]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm, oom: prefer thread group leaders for display purposes
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &mem_cgroup_subsys);
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
c62b1a3b
KH
924 preempt_disable();
925
b2402857
KH
926 /*
927 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
928 * counted as CACHE even if it's on ANON LRU.
929 */
930 if (anon)
931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 932 nr_pages);
d52aa412 933 else
b2402857 934 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 935 nr_pages);
55e462b0 936
b070e65c
DR
937 if (PageTransHuge(page))
938 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
939 nr_pages);
940
e401f176
KH
941 /* pagein of a big page is an event. So, ignore page size */
942 if (nr_pages > 0)
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 944 else {
c0ff4b85 945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
946 nr_pages = -nr_pages; /* for event */
947 }
e401f176 948
13114716 949 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 950
c62b1a3b 951 preempt_enable();
6d12e2d8
KH
952}
953
bb2a0de9 954unsigned long
4d7dcca2 955mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
956{
957 struct mem_cgroup_per_zone *mz;
958
959 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
960 return mz->lru_size[lru];
961}
962
963static unsigned long
c0ff4b85 964mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 965 unsigned int lru_mask)
889976db
YH
966{
967 struct mem_cgroup_per_zone *mz;
f156ab93 968 enum lru_list lru;
bb2a0de9
KH
969 unsigned long ret = 0;
970
c0ff4b85 971 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 972
f156ab93
HD
973 for_each_lru(lru) {
974 if (BIT(lru) & lru_mask)
975 ret += mz->lru_size[lru];
bb2a0de9
KH
976 }
977 return ret;
978}
979
980static unsigned long
c0ff4b85 981mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
982 int nid, unsigned int lru_mask)
983{
889976db
YH
984 u64 total = 0;
985 int zid;
986
bb2a0de9 987 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
988 total += mem_cgroup_zone_nr_lru_pages(memcg,
989 nid, zid, lru_mask);
bb2a0de9 990
889976db
YH
991 return total;
992}
bb2a0de9 993
c0ff4b85 994static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 995 unsigned int lru_mask)
6d12e2d8 996{
889976db 997 int nid;
6d12e2d8
KH
998 u64 total = 0;
999
31aaea4a 1000 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1001 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1002 return total;
d52aa412
KH
1003}
1004
f53d7ce3
JW
1005static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006 enum mem_cgroup_events_target target)
7a159cc9
JW
1007{
1008 unsigned long val, next;
1009
13114716 1010 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1011 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1012 /* from time_after() in jiffies.h */
f53d7ce3
JW
1013 if ((long)next - (long)val < 0) {
1014 switch (target) {
1015 case MEM_CGROUP_TARGET_THRESH:
1016 next = val + THRESHOLDS_EVENTS_TARGET;
1017 break;
bb4cc1a8
AM
1018 case MEM_CGROUP_TARGET_SOFTLIMIT:
1019 next = val + SOFTLIMIT_EVENTS_TARGET;
1020 break;
f53d7ce3
JW
1021 case MEM_CGROUP_TARGET_NUMAINFO:
1022 next = val + NUMAINFO_EVENTS_TARGET;
1023 break;
1024 default:
1025 break;
1026 }
1027 __this_cpu_write(memcg->stat->targets[target], next);
1028 return true;
7a159cc9 1029 }
f53d7ce3 1030 return false;
d2265e6f
KH
1031}
1032
1033/*
1034 * Check events in order.
1035 *
1036 */
c0ff4b85 1037static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1038{
4799401f 1039 preempt_disable();
d2265e6f 1040 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1041 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1043 bool do_softlimit;
82b3f2a7 1044 bool do_numainfo __maybe_unused;
f53d7ce3 1045
bb4cc1a8
AM
1046 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1048#if MAX_NUMNODES > 1
1049 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050 MEM_CGROUP_TARGET_NUMAINFO);
1051#endif
1052 preempt_enable();
1053
c0ff4b85 1054 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1055 if (unlikely(do_softlimit))
1056 mem_cgroup_update_tree(memcg, page);
453a9bf3 1057#if MAX_NUMNODES > 1
f53d7ce3 1058 if (unlikely(do_numainfo))
c0ff4b85 1059 atomic_inc(&memcg->numainfo_events);
453a9bf3 1060#endif
f53d7ce3
JW
1061 } else
1062 preempt_enable();
d2265e6f
KH
1063}
1064
cf475ad2 1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1066{
31a78f23
BS
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
8af01f56 1075 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1076}
1077
a433658c 1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1079{
c0ff4b85 1080 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1081
1082 if (!mm)
1083 return NULL;
54595fe2
KH
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
c0ff4b85
R
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
54595fe2 1093 break;
c0ff4b85 1094 } while (!css_tryget(&memcg->css));
54595fe2 1095 rcu_read_unlock();
c0ff4b85 1096 return memcg;
54595fe2
KH
1097}
1098
16248d8f
MH
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1106 struct mem_cgroup *last_visited)
16248d8f 1107{
492eb21b 1108 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1109
bd8815a6 1110 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1111skip_node:
492eb21b 1112 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1113
1114 /*
1115 * Even if we found a group we have to make sure it is
1116 * alive. css && !memcg means that the groups should be
1117 * skipped and we should continue the tree walk.
1118 * last_visited css is safe to use because it is
1119 * protected by css_get and the tree walk is rcu safe.
1120 */
492eb21b 1121 if (next_css) {
d8ad3055
HD
1122 if ((next_css->flags & CSS_ONLINE) && css_tryget(next_css))
1123 return mem_cgroup_from_css(next_css);
694fbc0f 1124 else {
492eb21b 1125 prev_css = next_css;
16248d8f
MH
1126 goto skip_node;
1127 }
1128 }
1129
1130 return NULL;
1131}
1132
519ebea3
JW
1133static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1134{
1135 /*
1136 * When a group in the hierarchy below root is destroyed, the
1137 * hierarchy iterator can no longer be trusted since it might
1138 * have pointed to the destroyed group. Invalidate it.
1139 */
1140 atomic_inc(&root->dead_count);
1141}
1142
1143static struct mem_cgroup *
1144mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1145 struct mem_cgroup *root,
1146 int *sequence)
1147{
1148 struct mem_cgroup *position = NULL;
1149 /*
1150 * A cgroup destruction happens in two stages: offlining and
1151 * release. They are separated by a RCU grace period.
1152 *
1153 * If the iterator is valid, we may still race with an
1154 * offlining. The RCU lock ensures the object won't be
1155 * released, tryget will fail if we lost the race.
1156 */
1157 *sequence = atomic_read(&root->dead_count);
1158 if (iter->last_dead_count == *sequence) {
1159 smp_rmb();
1160 position = iter->last_visited;
1161 if (position && !css_tryget(&position->css))
1162 position = NULL;
1163 }
1164 return position;
1165}
1166
1167static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1168 struct mem_cgroup *last_visited,
1169 struct mem_cgroup *new_position,
1170 int sequence)
1171{
1172 if (last_visited)
1173 css_put(&last_visited->css);
1174 /*
1175 * We store the sequence count from the time @last_visited was
1176 * loaded successfully instead of rereading it here so that we
1177 * don't lose destruction events in between. We could have
1178 * raced with the destruction of @new_position after all.
1179 */
1180 iter->last_visited = new_position;
1181 smp_wmb();
1182 iter->last_dead_count = sequence;
1183}
1184
5660048c
JW
1185/**
1186 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1187 * @root: hierarchy root
1188 * @prev: previously returned memcg, NULL on first invocation
1189 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1190 *
1191 * Returns references to children of the hierarchy below @root, or
1192 * @root itself, or %NULL after a full round-trip.
1193 *
1194 * Caller must pass the return value in @prev on subsequent
1195 * invocations for reference counting, or use mem_cgroup_iter_break()
1196 * to cancel a hierarchy walk before the round-trip is complete.
1197 *
1198 * Reclaimers can specify a zone and a priority level in @reclaim to
1199 * divide up the memcgs in the hierarchy among all concurrent
1200 * reclaimers operating on the same zone and priority.
1201 */
694fbc0f 1202struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1203 struct mem_cgroup *prev,
694fbc0f 1204 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1205{
9f3a0d09 1206 struct mem_cgroup *memcg = NULL;
542f85f9 1207 struct mem_cgroup *last_visited = NULL;
711d3d2c 1208
694fbc0f
AM
1209 if (mem_cgroup_disabled())
1210 return NULL;
5660048c 1211
9f3a0d09
JW
1212 if (!root)
1213 root = root_mem_cgroup;
7d74b06f 1214
9f3a0d09 1215 if (prev && !reclaim)
542f85f9 1216 last_visited = prev;
14067bb3 1217
9f3a0d09
JW
1218 if (!root->use_hierarchy && root != root_mem_cgroup) {
1219 if (prev)
c40046f3 1220 goto out_css_put;
694fbc0f 1221 return root;
9f3a0d09 1222 }
14067bb3 1223
542f85f9 1224 rcu_read_lock();
9f3a0d09 1225 while (!memcg) {
527a5ec9 1226 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1227 int uninitialized_var(seq);
711d3d2c 1228
527a5ec9
JW
1229 if (reclaim) {
1230 int nid = zone_to_nid(reclaim->zone);
1231 int zid = zone_idx(reclaim->zone);
1232 struct mem_cgroup_per_zone *mz;
1233
1234 mz = mem_cgroup_zoneinfo(root, nid, zid);
1235 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1236 if (prev && reclaim->generation != iter->generation) {
5f578161 1237 iter->last_visited = NULL;
542f85f9
MH
1238 goto out_unlock;
1239 }
5f578161 1240
519ebea3 1241 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1242 }
7d74b06f 1243
694fbc0f 1244 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1245
527a5ec9 1246 if (reclaim) {
519ebea3 1247 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1248
19f39402 1249 if (!memcg)
527a5ec9
JW
1250 iter->generation++;
1251 else if (!prev && memcg)
1252 reclaim->generation = iter->generation;
1253 }
9f3a0d09 1254
694fbc0f 1255 if (prev && !memcg)
542f85f9 1256 goto out_unlock;
9f3a0d09 1257 }
542f85f9
MH
1258out_unlock:
1259 rcu_read_unlock();
c40046f3
MH
1260out_css_put:
1261 if (prev && prev != root)
1262 css_put(&prev->css);
1263
9f3a0d09 1264 return memcg;
14067bb3 1265}
7d74b06f 1266
5660048c
JW
1267/**
1268 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1269 * @root: hierarchy root
1270 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1271 */
1272void mem_cgroup_iter_break(struct mem_cgroup *root,
1273 struct mem_cgroup *prev)
9f3a0d09
JW
1274{
1275 if (!root)
1276 root = root_mem_cgroup;
1277 if (prev && prev != root)
1278 css_put(&prev->css);
1279}
7d74b06f 1280
9f3a0d09
JW
1281/*
1282 * Iteration constructs for visiting all cgroups (under a tree). If
1283 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1284 * be used for reference counting.
1285 */
1286#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1287 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1288 iter != NULL; \
527a5ec9 1289 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1290
9f3a0d09 1291#define for_each_mem_cgroup(iter) \
527a5ec9 1292 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1293 iter != NULL; \
527a5ec9 1294 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1295
68ae564b 1296void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1297{
c0ff4b85 1298 struct mem_cgroup *memcg;
456f998e 1299
456f998e 1300 rcu_read_lock();
c0ff4b85
R
1301 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1302 if (unlikely(!memcg))
456f998e
YH
1303 goto out;
1304
1305 switch (idx) {
456f998e 1306 case PGFAULT:
0e574a93
JW
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1308 break;
1309 case PGMAJFAULT:
1310 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1311 break;
1312 default:
1313 BUG();
1314 }
1315out:
1316 rcu_read_unlock();
1317}
68ae564b 1318EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1319
925b7673
JW
1320/**
1321 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1322 * @zone: zone of the wanted lruvec
fa9add64 1323 * @memcg: memcg of the wanted lruvec
925b7673
JW
1324 *
1325 * Returns the lru list vector holding pages for the given @zone and
1326 * @mem. This can be the global zone lruvec, if the memory controller
1327 * is disabled.
1328 */
1329struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1330 struct mem_cgroup *memcg)
1331{
1332 struct mem_cgroup_per_zone *mz;
bea8c150 1333 struct lruvec *lruvec;
925b7673 1334
bea8c150
HD
1335 if (mem_cgroup_disabled()) {
1336 lruvec = &zone->lruvec;
1337 goto out;
1338 }
925b7673
JW
1339
1340 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1341 lruvec = &mz->lruvec;
1342out:
1343 /*
1344 * Since a node can be onlined after the mem_cgroup was created,
1345 * we have to be prepared to initialize lruvec->zone here;
1346 * and if offlined then reonlined, we need to reinitialize it.
1347 */
1348 if (unlikely(lruvec->zone != zone))
1349 lruvec->zone = zone;
1350 return lruvec;
925b7673
JW
1351}
1352
08e552c6
KH
1353/*
1354 * Following LRU functions are allowed to be used without PCG_LOCK.
1355 * Operations are called by routine of global LRU independently from memcg.
1356 * What we have to take care of here is validness of pc->mem_cgroup.
1357 *
1358 * Changes to pc->mem_cgroup happens when
1359 * 1. charge
1360 * 2. moving account
1361 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1362 * It is added to LRU before charge.
1363 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1364 * When moving account, the page is not on LRU. It's isolated.
1365 */
4f98a2fe 1366
925b7673 1367/**
fa9add64 1368 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1369 * @page: the page
fa9add64 1370 * @zone: zone of the page
925b7673 1371 */
fa9add64 1372struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1373{
08e552c6 1374 struct mem_cgroup_per_zone *mz;
925b7673
JW
1375 struct mem_cgroup *memcg;
1376 struct page_cgroup *pc;
bea8c150 1377 struct lruvec *lruvec;
6d12e2d8 1378
bea8c150
HD
1379 if (mem_cgroup_disabled()) {
1380 lruvec = &zone->lruvec;
1381 goto out;
1382 }
925b7673 1383
08e552c6 1384 pc = lookup_page_cgroup(page);
38c5d72f 1385 memcg = pc->mem_cgroup;
7512102c
HD
1386
1387 /*
fa9add64 1388 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1389 * an uncharged page off lru does nothing to secure
1390 * its former mem_cgroup from sudden removal.
1391 *
1392 * Our caller holds lru_lock, and PageCgroupUsed is updated
1393 * under page_cgroup lock: between them, they make all uses
1394 * of pc->mem_cgroup safe.
1395 */
fa9add64 1396 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1397 pc->mem_cgroup = memcg = root_mem_cgroup;
1398
925b7673 1399 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1400 lruvec = &mz->lruvec;
1401out:
1402 /*
1403 * Since a node can be onlined after the mem_cgroup was created,
1404 * we have to be prepared to initialize lruvec->zone here;
1405 * and if offlined then reonlined, we need to reinitialize it.
1406 */
1407 if (unlikely(lruvec->zone != zone))
1408 lruvec->zone = zone;
1409 return lruvec;
08e552c6 1410}
b69408e8 1411
925b7673 1412/**
fa9add64
HD
1413 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1414 * @lruvec: mem_cgroup per zone lru vector
1415 * @lru: index of lru list the page is sitting on
1416 * @nr_pages: positive when adding or negative when removing
925b7673 1417 *
fa9add64
HD
1418 * This function must be called when a page is added to or removed from an
1419 * lru list.
3f58a829 1420 */
fa9add64
HD
1421void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1422 int nr_pages)
3f58a829
MK
1423{
1424 struct mem_cgroup_per_zone *mz;
fa9add64 1425 unsigned long *lru_size;
3f58a829
MK
1426
1427 if (mem_cgroup_disabled())
1428 return;
1429
fa9add64
HD
1430 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1431 lru_size = mz->lru_size + lru;
1432 *lru_size += nr_pages;
1433 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1434}
544122e5 1435
3e92041d 1436/*
c0ff4b85 1437 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1438 * hierarchy subtree
1439 */
c3ac9a8a
JW
1440bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 struct mem_cgroup *memcg)
3e92041d 1442{
91c63734
JW
1443 if (root_memcg == memcg)
1444 return true;
3a981f48 1445 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1446 return false;
b47f77b5 1447 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1448}
1449
1450static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1451 struct mem_cgroup *memcg)
1452{
1453 bool ret;
1454
91c63734 1455 rcu_read_lock();
c3ac9a8a 1456 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1457 rcu_read_unlock();
1458 return ret;
3e92041d
MH
1459}
1460
ffbdccf5
DR
1461bool task_in_mem_cgroup(struct task_struct *task,
1462 const struct mem_cgroup *memcg)
4c4a2214 1463{
0b7f569e 1464 struct mem_cgroup *curr = NULL;
158e0a2d 1465 struct task_struct *p;
ffbdccf5 1466 bool ret;
4c4a2214 1467
158e0a2d 1468 p = find_lock_task_mm(task);
de077d22
DR
1469 if (p) {
1470 curr = try_get_mem_cgroup_from_mm(p->mm);
1471 task_unlock(p);
1472 } else {
1473 /*
1474 * All threads may have already detached their mm's, but the oom
1475 * killer still needs to detect if they have already been oom
1476 * killed to prevent needlessly killing additional tasks.
1477 */
ffbdccf5 1478 rcu_read_lock();
de077d22
DR
1479 curr = mem_cgroup_from_task(task);
1480 if (curr)
1481 css_get(&curr->css);
ffbdccf5 1482 rcu_read_unlock();
de077d22 1483 }
0b7f569e 1484 if (!curr)
ffbdccf5 1485 return false;
d31f56db 1486 /*
c0ff4b85 1487 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1488 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1489 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1490 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1491 */
c0ff4b85 1492 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1493 css_put(&curr->css);
4c4a2214
DR
1494 return ret;
1495}
1496
c56d5c7d 1497int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1498{
9b272977 1499 unsigned long inactive_ratio;
14797e23 1500 unsigned long inactive;
9b272977 1501 unsigned long active;
c772be93 1502 unsigned long gb;
14797e23 1503
4d7dcca2
HD
1504 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1505 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1506
c772be93
KM
1507 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1508 if (gb)
1509 inactive_ratio = int_sqrt(10 * gb);
1510 else
1511 inactive_ratio = 1;
1512
9b272977 1513 return inactive * inactive_ratio < active;
14797e23
KM
1514}
1515
6d61ef40
BS
1516#define mem_cgroup_from_res_counter(counter, member) \
1517 container_of(counter, struct mem_cgroup, member)
1518
19942822 1519/**
9d11ea9f 1520 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1521 * @memcg: the memory cgroup
19942822 1522 *
9d11ea9f 1523 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1524 * pages.
19942822 1525 */
c0ff4b85 1526static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1527{
9d11ea9f
JW
1528 unsigned long long margin;
1529
c0ff4b85 1530 margin = res_counter_margin(&memcg->res);
9d11ea9f 1531 if (do_swap_account)
c0ff4b85 1532 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1533 return margin >> PAGE_SHIFT;
19942822
JW
1534}
1535
1f4c025b 1536int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1537{
a7885eb8 1538 /* root ? */
63876986 1539 if (!css_parent(&memcg->css))
a7885eb8
KM
1540 return vm_swappiness;
1541
bf1ff263 1542 return memcg->swappiness;
a7885eb8
KM
1543}
1544
619d094b
KH
1545/*
1546 * memcg->moving_account is used for checking possibility that some thread is
1547 * calling move_account(). When a thread on CPU-A starts moving pages under
1548 * a memcg, other threads should check memcg->moving_account under
1549 * rcu_read_lock(), like this:
1550 *
1551 * CPU-A CPU-B
1552 * rcu_read_lock()
1553 * memcg->moving_account+1 if (memcg->mocing_account)
1554 * take heavy locks.
1555 * synchronize_rcu() update something.
1556 * rcu_read_unlock()
1557 * start move here.
1558 */
4331f7d3
KH
1559
1560/* for quick checking without looking up memcg */
1561atomic_t memcg_moving __read_mostly;
1562
c0ff4b85 1563static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1564{
4331f7d3 1565 atomic_inc(&memcg_moving);
619d094b 1566 atomic_inc(&memcg->moving_account);
32047e2a
KH
1567 synchronize_rcu();
1568}
1569
c0ff4b85 1570static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1571{
619d094b
KH
1572 /*
1573 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1574 * We check NULL in callee rather than caller.
1575 */
4331f7d3
KH
1576 if (memcg) {
1577 atomic_dec(&memcg_moving);
619d094b 1578 atomic_dec(&memcg->moving_account);
4331f7d3 1579 }
32047e2a 1580}
619d094b 1581
32047e2a
KH
1582/*
1583 * 2 routines for checking "mem" is under move_account() or not.
1584 *
13fd1dd9
AM
1585 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1586 * is used for avoiding races in accounting. If true,
32047e2a
KH
1587 * pc->mem_cgroup may be overwritten.
1588 *
1589 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1590 * under hierarchy of moving cgroups. This is for
1591 * waiting at hith-memory prressure caused by "move".
1592 */
1593
13fd1dd9 1594static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1595{
1596 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1597 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1598}
4b534334 1599
c0ff4b85 1600static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1601{
2bd9bb20
KH
1602 struct mem_cgroup *from;
1603 struct mem_cgroup *to;
4b534334 1604 bool ret = false;
2bd9bb20
KH
1605 /*
1606 * Unlike task_move routines, we access mc.to, mc.from not under
1607 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1608 */
1609 spin_lock(&mc.lock);
1610 from = mc.from;
1611 to = mc.to;
1612 if (!from)
1613 goto unlock;
3e92041d 1614
c0ff4b85
R
1615 ret = mem_cgroup_same_or_subtree(memcg, from)
1616 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1617unlock:
1618 spin_unlock(&mc.lock);
4b534334
KH
1619 return ret;
1620}
1621
c0ff4b85 1622static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1623{
1624 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1625 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1626 DEFINE_WAIT(wait);
1627 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1628 /* moving charge context might have finished. */
1629 if (mc.moving_task)
1630 schedule();
1631 finish_wait(&mc.waitq, &wait);
1632 return true;
1633 }
1634 }
1635 return false;
1636}
1637
312734c0
KH
1638/*
1639 * Take this lock when
1640 * - a code tries to modify page's memcg while it's USED.
1641 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1642 * see mem_cgroup_stolen(), too.
312734c0
KH
1643 */
1644static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1645 unsigned long *flags)
1646{
1647 spin_lock_irqsave(&memcg->move_lock, *flags);
1648}
1649
1650static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1651 unsigned long *flags)
1652{
1653 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1654}
1655
58cf188e 1656#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1657/**
58cf188e 1658 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1659 * @memcg: The memory cgroup that went over limit
1660 * @p: Task that is going to be killed
1661 *
1662 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1663 * enabled
1664 */
1665void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1666{
e222432b 1667 /*
947b3dd1
MH
1668 * protects memcg_name and makes sure that parallel ooms do not
1669 * interleave
e222432b 1670 */
947b3dd1
MH
1671 static DEFINE_SPINLOCK(oom_info_lock);
1672 struct cgroup *task_cgrp;
1673 struct cgroup *mem_cgrp;
e222432b
BS
1674 static char memcg_name[PATH_MAX];
1675 int ret;
58cf188e
SZ
1676 struct mem_cgroup *iter;
1677 unsigned int i;
e222432b 1678
58cf188e 1679 if (!p)
e222432b
BS
1680 return;
1681
947b3dd1 1682 spin_lock(&oom_info_lock);
e222432b
BS
1683 rcu_read_lock();
1684
1685 mem_cgrp = memcg->css.cgroup;
1686 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1687
1688 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1689 if (ret < 0) {
1690 /*
1691 * Unfortunately, we are unable to convert to a useful name
1692 * But we'll still print out the usage information
1693 */
1694 rcu_read_unlock();
1695 goto done;
1696 }
1697 rcu_read_unlock();
1698
d045197f 1699 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1700
1701 rcu_read_lock();
1702 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1703 if (ret < 0) {
1704 rcu_read_unlock();
1705 goto done;
1706 }
1707 rcu_read_unlock();
1708
1709 /*
1710 * Continues from above, so we don't need an KERN_ level
1711 */
d045197f 1712 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1713done:
1714
d045197f 1715 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1716 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1717 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1718 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1719 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1720 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1721 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1722 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1723 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1724 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1725 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1726 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1727
1728 for_each_mem_cgroup_tree(iter, memcg) {
1729 pr_info("Memory cgroup stats");
1730
1731 rcu_read_lock();
1732 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1733 if (!ret)
1734 pr_cont(" for %s", memcg_name);
1735 rcu_read_unlock();
1736 pr_cont(":");
1737
1738 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1739 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1740 continue;
1741 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1742 K(mem_cgroup_read_stat(iter, i)));
1743 }
1744
1745 for (i = 0; i < NR_LRU_LISTS; i++)
1746 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1747 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1748
1749 pr_cont("\n");
1750 }
947b3dd1 1751 spin_unlock(&oom_info_lock);
e222432b
BS
1752}
1753
81d39c20
KH
1754/*
1755 * This function returns the number of memcg under hierarchy tree. Returns
1756 * 1(self count) if no children.
1757 */
c0ff4b85 1758static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1759{
1760 int num = 0;
7d74b06f
KH
1761 struct mem_cgroup *iter;
1762
c0ff4b85 1763 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1764 num++;
81d39c20
KH
1765 return num;
1766}
1767
a63d83f4
DR
1768/*
1769 * Return the memory (and swap, if configured) limit for a memcg.
1770 */
9cbb78bb 1771static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1772{
1773 u64 limit;
a63d83f4 1774
f3e8eb70 1775 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1776
a63d83f4 1777 /*
9a5a8f19 1778 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1779 */
9a5a8f19
MH
1780 if (mem_cgroup_swappiness(memcg)) {
1781 u64 memsw;
1782
1783 limit += total_swap_pages << PAGE_SHIFT;
1784 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1785
1786 /*
1787 * If memsw is finite and limits the amount of swap space
1788 * available to this memcg, return that limit.
1789 */
1790 limit = min(limit, memsw);
1791 }
1792
1793 return limit;
a63d83f4
DR
1794}
1795
19965460
DR
1796static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1797 int order)
9cbb78bb
DR
1798{
1799 struct mem_cgroup *iter;
1800 unsigned long chosen_points = 0;
1801 unsigned long totalpages;
1802 unsigned int points = 0;
1803 struct task_struct *chosen = NULL;
1804
876aafbf 1805 /*
465adcf1
DR
1806 * If current has a pending SIGKILL or is exiting, then automatically
1807 * select it. The goal is to allow it to allocate so that it may
1808 * quickly exit and free its memory.
876aafbf 1809 */
465adcf1 1810 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1811 set_thread_flag(TIF_MEMDIE);
1812 return;
1813 }
1814
1815 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1816 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1817 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1818 struct css_task_iter it;
9cbb78bb
DR
1819 struct task_struct *task;
1820
72ec7029
TH
1821 css_task_iter_start(&iter->css, &it);
1822 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1823 switch (oom_scan_process_thread(task, totalpages, NULL,
1824 false)) {
1825 case OOM_SCAN_SELECT:
1826 if (chosen)
1827 put_task_struct(chosen);
1828 chosen = task;
1829 chosen_points = ULONG_MAX;
1830 get_task_struct(chosen);
1831 /* fall through */
1832 case OOM_SCAN_CONTINUE:
1833 continue;
1834 case OOM_SCAN_ABORT:
72ec7029 1835 css_task_iter_end(&it);
9cbb78bb
DR
1836 mem_cgroup_iter_break(memcg, iter);
1837 if (chosen)
1838 put_task_struct(chosen);
1839 return;
1840 case OOM_SCAN_OK:
1841 break;
1842 };
1843 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1844 if (!points || points < chosen_points)
1845 continue;
1846 /* Prefer thread group leaders for display purposes */
1847 if (points == chosen_points &&
1848 thread_group_leader(chosen))
1849 continue;
1850
1851 if (chosen)
1852 put_task_struct(chosen);
1853 chosen = task;
1854 chosen_points = points;
1855 get_task_struct(chosen);
9cbb78bb 1856 }
72ec7029 1857 css_task_iter_end(&it);
9cbb78bb
DR
1858 }
1859
1860 if (!chosen)
1861 return;
1862 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1863 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1864 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1865}
1866
5660048c
JW
1867static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1868 gfp_t gfp_mask,
1869 unsigned long flags)
1870{
1871 unsigned long total = 0;
1872 bool noswap = false;
1873 int loop;
1874
1875 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1876 noswap = true;
1877 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1878 noswap = true;
1879
1880 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1881 if (loop)
1882 drain_all_stock_async(memcg);
1883 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1884 /*
1885 * Allow limit shrinkers, which are triggered directly
1886 * by userspace, to catch signals and stop reclaim
1887 * after minimal progress, regardless of the margin.
1888 */
1889 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1890 break;
1891 if (mem_cgroup_margin(memcg))
1892 break;
1893 /*
1894 * If nothing was reclaimed after two attempts, there
1895 * may be no reclaimable pages in this hierarchy.
1896 */
1897 if (loop && !total)
1898 break;
1899 }
1900 return total;
1901}
1902
4d0c066d
KH
1903/**
1904 * test_mem_cgroup_node_reclaimable
dad7557e 1905 * @memcg: the target memcg
4d0c066d
KH
1906 * @nid: the node ID to be checked.
1907 * @noswap : specify true here if the user wants flle only information.
1908 *
1909 * This function returns whether the specified memcg contains any
1910 * reclaimable pages on a node. Returns true if there are any reclaimable
1911 * pages in the node.
1912 */
c0ff4b85 1913static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1914 int nid, bool noswap)
1915{
c0ff4b85 1916 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1917 return true;
1918 if (noswap || !total_swap_pages)
1919 return false;
c0ff4b85 1920 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1921 return true;
1922 return false;
1923
1924}
bb4cc1a8 1925#if MAX_NUMNODES > 1
889976db
YH
1926
1927/*
1928 * Always updating the nodemask is not very good - even if we have an empty
1929 * list or the wrong list here, we can start from some node and traverse all
1930 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1931 *
1932 */
c0ff4b85 1933static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1934{
1935 int nid;
453a9bf3
KH
1936 /*
1937 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1938 * pagein/pageout changes since the last update.
1939 */
c0ff4b85 1940 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1941 return;
c0ff4b85 1942 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1943 return;
1944
889976db 1945 /* make a nodemask where this memcg uses memory from */
31aaea4a 1946 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1947
31aaea4a 1948 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1949
c0ff4b85
R
1950 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1951 node_clear(nid, memcg->scan_nodes);
889976db 1952 }
453a9bf3 1953
c0ff4b85
R
1954 atomic_set(&memcg->numainfo_events, 0);
1955 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1956}
1957
1958/*
1959 * Selecting a node where we start reclaim from. Because what we need is just
1960 * reducing usage counter, start from anywhere is O,K. Considering
1961 * memory reclaim from current node, there are pros. and cons.
1962 *
1963 * Freeing memory from current node means freeing memory from a node which
1964 * we'll use or we've used. So, it may make LRU bad. And if several threads
1965 * hit limits, it will see a contention on a node. But freeing from remote
1966 * node means more costs for memory reclaim because of memory latency.
1967 *
1968 * Now, we use round-robin. Better algorithm is welcomed.
1969 */
c0ff4b85 1970int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1971{
1972 int node;
1973
c0ff4b85
R
1974 mem_cgroup_may_update_nodemask(memcg);
1975 node = memcg->last_scanned_node;
889976db 1976
c0ff4b85 1977 node = next_node(node, memcg->scan_nodes);
889976db 1978 if (node == MAX_NUMNODES)
c0ff4b85 1979 node = first_node(memcg->scan_nodes);
889976db
YH
1980 /*
1981 * We call this when we hit limit, not when pages are added to LRU.
1982 * No LRU may hold pages because all pages are UNEVICTABLE or
1983 * memcg is too small and all pages are not on LRU. In that case,
1984 * we use curret node.
1985 */
1986 if (unlikely(node == MAX_NUMNODES))
1987 node = numa_node_id();
1988
c0ff4b85 1989 memcg->last_scanned_node = node;
889976db
YH
1990 return node;
1991}
1992
bb4cc1a8
AM
1993/*
1994 * Check all nodes whether it contains reclaimable pages or not.
1995 * For quick scan, we make use of scan_nodes. This will allow us to skip
1996 * unused nodes. But scan_nodes is lazily updated and may not cotain
1997 * enough new information. We need to do double check.
1998 */
1999static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2000{
2001 int nid;
2002
2003 /*
2004 * quick check...making use of scan_node.
2005 * We can skip unused nodes.
2006 */
2007 if (!nodes_empty(memcg->scan_nodes)) {
2008 for (nid = first_node(memcg->scan_nodes);
2009 nid < MAX_NUMNODES;
2010 nid = next_node(nid, memcg->scan_nodes)) {
2011
2012 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2013 return true;
2014 }
2015 }
2016 /*
2017 * Check rest of nodes.
2018 */
2019 for_each_node_state(nid, N_MEMORY) {
2020 if (node_isset(nid, memcg->scan_nodes))
2021 continue;
2022 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2023 return true;
2024 }
2025 return false;
2026}
2027
889976db 2028#else
c0ff4b85 2029int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2030{
2031 return 0;
2032}
4d0c066d 2033
bb4cc1a8
AM
2034static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2035{
2036 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2037}
889976db
YH
2038#endif
2039
0608f43d
AM
2040static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2041 struct zone *zone,
2042 gfp_t gfp_mask,
2043 unsigned long *total_scanned)
2044{
2045 struct mem_cgroup *victim = NULL;
2046 int total = 0;
2047 int loop = 0;
2048 unsigned long excess;
2049 unsigned long nr_scanned;
2050 struct mem_cgroup_reclaim_cookie reclaim = {
2051 .zone = zone,
2052 .priority = 0,
2053 };
2054
2055 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2056
2057 while (1) {
2058 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2059 if (!victim) {
2060 loop++;
2061 if (loop >= 2) {
2062 /*
2063 * If we have not been able to reclaim
2064 * anything, it might because there are
2065 * no reclaimable pages under this hierarchy
2066 */
2067 if (!total)
2068 break;
2069 /*
2070 * We want to do more targeted reclaim.
2071 * excess >> 2 is not to excessive so as to
2072 * reclaim too much, nor too less that we keep
2073 * coming back to reclaim from this cgroup
2074 */
2075 if (total >= (excess >> 2) ||
2076 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2077 break;
2078 }
2079 continue;
2080 }
2081 if (!mem_cgroup_reclaimable(victim, false))
2082 continue;
2083 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2084 zone, &nr_scanned);
2085 *total_scanned += nr_scanned;
2086 if (!res_counter_soft_limit_excess(&root_memcg->res))
2087 break;
6d61ef40 2088 }
0608f43d
AM
2089 mem_cgroup_iter_break(root_memcg, victim);
2090 return total;
6d61ef40
BS
2091}
2092
0056f4e6
JW
2093#ifdef CONFIG_LOCKDEP
2094static struct lockdep_map memcg_oom_lock_dep_map = {
2095 .name = "memcg_oom_lock",
2096};
2097#endif
2098
fb2a6fc5
JW
2099static DEFINE_SPINLOCK(memcg_oom_lock);
2100
867578cb
KH
2101/*
2102 * Check OOM-Killer is already running under our hierarchy.
2103 * If someone is running, return false.
2104 */
fb2a6fc5 2105static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2106{
79dfdacc 2107 struct mem_cgroup *iter, *failed = NULL;
a636b327 2108
fb2a6fc5
JW
2109 spin_lock(&memcg_oom_lock);
2110
9f3a0d09 2111 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2112 if (iter->oom_lock) {
79dfdacc
MH
2113 /*
2114 * this subtree of our hierarchy is already locked
2115 * so we cannot give a lock.
2116 */
79dfdacc 2117 failed = iter;
9f3a0d09
JW
2118 mem_cgroup_iter_break(memcg, iter);
2119 break;
23751be0
JW
2120 } else
2121 iter->oom_lock = true;
7d74b06f 2122 }
867578cb 2123
fb2a6fc5
JW
2124 if (failed) {
2125 /*
2126 * OK, we failed to lock the whole subtree so we have
2127 * to clean up what we set up to the failing subtree
2128 */
2129 for_each_mem_cgroup_tree(iter, memcg) {
2130 if (iter == failed) {
2131 mem_cgroup_iter_break(memcg, iter);
2132 break;
2133 }
2134 iter->oom_lock = false;
79dfdacc 2135 }
0056f4e6
JW
2136 } else
2137 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2138
2139 spin_unlock(&memcg_oom_lock);
2140
2141 return !failed;
a636b327 2142}
0b7f569e 2143
fb2a6fc5 2144static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2145{
7d74b06f
KH
2146 struct mem_cgroup *iter;
2147
fb2a6fc5 2148 spin_lock(&memcg_oom_lock);
0056f4e6 2149 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2150 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2151 iter->oom_lock = false;
fb2a6fc5 2152 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2153}
2154
c0ff4b85 2155static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2156{
2157 struct mem_cgroup *iter;
2158
c0ff4b85 2159 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2160 atomic_inc(&iter->under_oom);
2161}
2162
c0ff4b85 2163static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2164{
2165 struct mem_cgroup *iter;
2166
867578cb
KH
2167 /*
2168 * When a new child is created while the hierarchy is under oom,
2169 * mem_cgroup_oom_lock() may not be called. We have to use
2170 * atomic_add_unless() here.
2171 */
c0ff4b85 2172 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2173 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2174}
2175
867578cb
KH
2176static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2177
dc98df5a 2178struct oom_wait_info {
d79154bb 2179 struct mem_cgroup *memcg;
dc98df5a
KH
2180 wait_queue_t wait;
2181};
2182
2183static int memcg_oom_wake_function(wait_queue_t *wait,
2184 unsigned mode, int sync, void *arg)
2185{
d79154bb
HD
2186 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2187 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2188 struct oom_wait_info *oom_wait_info;
2189
2190 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2191 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2192
dc98df5a 2193 /*
d79154bb 2194 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2195 * Then we can use css_is_ancestor without taking care of RCU.
2196 */
c0ff4b85
R
2197 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2198 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2199 return 0;
dc98df5a
KH
2200 return autoremove_wake_function(wait, mode, sync, arg);
2201}
2202
c0ff4b85 2203static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2204{
3812c8c8 2205 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2206 /* for filtering, pass "memcg" as argument. */
2207 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2208}
2209
c0ff4b85 2210static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2211{
c0ff4b85
R
2212 if (memcg && atomic_read(&memcg->under_oom))
2213 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2214}
2215
3812c8c8 2216static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2217{
3812c8c8
JW
2218 if (!current->memcg_oom.may_oom)
2219 return;
867578cb 2220 /*
49426420
JW
2221 * We are in the middle of the charge context here, so we
2222 * don't want to block when potentially sitting on a callstack
2223 * that holds all kinds of filesystem and mm locks.
2224 *
2225 * Also, the caller may handle a failed allocation gracefully
2226 * (like optional page cache readahead) and so an OOM killer
2227 * invocation might not even be necessary.
2228 *
2229 * That's why we don't do anything here except remember the
2230 * OOM context and then deal with it at the end of the page
2231 * fault when the stack is unwound, the locks are released,
2232 * and when we know whether the fault was overall successful.
867578cb 2233 */
49426420
JW
2234 css_get(&memcg->css);
2235 current->memcg_oom.memcg = memcg;
2236 current->memcg_oom.gfp_mask = mask;
2237 current->memcg_oom.order = order;
3812c8c8
JW
2238}
2239
2240/**
2241 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2242 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2243 *
49426420
JW
2244 * This has to be called at the end of a page fault if the memcg OOM
2245 * handler was enabled.
3812c8c8 2246 *
49426420 2247 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2248 * sleep on a waitqueue until the userspace task resolves the
2249 * situation. Sleeping directly in the charge context with all kinds
2250 * of locks held is not a good idea, instead we remember an OOM state
2251 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2252 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2253 *
2254 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2255 * completed, %false otherwise.
3812c8c8 2256 */
49426420 2257bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2258{
49426420 2259 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2260 struct oom_wait_info owait;
49426420 2261 bool locked;
3812c8c8
JW
2262
2263 /* OOM is global, do not handle */
3812c8c8 2264 if (!memcg)
49426420 2265 return false;
3812c8c8 2266
49426420
JW
2267 if (!handle)
2268 goto cleanup;
3812c8c8
JW
2269
2270 owait.memcg = memcg;
2271 owait.wait.flags = 0;
2272 owait.wait.func = memcg_oom_wake_function;
2273 owait.wait.private = current;
2274 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2275
3812c8c8 2276 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2277 mem_cgroup_mark_under_oom(memcg);
2278
2279 locked = mem_cgroup_oom_trylock(memcg);
2280
2281 if (locked)
2282 mem_cgroup_oom_notify(memcg);
2283
2284 if (locked && !memcg->oom_kill_disable) {
2285 mem_cgroup_unmark_under_oom(memcg);
2286 finish_wait(&memcg_oom_waitq, &owait.wait);
2287 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2288 current->memcg_oom.order);
2289 } else {
3812c8c8 2290 schedule();
49426420
JW
2291 mem_cgroup_unmark_under_oom(memcg);
2292 finish_wait(&memcg_oom_waitq, &owait.wait);
2293 }
2294
2295 if (locked) {
fb2a6fc5
JW
2296 mem_cgroup_oom_unlock(memcg);
2297 /*
2298 * There is no guarantee that an OOM-lock contender
2299 * sees the wakeups triggered by the OOM kill
2300 * uncharges. Wake any sleepers explicitely.
2301 */
2302 memcg_oom_recover(memcg);
2303 }
49426420
JW
2304cleanup:
2305 current->memcg_oom.memcg = NULL;
3812c8c8 2306 css_put(&memcg->css);
867578cb 2307 return true;
0b7f569e
KH
2308}
2309
d69b042f
BS
2310/*
2311 * Currently used to update mapped file statistics, but the routine can be
2312 * generalized to update other statistics as well.
32047e2a
KH
2313 *
2314 * Notes: Race condition
2315 *
2316 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2317 * it tends to be costly. But considering some conditions, we doesn't need
2318 * to do so _always_.
2319 *
2320 * Considering "charge", lock_page_cgroup() is not required because all
2321 * file-stat operations happen after a page is attached to radix-tree. There
2322 * are no race with "charge".
2323 *
2324 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2325 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2326 * if there are race with "uncharge". Statistics itself is properly handled
2327 * by flags.
2328 *
2329 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2330 * small, we check mm->moving_account and detect there are possibility of race
2331 * If there is, we take a lock.
d69b042f 2332 */
26174efd 2333
89c06bd5
KH
2334void __mem_cgroup_begin_update_page_stat(struct page *page,
2335 bool *locked, unsigned long *flags)
2336{
2337 struct mem_cgroup *memcg;
2338 struct page_cgroup *pc;
2339
2340 pc = lookup_page_cgroup(page);
2341again:
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344 return;
2345 /*
2346 * If this memory cgroup is not under account moving, we don't
da92c47d 2347 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2348 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2349 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2350 */
13fd1dd9 2351 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2352 return;
2353
2354 move_lock_mem_cgroup(memcg, flags);
2355 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2356 move_unlock_mem_cgroup(memcg, flags);
2357 goto again;
2358 }
2359 *locked = true;
2360}
2361
2362void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2363{
2364 struct page_cgroup *pc = lookup_page_cgroup(page);
2365
2366 /*
2367 * It's guaranteed that pc->mem_cgroup never changes while
2368 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2369 * should take move_lock_mem_cgroup().
89c06bd5
KH
2370 */
2371 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2372}
2373
2a7106f2 2374void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2375 enum mem_cgroup_stat_index idx, int val)
d69b042f 2376{
c0ff4b85 2377 struct mem_cgroup *memcg;
32047e2a 2378 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2379 unsigned long uninitialized_var(flags);
d69b042f 2380
cfa44946 2381 if (mem_cgroup_disabled())
d69b042f 2382 return;
89c06bd5 2383
658b72c5 2384 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2385 memcg = pc->mem_cgroup;
2386 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2387 return;
26174efd 2388
c0ff4b85 2389 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2390}
26174efd 2391
cdec2e42
KH
2392/*
2393 * size of first charge trial. "32" comes from vmscan.c's magic value.
2394 * TODO: maybe necessary to use big numbers in big irons.
2395 */
7ec99d62 2396#define CHARGE_BATCH 32U
cdec2e42
KH
2397struct memcg_stock_pcp {
2398 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2399 unsigned int nr_pages;
cdec2e42 2400 struct work_struct work;
26fe6168 2401 unsigned long flags;
a0db00fc 2402#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2403};
2404static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2405static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2406
a0956d54
SS
2407/**
2408 * consume_stock: Try to consume stocked charge on this cpu.
2409 * @memcg: memcg to consume from.
2410 * @nr_pages: how many pages to charge.
2411 *
2412 * The charges will only happen if @memcg matches the current cpu's memcg
2413 * stock, and at least @nr_pages are available in that stock. Failure to
2414 * service an allocation will refill the stock.
2415 *
2416 * returns true if successful, false otherwise.
cdec2e42 2417 */
a0956d54 2418static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2419{
2420 struct memcg_stock_pcp *stock;
2421 bool ret = true;
2422
a0956d54
SS
2423 if (nr_pages > CHARGE_BATCH)
2424 return false;
2425
cdec2e42 2426 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2427 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2428 stock->nr_pages -= nr_pages;
cdec2e42
KH
2429 else /* need to call res_counter_charge */
2430 ret = false;
2431 put_cpu_var(memcg_stock);
2432 return ret;
2433}
2434
2435/*
2436 * Returns stocks cached in percpu to res_counter and reset cached information.
2437 */
2438static void drain_stock(struct memcg_stock_pcp *stock)
2439{
2440 struct mem_cgroup *old = stock->cached;
2441
11c9ea4e
JW
2442 if (stock->nr_pages) {
2443 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2444
2445 res_counter_uncharge(&old->res, bytes);
cdec2e42 2446 if (do_swap_account)
11c9ea4e
JW
2447 res_counter_uncharge(&old->memsw, bytes);
2448 stock->nr_pages = 0;
cdec2e42
KH
2449 }
2450 stock->cached = NULL;
cdec2e42
KH
2451}
2452
2453/*
2454 * This must be called under preempt disabled or must be called by
2455 * a thread which is pinned to local cpu.
2456 */
2457static void drain_local_stock(struct work_struct *dummy)
2458{
2459 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2460 drain_stock(stock);
26fe6168 2461 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2462}
2463
e4777496
MH
2464static void __init memcg_stock_init(void)
2465{
2466 int cpu;
2467
2468 for_each_possible_cpu(cpu) {
2469 struct memcg_stock_pcp *stock =
2470 &per_cpu(memcg_stock, cpu);
2471 INIT_WORK(&stock->work, drain_local_stock);
2472 }
2473}
2474
cdec2e42
KH
2475/*
2476 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2477 * This will be consumed by consume_stock() function, later.
cdec2e42 2478 */
c0ff4b85 2479static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2480{
2481 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2482
c0ff4b85 2483 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2484 drain_stock(stock);
c0ff4b85 2485 stock->cached = memcg;
cdec2e42 2486 }
11c9ea4e 2487 stock->nr_pages += nr_pages;
cdec2e42
KH
2488 put_cpu_var(memcg_stock);
2489}
2490
2491/*
c0ff4b85 2492 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2493 * of the hierarchy under it. sync flag says whether we should block
2494 * until the work is done.
cdec2e42 2495 */
c0ff4b85 2496static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2497{
26fe6168 2498 int cpu, curcpu;
d38144b7 2499
cdec2e42 2500 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2501 get_online_cpus();
5af12d0e 2502 curcpu = get_cpu();
cdec2e42
KH
2503 for_each_online_cpu(cpu) {
2504 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2505 struct mem_cgroup *memcg;
26fe6168 2506
c0ff4b85
R
2507 memcg = stock->cached;
2508 if (!memcg || !stock->nr_pages)
26fe6168 2509 continue;
c0ff4b85 2510 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2511 continue;
d1a05b69
MH
2512 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2513 if (cpu == curcpu)
2514 drain_local_stock(&stock->work);
2515 else
2516 schedule_work_on(cpu, &stock->work);
2517 }
cdec2e42 2518 }
5af12d0e 2519 put_cpu();
d38144b7
MH
2520
2521 if (!sync)
2522 goto out;
2523
2524 for_each_online_cpu(cpu) {
2525 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2526 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2527 flush_work(&stock->work);
2528 }
2529out:
f894ffa8 2530 put_online_cpus();
d38144b7
MH
2531}
2532
2533/*
2534 * Tries to drain stocked charges in other cpus. This function is asynchronous
2535 * and just put a work per cpu for draining localy on each cpu. Caller can
2536 * expects some charges will be back to res_counter later but cannot wait for
2537 * it.
2538 */
c0ff4b85 2539static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2540{
9f50fad6
MH
2541 /*
2542 * If someone calls draining, avoid adding more kworker runs.
2543 */
2544 if (!mutex_trylock(&percpu_charge_mutex))
2545 return;
c0ff4b85 2546 drain_all_stock(root_memcg, false);
9f50fad6 2547 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2548}
2549
2550/* This is a synchronous drain interface. */
c0ff4b85 2551static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2552{
2553 /* called when force_empty is called */
9f50fad6 2554 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2555 drain_all_stock(root_memcg, true);
9f50fad6 2556 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2557}
2558
711d3d2c
KH
2559/*
2560 * This function drains percpu counter value from DEAD cpu and
2561 * move it to local cpu. Note that this function can be preempted.
2562 */
c0ff4b85 2563static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2564{
2565 int i;
2566
c0ff4b85 2567 spin_lock(&memcg->pcp_counter_lock);
6104621d 2568 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2569 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2570
c0ff4b85
R
2571 per_cpu(memcg->stat->count[i], cpu) = 0;
2572 memcg->nocpu_base.count[i] += x;
711d3d2c 2573 }
e9f8974f 2574 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2575 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2576
c0ff4b85
R
2577 per_cpu(memcg->stat->events[i], cpu) = 0;
2578 memcg->nocpu_base.events[i] += x;
e9f8974f 2579 }
c0ff4b85 2580 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2581}
2582
0db0628d 2583static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2584 unsigned long action,
2585 void *hcpu)
2586{
2587 int cpu = (unsigned long)hcpu;
2588 struct memcg_stock_pcp *stock;
711d3d2c 2589 struct mem_cgroup *iter;
cdec2e42 2590
619d094b 2591 if (action == CPU_ONLINE)
1489ebad 2592 return NOTIFY_OK;
1489ebad 2593
d833049b 2594 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2595 return NOTIFY_OK;
711d3d2c 2596
9f3a0d09 2597 for_each_mem_cgroup(iter)
711d3d2c
KH
2598 mem_cgroup_drain_pcp_counter(iter, cpu);
2599
cdec2e42
KH
2600 stock = &per_cpu(memcg_stock, cpu);
2601 drain_stock(stock);
2602 return NOTIFY_OK;
2603}
2604
4b534334
KH
2605
2606/* See __mem_cgroup_try_charge() for details */
2607enum {
2608 CHARGE_OK, /* success */
2609 CHARGE_RETRY, /* need to retry but retry is not bad */
2610 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2611 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2612};
2613
c0ff4b85 2614static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2615 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2616 bool invoke_oom)
4b534334 2617{
7ec99d62 2618 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2619 struct mem_cgroup *mem_over_limit;
2620 struct res_counter *fail_res;
2621 unsigned long flags = 0;
2622 int ret;
2623
c0ff4b85 2624 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2625
2626 if (likely(!ret)) {
2627 if (!do_swap_account)
2628 return CHARGE_OK;
c0ff4b85 2629 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2630 if (likely(!ret))
2631 return CHARGE_OK;
2632
c0ff4b85 2633 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2634 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2635 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2636 } else
2637 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2638 /*
9221edb7
JW
2639 * Never reclaim on behalf of optional batching, retry with a
2640 * single page instead.
2641 */
4c9c5359 2642 if (nr_pages > min_pages)
4b534334
KH
2643 return CHARGE_RETRY;
2644
2645 if (!(gfp_mask & __GFP_WAIT))
2646 return CHARGE_WOULDBLOCK;
2647
4c9c5359
SS
2648 if (gfp_mask & __GFP_NORETRY)
2649 return CHARGE_NOMEM;
2650
5660048c 2651 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2652 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2653 return CHARGE_RETRY;
4b534334 2654 /*
19942822
JW
2655 * Even though the limit is exceeded at this point, reclaim
2656 * may have been able to free some pages. Retry the charge
2657 * before killing the task.
2658 *
2659 * Only for regular pages, though: huge pages are rather
2660 * unlikely to succeed so close to the limit, and we fall back
2661 * to regular pages anyway in case of failure.
4b534334 2662 */
4c9c5359 2663 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2664 return CHARGE_RETRY;
2665
2666 /*
2667 * At task move, charge accounts can be doubly counted. So, it's
2668 * better to wait until the end of task_move if something is going on.
2669 */
2670 if (mem_cgroup_wait_acct_move(mem_over_limit))
2671 return CHARGE_RETRY;
2672
3812c8c8
JW
2673 if (invoke_oom)
2674 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2675
3812c8c8 2676 return CHARGE_NOMEM;
4b534334
KH
2677}
2678
f817ed48 2679/*
38c5d72f
KH
2680 * __mem_cgroup_try_charge() does
2681 * 1. detect memcg to be charged against from passed *mm and *ptr,
2682 * 2. update res_counter
2683 * 3. call memory reclaim if necessary.
2684 *
2685 * In some special case, if the task is fatal, fatal_signal_pending() or
2686 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2687 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2688 * as possible without any hazards. 2: all pages should have a valid
2689 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2690 * pointer, that is treated as a charge to root_mem_cgroup.
2691 *
2692 * So __mem_cgroup_try_charge() will return
2693 * 0 ... on success, filling *ptr with a valid memcg pointer.
2694 * -ENOMEM ... charge failure because of resource limits.
2695 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2696 *
2697 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2698 * the oom-killer can be invoked.
8a9f3ccd 2699 */
f817ed48 2700static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2701 gfp_t gfp_mask,
7ec99d62 2702 unsigned int nr_pages,
c0ff4b85 2703 struct mem_cgroup **ptr,
7ec99d62 2704 bool oom)
8a9f3ccd 2705{
7ec99d62 2706 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2707 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2708 struct mem_cgroup *memcg = NULL;
4b534334 2709 int ret;
a636b327 2710
867578cb
KH
2711 /*
2712 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2713 * in system level. So, allow to go ahead dying process in addition to
2714 * MEMDIE process.
2715 */
2716 if (unlikely(test_thread_flag(TIF_MEMDIE)
2717 || fatal_signal_pending(current)))
2718 goto bypass;
a636b327 2719
49426420 2720 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2721 goto nomem;
49426420 2722
a0d8b00a
JW
2723 if (gfp_mask & __GFP_NOFAIL)
2724 oom = false;
2725
8a9f3ccd 2726 /*
3be91277
HD
2727 * We always charge the cgroup the mm_struct belongs to.
2728 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2729 * thread group leader migrates. It's possible that mm is not
24467cac 2730 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2731 */
c0ff4b85 2732 if (!*ptr && !mm)
38c5d72f 2733 *ptr = root_mem_cgroup;
f75ca962 2734again:
c0ff4b85
R
2735 if (*ptr) { /* css should be a valid one */
2736 memcg = *ptr;
c0ff4b85 2737 if (mem_cgroup_is_root(memcg))
f75ca962 2738 goto done;
a0956d54 2739 if (consume_stock(memcg, nr_pages))
f75ca962 2740 goto done;
c0ff4b85 2741 css_get(&memcg->css);
4b534334 2742 } else {
f75ca962 2743 struct task_struct *p;
54595fe2 2744
f75ca962
KH
2745 rcu_read_lock();
2746 p = rcu_dereference(mm->owner);
f75ca962 2747 /*
ebb76ce1 2748 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2749 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2750 * race with swapoff. Then, we have small risk of mis-accouning.
2751 * But such kind of mis-account by race always happens because
2752 * we don't have cgroup_mutex(). It's overkill and we allo that
2753 * small race, here.
2754 * (*) swapoff at el will charge against mm-struct not against
2755 * task-struct. So, mm->owner can be NULL.
f75ca962 2756 */
c0ff4b85 2757 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2758 if (!memcg)
2759 memcg = root_mem_cgroup;
2760 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2761 rcu_read_unlock();
2762 goto done;
2763 }
a0956d54 2764 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2765 /*
2766 * It seems dagerous to access memcg without css_get().
2767 * But considering how consume_stok works, it's not
2768 * necessary. If consume_stock success, some charges
2769 * from this memcg are cached on this cpu. So, we
2770 * don't need to call css_get()/css_tryget() before
2771 * calling consume_stock().
2772 */
2773 rcu_read_unlock();
2774 goto done;
2775 }
2776 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2777 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2778 rcu_read_unlock();
2779 goto again;
2780 }
2781 rcu_read_unlock();
2782 }
8a9f3ccd 2783
4b534334 2784 do {
3812c8c8 2785 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2786
4b534334 2787 /* If killed, bypass charge */
f75ca962 2788 if (fatal_signal_pending(current)) {
c0ff4b85 2789 css_put(&memcg->css);
4b534334 2790 goto bypass;
f75ca962 2791 }
6d61ef40 2792
3812c8c8
JW
2793 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2794 nr_pages, invoke_oom);
4b534334
KH
2795 switch (ret) {
2796 case CHARGE_OK:
2797 break;
2798 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2799 batch = nr_pages;
c0ff4b85
R
2800 css_put(&memcg->css);
2801 memcg = NULL;
f75ca962 2802 goto again;
4b534334 2803 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2804 css_put(&memcg->css);
4b534334
KH
2805 goto nomem;
2806 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2807 if (!oom || invoke_oom) {
c0ff4b85 2808 css_put(&memcg->css);
867578cb 2809 goto nomem;
f75ca962 2810 }
4b534334
KH
2811 nr_oom_retries--;
2812 break;
66e1707b 2813 }
4b534334
KH
2814 } while (ret != CHARGE_OK);
2815
7ec99d62 2816 if (batch > nr_pages)
c0ff4b85
R
2817 refill_stock(memcg, batch - nr_pages);
2818 css_put(&memcg->css);
0c3e73e8 2819done:
c0ff4b85 2820 *ptr = memcg;
7a81b88c
KH
2821 return 0;
2822nomem:
3168ecbe
JW
2823 if (!(gfp_mask & __GFP_NOFAIL)) {
2824 *ptr = NULL;
2825 return -ENOMEM;
2826 }
867578cb 2827bypass:
38c5d72f
KH
2828 *ptr = root_mem_cgroup;
2829 return -EINTR;
7a81b88c 2830}
8a9f3ccd 2831
a3032a2c
DN
2832/*
2833 * Somemtimes we have to undo a charge we got by try_charge().
2834 * This function is for that and do uncharge, put css's refcnt.
2835 * gotten by try_charge().
2836 */
c0ff4b85 2837static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2838 unsigned int nr_pages)
a3032a2c 2839{
c0ff4b85 2840 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2841 unsigned long bytes = nr_pages * PAGE_SIZE;
2842
c0ff4b85 2843 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2844 if (do_swap_account)
c0ff4b85 2845 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2846 }
854ffa8d
DN
2847}
2848
d01dd17f
KH
2849/*
2850 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2851 * This is useful when moving usage to parent cgroup.
2852 */
2853static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2854 unsigned int nr_pages)
2855{
2856 unsigned long bytes = nr_pages * PAGE_SIZE;
2857
2858 if (mem_cgroup_is_root(memcg))
2859 return;
2860
2861 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2862 if (do_swap_account)
2863 res_counter_uncharge_until(&memcg->memsw,
2864 memcg->memsw.parent, bytes);
2865}
2866
a3b2d692
KH
2867/*
2868 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2869 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2870 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2871 * called against removed memcg.)
a3b2d692
KH
2872 */
2873static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2874{
a3b2d692
KH
2875 /* ID 0 is unused ID */
2876 if (!id)
2877 return NULL;
34c00c31 2878 return mem_cgroup_from_id(id);
a3b2d692
KH
2879}
2880
e42d9d5d 2881struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2882{
c0ff4b85 2883 struct mem_cgroup *memcg = NULL;
3c776e64 2884 struct page_cgroup *pc;
a3b2d692 2885 unsigned short id;
b5a84319
KH
2886 swp_entry_t ent;
2887
309381fe 2888 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2889
3c776e64 2890 pc = lookup_page_cgroup(page);
c0bd3f63 2891 lock_page_cgroup(pc);
a3b2d692 2892 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2893 memcg = pc->mem_cgroup;
2894 if (memcg && !css_tryget(&memcg->css))
2895 memcg = NULL;
e42d9d5d 2896 } else if (PageSwapCache(page)) {
3c776e64 2897 ent.val = page_private(page);
9fb4b7cc 2898 id = lookup_swap_cgroup_id(ent);
a3b2d692 2899 rcu_read_lock();
c0ff4b85
R
2900 memcg = mem_cgroup_lookup(id);
2901 if (memcg && !css_tryget(&memcg->css))
2902 memcg = NULL;
a3b2d692 2903 rcu_read_unlock();
3c776e64 2904 }
c0bd3f63 2905 unlock_page_cgroup(pc);
c0ff4b85 2906 return memcg;
b5a84319
KH
2907}
2908
c0ff4b85 2909static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2910 struct page *page,
7ec99d62 2911 unsigned int nr_pages,
9ce70c02
HD
2912 enum charge_type ctype,
2913 bool lrucare)
7a81b88c 2914{
ce587e65 2915 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2916 struct zone *uninitialized_var(zone);
fa9add64 2917 struct lruvec *lruvec;
9ce70c02 2918 bool was_on_lru = false;
b2402857 2919 bool anon;
9ce70c02 2920
ca3e0214 2921 lock_page_cgroup(pc);
309381fe 2922 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2923 /*
2924 * we don't need page_cgroup_lock about tail pages, becase they are not
2925 * accessed by any other context at this point.
2926 */
9ce70c02
HD
2927
2928 /*
2929 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2930 * may already be on some other mem_cgroup's LRU. Take care of it.
2931 */
2932 if (lrucare) {
2933 zone = page_zone(page);
2934 spin_lock_irq(&zone->lru_lock);
2935 if (PageLRU(page)) {
fa9add64 2936 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2937 ClearPageLRU(page);
fa9add64 2938 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2939 was_on_lru = true;
2940 }
2941 }
2942
c0ff4b85 2943 pc->mem_cgroup = memcg;
261fb61a
KH
2944 /*
2945 * We access a page_cgroup asynchronously without lock_page_cgroup().
2946 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2947 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2948 * before USED bit, we need memory barrier here.
2949 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2950 */
08e552c6 2951 smp_wmb();
b2402857 2952 SetPageCgroupUsed(pc);
3be91277 2953
9ce70c02
HD
2954 if (lrucare) {
2955 if (was_on_lru) {
fa9add64 2956 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2957 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2958 SetPageLRU(page);
fa9add64 2959 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2960 }
2961 spin_unlock_irq(&zone->lru_lock);
2962 }
2963
41326c17 2964 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2965 anon = true;
2966 else
2967 anon = false;
2968
b070e65c 2969 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2970 unlock_page_cgroup(pc);
9ce70c02 2971
430e4863 2972 /*
bb4cc1a8
AM
2973 * "charge_statistics" updated event counter. Then, check it.
2974 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2975 * if they exceeds softlimit.
430e4863 2976 */
c0ff4b85 2977 memcg_check_events(memcg, page);
7a81b88c 2978}
66e1707b 2979
7cf27982
GC
2980static DEFINE_MUTEX(set_limit_mutex);
2981
7ae1e1d0 2982#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2983static DEFINE_MUTEX(activate_kmem_mutex);
2984
7ae1e1d0
GC
2985static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2986{
2987 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2988 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2989}
2990
1f458cbf
GC
2991/*
2992 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2993 * in the memcg_cache_params struct.
2994 */
2995static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2996{
2997 struct kmem_cache *cachep;
2998
2999 VM_BUG_ON(p->is_root_cache);
3000 cachep = p->root_cache;
7a67d7ab 3001 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3002}
3003
749c5415 3004#ifdef CONFIG_SLABINFO
2da8ca82 3005static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3006{
2da8ca82 3007 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3008 struct memcg_cache_params *params;
3009
3010 if (!memcg_can_account_kmem(memcg))
3011 return -EIO;
3012
3013 print_slabinfo_header(m);
3014
3015 mutex_lock(&memcg->slab_caches_mutex);
3016 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3017 cache_show(memcg_params_to_cache(params), m);
3018 mutex_unlock(&memcg->slab_caches_mutex);
3019
3020 return 0;
3021}
3022#endif
3023
7ae1e1d0
GC
3024static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3025{
3026 struct res_counter *fail_res;
3027 struct mem_cgroup *_memcg;
3028 int ret = 0;
7ae1e1d0
GC
3029
3030 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3031 if (ret)
3032 return ret;
3033
7ae1e1d0
GC
3034 _memcg = memcg;
3035 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3036 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3037
3038 if (ret == -EINTR) {
3039 /*
3040 * __mem_cgroup_try_charge() chosed to bypass to root due to
3041 * OOM kill or fatal signal. Since our only options are to
3042 * either fail the allocation or charge it to this cgroup, do
3043 * it as a temporary condition. But we can't fail. From a
3044 * kmem/slab perspective, the cache has already been selected,
3045 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3046 * our minds.
3047 *
3048 * This condition will only trigger if the task entered
3049 * memcg_charge_kmem in a sane state, but was OOM-killed during
3050 * __mem_cgroup_try_charge() above. Tasks that were already
3051 * dying when the allocation triggers should have been already
3052 * directed to the root cgroup in memcontrol.h
3053 */
3054 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3055 if (do_swap_account)
3056 res_counter_charge_nofail(&memcg->memsw, size,
3057 &fail_res);
3058 ret = 0;
3059 } else if (ret)
3060 res_counter_uncharge(&memcg->kmem, size);
3061
3062 return ret;
3063}
3064
3065static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3066{
7ae1e1d0
GC
3067 res_counter_uncharge(&memcg->res, size);
3068 if (do_swap_account)
3069 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3070
3071 /* Not down to 0 */
3072 if (res_counter_uncharge(&memcg->kmem, size))
3073 return;
3074
10d5ebf4
LZ
3075 /*
3076 * Releases a reference taken in kmem_cgroup_css_offline in case
3077 * this last uncharge is racing with the offlining code or it is
3078 * outliving the memcg existence.
3079 *
3080 * The memory barrier imposed by test&clear is paired with the
3081 * explicit one in memcg_kmem_mark_dead().
3082 */
7de37682 3083 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3084 css_put(&memcg->css);
7ae1e1d0
GC
3085}
3086
2633d7a0
GC
3087/*
3088 * helper for acessing a memcg's index. It will be used as an index in the
3089 * child cache array in kmem_cache, and also to derive its name. This function
3090 * will return -1 when this is not a kmem-limited memcg.
3091 */
3092int memcg_cache_id(struct mem_cgroup *memcg)
3093{
3094 return memcg ? memcg->kmemcg_id : -1;
3095}
3096
55007d84
GC
3097static size_t memcg_caches_array_size(int num_groups)
3098{
3099 ssize_t size;
3100 if (num_groups <= 0)
3101 return 0;
3102
3103 size = 2 * num_groups;
3104 if (size < MEMCG_CACHES_MIN_SIZE)
3105 size = MEMCG_CACHES_MIN_SIZE;
3106 else if (size > MEMCG_CACHES_MAX_SIZE)
3107 size = MEMCG_CACHES_MAX_SIZE;
3108
3109 return size;
3110}
3111
3112/*
3113 * We should update the current array size iff all caches updates succeed. This
3114 * can only be done from the slab side. The slab mutex needs to be held when
3115 * calling this.
3116 */
3117void memcg_update_array_size(int num)
3118{
3119 if (num > memcg_limited_groups_array_size)
3120 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3121}
3122
15cf17d2
KK
3123static void kmem_cache_destroy_work_func(struct work_struct *w);
3124
55007d84
GC
3125int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3126{
3127 struct memcg_cache_params *cur_params = s->memcg_params;
3128
f35c3a8e 3129 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3130
3131 if (num_groups > memcg_limited_groups_array_size) {
3132 int i;
f8570263 3133 struct memcg_cache_params *new_params;
55007d84
GC
3134 ssize_t size = memcg_caches_array_size(num_groups);
3135
3136 size *= sizeof(void *);
90c7a79c 3137 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3138
f8570263
VD
3139 new_params = kzalloc(size, GFP_KERNEL);
3140 if (!new_params)
55007d84 3141 return -ENOMEM;
55007d84 3142
f8570263 3143 new_params->is_root_cache = true;
55007d84
GC
3144
3145 /*
3146 * There is the chance it will be bigger than
3147 * memcg_limited_groups_array_size, if we failed an allocation
3148 * in a cache, in which case all caches updated before it, will
3149 * have a bigger array.
3150 *
3151 * But if that is the case, the data after
3152 * memcg_limited_groups_array_size is certainly unused
3153 */
3154 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3155 if (!cur_params->memcg_caches[i])
3156 continue;
f8570263 3157 new_params->memcg_caches[i] =
55007d84
GC
3158 cur_params->memcg_caches[i];
3159 }
3160
3161 /*
3162 * Ideally, we would wait until all caches succeed, and only
3163 * then free the old one. But this is not worth the extra
3164 * pointer per-cache we'd have to have for this.
3165 *
3166 * It is not a big deal if some caches are left with a size
3167 * bigger than the others. And all updates will reset this
3168 * anyway.
3169 */
f8570263
VD
3170 rcu_assign_pointer(s->memcg_params, new_params);
3171 if (cur_params)
3172 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3173 }
3174 return 0;
3175}
3176
363a044f
VD
3177int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3178 struct kmem_cache *root_cache)
2633d7a0 3179{
90c7a79c 3180 size_t size;
2633d7a0
GC
3181
3182 if (!memcg_kmem_enabled())
3183 return 0;
3184
90c7a79c
AV
3185 if (!memcg) {
3186 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3187 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3188 } else
3189 size = sizeof(struct memcg_cache_params);
55007d84 3190
2633d7a0
GC
3191 s->memcg_params = kzalloc(size, GFP_KERNEL);
3192 if (!s->memcg_params)
3193 return -ENOMEM;
3194
943a451a 3195 if (memcg) {
2633d7a0 3196 s->memcg_params->memcg = memcg;
943a451a 3197 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3198 INIT_WORK(&s->memcg_params->destroy,
3199 kmem_cache_destroy_work_func);
4ba902b5
GC
3200 } else
3201 s->memcg_params->is_root_cache = true;
3202
2633d7a0
GC
3203 return 0;
3204}
3205
363a044f
VD
3206void memcg_free_cache_params(struct kmem_cache *s)
3207{
3208 kfree(s->memcg_params);
3209}
3210
1aa13254 3211void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3212{
d7f25f8a
GC
3213 struct kmem_cache *root;
3214 struct mem_cgroup *memcg;
3215 int id;
3216
1aa13254
VD
3217 if (is_root_cache(s))
3218 return;
3219
2edefe11
VD
3220 /*
3221 * Holding the slab_mutex assures nobody will touch the memcg_caches
3222 * array while we are modifying it.
3223 */
3224 lockdep_assert_held(&slab_mutex);
3225
1aa13254
VD
3226 root = s->memcg_params->root_cache;
3227 memcg = s->memcg_params->memcg;
3228 id = memcg_cache_id(memcg);
3229
3230 css_get(&memcg->css);
3231
1aa13254 3232
d7f25f8a 3233 /*
959c8963
VD
3234 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3235 * barrier here to ensure nobody will see the kmem_cache partially
3236 * initialized.
d7f25f8a 3237 */
959c8963
VD
3238 smp_wmb();
3239
96403da2
VD
3240 /*
3241 * Initialize the pointer to this cache in its parent's memcg_params
3242 * before adding it to the memcg_slab_caches list, otherwise we can
3243 * fail to convert memcg_params_to_cache() while traversing the list.
3244 */
2edefe11 3245 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3246 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3247
3248 mutex_lock(&memcg->slab_caches_mutex);
3249 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3250 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3251}
d7f25f8a 3252
1aa13254
VD
3253void memcg_unregister_cache(struct kmem_cache *s)
3254{
3255 struct kmem_cache *root;
3256 struct mem_cgroup *memcg;
3257 int id;
3258
3259 if (is_root_cache(s))
3260 return;
d7f25f8a 3261
2edefe11
VD
3262 /*
3263 * Holding the slab_mutex assures nobody will touch the memcg_caches
3264 * array while we are modifying it.
3265 */
3266 lockdep_assert_held(&slab_mutex);
3267
d7f25f8a 3268 root = s->memcg_params->root_cache;
96403da2
VD
3269 memcg = s->memcg_params->memcg;
3270 id = memcg_cache_id(memcg);
d7f25f8a
GC
3271
3272 mutex_lock(&memcg->slab_caches_mutex);
3273 list_del(&s->memcg_params->list);
3274 mutex_unlock(&memcg->slab_caches_mutex);
3275
96403da2
VD
3276 /*
3277 * Clear the pointer to this cache in its parent's memcg_params only
3278 * after removing it from the memcg_slab_caches list, otherwise we can
3279 * fail to convert memcg_params_to_cache() while traversing the list.
3280 */
2edefe11 3281 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3282 root->memcg_params->memcg_caches[id] = NULL;
3283
20f05310 3284 css_put(&memcg->css);
2633d7a0
GC
3285}
3286
0e9d92f2
GC
3287/*
3288 * During the creation a new cache, we need to disable our accounting mechanism
3289 * altogether. This is true even if we are not creating, but rather just
3290 * enqueing new caches to be created.
3291 *
3292 * This is because that process will trigger allocations; some visible, like
3293 * explicit kmallocs to auxiliary data structures, name strings and internal
3294 * cache structures; some well concealed, like INIT_WORK() that can allocate
3295 * objects during debug.
3296 *
3297 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3298 * to it. This may not be a bounded recursion: since the first cache creation
3299 * failed to complete (waiting on the allocation), we'll just try to create the
3300 * cache again, failing at the same point.
3301 *
3302 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3303 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3304 * inside the following two functions.
3305 */
3306static inline void memcg_stop_kmem_account(void)
3307{
3308 VM_BUG_ON(!current->mm);
3309 current->memcg_kmem_skip_account++;
3310}
3311
3312static inline void memcg_resume_kmem_account(void)
3313{
3314 VM_BUG_ON(!current->mm);
3315 current->memcg_kmem_skip_account--;
3316}
3317
1f458cbf
GC
3318static void kmem_cache_destroy_work_func(struct work_struct *w)
3319{
3320 struct kmem_cache *cachep;
3321 struct memcg_cache_params *p;
3322
3323 p = container_of(w, struct memcg_cache_params, destroy);
3324
3325 cachep = memcg_params_to_cache(p);
3326
22933152
GC
3327 /*
3328 * If we get down to 0 after shrink, we could delete right away.
3329 * However, memcg_release_pages() already puts us back in the workqueue
3330 * in that case. If we proceed deleting, we'll get a dangling
3331 * reference, and removing the object from the workqueue in that case
3332 * is unnecessary complication. We are not a fast path.
3333 *
3334 * Note that this case is fundamentally different from racing with
3335 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3336 * kmem_cache_shrink, not only we would be reinserting a dead cache
3337 * into the queue, but doing so from inside the worker racing to
3338 * destroy it.
3339 *
3340 * So if we aren't down to zero, we'll just schedule a worker and try
3341 * again
3342 */
3343 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3344 kmem_cache_shrink(cachep);
3345 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3346 return;
3347 } else
1f458cbf
GC
3348 kmem_cache_destroy(cachep);
3349}
3350
3351void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3352{
3353 if (!cachep->memcg_params->dead)
3354 return;
3355
22933152
GC
3356 /*
3357 * There are many ways in which we can get here.
3358 *
3359 * We can get to a memory-pressure situation while the delayed work is
3360 * still pending to run. The vmscan shrinkers can then release all
3361 * cache memory and get us to destruction. If this is the case, we'll
3362 * be executed twice, which is a bug (the second time will execute over
3363 * bogus data). In this case, cancelling the work should be fine.
3364 *
3365 * But we can also get here from the worker itself, if
3366 * kmem_cache_shrink is enough to shake all the remaining objects and
3367 * get the page count to 0. In this case, we'll deadlock if we try to
3368 * cancel the work (the worker runs with an internal lock held, which
3369 * is the same lock we would hold for cancel_work_sync().)
3370 *
3371 * Since we can't possibly know who got us here, just refrain from
3372 * running if there is already work pending
3373 */
3374 if (work_pending(&cachep->memcg_params->destroy))
3375 return;
1f458cbf
GC
3376 /*
3377 * We have to defer the actual destroying to a workqueue, because
3378 * we might currently be in a context that cannot sleep.
3379 */
3380 schedule_work(&cachep->memcg_params->destroy);
3381}
3382
842e2873
VD
3383static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3384 struct kmem_cache *s)
d7f25f8a 3385{
d7f25f8a 3386 struct kmem_cache *new;
d9c10ddd 3387 static char *tmp_name = NULL;
842e2873 3388 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3389
842e2873 3390 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3391
842e2873 3392 mutex_lock(&mutex);
d9c10ddd
MH
3393 /*
3394 * kmem_cache_create_memcg duplicates the given name and
3395 * cgroup_name for this name requires RCU context.
3396 * This static temporary buffer is used to prevent from
3397 * pointless shortliving allocation.
3398 */
3399 if (!tmp_name) {
3400 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3401 if (!tmp_name)
3402 return NULL;
3403 }
3404
3405 rcu_read_lock();
3406 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3407 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3408 rcu_read_unlock();
d7f25f8a 3409
d9c10ddd 3410 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3411 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3412
d79923fa
GC
3413 if (new)
3414 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3415 else
3416 new = s;
d79923fa 3417
842e2873 3418 mutex_unlock(&mutex);
d7f25f8a
GC
3419 return new;
3420}
3421
7cf27982
GC
3422void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3423{
3424 struct kmem_cache *c;
3425 int i;
3426
3427 if (!s->memcg_params)
3428 return;
3429 if (!s->memcg_params->is_root_cache)
3430 return;
3431
3432 /*
3433 * If the cache is being destroyed, we trust that there is no one else
3434 * requesting objects from it. Even if there are, the sanity checks in
3435 * kmem_cache_destroy should caught this ill-case.
3436 *
3437 * Still, we don't want anyone else freeing memcg_caches under our
3438 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3439 * we'll take the activate_kmem_mutex to protect ourselves against
3440 * this.
7cf27982 3441 */
d6441637 3442 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3443 for_each_memcg_cache_index(i) {
3444 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3445 if (!c)
3446 continue;
3447
3448 /*
3449 * We will now manually delete the caches, so to avoid races
3450 * we need to cancel all pending destruction workers and
3451 * proceed with destruction ourselves.
3452 *
3453 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3454 * and that could spawn the workers again: it is likely that
3455 * the cache still have active pages until this very moment.
3456 * This would lead us back to mem_cgroup_destroy_cache.
3457 *
3458 * But that will not execute at all if the "dead" flag is not
3459 * set, so flip it down to guarantee we are in control.
3460 */
3461 c->memcg_params->dead = false;
22933152 3462 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3463 kmem_cache_destroy(c);
3464 }
d6441637 3465 mutex_unlock(&activate_kmem_mutex);
7cf27982
GC
3466}
3467
d7f25f8a
GC
3468struct create_work {
3469 struct mem_cgroup *memcg;
3470 struct kmem_cache *cachep;
3471 struct work_struct work;
3472};
3473
1f458cbf
GC
3474static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3475{
3476 struct kmem_cache *cachep;
3477 struct memcg_cache_params *params;
3478
3479 if (!memcg_kmem_is_active(memcg))
3480 return;
3481
3482 mutex_lock(&memcg->slab_caches_mutex);
3483 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3484 cachep = memcg_params_to_cache(params);
3485 cachep->memcg_params->dead = true;
1f458cbf
GC
3486 schedule_work(&cachep->memcg_params->destroy);
3487 }
3488 mutex_unlock(&memcg->slab_caches_mutex);
3489}
3490
d7f25f8a
GC
3491static void memcg_create_cache_work_func(struct work_struct *w)
3492{
3493 struct create_work *cw;
3494
3495 cw = container_of(w, struct create_work, work);
3496 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3497 css_put(&cw->memcg->css);
d7f25f8a
GC
3498 kfree(cw);
3499}
3500
3501/*
3502 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3503 */
0e9d92f2
GC
3504static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3505 struct kmem_cache *cachep)
d7f25f8a
GC
3506{
3507 struct create_work *cw;
3508
3509 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3510 if (cw == NULL) {
3511 css_put(&memcg->css);
d7f25f8a
GC
3512 return;
3513 }
3514
3515 cw->memcg = memcg;
3516 cw->cachep = cachep;
3517
3518 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3519 schedule_work(&cw->work);
3520}
3521
0e9d92f2
GC
3522static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3523 struct kmem_cache *cachep)
3524{
3525 /*
3526 * We need to stop accounting when we kmalloc, because if the
3527 * corresponding kmalloc cache is not yet created, the first allocation
3528 * in __memcg_create_cache_enqueue will recurse.
3529 *
3530 * However, it is better to enclose the whole function. Depending on
3531 * the debugging options enabled, INIT_WORK(), for instance, can
3532 * trigger an allocation. This too, will make us recurse. Because at
3533 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3534 * the safest choice is to do it like this, wrapping the whole function.
3535 */
3536 memcg_stop_kmem_account();
3537 __memcg_create_cache_enqueue(memcg, cachep);
3538 memcg_resume_kmem_account();
3539}
d7f25f8a
GC
3540/*
3541 * Return the kmem_cache we're supposed to use for a slab allocation.
3542 * We try to use the current memcg's version of the cache.
3543 *
3544 * If the cache does not exist yet, if we are the first user of it,
3545 * we either create it immediately, if possible, or create it asynchronously
3546 * in a workqueue.
3547 * In the latter case, we will let the current allocation go through with
3548 * the original cache.
3549 *
3550 * Can't be called in interrupt context or from kernel threads.
3551 * This function needs to be called with rcu_read_lock() held.
3552 */
3553struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3554 gfp_t gfp)
3555{
3556 struct mem_cgroup *memcg;
959c8963 3557 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3558
3559 VM_BUG_ON(!cachep->memcg_params);
3560 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3561
0e9d92f2
GC
3562 if (!current->mm || current->memcg_kmem_skip_account)
3563 return cachep;
3564
d7f25f8a
GC
3565 rcu_read_lock();
3566 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3567
3568 if (!memcg_can_account_kmem(memcg))
ca0dde97 3569 goto out;
d7f25f8a 3570
959c8963
VD
3571 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3572 if (likely(memcg_cachep)) {
3573 cachep = memcg_cachep;
ca0dde97 3574 goto out;
d7f25f8a
GC
3575 }
3576
ca0dde97
LZ
3577 /* The corresponding put will be done in the workqueue. */
3578 if (!css_tryget(&memcg->css))
3579 goto out;
3580 rcu_read_unlock();
3581
3582 /*
3583 * If we are in a safe context (can wait, and not in interrupt
3584 * context), we could be be predictable and return right away.
3585 * This would guarantee that the allocation being performed
3586 * already belongs in the new cache.
3587 *
3588 * However, there are some clashes that can arrive from locking.
3589 * For instance, because we acquire the slab_mutex while doing
3590 * kmem_cache_dup, this means no further allocation could happen
3591 * with the slab_mutex held.
3592 *
3593 * Also, because cache creation issue get_online_cpus(), this
3594 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3595 * that ends up reversed during cpu hotplug. (cpuset allocates
3596 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3597 * better to defer everything.
3598 */
3599 memcg_create_cache_enqueue(memcg, cachep);
3600 return cachep;
3601out:
3602 rcu_read_unlock();
3603 return cachep;
d7f25f8a
GC
3604}
3605EXPORT_SYMBOL(__memcg_kmem_get_cache);
3606
7ae1e1d0
GC
3607/*
3608 * We need to verify if the allocation against current->mm->owner's memcg is
3609 * possible for the given order. But the page is not allocated yet, so we'll
3610 * need a further commit step to do the final arrangements.
3611 *
3612 * It is possible for the task to switch cgroups in this mean time, so at
3613 * commit time, we can't rely on task conversion any longer. We'll then use
3614 * the handle argument to return to the caller which cgroup we should commit
3615 * against. We could also return the memcg directly and avoid the pointer
3616 * passing, but a boolean return value gives better semantics considering
3617 * the compiled-out case as well.
3618 *
3619 * Returning true means the allocation is possible.
3620 */
3621bool
3622__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3623{
3624 struct mem_cgroup *memcg;
3625 int ret;
3626
3627 *_memcg = NULL;
6d42c232
GC
3628
3629 /*
3630 * Disabling accounting is only relevant for some specific memcg
3631 * internal allocations. Therefore we would initially not have such
3632 * check here, since direct calls to the page allocator that are marked
3633 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3634 * concerned with cache allocations, and by having this test at
3635 * memcg_kmem_get_cache, we are already able to relay the allocation to
3636 * the root cache and bypass the memcg cache altogether.
3637 *
3638 * There is one exception, though: the SLUB allocator does not create
3639 * large order caches, but rather service large kmallocs directly from
3640 * the page allocator. Therefore, the following sequence when backed by
3641 * the SLUB allocator:
3642 *
f894ffa8
AM
3643 * memcg_stop_kmem_account();
3644 * kmalloc(<large_number>)
3645 * memcg_resume_kmem_account();
6d42c232
GC
3646 *
3647 * would effectively ignore the fact that we should skip accounting,
3648 * since it will drive us directly to this function without passing
3649 * through the cache selector memcg_kmem_get_cache. Such large
3650 * allocations are extremely rare but can happen, for instance, for the
3651 * cache arrays. We bring this test here.
3652 */
3653 if (!current->mm || current->memcg_kmem_skip_account)
3654 return true;
3655
7ae1e1d0
GC
3656 memcg = try_get_mem_cgroup_from_mm(current->mm);
3657
3658 /*
3659 * very rare case described in mem_cgroup_from_task. Unfortunately there
3660 * isn't much we can do without complicating this too much, and it would
3661 * be gfp-dependent anyway. Just let it go
3662 */
3663 if (unlikely(!memcg))
3664 return true;
3665
3666 if (!memcg_can_account_kmem(memcg)) {
3667 css_put(&memcg->css);
3668 return true;
3669 }
3670
7ae1e1d0
GC
3671 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3672 if (!ret)
3673 *_memcg = memcg;
7ae1e1d0
GC
3674
3675 css_put(&memcg->css);
3676 return (ret == 0);
3677}
3678
3679void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3680 int order)
3681{
3682 struct page_cgroup *pc;
3683
3684 VM_BUG_ON(mem_cgroup_is_root(memcg));
3685
3686 /* The page allocation failed. Revert */
3687 if (!page) {
3688 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3689 return;
3690 }
3691
3692 pc = lookup_page_cgroup(page);
3693 lock_page_cgroup(pc);
3694 pc->mem_cgroup = memcg;
3695 SetPageCgroupUsed(pc);
3696 unlock_page_cgroup(pc);
3697}
3698
3699void __memcg_kmem_uncharge_pages(struct page *page, int order)
3700{
3701 struct mem_cgroup *memcg = NULL;
3702 struct page_cgroup *pc;
3703
3704
3705 pc = lookup_page_cgroup(page);
3706 /*
3707 * Fast unlocked return. Theoretically might have changed, have to
3708 * check again after locking.
3709 */
3710 if (!PageCgroupUsed(pc))
3711 return;
3712
3713 lock_page_cgroup(pc);
3714 if (PageCgroupUsed(pc)) {
3715 memcg = pc->mem_cgroup;
3716 ClearPageCgroupUsed(pc);
3717 }
3718 unlock_page_cgroup(pc);
3719
3720 /*
3721 * We trust that only if there is a memcg associated with the page, it
3722 * is a valid allocation
3723 */
3724 if (!memcg)
3725 return;
3726
309381fe 3727 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3728 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3729}
1f458cbf
GC
3730#else
3731static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3732{
3733}
7ae1e1d0
GC
3734#endif /* CONFIG_MEMCG_KMEM */
3735
ca3e0214
KH
3736#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3737
a0db00fc 3738#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3739/*
3740 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3741 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3742 * charge/uncharge will be never happen and move_account() is done under
3743 * compound_lock(), so we don't have to take care of races.
ca3e0214 3744 */
e94c8a9c 3745void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3746{
3747 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3748 struct page_cgroup *pc;
b070e65c 3749 struct mem_cgroup *memcg;
e94c8a9c 3750 int i;
ca3e0214 3751
3d37c4a9
KH
3752 if (mem_cgroup_disabled())
3753 return;
b070e65c
DR
3754
3755 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3756 for (i = 1; i < HPAGE_PMD_NR; i++) {
3757 pc = head_pc + i;
b070e65c 3758 pc->mem_cgroup = memcg;
e94c8a9c 3759 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3760 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3761 }
b070e65c
DR
3762 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3763 HPAGE_PMD_NR);
ca3e0214 3764}
12d27107 3765#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3766
3ea67d06
SZ
3767static inline
3768void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3769 struct mem_cgroup *to,
3770 unsigned int nr_pages,
3771 enum mem_cgroup_stat_index idx)
3772{
3773 /* Update stat data for mem_cgroup */
3774 preempt_disable();
5e8cfc3c 3775 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3776 __this_cpu_add(to->stat->count[idx], nr_pages);
3777 preempt_enable();
3778}
3779
f817ed48 3780/**
de3638d9 3781 * mem_cgroup_move_account - move account of the page
5564e88b 3782 * @page: the page
7ec99d62 3783 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3784 * @pc: page_cgroup of the page.
3785 * @from: mem_cgroup which the page is moved from.
3786 * @to: mem_cgroup which the page is moved to. @from != @to.
3787 *
3788 * The caller must confirm following.
08e552c6 3789 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3790 * - compound_lock is held when nr_pages > 1
f817ed48 3791 *
2f3479b1
KH
3792 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3793 * from old cgroup.
f817ed48 3794 */
7ec99d62
JW
3795static int mem_cgroup_move_account(struct page *page,
3796 unsigned int nr_pages,
3797 struct page_cgroup *pc,
3798 struct mem_cgroup *from,
2f3479b1 3799 struct mem_cgroup *to)
f817ed48 3800{
de3638d9
JW
3801 unsigned long flags;
3802 int ret;
b2402857 3803 bool anon = PageAnon(page);
987eba66 3804
f817ed48 3805 VM_BUG_ON(from == to);
309381fe 3806 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3807 /*
3808 * The page is isolated from LRU. So, collapse function
3809 * will not handle this page. But page splitting can happen.
3810 * Do this check under compound_page_lock(). The caller should
3811 * hold it.
3812 */
3813 ret = -EBUSY;
7ec99d62 3814 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3815 goto out;
3816
3817 lock_page_cgroup(pc);
3818
3819 ret = -EINVAL;
3820 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3821 goto unlock;
3822
312734c0 3823 move_lock_mem_cgroup(from, &flags);
f817ed48 3824
3ea67d06
SZ
3825 if (!anon && page_mapped(page))
3826 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3827 MEM_CGROUP_STAT_FILE_MAPPED);
3828
3829 if (PageWriteback(page))
3830 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3831 MEM_CGROUP_STAT_WRITEBACK);
3832
b070e65c 3833 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3834
854ffa8d 3835 /* caller should have done css_get */
08e552c6 3836 pc->mem_cgroup = to;
b070e65c 3837 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3838 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3839 ret = 0;
3840unlock:
57f9fd7d 3841 unlock_page_cgroup(pc);
d2265e6f
KH
3842 /*
3843 * check events
3844 */
5564e88b
JW
3845 memcg_check_events(to, page);
3846 memcg_check_events(from, page);
de3638d9 3847out:
f817ed48
KH
3848 return ret;
3849}
3850
2ef37d3f
MH
3851/**
3852 * mem_cgroup_move_parent - moves page to the parent group
3853 * @page: the page to move
3854 * @pc: page_cgroup of the page
3855 * @child: page's cgroup
3856 *
3857 * move charges to its parent or the root cgroup if the group has no
3858 * parent (aka use_hierarchy==0).
3859 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3860 * mem_cgroup_move_account fails) the failure is always temporary and
3861 * it signals a race with a page removal/uncharge or migration. In the
3862 * first case the page is on the way out and it will vanish from the LRU
3863 * on the next attempt and the call should be retried later.
3864 * Isolation from the LRU fails only if page has been isolated from
3865 * the LRU since we looked at it and that usually means either global
3866 * reclaim or migration going on. The page will either get back to the
3867 * LRU or vanish.
3868 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3869 * (!PageCgroupUsed) or moved to a different group. The page will
3870 * disappear in the next attempt.
f817ed48 3871 */
5564e88b
JW
3872static int mem_cgroup_move_parent(struct page *page,
3873 struct page_cgroup *pc,
6068bf01 3874 struct mem_cgroup *child)
f817ed48 3875{
f817ed48 3876 struct mem_cgroup *parent;
7ec99d62 3877 unsigned int nr_pages;
4be4489f 3878 unsigned long uninitialized_var(flags);
f817ed48
KH
3879 int ret;
3880
d8423011 3881 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3882
57f9fd7d
DN
3883 ret = -EBUSY;
3884 if (!get_page_unless_zero(page))
3885 goto out;
3886 if (isolate_lru_page(page))
3887 goto put;
52dbb905 3888
7ec99d62 3889 nr_pages = hpage_nr_pages(page);
08e552c6 3890
cc926f78
KH
3891 parent = parent_mem_cgroup(child);
3892 /*
3893 * If no parent, move charges to root cgroup.
3894 */
3895 if (!parent)
3896 parent = root_mem_cgroup;
f817ed48 3897
2ef37d3f 3898 if (nr_pages > 1) {
309381fe 3899 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3900 flags = compound_lock_irqsave(page);
2ef37d3f 3901 }
987eba66 3902
cc926f78 3903 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3904 pc, child, parent);
cc926f78
KH
3905 if (!ret)
3906 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3907
7ec99d62 3908 if (nr_pages > 1)
987eba66 3909 compound_unlock_irqrestore(page, flags);
08e552c6 3910 putback_lru_page(page);
57f9fd7d 3911put:
40d58138 3912 put_page(page);
57f9fd7d 3913out:
f817ed48
KH
3914 return ret;
3915}
3916
7a81b88c
KH
3917/*
3918 * Charge the memory controller for page usage.
3919 * Return
3920 * 0 if the charge was successful
3921 * < 0 if the cgroup is over its limit
3922 */
3923static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3924 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3925{
c0ff4b85 3926 struct mem_cgroup *memcg = NULL;
7ec99d62 3927 unsigned int nr_pages = 1;
8493ae43 3928 bool oom = true;
7a81b88c 3929 int ret;
ec168510 3930
37c2ac78 3931 if (PageTransHuge(page)) {
7ec99d62 3932 nr_pages <<= compound_order(page);
309381fe 3933 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3934 /*
3935 * Never OOM-kill a process for a huge page. The
3936 * fault handler will fall back to regular pages.
3937 */
3938 oom = false;
37c2ac78 3939 }
7a81b88c 3940
c0ff4b85 3941 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3942 if (ret == -ENOMEM)
7a81b88c 3943 return ret;
ce587e65 3944 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3945 return 0;
8a9f3ccd
BS
3946}
3947
7a81b88c
KH
3948int mem_cgroup_newpage_charge(struct page *page,
3949 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3950{
f8d66542 3951 if (mem_cgroup_disabled())
cede86ac 3952 return 0;
309381fe
SL
3953 VM_BUG_ON_PAGE(page_mapped(page), page);
3954 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 3955 VM_BUG_ON(!mm);
217bc319 3956 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3957 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3958}
3959
54595fe2
KH
3960/*
3961 * While swap-in, try_charge -> commit or cancel, the page is locked.
3962 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3963 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3964 * "commit()" or removed by "cancel()"
3965 */
0435a2fd
JW
3966static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3967 struct page *page,
3968 gfp_t mask,
3969 struct mem_cgroup **memcgp)
8c7c6e34 3970{
c0ff4b85 3971 struct mem_cgroup *memcg;
90deb788 3972 struct page_cgroup *pc;
54595fe2 3973 int ret;
8c7c6e34 3974
90deb788
JW
3975 pc = lookup_page_cgroup(page);
3976 /*
3977 * Every swap fault against a single page tries to charge the
3978 * page, bail as early as possible. shmem_unuse() encounters
3979 * already charged pages, too. The USED bit is protected by
3980 * the page lock, which serializes swap cache removal, which
3981 * in turn serializes uncharging.
3982 */
3983 if (PageCgroupUsed(pc))
3984 return 0;
8c7c6e34
KH
3985 if (!do_swap_account)
3986 goto charge_cur_mm;
c0ff4b85
R
3987 memcg = try_get_mem_cgroup_from_page(page);
3988 if (!memcg)
54595fe2 3989 goto charge_cur_mm;
72835c86
JW
3990 *memcgp = memcg;
3991 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3992 css_put(&memcg->css);
38c5d72f
KH
3993 if (ret == -EINTR)
3994 ret = 0;
54595fe2 3995 return ret;
8c7c6e34 3996charge_cur_mm:
38c5d72f
KH
3997 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3998 if (ret == -EINTR)
3999 ret = 0;
4000 return ret;
8c7c6e34
KH
4001}
4002
0435a2fd
JW
4003int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4004 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4005{
4006 *memcgp = NULL;
4007 if (mem_cgroup_disabled())
4008 return 0;
bdf4f4d2
JW
4009 /*
4010 * A racing thread's fault, or swapoff, may have already
4011 * updated the pte, and even removed page from swap cache: in
4012 * those cases unuse_pte()'s pte_same() test will fail; but
4013 * there's also a KSM case which does need to charge the page.
4014 */
4015 if (!PageSwapCache(page)) {
4016 int ret;
4017
4018 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4019 if (ret == -EINTR)
4020 ret = 0;
4021 return ret;
4022 }
0435a2fd
JW
4023 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4024}
4025
827a03d2
JW
4026void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4027{
4028 if (mem_cgroup_disabled())
4029 return;
4030 if (!memcg)
4031 return;
4032 __mem_cgroup_cancel_charge(memcg, 1);
4033}
4034
83aae4c7 4035static void
72835c86 4036__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4037 enum charge_type ctype)
7a81b88c 4038{
f8d66542 4039 if (mem_cgroup_disabled())
7a81b88c 4040 return;
72835c86 4041 if (!memcg)
7a81b88c 4042 return;
5a6475a4 4043
ce587e65 4044 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4045 /*
4046 * Now swap is on-memory. This means this page may be
4047 * counted both as mem and swap....double count.
03f3c433
KH
4048 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4049 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4050 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4051 */
03f3c433 4052 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4053 swp_entry_t ent = {.val = page_private(page)};
86493009 4054 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4055 }
7a81b88c
KH
4056}
4057
72835c86
JW
4058void mem_cgroup_commit_charge_swapin(struct page *page,
4059 struct mem_cgroup *memcg)
83aae4c7 4060{
72835c86 4061 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4062 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4063}
4064
827a03d2
JW
4065int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4066 gfp_t gfp_mask)
7a81b88c 4067{
827a03d2
JW
4068 struct mem_cgroup *memcg = NULL;
4069 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4070 int ret;
4071
f8d66542 4072 if (mem_cgroup_disabled())
827a03d2
JW
4073 return 0;
4074 if (PageCompound(page))
4075 return 0;
4076
827a03d2
JW
4077 if (!PageSwapCache(page))
4078 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4079 else { /* page is swapcache/shmem */
0435a2fd
JW
4080 ret = __mem_cgroup_try_charge_swapin(mm, page,
4081 gfp_mask, &memcg);
827a03d2
JW
4082 if (!ret)
4083 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4084 }
4085 return ret;
7a81b88c
KH
4086}
4087
c0ff4b85 4088static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4089 unsigned int nr_pages,
4090 const enum charge_type ctype)
569b846d
KH
4091{
4092 struct memcg_batch_info *batch = NULL;
4093 bool uncharge_memsw = true;
7ec99d62 4094
569b846d
KH
4095 /* If swapout, usage of swap doesn't decrease */
4096 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4097 uncharge_memsw = false;
569b846d
KH
4098
4099 batch = &current->memcg_batch;
4100 /*
4101 * In usual, we do css_get() when we remember memcg pointer.
4102 * But in this case, we keep res->usage until end of a series of
4103 * uncharges. Then, it's ok to ignore memcg's refcnt.
4104 */
4105 if (!batch->memcg)
c0ff4b85 4106 batch->memcg = memcg;
3c11ecf4
KH
4107 /*
4108 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4109 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4110 * the same cgroup and we have chance to coalesce uncharges.
4111 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4112 * because we want to do uncharge as soon as possible.
4113 */
4114
4115 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4116 goto direct_uncharge;
4117
7ec99d62 4118 if (nr_pages > 1)
ec168510
AA
4119 goto direct_uncharge;
4120
569b846d
KH
4121 /*
4122 * In typical case, batch->memcg == mem. This means we can
4123 * merge a series of uncharges to an uncharge of res_counter.
4124 * If not, we uncharge res_counter ony by one.
4125 */
c0ff4b85 4126 if (batch->memcg != memcg)
569b846d
KH
4127 goto direct_uncharge;
4128 /* remember freed charge and uncharge it later */
7ffd4ca7 4129 batch->nr_pages++;
569b846d 4130 if (uncharge_memsw)
7ffd4ca7 4131 batch->memsw_nr_pages++;
569b846d
KH
4132 return;
4133direct_uncharge:
c0ff4b85 4134 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4135 if (uncharge_memsw)
c0ff4b85
R
4136 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4137 if (unlikely(batch->memcg != memcg))
4138 memcg_oom_recover(memcg);
569b846d 4139}
7a81b88c 4140
8a9f3ccd 4141/*
69029cd5 4142 * uncharge if !page_mapped(page)
8a9f3ccd 4143 */
8c7c6e34 4144static struct mem_cgroup *
0030f535
JW
4145__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4146 bool end_migration)
8a9f3ccd 4147{
c0ff4b85 4148 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4149 unsigned int nr_pages = 1;
4150 struct page_cgroup *pc;
b2402857 4151 bool anon;
8a9f3ccd 4152
f8d66542 4153 if (mem_cgroup_disabled())
8c7c6e34 4154 return NULL;
4077960e 4155
37c2ac78 4156 if (PageTransHuge(page)) {
7ec99d62 4157 nr_pages <<= compound_order(page);
309381fe 4158 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4159 }
8697d331 4160 /*
3c541e14 4161 * Check if our page_cgroup is valid
8697d331 4162 */
52d4b9ac 4163 pc = lookup_page_cgroup(page);
cfa44946 4164 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4165 return NULL;
b9c565d5 4166
52d4b9ac 4167 lock_page_cgroup(pc);
d13d1443 4168
c0ff4b85 4169 memcg = pc->mem_cgroup;
8c7c6e34 4170
d13d1443
KH
4171 if (!PageCgroupUsed(pc))
4172 goto unlock_out;
4173
b2402857
KH
4174 anon = PageAnon(page);
4175
d13d1443 4176 switch (ctype) {
41326c17 4177 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4178 /*
4179 * Generally PageAnon tells if it's the anon statistics to be
4180 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4181 * used before page reached the stage of being marked PageAnon.
4182 */
b2402857
KH
4183 anon = true;
4184 /* fallthrough */
8a9478ca 4185 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4186 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4187 if (page_mapped(page))
4188 goto unlock_out;
4189 /*
4190 * Pages under migration may not be uncharged. But
4191 * end_migration() /must/ be the one uncharging the
4192 * unused post-migration page and so it has to call
4193 * here with the migration bit still set. See the
4194 * res_counter handling below.
4195 */
4196 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4197 goto unlock_out;
4198 break;
4199 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4200 if (!PageAnon(page)) { /* Shared memory */
4201 if (page->mapping && !page_is_file_cache(page))
4202 goto unlock_out;
4203 } else if (page_mapped(page)) /* Anon */
4204 goto unlock_out;
4205 break;
4206 default:
4207 break;
52d4b9ac 4208 }
d13d1443 4209
b070e65c 4210 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4211
52d4b9ac 4212 ClearPageCgroupUsed(pc);
544122e5
KH
4213 /*
4214 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4215 * freed from LRU. This is safe because uncharged page is expected not
4216 * to be reused (freed soon). Exception is SwapCache, it's handled by
4217 * special functions.
4218 */
b9c565d5 4219
52d4b9ac 4220 unlock_page_cgroup(pc);
f75ca962 4221 /*
c0ff4b85 4222 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4223 * will never be freed, so it's safe to call css_get().
f75ca962 4224 */
c0ff4b85 4225 memcg_check_events(memcg, page);
f75ca962 4226 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4227 mem_cgroup_swap_statistics(memcg, true);
4050377b 4228 css_get(&memcg->css);
f75ca962 4229 }
0030f535
JW
4230 /*
4231 * Migration does not charge the res_counter for the
4232 * replacement page, so leave it alone when phasing out the
4233 * page that is unused after the migration.
4234 */
4235 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4236 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4237
c0ff4b85 4238 return memcg;
d13d1443
KH
4239
4240unlock_out:
4241 unlock_page_cgroup(pc);
8c7c6e34 4242 return NULL;
3c541e14
BS
4243}
4244
69029cd5
KH
4245void mem_cgroup_uncharge_page(struct page *page)
4246{
52d4b9ac
KH
4247 /* early check. */
4248 if (page_mapped(page))
4249 return;
309381fe 4250 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4251 /*
4252 * If the page is in swap cache, uncharge should be deferred
4253 * to the swap path, which also properly accounts swap usage
4254 * and handles memcg lifetime.
4255 *
4256 * Note that this check is not stable and reclaim may add the
4257 * page to swap cache at any time after this. However, if the
4258 * page is not in swap cache by the time page->mapcount hits
4259 * 0, there won't be any page table references to the swap
4260 * slot, and reclaim will free it and not actually write the
4261 * page to disk.
4262 */
0c59b89c
JW
4263 if (PageSwapCache(page))
4264 return;
0030f535 4265 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4266}
4267
4268void mem_cgroup_uncharge_cache_page(struct page *page)
4269{
309381fe
SL
4270 VM_BUG_ON_PAGE(page_mapped(page), page);
4271 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4272 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4273}
4274
569b846d
KH
4275/*
4276 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4277 * In that cases, pages are freed continuously and we can expect pages
4278 * are in the same memcg. All these calls itself limits the number of
4279 * pages freed at once, then uncharge_start/end() is called properly.
4280 * This may be called prural(2) times in a context,
4281 */
4282
4283void mem_cgroup_uncharge_start(void)
4284{
4285 current->memcg_batch.do_batch++;
4286 /* We can do nest. */
4287 if (current->memcg_batch.do_batch == 1) {
4288 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4289 current->memcg_batch.nr_pages = 0;
4290 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4291 }
4292}
4293
4294void mem_cgroup_uncharge_end(void)
4295{
4296 struct memcg_batch_info *batch = &current->memcg_batch;
4297
4298 if (!batch->do_batch)
4299 return;
4300
4301 batch->do_batch--;
4302 if (batch->do_batch) /* If stacked, do nothing. */
4303 return;
4304
4305 if (!batch->memcg)
4306 return;
4307 /*
4308 * This "batch->memcg" is valid without any css_get/put etc...
4309 * bacause we hide charges behind us.
4310 */
7ffd4ca7
JW
4311 if (batch->nr_pages)
4312 res_counter_uncharge(&batch->memcg->res,
4313 batch->nr_pages * PAGE_SIZE);
4314 if (batch->memsw_nr_pages)
4315 res_counter_uncharge(&batch->memcg->memsw,
4316 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4317 memcg_oom_recover(batch->memcg);
569b846d
KH
4318 /* forget this pointer (for sanity check) */
4319 batch->memcg = NULL;
4320}
4321
e767e056 4322#ifdef CONFIG_SWAP
8c7c6e34 4323/*
e767e056 4324 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4325 * memcg information is recorded to swap_cgroup of "ent"
4326 */
8a9478ca
KH
4327void
4328mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4329{
4330 struct mem_cgroup *memcg;
8a9478ca
KH
4331 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4332
4333 if (!swapout) /* this was a swap cache but the swap is unused ! */
4334 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4335
0030f535 4336 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4337
f75ca962
KH
4338 /*
4339 * record memcg information, if swapout && memcg != NULL,
4050377b 4340 * css_get() was called in uncharge().
f75ca962
KH
4341 */
4342 if (do_swap_account && swapout && memcg)
34c00c31 4343 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4344}
e767e056 4345#endif
8c7c6e34 4346
c255a458 4347#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4348/*
4349 * called from swap_entry_free(). remove record in swap_cgroup and
4350 * uncharge "memsw" account.
4351 */
4352void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4353{
8c7c6e34 4354 struct mem_cgroup *memcg;
a3b2d692 4355 unsigned short id;
8c7c6e34
KH
4356
4357 if (!do_swap_account)
4358 return;
4359
a3b2d692
KH
4360 id = swap_cgroup_record(ent, 0);
4361 rcu_read_lock();
4362 memcg = mem_cgroup_lookup(id);
8c7c6e34 4363 if (memcg) {
a3b2d692
KH
4364 /*
4365 * We uncharge this because swap is freed.
4366 * This memcg can be obsolete one. We avoid calling css_tryget
4367 */
0c3e73e8 4368 if (!mem_cgroup_is_root(memcg))
4e649152 4369 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4370 mem_cgroup_swap_statistics(memcg, false);
4050377b 4371 css_put(&memcg->css);
8c7c6e34 4372 }
a3b2d692 4373 rcu_read_unlock();
d13d1443 4374}
02491447
DN
4375
4376/**
4377 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4378 * @entry: swap entry to be moved
4379 * @from: mem_cgroup which the entry is moved from
4380 * @to: mem_cgroup which the entry is moved to
4381 *
4382 * It succeeds only when the swap_cgroup's record for this entry is the same
4383 * as the mem_cgroup's id of @from.
4384 *
4385 * Returns 0 on success, -EINVAL on failure.
4386 *
4387 * The caller must have charged to @to, IOW, called res_counter_charge() about
4388 * both res and memsw, and called css_get().
4389 */
4390static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4391 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4392{
4393 unsigned short old_id, new_id;
4394
34c00c31
LZ
4395 old_id = mem_cgroup_id(from);
4396 new_id = mem_cgroup_id(to);
02491447
DN
4397
4398 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4399 mem_cgroup_swap_statistics(from, false);
483c30b5 4400 mem_cgroup_swap_statistics(to, true);
02491447 4401 /*
483c30b5
DN
4402 * This function is only called from task migration context now.
4403 * It postpones res_counter and refcount handling till the end
4404 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4405 * improvement. But we cannot postpone css_get(to) because if
4406 * the process that has been moved to @to does swap-in, the
4407 * refcount of @to might be decreased to 0.
4408 *
4409 * We are in attach() phase, so the cgroup is guaranteed to be
4410 * alive, so we can just call css_get().
02491447 4411 */
4050377b 4412 css_get(&to->css);
02491447
DN
4413 return 0;
4414 }
4415 return -EINVAL;
4416}
4417#else
4418static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4419 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4420{
4421 return -EINVAL;
4422}
8c7c6e34 4423#endif
d13d1443 4424
ae41be37 4425/*
01b1ae63
KH
4426 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4427 * page belongs to.
ae41be37 4428 */
0030f535
JW
4429void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4430 struct mem_cgroup **memcgp)
ae41be37 4431{
c0ff4b85 4432 struct mem_cgroup *memcg = NULL;
b32967ff 4433 unsigned int nr_pages = 1;
7ec99d62 4434 struct page_cgroup *pc;
ac39cf8c 4435 enum charge_type ctype;
8869b8f6 4436
72835c86 4437 *memcgp = NULL;
56039efa 4438
f8d66542 4439 if (mem_cgroup_disabled())
0030f535 4440 return;
4077960e 4441
b32967ff
MG
4442 if (PageTransHuge(page))
4443 nr_pages <<= compound_order(page);
4444
52d4b9ac
KH
4445 pc = lookup_page_cgroup(page);
4446 lock_page_cgroup(pc);
4447 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4448 memcg = pc->mem_cgroup;
4449 css_get(&memcg->css);
ac39cf8c
AM
4450 /*
4451 * At migrating an anonymous page, its mapcount goes down
4452 * to 0 and uncharge() will be called. But, even if it's fully
4453 * unmapped, migration may fail and this page has to be
4454 * charged again. We set MIGRATION flag here and delay uncharge
4455 * until end_migration() is called
4456 *
4457 * Corner Case Thinking
4458 * A)
4459 * When the old page was mapped as Anon and it's unmap-and-freed
4460 * while migration was ongoing.
4461 * If unmap finds the old page, uncharge() of it will be delayed
4462 * until end_migration(). If unmap finds a new page, it's
4463 * uncharged when it make mapcount to be 1->0. If unmap code
4464 * finds swap_migration_entry, the new page will not be mapped
4465 * and end_migration() will find it(mapcount==0).
4466 *
4467 * B)
4468 * When the old page was mapped but migraion fails, the kernel
4469 * remaps it. A charge for it is kept by MIGRATION flag even
4470 * if mapcount goes down to 0. We can do remap successfully
4471 * without charging it again.
4472 *
4473 * C)
4474 * The "old" page is under lock_page() until the end of
4475 * migration, so, the old page itself will not be swapped-out.
4476 * If the new page is swapped out before end_migraton, our
4477 * hook to usual swap-out path will catch the event.
4478 */
4479 if (PageAnon(page))
4480 SetPageCgroupMigration(pc);
e8589cc1 4481 }
52d4b9ac 4482 unlock_page_cgroup(pc);
ac39cf8c
AM
4483 /*
4484 * If the page is not charged at this point,
4485 * we return here.
4486 */
c0ff4b85 4487 if (!memcg)
0030f535 4488 return;
01b1ae63 4489
72835c86 4490 *memcgp = memcg;
ac39cf8c
AM
4491 /*
4492 * We charge new page before it's used/mapped. So, even if unlock_page()
4493 * is called before end_migration, we can catch all events on this new
4494 * page. In the case new page is migrated but not remapped, new page's
4495 * mapcount will be finally 0 and we call uncharge in end_migration().
4496 */
ac39cf8c 4497 if (PageAnon(page))
41326c17 4498 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4499 else
62ba7442 4500 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4501 /*
4502 * The page is committed to the memcg, but it's not actually
4503 * charged to the res_counter since we plan on replacing the
4504 * old one and only one page is going to be left afterwards.
4505 */
b32967ff 4506 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4507}
8869b8f6 4508
69029cd5 4509/* remove redundant charge if migration failed*/
c0ff4b85 4510void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4511 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4512{
ac39cf8c 4513 struct page *used, *unused;
01b1ae63 4514 struct page_cgroup *pc;
b2402857 4515 bool anon;
01b1ae63 4516
c0ff4b85 4517 if (!memcg)
01b1ae63 4518 return;
b25ed609 4519
50de1dd9 4520 if (!migration_ok) {
ac39cf8c
AM
4521 used = oldpage;
4522 unused = newpage;
01b1ae63 4523 } else {
ac39cf8c 4524 used = newpage;
01b1ae63
KH
4525 unused = oldpage;
4526 }
0030f535 4527 anon = PageAnon(used);
7d188958
JW
4528 __mem_cgroup_uncharge_common(unused,
4529 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4530 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4531 true);
0030f535 4532 css_put(&memcg->css);
69029cd5 4533 /*
ac39cf8c
AM
4534 * We disallowed uncharge of pages under migration because mapcount
4535 * of the page goes down to zero, temporarly.
4536 * Clear the flag and check the page should be charged.
01b1ae63 4537 */
ac39cf8c
AM
4538 pc = lookup_page_cgroup(oldpage);
4539 lock_page_cgroup(pc);
4540 ClearPageCgroupMigration(pc);
4541 unlock_page_cgroup(pc);
ac39cf8c 4542
01b1ae63 4543 /*
ac39cf8c
AM
4544 * If a page is a file cache, radix-tree replacement is very atomic
4545 * and we can skip this check. When it was an Anon page, its mapcount
4546 * goes down to 0. But because we added MIGRATION flage, it's not
4547 * uncharged yet. There are several case but page->mapcount check
4548 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4549 * check. (see prepare_charge() also)
69029cd5 4550 */
b2402857 4551 if (anon)
ac39cf8c 4552 mem_cgroup_uncharge_page(used);
ae41be37 4553}
78fb7466 4554
ab936cbc
KH
4555/*
4556 * At replace page cache, newpage is not under any memcg but it's on
4557 * LRU. So, this function doesn't touch res_counter but handles LRU
4558 * in correct way. Both pages are locked so we cannot race with uncharge.
4559 */
4560void mem_cgroup_replace_page_cache(struct page *oldpage,
4561 struct page *newpage)
4562{
bde05d1c 4563 struct mem_cgroup *memcg = NULL;
ab936cbc 4564 struct page_cgroup *pc;
ab936cbc 4565 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4566
4567 if (mem_cgroup_disabled())
4568 return;
4569
4570 pc = lookup_page_cgroup(oldpage);
4571 /* fix accounting on old pages */
4572 lock_page_cgroup(pc);
bde05d1c
HD
4573 if (PageCgroupUsed(pc)) {
4574 memcg = pc->mem_cgroup;
b070e65c 4575 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4576 ClearPageCgroupUsed(pc);
4577 }
ab936cbc
KH
4578 unlock_page_cgroup(pc);
4579
bde05d1c
HD
4580 /*
4581 * When called from shmem_replace_page(), in some cases the
4582 * oldpage has already been charged, and in some cases not.
4583 */
4584 if (!memcg)
4585 return;
ab936cbc
KH
4586 /*
4587 * Even if newpage->mapping was NULL before starting replacement,
4588 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4589 * LRU while we overwrite pc->mem_cgroup.
4590 */
ce587e65 4591 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4592}
4593
f212ad7c
DN
4594#ifdef CONFIG_DEBUG_VM
4595static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4596{
4597 struct page_cgroup *pc;
4598
4599 pc = lookup_page_cgroup(page);
cfa44946
JW
4600 /*
4601 * Can be NULL while feeding pages into the page allocator for
4602 * the first time, i.e. during boot or memory hotplug;
4603 * or when mem_cgroup_disabled().
4604 */
f212ad7c
DN
4605 if (likely(pc) && PageCgroupUsed(pc))
4606 return pc;
4607 return NULL;
4608}
4609
4610bool mem_cgroup_bad_page_check(struct page *page)
4611{
4612 if (mem_cgroup_disabled())
4613 return false;
4614
4615 return lookup_page_cgroup_used(page) != NULL;
4616}
4617
4618void mem_cgroup_print_bad_page(struct page *page)
4619{
4620 struct page_cgroup *pc;
4621
4622 pc = lookup_page_cgroup_used(page);
4623 if (pc) {
d045197f
AM
4624 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4625 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4626 }
4627}
4628#endif
4629
d38d2a75 4630static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4631 unsigned long long val)
628f4235 4632{
81d39c20 4633 int retry_count;
3c11ecf4 4634 u64 memswlimit, memlimit;
628f4235 4635 int ret = 0;
81d39c20
KH
4636 int children = mem_cgroup_count_children(memcg);
4637 u64 curusage, oldusage;
3c11ecf4 4638 int enlarge;
81d39c20
KH
4639
4640 /*
4641 * For keeping hierarchical_reclaim simple, how long we should retry
4642 * is depends on callers. We set our retry-count to be function
4643 * of # of children which we should visit in this loop.
4644 */
4645 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4646
4647 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4648
3c11ecf4 4649 enlarge = 0;
8c7c6e34 4650 while (retry_count) {
628f4235
KH
4651 if (signal_pending(current)) {
4652 ret = -EINTR;
4653 break;
4654 }
8c7c6e34
KH
4655 /*
4656 * Rather than hide all in some function, I do this in
4657 * open coded manner. You see what this really does.
aaad153e 4658 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4659 */
4660 mutex_lock(&set_limit_mutex);
4661 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4662 if (memswlimit < val) {
4663 ret = -EINVAL;
4664 mutex_unlock(&set_limit_mutex);
628f4235
KH
4665 break;
4666 }
3c11ecf4
KH
4667
4668 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4669 if (memlimit < val)
4670 enlarge = 1;
4671
8c7c6e34 4672 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4673 if (!ret) {
4674 if (memswlimit == val)
4675 memcg->memsw_is_minimum = true;
4676 else
4677 memcg->memsw_is_minimum = false;
4678 }
8c7c6e34
KH
4679 mutex_unlock(&set_limit_mutex);
4680
4681 if (!ret)
4682 break;
4683
5660048c
JW
4684 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4685 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4686 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4687 /* Usage is reduced ? */
f894ffa8 4688 if (curusage >= oldusage)
81d39c20
KH
4689 retry_count--;
4690 else
4691 oldusage = curusage;
8c7c6e34 4692 }
3c11ecf4
KH
4693 if (!ret && enlarge)
4694 memcg_oom_recover(memcg);
14797e23 4695
8c7c6e34
KH
4696 return ret;
4697}
4698
338c8431
LZ
4699static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4700 unsigned long long val)
8c7c6e34 4701{
81d39c20 4702 int retry_count;
3c11ecf4 4703 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4704 int children = mem_cgroup_count_children(memcg);
4705 int ret = -EBUSY;
3c11ecf4 4706 int enlarge = 0;
8c7c6e34 4707
81d39c20 4708 /* see mem_cgroup_resize_res_limit */
f894ffa8 4709 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4710 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4711 while (retry_count) {
4712 if (signal_pending(current)) {
4713 ret = -EINTR;
4714 break;
4715 }
4716 /*
4717 * Rather than hide all in some function, I do this in
4718 * open coded manner. You see what this really does.
aaad153e 4719 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4720 */
4721 mutex_lock(&set_limit_mutex);
4722 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4723 if (memlimit > val) {
4724 ret = -EINVAL;
4725 mutex_unlock(&set_limit_mutex);
4726 break;
4727 }
3c11ecf4
KH
4728 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4729 if (memswlimit < val)
4730 enlarge = 1;
8c7c6e34 4731 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4732 if (!ret) {
4733 if (memlimit == val)
4734 memcg->memsw_is_minimum = true;
4735 else
4736 memcg->memsw_is_minimum = false;
4737 }
8c7c6e34
KH
4738 mutex_unlock(&set_limit_mutex);
4739
4740 if (!ret)
4741 break;
4742
5660048c
JW
4743 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4744 MEM_CGROUP_RECLAIM_NOSWAP |
4745 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4746 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4747 /* Usage is reduced ? */
8c7c6e34 4748 if (curusage >= oldusage)
628f4235 4749 retry_count--;
81d39c20
KH
4750 else
4751 oldusage = curusage;
628f4235 4752 }
3c11ecf4
KH
4753 if (!ret && enlarge)
4754 memcg_oom_recover(memcg);
628f4235
KH
4755 return ret;
4756}
4757
0608f43d
AM
4758unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4759 gfp_t gfp_mask,
4760 unsigned long *total_scanned)
4761{
4762 unsigned long nr_reclaimed = 0;
4763 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4764 unsigned long reclaimed;
4765 int loop = 0;
4766 struct mem_cgroup_tree_per_zone *mctz;
4767 unsigned long long excess;
4768 unsigned long nr_scanned;
4769
4770 if (order > 0)
4771 return 0;
4772
4773 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4774 /*
4775 * This loop can run a while, specially if mem_cgroup's continuously
4776 * keep exceeding their soft limit and putting the system under
4777 * pressure
4778 */
4779 do {
4780 if (next_mz)
4781 mz = next_mz;
4782 else
4783 mz = mem_cgroup_largest_soft_limit_node(mctz);
4784 if (!mz)
4785 break;
4786
4787 nr_scanned = 0;
4788 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4789 gfp_mask, &nr_scanned);
4790 nr_reclaimed += reclaimed;
4791 *total_scanned += nr_scanned;
4792 spin_lock(&mctz->lock);
4793
4794 /*
4795 * If we failed to reclaim anything from this memory cgroup
4796 * it is time to move on to the next cgroup
4797 */
4798 next_mz = NULL;
4799 if (!reclaimed) {
4800 do {
4801 /*
4802 * Loop until we find yet another one.
4803 *
4804 * By the time we get the soft_limit lock
4805 * again, someone might have aded the
4806 * group back on the RB tree. Iterate to
4807 * make sure we get a different mem.
4808 * mem_cgroup_largest_soft_limit_node returns
4809 * NULL if no other cgroup is present on
4810 * the tree
4811 */
4812 next_mz =
4813 __mem_cgroup_largest_soft_limit_node(mctz);
4814 if (next_mz == mz)
4815 css_put(&next_mz->memcg->css);
4816 else /* next_mz == NULL or other memcg */
4817 break;
4818 } while (1);
4819 }
4820 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4821 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4822 /*
4823 * One school of thought says that we should not add
4824 * back the node to the tree if reclaim returns 0.
4825 * But our reclaim could return 0, simply because due
4826 * to priority we are exposing a smaller subset of
4827 * memory to reclaim from. Consider this as a longer
4828 * term TODO.
4829 */
4830 /* If excess == 0, no tree ops */
4831 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4832 spin_unlock(&mctz->lock);
4833 css_put(&mz->memcg->css);
4834 loop++;
4835 /*
4836 * Could not reclaim anything and there are no more
4837 * mem cgroups to try or we seem to be looping without
4838 * reclaiming anything.
4839 */
4840 if (!nr_reclaimed &&
4841 (next_mz == NULL ||
4842 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4843 break;
4844 } while (!nr_reclaimed);
4845 if (next_mz)
4846 css_put(&next_mz->memcg->css);
4847 return nr_reclaimed;
4848}
4849
2ef37d3f
MH
4850/**
4851 * mem_cgroup_force_empty_list - clears LRU of a group
4852 * @memcg: group to clear
4853 * @node: NUMA node
4854 * @zid: zone id
4855 * @lru: lru to to clear
4856 *
3c935d18 4857 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4858 * reclaim the pages page themselves - pages are moved to the parent (or root)
4859 * group.
cc847582 4860 */
2ef37d3f 4861static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4862 int node, int zid, enum lru_list lru)
cc847582 4863{
bea8c150 4864 struct lruvec *lruvec;
2ef37d3f 4865 unsigned long flags;
072c56c1 4866 struct list_head *list;
925b7673
JW
4867 struct page *busy;
4868 struct zone *zone;
072c56c1 4869
08e552c6 4870 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4871 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4872 list = &lruvec->lists[lru];
cc847582 4873
f817ed48 4874 busy = NULL;
2ef37d3f 4875 do {
925b7673 4876 struct page_cgroup *pc;
5564e88b
JW
4877 struct page *page;
4878
08e552c6 4879 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4880 if (list_empty(list)) {
08e552c6 4881 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4882 break;
f817ed48 4883 }
925b7673
JW
4884 page = list_entry(list->prev, struct page, lru);
4885 if (busy == page) {
4886 list_move(&page->lru, list);
648bcc77 4887 busy = NULL;
08e552c6 4888 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4889 continue;
4890 }
08e552c6 4891 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4892
925b7673 4893 pc = lookup_page_cgroup(page);
5564e88b 4894
3c935d18 4895 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4896 /* found lock contention or "pc" is obsolete. */
925b7673 4897 busy = page;
f817ed48
KH
4898 cond_resched();
4899 } else
4900 busy = NULL;
2ef37d3f 4901 } while (!list_empty(list));
cc847582
KH
4902}
4903
4904/*
c26251f9
MH
4905 * make mem_cgroup's charge to be 0 if there is no task by moving
4906 * all the charges and pages to the parent.
cc847582 4907 * This enables deleting this mem_cgroup.
c26251f9
MH
4908 *
4909 * Caller is responsible for holding css reference on the memcg.
cc847582 4910 */
ab5196c2 4911static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4912{
c26251f9 4913 int node, zid;
bea207c8 4914 u64 usage;
f817ed48 4915
fce66477 4916 do {
52d4b9ac
KH
4917 /* This is for making all *used* pages to be on LRU. */
4918 lru_add_drain_all();
c0ff4b85 4919 drain_all_stock_sync(memcg);
c0ff4b85 4920 mem_cgroup_start_move(memcg);
31aaea4a 4921 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4922 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4923 enum lru_list lru;
4924 for_each_lru(lru) {
2ef37d3f 4925 mem_cgroup_force_empty_list(memcg,
f156ab93 4926 node, zid, lru);
f817ed48 4927 }
1ecaab2b 4928 }
f817ed48 4929 }
c0ff4b85
R
4930 mem_cgroup_end_move(memcg);
4931 memcg_oom_recover(memcg);
52d4b9ac 4932 cond_resched();
f817ed48 4933
2ef37d3f 4934 /*
bea207c8
GC
4935 * Kernel memory may not necessarily be trackable to a specific
4936 * process. So they are not migrated, and therefore we can't
4937 * expect their value to drop to 0 here.
4938 * Having res filled up with kmem only is enough.
4939 *
2ef37d3f
MH
4940 * This is a safety check because mem_cgroup_force_empty_list
4941 * could have raced with mem_cgroup_replace_page_cache callers
4942 * so the lru seemed empty but the page could have been added
4943 * right after the check. RES_USAGE should be safe as we always
4944 * charge before adding to the LRU.
4945 */
bea207c8
GC
4946 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4947 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4948 } while (usage > 0);
c26251f9
MH
4949}
4950
b5f99b53
GC
4951static inline bool memcg_has_children(struct mem_cgroup *memcg)
4952{
696ac172
JW
4953 lockdep_assert_held(&memcg_create_mutex);
4954 /*
4955 * The lock does not prevent addition or deletion to the list
4956 * of children, but it prevents a new child from being
4957 * initialized based on this parent in css_online(), so it's
4958 * enough to decide whether hierarchically inherited
4959 * attributes can still be changed or not.
4960 */
4961 return memcg->use_hierarchy &&
4962 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4963}
4964
c26251f9
MH
4965/*
4966 * Reclaims as many pages from the given memcg as possible and moves
4967 * the rest to the parent.
4968 *
4969 * Caller is responsible for holding css reference for memcg.
4970 */
4971static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4972{
4973 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4974 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4975
c1e862c1 4976 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4977 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4978 return -EBUSY;
4979
c1e862c1
KH
4980 /* we call try-to-free pages for make this cgroup empty */
4981 lru_add_drain_all();
f817ed48 4982 /* try to free all pages in this cgroup */
569530fb 4983 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4984 int progress;
c1e862c1 4985
c26251f9
MH
4986 if (signal_pending(current))
4987 return -EINTR;
4988
c0ff4b85 4989 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4990 false);
c1e862c1 4991 if (!progress) {
f817ed48 4992 nr_retries--;
c1e862c1 4993 /* maybe some writeback is necessary */
8aa7e847 4994 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4995 }
f817ed48
KH
4996
4997 }
08e552c6 4998 lru_add_drain();
ab5196c2
MH
4999 mem_cgroup_reparent_charges(memcg);
5000
5001 return 0;
cc847582
KH
5002}
5003
182446d0
TH
5004static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5005 unsigned int event)
c1e862c1 5006{
182446d0 5007 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5008
d8423011
MH
5009 if (mem_cgroup_is_root(memcg))
5010 return -EINVAL;
c33bd835 5011 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5012}
5013
182446d0
TH
5014static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5015 struct cftype *cft)
18f59ea7 5016{
182446d0 5017 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5018}
5019
182446d0
TH
5020static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5021 struct cftype *cft, u64 val)
18f59ea7
BS
5022{
5023 int retval = 0;
182446d0 5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5025 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5026
0999821b 5027 mutex_lock(&memcg_create_mutex);
567fb435
GC
5028
5029 if (memcg->use_hierarchy == val)
5030 goto out;
5031
18f59ea7 5032 /*
af901ca1 5033 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5034 * in the child subtrees. If it is unset, then the change can
5035 * occur, provided the current cgroup has no children.
5036 *
5037 * For the root cgroup, parent_mem is NULL, we allow value to be
5038 * set if there are no children.
5039 */
c0ff4b85 5040 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5041 (val == 1 || val == 0)) {
696ac172 5042 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5043 memcg->use_hierarchy = val;
18f59ea7
BS
5044 else
5045 retval = -EBUSY;
5046 } else
5047 retval = -EINVAL;
567fb435
GC
5048
5049out:
0999821b 5050 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5051
5052 return retval;
5053}
5054
0c3e73e8 5055
c0ff4b85 5056static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5057 enum mem_cgroup_stat_index idx)
0c3e73e8 5058{
7d74b06f 5059 struct mem_cgroup *iter;
7a159cc9 5060 long val = 0;
0c3e73e8 5061
7a159cc9 5062 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5063 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5064 val += mem_cgroup_read_stat(iter, idx);
5065
5066 if (val < 0) /* race ? */
5067 val = 0;
5068 return val;
0c3e73e8
BS
5069}
5070
c0ff4b85 5071static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5072{
7d74b06f 5073 u64 val;
104f3928 5074
c0ff4b85 5075 if (!mem_cgroup_is_root(memcg)) {
104f3928 5076 if (!swap)
65c64ce8 5077 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5078 else
65c64ce8 5079 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5080 }
5081
b070e65c
DR
5082 /*
5083 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5084 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5085 */
c0ff4b85
R
5086 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5087 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5088
7d74b06f 5089 if (swap)
bff6bb83 5090 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5091
5092 return val << PAGE_SHIFT;
5093}
5094
791badbd
TH
5095static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5096 struct cftype *cft)
8cdea7c0 5097{
182446d0 5098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5099 u64 val;
791badbd 5100 int name;
86ae53e1 5101 enum res_type type;
8c7c6e34
KH
5102
5103 type = MEMFILE_TYPE(cft->private);
5104 name = MEMFILE_ATTR(cft->private);
af36f906 5105
8c7c6e34
KH
5106 switch (type) {
5107 case _MEM:
104f3928 5108 if (name == RES_USAGE)
c0ff4b85 5109 val = mem_cgroup_usage(memcg, false);
104f3928 5110 else
c0ff4b85 5111 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5112 break;
5113 case _MEMSWAP:
104f3928 5114 if (name == RES_USAGE)
c0ff4b85 5115 val = mem_cgroup_usage(memcg, true);
104f3928 5116 else
c0ff4b85 5117 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5118 break;
510fc4e1
GC
5119 case _KMEM:
5120 val = res_counter_read_u64(&memcg->kmem, name);
5121 break;
8c7c6e34
KH
5122 default:
5123 BUG();
8c7c6e34 5124 }
af36f906 5125
791badbd 5126 return val;
8cdea7c0 5127}
510fc4e1 5128
510fc4e1 5129#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5130/* should be called with activate_kmem_mutex held */
5131static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5132 unsigned long long limit)
5133{
5134 int err = 0;
5135 int memcg_id;
5136
5137 if (memcg_kmem_is_active(memcg))
5138 return 0;
5139
5140 /*
5141 * We are going to allocate memory for data shared by all memory
5142 * cgroups so let's stop accounting here.
5143 */
5144 memcg_stop_kmem_account();
5145
510fc4e1
GC
5146 /*
5147 * For simplicity, we won't allow this to be disabled. It also can't
5148 * be changed if the cgroup has children already, or if tasks had
5149 * already joined.
5150 *
5151 * If tasks join before we set the limit, a person looking at
5152 * kmem.usage_in_bytes will have no way to determine when it took
5153 * place, which makes the value quite meaningless.
5154 *
5155 * After it first became limited, changes in the value of the limit are
5156 * of course permitted.
510fc4e1 5157 */
0999821b 5158 mutex_lock(&memcg_create_mutex);
d6441637
VD
5159 if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
5160 err = -EBUSY;
5161 mutex_unlock(&memcg_create_mutex);
5162 if (err)
5163 goto out;
510fc4e1 5164
d6441637
VD
5165 memcg_id = ida_simple_get(&kmem_limited_groups,
5166 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5167 if (memcg_id < 0) {
5168 err = memcg_id;
5169 goto out;
5170 }
5171
5172 /*
5173 * Make sure we have enough space for this cgroup in each root cache's
5174 * memcg_params.
5175 */
5176 err = memcg_update_all_caches(memcg_id + 1);
5177 if (err)
5178 goto out_rmid;
5179
5180 memcg->kmemcg_id = memcg_id;
5181 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5182 mutex_init(&memcg->slab_caches_mutex);
5183
5184 /*
5185 * We couldn't have accounted to this cgroup, because it hasn't got the
5186 * active bit set yet, so this should succeed.
5187 */
5188 err = res_counter_set_limit(&memcg->kmem, limit);
5189 VM_BUG_ON(err);
5190
5191 static_key_slow_inc(&memcg_kmem_enabled_key);
5192 /*
5193 * Setting the active bit after enabling static branching will
5194 * guarantee no one starts accounting before all call sites are
5195 * patched.
5196 */
5197 memcg_kmem_set_active(memcg);
510fc4e1 5198out:
d6441637
VD
5199 memcg_resume_kmem_account();
5200 return err;
5201
5202out_rmid:
5203 ida_simple_remove(&kmem_limited_groups, memcg_id);
5204 goto out;
5205}
5206
5207static int memcg_activate_kmem(struct mem_cgroup *memcg,
5208 unsigned long long limit)
5209{
5210 int ret;
5211
5212 mutex_lock(&activate_kmem_mutex);
5213 ret = __memcg_activate_kmem(memcg, limit);
5214 mutex_unlock(&activate_kmem_mutex);
5215 return ret;
5216}
5217
5218static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5219 unsigned long long val)
5220{
5221 int ret;
5222
5223 if (!memcg_kmem_is_active(memcg))
5224 ret = memcg_activate_kmem(memcg, val);
5225 else
5226 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5227 return ret;
5228}
5229
55007d84 5230static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5231{
55007d84 5232 int ret = 0;
510fc4e1 5233 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5234
d6441637
VD
5235 if (!parent)
5236 return 0;
55007d84 5237
d6441637 5238 mutex_lock(&activate_kmem_mutex);
55007d84 5239 /*
d6441637
VD
5240 * If the parent cgroup is not kmem-active now, it cannot be activated
5241 * after this point, because it has at least one child already.
55007d84 5242 */
d6441637
VD
5243 if (memcg_kmem_is_active(parent))
5244 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5245 mutex_unlock(&activate_kmem_mutex);
55007d84 5246 return ret;
510fc4e1 5247}
d6441637
VD
5248#else
5249static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5250 unsigned long long val)
5251{
5252 return -EINVAL;
5253}
6d043990 5254#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5255
628f4235
KH
5256/*
5257 * The user of this function is...
5258 * RES_LIMIT.
5259 */
182446d0 5260static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5261 const char *buffer)
8cdea7c0 5262{
182446d0 5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5264 enum res_type type;
5265 int name;
628f4235
KH
5266 unsigned long long val;
5267 int ret;
5268
8c7c6e34
KH
5269 type = MEMFILE_TYPE(cft->private);
5270 name = MEMFILE_ATTR(cft->private);
af36f906 5271
8c7c6e34 5272 switch (name) {
628f4235 5273 case RES_LIMIT:
4b3bde4c
BS
5274 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5275 ret = -EINVAL;
5276 break;
5277 }
628f4235
KH
5278 /* This function does all necessary parse...reuse it */
5279 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5280 if (ret)
5281 break;
5282 if (type == _MEM)
628f4235 5283 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5284 else if (type == _MEMSWAP)
8c7c6e34 5285 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5286 else if (type == _KMEM)
d6441637 5287 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5288 else
5289 return -EINVAL;
628f4235 5290 break;
296c81d8
BS
5291 case RES_SOFT_LIMIT:
5292 ret = res_counter_memparse_write_strategy(buffer, &val);
5293 if (ret)
5294 break;
5295 /*
5296 * For memsw, soft limits are hard to implement in terms
5297 * of semantics, for now, we support soft limits for
5298 * control without swap
5299 */
5300 if (type == _MEM)
5301 ret = res_counter_set_soft_limit(&memcg->res, val);
5302 else
5303 ret = -EINVAL;
5304 break;
628f4235
KH
5305 default:
5306 ret = -EINVAL; /* should be BUG() ? */
5307 break;
5308 }
5309 return ret;
8cdea7c0
BS
5310}
5311
fee7b548
KH
5312static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5313 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5314{
fee7b548
KH
5315 unsigned long long min_limit, min_memsw_limit, tmp;
5316
5317 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5318 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5319 if (!memcg->use_hierarchy)
5320 goto out;
5321
63876986
TH
5322 while (css_parent(&memcg->css)) {
5323 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5324 if (!memcg->use_hierarchy)
5325 break;
5326 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5327 min_limit = min(min_limit, tmp);
5328 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5329 min_memsw_limit = min(min_memsw_limit, tmp);
5330 }
5331out:
5332 *mem_limit = min_limit;
5333 *memsw_limit = min_memsw_limit;
fee7b548
KH
5334}
5335
182446d0 5336static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5337{
182446d0 5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5339 int name;
5340 enum res_type type;
c84872e1 5341
8c7c6e34
KH
5342 type = MEMFILE_TYPE(event);
5343 name = MEMFILE_ATTR(event);
af36f906 5344
8c7c6e34 5345 switch (name) {
29f2a4da 5346 case RES_MAX_USAGE:
8c7c6e34 5347 if (type == _MEM)
c0ff4b85 5348 res_counter_reset_max(&memcg->res);
510fc4e1 5349 else if (type == _MEMSWAP)
c0ff4b85 5350 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5351 else if (type == _KMEM)
5352 res_counter_reset_max(&memcg->kmem);
5353 else
5354 return -EINVAL;
29f2a4da
PE
5355 break;
5356 case RES_FAILCNT:
8c7c6e34 5357 if (type == _MEM)
c0ff4b85 5358 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5359 else if (type == _MEMSWAP)
c0ff4b85 5360 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5361 else if (type == _KMEM)
5362 res_counter_reset_failcnt(&memcg->kmem);
5363 else
5364 return -EINVAL;
29f2a4da
PE
5365 break;
5366 }
f64c3f54 5367
85cc59db 5368 return 0;
c84872e1
PE
5369}
5370
182446d0 5371static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5372 struct cftype *cft)
5373{
182446d0 5374 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5375}
5376
02491447 5377#ifdef CONFIG_MMU
182446d0 5378static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5379 struct cftype *cft, u64 val)
5380{
182446d0 5381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5382
5383 if (val >= (1 << NR_MOVE_TYPE))
5384 return -EINVAL;
ee5e8472 5385
7dc74be0 5386 /*
ee5e8472
GC
5387 * No kind of locking is needed in here, because ->can_attach() will
5388 * check this value once in the beginning of the process, and then carry
5389 * on with stale data. This means that changes to this value will only
5390 * affect task migrations starting after the change.
7dc74be0 5391 */
c0ff4b85 5392 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5393 return 0;
5394}
02491447 5395#else
182446d0 5396static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5397 struct cftype *cft, u64 val)
5398{
5399 return -ENOSYS;
5400}
5401#endif
7dc74be0 5402
406eb0c9 5403#ifdef CONFIG_NUMA
2da8ca82 5404static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5405{
25485de6
GT
5406 struct numa_stat {
5407 const char *name;
5408 unsigned int lru_mask;
5409 };
5410
5411 static const struct numa_stat stats[] = {
5412 { "total", LRU_ALL },
5413 { "file", LRU_ALL_FILE },
5414 { "anon", LRU_ALL_ANON },
5415 { "unevictable", BIT(LRU_UNEVICTABLE) },
5416 };
5417 const struct numa_stat *stat;
406eb0c9 5418 int nid;
25485de6 5419 unsigned long nr;
2da8ca82 5420 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5421
25485de6
GT
5422 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5423 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5424 seq_printf(m, "%s=%lu", stat->name, nr);
5425 for_each_node_state(nid, N_MEMORY) {
5426 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5427 stat->lru_mask);
5428 seq_printf(m, " N%d=%lu", nid, nr);
5429 }
5430 seq_putc(m, '\n');
406eb0c9 5431 }
406eb0c9 5432
071aee13
YH
5433 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5434 struct mem_cgroup *iter;
5435
5436 nr = 0;
5437 for_each_mem_cgroup_tree(iter, memcg)
5438 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5439 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5440 for_each_node_state(nid, N_MEMORY) {
5441 nr = 0;
5442 for_each_mem_cgroup_tree(iter, memcg)
5443 nr += mem_cgroup_node_nr_lru_pages(
5444 iter, nid, stat->lru_mask);
5445 seq_printf(m, " N%d=%lu", nid, nr);
5446 }
5447 seq_putc(m, '\n');
406eb0c9 5448 }
406eb0c9 5449
406eb0c9
YH
5450 return 0;
5451}
5452#endif /* CONFIG_NUMA */
5453
af7c4b0e
JW
5454static inline void mem_cgroup_lru_names_not_uptodate(void)
5455{
5456 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5457}
5458
2da8ca82 5459static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5460{
2da8ca82 5461 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5462 struct mem_cgroup *mi;
5463 unsigned int i;
406eb0c9 5464
af7c4b0e 5465 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5466 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5467 continue;
af7c4b0e
JW
5468 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5469 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5470 }
7b854121 5471
af7c4b0e
JW
5472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5473 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5474 mem_cgroup_read_events(memcg, i));
5475
5476 for (i = 0; i < NR_LRU_LISTS; i++)
5477 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5478 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5479
14067bb3 5480 /* Hierarchical information */
fee7b548
KH
5481 {
5482 unsigned long long limit, memsw_limit;
d79154bb 5483 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5484 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5485 if (do_swap_account)
78ccf5b5
JW
5486 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5487 memsw_limit);
fee7b548 5488 }
7f016ee8 5489
af7c4b0e
JW
5490 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5491 long long val = 0;
5492
bff6bb83 5493 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5494 continue;
af7c4b0e
JW
5495 for_each_mem_cgroup_tree(mi, memcg)
5496 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5497 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5498 }
5499
5500 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5501 unsigned long long val = 0;
5502
5503 for_each_mem_cgroup_tree(mi, memcg)
5504 val += mem_cgroup_read_events(mi, i);
5505 seq_printf(m, "total_%s %llu\n",
5506 mem_cgroup_events_names[i], val);
5507 }
5508
5509 for (i = 0; i < NR_LRU_LISTS; i++) {
5510 unsigned long long val = 0;
5511
5512 for_each_mem_cgroup_tree(mi, memcg)
5513 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5514 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5515 }
14067bb3 5516
7f016ee8 5517#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5518 {
5519 int nid, zid;
5520 struct mem_cgroup_per_zone *mz;
89abfab1 5521 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5522 unsigned long recent_rotated[2] = {0, 0};
5523 unsigned long recent_scanned[2] = {0, 0};
5524
5525 for_each_online_node(nid)
5526 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5527 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5528 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5529
89abfab1
HD
5530 recent_rotated[0] += rstat->recent_rotated[0];
5531 recent_rotated[1] += rstat->recent_rotated[1];
5532 recent_scanned[0] += rstat->recent_scanned[0];
5533 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5534 }
78ccf5b5
JW
5535 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5536 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5537 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5538 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5539 }
5540#endif
5541
d2ceb9b7
KH
5542 return 0;
5543}
5544
182446d0
TH
5545static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5546 struct cftype *cft)
a7885eb8 5547{
182446d0 5548 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5549
1f4c025b 5550 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5551}
5552
182446d0
TH
5553static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5554 struct cftype *cft, u64 val)
a7885eb8 5555{
182446d0 5556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5557 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5558
63876986 5559 if (val > 100 || !parent)
a7885eb8
KM
5560 return -EINVAL;
5561
0999821b 5562 mutex_lock(&memcg_create_mutex);
068b38c1 5563
a7885eb8 5564 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5565 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5566 mutex_unlock(&memcg_create_mutex);
a7885eb8 5567 return -EINVAL;
068b38c1 5568 }
a7885eb8 5569
a7885eb8 5570 memcg->swappiness = val;
a7885eb8 5571
0999821b 5572 mutex_unlock(&memcg_create_mutex);
068b38c1 5573
a7885eb8
KM
5574 return 0;
5575}
5576
2e72b634
KS
5577static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5578{
5579 struct mem_cgroup_threshold_ary *t;
5580 u64 usage;
5581 int i;
5582
5583 rcu_read_lock();
5584 if (!swap)
2c488db2 5585 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5586 else
2c488db2 5587 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5588
5589 if (!t)
5590 goto unlock;
5591
5592 usage = mem_cgroup_usage(memcg, swap);
5593
5594 /*
748dad36 5595 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5596 * If it's not true, a threshold was crossed after last
5597 * call of __mem_cgroup_threshold().
5598 */
5407a562 5599 i = t->current_threshold;
2e72b634
KS
5600
5601 /*
5602 * Iterate backward over array of thresholds starting from
5603 * current_threshold and check if a threshold is crossed.
5604 * If none of thresholds below usage is crossed, we read
5605 * only one element of the array here.
5606 */
5607 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5608 eventfd_signal(t->entries[i].eventfd, 1);
5609
5610 /* i = current_threshold + 1 */
5611 i++;
5612
5613 /*
5614 * Iterate forward over array of thresholds starting from
5615 * current_threshold+1 and check if a threshold is crossed.
5616 * If none of thresholds above usage is crossed, we read
5617 * only one element of the array here.
5618 */
5619 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5620 eventfd_signal(t->entries[i].eventfd, 1);
5621
5622 /* Update current_threshold */
5407a562 5623 t->current_threshold = i - 1;
2e72b634
KS
5624unlock:
5625 rcu_read_unlock();
5626}
5627
5628static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5629{
ad4ca5f4
KS
5630 while (memcg) {
5631 __mem_cgroup_threshold(memcg, false);
5632 if (do_swap_account)
5633 __mem_cgroup_threshold(memcg, true);
5634
5635 memcg = parent_mem_cgroup(memcg);
5636 }
2e72b634
KS
5637}
5638
5639static int compare_thresholds(const void *a, const void *b)
5640{
5641 const struct mem_cgroup_threshold *_a = a;
5642 const struct mem_cgroup_threshold *_b = b;
5643
2bff24a3
GT
5644 if (_a->threshold > _b->threshold)
5645 return 1;
5646
5647 if (_a->threshold < _b->threshold)
5648 return -1;
5649
5650 return 0;
2e72b634
KS
5651}
5652
c0ff4b85 5653static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5654{
5655 struct mem_cgroup_eventfd_list *ev;
5656
c0ff4b85 5657 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5658 eventfd_signal(ev->eventfd, 1);
5659 return 0;
5660}
5661
c0ff4b85 5662static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5663{
7d74b06f
KH
5664 struct mem_cgroup *iter;
5665
c0ff4b85 5666 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5667 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5668}
5669
59b6f873 5670static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5671 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5672{
2c488db2
KS
5673 struct mem_cgroup_thresholds *thresholds;
5674 struct mem_cgroup_threshold_ary *new;
2e72b634 5675 u64 threshold, usage;
2c488db2 5676 int i, size, ret;
2e72b634
KS
5677
5678 ret = res_counter_memparse_write_strategy(args, &threshold);
5679 if (ret)
5680 return ret;
5681
5682 mutex_lock(&memcg->thresholds_lock);
2c488db2 5683
2e72b634 5684 if (type == _MEM)
2c488db2 5685 thresholds = &memcg->thresholds;
2e72b634 5686 else if (type == _MEMSWAP)
2c488db2 5687 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5688 else
5689 BUG();
5690
5691 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5692
5693 /* Check if a threshold crossed before adding a new one */
2c488db2 5694 if (thresholds->primary)
2e72b634
KS
5695 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5696
2c488db2 5697 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5698
5699 /* Allocate memory for new array of thresholds */
2c488db2 5700 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5701 GFP_KERNEL);
2c488db2 5702 if (!new) {
2e72b634
KS
5703 ret = -ENOMEM;
5704 goto unlock;
5705 }
2c488db2 5706 new->size = size;
2e72b634
KS
5707
5708 /* Copy thresholds (if any) to new array */
2c488db2
KS
5709 if (thresholds->primary) {
5710 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5711 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5712 }
5713
2e72b634 5714 /* Add new threshold */
2c488db2
KS
5715 new->entries[size - 1].eventfd = eventfd;
5716 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5717
5718 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5719 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5720 compare_thresholds, NULL);
5721
5722 /* Find current threshold */
2c488db2 5723 new->current_threshold = -1;
2e72b634 5724 for (i = 0; i < size; i++) {
748dad36 5725 if (new->entries[i].threshold <= usage) {
2e72b634 5726 /*
2c488db2
KS
5727 * new->current_threshold will not be used until
5728 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5729 * it here.
5730 */
2c488db2 5731 ++new->current_threshold;
748dad36
SZ
5732 } else
5733 break;
2e72b634
KS
5734 }
5735
2c488db2
KS
5736 /* Free old spare buffer and save old primary buffer as spare */
5737 kfree(thresholds->spare);
5738 thresholds->spare = thresholds->primary;
5739
5740 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5741
907860ed 5742 /* To be sure that nobody uses thresholds */
2e72b634
KS
5743 synchronize_rcu();
5744
2e72b634
KS
5745unlock:
5746 mutex_unlock(&memcg->thresholds_lock);
5747
5748 return ret;
5749}
5750
59b6f873 5751static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5752 struct eventfd_ctx *eventfd, const char *args)
5753{
59b6f873 5754 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5755}
5756
59b6f873 5757static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5758 struct eventfd_ctx *eventfd, const char *args)
5759{
59b6f873 5760 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5761}
5762
59b6f873 5763static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5764 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5765{
2c488db2
KS
5766 struct mem_cgroup_thresholds *thresholds;
5767 struct mem_cgroup_threshold_ary *new;
2e72b634 5768 u64 usage;
2c488db2 5769 int i, j, size;
2e72b634
KS
5770
5771 mutex_lock(&memcg->thresholds_lock);
5772 if (type == _MEM)
2c488db2 5773 thresholds = &memcg->thresholds;
2e72b634 5774 else if (type == _MEMSWAP)
2c488db2 5775 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5776 else
5777 BUG();
5778
371528ca
AV
5779 if (!thresholds->primary)
5780 goto unlock;
5781
2e72b634
KS
5782 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5783
5784 /* Check if a threshold crossed before removing */
5785 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5786
5787 /* Calculate new number of threshold */
2c488db2
KS
5788 size = 0;
5789 for (i = 0; i < thresholds->primary->size; i++) {
5790 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5791 size++;
5792 }
5793
2c488db2 5794 new = thresholds->spare;
907860ed 5795
2e72b634
KS
5796 /* Set thresholds array to NULL if we don't have thresholds */
5797 if (!size) {
2c488db2
KS
5798 kfree(new);
5799 new = NULL;
907860ed 5800 goto swap_buffers;
2e72b634
KS
5801 }
5802
2c488db2 5803 new->size = size;
2e72b634
KS
5804
5805 /* Copy thresholds and find current threshold */
2c488db2
KS
5806 new->current_threshold = -1;
5807 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5808 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5809 continue;
5810
2c488db2 5811 new->entries[j] = thresholds->primary->entries[i];
748dad36 5812 if (new->entries[j].threshold <= usage) {
2e72b634 5813 /*
2c488db2 5814 * new->current_threshold will not be used
2e72b634
KS
5815 * until rcu_assign_pointer(), so it's safe to increment
5816 * it here.
5817 */
2c488db2 5818 ++new->current_threshold;
2e72b634
KS
5819 }
5820 j++;
5821 }
5822
907860ed 5823swap_buffers:
2c488db2
KS
5824 /* Swap primary and spare array */
5825 thresholds->spare = thresholds->primary;
8c757763
SZ
5826 /* If all events are unregistered, free the spare array */
5827 if (!new) {
5828 kfree(thresholds->spare);
5829 thresholds->spare = NULL;
5830 }
5831
2c488db2 5832 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5833
907860ed 5834 /* To be sure that nobody uses thresholds */
2e72b634 5835 synchronize_rcu();
371528ca 5836unlock:
2e72b634 5837 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5838}
c1e862c1 5839
59b6f873 5840static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5841 struct eventfd_ctx *eventfd)
5842{
59b6f873 5843 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5844}
5845
59b6f873 5846static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5847 struct eventfd_ctx *eventfd)
5848{
59b6f873 5849 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5850}
5851
59b6f873 5852static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5853 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5854{
9490ff27 5855 struct mem_cgroup_eventfd_list *event;
9490ff27 5856
9490ff27
KH
5857 event = kmalloc(sizeof(*event), GFP_KERNEL);
5858 if (!event)
5859 return -ENOMEM;
5860
1af8efe9 5861 spin_lock(&memcg_oom_lock);
9490ff27
KH
5862
5863 event->eventfd = eventfd;
5864 list_add(&event->list, &memcg->oom_notify);
5865
5866 /* already in OOM ? */
79dfdacc 5867 if (atomic_read(&memcg->under_oom))
9490ff27 5868 eventfd_signal(eventfd, 1);
1af8efe9 5869 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5870
5871 return 0;
5872}
5873
59b6f873 5874static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5875 struct eventfd_ctx *eventfd)
9490ff27 5876{
9490ff27 5877 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5878
1af8efe9 5879 spin_lock(&memcg_oom_lock);
9490ff27 5880
c0ff4b85 5881 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5882 if (ev->eventfd == eventfd) {
5883 list_del(&ev->list);
5884 kfree(ev);
5885 }
5886 }
5887
1af8efe9 5888 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5889}
5890
2da8ca82 5891static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5892{
2da8ca82 5893 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5894
791badbd
TH
5895 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5896 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5897 return 0;
5898}
5899
182446d0 5900static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5901 struct cftype *cft, u64 val)
5902{
182446d0 5903 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5904 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5905
5906 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5907 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5908 return -EINVAL;
5909
0999821b 5910 mutex_lock(&memcg_create_mutex);
3c11ecf4 5911 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5912 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5913 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5914 return -EINVAL;
5915 }
c0ff4b85 5916 memcg->oom_kill_disable = val;
4d845ebf 5917 if (!val)
c0ff4b85 5918 memcg_oom_recover(memcg);
0999821b 5919 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5920 return 0;
5921}
5922
c255a458 5923#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5924static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5925{
55007d84
GC
5926 int ret;
5927
2633d7a0 5928 memcg->kmemcg_id = -1;
55007d84
GC
5929 ret = memcg_propagate_kmem(memcg);
5930 if (ret)
5931 return ret;
2633d7a0 5932
1d62e436 5933 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5934}
e5671dfa 5935
10d5ebf4 5936static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5937{
1d62e436 5938 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5939}
5940
5941static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5942{
5943 if (!memcg_kmem_is_active(memcg))
5944 return;
5945
5946 /*
5947 * kmem charges can outlive the cgroup. In the case of slab
5948 * pages, for instance, a page contain objects from various
5949 * processes. As we prevent from taking a reference for every
5950 * such allocation we have to be careful when doing uncharge
5951 * (see memcg_uncharge_kmem) and here during offlining.
5952 *
5953 * The idea is that that only the _last_ uncharge which sees
5954 * the dead memcg will drop the last reference. An additional
5955 * reference is taken here before the group is marked dead
5956 * which is then paired with css_put during uncharge resp. here.
5957 *
5958 * Although this might sound strange as this path is called from
5959 * css_offline() when the referencemight have dropped down to 0
5960 * and shouldn't be incremented anymore (css_tryget would fail)
5961 * we do not have other options because of the kmem allocations
5962 * lifetime.
5963 */
5964 css_get(&memcg->css);
7de37682
GC
5965
5966 memcg_kmem_mark_dead(memcg);
5967
5968 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5969 return;
5970
7de37682 5971 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5972 css_put(&memcg->css);
d1a4c0b3 5973}
e5671dfa 5974#else
cbe128e3 5975static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5976{
5977 return 0;
5978}
d1a4c0b3 5979
10d5ebf4
LZ
5980static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5981{
5982}
5983
5984static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5985{
5986}
e5671dfa
GC
5987#endif
5988
3bc942f3
TH
5989/*
5990 * DO NOT USE IN NEW FILES.
5991 *
5992 * "cgroup.event_control" implementation.
5993 *
5994 * This is way over-engineered. It tries to support fully configurable
5995 * events for each user. Such level of flexibility is completely
5996 * unnecessary especially in the light of the planned unified hierarchy.
5997 *
5998 * Please deprecate this and replace with something simpler if at all
5999 * possible.
6000 */
6001
79bd9814
TH
6002/*
6003 * Unregister event and free resources.
6004 *
6005 * Gets called from workqueue.
6006 */
3bc942f3 6007static void memcg_event_remove(struct work_struct *work)
79bd9814 6008{
3bc942f3
TH
6009 struct mem_cgroup_event *event =
6010 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6011 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6012
6013 remove_wait_queue(event->wqh, &event->wait);
6014
59b6f873 6015 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6016
6017 /* Notify userspace the event is going away. */
6018 eventfd_signal(event->eventfd, 1);
6019
6020 eventfd_ctx_put(event->eventfd);
6021 kfree(event);
59b6f873 6022 css_put(&memcg->css);
79bd9814
TH
6023}
6024
6025/*
6026 * Gets called on POLLHUP on eventfd when user closes it.
6027 *
6028 * Called with wqh->lock held and interrupts disabled.
6029 */
3bc942f3
TH
6030static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6031 int sync, void *key)
79bd9814 6032{
3bc942f3
TH
6033 struct mem_cgroup_event *event =
6034 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6035 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6036 unsigned long flags = (unsigned long)key;
6037
6038 if (flags & POLLHUP) {
6039 /*
6040 * If the event has been detached at cgroup removal, we
6041 * can simply return knowing the other side will cleanup
6042 * for us.
6043 *
6044 * We can't race against event freeing since the other
6045 * side will require wqh->lock via remove_wait_queue(),
6046 * which we hold.
6047 */
fba94807 6048 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6049 if (!list_empty(&event->list)) {
6050 list_del_init(&event->list);
6051 /*
6052 * We are in atomic context, but cgroup_event_remove()
6053 * may sleep, so we have to call it in workqueue.
6054 */
6055 schedule_work(&event->remove);
6056 }
fba94807 6057 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6058 }
6059
6060 return 0;
6061}
6062
3bc942f3 6063static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6064 wait_queue_head_t *wqh, poll_table *pt)
6065{
3bc942f3
TH
6066 struct mem_cgroup_event *event =
6067 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6068
6069 event->wqh = wqh;
6070 add_wait_queue(wqh, &event->wait);
6071}
6072
6073/*
3bc942f3
TH
6074 * DO NOT USE IN NEW FILES.
6075 *
79bd9814
TH
6076 * Parse input and register new cgroup event handler.
6077 *
6078 * Input must be in format '<event_fd> <control_fd> <args>'.
6079 * Interpretation of args is defined by control file implementation.
6080 */
3bc942f3
TH
6081static int memcg_write_event_control(struct cgroup_subsys_state *css,
6082 struct cftype *cft, const char *buffer)
79bd9814 6083{
fba94807 6084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6085 struct mem_cgroup_event *event;
79bd9814
TH
6086 struct cgroup_subsys_state *cfile_css;
6087 unsigned int efd, cfd;
6088 struct fd efile;
6089 struct fd cfile;
fba94807 6090 const char *name;
79bd9814
TH
6091 char *endp;
6092 int ret;
6093
6094 efd = simple_strtoul(buffer, &endp, 10);
6095 if (*endp != ' ')
6096 return -EINVAL;
6097 buffer = endp + 1;
6098
6099 cfd = simple_strtoul(buffer, &endp, 10);
6100 if ((*endp != ' ') && (*endp != '\0'))
6101 return -EINVAL;
6102 buffer = endp + 1;
6103
6104 event = kzalloc(sizeof(*event), GFP_KERNEL);
6105 if (!event)
6106 return -ENOMEM;
6107
59b6f873 6108 event->memcg = memcg;
79bd9814 6109 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6110 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6111 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6112 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6113
6114 efile = fdget(efd);
6115 if (!efile.file) {
6116 ret = -EBADF;
6117 goto out_kfree;
6118 }
6119
6120 event->eventfd = eventfd_ctx_fileget(efile.file);
6121 if (IS_ERR(event->eventfd)) {
6122 ret = PTR_ERR(event->eventfd);
6123 goto out_put_efile;
6124 }
6125
6126 cfile = fdget(cfd);
6127 if (!cfile.file) {
6128 ret = -EBADF;
6129 goto out_put_eventfd;
6130 }
6131
6132 /* the process need read permission on control file */
6133 /* AV: shouldn't we check that it's been opened for read instead? */
6134 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6135 if (ret < 0)
6136 goto out_put_cfile;
6137
fba94807
TH
6138 /*
6139 * Determine the event callbacks and set them in @event. This used
6140 * to be done via struct cftype but cgroup core no longer knows
6141 * about these events. The following is crude but the whole thing
6142 * is for compatibility anyway.
3bc942f3
TH
6143 *
6144 * DO NOT ADD NEW FILES.
fba94807
TH
6145 */
6146 name = cfile.file->f_dentry->d_name.name;
6147
6148 if (!strcmp(name, "memory.usage_in_bytes")) {
6149 event->register_event = mem_cgroup_usage_register_event;
6150 event->unregister_event = mem_cgroup_usage_unregister_event;
6151 } else if (!strcmp(name, "memory.oom_control")) {
6152 event->register_event = mem_cgroup_oom_register_event;
6153 event->unregister_event = mem_cgroup_oom_unregister_event;
6154 } else if (!strcmp(name, "memory.pressure_level")) {
6155 event->register_event = vmpressure_register_event;
6156 event->unregister_event = vmpressure_unregister_event;
6157 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6158 event->register_event = memsw_cgroup_usage_register_event;
6159 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6160 } else {
6161 ret = -EINVAL;
6162 goto out_put_cfile;
6163 }
6164
79bd9814 6165 /*
b5557c4c
TH
6166 * Verify @cfile should belong to @css. Also, remaining events are
6167 * automatically removed on cgroup destruction but the removal is
6168 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6169 */
6170 rcu_read_lock();
6171
6172 ret = -EINVAL;
b5557c4c
TH
6173 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6174 &mem_cgroup_subsys);
6175 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6176 ret = 0;
6177
6178 rcu_read_unlock();
6179 if (ret)
6180 goto out_put_cfile;
6181
59b6f873 6182 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6183 if (ret)
6184 goto out_put_css;
6185
6186 efile.file->f_op->poll(efile.file, &event->pt);
6187
fba94807
TH
6188 spin_lock(&memcg->event_list_lock);
6189 list_add(&event->list, &memcg->event_list);
6190 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6191
6192 fdput(cfile);
6193 fdput(efile);
6194
6195 return 0;
6196
6197out_put_css:
b5557c4c 6198 css_put(css);
79bd9814
TH
6199out_put_cfile:
6200 fdput(cfile);
6201out_put_eventfd:
6202 eventfd_ctx_put(event->eventfd);
6203out_put_efile:
6204 fdput(efile);
6205out_kfree:
6206 kfree(event);
6207
6208 return ret;
6209}
6210
8cdea7c0
BS
6211static struct cftype mem_cgroup_files[] = {
6212 {
0eea1030 6213 .name = "usage_in_bytes",
8c7c6e34 6214 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6215 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6216 },
c84872e1
PE
6217 {
6218 .name = "max_usage_in_bytes",
8c7c6e34 6219 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6220 .trigger = mem_cgroup_reset,
791badbd 6221 .read_u64 = mem_cgroup_read_u64,
c84872e1 6222 },
8cdea7c0 6223 {
0eea1030 6224 .name = "limit_in_bytes",
8c7c6e34 6225 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6226 .write_string = mem_cgroup_write,
791badbd 6227 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6228 },
296c81d8
BS
6229 {
6230 .name = "soft_limit_in_bytes",
6231 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6232 .write_string = mem_cgroup_write,
791badbd 6233 .read_u64 = mem_cgroup_read_u64,
296c81d8 6234 },
8cdea7c0
BS
6235 {
6236 .name = "failcnt",
8c7c6e34 6237 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6238 .trigger = mem_cgroup_reset,
791badbd 6239 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6240 },
d2ceb9b7
KH
6241 {
6242 .name = "stat",
2da8ca82 6243 .seq_show = memcg_stat_show,
d2ceb9b7 6244 },
c1e862c1
KH
6245 {
6246 .name = "force_empty",
6247 .trigger = mem_cgroup_force_empty_write,
6248 },
18f59ea7
BS
6249 {
6250 .name = "use_hierarchy",
f00baae7 6251 .flags = CFTYPE_INSANE,
18f59ea7
BS
6252 .write_u64 = mem_cgroup_hierarchy_write,
6253 .read_u64 = mem_cgroup_hierarchy_read,
6254 },
79bd9814 6255 {
3bc942f3
TH
6256 .name = "cgroup.event_control", /* XXX: for compat */
6257 .write_string = memcg_write_event_control,
79bd9814
TH
6258 .flags = CFTYPE_NO_PREFIX,
6259 .mode = S_IWUGO,
6260 },
a7885eb8
KM
6261 {
6262 .name = "swappiness",
6263 .read_u64 = mem_cgroup_swappiness_read,
6264 .write_u64 = mem_cgroup_swappiness_write,
6265 },
7dc74be0
DN
6266 {
6267 .name = "move_charge_at_immigrate",
6268 .read_u64 = mem_cgroup_move_charge_read,
6269 .write_u64 = mem_cgroup_move_charge_write,
6270 },
9490ff27
KH
6271 {
6272 .name = "oom_control",
2da8ca82 6273 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6274 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6275 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6276 },
70ddf637
AV
6277 {
6278 .name = "pressure_level",
70ddf637 6279 },
406eb0c9
YH
6280#ifdef CONFIG_NUMA
6281 {
6282 .name = "numa_stat",
2da8ca82 6283 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6284 },
6285#endif
510fc4e1
GC
6286#ifdef CONFIG_MEMCG_KMEM
6287 {
6288 .name = "kmem.limit_in_bytes",
6289 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6290 .write_string = mem_cgroup_write,
791badbd 6291 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6292 },
6293 {
6294 .name = "kmem.usage_in_bytes",
6295 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6296 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6297 },
6298 {
6299 .name = "kmem.failcnt",
6300 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6301 .trigger = mem_cgroup_reset,
791badbd 6302 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6303 },
6304 {
6305 .name = "kmem.max_usage_in_bytes",
6306 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6307 .trigger = mem_cgroup_reset,
791badbd 6308 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6309 },
749c5415
GC
6310#ifdef CONFIG_SLABINFO
6311 {
6312 .name = "kmem.slabinfo",
2da8ca82 6313 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6314 },
6315#endif
8c7c6e34 6316#endif
6bc10349 6317 { }, /* terminate */
af36f906 6318};
8c7c6e34 6319
2d11085e
MH
6320#ifdef CONFIG_MEMCG_SWAP
6321static struct cftype memsw_cgroup_files[] = {
6322 {
6323 .name = "memsw.usage_in_bytes",
6324 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6325 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6326 },
6327 {
6328 .name = "memsw.max_usage_in_bytes",
6329 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6330 .trigger = mem_cgroup_reset,
791badbd 6331 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6332 },
6333 {
6334 .name = "memsw.limit_in_bytes",
6335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6336 .write_string = mem_cgroup_write,
791badbd 6337 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6338 },
6339 {
6340 .name = "memsw.failcnt",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6342 .trigger = mem_cgroup_reset,
791badbd 6343 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6344 },
6345 { }, /* terminate */
6346};
6347#endif
c0ff4b85 6348static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6349{
6350 struct mem_cgroup_per_node *pn;
1ecaab2b 6351 struct mem_cgroup_per_zone *mz;
41e3355d 6352 int zone, tmp = node;
1ecaab2b
KH
6353 /*
6354 * This routine is called against possible nodes.
6355 * But it's BUG to call kmalloc() against offline node.
6356 *
6357 * TODO: this routine can waste much memory for nodes which will
6358 * never be onlined. It's better to use memory hotplug callback
6359 * function.
6360 */
41e3355d
KH
6361 if (!node_state(node, N_NORMAL_MEMORY))
6362 tmp = -1;
17295c88 6363 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6364 if (!pn)
6365 return 1;
1ecaab2b 6366
1ecaab2b
KH
6367 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6368 mz = &pn->zoneinfo[zone];
bea8c150 6369 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6370 mz->usage_in_excess = 0;
6371 mz->on_tree = false;
d79154bb 6372 mz->memcg = memcg;
1ecaab2b 6373 }
54f72fe0 6374 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6375 return 0;
6376}
6377
c0ff4b85 6378static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6379{
54f72fe0 6380 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6381}
6382
33327948
KH
6383static struct mem_cgroup *mem_cgroup_alloc(void)
6384{
d79154bb 6385 struct mem_cgroup *memcg;
8ff69e2c 6386 size_t size;
33327948 6387
8ff69e2c
VD
6388 size = sizeof(struct mem_cgroup);
6389 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6390
8ff69e2c 6391 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6392 if (!memcg)
e7bbcdf3
DC
6393 return NULL;
6394
d79154bb
HD
6395 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6396 if (!memcg->stat)
d2e61b8d 6397 goto out_free;
d79154bb
HD
6398 spin_lock_init(&memcg->pcp_counter_lock);
6399 return memcg;
d2e61b8d
DC
6400
6401out_free:
8ff69e2c 6402 kfree(memcg);
d2e61b8d 6403 return NULL;
33327948
KH
6404}
6405
59927fb9 6406/*
c8b2a36f
GC
6407 * At destroying mem_cgroup, references from swap_cgroup can remain.
6408 * (scanning all at force_empty is too costly...)
6409 *
6410 * Instead of clearing all references at force_empty, we remember
6411 * the number of reference from swap_cgroup and free mem_cgroup when
6412 * it goes down to 0.
6413 *
6414 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6415 */
c8b2a36f
GC
6416
6417static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6418{
c8b2a36f 6419 int node;
59927fb9 6420
bb4cc1a8 6421 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6422
6423 for_each_node(node)
6424 free_mem_cgroup_per_zone_info(memcg, node);
6425
6426 free_percpu(memcg->stat);
6427
3f134619
GC
6428 /*
6429 * We need to make sure that (at least for now), the jump label
6430 * destruction code runs outside of the cgroup lock. This is because
6431 * get_online_cpus(), which is called from the static_branch update,
6432 * can't be called inside the cgroup_lock. cpusets are the ones
6433 * enforcing this dependency, so if they ever change, we might as well.
6434 *
6435 * schedule_work() will guarantee this happens. Be careful if you need
6436 * to move this code around, and make sure it is outside
6437 * the cgroup_lock.
6438 */
a8964b9b 6439 disarm_static_keys(memcg);
8ff69e2c 6440 kfree(memcg);
59927fb9 6441}
3afe36b1 6442
7bcc1bb1
DN
6443/*
6444 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6445 */
e1aab161 6446struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6447{
c0ff4b85 6448 if (!memcg->res.parent)
7bcc1bb1 6449 return NULL;
c0ff4b85 6450 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6451}
e1aab161 6452EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6453
bb4cc1a8
AM
6454static void __init mem_cgroup_soft_limit_tree_init(void)
6455{
6456 struct mem_cgroup_tree_per_node *rtpn;
6457 struct mem_cgroup_tree_per_zone *rtpz;
6458 int tmp, node, zone;
6459
6460 for_each_node(node) {
6461 tmp = node;
6462 if (!node_state(node, N_NORMAL_MEMORY))
6463 tmp = -1;
6464 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6465 BUG_ON(!rtpn);
6466
6467 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6468
6469 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6470 rtpz = &rtpn->rb_tree_per_zone[zone];
6471 rtpz->rb_root = RB_ROOT;
6472 spin_lock_init(&rtpz->lock);
6473 }
6474 }
6475}
6476
0eb253e2 6477static struct cgroup_subsys_state * __ref
eb95419b 6478mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6479{
d142e3e6 6480 struct mem_cgroup *memcg;
04046e1a 6481 long error = -ENOMEM;
6d12e2d8 6482 int node;
8cdea7c0 6483
c0ff4b85
R
6484 memcg = mem_cgroup_alloc();
6485 if (!memcg)
04046e1a 6486 return ERR_PTR(error);
78fb7466 6487
3ed28fa1 6488 for_each_node(node)
c0ff4b85 6489 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6490 goto free_out;
f64c3f54 6491
c077719b 6492 /* root ? */
eb95419b 6493 if (parent_css == NULL) {
a41c58a6 6494 root_mem_cgroup = memcg;
d142e3e6
GC
6495 res_counter_init(&memcg->res, NULL);
6496 res_counter_init(&memcg->memsw, NULL);
6497 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6498 }
28dbc4b6 6499
d142e3e6
GC
6500 memcg->last_scanned_node = MAX_NUMNODES;
6501 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6502 memcg->move_charge_at_immigrate = 0;
6503 mutex_init(&memcg->thresholds_lock);
6504 spin_lock_init(&memcg->move_lock);
70ddf637 6505 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6506 INIT_LIST_HEAD(&memcg->event_list);
6507 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6508
6509 return &memcg->css;
6510
6511free_out:
6512 __mem_cgroup_free(memcg);
6513 return ERR_PTR(error);
6514}
6515
6516static int
eb95419b 6517mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6518{
eb95419b
TH
6519 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6520 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6521
4219b2da
LZ
6522 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6523 return -ENOSPC;
6524
63876986 6525 if (!parent)
d142e3e6
GC
6526 return 0;
6527
0999821b 6528 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6529
6530 memcg->use_hierarchy = parent->use_hierarchy;
6531 memcg->oom_kill_disable = parent->oom_kill_disable;
6532 memcg->swappiness = mem_cgroup_swappiness(parent);
6533
6534 if (parent->use_hierarchy) {
c0ff4b85
R
6535 res_counter_init(&memcg->res, &parent->res);
6536 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6537 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6538
7bcc1bb1 6539 /*
8d76a979
LZ
6540 * No need to take a reference to the parent because cgroup
6541 * core guarantees its existence.
7bcc1bb1 6542 */
18f59ea7 6543 } else {
c0ff4b85
R
6544 res_counter_init(&memcg->res, NULL);
6545 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6546 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6547 /*
6548 * Deeper hierachy with use_hierarchy == false doesn't make
6549 * much sense so let cgroup subsystem know about this
6550 * unfortunate state in our controller.
6551 */
d142e3e6 6552 if (parent != root_mem_cgroup)
8c7f6edb 6553 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6554 }
0999821b 6555 mutex_unlock(&memcg_create_mutex);
d6441637
VD
6556
6557 return memcg_init_kmem(memcg, &mem_cgroup_subsys);
8cdea7c0
BS
6558}
6559
5f578161
MH
6560/*
6561 * Announce all parents that a group from their hierarchy is gone.
6562 */
6563static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6564{
6565 struct mem_cgroup *parent = memcg;
6566
6567 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6568 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6569
6570 /*
6571 * if the root memcg is not hierarchical we have to check it
6572 * explicitely.
6573 */
6574 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6575 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6576}
6577
eb95419b 6578static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6579{
eb95419b 6580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6581 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6582
6583 /*
6584 * Unregister events and notify userspace.
6585 * Notify userspace about cgroup removing only after rmdir of cgroup
6586 * directory to avoid race between userspace and kernelspace.
6587 */
fba94807
TH
6588 spin_lock(&memcg->event_list_lock);
6589 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6590 list_del_init(&event->list);
6591 schedule_work(&event->remove);
6592 }
fba94807 6593 spin_unlock(&memcg->event_list_lock);
ec64f515 6594
10d5ebf4
LZ
6595 kmem_cgroup_css_offline(memcg);
6596
5f578161 6597 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6598 mem_cgroup_reparent_charges(memcg);
1f458cbf 6599 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6600 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6601}
6602
eb95419b 6603static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6604{
eb95419b 6605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6606 /*
6607 * XXX: css_offline() would be where we should reparent all
6608 * memory to prepare the cgroup for destruction. However,
6609 * memcg does not do css_tryget() and res_counter charging
6610 * under the same RCU lock region, which means that charging
6611 * could race with offlining. Offlining only happens to
6612 * cgroups with no tasks in them but charges can show up
6613 * without any tasks from the swapin path when the target
6614 * memcg is looked up from the swapout record and not from the
6615 * current task as it usually is. A race like this can leak
6616 * charges and put pages with stale cgroup pointers into
6617 * circulation:
6618 *
6619 * #0 #1
6620 * lookup_swap_cgroup_id()
6621 * rcu_read_lock()
6622 * mem_cgroup_lookup()
6623 * css_tryget()
6624 * rcu_read_unlock()
6625 * disable css_tryget()
6626 * call_rcu()
6627 * offline_css()
6628 * reparent_charges()
6629 * res_counter_charge()
6630 * css_put()
6631 * css_free()
6632 * pc->mem_cgroup = dead memcg
6633 * add page to lru
6634 *
6635 * The bulk of the charges are still moved in offline_css() to
6636 * avoid pinning a lot of pages in case a long-term reference
6637 * like a swapout record is deferring the css_free() to long
6638 * after offlining. But this makes sure we catch any charges
6639 * made after offlining:
6640 */
6641 mem_cgroup_reparent_charges(memcg);
c268e994 6642
10d5ebf4 6643 memcg_destroy_kmem(memcg);
465939a1 6644 __mem_cgroup_free(memcg);
8cdea7c0
BS
6645}
6646
02491447 6647#ifdef CONFIG_MMU
7dc74be0 6648/* Handlers for move charge at task migration. */
854ffa8d
DN
6649#define PRECHARGE_COUNT_AT_ONCE 256
6650static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6651{
854ffa8d
DN
6652 int ret = 0;
6653 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6654 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6655
c0ff4b85 6656 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6657 mc.precharge += count;
6658 /* we don't need css_get for root */
6659 return ret;
6660 }
6661 /* try to charge at once */
6662 if (count > 1) {
6663 struct res_counter *dummy;
6664 /*
c0ff4b85 6665 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6666 * by cgroup_lock_live_cgroup() that it is not removed and we
6667 * are still under the same cgroup_mutex. So we can postpone
6668 * css_get().
6669 */
c0ff4b85 6670 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6671 goto one_by_one;
c0ff4b85 6672 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6673 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6674 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6675 goto one_by_one;
6676 }
6677 mc.precharge += count;
854ffa8d
DN
6678 return ret;
6679 }
6680one_by_one:
6681 /* fall back to one by one charge */
6682 while (count--) {
6683 if (signal_pending(current)) {
6684 ret = -EINTR;
6685 break;
6686 }
6687 if (!batch_count--) {
6688 batch_count = PRECHARGE_COUNT_AT_ONCE;
6689 cond_resched();
6690 }
c0ff4b85
R
6691 ret = __mem_cgroup_try_charge(NULL,
6692 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6693 if (ret)
854ffa8d 6694 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6695 return ret;
854ffa8d
DN
6696 mc.precharge++;
6697 }
4ffef5fe
DN
6698 return ret;
6699}
6700
6701/**
8d32ff84 6702 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6703 * @vma: the vma the pte to be checked belongs
6704 * @addr: the address corresponding to the pte to be checked
6705 * @ptent: the pte to be checked
02491447 6706 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6707 *
6708 * Returns
6709 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6710 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6711 * move charge. if @target is not NULL, the page is stored in target->page
6712 * with extra refcnt got(Callers should handle it).
02491447
DN
6713 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6714 * target for charge migration. if @target is not NULL, the entry is stored
6715 * in target->ent.
4ffef5fe
DN
6716 *
6717 * Called with pte lock held.
6718 */
4ffef5fe
DN
6719union mc_target {
6720 struct page *page;
02491447 6721 swp_entry_t ent;
4ffef5fe
DN
6722};
6723
4ffef5fe 6724enum mc_target_type {
8d32ff84 6725 MC_TARGET_NONE = 0,
4ffef5fe 6726 MC_TARGET_PAGE,
02491447 6727 MC_TARGET_SWAP,
4ffef5fe
DN
6728};
6729
90254a65
DN
6730static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6731 unsigned long addr, pte_t ptent)
4ffef5fe 6732{
90254a65 6733 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6734
90254a65
DN
6735 if (!page || !page_mapped(page))
6736 return NULL;
6737 if (PageAnon(page)) {
6738 /* we don't move shared anon */
4b91355e 6739 if (!move_anon())
90254a65 6740 return NULL;
87946a72
DN
6741 } else if (!move_file())
6742 /* we ignore mapcount for file pages */
90254a65
DN
6743 return NULL;
6744 if (!get_page_unless_zero(page))
6745 return NULL;
6746
6747 return page;
6748}
6749
4b91355e 6750#ifdef CONFIG_SWAP
90254a65
DN
6751static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6752 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6753{
90254a65
DN
6754 struct page *page = NULL;
6755 swp_entry_t ent = pte_to_swp_entry(ptent);
6756
6757 if (!move_anon() || non_swap_entry(ent))
6758 return NULL;
4b91355e
KH
6759 /*
6760 * Because lookup_swap_cache() updates some statistics counter,
6761 * we call find_get_page() with swapper_space directly.
6762 */
33806f06 6763 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6764 if (do_swap_account)
6765 entry->val = ent.val;
6766
6767 return page;
6768}
4b91355e
KH
6769#else
6770static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6771 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6772{
6773 return NULL;
6774}
6775#endif
90254a65 6776
87946a72
DN
6777static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6778 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6779{
6780 struct page *page = NULL;
87946a72
DN
6781 struct address_space *mapping;
6782 pgoff_t pgoff;
6783
6784 if (!vma->vm_file) /* anonymous vma */
6785 return NULL;
6786 if (!move_file())
6787 return NULL;
6788
87946a72
DN
6789 mapping = vma->vm_file->f_mapping;
6790 if (pte_none(ptent))
6791 pgoff = linear_page_index(vma, addr);
6792 else /* pte_file(ptent) is true */
6793 pgoff = pte_to_pgoff(ptent);
6794
6795 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6796 page = find_get_page(mapping, pgoff);
6797
6798#ifdef CONFIG_SWAP
6799 /* shmem/tmpfs may report page out on swap: account for that too. */
6800 if (radix_tree_exceptional_entry(page)) {
6801 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6802 if (do_swap_account)
aa3b1895 6803 *entry = swap;
33806f06 6804 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6805 }
aa3b1895 6806#endif
87946a72
DN
6807 return page;
6808}
6809
8d32ff84 6810static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6811 unsigned long addr, pte_t ptent, union mc_target *target)
6812{
6813 struct page *page = NULL;
6814 struct page_cgroup *pc;
8d32ff84 6815 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6816 swp_entry_t ent = { .val = 0 };
6817
6818 if (pte_present(ptent))
6819 page = mc_handle_present_pte(vma, addr, ptent);
6820 else if (is_swap_pte(ptent))
6821 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6822 else if (pte_none(ptent) || pte_file(ptent))
6823 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6824
6825 if (!page && !ent.val)
8d32ff84 6826 return ret;
02491447
DN
6827 if (page) {
6828 pc = lookup_page_cgroup(page);
6829 /*
6830 * Do only loose check w/o page_cgroup lock.
6831 * mem_cgroup_move_account() checks the pc is valid or not under
6832 * the lock.
6833 */
6834 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6835 ret = MC_TARGET_PAGE;
6836 if (target)
6837 target->page = page;
6838 }
6839 if (!ret || !target)
6840 put_page(page);
6841 }
90254a65
DN
6842 /* There is a swap entry and a page doesn't exist or isn't charged */
6843 if (ent.val && !ret &&
34c00c31 6844 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6845 ret = MC_TARGET_SWAP;
6846 if (target)
6847 target->ent = ent;
4ffef5fe 6848 }
4ffef5fe
DN
6849 return ret;
6850}
6851
12724850
NH
6852#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6853/*
6854 * We don't consider swapping or file mapped pages because THP does not
6855 * support them for now.
6856 * Caller should make sure that pmd_trans_huge(pmd) is true.
6857 */
6858static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6859 unsigned long addr, pmd_t pmd, union mc_target *target)
6860{
6861 struct page *page = NULL;
6862 struct page_cgroup *pc;
6863 enum mc_target_type ret = MC_TARGET_NONE;
6864
6865 page = pmd_page(pmd);
309381fe 6866 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6867 if (!move_anon())
6868 return ret;
6869 pc = lookup_page_cgroup(page);
6870 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6871 ret = MC_TARGET_PAGE;
6872 if (target) {
6873 get_page(page);
6874 target->page = page;
6875 }
6876 }
6877 return ret;
6878}
6879#else
6880static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6881 unsigned long addr, pmd_t pmd, union mc_target *target)
6882{
6883 return MC_TARGET_NONE;
6884}
6885#endif
6886
4ffef5fe
DN
6887static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6888 unsigned long addr, unsigned long end,
6889 struct mm_walk *walk)
6890{
6891 struct vm_area_struct *vma = walk->private;
6892 pte_t *pte;
6893 spinlock_t *ptl;
6894
bf929152 6895 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6896 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6897 mc.precharge += HPAGE_PMD_NR;
bf929152 6898 spin_unlock(ptl);
1a5a9906 6899 return 0;
12724850 6900 }
03319327 6901
45f83cef
AA
6902 if (pmd_trans_unstable(pmd))
6903 return 0;
4ffef5fe
DN
6904 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6905 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6906 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6907 mc.precharge++; /* increment precharge temporarily */
6908 pte_unmap_unlock(pte - 1, ptl);
6909 cond_resched();
6910
7dc74be0
DN
6911 return 0;
6912}
6913
4ffef5fe
DN
6914static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6915{
6916 unsigned long precharge;
6917 struct vm_area_struct *vma;
6918
dfe076b0 6919 down_read(&mm->mmap_sem);
4ffef5fe
DN
6920 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6921 struct mm_walk mem_cgroup_count_precharge_walk = {
6922 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6923 .mm = mm,
6924 .private = vma,
6925 };
6926 if (is_vm_hugetlb_page(vma))
6927 continue;
4ffef5fe
DN
6928 walk_page_range(vma->vm_start, vma->vm_end,
6929 &mem_cgroup_count_precharge_walk);
6930 }
dfe076b0 6931 up_read(&mm->mmap_sem);
4ffef5fe
DN
6932
6933 precharge = mc.precharge;
6934 mc.precharge = 0;
6935
6936 return precharge;
6937}
6938
4ffef5fe
DN
6939static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6940{
dfe076b0
DN
6941 unsigned long precharge = mem_cgroup_count_precharge(mm);
6942
6943 VM_BUG_ON(mc.moving_task);
6944 mc.moving_task = current;
6945 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6946}
6947
dfe076b0
DN
6948/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6949static void __mem_cgroup_clear_mc(void)
4ffef5fe 6950{
2bd9bb20
KH
6951 struct mem_cgroup *from = mc.from;
6952 struct mem_cgroup *to = mc.to;
4050377b 6953 int i;
2bd9bb20 6954
4ffef5fe 6955 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6956 if (mc.precharge) {
6957 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6958 mc.precharge = 0;
6959 }
6960 /*
6961 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6962 * we must uncharge here.
6963 */
6964 if (mc.moved_charge) {
6965 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6966 mc.moved_charge = 0;
4ffef5fe 6967 }
483c30b5
DN
6968 /* we must fixup refcnts and charges */
6969 if (mc.moved_swap) {
483c30b5
DN
6970 /* uncharge swap account from the old cgroup */
6971 if (!mem_cgroup_is_root(mc.from))
6972 res_counter_uncharge(&mc.from->memsw,
6973 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6974
6975 for (i = 0; i < mc.moved_swap; i++)
6976 css_put(&mc.from->css);
483c30b5
DN
6977
6978 if (!mem_cgroup_is_root(mc.to)) {
6979 /*
6980 * we charged both to->res and to->memsw, so we should
6981 * uncharge to->res.
6982 */
6983 res_counter_uncharge(&mc.to->res,
6984 PAGE_SIZE * mc.moved_swap);
483c30b5 6985 }
4050377b 6986 /* we've already done css_get(mc.to) */
483c30b5
DN
6987 mc.moved_swap = 0;
6988 }
dfe076b0
DN
6989 memcg_oom_recover(from);
6990 memcg_oom_recover(to);
6991 wake_up_all(&mc.waitq);
6992}
6993
6994static void mem_cgroup_clear_mc(void)
6995{
6996 struct mem_cgroup *from = mc.from;
6997
6998 /*
6999 * we must clear moving_task before waking up waiters at the end of
7000 * task migration.
7001 */
7002 mc.moving_task = NULL;
7003 __mem_cgroup_clear_mc();
2bd9bb20 7004 spin_lock(&mc.lock);
4ffef5fe
DN
7005 mc.from = NULL;
7006 mc.to = NULL;
2bd9bb20 7007 spin_unlock(&mc.lock);
32047e2a 7008 mem_cgroup_end_move(from);
4ffef5fe
DN
7009}
7010
eb95419b 7011static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7012 struct cgroup_taskset *tset)
7dc74be0 7013{
2f7ee569 7014 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7015 int ret = 0;
eb95419b 7016 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7017 unsigned long move_charge_at_immigrate;
7dc74be0 7018
ee5e8472
GC
7019 /*
7020 * We are now commited to this value whatever it is. Changes in this
7021 * tunable will only affect upcoming migrations, not the current one.
7022 * So we need to save it, and keep it going.
7023 */
7024 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7025 if (move_charge_at_immigrate) {
7dc74be0
DN
7026 struct mm_struct *mm;
7027 struct mem_cgroup *from = mem_cgroup_from_task(p);
7028
c0ff4b85 7029 VM_BUG_ON(from == memcg);
7dc74be0
DN
7030
7031 mm = get_task_mm(p);
7032 if (!mm)
7033 return 0;
7dc74be0 7034 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7035 if (mm->owner == p) {
7036 VM_BUG_ON(mc.from);
7037 VM_BUG_ON(mc.to);
7038 VM_BUG_ON(mc.precharge);
854ffa8d 7039 VM_BUG_ON(mc.moved_charge);
483c30b5 7040 VM_BUG_ON(mc.moved_swap);
32047e2a 7041 mem_cgroup_start_move(from);
2bd9bb20 7042 spin_lock(&mc.lock);
4ffef5fe 7043 mc.from = from;
c0ff4b85 7044 mc.to = memcg;
ee5e8472 7045 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7046 spin_unlock(&mc.lock);
dfe076b0 7047 /* We set mc.moving_task later */
4ffef5fe
DN
7048
7049 ret = mem_cgroup_precharge_mc(mm);
7050 if (ret)
7051 mem_cgroup_clear_mc();
dfe076b0
DN
7052 }
7053 mmput(mm);
7dc74be0
DN
7054 }
7055 return ret;
7056}
7057
eb95419b 7058static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7059 struct cgroup_taskset *tset)
7dc74be0 7060{
4ffef5fe 7061 mem_cgroup_clear_mc();
7dc74be0
DN
7062}
7063
4ffef5fe
DN
7064static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7065 unsigned long addr, unsigned long end,
7066 struct mm_walk *walk)
7dc74be0 7067{
4ffef5fe
DN
7068 int ret = 0;
7069 struct vm_area_struct *vma = walk->private;
7070 pte_t *pte;
7071 spinlock_t *ptl;
12724850
NH
7072 enum mc_target_type target_type;
7073 union mc_target target;
7074 struct page *page;
7075 struct page_cgroup *pc;
4ffef5fe 7076
12724850
NH
7077 /*
7078 * We don't take compound_lock() here but no race with splitting thp
7079 * happens because:
7080 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7081 * under splitting, which means there's no concurrent thp split,
7082 * - if another thread runs into split_huge_page() just after we
7083 * entered this if-block, the thread must wait for page table lock
7084 * to be unlocked in __split_huge_page_splitting(), where the main
7085 * part of thp split is not executed yet.
7086 */
bf929152 7087 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7088 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7089 spin_unlock(ptl);
12724850
NH
7090 return 0;
7091 }
7092 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7093 if (target_type == MC_TARGET_PAGE) {
7094 page = target.page;
7095 if (!isolate_lru_page(page)) {
7096 pc = lookup_page_cgroup(page);
7097 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7098 pc, mc.from, mc.to)) {
12724850
NH
7099 mc.precharge -= HPAGE_PMD_NR;
7100 mc.moved_charge += HPAGE_PMD_NR;
7101 }
7102 putback_lru_page(page);
7103 }
7104 put_page(page);
7105 }
bf929152 7106 spin_unlock(ptl);
1a5a9906 7107 return 0;
12724850
NH
7108 }
7109
45f83cef
AA
7110 if (pmd_trans_unstable(pmd))
7111 return 0;
4ffef5fe
DN
7112retry:
7113 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7114 for (; addr != end; addr += PAGE_SIZE) {
7115 pte_t ptent = *(pte++);
02491447 7116 swp_entry_t ent;
4ffef5fe
DN
7117
7118 if (!mc.precharge)
7119 break;
7120
8d32ff84 7121 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7122 case MC_TARGET_PAGE:
7123 page = target.page;
7124 if (isolate_lru_page(page))
7125 goto put;
7126 pc = lookup_page_cgroup(page);
7ec99d62 7127 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7128 mc.from, mc.to)) {
4ffef5fe 7129 mc.precharge--;
854ffa8d
DN
7130 /* we uncharge from mc.from later. */
7131 mc.moved_charge++;
4ffef5fe
DN
7132 }
7133 putback_lru_page(page);
8d32ff84 7134put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7135 put_page(page);
7136 break;
02491447
DN
7137 case MC_TARGET_SWAP:
7138 ent = target.ent;
e91cbb42 7139 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7140 mc.precharge--;
483c30b5
DN
7141 /* we fixup refcnts and charges later. */
7142 mc.moved_swap++;
7143 }
02491447 7144 break;
4ffef5fe
DN
7145 default:
7146 break;
7147 }
7148 }
7149 pte_unmap_unlock(pte - 1, ptl);
7150 cond_resched();
7151
7152 if (addr != end) {
7153 /*
7154 * We have consumed all precharges we got in can_attach().
7155 * We try charge one by one, but don't do any additional
7156 * charges to mc.to if we have failed in charge once in attach()
7157 * phase.
7158 */
854ffa8d 7159 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7160 if (!ret)
7161 goto retry;
7162 }
7163
7164 return ret;
7165}
7166
7167static void mem_cgroup_move_charge(struct mm_struct *mm)
7168{
7169 struct vm_area_struct *vma;
7170
7171 lru_add_drain_all();
dfe076b0
DN
7172retry:
7173 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7174 /*
7175 * Someone who are holding the mmap_sem might be waiting in
7176 * waitq. So we cancel all extra charges, wake up all waiters,
7177 * and retry. Because we cancel precharges, we might not be able
7178 * to move enough charges, but moving charge is a best-effort
7179 * feature anyway, so it wouldn't be a big problem.
7180 */
7181 __mem_cgroup_clear_mc();
7182 cond_resched();
7183 goto retry;
7184 }
4ffef5fe
DN
7185 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7186 int ret;
7187 struct mm_walk mem_cgroup_move_charge_walk = {
7188 .pmd_entry = mem_cgroup_move_charge_pte_range,
7189 .mm = mm,
7190 .private = vma,
7191 };
7192 if (is_vm_hugetlb_page(vma))
7193 continue;
4ffef5fe
DN
7194 ret = walk_page_range(vma->vm_start, vma->vm_end,
7195 &mem_cgroup_move_charge_walk);
7196 if (ret)
7197 /*
7198 * means we have consumed all precharges and failed in
7199 * doing additional charge. Just abandon here.
7200 */
7201 break;
7202 }
dfe076b0 7203 up_read(&mm->mmap_sem);
7dc74be0
DN
7204}
7205
eb95419b 7206static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7207 struct cgroup_taskset *tset)
67e465a7 7208{
2f7ee569 7209 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7210 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7211
dfe076b0 7212 if (mm) {
a433658c
KM
7213 if (mc.to)
7214 mem_cgroup_move_charge(mm);
dfe076b0
DN
7215 mmput(mm);
7216 }
a433658c
KM
7217 if (mc.to)
7218 mem_cgroup_clear_mc();
67e465a7 7219}
5cfb80a7 7220#else /* !CONFIG_MMU */
eb95419b 7221static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7222 struct cgroup_taskset *tset)
5cfb80a7
DN
7223{
7224 return 0;
7225}
eb95419b 7226static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7227 struct cgroup_taskset *tset)
5cfb80a7
DN
7228{
7229}
eb95419b 7230static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7231 struct cgroup_taskset *tset)
5cfb80a7
DN
7232{
7233}
7234#endif
67e465a7 7235
f00baae7
TH
7236/*
7237 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7238 * to verify sane_behavior flag on each mount attempt.
7239 */
eb95419b 7240static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7241{
7242 /*
7243 * use_hierarchy is forced with sane_behavior. cgroup core
7244 * guarantees that @root doesn't have any children, so turning it
7245 * on for the root memcg is enough.
7246 */
eb95419b
TH
7247 if (cgroup_sane_behavior(root_css->cgroup))
7248 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7249}
7250
8cdea7c0
BS
7251struct cgroup_subsys mem_cgroup_subsys = {
7252 .name = "memory",
7253 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7254 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7255 .css_online = mem_cgroup_css_online,
92fb9748
TH
7256 .css_offline = mem_cgroup_css_offline,
7257 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7258 .can_attach = mem_cgroup_can_attach,
7259 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7260 .attach = mem_cgroup_move_task,
f00baae7 7261 .bind = mem_cgroup_bind,
6bc10349 7262 .base_cftypes = mem_cgroup_files,
6d12e2d8 7263 .early_init = 0,
8cdea7c0 7264};
c077719b 7265
c255a458 7266#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7267static int __init enable_swap_account(char *s)
7268{
a2c8990a 7269 if (!strcmp(s, "1"))
a42c390c 7270 really_do_swap_account = 1;
a2c8990a 7271 else if (!strcmp(s, "0"))
a42c390c
MH
7272 really_do_swap_account = 0;
7273 return 1;
7274}
a2c8990a 7275__setup("swapaccount=", enable_swap_account);
c077719b 7276
2d11085e
MH
7277static void __init memsw_file_init(void)
7278{
6acc8b02
MH
7279 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7280}
7281
7282static void __init enable_swap_cgroup(void)
7283{
7284 if (!mem_cgroup_disabled() && really_do_swap_account) {
7285 do_swap_account = 1;
7286 memsw_file_init();
7287 }
2d11085e 7288}
6acc8b02 7289
2d11085e 7290#else
6acc8b02 7291static void __init enable_swap_cgroup(void)
2d11085e
MH
7292{
7293}
c077719b 7294#endif
2d11085e
MH
7295
7296/*
1081312f
MH
7297 * subsys_initcall() for memory controller.
7298 *
7299 * Some parts like hotcpu_notifier() have to be initialized from this context
7300 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7301 * everything that doesn't depend on a specific mem_cgroup structure should
7302 * be initialized from here.
2d11085e
MH
7303 */
7304static int __init mem_cgroup_init(void)
7305{
7306 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7307 enable_swap_cgroup();
bb4cc1a8 7308 mem_cgroup_soft_limit_tree_init();
e4777496 7309 memcg_stock_init();
2d11085e
MH
7310 return 0;
7311}
7312subsys_initcall(mem_cgroup_init);