca7 2929 batch->nr_pages++;
569b846d 2930 if (uncharge_memsw)
7ffd4ca7 2931 batch->memsw_nr_pages++;
569b846d
KH
2932 return;
2933direct_uncharge:
c0ff4b85 2934 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2935 if (uncharge_memsw)
c0ff4b85
R
2936 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2937 if (unlikely(batch->memcg != memcg))
2938 memcg_oom_recover(memcg);
569b846d 2939}
7a81b88c 2940
8a9f3ccd 2941/*
69029cd5 2942 * uncharge if !page_mapped(page)
8a9f3ccd 2943 */
8c7c6e34 2944static struct mem_cgroup *
69029cd5 2945__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2946{
c0ff4b85 2947 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2948 unsigned int nr_pages = 1;
2949 struct page_cgroup *pc;
b2402857 2950 bool anon;
8a9f3ccd 2951
f8d66542 2952 if (mem_cgroup_disabled())
8c7c6e34 2953 return NULL;
4077960e 2954
d13d1443 2955 if (PageSwapCache(page))
8c7c6e34 2956 return NULL;
d13d1443 2957
37c2ac78 2958 if (PageTransHuge(page)) {
7ec99d62 2959 nr_pages <<= compound_order(page);
37c2ac78
AA
2960 VM_BUG_ON(!PageTransHuge(page));
2961 }
8697d331 2962 /*
3c541e14 2963 * Check if our page_cgroup is valid
8697d331 2964 */
52d4b9ac 2965 pc = lookup_page_cgroup(page);
cfa44946 2966 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2967 return NULL;
b9c565d5 2968
52d4b9ac 2969 lock_page_cgroup(pc);
d13d1443 2970
c0ff4b85 2971 memcg = pc->mem_cgroup;
8c7c6e34 2972
d13d1443
KH
2973 if (!PageCgroupUsed(pc))
2974 goto unlock_out;
2975
b2402857
KH
2976 anon = PageAnon(page);
2977
d13d1443
KH
2978 switch (ctype) {
2979 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2980 /*
2981 * Generally PageAnon tells if it's the anon statistics to be
2982 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2983 * used before page reached the stage of being marked PageAnon.
2984 */
b2402857
KH
2985 anon = true;
2986 /* fallthrough */
8a9478ca 2987 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2988 /* See mem_cgroup_prepare_migration() */
2989 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2990 goto unlock_out;
2991 break;
2992 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2993 if (!PageAnon(page)) { /* Shared memory */
2994 if (page->mapping && !page_is_file_cache(page))
2995 goto unlock_out;
2996 } else if (page_mapped(page)) /* Anon */
2997 goto unlock_out;
2998 break;
2999 default:
3000 break;
52d4b9ac 3001 }
d13d1443 3002
b2402857 3003 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3004
52d4b9ac 3005 ClearPageCgroupUsed(pc);
544122e5
KH
3006 /*
3007 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3008 * freed from LRU. This is safe because uncharged page is expected not
3009 * to be reused (freed soon). Exception is SwapCache, it's handled by
3010 * special functions.
3011 */
b9c565d5 3012
52d4b9ac 3013 unlock_page_cgroup(pc);
f75ca962 3014 /*
c0ff4b85 3015 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3016 * will never be freed.
3017 */
c0ff4b85 3018 memcg_check_events(memcg, page);
f75ca962 3019 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3020 mem_cgroup_swap_statistics(memcg, true);
3021 mem_cgroup_get(memcg);
f75ca962 3022 }
c0ff4b85
R
3023 if (!mem_cgroup_is_root(memcg))
3024 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3025
c0ff4b85 3026 return memcg;
d13d1443
KH
3027
3028unlock_out:
3029 unlock_page_cgroup(pc);
8c7c6e34 3030 return NULL;
3c541e14
BS
3031}
3032
69029cd5
KH
3033void mem_cgroup_uncharge_page(struct page *page)
3034{
52d4b9ac
KH
3035 /* early check. */
3036 if (page_mapped(page))
3037 return;
40f23a21 3038 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3039 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3040}
3041
3042void mem_cgroup_uncharge_cache_page(struct page *page)
3043{
3044 VM_BUG_ON(page_mapped(page));
b7abea96 3045 VM_BUG_ON(page->mapping);
69029cd5
KH
3046 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3047}
3048
569b846d
KH
3049/*
3050 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3051 * In that cases, pages are freed continuously and we can expect pages
3052 * are in the same memcg. All these calls itself limits the number of
3053 * pages freed at once, then uncharge_start/end() is called properly.
3054 * This may be called prural(2) times in a context,
3055 */
3056
3057void mem_cgroup_uncharge_start(void)
3058{
3059 current->memcg_batch.do_batch++;
3060 /* We can do nest. */
3061 if (current->memcg_batch.do_batch == 1) {
3062 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3063 current->memcg_batch.nr_pages = 0;
3064 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3065 }
3066}
3067
3068void mem_cgroup_uncharge_end(void)
3069{
3070 struct memcg_batch_info *batch = &current->memcg_batch;
3071
3072 if (!batch->do_batch)
3073 return;
3074
3075 batch->do_batch--;
3076 if (batch->do_batch) /* If stacked, do nothing. */
3077 return;
3078
3079 if (!batch->memcg)
3080 return;
3081 /*
3082 * This "batch->memcg" is valid without any css_get/put etc...
3083 * bacause we hide charges behind us.
3084 */
7ffd4ca7
JW
3085 if (batch->nr_pages)
3086 res_counter_uncharge(&batch->memcg->res,
3087 batch->nr_pages * PAGE_SIZE);
3088 if (batch->memsw_nr_pages)
3089 res_counter_uncharge(&batch->memcg->memsw,
3090 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3091 memcg_oom_recover(batch->memcg);
569b846d
KH
3092 /* forget this pointer (for sanity check) */
3093 batch->memcg = NULL;
3094}
3095
e767e056 3096#ifdef CONFIG_SWAP
8c7c6e34 3097/*
e767e056 3098 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3099 * memcg information is recorded to swap_cgroup of "ent"
3100 */
8a9478ca
KH
3101void
3102mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3103{
3104 struct mem_cgroup *memcg;
8a9478ca
KH
3105 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3106
3107 if (!swapout) /* this was a swap cache but the swap is unused ! */
3108 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3109
3110 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3111
f75ca962
KH
3112 /*
3113 * record memcg information, if swapout && memcg != NULL,
3114 * mem_cgroup_get() was called in uncharge().
3115 */
3116 if (do_swap_account && swapout && memcg)
a3b2d692 3117 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3118}
e767e056 3119#endif
8c7c6e34
KH
3120
3121#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3122/*
3123 * called from swap_entry_free(). remove record in swap_cgroup and
3124 * uncharge "memsw" account.
3125 */
3126void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3127{
8c7c6e34 3128 struct mem_cgroup *memcg;
a3b2d692 3129 unsigned short id;
8c7c6e34
KH
3130
3131 if (!do_swap_account)
3132 return;
3133
a3b2d692
KH
3134 id = swap_cgroup_record(ent, 0);
3135 rcu_read_lock();
3136 memcg = mem_cgroup_lookup(id);
8c7c6e34 3137 if (memcg) {
a3b2d692
KH
3138 /*
3139 * We uncharge this because swap is freed.
3140 * This memcg can be obsolete one. We avoid calling css_tryget
3141 */
0c3e73e8 3142 if (!mem_cgroup_is_root(memcg))
4e649152 3143 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3144 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3145 mem_cgroup_put(memcg);
3146 }
a3b2d692 3147 rcu_read_unlock();
d13d1443 3148}
02491447
DN
3149
3150/**
3151 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3152 * @entry: swap entry to be moved
3153 * @from: mem_cgroup which the entry is moved from
3154 * @to: mem_cgroup which the entry is moved to
3155 *
3156 * It succeeds only when the swap_cgroup's record for this entry is the same
3157 * as the mem_cgroup's id of @from.
3158 *
3159 * Returns 0 on success, -EINVAL on failure.
3160 *
3161 * The caller must have charged to @to, IOW, called res_counter_charge() about
3162 * both res and memsw, and called css_get().
3163 */
3164static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3165 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3166{
3167 unsigned short old_id, new_id;
3168
3169 old_id = css_id(&from->css);
3170 new_id = css_id(&to->css);
3171
3172 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3173 mem_cgroup_swap_statistics(from, false);
483c30b5 3174 mem_cgroup_swap_statistics(to, true);
02491447 3175 /*
483c30b5
DN
3176 * This function is only called from task migration context now.
3177 * It postpones res_counter and refcount handling till the end
3178 * of task migration(mem_cgroup_clear_mc()) for performance
3179 * improvement. But we cannot postpone mem_cgroup_get(to)
3180 * because if the process that has been moved to @to does
3181 * swap-in, the refcount of @to might be decreased to 0.
02491447 3182 */
02491447 3183 mem_cgroup_get(to);
02491447
DN
3184 return 0;
3185 }
3186 return -EINVAL;
3187}
3188#else
3189static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3190 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3191{
3192 return -EINVAL;
3193}
8c7c6e34 3194#endif
d13d1443 3195
ae41be37 3196/*
01b1ae63
KH
3197 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3198 * page belongs to.
ae41be37 3199 */
ac39cf8c 3200int mem_cgroup_prepare_migration(struct page *page,
72835c86 3201 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3202{
c0ff4b85 3203 struct mem_cgroup *memcg = NULL;
7ec99d62 3204 struct page_cgroup *pc;
ac39cf8c 3205 enum charge_type ctype;
e8589cc1 3206 int ret = 0;
8869b8f6 3207
72835c86 3208 *memcgp = NULL;
56039efa 3209
ec168510 3210 VM_BUG_ON(PageTransHuge(page));
f8d66542 3211 if (mem_cgroup_disabled())
4077960e
BS
3212 return 0;
3213
52d4b9ac
KH
3214 pc = lookup_page_cgroup(page);
3215 lock_page_cgroup(pc);
3216 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3217 memcg = pc->mem_cgroup;
3218 css_get(&memcg->css);
ac39cf8c
AM
3219 /*
3220 * At migrating an anonymous page, its mapcount goes down
3221 * to 0 and uncharge() will be called. But, even if it's fully
3222 * unmapped, migration may fail and this page has to be
3223 * charged again. We set MIGRATION flag here and delay uncharge
3224 * until end_migration() is called
3225 *
3226 * Corner Case Thinking
3227 * A)
3228 * When the old page was mapped as Anon and it's unmap-and-freed
3229 * while migration was ongoing.
3230 * If unmap finds the old page, uncharge() of it will be delayed
3231 * until end_migration(). If unmap finds a new page, it's
3232 * uncharged when it make mapcount to be 1->0. If unmap code
3233 * finds swap_migration_entry, the new page will not be mapped
3234 * and end_migration() will find it(mapcount==0).
3235 *
3236 * B)
3237 * When the old page was mapped but migraion fails, the kernel
3238 * remaps it. A charge for it is kept by MIGRATION flag even
3239 * if mapcount goes down to 0. We can do remap successfully
3240 * without charging it again.
3241 *
3242 * C)
3243 * The "old" page is under lock_page() until the end of
3244 * migration, so, the old page itself will not be swapped-out.
3245 * If the new page is swapped out before end_migraton, our
3246 * hook to usual swap-out path will catch the event.
3247 */
3248 if (PageAnon(page))
3249 SetPageCgroupMigration(pc);
e8589cc1 3250 }
52d4b9ac 3251 unlock_page_cgroup(pc);
ac39cf8c
AM
3252 /*
3253 * If the page is not charged at this point,
3254 * we return here.
3255 */
c0ff4b85 3256 if (!memcg)
ac39cf8c 3257 return 0;
01b1ae63 3258
72835c86
JW
3259 *memcgp = memcg;
3260 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3261 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3262 if (ret) {
ac39cf8c
AM
3263 if (PageAnon(page)) {
3264 lock_page_cgroup(pc);
3265 ClearPageCgroupMigration(pc);
3266 unlock_page_cgroup(pc);
3267 /*
3268 * The old page may be fully unmapped while we kept it.
3269 */
3270 mem_cgroup_uncharge_page(page);
3271 }
38c5d72f 3272 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3273 return -ENOMEM;
e8589cc1 3274 }
ac39cf8c
AM
3275 /*
3276 * We charge new page before it's used/mapped. So, even if unlock_page()
3277 * is called before end_migration, we can catch all events on this new
3278 * page. In the case new page is migrated but not remapped, new page's
3279 * mapcount will be finally 0 and we call uncharge in end_migration().
3280 */
ac39cf8c
AM
3281 if (PageAnon(page))
3282 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3283 else if (page_is_file_cache(page))
3284 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3285 else
3286 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3287 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3288 return ret;
ae41be37 3289}
8869b8f6 3290
69029cd5 3291/* remove redundant charge if migration failed*/
c0ff4b85 3292void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3293 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3294{
ac39cf8c 3295 struct page *used, *unused;
01b1ae63 3296 struct page_cgroup *pc;
b2402857 3297 bool anon;
01b1ae63 3298
c0ff4b85 3299 if (!memcg)
01b1ae63 3300 return;
ac39cf8c 3301 /* blocks rmdir() */
c0ff4b85 3302 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3303 if (!migration_ok) {
ac39cf8c
AM
3304 used = oldpage;
3305 unused = newpage;
01b1ae63 3306 } else {
ac39cf8c 3307 used = newpage;
01b1ae63
KH
3308 unused = oldpage;
3309 }
69029cd5 3310 /*
ac39cf8c
AM
3311 * We disallowed uncharge of pages under migration because mapcount
3312 * of the page goes down to zero, temporarly.
3313 * Clear the flag and check the page should be charged.
01b1ae63 3314 */
ac39cf8c
AM
3315 pc = lookup_page_cgroup(oldpage);
3316 lock_page_cgroup(pc);
3317 ClearPageCgroupMigration(pc);
3318 unlock_page_cgroup(pc);
b2402857
KH
3319 anon = PageAnon(used);
3320 __mem_cgroup_uncharge_common(unused,
3321 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3322 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3323
01b1ae63 3324 /*
ac39cf8c
AM
3325 * If a page is a file cache, radix-tree replacement is very atomic
3326 * and we can skip this check. When it was an Anon page, its mapcount
3327 * goes down to 0. But because we added MIGRATION flage, it's not
3328 * uncharged yet. There are several case but page->mapcount check
3329 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3330 * check. (see prepare_charge() also)
69029cd5 3331 */
b2402857 3332 if (anon)
ac39cf8c 3333 mem_cgroup_uncharge_page(used);
88703267 3334 /*
ac39cf8c
AM
3335 * At migration, we may charge account against cgroup which has no
3336 * tasks.
88703267
KH
3337 * So, rmdir()->pre_destroy() can be called while we do this charge.
3338 * In that case, we need to call pre_destroy() again. check it here.
3339 */
c0ff4b85 3340 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3341}
78fb7466 3342
ab936cbc
KH
3343/*
3344 * At replace page cache, newpage is not under any memcg but it's on
3345 * LRU. So, this function doesn't touch res_counter but handles LRU
3346 * in correct way. Both pages are locked so we cannot race with uncharge.
3347 */
3348void mem_cgroup_replace_page_cache(struct page *oldpage,
3349 struct page *newpage)
3350{
bde05d1c 3351 struct mem_cgroup *memcg = NULL;
ab936cbc 3352 struct page_cgroup *pc;
ab936cbc 3353 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3354
3355 if (mem_cgroup_disabled())
3356 return;
3357
3358 pc = lookup_page_cgroup(oldpage);
3359 /* fix accounting on old pages */
3360 lock_page_cgroup(pc);
bde05d1c
HD
3361 if (PageCgroupUsed(pc)) {
3362 memcg = pc->mem_cgroup;
3363 mem_cgroup_charge_statistics(memcg, false, -1);
3364 ClearPageCgroupUsed(pc);
3365 }
ab936cbc
KH
3366 unlock_page_cgroup(pc);
3367
bde05d1c
HD
3368 /*
3369 * When called from shmem_replace_page(), in some cases the
3370 * oldpage has already been charged, and in some cases not.
3371 */
3372 if (!memcg)
3373 return;
3374
ab936cbc
KH
3375 if (PageSwapBacked(oldpage))
3376 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3377
ab936cbc
KH
3378 /*
3379 * Even if newpage->mapping was NULL before starting replacement,
3380 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3381 * LRU while we overwrite pc->mem_cgroup.
3382 */
ce587e65 3383 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3384}
3385
f212ad7c
DN
3386#ifdef CONFIG_DEBUG_VM
3387static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3388{
3389 struct page_cgroup *pc;
3390
3391 pc = lookup_page_cgroup(page);
cfa44946
JW
3392 /*
3393 * Can be NULL while feeding pages into the page allocator for
3394 * the first time, i.e. during boot or memory hotplug;
3395 * or when mem_cgroup_disabled().
3396 */
f212ad7c
DN
3397 if (likely(pc) && PageCgroupUsed(pc))
3398 return pc;
3399 return NULL;
3400}
3401
3402bool mem_cgroup_bad_page_check(struct page *page)
3403{
3404 if (mem_cgroup_disabled())
3405 return false;
3406
3407 return lookup_page_cgroup_used(page) != NULL;
3408}
3409
3410void mem_cgroup_print_bad_page(struct page *page)
3411{
3412 struct page_cgroup *pc;
3413
3414 pc = lookup_page_cgroup_used(page);
3415 if (pc) {
90b3feae 3416 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3417 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3418 }
3419}
3420#endif
3421
8c7c6e34
KH
3422static DEFINE_MUTEX(set_limit_mutex);
3423
d38d2a75 3424static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3425 unsigned long long val)
628f4235 3426{
81d39c20 3427 int retry_count;
3c11ecf4 3428 u64 memswlimit, memlimit;
628f4235 3429 int ret = 0;
81d39c20
KH
3430 int children = mem_cgroup_count_children(memcg);
3431 u64 curusage, oldusage;
3c11ecf4 3432 int enlarge;
81d39c20
KH
3433
3434 /*
3435 * For keeping hierarchical_reclaim simple, how long we should retry
3436 * is depends on callers. We set our retry-count to be function
3437 * of # of children which we should visit in this loop.
3438 */
3439 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3440
3441 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3442
3c11ecf4 3443 enlarge = 0;
8c7c6e34 3444 while (retry_count) {
628f4235
KH
3445 if (signal_pending(current)) {
3446 ret = -EINTR;
3447 break;
3448 }
8c7c6e34
KH
3449 /*
3450 * Rather than hide all in some function, I do this in
3451 * open coded manner. You see what this really does.
c0ff4b85 3452 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3453 */
3454 mutex_lock(&set_limit_mutex);
3455 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3456 if (memswlimit < val) {
3457 ret = -EINVAL;
3458 mutex_unlock(&set_limit_mutex);
628f4235
KH
3459 break;
3460 }
3c11ecf4
KH
3461
3462 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3463 if (memlimit < val)
3464 enlarge = 1;
3465
8c7c6e34 3466 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3467 if (!ret) {
3468 if (memswlimit == val)
3469 memcg->memsw_is_minimum = true;
3470 else
3471 memcg->memsw_is_minimum = false;
3472 }
8c7c6e34
KH
3473 mutex_unlock(&set_limit_mutex);
3474
3475 if (!ret)
3476 break;
3477
5660048c
JW
3478 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3479 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3480 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481 /* Usage is reduced ? */
3482 if (curusage >= oldusage)
3483 retry_count--;
3484 else
3485 oldusage = curusage;
8c7c6e34 3486 }
3c11ecf4
KH
3487 if (!ret && enlarge)
3488 memcg_oom_recover(memcg);
14797e23 3489
8c7c6e34
KH
3490 return ret;
3491}
3492
338c8431
LZ
3493static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3494 unsigned long long val)
8c7c6e34 3495{
81d39c20 3496 int retry_count;
3c11ecf4 3497 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3498 int children = mem_cgroup_count_children(memcg);
3499 int ret = -EBUSY;
3c11ecf4 3500 int enlarge = 0;
8c7c6e34 3501
81d39c20
KH
3502 /* see mem_cgroup_resize_res_limit */
3503 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3504 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3505 while (retry_count) {
3506 if (signal_pending(current)) {
3507 ret = -EINTR;
3508 break;
3509 }
3510 /*
3511 * Rather than hide all in some function, I do this in
3512 * open coded manner. You see what this really does.
c0ff4b85 3513 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3514 */
3515 mutex_lock(&set_limit_mutex);
3516 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3517 if (memlimit > val) {
3518 ret = -EINVAL;
3519 mutex_unlock(&set_limit_mutex);
3520 break;
3521 }
3c11ecf4
KH
3522 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3523 if (memswlimit < val)
3524 enlarge = 1;
8c7c6e34 3525 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3526 if (!ret) {
3527 if (memlimit == val)
3528 memcg->memsw_is_minimum = true;
3529 else
3530 memcg->memsw_is_minimum = false;
3531 }
8c7c6e34
KH
3532 mutex_unlock(&set_limit_mutex);
3533
3534 if (!ret)
3535 break;
3536
5660048c
JW
3537 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3538 MEM_CGROUP_RECLAIM_NOSWAP |
3539 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3540 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3541 /* Usage is reduced ? */
8c7c6e34 3542 if (curusage >= oldusage)
628f4235 3543 retry_count--;
81d39c20
KH
3544 else
3545 oldusage = curusage;
628f4235 3546 }
3c11ecf4
KH
3547 if (!ret && enlarge)
3548 memcg_oom_recover(memcg);
628f4235
KH
3549 return ret;
3550}
3551
4e416953 3552unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3553 gfp_t gfp_mask,
3554 unsigned long *total_scanned)
4e416953
BS
3555{
3556 unsigned long nr_reclaimed = 0;
3557 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3558 unsigned long reclaimed;
3559 int loop = 0;
3560 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3561 unsigned long long excess;
0ae5e89c 3562 unsigned long nr_scanned;
4e416953
BS
3563
3564 if (order > 0)
3565 return 0;
3566
00918b6a 3567 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3568 /*
3569 * This loop can run a while, specially if mem_cgroup's continuously
3570 * keep exceeding their soft limit and putting the system under
3571 * pressure
3572 */
3573 do {
3574 if (next_mz)
3575 mz = next_mz;
3576 else
3577 mz = mem_cgroup_largest_soft_limit_node(mctz);
3578 if (!mz)
3579 break;
3580
0ae5e89c 3581 nr_scanned = 0;
d79154bb 3582 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3583 gfp_mask, &nr_scanned);
4e416953 3584 nr_reclaimed += reclaimed;
0ae5e89c 3585 *total_scanned += nr_scanned;
4e416953
BS
3586 spin_lock(&mctz->lock);
3587
3588 /*
3589 * If we failed to reclaim anything from this memory cgroup
3590 * it is time to move on to the next cgroup
3591 */
3592 next_mz = NULL;
3593 if (!reclaimed) {
3594 do {
3595 /*
3596 * Loop until we find yet another one.
3597 *
3598 * By the time we get the soft_limit lock
3599 * again, someone might have aded the
3600 * group back on the RB tree. Iterate to
3601 * make sure we get a different mem.
3602 * mem_cgroup_largest_soft_limit_node returns
3603 * NULL if no other cgroup is present on
3604 * the tree
3605 */
3606 next_mz =
3607 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3608 if (next_mz == mz)
d79154bb 3609 css_put(&next_mz->memcg->css);
39cc98f1 3610 else /* next_mz == NULL or other memcg */
4e416953
BS
3611 break;
3612 } while (1);
3613 }
d79154bb
HD
3614 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3615 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3616 /*
3617 * One school of thought says that we should not add
3618 * back the node to the tree if reclaim returns 0.
3619 * But our reclaim could return 0, simply because due
3620 * to priority we are exposing a smaller subset of
3621 * memory to reclaim from. Consider this as a longer
3622 * term TODO.
3623 */
ef8745c1 3624 /* If excess == 0, no tree ops */
d79154bb 3625 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3626 spin_unlock(&mctz->lock);
d79154bb 3627 css_put(&mz->memcg->css);
4e416953
BS
3628 loop++;
3629 /*
3630 * Could not reclaim anything and there are no more
3631 * mem cgroups to try or we seem to be looping without
3632 * reclaiming anything.
3633 */
3634 if (!nr_reclaimed &&
3635 (next_mz == NULL ||
3636 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3637 break;
3638 } while (!nr_reclaimed);
3639 if (next_mz)
d79154bb 3640 css_put(&next_mz->memcg->css);
4e416953
BS
3641 return nr_reclaimed;
3642}
3643
cc847582
KH
3644/*
3645 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3646 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3647 */
c0ff4b85 3648static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3649 int node, int zid, enum lru_list lru)
cc847582 3650{
08e552c6 3651 struct mem_cgroup_per_zone *mz;
08e552c6 3652 unsigned long flags, loop;
072c56c1 3653 struct list_head *list;
925b7673
JW
3654 struct page *busy;
3655 struct zone *zone;
f817ed48 3656 int ret = 0;
072c56c1 3657
08e552c6 3658 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3659 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3660 list = &mz->lruvec.lists[lru];
cc847582 3661
1eb49272 3662 loop = mz->lru_size[lru];
f817ed48
KH
3663 /* give some margin against EBUSY etc...*/
3664 loop += 256;
3665 busy = NULL;
3666 while (loop--) {
925b7673 3667 struct page_cgroup *pc;
5564e88b
JW
3668 struct page *page;
3669
f817ed48 3670 ret = 0;
08e552c6 3671 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3672 if (list_empty(list)) {
08e552c6 3673 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3674 break;
f817ed48 3675 }
925b7673
JW
3676 page = list_entry(list->prev, struct page, lru);
3677 if (busy == page) {
3678 list_move(&page->lru, list);
648bcc77 3679 busy = NULL;
08e552c6 3680 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3681 continue;
3682 }
08e552c6 3683 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3684
925b7673 3685 pc = lookup_page_cgroup(page);
5564e88b 3686
c0ff4b85 3687 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3688 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3689 break;
f817ed48
KH
3690
3691 if (ret == -EBUSY || ret == -EINVAL) {
3692 /* found lock contention or "pc" is obsolete. */
925b7673 3693 busy = page;
f817ed48
KH
3694 cond_resched();
3695 } else
3696 busy = NULL;
cc847582 3697 }
08e552c6 3698
f817ed48
KH
3699 if (!ret && !list_empty(list))
3700 return -EBUSY;
3701 return ret;
cc847582
KH
3702}
3703
3704/*
3705 * make mem_cgroup's charge to be 0 if there is no task.
3706 * This enables deleting this mem_cgroup.
3707 */
c0ff4b85 3708static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3709{
f817ed48
KH
3710 int ret;
3711 int node, zid, shrink;
3712 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3713 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3714
c0ff4b85 3715 css_get(&memcg->css);
f817ed48
KH
3716
3717 shrink = 0;
c1e862c1
KH
3718 /* should free all ? */
3719 if (free_all)
3720 goto try_to_free;
f817ed48 3721move_account:
fce66477 3722 do {
f817ed48 3723 ret = -EBUSY;
c1e862c1
KH
3724 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3725 goto out;
3726 ret = -EINTR;
3727 if (signal_pending(current))
cc847582 3728 goto out;
52d4b9ac
KH
3729 /* This is for making all *used* pages to be on LRU. */
3730 lru_add_drain_all();
c0ff4b85 3731 drain_all_stock_sync(memcg);
f817ed48 3732 ret = 0;
c0ff4b85 3733 mem_cgroup_start_move(memcg);
299b4eaa 3734 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3735 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3736 enum lru_list lru;
3737 for_each_lru(lru) {
c0ff4b85 3738 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3739 node, zid, lru);
f817ed48
KH
3740 if (ret)
3741 break;
3742 }
1ecaab2b 3743 }
f817ed48
KH
3744 if (ret)
3745 break;
3746 }
c0ff4b85
R
3747 mem_cgroup_end_move(memcg);
3748 memcg_oom_recover(memcg);
f817ed48
KH
3749 /* it seems parent cgroup doesn't have enough mem */
3750 if (ret == -ENOMEM)
3751 goto try_to_free;
52d4b9ac 3752 cond_resched();
fce66477 3753 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3754 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3755out:
c0ff4b85 3756 css_put(&memcg->css);
cc847582 3757 return ret;
f817ed48
KH
3758
3759try_to_free:
c1e862c1
KH
3760 /* returns EBUSY if there is a task or if we come here twice. */
3761 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3762 ret = -EBUSY;
3763 goto out;
3764 }
c1e862c1
KH
3765 /* we call try-to-free pages for make this cgroup empty */
3766 lru_add_drain_all();
f817ed48
KH
3767 /* try to free all pages in this cgroup */
3768 shrink = 1;
569530fb 3769 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3770 int progress;
c1e862c1
KH
3771
3772 if (signal_pending(current)) {
3773 ret = -EINTR;
3774 goto out;
3775 }
c0ff4b85 3776 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3777 false);
c1e862c1 3778 if (!progress) {
f817ed48 3779 nr_retries--;
c1e862c1 3780 /* maybe some writeback is necessary */
8aa7e847 3781 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3782 }
f817ed48
KH
3783
3784 }
08e552c6 3785 lru_add_drain();
f817ed48 3786 /* try move_account...there may be some *locked* pages. */
fce66477 3787 goto move_account;
cc847582
KH
3788}
3789
6bbda35c 3790static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3791{
3792 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3793}
3794
3795
18f59ea7
BS
3796static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3797{
3798 return mem_cgroup_from_cont(cont)->use_hierarchy;
3799}
3800
3801static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3802 u64 val)
3803{
3804 int retval = 0;
c0ff4b85 3805 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3806 struct cgroup *parent = cont->parent;
c0ff4b85 3807 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3808
3809 if (parent)
c0ff4b85 3810 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3811
3812 cgroup_lock();
3813 /*
af901ca1 3814 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3815 * in the child subtrees. If it is unset, then the change can
3816 * occur, provided the current cgroup has no children.
3817 *
3818 * For the root cgroup, parent_mem is NULL, we allow value to be
3819 * set if there are no children.
3820 */
c0ff4b85 3821 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3822 (val == 1 || val == 0)) {
3823 if (list_empty(&cont->children))
c0ff4b85 3824 memcg->use_hierarchy = val;
18f59ea7
BS
3825 else
3826 retval = -EBUSY;
3827 } else
3828 retval = -EINVAL;
3829 cgroup_unlock();
3830
3831 return retval;
3832}
3833
0c3e73e8 3834
c0ff4b85 3835static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3836 enum mem_cgroup_stat_index idx)
0c3e73e8 3837{
7d74b06f 3838 struct mem_cgroup *iter;
7a159cc9 3839 long val = 0;
0c3e73e8 3840
7a159cc9 3841 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3842 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3843 val += mem_cgroup_read_stat(iter, idx);
3844
3845 if (val < 0) /* race ? */
3846 val = 0;
3847 return val;
0c3e73e8
BS
3848}
3849
c0ff4b85 3850static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3851{
7d74b06f 3852 u64 val;
104f3928 3853
c0ff4b85 3854 if (!mem_cgroup_is_root(memcg)) {
104f3928 3855 if (!swap)
65c64ce8 3856 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3857 else
65c64ce8 3858 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3859 }
3860
c0ff4b85
R
3861 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3862 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3863
7d74b06f 3864 if (swap)
c0ff4b85 3865 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3866
3867 return val << PAGE_SHIFT;
3868}
3869
af36f906
TH
3870static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3871 struct file *file, char __user *buf,
3872 size_t nbytes, loff_t *ppos)
8cdea7c0 3873{
c0ff4b85 3874 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3875 char str[64];
104f3928 3876 u64 val;
af36f906 3877 int type, name, len;
8c7c6e34
KH
3878
3879 type = MEMFILE_TYPE(cft->private);
3880 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3881
3882 if (!do_swap_account && type == _MEMSWAP)
3883 return -EOPNOTSUPP;
3884
8c7c6e34
KH
3885 switch (type) {
3886 case _MEM:
104f3928 3887 if (name == RES_USAGE)
c0ff4b85 3888 val = mem_cgroup_usage(memcg, false);
104f3928 3889 else
c0ff4b85 3890 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3891 break;
3892 case _MEMSWAP:
104f3928 3893 if (name == RES_USAGE)
c0ff4b85 3894 val = mem_cgroup_usage(memcg, true);
104f3928 3895 else
c0ff4b85 3896 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3897 break;
3898 default:
3899 BUG();
8c7c6e34 3900 }
af36f906
TH
3901
3902 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3903 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3904}
628f4235
KH
3905/*
3906 * The user of this function is...
3907 * RES_LIMIT.
3908 */
856c13aa
PM
3909static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3910 const char *buffer)
8cdea7c0 3911{
628f4235 3912 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3913 int type, name;
628f4235
KH
3914 unsigned long long val;
3915 int ret;
3916
8c7c6e34
KH
3917 type = MEMFILE_TYPE(cft->private);
3918 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3919
3920 if (!do_swap_account && type == _MEMSWAP)
3921 return -EOPNOTSUPP;
3922
8c7c6e34 3923 switch (name) {
628f4235 3924 case RES_LIMIT:
4b3bde4c
BS
3925 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3926 ret = -EINVAL;
3927 break;
3928 }
628f4235
KH
3929 /* This function does all necessary parse...reuse it */
3930 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3931 if (ret)
3932 break;
3933 if (type == _MEM)
628f4235 3934 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3935 else
3936 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3937 break;
296c81d8
BS
3938 case RES_SOFT_LIMIT:
3939 ret = res_counter_memparse_write_strategy(buffer, &val);
3940 if (ret)
3941 break;
3942 /*
3943 * For memsw, soft limits are hard to implement in terms
3944 * of semantics, for now, we support soft limits for
3945 * control without swap
3946 */
3947 if (type == _MEM)
3948 ret = res_counter_set_soft_limit(&memcg->res, val);
3949 else
3950 ret = -EINVAL;
3951 break;
628f4235
KH
3952 default:
3953 ret = -EINVAL; /* should be BUG() ? */
3954 break;
3955 }
3956 return ret;
8cdea7c0
BS
3957}
3958
fee7b548
KH
3959static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3960 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3961{
3962 struct cgroup *cgroup;
3963 unsigned long long min_limit, min_memsw_limit, tmp;
3964
3965 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3966 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3967 cgroup = memcg->css.cgroup;
3968 if (!memcg->use_hierarchy)
3969 goto out;
3970
3971 while (cgroup->parent) {
3972 cgroup = cgroup->parent;
3973 memcg = mem_cgroup_from_cont(cgroup);
3974 if (!memcg->use_hierarchy)
3975 break;
3976 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3977 min_limit = min(min_limit, tmp);
3978 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3979 min_memsw_limit = min(min_memsw_limit, tmp);
3980 }
3981out:
3982 *mem_limit = min_limit;
3983 *memsw_limit = min_memsw_limit;
fee7b548
KH
3984}
3985
29f2a4da 3986static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3987{
af36f906 3988 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3989 int type, name;
c84872e1 3990
8c7c6e34
KH
3991 type = MEMFILE_TYPE(event);
3992 name = MEMFILE_ATTR(event);
af36f906
TH
3993
3994 if (!do_swap_account && type == _MEMSWAP)
3995 return -EOPNOTSUPP;
3996
8c7c6e34 3997 switch (name) {
29f2a4da 3998 case RES_MAX_USAGE:
8c7c6e34 3999 if (type == _MEM)
c0ff4b85 4000 res_counter_reset_max(&memcg->res);
8c7c6e34 4001 else
c0ff4b85 4002 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4003 break;
4004 case RES_FAILCNT:
8c7c6e34 4005 if (type == _MEM)
c0ff4b85 4006 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4007 else
c0ff4b85 4008 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4009 break;
4010 }
f64c3f54 4011
85cc59db 4012 return 0;
c84872e1
PE
4013}
4014
7dc74be0
DN
4015static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4016 struct cftype *cft)
4017{
4018 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4019}
4020
02491447 4021#ifdef CONFIG_MMU
7dc74be0
DN
4022static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4023 struct cftype *cft, u64 val)
4024{
c0ff4b85 4025 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4026
4027 if (val >= (1 << NR_MOVE_TYPE))
4028 return -EINVAL;
4029 /*
4030 * We check this value several times in both in can_attach() and
4031 * attach(), so we need cgroup lock to prevent this value from being
4032 * inconsistent.
4033 */
4034 cgroup_lock();
c0ff4b85 4035 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4036 cgroup_unlock();
4037
4038 return 0;
4039}
02491447
DN
4040#else
4041static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4042 struct cftype *cft, u64 val)
4043{
4044 return -ENOSYS;
4045}
4046#endif
7dc74be0 4047
14067bb3
KH
4048
4049/* For read statistics */
4050enum {
4051 MCS_CACHE,
4052 MCS_RSS,
d8046582 4053 MCS_FILE_MAPPED,
14067bb3
KH
4054 MCS_PGPGIN,
4055 MCS_PGPGOUT,
1dd3a273 4056 MCS_SWAP,
456f998e
YH
4057 MCS_PGFAULT,
4058 MCS_PGMAJFAULT,
14067bb3
KH
4059 MCS_INACTIVE_ANON,
4060 MCS_ACTIVE_ANON,
4061 MCS_INACTIVE_FILE,
4062 MCS_ACTIVE_FILE,
4063 MCS_UNEVICTABLE,
4064 NR_MCS_STAT,
4065};
4066
4067struct mcs_total_stat {
4068 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4069};
4070
6bbda35c 4071static struct {
14067bb3
KH
4072 char *local_name;
4073 char *total_name;
4074} memcg_stat_strings[NR_MCS_STAT] = {
4075 {"cache", "total_cache"},
4076 {"rss", "total_rss"},
d69b042f 4077 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4078 {"pgpgin", "total_pgpgin"},
4079 {"pgpgout", "total_pgpgout"},
1dd3a273 4080 {"swap", "total_swap"},
456f998e
YH
4081 {"pgfault", "total_pgfault"},
4082 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4083 {"inactive_anon", "total_inactive_anon"},
4084 {"active_anon", "total_active_anon"},
4085 {"inactive_file", "total_inactive_file"},
4086 {"active_file", "total_active_file"},
4087 {"unevictable", "total_unevictable"}
4088};
4089
4090
7d74b06f 4091static void
c0ff4b85 4092mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4093{
14067bb3
KH
4094 s64 val;
4095
4096 /* per cpu stat */
c0ff4b85 4097 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4098 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4099 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4100 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4101 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4102 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4103 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4104 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4105 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4106 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4107 if (do_swap_account) {
c0ff4b85 4108 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4109 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4110 }
c0ff4b85 4111 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4112 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4113 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4114 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4115
4116 /* per zone stat */
c0ff4b85 4117 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4118 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4119 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4120 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4121 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4122 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4123 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4124 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4125 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4126 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4127}
4128
4129static void
c0ff4b85 4130mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4131{
7d74b06f
KH
4132 struct mem_cgroup *iter;
4133
c0ff4b85 4134 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4135 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4136}
4137
406eb0c9
YH
4138#ifdef CONFIG_NUMA
4139static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4140{
4141 int nid;
4142 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4143 unsigned long node_nr;
4144 struct cgroup *cont = m->private;
d79154bb 4145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4146
d79154bb 4147 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4148 seq_printf(m, "total=%lu", total_nr);
4149 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4150 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4151 seq_printf(m, " N%d=%lu", nid, node_nr);
4152 }
4153 seq_putc(m, '\n');
4154
d79154bb 4155 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4156 seq_printf(m, "file=%lu", file_nr);
4157 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4158 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4159 LRU_ALL_FILE);
406eb0c9
YH
4160 seq_printf(m, " N%d=%lu", nid, node_nr);
4161 }
4162 seq_putc(m, '\n');
4163
d79154bb 4164 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4165 seq_printf(m, "anon=%lu", anon_nr);
4166 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4167 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4168 LRU_ALL_ANON);
406eb0c9
YH
4169 seq_printf(m, " N%d=%lu", nid, node_nr);
4170 }
4171 seq_putc(m, '\n');
4172
d79154bb 4173 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4174 seq_printf(m, "unevictable=%lu", unevictable_nr);
4175 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4176 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4177 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4178 seq_printf(m, " N%d=%lu", nid, node_nr);
4179 }
4180 seq_putc(m, '\n');
4181 return 0;
4182}
4183#endif /* CONFIG_NUMA */
4184
c64745cf
PM
4185static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4186 struct cgroup_map_cb *cb)
d2ceb9b7 4187{
d79154bb 4188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4189 struct mcs_total_stat mystat;
d2ceb9b7
KH
4190 int i;
4191
14067bb3 4192 memset(&mystat, 0, sizeof(mystat));
d79154bb 4193 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4194
406eb0c9 4195
1dd3a273
DN
4196 for (i = 0; i < NR_MCS_STAT; i++) {
4197 if (i == MCS_SWAP && !do_swap_account)
4198 continue;
14067bb3 4199 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4200 }
7b854121 4201
14067bb3 4202 /* Hierarchical information */
fee7b548
KH
4203 {
4204 unsigned long long limit, memsw_limit;
d79154bb 4205 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4206 cb->fill(cb, "hierarchical_memory_limit", limit);
4207 if (do_swap_account)
4208 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4209 }
7f016ee8 4210
14067bb3 4211 memset(&mystat, 0, sizeof(mystat));
d79154bb 4212 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4213 for (i = 0; i < NR_MCS_STAT; i++) {
4214 if (i == MCS_SWAP && !do_swap_account)
4215 continue;
14067bb3 4216 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4217 }
14067bb3 4218
7f016ee8 4219#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4220 {
4221 int nid, zid;
4222 struct mem_cgroup_per_zone *mz;
89abfab1 4223 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4224 unsigned long recent_rotated[2] = {0, 0};
4225 unsigned long recent_scanned[2] = {0, 0};
4226
4227 for_each_online_node(nid)
4228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4229 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4230 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4231
89abfab1
HD
4232 recent_rotated[0] += rstat->recent_rotated[0];
4233 recent_rotated[1] += rstat->recent_rotated[1];
4234 recent_scanned[0] += rstat->recent_scanned[0];
4235 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8
KM
4236 }
4237 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4238 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4239 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4240 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4241 }
4242#endif
4243
d2ceb9b7
KH
4244 return 0;
4245}
4246
a7885eb8
KM
4247static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4248{
4249 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4250
1f4c025b 4251 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4252}
4253
4254static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4255 u64 val)
4256{
4257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4258 struct mem_cgroup *parent;
068b38c1 4259
a7885eb8
KM
4260 if (val > 100)
4261 return -EINVAL;
4262
4263 if (cgrp->parent == NULL)
4264 return -EINVAL;
4265
4266 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4267
4268 cgroup_lock();
4269
a7885eb8
KM
4270 /* If under hierarchy, only empty-root can set this value */
4271 if ((parent->use_hierarchy) ||
068b38c1
LZ
4272 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4273 cgroup_unlock();
a7885eb8 4274 return -EINVAL;
068b38c1 4275 }
a7885eb8 4276
a7885eb8 4277 memcg->swappiness = val;
a7885eb8 4278
068b38c1
LZ
4279 cgroup_unlock();
4280
a7885eb8
KM
4281 return 0;
4282}
4283
2e72b634
KS
4284static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4285{
4286 struct mem_cgroup_threshold_ary *t;
4287 u64 usage;
4288 int i;
4289
4290 rcu_read_lock();
4291 if (!swap)
2c488db2 4292 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4293 else
2c488db2 4294 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4295
4296 if (!t)
4297 goto unlock;
4298
4299 usage = mem_cgroup_usage(memcg, swap);
4300
4301 /*
748dad36 4302 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4303 * If it's not true, a threshold was crossed after last
4304 * call of __mem_cgroup_threshold().
4305 */
5407a562 4306 i = t->current_threshold;
2e72b634
KS
4307
4308 /*
4309 * Iterate backward over array of thresholds starting from
4310 * current_threshold and check if a threshold is crossed.
4311 * If none of thresholds below usage is crossed, we read
4312 * only one element of the array here.
4313 */
4314 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4315 eventfd_signal(t->entries[i].eventfd, 1);
4316
4317 /* i = current_threshold + 1 */
4318 i++;
4319
4320 /*
4321 * Iterate forward over array of thresholds starting from
4322 * current_threshold+1 and check if a threshold is crossed.
4323 * If none of thresholds above usage is crossed, we read
4324 * only one element of the array here.
4325 */
4326 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4327 eventfd_signal(t->entries[i].eventfd, 1);
4328
4329 /* Update current_threshold */
5407a562 4330 t->current_threshold = i - 1;
2e72b634
KS
4331unlock:
4332 rcu_read_unlock();
4333}
4334
4335static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4336{
ad4ca5f4
KS
4337 while (memcg) {
4338 __mem_cgroup_threshold(memcg, false);
4339 if (do_swap_account)
4340 __mem_cgroup_threshold(memcg, true);
4341
4342 memcg = parent_mem_cgroup(memcg);
4343 }
2e72b634
KS
4344}
4345
4346static int compare_thresholds(const void *a, const void *b)
4347{
4348 const struct mem_cgroup_threshold *_a = a;
4349 const struct mem_cgroup_threshold *_b = b;
4350
4351 return _a->threshold - _b->threshold;
4352}
4353
c0ff4b85 4354static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4355{
4356 struct mem_cgroup_eventfd_list *ev;
4357
c0ff4b85 4358 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4359 eventfd_signal(ev->eventfd, 1);
4360 return 0;
4361}
4362
c0ff4b85 4363static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4364{
7d74b06f
KH
4365 struct mem_cgroup *iter;
4366
c0ff4b85 4367 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4368 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4369}
4370
4371static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4372 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4373{
4374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4375 struct mem_cgroup_thresholds *thresholds;
4376 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4377 int type = MEMFILE_TYPE(cft->private);
4378 u64 threshold, usage;
2c488db2 4379 int i, size, ret;
2e72b634
KS
4380
4381 ret = res_counter_memparse_write_strategy(args, &threshold);
4382 if (ret)
4383 return ret;
4384
4385 mutex_lock(&memcg->thresholds_lock);
2c488db2 4386
2e72b634 4387 if (type == _MEM)
2c488db2 4388 thresholds = &memcg->thresholds;
2e72b634 4389 else if (type == _MEMSWAP)
2c488db2 4390 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4391 else
4392 BUG();
4393
4394 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4395
4396 /* Check if a threshold crossed before adding a new one */
2c488db2 4397 if (thresholds->primary)
2e72b634
KS
4398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4399
2c488db2 4400 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4401
4402 /* Allocate memory for new array of thresholds */
2c488db2 4403 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4404 GFP_KERNEL);
2c488db2 4405 if (!new) {
2e72b634
KS
4406 ret = -ENOMEM;
4407 goto unlock;
4408 }
2c488db2 4409 new->size = size;
2e72b634
KS
4410
4411 /* Copy thresholds (if any) to new array */
2c488db2
KS
4412 if (thresholds->primary) {
4413 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4414 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4415 }
4416
2e72b634 4417 /* Add new threshold */
2c488db2
KS
4418 new->entries[size - 1].eventfd = eventfd;
4419 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4420
4421 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4422 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4423 compare_thresholds, NULL);
4424
4425 /* Find current threshold */
2c488db2 4426 new->current_threshold = -1;
2e72b634 4427 for (i = 0; i < size; i++) {
748dad36 4428 if (new->entries[i].threshold <= usage) {
2e72b634 4429 /*
2c488db2
KS
4430 * new->current_threshold will not be used until
4431 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4432 * it here.
4433 */
2c488db2 4434 ++new->current_threshold;
748dad36
SZ
4435 } else
4436 break;
2e72b634
KS
4437 }
4438
2c488db2
KS
4439 /* Free old spare buffer and save old primary buffer as spare */
4440 kfree(thresholds->spare);
4441 thresholds->spare = thresholds->primary;
4442
4443 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4444
907860ed 4445 /* To be sure that nobody uses thresholds */
2e72b634
KS
4446 synchronize_rcu();
4447
2e72b634
KS
4448unlock:
4449 mutex_unlock(&memcg->thresholds_lock);
4450
4451 return ret;
4452}
4453
907860ed 4454static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4455 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4456{
4457 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4458 struct mem_cgroup_thresholds *thresholds;
4459 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4460 int type = MEMFILE_TYPE(cft->private);
4461 u64 usage;
2c488db2 4462 int i, j, size;
2e72b634
KS
4463
4464 mutex_lock(&memcg->thresholds_lock);
4465 if (type == _MEM)
2c488db2 4466 thresholds = &memcg->thresholds;
2e72b634 4467 else if (type == _MEMSWAP)
2c488db2 4468 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4469 else
4470 BUG();
4471
371528ca
AV
4472 if (!thresholds->primary)
4473 goto unlock;
4474
2e72b634
KS
4475 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4476
4477 /* Check if a threshold crossed before removing */
4478 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4479
4480 /* Calculate new number of threshold */
2c488db2
KS
4481 size = 0;
4482 for (i = 0; i < thresholds->primary->size; i++) {
4483 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4484 size++;
4485 }
4486
2c488db2 4487 new = thresholds->spare;
907860ed 4488
2e72b634
KS
4489 /* Set thresholds array to NULL if we don't have thresholds */
4490 if (!size) {
2c488db2
KS
4491 kfree(new);
4492 new = NULL;
907860ed 4493 goto swap_buffers;
2e72b634
KS
4494 }
4495
2c488db2 4496 new->size = size;
2e72b634
KS
4497
4498 /* Copy thresholds and find current threshold */
2c488db2
KS
4499 new->current_threshold = -1;
4500 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4501 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4502 continue;
4503
2c488db2 4504 new->entries[j] = thresholds->primary->entries[i];
748dad36 4505 if (new->entries[j].threshold <= usage) {
2e72b634 4506 /*
2c488db2 4507 * new->current_threshold will not be used
2e72b634
KS
4508 * until rcu_assign_pointer(), so it's safe to increment
4509 * it here.
4510 */
2c488db2 4511 ++new->current_threshold;
2e72b634
KS
4512 }
4513 j++;
4514 }
4515
907860ed 4516swap_buffers:
2c488db2
KS
4517 /* Swap primary and spare array */
4518 thresholds->spare = thresholds->primary;
8c757763
SZ
4519 /* If all events are unregistered, free the spare array */
4520 if (!new) {
4521 kfree(thresholds->spare);
4522 thresholds->spare = NULL;
4523 }
4524
2c488db2 4525 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4526
907860ed 4527 /* To be sure that nobody uses thresholds */
2e72b634 4528 synchronize_rcu();
371528ca 4529unlock:
2e72b634 4530 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4531}
c1e862c1 4532
9490ff27
KH
4533static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4534 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4535{
4536 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4537 struct mem_cgroup_eventfd_list *event;
4538 int type = MEMFILE_TYPE(cft->private);
4539
4540 BUG_ON(type != _OOM_TYPE);
4541 event = kmalloc(sizeof(*event), GFP_KERNEL);
4542 if (!event)
4543 return -ENOMEM;
4544
1af8efe9 4545 spin_lock(&memcg_oom_lock);
9490ff27
KH
4546
4547 event->eventfd = eventfd;
4548 list_add(&event->list, &memcg->oom_notify);
4549
4550 /* already in OOM ? */
79dfdacc 4551 if (atomic_read(&memcg->under_oom))
9490ff27 4552 eventfd_signal(eventfd, 1);
1af8efe9 4553 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4554
4555 return 0;
4556}
4557
907860ed 4558static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4559 struct cftype *cft, struct eventfd_ctx *eventfd)
4560{
c0ff4b85 4561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4562 struct mem_cgroup_eventfd_list *ev, *tmp;
4563 int type = MEMFILE_TYPE(cft->private);
4564
4565 BUG_ON(type != _OOM_TYPE);
4566
1af8efe9 4567 spin_lock(&memcg_oom_lock);
9490ff27 4568
c0ff4b85 4569 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4570 if (ev->eventfd == eventfd) {
4571 list_del(&ev->list);
4572 kfree(ev);
4573 }
4574 }
4575
1af8efe9 4576 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4577}
4578
3c11ecf4
KH
4579static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4580 struct cftype *cft, struct cgroup_map_cb *cb)
4581{
c0ff4b85 4582 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4583
c0ff4b85 4584 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4585
c0ff4b85 4586 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4587 cb->fill(cb, "under_oom", 1);
4588 else
4589 cb->fill(cb, "under_oom", 0);
4590 return 0;
4591}
4592
3c11ecf4
KH
4593static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4594 struct cftype *cft, u64 val)
4595{
c0ff4b85 4596 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4597 struct mem_cgroup *parent;
4598
4599 /* cannot set to root cgroup and only 0 and 1 are allowed */
4600 if (!cgrp->parent || !((val == 0) || (val == 1)))
4601 return -EINVAL;
4602
4603 parent = mem_cgroup_from_cont(cgrp->parent);
4604
4605 cgroup_lock();
4606 /* oom-kill-disable is a flag for subhierarchy. */
4607 if ((parent->use_hierarchy) ||
c0ff4b85 4608 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4609 cgroup_unlock();
4610 return -EINVAL;
4611 }
c0ff4b85 4612 memcg->oom_kill_disable = val;
4d845ebf 4613 if (!val)
c0ff4b85 4614 memcg_oom_recover(memcg);
3c11ecf4
KH
4615 cgroup_unlock();
4616 return 0;
4617}
4618
406eb0c9
YH
4619#ifdef CONFIG_NUMA
4620static const struct file_operations mem_control_numa_stat_file_operations = {
4621 .read = seq_read,
4622 .llseek = seq_lseek,
4623 .release = single_release,
4624};
4625
4626static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4627{
4628 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4629
4630 file->f_op = &mem_control_numa_stat_file_operations;
4631 return single_open(file, mem_control_numa_stat_show, cont);
4632}
4633#endif /* CONFIG_NUMA */
4634
e5671dfa 4635#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4636static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4637{
1d62e436 4638 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4639};
4640
1d62e436 4641static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4642{
1d62e436 4643 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4644}
e5671dfa 4645#else
cbe128e3 4646static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4647{
4648 return 0;
4649}
d1a4c0b3 4650
1d62e436 4651static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4652{
4653}
e5671dfa
GC
4654#endif
4655
8cdea7c0
BS
4656static struct cftype mem_cgroup_files[] = {
4657 {
0eea1030 4658 .name = "usage_in_bytes",
8c7c6e34 4659 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4660 .read = mem_cgroup_read,
9490ff27
KH
4661 .register_event = mem_cgroup_usage_register_event,
4662 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4663 },
c84872e1
PE
4664 {
4665 .name = "max_usage_in_bytes",
8c7c6e34 4666 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4667 .trigger = mem_cgroup_reset,
af36f906 4668 .read = mem_cgroup_read,
c84872e1 4669 },
8cdea7c0 4670 {
0eea1030 4671 .name = "limit_in_bytes",
8c7c6e34 4672 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4673 .write_string = mem_cgroup_write,
af36f906 4674 .read = mem_cgroup_read,
8cdea7c0 4675 },
296c81d8
BS
4676 {
4677 .name = "soft_limit_in_bytes",
4678 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4679 .write_string = mem_cgroup_write,
af36f906 4680 .read = mem_cgroup_read,
296c81d8 4681 },
8cdea7c0
BS
4682 {
4683 .name = "failcnt",
8c7c6e34 4684 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4685 .trigger = mem_cgroup_reset,
af36f906 4686 .read = mem_cgroup_read,
8cdea7c0 4687 },
d2ceb9b7
KH
4688 {
4689 .name = "stat",
c64745cf 4690 .read_map = mem_control_stat_show,
d2ceb9b7 4691 },
c1e862c1
KH
4692 {
4693 .name = "force_empty",
4694 .trigger = mem_cgroup_force_empty_write,
4695 },
18f59ea7
BS
4696 {
4697 .name = "use_hierarchy",
4698 .write_u64 = mem_cgroup_hierarchy_write,
4699 .read_u64 = mem_cgroup_hierarchy_read,
4700 },
a7885eb8
KM
4701 {
4702 .name = "swappiness",
4703 .read_u64 = mem_cgroup_swappiness_read,
4704 .write_u64 = mem_cgroup_swappiness_write,
4705 },
7dc74be0
DN
4706 {
4707 .name = "move_charge_at_immigrate",
4708 .read_u64 = mem_cgroup_move_charge_read,
4709 .write_u64 = mem_cgroup_move_charge_write,
4710 },
9490ff27
KH
4711 {
4712 .name = "oom_control",
3c11ecf4
KH
4713 .read_map = mem_cgroup_oom_control_read,
4714 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4715 .register_event = mem_cgroup_oom_register_event,
4716 .unregister_event = mem_cgroup_oom_unregister_event,
4717 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4718 },
406eb0c9
YH
4719#ifdef CONFIG_NUMA
4720 {
4721 .name = "numa_stat",
4722 .open = mem_control_numa_stat_open,
89577127 4723 .mode = S_IRUGO,
406eb0c9
YH
4724 },
4725#endif
8c7c6e34 4726#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4727 {
4728 .name = "memsw.usage_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4730 .read = mem_cgroup_read,
9490ff27
KH
4731 .register_event = mem_cgroup_usage_register_event,
4732 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4733 },
4734 {
4735 .name = "memsw.max_usage_in_bytes",
4736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4737 .trigger = mem_cgroup_reset,
af36f906 4738 .read = mem_cgroup_read,
8c7c6e34
KH
4739 },
4740 {
4741 .name = "memsw.limit_in_bytes",
4742 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4743 .write_string = mem_cgroup_write,
af36f906 4744 .read = mem_cgroup_read,
8c7c6e34
KH
4745 },
4746 {
4747 .name = "memsw.failcnt",
4748 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4749 .trigger = mem_cgroup_reset,
af36f906 4750 .read = mem_cgroup_read,
8c7c6e34 4751 },
8c7c6e34 4752#endif
6bc10349 4753 { }, /* terminate */
af36f906 4754};
8c7c6e34 4755
c0ff4b85 4756static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4757{
4758 struct mem_cgroup_per_node *pn;
1ecaab2b 4759 struct mem_cgroup_per_zone *mz;
41e3355d 4760 int zone, tmp = node;
1ecaab2b
KH
4761 /*
4762 * This routine is called against possible nodes.
4763 * But it's BUG to call kmalloc() against offline node.
4764 *
4765 * TODO: this routine can waste much memory for nodes which will
4766 * never be onlined. It's better to use memory hotplug callback
4767 * function.
4768 */
41e3355d
KH
4769 if (!node_state(node, N_NORMAL_MEMORY))
4770 tmp = -1;
17295c88 4771 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4772 if (!pn)
4773 return 1;
1ecaab2b 4774
1ecaab2b
KH
4775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4776 mz = &pn->zoneinfo[zone];
7f5e86c2 4777 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4778 mz->usage_in_excess = 0;
4e416953 4779 mz->on_tree = false;
d79154bb 4780 mz->memcg = memcg;
1ecaab2b 4781 }
0a619e58 4782 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4783 return 0;
4784}
4785
c0ff4b85 4786static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4787{
c0ff4b85 4788 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4789}
4790
33327948
KH
4791static struct mem_cgroup *mem_cgroup_alloc(void)
4792{
d79154bb 4793 struct mem_cgroup *memcg;
c62b1a3b 4794 int size = sizeof(struct mem_cgroup);
33327948 4795
c62b1a3b 4796 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4797 if (size < PAGE_SIZE)
d79154bb 4798 memcg = kzalloc(size, GFP_KERNEL);
33327948 4799 else
d79154bb 4800 memcg = vzalloc(size);
33327948 4801
d79154bb 4802 if (!memcg)
e7bbcdf3
DC
4803 return NULL;
4804
d79154bb
HD
4805 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4806 if (!memcg->stat)
d2e61b8d 4807 goto out_free;
d79154bb
HD
4808 spin_lock_init(&memcg->pcp_counter_lock);
4809 return memcg;
d2e61b8d
DC
4810
4811out_free:
4812 if (size < PAGE_SIZE)
d79154bb 4813 kfree(memcg);
d2e61b8d 4814 else
d79154bb 4815 vfree(memcg);
d2e61b8d 4816 return NULL;
33327948
KH
4817}
4818
59927fb9
HD
4819/*
4820 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4821 * but in process context. The work_freeing structure is overlaid
4822 * on the rcu_freeing structure, which itself is overlaid on memsw.
4823 */
4824static void vfree_work(struct work_struct *work)
4825{
4826 struct mem_cgroup *memcg;
4827
4828 memcg = container_of(work, struct mem_cgroup, work_freeing);
4829 vfree(memcg);
4830}
4831static void vfree_rcu(struct rcu_head *rcu_head)
4832{
4833 struct mem_cgroup *memcg;
4834
4835 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4836 INIT_WORK(&memcg->work_freeing, vfree_work);
4837 schedule_work(&memcg->work_freeing);
4838}
4839
8c7c6e34
KH
4840/*
4841 * At destroying mem_cgroup, references from swap_cgroup can remain.
4842 * (scanning all at force_empty is too costly...)
4843 *
4844 * Instead of clearing all references at force_empty, we remember
4845 * the number of reference from swap_cgroup and free mem_cgroup when
4846 * it goes down to 0.
4847 *
8c7c6e34
KH
4848 * Removal of cgroup itself succeeds regardless of refs from swap.
4849 */
4850
c0ff4b85 4851static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4852{
08e552c6
KH
4853 int node;
4854
c0ff4b85
R
4855 mem_cgroup_remove_from_trees(memcg);
4856 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4857
3ed28fa1 4858 for_each_node(node)
c0ff4b85 4859 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4860
c0ff4b85 4861 free_percpu(memcg->stat);
c62b1a3b 4862 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4863 kfree_rcu(memcg, rcu_freeing);
33327948 4864 else
59927fb9 4865 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4866}
4867
c0ff4b85 4868static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4869{
c0ff4b85 4870 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4871}
4872
c0ff4b85 4873static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4874{
c0ff4b85
R
4875 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4876 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4877 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4878 if (parent)
4879 mem_cgroup_put(parent);
4880 }
8c7c6e34
KH
4881}
4882
c0ff4b85 4883static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4884{
c0ff4b85 4885 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4886}
4887
7bcc1bb1
DN
4888/*
4889 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4890 */
e1aab161 4891struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4892{
c0ff4b85 4893 if (!memcg->res.parent)
7bcc1bb1 4894 return NULL;
c0ff4b85 4895 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4896}
e1aab161 4897EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4898
c077719b
KH
4899#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4900static void __init enable_swap_cgroup(void)
4901{
f8d66542 4902 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4903 do_swap_account = 1;
4904}
4905#else
4906static void __init enable_swap_cgroup(void)
4907{
4908}
4909#endif
4910
f64c3f54
BS
4911static int mem_cgroup_soft_limit_tree_init(void)
4912{
4913 struct mem_cgroup_tree_per_node *rtpn;
4914 struct mem_cgroup_tree_per_zone *rtpz;
4915 int tmp, node, zone;
4916
3ed28fa1 4917 for_each_node(node) {
f64c3f54
BS
4918 tmp = node;
4919 if (!node_state(node, N_NORMAL_MEMORY))
4920 tmp = -1;
4921 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4922 if (!rtpn)
c3cecc68 4923 goto err_cleanup;
f64c3f54
BS
4924
4925 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4926
4927 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4928 rtpz = &rtpn->rb_tree_per_zone[zone];
4929 rtpz->rb_root = RB_ROOT;
4930 spin_lock_init(&rtpz->lock);
4931 }
4932 }
4933 return 0;
c3cecc68
MH
4934
4935err_cleanup:
3ed28fa1 4936 for_each_node(node) {
c3cecc68
MH
4937 if (!soft_limit_tree.rb_tree_per_node[node])
4938 break;
4939 kfree(soft_limit_tree.rb_tree_per_node[node]);
4940 soft_limit_tree.rb_tree_per_node[node] = NULL;
4941 }
4942 return 1;
4943
f64c3f54
BS
4944}
4945
0eb253e2 4946static struct cgroup_subsys_state * __ref
761b3ef5 4947mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4948{
c0ff4b85 4949 struct mem_cgroup *memcg, *parent;
04046e1a 4950 long error = -ENOMEM;
6d12e2d8 4951 int node;
8cdea7c0 4952
c0ff4b85
R
4953 memcg = mem_cgroup_alloc();
4954 if (!memcg)
04046e1a 4955 return ERR_PTR(error);
78fb7466 4956
3ed28fa1 4957 for_each_node(node)
c0ff4b85 4958 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4959 goto free_out;
f64c3f54 4960
c077719b 4961 /* root ? */
28dbc4b6 4962 if (cont->parent == NULL) {
cdec2e42 4963 int cpu;
c077719b 4964 enable_swap_cgroup();
28dbc4b6 4965 parent = NULL;
f64c3f54
BS
4966 if (mem_cgroup_soft_limit_tree_init())
4967 goto free_out;
a41c58a6 4968 root_mem_cgroup = memcg;
cdec2e42
KH
4969 for_each_possible_cpu(cpu) {
4970 struct memcg_stock_pcp *stock =
4971 &per_cpu(memcg_stock, cpu);
4972 INIT_WORK(&stock->work, drain_local_stock);
4973 }
711d3d2c 4974 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4975 } else {
28dbc4b6 4976 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4977 memcg->use_hierarchy = parent->use_hierarchy;
4978 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4979 }
28dbc4b6 4980
18f59ea7 4981 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4982 res_counter_init(&memcg->res, &parent->res);
4983 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4984 /*
4985 * We increment refcnt of the parent to ensure that we can
4986 * safely access it on res_counter_charge/uncharge.
4987 * This refcnt will be decremented when freeing this
4988 * mem_cgroup(see mem_cgroup_put).
4989 */
4990 mem_cgroup_get(parent);
18f59ea7 4991 } else {
c0ff4b85
R
4992 res_counter_init(&memcg->res, NULL);
4993 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4994 }
c0ff4b85
R
4995 memcg->last_scanned_node = MAX_NUMNODES;
4996 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4997
a7885eb8 4998 if (parent)
c0ff4b85
R
4999 memcg->swappiness = mem_cgroup_swappiness(parent);
5000 atomic_set(&memcg->refcnt, 1);
5001 memcg->move_charge_at_immigrate = 0;
5002 mutex_init(&memcg->thresholds_lock);
312734c0 5003 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5004
5005 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5006 if (error) {
5007 /*
5008 * We call put now because our (and parent's) refcnts
5009 * are already in place. mem_cgroup_put() will internally
5010 * call __mem_cgroup_free, so return directly
5011 */
5012 mem_cgroup_put(memcg);
5013 return ERR_PTR(error);
5014 }
c0ff4b85 5015 return &memcg->css;
6d12e2d8 5016free_out:
c0ff4b85 5017 __mem_cgroup_free(memcg);
04046e1a 5018 return ERR_PTR(error);
8cdea7c0
BS
5019}
5020
761b3ef5 5021static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5022{
c0ff4b85 5023 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5024
c0ff4b85 5025 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5026}
5027
761b3ef5 5028static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5029{
c0ff4b85 5030 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5031
1d62e436 5032 kmem_cgroup_destroy(memcg);
d1a4c0b3 5033
c0ff4b85 5034 mem_cgroup_put(memcg);
8cdea7c0
BS
5035}
5036
02491447 5037#ifdef CONFIG_MMU
7dc74be0 5038/* Handlers for move charge at task migration. */
854ffa8d
DN
5039#define PRECHARGE_COUNT_AT_ONCE 256
5040static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5041{
854ffa8d
DN
5042 int ret = 0;
5043 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5044 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5045
c0ff4b85 5046 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5047 mc.precharge += count;
5048 /* we don't need css_get for root */
5049 return ret;
5050 }
5051 /* try to charge at once */
5052 if (count > 1) {
5053 struct res_counter *dummy;
5054 /*
c0ff4b85 5055 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5056 * by cgroup_lock_live_cgroup() that it is not removed and we
5057 * are still under the same cgroup_mutex. So we can postpone
5058 * css_get().
5059 */
c0ff4b85 5060 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5061 goto one_by_one;
c0ff4b85 5062 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5063 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5064 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5065 goto one_by_one;
5066 }
5067 mc.precharge += count;
854ffa8d
DN
5068 return ret;
5069 }
5070one_by_one:
5071 /* fall back to one by one charge */
5072 while (count--) {
5073 if (signal_pending(current)) {
5074 ret = -EINTR;
5075 break;
5076 }
5077 if (!batch_count--) {
5078 batch_count = PRECHARGE_COUNT_AT_ONCE;
5079 cond_resched();
5080 }
c0ff4b85
R
5081 ret = __mem_cgroup_try_charge(NULL,
5082 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5083 if (ret)
854ffa8d 5084 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5085 return ret;
854ffa8d
DN
5086 mc.precharge++;
5087 }
4ffef5fe
DN
5088 return ret;
5089}
5090
5091/**
8d32ff84 5092 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5093 * @vma: the vma the pte to be checked belongs
5094 * @addr: the address corresponding to the pte to be checked
5095 * @ptent: the pte to be checked
02491447 5096 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5097 *
5098 * Returns
5099 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5100 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5101 * move charge. if @target is not NULL, the page is stored in target->page
5102 * with extra refcnt got(Callers should handle it).
02491447
DN
5103 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5104 * target for charge migration. if @target is not NULL, the entry is stored
5105 * in target->ent.
4ffef5fe
DN
5106 *
5107 * Called with pte lock held.
5108 */
4ffef5fe
DN
5109union mc_target {
5110 struct page *page;
02491447 5111 swp_entry_t ent;
4ffef5fe
DN
5112};
5113
4ffef5fe 5114enum mc_target_type {
8d32ff84 5115 MC_TARGET_NONE = 0,
4ffef5fe 5116 MC_TARGET_PAGE,
02491447 5117 MC_TARGET_SWAP,
4ffef5fe
DN
5118};
5119
90254a65
DN
5120static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5121 unsigned long addr, pte_t ptent)
4ffef5fe 5122{
90254a65 5123 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5124
90254a65
DN
5125 if (!page || !page_mapped(page))
5126 return NULL;
5127 if (PageAnon(page)) {
5128 /* we don't move shared anon */
4b91355e 5129 if (!move_anon())
90254a65 5130 return NULL;
87946a72
DN
5131 } else if (!move_file())
5132 /* we ignore mapcount for file pages */
90254a65
DN
5133 return NULL;
5134 if (!get_page_unless_zero(page))
5135 return NULL;
5136
5137 return page;
5138}
5139
4b91355e 5140#ifdef CONFIG_SWAP
90254a65
DN
5141static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5143{
90254a65
DN
5144 struct page *page = NULL;
5145 swp_entry_t ent = pte_to_swp_entry(ptent);
5146
5147 if (!move_anon() || non_swap_entry(ent))
5148 return NULL;
4b91355e
KH
5149 /*
5150 * Because lookup_swap_cache() updates some statistics counter,
5151 * we call find_get_page() with swapper_space directly.
5152 */
5153 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5154 if (do_swap_account)
5155 entry->val = ent.val;
5156
5157 return page;
5158}
4b91355e
KH
5159#else
5160static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5161 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5162{
5163 return NULL;
5164}
5165#endif
90254a65 5166
87946a72
DN
5167static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5168 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5169{
5170 struct page *page = NULL;
87946a72
DN
5171 struct address_space *mapping;
5172 pgoff_t pgoff;
5173
5174 if (!vma->vm_file) /* anonymous vma */
5175 return NULL;
5176 if (!move_file())
5177 return NULL;
5178
87946a72
DN
5179 mapping = vma->vm_file->f_mapping;
5180 if (pte_none(ptent))
5181 pgoff = linear_page_index(vma, addr);
5182 else /* pte_file(ptent) is true */
5183 pgoff = pte_to_pgoff(ptent);
5184
5185 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5186 page = find_get_page(mapping, pgoff);
5187
5188#ifdef CONFIG_SWAP
5189 /* shmem/tmpfs may report page out on swap: account for that too. */
5190 if (radix_tree_exceptional_entry(page)) {
5191 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5192 if (do_swap_account)
aa3b1895
HD
5193 *entry = swap;
5194 page = find_get_page(&swapper_space, swap.val);
87946a72 5195 }
aa3b1895 5196#endif
87946a72
DN
5197 return page;
5198}
5199
8d32ff84 5200static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5201 unsigned long addr, pte_t ptent, union mc_target *target)
5202{
5203 struct page *page = NULL;
5204 struct page_cgroup *pc;
8d32ff84 5205 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5206 swp_entry_t ent = { .val = 0 };
5207
5208 if (pte_present(ptent))
5209 page = mc_handle_present_pte(vma, addr, ptent);
5210 else if (is_swap_pte(ptent))
5211 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5212 else if (pte_none(ptent) || pte_file(ptent))
5213 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5214
5215 if (!page && !ent.val)
8d32ff84 5216 return ret;
02491447
DN
5217 if (page) {
5218 pc = lookup_page_cgroup(page);
5219 /*
5220 * Do only loose check w/o page_cgroup lock.
5221 * mem_cgroup_move_account() checks the pc is valid or not under
5222 * the lock.
5223 */
5224 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5225 ret = MC_TARGET_PAGE;
5226 if (target)
5227 target->page = page;
5228 }
5229 if (!ret || !target)
5230 put_page(page);
5231 }
90254a65
DN
5232 /* There is a swap entry and a page doesn't exist or isn't charged */
5233 if (ent.val && !ret &&
9fb4b7cc 5234 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5235 ret = MC_TARGET_SWAP;
5236 if (target)
5237 target->ent = ent;
4ffef5fe 5238 }
4ffef5fe
DN
5239 return ret;
5240}
5241
12724850
NH
5242#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5243/*
5244 * We don't consider swapping or file mapped pages because THP does not
5245 * support them for now.
5246 * Caller should make sure that pmd_trans_huge(pmd) is true.
5247 */
5248static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5249 unsigned long addr, pmd_t pmd, union mc_target *target)
5250{
5251 struct page *page = NULL;
5252 struct page_cgroup *pc;
5253 enum mc_target_type ret = MC_TARGET_NONE;
5254
5255 page = pmd_page(pmd);
5256 VM_BUG_ON(!page || !PageHead(page));
5257 if (!move_anon())
5258 return ret;
5259 pc = lookup_page_cgroup(page);
5260 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5261 ret = MC_TARGET_PAGE;
5262 if (target) {
5263 get_page(page);
5264 target->page = page;
5265 }
5266 }
5267 return ret;
5268}
5269#else
5270static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5271 unsigned long addr, pmd_t pmd, union mc_target *target)
5272{
5273 return MC_TARGET_NONE;
5274}
5275#endif
5276
4ffef5fe
DN
5277static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5278 unsigned long addr, unsigned long end,
5279 struct mm_walk *walk)
5280{
5281 struct vm_area_struct *vma = walk->private;
5282 pte_t *pte;
5283 spinlock_t *ptl;
5284
12724850
NH
5285 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5286 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5287 mc.precharge += HPAGE_PMD_NR;
5288 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5289 return 0;
12724850 5290 }
03319327 5291
45f83cef
AA
5292 if (pmd_trans_unstable(pmd))
5293 return 0;
4ffef5fe
DN
5294 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5295 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5296 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5297 mc.precharge++; /* increment precharge temporarily */
5298 pte_unmap_unlock(pte - 1, ptl);
5299 cond_resched();
5300
7dc74be0
DN
5301 return 0;
5302}
5303
4ffef5fe
DN
5304static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5305{
5306 unsigned long precharge;
5307 struct vm_area_struct *vma;
5308
dfe076b0 5309 down_read(&mm->mmap_sem);
4ffef5fe
DN
5310 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5311 struct mm_walk mem_cgroup_count_precharge_walk = {
5312 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5313 .mm = mm,
5314 .private = vma,
5315 };
5316 if (is_vm_hugetlb_page(vma))
5317 continue;
4ffef5fe
DN
5318 walk_page_range(vma->vm_start, vma->vm_end,
5319 &mem_cgroup_count_precharge_walk);
5320 }
dfe076b0 5321 up_read(&mm->mmap_sem);
4ffef5fe
DN
5322
5323 precharge = mc.precharge;
5324 mc.precharge = 0;
5325
5326 return precharge;
5327}
5328
4ffef5fe
DN
5329static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5330{
dfe076b0
DN
5331 unsigned long precharge = mem_cgroup_count_precharge(mm);
5332
5333 VM_BUG_ON(mc.moving_task);
5334 mc.moving_task = current;
5335 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5336}
5337
dfe076b0
DN
5338/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5339static void __mem_cgroup_clear_mc(void)
4ffef5fe 5340{
2bd9bb20
KH
5341 struct mem_cgroup *from = mc.from;
5342 struct mem_cgroup *to = mc.to;
5343
4ffef5fe 5344 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5345 if (mc.precharge) {
5346 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5347 mc.precharge = 0;
5348 }
5349 /*
5350 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5351 * we must uncharge here.
5352 */
5353 if (mc.moved_charge) {
5354 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5355 mc.moved_charge = 0;
4ffef5fe 5356 }
483c30b5
DN
5357 /* we must fixup refcnts and charges */
5358 if (mc.moved_swap) {
483c30b5
DN
5359 /* uncharge swap account from the old cgroup */
5360 if (!mem_cgroup_is_root(mc.from))
5361 res_counter_uncharge(&mc.from->memsw,
5362 PAGE_SIZE * mc.moved_swap);
5363 __mem_cgroup_put(mc.from, mc.moved_swap);
5364
5365 if (!mem_cgroup_is_root(mc.to)) {
5366 /*
5367 * we charged both to->res and to->memsw, so we should
5368 * uncharge to->res.
5369 */
5370 res_counter_uncharge(&mc.to->res,
5371 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5372 }
5373 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5374 mc.moved_swap = 0;
5375 }
dfe076b0
DN
5376 memcg_oom_recover(from);
5377 memcg_oom_recover(to);
5378 wake_up_all(&mc.waitq);
5379}
5380
5381static void mem_cgroup_clear_mc(void)
5382{
5383 struct mem_cgroup *from = mc.from;
5384
5385 /*
5386 * we must clear moving_task before waking up waiters at the end of
5387 * task migration.
5388 */
5389 mc.moving_task = NULL;
5390 __mem_cgroup_clear_mc();
2bd9bb20 5391 spin_lock(&mc.lock);
4ffef5fe
DN
5392 mc.from = NULL;
5393 mc.to = NULL;
2bd9bb20 5394 spin_unlock(&mc.lock);
32047e2a 5395 mem_cgroup_end_move(from);
4ffef5fe
DN
5396}
5397
761b3ef5
LZ
5398static int mem_cgroup_can_attach(struct cgroup *cgroup,
5399 struct cgroup_taskset *tset)
7dc74be0 5400{
2f7ee569 5401 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5402 int ret = 0;
c0ff4b85 5403 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5404
c0ff4b85 5405 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5406 struct mm_struct *mm;
5407 struct mem_cgroup *from = mem_cgroup_from_task(p);
5408
c0ff4b85 5409 VM_BUG_ON(from == memcg);
7dc74be0
DN
5410
5411 mm = get_task_mm(p);
5412 if (!mm)
5413 return 0;
7dc74be0 5414 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5415 if (mm->owner == p) {
5416 VM_BUG_ON(mc.from);
5417 VM_BUG_ON(mc.to);
5418 VM_BUG_ON(mc.precharge);
854ffa8d 5419 VM_BUG_ON(mc.moved_charge);
483c30b5 5420 VM_BUG_ON(mc.moved_swap);
32047e2a 5421 mem_cgroup_start_move(from);
2bd9bb20 5422 spin_lock(&mc.lock);
4ffef5fe 5423 mc.from = from;
c0ff4b85 5424 mc.to = memcg;
2bd9bb20 5425 spin_unlock(&mc.lock);
dfe076b0 5426 /* We set mc.moving_task later */
4ffef5fe
DN
5427
5428 ret = mem_cgroup_precharge_mc(mm);
5429 if (ret)
5430 mem_cgroup_clear_mc();
dfe076b0
DN
5431 }
5432 mmput(mm);
7dc74be0
DN
5433 }
5434 return ret;
5435}
5436
761b3ef5
LZ
5437static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5438 struct cgroup_taskset *tset)
7dc74be0 5439{
4ffef5fe 5440 mem_cgroup_clear_mc();
7dc74be0
DN
5441}
5442
4ffef5fe
DN
5443static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5444 unsigned long addr, unsigned long end,
5445 struct mm_walk *walk)
7dc74be0 5446{
4ffef5fe
DN
5447 int ret = 0;
5448 struct vm_area_struct *vma = walk->private;
5449 pte_t *pte;
5450 spinlock_t *ptl;
12724850
NH
5451 enum mc_target_type target_type;
5452 union mc_target target;
5453 struct page *page;
5454 struct page_cgroup *pc;
4ffef5fe 5455
12724850
NH
5456 /*
5457 * We don't take compound_lock() here but no race with splitting thp
5458 * happens because:
5459 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5460 * under splitting, which means there's no concurrent thp split,
5461 * - if another thread runs into split_huge_page() just after we
5462 * entered this if-block, the thread must wait for page table lock
5463 * to be unlocked in __split_huge_page_splitting(), where the main
5464 * part of thp split is not executed yet.
5465 */
5466 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5467 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5468 spin_unlock(&vma->vm_mm->page_table_lock);
5469 return 0;
5470 }
5471 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5472 if (target_type == MC_TARGET_PAGE) {
5473 page = target.page;
5474 if (!isolate_lru_page(page)) {
5475 pc = lookup_page_cgroup(page);
5476 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5477 pc, mc.from, mc.to,
5478 false)) {
5479 mc.precharge -= HPAGE_PMD_NR;
5480 mc.moved_charge += HPAGE_PMD_NR;
5481 }
5482 putback_lru_page(page);
5483 }
5484 put_page(page);
5485 }
5486 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5487 return 0;
12724850
NH
5488 }
5489
45f83cef
AA
5490 if (pmd_trans_unstable(pmd))
5491 return 0;
4ffef5fe
DN
5492retry:
5493 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5494 for (; addr != end; addr += PAGE_SIZE) {
5495 pte_t ptent = *(pte++);
02491447 5496 swp_entry_t ent;
4ffef5fe
DN
5497
5498 if (!mc.precharge)
5499 break;
5500
8d32ff84 5501 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5502 case MC_TARGET_PAGE:
5503 page = target.page;
5504 if (isolate_lru_page(page))
5505 goto put;
5506 pc = lookup_page_cgroup(page);
7ec99d62
JW
5507 if (!mem_cgroup_move_account(page, 1, pc,
5508 mc.from, mc.to, false)) {
4ffef5fe 5509 mc.precharge--;
854ffa8d
DN
5510 /* we uncharge from mc.from later. */
5511 mc.moved_charge++;
4ffef5fe
DN
5512 }
5513 putback_lru_page(page);
8d32ff84 5514put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5515 put_page(page);
5516 break;
02491447
DN
5517 case MC_TARGET_SWAP:
5518 ent = target.ent;
e91cbb42 5519 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5520 mc.precharge--;
483c30b5
DN
5521 /* we fixup refcnts and charges later. */
5522 mc.moved_swap++;
5523 }
02491447 5524 break;
4ffef5fe
DN
5525 default:
5526 break;
5527 }
5528 }
5529 pte_unmap_unlock(pte - 1, ptl);
5530 cond_resched();
5531
5532 if (addr != end) {
5533 /*
5534 * We have consumed all precharges we got in can_attach().
5535 * We try charge one by one, but don't do any additional
5536 * charges to mc.to if we have failed in charge once in attach()
5537 * phase.
5538 */
854ffa8d 5539 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5540 if (!ret)
5541 goto retry;
5542 }
5543
5544 return ret;
5545}
5546
5547static void mem_cgroup_move_charge(struct mm_struct *mm)
5548{
5549 struct vm_area_struct *vma;
5550
5551 lru_add_drain_all();
dfe076b0
DN
5552retry:
5553 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5554 /*
5555 * Someone who are holding the mmap_sem might be waiting in
5556 * waitq. So we cancel all extra charges, wake up all waiters,
5557 * and retry. Because we cancel precharges, we might not be able
5558 * to move enough charges, but moving charge is a best-effort
5559 * feature anyway, so it wouldn't be a big problem.
5560 */
5561 __mem_cgroup_clear_mc();
5562 cond_resched();
5563 goto retry;
5564 }
4ffef5fe
DN
5565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5566 int ret;
5567 struct mm_walk mem_cgroup_move_charge_walk = {
5568 .pmd_entry = mem_cgroup_move_charge_pte_range,
5569 .mm = mm,
5570 .private = vma,
5571 };
5572 if (is_vm_hugetlb_page(vma))
5573 continue;
4ffef5fe
DN
5574 ret = walk_page_range(vma->vm_start, vma->vm_end,
5575 &mem_cgroup_move_charge_walk);
5576 if (ret)
5577 /*
5578 * means we have consumed all precharges and failed in
5579 * doing additional charge. Just abandon here.
5580 */
5581 break;
5582 }
dfe076b0 5583 up_read(&mm->mmap_sem);
7dc74be0
DN
5584}
5585
761b3ef5
LZ
5586static void mem_cgroup_move_task(struct cgroup *cont,
5587 struct cgroup_taskset *tset)
67e465a7 5588{
2f7ee569 5589 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5590 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5591
dfe076b0 5592 if (mm) {
a433658c
KM
5593 if (mc.to)
5594 mem_cgroup_move_charge(mm);
dfe076b0
DN
5595 mmput(mm);
5596 }
a433658c
KM
5597 if (mc.to)
5598 mem_cgroup_clear_mc();
67e465a7 5599}
5cfb80a7 5600#else /* !CONFIG_MMU */
761b3ef5
LZ
5601static int mem_cgroup_can_attach(struct cgroup *cgroup,
5602 struct cgroup_taskset *tset)
5cfb80a7
DN
5603{
5604 return 0;
5605}
761b3ef5
LZ
5606static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5607 struct cgroup_taskset *tset)
5cfb80a7
DN
5608{
5609}
761b3ef5
LZ
5610static void mem_cgroup_move_task(struct cgroup *cont,
5611 struct cgroup_taskset *tset)
5cfb80a7
DN
5612{
5613}
5614#endif
67e465a7 5615
8cdea7c0
BS
5616struct cgroup_subsys mem_cgroup_subsys = {
5617 .name = "memory",
5618 .subsys_id = mem_cgroup_subsys_id,
5619 .create = mem_cgroup_create,
df878fb0 5620 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5621 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5622 .can_attach = mem_cgroup_can_attach,
5623 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5624 .attach = mem_cgroup_move_task,
6bc10349 5625 .base_cftypes = mem_cgroup_files,
6d12e2d8 5626 .early_init = 0,
04046e1a 5627 .use_id = 1,
48ddbe19 5628 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5629};
c077719b
KH
5630
5631#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5632static int __init enable_swap_account(char *s)
5633{
5634 /* consider enabled if no parameter or 1 is given */
a2c8990a 5635 if (!strcmp(s, "1"))
a42c390c 5636 really_do_swap_account = 1;
a2c8990a 5637 else if (!strcmp(s, "0"))
a42c390c
MH
5638 really_do_swap_account = 0;
5639 return 1;
5640}
a2c8990a 5641__setup("swapaccount=", enable_swap_account);
c077719b 5642
c077719b 5643#endif