]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm: make DEFERRED_STRUCT_PAGE_INIT explicitly depend on SPARSEMEM
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
7ffc0edc
MH
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
127424c8 254#ifndef CONFIG_SLOB
55007d84 255/*
f7ce3190 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
55007d84 262 *
dbcf73e2
VD
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
55007d84 265 */
dbcf73e2
VD
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
749c5415 268
05257a1a
VD
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
55007d84
GC
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
b8627835 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
b8627835 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 296
d7f25f8a
GC
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
ef12947c 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 305
17cc4dfe
TH
306struct workqueue_struct *memcg_kmem_cache_wq;
307
127424c8 308#endif /* !CONFIG_SLOB */
a8964b9b 309
ad7fa852
TH
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
ad7fa852
TH
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
ad7fa852
TH
325 memcg = page->mem_cgroup;
326
9e10a130 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
328 memcg = root_mem_cgroup;
329
ad7fa852
TH
330 return &memcg->css;
331}
332
2fc04524
VD
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
ef8f2327
MG
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 363{
97a6c37b 364 int nid = page_to_nid(page);
f64c3f54 365
ef8f2327 366 return memcg->nodeinfo[nid];
f64c3f54
BS
367}
368
ef8f2327
MG
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
bb4cc1a8 371{
ef8f2327 372 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
373}
374
ef8f2327 375static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
bb4cc1a8 379
ef8f2327 380 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
381}
382
ef8f2327
MG
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 385 unsigned long new_usage_in_excess)
bb4cc1a8
AM
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
ef8f2327 389 struct mem_cgroup_per_node *mz_node;
fa90b2fd 390 bool rightmost = true;
bb4cc1a8
AM
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
ef8f2327 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 401 tree_node);
fa90b2fd 402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 403 p = &(*p)->rb_left;
fa90b2fd
DB
404 rightmost = false;
405 }
406
bb4cc1a8
AM
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
fa90b2fd
DB
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
bb4cc1a8
AM
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
ef8f2327
MG
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
425{
426 if (!mz->on_tree)
427 return;
fa90b2fd
DB
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
bb4cc1a8
AM
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
465 if (!mctz)
466 return;
bb4cc1a8
AM
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 472 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 473 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
0a31bc97
JW
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
482 /* if on-tree, remove it */
483 if (mz->on_tree)
cf2c8127 484 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
cf2c8127 489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 490 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
ef8f2327
MG
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
bb4cc1a8 500
e231875b 501 for_each_node(nid) {
ef8f2327
MG
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 511{
ef8f2327 512 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
513
514retry:
515 mz = NULL;
fa90b2fd 516 if (!mctz->rb_rightmost)
bb4cc1a8
AM
517 goto done; /* Nothing to reclaim from */
518
fa90b2fd
DB
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
cf2c8127 526 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 527 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 528 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
529 goto retry;
530done:
531 return mz;
532}
533
ef8f2327
MG
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 536{
ef8f2327 537 struct mem_cgroup_per_node *mz;
bb4cc1a8 538
0a31bc97 539 spin_lock_irq(&mctz->lock);
bb4cc1a8 540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 541 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
542 return mz;
543}
544
ccda7f43 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 546 int event)
e9f8974f 547{
a983b5eb 548 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
549}
550
c0ff4b85 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 552 struct page *page,
f627c2f5 553 bool compound, int nr_pages)
d52aa412 554{
b2402857
KH
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
0a31bc97 559 if (PageAnon(page))
c9019e9b 560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 561 else {
c9019e9b 562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 563 if (PageSwapBacked(page))
c9019e9b 564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 565 }
55e462b0 566
f627c2f5
KS
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 570 }
b070e65c 571
e401f176
KH
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
c9019e9b 574 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 575 else {
c9019e9b 576 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
577 nr_pages = -nr_pages; /* for event */
578 }
e401f176 579
a983b5eb 580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
581}
582
0a6b76dd
VD
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
bb2a0de9 585{
b4536f0c 586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 587 unsigned long nr = 0;
ef8f2327 588 enum lru_list lru;
889976db 589
e231875b 590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 591
ef8f2327
MG
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
b4536f0c 595 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
596 }
597 return nr;
889976db 598}
bb2a0de9 599
c0ff4b85 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 601 unsigned int lru_mask)
6d12e2d8 602{
e231875b 603 unsigned long nr = 0;
889976db 604 int nid;
6d12e2d8 605
31aaea4a 606 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
d52aa412
KH
609}
610
f53d7ce3
JW
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
7a159cc9
JW
613{
614 unsigned long val, next;
615
a983b5eb
JW
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 618 /* from time_after() in jiffies.h */
6a1a8b80 619 if ((long)(next - val) < 0) {
f53d7ce3
JW
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
bb4cc1a8
AM
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
f53d7ce3
JW
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
a983b5eb 633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 634 return true;
7a159cc9 635 }
f53d7ce3 636 return false;
d2265e6f
KH
637}
638
639/*
640 * Check events in order.
641 *
642 */
c0ff4b85 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
644{
645 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 648 bool do_softlimit;
82b3f2a7 649 bool do_numainfo __maybe_unused;
f53d7ce3 650
bb4cc1a8
AM
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
c0ff4b85 657 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
453a9bf3 660#if MAX_NUMNODES > 1
f53d7ce3 661 if (unlikely(do_numainfo))
c0ff4b85 662 atomic_inc(&memcg->numainfo_events);
453a9bf3 663#endif
0a31bc97 664 }
d2265e6f
KH
665}
666
cf475ad2 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 668{
31a78f23
BS
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
073219e9 677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 678}
33398cf2 679EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 680
d46eb14b
SB
681/**
682 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
683 * @mm: mm from which memcg should be extracted. It can be NULL.
684 *
685 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
686 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
687 * returned.
688 */
689struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 690{
d46eb14b
SB
691 struct mem_cgroup *memcg;
692
693 if (mem_cgroup_disabled())
694 return NULL;
0b7f569e 695
54595fe2
KH
696 rcu_read_lock();
697 do {
6f6acb00
MH
698 /*
699 * Page cache insertions can happen withou an
700 * actual mm context, e.g. during disk probing
701 * on boot, loopback IO, acct() writes etc.
702 */
703 if (unlikely(!mm))
df381975 704 memcg = root_mem_cgroup;
6f6acb00
MH
705 else {
706 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
707 if (unlikely(!memcg))
708 memcg = root_mem_cgroup;
709 }
ec903c0c 710 } while (!css_tryget_online(&memcg->css));
54595fe2 711 rcu_read_unlock();
c0ff4b85 712 return memcg;
54595fe2 713}
d46eb14b
SB
714EXPORT_SYMBOL(get_mem_cgroup_from_mm);
715
f745c6f5
SB
716/**
717 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
718 * @page: page from which memcg should be extracted.
719 *
720 * Obtain a reference on page->memcg and returns it if successful. Otherwise
721 * root_mem_cgroup is returned.
722 */
723struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
724{
725 struct mem_cgroup *memcg = page->mem_cgroup;
726
727 if (mem_cgroup_disabled())
728 return NULL;
729
730 rcu_read_lock();
731 if (!memcg || !css_tryget_online(&memcg->css))
732 memcg = root_mem_cgroup;
733 rcu_read_unlock();
734 return memcg;
735}
736EXPORT_SYMBOL(get_mem_cgroup_from_page);
737
d46eb14b
SB
738/**
739 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
740 */
741static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
742{
743 if (unlikely(current->active_memcg)) {
744 struct mem_cgroup *memcg = root_mem_cgroup;
745
746 rcu_read_lock();
747 if (css_tryget_online(&current->active_memcg->css))
748 memcg = current->active_memcg;
749 rcu_read_unlock();
750 return memcg;
751 }
752 return get_mem_cgroup_from_mm(current->mm);
753}
54595fe2 754
5660048c
JW
755/**
756 * mem_cgroup_iter - iterate over memory cgroup hierarchy
757 * @root: hierarchy root
758 * @prev: previously returned memcg, NULL on first invocation
759 * @reclaim: cookie for shared reclaim walks, NULL for full walks
760 *
761 * Returns references to children of the hierarchy below @root, or
762 * @root itself, or %NULL after a full round-trip.
763 *
764 * Caller must pass the return value in @prev on subsequent
765 * invocations for reference counting, or use mem_cgroup_iter_break()
766 * to cancel a hierarchy walk before the round-trip is complete.
767 *
b213b54f 768 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 769 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 770 * reclaimers operating on the same node and priority.
5660048c 771 */
694fbc0f 772struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 773 struct mem_cgroup *prev,
694fbc0f 774 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 775{
33398cf2 776 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 777 struct cgroup_subsys_state *css = NULL;
9f3a0d09 778 struct mem_cgroup *memcg = NULL;
5ac8fb31 779 struct mem_cgroup *pos = NULL;
711d3d2c 780
694fbc0f
AM
781 if (mem_cgroup_disabled())
782 return NULL;
5660048c 783
9f3a0d09
JW
784 if (!root)
785 root = root_mem_cgroup;
7d74b06f 786
9f3a0d09 787 if (prev && !reclaim)
5ac8fb31 788 pos = prev;
14067bb3 789
9f3a0d09
JW
790 if (!root->use_hierarchy && root != root_mem_cgroup) {
791 if (prev)
5ac8fb31 792 goto out;
694fbc0f 793 return root;
9f3a0d09 794 }
14067bb3 795
542f85f9 796 rcu_read_lock();
5f578161 797
5ac8fb31 798 if (reclaim) {
ef8f2327 799 struct mem_cgroup_per_node *mz;
5ac8fb31 800
ef8f2327 801 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
802 iter = &mz->iter[reclaim->priority];
803
804 if (prev && reclaim->generation != iter->generation)
805 goto out_unlock;
806
6df38689 807 while (1) {
4db0c3c2 808 pos = READ_ONCE(iter->position);
6df38689
VD
809 if (!pos || css_tryget(&pos->css))
810 break;
5ac8fb31 811 /*
6df38689
VD
812 * css reference reached zero, so iter->position will
813 * be cleared by ->css_released. However, we should not
814 * rely on this happening soon, because ->css_released
815 * is called from a work queue, and by busy-waiting we
816 * might block it. So we clear iter->position right
817 * away.
5ac8fb31 818 */
6df38689
VD
819 (void)cmpxchg(&iter->position, pos, NULL);
820 }
5ac8fb31
JW
821 }
822
823 if (pos)
824 css = &pos->css;
825
826 for (;;) {
827 css = css_next_descendant_pre(css, &root->css);
828 if (!css) {
829 /*
830 * Reclaimers share the hierarchy walk, and a
831 * new one might jump in right at the end of
832 * the hierarchy - make sure they see at least
833 * one group and restart from the beginning.
834 */
835 if (!prev)
836 continue;
837 break;
527a5ec9 838 }
7d74b06f 839
5ac8fb31
JW
840 /*
841 * Verify the css and acquire a reference. The root
842 * is provided by the caller, so we know it's alive
843 * and kicking, and don't take an extra reference.
844 */
845 memcg = mem_cgroup_from_css(css);
14067bb3 846
5ac8fb31
JW
847 if (css == &root->css)
848 break;
14067bb3 849
0b8f73e1
JW
850 if (css_tryget(css))
851 break;
9f3a0d09 852
5ac8fb31 853 memcg = NULL;
9f3a0d09 854 }
5ac8fb31
JW
855
856 if (reclaim) {
5ac8fb31 857 /*
6df38689
VD
858 * The position could have already been updated by a competing
859 * thread, so check that the value hasn't changed since we read
860 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 861 */
6df38689
VD
862 (void)cmpxchg(&iter->position, pos, memcg);
863
5ac8fb31
JW
864 if (pos)
865 css_put(&pos->css);
866
867 if (!memcg)
868 iter->generation++;
869 else if (!prev)
870 reclaim->generation = iter->generation;
9f3a0d09 871 }
5ac8fb31 872
542f85f9
MH
873out_unlock:
874 rcu_read_unlock();
5ac8fb31 875out:
c40046f3
MH
876 if (prev && prev != root)
877 css_put(&prev->css);
878
9f3a0d09 879 return memcg;
14067bb3 880}
7d74b06f 881
5660048c
JW
882/**
883 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
884 * @root: hierarchy root
885 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
886 */
887void mem_cgroup_iter_break(struct mem_cgroup *root,
888 struct mem_cgroup *prev)
9f3a0d09
JW
889{
890 if (!root)
891 root = root_mem_cgroup;
892 if (prev && prev != root)
893 css_put(&prev->css);
894}
7d74b06f 895
6df38689
VD
896static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
897{
898 struct mem_cgroup *memcg = dead_memcg;
899 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
900 struct mem_cgroup_per_node *mz;
901 int nid;
6df38689
VD
902 int i;
903
9f15bde6 904 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 905 for_each_node(nid) {
ef8f2327
MG
906 mz = mem_cgroup_nodeinfo(memcg, nid);
907 for (i = 0; i <= DEF_PRIORITY; i++) {
908 iter = &mz->iter[i];
909 cmpxchg(&iter->position,
910 dead_memcg, NULL);
6df38689
VD
911 }
912 }
913 }
914}
915
9f3a0d09
JW
916/*
917 * Iteration constructs for visiting all cgroups (under a tree). If
918 * loops are exited prematurely (break), mem_cgroup_iter_break() must
919 * be used for reference counting.
920 */
921#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 922 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 923 iter != NULL; \
527a5ec9 924 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 925
9f3a0d09 926#define for_each_mem_cgroup(iter) \
527a5ec9 927 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 928 iter != NULL; \
527a5ec9 929 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 930
7c5f64f8
VD
931/**
932 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
933 * @memcg: hierarchy root
934 * @fn: function to call for each task
935 * @arg: argument passed to @fn
936 *
937 * This function iterates over tasks attached to @memcg or to any of its
938 * descendants and calls @fn for each task. If @fn returns a non-zero
939 * value, the function breaks the iteration loop and returns the value.
940 * Otherwise, it will iterate over all tasks and return 0.
941 *
942 * This function must not be called for the root memory cgroup.
943 */
944int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
945 int (*fn)(struct task_struct *, void *), void *arg)
946{
947 struct mem_cgroup *iter;
948 int ret = 0;
949
950 BUG_ON(memcg == root_mem_cgroup);
951
952 for_each_mem_cgroup_tree(iter, memcg) {
953 struct css_task_iter it;
954 struct task_struct *task;
955
bc2fb7ed 956 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
957 while (!ret && (task = css_task_iter_next(&it)))
958 ret = fn(task, arg);
959 css_task_iter_end(&it);
960 if (ret) {
961 mem_cgroup_iter_break(memcg, iter);
962 break;
963 }
964 }
965 return ret;
966}
967
925b7673 968/**
dfe0e773 969 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 970 * @page: the page
f144c390 971 * @pgdat: pgdat of the page
dfe0e773
JW
972 *
973 * This function is only safe when following the LRU page isolation
974 * and putback protocol: the LRU lock must be held, and the page must
975 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 976 */
599d0c95 977struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 978{
ef8f2327 979 struct mem_cgroup_per_node *mz;
925b7673 980 struct mem_cgroup *memcg;
bea8c150 981 struct lruvec *lruvec;
6d12e2d8 982
bea8c150 983 if (mem_cgroup_disabled()) {
599d0c95 984 lruvec = &pgdat->lruvec;
bea8c150
HD
985 goto out;
986 }
925b7673 987
1306a85a 988 memcg = page->mem_cgroup;
7512102c 989 /*
dfe0e773 990 * Swapcache readahead pages are added to the LRU - and
29833315 991 * possibly migrated - before they are charged.
7512102c 992 */
29833315
JW
993 if (!memcg)
994 memcg = root_mem_cgroup;
7512102c 995
ef8f2327 996 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
997 lruvec = &mz->lruvec;
998out:
999 /*
1000 * Since a node can be onlined after the mem_cgroup was created,
1001 * we have to be prepared to initialize lruvec->zone here;
1002 * and if offlined then reonlined, we need to reinitialize it.
1003 */
599d0c95
MG
1004 if (unlikely(lruvec->pgdat != pgdat))
1005 lruvec->pgdat = pgdat;
bea8c150 1006 return lruvec;
08e552c6 1007}
b69408e8 1008
925b7673 1009/**
fa9add64
HD
1010 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1011 * @lruvec: mem_cgroup per zone lru vector
1012 * @lru: index of lru list the page is sitting on
b4536f0c 1013 * @zid: zone id of the accounted pages
fa9add64 1014 * @nr_pages: positive when adding or negative when removing
925b7673 1015 *
ca707239
HD
1016 * This function must be called under lru_lock, just before a page is added
1017 * to or just after a page is removed from an lru list (that ordering being
1018 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1019 */
fa9add64 1020void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1021 int zid, int nr_pages)
3f58a829 1022{
ef8f2327 1023 struct mem_cgroup_per_node *mz;
fa9add64 1024 unsigned long *lru_size;
ca707239 1025 long size;
3f58a829
MK
1026
1027 if (mem_cgroup_disabled())
1028 return;
1029
ef8f2327 1030 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1031 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1032
1033 if (nr_pages < 0)
1034 *lru_size += nr_pages;
1035
1036 size = *lru_size;
b4536f0c
MH
1037 if (WARN_ONCE(size < 0,
1038 "%s(%p, %d, %d): lru_size %ld\n",
1039 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1040 VM_BUG_ON(1);
1041 *lru_size = 0;
1042 }
1043
1044 if (nr_pages > 0)
1045 *lru_size += nr_pages;
08e552c6 1046}
544122e5 1047
2314b42d 1048bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1049{
2314b42d 1050 struct mem_cgroup *task_memcg;
158e0a2d 1051 struct task_struct *p;
ffbdccf5 1052 bool ret;
4c4a2214 1053
158e0a2d 1054 p = find_lock_task_mm(task);
de077d22 1055 if (p) {
2314b42d 1056 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1057 task_unlock(p);
1058 } else {
1059 /*
1060 * All threads may have already detached their mm's, but the oom
1061 * killer still needs to detect if they have already been oom
1062 * killed to prevent needlessly killing additional tasks.
1063 */
ffbdccf5 1064 rcu_read_lock();
2314b42d
JW
1065 task_memcg = mem_cgroup_from_task(task);
1066 css_get(&task_memcg->css);
ffbdccf5 1067 rcu_read_unlock();
de077d22 1068 }
2314b42d
JW
1069 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1070 css_put(&task_memcg->css);
4c4a2214
DR
1071 return ret;
1072}
1073
19942822 1074/**
9d11ea9f 1075 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1076 * @memcg: the memory cgroup
19942822 1077 *
9d11ea9f 1078 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1079 * pages.
19942822 1080 */
c0ff4b85 1081static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1082{
3e32cb2e
JW
1083 unsigned long margin = 0;
1084 unsigned long count;
1085 unsigned long limit;
9d11ea9f 1086
3e32cb2e 1087 count = page_counter_read(&memcg->memory);
bbec2e15 1088 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1089 if (count < limit)
1090 margin = limit - count;
1091
7941d214 1092 if (do_memsw_account()) {
3e32cb2e 1093 count = page_counter_read(&memcg->memsw);
bbec2e15 1094 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1095 if (count <= limit)
1096 margin = min(margin, limit - count);
cbedbac3
LR
1097 else
1098 margin = 0;
3e32cb2e
JW
1099 }
1100
1101 return margin;
19942822
JW
1102}
1103
32047e2a 1104/*
bdcbb659 1105 * A routine for checking "mem" is under move_account() or not.
32047e2a 1106 *
bdcbb659
QH
1107 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1108 * moving cgroups. This is for waiting at high-memory pressure
1109 * caused by "move".
32047e2a 1110 */
c0ff4b85 1111static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1112{
2bd9bb20
KH
1113 struct mem_cgroup *from;
1114 struct mem_cgroup *to;
4b534334 1115 bool ret = false;
2bd9bb20
KH
1116 /*
1117 * Unlike task_move routines, we access mc.to, mc.from not under
1118 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1119 */
1120 spin_lock(&mc.lock);
1121 from = mc.from;
1122 to = mc.to;
1123 if (!from)
1124 goto unlock;
3e92041d 1125
2314b42d
JW
1126 ret = mem_cgroup_is_descendant(from, memcg) ||
1127 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1128unlock:
1129 spin_unlock(&mc.lock);
4b534334
KH
1130 return ret;
1131}
1132
c0ff4b85 1133static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1134{
1135 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1136 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1137 DEFINE_WAIT(wait);
1138 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1139 /* moving charge context might have finished. */
1140 if (mc.moving_task)
1141 schedule();
1142 finish_wait(&mc.waitq, &wait);
1143 return true;
1144 }
1145 }
1146 return false;
1147}
1148
8ad6e404 1149static const unsigned int memcg1_stats[] = {
71cd3113
JW
1150 MEMCG_CACHE,
1151 MEMCG_RSS,
1152 MEMCG_RSS_HUGE,
1153 NR_SHMEM,
1154 NR_FILE_MAPPED,
1155 NR_FILE_DIRTY,
1156 NR_WRITEBACK,
1157 MEMCG_SWAP,
1158};
1159
1160static const char *const memcg1_stat_names[] = {
1161 "cache",
1162 "rss",
1163 "rss_huge",
1164 "shmem",
1165 "mapped_file",
1166 "dirty",
1167 "writeback",
1168 "swap",
1169};
1170
58cf188e 1171#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1172/**
58cf188e 1173 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1174 * @memcg: The memory cgroup that went over limit
1175 * @p: Task that is going to be killed
1176 *
1177 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1178 * enabled
1179 */
1180void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1181{
58cf188e
SZ
1182 struct mem_cgroup *iter;
1183 unsigned int i;
e222432b 1184
e222432b
BS
1185 rcu_read_lock();
1186
2415b9f5
BV
1187 if (p) {
1188 pr_info("Task in ");
1189 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1190 pr_cont(" killed as a result of limit of ");
1191 } else {
1192 pr_info("Memory limit reached of cgroup ");
1193 }
1194
e61734c5 1195 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1196 pr_cont("\n");
e222432b 1197
e222432b
BS
1198 rcu_read_unlock();
1199
3e32cb2e
JW
1200 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1201 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1202 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1203 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1205 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1206 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1207 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1208 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1209
1210 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1211 pr_info("Memory cgroup stats for ");
1212 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1213 pr_cont(":");
1214
71cd3113
JW
1215 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1216 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1217 continue;
71cd3113 1218 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1219 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1220 }
1221
1222 for (i = 0; i < NR_LRU_LISTS; i++)
1223 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1224 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1225
1226 pr_cont("\n");
1227 }
e222432b
BS
1228}
1229
a63d83f4
DR
1230/*
1231 * Return the memory (and swap, if configured) limit for a memcg.
1232 */
bbec2e15 1233unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1234{
bbec2e15 1235 unsigned long max;
f3e8eb70 1236
bbec2e15 1237 max = memcg->memory.max;
9a5a8f19 1238 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1239 unsigned long memsw_max;
1240 unsigned long swap_max;
9a5a8f19 1241
bbec2e15
RG
1242 memsw_max = memcg->memsw.max;
1243 swap_max = memcg->swap.max;
1244 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1245 max = min(max + swap_max, memsw_max);
9a5a8f19 1246 }
bbec2e15 1247 return max;
a63d83f4
DR
1248}
1249
b6e6edcf 1250static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1251 int order)
9cbb78bb 1252{
6e0fc46d
DR
1253 struct oom_control oc = {
1254 .zonelist = NULL,
1255 .nodemask = NULL,
2a966b77 1256 .memcg = memcg,
6e0fc46d
DR
1257 .gfp_mask = gfp_mask,
1258 .order = order,
6e0fc46d 1259 };
7c5f64f8 1260 bool ret;
9cbb78bb 1261
dc56401f 1262 mutex_lock(&oom_lock);
7c5f64f8 1263 ret = out_of_memory(&oc);
dc56401f 1264 mutex_unlock(&oom_lock);
7c5f64f8 1265 return ret;
9cbb78bb
DR
1266}
1267
ae6e71d3
MC
1268#if MAX_NUMNODES > 1
1269
4d0c066d
KH
1270/**
1271 * test_mem_cgroup_node_reclaimable
dad7557e 1272 * @memcg: the target memcg
4d0c066d
KH
1273 * @nid: the node ID to be checked.
1274 * @noswap : specify true here if the user wants flle only information.
1275 *
1276 * This function returns whether the specified memcg contains any
1277 * reclaimable pages on a node. Returns true if there are any reclaimable
1278 * pages in the node.
1279 */
c0ff4b85 1280static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1281 int nid, bool noswap)
1282{
c0ff4b85 1283 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1284 return true;
1285 if (noswap || !total_swap_pages)
1286 return false;
c0ff4b85 1287 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1288 return true;
1289 return false;
1290
1291}
889976db
YH
1292
1293/*
1294 * Always updating the nodemask is not very good - even if we have an empty
1295 * list or the wrong list here, we can start from some node and traverse all
1296 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1297 *
1298 */
c0ff4b85 1299static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1300{
1301 int nid;
453a9bf3
KH
1302 /*
1303 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1304 * pagein/pageout changes since the last update.
1305 */
c0ff4b85 1306 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1307 return;
c0ff4b85 1308 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1309 return;
1310
889976db 1311 /* make a nodemask where this memcg uses memory from */
31aaea4a 1312 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1313
31aaea4a 1314 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1315
c0ff4b85
R
1316 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1317 node_clear(nid, memcg->scan_nodes);
889976db 1318 }
453a9bf3 1319
c0ff4b85
R
1320 atomic_set(&memcg->numainfo_events, 0);
1321 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1322}
1323
1324/*
1325 * Selecting a node where we start reclaim from. Because what we need is just
1326 * reducing usage counter, start from anywhere is O,K. Considering
1327 * memory reclaim from current node, there are pros. and cons.
1328 *
1329 * Freeing memory from current node means freeing memory from a node which
1330 * we'll use or we've used. So, it may make LRU bad. And if several threads
1331 * hit limits, it will see a contention on a node. But freeing from remote
1332 * node means more costs for memory reclaim because of memory latency.
1333 *
1334 * Now, we use round-robin. Better algorithm is welcomed.
1335 */
c0ff4b85 1336int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1337{
1338 int node;
1339
c0ff4b85
R
1340 mem_cgroup_may_update_nodemask(memcg);
1341 node = memcg->last_scanned_node;
889976db 1342
0edaf86c 1343 node = next_node_in(node, memcg->scan_nodes);
889976db 1344 /*
fda3d69b
MH
1345 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1346 * last time it really checked all the LRUs due to rate limiting.
1347 * Fallback to the current node in that case for simplicity.
889976db
YH
1348 */
1349 if (unlikely(node == MAX_NUMNODES))
1350 node = numa_node_id();
1351
c0ff4b85 1352 memcg->last_scanned_node = node;
889976db
YH
1353 return node;
1354}
889976db 1355#else
c0ff4b85 1356int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1357{
1358 return 0;
1359}
1360#endif
1361
0608f43d 1362static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1363 pg_data_t *pgdat,
0608f43d
AM
1364 gfp_t gfp_mask,
1365 unsigned long *total_scanned)
1366{
1367 struct mem_cgroup *victim = NULL;
1368 int total = 0;
1369 int loop = 0;
1370 unsigned long excess;
1371 unsigned long nr_scanned;
1372 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1373 .pgdat = pgdat,
0608f43d
AM
1374 .priority = 0,
1375 };
1376
3e32cb2e 1377 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1378
1379 while (1) {
1380 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1381 if (!victim) {
1382 loop++;
1383 if (loop >= 2) {
1384 /*
1385 * If we have not been able to reclaim
1386 * anything, it might because there are
1387 * no reclaimable pages under this hierarchy
1388 */
1389 if (!total)
1390 break;
1391 /*
1392 * We want to do more targeted reclaim.
1393 * excess >> 2 is not to excessive so as to
1394 * reclaim too much, nor too less that we keep
1395 * coming back to reclaim from this cgroup
1396 */
1397 if (total >= (excess >> 2) ||
1398 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1399 break;
1400 }
1401 continue;
1402 }
a9dd0a83 1403 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1404 pgdat, &nr_scanned);
0608f43d 1405 *total_scanned += nr_scanned;
3e32cb2e 1406 if (!soft_limit_excess(root_memcg))
0608f43d 1407 break;
6d61ef40 1408 }
0608f43d
AM
1409 mem_cgroup_iter_break(root_memcg, victim);
1410 return total;
6d61ef40
BS
1411}
1412
0056f4e6
JW
1413#ifdef CONFIG_LOCKDEP
1414static struct lockdep_map memcg_oom_lock_dep_map = {
1415 .name = "memcg_oom_lock",
1416};
1417#endif
1418
fb2a6fc5
JW
1419static DEFINE_SPINLOCK(memcg_oom_lock);
1420
867578cb
KH
1421/*
1422 * Check OOM-Killer is already running under our hierarchy.
1423 * If someone is running, return false.
1424 */
fb2a6fc5 1425static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1426{
79dfdacc 1427 struct mem_cgroup *iter, *failed = NULL;
a636b327 1428
fb2a6fc5
JW
1429 spin_lock(&memcg_oom_lock);
1430
9f3a0d09 1431 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1432 if (iter->oom_lock) {
79dfdacc
MH
1433 /*
1434 * this subtree of our hierarchy is already locked
1435 * so we cannot give a lock.
1436 */
79dfdacc 1437 failed = iter;
9f3a0d09
JW
1438 mem_cgroup_iter_break(memcg, iter);
1439 break;
23751be0
JW
1440 } else
1441 iter->oom_lock = true;
7d74b06f 1442 }
867578cb 1443
fb2a6fc5
JW
1444 if (failed) {
1445 /*
1446 * OK, we failed to lock the whole subtree so we have
1447 * to clean up what we set up to the failing subtree
1448 */
1449 for_each_mem_cgroup_tree(iter, memcg) {
1450 if (iter == failed) {
1451 mem_cgroup_iter_break(memcg, iter);
1452 break;
1453 }
1454 iter->oom_lock = false;
79dfdacc 1455 }
0056f4e6
JW
1456 } else
1457 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1458
1459 spin_unlock(&memcg_oom_lock);
1460
1461 return !failed;
a636b327 1462}
0b7f569e 1463
fb2a6fc5 1464static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1465{
7d74b06f
KH
1466 struct mem_cgroup *iter;
1467
fb2a6fc5 1468 spin_lock(&memcg_oom_lock);
0056f4e6 1469 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1470 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1471 iter->oom_lock = false;
fb2a6fc5 1472 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1473}
1474
c0ff4b85 1475static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1476{
1477 struct mem_cgroup *iter;
1478
c2b42d3c 1479 spin_lock(&memcg_oom_lock);
c0ff4b85 1480 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1481 iter->under_oom++;
1482 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1483}
1484
c0ff4b85 1485static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1486{
1487 struct mem_cgroup *iter;
1488
867578cb
KH
1489 /*
1490 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1491 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1492 */
c2b42d3c 1493 spin_lock(&memcg_oom_lock);
c0ff4b85 1494 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1495 if (iter->under_oom > 0)
1496 iter->under_oom--;
1497 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1498}
1499
867578cb
KH
1500static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1501
dc98df5a 1502struct oom_wait_info {
d79154bb 1503 struct mem_cgroup *memcg;
ac6424b9 1504 wait_queue_entry_t wait;
dc98df5a
KH
1505};
1506
ac6424b9 1507static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1508 unsigned mode, int sync, void *arg)
1509{
d79154bb
HD
1510 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1511 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1512 struct oom_wait_info *oom_wait_info;
1513
1514 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1515 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1516
2314b42d
JW
1517 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1518 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1519 return 0;
dc98df5a
KH
1520 return autoremove_wake_function(wait, mode, sync, arg);
1521}
1522
c0ff4b85 1523static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1524{
c2b42d3c
TH
1525 /*
1526 * For the following lockless ->under_oom test, the only required
1527 * guarantee is that it must see the state asserted by an OOM when
1528 * this function is called as a result of userland actions
1529 * triggered by the notification of the OOM. This is trivially
1530 * achieved by invoking mem_cgroup_mark_under_oom() before
1531 * triggering notification.
1532 */
1533 if (memcg && memcg->under_oom)
f4b90b70 1534 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1535}
1536
3812c8c8 1537static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1538{
2a70f6a7 1539 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
3812c8c8 1540 return;
867578cb 1541 /*
49426420
JW
1542 * We are in the middle of the charge context here, so we
1543 * don't want to block when potentially sitting on a callstack
1544 * that holds all kinds of filesystem and mm locks.
1545 *
1546 * Also, the caller may handle a failed allocation gracefully
1547 * (like optional page cache readahead) and so an OOM killer
1548 * invocation might not even be necessary.
1549 *
1550 * That's why we don't do anything here except remember the
1551 * OOM context and then deal with it at the end of the page
1552 * fault when the stack is unwound, the locks are released,
1553 * and when we know whether the fault was overall successful.
867578cb 1554 */
49426420 1555 css_get(&memcg->css);
626ebc41
TH
1556 current->memcg_in_oom = memcg;
1557 current->memcg_oom_gfp_mask = mask;
1558 current->memcg_oom_order = order;
3812c8c8
JW
1559}
1560
1561/**
1562 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1563 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1564 *
49426420
JW
1565 * This has to be called at the end of a page fault if the memcg OOM
1566 * handler was enabled.
3812c8c8 1567 *
49426420 1568 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1569 * sleep on a waitqueue until the userspace task resolves the
1570 * situation. Sleeping directly in the charge context with all kinds
1571 * of locks held is not a good idea, instead we remember an OOM state
1572 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1573 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1574 *
1575 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1576 * completed, %false otherwise.
3812c8c8 1577 */
49426420 1578bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1579{
626ebc41 1580 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1581 struct oom_wait_info owait;
49426420 1582 bool locked;
3812c8c8
JW
1583
1584 /* OOM is global, do not handle */
3812c8c8 1585 if (!memcg)
49426420 1586 return false;
3812c8c8 1587
7c5f64f8 1588 if (!handle)
49426420 1589 goto cleanup;
3812c8c8
JW
1590
1591 owait.memcg = memcg;
1592 owait.wait.flags = 0;
1593 owait.wait.func = memcg_oom_wake_function;
1594 owait.wait.private = current;
2055da97 1595 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1596
3812c8c8 1597 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1598 mem_cgroup_mark_under_oom(memcg);
1599
1600 locked = mem_cgroup_oom_trylock(memcg);
1601
1602 if (locked)
1603 mem_cgroup_oom_notify(memcg);
1604
1605 if (locked && !memcg->oom_kill_disable) {
1606 mem_cgroup_unmark_under_oom(memcg);
1607 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1608 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1609 current->memcg_oom_order);
49426420 1610 } else {
3812c8c8 1611 schedule();
49426420
JW
1612 mem_cgroup_unmark_under_oom(memcg);
1613 finish_wait(&memcg_oom_waitq, &owait.wait);
1614 }
1615
1616 if (locked) {
fb2a6fc5
JW
1617 mem_cgroup_oom_unlock(memcg);
1618 /*
1619 * There is no guarantee that an OOM-lock contender
1620 * sees the wakeups triggered by the OOM kill
1621 * uncharges. Wake any sleepers explicitely.
1622 */
1623 memcg_oom_recover(memcg);
1624 }
49426420 1625cleanup:
626ebc41 1626 current->memcg_in_oom = NULL;
3812c8c8 1627 css_put(&memcg->css);
867578cb 1628 return true;
0b7f569e
KH
1629}
1630
d7365e78 1631/**
81f8c3a4
JW
1632 * lock_page_memcg - lock a page->mem_cgroup binding
1633 * @page: the page
32047e2a 1634 *
81f8c3a4 1635 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1636 * another cgroup.
1637 *
1638 * It ensures lifetime of the returned memcg. Caller is responsible
1639 * for the lifetime of the page; __unlock_page_memcg() is available
1640 * when @page might get freed inside the locked section.
d69b042f 1641 */
739f79fc 1642struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1643{
1644 struct mem_cgroup *memcg;
6de22619 1645 unsigned long flags;
89c06bd5 1646
6de22619
JW
1647 /*
1648 * The RCU lock is held throughout the transaction. The fast
1649 * path can get away without acquiring the memcg->move_lock
1650 * because page moving starts with an RCU grace period.
739f79fc
JW
1651 *
1652 * The RCU lock also protects the memcg from being freed when
1653 * the page state that is going to change is the only thing
1654 * preventing the page itself from being freed. E.g. writeback
1655 * doesn't hold a page reference and relies on PG_writeback to
1656 * keep off truncation, migration and so forth.
1657 */
d7365e78
JW
1658 rcu_read_lock();
1659
1660 if (mem_cgroup_disabled())
739f79fc 1661 return NULL;
89c06bd5 1662again:
1306a85a 1663 memcg = page->mem_cgroup;
29833315 1664 if (unlikely(!memcg))
739f79fc 1665 return NULL;
d7365e78 1666
bdcbb659 1667 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1668 return memcg;
89c06bd5 1669
6de22619 1670 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1671 if (memcg != page->mem_cgroup) {
6de22619 1672 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1673 goto again;
1674 }
6de22619
JW
1675
1676 /*
1677 * When charge migration first begins, we can have locked and
1678 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1679 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1680 */
1681 memcg->move_lock_task = current;
1682 memcg->move_lock_flags = flags;
d7365e78 1683
739f79fc 1684 return memcg;
89c06bd5 1685}
81f8c3a4 1686EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1687
d7365e78 1688/**
739f79fc
JW
1689 * __unlock_page_memcg - unlock and unpin a memcg
1690 * @memcg: the memcg
1691 *
1692 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1693 */
739f79fc 1694void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1695{
6de22619
JW
1696 if (memcg && memcg->move_lock_task == current) {
1697 unsigned long flags = memcg->move_lock_flags;
1698
1699 memcg->move_lock_task = NULL;
1700 memcg->move_lock_flags = 0;
1701
1702 spin_unlock_irqrestore(&memcg->move_lock, flags);
1703 }
89c06bd5 1704
d7365e78 1705 rcu_read_unlock();
89c06bd5 1706}
739f79fc
JW
1707
1708/**
1709 * unlock_page_memcg - unlock a page->mem_cgroup binding
1710 * @page: the page
1711 */
1712void unlock_page_memcg(struct page *page)
1713{
1714 __unlock_page_memcg(page->mem_cgroup);
1715}
81f8c3a4 1716EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1717
cdec2e42
KH
1718struct memcg_stock_pcp {
1719 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1720 unsigned int nr_pages;
cdec2e42 1721 struct work_struct work;
26fe6168 1722 unsigned long flags;
a0db00fc 1723#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1724};
1725static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1726static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1727
a0956d54
SS
1728/**
1729 * consume_stock: Try to consume stocked charge on this cpu.
1730 * @memcg: memcg to consume from.
1731 * @nr_pages: how many pages to charge.
1732 *
1733 * The charges will only happen if @memcg matches the current cpu's memcg
1734 * stock, and at least @nr_pages are available in that stock. Failure to
1735 * service an allocation will refill the stock.
1736 *
1737 * returns true if successful, false otherwise.
cdec2e42 1738 */
a0956d54 1739static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1740{
1741 struct memcg_stock_pcp *stock;
db2ba40c 1742 unsigned long flags;
3e32cb2e 1743 bool ret = false;
cdec2e42 1744
a983b5eb 1745 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1746 return ret;
a0956d54 1747
db2ba40c
JW
1748 local_irq_save(flags);
1749
1750 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1751 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1752 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1753 ret = true;
1754 }
db2ba40c
JW
1755
1756 local_irq_restore(flags);
1757
cdec2e42
KH
1758 return ret;
1759}
1760
1761/*
3e32cb2e 1762 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1763 */
1764static void drain_stock(struct memcg_stock_pcp *stock)
1765{
1766 struct mem_cgroup *old = stock->cached;
1767
11c9ea4e 1768 if (stock->nr_pages) {
3e32cb2e 1769 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1770 if (do_memsw_account())
3e32cb2e 1771 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1772 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1773 stock->nr_pages = 0;
cdec2e42
KH
1774 }
1775 stock->cached = NULL;
cdec2e42
KH
1776}
1777
cdec2e42
KH
1778static void drain_local_stock(struct work_struct *dummy)
1779{
db2ba40c
JW
1780 struct memcg_stock_pcp *stock;
1781 unsigned long flags;
1782
72f0184c
MH
1783 /*
1784 * The only protection from memory hotplug vs. drain_stock races is
1785 * that we always operate on local CPU stock here with IRQ disabled
1786 */
db2ba40c
JW
1787 local_irq_save(flags);
1788
1789 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1790 drain_stock(stock);
26fe6168 1791 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1792
1793 local_irq_restore(flags);
cdec2e42
KH
1794}
1795
1796/*
3e32cb2e 1797 * Cache charges(val) to local per_cpu area.
320cc51d 1798 * This will be consumed by consume_stock() function, later.
cdec2e42 1799 */
c0ff4b85 1800static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1801{
db2ba40c
JW
1802 struct memcg_stock_pcp *stock;
1803 unsigned long flags;
1804
1805 local_irq_save(flags);
cdec2e42 1806
db2ba40c 1807 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1808 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1809 drain_stock(stock);
c0ff4b85 1810 stock->cached = memcg;
cdec2e42 1811 }
11c9ea4e 1812 stock->nr_pages += nr_pages;
db2ba40c 1813
a983b5eb 1814 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1815 drain_stock(stock);
1816
db2ba40c 1817 local_irq_restore(flags);
cdec2e42
KH
1818}
1819
1820/*
c0ff4b85 1821 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1822 * of the hierarchy under it.
cdec2e42 1823 */
6d3d6aa2 1824static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1825{
26fe6168 1826 int cpu, curcpu;
d38144b7 1827
6d3d6aa2
JW
1828 /* If someone's already draining, avoid adding running more workers. */
1829 if (!mutex_trylock(&percpu_charge_mutex))
1830 return;
72f0184c
MH
1831 /*
1832 * Notify other cpus that system-wide "drain" is running
1833 * We do not care about races with the cpu hotplug because cpu down
1834 * as well as workers from this path always operate on the local
1835 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1836 */
5af12d0e 1837 curcpu = get_cpu();
cdec2e42
KH
1838 for_each_online_cpu(cpu) {
1839 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1840 struct mem_cgroup *memcg;
26fe6168 1841
c0ff4b85 1842 memcg = stock->cached;
72f0184c 1843 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1844 continue;
72f0184c
MH
1845 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1846 css_put(&memcg->css);
3e92041d 1847 continue;
72f0184c 1848 }
d1a05b69
MH
1849 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1850 if (cpu == curcpu)
1851 drain_local_stock(&stock->work);
1852 else
1853 schedule_work_on(cpu, &stock->work);
1854 }
72f0184c 1855 css_put(&memcg->css);
cdec2e42 1856 }
5af12d0e 1857 put_cpu();
9f50fad6 1858 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1859}
1860
308167fc 1861static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1862{
cdec2e42 1863 struct memcg_stock_pcp *stock;
a983b5eb 1864 struct mem_cgroup *memcg;
cdec2e42 1865
cdec2e42
KH
1866 stock = &per_cpu(memcg_stock, cpu);
1867 drain_stock(stock);
a983b5eb
JW
1868
1869 for_each_mem_cgroup(memcg) {
1870 int i;
1871
1872 for (i = 0; i < MEMCG_NR_STAT; i++) {
1873 int nid;
1874 long x;
1875
1876 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1877 if (x)
1878 atomic_long_add(x, &memcg->stat[i]);
1879
1880 if (i >= NR_VM_NODE_STAT_ITEMS)
1881 continue;
1882
1883 for_each_node(nid) {
1884 struct mem_cgroup_per_node *pn;
1885
1886 pn = mem_cgroup_nodeinfo(memcg, nid);
1887 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1888 if (x)
1889 atomic_long_add(x, &pn->lruvec_stat[i]);
1890 }
1891 }
1892
e27be240 1893 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
1894 long x;
1895
1896 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1897 if (x)
1898 atomic_long_add(x, &memcg->events[i]);
1899 }
1900 }
1901
308167fc 1902 return 0;
cdec2e42
KH
1903}
1904
f7e1cb6e
JW
1905static void reclaim_high(struct mem_cgroup *memcg,
1906 unsigned int nr_pages,
1907 gfp_t gfp_mask)
1908{
1909 do {
1910 if (page_counter_read(&memcg->memory) <= memcg->high)
1911 continue;
e27be240 1912 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1913 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1914 } while ((memcg = parent_mem_cgroup(memcg)));
1915}
1916
1917static void high_work_func(struct work_struct *work)
1918{
1919 struct mem_cgroup *memcg;
1920
1921 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 1922 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
1923}
1924
b23afb93
TH
1925/*
1926 * Scheduled by try_charge() to be executed from the userland return path
1927 * and reclaims memory over the high limit.
1928 */
1929void mem_cgroup_handle_over_high(void)
1930{
1931 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1932 struct mem_cgroup *memcg;
b23afb93
TH
1933
1934 if (likely(!nr_pages))
1935 return;
1936
f7e1cb6e
JW
1937 memcg = get_mem_cgroup_from_mm(current->mm);
1938 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1939 css_put(&memcg->css);
1940 current->memcg_nr_pages_over_high = 0;
1941}
1942
00501b53
JW
1943static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1944 unsigned int nr_pages)
8a9f3ccd 1945{
a983b5eb 1946 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 1947 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1948 struct mem_cgroup *mem_over_limit;
3e32cb2e 1949 struct page_counter *counter;
6539cc05 1950 unsigned long nr_reclaimed;
b70a2a21
JW
1951 bool may_swap = true;
1952 bool drained = false;
a636b327 1953
ce00a967 1954 if (mem_cgroup_is_root(memcg))
10d53c74 1955 return 0;
6539cc05 1956retry:
b6b6cc72 1957 if (consume_stock(memcg, nr_pages))
10d53c74 1958 return 0;
8a9f3ccd 1959
7941d214 1960 if (!do_memsw_account() ||
6071ca52
JW
1961 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1962 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1963 goto done_restock;
7941d214 1964 if (do_memsw_account())
3e32cb2e
JW
1965 page_counter_uncharge(&memcg->memsw, batch);
1966 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1967 } else {
3e32cb2e 1968 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1969 may_swap = false;
3fbe7244 1970 }
7a81b88c 1971
6539cc05
JW
1972 if (batch > nr_pages) {
1973 batch = nr_pages;
1974 goto retry;
1975 }
6d61ef40 1976
06b078fc
JW
1977 /*
1978 * Unlike in global OOM situations, memcg is not in a physical
1979 * memory shortage. Allow dying and OOM-killed tasks to
1980 * bypass the last charges so that they can exit quickly and
1981 * free their memory.
1982 */
da99ecf1 1983 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
1984 fatal_signal_pending(current) ||
1985 current->flags & PF_EXITING))
10d53c74 1986 goto force;
06b078fc 1987
89a28483
JW
1988 /*
1989 * Prevent unbounded recursion when reclaim operations need to
1990 * allocate memory. This might exceed the limits temporarily,
1991 * but we prefer facilitating memory reclaim and getting back
1992 * under the limit over triggering OOM kills in these cases.
1993 */
1994 if (unlikely(current->flags & PF_MEMALLOC))
1995 goto force;
1996
06b078fc
JW
1997 if (unlikely(task_in_memcg_oom(current)))
1998 goto nomem;
1999
d0164adc 2000 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2001 goto nomem;
4b534334 2002
e27be240 2003 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2004
b70a2a21
JW
2005 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2006 gfp_mask, may_swap);
6539cc05 2007
61e02c74 2008 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2009 goto retry;
28c34c29 2010
b70a2a21 2011 if (!drained) {
6d3d6aa2 2012 drain_all_stock(mem_over_limit);
b70a2a21
JW
2013 drained = true;
2014 goto retry;
2015 }
2016
28c34c29
JW
2017 if (gfp_mask & __GFP_NORETRY)
2018 goto nomem;
6539cc05
JW
2019 /*
2020 * Even though the limit is exceeded at this point, reclaim
2021 * may have been able to free some pages. Retry the charge
2022 * before killing the task.
2023 *
2024 * Only for regular pages, though: huge pages are rather
2025 * unlikely to succeed so close to the limit, and we fall back
2026 * to regular pages anyway in case of failure.
2027 */
61e02c74 2028 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2029 goto retry;
2030 /*
2031 * At task move, charge accounts can be doubly counted. So, it's
2032 * better to wait until the end of task_move if something is going on.
2033 */
2034 if (mem_cgroup_wait_acct_move(mem_over_limit))
2035 goto retry;
2036
9b130619
JW
2037 if (nr_retries--)
2038 goto retry;
2039
06b078fc 2040 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2041 goto force;
06b078fc 2042
6539cc05 2043 if (fatal_signal_pending(current))
10d53c74 2044 goto force;
6539cc05 2045
e27be240 2046 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2047
3608de07
JM
2048 mem_cgroup_oom(mem_over_limit, gfp_mask,
2049 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2050nomem:
6d1fdc48 2051 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2052 return -ENOMEM;
10d53c74
TH
2053force:
2054 /*
2055 * The allocation either can't fail or will lead to more memory
2056 * being freed very soon. Allow memory usage go over the limit
2057 * temporarily by force charging it.
2058 */
2059 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2060 if (do_memsw_account())
10d53c74
TH
2061 page_counter_charge(&memcg->memsw, nr_pages);
2062 css_get_many(&memcg->css, nr_pages);
2063
2064 return 0;
6539cc05
JW
2065
2066done_restock:
e8ea14cc 2067 css_get_many(&memcg->css, batch);
6539cc05
JW
2068 if (batch > nr_pages)
2069 refill_stock(memcg, batch - nr_pages);
b23afb93 2070
241994ed 2071 /*
b23afb93
TH
2072 * If the hierarchy is above the normal consumption range, schedule
2073 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2074 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2075 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2076 * not recorded as it most likely matches current's and won't
2077 * change in the meantime. As high limit is checked again before
2078 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2079 */
2080 do {
b23afb93 2081 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2082 /* Don't bother a random interrupted task */
2083 if (in_interrupt()) {
2084 schedule_work(&memcg->high_work);
2085 break;
2086 }
9516a18a 2087 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2088 set_notify_resume(current);
2089 break;
2090 }
241994ed 2091 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2092
2093 return 0;
7a81b88c 2094}
8a9f3ccd 2095
00501b53 2096static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2097{
ce00a967
JW
2098 if (mem_cgroup_is_root(memcg))
2099 return;
2100
3e32cb2e 2101 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2102 if (do_memsw_account())
3e32cb2e 2103 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2104
e8ea14cc 2105 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2106}
2107
0a31bc97
JW
2108static void lock_page_lru(struct page *page, int *isolated)
2109{
2110 struct zone *zone = page_zone(page);
2111
a52633d8 2112 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2113 if (PageLRU(page)) {
2114 struct lruvec *lruvec;
2115
599d0c95 2116 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2117 ClearPageLRU(page);
2118 del_page_from_lru_list(page, lruvec, page_lru(page));
2119 *isolated = 1;
2120 } else
2121 *isolated = 0;
2122}
2123
2124static void unlock_page_lru(struct page *page, int isolated)
2125{
2126 struct zone *zone = page_zone(page);
2127
2128 if (isolated) {
2129 struct lruvec *lruvec;
2130
599d0c95 2131 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2132 VM_BUG_ON_PAGE(PageLRU(page), page);
2133 SetPageLRU(page);
2134 add_page_to_lru_list(page, lruvec, page_lru(page));
2135 }
a52633d8 2136 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2137}
2138
00501b53 2139static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2140 bool lrucare)
7a81b88c 2141{
0a31bc97 2142 int isolated;
9ce70c02 2143
1306a85a 2144 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2145
2146 /*
2147 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2148 * may already be on some other mem_cgroup's LRU. Take care of it.
2149 */
0a31bc97
JW
2150 if (lrucare)
2151 lock_page_lru(page, &isolated);
9ce70c02 2152
0a31bc97
JW
2153 /*
2154 * Nobody should be changing or seriously looking at
1306a85a 2155 * page->mem_cgroup at this point:
0a31bc97
JW
2156 *
2157 * - the page is uncharged
2158 *
2159 * - the page is off-LRU
2160 *
2161 * - an anonymous fault has exclusive page access, except for
2162 * a locked page table
2163 *
2164 * - a page cache insertion, a swapin fault, or a migration
2165 * have the page locked
2166 */
1306a85a 2167 page->mem_cgroup = memcg;
9ce70c02 2168
0a31bc97
JW
2169 if (lrucare)
2170 unlock_page_lru(page, isolated);
7a81b88c 2171}
66e1707b 2172
127424c8 2173#ifndef CONFIG_SLOB
f3bb3043 2174static int memcg_alloc_cache_id(void)
55007d84 2175{
f3bb3043
VD
2176 int id, size;
2177 int err;
2178
dbcf73e2 2179 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2180 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2181 if (id < 0)
2182 return id;
55007d84 2183
dbcf73e2 2184 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2185 return id;
2186
2187 /*
2188 * There's no space for the new id in memcg_caches arrays,
2189 * so we have to grow them.
2190 */
05257a1a 2191 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2192
2193 size = 2 * (id + 1);
55007d84
GC
2194 if (size < MEMCG_CACHES_MIN_SIZE)
2195 size = MEMCG_CACHES_MIN_SIZE;
2196 else if (size > MEMCG_CACHES_MAX_SIZE)
2197 size = MEMCG_CACHES_MAX_SIZE;
2198
f3bb3043 2199 err = memcg_update_all_caches(size);
60d3fd32
VD
2200 if (!err)
2201 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2202 if (!err)
2203 memcg_nr_cache_ids = size;
2204
2205 up_write(&memcg_cache_ids_sem);
2206
f3bb3043 2207 if (err) {
dbcf73e2 2208 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2209 return err;
2210 }
2211 return id;
2212}
2213
2214static void memcg_free_cache_id(int id)
2215{
dbcf73e2 2216 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2217}
2218
d5b3cf71 2219struct memcg_kmem_cache_create_work {
5722d094
VD
2220 struct mem_cgroup *memcg;
2221 struct kmem_cache *cachep;
2222 struct work_struct work;
2223};
2224
d5b3cf71 2225static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2226{
d5b3cf71
VD
2227 struct memcg_kmem_cache_create_work *cw =
2228 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2229 struct mem_cgroup *memcg = cw->memcg;
2230 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2231
d5b3cf71 2232 memcg_create_kmem_cache(memcg, cachep);
bd673145 2233
5722d094 2234 css_put(&memcg->css);
d7f25f8a
GC
2235 kfree(cw);
2236}
2237
2238/*
2239 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2240 */
d5b3cf71
VD
2241static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2242 struct kmem_cache *cachep)
d7f25f8a 2243{
d5b3cf71 2244 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2245
c892fd82 2246 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2247 if (!cw)
d7f25f8a 2248 return;
8135be5a
VD
2249
2250 css_get(&memcg->css);
d7f25f8a
GC
2251
2252 cw->memcg = memcg;
2253 cw->cachep = cachep;
d5b3cf71 2254 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2255
17cc4dfe 2256 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2257}
2258
d5b3cf71
VD
2259static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2260 struct kmem_cache *cachep)
0e9d92f2
GC
2261{
2262 /*
2263 * We need to stop accounting when we kmalloc, because if the
2264 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2265 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2266 *
2267 * However, it is better to enclose the whole function. Depending on
2268 * the debugging options enabled, INIT_WORK(), for instance, can
2269 * trigger an allocation. This too, will make us recurse. Because at
2270 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2271 * the safest choice is to do it like this, wrapping the whole function.
2272 */
6f185c29 2273 current->memcg_kmem_skip_account = 1;
d5b3cf71 2274 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2275 current->memcg_kmem_skip_account = 0;
0e9d92f2 2276}
c67a8a68 2277
45264778
VD
2278static inline bool memcg_kmem_bypass(void)
2279{
2280 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2281 return true;
2282 return false;
2283}
2284
2285/**
2286 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2287 * @cachep: the original global kmem cache
2288 *
d7f25f8a
GC
2289 * Return the kmem_cache we're supposed to use for a slab allocation.
2290 * We try to use the current memcg's version of the cache.
2291 *
45264778
VD
2292 * If the cache does not exist yet, if we are the first user of it, we
2293 * create it asynchronously in a workqueue and let the current allocation
2294 * go through with the original cache.
d7f25f8a 2295 *
45264778
VD
2296 * This function takes a reference to the cache it returns to assure it
2297 * won't get destroyed while we are working with it. Once the caller is
2298 * done with it, memcg_kmem_put_cache() must be called to release the
2299 * reference.
d7f25f8a 2300 */
45264778 2301struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2302{
2303 struct mem_cgroup *memcg;
959c8963 2304 struct kmem_cache *memcg_cachep;
2a4db7eb 2305 int kmemcg_id;
d7f25f8a 2306
f7ce3190 2307 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2308
45264778 2309 if (memcg_kmem_bypass())
230e9fc2
VD
2310 return cachep;
2311
9d100c5e 2312 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2313 return cachep;
2314
d46eb14b 2315 memcg = get_mem_cgroup_from_current();
4db0c3c2 2316 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2317 if (kmemcg_id < 0)
ca0dde97 2318 goto out;
d7f25f8a 2319
2a4db7eb 2320 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2321 if (likely(memcg_cachep))
2322 return memcg_cachep;
ca0dde97
LZ
2323
2324 /*
2325 * If we are in a safe context (can wait, and not in interrupt
2326 * context), we could be be predictable and return right away.
2327 * This would guarantee that the allocation being performed
2328 * already belongs in the new cache.
2329 *
2330 * However, there are some clashes that can arrive from locking.
2331 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2332 * memcg_create_kmem_cache, this means no further allocation
2333 * could happen with the slab_mutex held. So it's better to
2334 * defer everything.
ca0dde97 2335 */
d5b3cf71 2336 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2337out:
8135be5a 2338 css_put(&memcg->css);
ca0dde97 2339 return cachep;
d7f25f8a 2340}
d7f25f8a 2341
45264778
VD
2342/**
2343 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2344 * @cachep: the cache returned by memcg_kmem_get_cache
2345 */
2346void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2347{
2348 if (!is_root_cache(cachep))
f7ce3190 2349 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2350}
2351
45264778 2352/**
b213b54f 2353 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2354 * @page: page to charge
2355 * @gfp: reclaim mode
2356 * @order: allocation order
2357 * @memcg: memory cgroup to charge
2358 *
2359 * Returns 0 on success, an error code on failure.
2360 */
2361int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2362 struct mem_cgroup *memcg)
7ae1e1d0 2363{
f3ccb2c4
VD
2364 unsigned int nr_pages = 1 << order;
2365 struct page_counter *counter;
7ae1e1d0
GC
2366 int ret;
2367
f3ccb2c4 2368 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2369 if (ret)
f3ccb2c4 2370 return ret;
52c29b04
JW
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2373 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2374 cancel_charge(memcg, nr_pages);
2375 return -ENOMEM;
7ae1e1d0
GC
2376 }
2377
f3ccb2c4 2378 page->mem_cgroup = memcg;
7ae1e1d0 2379
f3ccb2c4 2380 return 0;
7ae1e1d0
GC
2381}
2382
45264778
VD
2383/**
2384 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2385 * @page: page to charge
2386 * @gfp: reclaim mode
2387 * @order: allocation order
2388 *
2389 * Returns 0 on success, an error code on failure.
2390 */
2391int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2392{
f3ccb2c4 2393 struct mem_cgroup *memcg;
fcff7d7e 2394 int ret = 0;
7ae1e1d0 2395
45264778
VD
2396 if (memcg_kmem_bypass())
2397 return 0;
2398
d46eb14b 2399 memcg = get_mem_cgroup_from_current();
c4159a75 2400 if (!mem_cgroup_is_root(memcg)) {
45264778 2401 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2402 if (!ret)
2403 __SetPageKmemcg(page);
2404 }
7ae1e1d0 2405 css_put(&memcg->css);
d05e83a6 2406 return ret;
7ae1e1d0 2407}
45264778
VD
2408/**
2409 * memcg_kmem_uncharge: uncharge a kmem page
2410 * @page: page to uncharge
2411 * @order: allocation order
2412 */
2413void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2414{
1306a85a 2415 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2416 unsigned int nr_pages = 1 << order;
7ae1e1d0 2417
7ae1e1d0
GC
2418 if (!memcg)
2419 return;
2420
309381fe 2421 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2422
52c29b04
JW
2423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425
f3ccb2c4 2426 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2427 if (do_memsw_account())
f3ccb2c4 2428 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2429
1306a85a 2430 page->mem_cgroup = NULL;
c4159a75
VD
2431
2432 /* slab pages do not have PageKmemcg flag set */
2433 if (PageKmemcg(page))
2434 __ClearPageKmemcg(page);
2435
f3ccb2c4 2436 css_put_many(&memcg->css, nr_pages);
60d3fd32 2437}
127424c8 2438#endif /* !CONFIG_SLOB */
7ae1e1d0 2439
ca3e0214
KH
2440#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2441
ca3e0214
KH
2442/*
2443 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2444 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2445 */
e94c8a9c 2446void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2447{
e94c8a9c 2448 int i;
ca3e0214 2449
3d37c4a9
KH
2450 if (mem_cgroup_disabled())
2451 return;
b070e65c 2452
29833315 2453 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2454 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2455
c9019e9b 2456 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2457}
12d27107 2458#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2459
c255a458 2460#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2461/**
2462 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2463 * @entry: swap entry to be moved
2464 * @from: mem_cgroup which the entry is moved from
2465 * @to: mem_cgroup which the entry is moved to
2466 *
2467 * It succeeds only when the swap_cgroup's record for this entry is the same
2468 * as the mem_cgroup's id of @from.
2469 *
2470 * Returns 0 on success, -EINVAL on failure.
2471 *
3e32cb2e 2472 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2473 * both res and memsw, and called css_get().
2474 */
2475static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2476 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2477{
2478 unsigned short old_id, new_id;
2479
34c00c31
LZ
2480 old_id = mem_cgroup_id(from);
2481 new_id = mem_cgroup_id(to);
02491447
DN
2482
2483 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2484 mod_memcg_state(from, MEMCG_SWAP, -1);
2485 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2486 return 0;
2487 }
2488 return -EINVAL;
2489}
2490#else
2491static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2492 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2493{
2494 return -EINVAL;
2495}
8c7c6e34 2496#endif
d13d1443 2497
bbec2e15 2498static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2499
bbec2e15
RG
2500static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2501 unsigned long max, bool memsw)
628f4235 2502{
3e32cb2e 2503 bool enlarge = false;
bb4a7ea2 2504 bool drained = false;
3e32cb2e 2505 int ret;
c054a78c
YZ
2506 bool limits_invariant;
2507 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2508
3e32cb2e 2509 do {
628f4235
KH
2510 if (signal_pending(current)) {
2511 ret = -EINTR;
2512 break;
2513 }
3e32cb2e 2514
bbec2e15 2515 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2516 /*
2517 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2518 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2519 */
bbec2e15
RG
2520 limits_invariant = memsw ? max >= memcg->memory.max :
2521 max <= memcg->memsw.max;
c054a78c 2522 if (!limits_invariant) {
bbec2e15 2523 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2524 ret = -EINVAL;
8c7c6e34
KH
2525 break;
2526 }
bbec2e15 2527 if (max > counter->max)
3e32cb2e 2528 enlarge = true;
bbec2e15
RG
2529 ret = page_counter_set_max(counter, max);
2530 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2531
2532 if (!ret)
2533 break;
2534
bb4a7ea2
SB
2535 if (!drained) {
2536 drain_all_stock(memcg);
2537 drained = true;
2538 continue;
2539 }
2540
1ab5c056
AR
2541 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2542 GFP_KERNEL, !memsw)) {
2543 ret = -EBUSY;
2544 break;
2545 }
2546 } while (true);
3e32cb2e 2547
3c11ecf4
KH
2548 if (!ret && enlarge)
2549 memcg_oom_recover(memcg);
3e32cb2e 2550
628f4235
KH
2551 return ret;
2552}
2553
ef8f2327 2554unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2555 gfp_t gfp_mask,
2556 unsigned long *total_scanned)
2557{
2558 unsigned long nr_reclaimed = 0;
ef8f2327 2559 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2560 unsigned long reclaimed;
2561 int loop = 0;
ef8f2327 2562 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2563 unsigned long excess;
0608f43d
AM
2564 unsigned long nr_scanned;
2565
2566 if (order > 0)
2567 return 0;
2568
ef8f2327 2569 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2570
2571 /*
2572 * Do not even bother to check the largest node if the root
2573 * is empty. Do it lockless to prevent lock bouncing. Races
2574 * are acceptable as soft limit is best effort anyway.
2575 */
bfc7228b 2576 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2577 return 0;
2578
0608f43d
AM
2579 /*
2580 * This loop can run a while, specially if mem_cgroup's continuously
2581 * keep exceeding their soft limit and putting the system under
2582 * pressure
2583 */
2584 do {
2585 if (next_mz)
2586 mz = next_mz;
2587 else
2588 mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 if (!mz)
2590 break;
2591
2592 nr_scanned = 0;
ef8f2327 2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2594 gfp_mask, &nr_scanned);
2595 nr_reclaimed += reclaimed;
2596 *total_scanned += nr_scanned;
0a31bc97 2597 spin_lock_irq(&mctz->lock);
bc2f2e7f 2598 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2599
2600 /*
2601 * If we failed to reclaim anything from this memory cgroup
2602 * it is time to move on to the next cgroup
2603 */
2604 next_mz = NULL;
bc2f2e7f
VD
2605 if (!reclaimed)
2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607
3e32cb2e 2608 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2609 /*
2610 * One school of thought says that we should not add
2611 * back the node to the tree if reclaim returns 0.
2612 * But our reclaim could return 0, simply because due
2613 * to priority we are exposing a smaller subset of
2614 * memory to reclaim from. Consider this as a longer
2615 * term TODO.
2616 */
2617 /* If excess == 0, no tree ops */
cf2c8127 2618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2619 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2620 css_put(&mz->memcg->css);
2621 loop++;
2622 /*
2623 * Could not reclaim anything and there are no more
2624 * mem cgroups to try or we seem to be looping without
2625 * reclaiming anything.
2626 */
2627 if (!nr_reclaimed &&
2628 (next_mz == NULL ||
2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 break;
2631 } while (!nr_reclaimed);
2632 if (next_mz)
2633 css_put(&next_mz->memcg->css);
2634 return nr_reclaimed;
2635}
2636
ea280e7b
TH
2637/*
2638 * Test whether @memcg has children, dead or alive. Note that this
2639 * function doesn't care whether @memcg has use_hierarchy enabled and
2640 * returns %true if there are child csses according to the cgroup
2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 */
b5f99b53
GC
2643static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644{
ea280e7b
TH
2645 bool ret;
2646
ea280e7b
TH
2647 rcu_read_lock();
2648 ret = css_next_child(NULL, &memcg->css);
2649 rcu_read_unlock();
2650 return ret;
b5f99b53
GC
2651}
2652
c26251f9 2653/*
51038171 2654 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2655 *
2656 * Caller is responsible for holding css reference for memcg.
2657 */
2658static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659{
2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2661
c1e862c1
KH
2662 /* we call try-to-free pages for make this cgroup empty */
2663 lru_add_drain_all();
d12c60f6
JS
2664
2665 drain_all_stock(memcg);
2666
f817ed48 2667 /* try to free all pages in this cgroup */
3e32cb2e 2668 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2669 int progress;
c1e862c1 2670
c26251f9
MH
2671 if (signal_pending(current))
2672 return -EINTR;
2673
b70a2a21
JW
2674 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2675 GFP_KERNEL, true);
c1e862c1 2676 if (!progress) {
f817ed48 2677 nr_retries--;
c1e862c1 2678 /* maybe some writeback is necessary */
8aa7e847 2679 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2680 }
f817ed48
KH
2681
2682 }
ab5196c2
MH
2683
2684 return 0;
cc847582
KH
2685}
2686
6770c64e
TH
2687static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2688 char *buf, size_t nbytes,
2689 loff_t off)
c1e862c1 2690{
6770c64e 2691 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2692
d8423011
MH
2693 if (mem_cgroup_is_root(memcg))
2694 return -EINVAL;
6770c64e 2695 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2696}
2697
182446d0
TH
2698static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2699 struct cftype *cft)
18f59ea7 2700{
182446d0 2701 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2702}
2703
182446d0
TH
2704static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2705 struct cftype *cft, u64 val)
18f59ea7
BS
2706{
2707 int retval = 0;
182446d0 2708 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2709 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2710
567fb435 2711 if (memcg->use_hierarchy == val)
0b8f73e1 2712 return 0;
567fb435 2713
18f59ea7 2714 /*
af901ca1 2715 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2716 * in the child subtrees. If it is unset, then the change can
2717 * occur, provided the current cgroup has no children.
2718 *
2719 * For the root cgroup, parent_mem is NULL, we allow value to be
2720 * set if there are no children.
2721 */
c0ff4b85 2722 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2723 (val == 1 || val == 0)) {
ea280e7b 2724 if (!memcg_has_children(memcg))
c0ff4b85 2725 memcg->use_hierarchy = val;
18f59ea7
BS
2726 else
2727 retval = -EBUSY;
2728 } else
2729 retval = -EINVAL;
567fb435 2730
18f59ea7
BS
2731 return retval;
2732}
2733
72b54e73 2734static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2735{
2736 struct mem_cgroup *iter;
72b54e73 2737 int i;
ce00a967 2738
72b54e73 2739 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2740
72b54e73
VD
2741 for_each_mem_cgroup_tree(iter, memcg) {
2742 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2743 stat[i] += memcg_page_state(iter, i);
72b54e73 2744 }
ce00a967
JW
2745}
2746
72b54e73 2747static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2748{
2749 struct mem_cgroup *iter;
72b54e73 2750 int i;
587d9f72 2751
e27be240 2752 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
587d9f72 2753
72b54e73 2754 for_each_mem_cgroup_tree(iter, memcg) {
e27be240 2755 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ccda7f43 2756 events[i] += memcg_sum_events(iter, i);
72b54e73 2757 }
587d9f72
JW
2758}
2759
6f646156 2760static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2761{
72b54e73 2762 unsigned long val = 0;
ce00a967 2763
3e32cb2e 2764 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2765 struct mem_cgroup *iter;
2766
2767 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2768 val += memcg_page_state(iter, MEMCG_CACHE);
2769 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2770 if (swap)
ccda7f43 2771 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2772 }
3e32cb2e 2773 } else {
ce00a967 2774 if (!swap)
3e32cb2e 2775 val = page_counter_read(&memcg->memory);
ce00a967 2776 else
3e32cb2e 2777 val = page_counter_read(&memcg->memsw);
ce00a967 2778 }
c12176d3 2779 return val;
ce00a967
JW
2780}
2781
3e32cb2e
JW
2782enum {
2783 RES_USAGE,
2784 RES_LIMIT,
2785 RES_MAX_USAGE,
2786 RES_FAILCNT,
2787 RES_SOFT_LIMIT,
2788};
ce00a967 2789
791badbd 2790static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2791 struct cftype *cft)
8cdea7c0 2792{
182446d0 2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2794 struct page_counter *counter;
af36f906 2795
3e32cb2e 2796 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2797 case _MEM:
3e32cb2e
JW
2798 counter = &memcg->memory;
2799 break;
8c7c6e34 2800 case _MEMSWAP:
3e32cb2e
JW
2801 counter = &memcg->memsw;
2802 break;
510fc4e1 2803 case _KMEM:
3e32cb2e 2804 counter = &memcg->kmem;
510fc4e1 2805 break;
d55f90bf 2806 case _TCP:
0db15298 2807 counter = &memcg->tcpmem;
d55f90bf 2808 break;
8c7c6e34
KH
2809 default:
2810 BUG();
8c7c6e34 2811 }
3e32cb2e
JW
2812
2813 switch (MEMFILE_ATTR(cft->private)) {
2814 case RES_USAGE:
2815 if (counter == &memcg->memory)
c12176d3 2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2817 if (counter == &memcg->memsw)
c12176d3 2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2819 return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 case RES_LIMIT:
bbec2e15 2821 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2822 case RES_MAX_USAGE:
2823 return (u64)counter->watermark * PAGE_SIZE;
2824 case RES_FAILCNT:
2825 return counter->failcnt;
2826 case RES_SOFT_LIMIT:
2827 return (u64)memcg->soft_limit * PAGE_SIZE;
2828 default:
2829 BUG();
2830 }
8cdea7c0 2831}
510fc4e1 2832
127424c8 2833#ifndef CONFIG_SLOB
567e9ab2 2834static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2835{
d6441637
VD
2836 int memcg_id;
2837
b313aeee
VD
2838 if (cgroup_memory_nokmem)
2839 return 0;
2840
2a4db7eb 2841 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2842 BUG_ON(memcg->kmem_state);
d6441637 2843
f3bb3043 2844 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2845 if (memcg_id < 0)
2846 return memcg_id;
d6441637 2847
ef12947c 2848 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2849 /*
567e9ab2 2850 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2851 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2852 * guarantee no one starts accounting before all call sites are
2853 * patched.
2854 */
900a38f0 2855 memcg->kmemcg_id = memcg_id;
567e9ab2 2856 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2857 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2858
2859 return 0;
d6441637
VD
2860}
2861
8e0a8912
JW
2862static void memcg_offline_kmem(struct mem_cgroup *memcg)
2863{
2864 struct cgroup_subsys_state *css;
2865 struct mem_cgroup *parent, *child;
2866 int kmemcg_id;
2867
2868 if (memcg->kmem_state != KMEM_ONLINE)
2869 return;
2870 /*
2871 * Clear the online state before clearing memcg_caches array
2872 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2873 * guarantees that no cache will be created for this cgroup
2874 * after we are done (see memcg_create_kmem_cache()).
2875 */
2876 memcg->kmem_state = KMEM_ALLOCATED;
2877
2878 memcg_deactivate_kmem_caches(memcg);
2879
2880 kmemcg_id = memcg->kmemcg_id;
2881 BUG_ON(kmemcg_id < 0);
2882
2883 parent = parent_mem_cgroup(memcg);
2884 if (!parent)
2885 parent = root_mem_cgroup;
2886
2887 /*
2888 * Change kmemcg_id of this cgroup and all its descendants to the
2889 * parent's id, and then move all entries from this cgroup's list_lrus
2890 * to ones of the parent. After we have finished, all list_lrus
2891 * corresponding to this cgroup are guaranteed to remain empty. The
2892 * ordering is imposed by list_lru_node->lock taken by
2893 * memcg_drain_all_list_lrus().
2894 */
3a06bb78 2895 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2896 css_for_each_descendant_pre(css, &memcg->css) {
2897 child = mem_cgroup_from_css(css);
2898 BUG_ON(child->kmemcg_id != kmemcg_id);
2899 child->kmemcg_id = parent->kmemcg_id;
2900 if (!memcg->use_hierarchy)
2901 break;
2902 }
3a06bb78
TH
2903 rcu_read_unlock();
2904
8e0a8912
JW
2905 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2906
2907 memcg_free_cache_id(kmemcg_id);
2908}
2909
2910static void memcg_free_kmem(struct mem_cgroup *memcg)
2911{
0b8f73e1
JW
2912 /* css_alloc() failed, offlining didn't happen */
2913 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2914 memcg_offline_kmem(memcg);
2915
8e0a8912
JW
2916 if (memcg->kmem_state == KMEM_ALLOCATED) {
2917 memcg_destroy_kmem_caches(memcg);
2918 static_branch_dec(&memcg_kmem_enabled_key);
2919 WARN_ON(page_counter_read(&memcg->kmem));
2920 }
8e0a8912 2921}
d6441637 2922#else
0b8f73e1 2923static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2924{
2925 return 0;
2926}
2927static void memcg_offline_kmem(struct mem_cgroup *memcg)
2928{
2929}
2930static void memcg_free_kmem(struct mem_cgroup *memcg)
2931{
2932}
2933#endif /* !CONFIG_SLOB */
2934
bbec2e15
RG
2935static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2936 unsigned long max)
d6441637 2937{
b313aeee 2938 int ret;
127424c8 2939
bbec2e15
RG
2940 mutex_lock(&memcg_max_mutex);
2941 ret = page_counter_set_max(&memcg->kmem, max);
2942 mutex_unlock(&memcg_max_mutex);
127424c8 2943 return ret;
d6441637 2944}
510fc4e1 2945
bbec2e15 2946static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
2947{
2948 int ret;
2949
bbec2e15 2950 mutex_lock(&memcg_max_mutex);
d55f90bf 2951
bbec2e15 2952 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
2953 if (ret)
2954 goto out;
2955
0db15298 2956 if (!memcg->tcpmem_active) {
d55f90bf
VD
2957 /*
2958 * The active flag needs to be written after the static_key
2959 * update. This is what guarantees that the socket activation
2d758073
JW
2960 * function is the last one to run. See mem_cgroup_sk_alloc()
2961 * for details, and note that we don't mark any socket as
2962 * belonging to this memcg until that flag is up.
d55f90bf
VD
2963 *
2964 * We need to do this, because static_keys will span multiple
2965 * sites, but we can't control their order. If we mark a socket
2966 * as accounted, but the accounting functions are not patched in
2967 * yet, we'll lose accounting.
2968 *
2d758073 2969 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2970 * because when this value change, the code to process it is not
2971 * patched in yet.
2972 */
2973 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2974 memcg->tcpmem_active = true;
d55f90bf
VD
2975 }
2976out:
bbec2e15 2977 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
2978 return ret;
2979}
d55f90bf 2980
628f4235
KH
2981/*
2982 * The user of this function is...
2983 * RES_LIMIT.
2984 */
451af504
TH
2985static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2986 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2987{
451af504 2988 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2989 unsigned long nr_pages;
628f4235
KH
2990 int ret;
2991
451af504 2992 buf = strstrip(buf);
650c5e56 2993 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2994 if (ret)
2995 return ret;
af36f906 2996
3e32cb2e 2997 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2998 case RES_LIMIT:
4b3bde4c
BS
2999 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3000 ret = -EINVAL;
3001 break;
3002 }
3e32cb2e
JW
3003 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3004 case _MEM:
bbec2e15 3005 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3006 break;
3e32cb2e 3007 case _MEMSWAP:
bbec2e15 3008 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3009 break;
3e32cb2e 3010 case _KMEM:
bbec2e15 3011 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3012 break;
d55f90bf 3013 case _TCP:
bbec2e15 3014 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3015 break;
3e32cb2e 3016 }
296c81d8 3017 break;
3e32cb2e
JW
3018 case RES_SOFT_LIMIT:
3019 memcg->soft_limit = nr_pages;
3020 ret = 0;
628f4235
KH
3021 break;
3022 }
451af504 3023 return ret ?: nbytes;
8cdea7c0
BS
3024}
3025
6770c64e
TH
3026static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3027 size_t nbytes, loff_t off)
c84872e1 3028{
6770c64e 3029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3030 struct page_counter *counter;
c84872e1 3031
3e32cb2e
JW
3032 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3033 case _MEM:
3034 counter = &memcg->memory;
3035 break;
3036 case _MEMSWAP:
3037 counter = &memcg->memsw;
3038 break;
3039 case _KMEM:
3040 counter = &memcg->kmem;
3041 break;
d55f90bf 3042 case _TCP:
0db15298 3043 counter = &memcg->tcpmem;
d55f90bf 3044 break;
3e32cb2e
JW
3045 default:
3046 BUG();
3047 }
af36f906 3048
3e32cb2e 3049 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3050 case RES_MAX_USAGE:
3e32cb2e 3051 page_counter_reset_watermark(counter);
29f2a4da
PE
3052 break;
3053 case RES_FAILCNT:
3e32cb2e 3054 counter->failcnt = 0;
29f2a4da 3055 break;
3e32cb2e
JW
3056 default:
3057 BUG();
29f2a4da 3058 }
f64c3f54 3059
6770c64e 3060 return nbytes;
c84872e1
PE
3061}
3062
182446d0 3063static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3064 struct cftype *cft)
3065{
182446d0 3066 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3067}
3068
02491447 3069#ifdef CONFIG_MMU
182446d0 3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3071 struct cftype *cft, u64 val)
3072{
182446d0 3073 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3074
1dfab5ab 3075 if (val & ~MOVE_MASK)
7dc74be0 3076 return -EINVAL;
ee5e8472 3077
7dc74be0 3078 /*
ee5e8472
GC
3079 * No kind of locking is needed in here, because ->can_attach() will
3080 * check this value once in the beginning of the process, and then carry
3081 * on with stale data. This means that changes to this value will only
3082 * affect task migrations starting after the change.
7dc74be0 3083 */
c0ff4b85 3084 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3085 return 0;
3086}
02491447 3087#else
182446d0 3088static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3089 struct cftype *cft, u64 val)
3090{
3091 return -ENOSYS;
3092}
3093#endif
7dc74be0 3094
406eb0c9 3095#ifdef CONFIG_NUMA
2da8ca82 3096static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3097{
25485de6
GT
3098 struct numa_stat {
3099 const char *name;
3100 unsigned int lru_mask;
3101 };
3102
3103 static const struct numa_stat stats[] = {
3104 { "total", LRU_ALL },
3105 { "file", LRU_ALL_FILE },
3106 { "anon", LRU_ALL_ANON },
3107 { "unevictable", BIT(LRU_UNEVICTABLE) },
3108 };
3109 const struct numa_stat *stat;
406eb0c9 3110 int nid;
25485de6 3111 unsigned long nr;
2da8ca82 3112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3113
25485de6
GT
3114 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3115 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3116 seq_printf(m, "%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3119 stat->lru_mask);
3120 seq_printf(m, " N%d=%lu", nid, nr);
3121 }
3122 seq_putc(m, '\n');
406eb0c9 3123 }
406eb0c9 3124
071aee13
YH
3125 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3126 struct mem_cgroup *iter;
3127
3128 nr = 0;
3129 for_each_mem_cgroup_tree(iter, memcg)
3130 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3131 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3132 for_each_node_state(nid, N_MEMORY) {
3133 nr = 0;
3134 for_each_mem_cgroup_tree(iter, memcg)
3135 nr += mem_cgroup_node_nr_lru_pages(
3136 iter, nid, stat->lru_mask);
3137 seq_printf(m, " N%d=%lu", nid, nr);
3138 }
3139 seq_putc(m, '\n');
406eb0c9 3140 }
406eb0c9 3141
406eb0c9
YH
3142 return 0;
3143}
3144#endif /* CONFIG_NUMA */
3145
df0e53d0 3146/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3147static const unsigned int memcg1_events[] = {
df0e53d0
JW
3148 PGPGIN,
3149 PGPGOUT,
3150 PGFAULT,
3151 PGMAJFAULT,
3152};
3153
3154static const char *const memcg1_event_names[] = {
3155 "pgpgin",
3156 "pgpgout",
3157 "pgfault",
3158 "pgmajfault",
3159};
3160
2da8ca82 3161static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3162{
2da8ca82 3163 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3164 unsigned long memory, memsw;
af7c4b0e
JW
3165 struct mem_cgroup *mi;
3166 unsigned int i;
406eb0c9 3167
71cd3113 3168 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3170
71cd3113
JW
3171 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3172 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3173 continue;
71cd3113 3174 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3175 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3176 PAGE_SIZE);
1dd3a273 3177 }
7b854121 3178
df0e53d0
JW
3179 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3180 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3181 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3182
3183 for (i = 0; i < NR_LRU_LISTS; i++)
3184 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3185 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3186
14067bb3 3187 /* Hierarchical information */
3e32cb2e
JW
3188 memory = memsw = PAGE_COUNTER_MAX;
3189 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3190 memory = min(memory, mi->memory.max);
3191 memsw = min(memsw, mi->memsw.max);
fee7b548 3192 }
3e32cb2e
JW
3193 seq_printf(m, "hierarchical_memory_limit %llu\n",
3194 (u64)memory * PAGE_SIZE);
7941d214 3195 if (do_memsw_account())
3e32cb2e
JW
3196 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3197 (u64)memsw * PAGE_SIZE);
7f016ee8 3198
71cd3113 3199 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3200 unsigned long long val = 0;
af7c4b0e 3201
71cd3113 3202 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3203 continue;
af7c4b0e 3204 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3205 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3206 PAGE_SIZE;
3207 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3208 }
3209
df0e53d0 3210 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3214 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3215 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3216 }
3217
3218 for (i = 0; i < NR_LRU_LISTS; i++) {
3219 unsigned long long val = 0;
3220
3221 for_each_mem_cgroup_tree(mi, memcg)
3222 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3223 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3224 }
14067bb3 3225
7f016ee8 3226#ifdef CONFIG_DEBUG_VM
7f016ee8 3227 {
ef8f2327
MG
3228 pg_data_t *pgdat;
3229 struct mem_cgroup_per_node *mz;
89abfab1 3230 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3231 unsigned long recent_rotated[2] = {0, 0};
3232 unsigned long recent_scanned[2] = {0, 0};
3233
ef8f2327
MG
3234 for_each_online_pgdat(pgdat) {
3235 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3236 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3237
ef8f2327
MG
3238 recent_rotated[0] += rstat->recent_rotated[0];
3239 recent_rotated[1] += rstat->recent_rotated[1];
3240 recent_scanned[0] += rstat->recent_scanned[0];
3241 recent_scanned[1] += rstat->recent_scanned[1];
3242 }
78ccf5b5
JW
3243 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3244 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3245 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3246 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3247 }
3248#endif
3249
d2ceb9b7
KH
3250 return 0;
3251}
3252
182446d0
TH
3253static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3254 struct cftype *cft)
a7885eb8 3255{
182446d0 3256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3257
1f4c025b 3258 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3259}
3260
182446d0
TH
3261static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3262 struct cftype *cft, u64 val)
a7885eb8 3263{
182446d0 3264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3265
3dae7fec 3266 if (val > 100)
a7885eb8
KM
3267 return -EINVAL;
3268
14208b0e 3269 if (css->parent)
3dae7fec
JW
3270 memcg->swappiness = val;
3271 else
3272 vm_swappiness = val;
068b38c1 3273
a7885eb8
KM
3274 return 0;
3275}
3276
2e72b634
KS
3277static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3278{
3279 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3280 unsigned long usage;
2e72b634
KS
3281 int i;
3282
3283 rcu_read_lock();
3284 if (!swap)
2c488db2 3285 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3286 else
2c488db2 3287 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3288
3289 if (!t)
3290 goto unlock;
3291
ce00a967 3292 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3293
3294 /*
748dad36 3295 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3296 * If it's not true, a threshold was crossed after last
3297 * call of __mem_cgroup_threshold().
3298 */
5407a562 3299 i = t->current_threshold;
2e72b634
KS
3300
3301 /*
3302 * Iterate backward over array of thresholds starting from
3303 * current_threshold and check if a threshold is crossed.
3304 * If none of thresholds below usage is crossed, we read
3305 * only one element of the array here.
3306 */
3307 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3308 eventfd_signal(t->entries[i].eventfd, 1);
3309
3310 /* i = current_threshold + 1 */
3311 i++;
3312
3313 /*
3314 * Iterate forward over array of thresholds starting from
3315 * current_threshold+1 and check if a threshold is crossed.
3316 * If none of thresholds above usage is crossed, we read
3317 * only one element of the array here.
3318 */
3319 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3320 eventfd_signal(t->entries[i].eventfd, 1);
3321
3322 /* Update current_threshold */
5407a562 3323 t->current_threshold = i - 1;
2e72b634
KS
3324unlock:
3325 rcu_read_unlock();
3326}
3327
3328static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3329{
ad4ca5f4
KS
3330 while (memcg) {
3331 __mem_cgroup_threshold(memcg, false);
7941d214 3332 if (do_memsw_account())
ad4ca5f4
KS
3333 __mem_cgroup_threshold(memcg, true);
3334
3335 memcg = parent_mem_cgroup(memcg);
3336 }
2e72b634
KS
3337}
3338
3339static int compare_thresholds(const void *a, const void *b)
3340{
3341 const struct mem_cgroup_threshold *_a = a;
3342 const struct mem_cgroup_threshold *_b = b;
3343
2bff24a3
GT
3344 if (_a->threshold > _b->threshold)
3345 return 1;
3346
3347 if (_a->threshold < _b->threshold)
3348 return -1;
3349
3350 return 0;
2e72b634
KS
3351}
3352
c0ff4b85 3353static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3354{
3355 struct mem_cgroup_eventfd_list *ev;
3356
2bcf2e92
MH
3357 spin_lock(&memcg_oom_lock);
3358
c0ff4b85 3359 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3360 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3361
3362 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3363 return 0;
3364}
3365
c0ff4b85 3366static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3367{
7d74b06f
KH
3368 struct mem_cgroup *iter;
3369
c0ff4b85 3370 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3371 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3372}
3373
59b6f873 3374static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3375 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3376{
2c488db2
KS
3377 struct mem_cgroup_thresholds *thresholds;
3378 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3379 unsigned long threshold;
3380 unsigned long usage;
2c488db2 3381 int i, size, ret;
2e72b634 3382
650c5e56 3383 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3384 if (ret)
3385 return ret;
3386
3387 mutex_lock(&memcg->thresholds_lock);
2c488db2 3388
05b84301 3389 if (type == _MEM) {
2c488db2 3390 thresholds = &memcg->thresholds;
ce00a967 3391 usage = mem_cgroup_usage(memcg, false);
05b84301 3392 } else if (type == _MEMSWAP) {
2c488db2 3393 thresholds = &memcg->memsw_thresholds;
ce00a967 3394 usage = mem_cgroup_usage(memcg, true);
05b84301 3395 } else
2e72b634
KS
3396 BUG();
3397
2e72b634 3398 /* Check if a threshold crossed before adding a new one */
2c488db2 3399 if (thresholds->primary)
2e72b634
KS
3400 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3401
2c488db2 3402 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3403
3404 /* Allocate memory for new array of thresholds */
2c488db2 3405 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3406 GFP_KERNEL);
2c488db2 3407 if (!new) {
2e72b634
KS
3408 ret = -ENOMEM;
3409 goto unlock;
3410 }
2c488db2 3411 new->size = size;
2e72b634
KS
3412
3413 /* Copy thresholds (if any) to new array */
2c488db2
KS
3414 if (thresholds->primary) {
3415 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3416 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3417 }
3418
2e72b634 3419 /* Add new threshold */
2c488db2
KS
3420 new->entries[size - 1].eventfd = eventfd;
3421 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3422
3423 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3424 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3425 compare_thresholds, NULL);
3426
3427 /* Find current threshold */
2c488db2 3428 new->current_threshold = -1;
2e72b634 3429 for (i = 0; i < size; i++) {
748dad36 3430 if (new->entries[i].threshold <= usage) {
2e72b634 3431 /*
2c488db2
KS
3432 * new->current_threshold will not be used until
3433 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3434 * it here.
3435 */
2c488db2 3436 ++new->current_threshold;
748dad36
SZ
3437 } else
3438 break;
2e72b634
KS
3439 }
3440
2c488db2
KS
3441 /* Free old spare buffer and save old primary buffer as spare */
3442 kfree(thresholds->spare);
3443 thresholds->spare = thresholds->primary;
3444
3445 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3446
907860ed 3447 /* To be sure that nobody uses thresholds */
2e72b634
KS
3448 synchronize_rcu();
3449
2e72b634
KS
3450unlock:
3451 mutex_unlock(&memcg->thresholds_lock);
3452
3453 return ret;
3454}
3455
59b6f873 3456static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3457 struct eventfd_ctx *eventfd, const char *args)
3458{
59b6f873 3459 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3460}
3461
59b6f873 3462static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3463 struct eventfd_ctx *eventfd, const char *args)
3464{
59b6f873 3465 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3466}
3467
59b6f873 3468static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3469 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3470{
2c488db2
KS
3471 struct mem_cgroup_thresholds *thresholds;
3472 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3473 unsigned long usage;
2c488db2 3474 int i, j, size;
2e72b634
KS
3475
3476 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3477
3478 if (type == _MEM) {
2c488db2 3479 thresholds = &memcg->thresholds;
ce00a967 3480 usage = mem_cgroup_usage(memcg, false);
05b84301 3481 } else if (type == _MEMSWAP) {
2c488db2 3482 thresholds = &memcg->memsw_thresholds;
ce00a967 3483 usage = mem_cgroup_usage(memcg, true);
05b84301 3484 } else
2e72b634
KS
3485 BUG();
3486
371528ca
AV
3487 if (!thresholds->primary)
3488 goto unlock;
3489
2e72b634
KS
3490 /* Check if a threshold crossed before removing */
3491 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3492
3493 /* Calculate new number of threshold */
2c488db2
KS
3494 size = 0;
3495 for (i = 0; i < thresholds->primary->size; i++) {
3496 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3497 size++;
3498 }
3499
2c488db2 3500 new = thresholds->spare;
907860ed 3501
2e72b634
KS
3502 /* Set thresholds array to NULL if we don't have thresholds */
3503 if (!size) {
2c488db2
KS
3504 kfree(new);
3505 new = NULL;
907860ed 3506 goto swap_buffers;
2e72b634
KS
3507 }
3508
2c488db2 3509 new->size = size;
2e72b634
KS
3510
3511 /* Copy thresholds and find current threshold */
2c488db2
KS
3512 new->current_threshold = -1;
3513 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3514 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3515 continue;
3516
2c488db2 3517 new->entries[j] = thresholds->primary->entries[i];
748dad36 3518 if (new->entries[j].threshold <= usage) {
2e72b634 3519 /*
2c488db2 3520 * new->current_threshold will not be used
2e72b634
KS
3521 * until rcu_assign_pointer(), so it's safe to increment
3522 * it here.
3523 */
2c488db2 3524 ++new->current_threshold;
2e72b634
KS
3525 }
3526 j++;
3527 }
3528
907860ed 3529swap_buffers:
2c488db2
KS
3530 /* Swap primary and spare array */
3531 thresholds->spare = thresholds->primary;
8c757763 3532
2c488db2 3533 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3534
907860ed 3535 /* To be sure that nobody uses thresholds */
2e72b634 3536 synchronize_rcu();
6611d8d7
MC
3537
3538 /* If all events are unregistered, free the spare array */
3539 if (!new) {
3540 kfree(thresholds->spare);
3541 thresholds->spare = NULL;
3542 }
371528ca 3543unlock:
2e72b634 3544 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3545}
c1e862c1 3546
59b6f873 3547static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3548 struct eventfd_ctx *eventfd)
3549{
59b6f873 3550 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3551}
3552
59b6f873 3553static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3554 struct eventfd_ctx *eventfd)
3555{
59b6f873 3556 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3557}
3558
59b6f873 3559static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3560 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3561{
9490ff27 3562 struct mem_cgroup_eventfd_list *event;
9490ff27 3563
9490ff27
KH
3564 event = kmalloc(sizeof(*event), GFP_KERNEL);
3565 if (!event)
3566 return -ENOMEM;
3567
1af8efe9 3568 spin_lock(&memcg_oom_lock);
9490ff27
KH
3569
3570 event->eventfd = eventfd;
3571 list_add(&event->list, &memcg->oom_notify);
3572
3573 /* already in OOM ? */
c2b42d3c 3574 if (memcg->under_oom)
9490ff27 3575 eventfd_signal(eventfd, 1);
1af8efe9 3576 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3577
3578 return 0;
3579}
3580
59b6f873 3581static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3582 struct eventfd_ctx *eventfd)
9490ff27 3583{
9490ff27 3584 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3585
1af8efe9 3586 spin_lock(&memcg_oom_lock);
9490ff27 3587
c0ff4b85 3588 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3589 if (ev->eventfd == eventfd) {
3590 list_del(&ev->list);
3591 kfree(ev);
3592 }
3593 }
3594
1af8efe9 3595 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3596}
3597
2da8ca82 3598static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3599{
2da8ca82 3600 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3601
791badbd 3602 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3603 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3604 seq_printf(sf, "oom_kill %lu\n",
3605 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3606 return 0;
3607}
3608
182446d0 3609static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3610 struct cftype *cft, u64 val)
3611{
182446d0 3612 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3613
3614 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3615 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3616 return -EINVAL;
3617
c0ff4b85 3618 memcg->oom_kill_disable = val;
4d845ebf 3619 if (!val)
c0ff4b85 3620 memcg_oom_recover(memcg);
3dae7fec 3621
3c11ecf4
KH
3622 return 0;
3623}
3624
52ebea74
TH
3625#ifdef CONFIG_CGROUP_WRITEBACK
3626
841710aa
TH
3627static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3628{
3629 return wb_domain_init(&memcg->cgwb_domain, gfp);
3630}
3631
3632static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3633{
3634 wb_domain_exit(&memcg->cgwb_domain);
3635}
3636
2529bb3a
TH
3637static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3638{
3639 wb_domain_size_changed(&memcg->cgwb_domain);
3640}
3641
841710aa
TH
3642struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3643{
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645
3646 if (!memcg->css.parent)
3647 return NULL;
3648
3649 return &memcg->cgwb_domain;
3650}
3651
c2aa723a
TH
3652/**
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
c5edf9cd
TH
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3659 *
c5edf9cd
TH
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
c2aa723a 3663 *
c5edf9cd
TH
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
c2aa723a 3669 */
c5edf9cd
TH
3670void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 unsigned long *pheadroom, unsigned long *pdirty,
3672 unsigned long *pwriteback)
c2aa723a
TH
3673{
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 struct mem_cgroup *parent;
c2aa723a 3676
ccda7f43 3677 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3678
3679 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3680 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 (1 << LRU_ACTIVE_FILE));
3683 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3684
c2aa723a 3685 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3686 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3687 unsigned long used = page_counter_read(&memcg->memory);
3688
c5edf9cd 3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3690 memcg = parent;
3691 }
c2aa723a
TH
3692}
3693
841710aa
TH
3694#else /* CONFIG_CGROUP_WRITEBACK */
3695
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return 0;
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703}
3704
2529bb3a
TH
3705static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3706{
3707}
3708
52ebea74
TH
3709#endif /* CONFIG_CGROUP_WRITEBACK */
3710
3bc942f3
TH
3711/*
3712 * DO NOT USE IN NEW FILES.
3713 *
3714 * "cgroup.event_control" implementation.
3715 *
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3719 *
3720 * Please deprecate this and replace with something simpler if at all
3721 * possible.
3722 */
3723
79bd9814
TH
3724/*
3725 * Unregister event and free resources.
3726 *
3727 * Gets called from workqueue.
3728 */
3bc942f3 3729static void memcg_event_remove(struct work_struct *work)
79bd9814 3730{
3bc942f3
TH
3731 struct mem_cgroup_event *event =
3732 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3733 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3734
3735 remove_wait_queue(event->wqh, &event->wait);
3736
59b6f873 3737 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3738
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event->eventfd, 1);
3741
3742 eventfd_ctx_put(event->eventfd);
3743 kfree(event);
59b6f873 3744 css_put(&memcg->css);
79bd9814
TH
3745}
3746
3747/*
a9a08845 3748 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3749 *
3750 * Called with wqh->lock held and interrupts disabled.
3751 */
ac6424b9 3752static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3753 int sync, void *key)
79bd9814 3754{
3bc942f3
TH
3755 struct mem_cgroup_event *event =
3756 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3757 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3758 __poll_t flags = key_to_poll(key);
79bd9814 3759
a9a08845 3760 if (flags & EPOLLHUP) {
79bd9814
TH
3761 /*
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3764 * for us.
3765 *
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3768 * which we hold.
3769 */
fba94807 3770 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3771 if (!list_empty(&event->list)) {
3772 list_del_init(&event->list);
3773 /*
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3776 */
3777 schedule_work(&event->remove);
3778 }
fba94807 3779 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3780 }
3781
3782 return 0;
3783}
3784
3bc942f3 3785static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3786 wait_queue_head_t *wqh, poll_table *pt)
3787{
3bc942f3
TH
3788 struct mem_cgroup_event *event =
3789 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3790
3791 event->wqh = wqh;
3792 add_wait_queue(wqh, &event->wait);
3793}
3794
3795/*
3bc942f3
TH
3796 * DO NOT USE IN NEW FILES.
3797 *
79bd9814
TH
3798 * Parse input and register new cgroup event handler.
3799 *
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3802 */
451af504
TH
3803static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
79bd9814 3805{
451af504 3806 struct cgroup_subsys_state *css = of_css(of);
fba94807 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3808 struct mem_cgroup_event *event;
79bd9814
TH
3809 struct cgroup_subsys_state *cfile_css;
3810 unsigned int efd, cfd;
3811 struct fd efile;
3812 struct fd cfile;
fba94807 3813 const char *name;
79bd9814
TH
3814 char *endp;
3815 int ret;
3816
451af504
TH
3817 buf = strstrip(buf);
3818
3819 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3820 if (*endp != ' ')
3821 return -EINVAL;
451af504 3822 buf = endp + 1;
79bd9814 3823
451af504 3824 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3825 if ((*endp != ' ') && (*endp != '\0'))
3826 return -EINVAL;
451af504 3827 buf = endp + 1;
79bd9814
TH
3828
3829 event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 if (!event)
3831 return -ENOMEM;
3832
59b6f873 3833 event->memcg = memcg;
79bd9814 3834 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3838
3839 efile = fdget(efd);
3840 if (!efile.file) {
3841 ret = -EBADF;
3842 goto out_kfree;
3843 }
3844
3845 event->eventfd = eventfd_ctx_fileget(efile.file);
3846 if (IS_ERR(event->eventfd)) {
3847 ret = PTR_ERR(event->eventfd);
3848 goto out_put_efile;
3849 }
3850
3851 cfile = fdget(cfd);
3852 if (!cfile.file) {
3853 ret = -EBADF;
3854 goto out_put_eventfd;
3855 }
3856
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 if (ret < 0)
3861 goto out_put_cfile;
3862
fba94807
TH
3863 /*
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3bc942f3
TH
3868 *
3869 * DO NOT ADD NEW FILES.
fba94807 3870 */
b583043e 3871 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3872
3873 if (!strcmp(name, "memory.usage_in_bytes")) {
3874 event->register_event = mem_cgroup_usage_register_event;
3875 event->unregister_event = mem_cgroup_usage_unregister_event;
3876 } else if (!strcmp(name, "memory.oom_control")) {
3877 event->register_event = mem_cgroup_oom_register_event;
3878 event->unregister_event = mem_cgroup_oom_unregister_event;
3879 } else if (!strcmp(name, "memory.pressure_level")) {
3880 event->register_event = vmpressure_register_event;
3881 event->unregister_event = vmpressure_unregister_event;
3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3883 event->register_event = memsw_cgroup_usage_register_event;
3884 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3885 } else {
3886 ret = -EINVAL;
3887 goto out_put_cfile;
3888 }
3889
79bd9814 3890 /*
b5557c4c
TH
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
79bd9814 3894 */
b583043e 3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3896 &memory_cgrp_subsys);
79bd9814 3897 ret = -EINVAL;
5a17f543 3898 if (IS_ERR(cfile_css))
79bd9814 3899 goto out_put_cfile;
5a17f543
TH
3900 if (cfile_css != css) {
3901 css_put(cfile_css);
79bd9814 3902 goto out_put_cfile;
5a17f543 3903 }
79bd9814 3904
451af504 3905 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3906 if (ret)
3907 goto out_put_css;
3908
9965ed17 3909 vfs_poll(efile.file, &event->pt);
79bd9814 3910
fba94807
TH
3911 spin_lock(&memcg->event_list_lock);
3912 list_add(&event->list, &memcg->event_list);
3913 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3914
3915 fdput(cfile);
3916 fdput(efile);
3917
451af504 3918 return nbytes;
79bd9814
TH
3919
3920out_put_css:
b5557c4c 3921 css_put(css);
79bd9814
TH
3922out_put_cfile:
3923 fdput(cfile);
3924out_put_eventfd:
3925 eventfd_ctx_put(event->eventfd);
3926out_put_efile:
3927 fdput(efile);
3928out_kfree:
3929 kfree(event);
3930
3931 return ret;
3932}
3933
241994ed 3934static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3935 {
0eea1030 3936 .name = "usage_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3938 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3939 },
c84872e1
PE
3940 {
3941 .name = "max_usage_in_bytes",
8c7c6e34 3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3943 .write = mem_cgroup_reset,
791badbd 3944 .read_u64 = mem_cgroup_read_u64,
c84872e1 3945 },
8cdea7c0 3946 {
0eea1030 3947 .name = "limit_in_bytes",
8c7c6e34 3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3949 .write = mem_cgroup_write,
791badbd 3950 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3951 },
296c81d8
BS
3952 {
3953 .name = "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3955 .write = mem_cgroup_write,
791badbd 3956 .read_u64 = mem_cgroup_read_u64,
296c81d8 3957 },
8cdea7c0
BS
3958 {
3959 .name = "failcnt",
8c7c6e34 3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3961 .write = mem_cgroup_reset,
791badbd 3962 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3963 },
d2ceb9b7
KH
3964 {
3965 .name = "stat",
2da8ca82 3966 .seq_show = memcg_stat_show,
d2ceb9b7 3967 },
c1e862c1
KH
3968 {
3969 .name = "force_empty",
6770c64e 3970 .write = mem_cgroup_force_empty_write,
c1e862c1 3971 },
18f59ea7
BS
3972 {
3973 .name = "use_hierarchy",
3974 .write_u64 = mem_cgroup_hierarchy_write,
3975 .read_u64 = mem_cgroup_hierarchy_read,
3976 },
79bd9814 3977 {
3bc942f3 3978 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3979 .write = memcg_write_event_control,
7dbdb199 3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3981 },
a7885eb8
KM
3982 {
3983 .name = "swappiness",
3984 .read_u64 = mem_cgroup_swappiness_read,
3985 .write_u64 = mem_cgroup_swappiness_write,
3986 },
7dc74be0
DN
3987 {
3988 .name = "move_charge_at_immigrate",
3989 .read_u64 = mem_cgroup_move_charge_read,
3990 .write_u64 = mem_cgroup_move_charge_write,
3991 },
9490ff27
KH
3992 {
3993 .name = "oom_control",
2da8ca82 3994 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3995 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 },
70ddf637
AV
3998 {
3999 .name = "pressure_level",
70ddf637 4000 },
406eb0c9
YH
4001#ifdef CONFIG_NUMA
4002 {
4003 .name = "numa_stat",
2da8ca82 4004 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4005 },
4006#endif
510fc4e1
GC
4007 {
4008 .name = "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4010 .write = mem_cgroup_write,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4017 },
4018 {
4019 .name = "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4021 .write = mem_cgroup_reset,
791badbd 4022 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4023 },
4024 {
4025 .name = "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4027 .write = mem_cgroup_reset,
791badbd 4028 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4029 },
5b365771 4030#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4031 {
4032 .name = "kmem.slabinfo",
bc2791f8
TH
4033 .seq_start = memcg_slab_start,
4034 .seq_next = memcg_slab_next,
4035 .seq_stop = memcg_slab_stop,
b047501c 4036 .seq_show = memcg_slab_show,
749c5415
GC
4037 },
4038#endif
d55f90bf
VD
4039 {
4040 .name = "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 .write = mem_cgroup_write,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 .write = mem_cgroup_reset,
4054 .read_u64 = mem_cgroup_read_u64,
4055 },
4056 {
4057 .name = "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 .write = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
6bc10349 4062 { }, /* terminate */
af36f906 4063};
8c7c6e34 4064
73f576c0
JW
4065/*
4066 * Private memory cgroup IDR
4067 *
4068 * Swap-out records and page cache shadow entries need to store memcg
4069 * references in constrained space, so we maintain an ID space that is
4070 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4071 * memory-controlled cgroups to 64k.
4072 *
4073 * However, there usually are many references to the oflline CSS after
4074 * the cgroup has been destroyed, such as page cache or reclaimable
4075 * slab objects, that don't need to hang on to the ID. We want to keep
4076 * those dead CSS from occupying IDs, or we might quickly exhaust the
4077 * relatively small ID space and prevent the creation of new cgroups
4078 * even when there are much fewer than 64k cgroups - possibly none.
4079 *
4080 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4081 * be freed and recycled when it's no longer needed, which is usually
4082 * when the CSS is offlined.
4083 *
4084 * The only exception to that are records of swapped out tmpfs/shmem
4085 * pages that need to be attributed to live ancestors on swapin. But
4086 * those references are manageable from userspace.
4087 */
4088
4089static DEFINE_IDR(mem_cgroup_idr);
4090
7e97de0b
KT
4091static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4092{
4093 if (memcg->id.id > 0) {
4094 idr_remove(&mem_cgroup_idr, memcg->id.id);
4095 memcg->id.id = 0;
4096 }
4097}
4098
615d66c3 4099static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4100{
58fa2a55 4101 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4102 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4103}
4104
615d66c3 4105static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4106{
58fa2a55 4107 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4108 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4109 mem_cgroup_id_remove(memcg);
73f576c0
JW
4110
4111 /* Memcg ID pins CSS */
4112 css_put(&memcg->css);
4113 }
4114}
4115
615d66c3
VD
4116static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4117{
4118 mem_cgroup_id_get_many(memcg, 1);
4119}
4120
4121static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4122{
4123 mem_cgroup_id_put_many(memcg, 1);
4124}
4125
73f576c0
JW
4126/**
4127 * mem_cgroup_from_id - look up a memcg from a memcg id
4128 * @id: the memcg id to look up
4129 *
4130 * Caller must hold rcu_read_lock().
4131 */
4132struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4133{
4134 WARN_ON_ONCE(!rcu_read_lock_held());
4135 return idr_find(&mem_cgroup_idr, id);
4136}
4137
ef8f2327 4138static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4139{
4140 struct mem_cgroup_per_node *pn;
ef8f2327 4141 int tmp = node;
1ecaab2b
KH
4142 /*
4143 * This routine is called against possible nodes.
4144 * But it's BUG to call kmalloc() against offline node.
4145 *
4146 * TODO: this routine can waste much memory for nodes which will
4147 * never be onlined. It's better to use memory hotplug callback
4148 * function.
4149 */
41e3355d
KH
4150 if (!node_state(node, N_NORMAL_MEMORY))
4151 tmp = -1;
17295c88 4152 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4153 if (!pn)
4154 return 1;
1ecaab2b 4155
a983b5eb
JW
4156 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4157 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4158 kfree(pn);
4159 return 1;
4160 }
4161
ef8f2327
MG
4162 lruvec_init(&pn->lruvec);
4163 pn->usage_in_excess = 0;
4164 pn->on_tree = false;
4165 pn->memcg = memcg;
4166
54f72fe0 4167 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4168 return 0;
4169}
4170
ef8f2327 4171static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4172{
00f3ca2c
JW
4173 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4174
4eaf431f
MH
4175 if (!pn)
4176 return;
4177
a983b5eb 4178 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4179 kfree(pn);
1ecaab2b
KH
4180}
4181
40e952f9 4182static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4183{
c8b2a36f 4184 int node;
59927fb9 4185
c8b2a36f 4186 for_each_node(node)
ef8f2327 4187 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4188 free_percpu(memcg->stat_cpu);
8ff69e2c 4189 kfree(memcg);
59927fb9 4190}
3afe36b1 4191
40e952f9
TE
4192static void mem_cgroup_free(struct mem_cgroup *memcg)
4193{
4194 memcg_wb_domain_exit(memcg);
4195 __mem_cgroup_free(memcg);
4196}
4197
0b8f73e1 4198static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4199{
d142e3e6 4200 struct mem_cgroup *memcg;
0b8f73e1 4201 size_t size;
6d12e2d8 4202 int node;
8cdea7c0 4203
0b8f73e1
JW
4204 size = sizeof(struct mem_cgroup);
4205 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4206
4207 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4208 if (!memcg)
0b8f73e1
JW
4209 return NULL;
4210
73f576c0
JW
4211 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4212 1, MEM_CGROUP_ID_MAX,
4213 GFP_KERNEL);
4214 if (memcg->id.id < 0)
4215 goto fail;
4216
a983b5eb
JW
4217 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4218 if (!memcg->stat_cpu)
0b8f73e1 4219 goto fail;
78fb7466 4220
3ed28fa1 4221 for_each_node(node)
ef8f2327 4222 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4223 goto fail;
f64c3f54 4224
0b8f73e1
JW
4225 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4226 goto fail;
28dbc4b6 4227
f7e1cb6e 4228 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4229 memcg->last_scanned_node = MAX_NUMNODES;
4230 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4231 mutex_init(&memcg->thresholds_lock);
4232 spin_lock_init(&memcg->move_lock);
70ddf637 4233 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4234 INIT_LIST_HEAD(&memcg->event_list);
4235 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4236 memcg->socket_pressure = jiffies;
127424c8 4237#ifndef CONFIG_SLOB
900a38f0 4238 memcg->kmemcg_id = -1;
900a38f0 4239#endif
52ebea74
TH
4240#ifdef CONFIG_CGROUP_WRITEBACK
4241 INIT_LIST_HEAD(&memcg->cgwb_list);
4242#endif
73f576c0 4243 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4244 return memcg;
4245fail:
7e97de0b 4246 mem_cgroup_id_remove(memcg);
40e952f9 4247 __mem_cgroup_free(memcg);
0b8f73e1 4248 return NULL;
d142e3e6
GC
4249}
4250
0b8f73e1
JW
4251static struct cgroup_subsys_state * __ref
4252mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4253{
0b8f73e1
JW
4254 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4255 struct mem_cgroup *memcg;
4256 long error = -ENOMEM;
d142e3e6 4257
0b8f73e1
JW
4258 memcg = mem_cgroup_alloc();
4259 if (!memcg)
4260 return ERR_PTR(error);
d142e3e6 4261
0b8f73e1
JW
4262 memcg->high = PAGE_COUNTER_MAX;
4263 memcg->soft_limit = PAGE_COUNTER_MAX;
4264 if (parent) {
4265 memcg->swappiness = mem_cgroup_swappiness(parent);
4266 memcg->oom_kill_disable = parent->oom_kill_disable;
4267 }
4268 if (parent && parent->use_hierarchy) {
4269 memcg->use_hierarchy = true;
3e32cb2e 4270 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4271 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4272 page_counter_init(&memcg->memsw, &parent->memsw);
4273 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4274 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4275 } else {
3e32cb2e 4276 page_counter_init(&memcg->memory, NULL);
37e84351 4277 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4278 page_counter_init(&memcg->memsw, NULL);
4279 page_counter_init(&memcg->kmem, NULL);
0db15298 4280 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4281 /*
4282 * Deeper hierachy with use_hierarchy == false doesn't make
4283 * much sense so let cgroup subsystem know about this
4284 * unfortunate state in our controller.
4285 */
d142e3e6 4286 if (parent != root_mem_cgroup)
073219e9 4287 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4288 }
d6441637 4289
0b8f73e1
JW
4290 /* The following stuff does not apply to the root */
4291 if (!parent) {
4292 root_mem_cgroup = memcg;
4293 return &memcg->css;
4294 }
4295
b313aeee 4296 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4297 if (error)
4298 goto fail;
127424c8 4299
f7e1cb6e 4300 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4301 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4302
0b8f73e1
JW
4303 return &memcg->css;
4304fail:
7e97de0b 4305 mem_cgroup_id_remove(memcg);
0b8f73e1 4306 mem_cgroup_free(memcg);
ea3a9645 4307 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4308}
4309
73f576c0 4310static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4311{
58fa2a55
VD
4312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4313
73f576c0 4314 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4315 atomic_set(&memcg->id.ref, 1);
73f576c0 4316 css_get(css);
2f7dd7a4 4317 return 0;
8cdea7c0
BS
4318}
4319
eb95419b 4320static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4321{
eb95419b 4322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4323 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4324
4325 /*
4326 * Unregister events and notify userspace.
4327 * Notify userspace about cgroup removing only after rmdir of cgroup
4328 * directory to avoid race between userspace and kernelspace.
4329 */
fba94807
TH
4330 spin_lock(&memcg->event_list_lock);
4331 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4332 list_del_init(&event->list);
4333 schedule_work(&event->remove);
4334 }
fba94807 4335 spin_unlock(&memcg->event_list_lock);
ec64f515 4336
bf8d5d52 4337 page_counter_set_min(&memcg->memory, 0);
23067153 4338 page_counter_set_low(&memcg->memory, 0);
63677c74 4339
567e9ab2 4340 memcg_offline_kmem(memcg);
52ebea74 4341 wb_memcg_offline(memcg);
73f576c0
JW
4342
4343 mem_cgroup_id_put(memcg);
df878fb0
KH
4344}
4345
6df38689
VD
4346static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4347{
4348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349
4350 invalidate_reclaim_iterators(memcg);
4351}
4352
eb95419b 4353static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4354{
eb95419b 4355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4356
f7e1cb6e 4357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4358 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4359
0db15298 4360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4361 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4362
0b8f73e1
JW
4363 vmpressure_cleanup(&memcg->vmpressure);
4364 cancel_work_sync(&memcg->high_work);
4365 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4366 memcg_free_kmem(memcg);
0b8f73e1 4367 mem_cgroup_free(memcg);
8cdea7c0
BS
4368}
4369
1ced953b
TH
4370/**
4371 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4372 * @css: the target css
4373 *
4374 * Reset the states of the mem_cgroup associated with @css. This is
4375 * invoked when the userland requests disabling on the default hierarchy
4376 * but the memcg is pinned through dependency. The memcg should stop
4377 * applying policies and should revert to the vanilla state as it may be
4378 * made visible again.
4379 *
4380 * The current implementation only resets the essential configurations.
4381 * This needs to be expanded to cover all the visible parts.
4382 */
4383static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4384{
4385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4386
bbec2e15
RG
4387 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4388 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4389 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4390 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4391 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4392 page_counter_set_min(&memcg->memory, 0);
23067153 4393 page_counter_set_low(&memcg->memory, 0);
241994ed 4394 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4395 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4396 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4397}
4398
02491447 4399#ifdef CONFIG_MMU
7dc74be0 4400/* Handlers for move charge at task migration. */
854ffa8d 4401static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4402{
05b84301 4403 int ret;
9476db97 4404
d0164adc
MG
4405 /* Try a single bulk charge without reclaim first, kswapd may wake */
4406 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4407 if (!ret) {
854ffa8d 4408 mc.precharge += count;
854ffa8d
DN
4409 return ret;
4410 }
9476db97 4411
3674534b 4412 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4413 while (count--) {
3674534b 4414 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4415 if (ret)
38c5d72f 4416 return ret;
854ffa8d 4417 mc.precharge++;
9476db97 4418 cond_resched();
854ffa8d 4419 }
9476db97 4420 return 0;
4ffef5fe
DN
4421}
4422
4ffef5fe
DN
4423union mc_target {
4424 struct page *page;
02491447 4425 swp_entry_t ent;
4ffef5fe
DN
4426};
4427
4ffef5fe 4428enum mc_target_type {
8d32ff84 4429 MC_TARGET_NONE = 0,
4ffef5fe 4430 MC_TARGET_PAGE,
02491447 4431 MC_TARGET_SWAP,
c733a828 4432 MC_TARGET_DEVICE,
4ffef5fe
DN
4433};
4434
90254a65
DN
4435static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4436 unsigned long addr, pte_t ptent)
4ffef5fe 4437{
c733a828 4438 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4439
90254a65
DN
4440 if (!page || !page_mapped(page))
4441 return NULL;
4442 if (PageAnon(page)) {
1dfab5ab 4443 if (!(mc.flags & MOVE_ANON))
90254a65 4444 return NULL;
1dfab5ab
JW
4445 } else {
4446 if (!(mc.flags & MOVE_FILE))
4447 return NULL;
4448 }
90254a65
DN
4449 if (!get_page_unless_zero(page))
4450 return NULL;
4451
4452 return page;
4453}
4454
c733a828 4455#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4456static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4457 pte_t ptent, swp_entry_t *entry)
90254a65 4458{
90254a65
DN
4459 struct page *page = NULL;
4460 swp_entry_t ent = pte_to_swp_entry(ptent);
4461
1dfab5ab 4462 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4463 return NULL;
c733a828
JG
4464
4465 /*
4466 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4467 * a device and because they are not accessible by CPU they are store
4468 * as special swap entry in the CPU page table.
4469 */
4470 if (is_device_private_entry(ent)) {
4471 page = device_private_entry_to_page(ent);
4472 /*
4473 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4474 * a refcount of 1 when free (unlike normal page)
4475 */
4476 if (!page_ref_add_unless(page, 1, 1))
4477 return NULL;
4478 return page;
4479 }
4480
4b91355e
KH
4481 /*
4482 * Because lookup_swap_cache() updates some statistics counter,
4483 * we call find_get_page() with swapper_space directly.
4484 */
f6ab1f7f 4485 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4486 if (do_memsw_account())
90254a65
DN
4487 entry->val = ent.val;
4488
4489 return page;
4490}
4b91355e
KH
4491#else
4492static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4493 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4494{
4495 return NULL;
4496}
4497#endif
90254a65 4498
87946a72
DN
4499static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4501{
4502 struct page *page = NULL;
87946a72
DN
4503 struct address_space *mapping;
4504 pgoff_t pgoff;
4505
4506 if (!vma->vm_file) /* anonymous vma */
4507 return NULL;
1dfab5ab 4508 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4509 return NULL;
4510
87946a72 4511 mapping = vma->vm_file->f_mapping;
0661a336 4512 pgoff = linear_page_index(vma, addr);
87946a72
DN
4513
4514 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4515#ifdef CONFIG_SWAP
4516 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4517 if (shmem_mapping(mapping)) {
4518 page = find_get_entry(mapping, pgoff);
4519 if (radix_tree_exceptional_entry(page)) {
4520 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4521 if (do_memsw_account())
139b6a6f 4522 *entry = swp;
f6ab1f7f
HY
4523 page = find_get_page(swap_address_space(swp),
4524 swp_offset(swp));
139b6a6f
JW
4525 }
4526 } else
4527 page = find_get_page(mapping, pgoff);
4528#else
4529 page = find_get_page(mapping, pgoff);
aa3b1895 4530#endif
87946a72
DN
4531 return page;
4532}
4533
b1b0deab
CG
4534/**
4535 * mem_cgroup_move_account - move account of the page
4536 * @page: the page
25843c2b 4537 * @compound: charge the page as compound or small page
b1b0deab
CG
4538 * @from: mem_cgroup which the page is moved from.
4539 * @to: mem_cgroup which the page is moved to. @from != @to.
4540 *
3ac808fd 4541 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4542 *
4543 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544 * from old cgroup.
4545 */
4546static int mem_cgroup_move_account(struct page *page,
f627c2f5 4547 bool compound,
b1b0deab
CG
4548 struct mem_cgroup *from,
4549 struct mem_cgroup *to)
4550{
4551 unsigned long flags;
f627c2f5 4552 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4553 int ret;
c4843a75 4554 bool anon;
b1b0deab
CG
4555
4556 VM_BUG_ON(from == to);
4557 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4558 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4559
4560 /*
6a93ca8f 4561 * Prevent mem_cgroup_migrate() from looking at
45637bab 4562 * page->mem_cgroup of its source page while we change it.
b1b0deab 4563 */
f627c2f5 4564 ret = -EBUSY;
b1b0deab
CG
4565 if (!trylock_page(page))
4566 goto out;
4567
4568 ret = -EINVAL;
4569 if (page->mem_cgroup != from)
4570 goto out_unlock;
4571
c4843a75
GT
4572 anon = PageAnon(page);
4573
b1b0deab
CG
4574 spin_lock_irqsave(&from->move_lock, flags);
4575
c4843a75 4576 if (!anon && page_mapped(page)) {
c9019e9b
JW
4577 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4578 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4579 }
4580
c4843a75
GT
4581 /*
4582 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4583 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4584 * So mapping should be stable for dirty pages.
4585 */
4586 if (!anon && PageDirty(page)) {
4587 struct address_space *mapping = page_mapping(page);
4588
4589 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4590 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4591 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4592 }
4593 }
4594
b1b0deab 4595 if (PageWriteback(page)) {
c9019e9b
JW
4596 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4597 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4598 }
4599
4600 /*
4601 * It is safe to change page->mem_cgroup here because the page
4602 * is referenced, charged, and isolated - we can't race with
4603 * uncharging, charging, migration, or LRU putback.
4604 */
4605
4606 /* caller should have done css_get */
4607 page->mem_cgroup = to;
4608 spin_unlock_irqrestore(&from->move_lock, flags);
4609
4610 ret = 0;
4611
4612 local_irq_disable();
f627c2f5 4613 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4614 memcg_check_events(to, page);
f627c2f5 4615 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4616 memcg_check_events(from, page);
4617 local_irq_enable();
4618out_unlock:
4619 unlock_page(page);
4620out:
4621 return ret;
4622}
4623
7cf7806c
LR
4624/**
4625 * get_mctgt_type - get target type of moving charge
4626 * @vma: the vma the pte to be checked belongs
4627 * @addr: the address corresponding to the pte to be checked
4628 * @ptent: the pte to be checked
4629 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4630 *
4631 * Returns
4632 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4633 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4634 * move charge. if @target is not NULL, the page is stored in target->page
4635 * with extra refcnt got(Callers should handle it).
4636 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4637 * target for charge migration. if @target is not NULL, the entry is stored
4638 * in target->ent.
df6ad698
JG
4639 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4640 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4641 * For now we such page is charge like a regular page would be as for all
4642 * intent and purposes it is just special memory taking the place of a
4643 * regular page.
c733a828
JG
4644 *
4645 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4646 *
4647 * Called with pte lock held.
4648 */
4649
8d32ff84 4650static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4651 unsigned long addr, pte_t ptent, union mc_target *target)
4652{
4653 struct page *page = NULL;
8d32ff84 4654 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4655 swp_entry_t ent = { .val = 0 };
4656
4657 if (pte_present(ptent))
4658 page = mc_handle_present_pte(vma, addr, ptent);
4659 else if (is_swap_pte(ptent))
48406ef8 4660 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4661 else if (pte_none(ptent))
87946a72 4662 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4663
4664 if (!page && !ent.val)
8d32ff84 4665 return ret;
02491447 4666 if (page) {
02491447 4667 /*
0a31bc97 4668 * Do only loose check w/o serialization.
1306a85a 4669 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4670 * not under LRU exclusion.
02491447 4671 */
1306a85a 4672 if (page->mem_cgroup == mc.from) {
02491447 4673 ret = MC_TARGET_PAGE;
df6ad698
JG
4674 if (is_device_private_page(page) ||
4675 is_device_public_page(page))
c733a828 4676 ret = MC_TARGET_DEVICE;
02491447
DN
4677 if (target)
4678 target->page = page;
4679 }
4680 if (!ret || !target)
4681 put_page(page);
4682 }
3e14a57b
HY
4683 /*
4684 * There is a swap entry and a page doesn't exist or isn't charged.
4685 * But we cannot move a tail-page in a THP.
4686 */
4687 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4688 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4689 ret = MC_TARGET_SWAP;
4690 if (target)
4691 target->ent = ent;
4ffef5fe 4692 }
4ffef5fe
DN
4693 return ret;
4694}
4695
12724850
NH
4696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4697/*
d6810d73
HY
4698 * We don't consider PMD mapped swapping or file mapped pages because THP does
4699 * not support them for now.
12724850
NH
4700 * Caller should make sure that pmd_trans_huge(pmd) is true.
4701 */
4702static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4703 unsigned long addr, pmd_t pmd, union mc_target *target)
4704{
4705 struct page *page = NULL;
12724850
NH
4706 enum mc_target_type ret = MC_TARGET_NONE;
4707
84c3fc4e
ZY
4708 if (unlikely(is_swap_pmd(pmd))) {
4709 VM_BUG_ON(thp_migration_supported() &&
4710 !is_pmd_migration_entry(pmd));
4711 return ret;
4712 }
12724850 4713 page = pmd_page(pmd);
309381fe 4714 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4715 if (!(mc.flags & MOVE_ANON))
12724850 4716 return ret;
1306a85a 4717 if (page->mem_cgroup == mc.from) {
12724850
NH
4718 ret = MC_TARGET_PAGE;
4719 if (target) {
4720 get_page(page);
4721 target->page = page;
4722 }
4723 }
4724 return ret;
4725}
4726#else
4727static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4728 unsigned long addr, pmd_t pmd, union mc_target *target)
4729{
4730 return MC_TARGET_NONE;
4731}
4732#endif
4733
4ffef5fe
DN
4734static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4735 unsigned long addr, unsigned long end,
4736 struct mm_walk *walk)
4737{
26bcd64a 4738 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4739 pte_t *pte;
4740 spinlock_t *ptl;
4741
b6ec57f4
KS
4742 ptl = pmd_trans_huge_lock(pmd, vma);
4743 if (ptl) {
c733a828
JG
4744 /*
4745 * Note their can not be MC_TARGET_DEVICE for now as we do not
4746 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4747 * MEMORY_DEVICE_PRIVATE but this might change.
4748 */
12724850
NH
4749 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4750 mc.precharge += HPAGE_PMD_NR;
bf929152 4751 spin_unlock(ptl);
1a5a9906 4752 return 0;
12724850 4753 }
03319327 4754
45f83cef
AA
4755 if (pmd_trans_unstable(pmd))
4756 return 0;
4ffef5fe
DN
4757 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4758 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4759 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4760 mc.precharge++; /* increment precharge temporarily */
4761 pte_unmap_unlock(pte - 1, ptl);
4762 cond_resched();
4763
7dc74be0
DN
4764 return 0;
4765}
4766
4ffef5fe
DN
4767static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4768{
4769 unsigned long precharge;
4ffef5fe 4770
26bcd64a
NH
4771 struct mm_walk mem_cgroup_count_precharge_walk = {
4772 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4773 .mm = mm,
4774 };
dfe076b0 4775 down_read(&mm->mmap_sem);
0247f3f4
JM
4776 walk_page_range(0, mm->highest_vm_end,
4777 &mem_cgroup_count_precharge_walk);
dfe076b0 4778 up_read(&mm->mmap_sem);
4ffef5fe
DN
4779
4780 precharge = mc.precharge;
4781 mc.precharge = 0;
4782
4783 return precharge;
4784}
4785
4ffef5fe
DN
4786static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4787{
dfe076b0
DN
4788 unsigned long precharge = mem_cgroup_count_precharge(mm);
4789
4790 VM_BUG_ON(mc.moving_task);
4791 mc.moving_task = current;
4792 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4793}
4794
dfe076b0
DN
4795/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4796static void __mem_cgroup_clear_mc(void)
4ffef5fe 4797{
2bd9bb20
KH
4798 struct mem_cgroup *from = mc.from;
4799 struct mem_cgroup *to = mc.to;
4800
4ffef5fe 4801 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4802 if (mc.precharge) {
00501b53 4803 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4804 mc.precharge = 0;
4805 }
4806 /*
4807 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4808 * we must uncharge here.
4809 */
4810 if (mc.moved_charge) {
00501b53 4811 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4812 mc.moved_charge = 0;
4ffef5fe 4813 }
483c30b5
DN
4814 /* we must fixup refcnts and charges */
4815 if (mc.moved_swap) {
483c30b5 4816 /* uncharge swap account from the old cgroup */
ce00a967 4817 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4818 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4819
615d66c3
VD
4820 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4821
05b84301 4822 /*
3e32cb2e
JW
4823 * we charged both to->memory and to->memsw, so we
4824 * should uncharge to->memory.
05b84301 4825 */
ce00a967 4826 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4827 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4828
615d66c3
VD
4829 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4830 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4831
483c30b5
DN
4832 mc.moved_swap = 0;
4833 }
dfe076b0
DN
4834 memcg_oom_recover(from);
4835 memcg_oom_recover(to);
4836 wake_up_all(&mc.waitq);
4837}
4838
4839static void mem_cgroup_clear_mc(void)
4840{
264a0ae1
TH
4841 struct mm_struct *mm = mc.mm;
4842
dfe076b0
DN
4843 /*
4844 * we must clear moving_task before waking up waiters at the end of
4845 * task migration.
4846 */
4847 mc.moving_task = NULL;
4848 __mem_cgroup_clear_mc();
2bd9bb20 4849 spin_lock(&mc.lock);
4ffef5fe
DN
4850 mc.from = NULL;
4851 mc.to = NULL;
264a0ae1 4852 mc.mm = NULL;
2bd9bb20 4853 spin_unlock(&mc.lock);
264a0ae1
TH
4854
4855 mmput(mm);
4ffef5fe
DN
4856}
4857
1f7dd3e5 4858static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4859{
1f7dd3e5 4860 struct cgroup_subsys_state *css;
eed67d75 4861 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4862 struct mem_cgroup *from;
4530eddb 4863 struct task_struct *leader, *p;
9f2115f9 4864 struct mm_struct *mm;
1dfab5ab 4865 unsigned long move_flags;
9f2115f9 4866 int ret = 0;
7dc74be0 4867
1f7dd3e5
TH
4868 /* charge immigration isn't supported on the default hierarchy */
4869 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4870 return 0;
4871
4530eddb
TH
4872 /*
4873 * Multi-process migrations only happen on the default hierarchy
4874 * where charge immigration is not used. Perform charge
4875 * immigration if @tset contains a leader and whine if there are
4876 * multiple.
4877 */
4878 p = NULL;
1f7dd3e5 4879 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4880 WARN_ON_ONCE(p);
4881 p = leader;
1f7dd3e5 4882 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4883 }
4884 if (!p)
4885 return 0;
4886
1f7dd3e5
TH
4887 /*
4888 * We are now commited to this value whatever it is. Changes in this
4889 * tunable will only affect upcoming migrations, not the current one.
4890 * So we need to save it, and keep it going.
4891 */
4892 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4893 if (!move_flags)
4894 return 0;
4895
9f2115f9
TH
4896 from = mem_cgroup_from_task(p);
4897
4898 VM_BUG_ON(from == memcg);
4899
4900 mm = get_task_mm(p);
4901 if (!mm)
4902 return 0;
4903 /* We move charges only when we move a owner of the mm */
4904 if (mm->owner == p) {
4905 VM_BUG_ON(mc.from);
4906 VM_BUG_ON(mc.to);
4907 VM_BUG_ON(mc.precharge);
4908 VM_BUG_ON(mc.moved_charge);
4909 VM_BUG_ON(mc.moved_swap);
4910
4911 spin_lock(&mc.lock);
264a0ae1 4912 mc.mm = mm;
9f2115f9
TH
4913 mc.from = from;
4914 mc.to = memcg;
4915 mc.flags = move_flags;
4916 spin_unlock(&mc.lock);
4917 /* We set mc.moving_task later */
4918
4919 ret = mem_cgroup_precharge_mc(mm);
4920 if (ret)
4921 mem_cgroup_clear_mc();
264a0ae1
TH
4922 } else {
4923 mmput(mm);
7dc74be0
DN
4924 }
4925 return ret;
4926}
4927
1f7dd3e5 4928static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4929{
4e2f245d
JW
4930 if (mc.to)
4931 mem_cgroup_clear_mc();
7dc74be0
DN
4932}
4933
4ffef5fe
DN
4934static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4935 unsigned long addr, unsigned long end,
4936 struct mm_walk *walk)
7dc74be0 4937{
4ffef5fe 4938 int ret = 0;
26bcd64a 4939 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4940 pte_t *pte;
4941 spinlock_t *ptl;
12724850
NH
4942 enum mc_target_type target_type;
4943 union mc_target target;
4944 struct page *page;
4ffef5fe 4945
b6ec57f4
KS
4946 ptl = pmd_trans_huge_lock(pmd, vma);
4947 if (ptl) {
62ade86a 4948 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4949 spin_unlock(ptl);
12724850
NH
4950 return 0;
4951 }
4952 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4953 if (target_type == MC_TARGET_PAGE) {
4954 page = target.page;
4955 if (!isolate_lru_page(page)) {
f627c2f5 4956 if (!mem_cgroup_move_account(page, true,
1306a85a 4957 mc.from, mc.to)) {
12724850
NH
4958 mc.precharge -= HPAGE_PMD_NR;
4959 mc.moved_charge += HPAGE_PMD_NR;
4960 }
4961 putback_lru_page(page);
4962 }
4963 put_page(page);
c733a828
JG
4964 } else if (target_type == MC_TARGET_DEVICE) {
4965 page = target.page;
4966 if (!mem_cgroup_move_account(page, true,
4967 mc.from, mc.to)) {
4968 mc.precharge -= HPAGE_PMD_NR;
4969 mc.moved_charge += HPAGE_PMD_NR;
4970 }
4971 put_page(page);
12724850 4972 }
bf929152 4973 spin_unlock(ptl);
1a5a9906 4974 return 0;
12724850
NH
4975 }
4976
45f83cef
AA
4977 if (pmd_trans_unstable(pmd))
4978 return 0;
4ffef5fe
DN
4979retry:
4980 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4981 for (; addr != end; addr += PAGE_SIZE) {
4982 pte_t ptent = *(pte++);
c733a828 4983 bool device = false;
02491447 4984 swp_entry_t ent;
4ffef5fe
DN
4985
4986 if (!mc.precharge)
4987 break;
4988
8d32ff84 4989 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
4990 case MC_TARGET_DEVICE:
4991 device = true;
4992 /* fall through */
4ffef5fe
DN
4993 case MC_TARGET_PAGE:
4994 page = target.page;
53f9263b
KS
4995 /*
4996 * We can have a part of the split pmd here. Moving it
4997 * can be done but it would be too convoluted so simply
4998 * ignore such a partial THP and keep it in original
4999 * memcg. There should be somebody mapping the head.
5000 */
5001 if (PageTransCompound(page))
5002 goto put;
c733a828 5003 if (!device && isolate_lru_page(page))
4ffef5fe 5004 goto put;
f627c2f5
KS
5005 if (!mem_cgroup_move_account(page, false,
5006 mc.from, mc.to)) {
4ffef5fe 5007 mc.precharge--;
854ffa8d
DN
5008 /* we uncharge from mc.from later. */
5009 mc.moved_charge++;
4ffef5fe 5010 }
c733a828
JG
5011 if (!device)
5012 putback_lru_page(page);
8d32ff84 5013put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5014 put_page(page);
5015 break;
02491447
DN
5016 case MC_TARGET_SWAP:
5017 ent = target.ent;
e91cbb42 5018 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5019 mc.precharge--;
483c30b5
DN
5020 /* we fixup refcnts and charges later. */
5021 mc.moved_swap++;
5022 }
02491447 5023 break;
4ffef5fe
DN
5024 default:
5025 break;
5026 }
5027 }
5028 pte_unmap_unlock(pte - 1, ptl);
5029 cond_resched();
5030
5031 if (addr != end) {
5032 /*
5033 * We have consumed all precharges we got in can_attach().
5034 * We try charge one by one, but don't do any additional
5035 * charges to mc.to if we have failed in charge once in attach()
5036 * phase.
5037 */
854ffa8d 5038 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5039 if (!ret)
5040 goto retry;
5041 }
5042
5043 return ret;
5044}
5045
264a0ae1 5046static void mem_cgroup_move_charge(void)
4ffef5fe 5047{
26bcd64a
NH
5048 struct mm_walk mem_cgroup_move_charge_walk = {
5049 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5050 .mm = mc.mm,
26bcd64a 5051 };
4ffef5fe
DN
5052
5053 lru_add_drain_all();
312722cb 5054 /*
81f8c3a4
JW
5055 * Signal lock_page_memcg() to take the memcg's move_lock
5056 * while we're moving its pages to another memcg. Then wait
5057 * for already started RCU-only updates to finish.
312722cb
JW
5058 */
5059 atomic_inc(&mc.from->moving_account);
5060 synchronize_rcu();
dfe076b0 5061retry:
264a0ae1 5062 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5063 /*
5064 * Someone who are holding the mmap_sem might be waiting in
5065 * waitq. So we cancel all extra charges, wake up all waiters,
5066 * and retry. Because we cancel precharges, we might not be able
5067 * to move enough charges, but moving charge is a best-effort
5068 * feature anyway, so it wouldn't be a big problem.
5069 */
5070 __mem_cgroup_clear_mc();
5071 cond_resched();
5072 goto retry;
5073 }
26bcd64a
NH
5074 /*
5075 * When we have consumed all precharges and failed in doing
5076 * additional charge, the page walk just aborts.
5077 */
0247f3f4
JM
5078 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5079
264a0ae1 5080 up_read(&mc.mm->mmap_sem);
312722cb 5081 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5082}
5083
264a0ae1 5084static void mem_cgroup_move_task(void)
67e465a7 5085{
264a0ae1
TH
5086 if (mc.to) {
5087 mem_cgroup_move_charge();
a433658c 5088 mem_cgroup_clear_mc();
264a0ae1 5089 }
67e465a7 5090}
5cfb80a7 5091#else /* !CONFIG_MMU */
1f7dd3e5 5092static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5093{
5094 return 0;
5095}
1f7dd3e5 5096static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5097{
5098}
264a0ae1 5099static void mem_cgroup_move_task(void)
5cfb80a7
DN
5100{
5101}
5102#endif
67e465a7 5103
f00baae7
TH
5104/*
5105 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5106 * to verify whether we're attached to the default hierarchy on each mount
5107 * attempt.
f00baae7 5108 */
eb95419b 5109static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5110{
5111 /*
aa6ec29b 5112 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5113 * guarantees that @root doesn't have any children, so turning it
5114 * on for the root memcg is enough.
5115 */
9e10a130 5116 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5117 root_mem_cgroup->use_hierarchy = true;
5118 else
5119 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5120}
5121
241994ed
JW
5122static u64 memory_current_read(struct cgroup_subsys_state *css,
5123 struct cftype *cft)
5124{
f5fc3c5d
JW
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5126
5127 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5128}
5129
bf8d5d52
RG
5130static int memory_min_show(struct seq_file *m, void *v)
5131{
5132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5133 unsigned long min = READ_ONCE(memcg->memory.min);
5134
5135 if (min == PAGE_COUNTER_MAX)
5136 seq_puts(m, "max\n");
5137 else
5138 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5139
5140 return 0;
5141}
5142
5143static ssize_t memory_min_write(struct kernfs_open_file *of,
5144 char *buf, size_t nbytes, loff_t off)
5145{
5146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5147 unsigned long min;
5148 int err;
5149
5150 buf = strstrip(buf);
5151 err = page_counter_memparse(buf, "max", &min);
5152 if (err)
5153 return err;
5154
5155 page_counter_set_min(&memcg->memory, min);
5156
5157 return nbytes;
5158}
5159
241994ed
JW
5160static int memory_low_show(struct seq_file *m, void *v)
5161{
5162 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5163 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5164
5165 if (low == PAGE_COUNTER_MAX)
d2973697 5166 seq_puts(m, "max\n");
241994ed
JW
5167 else
5168 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5169
5170 return 0;
5171}
5172
5173static ssize_t memory_low_write(struct kernfs_open_file *of,
5174 char *buf, size_t nbytes, loff_t off)
5175{
5176 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5177 unsigned long low;
5178 int err;
5179
5180 buf = strstrip(buf);
d2973697 5181 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5182 if (err)
5183 return err;
5184
23067153 5185 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5186
5187 return nbytes;
5188}
5189
5190static int memory_high_show(struct seq_file *m, void *v)
5191{
5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5193 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5194
5195 if (high == PAGE_COUNTER_MAX)
d2973697 5196 seq_puts(m, "max\n");
241994ed
JW
5197 else
5198 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5199
5200 return 0;
5201}
5202
5203static ssize_t memory_high_write(struct kernfs_open_file *of,
5204 char *buf, size_t nbytes, loff_t off)
5205{
5206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5207 unsigned long nr_pages;
241994ed
JW
5208 unsigned long high;
5209 int err;
5210
5211 buf = strstrip(buf);
d2973697 5212 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5213 if (err)
5214 return err;
5215
5216 memcg->high = high;
5217
588083bb
JW
5218 nr_pages = page_counter_read(&memcg->memory);
5219 if (nr_pages > high)
5220 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5221 GFP_KERNEL, true);
5222
2529bb3a 5223 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5224 return nbytes;
5225}
5226
5227static int memory_max_show(struct seq_file *m, void *v)
5228{
5229 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5230 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5231
5232 if (max == PAGE_COUNTER_MAX)
d2973697 5233 seq_puts(m, "max\n");
241994ed
JW
5234 else
5235 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5236
5237 return 0;
5238}
5239
5240static ssize_t memory_max_write(struct kernfs_open_file *of,
5241 char *buf, size_t nbytes, loff_t off)
5242{
5243 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5244 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5245 bool drained = false;
241994ed
JW
5246 unsigned long max;
5247 int err;
5248
5249 buf = strstrip(buf);
d2973697 5250 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5251 if (err)
5252 return err;
5253
bbec2e15 5254 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5255
5256 for (;;) {
5257 unsigned long nr_pages = page_counter_read(&memcg->memory);
5258
5259 if (nr_pages <= max)
5260 break;
5261
5262 if (signal_pending(current)) {
5263 err = -EINTR;
5264 break;
5265 }
5266
5267 if (!drained) {
5268 drain_all_stock(memcg);
5269 drained = true;
5270 continue;
5271 }
5272
5273 if (nr_reclaims) {
5274 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5275 GFP_KERNEL, true))
5276 nr_reclaims--;
5277 continue;
5278 }
5279
e27be240 5280 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5281 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5282 break;
5283 }
241994ed 5284
2529bb3a 5285 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5286 return nbytes;
5287}
5288
5289static int memory_events_show(struct seq_file *m, void *v)
5290{
5291 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5292
e27be240
JW
5293 seq_printf(m, "low %lu\n",
5294 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5295 seq_printf(m, "high %lu\n",
5296 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5297 seq_printf(m, "max %lu\n",
5298 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5299 seq_printf(m, "oom %lu\n",
5300 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5301 seq_printf(m, "oom_kill %lu\n",
5302 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5303
5304 return 0;
5305}
5306
587d9f72
JW
5307static int memory_stat_show(struct seq_file *m, void *v)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73 5310 unsigned long stat[MEMCG_NR_STAT];
e27be240 5311 unsigned long events[NR_VM_EVENT_ITEMS];
587d9f72
JW
5312 int i;
5313
5314 /*
5315 * Provide statistics on the state of the memory subsystem as
5316 * well as cumulative event counters that show past behavior.
5317 *
5318 * This list is ordered following a combination of these gradients:
5319 * 1) generic big picture -> specifics and details
5320 * 2) reflecting userspace activity -> reflecting kernel heuristics
5321 *
5322 * Current memory state:
5323 */
5324
72b54e73
VD
5325 tree_stat(memcg, stat);
5326 tree_events(memcg, events);
5327
587d9f72 5328 seq_printf(m, "anon %llu\n",
71cd3113 5329 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5330 seq_printf(m, "file %llu\n",
71cd3113 5331 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5332 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5333 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5334 seq_printf(m, "slab %llu\n",
32049296
JW
5335 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5336 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5337 seq_printf(m, "sock %llu\n",
72b54e73 5338 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5339
9a4caf1e 5340 seq_printf(m, "shmem %llu\n",
71cd3113 5341 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5342 seq_printf(m, "file_mapped %llu\n",
71cd3113 5343 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5344 seq_printf(m, "file_dirty %llu\n",
71cd3113 5345 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5346 seq_printf(m, "file_writeback %llu\n",
71cd3113 5347 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5348
5349 for (i = 0; i < NR_LRU_LISTS; i++) {
5350 struct mem_cgroup *mi;
5351 unsigned long val = 0;
5352
5353 for_each_mem_cgroup_tree(mi, memcg)
5354 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5355 seq_printf(m, "%s %llu\n",
5356 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5357 }
5358
27ee57c9 5359 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5360 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5361 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5362 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5363
587d9f72
JW
5364 /* Accumulated memory events */
5365
df0e53d0
JW
5366 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5367 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5368
2262185c
RG
5369 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5370 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5371 events[PGSCAN_DIRECT]);
5372 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5373 events[PGSTEAL_DIRECT]);
5374 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5375 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5376 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5377 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5378
2a2e4885 5379 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5380 stat[WORKINGSET_REFAULT]);
2a2e4885 5381 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5382 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5383 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5384 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5385
587d9f72
JW
5386 return 0;
5387}
5388
241994ed
JW
5389static struct cftype memory_files[] = {
5390 {
5391 .name = "current",
f5fc3c5d 5392 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5393 .read_u64 = memory_current_read,
5394 },
bf8d5d52
RG
5395 {
5396 .name = "min",
5397 .flags = CFTYPE_NOT_ON_ROOT,
5398 .seq_show = memory_min_show,
5399 .write = memory_min_write,
5400 },
241994ed
JW
5401 {
5402 .name = "low",
5403 .flags = CFTYPE_NOT_ON_ROOT,
5404 .seq_show = memory_low_show,
5405 .write = memory_low_write,
5406 },
5407 {
5408 .name = "high",
5409 .flags = CFTYPE_NOT_ON_ROOT,
5410 .seq_show = memory_high_show,
5411 .write = memory_high_write,
5412 },
5413 {
5414 .name = "max",
5415 .flags = CFTYPE_NOT_ON_ROOT,
5416 .seq_show = memory_max_show,
5417 .write = memory_max_write,
5418 },
5419 {
5420 .name = "events",
5421 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5422 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5423 .seq_show = memory_events_show,
5424 },
587d9f72
JW
5425 {
5426 .name = "stat",
5427 .flags = CFTYPE_NOT_ON_ROOT,
5428 .seq_show = memory_stat_show,
5429 },
241994ed
JW
5430 { } /* terminate */
5431};
5432
073219e9 5433struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5434 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5435 .css_online = mem_cgroup_css_online,
92fb9748 5436 .css_offline = mem_cgroup_css_offline,
6df38689 5437 .css_released = mem_cgroup_css_released,
92fb9748 5438 .css_free = mem_cgroup_css_free,
1ced953b 5439 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5440 .can_attach = mem_cgroup_can_attach,
5441 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5442 .post_attach = mem_cgroup_move_task,
f00baae7 5443 .bind = mem_cgroup_bind,
241994ed
JW
5444 .dfl_cftypes = memory_files,
5445 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5446 .early_init = 0,
8cdea7c0 5447};
c077719b 5448
241994ed 5449/**
bf8d5d52 5450 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5451 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5452 * @memcg: the memory cgroup to check
5453 *
23067153
RG
5454 * WARNING: This function is not stateless! It can only be used as part
5455 * of a top-down tree iteration, not for isolated queries.
34c81057 5456 *
bf8d5d52
RG
5457 * Returns one of the following:
5458 * MEMCG_PROT_NONE: cgroup memory is not protected
5459 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5460 * an unprotected supply of reclaimable memory from other cgroups.
5461 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5462 *
bf8d5d52 5463 * @root is exclusive; it is never protected when looked at directly
34c81057 5464 *
bf8d5d52
RG
5465 * To provide a proper hierarchical behavior, effective memory.min/low values
5466 * are used. Below is the description of how effective memory.low is calculated.
5467 * Effective memory.min values is calculated in the same way.
34c81057 5468 *
23067153
RG
5469 * Effective memory.low is always equal or less than the original memory.low.
5470 * If there is no memory.low overcommittment (which is always true for
5471 * top-level memory cgroups), these two values are equal.
5472 * Otherwise, it's a part of parent's effective memory.low,
5473 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5474 * memory.low usages, where memory.low usage is the size of actually
5475 * protected memory.
34c81057 5476 *
23067153
RG
5477 * low_usage
5478 * elow = min( memory.low, parent->elow * ------------------ ),
5479 * siblings_low_usage
34c81057 5480 *
23067153
RG
5481 * | memory.current, if memory.current < memory.low
5482 * low_usage = |
5483 | 0, otherwise.
34c81057 5484 *
23067153
RG
5485 *
5486 * Such definition of the effective memory.low provides the expected
5487 * hierarchical behavior: parent's memory.low value is limiting
5488 * children, unprotected memory is reclaimed first and cgroups,
5489 * which are not using their guarantee do not affect actual memory
5490 * distribution.
5491 *
5492 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5493 *
5494 * A A/memory.low = 2G, A/memory.current = 6G
5495 * //\\
5496 * BC DE B/memory.low = 3G B/memory.current = 2G
5497 * C/memory.low = 1G C/memory.current = 2G
5498 * D/memory.low = 0 D/memory.current = 2G
5499 * E/memory.low = 10G E/memory.current = 0
5500 *
5501 * and the memory pressure is applied, the following memory distribution
5502 * is expected (approximately):
5503 *
5504 * A/memory.current = 2G
5505 *
5506 * B/memory.current = 1.3G
5507 * C/memory.current = 0.6G
5508 * D/memory.current = 0
5509 * E/memory.current = 0
5510 *
5511 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5512 * (see propagate_protected_usage()), as well as recursive calculation of
5513 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5514 * path for each memory cgroup top-down from the reclaim,
5515 * it's possible to optimize this part, and save calculated elow
5516 * for next usage. This part is intentionally racy, but it's ok,
5517 * as memory.low is a best-effort mechanism.
241994ed 5518 */
bf8d5d52
RG
5519enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5520 struct mem_cgroup *memcg)
241994ed 5521{
23067153 5522 struct mem_cgroup *parent;
bf8d5d52
RG
5523 unsigned long emin, parent_emin;
5524 unsigned long elow, parent_elow;
5525 unsigned long usage;
23067153 5526
241994ed 5527 if (mem_cgroup_disabled())
bf8d5d52 5528 return MEMCG_PROT_NONE;
241994ed 5529
34c81057
SC
5530 if (!root)
5531 root = root_mem_cgroup;
5532 if (memcg == root)
bf8d5d52 5533 return MEMCG_PROT_NONE;
241994ed 5534
23067153 5535 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5536 if (!usage)
5537 return MEMCG_PROT_NONE;
5538
5539 emin = memcg->memory.min;
5540 elow = memcg->memory.low;
34c81057 5541
bf8d5d52 5542 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5543 /* No parent means a non-hierarchical mode on v1 memcg */
5544 if (!parent)
5545 return MEMCG_PROT_NONE;
5546
23067153
RG
5547 if (parent == root)
5548 goto exit;
5549
bf8d5d52
RG
5550 parent_emin = READ_ONCE(parent->memory.emin);
5551 emin = min(emin, parent_emin);
5552 if (emin && parent_emin) {
5553 unsigned long min_usage, siblings_min_usage;
5554
5555 min_usage = min(usage, memcg->memory.min);
5556 siblings_min_usage = atomic_long_read(
5557 &parent->memory.children_min_usage);
5558
5559 if (min_usage && siblings_min_usage)
5560 emin = min(emin, parent_emin * min_usage /
5561 siblings_min_usage);
5562 }
5563
23067153
RG
5564 parent_elow = READ_ONCE(parent->memory.elow);
5565 elow = min(elow, parent_elow);
bf8d5d52
RG
5566 if (elow && parent_elow) {
5567 unsigned long low_usage, siblings_low_usage;
23067153 5568
bf8d5d52
RG
5569 low_usage = min(usage, memcg->memory.low);
5570 siblings_low_usage = atomic_long_read(
5571 &parent->memory.children_low_usage);
23067153 5572
bf8d5d52
RG
5573 if (low_usage && siblings_low_usage)
5574 elow = min(elow, parent_elow * low_usage /
5575 siblings_low_usage);
5576 }
23067153 5577
23067153 5578exit:
bf8d5d52 5579 memcg->memory.emin = emin;
23067153 5580 memcg->memory.elow = elow;
bf8d5d52
RG
5581
5582 if (usage <= emin)
5583 return MEMCG_PROT_MIN;
5584 else if (usage <= elow)
5585 return MEMCG_PROT_LOW;
5586 else
5587 return MEMCG_PROT_NONE;
241994ed
JW
5588}
5589
00501b53
JW
5590/**
5591 * mem_cgroup_try_charge - try charging a page
5592 * @page: page to charge
5593 * @mm: mm context of the victim
5594 * @gfp_mask: reclaim mode
5595 * @memcgp: charged memcg return
25843c2b 5596 * @compound: charge the page as compound or small page
00501b53
JW
5597 *
5598 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5599 * pages according to @gfp_mask if necessary.
5600 *
5601 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5602 * Otherwise, an error code is returned.
5603 *
5604 * After page->mapping has been set up, the caller must finalize the
5605 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5606 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5607 */
5608int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5609 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5610 bool compound)
00501b53
JW
5611{
5612 struct mem_cgroup *memcg = NULL;
f627c2f5 5613 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5614 int ret = 0;
5615
5616 if (mem_cgroup_disabled())
5617 goto out;
5618
5619 if (PageSwapCache(page)) {
00501b53
JW
5620 /*
5621 * Every swap fault against a single page tries to charge the
5622 * page, bail as early as possible. shmem_unuse() encounters
5623 * already charged pages, too. The USED bit is protected by
5624 * the page lock, which serializes swap cache removal, which
5625 * in turn serializes uncharging.
5626 */
e993d905 5627 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5628 if (compound_head(page)->mem_cgroup)
00501b53 5629 goto out;
e993d905 5630
37e84351 5631 if (do_swap_account) {
e993d905
VD
5632 swp_entry_t ent = { .val = page_private(page), };
5633 unsigned short id = lookup_swap_cgroup_id(ent);
5634
5635 rcu_read_lock();
5636 memcg = mem_cgroup_from_id(id);
5637 if (memcg && !css_tryget_online(&memcg->css))
5638 memcg = NULL;
5639 rcu_read_unlock();
5640 }
00501b53
JW
5641 }
5642
00501b53
JW
5643 if (!memcg)
5644 memcg = get_mem_cgroup_from_mm(mm);
5645
5646 ret = try_charge(memcg, gfp_mask, nr_pages);
5647
5648 css_put(&memcg->css);
00501b53
JW
5649out:
5650 *memcgp = memcg;
5651 return ret;
5652}
5653
2cf85583
TH
5654int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5655 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5656 bool compound)
5657{
5658 struct mem_cgroup *memcg;
5659 int ret;
5660
5661 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5662 memcg = *memcgp;
5663 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5664 return ret;
5665}
5666
00501b53
JW
5667/**
5668 * mem_cgroup_commit_charge - commit a page charge
5669 * @page: page to charge
5670 * @memcg: memcg to charge the page to
5671 * @lrucare: page might be on LRU already
25843c2b 5672 * @compound: charge the page as compound or small page
00501b53
JW
5673 *
5674 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5675 * after page->mapping has been set up. This must happen atomically
5676 * as part of the page instantiation, i.e. under the page table lock
5677 * for anonymous pages, under the page lock for page and swap cache.
5678 *
5679 * In addition, the page must not be on the LRU during the commit, to
5680 * prevent racing with task migration. If it might be, use @lrucare.
5681 *
5682 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5683 */
5684void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5685 bool lrucare, bool compound)
00501b53 5686{
f627c2f5 5687 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5688
5689 VM_BUG_ON_PAGE(!page->mapping, page);
5690 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5691
5692 if (mem_cgroup_disabled())
5693 return;
5694 /*
5695 * Swap faults will attempt to charge the same page multiple
5696 * times. But reuse_swap_page() might have removed the page
5697 * from swapcache already, so we can't check PageSwapCache().
5698 */
5699 if (!memcg)
5700 return;
5701
6abb5a86
JW
5702 commit_charge(page, memcg, lrucare);
5703
6abb5a86 5704 local_irq_disable();
f627c2f5 5705 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5706 memcg_check_events(memcg, page);
5707 local_irq_enable();
00501b53 5708
7941d214 5709 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5710 swp_entry_t entry = { .val = page_private(page) };
5711 /*
5712 * The swap entry might not get freed for a long time,
5713 * let's not wait for it. The page already received a
5714 * memory+swap charge, drop the swap entry duplicate.
5715 */
38d8b4e6 5716 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5717 }
5718}
5719
5720/**
5721 * mem_cgroup_cancel_charge - cancel a page charge
5722 * @page: page to charge
5723 * @memcg: memcg to charge the page to
25843c2b 5724 * @compound: charge the page as compound or small page
00501b53
JW
5725 *
5726 * Cancel a charge transaction started by mem_cgroup_try_charge().
5727 */
f627c2f5
KS
5728void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5729 bool compound)
00501b53 5730{
f627c2f5 5731 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5732
5733 if (mem_cgroup_disabled())
5734 return;
5735 /*
5736 * Swap faults will attempt to charge the same page multiple
5737 * times. But reuse_swap_page() might have removed the page
5738 * from swapcache already, so we can't check PageSwapCache().
5739 */
5740 if (!memcg)
5741 return;
5742
00501b53
JW
5743 cancel_charge(memcg, nr_pages);
5744}
5745
a9d5adee
JG
5746struct uncharge_gather {
5747 struct mem_cgroup *memcg;
5748 unsigned long pgpgout;
5749 unsigned long nr_anon;
5750 unsigned long nr_file;
5751 unsigned long nr_kmem;
5752 unsigned long nr_huge;
5753 unsigned long nr_shmem;
5754 struct page *dummy_page;
5755};
5756
5757static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5758{
a9d5adee
JG
5759 memset(ug, 0, sizeof(*ug));
5760}
5761
5762static void uncharge_batch(const struct uncharge_gather *ug)
5763{
5764 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5765 unsigned long flags;
5766
a9d5adee
JG
5767 if (!mem_cgroup_is_root(ug->memcg)) {
5768 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5769 if (do_memsw_account())
a9d5adee
JG
5770 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5771 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5772 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5773 memcg_oom_recover(ug->memcg);
ce00a967 5774 }
747db954
JW
5775
5776 local_irq_save(flags);
c9019e9b
JW
5777 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5778 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5779 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5780 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5781 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5782 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5783 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5784 local_irq_restore(flags);
e8ea14cc 5785
a9d5adee
JG
5786 if (!mem_cgroup_is_root(ug->memcg))
5787 css_put_many(&ug->memcg->css, nr_pages);
5788}
5789
5790static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5791{
5792 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5793 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5794 !PageHWPoison(page) , page);
a9d5adee
JG
5795
5796 if (!page->mem_cgroup)
5797 return;
5798
5799 /*
5800 * Nobody should be changing or seriously looking at
5801 * page->mem_cgroup at this point, we have fully
5802 * exclusive access to the page.
5803 */
5804
5805 if (ug->memcg != page->mem_cgroup) {
5806 if (ug->memcg) {
5807 uncharge_batch(ug);
5808 uncharge_gather_clear(ug);
5809 }
5810 ug->memcg = page->mem_cgroup;
5811 }
5812
5813 if (!PageKmemcg(page)) {
5814 unsigned int nr_pages = 1;
5815
5816 if (PageTransHuge(page)) {
5817 nr_pages <<= compound_order(page);
5818 ug->nr_huge += nr_pages;
5819 }
5820 if (PageAnon(page))
5821 ug->nr_anon += nr_pages;
5822 else {
5823 ug->nr_file += nr_pages;
5824 if (PageSwapBacked(page))
5825 ug->nr_shmem += nr_pages;
5826 }
5827 ug->pgpgout++;
5828 } else {
5829 ug->nr_kmem += 1 << compound_order(page);
5830 __ClearPageKmemcg(page);
5831 }
5832
5833 ug->dummy_page = page;
5834 page->mem_cgroup = NULL;
747db954
JW
5835}
5836
5837static void uncharge_list(struct list_head *page_list)
5838{
a9d5adee 5839 struct uncharge_gather ug;
747db954 5840 struct list_head *next;
a9d5adee
JG
5841
5842 uncharge_gather_clear(&ug);
747db954 5843
8b592656
JW
5844 /*
5845 * Note that the list can be a single page->lru; hence the
5846 * do-while loop instead of a simple list_for_each_entry().
5847 */
747db954
JW
5848 next = page_list->next;
5849 do {
a9d5adee
JG
5850 struct page *page;
5851
747db954
JW
5852 page = list_entry(next, struct page, lru);
5853 next = page->lru.next;
5854
a9d5adee 5855 uncharge_page(page, &ug);
747db954
JW
5856 } while (next != page_list);
5857
a9d5adee
JG
5858 if (ug.memcg)
5859 uncharge_batch(&ug);
747db954
JW
5860}
5861
0a31bc97
JW
5862/**
5863 * mem_cgroup_uncharge - uncharge a page
5864 * @page: page to uncharge
5865 *
5866 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5867 * mem_cgroup_commit_charge().
5868 */
5869void mem_cgroup_uncharge(struct page *page)
5870{
a9d5adee
JG
5871 struct uncharge_gather ug;
5872
0a31bc97
JW
5873 if (mem_cgroup_disabled())
5874 return;
5875
747db954 5876 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5877 if (!page->mem_cgroup)
0a31bc97
JW
5878 return;
5879
a9d5adee
JG
5880 uncharge_gather_clear(&ug);
5881 uncharge_page(page, &ug);
5882 uncharge_batch(&ug);
747db954 5883}
0a31bc97 5884
747db954
JW
5885/**
5886 * mem_cgroup_uncharge_list - uncharge a list of page
5887 * @page_list: list of pages to uncharge
5888 *
5889 * Uncharge a list of pages previously charged with
5890 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5891 */
5892void mem_cgroup_uncharge_list(struct list_head *page_list)
5893{
5894 if (mem_cgroup_disabled())
5895 return;
0a31bc97 5896
747db954
JW
5897 if (!list_empty(page_list))
5898 uncharge_list(page_list);
0a31bc97
JW
5899}
5900
5901/**
6a93ca8f
JW
5902 * mem_cgroup_migrate - charge a page's replacement
5903 * @oldpage: currently circulating page
5904 * @newpage: replacement page
0a31bc97 5905 *
6a93ca8f
JW
5906 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5907 * be uncharged upon free.
0a31bc97
JW
5908 *
5909 * Both pages must be locked, @newpage->mapping must be set up.
5910 */
6a93ca8f 5911void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5912{
29833315 5913 struct mem_cgroup *memcg;
44b7a8d3
JW
5914 unsigned int nr_pages;
5915 bool compound;
d93c4130 5916 unsigned long flags;
0a31bc97
JW
5917
5918 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5919 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5920 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5921 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5922 newpage);
0a31bc97
JW
5923
5924 if (mem_cgroup_disabled())
5925 return;
5926
5927 /* Page cache replacement: new page already charged? */
1306a85a 5928 if (newpage->mem_cgroup)
0a31bc97
JW
5929 return;
5930
45637bab 5931 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5932 memcg = oldpage->mem_cgroup;
29833315 5933 if (!memcg)
0a31bc97
JW
5934 return;
5935
44b7a8d3
JW
5936 /* Force-charge the new page. The old one will be freed soon */
5937 compound = PageTransHuge(newpage);
5938 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5939
5940 page_counter_charge(&memcg->memory, nr_pages);
5941 if (do_memsw_account())
5942 page_counter_charge(&memcg->memsw, nr_pages);
5943 css_get_many(&memcg->css, nr_pages);
0a31bc97 5944
9cf7666a 5945 commit_charge(newpage, memcg, false);
44b7a8d3 5946
d93c4130 5947 local_irq_save(flags);
44b7a8d3
JW
5948 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5949 memcg_check_events(memcg, newpage);
d93c4130 5950 local_irq_restore(flags);
0a31bc97
JW
5951}
5952
ef12947c 5953DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5954EXPORT_SYMBOL(memcg_sockets_enabled_key);
5955
2d758073 5956void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5957{
5958 struct mem_cgroup *memcg;
5959
2d758073
JW
5960 if (!mem_cgroup_sockets_enabled)
5961 return;
5962
edbe69ef
RG
5963 /*
5964 * Socket cloning can throw us here with sk_memcg already
5965 * filled. It won't however, necessarily happen from
5966 * process context. So the test for root memcg given
5967 * the current task's memcg won't help us in this case.
5968 *
5969 * Respecting the original socket's memcg is a better
5970 * decision in this case.
5971 */
5972 if (sk->sk_memcg) {
5973 css_get(&sk->sk_memcg->css);
5974 return;
5975 }
5976
11092087
JW
5977 rcu_read_lock();
5978 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5979 if (memcg == root_mem_cgroup)
5980 goto out;
0db15298 5981 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5982 goto out;
f7e1cb6e 5983 if (css_tryget_online(&memcg->css))
11092087 5984 sk->sk_memcg = memcg;
f7e1cb6e 5985out:
11092087
JW
5986 rcu_read_unlock();
5987}
11092087 5988
2d758073 5989void mem_cgroup_sk_free(struct sock *sk)
11092087 5990{
2d758073
JW
5991 if (sk->sk_memcg)
5992 css_put(&sk->sk_memcg->css);
11092087
JW
5993}
5994
5995/**
5996 * mem_cgroup_charge_skmem - charge socket memory
5997 * @memcg: memcg to charge
5998 * @nr_pages: number of pages to charge
5999 *
6000 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6001 * @memcg's configured limit, %false if the charge had to be forced.
6002 */
6003bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6004{
f7e1cb6e 6005 gfp_t gfp_mask = GFP_KERNEL;
11092087 6006
f7e1cb6e 6007 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6008 struct page_counter *fail;
f7e1cb6e 6009
0db15298
JW
6010 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6011 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6012 return true;
6013 }
0db15298
JW
6014 page_counter_charge(&memcg->tcpmem, nr_pages);
6015 memcg->tcpmem_pressure = 1;
f7e1cb6e 6016 return false;
11092087 6017 }
d886f4e4 6018
f7e1cb6e
JW
6019 /* Don't block in the packet receive path */
6020 if (in_softirq())
6021 gfp_mask = GFP_NOWAIT;
6022
c9019e9b 6023 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6024
f7e1cb6e
JW
6025 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6026 return true;
6027
6028 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6029 return false;
6030}
6031
6032/**
6033 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6034 * @memcg: memcg to uncharge
6035 * @nr_pages: number of pages to uncharge
11092087
JW
6036 */
6037void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6038{
f7e1cb6e 6039 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6040 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6041 return;
6042 }
d886f4e4 6043
c9019e9b 6044 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6045
475d0487 6046 refill_stock(memcg, nr_pages);
11092087
JW
6047}
6048
f7e1cb6e
JW
6049static int __init cgroup_memory(char *s)
6050{
6051 char *token;
6052
6053 while ((token = strsep(&s, ",")) != NULL) {
6054 if (!*token)
6055 continue;
6056 if (!strcmp(token, "nosocket"))
6057 cgroup_memory_nosocket = true;
04823c83
VD
6058 if (!strcmp(token, "nokmem"))
6059 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6060 }
6061 return 0;
6062}
6063__setup("cgroup.memory=", cgroup_memory);
11092087 6064
2d11085e 6065/*
1081312f
MH
6066 * subsys_initcall() for memory controller.
6067 *
308167fc
SAS
6068 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6069 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6070 * basically everything that doesn't depend on a specific mem_cgroup structure
6071 * should be initialized from here.
2d11085e
MH
6072 */
6073static int __init mem_cgroup_init(void)
6074{
95a045f6
JW
6075 int cpu, node;
6076
13583c3d
VD
6077#ifndef CONFIG_SLOB
6078 /*
6079 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6080 * so use a workqueue with limited concurrency to avoid stalling
6081 * all worker threads in case lots of cgroups are created and
6082 * destroyed simultaneously.
13583c3d 6083 */
17cc4dfe
TH
6084 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6085 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6086#endif
6087
308167fc
SAS
6088 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6089 memcg_hotplug_cpu_dead);
95a045f6
JW
6090
6091 for_each_possible_cpu(cpu)
6092 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6093 drain_local_stock);
6094
6095 for_each_node(node) {
6096 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6097
6098 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6099 node_online(node) ? node : NUMA_NO_NODE);
6100
ef8f2327 6101 rtpn->rb_root = RB_ROOT;
fa90b2fd 6102 rtpn->rb_rightmost = NULL;
ef8f2327 6103 spin_lock_init(&rtpn->lock);
95a045f6
JW
6104 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6105 }
6106
2d11085e
MH
6107 return 0;
6108}
6109subsys_initcall(mem_cgroup_init);
21afa38e
JW
6110
6111#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6112static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6113{
6114 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6115 /*
6116 * The root cgroup cannot be destroyed, so it's refcount must
6117 * always be >= 1.
6118 */
6119 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6120 VM_BUG_ON(1);
6121 break;
6122 }
6123 memcg = parent_mem_cgroup(memcg);
6124 if (!memcg)
6125 memcg = root_mem_cgroup;
6126 }
6127 return memcg;
6128}
6129
21afa38e
JW
6130/**
6131 * mem_cgroup_swapout - transfer a memsw charge to swap
6132 * @page: page whose memsw charge to transfer
6133 * @entry: swap entry to move the charge to
6134 *
6135 * Transfer the memsw charge of @page to @entry.
6136 */
6137void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6138{
1f47b61f 6139 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6140 unsigned int nr_entries;
21afa38e
JW
6141 unsigned short oldid;
6142
6143 VM_BUG_ON_PAGE(PageLRU(page), page);
6144 VM_BUG_ON_PAGE(page_count(page), page);
6145
7941d214 6146 if (!do_memsw_account())
21afa38e
JW
6147 return;
6148
6149 memcg = page->mem_cgroup;
6150
6151 /* Readahead page, never charged */
6152 if (!memcg)
6153 return;
6154
1f47b61f
VD
6155 /*
6156 * In case the memcg owning these pages has been offlined and doesn't
6157 * have an ID allocated to it anymore, charge the closest online
6158 * ancestor for the swap instead and transfer the memory+swap charge.
6159 */
6160 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6161 nr_entries = hpage_nr_pages(page);
6162 /* Get references for the tail pages, too */
6163 if (nr_entries > 1)
6164 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6165 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6166 nr_entries);
21afa38e 6167 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6168 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6169
6170 page->mem_cgroup = NULL;
6171
6172 if (!mem_cgroup_is_root(memcg))
d6810d73 6173 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6174
1f47b61f
VD
6175 if (memcg != swap_memcg) {
6176 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6177 page_counter_charge(&swap_memcg->memsw, nr_entries);
6178 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6179 }
6180
ce9ce665
SAS
6181 /*
6182 * Interrupts should be disabled here because the caller holds the
b93b0163 6183 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6184 * important here to have the interrupts disabled because it is the
b93b0163 6185 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6186 */
6187 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6188 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6189 -nr_entries);
21afa38e 6190 memcg_check_events(memcg, page);
73f576c0
JW
6191
6192 if (!mem_cgroup_is_root(memcg))
d08afa14 6193 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6194}
6195
38d8b4e6
HY
6196/**
6197 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6198 * @page: page being added to swap
6199 * @entry: swap entry to charge
6200 *
38d8b4e6 6201 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6202 *
6203 * Returns 0 on success, -ENOMEM on failure.
6204 */
6205int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6206{
38d8b4e6 6207 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6208 struct page_counter *counter;
38d8b4e6 6209 struct mem_cgroup *memcg;
37e84351
VD
6210 unsigned short oldid;
6211
6212 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6213 return 0;
6214
6215 memcg = page->mem_cgroup;
6216
6217 /* Readahead page, never charged */
6218 if (!memcg)
6219 return 0;
6220
f3a53a3a
TH
6221 if (!entry.val) {
6222 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6223 return 0;
f3a53a3a 6224 }
bb98f2c5 6225
1f47b61f
VD
6226 memcg = mem_cgroup_id_get_online(memcg);
6227
37e84351 6228 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6229 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6230 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6231 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6232 mem_cgroup_id_put(memcg);
37e84351 6233 return -ENOMEM;
1f47b61f 6234 }
37e84351 6235
38d8b4e6
HY
6236 /* Get references for the tail pages, too */
6237 if (nr_pages > 1)
6238 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6239 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6240 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6241 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6242
37e84351
VD
6243 return 0;
6244}
6245
21afa38e 6246/**
38d8b4e6 6247 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6248 * @entry: swap entry to uncharge
38d8b4e6 6249 * @nr_pages: the amount of swap space to uncharge
21afa38e 6250 */
38d8b4e6 6251void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6252{
6253 struct mem_cgroup *memcg;
6254 unsigned short id;
6255
37e84351 6256 if (!do_swap_account)
21afa38e
JW
6257 return;
6258
38d8b4e6 6259 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6260 rcu_read_lock();
adbe427b 6261 memcg = mem_cgroup_from_id(id);
21afa38e 6262 if (memcg) {
37e84351
VD
6263 if (!mem_cgroup_is_root(memcg)) {
6264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6265 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6266 else
38d8b4e6 6267 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6268 }
c9019e9b 6269 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6270 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6271 }
6272 rcu_read_unlock();
6273}
6274
d8b38438
VD
6275long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6276{
6277 long nr_swap_pages = get_nr_swap_pages();
6278
6279 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6280 return nr_swap_pages;
6281 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6282 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6283 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6284 page_counter_read(&memcg->swap));
6285 return nr_swap_pages;
6286}
6287
5ccc5aba
VD
6288bool mem_cgroup_swap_full(struct page *page)
6289{
6290 struct mem_cgroup *memcg;
6291
6292 VM_BUG_ON_PAGE(!PageLocked(page), page);
6293
6294 if (vm_swap_full())
6295 return true;
6296 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6297 return false;
6298
6299 memcg = page->mem_cgroup;
6300 if (!memcg)
6301 return false;
6302
6303 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6304 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6305 return true;
6306
6307 return false;
6308}
6309
21afa38e
JW
6310/* for remember boot option*/
6311#ifdef CONFIG_MEMCG_SWAP_ENABLED
6312static int really_do_swap_account __initdata = 1;
6313#else
6314static int really_do_swap_account __initdata;
6315#endif
6316
6317static int __init enable_swap_account(char *s)
6318{
6319 if (!strcmp(s, "1"))
6320 really_do_swap_account = 1;
6321 else if (!strcmp(s, "0"))
6322 really_do_swap_account = 0;
6323 return 1;
6324}
6325__setup("swapaccount=", enable_swap_account);
6326
37e84351
VD
6327static u64 swap_current_read(struct cgroup_subsys_state *css,
6328 struct cftype *cft)
6329{
6330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6331
6332 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6333}
6334
6335static int swap_max_show(struct seq_file *m, void *v)
6336{
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6338 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6339
6340 if (max == PAGE_COUNTER_MAX)
6341 seq_puts(m, "max\n");
6342 else
6343 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6344
6345 return 0;
6346}
6347
6348static ssize_t swap_max_write(struct kernfs_open_file *of,
6349 char *buf, size_t nbytes, loff_t off)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 unsigned long max;
6353 int err;
6354
6355 buf = strstrip(buf);
6356 err = page_counter_memparse(buf, "max", &max);
6357 if (err)
6358 return err;
6359
be09102b 6360 xchg(&memcg->swap.max, max);
37e84351
VD
6361
6362 return nbytes;
6363}
6364
f3a53a3a
TH
6365static int swap_events_show(struct seq_file *m, void *v)
6366{
6367 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6368
6369 seq_printf(m, "max %lu\n",
6370 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6371 seq_printf(m, "fail %lu\n",
6372 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6373
6374 return 0;
6375}
6376
37e84351
VD
6377static struct cftype swap_files[] = {
6378 {
6379 .name = "swap.current",
6380 .flags = CFTYPE_NOT_ON_ROOT,
6381 .read_u64 = swap_current_read,
6382 },
6383 {
6384 .name = "swap.max",
6385 .flags = CFTYPE_NOT_ON_ROOT,
6386 .seq_show = swap_max_show,
6387 .write = swap_max_write,
6388 },
f3a53a3a
TH
6389 {
6390 .name = "swap.events",
6391 .flags = CFTYPE_NOT_ON_ROOT,
6392 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6393 .seq_show = swap_events_show,
6394 },
37e84351
VD
6395 { } /* terminate */
6396};
6397
21afa38e
JW
6398static struct cftype memsw_cgroup_files[] = {
6399 {
6400 .name = "memsw.usage_in_bytes",
6401 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6402 .read_u64 = mem_cgroup_read_u64,
6403 },
6404 {
6405 .name = "memsw.max_usage_in_bytes",
6406 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6407 .write = mem_cgroup_reset,
6408 .read_u64 = mem_cgroup_read_u64,
6409 },
6410 {
6411 .name = "memsw.limit_in_bytes",
6412 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6413 .write = mem_cgroup_write,
6414 .read_u64 = mem_cgroup_read_u64,
6415 },
6416 {
6417 .name = "memsw.failcnt",
6418 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6419 .write = mem_cgroup_reset,
6420 .read_u64 = mem_cgroup_read_u64,
6421 },
6422 { }, /* terminate */
6423};
6424
6425static int __init mem_cgroup_swap_init(void)
6426{
6427 if (!mem_cgroup_disabled() && really_do_swap_account) {
6428 do_swap_account = 1;
37e84351
VD
6429 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6430 swap_files));
21afa38e
JW
6431 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6432 memsw_cgroup_files));
6433 }
6434 return 0;
6435}
6436subsys_initcall(mem_cgroup_swap_init);
6437
6438#endif /* CONFIG_MEMCG_SWAP */