]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
121 struct rb_root rb_root;
122 spinlock_t lock;
123};
124
bb4cc1a8
AM
125struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127};
128
129static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
9490ff27
KH
131/* for OOM */
132struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135};
2e72b634 136
79bd9814
TH
137/*
138 * cgroup_event represents events which userspace want to receive.
139 */
3bc942f3 140struct mem_cgroup_event {
79bd9814 141 /*
59b6f873 142 * memcg which the event belongs to.
79bd9814 143 */
59b6f873 144 struct mem_cgroup *memcg;
79bd9814
TH
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
fba94807
TH
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
59b6f873 158 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 159 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
59b6f873 165 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 166 struct eventfd_ctx *eventfd);
79bd9814
TH
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
ac6424b9 173 wait_queue_entry_t wait;
79bd9814
TH
174 struct work_struct remove;
175};
176
c0ff4b85
R
177static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 179
7dc74be0
DN
180/* Stuffs for move charges at task migration. */
181/*
1dfab5ab 182 * Types of charges to be moved.
7dc74be0 183 */
1dfab5ab
JW
184#define MOVE_ANON 0x1U
185#define MOVE_FILE 0x2U
186#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 187
4ffef5fe
DN
188/* "mc" and its members are protected by cgroup_mutex */
189static struct move_charge_struct {
b1dd693e 190 spinlock_t lock; /* for from, to */
264a0ae1 191 struct mm_struct *mm;
4ffef5fe
DN
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
1dfab5ab 194 unsigned long flags;
4ffef5fe 195 unsigned long precharge;
854ffa8d 196 unsigned long moved_charge;
483c30b5 197 unsigned long moved_swap;
8033b97c
DN
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200} mc = {
2bd9bb20 201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203};
4ffef5fe 204
4e416953
BS
205/*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
a0db00fc 209#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 210#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 211
217bc319
KH
212enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 214 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
217 NR_CHARGE_TYPE,
218};
219
8c7c6e34 220/* for encoding cft->private value on file */
86ae53e1
GC
221enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
510fc4e1 225 _KMEM,
d55f90bf 226 _TCP,
86ae53e1
GC
227};
228
a0db00fc
KS
229#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 231#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
232/* Used for OOM nofiier */
233#define OOM_CONTROL (0)
8c7c6e34 234
70ddf637
AV
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
243struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244{
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246}
247
7ffc0edc
MH
248static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249{
250 return (memcg == root_mem_cgroup);
251}
252
127424c8 253#ifndef CONFIG_SLOB
55007d84 254/*
f7ce3190 255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
55007d84 261 *
dbcf73e2
VD
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
55007d84 264 */
dbcf73e2
VD
265static DEFINE_IDA(memcg_cache_ida);
266int memcg_nr_cache_ids;
749c5415 267
05257a1a
VD
268/* Protects memcg_nr_cache_ids */
269static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271void memcg_get_cache_ids(void)
272{
273 down_read(&memcg_cache_ids_sem);
274}
275
276void memcg_put_cache_ids(void)
277{
278 up_read(&memcg_cache_ids_sem);
279}
280
55007d84
GC
281/*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
b8627835 287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
291 * increase ours as well if it increases.
292 */
293#define MEMCG_CACHES_MIN_SIZE 4
b8627835 294#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 295
d7f25f8a
GC
296/*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
ef12947c 302DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 303EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 304
17cc4dfe
TH
305struct workqueue_struct *memcg_kmem_cache_wq;
306
127424c8 307#endif /* !CONFIG_SLOB */
a8964b9b 308
ad7fa852
TH
309/**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
ad7fa852
TH
319 */
320struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321{
322 struct mem_cgroup *memcg;
323
ad7fa852
TH
324 memcg = page->mem_cgroup;
325
9e10a130 326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
327 memcg = root_mem_cgroup;
328
ad7fa852
TH
329 return &memcg->css;
330}
331
2fc04524
VD
332/**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345ino_t page_cgroup_ino(struct page *page)
346{
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358}
359
ef8f2327
MG
360static struct mem_cgroup_per_node *
361mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 362{
97a6c37b 363 int nid = page_to_nid(page);
f64c3f54 364
ef8f2327 365 return memcg->nodeinfo[nid];
f64c3f54
BS
366}
367
ef8f2327
MG
368static struct mem_cgroup_tree_per_node *
369soft_limit_tree_node(int nid)
bb4cc1a8 370{
ef8f2327 371 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
372}
373
ef8f2327 374static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
375soft_limit_tree_from_page(struct page *page)
376{
377 int nid = page_to_nid(page);
bb4cc1a8 378
ef8f2327 379 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
380}
381
ef8f2327
MG
382static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 384 unsigned long new_usage_in_excess)
bb4cc1a8
AM
385{
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
ef8f2327 388 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
ef8f2327 398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412}
413
ef8f2327
MG
414static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
416{
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421}
422
ef8f2327
MG
423static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 425{
0a31bc97
JW
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 429 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 430 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
431}
432
3e32cb2e
JW
433static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434{
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443}
bb4cc1a8
AM
444
445static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446{
3e32cb2e 447 unsigned long excess;
ef8f2327
MG
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 450
e231875b 451 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
452 if (!mctz)
453 return;
bb4cc1a8
AM
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 459 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 460 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
0a31bc97
JW
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
469 /* if on-tree, remove it */
470 if (mz->on_tree)
cf2c8127 471 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
cf2c8127 476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 477 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
478 }
479 }
480}
481
482static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483{
ef8f2327
MG
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
bb4cc1a8 487
e231875b 488 for_each_node(nid) {
ef8f2327
MG
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
493 }
494}
495
ef8f2327
MG
496static struct mem_cgroup_per_node *
497__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
498{
499 struct rb_node *rightmost = NULL;
ef8f2327 500 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
501
502retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
ef8f2327 508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
cf2c8127 514 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 515 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 516 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
517 goto retry;
518done:
519 return mz;
520}
521
ef8f2327
MG
522static struct mem_cgroup_per_node *
523mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 524{
ef8f2327 525 struct mem_cgroup_per_node *mz;
bb4cc1a8 526
0a31bc97 527 spin_lock_irq(&mctz->lock);
bb4cc1a8 528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 529 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
530 return mz;
531}
532
711d3d2c 533/*
484ebb3b
GT
534 * Return page count for single (non recursive) @memcg.
535 *
711d3d2c
KH
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 541 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 551 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
552 * implemented.
553 */
c62b1a3b 554
ccda7f43
JW
555static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 enum memcg_event_item event)
e9f8974f
JW
557{
558 unsigned long val = 0;
559 int cpu;
560
733a572e 561 for_each_possible_cpu(cpu)
df0e53d0 562 val += per_cpu(memcg->stat->events[event], cpu);
e9f8974f
JW
563 return val;
564}
565
c0ff4b85 566static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 567 struct page *page,
f627c2f5 568 bool compound, int nr_pages)
d52aa412 569{
b2402857
KH
570 /*
571 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 * counted as CACHE even if it's on ANON LRU.
573 */
0a31bc97 574 if (PageAnon(page))
71cd3113 575 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
9a4caf1e 576 else {
71cd3113 577 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
9a4caf1e 578 if (PageSwapBacked(page))
71cd3113 579 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
9a4caf1e 580 }
55e462b0 581
f627c2f5
KS
582 if (compound) {
583 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
71cd3113 584 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
f627c2f5 585 }
b070e65c 586
e401f176
KH
587 /* pagein of a big page is an event. So, ignore page size */
588 if (nr_pages > 0)
df0e53d0 589 __this_cpu_inc(memcg->stat->events[PGPGIN]);
3751d604 590 else {
df0e53d0 591 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
3751d604
KH
592 nr_pages = -nr_pages; /* for event */
593 }
e401f176 594
13114716 595 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
596}
597
0a6b76dd
VD
598unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 int nid, unsigned int lru_mask)
bb2a0de9 600{
b4536f0c 601 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 602 unsigned long nr = 0;
ef8f2327 603 enum lru_list lru;
889976db 604
e231875b 605 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 606
ef8f2327
MG
607 for_each_lru(lru) {
608 if (!(BIT(lru) & lru_mask))
609 continue;
b4536f0c 610 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
611 }
612 return nr;
889976db 613}
bb2a0de9 614
c0ff4b85 615static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 616 unsigned int lru_mask)
6d12e2d8 617{
e231875b 618 unsigned long nr = 0;
889976db 619 int nid;
6d12e2d8 620
31aaea4a 621 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
622 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 return nr;
d52aa412
KH
624}
625
f53d7ce3
JW
626static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 enum mem_cgroup_events_target target)
7a159cc9
JW
628{
629 unsigned long val, next;
630
13114716 631 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 632 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 633 /* from time_after() in jiffies.h */
6a1a8b80 634 if ((long)(next - val) < 0) {
f53d7ce3
JW
635 switch (target) {
636 case MEM_CGROUP_TARGET_THRESH:
637 next = val + THRESHOLDS_EVENTS_TARGET;
638 break;
bb4cc1a8
AM
639 case MEM_CGROUP_TARGET_SOFTLIMIT:
640 next = val + SOFTLIMIT_EVENTS_TARGET;
641 break;
f53d7ce3
JW
642 case MEM_CGROUP_TARGET_NUMAINFO:
643 next = val + NUMAINFO_EVENTS_TARGET;
644 break;
645 default:
646 break;
647 }
648 __this_cpu_write(memcg->stat->targets[target], next);
649 return true;
7a159cc9 650 }
f53d7ce3 651 return false;
d2265e6f
KH
652}
653
654/*
655 * Check events in order.
656 *
657 */
c0ff4b85 658static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
659{
660 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
661 if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 663 bool do_softlimit;
82b3f2a7 664 bool do_numainfo __maybe_unused;
f53d7ce3 665
bb4cc1a8
AM
666 do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
668#if MAX_NUMNODES > 1
669 do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 MEM_CGROUP_TARGET_NUMAINFO);
671#endif
c0ff4b85 672 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
673 if (unlikely(do_softlimit))
674 mem_cgroup_update_tree(memcg, page);
453a9bf3 675#if MAX_NUMNODES > 1
f53d7ce3 676 if (unlikely(do_numainfo))
c0ff4b85 677 atomic_inc(&memcg->numainfo_events);
453a9bf3 678#endif
0a31bc97 679 }
d2265e6f
KH
680}
681
cf475ad2 682struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 683{
31a78f23
BS
684 /*
685 * mm_update_next_owner() may clear mm->owner to NULL
686 * if it races with swapoff, page migration, etc.
687 * So this can be called with p == NULL.
688 */
689 if (unlikely(!p))
690 return NULL;
691
073219e9 692 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 693}
33398cf2 694EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 695
df381975 696static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 697{
c0ff4b85 698 struct mem_cgroup *memcg = NULL;
0b7f569e 699
54595fe2
KH
700 rcu_read_lock();
701 do {
6f6acb00
MH
702 /*
703 * Page cache insertions can happen withou an
704 * actual mm context, e.g. during disk probing
705 * on boot, loopback IO, acct() writes etc.
706 */
707 if (unlikely(!mm))
df381975 708 memcg = root_mem_cgroup;
6f6acb00
MH
709 else {
710 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 if (unlikely(!memcg))
712 memcg = root_mem_cgroup;
713 }
ec903c0c 714 } while (!css_tryget_online(&memcg->css));
54595fe2 715 rcu_read_unlock();
c0ff4b85 716 return memcg;
54595fe2
KH
717}
718
5660048c
JW
719/**
720 * mem_cgroup_iter - iterate over memory cgroup hierarchy
721 * @root: hierarchy root
722 * @prev: previously returned memcg, NULL on first invocation
723 * @reclaim: cookie for shared reclaim walks, NULL for full walks
724 *
725 * Returns references to children of the hierarchy below @root, or
726 * @root itself, or %NULL after a full round-trip.
727 *
728 * Caller must pass the return value in @prev on subsequent
729 * invocations for reference counting, or use mem_cgroup_iter_break()
730 * to cancel a hierarchy walk before the round-trip is complete.
731 *
732 * Reclaimers can specify a zone and a priority level in @reclaim to
733 * divide up the memcgs in the hierarchy among all concurrent
734 * reclaimers operating on the same zone and priority.
735 */
694fbc0f 736struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 737 struct mem_cgroup *prev,
694fbc0f 738 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 739{
33398cf2 740 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 741 struct cgroup_subsys_state *css = NULL;
9f3a0d09 742 struct mem_cgroup *memcg = NULL;
5ac8fb31 743 struct mem_cgroup *pos = NULL;
711d3d2c 744
694fbc0f
AM
745 if (mem_cgroup_disabled())
746 return NULL;
5660048c 747
9f3a0d09
JW
748 if (!root)
749 root = root_mem_cgroup;
7d74b06f 750
9f3a0d09 751 if (prev && !reclaim)
5ac8fb31 752 pos = prev;
14067bb3 753
9f3a0d09
JW
754 if (!root->use_hierarchy && root != root_mem_cgroup) {
755 if (prev)
5ac8fb31 756 goto out;
694fbc0f 757 return root;
9f3a0d09 758 }
14067bb3 759
542f85f9 760 rcu_read_lock();
5f578161 761
5ac8fb31 762 if (reclaim) {
ef8f2327 763 struct mem_cgroup_per_node *mz;
5ac8fb31 764
ef8f2327 765 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
766 iter = &mz->iter[reclaim->priority];
767
768 if (prev && reclaim->generation != iter->generation)
769 goto out_unlock;
770
6df38689 771 while (1) {
4db0c3c2 772 pos = READ_ONCE(iter->position);
6df38689
VD
773 if (!pos || css_tryget(&pos->css))
774 break;
5ac8fb31 775 /*
6df38689
VD
776 * css reference reached zero, so iter->position will
777 * be cleared by ->css_released. However, we should not
778 * rely on this happening soon, because ->css_released
779 * is called from a work queue, and by busy-waiting we
780 * might block it. So we clear iter->position right
781 * away.
5ac8fb31 782 */
6df38689
VD
783 (void)cmpxchg(&iter->position, pos, NULL);
784 }
5ac8fb31
JW
785 }
786
787 if (pos)
788 css = &pos->css;
789
790 for (;;) {
791 css = css_next_descendant_pre(css, &root->css);
792 if (!css) {
793 /*
794 * Reclaimers share the hierarchy walk, and a
795 * new one might jump in right at the end of
796 * the hierarchy - make sure they see at least
797 * one group and restart from the beginning.
798 */
799 if (!prev)
800 continue;
801 break;
527a5ec9 802 }
7d74b06f 803
5ac8fb31
JW
804 /*
805 * Verify the css and acquire a reference. The root
806 * is provided by the caller, so we know it's alive
807 * and kicking, and don't take an extra reference.
808 */
809 memcg = mem_cgroup_from_css(css);
14067bb3 810
5ac8fb31
JW
811 if (css == &root->css)
812 break;
14067bb3 813
0b8f73e1
JW
814 if (css_tryget(css))
815 break;
9f3a0d09 816
5ac8fb31 817 memcg = NULL;
9f3a0d09 818 }
5ac8fb31
JW
819
820 if (reclaim) {
5ac8fb31 821 /*
6df38689
VD
822 * The position could have already been updated by a competing
823 * thread, so check that the value hasn't changed since we read
824 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 825 */
6df38689
VD
826 (void)cmpxchg(&iter->position, pos, memcg);
827
5ac8fb31
JW
828 if (pos)
829 css_put(&pos->css);
830
831 if (!memcg)
832 iter->generation++;
833 else if (!prev)
834 reclaim->generation = iter->generation;
9f3a0d09 835 }
5ac8fb31 836
542f85f9
MH
837out_unlock:
838 rcu_read_unlock();
5ac8fb31 839out:
c40046f3
MH
840 if (prev && prev != root)
841 css_put(&prev->css);
842
9f3a0d09 843 return memcg;
14067bb3 844}
7d74b06f 845
5660048c
JW
846/**
847 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848 * @root: hierarchy root
849 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850 */
851void mem_cgroup_iter_break(struct mem_cgroup *root,
852 struct mem_cgroup *prev)
9f3a0d09
JW
853{
854 if (!root)
855 root = root_mem_cgroup;
856 if (prev && prev != root)
857 css_put(&prev->css);
858}
7d74b06f 859
6df38689
VD
860static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861{
862 struct mem_cgroup *memcg = dead_memcg;
863 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
864 struct mem_cgroup_per_node *mz;
865 int nid;
6df38689
VD
866 int i;
867
868 while ((memcg = parent_mem_cgroup(memcg))) {
869 for_each_node(nid) {
ef8f2327
MG
870 mz = mem_cgroup_nodeinfo(memcg, nid);
871 for (i = 0; i <= DEF_PRIORITY; i++) {
872 iter = &mz->iter[i];
873 cmpxchg(&iter->position,
874 dead_memcg, NULL);
6df38689
VD
875 }
876 }
877 }
878}
879
9f3a0d09
JW
880/*
881 * Iteration constructs for visiting all cgroups (under a tree). If
882 * loops are exited prematurely (break), mem_cgroup_iter_break() must
883 * be used for reference counting.
884 */
885#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 886 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 887 iter != NULL; \
527a5ec9 888 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 889
9f3a0d09 890#define for_each_mem_cgroup(iter) \
527a5ec9 891 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 892 iter != NULL; \
527a5ec9 893 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 894
7c5f64f8
VD
895/**
896 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897 * @memcg: hierarchy root
898 * @fn: function to call for each task
899 * @arg: argument passed to @fn
900 *
901 * This function iterates over tasks attached to @memcg or to any of its
902 * descendants and calls @fn for each task. If @fn returns a non-zero
903 * value, the function breaks the iteration loop and returns the value.
904 * Otherwise, it will iterate over all tasks and return 0.
905 *
906 * This function must not be called for the root memory cgroup.
907 */
908int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 int (*fn)(struct task_struct *, void *), void *arg)
910{
911 struct mem_cgroup *iter;
912 int ret = 0;
913
914 BUG_ON(memcg == root_mem_cgroup);
915
916 for_each_mem_cgroup_tree(iter, memcg) {
917 struct css_task_iter it;
918 struct task_struct *task;
919
920 css_task_iter_start(&iter->css, &it);
921 while (!ret && (task = css_task_iter_next(&it)))
922 ret = fn(task, arg);
923 css_task_iter_end(&it);
924 if (ret) {
925 mem_cgroup_iter_break(memcg, iter);
926 break;
927 }
928 }
929 return ret;
930}
931
925b7673 932/**
dfe0e773 933 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 934 * @page: the page
fa9add64 935 * @zone: zone of the page
dfe0e773
JW
936 *
937 * This function is only safe when following the LRU page isolation
938 * and putback protocol: the LRU lock must be held, and the page must
939 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 940 */
599d0c95 941struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 942{
ef8f2327 943 struct mem_cgroup_per_node *mz;
925b7673 944 struct mem_cgroup *memcg;
bea8c150 945 struct lruvec *lruvec;
6d12e2d8 946
bea8c150 947 if (mem_cgroup_disabled()) {
599d0c95 948 lruvec = &pgdat->lruvec;
bea8c150
HD
949 goto out;
950 }
925b7673 951
1306a85a 952 memcg = page->mem_cgroup;
7512102c 953 /*
dfe0e773 954 * Swapcache readahead pages are added to the LRU - and
29833315 955 * possibly migrated - before they are charged.
7512102c 956 */
29833315
JW
957 if (!memcg)
958 memcg = root_mem_cgroup;
7512102c 959
ef8f2327 960 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
961 lruvec = &mz->lruvec;
962out:
963 /*
964 * Since a node can be onlined after the mem_cgroup was created,
965 * we have to be prepared to initialize lruvec->zone here;
966 * and if offlined then reonlined, we need to reinitialize it.
967 */
599d0c95
MG
968 if (unlikely(lruvec->pgdat != pgdat))
969 lruvec->pgdat = pgdat;
bea8c150 970 return lruvec;
08e552c6 971}
b69408e8 972
925b7673 973/**
fa9add64
HD
974 * mem_cgroup_update_lru_size - account for adding or removing an lru page
975 * @lruvec: mem_cgroup per zone lru vector
976 * @lru: index of lru list the page is sitting on
b4536f0c 977 * @zid: zone id of the accounted pages
fa9add64 978 * @nr_pages: positive when adding or negative when removing
925b7673 979 *
ca707239
HD
980 * This function must be called under lru_lock, just before a page is added
981 * to or just after a page is removed from an lru list (that ordering being
982 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 983 */
fa9add64 984void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 985 int zid, int nr_pages)
3f58a829 986{
ef8f2327 987 struct mem_cgroup_per_node *mz;
fa9add64 988 unsigned long *lru_size;
ca707239 989 long size;
3f58a829
MK
990
991 if (mem_cgroup_disabled())
992 return;
993
ef8f2327 994 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 995 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
996
997 if (nr_pages < 0)
998 *lru_size += nr_pages;
999
1000 size = *lru_size;
b4536f0c
MH
1001 if (WARN_ONCE(size < 0,
1002 "%s(%p, %d, %d): lru_size %ld\n",
1003 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1004 VM_BUG_ON(1);
1005 *lru_size = 0;
1006 }
1007
1008 if (nr_pages > 0)
1009 *lru_size += nr_pages;
08e552c6 1010}
544122e5 1011
2314b42d 1012bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1013{
2314b42d 1014 struct mem_cgroup *task_memcg;
158e0a2d 1015 struct task_struct *p;
ffbdccf5 1016 bool ret;
4c4a2214 1017
158e0a2d 1018 p = find_lock_task_mm(task);
de077d22 1019 if (p) {
2314b42d 1020 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1021 task_unlock(p);
1022 } else {
1023 /*
1024 * All threads may have already detached their mm's, but the oom
1025 * killer still needs to detect if they have already been oom
1026 * killed to prevent needlessly killing additional tasks.
1027 */
ffbdccf5 1028 rcu_read_lock();
2314b42d
JW
1029 task_memcg = mem_cgroup_from_task(task);
1030 css_get(&task_memcg->css);
ffbdccf5 1031 rcu_read_unlock();
de077d22 1032 }
2314b42d
JW
1033 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 css_put(&task_memcg->css);
4c4a2214
DR
1035 return ret;
1036}
1037
19942822 1038/**
9d11ea9f 1039 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1040 * @memcg: the memory cgroup
19942822 1041 *
9d11ea9f 1042 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1043 * pages.
19942822 1044 */
c0ff4b85 1045static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1046{
3e32cb2e
JW
1047 unsigned long margin = 0;
1048 unsigned long count;
1049 unsigned long limit;
9d11ea9f 1050
3e32cb2e 1051 count = page_counter_read(&memcg->memory);
4db0c3c2 1052 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1053 if (count < limit)
1054 margin = limit - count;
1055
7941d214 1056 if (do_memsw_account()) {
3e32cb2e 1057 count = page_counter_read(&memcg->memsw);
4db0c3c2 1058 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1059 if (count <= limit)
1060 margin = min(margin, limit - count);
cbedbac3
LR
1061 else
1062 margin = 0;
3e32cb2e
JW
1063 }
1064
1065 return margin;
19942822
JW
1066}
1067
32047e2a 1068/*
bdcbb659 1069 * A routine for checking "mem" is under move_account() or not.
32047e2a 1070 *
bdcbb659
QH
1071 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072 * moving cgroups. This is for waiting at high-memory pressure
1073 * caused by "move".
32047e2a 1074 */
c0ff4b85 1075static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1076{
2bd9bb20
KH
1077 struct mem_cgroup *from;
1078 struct mem_cgroup *to;
4b534334 1079 bool ret = false;
2bd9bb20
KH
1080 /*
1081 * Unlike task_move routines, we access mc.to, mc.from not under
1082 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 */
1084 spin_lock(&mc.lock);
1085 from = mc.from;
1086 to = mc.to;
1087 if (!from)
1088 goto unlock;
3e92041d 1089
2314b42d
JW
1090 ret = mem_cgroup_is_descendant(from, memcg) ||
1091 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1092unlock:
1093 spin_unlock(&mc.lock);
4b534334
KH
1094 return ret;
1095}
1096
c0ff4b85 1097static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1098{
1099 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1100 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1101 DEFINE_WAIT(wait);
1102 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 /* moving charge context might have finished. */
1104 if (mc.moving_task)
1105 schedule();
1106 finish_wait(&mc.waitq, &wait);
1107 return true;
1108 }
1109 }
1110 return false;
1111}
1112
71cd3113
JW
1113unsigned int memcg1_stats[] = {
1114 MEMCG_CACHE,
1115 MEMCG_RSS,
1116 MEMCG_RSS_HUGE,
1117 NR_SHMEM,
1118 NR_FILE_MAPPED,
1119 NR_FILE_DIRTY,
1120 NR_WRITEBACK,
1121 MEMCG_SWAP,
1122};
1123
1124static const char *const memcg1_stat_names[] = {
1125 "cache",
1126 "rss",
1127 "rss_huge",
1128 "shmem",
1129 "mapped_file",
1130 "dirty",
1131 "writeback",
1132 "swap",
1133};
1134
58cf188e 1135#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1136/**
58cf188e 1137 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1138 * @memcg: The memory cgroup that went over limit
1139 * @p: Task that is going to be killed
1140 *
1141 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142 * enabled
1143 */
1144void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145{
58cf188e
SZ
1146 struct mem_cgroup *iter;
1147 unsigned int i;
e222432b 1148
e222432b
BS
1149 rcu_read_lock();
1150
2415b9f5
BV
1151 if (p) {
1152 pr_info("Task in ");
1153 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 pr_cont(" killed as a result of limit of ");
1155 } else {
1156 pr_info("Memory limit reached of cgroup ");
1157 }
1158
e61734c5 1159 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1160 pr_cont("\n");
e222432b 1161
e222432b
BS
1162 rcu_read_unlock();
1163
3e32cb2e
JW
1164 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 K((u64)page_counter_read(&memcg->memory)),
1166 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 K((u64)page_counter_read(&memcg->memsw)),
1169 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 K((u64)page_counter_read(&memcg->kmem)),
1172 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1175 pr_info("Memory cgroup stats for ");
1176 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1177 pr_cont(":");
1178
71cd3113
JW
1179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1181 continue;
71cd3113 1182 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1183 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1184 }
1185
1186 for (i = 0; i < NR_LRU_LISTS; i++)
1187 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189
1190 pr_cont("\n");
1191 }
e222432b
BS
1192}
1193
81d39c20
KH
1194/*
1195 * This function returns the number of memcg under hierarchy tree. Returns
1196 * 1(self count) if no children.
1197 */
c0ff4b85 1198static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1199{
1200 int num = 0;
7d74b06f
KH
1201 struct mem_cgroup *iter;
1202
c0ff4b85 1203 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1204 num++;
81d39c20
KH
1205 return num;
1206}
1207
a63d83f4
DR
1208/*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
7c5f64f8 1211unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1212{
3e32cb2e 1213 unsigned long limit;
f3e8eb70 1214
3e32cb2e 1215 limit = memcg->memory.limit;
9a5a8f19 1216 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1217 unsigned long memsw_limit;
37e84351 1218 unsigned long swap_limit;
9a5a8f19 1219
3e32cb2e 1220 memsw_limit = memcg->memsw.limit;
37e84351
VD
1221 swap_limit = memcg->swap.limit;
1222 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1224 }
9a5a8f19 1225 return limit;
a63d83f4
DR
1226}
1227
b6e6edcf 1228static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1229 int order)
9cbb78bb 1230{
6e0fc46d
DR
1231 struct oom_control oc = {
1232 .zonelist = NULL,
1233 .nodemask = NULL,
2a966b77 1234 .memcg = memcg,
6e0fc46d
DR
1235 .gfp_mask = gfp_mask,
1236 .order = order,
6e0fc46d 1237 };
7c5f64f8 1238 bool ret;
9cbb78bb 1239
dc56401f 1240 mutex_lock(&oom_lock);
7c5f64f8 1241 ret = out_of_memory(&oc);
dc56401f 1242 mutex_unlock(&oom_lock);
7c5f64f8 1243 return ret;
9cbb78bb
DR
1244}
1245
ae6e71d3
MC
1246#if MAX_NUMNODES > 1
1247
4d0c066d
KH
1248/**
1249 * test_mem_cgroup_node_reclaimable
dad7557e 1250 * @memcg: the target memcg
4d0c066d
KH
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
c0ff4b85 1258static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1259 int nid, bool noswap)
1260{
c0ff4b85 1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1262 return true;
1263 if (noswap || !total_swap_pages)
1264 return false;
c0ff4b85 1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1266 return true;
1267 return false;
1268
1269}
889976db
YH
1270
1271/*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
c0ff4b85 1277static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1278{
1279 int nid;
453a9bf3
KH
1280 /*
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1283 */
c0ff4b85 1284 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1285 return;
c0ff4b85 1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1287 return;
1288
889976db 1289 /* make a nodemask where this memcg uses memory from */
31aaea4a 1290 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1291
31aaea4a 1292 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1293
c0ff4b85
R
1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 node_clear(nid, memcg->scan_nodes);
889976db 1296 }
453a9bf3 1297
c0ff4b85
R
1298 atomic_set(&memcg->numainfo_events, 0);
1299 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1300}
1301
1302/*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
c0ff4b85 1314int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int node;
1317
c0ff4b85
R
1318 mem_cgroup_may_update_nodemask(memcg);
1319 node = memcg->last_scanned_node;
889976db 1320
0edaf86c 1321 node = next_node_in(node, memcg->scan_nodes);
889976db 1322 /*
fda3d69b
MH
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
889976db
YH
1326 */
1327 if (unlikely(node == MAX_NUMNODES))
1328 node = numa_node_id();
1329
c0ff4b85 1330 memcg->last_scanned_node = node;
889976db
YH
1331 return node;
1332}
889976db 1333#else
c0ff4b85 1334int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1335{
1336 return 0;
1337}
1338#endif
1339
0608f43d 1340static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1341 pg_data_t *pgdat,
0608f43d
AM
1342 gfp_t gfp_mask,
1343 unsigned long *total_scanned)
1344{
1345 struct mem_cgroup *victim = NULL;
1346 int total = 0;
1347 int loop = 0;
1348 unsigned long excess;
1349 unsigned long nr_scanned;
1350 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1351 .pgdat = pgdat,
0608f43d
AM
1352 .priority = 0,
1353 };
1354
3e32cb2e 1355 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1356
1357 while (1) {
1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 if (!victim) {
1360 loop++;
1361 if (loop >= 2) {
1362 /*
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1366 */
1367 if (!total)
1368 break;
1369 /*
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1374 */
1375 if (total >= (excess >> 2) ||
1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 break;
1378 }
1379 continue;
1380 }
a9dd0a83 1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1382 pgdat, &nr_scanned);
0608f43d 1383 *total_scanned += nr_scanned;
3e32cb2e 1384 if (!soft_limit_excess(root_memcg))
0608f43d 1385 break;
6d61ef40 1386 }
0608f43d
AM
1387 mem_cgroup_iter_break(root_memcg, victim);
1388 return total;
6d61ef40
BS
1389}
1390
0056f4e6
JW
1391#ifdef CONFIG_LOCKDEP
1392static struct lockdep_map memcg_oom_lock_dep_map = {
1393 .name = "memcg_oom_lock",
1394};
1395#endif
1396
fb2a6fc5
JW
1397static DEFINE_SPINLOCK(memcg_oom_lock);
1398
867578cb
KH
1399/*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
fb2a6fc5 1403static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1404{
79dfdacc 1405 struct mem_cgroup *iter, *failed = NULL;
a636b327 1406
fb2a6fc5
JW
1407 spin_lock(&memcg_oom_lock);
1408
9f3a0d09 1409 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1410 if (iter->oom_lock) {
79dfdacc
MH
1411 /*
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1414 */
79dfdacc 1415 failed = iter;
9f3a0d09
JW
1416 mem_cgroup_iter_break(memcg, iter);
1417 break;
23751be0
JW
1418 } else
1419 iter->oom_lock = true;
7d74b06f 1420 }
867578cb 1421
fb2a6fc5
JW
1422 if (failed) {
1423 /*
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1426 */
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 if (iter == failed) {
1429 mem_cgroup_iter_break(memcg, iter);
1430 break;
1431 }
1432 iter->oom_lock = false;
79dfdacc 1433 }
0056f4e6
JW
1434 } else
1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1436
1437 spin_unlock(&memcg_oom_lock);
1438
1439 return !failed;
a636b327 1440}
0b7f569e 1441
fb2a6fc5 1442static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1443{
7d74b06f
KH
1444 struct mem_cgroup *iter;
1445
fb2a6fc5 1446 spin_lock(&memcg_oom_lock);
0056f4e6 1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1448 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1449 iter->oom_lock = false;
fb2a6fc5 1450 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1451}
1452
c0ff4b85 1453static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1454{
1455 struct mem_cgroup *iter;
1456
c2b42d3c 1457 spin_lock(&memcg_oom_lock);
c0ff4b85 1458 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1459 iter->under_oom++;
1460 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1461}
1462
c0ff4b85 1463static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1464{
1465 struct mem_cgroup *iter;
1466
867578cb
KH
1467 /*
1468 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1470 */
c2b42d3c 1471 spin_lock(&memcg_oom_lock);
c0ff4b85 1472 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1473 if (iter->under_oom > 0)
1474 iter->under_oom--;
1475 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1476}
1477
867578cb
KH
1478static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
dc98df5a 1480struct oom_wait_info {
d79154bb 1481 struct mem_cgroup *memcg;
ac6424b9 1482 wait_queue_entry_t wait;
dc98df5a
KH
1483};
1484
ac6424b9 1485static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1486 unsigned mode, int sync, void *arg)
1487{
d79154bb
HD
1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1490 struct oom_wait_info *oom_wait_info;
1491
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1493 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1494
2314b42d
JW
1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1497 return 0;
dc98df5a
KH
1498 return autoremove_wake_function(wait, mode, sync, arg);
1499}
1500
c0ff4b85 1501static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1502{
c2b42d3c
TH
1503 /*
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1510 */
1511 if (memcg && memcg->under_oom)
f4b90b70 1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1513}
1514
3812c8c8 1515static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1516{
d0db7afa 1517 if (!current->memcg_may_oom)
3812c8c8 1518 return;
867578cb 1519 /*
49426420
JW
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1523 *
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1527 *
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
867578cb 1532 */
49426420 1533 css_get(&memcg->css);
626ebc41
TH
1534 current->memcg_in_oom = memcg;
1535 current->memcg_oom_gfp_mask = mask;
1536 current->memcg_oom_order = order;
3812c8c8
JW
1537}
1538
1539/**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1541 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1542 *
49426420
JW
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
3812c8c8 1545 *
49426420 1546 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1551 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1554 * completed, %false otherwise.
3812c8c8 1555 */
49426420 1556bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1557{
626ebc41 1558 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1559 struct oom_wait_info owait;
49426420 1560 bool locked;
3812c8c8
JW
1561
1562 /* OOM is global, do not handle */
3812c8c8 1563 if (!memcg)
49426420 1564 return false;
3812c8c8 1565
7c5f64f8 1566 if (!handle)
49426420 1567 goto cleanup;
3812c8c8
JW
1568
1569 owait.memcg = memcg;
1570 owait.wait.flags = 0;
1571 owait.wait.func = memcg_oom_wake_function;
1572 owait.wait.private = current;
2055da97 1573 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1574
3812c8c8 1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1576 mem_cgroup_mark_under_oom(memcg);
1577
1578 locked = mem_cgroup_oom_trylock(memcg);
1579
1580 if (locked)
1581 mem_cgroup_oom_notify(memcg);
1582
1583 if (locked && !memcg->oom_kill_disable) {
1584 mem_cgroup_unmark_under_oom(memcg);
1585 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 current->memcg_oom_order);
49426420 1588 } else {
3812c8c8 1589 schedule();
49426420
JW
1590 mem_cgroup_unmark_under_oom(memcg);
1591 finish_wait(&memcg_oom_waitq, &owait.wait);
1592 }
1593
1594 if (locked) {
fb2a6fc5
JW
1595 mem_cgroup_oom_unlock(memcg);
1596 /*
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1600 */
1601 memcg_oom_recover(memcg);
1602 }
49426420 1603cleanup:
626ebc41 1604 current->memcg_in_oom = NULL;
3812c8c8 1605 css_put(&memcg->css);
867578cb 1606 return true;
0b7f569e
KH
1607}
1608
d7365e78 1609/**
81f8c3a4
JW
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
32047e2a 1612 *
81f8c3a4 1613 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1614 * another cgroup.
1615 *
1616 * It ensures lifetime of the returned memcg. Caller is responsible
1617 * for the lifetime of the page; __unlock_page_memcg() is available
1618 * when @page might get freed inside the locked section.
d69b042f 1619 */
739f79fc 1620struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1621{
1622 struct mem_cgroup *memcg;
6de22619 1623 unsigned long flags;
89c06bd5 1624
6de22619
JW
1625 /*
1626 * The RCU lock is held throughout the transaction. The fast
1627 * path can get away without acquiring the memcg->move_lock
1628 * because page moving starts with an RCU grace period.
739f79fc
JW
1629 *
1630 * The RCU lock also protects the memcg from being freed when
1631 * the page state that is going to change is the only thing
1632 * preventing the page itself from being freed. E.g. writeback
1633 * doesn't hold a page reference and relies on PG_writeback to
1634 * keep off truncation, migration and so forth.
1635 */
d7365e78
JW
1636 rcu_read_lock();
1637
1638 if (mem_cgroup_disabled())
739f79fc 1639 return NULL;
89c06bd5 1640again:
1306a85a 1641 memcg = page->mem_cgroup;
29833315 1642 if (unlikely(!memcg))
739f79fc 1643 return NULL;
d7365e78 1644
bdcbb659 1645 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1646 return memcg;
89c06bd5 1647
6de22619 1648 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1649 if (memcg != page->mem_cgroup) {
6de22619 1650 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1651 goto again;
1652 }
6de22619
JW
1653
1654 /*
1655 * When charge migration first begins, we can have locked and
1656 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1657 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1658 */
1659 memcg->move_lock_task = current;
1660 memcg->move_lock_flags = flags;
d7365e78 1661
739f79fc 1662 return memcg;
89c06bd5 1663}
81f8c3a4 1664EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1665
d7365e78 1666/**
739f79fc
JW
1667 * __unlock_page_memcg - unlock and unpin a memcg
1668 * @memcg: the memcg
1669 *
1670 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1671 */
739f79fc 1672void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1673{
6de22619
JW
1674 if (memcg && memcg->move_lock_task == current) {
1675 unsigned long flags = memcg->move_lock_flags;
1676
1677 memcg->move_lock_task = NULL;
1678 memcg->move_lock_flags = 0;
1679
1680 spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 }
89c06bd5 1682
d7365e78 1683 rcu_read_unlock();
89c06bd5 1684}
739f79fc
JW
1685
1686/**
1687 * unlock_page_memcg - unlock a page->mem_cgroup binding
1688 * @page: the page
1689 */
1690void unlock_page_memcg(struct page *page)
1691{
1692 __unlock_page_memcg(page->mem_cgroup);
1693}
81f8c3a4 1694EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1695
cdec2e42
KH
1696/*
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1699 */
7ec99d62 1700#define CHARGE_BATCH 32U
cdec2e42
KH
1701struct memcg_stock_pcp {
1702 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1703 unsigned int nr_pages;
cdec2e42 1704 struct work_struct work;
26fe6168 1705 unsigned long flags;
a0db00fc 1706#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1707};
1708static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1709static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1710
a0956d54
SS
1711/**
1712 * consume_stock: Try to consume stocked charge on this cpu.
1713 * @memcg: memcg to consume from.
1714 * @nr_pages: how many pages to charge.
1715 *
1716 * The charges will only happen if @memcg matches the current cpu's memcg
1717 * stock, and at least @nr_pages are available in that stock. Failure to
1718 * service an allocation will refill the stock.
1719 *
1720 * returns true if successful, false otherwise.
cdec2e42 1721 */
a0956d54 1722static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1723{
1724 struct memcg_stock_pcp *stock;
db2ba40c 1725 unsigned long flags;
3e32cb2e 1726 bool ret = false;
cdec2e42 1727
a0956d54 1728 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1729 return ret;
a0956d54 1730
db2ba40c
JW
1731 local_irq_save(flags);
1732
1733 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1734 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1735 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1736 ret = true;
1737 }
db2ba40c
JW
1738
1739 local_irq_restore(flags);
1740
cdec2e42
KH
1741 return ret;
1742}
1743
1744/*
3e32cb2e 1745 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1746 */
1747static void drain_stock(struct memcg_stock_pcp *stock)
1748{
1749 struct mem_cgroup *old = stock->cached;
1750
11c9ea4e 1751 if (stock->nr_pages) {
3e32cb2e 1752 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1753 if (do_memsw_account())
3e32cb2e 1754 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1755 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1756 stock->nr_pages = 0;
cdec2e42
KH
1757 }
1758 stock->cached = NULL;
cdec2e42
KH
1759}
1760
cdec2e42
KH
1761static void drain_local_stock(struct work_struct *dummy)
1762{
db2ba40c
JW
1763 struct memcg_stock_pcp *stock;
1764 unsigned long flags;
1765
1766 local_irq_save(flags);
1767
1768 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1769 drain_stock(stock);
26fe6168 1770 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1771
1772 local_irq_restore(flags);
cdec2e42
KH
1773}
1774
1775/*
3e32cb2e 1776 * Cache charges(val) to local per_cpu area.
320cc51d 1777 * This will be consumed by consume_stock() function, later.
cdec2e42 1778 */
c0ff4b85 1779static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1780{
db2ba40c
JW
1781 struct memcg_stock_pcp *stock;
1782 unsigned long flags;
1783
1784 local_irq_save(flags);
cdec2e42 1785
db2ba40c 1786 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1787 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1788 drain_stock(stock);
c0ff4b85 1789 stock->cached = memcg;
cdec2e42 1790 }
11c9ea4e 1791 stock->nr_pages += nr_pages;
db2ba40c
JW
1792
1793 local_irq_restore(flags);
cdec2e42
KH
1794}
1795
1796/*
c0ff4b85 1797 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1798 * of the hierarchy under it.
cdec2e42 1799 */
6d3d6aa2 1800static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1801{
26fe6168 1802 int cpu, curcpu;
d38144b7 1803
6d3d6aa2
JW
1804 /* If someone's already draining, avoid adding running more workers. */
1805 if (!mutex_trylock(&percpu_charge_mutex))
1806 return;
cdec2e42 1807 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1808 get_online_cpus();
5af12d0e 1809 curcpu = get_cpu();
cdec2e42
KH
1810 for_each_online_cpu(cpu) {
1811 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1812 struct mem_cgroup *memcg;
26fe6168 1813
c0ff4b85
R
1814 memcg = stock->cached;
1815 if (!memcg || !stock->nr_pages)
26fe6168 1816 continue;
2314b42d 1817 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1818 continue;
d1a05b69
MH
1819 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1820 if (cpu == curcpu)
1821 drain_local_stock(&stock->work);
1822 else
1823 schedule_work_on(cpu, &stock->work);
1824 }
cdec2e42 1825 }
5af12d0e 1826 put_cpu();
f894ffa8 1827 put_online_cpus();
9f50fad6 1828 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1829}
1830
308167fc 1831static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1832{
cdec2e42
KH
1833 struct memcg_stock_pcp *stock;
1834
cdec2e42
KH
1835 stock = &per_cpu(memcg_stock, cpu);
1836 drain_stock(stock);
308167fc 1837 return 0;
cdec2e42
KH
1838}
1839
f7e1cb6e
JW
1840static void reclaim_high(struct mem_cgroup *memcg,
1841 unsigned int nr_pages,
1842 gfp_t gfp_mask)
1843{
1844 do {
1845 if (page_counter_read(&memcg->memory) <= memcg->high)
1846 continue;
31176c78 1847 mem_cgroup_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1848 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1849 } while ((memcg = parent_mem_cgroup(memcg)));
1850}
1851
1852static void high_work_func(struct work_struct *work)
1853{
1854 struct mem_cgroup *memcg;
1855
1856 memcg = container_of(work, struct mem_cgroup, high_work);
1857 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1858}
1859
b23afb93
TH
1860/*
1861 * Scheduled by try_charge() to be executed from the userland return path
1862 * and reclaims memory over the high limit.
1863 */
1864void mem_cgroup_handle_over_high(void)
1865{
1866 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1867 struct mem_cgroup *memcg;
b23afb93
TH
1868
1869 if (likely(!nr_pages))
1870 return;
1871
f7e1cb6e
JW
1872 memcg = get_mem_cgroup_from_mm(current->mm);
1873 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1874 css_put(&memcg->css);
1875 current->memcg_nr_pages_over_high = 0;
1876}
1877
00501b53
JW
1878static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1879 unsigned int nr_pages)
8a9f3ccd 1880{
7ec99d62 1881 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1882 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1883 struct mem_cgroup *mem_over_limit;
3e32cb2e 1884 struct page_counter *counter;
6539cc05 1885 unsigned long nr_reclaimed;
b70a2a21
JW
1886 bool may_swap = true;
1887 bool drained = false;
a636b327 1888
ce00a967 1889 if (mem_cgroup_is_root(memcg))
10d53c74 1890 return 0;
6539cc05 1891retry:
b6b6cc72 1892 if (consume_stock(memcg, nr_pages))
10d53c74 1893 return 0;
8a9f3ccd 1894
7941d214 1895 if (!do_memsw_account() ||
6071ca52
JW
1896 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1897 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1898 goto done_restock;
7941d214 1899 if (do_memsw_account())
3e32cb2e
JW
1900 page_counter_uncharge(&memcg->memsw, batch);
1901 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1902 } else {
3e32cb2e 1903 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1904 may_swap = false;
3fbe7244 1905 }
7a81b88c 1906
6539cc05
JW
1907 if (batch > nr_pages) {
1908 batch = nr_pages;
1909 goto retry;
1910 }
6d61ef40 1911
06b078fc
JW
1912 /*
1913 * Unlike in global OOM situations, memcg is not in a physical
1914 * memory shortage. Allow dying and OOM-killed tasks to
1915 * bypass the last charges so that they can exit quickly and
1916 * free their memory.
1917 */
1918 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1919 fatal_signal_pending(current) ||
1920 current->flags & PF_EXITING))
10d53c74 1921 goto force;
06b078fc 1922
89a28483
JW
1923 /*
1924 * Prevent unbounded recursion when reclaim operations need to
1925 * allocate memory. This might exceed the limits temporarily,
1926 * but we prefer facilitating memory reclaim and getting back
1927 * under the limit over triggering OOM kills in these cases.
1928 */
1929 if (unlikely(current->flags & PF_MEMALLOC))
1930 goto force;
1931
06b078fc
JW
1932 if (unlikely(task_in_memcg_oom(current)))
1933 goto nomem;
1934
d0164adc 1935 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1936 goto nomem;
4b534334 1937
31176c78 1938 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
241994ed 1939
b70a2a21
JW
1940 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1941 gfp_mask, may_swap);
6539cc05 1942
61e02c74 1943 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1944 goto retry;
28c34c29 1945
b70a2a21 1946 if (!drained) {
6d3d6aa2 1947 drain_all_stock(mem_over_limit);
b70a2a21
JW
1948 drained = true;
1949 goto retry;
1950 }
1951
28c34c29
JW
1952 if (gfp_mask & __GFP_NORETRY)
1953 goto nomem;
6539cc05
JW
1954 /*
1955 * Even though the limit is exceeded at this point, reclaim
1956 * may have been able to free some pages. Retry the charge
1957 * before killing the task.
1958 *
1959 * Only for regular pages, though: huge pages are rather
1960 * unlikely to succeed so close to the limit, and we fall back
1961 * to regular pages anyway in case of failure.
1962 */
61e02c74 1963 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1964 goto retry;
1965 /*
1966 * At task move, charge accounts can be doubly counted. So, it's
1967 * better to wait until the end of task_move if something is going on.
1968 */
1969 if (mem_cgroup_wait_acct_move(mem_over_limit))
1970 goto retry;
1971
9b130619
JW
1972 if (nr_retries--)
1973 goto retry;
1974
06b078fc 1975 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1976 goto force;
06b078fc 1977
6539cc05 1978 if (fatal_signal_pending(current))
10d53c74 1979 goto force;
6539cc05 1980
31176c78 1981 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
241994ed 1982
3608de07
JM
1983 mem_cgroup_oom(mem_over_limit, gfp_mask,
1984 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1985nomem:
6d1fdc48 1986 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1987 return -ENOMEM;
10d53c74
TH
1988force:
1989 /*
1990 * The allocation either can't fail or will lead to more memory
1991 * being freed very soon. Allow memory usage go over the limit
1992 * temporarily by force charging it.
1993 */
1994 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1995 if (do_memsw_account())
10d53c74
TH
1996 page_counter_charge(&memcg->memsw, nr_pages);
1997 css_get_many(&memcg->css, nr_pages);
1998
1999 return 0;
6539cc05
JW
2000
2001done_restock:
e8ea14cc 2002 css_get_many(&memcg->css, batch);
6539cc05
JW
2003 if (batch > nr_pages)
2004 refill_stock(memcg, batch - nr_pages);
b23afb93 2005
241994ed 2006 /*
b23afb93
TH
2007 * If the hierarchy is above the normal consumption range, schedule
2008 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2009 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2010 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2011 * not recorded as it most likely matches current's and won't
2012 * change in the meantime. As high limit is checked again before
2013 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2014 */
2015 do {
b23afb93 2016 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2017 /* Don't bother a random interrupted task */
2018 if (in_interrupt()) {
2019 schedule_work(&memcg->high_work);
2020 break;
2021 }
9516a18a 2022 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2023 set_notify_resume(current);
2024 break;
2025 }
241994ed 2026 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2027
2028 return 0;
7a81b88c 2029}
8a9f3ccd 2030
00501b53 2031static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2032{
ce00a967
JW
2033 if (mem_cgroup_is_root(memcg))
2034 return;
2035
3e32cb2e 2036 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2037 if (do_memsw_account())
3e32cb2e 2038 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2039
e8ea14cc 2040 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2041}
2042
0a31bc97
JW
2043static void lock_page_lru(struct page *page, int *isolated)
2044{
2045 struct zone *zone = page_zone(page);
2046
a52633d8 2047 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2048 if (PageLRU(page)) {
2049 struct lruvec *lruvec;
2050
599d0c95 2051 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2052 ClearPageLRU(page);
2053 del_page_from_lru_list(page, lruvec, page_lru(page));
2054 *isolated = 1;
2055 } else
2056 *isolated = 0;
2057}
2058
2059static void unlock_page_lru(struct page *page, int isolated)
2060{
2061 struct zone *zone = page_zone(page);
2062
2063 if (isolated) {
2064 struct lruvec *lruvec;
2065
599d0c95 2066 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2067 VM_BUG_ON_PAGE(PageLRU(page), page);
2068 SetPageLRU(page);
2069 add_page_to_lru_list(page, lruvec, page_lru(page));
2070 }
a52633d8 2071 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2072}
2073
00501b53 2074static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2075 bool lrucare)
7a81b88c 2076{
0a31bc97 2077 int isolated;
9ce70c02 2078
1306a85a 2079 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2080
2081 /*
2082 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2083 * may already be on some other mem_cgroup's LRU. Take care of it.
2084 */
0a31bc97
JW
2085 if (lrucare)
2086 lock_page_lru(page, &isolated);
9ce70c02 2087
0a31bc97
JW
2088 /*
2089 * Nobody should be changing or seriously looking at
1306a85a 2090 * page->mem_cgroup at this point:
0a31bc97
JW
2091 *
2092 * - the page is uncharged
2093 *
2094 * - the page is off-LRU
2095 *
2096 * - an anonymous fault has exclusive page access, except for
2097 * a locked page table
2098 *
2099 * - a page cache insertion, a swapin fault, or a migration
2100 * have the page locked
2101 */
1306a85a 2102 page->mem_cgroup = memcg;
9ce70c02 2103
0a31bc97
JW
2104 if (lrucare)
2105 unlock_page_lru(page, isolated);
7a81b88c 2106}
66e1707b 2107
127424c8 2108#ifndef CONFIG_SLOB
f3bb3043 2109static int memcg_alloc_cache_id(void)
55007d84 2110{
f3bb3043
VD
2111 int id, size;
2112 int err;
2113
dbcf73e2 2114 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2115 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2116 if (id < 0)
2117 return id;
55007d84 2118
dbcf73e2 2119 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2120 return id;
2121
2122 /*
2123 * There's no space for the new id in memcg_caches arrays,
2124 * so we have to grow them.
2125 */
05257a1a 2126 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2127
2128 size = 2 * (id + 1);
55007d84
GC
2129 if (size < MEMCG_CACHES_MIN_SIZE)
2130 size = MEMCG_CACHES_MIN_SIZE;
2131 else if (size > MEMCG_CACHES_MAX_SIZE)
2132 size = MEMCG_CACHES_MAX_SIZE;
2133
f3bb3043 2134 err = memcg_update_all_caches(size);
60d3fd32
VD
2135 if (!err)
2136 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2137 if (!err)
2138 memcg_nr_cache_ids = size;
2139
2140 up_write(&memcg_cache_ids_sem);
2141
f3bb3043 2142 if (err) {
dbcf73e2 2143 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2144 return err;
2145 }
2146 return id;
2147}
2148
2149static void memcg_free_cache_id(int id)
2150{
dbcf73e2 2151 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2152}
2153
d5b3cf71 2154struct memcg_kmem_cache_create_work {
5722d094
VD
2155 struct mem_cgroup *memcg;
2156 struct kmem_cache *cachep;
2157 struct work_struct work;
2158};
2159
d5b3cf71 2160static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2161{
d5b3cf71
VD
2162 struct memcg_kmem_cache_create_work *cw =
2163 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2164 struct mem_cgroup *memcg = cw->memcg;
2165 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2166
d5b3cf71 2167 memcg_create_kmem_cache(memcg, cachep);
bd673145 2168
5722d094 2169 css_put(&memcg->css);
d7f25f8a
GC
2170 kfree(cw);
2171}
2172
2173/*
2174 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2175 */
d5b3cf71
VD
2176static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2177 struct kmem_cache *cachep)
d7f25f8a 2178{
d5b3cf71 2179 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2180
776ed0f0 2181 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2182 if (!cw)
d7f25f8a 2183 return;
8135be5a
VD
2184
2185 css_get(&memcg->css);
d7f25f8a
GC
2186
2187 cw->memcg = memcg;
2188 cw->cachep = cachep;
d5b3cf71 2189 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2190
17cc4dfe 2191 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2192}
2193
d5b3cf71
VD
2194static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 struct kmem_cache *cachep)
0e9d92f2
GC
2196{
2197 /*
2198 * We need to stop accounting when we kmalloc, because if the
2199 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2200 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2201 *
2202 * However, it is better to enclose the whole function. Depending on
2203 * the debugging options enabled, INIT_WORK(), for instance, can
2204 * trigger an allocation. This too, will make us recurse. Because at
2205 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 * the safest choice is to do it like this, wrapping the whole function.
2207 */
6f185c29 2208 current->memcg_kmem_skip_account = 1;
d5b3cf71 2209 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2210 current->memcg_kmem_skip_account = 0;
0e9d92f2 2211}
c67a8a68 2212
45264778
VD
2213static inline bool memcg_kmem_bypass(void)
2214{
2215 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2216 return true;
2217 return false;
2218}
2219
2220/**
2221 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222 * @cachep: the original global kmem cache
2223 *
d7f25f8a
GC
2224 * Return the kmem_cache we're supposed to use for a slab allocation.
2225 * We try to use the current memcg's version of the cache.
2226 *
45264778
VD
2227 * If the cache does not exist yet, if we are the first user of it, we
2228 * create it asynchronously in a workqueue and let the current allocation
2229 * go through with the original cache.
d7f25f8a 2230 *
45264778
VD
2231 * This function takes a reference to the cache it returns to assure it
2232 * won't get destroyed while we are working with it. Once the caller is
2233 * done with it, memcg_kmem_put_cache() must be called to release the
2234 * reference.
d7f25f8a 2235 */
45264778 2236struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2237{
2238 struct mem_cgroup *memcg;
959c8963 2239 struct kmem_cache *memcg_cachep;
2a4db7eb 2240 int kmemcg_id;
d7f25f8a 2241
f7ce3190 2242 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2243
45264778 2244 if (memcg_kmem_bypass())
230e9fc2
VD
2245 return cachep;
2246
9d100c5e 2247 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2248 return cachep;
2249
8135be5a 2250 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2251 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2252 if (kmemcg_id < 0)
ca0dde97 2253 goto out;
d7f25f8a 2254
2a4db7eb 2255 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2256 if (likely(memcg_cachep))
2257 return memcg_cachep;
ca0dde97
LZ
2258
2259 /*
2260 * If we are in a safe context (can wait, and not in interrupt
2261 * context), we could be be predictable and return right away.
2262 * This would guarantee that the allocation being performed
2263 * already belongs in the new cache.
2264 *
2265 * However, there are some clashes that can arrive from locking.
2266 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2267 * memcg_create_kmem_cache, this means no further allocation
2268 * could happen with the slab_mutex held. So it's better to
2269 * defer everything.
ca0dde97 2270 */
d5b3cf71 2271 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2272out:
8135be5a 2273 css_put(&memcg->css);
ca0dde97 2274 return cachep;
d7f25f8a 2275}
d7f25f8a 2276
45264778
VD
2277/**
2278 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279 * @cachep: the cache returned by memcg_kmem_get_cache
2280 */
2281void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2282{
2283 if (!is_root_cache(cachep))
f7ce3190 2284 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2285}
2286
45264778
VD
2287/**
2288 * memcg_kmem_charge: charge a kmem page
2289 * @page: page to charge
2290 * @gfp: reclaim mode
2291 * @order: allocation order
2292 * @memcg: memory cgroup to charge
2293 *
2294 * Returns 0 on success, an error code on failure.
2295 */
2296int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2297 struct mem_cgroup *memcg)
7ae1e1d0 2298{
f3ccb2c4
VD
2299 unsigned int nr_pages = 1 << order;
2300 struct page_counter *counter;
7ae1e1d0
GC
2301 int ret;
2302
f3ccb2c4 2303 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2304 if (ret)
f3ccb2c4 2305 return ret;
52c29b04
JW
2306
2307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2308 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2309 cancel_charge(memcg, nr_pages);
2310 return -ENOMEM;
7ae1e1d0
GC
2311 }
2312
f3ccb2c4 2313 page->mem_cgroup = memcg;
7ae1e1d0 2314
f3ccb2c4 2315 return 0;
7ae1e1d0
GC
2316}
2317
45264778
VD
2318/**
2319 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320 * @page: page to charge
2321 * @gfp: reclaim mode
2322 * @order: allocation order
2323 *
2324 * Returns 0 on success, an error code on failure.
2325 */
2326int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2327{
f3ccb2c4 2328 struct mem_cgroup *memcg;
fcff7d7e 2329 int ret = 0;
7ae1e1d0 2330
45264778
VD
2331 if (memcg_kmem_bypass())
2332 return 0;
2333
f3ccb2c4 2334 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2335 if (!mem_cgroup_is_root(memcg)) {
45264778 2336 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2337 if (!ret)
2338 __SetPageKmemcg(page);
2339 }
7ae1e1d0 2340 css_put(&memcg->css);
d05e83a6 2341 return ret;
7ae1e1d0 2342}
45264778
VD
2343/**
2344 * memcg_kmem_uncharge: uncharge a kmem page
2345 * @page: page to uncharge
2346 * @order: allocation order
2347 */
2348void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2349{
1306a85a 2350 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2351 unsigned int nr_pages = 1 << order;
7ae1e1d0 2352
7ae1e1d0
GC
2353 if (!memcg)
2354 return;
2355
309381fe 2356 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2357
52c29b04
JW
2358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2359 page_counter_uncharge(&memcg->kmem, nr_pages);
2360
f3ccb2c4 2361 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2362 if (do_memsw_account())
f3ccb2c4 2363 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2364
1306a85a 2365 page->mem_cgroup = NULL;
c4159a75
VD
2366
2367 /* slab pages do not have PageKmemcg flag set */
2368 if (PageKmemcg(page))
2369 __ClearPageKmemcg(page);
2370
f3ccb2c4 2371 css_put_many(&memcg->css, nr_pages);
60d3fd32 2372}
127424c8 2373#endif /* !CONFIG_SLOB */
7ae1e1d0 2374
ca3e0214
KH
2375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376
ca3e0214
KH
2377/*
2378 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2379 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2380 */
e94c8a9c 2381void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2382{
e94c8a9c 2383 int i;
ca3e0214 2384
3d37c4a9
KH
2385 if (mem_cgroup_disabled())
2386 return;
b070e65c 2387
29833315 2388 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2389 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2390
71cd3113 2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
b070e65c 2392 HPAGE_PMD_NR);
ca3e0214 2393}
12d27107 2394#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2395
c255a458 2396#ifdef CONFIG_MEMCG_SWAP
0a31bc97 2397static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
38d8b4e6 2398 int nr_entries)
d13d1443 2399{
38d8b4e6 2400 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
d13d1443 2401}
02491447
DN
2402
2403/**
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2408 *
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2411 *
2412 * Returns 0 on success, -EINVAL on failure.
2413 *
3e32cb2e 2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2415 * both res and memsw, and called css_get().
2416 */
2417static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2418 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2419{
2420 unsigned short old_id, new_id;
2421
34c00c31
LZ
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
02491447
DN
2424
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
38d8b4e6
HY
2426 mem_cgroup_swap_statistics(from, -1);
2427 mem_cgroup_swap_statistics(to, 1);
02491447
DN
2428 return 0;
2429 }
2430 return -EINVAL;
2431}
2432#else
2433static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2434 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2435{
2436 return -EINVAL;
2437}
8c7c6e34 2438#endif
d13d1443 2439
3e32cb2e 2440static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2441
d38d2a75 2442static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2443 unsigned long limit)
628f4235 2444{
3e32cb2e
JW
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
81d39c20 2448 int retry_count;
3e32cb2e 2449 int ret;
81d39c20
KH
2450
2451 /*
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2455 */
3e32cb2e
JW
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
81d39c20 2458
3e32cb2e 2459 oldusage = page_counter_read(&memcg->memory);
628f4235 2460
3e32cb2e 2461 do {
628f4235
KH
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2465 }
3e32cb2e
JW
2466
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2470 ret = -EINVAL;
628f4235
KH
2471 break;
2472 }
3e32cb2e
JW
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2477
2478 if (!ret)
2479 break;
2480
b70a2a21
JW
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482
3e32cb2e 2483 curusage = page_counter_read(&memcg->memory);
81d39c20 2484 /* Usage is reduced ? */
f894ffa8 2485 if (curusage >= oldusage)
81d39c20
KH
2486 retry_count--;
2487 else
2488 oldusage = curusage;
3e32cb2e
JW
2489 } while (retry_count);
2490
3c11ecf4
KH
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
14797e23 2493
8c7c6e34
KH
2494 return ret;
2495}
2496
338c8431 2497static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2498 unsigned long limit)
8c7c6e34 2499{
3e32cb2e
JW
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
81d39c20 2503 int retry_count;
3e32cb2e 2504 int ret;
8c7c6e34 2505
81d39c20 2506 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2509
2510 oldusage = page_counter_read(&memcg->memsw);
2511
2512 do {
8c7c6e34
KH
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2516 }
3e32cb2e
JW
2517
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2521 ret = -EINVAL;
8c7c6e34
KH
2522 break;
2523 }
3e32cb2e
JW
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2528
2529 if (!ret)
2530 break;
2531
b70a2a21
JW
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533
3e32cb2e 2534 curusage = page_counter_read(&memcg->memsw);
81d39c20 2535 /* Usage is reduced ? */
8c7c6e34 2536 if (curusage >= oldusage)
628f4235 2537 retry_count--;
81d39c20
KH
2538 else
2539 oldusage = curusage;
3e32cb2e
JW
2540 } while (retry_count);
2541
3c11ecf4
KH
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
3e32cb2e 2544
628f4235
KH
2545 return ret;
2546}
2547
ef8f2327 2548unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2551{
2552 unsigned long nr_reclaimed = 0;
ef8f2327 2553 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2554 unsigned long reclaimed;
2555 int loop = 0;
ef8f2327 2556 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2557 unsigned long excess;
0608f43d
AM
2558 unsigned long nr_scanned;
2559
2560 if (order > 0)
2561 return 0;
2562
ef8f2327 2563 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2564
2565 /*
2566 * Do not even bother to check the largest node if the root
2567 * is empty. Do it lockless to prevent lock bouncing. Races
2568 * are acceptable as soft limit is best effort anyway.
2569 */
bfc7228b 2570 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2571 return 0;
2572
0608f43d
AM
2573 /*
2574 * This loop can run a while, specially if mem_cgroup's continuously
2575 * keep exceeding their soft limit and putting the system under
2576 * pressure
2577 */
2578 do {
2579 if (next_mz)
2580 mz = next_mz;
2581 else
2582 mz = mem_cgroup_largest_soft_limit_node(mctz);
2583 if (!mz)
2584 break;
2585
2586 nr_scanned = 0;
ef8f2327 2587 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2588 gfp_mask, &nr_scanned);
2589 nr_reclaimed += reclaimed;
2590 *total_scanned += nr_scanned;
0a31bc97 2591 spin_lock_irq(&mctz->lock);
bc2f2e7f 2592 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2593
2594 /*
2595 * If we failed to reclaim anything from this memory cgroup
2596 * it is time to move on to the next cgroup
2597 */
2598 next_mz = NULL;
bc2f2e7f
VD
2599 if (!reclaimed)
2600 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2601
3e32cb2e 2602 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2603 /*
2604 * One school of thought says that we should not add
2605 * back the node to the tree if reclaim returns 0.
2606 * But our reclaim could return 0, simply because due
2607 * to priority we are exposing a smaller subset of
2608 * memory to reclaim from. Consider this as a longer
2609 * term TODO.
2610 */
2611 /* If excess == 0, no tree ops */
cf2c8127 2612 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2613 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2614 css_put(&mz->memcg->css);
2615 loop++;
2616 /*
2617 * Could not reclaim anything and there are no more
2618 * mem cgroups to try or we seem to be looping without
2619 * reclaiming anything.
2620 */
2621 if (!nr_reclaimed &&
2622 (next_mz == NULL ||
2623 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2624 break;
2625 } while (!nr_reclaimed);
2626 if (next_mz)
2627 css_put(&next_mz->memcg->css);
2628 return nr_reclaimed;
2629}
2630
ea280e7b
TH
2631/*
2632 * Test whether @memcg has children, dead or alive. Note that this
2633 * function doesn't care whether @memcg has use_hierarchy enabled and
2634 * returns %true if there are child csses according to the cgroup
2635 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2636 */
b5f99b53
GC
2637static inline bool memcg_has_children(struct mem_cgroup *memcg)
2638{
ea280e7b
TH
2639 bool ret;
2640
ea280e7b
TH
2641 rcu_read_lock();
2642 ret = css_next_child(NULL, &memcg->css);
2643 rcu_read_unlock();
2644 return ret;
b5f99b53
GC
2645}
2646
c26251f9 2647/*
51038171 2648 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2649 *
2650 * Caller is responsible for holding css reference for memcg.
2651 */
2652static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2653{
2654 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2655
c1e862c1
KH
2656 /* we call try-to-free pages for make this cgroup empty */
2657 lru_add_drain_all();
f817ed48 2658 /* try to free all pages in this cgroup */
3e32cb2e 2659 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2660 int progress;
c1e862c1 2661
c26251f9
MH
2662 if (signal_pending(current))
2663 return -EINTR;
2664
b70a2a21
JW
2665 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2666 GFP_KERNEL, true);
c1e862c1 2667 if (!progress) {
f817ed48 2668 nr_retries--;
c1e862c1 2669 /* maybe some writeback is necessary */
8aa7e847 2670 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2671 }
f817ed48
KH
2672
2673 }
ab5196c2
MH
2674
2675 return 0;
cc847582
KH
2676}
2677
6770c64e
TH
2678static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2679 char *buf, size_t nbytes,
2680 loff_t off)
c1e862c1 2681{
6770c64e 2682 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2683
d8423011
MH
2684 if (mem_cgroup_is_root(memcg))
2685 return -EINVAL;
6770c64e 2686 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2687}
2688
182446d0
TH
2689static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2690 struct cftype *cft)
18f59ea7 2691{
182446d0 2692 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2693}
2694
182446d0
TH
2695static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2696 struct cftype *cft, u64 val)
18f59ea7
BS
2697{
2698 int retval = 0;
182446d0 2699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2700 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2701
567fb435 2702 if (memcg->use_hierarchy == val)
0b8f73e1 2703 return 0;
567fb435 2704
18f59ea7 2705 /*
af901ca1 2706 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2707 * in the child subtrees. If it is unset, then the change can
2708 * occur, provided the current cgroup has no children.
2709 *
2710 * For the root cgroup, parent_mem is NULL, we allow value to be
2711 * set if there are no children.
2712 */
c0ff4b85 2713 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2714 (val == 1 || val == 0)) {
ea280e7b 2715 if (!memcg_has_children(memcg))
c0ff4b85 2716 memcg->use_hierarchy = val;
18f59ea7
BS
2717 else
2718 retval = -EBUSY;
2719 } else
2720 retval = -EINVAL;
567fb435 2721
18f59ea7
BS
2722 return retval;
2723}
2724
72b54e73 2725static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2726{
2727 struct mem_cgroup *iter;
72b54e73 2728 int i;
ce00a967 2729
72b54e73 2730 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2731
72b54e73
VD
2732 for_each_mem_cgroup_tree(iter, memcg) {
2733 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2734 stat[i] += memcg_page_state(iter, i);
72b54e73 2735 }
ce00a967
JW
2736}
2737
72b54e73 2738static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2739{
2740 struct mem_cgroup *iter;
72b54e73 2741 int i;
587d9f72 2742
72b54e73 2743 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2744
72b54e73
VD
2745 for_each_mem_cgroup_tree(iter, memcg) {
2746 for (i = 0; i < MEMCG_NR_EVENTS; i++)
ccda7f43 2747 events[i] += memcg_sum_events(iter, i);
72b54e73 2748 }
587d9f72
JW
2749}
2750
6f646156 2751static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2752{
72b54e73 2753 unsigned long val = 0;
ce00a967 2754
3e32cb2e 2755 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2756 struct mem_cgroup *iter;
2757
2758 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2759 val += memcg_page_state(iter, MEMCG_CACHE);
2760 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2761 if (swap)
ccda7f43 2762 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2763 }
3e32cb2e 2764 } else {
ce00a967 2765 if (!swap)
3e32cb2e 2766 val = page_counter_read(&memcg->memory);
ce00a967 2767 else
3e32cb2e 2768 val = page_counter_read(&memcg->memsw);
ce00a967 2769 }
c12176d3 2770 return val;
ce00a967
JW
2771}
2772
3e32cb2e
JW
2773enum {
2774 RES_USAGE,
2775 RES_LIMIT,
2776 RES_MAX_USAGE,
2777 RES_FAILCNT,
2778 RES_SOFT_LIMIT,
2779};
ce00a967 2780
791badbd 2781static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2782 struct cftype *cft)
8cdea7c0 2783{
182446d0 2784 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2785 struct page_counter *counter;
af36f906 2786
3e32cb2e 2787 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2788 case _MEM:
3e32cb2e
JW
2789 counter = &memcg->memory;
2790 break;
8c7c6e34 2791 case _MEMSWAP:
3e32cb2e
JW
2792 counter = &memcg->memsw;
2793 break;
510fc4e1 2794 case _KMEM:
3e32cb2e 2795 counter = &memcg->kmem;
510fc4e1 2796 break;
d55f90bf 2797 case _TCP:
0db15298 2798 counter = &memcg->tcpmem;
d55f90bf 2799 break;
8c7c6e34
KH
2800 default:
2801 BUG();
8c7c6e34 2802 }
3e32cb2e
JW
2803
2804 switch (MEMFILE_ATTR(cft->private)) {
2805 case RES_USAGE:
2806 if (counter == &memcg->memory)
c12176d3 2807 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2808 if (counter == &memcg->memsw)
c12176d3 2809 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2810 return (u64)page_counter_read(counter) * PAGE_SIZE;
2811 case RES_LIMIT:
2812 return (u64)counter->limit * PAGE_SIZE;
2813 case RES_MAX_USAGE:
2814 return (u64)counter->watermark * PAGE_SIZE;
2815 case RES_FAILCNT:
2816 return counter->failcnt;
2817 case RES_SOFT_LIMIT:
2818 return (u64)memcg->soft_limit * PAGE_SIZE;
2819 default:
2820 BUG();
2821 }
8cdea7c0 2822}
510fc4e1 2823
127424c8 2824#ifndef CONFIG_SLOB
567e9ab2 2825static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2826{
d6441637
VD
2827 int memcg_id;
2828
b313aeee
VD
2829 if (cgroup_memory_nokmem)
2830 return 0;
2831
2a4db7eb 2832 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2833 BUG_ON(memcg->kmem_state);
d6441637 2834
f3bb3043 2835 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2836 if (memcg_id < 0)
2837 return memcg_id;
d6441637 2838
ef12947c 2839 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2840 /*
567e9ab2 2841 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2842 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2843 * guarantee no one starts accounting before all call sites are
2844 * patched.
2845 */
900a38f0 2846 memcg->kmemcg_id = memcg_id;
567e9ab2 2847 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2848 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2849
2850 return 0;
d6441637
VD
2851}
2852
8e0a8912
JW
2853static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854{
2855 struct cgroup_subsys_state *css;
2856 struct mem_cgroup *parent, *child;
2857 int kmemcg_id;
2858
2859 if (memcg->kmem_state != KMEM_ONLINE)
2860 return;
2861 /*
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2866 */
2867 memcg->kmem_state = KMEM_ALLOCATED;
2868
2869 memcg_deactivate_kmem_caches(memcg);
2870
2871 kmemcg_id = memcg->kmemcg_id;
2872 BUG_ON(kmemcg_id < 0);
2873
2874 parent = parent_mem_cgroup(memcg);
2875 if (!parent)
2876 parent = root_mem_cgroup;
2877
2878 /*
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2885 */
3a06bb78 2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2887 css_for_each_descendant_pre(css, &memcg->css) {
2888 child = mem_cgroup_from_css(css);
2889 BUG_ON(child->kmemcg_id != kmemcg_id);
2890 child->kmemcg_id = parent->kmemcg_id;
2891 if (!memcg->use_hierarchy)
2892 break;
2893 }
3a06bb78
TH
2894 rcu_read_unlock();
2895
8e0a8912
JW
2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897
2898 memcg_free_cache_id(kmemcg_id);
2899}
2900
2901static void memcg_free_kmem(struct mem_cgroup *memcg)
2902{
0b8f73e1
JW
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 memcg_offline_kmem(memcg);
2906
8e0a8912
JW
2907 if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 memcg_destroy_kmem_caches(memcg);
2909 static_branch_dec(&memcg_kmem_enabled_key);
2910 WARN_ON(page_counter_read(&memcg->kmem));
2911 }
8e0a8912 2912}
d6441637 2913#else
0b8f73e1 2914static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2915{
2916 return 0;
2917}
2918static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919{
2920}
2921static void memcg_free_kmem(struct mem_cgroup *memcg)
2922{
2923}
2924#endif /* !CONFIG_SLOB */
2925
d6441637 2926static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2927 unsigned long limit)
d6441637 2928{
b313aeee 2929 int ret;
127424c8
JW
2930
2931 mutex_lock(&memcg_limit_mutex);
127424c8 2932 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2933 mutex_unlock(&memcg_limit_mutex);
2934 return ret;
d6441637 2935}
510fc4e1 2936
d55f90bf
VD
2937static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938{
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942
0db15298 2943 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2944 if (ret)
2945 goto out;
2946
0db15298 2947 if (!memcg->tcpmem_active) {
d55f90bf
VD
2948 /*
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2d758073
JW
2951 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 * for details, and note that we don't mark any socket as
2953 * belonging to this memcg until that flag is up.
d55f90bf
VD
2954 *
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2959 *
2d758073 2960 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2961 * because when this value change, the code to process it is not
2962 * patched in yet.
2963 */
2964 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2965 memcg->tcpmem_active = true;
d55f90bf
VD
2966 }
2967out:
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970}
d55f90bf 2971
628f4235
KH
2972/*
2973 * The user of this function is...
2974 * RES_LIMIT.
2975 */
451af504
TH
2976static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2978{
451af504 2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2980 unsigned long nr_pages;
628f4235
KH
2981 int ret;
2982
451af504 2983 buf = strstrip(buf);
650c5e56 2984 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2985 if (ret)
2986 return ret;
af36f906 2987
3e32cb2e 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2989 case RES_LIMIT:
4b3bde4c
BS
2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 ret = -EINVAL;
2992 break;
2993 }
3e32cb2e
JW
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2997 break;
3e32cb2e
JW
2998 case _MEMSWAP:
2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3000 break;
3e32cb2e
JW
3001 case _KMEM:
3002 ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 break;
d55f90bf
VD
3004 case _TCP:
3005 ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 break;
3e32cb2e 3007 }
296c81d8 3008 break;
3e32cb2e
JW
3009 case RES_SOFT_LIMIT:
3010 memcg->soft_limit = nr_pages;
3011 ret = 0;
628f4235
KH
3012 break;
3013 }
451af504 3014 return ret ?: nbytes;
8cdea7c0
BS
3015}
3016
6770c64e
TH
3017static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 size_t nbytes, loff_t off)
c84872e1 3019{
6770c64e 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3021 struct page_counter *counter;
c84872e1 3022
3e32cb2e
JW
3023 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
d55f90bf 3033 case _TCP:
0db15298 3034 counter = &memcg->tcpmem;
d55f90bf 3035 break;
3e32cb2e
JW
3036 default:
3037 BUG();
3038 }
af36f906 3039
3e32cb2e 3040 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3041 case RES_MAX_USAGE:
3e32cb2e 3042 page_counter_reset_watermark(counter);
29f2a4da
PE
3043 break;
3044 case RES_FAILCNT:
3e32cb2e 3045 counter->failcnt = 0;
29f2a4da 3046 break;
3e32cb2e
JW
3047 default:
3048 BUG();
29f2a4da 3049 }
f64c3f54 3050
6770c64e 3051 return nbytes;
c84872e1
PE
3052}
3053
182446d0 3054static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3055 struct cftype *cft)
3056{
182446d0 3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3058}
3059
02491447 3060#ifdef CONFIG_MMU
182446d0 3061static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3062 struct cftype *cft, u64 val)
3063{
182446d0 3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3065
1dfab5ab 3066 if (val & ~MOVE_MASK)
7dc74be0 3067 return -EINVAL;
ee5e8472 3068
7dc74be0 3069 /*
ee5e8472
GC
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
7dc74be0 3074 */
c0ff4b85 3075 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3076 return 0;
3077}
02491447 3078#else
182446d0 3079static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3080 struct cftype *cft, u64 val)
3081{
3082 return -ENOSYS;
3083}
3084#endif
7dc74be0 3085
406eb0c9 3086#ifdef CONFIG_NUMA
2da8ca82 3087static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3088{
25485de6
GT
3089 struct numa_stat {
3090 const char *name;
3091 unsigned int lru_mask;
3092 };
3093
3094 static const struct numa_stat stats[] = {
3095 { "total", LRU_ALL },
3096 { "file", LRU_ALL_FILE },
3097 { "anon", LRU_ALL_ANON },
3098 { "unevictable", BIT(LRU_UNEVICTABLE) },
3099 };
3100 const struct numa_stat *stat;
406eb0c9 3101 int nid;
25485de6 3102 unsigned long nr;
2da8ca82 3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3104
25485de6
GT
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 seq_printf(m, "%s=%lu", stat->name, nr);
3108 for_each_node_state(nid, N_MEMORY) {
3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
406eb0c9 3114 }
406eb0c9 3115
071aee13
YH
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 struct mem_cgroup *iter;
3118
3119 nr = 0;
3120 for_each_mem_cgroup_tree(iter, memcg)
3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_node_nr_lru_pages(
3127 iter, nid, stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
406eb0c9 3131 }
406eb0c9 3132
406eb0c9
YH
3133 return 0;
3134}
3135#endif /* CONFIG_NUMA */
3136
df0e53d0
JW
3137/* Universal VM events cgroup1 shows, original sort order */
3138unsigned int memcg1_events[] = {
3139 PGPGIN,
3140 PGPGOUT,
3141 PGFAULT,
3142 PGMAJFAULT,
3143};
3144
3145static const char *const memcg1_event_names[] = {
3146 "pgpgin",
3147 "pgpgout",
3148 "pgfault",
3149 "pgmajfault",
3150};
3151
2da8ca82 3152static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3153{
2da8ca82 3154 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3155 unsigned long memory, memsw;
af7c4b0e
JW
3156 struct mem_cgroup *mi;
3157 unsigned int i;
406eb0c9 3158
71cd3113 3159 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3161
71cd3113
JW
3162 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3163 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3164 continue;
71cd3113 3165 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3166 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3167 PAGE_SIZE);
1dd3a273 3168 }
7b854121 3169
df0e53d0
JW
3170 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3171 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3172 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3173
3174 for (i = 0; i < NR_LRU_LISTS; i++)
3175 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3176 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3177
14067bb3 3178 /* Hierarchical information */
3e32cb2e
JW
3179 memory = memsw = PAGE_COUNTER_MAX;
3180 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3181 memory = min(memory, mi->memory.limit);
3182 memsw = min(memsw, mi->memsw.limit);
fee7b548 3183 }
3e32cb2e
JW
3184 seq_printf(m, "hierarchical_memory_limit %llu\n",
3185 (u64)memory * PAGE_SIZE);
7941d214 3186 if (do_memsw_account())
3e32cb2e
JW
3187 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3188 (u64)memsw * PAGE_SIZE);
7f016ee8 3189
71cd3113 3190 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3191 unsigned long long val = 0;
af7c4b0e 3192
71cd3113 3193 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3194 continue;
af7c4b0e 3195 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3196 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3197 PAGE_SIZE;
3198 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3199 }
3200
df0e53d0 3201 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3202 unsigned long long val = 0;
3203
3204 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3205 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3206 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3207 }
3208
3209 for (i = 0; i < NR_LRU_LISTS; i++) {
3210 unsigned long long val = 0;
3211
3212 for_each_mem_cgroup_tree(mi, memcg)
3213 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3214 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3215 }
14067bb3 3216
7f016ee8 3217#ifdef CONFIG_DEBUG_VM
7f016ee8 3218 {
ef8f2327
MG
3219 pg_data_t *pgdat;
3220 struct mem_cgroup_per_node *mz;
89abfab1 3221 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3222 unsigned long recent_rotated[2] = {0, 0};
3223 unsigned long recent_scanned[2] = {0, 0};
3224
ef8f2327
MG
3225 for_each_online_pgdat(pgdat) {
3226 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3227 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3228
ef8f2327
MG
3229 recent_rotated[0] += rstat->recent_rotated[0];
3230 recent_rotated[1] += rstat->recent_rotated[1];
3231 recent_scanned[0] += rstat->recent_scanned[0];
3232 recent_scanned[1] += rstat->recent_scanned[1];
3233 }
78ccf5b5
JW
3234 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3235 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3236 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3237 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3238 }
3239#endif
3240
d2ceb9b7
KH
3241 return 0;
3242}
3243
182446d0
TH
3244static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3245 struct cftype *cft)
a7885eb8 3246{
182446d0 3247 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3248
1f4c025b 3249 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3250}
3251
182446d0
TH
3252static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3253 struct cftype *cft, u64 val)
a7885eb8 3254{
182446d0 3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3256
3dae7fec 3257 if (val > 100)
a7885eb8
KM
3258 return -EINVAL;
3259
14208b0e 3260 if (css->parent)
3dae7fec
JW
3261 memcg->swappiness = val;
3262 else
3263 vm_swappiness = val;
068b38c1 3264
a7885eb8
KM
3265 return 0;
3266}
3267
2e72b634
KS
3268static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3269{
3270 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3271 unsigned long usage;
2e72b634
KS
3272 int i;
3273
3274 rcu_read_lock();
3275 if (!swap)
2c488db2 3276 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3277 else
2c488db2 3278 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3279
3280 if (!t)
3281 goto unlock;
3282
ce00a967 3283 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3284
3285 /*
748dad36 3286 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3287 * If it's not true, a threshold was crossed after last
3288 * call of __mem_cgroup_threshold().
3289 */
5407a562 3290 i = t->current_threshold;
2e72b634
KS
3291
3292 /*
3293 * Iterate backward over array of thresholds starting from
3294 * current_threshold and check if a threshold is crossed.
3295 * If none of thresholds below usage is crossed, we read
3296 * only one element of the array here.
3297 */
3298 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3299 eventfd_signal(t->entries[i].eventfd, 1);
3300
3301 /* i = current_threshold + 1 */
3302 i++;
3303
3304 /*
3305 * Iterate forward over array of thresholds starting from
3306 * current_threshold+1 and check if a threshold is crossed.
3307 * If none of thresholds above usage is crossed, we read
3308 * only one element of the array here.
3309 */
3310 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3311 eventfd_signal(t->entries[i].eventfd, 1);
3312
3313 /* Update current_threshold */
5407a562 3314 t->current_threshold = i - 1;
2e72b634
KS
3315unlock:
3316 rcu_read_unlock();
3317}
3318
3319static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3320{
ad4ca5f4
KS
3321 while (memcg) {
3322 __mem_cgroup_threshold(memcg, false);
7941d214 3323 if (do_memsw_account())
ad4ca5f4
KS
3324 __mem_cgroup_threshold(memcg, true);
3325
3326 memcg = parent_mem_cgroup(memcg);
3327 }
2e72b634
KS
3328}
3329
3330static int compare_thresholds(const void *a, const void *b)
3331{
3332 const struct mem_cgroup_threshold *_a = a;
3333 const struct mem_cgroup_threshold *_b = b;
3334
2bff24a3
GT
3335 if (_a->threshold > _b->threshold)
3336 return 1;
3337
3338 if (_a->threshold < _b->threshold)
3339 return -1;
3340
3341 return 0;
2e72b634
KS
3342}
3343
c0ff4b85 3344static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3345{
3346 struct mem_cgroup_eventfd_list *ev;
3347
2bcf2e92
MH
3348 spin_lock(&memcg_oom_lock);
3349
c0ff4b85 3350 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3351 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3352
3353 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3354 return 0;
3355}
3356
c0ff4b85 3357static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3358{
7d74b06f
KH
3359 struct mem_cgroup *iter;
3360
c0ff4b85 3361 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3362 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3363}
3364
59b6f873 3365static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3366 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3367{
2c488db2
KS
3368 struct mem_cgroup_thresholds *thresholds;
3369 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3370 unsigned long threshold;
3371 unsigned long usage;
2c488db2 3372 int i, size, ret;
2e72b634 3373
650c5e56 3374 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3375 if (ret)
3376 return ret;
3377
3378 mutex_lock(&memcg->thresholds_lock);
2c488db2 3379
05b84301 3380 if (type == _MEM) {
2c488db2 3381 thresholds = &memcg->thresholds;
ce00a967 3382 usage = mem_cgroup_usage(memcg, false);
05b84301 3383 } else if (type == _MEMSWAP) {
2c488db2 3384 thresholds = &memcg->memsw_thresholds;
ce00a967 3385 usage = mem_cgroup_usage(memcg, true);
05b84301 3386 } else
2e72b634
KS
3387 BUG();
3388
2e72b634 3389 /* Check if a threshold crossed before adding a new one */
2c488db2 3390 if (thresholds->primary)
2e72b634
KS
3391 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3392
2c488db2 3393 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3394
3395 /* Allocate memory for new array of thresholds */
2c488db2 3396 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3397 GFP_KERNEL);
2c488db2 3398 if (!new) {
2e72b634
KS
3399 ret = -ENOMEM;
3400 goto unlock;
3401 }
2c488db2 3402 new->size = size;
2e72b634
KS
3403
3404 /* Copy thresholds (if any) to new array */
2c488db2
KS
3405 if (thresholds->primary) {
3406 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3407 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3408 }
3409
2e72b634 3410 /* Add new threshold */
2c488db2
KS
3411 new->entries[size - 1].eventfd = eventfd;
3412 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3413
3414 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3415 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3416 compare_thresholds, NULL);
3417
3418 /* Find current threshold */
2c488db2 3419 new->current_threshold = -1;
2e72b634 3420 for (i = 0; i < size; i++) {
748dad36 3421 if (new->entries[i].threshold <= usage) {
2e72b634 3422 /*
2c488db2
KS
3423 * new->current_threshold will not be used until
3424 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3425 * it here.
3426 */
2c488db2 3427 ++new->current_threshold;
748dad36
SZ
3428 } else
3429 break;
2e72b634
KS
3430 }
3431
2c488db2
KS
3432 /* Free old spare buffer and save old primary buffer as spare */
3433 kfree(thresholds->spare);
3434 thresholds->spare = thresholds->primary;
3435
3436 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3437
907860ed 3438 /* To be sure that nobody uses thresholds */
2e72b634
KS
3439 synchronize_rcu();
3440
2e72b634
KS
3441unlock:
3442 mutex_unlock(&memcg->thresholds_lock);
3443
3444 return ret;
3445}
3446
59b6f873 3447static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3448 struct eventfd_ctx *eventfd, const char *args)
3449{
59b6f873 3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3451}
3452
59b6f873 3453static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3454 struct eventfd_ctx *eventfd, const char *args)
3455{
59b6f873 3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3457}
3458
59b6f873 3459static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3460 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3461{
2c488db2
KS
3462 struct mem_cgroup_thresholds *thresholds;
3463 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3464 unsigned long usage;
2c488db2 3465 int i, j, size;
2e72b634
KS
3466
3467 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3468
3469 if (type == _MEM) {
2c488db2 3470 thresholds = &memcg->thresholds;
ce00a967 3471 usage = mem_cgroup_usage(memcg, false);
05b84301 3472 } else if (type == _MEMSWAP) {
2c488db2 3473 thresholds = &memcg->memsw_thresholds;
ce00a967 3474 usage = mem_cgroup_usage(memcg, true);
05b84301 3475 } else
2e72b634
KS
3476 BUG();
3477
371528ca
AV
3478 if (!thresholds->primary)
3479 goto unlock;
3480
2e72b634
KS
3481 /* Check if a threshold crossed before removing */
3482 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3483
3484 /* Calculate new number of threshold */
2c488db2
KS
3485 size = 0;
3486 for (i = 0; i < thresholds->primary->size; i++) {
3487 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3488 size++;
3489 }
3490
2c488db2 3491 new = thresholds->spare;
907860ed 3492
2e72b634
KS
3493 /* Set thresholds array to NULL if we don't have thresholds */
3494 if (!size) {
2c488db2
KS
3495 kfree(new);
3496 new = NULL;
907860ed 3497 goto swap_buffers;
2e72b634
KS
3498 }
3499
2c488db2 3500 new->size = size;
2e72b634
KS
3501
3502 /* Copy thresholds and find current threshold */
2c488db2
KS
3503 new->current_threshold = -1;
3504 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3505 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3506 continue;
3507
2c488db2 3508 new->entries[j] = thresholds->primary->entries[i];
748dad36 3509 if (new->entries[j].threshold <= usage) {
2e72b634 3510 /*
2c488db2 3511 * new->current_threshold will not be used
2e72b634
KS
3512 * until rcu_assign_pointer(), so it's safe to increment
3513 * it here.
3514 */
2c488db2 3515 ++new->current_threshold;
2e72b634
KS
3516 }
3517 j++;
3518 }
3519
907860ed 3520swap_buffers:
2c488db2
KS
3521 /* Swap primary and spare array */
3522 thresholds->spare = thresholds->primary;
8c757763 3523
2c488db2 3524 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3525
907860ed 3526 /* To be sure that nobody uses thresholds */
2e72b634 3527 synchronize_rcu();
6611d8d7
MC
3528
3529 /* If all events are unregistered, free the spare array */
3530 if (!new) {
3531 kfree(thresholds->spare);
3532 thresholds->spare = NULL;
3533 }
371528ca 3534unlock:
2e72b634 3535 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3536}
c1e862c1 3537
59b6f873 3538static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3539 struct eventfd_ctx *eventfd)
3540{
59b6f873 3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3542}
3543
59b6f873 3544static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3545 struct eventfd_ctx *eventfd)
3546{
59b6f873 3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3548}
3549
59b6f873 3550static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3551 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3552{
9490ff27 3553 struct mem_cgroup_eventfd_list *event;
9490ff27 3554
9490ff27
KH
3555 event = kmalloc(sizeof(*event), GFP_KERNEL);
3556 if (!event)
3557 return -ENOMEM;
3558
1af8efe9 3559 spin_lock(&memcg_oom_lock);
9490ff27
KH
3560
3561 event->eventfd = eventfd;
3562 list_add(&event->list, &memcg->oom_notify);
3563
3564 /* already in OOM ? */
c2b42d3c 3565 if (memcg->under_oom)
9490ff27 3566 eventfd_signal(eventfd, 1);
1af8efe9 3567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3568
3569 return 0;
3570}
3571
59b6f873 3572static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3573 struct eventfd_ctx *eventfd)
9490ff27 3574{
9490ff27 3575 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3576
1af8efe9 3577 spin_lock(&memcg_oom_lock);
9490ff27 3578
c0ff4b85 3579 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3580 if (ev->eventfd == eventfd) {
3581 list_del(&ev->list);
3582 kfree(ev);
3583 }
3584 }
3585
1af8efe9 3586 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3587}
3588
2da8ca82 3589static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3590{
2da8ca82 3591 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3592
791badbd 3593 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3594 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3595 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3596 return 0;
3597}
3598
182446d0 3599static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3600 struct cftype *cft, u64 val)
3601{
182446d0 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3603
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3605 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3606 return -EINVAL;
3607
c0ff4b85 3608 memcg->oom_kill_disable = val;
4d845ebf 3609 if (!val)
c0ff4b85 3610 memcg_oom_recover(memcg);
3dae7fec 3611
3c11ecf4
KH
3612 return 0;
3613}
3614
52ebea74
TH
3615#ifdef CONFIG_CGROUP_WRITEBACK
3616
3617struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3618{
3619 return &memcg->cgwb_list;
3620}
3621
841710aa
TH
3622static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3623{
3624 return wb_domain_init(&memcg->cgwb_domain, gfp);
3625}
3626
3627static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3628{
3629 wb_domain_exit(&memcg->cgwb_domain);
3630}
3631
2529bb3a
TH
3632static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3633{
3634 wb_domain_size_changed(&memcg->cgwb_domain);
3635}
3636
841710aa
TH
3637struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3638{
3639 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3640
3641 if (!memcg->css.parent)
3642 return NULL;
3643
3644 return &memcg->cgwb_domain;
3645}
3646
c2aa723a
TH
3647/**
3648 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3649 * @wb: bdi_writeback in question
c5edf9cd
TH
3650 * @pfilepages: out parameter for number of file pages
3651 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3652 * @pdirty: out parameter for number of dirty pages
3653 * @pwriteback: out parameter for number of pages under writeback
3654 *
c5edf9cd
TH
3655 * Determine the numbers of file, headroom, dirty, and writeback pages in
3656 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3657 * is a bit more involved.
c2aa723a 3658 *
c5edf9cd
TH
3659 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3660 * headroom is calculated as the lowest headroom of itself and the
3661 * ancestors. Note that this doesn't consider the actual amount of
3662 * available memory in the system. The caller should further cap
3663 * *@pheadroom accordingly.
c2aa723a 3664 */
c5edf9cd
TH
3665void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3666 unsigned long *pheadroom, unsigned long *pdirty,
3667 unsigned long *pwriteback)
c2aa723a
TH
3668{
3669 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3670 struct mem_cgroup *parent;
c2aa723a 3671
ccda7f43 3672 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3673
3674 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3675 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3676 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3677 (1 << LRU_ACTIVE_FILE));
3678 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3679
c2aa723a
TH
3680 while ((parent = parent_mem_cgroup(memcg))) {
3681 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3682 unsigned long used = page_counter_read(&memcg->memory);
3683
c5edf9cd 3684 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3685 memcg = parent;
3686 }
c2aa723a
TH
3687}
3688
841710aa
TH
3689#else /* CONFIG_CGROUP_WRITEBACK */
3690
3691static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3692{
3693 return 0;
3694}
3695
3696static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3697{
3698}
3699
2529bb3a
TH
3700static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3701{
3702}
3703
52ebea74
TH
3704#endif /* CONFIG_CGROUP_WRITEBACK */
3705
3bc942f3
TH
3706/*
3707 * DO NOT USE IN NEW FILES.
3708 *
3709 * "cgroup.event_control" implementation.
3710 *
3711 * This is way over-engineered. It tries to support fully configurable
3712 * events for each user. Such level of flexibility is completely
3713 * unnecessary especially in the light of the planned unified hierarchy.
3714 *
3715 * Please deprecate this and replace with something simpler if at all
3716 * possible.
3717 */
3718
79bd9814
TH
3719/*
3720 * Unregister event and free resources.
3721 *
3722 * Gets called from workqueue.
3723 */
3bc942f3 3724static void memcg_event_remove(struct work_struct *work)
79bd9814 3725{
3bc942f3
TH
3726 struct mem_cgroup_event *event =
3727 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3728 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3729
3730 remove_wait_queue(event->wqh, &event->wait);
3731
59b6f873 3732 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3733
3734 /* Notify userspace the event is going away. */
3735 eventfd_signal(event->eventfd, 1);
3736
3737 eventfd_ctx_put(event->eventfd);
3738 kfree(event);
59b6f873 3739 css_put(&memcg->css);
79bd9814
TH
3740}
3741
3742/*
3743 * Gets called on POLLHUP on eventfd when user closes it.
3744 *
3745 * Called with wqh->lock held and interrupts disabled.
3746 */
ac6424b9 3747static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3748 int sync, void *key)
79bd9814 3749{
3bc942f3
TH
3750 struct mem_cgroup_event *event =
3751 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3752 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3753 unsigned long flags = (unsigned long)key;
3754
3755 if (flags & POLLHUP) {
3756 /*
3757 * If the event has been detached at cgroup removal, we
3758 * can simply return knowing the other side will cleanup
3759 * for us.
3760 *
3761 * We can't race against event freeing since the other
3762 * side will require wqh->lock via remove_wait_queue(),
3763 * which we hold.
3764 */
fba94807 3765 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3766 if (!list_empty(&event->list)) {
3767 list_del_init(&event->list);
3768 /*
3769 * We are in atomic context, but cgroup_event_remove()
3770 * may sleep, so we have to call it in workqueue.
3771 */
3772 schedule_work(&event->remove);
3773 }
fba94807 3774 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3775 }
3776
3777 return 0;
3778}
3779
3bc942f3 3780static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3781 wait_queue_head_t *wqh, poll_table *pt)
3782{
3bc942f3
TH
3783 struct mem_cgroup_event *event =
3784 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3785
3786 event->wqh = wqh;
3787 add_wait_queue(wqh, &event->wait);
3788}
3789
3790/*
3bc942f3
TH
3791 * DO NOT USE IN NEW FILES.
3792 *
79bd9814
TH
3793 * Parse input and register new cgroup event handler.
3794 *
3795 * Input must be in format '<event_fd> <control_fd> <args>'.
3796 * Interpretation of args is defined by control file implementation.
3797 */
451af504
TH
3798static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3799 char *buf, size_t nbytes, loff_t off)
79bd9814 3800{
451af504 3801 struct cgroup_subsys_state *css = of_css(of);
fba94807 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3803 struct mem_cgroup_event *event;
79bd9814
TH
3804 struct cgroup_subsys_state *cfile_css;
3805 unsigned int efd, cfd;
3806 struct fd efile;
3807 struct fd cfile;
fba94807 3808 const char *name;
79bd9814
TH
3809 char *endp;
3810 int ret;
3811
451af504
TH
3812 buf = strstrip(buf);
3813
3814 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3815 if (*endp != ' ')
3816 return -EINVAL;
451af504 3817 buf = endp + 1;
79bd9814 3818
451af504 3819 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3820 if ((*endp != ' ') && (*endp != '\0'))
3821 return -EINVAL;
451af504 3822 buf = endp + 1;
79bd9814
TH
3823
3824 event = kzalloc(sizeof(*event), GFP_KERNEL);
3825 if (!event)
3826 return -ENOMEM;
3827
59b6f873 3828 event->memcg = memcg;
79bd9814 3829 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3830 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3831 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3832 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3833
3834 efile = fdget(efd);
3835 if (!efile.file) {
3836 ret = -EBADF;
3837 goto out_kfree;
3838 }
3839
3840 event->eventfd = eventfd_ctx_fileget(efile.file);
3841 if (IS_ERR(event->eventfd)) {
3842 ret = PTR_ERR(event->eventfd);
3843 goto out_put_efile;
3844 }
3845
3846 cfile = fdget(cfd);
3847 if (!cfile.file) {
3848 ret = -EBADF;
3849 goto out_put_eventfd;
3850 }
3851
3852 /* the process need read permission on control file */
3853 /* AV: shouldn't we check that it's been opened for read instead? */
3854 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3855 if (ret < 0)
3856 goto out_put_cfile;
3857
fba94807
TH
3858 /*
3859 * Determine the event callbacks and set them in @event. This used
3860 * to be done via struct cftype but cgroup core no longer knows
3861 * about these events. The following is crude but the whole thing
3862 * is for compatibility anyway.
3bc942f3
TH
3863 *
3864 * DO NOT ADD NEW FILES.
fba94807 3865 */
b583043e 3866 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3867
3868 if (!strcmp(name, "memory.usage_in_bytes")) {
3869 event->register_event = mem_cgroup_usage_register_event;
3870 event->unregister_event = mem_cgroup_usage_unregister_event;
3871 } else if (!strcmp(name, "memory.oom_control")) {
3872 event->register_event = mem_cgroup_oom_register_event;
3873 event->unregister_event = mem_cgroup_oom_unregister_event;
3874 } else if (!strcmp(name, "memory.pressure_level")) {
3875 event->register_event = vmpressure_register_event;
3876 event->unregister_event = vmpressure_unregister_event;
3877 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3878 event->register_event = memsw_cgroup_usage_register_event;
3879 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3880 } else {
3881 ret = -EINVAL;
3882 goto out_put_cfile;
3883 }
3884
79bd9814 3885 /*
b5557c4c
TH
3886 * Verify @cfile should belong to @css. Also, remaining events are
3887 * automatically removed on cgroup destruction but the removal is
3888 * asynchronous, so take an extra ref on @css.
79bd9814 3889 */
b583043e 3890 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3891 &memory_cgrp_subsys);
79bd9814 3892 ret = -EINVAL;
5a17f543 3893 if (IS_ERR(cfile_css))
79bd9814 3894 goto out_put_cfile;
5a17f543
TH
3895 if (cfile_css != css) {
3896 css_put(cfile_css);
79bd9814 3897 goto out_put_cfile;
5a17f543 3898 }
79bd9814 3899
451af504 3900 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3901 if (ret)
3902 goto out_put_css;
3903
3904 efile.file->f_op->poll(efile.file, &event->pt);
3905
fba94807
TH
3906 spin_lock(&memcg->event_list_lock);
3907 list_add(&event->list, &memcg->event_list);
3908 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3909
3910 fdput(cfile);
3911 fdput(efile);
3912
451af504 3913 return nbytes;
79bd9814
TH
3914
3915out_put_css:
b5557c4c 3916 css_put(css);
79bd9814
TH
3917out_put_cfile:
3918 fdput(cfile);
3919out_put_eventfd:
3920 eventfd_ctx_put(event->eventfd);
3921out_put_efile:
3922 fdput(efile);
3923out_kfree:
3924 kfree(event);
3925
3926 return ret;
3927}
3928
241994ed 3929static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3930 {
0eea1030 3931 .name = "usage_in_bytes",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3934 },
c84872e1
PE
3935 {
3936 .name = "max_usage_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3938 .write = mem_cgroup_reset,
791badbd 3939 .read_u64 = mem_cgroup_read_u64,
c84872e1 3940 },
8cdea7c0 3941 {
0eea1030 3942 .name = "limit_in_bytes",
8c7c6e34 3943 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3944 .write = mem_cgroup_write,
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3946 },
296c81d8
BS
3947 {
3948 .name = "soft_limit_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3950 .write = mem_cgroup_write,
791badbd 3951 .read_u64 = mem_cgroup_read_u64,
296c81d8 3952 },
8cdea7c0
BS
3953 {
3954 .name = "failcnt",
8c7c6e34 3955 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3956 .write = mem_cgroup_reset,
791badbd 3957 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3958 },
d2ceb9b7
KH
3959 {
3960 .name = "stat",
2da8ca82 3961 .seq_show = memcg_stat_show,
d2ceb9b7 3962 },
c1e862c1
KH
3963 {
3964 .name = "force_empty",
6770c64e 3965 .write = mem_cgroup_force_empty_write,
c1e862c1 3966 },
18f59ea7
BS
3967 {
3968 .name = "use_hierarchy",
3969 .write_u64 = mem_cgroup_hierarchy_write,
3970 .read_u64 = mem_cgroup_hierarchy_read,
3971 },
79bd9814 3972 {
3bc942f3 3973 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3974 .write = memcg_write_event_control,
7dbdb199 3975 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3976 },
a7885eb8
KM
3977 {
3978 .name = "swappiness",
3979 .read_u64 = mem_cgroup_swappiness_read,
3980 .write_u64 = mem_cgroup_swappiness_write,
3981 },
7dc74be0
DN
3982 {
3983 .name = "move_charge_at_immigrate",
3984 .read_u64 = mem_cgroup_move_charge_read,
3985 .write_u64 = mem_cgroup_move_charge_write,
3986 },
9490ff27
KH
3987 {
3988 .name = "oom_control",
2da8ca82 3989 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3990 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3991 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3992 },
70ddf637
AV
3993 {
3994 .name = "pressure_level",
70ddf637 3995 },
406eb0c9
YH
3996#ifdef CONFIG_NUMA
3997 {
3998 .name = "numa_stat",
2da8ca82 3999 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4000 },
4001#endif
510fc4e1
GC
4002 {
4003 .name = "kmem.limit_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4005 .write = mem_cgroup_write,
791badbd 4006 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4007 },
4008 {
4009 .name = "kmem.usage_in_bytes",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.failcnt",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4016 .write = mem_cgroup_reset,
791badbd 4017 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4018 },
4019 {
4020 .name = "kmem.max_usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4022 .write = mem_cgroup_reset,
791badbd 4023 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4024 },
749c5415
GC
4025#ifdef CONFIG_SLABINFO
4026 {
4027 .name = "kmem.slabinfo",
bc2791f8
TH
4028 .seq_start = memcg_slab_start,
4029 .seq_next = memcg_slab_next,
4030 .seq_stop = memcg_slab_stop,
b047501c 4031 .seq_show = memcg_slab_show,
749c5415
GC
4032 },
4033#endif
d55f90bf
VD
4034 {
4035 .name = "kmem.tcp.limit_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4037 .write = mem_cgroup_write,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "kmem.tcp.usage_in_bytes",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.failcnt",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
4051 {
4052 .name = "kmem.tcp.max_usage_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4054 .write = mem_cgroup_reset,
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
6bc10349 4057 { }, /* terminate */
af36f906 4058};
8c7c6e34 4059
73f576c0
JW
4060/*
4061 * Private memory cgroup IDR
4062 *
4063 * Swap-out records and page cache shadow entries need to store memcg
4064 * references in constrained space, so we maintain an ID space that is
4065 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4066 * memory-controlled cgroups to 64k.
4067 *
4068 * However, there usually are many references to the oflline CSS after
4069 * the cgroup has been destroyed, such as page cache or reclaimable
4070 * slab objects, that don't need to hang on to the ID. We want to keep
4071 * those dead CSS from occupying IDs, or we might quickly exhaust the
4072 * relatively small ID space and prevent the creation of new cgroups
4073 * even when there are much fewer than 64k cgroups - possibly none.
4074 *
4075 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4076 * be freed and recycled when it's no longer needed, which is usually
4077 * when the CSS is offlined.
4078 *
4079 * The only exception to that are records of swapped out tmpfs/shmem
4080 * pages that need to be attributed to live ancestors on swapin. But
4081 * those references are manageable from userspace.
4082 */
4083
4084static DEFINE_IDR(mem_cgroup_idr);
4085
615d66c3 4086static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4087{
58fa2a55 4088 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4089 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4090}
4091
615d66c3 4092static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4093{
58fa2a55 4094 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4095 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4096 idr_remove(&mem_cgroup_idr, memcg->id.id);
4097 memcg->id.id = 0;
4098
4099 /* Memcg ID pins CSS */
4100 css_put(&memcg->css);
4101 }
4102}
4103
615d66c3
VD
4104static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4105{
4106 mem_cgroup_id_get_many(memcg, 1);
4107}
4108
4109static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4110{
4111 mem_cgroup_id_put_many(memcg, 1);
4112}
4113
73f576c0
JW
4114/**
4115 * mem_cgroup_from_id - look up a memcg from a memcg id
4116 * @id: the memcg id to look up
4117 *
4118 * Caller must hold rcu_read_lock().
4119 */
4120struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4121{
4122 WARN_ON_ONCE(!rcu_read_lock_held());
4123 return idr_find(&mem_cgroup_idr, id);
4124}
4125
ef8f2327 4126static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4127{
4128 struct mem_cgroup_per_node *pn;
ef8f2327 4129 int tmp = node;
1ecaab2b
KH
4130 /*
4131 * This routine is called against possible nodes.
4132 * But it's BUG to call kmalloc() against offline node.
4133 *
4134 * TODO: this routine can waste much memory for nodes which will
4135 * never be onlined. It's better to use memory hotplug callback
4136 * function.
4137 */
41e3355d
KH
4138 if (!node_state(node, N_NORMAL_MEMORY))
4139 tmp = -1;
17295c88 4140 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4141 if (!pn)
4142 return 1;
1ecaab2b 4143
00f3ca2c
JW
4144 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4145 if (!pn->lruvec_stat) {
4146 kfree(pn);
4147 return 1;
4148 }
4149
ef8f2327
MG
4150 lruvec_init(&pn->lruvec);
4151 pn->usage_in_excess = 0;
4152 pn->on_tree = false;
4153 pn->memcg = memcg;
4154
54f72fe0 4155 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4156 return 0;
4157}
4158
ef8f2327 4159static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4160{
00f3ca2c
JW
4161 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4162
4163 free_percpu(pn->lruvec_stat);
4164 kfree(pn);
1ecaab2b
KH
4165}
4166
40e952f9 4167static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4168{
c8b2a36f 4169 int node;
59927fb9 4170
c8b2a36f 4171 for_each_node(node)
ef8f2327 4172 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4173 free_percpu(memcg->stat);
8ff69e2c 4174 kfree(memcg);
59927fb9 4175}
3afe36b1 4176
40e952f9
TE
4177static void mem_cgroup_free(struct mem_cgroup *memcg)
4178{
4179 memcg_wb_domain_exit(memcg);
4180 __mem_cgroup_free(memcg);
4181}
4182
0b8f73e1 4183static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4184{
d142e3e6 4185 struct mem_cgroup *memcg;
0b8f73e1 4186 size_t size;
6d12e2d8 4187 int node;
8cdea7c0 4188
0b8f73e1
JW
4189 size = sizeof(struct mem_cgroup);
4190 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4191
4192 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4193 if (!memcg)
0b8f73e1
JW
4194 return NULL;
4195
73f576c0
JW
4196 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4197 1, MEM_CGROUP_ID_MAX,
4198 GFP_KERNEL);
4199 if (memcg->id.id < 0)
4200 goto fail;
4201
0b8f73e1
JW
4202 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4203 if (!memcg->stat)
4204 goto fail;
78fb7466 4205
3ed28fa1 4206 for_each_node(node)
ef8f2327 4207 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4208 goto fail;
f64c3f54 4209
0b8f73e1
JW
4210 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4211 goto fail;
28dbc4b6 4212
f7e1cb6e 4213 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4214 memcg->last_scanned_node = MAX_NUMNODES;
4215 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4216 mutex_init(&memcg->thresholds_lock);
4217 spin_lock_init(&memcg->move_lock);
70ddf637 4218 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4219 INIT_LIST_HEAD(&memcg->event_list);
4220 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4221 memcg->socket_pressure = jiffies;
127424c8 4222#ifndef CONFIG_SLOB
900a38f0 4223 memcg->kmemcg_id = -1;
900a38f0 4224#endif
52ebea74
TH
4225#ifdef CONFIG_CGROUP_WRITEBACK
4226 INIT_LIST_HEAD(&memcg->cgwb_list);
4227#endif
73f576c0 4228 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4229 return memcg;
4230fail:
73f576c0
JW
4231 if (memcg->id.id > 0)
4232 idr_remove(&mem_cgroup_idr, memcg->id.id);
40e952f9 4233 __mem_cgroup_free(memcg);
0b8f73e1 4234 return NULL;
d142e3e6
GC
4235}
4236
0b8f73e1
JW
4237static struct cgroup_subsys_state * __ref
4238mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4239{
0b8f73e1
JW
4240 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4241 struct mem_cgroup *memcg;
4242 long error = -ENOMEM;
d142e3e6 4243
0b8f73e1
JW
4244 memcg = mem_cgroup_alloc();
4245 if (!memcg)
4246 return ERR_PTR(error);
d142e3e6 4247
0b8f73e1
JW
4248 memcg->high = PAGE_COUNTER_MAX;
4249 memcg->soft_limit = PAGE_COUNTER_MAX;
4250 if (parent) {
4251 memcg->swappiness = mem_cgroup_swappiness(parent);
4252 memcg->oom_kill_disable = parent->oom_kill_disable;
4253 }
4254 if (parent && parent->use_hierarchy) {
4255 memcg->use_hierarchy = true;
3e32cb2e 4256 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4257 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4258 page_counter_init(&memcg->memsw, &parent->memsw);
4259 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4260 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4261 } else {
3e32cb2e 4262 page_counter_init(&memcg->memory, NULL);
37e84351 4263 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4264 page_counter_init(&memcg->memsw, NULL);
4265 page_counter_init(&memcg->kmem, NULL);
0db15298 4266 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4267 /*
4268 * Deeper hierachy with use_hierarchy == false doesn't make
4269 * much sense so let cgroup subsystem know about this
4270 * unfortunate state in our controller.
4271 */
d142e3e6 4272 if (parent != root_mem_cgroup)
073219e9 4273 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4274 }
d6441637 4275
0b8f73e1
JW
4276 /* The following stuff does not apply to the root */
4277 if (!parent) {
4278 root_mem_cgroup = memcg;
4279 return &memcg->css;
4280 }
4281
b313aeee 4282 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4283 if (error)
4284 goto fail;
127424c8 4285
f7e1cb6e 4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4287 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4288
0b8f73e1
JW
4289 return &memcg->css;
4290fail:
4291 mem_cgroup_free(memcg);
ea3a9645 4292 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4293}
4294
73f576c0 4295static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4296{
58fa2a55
VD
4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298
73f576c0 4299 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4300 atomic_set(&memcg->id.ref, 1);
73f576c0 4301 css_get(css);
2f7dd7a4 4302 return 0;
8cdea7c0
BS
4303}
4304
eb95419b 4305static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4306{
eb95419b 4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4308 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4309
4310 /*
4311 * Unregister events and notify userspace.
4312 * Notify userspace about cgroup removing only after rmdir of cgroup
4313 * directory to avoid race between userspace and kernelspace.
4314 */
fba94807
TH
4315 spin_lock(&memcg->event_list_lock);
4316 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4317 list_del_init(&event->list);
4318 schedule_work(&event->remove);
4319 }
fba94807 4320 spin_unlock(&memcg->event_list_lock);
ec64f515 4321
567e9ab2 4322 memcg_offline_kmem(memcg);
52ebea74 4323 wb_memcg_offline(memcg);
73f576c0
JW
4324
4325 mem_cgroup_id_put(memcg);
df878fb0
KH
4326}
4327
6df38689
VD
4328static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4329{
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331
4332 invalidate_reclaim_iterators(memcg);
4333}
4334
eb95419b 4335static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4336{
eb95419b 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4338
f7e1cb6e 4339 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4340 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4341
0db15298 4342 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4343 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4344
0b8f73e1
JW
4345 vmpressure_cleanup(&memcg->vmpressure);
4346 cancel_work_sync(&memcg->high_work);
4347 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4348 memcg_free_kmem(memcg);
0b8f73e1 4349 mem_cgroup_free(memcg);
8cdea7c0
BS
4350}
4351
1ced953b
TH
4352/**
4353 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4354 * @css: the target css
4355 *
4356 * Reset the states of the mem_cgroup associated with @css. This is
4357 * invoked when the userland requests disabling on the default hierarchy
4358 * but the memcg is pinned through dependency. The memcg should stop
4359 * applying policies and should revert to the vanilla state as it may be
4360 * made visible again.
4361 *
4362 * The current implementation only resets the essential configurations.
4363 * This needs to be expanded to cover all the visible parts.
4364 */
4365static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4366{
4367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368
d334c9bc
VD
4369 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4370 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4371 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4372 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4373 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4374 memcg->low = 0;
4375 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4376 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4377 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4378}
4379
02491447 4380#ifdef CONFIG_MMU
7dc74be0 4381/* Handlers for move charge at task migration. */
854ffa8d 4382static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4383{
05b84301 4384 int ret;
9476db97 4385
d0164adc
MG
4386 /* Try a single bulk charge without reclaim first, kswapd may wake */
4387 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4388 if (!ret) {
854ffa8d 4389 mc.precharge += count;
854ffa8d
DN
4390 return ret;
4391 }
9476db97 4392
3674534b 4393 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4394 while (count--) {
3674534b 4395 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4396 if (ret)
38c5d72f 4397 return ret;
854ffa8d 4398 mc.precharge++;
9476db97 4399 cond_resched();
854ffa8d 4400 }
9476db97 4401 return 0;
4ffef5fe
DN
4402}
4403
4ffef5fe
DN
4404union mc_target {
4405 struct page *page;
02491447 4406 swp_entry_t ent;
4ffef5fe
DN
4407};
4408
4ffef5fe 4409enum mc_target_type {
8d32ff84 4410 MC_TARGET_NONE = 0,
4ffef5fe 4411 MC_TARGET_PAGE,
02491447 4412 MC_TARGET_SWAP,
4ffef5fe
DN
4413};
4414
90254a65
DN
4415static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4416 unsigned long addr, pte_t ptent)
4ffef5fe 4417{
90254a65 4418 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4419
90254a65
DN
4420 if (!page || !page_mapped(page))
4421 return NULL;
4422 if (PageAnon(page)) {
1dfab5ab 4423 if (!(mc.flags & MOVE_ANON))
90254a65 4424 return NULL;
1dfab5ab
JW
4425 } else {
4426 if (!(mc.flags & MOVE_FILE))
4427 return NULL;
4428 }
90254a65
DN
4429 if (!get_page_unless_zero(page))
4430 return NULL;
4431
4432 return page;
4433}
4434
4b91355e 4435#ifdef CONFIG_SWAP
90254a65 4436static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4437 pte_t ptent, swp_entry_t *entry)
90254a65 4438{
90254a65
DN
4439 struct page *page = NULL;
4440 swp_entry_t ent = pte_to_swp_entry(ptent);
4441
1dfab5ab 4442 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4443 return NULL;
4b91355e
KH
4444 /*
4445 * Because lookup_swap_cache() updates some statistics counter,
4446 * we call find_get_page() with swapper_space directly.
4447 */
f6ab1f7f 4448 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4449 if (do_memsw_account())
90254a65
DN
4450 entry->val = ent.val;
4451
4452 return page;
4453}
4b91355e
KH
4454#else
4455static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4456 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4457{
4458 return NULL;
4459}
4460#endif
90254a65 4461
87946a72
DN
4462static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4464{
4465 struct page *page = NULL;
87946a72
DN
4466 struct address_space *mapping;
4467 pgoff_t pgoff;
4468
4469 if (!vma->vm_file) /* anonymous vma */
4470 return NULL;
1dfab5ab 4471 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4472 return NULL;
4473
87946a72 4474 mapping = vma->vm_file->f_mapping;
0661a336 4475 pgoff = linear_page_index(vma, addr);
87946a72
DN
4476
4477 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4478#ifdef CONFIG_SWAP
4479 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4480 if (shmem_mapping(mapping)) {
4481 page = find_get_entry(mapping, pgoff);
4482 if (radix_tree_exceptional_entry(page)) {
4483 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4484 if (do_memsw_account())
139b6a6f 4485 *entry = swp;
f6ab1f7f
HY
4486 page = find_get_page(swap_address_space(swp),
4487 swp_offset(swp));
139b6a6f
JW
4488 }
4489 } else
4490 page = find_get_page(mapping, pgoff);
4491#else
4492 page = find_get_page(mapping, pgoff);
aa3b1895 4493#endif
87946a72
DN
4494 return page;
4495}
4496
b1b0deab
CG
4497/**
4498 * mem_cgroup_move_account - move account of the page
4499 * @page: the page
25843c2b 4500 * @compound: charge the page as compound or small page
b1b0deab
CG
4501 * @from: mem_cgroup which the page is moved from.
4502 * @to: mem_cgroup which the page is moved to. @from != @to.
4503 *
3ac808fd 4504 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4505 *
4506 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4507 * from old cgroup.
4508 */
4509static int mem_cgroup_move_account(struct page *page,
f627c2f5 4510 bool compound,
b1b0deab
CG
4511 struct mem_cgroup *from,
4512 struct mem_cgroup *to)
4513{
4514 unsigned long flags;
f627c2f5 4515 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4516 int ret;
c4843a75 4517 bool anon;
b1b0deab
CG
4518
4519 VM_BUG_ON(from == to);
4520 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4521 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4522
4523 /*
6a93ca8f 4524 * Prevent mem_cgroup_migrate() from looking at
45637bab 4525 * page->mem_cgroup of its source page while we change it.
b1b0deab 4526 */
f627c2f5 4527 ret = -EBUSY;
b1b0deab
CG
4528 if (!trylock_page(page))
4529 goto out;
4530
4531 ret = -EINVAL;
4532 if (page->mem_cgroup != from)
4533 goto out_unlock;
4534
c4843a75
GT
4535 anon = PageAnon(page);
4536
b1b0deab
CG
4537 spin_lock_irqsave(&from->move_lock, flags);
4538
c4843a75 4539 if (!anon && page_mapped(page)) {
71cd3113
JW
4540 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4541 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
b1b0deab
CG
4542 }
4543
c4843a75
GT
4544 /*
4545 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4546 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4547 * So mapping should be stable for dirty pages.
4548 */
4549 if (!anon && PageDirty(page)) {
4550 struct address_space *mapping = page_mapping(page);
4551
4552 if (mapping_cap_account_dirty(mapping)) {
71cd3113 4553 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
c4843a75 4554 nr_pages);
71cd3113 4555 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
c4843a75
GT
4556 nr_pages);
4557 }
4558 }
4559
b1b0deab 4560 if (PageWriteback(page)) {
71cd3113
JW
4561 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4562 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
b1b0deab
CG
4563 }
4564
4565 /*
4566 * It is safe to change page->mem_cgroup here because the page
4567 * is referenced, charged, and isolated - we can't race with
4568 * uncharging, charging, migration, or LRU putback.
4569 */
4570
4571 /* caller should have done css_get */
4572 page->mem_cgroup = to;
4573 spin_unlock_irqrestore(&from->move_lock, flags);
4574
4575 ret = 0;
4576
4577 local_irq_disable();
f627c2f5 4578 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4579 memcg_check_events(to, page);
f627c2f5 4580 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4581 memcg_check_events(from, page);
4582 local_irq_enable();
4583out_unlock:
4584 unlock_page(page);
4585out:
4586 return ret;
4587}
4588
7cf7806c
LR
4589/**
4590 * get_mctgt_type - get target type of moving charge
4591 * @vma: the vma the pte to be checked belongs
4592 * @addr: the address corresponding to the pte to be checked
4593 * @ptent: the pte to be checked
4594 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4595 *
4596 * Returns
4597 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4598 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4599 * move charge. if @target is not NULL, the page is stored in target->page
4600 * with extra refcnt got(Callers should handle it).
4601 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4602 * target for charge migration. if @target is not NULL, the entry is stored
4603 * in target->ent.
4604 *
4605 * Called with pte lock held.
4606 */
4607
8d32ff84 4608static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4609 unsigned long addr, pte_t ptent, union mc_target *target)
4610{
4611 struct page *page = NULL;
8d32ff84 4612 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4613 swp_entry_t ent = { .val = 0 };
4614
4615 if (pte_present(ptent))
4616 page = mc_handle_present_pte(vma, addr, ptent);
4617 else if (is_swap_pte(ptent))
48406ef8 4618 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4619 else if (pte_none(ptent))
87946a72 4620 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4621
4622 if (!page && !ent.val)
8d32ff84 4623 return ret;
02491447 4624 if (page) {
02491447 4625 /*
0a31bc97 4626 * Do only loose check w/o serialization.
1306a85a 4627 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4628 * not under LRU exclusion.
02491447 4629 */
1306a85a 4630 if (page->mem_cgroup == mc.from) {
02491447
DN
4631 ret = MC_TARGET_PAGE;
4632 if (target)
4633 target->page = page;
4634 }
4635 if (!ret || !target)
4636 put_page(page);
4637 }
90254a65
DN
4638 /* There is a swap entry and a page doesn't exist or isn't charged */
4639 if (ent.val && !ret &&
34c00c31 4640 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4641 ret = MC_TARGET_SWAP;
4642 if (target)
4643 target->ent = ent;
4ffef5fe 4644 }
4ffef5fe
DN
4645 return ret;
4646}
4647
12724850
NH
4648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4649/*
4650 * We don't consider swapping or file mapped pages because THP does not
4651 * support them for now.
4652 * Caller should make sure that pmd_trans_huge(pmd) is true.
4653 */
4654static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4655 unsigned long addr, pmd_t pmd, union mc_target *target)
4656{
4657 struct page *page = NULL;
12724850
NH
4658 enum mc_target_type ret = MC_TARGET_NONE;
4659
4660 page = pmd_page(pmd);
309381fe 4661 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4662 if (!(mc.flags & MOVE_ANON))
12724850 4663 return ret;
1306a85a 4664 if (page->mem_cgroup == mc.from) {
12724850
NH
4665 ret = MC_TARGET_PAGE;
4666 if (target) {
4667 get_page(page);
4668 target->page = page;
4669 }
4670 }
4671 return ret;
4672}
4673#else
4674static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4675 unsigned long addr, pmd_t pmd, union mc_target *target)
4676{
4677 return MC_TARGET_NONE;
4678}
4679#endif
4680
4ffef5fe
DN
4681static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4682 unsigned long addr, unsigned long end,
4683 struct mm_walk *walk)
4684{
26bcd64a 4685 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4686 pte_t *pte;
4687 spinlock_t *ptl;
4688
b6ec57f4
KS
4689 ptl = pmd_trans_huge_lock(pmd, vma);
4690 if (ptl) {
12724850
NH
4691 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4692 mc.precharge += HPAGE_PMD_NR;
bf929152 4693 spin_unlock(ptl);
1a5a9906 4694 return 0;
12724850 4695 }
03319327 4696
45f83cef
AA
4697 if (pmd_trans_unstable(pmd))
4698 return 0;
4ffef5fe
DN
4699 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4700 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4701 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4702 mc.precharge++; /* increment precharge temporarily */
4703 pte_unmap_unlock(pte - 1, ptl);
4704 cond_resched();
4705
7dc74be0
DN
4706 return 0;
4707}
4708
4ffef5fe
DN
4709static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4710{
4711 unsigned long precharge;
4ffef5fe 4712
26bcd64a
NH
4713 struct mm_walk mem_cgroup_count_precharge_walk = {
4714 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4715 .mm = mm,
4716 };
dfe076b0 4717 down_read(&mm->mmap_sem);
0247f3f4
JM
4718 walk_page_range(0, mm->highest_vm_end,
4719 &mem_cgroup_count_precharge_walk);
dfe076b0 4720 up_read(&mm->mmap_sem);
4ffef5fe
DN
4721
4722 precharge = mc.precharge;
4723 mc.precharge = 0;
4724
4725 return precharge;
4726}
4727
4ffef5fe
DN
4728static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4729{
dfe076b0
DN
4730 unsigned long precharge = mem_cgroup_count_precharge(mm);
4731
4732 VM_BUG_ON(mc.moving_task);
4733 mc.moving_task = current;
4734 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4735}
4736
dfe076b0
DN
4737/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4738static void __mem_cgroup_clear_mc(void)
4ffef5fe 4739{
2bd9bb20
KH
4740 struct mem_cgroup *from = mc.from;
4741 struct mem_cgroup *to = mc.to;
4742
4ffef5fe 4743 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4744 if (mc.precharge) {
00501b53 4745 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4746 mc.precharge = 0;
4747 }
4748 /*
4749 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4750 * we must uncharge here.
4751 */
4752 if (mc.moved_charge) {
00501b53 4753 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4754 mc.moved_charge = 0;
4ffef5fe 4755 }
483c30b5
DN
4756 /* we must fixup refcnts and charges */
4757 if (mc.moved_swap) {
483c30b5 4758 /* uncharge swap account from the old cgroup */
ce00a967 4759 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4760 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4761
615d66c3
VD
4762 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4763
05b84301 4764 /*
3e32cb2e
JW
4765 * we charged both to->memory and to->memsw, so we
4766 * should uncharge to->memory.
05b84301 4767 */
ce00a967 4768 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4769 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4770
615d66c3
VD
4771 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4772 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4773
483c30b5
DN
4774 mc.moved_swap = 0;
4775 }
dfe076b0
DN
4776 memcg_oom_recover(from);
4777 memcg_oom_recover(to);
4778 wake_up_all(&mc.waitq);
4779}
4780
4781static void mem_cgroup_clear_mc(void)
4782{
264a0ae1
TH
4783 struct mm_struct *mm = mc.mm;
4784
dfe076b0
DN
4785 /*
4786 * we must clear moving_task before waking up waiters at the end of
4787 * task migration.
4788 */
4789 mc.moving_task = NULL;
4790 __mem_cgroup_clear_mc();
2bd9bb20 4791 spin_lock(&mc.lock);
4ffef5fe
DN
4792 mc.from = NULL;
4793 mc.to = NULL;
264a0ae1 4794 mc.mm = NULL;
2bd9bb20 4795 spin_unlock(&mc.lock);
264a0ae1
TH
4796
4797 mmput(mm);
4ffef5fe
DN
4798}
4799
1f7dd3e5 4800static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4801{
1f7dd3e5 4802 struct cgroup_subsys_state *css;
eed67d75 4803 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4804 struct mem_cgroup *from;
4530eddb 4805 struct task_struct *leader, *p;
9f2115f9 4806 struct mm_struct *mm;
1dfab5ab 4807 unsigned long move_flags;
9f2115f9 4808 int ret = 0;
7dc74be0 4809
1f7dd3e5
TH
4810 /* charge immigration isn't supported on the default hierarchy */
4811 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4812 return 0;
4813
4530eddb
TH
4814 /*
4815 * Multi-process migrations only happen on the default hierarchy
4816 * where charge immigration is not used. Perform charge
4817 * immigration if @tset contains a leader and whine if there are
4818 * multiple.
4819 */
4820 p = NULL;
1f7dd3e5 4821 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4822 WARN_ON_ONCE(p);
4823 p = leader;
1f7dd3e5 4824 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4825 }
4826 if (!p)
4827 return 0;
4828
1f7dd3e5
TH
4829 /*
4830 * We are now commited to this value whatever it is. Changes in this
4831 * tunable will only affect upcoming migrations, not the current one.
4832 * So we need to save it, and keep it going.
4833 */
4834 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4835 if (!move_flags)
4836 return 0;
4837
9f2115f9
TH
4838 from = mem_cgroup_from_task(p);
4839
4840 VM_BUG_ON(from == memcg);
4841
4842 mm = get_task_mm(p);
4843 if (!mm)
4844 return 0;
4845 /* We move charges only when we move a owner of the mm */
4846 if (mm->owner == p) {
4847 VM_BUG_ON(mc.from);
4848 VM_BUG_ON(mc.to);
4849 VM_BUG_ON(mc.precharge);
4850 VM_BUG_ON(mc.moved_charge);
4851 VM_BUG_ON(mc.moved_swap);
4852
4853 spin_lock(&mc.lock);
264a0ae1 4854 mc.mm = mm;
9f2115f9
TH
4855 mc.from = from;
4856 mc.to = memcg;
4857 mc.flags = move_flags;
4858 spin_unlock(&mc.lock);
4859 /* We set mc.moving_task later */
4860
4861 ret = mem_cgroup_precharge_mc(mm);
4862 if (ret)
4863 mem_cgroup_clear_mc();
264a0ae1
TH
4864 } else {
4865 mmput(mm);
7dc74be0
DN
4866 }
4867 return ret;
4868}
4869
1f7dd3e5 4870static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4871{
4e2f245d
JW
4872 if (mc.to)
4873 mem_cgroup_clear_mc();
7dc74be0
DN
4874}
4875
4ffef5fe
DN
4876static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4877 unsigned long addr, unsigned long end,
4878 struct mm_walk *walk)
7dc74be0 4879{
4ffef5fe 4880 int ret = 0;
26bcd64a 4881 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4882 pte_t *pte;
4883 spinlock_t *ptl;
12724850
NH
4884 enum mc_target_type target_type;
4885 union mc_target target;
4886 struct page *page;
4ffef5fe 4887
b6ec57f4
KS
4888 ptl = pmd_trans_huge_lock(pmd, vma);
4889 if (ptl) {
62ade86a 4890 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4891 spin_unlock(ptl);
12724850
NH
4892 return 0;
4893 }
4894 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4895 if (target_type == MC_TARGET_PAGE) {
4896 page = target.page;
4897 if (!isolate_lru_page(page)) {
f627c2f5 4898 if (!mem_cgroup_move_account(page, true,
1306a85a 4899 mc.from, mc.to)) {
12724850
NH
4900 mc.precharge -= HPAGE_PMD_NR;
4901 mc.moved_charge += HPAGE_PMD_NR;
4902 }
4903 putback_lru_page(page);
4904 }
4905 put_page(page);
4906 }
bf929152 4907 spin_unlock(ptl);
1a5a9906 4908 return 0;
12724850
NH
4909 }
4910
45f83cef
AA
4911 if (pmd_trans_unstable(pmd))
4912 return 0;
4ffef5fe
DN
4913retry:
4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4915 for (; addr != end; addr += PAGE_SIZE) {
4916 pte_t ptent = *(pte++);
02491447 4917 swp_entry_t ent;
4ffef5fe
DN
4918
4919 if (!mc.precharge)
4920 break;
4921
8d32ff84 4922 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4923 case MC_TARGET_PAGE:
4924 page = target.page;
53f9263b
KS
4925 /*
4926 * We can have a part of the split pmd here. Moving it
4927 * can be done but it would be too convoluted so simply
4928 * ignore such a partial THP and keep it in original
4929 * memcg. There should be somebody mapping the head.
4930 */
4931 if (PageTransCompound(page))
4932 goto put;
4ffef5fe
DN
4933 if (isolate_lru_page(page))
4934 goto put;
f627c2f5
KS
4935 if (!mem_cgroup_move_account(page, false,
4936 mc.from, mc.to)) {
4ffef5fe 4937 mc.precharge--;
854ffa8d
DN
4938 /* we uncharge from mc.from later. */
4939 mc.moved_charge++;
4ffef5fe
DN
4940 }
4941 putback_lru_page(page);
8d32ff84 4942put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4943 put_page(page);
4944 break;
02491447
DN
4945 case MC_TARGET_SWAP:
4946 ent = target.ent;
e91cbb42 4947 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4948 mc.precharge--;
483c30b5
DN
4949 /* we fixup refcnts and charges later. */
4950 mc.moved_swap++;
4951 }
02491447 4952 break;
4ffef5fe
DN
4953 default:
4954 break;
4955 }
4956 }
4957 pte_unmap_unlock(pte - 1, ptl);
4958 cond_resched();
4959
4960 if (addr != end) {
4961 /*
4962 * We have consumed all precharges we got in can_attach().
4963 * We try charge one by one, but don't do any additional
4964 * charges to mc.to if we have failed in charge once in attach()
4965 * phase.
4966 */
854ffa8d 4967 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4968 if (!ret)
4969 goto retry;
4970 }
4971
4972 return ret;
4973}
4974
264a0ae1 4975static void mem_cgroup_move_charge(void)
4ffef5fe 4976{
26bcd64a
NH
4977 struct mm_walk mem_cgroup_move_charge_walk = {
4978 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4979 .mm = mc.mm,
26bcd64a 4980 };
4ffef5fe
DN
4981
4982 lru_add_drain_all();
312722cb 4983 /*
81f8c3a4
JW
4984 * Signal lock_page_memcg() to take the memcg's move_lock
4985 * while we're moving its pages to another memcg. Then wait
4986 * for already started RCU-only updates to finish.
312722cb
JW
4987 */
4988 atomic_inc(&mc.from->moving_account);
4989 synchronize_rcu();
dfe076b0 4990retry:
264a0ae1 4991 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4992 /*
4993 * Someone who are holding the mmap_sem might be waiting in
4994 * waitq. So we cancel all extra charges, wake up all waiters,
4995 * and retry. Because we cancel precharges, we might not be able
4996 * to move enough charges, but moving charge is a best-effort
4997 * feature anyway, so it wouldn't be a big problem.
4998 */
4999 __mem_cgroup_clear_mc();
5000 cond_resched();
5001 goto retry;
5002 }
26bcd64a
NH
5003 /*
5004 * When we have consumed all precharges and failed in doing
5005 * additional charge, the page walk just aborts.
5006 */
0247f3f4
JM
5007 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5008
264a0ae1 5009 up_read(&mc.mm->mmap_sem);
312722cb 5010 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5011}
5012
264a0ae1 5013static void mem_cgroup_move_task(void)
67e465a7 5014{
264a0ae1
TH
5015 if (mc.to) {
5016 mem_cgroup_move_charge();
a433658c 5017 mem_cgroup_clear_mc();
264a0ae1 5018 }
67e465a7 5019}
5cfb80a7 5020#else /* !CONFIG_MMU */
1f7dd3e5 5021static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5022{
5023 return 0;
5024}
1f7dd3e5 5025static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5026{
5027}
264a0ae1 5028static void mem_cgroup_move_task(void)
5cfb80a7
DN
5029{
5030}
5031#endif
67e465a7 5032
f00baae7
TH
5033/*
5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5035 * to verify whether we're attached to the default hierarchy on each mount
5036 * attempt.
f00baae7 5037 */
eb95419b 5038static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5039{
5040 /*
aa6ec29b 5041 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5042 * guarantees that @root doesn't have any children, so turning it
5043 * on for the root memcg is enough.
5044 */
9e10a130 5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5046 root_mem_cgroup->use_hierarchy = true;
5047 else
5048 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5049}
5050
241994ed
JW
5051static u64 memory_current_read(struct cgroup_subsys_state *css,
5052 struct cftype *cft)
5053{
f5fc3c5d
JW
5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5055
5056 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5057}
5058
5059static int memory_low_show(struct seq_file *m, void *v)
5060{
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5062 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5063
5064 if (low == PAGE_COUNTER_MAX)
d2973697 5065 seq_puts(m, "max\n");
241994ed
JW
5066 else
5067 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5068
5069 return 0;
5070}
5071
5072static ssize_t memory_low_write(struct kernfs_open_file *of,
5073 char *buf, size_t nbytes, loff_t off)
5074{
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 unsigned long low;
5077 int err;
5078
5079 buf = strstrip(buf);
d2973697 5080 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5081 if (err)
5082 return err;
5083
5084 memcg->low = low;
5085
5086 return nbytes;
5087}
5088
5089static int memory_high_show(struct seq_file *m, void *v)
5090{
5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5092 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5093
5094 if (high == PAGE_COUNTER_MAX)
d2973697 5095 seq_puts(m, "max\n");
241994ed
JW
5096 else
5097 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5098
5099 return 0;
5100}
5101
5102static ssize_t memory_high_write(struct kernfs_open_file *of,
5103 char *buf, size_t nbytes, loff_t off)
5104{
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5106 unsigned long nr_pages;
241994ed
JW
5107 unsigned long high;
5108 int err;
5109
5110 buf = strstrip(buf);
d2973697 5111 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5112 if (err)
5113 return err;
5114
5115 memcg->high = high;
5116
588083bb
JW
5117 nr_pages = page_counter_read(&memcg->memory);
5118 if (nr_pages > high)
5119 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5120 GFP_KERNEL, true);
5121
2529bb3a 5122 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5123 return nbytes;
5124}
5125
5126static int memory_max_show(struct seq_file *m, void *v)
5127{
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5129 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5130
5131 if (max == PAGE_COUNTER_MAX)
d2973697 5132 seq_puts(m, "max\n");
241994ed
JW
5133 else
5134 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5135
5136 return 0;
5137}
5138
5139static ssize_t memory_max_write(struct kernfs_open_file *of,
5140 char *buf, size_t nbytes, loff_t off)
5141{
5142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5143 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5144 bool drained = false;
241994ed
JW
5145 unsigned long max;
5146 int err;
5147
5148 buf = strstrip(buf);
d2973697 5149 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5150 if (err)
5151 return err;
5152
b6e6edcf
JW
5153 xchg(&memcg->memory.limit, max);
5154
5155 for (;;) {
5156 unsigned long nr_pages = page_counter_read(&memcg->memory);
5157
5158 if (nr_pages <= max)
5159 break;
5160
5161 if (signal_pending(current)) {
5162 err = -EINTR;
5163 break;
5164 }
5165
5166 if (!drained) {
5167 drain_all_stock(memcg);
5168 drained = true;
5169 continue;
5170 }
5171
5172 if (nr_reclaims) {
5173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5174 GFP_KERNEL, true))
5175 nr_reclaims--;
5176 continue;
5177 }
5178
31176c78 5179 mem_cgroup_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5181 break;
5182 }
241994ed 5183
2529bb3a 5184 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5185 return nbytes;
5186}
5187
5188static int memory_events_show(struct seq_file *m, void *v)
5189{
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191
ccda7f43
JW
5192 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5193 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5194 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5195 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
8e675f7a 5196 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5197
5198 return 0;
5199}
5200
587d9f72
JW
5201static int memory_stat_show(struct seq_file *m, void *v)
5202{
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5204 unsigned long stat[MEMCG_NR_STAT];
5205 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5206 int i;
5207
5208 /*
5209 * Provide statistics on the state of the memory subsystem as
5210 * well as cumulative event counters that show past behavior.
5211 *
5212 * This list is ordered following a combination of these gradients:
5213 * 1) generic big picture -> specifics and details
5214 * 2) reflecting userspace activity -> reflecting kernel heuristics
5215 *
5216 * Current memory state:
5217 */
5218
72b54e73
VD
5219 tree_stat(memcg, stat);
5220 tree_events(memcg, events);
5221
587d9f72 5222 seq_printf(m, "anon %llu\n",
71cd3113 5223 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5224 seq_printf(m, "file %llu\n",
71cd3113 5225 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5226 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5227 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5228 seq_printf(m, "slab %llu\n",
32049296
JW
5229 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5230 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5231 seq_printf(m, "sock %llu\n",
72b54e73 5232 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5233
9a4caf1e 5234 seq_printf(m, "shmem %llu\n",
71cd3113 5235 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5236 seq_printf(m, "file_mapped %llu\n",
71cd3113 5237 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5238 seq_printf(m, "file_dirty %llu\n",
71cd3113 5239 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5240 seq_printf(m, "file_writeback %llu\n",
71cd3113 5241 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5242
5243 for (i = 0; i < NR_LRU_LISTS; i++) {
5244 struct mem_cgroup *mi;
5245 unsigned long val = 0;
5246
5247 for_each_mem_cgroup_tree(mi, memcg)
5248 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5249 seq_printf(m, "%s %llu\n",
5250 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5251 }
5252
27ee57c9 5253 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5254 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5255 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5256 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5257
587d9f72
JW
5258 /* Accumulated memory events */
5259
df0e53d0
JW
5260 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5261 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5262
2262185c
RG
5263 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5264 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5265 events[PGSCAN_DIRECT]);
5266 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5267 events[PGSTEAL_DIRECT]);
5268 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5269 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5270 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5271 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5272
2a2e4885 5273 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5274 stat[WORKINGSET_REFAULT]);
2a2e4885 5275 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5276 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5277 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5278 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5279
587d9f72
JW
5280 return 0;
5281}
5282
241994ed
JW
5283static struct cftype memory_files[] = {
5284 {
5285 .name = "current",
f5fc3c5d 5286 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5287 .read_u64 = memory_current_read,
5288 },
5289 {
5290 .name = "low",
5291 .flags = CFTYPE_NOT_ON_ROOT,
5292 .seq_show = memory_low_show,
5293 .write = memory_low_write,
5294 },
5295 {
5296 .name = "high",
5297 .flags = CFTYPE_NOT_ON_ROOT,
5298 .seq_show = memory_high_show,
5299 .write = memory_high_write,
5300 },
5301 {
5302 .name = "max",
5303 .flags = CFTYPE_NOT_ON_ROOT,
5304 .seq_show = memory_max_show,
5305 .write = memory_max_write,
5306 },
5307 {
5308 .name = "events",
5309 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5310 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5311 .seq_show = memory_events_show,
5312 },
587d9f72
JW
5313 {
5314 .name = "stat",
5315 .flags = CFTYPE_NOT_ON_ROOT,
5316 .seq_show = memory_stat_show,
5317 },
241994ed
JW
5318 { } /* terminate */
5319};
5320
073219e9 5321struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5322 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5323 .css_online = mem_cgroup_css_online,
92fb9748 5324 .css_offline = mem_cgroup_css_offline,
6df38689 5325 .css_released = mem_cgroup_css_released,
92fb9748 5326 .css_free = mem_cgroup_css_free,
1ced953b 5327 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5328 .can_attach = mem_cgroup_can_attach,
5329 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5330 .post_attach = mem_cgroup_move_task,
f00baae7 5331 .bind = mem_cgroup_bind,
241994ed
JW
5332 .dfl_cftypes = memory_files,
5333 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5334 .early_init = 0,
8cdea7c0 5335};
c077719b 5336
241994ed
JW
5337/**
5338 * mem_cgroup_low - check if memory consumption is below the normal range
34c81057 5339 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5340 * @memcg: the memory cgroup to check
5341 *
5342 * Returns %true if memory consumption of @memcg, and that of all
34c81057
SC
5343 * ancestors up to (but not including) @root, is below the normal range.
5344 *
5345 * @root is exclusive; it is never low when looked at directly and isn't
5346 * checked when traversing the hierarchy.
5347 *
5348 * Excluding @root enables using memory.low to prioritize memory usage
5349 * between cgroups within a subtree of the hierarchy that is limited by
5350 * memory.high or memory.max.
5351 *
5352 * For example, given cgroup A with children B and C:
5353 *
5354 * A
5355 * / \
5356 * B C
5357 *
5358 * and
5359 *
5360 * 1. A/memory.current > A/memory.high
5361 * 2. A/B/memory.current < A/B/memory.low
5362 * 3. A/C/memory.current >= A/C/memory.low
5363 *
5364 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5365 * should reclaim from 'C' until 'A' is no longer high or until we can
5366 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5367 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5368 * low and we will reclaim indiscriminately from both 'B' and 'C'.
241994ed
JW
5369 */
5370bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5371{
5372 if (mem_cgroup_disabled())
5373 return false;
5374
34c81057
SC
5375 if (!root)
5376 root = root_mem_cgroup;
5377 if (memcg == root)
241994ed
JW
5378 return false;
5379
34c81057 5380 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
4e54dede 5381 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5382 return false;
5383 }
34c81057 5384
241994ed
JW
5385 return true;
5386}
5387
00501b53
JW
5388/**
5389 * mem_cgroup_try_charge - try charging a page
5390 * @page: page to charge
5391 * @mm: mm context of the victim
5392 * @gfp_mask: reclaim mode
5393 * @memcgp: charged memcg return
25843c2b 5394 * @compound: charge the page as compound or small page
00501b53
JW
5395 *
5396 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5397 * pages according to @gfp_mask if necessary.
5398 *
5399 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5400 * Otherwise, an error code is returned.
5401 *
5402 * After page->mapping has been set up, the caller must finalize the
5403 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5404 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5405 */
5406int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5407 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5408 bool compound)
00501b53
JW
5409{
5410 struct mem_cgroup *memcg = NULL;
f627c2f5 5411 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5412 int ret = 0;
5413
5414 if (mem_cgroup_disabled())
5415 goto out;
5416
5417 if (PageSwapCache(page)) {
00501b53
JW
5418 /*
5419 * Every swap fault against a single page tries to charge the
5420 * page, bail as early as possible. shmem_unuse() encounters
5421 * already charged pages, too. The USED bit is protected by
5422 * the page lock, which serializes swap cache removal, which
5423 * in turn serializes uncharging.
5424 */
e993d905 5425 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5426 if (page->mem_cgroup)
00501b53 5427 goto out;
e993d905 5428
37e84351 5429 if (do_swap_account) {
e993d905
VD
5430 swp_entry_t ent = { .val = page_private(page), };
5431 unsigned short id = lookup_swap_cgroup_id(ent);
5432
5433 rcu_read_lock();
5434 memcg = mem_cgroup_from_id(id);
5435 if (memcg && !css_tryget_online(&memcg->css))
5436 memcg = NULL;
5437 rcu_read_unlock();
5438 }
00501b53
JW
5439 }
5440
00501b53
JW
5441 if (!memcg)
5442 memcg = get_mem_cgroup_from_mm(mm);
5443
5444 ret = try_charge(memcg, gfp_mask, nr_pages);
5445
5446 css_put(&memcg->css);
00501b53
JW
5447out:
5448 *memcgp = memcg;
5449 return ret;
5450}
5451
5452/**
5453 * mem_cgroup_commit_charge - commit a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @lrucare: page might be on LRU already
25843c2b 5457 * @compound: charge the page as compound or small page
00501b53
JW
5458 *
5459 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5460 * after page->mapping has been set up. This must happen atomically
5461 * as part of the page instantiation, i.e. under the page table lock
5462 * for anonymous pages, under the page lock for page and swap cache.
5463 *
5464 * In addition, the page must not be on the LRU during the commit, to
5465 * prevent racing with task migration. If it might be, use @lrucare.
5466 *
5467 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5468 */
5469void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5470 bool lrucare, bool compound)
00501b53 5471{
f627c2f5 5472 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5473
5474 VM_BUG_ON_PAGE(!page->mapping, page);
5475 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5476
5477 if (mem_cgroup_disabled())
5478 return;
5479 /*
5480 * Swap faults will attempt to charge the same page multiple
5481 * times. But reuse_swap_page() might have removed the page
5482 * from swapcache already, so we can't check PageSwapCache().
5483 */
5484 if (!memcg)
5485 return;
5486
6abb5a86
JW
5487 commit_charge(page, memcg, lrucare);
5488
6abb5a86 5489 local_irq_disable();
f627c2f5 5490 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5491 memcg_check_events(memcg, page);
5492 local_irq_enable();
00501b53 5493
7941d214 5494 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5495 swp_entry_t entry = { .val = page_private(page) };
5496 /*
5497 * The swap entry might not get freed for a long time,
5498 * let's not wait for it. The page already received a
5499 * memory+swap charge, drop the swap entry duplicate.
5500 */
38d8b4e6 5501 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5502 }
5503}
5504
5505/**
5506 * mem_cgroup_cancel_charge - cancel a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
25843c2b 5509 * @compound: charge the page as compound or small page
00501b53
JW
5510 *
5511 * Cancel a charge transaction started by mem_cgroup_try_charge().
5512 */
f627c2f5
KS
5513void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5514 bool compound)
00501b53 5515{
f627c2f5 5516 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5517
5518 if (mem_cgroup_disabled())
5519 return;
5520 /*
5521 * Swap faults will attempt to charge the same page multiple
5522 * times. But reuse_swap_page() might have removed the page
5523 * from swapcache already, so we can't check PageSwapCache().
5524 */
5525 if (!memcg)
5526 return;
5527
00501b53
JW
5528 cancel_charge(memcg, nr_pages);
5529}
5530
747db954 5531static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5532 unsigned long nr_anon, unsigned long nr_file,
9a4caf1e
JW
5533 unsigned long nr_kmem, unsigned long nr_huge,
5534 unsigned long nr_shmem, struct page *dummy_page)
747db954 5535{
5e8d35f8 5536 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5537 unsigned long flags;
5538
ce00a967 5539 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5540 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5541 if (do_memsw_account())
18eca2e6 5542 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5543 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5544 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5545 memcg_oom_recover(memcg);
5546 }
747db954
JW
5547
5548 local_irq_save(flags);
71cd3113
JW
5549 __this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5550 __this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5551 __this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5552 __this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
df0e53d0 5553 __this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
18eca2e6 5554 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5555 memcg_check_events(memcg, dummy_page);
5556 local_irq_restore(flags);
e8ea14cc
JW
5557
5558 if (!mem_cgroup_is_root(memcg))
18eca2e6 5559 css_put_many(&memcg->css, nr_pages);
747db954
JW
5560}
5561
5562static void uncharge_list(struct list_head *page_list)
5563{
5564 struct mem_cgroup *memcg = NULL;
9a4caf1e 5565 unsigned long nr_shmem = 0;
747db954
JW
5566 unsigned long nr_anon = 0;
5567 unsigned long nr_file = 0;
5568 unsigned long nr_huge = 0;
5e8d35f8 5569 unsigned long nr_kmem = 0;
747db954 5570 unsigned long pgpgout = 0;
747db954
JW
5571 struct list_head *next;
5572 struct page *page;
5573
8b592656
JW
5574 /*
5575 * Note that the list can be a single page->lru; hence the
5576 * do-while loop instead of a simple list_for_each_entry().
5577 */
747db954
JW
5578 next = page_list->next;
5579 do {
747db954
JW
5580 page = list_entry(next, struct page, lru);
5581 next = page->lru.next;
5582
5583 VM_BUG_ON_PAGE(PageLRU(page), page);
18365225 5584 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
747db954 5585
1306a85a 5586 if (!page->mem_cgroup)
747db954
JW
5587 continue;
5588
5589 /*
5590 * Nobody should be changing or seriously looking at
1306a85a 5591 * page->mem_cgroup at this point, we have fully
29833315 5592 * exclusive access to the page.
747db954
JW
5593 */
5594
1306a85a 5595 if (memcg != page->mem_cgroup) {
747db954 5596 if (memcg) {
18eca2e6 5597 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
9a4caf1e
JW
5598 nr_kmem, nr_huge, nr_shmem, page);
5599 pgpgout = nr_anon = nr_file = nr_kmem = 0;
5600 nr_huge = nr_shmem = 0;
747db954 5601 }
1306a85a 5602 memcg = page->mem_cgroup;
747db954
JW
5603 }
5604
5e8d35f8
VD
5605 if (!PageKmemcg(page)) {
5606 unsigned int nr_pages = 1;
747db954 5607
5e8d35f8
VD
5608 if (PageTransHuge(page)) {
5609 nr_pages <<= compound_order(page);
5e8d35f8
VD
5610 nr_huge += nr_pages;
5611 }
5612 if (PageAnon(page))
5613 nr_anon += nr_pages;
9a4caf1e 5614 else {
5e8d35f8 5615 nr_file += nr_pages;
9a4caf1e
JW
5616 if (PageSwapBacked(page))
5617 nr_shmem += nr_pages;
5618 }
5e8d35f8 5619 pgpgout++;
c4159a75 5620 } else {
5e8d35f8 5621 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5622 __ClearPageKmemcg(page);
5623 }
747db954 5624
1306a85a 5625 page->mem_cgroup = NULL;
747db954
JW
5626 } while (next != page_list);
5627
5628 if (memcg)
18eca2e6 5629 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
9a4caf1e 5630 nr_kmem, nr_huge, nr_shmem, page);
747db954
JW
5631}
5632
0a31bc97
JW
5633/**
5634 * mem_cgroup_uncharge - uncharge a page
5635 * @page: page to uncharge
5636 *
5637 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5638 * mem_cgroup_commit_charge().
5639 */
5640void mem_cgroup_uncharge(struct page *page)
5641{
0a31bc97
JW
5642 if (mem_cgroup_disabled())
5643 return;
5644
747db954 5645 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5646 if (!page->mem_cgroup)
0a31bc97
JW
5647 return;
5648
747db954
JW
5649 INIT_LIST_HEAD(&page->lru);
5650 uncharge_list(&page->lru);
5651}
0a31bc97 5652
747db954
JW
5653/**
5654 * mem_cgroup_uncharge_list - uncharge a list of page
5655 * @page_list: list of pages to uncharge
5656 *
5657 * Uncharge a list of pages previously charged with
5658 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5659 */
5660void mem_cgroup_uncharge_list(struct list_head *page_list)
5661{
5662 if (mem_cgroup_disabled())
5663 return;
0a31bc97 5664
747db954
JW
5665 if (!list_empty(page_list))
5666 uncharge_list(page_list);
0a31bc97
JW
5667}
5668
5669/**
6a93ca8f
JW
5670 * mem_cgroup_migrate - charge a page's replacement
5671 * @oldpage: currently circulating page
5672 * @newpage: replacement page
0a31bc97 5673 *
6a93ca8f
JW
5674 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5675 * be uncharged upon free.
0a31bc97
JW
5676 *
5677 * Both pages must be locked, @newpage->mapping must be set up.
5678 */
6a93ca8f 5679void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5680{
29833315 5681 struct mem_cgroup *memcg;
44b7a8d3
JW
5682 unsigned int nr_pages;
5683 bool compound;
d93c4130 5684 unsigned long flags;
0a31bc97
JW
5685
5686 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5687 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5688 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5689 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5690 newpage);
0a31bc97
JW
5691
5692 if (mem_cgroup_disabled())
5693 return;
5694
5695 /* Page cache replacement: new page already charged? */
1306a85a 5696 if (newpage->mem_cgroup)
0a31bc97
JW
5697 return;
5698
45637bab 5699 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5700 memcg = oldpage->mem_cgroup;
29833315 5701 if (!memcg)
0a31bc97
JW
5702 return;
5703
44b7a8d3
JW
5704 /* Force-charge the new page. The old one will be freed soon */
5705 compound = PageTransHuge(newpage);
5706 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5707
5708 page_counter_charge(&memcg->memory, nr_pages);
5709 if (do_memsw_account())
5710 page_counter_charge(&memcg->memsw, nr_pages);
5711 css_get_many(&memcg->css, nr_pages);
0a31bc97 5712
9cf7666a 5713 commit_charge(newpage, memcg, false);
44b7a8d3 5714
d93c4130 5715 local_irq_save(flags);
44b7a8d3
JW
5716 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5717 memcg_check_events(memcg, newpage);
d93c4130 5718 local_irq_restore(flags);
0a31bc97
JW
5719}
5720
ef12947c 5721DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5722EXPORT_SYMBOL(memcg_sockets_enabled_key);
5723
2d758073 5724void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5725{
5726 struct mem_cgroup *memcg;
5727
2d758073
JW
5728 if (!mem_cgroup_sockets_enabled)
5729 return;
5730
5731 /*
5732 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5733 * filled. It won't however, necessarily happen from
5734 * process context. So the test for root memcg given
5735 * the current task's memcg won't help us in this case.
5736 *
5737 * Respecting the original socket's memcg is a better
5738 * decision in this case.
5739 */
5740 if (sk->sk_memcg) {
5741 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5742 css_get(&sk->sk_memcg->css);
5743 return;
5744 }
5745
5746 rcu_read_lock();
5747 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5748 if (memcg == root_mem_cgroup)
5749 goto out;
0db15298 5750 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5751 goto out;
f7e1cb6e 5752 if (css_tryget_online(&memcg->css))
11092087 5753 sk->sk_memcg = memcg;
f7e1cb6e 5754out:
11092087
JW
5755 rcu_read_unlock();
5756}
11092087 5757
2d758073 5758void mem_cgroup_sk_free(struct sock *sk)
11092087 5759{
2d758073
JW
5760 if (sk->sk_memcg)
5761 css_put(&sk->sk_memcg->css);
11092087
JW
5762}
5763
5764/**
5765 * mem_cgroup_charge_skmem - charge socket memory
5766 * @memcg: memcg to charge
5767 * @nr_pages: number of pages to charge
5768 *
5769 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5770 * @memcg's configured limit, %false if the charge had to be forced.
5771 */
5772bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5773{
f7e1cb6e 5774 gfp_t gfp_mask = GFP_KERNEL;
11092087 5775
f7e1cb6e 5776 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5777 struct page_counter *fail;
f7e1cb6e 5778
0db15298
JW
5779 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5780 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5781 return true;
5782 }
0db15298
JW
5783 page_counter_charge(&memcg->tcpmem, nr_pages);
5784 memcg->tcpmem_pressure = 1;
f7e1cb6e 5785 return false;
11092087 5786 }
d886f4e4 5787
f7e1cb6e
JW
5788 /* Don't block in the packet receive path */
5789 if (in_softirq())
5790 gfp_mask = GFP_NOWAIT;
5791
b2807f07
JW
5792 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5793
f7e1cb6e
JW
5794 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5795 return true;
5796
5797 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5798 return false;
5799}
5800
5801/**
5802 * mem_cgroup_uncharge_skmem - uncharge socket memory
5803 * @memcg - memcg to uncharge
5804 * @nr_pages - number of pages to uncharge
5805 */
5806void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5807{
f7e1cb6e 5808 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5809 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5810 return;
5811 }
d886f4e4 5812
b2807f07
JW
5813 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5814
f7e1cb6e
JW
5815 page_counter_uncharge(&memcg->memory, nr_pages);
5816 css_put_many(&memcg->css, nr_pages);
11092087
JW
5817}
5818
f7e1cb6e
JW
5819static int __init cgroup_memory(char *s)
5820{
5821 char *token;
5822
5823 while ((token = strsep(&s, ",")) != NULL) {
5824 if (!*token)
5825 continue;
5826 if (!strcmp(token, "nosocket"))
5827 cgroup_memory_nosocket = true;
04823c83
VD
5828 if (!strcmp(token, "nokmem"))
5829 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5830 }
5831 return 0;
5832}
5833__setup("cgroup.memory=", cgroup_memory);
11092087 5834
2d11085e 5835/*
1081312f
MH
5836 * subsys_initcall() for memory controller.
5837 *
308167fc
SAS
5838 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5839 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5840 * basically everything that doesn't depend on a specific mem_cgroup structure
5841 * should be initialized from here.
2d11085e
MH
5842 */
5843static int __init mem_cgroup_init(void)
5844{
95a045f6
JW
5845 int cpu, node;
5846
13583c3d
VD
5847#ifndef CONFIG_SLOB
5848 /*
5849 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5850 * so use a workqueue with limited concurrency to avoid stalling
5851 * all worker threads in case lots of cgroups are created and
5852 * destroyed simultaneously.
13583c3d 5853 */
17cc4dfe
TH
5854 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5855 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5856#endif
5857
308167fc
SAS
5858 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5859 memcg_hotplug_cpu_dead);
95a045f6
JW
5860
5861 for_each_possible_cpu(cpu)
5862 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5863 drain_local_stock);
5864
5865 for_each_node(node) {
5866 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5867
5868 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5869 node_online(node) ? node : NUMA_NO_NODE);
5870
ef8f2327
MG
5871 rtpn->rb_root = RB_ROOT;
5872 spin_lock_init(&rtpn->lock);
95a045f6
JW
5873 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5874 }
5875
2d11085e
MH
5876 return 0;
5877}
5878subsys_initcall(mem_cgroup_init);
21afa38e
JW
5879
5880#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5881static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5882{
5883 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5884 /*
5885 * The root cgroup cannot be destroyed, so it's refcount must
5886 * always be >= 1.
5887 */
5888 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5889 VM_BUG_ON(1);
5890 break;
5891 }
5892 memcg = parent_mem_cgroup(memcg);
5893 if (!memcg)
5894 memcg = root_mem_cgroup;
5895 }
5896 return memcg;
5897}
5898
21afa38e
JW
5899/**
5900 * mem_cgroup_swapout - transfer a memsw charge to swap
5901 * @page: page whose memsw charge to transfer
5902 * @entry: swap entry to move the charge to
5903 *
5904 * Transfer the memsw charge of @page to @entry.
5905 */
5906void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5907{
1f47b61f 5908 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5909 unsigned short oldid;
5910
5911 VM_BUG_ON_PAGE(PageLRU(page), page);
5912 VM_BUG_ON_PAGE(page_count(page), page);
5913
7941d214 5914 if (!do_memsw_account())
21afa38e
JW
5915 return;
5916
5917 memcg = page->mem_cgroup;
5918
5919 /* Readahead page, never charged */
5920 if (!memcg)
5921 return;
5922
1f47b61f
VD
5923 /*
5924 * In case the memcg owning these pages has been offlined and doesn't
5925 * have an ID allocated to it anymore, charge the closest online
5926 * ancestor for the swap instead and transfer the memory+swap charge.
5927 */
5928 swap_memcg = mem_cgroup_id_get_online(memcg);
38d8b4e6 5929 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
21afa38e 5930 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 5931 mem_cgroup_swap_statistics(swap_memcg, 1);
21afa38e
JW
5932
5933 page->mem_cgroup = NULL;
5934
5935 if (!mem_cgroup_is_root(memcg))
5936 page_counter_uncharge(&memcg->memory, 1);
5937
1f47b61f
VD
5938 if (memcg != swap_memcg) {
5939 if (!mem_cgroup_is_root(swap_memcg))
5940 page_counter_charge(&swap_memcg->memsw, 1);
5941 page_counter_uncharge(&memcg->memsw, 1);
5942 }
5943
ce9ce665
SAS
5944 /*
5945 * Interrupts should be disabled here because the caller holds the
5946 * mapping->tree_lock lock which is taken with interrupts-off. It is
5947 * important here to have the interrupts disabled because it is the
5948 * only synchronisation we have for udpating the per-CPU variables.
5949 */
5950 VM_BUG_ON(!irqs_disabled());
f627c2f5 5951 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5952 memcg_check_events(memcg, page);
73f576c0
JW
5953
5954 if (!mem_cgroup_is_root(memcg))
5955 css_put(&memcg->css);
21afa38e
JW
5956}
5957
38d8b4e6
HY
5958/**
5959 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
5960 * @page: page being added to swap
5961 * @entry: swap entry to charge
5962 *
38d8b4e6 5963 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
5964 *
5965 * Returns 0 on success, -ENOMEM on failure.
5966 */
5967int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5968{
38d8b4e6 5969 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 5970 struct page_counter *counter;
38d8b4e6 5971 struct mem_cgroup *memcg;
37e84351
VD
5972 unsigned short oldid;
5973
5974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5975 return 0;
5976
5977 memcg = page->mem_cgroup;
5978
5979 /* Readahead page, never charged */
5980 if (!memcg)
5981 return 0;
5982
1f47b61f
VD
5983 memcg = mem_cgroup_id_get_online(memcg);
5984
37e84351 5985 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 5986 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
1f47b61f 5987 mem_cgroup_id_put(memcg);
37e84351 5988 return -ENOMEM;
1f47b61f 5989 }
37e84351 5990
38d8b4e6
HY
5991 /* Get references for the tail pages, too */
5992 if (nr_pages > 1)
5993 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5994 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 5995 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 5996 mem_cgroup_swap_statistics(memcg, nr_pages);
37e84351 5997
37e84351
VD
5998 return 0;
5999}
6000
21afa38e 6001/**
38d8b4e6 6002 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6003 * @entry: swap entry to uncharge
38d8b4e6 6004 * @nr_pages: the amount of swap space to uncharge
21afa38e 6005 */
38d8b4e6 6006void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6007{
6008 struct mem_cgroup *memcg;
6009 unsigned short id;
6010
37e84351 6011 if (!do_swap_account)
21afa38e
JW
6012 return;
6013
38d8b4e6 6014 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6015 rcu_read_lock();
adbe427b 6016 memcg = mem_cgroup_from_id(id);
21afa38e 6017 if (memcg) {
37e84351
VD
6018 if (!mem_cgroup_is_root(memcg)) {
6019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6020 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6021 else
38d8b4e6 6022 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6023 }
38d8b4e6
HY
6024 mem_cgroup_swap_statistics(memcg, -nr_pages);
6025 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6026 }
6027 rcu_read_unlock();
6028}
6029
d8b38438
VD
6030long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6031{
6032 long nr_swap_pages = get_nr_swap_pages();
6033
6034 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6035 return nr_swap_pages;
6036 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6037 nr_swap_pages = min_t(long, nr_swap_pages,
6038 READ_ONCE(memcg->swap.limit) -
6039 page_counter_read(&memcg->swap));
6040 return nr_swap_pages;
6041}
6042
5ccc5aba
VD
6043bool mem_cgroup_swap_full(struct page *page)
6044{
6045 struct mem_cgroup *memcg;
6046
6047 VM_BUG_ON_PAGE(!PageLocked(page), page);
6048
6049 if (vm_swap_full())
6050 return true;
6051 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6052 return false;
6053
6054 memcg = page->mem_cgroup;
6055 if (!memcg)
6056 return false;
6057
6058 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6059 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6060 return true;
6061
6062 return false;
6063}
6064
21afa38e
JW
6065/* for remember boot option*/
6066#ifdef CONFIG_MEMCG_SWAP_ENABLED
6067static int really_do_swap_account __initdata = 1;
6068#else
6069static int really_do_swap_account __initdata;
6070#endif
6071
6072static int __init enable_swap_account(char *s)
6073{
6074 if (!strcmp(s, "1"))
6075 really_do_swap_account = 1;
6076 else if (!strcmp(s, "0"))
6077 really_do_swap_account = 0;
6078 return 1;
6079}
6080__setup("swapaccount=", enable_swap_account);
6081
37e84351
VD
6082static u64 swap_current_read(struct cgroup_subsys_state *css,
6083 struct cftype *cft)
6084{
6085 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6086
6087 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6088}
6089
6090static int swap_max_show(struct seq_file *m, void *v)
6091{
6092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6093 unsigned long max = READ_ONCE(memcg->swap.limit);
6094
6095 if (max == PAGE_COUNTER_MAX)
6096 seq_puts(m, "max\n");
6097 else
6098 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6099
6100 return 0;
6101}
6102
6103static ssize_t swap_max_write(struct kernfs_open_file *of,
6104 char *buf, size_t nbytes, loff_t off)
6105{
6106 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6107 unsigned long max;
6108 int err;
6109
6110 buf = strstrip(buf);
6111 err = page_counter_memparse(buf, "max", &max);
6112 if (err)
6113 return err;
6114
6115 mutex_lock(&memcg_limit_mutex);
6116 err = page_counter_limit(&memcg->swap, max);
6117 mutex_unlock(&memcg_limit_mutex);
6118 if (err)
6119 return err;
6120
6121 return nbytes;
6122}
6123
6124static struct cftype swap_files[] = {
6125 {
6126 .name = "swap.current",
6127 .flags = CFTYPE_NOT_ON_ROOT,
6128 .read_u64 = swap_current_read,
6129 },
6130 {
6131 .name = "swap.max",
6132 .flags = CFTYPE_NOT_ON_ROOT,
6133 .seq_show = swap_max_show,
6134 .write = swap_max_write,
6135 },
6136 { } /* terminate */
6137};
6138
21afa38e
JW
6139static struct cftype memsw_cgroup_files[] = {
6140 {
6141 .name = "memsw.usage_in_bytes",
6142 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6143 .read_u64 = mem_cgroup_read_u64,
6144 },
6145 {
6146 .name = "memsw.max_usage_in_bytes",
6147 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6148 .write = mem_cgroup_reset,
6149 .read_u64 = mem_cgroup_read_u64,
6150 },
6151 {
6152 .name = "memsw.limit_in_bytes",
6153 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6154 .write = mem_cgroup_write,
6155 .read_u64 = mem_cgroup_read_u64,
6156 },
6157 {
6158 .name = "memsw.failcnt",
6159 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6160 .write = mem_cgroup_reset,
6161 .read_u64 = mem_cgroup_read_u64,
6162 },
6163 { }, /* terminate */
6164};
6165
6166static int __init mem_cgroup_swap_init(void)
6167{
6168 if (!mem_cgroup_disabled() && really_do_swap_account) {
6169 do_swap_account = 1;
37e84351
VD
6170 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6171 swap_files));
21afa38e
JW
6172 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6173 memsw_cgroup_files));
6174 }
6175 return 0;
6176}
6177subsys_initcall(mem_cgroup_swap_init);
6178
6179#endif /* CONFIG_MEMCG_SWAP */