]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: clean up memcg zoneinfo lookup
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0 359#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
2633d7a0 362 struct list_head memcg_slab_caches;
2633d7a0
GC
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365#endif
45cf7ebd
GC
366
367 int last_scanned_node;
368#if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372#endif
70ddf637 373
fba94807
TH
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
54f72fe0
JW
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
380};
381
510fc4e1
GC
382/* internal only representation about the status of kmem accounting. */
383enum {
6de64beb 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
386};
387
510fc4e1
GC
388#ifdef CONFIG_MEMCG_KMEM
389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390{
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392}
7de37682
GC
393
394static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395{
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397}
398
399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400{
10d5ebf4
LZ
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
7de37682
GC
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408}
409
410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411{
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414}
510fc4e1
GC
415#endif
416
7dc74be0
DN
417/* Stuffs for move charges at task migration. */
418/*
ee5e8472
GC
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
421 */
422enum move_type {
4ffef5fe 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
425 NR_MOVE_TYPE,
426};
427
4ffef5fe
DN
428/* "mc" and its members are protected by cgroup_mutex */
429static struct move_charge_struct {
b1dd693e 430 spinlock_t lock; /* for from, to */
4ffef5fe
DN
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
ee5e8472 433 unsigned long immigrate_flags;
4ffef5fe 434 unsigned long precharge;
854ffa8d 435 unsigned long moved_charge;
483c30b5 436 unsigned long moved_swap;
8033b97c
DN
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439} mc = {
2bd9bb20 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442};
4ffef5fe 443
90254a65
DN
444static bool move_anon(void)
445{
ee5e8472 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
447}
448
87946a72
DN
449static bool move_file(void)
450{
ee5e8472 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
452}
453
4e416953
BS
454/*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
a0db00fc 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 460
217bc319
KH
461enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 463 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
466 NR_CHARGE_TYPE,
467};
468
8c7c6e34 469/* for encoding cft->private value on file */
86ae53e1
GC
470enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
510fc4e1 474 _KMEM,
86ae53e1
GC
475};
476
a0db00fc
KS
477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 479#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
480/* Used for OOM nofiier */
481#define OOM_CONTROL (0)
8c7c6e34 482
75822b44
BS
483/*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
0999821b
GC
491/*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496static DEFINE_MUTEX(memcg_create_mutex);
497
b2145145
WL
498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499{
a7c6d554 500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
501}
502
70ddf637
AV
503/* Some nice accessors for the vmpressure. */
504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505{
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509}
510
511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512{
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514}
515
7ffc0edc
MH
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
4219b2da
LZ
521/*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525#define MEM_CGROUP_ID_MAX USHRT_MAX
526
34c00c31
LZ
527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528{
529 /*
530 * The ID of the root cgroup is 0, but memcg treat 0 as an
531 * invalid ID, so we return (cgroup_id + 1).
532 */
533 return memcg->css.cgroup->id + 1;
534}
535
536static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537{
538 struct cgroup_subsys_state *css;
539
073219e9 540 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
541 return mem_cgroup_from_css(css);
542}
543
e1aab161 544/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 545#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 546
e1aab161
GC
547void sock_update_memcg(struct sock *sk)
548{
376be5ff 549 if (mem_cgroup_sockets_enabled) {
e1aab161 550 struct mem_cgroup *memcg;
3f134619 551 struct cg_proto *cg_proto;
e1aab161
GC
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
f3f511e1
GC
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 565 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
566 return;
567 }
568
e1aab161
GC
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
3f134619 571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
572 if (!mem_cgroup_is_root(memcg) &&
573 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 574 sk->sk_cgrp = cg_proto;
e1aab161
GC
575 }
576 rcu_read_unlock();
577 }
578}
579EXPORT_SYMBOL(sock_update_memcg);
580
581void sock_release_memcg(struct sock *sk)
582{
376be5ff 583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
5347e5ae 587 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
588 }
589}
d1a4c0b3
GC
590
591struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592{
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
2e685cad 596 return &memcg->tcp_mem;
d1a4c0b3
GC
597}
598EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 599
3f134619
GC
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
2e685cad 602 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605}
606#else
607static void disarm_sock_keys(struct mem_cgroup *memcg)
608{
609}
610#endif
611
a8964b9b 612#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
613/*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
55007d84
GC
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
626int memcg_limited_groups_array_size;
627
55007d84
GC
628/*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
b8627835 634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
638 * increase ours as well if it increases.
639 */
640#define MEMCG_CACHES_MIN_SIZE 4
b8627835 641#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 642
d7f25f8a
GC
643/*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
a8964b9b 649struct static_key memcg_kmem_enabled_key;
d7f25f8a 650EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
651
652static void disarm_kmem_keys(struct mem_cgroup *memcg)
653{
55007d84 654 if (memcg_kmem_is_active(memcg)) {
a8964b9b 655 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
bea207c8
GC
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
663}
664#else
665static void disarm_kmem_keys(struct mem_cgroup *memcg)
666{
667}
668#endif /* CONFIG_MEMCG_KMEM */
669
670static void disarm_static_keys(struct mem_cgroup *memcg)
671{
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674}
675
c0ff4b85 676static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 677
f64c3f54 678static struct mem_cgroup_per_zone *
e231875b 679mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 680{
e231875b
JZ
681 int nid = zone_to_nid(zone);
682 int zid = zone_idx(zone);
683
54f72fe0 684 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
685}
686
c0ff4b85 687struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 688{
c0ff4b85 689 return &memcg->css;
d324236b
WF
690}
691
f64c3f54 692static struct mem_cgroup_per_zone *
e231875b 693mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 694{
97a6c37b
JW
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
f64c3f54 697
e231875b 698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
699}
700
bb4cc1a8
AM
701static struct mem_cgroup_tree_per_zone *
702soft_limit_tree_node_zone(int nid, int zid)
703{
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705}
706
707static struct mem_cgroup_tree_per_zone *
708soft_limit_tree_from_page(struct page *page)
709{
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714}
715
716static void
717__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
718 struct mem_cgroup_per_zone *mz,
719 struct mem_cgroup_tree_per_zone *mctz,
720 unsigned long long new_usage_in_excess)
721{
722 struct rb_node **p = &mctz->rb_root.rb_node;
723 struct rb_node *parent = NULL;
724 struct mem_cgroup_per_zone *mz_node;
725
726 if (mz->on_tree)
727 return;
728
729 mz->usage_in_excess = new_usage_in_excess;
730 if (!mz->usage_in_excess)
731 return;
732 while (*p) {
733 parent = *p;
734 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
735 tree_node);
736 if (mz->usage_in_excess < mz_node->usage_in_excess)
737 p = &(*p)->rb_left;
738 /*
739 * We can't avoid mem cgroups that are over their soft
740 * limit by the same amount
741 */
742 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
743 p = &(*p)->rb_right;
744 }
745 rb_link_node(&mz->tree_node, parent, p);
746 rb_insert_color(&mz->tree_node, &mctz->rb_root);
747 mz->on_tree = true;
748}
749
750static void
751__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
752 struct mem_cgroup_per_zone *mz,
753 struct mem_cgroup_tree_per_zone *mctz)
754{
755 if (!mz->on_tree)
756 return;
757 rb_erase(&mz->tree_node, &mctz->rb_root);
758 mz->on_tree = false;
759}
760
761static void
762mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
763 struct mem_cgroup_per_zone *mz,
764 struct mem_cgroup_tree_per_zone *mctz)
765{
766 spin_lock(&mctz->lock);
767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
768 spin_unlock(&mctz->lock);
769}
770
771
772static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
773{
774 unsigned long long excess;
775 struct mem_cgroup_per_zone *mz;
776 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 777
e231875b 778 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
779 /*
780 * Necessary to update all ancestors when hierarchy is used.
781 * because their event counter is not touched.
782 */
783 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 784 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
785 excess = res_counter_soft_limit_excess(&memcg->res);
786 /*
787 * We have to update the tree if mz is on RB-tree or
788 * mem is over its softlimit.
789 */
790 if (excess || mz->on_tree) {
791 spin_lock(&mctz->lock);
792 /* if on-tree, remove it */
793 if (mz->on_tree)
794 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 /*
796 * Insert again. mz->usage_in_excess will be updated.
797 * If excess is 0, no tree ops.
798 */
799 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
800 spin_unlock(&mctz->lock);
801 }
802 }
803}
804
805static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
806{
bb4cc1a8 807 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
808 struct mem_cgroup_per_zone *mz;
809 int nid, zid;
bb4cc1a8 810
e231875b
JZ
811 for_each_node(nid) {
812 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
813 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
814 mctz = soft_limit_tree_node_zone(nid, zid);
bb4cc1a8
AM
815 mem_cgroup_remove_exceeded(memcg, mz, mctz);
816 }
817 }
818}
819
820static struct mem_cgroup_per_zone *
821__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
822{
823 struct rb_node *rightmost = NULL;
824 struct mem_cgroup_per_zone *mz;
825
826retry:
827 mz = NULL;
828 rightmost = rb_last(&mctz->rb_root);
829 if (!rightmost)
830 goto done; /* Nothing to reclaim from */
831
832 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
833 /*
834 * Remove the node now but someone else can add it back,
835 * we will to add it back at the end of reclaim to its correct
836 * position in the tree.
837 */
838 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
839 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
840 !css_tryget(&mz->memcg->css))
841 goto retry;
842done:
843 return mz;
844}
845
846static struct mem_cgroup_per_zone *
847mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
848{
849 struct mem_cgroup_per_zone *mz;
850
851 spin_lock(&mctz->lock);
852 mz = __mem_cgroup_largest_soft_limit_node(mctz);
853 spin_unlock(&mctz->lock);
854 return mz;
855}
856
711d3d2c
KH
857/*
858 * Implementation Note: reading percpu statistics for memcg.
859 *
860 * Both of vmstat[] and percpu_counter has threshold and do periodic
861 * synchronization to implement "quick" read. There are trade-off between
862 * reading cost and precision of value. Then, we may have a chance to implement
863 * a periodic synchronizion of counter in memcg's counter.
864 *
865 * But this _read() function is used for user interface now. The user accounts
866 * memory usage by memory cgroup and he _always_ requires exact value because
867 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
868 * have to visit all online cpus and make sum. So, for now, unnecessary
869 * synchronization is not implemented. (just implemented for cpu hotplug)
870 *
871 * If there are kernel internal actions which can make use of some not-exact
872 * value, and reading all cpu value can be performance bottleneck in some
873 * common workload, threashold and synchonization as vmstat[] should be
874 * implemented.
875 */
c0ff4b85 876static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 877 enum mem_cgroup_stat_index idx)
c62b1a3b 878{
7a159cc9 879 long val = 0;
c62b1a3b 880 int cpu;
c62b1a3b 881
711d3d2c
KH
882 get_online_cpus();
883 for_each_online_cpu(cpu)
c0ff4b85 884 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 885#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.count[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
889#endif
890 put_online_cpus();
c62b1a3b
KH
891 return val;
892}
893
c0ff4b85 894static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
895 bool charge)
896{
897 int val = (charge) ? 1 : -1;
bff6bb83 898 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
899}
900
c0ff4b85 901static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
902 enum mem_cgroup_events_index idx)
903{
904 unsigned long val = 0;
905 int cpu;
906
9c567512 907 get_online_cpus();
e9f8974f 908 for_each_online_cpu(cpu)
c0ff4b85 909 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 910#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
911 spin_lock(&memcg->pcp_counter_lock);
912 val += memcg->nocpu_base.events[idx];
913 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 914#endif
9c567512 915 put_online_cpus();
e9f8974f
JW
916 return val;
917}
918
c0ff4b85 919static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 920 struct page *page,
b2402857 921 bool anon, int nr_pages)
d52aa412 922{
b2402857
KH
923 /*
924 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
925 * counted as CACHE even if it's on ANON LRU.
926 */
927 if (anon)
928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 929 nr_pages);
d52aa412 930 else
b2402857 931 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 932 nr_pages);
55e462b0 933
b070e65c
DR
934 if (PageTransHuge(page))
935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
936 nr_pages);
937
e401f176
KH
938 /* pagein of a big page is an event. So, ignore page size */
939 if (nr_pages > 0)
c0ff4b85 940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 941 else {
c0ff4b85 942 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
943 nr_pages = -nr_pages; /* for event */
944 }
e401f176 945
13114716 946 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
947}
948
e231875b 949unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
950{
951 struct mem_cgroup_per_zone *mz;
952
953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 return mz->lru_size[lru];
955}
956
e231875b
JZ
957static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
958 int nid,
959 unsigned int lru_mask)
bb2a0de9 960{
e231875b 961 unsigned long nr = 0;
889976db
YH
962 int zid;
963
e231875b 964 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 965
e231875b
JZ
966 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
967 struct mem_cgroup_per_zone *mz;
968 enum lru_list lru;
969
970 for_each_lru(lru) {
971 if (!(BIT(lru) & lru_mask))
972 continue;
973 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
974 nr += mz->lru_size[lru];
975 }
976 }
977 return nr;
889976db 978}
bb2a0de9 979
c0ff4b85 980static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 981 unsigned int lru_mask)
6d12e2d8 982{
e231875b 983 unsigned long nr = 0;
889976db 984 int nid;
6d12e2d8 985
31aaea4a 986 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
987 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
988 return nr;
d52aa412
KH
989}
990
f53d7ce3
JW
991static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
992 enum mem_cgroup_events_target target)
7a159cc9
JW
993{
994 unsigned long val, next;
995
13114716 996 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 997 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 998 /* from time_after() in jiffies.h */
f53d7ce3
JW
999 if ((long)next - (long)val < 0) {
1000 switch (target) {
1001 case MEM_CGROUP_TARGET_THRESH:
1002 next = val + THRESHOLDS_EVENTS_TARGET;
1003 break;
bb4cc1a8
AM
1004 case MEM_CGROUP_TARGET_SOFTLIMIT:
1005 next = val + SOFTLIMIT_EVENTS_TARGET;
1006 break;
f53d7ce3
JW
1007 case MEM_CGROUP_TARGET_NUMAINFO:
1008 next = val + NUMAINFO_EVENTS_TARGET;
1009 break;
1010 default:
1011 break;
1012 }
1013 __this_cpu_write(memcg->stat->targets[target], next);
1014 return true;
7a159cc9 1015 }
f53d7ce3 1016 return false;
d2265e6f
KH
1017}
1018
1019/*
1020 * Check events in order.
1021 *
1022 */
c0ff4b85 1023static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1024{
4799401f 1025 preempt_disable();
d2265e6f 1026 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1027 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1028 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1029 bool do_softlimit;
82b3f2a7 1030 bool do_numainfo __maybe_unused;
f53d7ce3 1031
bb4cc1a8
AM
1032 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1033 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1034#if MAX_NUMNODES > 1
1035 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1036 MEM_CGROUP_TARGET_NUMAINFO);
1037#endif
1038 preempt_enable();
1039
c0ff4b85 1040 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1041 if (unlikely(do_softlimit))
1042 mem_cgroup_update_tree(memcg, page);
453a9bf3 1043#if MAX_NUMNODES > 1
f53d7ce3 1044 if (unlikely(do_numainfo))
c0ff4b85 1045 atomic_inc(&memcg->numainfo_events);
453a9bf3 1046#endif
f53d7ce3
JW
1047 } else
1048 preempt_enable();
d2265e6f
KH
1049}
1050
cf475ad2 1051struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1052{
31a78f23
BS
1053 /*
1054 * mm_update_next_owner() may clear mm->owner to NULL
1055 * if it races with swapoff, page migration, etc.
1056 * So this can be called with p == NULL.
1057 */
1058 if (unlikely(!p))
1059 return NULL;
1060
073219e9 1061 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1062}
1063
df381975 1064static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1065{
c0ff4b85 1066 struct mem_cgroup *memcg = NULL;
0b7f569e 1067
54595fe2
KH
1068 rcu_read_lock();
1069 do {
6f6acb00
MH
1070 /*
1071 * Page cache insertions can happen withou an
1072 * actual mm context, e.g. during disk probing
1073 * on boot, loopback IO, acct() writes etc.
1074 */
1075 if (unlikely(!mm))
df381975 1076 memcg = root_mem_cgroup;
6f6acb00
MH
1077 else {
1078 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1079 if (unlikely(!memcg))
1080 memcg = root_mem_cgroup;
1081 }
c0ff4b85 1082 } while (!css_tryget(&memcg->css));
54595fe2 1083 rcu_read_unlock();
c0ff4b85 1084 return memcg;
54595fe2
KH
1085}
1086
16248d8f
MH
1087/*
1088 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1089 * ref. count) or NULL if the whole root's subtree has been visited.
1090 *
1091 * helper function to be used by mem_cgroup_iter
1092 */
1093static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1094 struct mem_cgroup *last_visited)
16248d8f 1095{
492eb21b 1096 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1097
bd8815a6 1098 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1099skip_node:
492eb21b 1100 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1101
1102 /*
1103 * Even if we found a group we have to make sure it is
1104 * alive. css && !memcg means that the groups should be
1105 * skipped and we should continue the tree walk.
1106 * last_visited css is safe to use because it is
1107 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1108 *
1109 * We do not take a reference on the root of the tree walk
1110 * because we might race with the root removal when it would
1111 * be the only node in the iterated hierarchy and mem_cgroup_iter
1112 * would end up in an endless loop because it expects that at
1113 * least one valid node will be returned. Root cannot disappear
1114 * because caller of the iterator should hold it already so
1115 * skipping css reference should be safe.
16248d8f 1116 */
492eb21b 1117 if (next_css) {
ce48225f
HD
1118 if ((next_css == &root->css) ||
1119 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1120 return mem_cgroup_from_css(next_css);
0eef6156
MH
1121
1122 prev_css = next_css;
1123 goto skip_node;
16248d8f
MH
1124 }
1125
1126 return NULL;
1127}
1128
519ebea3
JW
1129static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1130{
1131 /*
1132 * When a group in the hierarchy below root is destroyed, the
1133 * hierarchy iterator can no longer be trusted since it might
1134 * have pointed to the destroyed group. Invalidate it.
1135 */
1136 atomic_inc(&root->dead_count);
1137}
1138
1139static struct mem_cgroup *
1140mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1141 struct mem_cgroup *root,
1142 int *sequence)
1143{
1144 struct mem_cgroup *position = NULL;
1145 /*
1146 * A cgroup destruction happens in two stages: offlining and
1147 * release. They are separated by a RCU grace period.
1148 *
1149 * If the iterator is valid, we may still race with an
1150 * offlining. The RCU lock ensures the object won't be
1151 * released, tryget will fail if we lost the race.
1152 */
1153 *sequence = atomic_read(&root->dead_count);
1154 if (iter->last_dead_count == *sequence) {
1155 smp_rmb();
1156 position = iter->last_visited;
ecc736fc
MH
1157
1158 /*
1159 * We cannot take a reference to root because we might race
1160 * with root removal and returning NULL would end up in
1161 * an endless loop on the iterator user level when root
1162 * would be returned all the time.
1163 */
1164 if (position && position != root &&
1165 !css_tryget(&position->css))
519ebea3
JW
1166 position = NULL;
1167 }
1168 return position;
1169}
1170
1171static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1172 struct mem_cgroup *last_visited,
1173 struct mem_cgroup *new_position,
ecc736fc 1174 struct mem_cgroup *root,
519ebea3
JW
1175 int sequence)
1176{
ecc736fc
MH
1177 /* root reference counting symmetric to mem_cgroup_iter_load */
1178 if (last_visited && last_visited != root)
519ebea3
JW
1179 css_put(&last_visited->css);
1180 /*
1181 * We store the sequence count from the time @last_visited was
1182 * loaded successfully instead of rereading it here so that we
1183 * don't lose destruction events in between. We could have
1184 * raced with the destruction of @new_position after all.
1185 */
1186 iter->last_visited = new_position;
1187 smp_wmb();
1188 iter->last_dead_count = sequence;
1189}
1190
5660048c
JW
1191/**
1192 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1193 * @root: hierarchy root
1194 * @prev: previously returned memcg, NULL on first invocation
1195 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1196 *
1197 * Returns references to children of the hierarchy below @root, or
1198 * @root itself, or %NULL after a full round-trip.
1199 *
1200 * Caller must pass the return value in @prev on subsequent
1201 * invocations for reference counting, or use mem_cgroup_iter_break()
1202 * to cancel a hierarchy walk before the round-trip is complete.
1203 *
1204 * Reclaimers can specify a zone and a priority level in @reclaim to
1205 * divide up the memcgs in the hierarchy among all concurrent
1206 * reclaimers operating on the same zone and priority.
1207 */
694fbc0f 1208struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1209 struct mem_cgroup *prev,
694fbc0f 1210 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1211{
9f3a0d09 1212 struct mem_cgroup *memcg = NULL;
542f85f9 1213 struct mem_cgroup *last_visited = NULL;
711d3d2c 1214
694fbc0f
AM
1215 if (mem_cgroup_disabled())
1216 return NULL;
5660048c 1217
9f3a0d09
JW
1218 if (!root)
1219 root = root_mem_cgroup;
7d74b06f 1220
9f3a0d09 1221 if (prev && !reclaim)
542f85f9 1222 last_visited = prev;
14067bb3 1223
9f3a0d09
JW
1224 if (!root->use_hierarchy && root != root_mem_cgroup) {
1225 if (prev)
c40046f3 1226 goto out_css_put;
694fbc0f 1227 return root;
9f3a0d09 1228 }
14067bb3 1229
542f85f9 1230 rcu_read_lock();
9f3a0d09 1231 while (!memcg) {
527a5ec9 1232 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1233 int uninitialized_var(seq);
711d3d2c 1234
527a5ec9 1235 if (reclaim) {
527a5ec9
JW
1236 struct mem_cgroup_per_zone *mz;
1237
e231875b 1238 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1239 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1240 if (prev && reclaim->generation != iter->generation) {
5f578161 1241 iter->last_visited = NULL;
542f85f9
MH
1242 goto out_unlock;
1243 }
5f578161 1244
519ebea3 1245 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1246 }
7d74b06f 1247
694fbc0f 1248 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1249
527a5ec9 1250 if (reclaim) {
ecc736fc
MH
1251 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1252 seq);
542f85f9 1253
19f39402 1254 if (!memcg)
527a5ec9
JW
1255 iter->generation++;
1256 else if (!prev && memcg)
1257 reclaim->generation = iter->generation;
1258 }
9f3a0d09 1259
694fbc0f 1260 if (prev && !memcg)
542f85f9 1261 goto out_unlock;
9f3a0d09 1262 }
542f85f9
MH
1263out_unlock:
1264 rcu_read_unlock();
c40046f3
MH
1265out_css_put:
1266 if (prev && prev != root)
1267 css_put(&prev->css);
1268
9f3a0d09 1269 return memcg;
14067bb3 1270}
7d74b06f 1271
5660048c
JW
1272/**
1273 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1274 * @root: hierarchy root
1275 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1276 */
1277void mem_cgroup_iter_break(struct mem_cgroup *root,
1278 struct mem_cgroup *prev)
9f3a0d09
JW
1279{
1280 if (!root)
1281 root = root_mem_cgroup;
1282 if (prev && prev != root)
1283 css_put(&prev->css);
1284}
7d74b06f 1285
9f3a0d09
JW
1286/*
1287 * Iteration constructs for visiting all cgroups (under a tree). If
1288 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1289 * be used for reference counting.
1290 */
1291#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1292 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1293 iter != NULL; \
527a5ec9 1294 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1295
9f3a0d09 1296#define for_each_mem_cgroup(iter) \
527a5ec9 1297 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1298 iter != NULL; \
527a5ec9 1299 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1300
68ae564b 1301void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1302{
c0ff4b85 1303 struct mem_cgroup *memcg;
456f998e 1304
456f998e 1305 rcu_read_lock();
c0ff4b85
R
1306 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1307 if (unlikely(!memcg))
456f998e
YH
1308 goto out;
1309
1310 switch (idx) {
456f998e 1311 case PGFAULT:
0e574a93
JW
1312 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1313 break;
1314 case PGMAJFAULT:
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1316 break;
1317 default:
1318 BUG();
1319 }
1320out:
1321 rcu_read_unlock();
1322}
68ae564b 1323EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1324
925b7673
JW
1325/**
1326 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1327 * @zone: zone of the wanted lruvec
fa9add64 1328 * @memcg: memcg of the wanted lruvec
925b7673
JW
1329 *
1330 * Returns the lru list vector holding pages for the given @zone and
1331 * @mem. This can be the global zone lruvec, if the memory controller
1332 * is disabled.
1333 */
1334struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1335 struct mem_cgroup *memcg)
1336{
1337 struct mem_cgroup_per_zone *mz;
bea8c150 1338 struct lruvec *lruvec;
925b7673 1339
bea8c150
HD
1340 if (mem_cgroup_disabled()) {
1341 lruvec = &zone->lruvec;
1342 goto out;
1343 }
925b7673 1344
e231875b 1345 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1346 lruvec = &mz->lruvec;
1347out:
1348 /*
1349 * Since a node can be onlined after the mem_cgroup was created,
1350 * we have to be prepared to initialize lruvec->zone here;
1351 * and if offlined then reonlined, we need to reinitialize it.
1352 */
1353 if (unlikely(lruvec->zone != zone))
1354 lruvec->zone = zone;
1355 return lruvec;
925b7673
JW
1356}
1357
08e552c6
KH
1358/*
1359 * Following LRU functions are allowed to be used without PCG_LOCK.
1360 * Operations are called by routine of global LRU independently from memcg.
1361 * What we have to take care of here is validness of pc->mem_cgroup.
1362 *
1363 * Changes to pc->mem_cgroup happens when
1364 * 1. charge
1365 * 2. moving account
1366 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1367 * It is added to LRU before charge.
1368 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1369 * When moving account, the page is not on LRU. It's isolated.
1370 */
4f98a2fe 1371
925b7673 1372/**
fa9add64 1373 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1374 * @page: the page
fa9add64 1375 * @zone: zone of the page
925b7673 1376 */
fa9add64 1377struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1378{
08e552c6 1379 struct mem_cgroup_per_zone *mz;
925b7673
JW
1380 struct mem_cgroup *memcg;
1381 struct page_cgroup *pc;
bea8c150 1382 struct lruvec *lruvec;
6d12e2d8 1383
bea8c150
HD
1384 if (mem_cgroup_disabled()) {
1385 lruvec = &zone->lruvec;
1386 goto out;
1387 }
925b7673 1388
08e552c6 1389 pc = lookup_page_cgroup(page);
38c5d72f 1390 memcg = pc->mem_cgroup;
7512102c
HD
1391
1392 /*
fa9add64 1393 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1394 * an uncharged page off lru does nothing to secure
1395 * its former mem_cgroup from sudden removal.
1396 *
1397 * Our caller holds lru_lock, and PageCgroupUsed is updated
1398 * under page_cgroup lock: between them, they make all uses
1399 * of pc->mem_cgroup safe.
1400 */
fa9add64 1401 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1402 pc->mem_cgroup = memcg = root_mem_cgroup;
1403
e231875b 1404 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1405 lruvec = &mz->lruvec;
1406out:
1407 /*
1408 * Since a node can be onlined after the mem_cgroup was created,
1409 * we have to be prepared to initialize lruvec->zone here;
1410 * and if offlined then reonlined, we need to reinitialize it.
1411 */
1412 if (unlikely(lruvec->zone != zone))
1413 lruvec->zone = zone;
1414 return lruvec;
08e552c6 1415}
b69408e8 1416
925b7673 1417/**
fa9add64
HD
1418 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1419 * @lruvec: mem_cgroup per zone lru vector
1420 * @lru: index of lru list the page is sitting on
1421 * @nr_pages: positive when adding or negative when removing
925b7673 1422 *
fa9add64
HD
1423 * This function must be called when a page is added to or removed from an
1424 * lru list.
3f58a829 1425 */
fa9add64
HD
1426void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1427 int nr_pages)
3f58a829
MK
1428{
1429 struct mem_cgroup_per_zone *mz;
fa9add64 1430 unsigned long *lru_size;
3f58a829
MK
1431
1432 if (mem_cgroup_disabled())
1433 return;
1434
fa9add64
HD
1435 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1436 lru_size = mz->lru_size + lru;
1437 *lru_size += nr_pages;
1438 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1439}
544122e5 1440
3e92041d 1441/*
c0ff4b85 1442 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1443 * hierarchy subtree
1444 */
c3ac9a8a
JW
1445bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1446 struct mem_cgroup *memcg)
3e92041d 1447{
91c63734
JW
1448 if (root_memcg == memcg)
1449 return true;
3a981f48 1450 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1451 return false;
b47f77b5 1452 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1453}
1454
1455static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1456 struct mem_cgroup *memcg)
1457{
1458 bool ret;
1459
91c63734 1460 rcu_read_lock();
c3ac9a8a 1461 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1462 rcu_read_unlock();
1463 return ret;
3e92041d
MH
1464}
1465
ffbdccf5
DR
1466bool task_in_mem_cgroup(struct task_struct *task,
1467 const struct mem_cgroup *memcg)
4c4a2214 1468{
0b7f569e 1469 struct mem_cgroup *curr = NULL;
158e0a2d 1470 struct task_struct *p;
ffbdccf5 1471 bool ret;
4c4a2214 1472
158e0a2d 1473 p = find_lock_task_mm(task);
de077d22 1474 if (p) {
df381975 1475 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1476 task_unlock(p);
1477 } else {
1478 /*
1479 * All threads may have already detached their mm's, but the oom
1480 * killer still needs to detect if they have already been oom
1481 * killed to prevent needlessly killing additional tasks.
1482 */
ffbdccf5 1483 rcu_read_lock();
de077d22
DR
1484 curr = mem_cgroup_from_task(task);
1485 if (curr)
1486 css_get(&curr->css);
ffbdccf5 1487 rcu_read_unlock();
de077d22 1488 }
d31f56db 1489 /*
c0ff4b85 1490 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1491 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1492 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1493 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1494 */
c0ff4b85 1495 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1496 css_put(&curr->css);
4c4a2214
DR
1497 return ret;
1498}
1499
c56d5c7d 1500int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1501{
9b272977 1502 unsigned long inactive_ratio;
14797e23 1503 unsigned long inactive;
9b272977 1504 unsigned long active;
c772be93 1505 unsigned long gb;
14797e23 1506
4d7dcca2
HD
1507 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1508 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1509
c772be93
KM
1510 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1511 if (gb)
1512 inactive_ratio = int_sqrt(10 * gb);
1513 else
1514 inactive_ratio = 1;
1515
9b272977 1516 return inactive * inactive_ratio < active;
14797e23
KM
1517}
1518
6d61ef40
BS
1519#define mem_cgroup_from_res_counter(counter, member) \
1520 container_of(counter, struct mem_cgroup, member)
1521
19942822 1522/**
9d11ea9f 1523 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1524 * @memcg: the memory cgroup
19942822 1525 *
9d11ea9f 1526 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1527 * pages.
19942822 1528 */
c0ff4b85 1529static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1530{
9d11ea9f
JW
1531 unsigned long long margin;
1532
c0ff4b85 1533 margin = res_counter_margin(&memcg->res);
9d11ea9f 1534 if (do_swap_account)
c0ff4b85 1535 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1536 return margin >> PAGE_SHIFT;
19942822
JW
1537}
1538
1f4c025b 1539int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1540{
a7885eb8 1541 /* root ? */
688eb988 1542 if (mem_cgroup_disabled() || !css_parent(&memcg->css))
a7885eb8
KM
1543 return vm_swappiness;
1544
bf1ff263 1545 return memcg->swappiness;
a7885eb8
KM
1546}
1547
619d094b
KH
1548/*
1549 * memcg->moving_account is used for checking possibility that some thread is
1550 * calling move_account(). When a thread on CPU-A starts moving pages under
1551 * a memcg, other threads should check memcg->moving_account under
1552 * rcu_read_lock(), like this:
1553 *
1554 * CPU-A CPU-B
1555 * rcu_read_lock()
1556 * memcg->moving_account+1 if (memcg->mocing_account)
1557 * take heavy locks.
1558 * synchronize_rcu() update something.
1559 * rcu_read_unlock()
1560 * start move here.
1561 */
4331f7d3
KH
1562
1563/* for quick checking without looking up memcg */
1564atomic_t memcg_moving __read_mostly;
1565
c0ff4b85 1566static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1567{
4331f7d3 1568 atomic_inc(&memcg_moving);
619d094b 1569 atomic_inc(&memcg->moving_account);
32047e2a
KH
1570 synchronize_rcu();
1571}
1572
c0ff4b85 1573static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1574{
619d094b
KH
1575 /*
1576 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1577 * We check NULL in callee rather than caller.
1578 */
4331f7d3
KH
1579 if (memcg) {
1580 atomic_dec(&memcg_moving);
619d094b 1581 atomic_dec(&memcg->moving_account);
4331f7d3 1582 }
32047e2a 1583}
619d094b 1584
32047e2a 1585/*
bdcbb659 1586 * A routine for checking "mem" is under move_account() or not.
32047e2a 1587 *
bdcbb659
QH
1588 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1589 * moving cgroups. This is for waiting at high-memory pressure
1590 * caused by "move".
32047e2a 1591 */
c0ff4b85 1592static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1593{
2bd9bb20
KH
1594 struct mem_cgroup *from;
1595 struct mem_cgroup *to;
4b534334 1596 bool ret = false;
2bd9bb20
KH
1597 /*
1598 * Unlike task_move routines, we access mc.to, mc.from not under
1599 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 */
1601 spin_lock(&mc.lock);
1602 from = mc.from;
1603 to = mc.to;
1604 if (!from)
1605 goto unlock;
3e92041d 1606
c0ff4b85
R
1607 ret = mem_cgroup_same_or_subtree(memcg, from)
1608 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1609unlock:
1610 spin_unlock(&mc.lock);
4b534334
KH
1611 return ret;
1612}
1613
c0ff4b85 1614static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1615{
1616 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1617 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1618 DEFINE_WAIT(wait);
1619 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 /* moving charge context might have finished. */
1621 if (mc.moving_task)
1622 schedule();
1623 finish_wait(&mc.waitq, &wait);
1624 return true;
1625 }
1626 }
1627 return false;
1628}
1629
312734c0
KH
1630/*
1631 * Take this lock when
1632 * - a code tries to modify page's memcg while it's USED.
1633 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1634 */
1635static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1636 unsigned long *flags)
1637{
1638 spin_lock_irqsave(&memcg->move_lock, *flags);
1639}
1640
1641static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1642 unsigned long *flags)
1643{
1644 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1645}
1646
58cf188e 1647#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1648/**
58cf188e 1649 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1650 * @memcg: The memory cgroup that went over limit
1651 * @p: Task that is going to be killed
1652 *
1653 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1654 * enabled
1655 */
1656void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1657{
e61734c5 1658 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1659 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1660 struct mem_cgroup *iter;
1661 unsigned int i;
e222432b 1662
58cf188e 1663 if (!p)
e222432b
BS
1664 return;
1665
08088cb9 1666 mutex_lock(&oom_info_lock);
e222432b
BS
1667 rcu_read_lock();
1668
e61734c5
TH
1669 pr_info("Task in ");
1670 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1671 pr_info(" killed as a result of limit of ");
1672 pr_cont_cgroup_path(memcg->css.cgroup);
1673 pr_info("\n");
e222432b 1674
e222432b
BS
1675 rcu_read_unlock();
1676
d045197f 1677 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1678 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1681 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1682 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1683 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1685 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1686 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1687 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1689
1690 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1691 pr_info("Memory cgroup stats for ");
1692 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1693 pr_cont(":");
1694
1695 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1696 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1697 continue;
1698 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1699 K(mem_cgroup_read_stat(iter, i)));
1700 }
1701
1702 for (i = 0; i < NR_LRU_LISTS; i++)
1703 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1704 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1705
1706 pr_cont("\n");
1707 }
08088cb9 1708 mutex_unlock(&oom_info_lock);
e222432b
BS
1709}
1710
81d39c20
KH
1711/*
1712 * This function returns the number of memcg under hierarchy tree. Returns
1713 * 1(self count) if no children.
1714 */
c0ff4b85 1715static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1716{
1717 int num = 0;
7d74b06f
KH
1718 struct mem_cgroup *iter;
1719
c0ff4b85 1720 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1721 num++;
81d39c20
KH
1722 return num;
1723}
1724
a63d83f4
DR
1725/*
1726 * Return the memory (and swap, if configured) limit for a memcg.
1727 */
9cbb78bb 1728static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1729{
1730 u64 limit;
a63d83f4 1731
f3e8eb70 1732 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1733
a63d83f4 1734 /*
9a5a8f19 1735 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1736 */
9a5a8f19
MH
1737 if (mem_cgroup_swappiness(memcg)) {
1738 u64 memsw;
1739
1740 limit += total_swap_pages << PAGE_SHIFT;
1741 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1742
1743 /*
1744 * If memsw is finite and limits the amount of swap space
1745 * available to this memcg, return that limit.
1746 */
1747 limit = min(limit, memsw);
1748 }
1749
1750 return limit;
a63d83f4
DR
1751}
1752
19965460
DR
1753static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1754 int order)
9cbb78bb
DR
1755{
1756 struct mem_cgroup *iter;
1757 unsigned long chosen_points = 0;
1758 unsigned long totalpages;
1759 unsigned int points = 0;
1760 struct task_struct *chosen = NULL;
1761
876aafbf 1762 /*
465adcf1
DR
1763 * If current has a pending SIGKILL or is exiting, then automatically
1764 * select it. The goal is to allow it to allocate so that it may
1765 * quickly exit and free its memory.
876aafbf 1766 */
465adcf1 1767 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1768 set_thread_flag(TIF_MEMDIE);
1769 return;
1770 }
1771
1772 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1773 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1774 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1775 struct css_task_iter it;
9cbb78bb
DR
1776 struct task_struct *task;
1777
72ec7029
TH
1778 css_task_iter_start(&iter->css, &it);
1779 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1780 switch (oom_scan_process_thread(task, totalpages, NULL,
1781 false)) {
1782 case OOM_SCAN_SELECT:
1783 if (chosen)
1784 put_task_struct(chosen);
1785 chosen = task;
1786 chosen_points = ULONG_MAX;
1787 get_task_struct(chosen);
1788 /* fall through */
1789 case OOM_SCAN_CONTINUE:
1790 continue;
1791 case OOM_SCAN_ABORT:
72ec7029 1792 css_task_iter_end(&it);
9cbb78bb
DR
1793 mem_cgroup_iter_break(memcg, iter);
1794 if (chosen)
1795 put_task_struct(chosen);
1796 return;
1797 case OOM_SCAN_OK:
1798 break;
1799 };
1800 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1801 if (!points || points < chosen_points)
1802 continue;
1803 /* Prefer thread group leaders for display purposes */
1804 if (points == chosen_points &&
1805 thread_group_leader(chosen))
1806 continue;
1807
1808 if (chosen)
1809 put_task_struct(chosen);
1810 chosen = task;
1811 chosen_points = points;
1812 get_task_struct(chosen);
9cbb78bb 1813 }
72ec7029 1814 css_task_iter_end(&it);
9cbb78bb
DR
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1822}
1823
5660048c
JW
1824static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827{
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858}
1859
4d0c066d
KH
1860/**
1861 * test_mem_cgroup_node_reclaimable
dad7557e 1862 * @memcg: the target memcg
4d0c066d
KH
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
c0ff4b85 1870static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1871 int nid, bool noswap)
1872{
c0ff4b85 1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
c0ff4b85 1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1878 return true;
1879 return false;
1880
1881}
bb4cc1a8 1882#if MAX_NUMNODES > 1
889976db
YH
1883
1884/*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
c0ff4b85 1890static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1891{
1892 int nid;
453a9bf3
KH
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
c0ff4b85 1897 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1898 return;
c0ff4b85 1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1900 return;
1901
889976db 1902 /* make a nodemask where this memcg uses memory from */
31aaea4a 1903 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1904
31aaea4a 1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1906
c0ff4b85
R
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
889976db 1909 }
453a9bf3 1910
c0ff4b85
R
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1913}
1914
1915/*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
c0ff4b85 1927int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1928{
1929 int node;
1930
c0ff4b85
R
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
889976db 1933
c0ff4b85 1934 node = next_node(node, memcg->scan_nodes);
889976db 1935 if (node == MAX_NUMNODES)
c0ff4b85 1936 node = first_node(memcg->scan_nodes);
889976db
YH
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
c0ff4b85 1946 memcg->last_scanned_node = node;
889976db
YH
1947 return node;
1948}
1949
bb4cc1a8
AM
1950/*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957{
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
1966 nid < MAX_NUMNODES;
1967 nid = next_node(nid, memcg->scan_nodes)) {
1968
1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
1976 for_each_node_state(nid, N_MEMORY) {
1977 if (node_isset(nid, memcg->scan_nodes))
1978 continue;
1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 return true;
1981 }
1982 return false;
1983}
1984
889976db 1985#else
c0ff4b85 1986int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1987{
1988 return 0;
1989}
4d0c066d 1990
bb4cc1a8
AM
1991static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992{
1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994}
889976db
YH
1995#endif
1996
0608f43d
AM
1997static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
2001{
2002 struct mem_cgroup *victim = NULL;
2003 int total = 0;
2004 int loop = 0;
2005 unsigned long excess;
2006 unsigned long nr_scanned;
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
2011
2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014 while (1) {
2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 if (!victim) {
2017 loop++;
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
2024 if (!total)
2025 break;
2026 /*
2027 * We want to do more targeted reclaim.
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 break;
2035 }
2036 continue;
2037 }
2038 if (!mem_cgroup_reclaimable(victim, false))
2039 continue;
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 break;
6d61ef40 2045 }
0608f43d
AM
2046 mem_cgroup_iter_break(root_memcg, victim);
2047 return total;
6d61ef40
BS
2048}
2049
0056f4e6
JW
2050#ifdef CONFIG_LOCKDEP
2051static struct lockdep_map memcg_oom_lock_dep_map = {
2052 .name = "memcg_oom_lock",
2053};
2054#endif
2055
fb2a6fc5
JW
2056static DEFINE_SPINLOCK(memcg_oom_lock);
2057
867578cb
KH
2058/*
2059 * Check OOM-Killer is already running under our hierarchy.
2060 * If someone is running, return false.
2061 */
fb2a6fc5 2062static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2063{
79dfdacc 2064 struct mem_cgroup *iter, *failed = NULL;
a636b327 2065
fb2a6fc5
JW
2066 spin_lock(&memcg_oom_lock);
2067
9f3a0d09 2068 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2069 if (iter->oom_lock) {
79dfdacc
MH
2070 /*
2071 * this subtree of our hierarchy is already locked
2072 * so we cannot give a lock.
2073 */
79dfdacc 2074 failed = iter;
9f3a0d09
JW
2075 mem_cgroup_iter_break(memcg, iter);
2076 break;
23751be0
JW
2077 } else
2078 iter->oom_lock = true;
7d74b06f 2079 }
867578cb 2080
fb2a6fc5
JW
2081 if (failed) {
2082 /*
2083 * OK, we failed to lock the whole subtree so we have
2084 * to clean up what we set up to the failing subtree
2085 */
2086 for_each_mem_cgroup_tree(iter, memcg) {
2087 if (iter == failed) {
2088 mem_cgroup_iter_break(memcg, iter);
2089 break;
2090 }
2091 iter->oom_lock = false;
79dfdacc 2092 }
0056f4e6
JW
2093 } else
2094 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2095
2096 spin_unlock(&memcg_oom_lock);
2097
2098 return !failed;
a636b327 2099}
0b7f569e 2100
fb2a6fc5 2101static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2102{
7d74b06f
KH
2103 struct mem_cgroup *iter;
2104
fb2a6fc5 2105 spin_lock(&memcg_oom_lock);
0056f4e6 2106 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2107 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2108 iter->oom_lock = false;
fb2a6fc5 2109 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2110}
2111
c0ff4b85 2112static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2113{
2114 struct mem_cgroup *iter;
2115
c0ff4b85 2116 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2117 atomic_inc(&iter->under_oom);
2118}
2119
c0ff4b85 2120static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2121{
2122 struct mem_cgroup *iter;
2123
867578cb
KH
2124 /*
2125 * When a new child is created while the hierarchy is under oom,
2126 * mem_cgroup_oom_lock() may not be called. We have to use
2127 * atomic_add_unless() here.
2128 */
c0ff4b85 2129 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2130 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2131}
2132
867578cb
KH
2133static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
dc98df5a 2135struct oom_wait_info {
d79154bb 2136 struct mem_cgroup *memcg;
dc98df5a
KH
2137 wait_queue_t wait;
2138};
2139
2140static int memcg_oom_wake_function(wait_queue_t *wait,
2141 unsigned mode, int sync, void *arg)
2142{
d79154bb
HD
2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2145 struct oom_wait_info *oom_wait_info;
2146
2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2148 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2149
dc98df5a 2150 /*
d79154bb 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2152 * Then we can use css_is_ancestor without taking care of RCU.
2153 */
c0ff4b85
R
2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2156 return 0;
dc98df5a
KH
2157 return autoremove_wake_function(wait, mode, sync, arg);
2158}
2159
c0ff4b85 2160static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2161{
3812c8c8 2162 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2163 /* for filtering, pass "memcg" as argument. */
2164 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2165}
2166
c0ff4b85 2167static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2168{
c0ff4b85
R
2169 if (memcg && atomic_read(&memcg->under_oom))
2170 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2171}
2172
3812c8c8 2173static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2174{
3812c8c8
JW
2175 if (!current->memcg_oom.may_oom)
2176 return;
867578cb 2177 /*
49426420
JW
2178 * We are in the middle of the charge context here, so we
2179 * don't want to block when potentially sitting on a callstack
2180 * that holds all kinds of filesystem and mm locks.
2181 *
2182 * Also, the caller may handle a failed allocation gracefully
2183 * (like optional page cache readahead) and so an OOM killer
2184 * invocation might not even be necessary.
2185 *
2186 * That's why we don't do anything here except remember the
2187 * OOM context and then deal with it at the end of the page
2188 * fault when the stack is unwound, the locks are released,
2189 * and when we know whether the fault was overall successful.
867578cb 2190 */
49426420
JW
2191 css_get(&memcg->css);
2192 current->memcg_oom.memcg = memcg;
2193 current->memcg_oom.gfp_mask = mask;
2194 current->memcg_oom.order = order;
3812c8c8
JW
2195}
2196
2197/**
2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2199 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2200 *
49426420
JW
2201 * This has to be called at the end of a page fault if the memcg OOM
2202 * handler was enabled.
3812c8c8 2203 *
49426420 2204 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2205 * sleep on a waitqueue until the userspace task resolves the
2206 * situation. Sleeping directly in the charge context with all kinds
2207 * of locks held is not a good idea, instead we remember an OOM state
2208 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2209 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2210 *
2211 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2212 * completed, %false otherwise.
3812c8c8 2213 */
49426420 2214bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2215{
49426420 2216 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2217 struct oom_wait_info owait;
49426420 2218 bool locked;
3812c8c8
JW
2219
2220 /* OOM is global, do not handle */
3812c8c8 2221 if (!memcg)
49426420 2222 return false;
3812c8c8 2223
49426420
JW
2224 if (!handle)
2225 goto cleanup;
3812c8c8
JW
2226
2227 owait.memcg = memcg;
2228 owait.wait.flags = 0;
2229 owait.wait.func = memcg_oom_wake_function;
2230 owait.wait.private = current;
2231 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2232
3812c8c8 2233 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2234 mem_cgroup_mark_under_oom(memcg);
2235
2236 locked = mem_cgroup_oom_trylock(memcg);
2237
2238 if (locked)
2239 mem_cgroup_oom_notify(memcg);
2240
2241 if (locked && !memcg->oom_kill_disable) {
2242 mem_cgroup_unmark_under_oom(memcg);
2243 finish_wait(&memcg_oom_waitq, &owait.wait);
2244 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245 current->memcg_oom.order);
2246 } else {
3812c8c8 2247 schedule();
49426420
JW
2248 mem_cgroup_unmark_under_oom(memcg);
2249 finish_wait(&memcg_oom_waitq, &owait.wait);
2250 }
2251
2252 if (locked) {
fb2a6fc5
JW
2253 mem_cgroup_oom_unlock(memcg);
2254 /*
2255 * There is no guarantee that an OOM-lock contender
2256 * sees the wakeups triggered by the OOM kill
2257 * uncharges. Wake any sleepers explicitely.
2258 */
2259 memcg_oom_recover(memcg);
2260 }
49426420
JW
2261cleanup:
2262 current->memcg_oom.memcg = NULL;
3812c8c8 2263 css_put(&memcg->css);
867578cb 2264 return true;
0b7f569e
KH
2265}
2266
d69b042f 2267/*
b5ffc856 2268 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2269 *
2270 * Notes: Race condition
2271 *
b5ffc856 2272 * We usually use lock_page_cgroup() for accessing page_cgroup member but
32047e2a
KH
2273 * it tends to be costly. But considering some conditions, we doesn't need
2274 * to do so _always_.
2275 *
2276 * Considering "charge", lock_page_cgroup() is not required because all
2277 * file-stat operations happen after a page is attached to radix-tree. There
2278 * are no race with "charge".
2279 *
2280 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2281 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2282 * if there are race with "uncharge". Statistics itself is properly handled
2283 * by flags.
2284 *
2285 * Considering "move", this is an only case we see a race. To make the race
b5ffc856
QH
2286 * small, we check memcg->moving_account and detect there are possibility
2287 * of race or not. If there is, we take a lock.
d69b042f 2288 */
26174efd 2289
89c06bd5
KH
2290void __mem_cgroup_begin_update_page_stat(struct page *page,
2291 bool *locked, unsigned long *flags)
2292{
2293 struct mem_cgroup *memcg;
2294 struct page_cgroup *pc;
2295
2296 pc = lookup_page_cgroup(page);
2297again:
2298 memcg = pc->mem_cgroup;
2299 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2300 return;
2301 /*
2302 * If this memory cgroup is not under account moving, we don't
da92c47d 2303 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2304 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2305 * rcu_read_unlock().
89c06bd5 2306 */
bdcbb659
QH
2307 VM_BUG_ON(!rcu_read_lock_held());
2308 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317}
2318
2319void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320{
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2326 * should take move_lock_mem_cgroup().
89c06bd5
KH
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329}
2330
2a7106f2 2331void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2332 enum mem_cgroup_stat_index idx, int val)
d69b042f 2333{
c0ff4b85 2334 struct mem_cgroup *memcg;
32047e2a 2335 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2336 unsigned long uninitialized_var(flags);
d69b042f 2337
cfa44946 2338 if (mem_cgroup_disabled())
d69b042f 2339 return;
89c06bd5 2340
658b72c5 2341 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2344 return;
26174efd 2345
c0ff4b85 2346 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2347}
26174efd 2348
cdec2e42
KH
2349/*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
7ec99d62 2353#define CHARGE_BATCH 32U
cdec2e42
KH
2354struct memcg_stock_pcp {
2355 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2356 unsigned int nr_pages;
cdec2e42 2357 struct work_struct work;
26fe6168 2358 unsigned long flags;
a0db00fc 2359#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2360};
2361static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2362static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2363
a0956d54
SS
2364/**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
cdec2e42 2374 */
a0956d54 2375static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2376{
2377 struct memcg_stock_pcp *stock;
2378 bool ret = true;
2379
a0956d54
SS
2380 if (nr_pages > CHARGE_BATCH)
2381 return false;
2382
cdec2e42 2383 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 stock->nr_pages -= nr_pages;
cdec2e42
KH
2386 else /* need to call res_counter_charge */
2387 ret = false;
2388 put_cpu_var(memcg_stock);
2389 return ret;
2390}
2391
2392/*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395static void drain_stock(struct memcg_stock_pcp *stock)
2396{
2397 struct mem_cgroup *old = stock->cached;
2398
11c9ea4e
JW
2399 if (stock->nr_pages) {
2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402 res_counter_uncharge(&old->res, bytes);
cdec2e42 2403 if (do_swap_account)
11c9ea4e
JW
2404 res_counter_uncharge(&old->memsw, bytes);
2405 stock->nr_pages = 0;
cdec2e42
KH
2406 }
2407 stock->cached = NULL;
cdec2e42
KH
2408}
2409
2410/*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414static void drain_local_stock(struct work_struct *dummy)
2415{
7c8e0181 2416 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2417 drain_stock(stock);
26fe6168 2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2419}
2420
e4777496
MH
2421static void __init memcg_stock_init(void)
2422{
2423 int cpu;
2424
2425 for_each_possible_cpu(cpu) {
2426 struct memcg_stock_pcp *stock =
2427 &per_cpu(memcg_stock, cpu);
2428 INIT_WORK(&stock->work, drain_local_stock);
2429 }
2430}
2431
cdec2e42
KH
2432/*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2434 * This will be consumed by consume_stock() function, later.
cdec2e42 2435 */
c0ff4b85 2436static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2437{
2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
c0ff4b85 2440 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2441 drain_stock(stock);
c0ff4b85 2442 stock->cached = memcg;
cdec2e42 2443 }
11c9ea4e 2444 stock->nr_pages += nr_pages;
cdec2e42
KH
2445 put_cpu_var(memcg_stock);
2446}
2447
2448/*
c0ff4b85 2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
cdec2e42 2452 */
c0ff4b85 2453static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2454{
26fe6168 2455 int cpu, curcpu;
d38144b7 2456
cdec2e42 2457 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2458 get_online_cpus();
5af12d0e 2459 curcpu = get_cpu();
cdec2e42
KH
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2462 struct mem_cgroup *memcg;
26fe6168 2463
c0ff4b85
R
2464 memcg = stock->cached;
2465 if (!memcg || !stock->nr_pages)
26fe6168 2466 continue;
c0ff4b85 2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2468 continue;
d1a05b69
MH
2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 if (cpu == curcpu)
2471 drain_local_stock(&stock->work);
2472 else
2473 schedule_work_on(cpu, &stock->work);
2474 }
cdec2e42 2475 }
5af12d0e 2476 put_cpu();
d38144b7
MH
2477
2478 if (!sync)
2479 goto out;
2480
2481 for_each_online_cpu(cpu) {
2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2484 flush_work(&stock->work);
2485 }
2486out:
f894ffa8 2487 put_online_cpus();
d38144b7
MH
2488}
2489
2490/*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
c0ff4b85 2496static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2497{
9f50fad6
MH
2498 /*
2499 * If someone calls draining, avoid adding more kworker runs.
2500 */
2501 if (!mutex_trylock(&percpu_charge_mutex))
2502 return;
c0ff4b85 2503 drain_all_stock(root_memcg, false);
9f50fad6 2504 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2505}
2506
2507/* This is a synchronous drain interface. */
c0ff4b85 2508static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2509{
2510 /* called when force_empty is called */
9f50fad6 2511 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2512 drain_all_stock(root_memcg, true);
9f50fad6 2513 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2514}
2515
711d3d2c
KH
2516/*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
c0ff4b85 2520static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2521{
2522 int i;
2523
c0ff4b85 2524 spin_lock(&memcg->pcp_counter_lock);
6104621d 2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2526 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2527
c0ff4b85
R
2528 per_cpu(memcg->stat->count[i], cpu) = 0;
2529 memcg->nocpu_base.count[i] += x;
711d3d2c 2530 }
e9f8974f 2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2533
c0ff4b85
R
2534 per_cpu(memcg->stat->events[i], cpu) = 0;
2535 memcg->nocpu_base.events[i] += x;
e9f8974f 2536 }
c0ff4b85 2537 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2538}
2539
0db0628d 2540static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2541 unsigned long action,
2542 void *hcpu)
2543{
2544 int cpu = (unsigned long)hcpu;
2545 struct memcg_stock_pcp *stock;
711d3d2c 2546 struct mem_cgroup *iter;
cdec2e42 2547
619d094b 2548 if (action == CPU_ONLINE)
1489ebad 2549 return NOTIFY_OK;
1489ebad 2550
d833049b 2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2552 return NOTIFY_OK;
711d3d2c 2553
9f3a0d09 2554 for_each_mem_cgroup(iter)
711d3d2c
KH
2555 mem_cgroup_drain_pcp_counter(iter, cpu);
2556
cdec2e42
KH
2557 stock = &per_cpu(memcg_stock, cpu);
2558 drain_stock(stock);
2559 return NOTIFY_OK;
2560}
2561
4b534334 2562
6d1fdc48 2563/* See mem_cgroup_try_charge() for details */
4b534334
KH
2564enum {
2565 CHARGE_OK, /* success */
2566 CHARGE_RETRY, /* need to retry but retry is not bad */
2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2569};
2570
c0ff4b85 2571static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2572 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2573 bool invoke_oom)
4b534334 2574{
7ec99d62 2575 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2576 struct mem_cgroup *mem_over_limit;
2577 struct res_counter *fail_res;
2578 unsigned long flags = 0;
2579 int ret;
2580
c0ff4b85 2581 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2582
2583 if (likely(!ret)) {
2584 if (!do_swap_account)
2585 return CHARGE_OK;
c0ff4b85 2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2587 if (likely(!ret))
2588 return CHARGE_OK;
2589
c0ff4b85 2590 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 } else
2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2595 /*
9221edb7
JW
2596 * Never reclaim on behalf of optional batching, retry with a
2597 * single page instead.
2598 */
4c9c5359 2599 if (nr_pages > min_pages)
4b534334
KH
2600 return CHARGE_RETRY;
2601
2602 if (!(gfp_mask & __GFP_WAIT))
2603 return CHARGE_WOULDBLOCK;
2604
4c9c5359
SS
2605 if (gfp_mask & __GFP_NORETRY)
2606 return CHARGE_NOMEM;
2607
5660048c 2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2610 return CHARGE_RETRY;
4b534334 2611 /*
19942822
JW
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
4b534334 2619 */
4c9c5359 2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2621 return CHARGE_RETRY;
2622
2623 /*
2624 * At task move, charge accounts can be doubly counted. So, it's
2625 * better to wait until the end of task_move if something is going on.
2626 */
2627 if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 return CHARGE_RETRY;
2629
3812c8c8
JW
2630 if (invoke_oom)
2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2632
3812c8c8 2633 return CHARGE_NOMEM;
4b534334
KH
2634}
2635
6d1fdc48
JW
2636/**
2637 * mem_cgroup_try_charge - try charging a memcg
2638 * @memcg: memcg to charge
2639 * @nr_pages: number of pages to charge
2640 * @oom: trigger OOM if reclaim fails
38c5d72f 2641 *
6d1fdc48
JW
2642 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2643 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2644 */
6d1fdc48
JW
2645static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2646 gfp_t gfp_mask,
2647 unsigned int nr_pages,
2648 bool oom)
8a9f3ccd 2649{
7ec99d62 2650 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2651 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2652 int ret;
a636b327 2653
6d1fdc48
JW
2654 if (mem_cgroup_is_root(memcg))
2655 goto done;
867578cb 2656 /*
6d1fdc48
JW
2657 * Unlike in global OOM situations, memcg is not in a physical
2658 * memory shortage. Allow dying and OOM-killed tasks to
2659 * bypass the last charges so that they can exit quickly and
2660 * free their memory.
867578cb 2661 */
6d1fdc48 2662 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
d8dc595c
MH
2663 fatal_signal_pending(current) ||
2664 current->flags & PF_EXITING))
867578cb 2665 goto bypass;
a636b327 2666
49426420 2667 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2668 goto nomem;
49426420 2669
a0d8b00a
JW
2670 if (gfp_mask & __GFP_NOFAIL)
2671 oom = false;
f75ca962 2672again:
b6b6cc72
MH
2673 if (consume_stock(memcg, nr_pages))
2674 goto done;
8a9f3ccd 2675
4b534334 2676 do {
3812c8c8 2677 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2678
4b534334 2679 /* If killed, bypass charge */
6d1fdc48 2680 if (fatal_signal_pending(current))
4b534334 2681 goto bypass;
6d61ef40 2682
3812c8c8
JW
2683 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2684 nr_pages, invoke_oom);
4b534334
KH
2685 switch (ret) {
2686 case CHARGE_OK:
2687 break;
2688 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2689 batch = nr_pages;
f75ca962 2690 goto again;
4b534334
KH
2691 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2692 goto nomem;
2693 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2694 if (!oom || invoke_oom)
867578cb 2695 goto nomem;
4b534334
KH
2696 nr_oom_retries--;
2697 break;
66e1707b 2698 }
4b534334
KH
2699 } while (ret != CHARGE_OK);
2700
7ec99d62 2701 if (batch > nr_pages)
c0ff4b85 2702 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2703done:
7a81b88c
KH
2704 return 0;
2705nomem:
6d1fdc48 2706 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2707 return -ENOMEM;
867578cb 2708bypass:
38c5d72f 2709 return -EINTR;
7a81b88c 2710}
8a9f3ccd 2711
6d1fdc48
JW
2712/**
2713 * mem_cgroup_try_charge_mm - try charging a mm
2714 * @mm: mm_struct to charge
2715 * @nr_pages: number of pages to charge
2716 * @oom: trigger OOM if reclaim fails
2717 *
2718 * Returns the charged mem_cgroup associated with the given mm_struct or
2719 * NULL the charge failed.
2720 */
2721static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2722 gfp_t gfp_mask,
2723 unsigned int nr_pages,
2724 bool oom)
2725
2726{
2727 struct mem_cgroup *memcg;
2728 int ret;
2729
2730 memcg = get_mem_cgroup_from_mm(mm);
2731 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2732 css_put(&memcg->css);
2733 if (ret == -EINTR)
2734 memcg = root_mem_cgroup;
2735 else if (ret)
2736 memcg = NULL;
2737
2738 return memcg;
2739}
2740
a3032a2c
DN
2741/*
2742 * Somemtimes we have to undo a charge we got by try_charge().
2743 * This function is for that and do uncharge, put css's refcnt.
2744 * gotten by try_charge().
2745 */
c0ff4b85 2746static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2747 unsigned int nr_pages)
a3032a2c 2748{
c0ff4b85 2749 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2750 unsigned long bytes = nr_pages * PAGE_SIZE;
2751
c0ff4b85 2752 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2753 if (do_swap_account)
c0ff4b85 2754 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2755 }
854ffa8d
DN
2756}
2757
d01dd17f
KH
2758/*
2759 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2760 * This is useful when moving usage to parent cgroup.
2761 */
2762static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2763 unsigned int nr_pages)
2764{
2765 unsigned long bytes = nr_pages * PAGE_SIZE;
2766
2767 if (mem_cgroup_is_root(memcg))
2768 return;
2769
2770 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2771 if (do_swap_account)
2772 res_counter_uncharge_until(&memcg->memsw,
2773 memcg->memsw.parent, bytes);
2774}
2775
a3b2d692
KH
2776/*
2777 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2778 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2779 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2780 * called against removed memcg.)
a3b2d692
KH
2781 */
2782static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2783{
a3b2d692
KH
2784 /* ID 0 is unused ID */
2785 if (!id)
2786 return NULL;
34c00c31 2787 return mem_cgroup_from_id(id);
a3b2d692
KH
2788}
2789
e42d9d5d 2790struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2791{
c0ff4b85 2792 struct mem_cgroup *memcg = NULL;
3c776e64 2793 struct page_cgroup *pc;
a3b2d692 2794 unsigned short id;
b5a84319
KH
2795 swp_entry_t ent;
2796
309381fe 2797 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2798
3c776e64 2799 pc = lookup_page_cgroup(page);
c0bd3f63 2800 lock_page_cgroup(pc);
a3b2d692 2801 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2802 memcg = pc->mem_cgroup;
2803 if (memcg && !css_tryget(&memcg->css))
2804 memcg = NULL;
e42d9d5d 2805 } else if (PageSwapCache(page)) {
3c776e64 2806 ent.val = page_private(page);
9fb4b7cc 2807 id = lookup_swap_cgroup_id(ent);
a3b2d692 2808 rcu_read_lock();
c0ff4b85
R
2809 memcg = mem_cgroup_lookup(id);
2810 if (memcg && !css_tryget(&memcg->css))
2811 memcg = NULL;
a3b2d692 2812 rcu_read_unlock();
3c776e64 2813 }
c0bd3f63 2814 unlock_page_cgroup(pc);
c0ff4b85 2815 return memcg;
b5a84319
KH
2816}
2817
c0ff4b85 2818static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2819 struct page *page,
7ec99d62 2820 unsigned int nr_pages,
9ce70c02
HD
2821 enum charge_type ctype,
2822 bool lrucare)
7a81b88c 2823{
ce587e65 2824 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2825 struct zone *uninitialized_var(zone);
fa9add64 2826 struct lruvec *lruvec;
9ce70c02 2827 bool was_on_lru = false;
b2402857 2828 bool anon;
9ce70c02 2829
ca3e0214 2830 lock_page_cgroup(pc);
309381fe 2831 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2832 /*
2833 * we don't need page_cgroup_lock about tail pages, becase they are not
2834 * accessed by any other context at this point.
2835 */
9ce70c02
HD
2836
2837 /*
2838 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2839 * may already be on some other mem_cgroup's LRU. Take care of it.
2840 */
2841 if (lrucare) {
2842 zone = page_zone(page);
2843 spin_lock_irq(&zone->lru_lock);
2844 if (PageLRU(page)) {
fa9add64 2845 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2846 ClearPageLRU(page);
fa9add64 2847 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2848 was_on_lru = true;
2849 }
2850 }
2851
c0ff4b85 2852 pc->mem_cgroup = memcg;
261fb61a
KH
2853 /*
2854 * We access a page_cgroup asynchronously without lock_page_cgroup().
2855 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2856 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2857 * before USED bit, we need memory barrier here.
2858 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2859 */
08e552c6 2860 smp_wmb();
b2402857 2861 SetPageCgroupUsed(pc);
3be91277 2862
9ce70c02
HD
2863 if (lrucare) {
2864 if (was_on_lru) {
fa9add64 2865 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2866 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2867 SetPageLRU(page);
fa9add64 2868 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2869 }
2870 spin_unlock_irq(&zone->lru_lock);
2871 }
2872
41326c17 2873 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2874 anon = true;
2875 else
2876 anon = false;
2877
b070e65c 2878 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2879 unlock_page_cgroup(pc);
9ce70c02 2880
430e4863 2881 /*
bb4cc1a8
AM
2882 * "charge_statistics" updated event counter. Then, check it.
2883 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2884 * if they exceeds softlimit.
430e4863 2885 */
c0ff4b85 2886 memcg_check_events(memcg, page);
7a81b88c 2887}
66e1707b 2888
7cf27982
GC
2889static DEFINE_MUTEX(set_limit_mutex);
2890
7ae1e1d0 2891#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2892/*
2893 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2894 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2895 */
2896static DEFINE_MUTEX(memcg_slab_mutex);
2897
d6441637
VD
2898static DEFINE_MUTEX(activate_kmem_mutex);
2899
7ae1e1d0
GC
2900static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2901{
2902 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2903 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2904}
2905
1f458cbf
GC
2906/*
2907 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2908 * in the memcg_cache_params struct.
2909 */
2910static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2911{
2912 struct kmem_cache *cachep;
2913
2914 VM_BUG_ON(p->is_root_cache);
2915 cachep = p->root_cache;
7a67d7ab 2916 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2917}
2918
749c5415 2919#ifdef CONFIG_SLABINFO
2da8ca82 2920static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2921{
2da8ca82 2922 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2923 struct memcg_cache_params *params;
2924
2925 if (!memcg_can_account_kmem(memcg))
2926 return -EIO;
2927
2928 print_slabinfo_header(m);
2929
bd673145 2930 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2931 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2932 cache_show(memcg_params_to_cache(params), m);
bd673145 2933 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2934
2935 return 0;
2936}
2937#endif
2938
c67a8a68 2939static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2940{
2941 struct res_counter *fail_res;
7ae1e1d0 2942 int ret = 0;
7ae1e1d0
GC
2943
2944 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2945 if (ret)
2946 return ret;
2947
6d1fdc48
JW
2948 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2949 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2950 if (ret == -EINTR) {
2951 /*
6d1fdc48 2952 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2953 * OOM kill or fatal signal. Since our only options are to
2954 * either fail the allocation or charge it to this cgroup, do
2955 * it as a temporary condition. But we can't fail. From a
2956 * kmem/slab perspective, the cache has already been selected,
2957 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2958 * our minds.
2959 *
2960 * This condition will only trigger if the task entered
2961 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2962 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2963 * dying when the allocation triggers should have been already
2964 * directed to the root cgroup in memcontrol.h
2965 */
2966 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2967 if (do_swap_account)
2968 res_counter_charge_nofail(&memcg->memsw, size,
2969 &fail_res);
2970 ret = 0;
2971 } else if (ret)
2972 res_counter_uncharge(&memcg->kmem, size);
2973
2974 return ret;
2975}
2976
c67a8a68 2977static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2978{
7ae1e1d0
GC
2979 res_counter_uncharge(&memcg->res, size);
2980 if (do_swap_account)
2981 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2982
2983 /* Not down to 0 */
2984 if (res_counter_uncharge(&memcg->kmem, size))
2985 return;
2986
10d5ebf4
LZ
2987 /*
2988 * Releases a reference taken in kmem_cgroup_css_offline in case
2989 * this last uncharge is racing with the offlining code or it is
2990 * outliving the memcg existence.
2991 *
2992 * The memory barrier imposed by test&clear is paired with the
2993 * explicit one in memcg_kmem_mark_dead().
2994 */
7de37682 2995 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2996 css_put(&memcg->css);
7ae1e1d0
GC
2997}
2998
2633d7a0
GC
2999/*
3000 * helper for acessing a memcg's index. It will be used as an index in the
3001 * child cache array in kmem_cache, and also to derive its name. This function
3002 * will return -1 when this is not a kmem-limited memcg.
3003 */
3004int memcg_cache_id(struct mem_cgroup *memcg)
3005{
3006 return memcg ? memcg->kmemcg_id : -1;
3007}
3008
55007d84
GC
3009static size_t memcg_caches_array_size(int num_groups)
3010{
3011 ssize_t size;
3012 if (num_groups <= 0)
3013 return 0;
3014
3015 size = 2 * num_groups;
3016 if (size < MEMCG_CACHES_MIN_SIZE)
3017 size = MEMCG_CACHES_MIN_SIZE;
3018 else if (size > MEMCG_CACHES_MAX_SIZE)
3019 size = MEMCG_CACHES_MAX_SIZE;
3020
3021 return size;
3022}
3023
3024/*
3025 * We should update the current array size iff all caches updates succeed. This
3026 * can only be done from the slab side. The slab mutex needs to be held when
3027 * calling this.
3028 */
3029void memcg_update_array_size(int num)
3030{
3031 if (num > memcg_limited_groups_array_size)
3032 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3033}
3034
3035int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3036{
3037 struct memcg_cache_params *cur_params = s->memcg_params;
3038
f35c3a8e 3039 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3040
3041 if (num_groups > memcg_limited_groups_array_size) {
3042 int i;
f8570263 3043 struct memcg_cache_params *new_params;
55007d84
GC
3044 ssize_t size = memcg_caches_array_size(num_groups);
3045
3046 size *= sizeof(void *);
90c7a79c 3047 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3048
f8570263
VD
3049 new_params = kzalloc(size, GFP_KERNEL);
3050 if (!new_params)
55007d84 3051 return -ENOMEM;
55007d84 3052
f8570263 3053 new_params->is_root_cache = true;
55007d84
GC
3054
3055 /*
3056 * There is the chance it will be bigger than
3057 * memcg_limited_groups_array_size, if we failed an allocation
3058 * in a cache, in which case all caches updated before it, will
3059 * have a bigger array.
3060 *
3061 * But if that is the case, the data after
3062 * memcg_limited_groups_array_size is certainly unused
3063 */
3064 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3065 if (!cur_params->memcg_caches[i])
3066 continue;
f8570263 3067 new_params->memcg_caches[i] =
55007d84
GC
3068 cur_params->memcg_caches[i];
3069 }
3070
3071 /*
3072 * Ideally, we would wait until all caches succeed, and only
3073 * then free the old one. But this is not worth the extra
3074 * pointer per-cache we'd have to have for this.
3075 *
3076 * It is not a big deal if some caches are left with a size
3077 * bigger than the others. And all updates will reset this
3078 * anyway.
3079 */
f8570263
VD
3080 rcu_assign_pointer(s->memcg_params, new_params);
3081 if (cur_params)
3082 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3083 }
3084 return 0;
3085}
3086
363a044f
VD
3087int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3088 struct kmem_cache *root_cache)
2633d7a0 3089{
90c7a79c 3090 size_t size;
2633d7a0
GC
3091
3092 if (!memcg_kmem_enabled())
3093 return 0;
3094
90c7a79c
AV
3095 if (!memcg) {
3096 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3097 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3098 } else
3099 size = sizeof(struct memcg_cache_params);
55007d84 3100
2633d7a0
GC
3101 s->memcg_params = kzalloc(size, GFP_KERNEL);
3102 if (!s->memcg_params)
3103 return -ENOMEM;
3104
943a451a 3105 if (memcg) {
2633d7a0 3106 s->memcg_params->memcg = memcg;
943a451a 3107 s->memcg_params->root_cache = root_cache;
051dd460 3108 css_get(&memcg->css);
4ba902b5
GC
3109 } else
3110 s->memcg_params->is_root_cache = true;
3111
2633d7a0
GC
3112 return 0;
3113}
3114
363a044f
VD
3115void memcg_free_cache_params(struct kmem_cache *s)
3116{
051dd460
VD
3117 if (!s->memcg_params)
3118 return;
3119 if (!s->memcg_params->is_root_cache)
3120 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3121 kfree(s->memcg_params);
3122}
3123
776ed0f0
VD
3124static void memcg_register_cache(struct mem_cgroup *memcg,
3125 struct kmem_cache *root_cache)
2633d7a0 3126{
93f39eea
VD
3127 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3128 memcg_slab_mutex */
bd673145 3129 struct kmem_cache *cachep;
d7f25f8a
GC
3130 int id;
3131
bd673145
VD
3132 lockdep_assert_held(&memcg_slab_mutex);
3133
3134 id = memcg_cache_id(memcg);
3135
3136 /*
3137 * Since per-memcg caches are created asynchronously on first
3138 * allocation (see memcg_kmem_get_cache()), several threads can try to
3139 * create the same cache, but only one of them may succeed.
3140 */
3141 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3142 return;
3143
073ee1c6 3144 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 3145 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 3146 /*
bd673145
VD
3147 * If we could not create a memcg cache, do not complain, because
3148 * that's not critical at all as we can always proceed with the root
3149 * cache.
2edefe11 3150 */
bd673145
VD
3151 if (!cachep)
3152 return;
2edefe11 3153
bd673145 3154 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3155
d7f25f8a 3156 /*
959c8963
VD
3157 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3158 * barrier here to ensure nobody will see the kmem_cache partially
3159 * initialized.
d7f25f8a 3160 */
959c8963
VD
3161 smp_wmb();
3162
bd673145
VD
3163 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3164 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3165}
d7f25f8a 3166
776ed0f0 3167static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3168{
bd673145 3169 struct kmem_cache *root_cache;
1aa13254
VD
3170 struct mem_cgroup *memcg;
3171 int id;
3172
bd673145 3173 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3174
bd673145 3175 BUG_ON(is_root_cache(cachep));
2edefe11 3176
bd673145
VD
3177 root_cache = cachep->memcg_params->root_cache;
3178 memcg = cachep->memcg_params->memcg;
96403da2 3179 id = memcg_cache_id(memcg);
d7f25f8a 3180
bd673145
VD
3181 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3182 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3183
bd673145
VD
3184 list_del(&cachep->memcg_params->list);
3185
3186 kmem_cache_destroy(cachep);
2633d7a0
GC
3187}
3188
0e9d92f2
GC
3189/*
3190 * During the creation a new cache, we need to disable our accounting mechanism
3191 * altogether. This is true even if we are not creating, but rather just
3192 * enqueing new caches to be created.
3193 *
3194 * This is because that process will trigger allocations; some visible, like
3195 * explicit kmallocs to auxiliary data structures, name strings and internal
3196 * cache structures; some well concealed, like INIT_WORK() that can allocate
3197 * objects during debug.
3198 *
3199 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3200 * to it. This may not be a bounded recursion: since the first cache creation
3201 * failed to complete (waiting on the allocation), we'll just try to create the
3202 * cache again, failing at the same point.
3203 *
3204 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3205 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3206 * inside the following two functions.
3207 */
3208static inline void memcg_stop_kmem_account(void)
3209{
3210 VM_BUG_ON(!current->mm);
3211 current->memcg_kmem_skip_account++;
3212}
3213
3214static inline void memcg_resume_kmem_account(void)
3215{
3216 VM_BUG_ON(!current->mm);
3217 current->memcg_kmem_skip_account--;
3218}
3219
776ed0f0 3220int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3221{
3222 struct kmem_cache *c;
b8529907 3223 int i, failed = 0;
7cf27982 3224
bd673145 3225 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3226 for_each_memcg_cache_index(i) {
3227 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3228 if (!c)
3229 continue;
3230
776ed0f0 3231 memcg_unregister_cache(c);
b8529907
VD
3232
3233 if (cache_from_memcg_idx(s, i))
3234 failed++;
7cf27982 3235 }
bd673145 3236 mutex_unlock(&memcg_slab_mutex);
b8529907 3237 return failed;
7cf27982
GC
3238}
3239
776ed0f0 3240static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3241{
3242 struct kmem_cache *cachep;
bd673145 3243 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3244
3245 if (!memcg_kmem_is_active(memcg))
3246 return;
3247
bd673145
VD
3248 mutex_lock(&memcg_slab_mutex);
3249 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3250 cachep = memcg_params_to_cache(params);
bd673145
VD
3251 kmem_cache_shrink(cachep);
3252 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3253 memcg_unregister_cache(cachep);
1f458cbf 3254 }
bd673145 3255 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3256}
3257
776ed0f0 3258struct memcg_register_cache_work {
5722d094
VD
3259 struct mem_cgroup *memcg;
3260 struct kmem_cache *cachep;
3261 struct work_struct work;
3262};
3263
776ed0f0 3264static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3265{
776ed0f0
VD
3266 struct memcg_register_cache_work *cw =
3267 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3268 struct mem_cgroup *memcg = cw->memcg;
3269 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3270
bd673145 3271 mutex_lock(&memcg_slab_mutex);
776ed0f0 3272 memcg_register_cache(memcg, cachep);
bd673145
VD
3273 mutex_unlock(&memcg_slab_mutex);
3274
5722d094 3275 css_put(&memcg->css);
d7f25f8a
GC
3276 kfree(cw);
3277}
3278
3279/*
3280 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3281 */
776ed0f0
VD
3282static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3283 struct kmem_cache *cachep)
d7f25f8a 3284{
776ed0f0 3285 struct memcg_register_cache_work *cw;
d7f25f8a 3286
776ed0f0 3287 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3288 if (cw == NULL) {
3289 css_put(&memcg->css);
d7f25f8a
GC
3290 return;
3291 }
3292
3293 cw->memcg = memcg;
3294 cw->cachep = cachep;
3295
776ed0f0 3296 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3297 schedule_work(&cw->work);
3298}
3299
776ed0f0
VD
3300static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3301 struct kmem_cache *cachep)
0e9d92f2
GC
3302{
3303 /*
3304 * We need to stop accounting when we kmalloc, because if the
3305 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3306 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3307 *
3308 * However, it is better to enclose the whole function. Depending on
3309 * the debugging options enabled, INIT_WORK(), for instance, can
3310 * trigger an allocation. This too, will make us recurse. Because at
3311 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3312 * the safest choice is to do it like this, wrapping the whole function.
3313 */
3314 memcg_stop_kmem_account();
776ed0f0 3315 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3316 memcg_resume_kmem_account();
3317}
c67a8a68
VD
3318
3319int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3320{
3321 int res;
3322
3323 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3324 PAGE_SIZE << order);
3325 if (!res)
3326 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3327 return res;
3328}
3329
3330void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3331{
3332 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3333 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3334}
3335
d7f25f8a
GC
3336/*
3337 * Return the kmem_cache we're supposed to use for a slab allocation.
3338 * We try to use the current memcg's version of the cache.
3339 *
3340 * If the cache does not exist yet, if we are the first user of it,
3341 * we either create it immediately, if possible, or create it asynchronously
3342 * in a workqueue.
3343 * In the latter case, we will let the current allocation go through with
3344 * the original cache.
3345 *
3346 * Can't be called in interrupt context or from kernel threads.
3347 * This function needs to be called with rcu_read_lock() held.
3348 */
3349struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3350 gfp_t gfp)
3351{
3352 struct mem_cgroup *memcg;
959c8963 3353 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3354
3355 VM_BUG_ON(!cachep->memcg_params);
3356 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3357
0e9d92f2
GC
3358 if (!current->mm || current->memcg_kmem_skip_account)
3359 return cachep;
3360
d7f25f8a
GC
3361 rcu_read_lock();
3362 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3363
3364 if (!memcg_can_account_kmem(memcg))
ca0dde97 3365 goto out;
d7f25f8a 3366
959c8963
VD
3367 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3368 if (likely(memcg_cachep)) {
3369 cachep = memcg_cachep;
ca0dde97 3370 goto out;
d7f25f8a
GC
3371 }
3372
ca0dde97
LZ
3373 /* The corresponding put will be done in the workqueue. */
3374 if (!css_tryget(&memcg->css))
3375 goto out;
3376 rcu_read_unlock();
3377
3378 /*
3379 * If we are in a safe context (can wait, and not in interrupt
3380 * context), we could be be predictable and return right away.
3381 * This would guarantee that the allocation being performed
3382 * already belongs in the new cache.
3383 *
3384 * However, there are some clashes that can arrive from locking.
3385 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3386 * memcg_create_kmem_cache, this means no further allocation
3387 * could happen with the slab_mutex held. So it's better to
3388 * defer everything.
ca0dde97 3389 */
776ed0f0 3390 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3391 return cachep;
3392out:
3393 rcu_read_unlock();
3394 return cachep;
d7f25f8a 3395}
d7f25f8a 3396
7ae1e1d0
GC
3397/*
3398 * We need to verify if the allocation against current->mm->owner's memcg is
3399 * possible for the given order. But the page is not allocated yet, so we'll
3400 * need a further commit step to do the final arrangements.
3401 *
3402 * It is possible for the task to switch cgroups in this mean time, so at
3403 * commit time, we can't rely on task conversion any longer. We'll then use
3404 * the handle argument to return to the caller which cgroup we should commit
3405 * against. We could also return the memcg directly and avoid the pointer
3406 * passing, but a boolean return value gives better semantics considering
3407 * the compiled-out case as well.
3408 *
3409 * Returning true means the allocation is possible.
3410 */
3411bool
3412__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3413{
3414 struct mem_cgroup *memcg;
3415 int ret;
3416
3417 *_memcg = NULL;
6d42c232
GC
3418
3419 /*
3420 * Disabling accounting is only relevant for some specific memcg
3421 * internal allocations. Therefore we would initially not have such
52383431
VD
3422 * check here, since direct calls to the page allocator that are
3423 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3424 * outside memcg core. We are mostly concerned with cache allocations,
3425 * and by having this test at memcg_kmem_get_cache, we are already able
3426 * to relay the allocation to the root cache and bypass the memcg cache
3427 * altogether.
6d42c232
GC
3428 *
3429 * There is one exception, though: the SLUB allocator does not create
3430 * large order caches, but rather service large kmallocs directly from
3431 * the page allocator. Therefore, the following sequence when backed by
3432 * the SLUB allocator:
3433 *
f894ffa8
AM
3434 * memcg_stop_kmem_account();
3435 * kmalloc(<large_number>)
3436 * memcg_resume_kmem_account();
6d42c232
GC
3437 *
3438 * would effectively ignore the fact that we should skip accounting,
3439 * since it will drive us directly to this function without passing
3440 * through the cache selector memcg_kmem_get_cache. Such large
3441 * allocations are extremely rare but can happen, for instance, for the
3442 * cache arrays. We bring this test here.
3443 */
3444 if (!current->mm || current->memcg_kmem_skip_account)
3445 return true;
3446
df381975 3447 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3448
3449 if (!memcg_can_account_kmem(memcg)) {
3450 css_put(&memcg->css);
3451 return true;
3452 }
3453
7ae1e1d0
GC
3454 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3455 if (!ret)
3456 *_memcg = memcg;
7ae1e1d0
GC
3457
3458 css_put(&memcg->css);
3459 return (ret == 0);
3460}
3461
3462void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3463 int order)
3464{
3465 struct page_cgroup *pc;
3466
3467 VM_BUG_ON(mem_cgroup_is_root(memcg));
3468
3469 /* The page allocation failed. Revert */
3470 if (!page) {
3471 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3472 return;
3473 }
3474
3475 pc = lookup_page_cgroup(page);
3476 lock_page_cgroup(pc);
3477 pc->mem_cgroup = memcg;
3478 SetPageCgroupUsed(pc);
3479 unlock_page_cgroup(pc);
3480}
3481
3482void __memcg_kmem_uncharge_pages(struct page *page, int order)
3483{
3484 struct mem_cgroup *memcg = NULL;
3485 struct page_cgroup *pc;
3486
3487
3488 pc = lookup_page_cgroup(page);
3489 /*
3490 * Fast unlocked return. Theoretically might have changed, have to
3491 * check again after locking.
3492 */
3493 if (!PageCgroupUsed(pc))
3494 return;
3495
3496 lock_page_cgroup(pc);
3497 if (PageCgroupUsed(pc)) {
3498 memcg = pc->mem_cgroup;
3499 ClearPageCgroupUsed(pc);
3500 }
3501 unlock_page_cgroup(pc);
3502
3503 /*
3504 * We trust that only if there is a memcg associated with the page, it
3505 * is a valid allocation
3506 */
3507 if (!memcg)
3508 return;
3509
309381fe 3510 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3511 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3512}
1f458cbf 3513#else
776ed0f0 3514static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3515{
3516}
7ae1e1d0
GC
3517#endif /* CONFIG_MEMCG_KMEM */
3518
ca3e0214
KH
3519#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3520
a0db00fc 3521#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3522/*
3523 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3524 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3525 * charge/uncharge will be never happen and move_account() is done under
3526 * compound_lock(), so we don't have to take care of races.
ca3e0214 3527 */
e94c8a9c 3528void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3529{
3530 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3531 struct page_cgroup *pc;
b070e65c 3532 struct mem_cgroup *memcg;
e94c8a9c 3533 int i;
ca3e0214 3534
3d37c4a9
KH
3535 if (mem_cgroup_disabled())
3536 return;
b070e65c
DR
3537
3538 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3539 for (i = 1; i < HPAGE_PMD_NR; i++) {
3540 pc = head_pc + i;
b070e65c 3541 pc->mem_cgroup = memcg;
e94c8a9c 3542 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3543 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3544 }
b070e65c
DR
3545 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3546 HPAGE_PMD_NR);
ca3e0214 3547}
12d27107 3548#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3549
f817ed48 3550/**
de3638d9 3551 * mem_cgroup_move_account - move account of the page
5564e88b 3552 * @page: the page
7ec99d62 3553 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3554 * @pc: page_cgroup of the page.
3555 * @from: mem_cgroup which the page is moved from.
3556 * @to: mem_cgroup which the page is moved to. @from != @to.
3557 *
3558 * The caller must confirm following.
08e552c6 3559 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3560 * - compound_lock is held when nr_pages > 1
f817ed48 3561 *
2f3479b1
KH
3562 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3563 * from old cgroup.
f817ed48 3564 */
7ec99d62
JW
3565static int mem_cgroup_move_account(struct page *page,
3566 unsigned int nr_pages,
3567 struct page_cgroup *pc,
3568 struct mem_cgroup *from,
2f3479b1 3569 struct mem_cgroup *to)
f817ed48 3570{
de3638d9
JW
3571 unsigned long flags;
3572 int ret;
b2402857 3573 bool anon = PageAnon(page);
987eba66 3574
f817ed48 3575 VM_BUG_ON(from == to);
309381fe 3576 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3577 /*
3578 * The page is isolated from LRU. So, collapse function
3579 * will not handle this page. But page splitting can happen.
3580 * Do this check under compound_page_lock(). The caller should
3581 * hold it.
3582 */
3583 ret = -EBUSY;
7ec99d62 3584 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3585 goto out;
3586
3587 lock_page_cgroup(pc);
3588
3589 ret = -EINVAL;
3590 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3591 goto unlock;
3592
312734c0 3593 move_lock_mem_cgroup(from, &flags);
f817ed48 3594
59d1d256
JW
3595 if (!anon && page_mapped(page)) {
3596 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3597 nr_pages);
3598 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3599 nr_pages);
3600 }
3ea67d06 3601
59d1d256
JW
3602 if (PageWriteback(page)) {
3603 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3604 nr_pages);
3605 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3606 nr_pages);
3607 }
3ea67d06 3608
b070e65c 3609 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3610
854ffa8d 3611 /* caller should have done css_get */
08e552c6 3612 pc->mem_cgroup = to;
b070e65c 3613 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3614 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3615 ret = 0;
3616unlock:
57f9fd7d 3617 unlock_page_cgroup(pc);
d2265e6f
KH
3618 /*
3619 * check events
3620 */
5564e88b
JW
3621 memcg_check_events(to, page);
3622 memcg_check_events(from, page);
de3638d9 3623out:
f817ed48
KH
3624 return ret;
3625}
3626
2ef37d3f
MH
3627/**
3628 * mem_cgroup_move_parent - moves page to the parent group
3629 * @page: the page to move
3630 * @pc: page_cgroup of the page
3631 * @child: page's cgroup
3632 *
3633 * move charges to its parent or the root cgroup if the group has no
3634 * parent (aka use_hierarchy==0).
3635 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3636 * mem_cgroup_move_account fails) the failure is always temporary and
3637 * it signals a race with a page removal/uncharge or migration. In the
3638 * first case the page is on the way out and it will vanish from the LRU
3639 * on the next attempt and the call should be retried later.
3640 * Isolation from the LRU fails only if page has been isolated from
3641 * the LRU since we looked at it and that usually means either global
3642 * reclaim or migration going on. The page will either get back to the
3643 * LRU or vanish.
3644 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3645 * (!PageCgroupUsed) or moved to a different group. The page will
3646 * disappear in the next attempt.
f817ed48 3647 */
5564e88b
JW
3648static int mem_cgroup_move_parent(struct page *page,
3649 struct page_cgroup *pc,
6068bf01 3650 struct mem_cgroup *child)
f817ed48 3651{
f817ed48 3652 struct mem_cgroup *parent;
7ec99d62 3653 unsigned int nr_pages;
4be4489f 3654 unsigned long uninitialized_var(flags);
f817ed48
KH
3655 int ret;
3656
d8423011 3657 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3658
57f9fd7d
DN
3659 ret = -EBUSY;
3660 if (!get_page_unless_zero(page))
3661 goto out;
3662 if (isolate_lru_page(page))
3663 goto put;
52dbb905 3664
7ec99d62 3665 nr_pages = hpage_nr_pages(page);
08e552c6 3666
cc926f78
KH
3667 parent = parent_mem_cgroup(child);
3668 /*
3669 * If no parent, move charges to root cgroup.
3670 */
3671 if (!parent)
3672 parent = root_mem_cgroup;
f817ed48 3673
2ef37d3f 3674 if (nr_pages > 1) {
309381fe 3675 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3676 flags = compound_lock_irqsave(page);
2ef37d3f 3677 }
987eba66 3678
cc926f78 3679 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3680 pc, child, parent);
cc926f78
KH
3681 if (!ret)
3682 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3683
7ec99d62 3684 if (nr_pages > 1)
987eba66 3685 compound_unlock_irqrestore(page, flags);
08e552c6 3686 putback_lru_page(page);
57f9fd7d 3687put:
40d58138 3688 put_page(page);
57f9fd7d 3689out:
f817ed48
KH
3690 return ret;
3691}
3692
d715ae08 3693int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3694 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3695{
7ec99d62 3696 unsigned int nr_pages = 1;
6d1fdc48 3697 struct mem_cgroup *memcg;
8493ae43 3698 bool oom = true;
ec168510 3699
1bec6b33
JW
3700 if (mem_cgroup_disabled())
3701 return 0;
3702
3703 VM_BUG_ON_PAGE(page_mapped(page), page);
3704 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3705 VM_BUG_ON(!mm);
3706
37c2ac78 3707 if (PageTransHuge(page)) {
7ec99d62 3708 nr_pages <<= compound_order(page);
309381fe 3709 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3710 /*
3711 * Never OOM-kill a process for a huge page. The
3712 * fault handler will fall back to regular pages.
3713 */
3714 oom = false;
37c2ac78 3715 }
7a81b88c 3716
6d1fdc48
JW
3717 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3718 if (!memcg)
3719 return -ENOMEM;
1bec6b33
JW
3720 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3721 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3722 return 0;
8a9f3ccd
BS
3723}
3724
54595fe2
KH
3725/*
3726 * While swap-in, try_charge -> commit or cancel, the page is locked.
3727 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3728 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3729 * "commit()" or removed by "cancel()"
3730 */
0435a2fd
JW
3731static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3732 struct page *page,
3733 gfp_t mask,
3734 struct mem_cgroup **memcgp)
8c7c6e34 3735{
6d1fdc48 3736 struct mem_cgroup *memcg = NULL;
90deb788 3737 struct page_cgroup *pc;
54595fe2 3738 int ret;
8c7c6e34 3739
90deb788
JW
3740 pc = lookup_page_cgroup(page);
3741 /*
3742 * Every swap fault against a single page tries to charge the
3743 * page, bail as early as possible. shmem_unuse() encounters
3744 * already charged pages, too. The USED bit is protected by
3745 * the page lock, which serializes swap cache removal, which
3746 * in turn serializes uncharging.
3747 */
3748 if (PageCgroupUsed(pc))
6d1fdc48
JW
3749 goto out;
3750 if (do_swap_account)
3751 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3752 if (!memcg)
6d1fdc48
JW
3753 memcg = get_mem_cgroup_from_mm(mm);
3754 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3755 css_put(&memcg->css);
38c5d72f 3756 if (ret == -EINTR)
6d1fdc48
JW
3757 memcg = root_mem_cgroup;
3758 else if (ret)
3759 return ret;
3760out:
3761 *memcgp = memcg;
3762 return 0;
8c7c6e34
KH
3763}
3764
0435a2fd
JW
3765int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3766 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3767{
6d1fdc48
JW
3768 if (mem_cgroup_disabled()) {
3769 *memcgp = NULL;
0435a2fd 3770 return 0;
6d1fdc48 3771 }
bdf4f4d2
JW
3772 /*
3773 * A racing thread's fault, or swapoff, may have already
3774 * updated the pte, and even removed page from swap cache: in
3775 * those cases unuse_pte()'s pte_same() test will fail; but
3776 * there's also a KSM case which does need to charge the page.
3777 */
3778 if (!PageSwapCache(page)) {
6d1fdc48 3779 struct mem_cgroup *memcg;
bdf4f4d2 3780
6d1fdc48
JW
3781 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3782 if (!memcg)
3783 return -ENOMEM;
3784 *memcgp = memcg;
3785 return 0;
bdf4f4d2 3786 }
0435a2fd
JW
3787 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3788}
3789
827a03d2
JW
3790void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3791{
3792 if (mem_cgroup_disabled())
3793 return;
3794 if (!memcg)
3795 return;
3796 __mem_cgroup_cancel_charge(memcg, 1);
3797}
3798
83aae4c7 3799static void
72835c86 3800__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3801 enum charge_type ctype)
7a81b88c 3802{
f8d66542 3803 if (mem_cgroup_disabled())
7a81b88c 3804 return;
72835c86 3805 if (!memcg)
7a81b88c 3806 return;
5a6475a4 3807
ce587e65 3808 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3809 /*
3810 * Now swap is on-memory. This means this page may be
3811 * counted both as mem and swap....double count.
03f3c433
KH
3812 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3813 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3814 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3815 */
03f3c433 3816 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3817 swp_entry_t ent = {.val = page_private(page)};
86493009 3818 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3819 }
7a81b88c
KH
3820}
3821
72835c86
JW
3822void mem_cgroup_commit_charge_swapin(struct page *page,
3823 struct mem_cgroup *memcg)
83aae4c7 3824{
72835c86 3825 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3826 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3827}
3828
d715ae08 3829int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3830 gfp_t gfp_mask)
7a81b88c 3831{
827a03d2 3832 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3833 struct mem_cgroup *memcg;
827a03d2
JW
3834 int ret;
3835
f8d66542 3836 if (mem_cgroup_disabled())
827a03d2
JW
3837 return 0;
3838 if (PageCompound(page))
3839 return 0;
3840
6d1fdc48 3841 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3842 ret = __mem_cgroup_try_charge_swapin(mm, page,
3843 gfp_mask, &memcg);
6d1fdc48
JW
3844 if (ret)
3845 return ret;
3846 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3847 return 0;
827a03d2 3848 }
6d1fdc48 3849
6f6acb00
MH
3850 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3851 if (!memcg)
3852 return -ENOMEM;
6d1fdc48
JW
3853 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3854 return 0;
7a81b88c
KH
3855}
3856
c0ff4b85 3857static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3858 unsigned int nr_pages,
3859 const enum charge_type ctype)
569b846d
KH
3860{
3861 struct memcg_batch_info *batch = NULL;
3862 bool uncharge_memsw = true;
7ec99d62 3863
569b846d
KH
3864 /* If swapout, usage of swap doesn't decrease */
3865 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3866 uncharge_memsw = false;
569b846d
KH
3867
3868 batch = &current->memcg_batch;
3869 /*
3870 * In usual, we do css_get() when we remember memcg pointer.
3871 * But in this case, we keep res->usage until end of a series of
3872 * uncharges. Then, it's ok to ignore memcg's refcnt.
3873 */
3874 if (!batch->memcg)
c0ff4b85 3875 batch->memcg = memcg;
3c11ecf4
KH
3876 /*
3877 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3878 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3879 * the same cgroup and we have chance to coalesce uncharges.
3880 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3881 * because we want to do uncharge as soon as possible.
3882 */
3883
3884 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3885 goto direct_uncharge;
3886
7ec99d62 3887 if (nr_pages > 1)
ec168510
AA
3888 goto direct_uncharge;
3889
569b846d
KH
3890 /*
3891 * In typical case, batch->memcg == mem. This means we can
3892 * merge a series of uncharges to an uncharge of res_counter.
3893 * If not, we uncharge res_counter ony by one.
3894 */
c0ff4b85 3895 if (batch->memcg != memcg)
569b846d
KH
3896 goto direct_uncharge;
3897 /* remember freed charge and uncharge it later */
7ffd4ca7 3898 batch->nr_pages++;
569b846d 3899 if (uncharge_memsw)
7ffd4ca7 3900 batch->memsw_nr_pages++;
569b846d
KH
3901 return;
3902direct_uncharge:
c0ff4b85 3903 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3904 if (uncharge_memsw)
c0ff4b85
R
3905 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3906 if (unlikely(batch->memcg != memcg))
3907 memcg_oom_recover(memcg);
569b846d 3908}
7a81b88c 3909
8a9f3ccd 3910/*
69029cd5 3911 * uncharge if !page_mapped(page)
8a9f3ccd 3912 */
8c7c6e34 3913static struct mem_cgroup *
0030f535
JW
3914__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3915 bool end_migration)
8a9f3ccd 3916{
c0ff4b85 3917 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3918 unsigned int nr_pages = 1;
3919 struct page_cgroup *pc;
b2402857 3920 bool anon;
8a9f3ccd 3921
f8d66542 3922 if (mem_cgroup_disabled())
8c7c6e34 3923 return NULL;
4077960e 3924
37c2ac78 3925 if (PageTransHuge(page)) {
7ec99d62 3926 nr_pages <<= compound_order(page);
309381fe 3927 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 3928 }
8697d331 3929 /*
3c541e14 3930 * Check if our page_cgroup is valid
8697d331 3931 */
52d4b9ac 3932 pc = lookup_page_cgroup(page);
cfa44946 3933 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3934 return NULL;
b9c565d5 3935
52d4b9ac 3936 lock_page_cgroup(pc);
d13d1443 3937
c0ff4b85 3938 memcg = pc->mem_cgroup;
8c7c6e34 3939
d13d1443
KH
3940 if (!PageCgroupUsed(pc))
3941 goto unlock_out;
3942
b2402857
KH
3943 anon = PageAnon(page);
3944
d13d1443 3945 switch (ctype) {
41326c17 3946 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3947 /*
3948 * Generally PageAnon tells if it's the anon statistics to be
3949 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3950 * used before page reached the stage of being marked PageAnon.
3951 */
b2402857
KH
3952 anon = true;
3953 /* fallthrough */
8a9478ca 3954 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3955 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3956 if (page_mapped(page))
3957 goto unlock_out;
3958 /*
3959 * Pages under migration may not be uncharged. But
3960 * end_migration() /must/ be the one uncharging the
3961 * unused post-migration page and so it has to call
3962 * here with the migration bit still set. See the
3963 * res_counter handling below.
3964 */
3965 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3966 goto unlock_out;
3967 break;
3968 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3969 if (!PageAnon(page)) { /* Shared memory */
3970 if (page->mapping && !page_is_file_cache(page))
3971 goto unlock_out;
3972 } else if (page_mapped(page)) /* Anon */
3973 goto unlock_out;
3974 break;
3975 default:
3976 break;
52d4b9ac 3977 }
d13d1443 3978
b070e65c 3979 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 3980
52d4b9ac 3981 ClearPageCgroupUsed(pc);
544122e5
KH
3982 /*
3983 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3984 * freed from LRU. This is safe because uncharged page is expected not
3985 * to be reused (freed soon). Exception is SwapCache, it's handled by
3986 * special functions.
3987 */
b9c565d5 3988
52d4b9ac 3989 unlock_page_cgroup(pc);
f75ca962 3990 /*
c0ff4b85 3991 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 3992 * will never be freed, so it's safe to call css_get().
f75ca962 3993 */
c0ff4b85 3994 memcg_check_events(memcg, page);
f75ca962 3995 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 3996 mem_cgroup_swap_statistics(memcg, true);
4050377b 3997 css_get(&memcg->css);
f75ca962 3998 }
0030f535
JW
3999 /*
4000 * Migration does not charge the res_counter for the
4001 * replacement page, so leave it alone when phasing out the
4002 * page that is unused after the migration.
4003 */
4004 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4005 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4006
c0ff4b85 4007 return memcg;
d13d1443
KH
4008
4009unlock_out:
4010 unlock_page_cgroup(pc);
8c7c6e34 4011 return NULL;
3c541e14
BS
4012}
4013
69029cd5
KH
4014void mem_cgroup_uncharge_page(struct page *page)
4015{
52d4b9ac
KH
4016 /* early check. */
4017 if (page_mapped(page))
4018 return;
309381fe 4019 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4020 /*
4021 * If the page is in swap cache, uncharge should be deferred
4022 * to the swap path, which also properly accounts swap usage
4023 * and handles memcg lifetime.
4024 *
4025 * Note that this check is not stable and reclaim may add the
4026 * page to swap cache at any time after this. However, if the
4027 * page is not in swap cache by the time page->mapcount hits
4028 * 0, there won't be any page table references to the swap
4029 * slot, and reclaim will free it and not actually write the
4030 * page to disk.
4031 */
0c59b89c
JW
4032 if (PageSwapCache(page))
4033 return;
0030f535 4034 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4035}
4036
4037void mem_cgroup_uncharge_cache_page(struct page *page)
4038{
309381fe
SL
4039 VM_BUG_ON_PAGE(page_mapped(page), page);
4040 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4041 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4042}
4043
569b846d
KH
4044/*
4045 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4046 * In that cases, pages are freed continuously and we can expect pages
4047 * are in the same memcg. All these calls itself limits the number of
4048 * pages freed at once, then uncharge_start/end() is called properly.
4049 * This may be called prural(2) times in a context,
4050 */
4051
4052void mem_cgroup_uncharge_start(void)
4053{
4054 current->memcg_batch.do_batch++;
4055 /* We can do nest. */
4056 if (current->memcg_batch.do_batch == 1) {
4057 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4058 current->memcg_batch.nr_pages = 0;
4059 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4060 }
4061}
4062
4063void mem_cgroup_uncharge_end(void)
4064{
4065 struct memcg_batch_info *batch = &current->memcg_batch;
4066
4067 if (!batch->do_batch)
4068 return;
4069
4070 batch->do_batch--;
4071 if (batch->do_batch) /* If stacked, do nothing. */
4072 return;
4073
4074 if (!batch->memcg)
4075 return;
4076 /*
4077 * This "batch->memcg" is valid without any css_get/put etc...
4078 * bacause we hide charges behind us.
4079 */
7ffd4ca7
JW
4080 if (batch->nr_pages)
4081 res_counter_uncharge(&batch->memcg->res,
4082 batch->nr_pages * PAGE_SIZE);
4083 if (batch->memsw_nr_pages)
4084 res_counter_uncharge(&batch->memcg->memsw,
4085 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4086 memcg_oom_recover(batch->memcg);
569b846d
KH
4087 /* forget this pointer (for sanity check) */
4088 batch->memcg = NULL;
4089}
4090
e767e056 4091#ifdef CONFIG_SWAP
8c7c6e34 4092/*
e767e056 4093 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4094 * memcg information is recorded to swap_cgroup of "ent"
4095 */
8a9478ca
KH
4096void
4097mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4098{
4099 struct mem_cgroup *memcg;
8a9478ca
KH
4100 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4101
4102 if (!swapout) /* this was a swap cache but the swap is unused ! */
4103 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4104
0030f535 4105 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4106
f75ca962
KH
4107 /*
4108 * record memcg information, if swapout && memcg != NULL,
4050377b 4109 * css_get() was called in uncharge().
f75ca962
KH
4110 */
4111 if (do_swap_account && swapout && memcg)
34c00c31 4112 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4113}
e767e056 4114#endif
8c7c6e34 4115
c255a458 4116#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4117/*
4118 * called from swap_entry_free(). remove record in swap_cgroup and
4119 * uncharge "memsw" account.
4120 */
4121void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4122{
8c7c6e34 4123 struct mem_cgroup *memcg;
a3b2d692 4124 unsigned short id;
8c7c6e34
KH
4125
4126 if (!do_swap_account)
4127 return;
4128
a3b2d692
KH
4129 id = swap_cgroup_record(ent, 0);
4130 rcu_read_lock();
4131 memcg = mem_cgroup_lookup(id);
8c7c6e34 4132 if (memcg) {
a3b2d692
KH
4133 /*
4134 * We uncharge this because swap is freed.
4135 * This memcg can be obsolete one. We avoid calling css_tryget
4136 */
0c3e73e8 4137 if (!mem_cgroup_is_root(memcg))
4e649152 4138 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4139 mem_cgroup_swap_statistics(memcg, false);
4050377b 4140 css_put(&memcg->css);
8c7c6e34 4141 }
a3b2d692 4142 rcu_read_unlock();
d13d1443 4143}
02491447
DN
4144
4145/**
4146 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4147 * @entry: swap entry to be moved
4148 * @from: mem_cgroup which the entry is moved from
4149 * @to: mem_cgroup which the entry is moved to
4150 *
4151 * It succeeds only when the swap_cgroup's record for this entry is the same
4152 * as the mem_cgroup's id of @from.
4153 *
4154 * Returns 0 on success, -EINVAL on failure.
4155 *
4156 * The caller must have charged to @to, IOW, called res_counter_charge() about
4157 * both res and memsw, and called css_get().
4158 */
4159static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4160 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4161{
4162 unsigned short old_id, new_id;
4163
34c00c31
LZ
4164 old_id = mem_cgroup_id(from);
4165 new_id = mem_cgroup_id(to);
02491447
DN
4166
4167 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4168 mem_cgroup_swap_statistics(from, false);
483c30b5 4169 mem_cgroup_swap_statistics(to, true);
02491447 4170 /*
483c30b5
DN
4171 * This function is only called from task migration context now.
4172 * It postpones res_counter and refcount handling till the end
4173 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4174 * improvement. But we cannot postpone css_get(to) because if
4175 * the process that has been moved to @to does swap-in, the
4176 * refcount of @to might be decreased to 0.
4177 *
4178 * We are in attach() phase, so the cgroup is guaranteed to be
4179 * alive, so we can just call css_get().
02491447 4180 */
4050377b 4181 css_get(&to->css);
02491447
DN
4182 return 0;
4183 }
4184 return -EINVAL;
4185}
4186#else
4187static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4188 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4189{
4190 return -EINVAL;
4191}
8c7c6e34 4192#endif
d13d1443 4193
ae41be37 4194/*
01b1ae63
KH
4195 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4196 * page belongs to.
ae41be37 4197 */
0030f535
JW
4198void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4199 struct mem_cgroup **memcgp)
ae41be37 4200{
c0ff4b85 4201 struct mem_cgroup *memcg = NULL;
b32967ff 4202 unsigned int nr_pages = 1;
7ec99d62 4203 struct page_cgroup *pc;
ac39cf8c 4204 enum charge_type ctype;
8869b8f6 4205
72835c86 4206 *memcgp = NULL;
56039efa 4207
f8d66542 4208 if (mem_cgroup_disabled())
0030f535 4209 return;
4077960e 4210
b32967ff
MG
4211 if (PageTransHuge(page))
4212 nr_pages <<= compound_order(page);
4213
52d4b9ac
KH
4214 pc = lookup_page_cgroup(page);
4215 lock_page_cgroup(pc);
4216 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4217 memcg = pc->mem_cgroup;
4218 css_get(&memcg->css);
ac39cf8c
AM
4219 /*
4220 * At migrating an anonymous page, its mapcount goes down
4221 * to 0 and uncharge() will be called. But, even if it's fully
4222 * unmapped, migration may fail and this page has to be
4223 * charged again. We set MIGRATION flag here and delay uncharge
4224 * until end_migration() is called
4225 *
4226 * Corner Case Thinking
4227 * A)
4228 * When the old page was mapped as Anon and it's unmap-and-freed
4229 * while migration was ongoing.
4230 * If unmap finds the old page, uncharge() of it will be delayed
4231 * until end_migration(). If unmap finds a new page, it's
4232 * uncharged when it make mapcount to be 1->0. If unmap code
4233 * finds swap_migration_entry, the new page will not be mapped
4234 * and end_migration() will find it(mapcount==0).
4235 *
4236 * B)
4237 * When the old page was mapped but migraion fails, the kernel
4238 * remaps it. A charge for it is kept by MIGRATION flag even
4239 * if mapcount goes down to 0. We can do remap successfully
4240 * without charging it again.
4241 *
4242 * C)
4243 * The "old" page is under lock_page() until the end of
4244 * migration, so, the old page itself will not be swapped-out.
4245 * If the new page is swapped out before end_migraton, our
4246 * hook to usual swap-out path will catch the event.
4247 */
4248 if (PageAnon(page))
4249 SetPageCgroupMigration(pc);
e8589cc1 4250 }
52d4b9ac 4251 unlock_page_cgroup(pc);
ac39cf8c
AM
4252 /*
4253 * If the page is not charged at this point,
4254 * we return here.
4255 */
c0ff4b85 4256 if (!memcg)
0030f535 4257 return;
01b1ae63 4258
72835c86 4259 *memcgp = memcg;
ac39cf8c
AM
4260 /*
4261 * We charge new page before it's used/mapped. So, even if unlock_page()
4262 * is called before end_migration, we can catch all events on this new
4263 * page. In the case new page is migrated but not remapped, new page's
4264 * mapcount will be finally 0 and we call uncharge in end_migration().
4265 */
ac39cf8c 4266 if (PageAnon(page))
41326c17 4267 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4268 else
62ba7442 4269 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4270 /*
4271 * The page is committed to the memcg, but it's not actually
4272 * charged to the res_counter since we plan on replacing the
4273 * old one and only one page is going to be left afterwards.
4274 */
b32967ff 4275 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4276}
8869b8f6 4277
69029cd5 4278/* remove redundant charge if migration failed*/
c0ff4b85 4279void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4280 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4281{
ac39cf8c 4282 struct page *used, *unused;
01b1ae63 4283 struct page_cgroup *pc;
b2402857 4284 bool anon;
01b1ae63 4285
c0ff4b85 4286 if (!memcg)
01b1ae63 4287 return;
b25ed609 4288
50de1dd9 4289 if (!migration_ok) {
ac39cf8c
AM
4290 used = oldpage;
4291 unused = newpage;
01b1ae63 4292 } else {
ac39cf8c 4293 used = newpage;
01b1ae63
KH
4294 unused = oldpage;
4295 }
0030f535 4296 anon = PageAnon(used);
7d188958
JW
4297 __mem_cgroup_uncharge_common(unused,
4298 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4299 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4300 true);
0030f535 4301 css_put(&memcg->css);
69029cd5 4302 /*
ac39cf8c
AM
4303 * We disallowed uncharge of pages under migration because mapcount
4304 * of the page goes down to zero, temporarly.
4305 * Clear the flag and check the page should be charged.
01b1ae63 4306 */
ac39cf8c
AM
4307 pc = lookup_page_cgroup(oldpage);
4308 lock_page_cgroup(pc);
4309 ClearPageCgroupMigration(pc);
4310 unlock_page_cgroup(pc);
ac39cf8c 4311
01b1ae63 4312 /*
ac39cf8c
AM
4313 * If a page is a file cache, radix-tree replacement is very atomic
4314 * and we can skip this check. When it was an Anon page, its mapcount
4315 * goes down to 0. But because we added MIGRATION flage, it's not
4316 * uncharged yet. There are several case but page->mapcount check
4317 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4318 * check. (see prepare_charge() also)
69029cd5 4319 */
b2402857 4320 if (anon)
ac39cf8c 4321 mem_cgroup_uncharge_page(used);
ae41be37 4322}
78fb7466 4323
ab936cbc
KH
4324/*
4325 * At replace page cache, newpage is not under any memcg but it's on
4326 * LRU. So, this function doesn't touch res_counter but handles LRU
4327 * in correct way. Both pages are locked so we cannot race with uncharge.
4328 */
4329void mem_cgroup_replace_page_cache(struct page *oldpage,
4330 struct page *newpage)
4331{
bde05d1c 4332 struct mem_cgroup *memcg = NULL;
ab936cbc 4333 struct page_cgroup *pc;
ab936cbc 4334 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4335
4336 if (mem_cgroup_disabled())
4337 return;
4338
4339 pc = lookup_page_cgroup(oldpage);
4340 /* fix accounting on old pages */
4341 lock_page_cgroup(pc);
bde05d1c
HD
4342 if (PageCgroupUsed(pc)) {
4343 memcg = pc->mem_cgroup;
b070e65c 4344 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4345 ClearPageCgroupUsed(pc);
4346 }
ab936cbc
KH
4347 unlock_page_cgroup(pc);
4348
bde05d1c
HD
4349 /*
4350 * When called from shmem_replace_page(), in some cases the
4351 * oldpage has already been charged, and in some cases not.
4352 */
4353 if (!memcg)
4354 return;
ab936cbc
KH
4355 /*
4356 * Even if newpage->mapping was NULL before starting replacement,
4357 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4358 * LRU while we overwrite pc->mem_cgroup.
4359 */
ce587e65 4360 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4361}
4362
f212ad7c
DN
4363#ifdef CONFIG_DEBUG_VM
4364static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4365{
4366 struct page_cgroup *pc;
4367
4368 pc = lookup_page_cgroup(page);
cfa44946
JW
4369 /*
4370 * Can be NULL while feeding pages into the page allocator for
4371 * the first time, i.e. during boot or memory hotplug;
4372 * or when mem_cgroup_disabled().
4373 */
f212ad7c
DN
4374 if (likely(pc) && PageCgroupUsed(pc))
4375 return pc;
4376 return NULL;
4377}
4378
4379bool mem_cgroup_bad_page_check(struct page *page)
4380{
4381 if (mem_cgroup_disabled())
4382 return false;
4383
4384 return lookup_page_cgroup_used(page) != NULL;
4385}
4386
4387void mem_cgroup_print_bad_page(struct page *page)
4388{
4389 struct page_cgroup *pc;
4390
4391 pc = lookup_page_cgroup_used(page);
4392 if (pc) {
d045197f
AM
4393 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4394 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4395 }
4396}
4397#endif
4398
d38d2a75 4399static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4400 unsigned long long val)
628f4235 4401{
81d39c20 4402 int retry_count;
3c11ecf4 4403 u64 memswlimit, memlimit;
628f4235 4404 int ret = 0;
81d39c20
KH
4405 int children = mem_cgroup_count_children(memcg);
4406 u64 curusage, oldusage;
3c11ecf4 4407 int enlarge;
81d39c20
KH
4408
4409 /*
4410 * For keeping hierarchical_reclaim simple, how long we should retry
4411 * is depends on callers. We set our retry-count to be function
4412 * of # of children which we should visit in this loop.
4413 */
4414 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4415
4416 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4417
3c11ecf4 4418 enlarge = 0;
8c7c6e34 4419 while (retry_count) {
628f4235
KH
4420 if (signal_pending(current)) {
4421 ret = -EINTR;
4422 break;
4423 }
8c7c6e34
KH
4424 /*
4425 * Rather than hide all in some function, I do this in
4426 * open coded manner. You see what this really does.
aaad153e 4427 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4428 */
4429 mutex_lock(&set_limit_mutex);
4430 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4431 if (memswlimit < val) {
4432 ret = -EINVAL;
4433 mutex_unlock(&set_limit_mutex);
628f4235
KH
4434 break;
4435 }
3c11ecf4
KH
4436
4437 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4438 if (memlimit < val)
4439 enlarge = 1;
4440
8c7c6e34 4441 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4442 if (!ret) {
4443 if (memswlimit == val)
4444 memcg->memsw_is_minimum = true;
4445 else
4446 memcg->memsw_is_minimum = false;
4447 }
8c7c6e34
KH
4448 mutex_unlock(&set_limit_mutex);
4449
4450 if (!ret)
4451 break;
4452
5660048c
JW
4453 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4454 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4455 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4456 /* Usage is reduced ? */
f894ffa8 4457 if (curusage >= oldusage)
81d39c20
KH
4458 retry_count--;
4459 else
4460 oldusage = curusage;
8c7c6e34 4461 }
3c11ecf4
KH
4462 if (!ret && enlarge)
4463 memcg_oom_recover(memcg);
14797e23 4464
8c7c6e34
KH
4465 return ret;
4466}
4467
338c8431
LZ
4468static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4469 unsigned long long val)
8c7c6e34 4470{
81d39c20 4471 int retry_count;
3c11ecf4 4472 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4473 int children = mem_cgroup_count_children(memcg);
4474 int ret = -EBUSY;
3c11ecf4 4475 int enlarge = 0;
8c7c6e34 4476
81d39c20 4477 /* see mem_cgroup_resize_res_limit */
f894ffa8 4478 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4479 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4480 while (retry_count) {
4481 if (signal_pending(current)) {
4482 ret = -EINTR;
4483 break;
4484 }
4485 /*
4486 * Rather than hide all in some function, I do this in
4487 * open coded manner. You see what this really does.
aaad153e 4488 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4489 */
4490 mutex_lock(&set_limit_mutex);
4491 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4492 if (memlimit > val) {
4493 ret = -EINVAL;
4494 mutex_unlock(&set_limit_mutex);
4495 break;
4496 }
3c11ecf4
KH
4497 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4498 if (memswlimit < val)
4499 enlarge = 1;
8c7c6e34 4500 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4501 if (!ret) {
4502 if (memlimit == val)
4503 memcg->memsw_is_minimum = true;
4504 else
4505 memcg->memsw_is_minimum = false;
4506 }
8c7c6e34
KH
4507 mutex_unlock(&set_limit_mutex);
4508
4509 if (!ret)
4510 break;
4511
5660048c
JW
4512 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4513 MEM_CGROUP_RECLAIM_NOSWAP |
4514 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4515 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4516 /* Usage is reduced ? */
8c7c6e34 4517 if (curusage >= oldusage)
628f4235 4518 retry_count--;
81d39c20
KH
4519 else
4520 oldusage = curusage;
628f4235 4521 }
3c11ecf4
KH
4522 if (!ret && enlarge)
4523 memcg_oom_recover(memcg);
628f4235
KH
4524 return ret;
4525}
4526
0608f43d
AM
4527unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4528 gfp_t gfp_mask,
4529 unsigned long *total_scanned)
4530{
4531 unsigned long nr_reclaimed = 0;
4532 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4533 unsigned long reclaimed;
4534 int loop = 0;
4535 struct mem_cgroup_tree_per_zone *mctz;
4536 unsigned long long excess;
4537 unsigned long nr_scanned;
4538
4539 if (order > 0)
4540 return 0;
4541
4542 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4543 /*
4544 * This loop can run a while, specially if mem_cgroup's continuously
4545 * keep exceeding their soft limit and putting the system under
4546 * pressure
4547 */
4548 do {
4549 if (next_mz)
4550 mz = next_mz;
4551 else
4552 mz = mem_cgroup_largest_soft_limit_node(mctz);
4553 if (!mz)
4554 break;
4555
4556 nr_scanned = 0;
4557 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4558 gfp_mask, &nr_scanned);
4559 nr_reclaimed += reclaimed;
4560 *total_scanned += nr_scanned;
4561 spin_lock(&mctz->lock);
4562
4563 /*
4564 * If we failed to reclaim anything from this memory cgroup
4565 * it is time to move on to the next cgroup
4566 */
4567 next_mz = NULL;
4568 if (!reclaimed) {
4569 do {
4570 /*
4571 * Loop until we find yet another one.
4572 *
4573 * By the time we get the soft_limit lock
4574 * again, someone might have aded the
4575 * group back on the RB tree. Iterate to
4576 * make sure we get a different mem.
4577 * mem_cgroup_largest_soft_limit_node returns
4578 * NULL if no other cgroup is present on
4579 * the tree
4580 */
4581 next_mz =
4582 __mem_cgroup_largest_soft_limit_node(mctz);
4583 if (next_mz == mz)
4584 css_put(&next_mz->memcg->css);
4585 else /* next_mz == NULL or other memcg */
4586 break;
4587 } while (1);
4588 }
4589 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4590 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4591 /*
4592 * One school of thought says that we should not add
4593 * back the node to the tree if reclaim returns 0.
4594 * But our reclaim could return 0, simply because due
4595 * to priority we are exposing a smaller subset of
4596 * memory to reclaim from. Consider this as a longer
4597 * term TODO.
4598 */
4599 /* If excess == 0, no tree ops */
4600 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4601 spin_unlock(&mctz->lock);
4602 css_put(&mz->memcg->css);
4603 loop++;
4604 /*
4605 * Could not reclaim anything and there are no more
4606 * mem cgroups to try or we seem to be looping without
4607 * reclaiming anything.
4608 */
4609 if (!nr_reclaimed &&
4610 (next_mz == NULL ||
4611 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4612 break;
4613 } while (!nr_reclaimed);
4614 if (next_mz)
4615 css_put(&next_mz->memcg->css);
4616 return nr_reclaimed;
4617}
4618
2ef37d3f
MH
4619/**
4620 * mem_cgroup_force_empty_list - clears LRU of a group
4621 * @memcg: group to clear
4622 * @node: NUMA node
4623 * @zid: zone id
4624 * @lru: lru to to clear
4625 *
3c935d18 4626 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4627 * reclaim the pages page themselves - pages are moved to the parent (or root)
4628 * group.
cc847582 4629 */
2ef37d3f 4630static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4631 int node, int zid, enum lru_list lru)
cc847582 4632{
bea8c150 4633 struct lruvec *lruvec;
2ef37d3f 4634 unsigned long flags;
072c56c1 4635 struct list_head *list;
925b7673
JW
4636 struct page *busy;
4637 struct zone *zone;
072c56c1 4638
08e552c6 4639 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4640 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4641 list = &lruvec->lists[lru];
cc847582 4642
f817ed48 4643 busy = NULL;
2ef37d3f 4644 do {
925b7673 4645 struct page_cgroup *pc;
5564e88b
JW
4646 struct page *page;
4647
08e552c6 4648 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4649 if (list_empty(list)) {
08e552c6 4650 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4651 break;
f817ed48 4652 }
925b7673
JW
4653 page = list_entry(list->prev, struct page, lru);
4654 if (busy == page) {
4655 list_move(&page->lru, list);
648bcc77 4656 busy = NULL;
08e552c6 4657 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4658 continue;
4659 }
08e552c6 4660 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4661
925b7673 4662 pc = lookup_page_cgroup(page);
5564e88b 4663
3c935d18 4664 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4665 /* found lock contention or "pc" is obsolete. */
925b7673 4666 busy = page;
f817ed48
KH
4667 } else
4668 busy = NULL;
2a7a0e0f 4669 cond_resched();
2ef37d3f 4670 } while (!list_empty(list));
cc847582
KH
4671}
4672
4673/*
c26251f9
MH
4674 * make mem_cgroup's charge to be 0 if there is no task by moving
4675 * all the charges and pages to the parent.
cc847582 4676 * This enables deleting this mem_cgroup.
c26251f9
MH
4677 *
4678 * Caller is responsible for holding css reference on the memcg.
cc847582 4679 */
ab5196c2 4680static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4681{
c26251f9 4682 int node, zid;
bea207c8 4683 u64 usage;
f817ed48 4684
fce66477 4685 do {
52d4b9ac
KH
4686 /* This is for making all *used* pages to be on LRU. */
4687 lru_add_drain_all();
c0ff4b85 4688 drain_all_stock_sync(memcg);
c0ff4b85 4689 mem_cgroup_start_move(memcg);
31aaea4a 4690 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4691 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4692 enum lru_list lru;
4693 for_each_lru(lru) {
2ef37d3f 4694 mem_cgroup_force_empty_list(memcg,
f156ab93 4695 node, zid, lru);
f817ed48 4696 }
1ecaab2b 4697 }
f817ed48 4698 }
c0ff4b85
R
4699 mem_cgroup_end_move(memcg);
4700 memcg_oom_recover(memcg);
52d4b9ac 4701 cond_resched();
f817ed48 4702
2ef37d3f 4703 /*
bea207c8
GC
4704 * Kernel memory may not necessarily be trackable to a specific
4705 * process. So they are not migrated, and therefore we can't
4706 * expect their value to drop to 0 here.
4707 * Having res filled up with kmem only is enough.
4708 *
2ef37d3f
MH
4709 * This is a safety check because mem_cgroup_force_empty_list
4710 * could have raced with mem_cgroup_replace_page_cache callers
4711 * so the lru seemed empty but the page could have been added
4712 * right after the check. RES_USAGE should be safe as we always
4713 * charge before adding to the LRU.
4714 */
bea207c8
GC
4715 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4716 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4717 } while (usage > 0);
c26251f9
MH
4718}
4719
b5f99b53
GC
4720static inline bool memcg_has_children(struct mem_cgroup *memcg)
4721{
696ac172
JW
4722 lockdep_assert_held(&memcg_create_mutex);
4723 /*
4724 * The lock does not prevent addition or deletion to the list
4725 * of children, but it prevents a new child from being
4726 * initialized based on this parent in css_online(), so it's
4727 * enough to decide whether hierarchically inherited
4728 * attributes can still be changed or not.
4729 */
4730 return memcg->use_hierarchy &&
4731 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4732}
4733
c26251f9
MH
4734/*
4735 * Reclaims as many pages from the given memcg as possible and moves
4736 * the rest to the parent.
4737 *
4738 * Caller is responsible for holding css reference for memcg.
4739 */
4740static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4741{
4742 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4743 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4744
c1e862c1 4745 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4746 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4747 return -EBUSY;
4748
c1e862c1
KH
4749 /* we call try-to-free pages for make this cgroup empty */
4750 lru_add_drain_all();
f817ed48 4751 /* try to free all pages in this cgroup */
569530fb 4752 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4753 int progress;
c1e862c1 4754
c26251f9
MH
4755 if (signal_pending(current))
4756 return -EINTR;
4757
c0ff4b85 4758 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4759 false);
c1e862c1 4760 if (!progress) {
f817ed48 4761 nr_retries--;
c1e862c1 4762 /* maybe some writeback is necessary */
8aa7e847 4763 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4764 }
f817ed48
KH
4765
4766 }
08e552c6 4767 lru_add_drain();
ab5196c2
MH
4768 mem_cgroup_reparent_charges(memcg);
4769
4770 return 0;
cc847582
KH
4771}
4772
182446d0
TH
4773static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4774 unsigned int event)
c1e862c1 4775{
182446d0 4776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4777
d8423011
MH
4778 if (mem_cgroup_is_root(memcg))
4779 return -EINVAL;
c33bd835 4780 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4781}
4782
182446d0
TH
4783static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4784 struct cftype *cft)
18f59ea7 4785{
182446d0 4786 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4787}
4788
182446d0
TH
4789static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4790 struct cftype *cft, u64 val)
18f59ea7
BS
4791{
4792 int retval = 0;
182446d0 4793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4794 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4795
0999821b 4796 mutex_lock(&memcg_create_mutex);
567fb435
GC
4797
4798 if (memcg->use_hierarchy == val)
4799 goto out;
4800
18f59ea7 4801 /*
af901ca1 4802 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4803 * in the child subtrees. If it is unset, then the change can
4804 * occur, provided the current cgroup has no children.
4805 *
4806 * For the root cgroup, parent_mem is NULL, we allow value to be
4807 * set if there are no children.
4808 */
c0ff4b85 4809 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4810 (val == 1 || val == 0)) {
696ac172 4811 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4812 memcg->use_hierarchy = val;
18f59ea7
BS
4813 else
4814 retval = -EBUSY;
4815 } else
4816 retval = -EINVAL;
567fb435
GC
4817
4818out:
0999821b 4819 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4820
4821 return retval;
4822}
4823
0c3e73e8 4824
c0ff4b85 4825static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4826 enum mem_cgroup_stat_index idx)
0c3e73e8 4827{
7d74b06f 4828 struct mem_cgroup *iter;
7a159cc9 4829 long val = 0;
0c3e73e8 4830
7a159cc9 4831 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4832 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4833 val += mem_cgroup_read_stat(iter, idx);
4834
4835 if (val < 0) /* race ? */
4836 val = 0;
4837 return val;
0c3e73e8
BS
4838}
4839
c0ff4b85 4840static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4841{
7d74b06f 4842 u64 val;
104f3928 4843
c0ff4b85 4844 if (!mem_cgroup_is_root(memcg)) {
104f3928 4845 if (!swap)
65c64ce8 4846 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4847 else
65c64ce8 4848 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4849 }
4850
b070e65c
DR
4851 /*
4852 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4853 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4854 */
c0ff4b85
R
4855 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4856 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4857
7d74b06f 4858 if (swap)
bff6bb83 4859 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4860
4861 return val << PAGE_SHIFT;
4862}
4863
791badbd
TH
4864static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4865 struct cftype *cft)
8cdea7c0 4866{
182446d0 4867 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4868 u64 val;
791badbd 4869 int name;
86ae53e1 4870 enum res_type type;
8c7c6e34
KH
4871
4872 type = MEMFILE_TYPE(cft->private);
4873 name = MEMFILE_ATTR(cft->private);
af36f906 4874
8c7c6e34
KH
4875 switch (type) {
4876 case _MEM:
104f3928 4877 if (name == RES_USAGE)
c0ff4b85 4878 val = mem_cgroup_usage(memcg, false);
104f3928 4879 else
c0ff4b85 4880 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4881 break;
4882 case _MEMSWAP:
104f3928 4883 if (name == RES_USAGE)
c0ff4b85 4884 val = mem_cgroup_usage(memcg, true);
104f3928 4885 else
c0ff4b85 4886 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4887 break;
510fc4e1
GC
4888 case _KMEM:
4889 val = res_counter_read_u64(&memcg->kmem, name);
4890 break;
8c7c6e34
KH
4891 default:
4892 BUG();
8c7c6e34 4893 }
af36f906 4894
791badbd 4895 return val;
8cdea7c0 4896}
510fc4e1 4897
510fc4e1 4898#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4899/* should be called with activate_kmem_mutex held */
4900static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4901 unsigned long long limit)
4902{
4903 int err = 0;
4904 int memcg_id;
4905
4906 if (memcg_kmem_is_active(memcg))
4907 return 0;
4908
4909 /*
4910 * We are going to allocate memory for data shared by all memory
4911 * cgroups so let's stop accounting here.
4912 */
4913 memcg_stop_kmem_account();
4914
510fc4e1
GC
4915 /*
4916 * For simplicity, we won't allow this to be disabled. It also can't
4917 * be changed if the cgroup has children already, or if tasks had
4918 * already joined.
4919 *
4920 * If tasks join before we set the limit, a person looking at
4921 * kmem.usage_in_bytes will have no way to determine when it took
4922 * place, which makes the value quite meaningless.
4923 *
4924 * After it first became limited, changes in the value of the limit are
4925 * of course permitted.
510fc4e1 4926 */
0999821b 4927 mutex_lock(&memcg_create_mutex);
07bc356e 4928 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
4929 err = -EBUSY;
4930 mutex_unlock(&memcg_create_mutex);
4931 if (err)
4932 goto out;
510fc4e1 4933
d6441637
VD
4934 memcg_id = ida_simple_get(&kmem_limited_groups,
4935 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4936 if (memcg_id < 0) {
4937 err = memcg_id;
4938 goto out;
4939 }
4940
4941 /*
4942 * Make sure we have enough space for this cgroup in each root cache's
4943 * memcg_params.
4944 */
bd673145 4945 mutex_lock(&memcg_slab_mutex);
d6441637 4946 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4947 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4948 if (err)
4949 goto out_rmid;
4950
4951 memcg->kmemcg_id = memcg_id;
4952 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4953
4954 /*
4955 * We couldn't have accounted to this cgroup, because it hasn't got the
4956 * active bit set yet, so this should succeed.
4957 */
4958 err = res_counter_set_limit(&memcg->kmem, limit);
4959 VM_BUG_ON(err);
4960
4961 static_key_slow_inc(&memcg_kmem_enabled_key);
4962 /*
4963 * Setting the active bit after enabling static branching will
4964 * guarantee no one starts accounting before all call sites are
4965 * patched.
4966 */
4967 memcg_kmem_set_active(memcg);
510fc4e1 4968out:
d6441637
VD
4969 memcg_resume_kmem_account();
4970 return err;
4971
4972out_rmid:
4973 ida_simple_remove(&kmem_limited_groups, memcg_id);
4974 goto out;
4975}
4976
4977static int memcg_activate_kmem(struct mem_cgroup *memcg,
4978 unsigned long long limit)
4979{
4980 int ret;
4981
4982 mutex_lock(&activate_kmem_mutex);
4983 ret = __memcg_activate_kmem(memcg, limit);
4984 mutex_unlock(&activate_kmem_mutex);
4985 return ret;
4986}
4987
4988static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4989 unsigned long long val)
4990{
4991 int ret;
4992
4993 if (!memcg_kmem_is_active(memcg))
4994 ret = memcg_activate_kmem(memcg, val);
4995 else
4996 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4997 return ret;
4998}
4999
55007d84 5000static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5001{
55007d84 5002 int ret = 0;
510fc4e1 5003 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5004
d6441637
VD
5005 if (!parent)
5006 return 0;
55007d84 5007
d6441637 5008 mutex_lock(&activate_kmem_mutex);
55007d84 5009 /*
d6441637
VD
5010 * If the parent cgroup is not kmem-active now, it cannot be activated
5011 * after this point, because it has at least one child already.
55007d84 5012 */
d6441637
VD
5013 if (memcg_kmem_is_active(parent))
5014 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5015 mutex_unlock(&activate_kmem_mutex);
55007d84 5016 return ret;
510fc4e1 5017}
d6441637
VD
5018#else
5019static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5020 unsigned long long val)
5021{
5022 return -EINVAL;
5023}
6d043990 5024#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5025
628f4235
KH
5026/*
5027 * The user of this function is...
5028 * RES_LIMIT.
5029 */
182446d0 5030static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5031 char *buffer)
8cdea7c0 5032{
182446d0 5033 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5034 enum res_type type;
5035 int name;
628f4235
KH
5036 unsigned long long val;
5037 int ret;
5038
8c7c6e34
KH
5039 type = MEMFILE_TYPE(cft->private);
5040 name = MEMFILE_ATTR(cft->private);
af36f906 5041
8c7c6e34 5042 switch (name) {
628f4235 5043 case RES_LIMIT:
4b3bde4c
BS
5044 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5045 ret = -EINVAL;
5046 break;
5047 }
628f4235
KH
5048 /* This function does all necessary parse...reuse it */
5049 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5050 if (ret)
5051 break;
5052 if (type == _MEM)
628f4235 5053 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5054 else if (type == _MEMSWAP)
8c7c6e34 5055 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5056 else if (type == _KMEM)
d6441637 5057 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5058 else
5059 return -EINVAL;
628f4235 5060 break;
296c81d8
BS
5061 case RES_SOFT_LIMIT:
5062 ret = res_counter_memparse_write_strategy(buffer, &val);
5063 if (ret)
5064 break;
5065 /*
5066 * For memsw, soft limits are hard to implement in terms
5067 * of semantics, for now, we support soft limits for
5068 * control without swap
5069 */
5070 if (type == _MEM)
5071 ret = res_counter_set_soft_limit(&memcg->res, val);
5072 else
5073 ret = -EINVAL;
5074 break;
628f4235
KH
5075 default:
5076 ret = -EINVAL; /* should be BUG() ? */
5077 break;
5078 }
5079 return ret;
8cdea7c0
BS
5080}
5081
fee7b548
KH
5082static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5083 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5084{
fee7b548
KH
5085 unsigned long long min_limit, min_memsw_limit, tmp;
5086
5087 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5088 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5089 if (!memcg->use_hierarchy)
5090 goto out;
5091
63876986
TH
5092 while (css_parent(&memcg->css)) {
5093 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5094 if (!memcg->use_hierarchy)
5095 break;
5096 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5097 min_limit = min(min_limit, tmp);
5098 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5099 min_memsw_limit = min(min_memsw_limit, tmp);
5100 }
5101out:
5102 *mem_limit = min_limit;
5103 *memsw_limit = min_memsw_limit;
fee7b548
KH
5104}
5105
182446d0 5106static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5107{
182446d0 5108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5109 int name;
5110 enum res_type type;
c84872e1 5111
8c7c6e34
KH
5112 type = MEMFILE_TYPE(event);
5113 name = MEMFILE_ATTR(event);
af36f906 5114
8c7c6e34 5115 switch (name) {
29f2a4da 5116 case RES_MAX_USAGE:
8c7c6e34 5117 if (type == _MEM)
c0ff4b85 5118 res_counter_reset_max(&memcg->res);
510fc4e1 5119 else if (type == _MEMSWAP)
c0ff4b85 5120 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5121 else if (type == _KMEM)
5122 res_counter_reset_max(&memcg->kmem);
5123 else
5124 return -EINVAL;
29f2a4da
PE
5125 break;
5126 case RES_FAILCNT:
8c7c6e34 5127 if (type == _MEM)
c0ff4b85 5128 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5129 else if (type == _MEMSWAP)
c0ff4b85 5130 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5131 else if (type == _KMEM)
5132 res_counter_reset_failcnt(&memcg->kmem);
5133 else
5134 return -EINVAL;
29f2a4da
PE
5135 break;
5136 }
f64c3f54 5137
85cc59db 5138 return 0;
c84872e1
PE
5139}
5140
182446d0 5141static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5142 struct cftype *cft)
5143{
182446d0 5144 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5145}
5146
02491447 5147#ifdef CONFIG_MMU
182446d0 5148static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5149 struct cftype *cft, u64 val)
5150{
182446d0 5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5152
5153 if (val >= (1 << NR_MOVE_TYPE))
5154 return -EINVAL;
ee5e8472 5155
7dc74be0 5156 /*
ee5e8472
GC
5157 * No kind of locking is needed in here, because ->can_attach() will
5158 * check this value once in the beginning of the process, and then carry
5159 * on with stale data. This means that changes to this value will only
5160 * affect task migrations starting after the change.
7dc74be0 5161 */
c0ff4b85 5162 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5163 return 0;
5164}
02491447 5165#else
182446d0 5166static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5167 struct cftype *cft, u64 val)
5168{
5169 return -ENOSYS;
5170}
5171#endif
7dc74be0 5172
406eb0c9 5173#ifdef CONFIG_NUMA
2da8ca82 5174static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5175{
25485de6
GT
5176 struct numa_stat {
5177 const char *name;
5178 unsigned int lru_mask;
5179 };
5180
5181 static const struct numa_stat stats[] = {
5182 { "total", LRU_ALL },
5183 { "file", LRU_ALL_FILE },
5184 { "anon", LRU_ALL_ANON },
5185 { "unevictable", BIT(LRU_UNEVICTABLE) },
5186 };
5187 const struct numa_stat *stat;
406eb0c9 5188 int nid;
25485de6 5189 unsigned long nr;
2da8ca82 5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5191
25485de6
GT
5192 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5193 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5194 seq_printf(m, "%s=%lu", stat->name, nr);
5195 for_each_node_state(nid, N_MEMORY) {
5196 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5197 stat->lru_mask);
5198 seq_printf(m, " N%d=%lu", nid, nr);
5199 }
5200 seq_putc(m, '\n');
406eb0c9 5201 }
406eb0c9 5202
071aee13
YH
5203 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5204 struct mem_cgroup *iter;
5205
5206 nr = 0;
5207 for_each_mem_cgroup_tree(iter, memcg)
5208 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5209 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5210 for_each_node_state(nid, N_MEMORY) {
5211 nr = 0;
5212 for_each_mem_cgroup_tree(iter, memcg)
5213 nr += mem_cgroup_node_nr_lru_pages(
5214 iter, nid, stat->lru_mask);
5215 seq_printf(m, " N%d=%lu", nid, nr);
5216 }
5217 seq_putc(m, '\n');
406eb0c9 5218 }
406eb0c9 5219
406eb0c9
YH
5220 return 0;
5221}
5222#endif /* CONFIG_NUMA */
5223
af7c4b0e
JW
5224static inline void mem_cgroup_lru_names_not_uptodate(void)
5225{
5226 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5227}
5228
2da8ca82 5229static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5230{
2da8ca82 5231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5232 struct mem_cgroup *mi;
5233 unsigned int i;
406eb0c9 5234
af7c4b0e 5235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5236 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5237 continue;
af7c4b0e
JW
5238 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5239 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5240 }
7b854121 5241
af7c4b0e
JW
5242 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5243 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5244 mem_cgroup_read_events(memcg, i));
5245
5246 for (i = 0; i < NR_LRU_LISTS; i++)
5247 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5248 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5249
14067bb3 5250 /* Hierarchical information */
fee7b548
KH
5251 {
5252 unsigned long long limit, memsw_limit;
d79154bb 5253 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5254 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5255 if (do_swap_account)
78ccf5b5
JW
5256 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5257 memsw_limit);
fee7b548 5258 }
7f016ee8 5259
af7c4b0e
JW
5260 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5261 long long val = 0;
5262
bff6bb83 5263 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5264 continue;
af7c4b0e
JW
5265 for_each_mem_cgroup_tree(mi, memcg)
5266 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5267 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5268 }
5269
5270 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5271 unsigned long long val = 0;
5272
5273 for_each_mem_cgroup_tree(mi, memcg)
5274 val += mem_cgroup_read_events(mi, i);
5275 seq_printf(m, "total_%s %llu\n",
5276 mem_cgroup_events_names[i], val);
5277 }
5278
5279 for (i = 0; i < NR_LRU_LISTS; i++) {
5280 unsigned long long val = 0;
5281
5282 for_each_mem_cgroup_tree(mi, memcg)
5283 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5284 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5285 }
14067bb3 5286
7f016ee8 5287#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5288 {
5289 int nid, zid;
5290 struct mem_cgroup_per_zone *mz;
89abfab1 5291 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5292 unsigned long recent_rotated[2] = {0, 0};
5293 unsigned long recent_scanned[2] = {0, 0};
5294
5295 for_each_online_node(nid)
5296 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 5297 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 5298 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5299
89abfab1
HD
5300 recent_rotated[0] += rstat->recent_rotated[0];
5301 recent_rotated[1] += rstat->recent_rotated[1];
5302 recent_scanned[0] += rstat->recent_scanned[0];
5303 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5304 }
78ccf5b5
JW
5305 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5306 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5307 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5308 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5309 }
5310#endif
5311
d2ceb9b7
KH
5312 return 0;
5313}
5314
182446d0
TH
5315static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5316 struct cftype *cft)
a7885eb8 5317{
182446d0 5318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5319
1f4c025b 5320 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5321}
5322
182446d0
TH
5323static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5324 struct cftype *cft, u64 val)
a7885eb8 5325{
182446d0 5326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5327
3dae7fec 5328 if (val > 100)
a7885eb8
KM
5329 return -EINVAL;
5330
3dae7fec
JW
5331 if (css_parent(css))
5332 memcg->swappiness = val;
5333 else
5334 vm_swappiness = val;
068b38c1 5335
a7885eb8
KM
5336 return 0;
5337}
5338
2e72b634
KS
5339static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5340{
5341 struct mem_cgroup_threshold_ary *t;
5342 u64 usage;
5343 int i;
5344
5345 rcu_read_lock();
5346 if (!swap)
2c488db2 5347 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5348 else
2c488db2 5349 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5350
5351 if (!t)
5352 goto unlock;
5353
5354 usage = mem_cgroup_usage(memcg, swap);
5355
5356 /*
748dad36 5357 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5358 * If it's not true, a threshold was crossed after last
5359 * call of __mem_cgroup_threshold().
5360 */
5407a562 5361 i = t->current_threshold;
2e72b634
KS
5362
5363 /*
5364 * Iterate backward over array of thresholds starting from
5365 * current_threshold and check if a threshold is crossed.
5366 * If none of thresholds below usage is crossed, we read
5367 * only one element of the array here.
5368 */
5369 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5370 eventfd_signal(t->entries[i].eventfd, 1);
5371
5372 /* i = current_threshold + 1 */
5373 i++;
5374
5375 /*
5376 * Iterate forward over array of thresholds starting from
5377 * current_threshold+1 and check if a threshold is crossed.
5378 * If none of thresholds above usage is crossed, we read
5379 * only one element of the array here.
5380 */
5381 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5382 eventfd_signal(t->entries[i].eventfd, 1);
5383
5384 /* Update current_threshold */
5407a562 5385 t->current_threshold = i - 1;
2e72b634
KS
5386unlock:
5387 rcu_read_unlock();
5388}
5389
5390static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5391{
ad4ca5f4
KS
5392 while (memcg) {
5393 __mem_cgroup_threshold(memcg, false);
5394 if (do_swap_account)
5395 __mem_cgroup_threshold(memcg, true);
5396
5397 memcg = parent_mem_cgroup(memcg);
5398 }
2e72b634
KS
5399}
5400
5401static int compare_thresholds(const void *a, const void *b)
5402{
5403 const struct mem_cgroup_threshold *_a = a;
5404 const struct mem_cgroup_threshold *_b = b;
5405
2bff24a3
GT
5406 if (_a->threshold > _b->threshold)
5407 return 1;
5408
5409 if (_a->threshold < _b->threshold)
5410 return -1;
5411
5412 return 0;
2e72b634
KS
5413}
5414
c0ff4b85 5415static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5416{
5417 struct mem_cgroup_eventfd_list *ev;
5418
c0ff4b85 5419 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5420 eventfd_signal(ev->eventfd, 1);
5421 return 0;
5422}
5423
c0ff4b85 5424static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5425{
7d74b06f
KH
5426 struct mem_cgroup *iter;
5427
c0ff4b85 5428 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5429 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5430}
5431
59b6f873 5432static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5433 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5434{
2c488db2
KS
5435 struct mem_cgroup_thresholds *thresholds;
5436 struct mem_cgroup_threshold_ary *new;
2e72b634 5437 u64 threshold, usage;
2c488db2 5438 int i, size, ret;
2e72b634
KS
5439
5440 ret = res_counter_memparse_write_strategy(args, &threshold);
5441 if (ret)
5442 return ret;
5443
5444 mutex_lock(&memcg->thresholds_lock);
2c488db2 5445
2e72b634 5446 if (type == _MEM)
2c488db2 5447 thresholds = &memcg->thresholds;
2e72b634 5448 else if (type == _MEMSWAP)
2c488db2 5449 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5450 else
5451 BUG();
5452
5453 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5454
5455 /* Check if a threshold crossed before adding a new one */
2c488db2 5456 if (thresholds->primary)
2e72b634
KS
5457 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5458
2c488db2 5459 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5460
5461 /* Allocate memory for new array of thresholds */
2c488db2 5462 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5463 GFP_KERNEL);
2c488db2 5464 if (!new) {
2e72b634
KS
5465 ret = -ENOMEM;
5466 goto unlock;
5467 }
2c488db2 5468 new->size = size;
2e72b634
KS
5469
5470 /* Copy thresholds (if any) to new array */
2c488db2
KS
5471 if (thresholds->primary) {
5472 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5473 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5474 }
5475
2e72b634 5476 /* Add new threshold */
2c488db2
KS
5477 new->entries[size - 1].eventfd = eventfd;
5478 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5479
5480 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5481 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5482 compare_thresholds, NULL);
5483
5484 /* Find current threshold */
2c488db2 5485 new->current_threshold = -1;
2e72b634 5486 for (i = 0; i < size; i++) {
748dad36 5487 if (new->entries[i].threshold <= usage) {
2e72b634 5488 /*
2c488db2
KS
5489 * new->current_threshold will not be used until
5490 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5491 * it here.
5492 */
2c488db2 5493 ++new->current_threshold;
748dad36
SZ
5494 } else
5495 break;
2e72b634
KS
5496 }
5497
2c488db2
KS
5498 /* Free old spare buffer and save old primary buffer as spare */
5499 kfree(thresholds->spare);
5500 thresholds->spare = thresholds->primary;
5501
5502 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5503
907860ed 5504 /* To be sure that nobody uses thresholds */
2e72b634
KS
5505 synchronize_rcu();
5506
2e72b634
KS
5507unlock:
5508 mutex_unlock(&memcg->thresholds_lock);
5509
5510 return ret;
5511}
5512
59b6f873 5513static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5514 struct eventfd_ctx *eventfd, const char *args)
5515{
59b6f873 5516 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5517}
5518
59b6f873 5519static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5520 struct eventfd_ctx *eventfd, const char *args)
5521{
59b6f873 5522 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5523}
5524
59b6f873 5525static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5526 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5527{
2c488db2
KS
5528 struct mem_cgroup_thresholds *thresholds;
5529 struct mem_cgroup_threshold_ary *new;
2e72b634 5530 u64 usage;
2c488db2 5531 int i, j, size;
2e72b634
KS
5532
5533 mutex_lock(&memcg->thresholds_lock);
5534 if (type == _MEM)
2c488db2 5535 thresholds = &memcg->thresholds;
2e72b634 5536 else if (type == _MEMSWAP)
2c488db2 5537 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5538 else
5539 BUG();
5540
371528ca
AV
5541 if (!thresholds->primary)
5542 goto unlock;
5543
2e72b634
KS
5544 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5545
5546 /* Check if a threshold crossed before removing */
5547 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5548
5549 /* Calculate new number of threshold */
2c488db2
KS
5550 size = 0;
5551 for (i = 0; i < thresholds->primary->size; i++) {
5552 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5553 size++;
5554 }
5555
2c488db2 5556 new = thresholds->spare;
907860ed 5557
2e72b634
KS
5558 /* Set thresholds array to NULL if we don't have thresholds */
5559 if (!size) {
2c488db2
KS
5560 kfree(new);
5561 new = NULL;
907860ed 5562 goto swap_buffers;
2e72b634
KS
5563 }
5564
2c488db2 5565 new->size = size;
2e72b634
KS
5566
5567 /* Copy thresholds and find current threshold */
2c488db2
KS
5568 new->current_threshold = -1;
5569 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5570 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5571 continue;
5572
2c488db2 5573 new->entries[j] = thresholds->primary->entries[i];
748dad36 5574 if (new->entries[j].threshold <= usage) {
2e72b634 5575 /*
2c488db2 5576 * new->current_threshold will not be used
2e72b634
KS
5577 * until rcu_assign_pointer(), so it's safe to increment
5578 * it here.
5579 */
2c488db2 5580 ++new->current_threshold;
2e72b634
KS
5581 }
5582 j++;
5583 }
5584
907860ed 5585swap_buffers:
2c488db2
KS
5586 /* Swap primary and spare array */
5587 thresholds->spare = thresholds->primary;
8c757763
SZ
5588 /* If all events are unregistered, free the spare array */
5589 if (!new) {
5590 kfree(thresholds->spare);
5591 thresholds->spare = NULL;
5592 }
5593
2c488db2 5594 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5595
907860ed 5596 /* To be sure that nobody uses thresholds */
2e72b634 5597 synchronize_rcu();
371528ca 5598unlock:
2e72b634 5599 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5600}
c1e862c1 5601
59b6f873 5602static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5603 struct eventfd_ctx *eventfd)
5604{
59b6f873 5605 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5606}
5607
59b6f873 5608static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5609 struct eventfd_ctx *eventfd)
5610{
59b6f873 5611 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5612}
5613
59b6f873 5614static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5615 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5616{
9490ff27 5617 struct mem_cgroup_eventfd_list *event;
9490ff27 5618
9490ff27
KH
5619 event = kmalloc(sizeof(*event), GFP_KERNEL);
5620 if (!event)
5621 return -ENOMEM;
5622
1af8efe9 5623 spin_lock(&memcg_oom_lock);
9490ff27
KH
5624
5625 event->eventfd = eventfd;
5626 list_add(&event->list, &memcg->oom_notify);
5627
5628 /* already in OOM ? */
79dfdacc 5629 if (atomic_read(&memcg->under_oom))
9490ff27 5630 eventfd_signal(eventfd, 1);
1af8efe9 5631 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5632
5633 return 0;
5634}
5635
59b6f873 5636static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5637 struct eventfd_ctx *eventfd)
9490ff27 5638{
9490ff27 5639 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5640
1af8efe9 5641 spin_lock(&memcg_oom_lock);
9490ff27 5642
c0ff4b85 5643 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5644 if (ev->eventfd == eventfd) {
5645 list_del(&ev->list);
5646 kfree(ev);
5647 }
5648 }
5649
1af8efe9 5650 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5651}
5652
2da8ca82 5653static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5654{
2da8ca82 5655 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5656
791badbd
TH
5657 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5658 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5659 return 0;
5660}
5661
182446d0 5662static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5663 struct cftype *cft, u64 val)
5664{
182446d0 5665 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5666
5667 /* cannot set to root cgroup and only 0 and 1 are allowed */
3dae7fec 5668 if (!css_parent(css) || !((val == 0) || (val == 1)))
3c11ecf4
KH
5669 return -EINVAL;
5670
c0ff4b85 5671 memcg->oom_kill_disable = val;
4d845ebf 5672 if (!val)
c0ff4b85 5673 memcg_oom_recover(memcg);
3dae7fec 5674
3c11ecf4
KH
5675 return 0;
5676}
5677
c255a458 5678#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5679static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5680{
55007d84
GC
5681 int ret;
5682
2633d7a0 5683 memcg->kmemcg_id = -1;
55007d84
GC
5684 ret = memcg_propagate_kmem(memcg);
5685 if (ret)
5686 return ret;
2633d7a0 5687
1d62e436 5688 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5689}
e5671dfa 5690
10d5ebf4 5691static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5692{
1d62e436 5693 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5694}
5695
5696static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5697{
5698 if (!memcg_kmem_is_active(memcg))
5699 return;
5700
5701 /*
5702 * kmem charges can outlive the cgroup. In the case of slab
5703 * pages, for instance, a page contain objects from various
5704 * processes. As we prevent from taking a reference for every
5705 * such allocation we have to be careful when doing uncharge
5706 * (see memcg_uncharge_kmem) and here during offlining.
5707 *
5708 * The idea is that that only the _last_ uncharge which sees
5709 * the dead memcg will drop the last reference. An additional
5710 * reference is taken here before the group is marked dead
5711 * which is then paired with css_put during uncharge resp. here.
5712 *
5713 * Although this might sound strange as this path is called from
5714 * css_offline() when the referencemight have dropped down to 0
5715 * and shouldn't be incremented anymore (css_tryget would fail)
5716 * we do not have other options because of the kmem allocations
5717 * lifetime.
5718 */
5719 css_get(&memcg->css);
7de37682
GC
5720
5721 memcg_kmem_mark_dead(memcg);
5722
5723 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5724 return;
5725
7de37682 5726 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5727 css_put(&memcg->css);
d1a4c0b3 5728}
e5671dfa 5729#else
cbe128e3 5730static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5731{
5732 return 0;
5733}
d1a4c0b3 5734
10d5ebf4
LZ
5735static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5736{
5737}
5738
5739static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5740{
5741}
e5671dfa
GC
5742#endif
5743
3bc942f3
TH
5744/*
5745 * DO NOT USE IN NEW FILES.
5746 *
5747 * "cgroup.event_control" implementation.
5748 *
5749 * This is way over-engineered. It tries to support fully configurable
5750 * events for each user. Such level of flexibility is completely
5751 * unnecessary especially in the light of the planned unified hierarchy.
5752 *
5753 * Please deprecate this and replace with something simpler if at all
5754 * possible.
5755 */
5756
79bd9814
TH
5757/*
5758 * Unregister event and free resources.
5759 *
5760 * Gets called from workqueue.
5761 */
3bc942f3 5762static void memcg_event_remove(struct work_struct *work)
79bd9814 5763{
3bc942f3
TH
5764 struct mem_cgroup_event *event =
5765 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5766 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5767
5768 remove_wait_queue(event->wqh, &event->wait);
5769
59b6f873 5770 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5771
5772 /* Notify userspace the event is going away. */
5773 eventfd_signal(event->eventfd, 1);
5774
5775 eventfd_ctx_put(event->eventfd);
5776 kfree(event);
59b6f873 5777 css_put(&memcg->css);
79bd9814
TH
5778}
5779
5780/*
5781 * Gets called on POLLHUP on eventfd when user closes it.
5782 *
5783 * Called with wqh->lock held and interrupts disabled.
5784 */
3bc942f3
TH
5785static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5786 int sync, void *key)
79bd9814 5787{
3bc942f3
TH
5788 struct mem_cgroup_event *event =
5789 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5790 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5791 unsigned long flags = (unsigned long)key;
5792
5793 if (flags & POLLHUP) {
5794 /*
5795 * If the event has been detached at cgroup removal, we
5796 * can simply return knowing the other side will cleanup
5797 * for us.
5798 *
5799 * We can't race against event freeing since the other
5800 * side will require wqh->lock via remove_wait_queue(),
5801 * which we hold.
5802 */
fba94807 5803 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5804 if (!list_empty(&event->list)) {
5805 list_del_init(&event->list);
5806 /*
5807 * We are in atomic context, but cgroup_event_remove()
5808 * may sleep, so we have to call it in workqueue.
5809 */
5810 schedule_work(&event->remove);
5811 }
fba94807 5812 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5813 }
5814
5815 return 0;
5816}
5817
3bc942f3 5818static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5819 wait_queue_head_t *wqh, poll_table *pt)
5820{
3bc942f3
TH
5821 struct mem_cgroup_event *event =
5822 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5823
5824 event->wqh = wqh;
5825 add_wait_queue(wqh, &event->wait);
5826}
5827
5828/*
3bc942f3
TH
5829 * DO NOT USE IN NEW FILES.
5830 *
79bd9814
TH
5831 * Parse input and register new cgroup event handler.
5832 *
5833 * Input must be in format '<event_fd> <control_fd> <args>'.
5834 * Interpretation of args is defined by control file implementation.
5835 */
3bc942f3 5836static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5837 struct cftype *cft, char *buffer)
79bd9814 5838{
fba94807 5839 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5840 struct mem_cgroup_event *event;
79bd9814
TH
5841 struct cgroup_subsys_state *cfile_css;
5842 unsigned int efd, cfd;
5843 struct fd efile;
5844 struct fd cfile;
fba94807 5845 const char *name;
79bd9814
TH
5846 char *endp;
5847 int ret;
5848
5849 efd = simple_strtoul(buffer, &endp, 10);
5850 if (*endp != ' ')
5851 return -EINVAL;
5852 buffer = endp + 1;
5853
5854 cfd = simple_strtoul(buffer, &endp, 10);
5855 if ((*endp != ' ') && (*endp != '\0'))
5856 return -EINVAL;
5857 buffer = endp + 1;
5858
5859 event = kzalloc(sizeof(*event), GFP_KERNEL);
5860 if (!event)
5861 return -ENOMEM;
5862
59b6f873 5863 event->memcg = memcg;
79bd9814 5864 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5865 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5866 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5867 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5868
5869 efile = fdget(efd);
5870 if (!efile.file) {
5871 ret = -EBADF;
5872 goto out_kfree;
5873 }
5874
5875 event->eventfd = eventfd_ctx_fileget(efile.file);
5876 if (IS_ERR(event->eventfd)) {
5877 ret = PTR_ERR(event->eventfd);
5878 goto out_put_efile;
5879 }
5880
5881 cfile = fdget(cfd);
5882 if (!cfile.file) {
5883 ret = -EBADF;
5884 goto out_put_eventfd;
5885 }
5886
5887 /* the process need read permission on control file */
5888 /* AV: shouldn't we check that it's been opened for read instead? */
5889 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5890 if (ret < 0)
5891 goto out_put_cfile;
5892
fba94807
TH
5893 /*
5894 * Determine the event callbacks and set them in @event. This used
5895 * to be done via struct cftype but cgroup core no longer knows
5896 * about these events. The following is crude but the whole thing
5897 * is for compatibility anyway.
3bc942f3
TH
5898 *
5899 * DO NOT ADD NEW FILES.
fba94807
TH
5900 */
5901 name = cfile.file->f_dentry->d_name.name;
5902
5903 if (!strcmp(name, "memory.usage_in_bytes")) {
5904 event->register_event = mem_cgroup_usage_register_event;
5905 event->unregister_event = mem_cgroup_usage_unregister_event;
5906 } else if (!strcmp(name, "memory.oom_control")) {
5907 event->register_event = mem_cgroup_oom_register_event;
5908 event->unregister_event = mem_cgroup_oom_unregister_event;
5909 } else if (!strcmp(name, "memory.pressure_level")) {
5910 event->register_event = vmpressure_register_event;
5911 event->unregister_event = vmpressure_unregister_event;
5912 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5913 event->register_event = memsw_cgroup_usage_register_event;
5914 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5915 } else {
5916 ret = -EINVAL;
5917 goto out_put_cfile;
5918 }
5919
79bd9814 5920 /*
b5557c4c
TH
5921 * Verify @cfile should belong to @css. Also, remaining events are
5922 * automatically removed on cgroup destruction but the removal is
5923 * asynchronous, so take an extra ref on @css.
79bd9814 5924 */
5a17f543
TH
5925 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
5926 &memory_cgrp_subsys);
79bd9814 5927 ret = -EINVAL;
5a17f543 5928 if (IS_ERR(cfile_css))
79bd9814 5929 goto out_put_cfile;
5a17f543
TH
5930 if (cfile_css != css) {
5931 css_put(cfile_css);
79bd9814 5932 goto out_put_cfile;
5a17f543 5933 }
79bd9814 5934
59b6f873 5935 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
5936 if (ret)
5937 goto out_put_css;
5938
5939 efile.file->f_op->poll(efile.file, &event->pt);
5940
fba94807
TH
5941 spin_lock(&memcg->event_list_lock);
5942 list_add(&event->list, &memcg->event_list);
5943 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5944
5945 fdput(cfile);
5946 fdput(efile);
5947
5948 return 0;
5949
5950out_put_css:
b5557c4c 5951 css_put(css);
79bd9814
TH
5952out_put_cfile:
5953 fdput(cfile);
5954out_put_eventfd:
5955 eventfd_ctx_put(event->eventfd);
5956out_put_efile:
5957 fdput(efile);
5958out_kfree:
5959 kfree(event);
5960
5961 return ret;
5962}
5963
8cdea7c0
BS
5964static struct cftype mem_cgroup_files[] = {
5965 {
0eea1030 5966 .name = "usage_in_bytes",
8c7c6e34 5967 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5968 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5969 },
c84872e1
PE
5970 {
5971 .name = "max_usage_in_bytes",
8c7c6e34 5972 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5973 .trigger = mem_cgroup_reset,
791badbd 5974 .read_u64 = mem_cgroup_read_u64,
c84872e1 5975 },
8cdea7c0 5976 {
0eea1030 5977 .name = "limit_in_bytes",
8c7c6e34 5978 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5979 .write_string = mem_cgroup_write,
791badbd 5980 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5981 },
296c81d8
BS
5982 {
5983 .name = "soft_limit_in_bytes",
5984 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5985 .write_string = mem_cgroup_write,
791badbd 5986 .read_u64 = mem_cgroup_read_u64,
296c81d8 5987 },
8cdea7c0
BS
5988 {
5989 .name = "failcnt",
8c7c6e34 5990 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5991 .trigger = mem_cgroup_reset,
791badbd 5992 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5993 },
d2ceb9b7
KH
5994 {
5995 .name = "stat",
2da8ca82 5996 .seq_show = memcg_stat_show,
d2ceb9b7 5997 },
c1e862c1
KH
5998 {
5999 .name = "force_empty",
6000 .trigger = mem_cgroup_force_empty_write,
6001 },
18f59ea7
BS
6002 {
6003 .name = "use_hierarchy",
f00baae7 6004 .flags = CFTYPE_INSANE,
18f59ea7
BS
6005 .write_u64 = mem_cgroup_hierarchy_write,
6006 .read_u64 = mem_cgroup_hierarchy_read,
6007 },
79bd9814 6008 {
3bc942f3
TH
6009 .name = "cgroup.event_control", /* XXX: for compat */
6010 .write_string = memcg_write_event_control,
79bd9814
TH
6011 .flags = CFTYPE_NO_PREFIX,
6012 .mode = S_IWUGO,
6013 },
a7885eb8
KM
6014 {
6015 .name = "swappiness",
6016 .read_u64 = mem_cgroup_swappiness_read,
6017 .write_u64 = mem_cgroup_swappiness_write,
6018 },
7dc74be0
DN
6019 {
6020 .name = "move_charge_at_immigrate",
6021 .read_u64 = mem_cgroup_move_charge_read,
6022 .write_u64 = mem_cgroup_move_charge_write,
6023 },
9490ff27
KH
6024 {
6025 .name = "oom_control",
2da8ca82 6026 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6027 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6028 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6029 },
70ddf637
AV
6030 {
6031 .name = "pressure_level",
70ddf637 6032 },
406eb0c9
YH
6033#ifdef CONFIG_NUMA
6034 {
6035 .name = "numa_stat",
2da8ca82 6036 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6037 },
6038#endif
510fc4e1
GC
6039#ifdef CONFIG_MEMCG_KMEM
6040 {
6041 .name = "kmem.limit_in_bytes",
6042 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6043 .write_string = mem_cgroup_write,
791badbd 6044 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6045 },
6046 {
6047 .name = "kmem.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6049 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6050 },
6051 {
6052 .name = "kmem.failcnt",
6053 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6054 .trigger = mem_cgroup_reset,
791badbd 6055 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6056 },
6057 {
6058 .name = "kmem.max_usage_in_bytes",
6059 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6060 .trigger = mem_cgroup_reset,
791badbd 6061 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6062 },
749c5415
GC
6063#ifdef CONFIG_SLABINFO
6064 {
6065 .name = "kmem.slabinfo",
2da8ca82 6066 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6067 },
6068#endif
8c7c6e34 6069#endif
6bc10349 6070 { }, /* terminate */
af36f906 6071};
8c7c6e34 6072
2d11085e
MH
6073#ifdef CONFIG_MEMCG_SWAP
6074static struct cftype memsw_cgroup_files[] = {
6075 {
6076 .name = "memsw.usage_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6078 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6079 },
6080 {
6081 .name = "memsw.max_usage_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6083 .trigger = mem_cgroup_reset,
791badbd 6084 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6085 },
6086 {
6087 .name = "memsw.limit_in_bytes",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6089 .write_string = mem_cgroup_write,
791badbd 6090 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6091 },
6092 {
6093 .name = "memsw.failcnt",
6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6095 .trigger = mem_cgroup_reset,
791badbd 6096 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6097 },
6098 { }, /* terminate */
6099};
6100#endif
c0ff4b85 6101static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6102{
6103 struct mem_cgroup_per_node *pn;
1ecaab2b 6104 struct mem_cgroup_per_zone *mz;
41e3355d 6105 int zone, tmp = node;
1ecaab2b
KH
6106 /*
6107 * This routine is called against possible nodes.
6108 * But it's BUG to call kmalloc() against offline node.
6109 *
6110 * TODO: this routine can waste much memory for nodes which will
6111 * never be onlined. It's better to use memory hotplug callback
6112 * function.
6113 */
41e3355d
KH
6114 if (!node_state(node, N_NORMAL_MEMORY))
6115 tmp = -1;
17295c88 6116 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6117 if (!pn)
6118 return 1;
1ecaab2b 6119
1ecaab2b
KH
6120 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6121 mz = &pn->zoneinfo[zone];
bea8c150 6122 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6123 mz->usage_in_excess = 0;
6124 mz->on_tree = false;
d79154bb 6125 mz->memcg = memcg;
1ecaab2b 6126 }
54f72fe0 6127 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6128 return 0;
6129}
6130
c0ff4b85 6131static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6132{
54f72fe0 6133 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6134}
6135
33327948
KH
6136static struct mem_cgroup *mem_cgroup_alloc(void)
6137{
d79154bb 6138 struct mem_cgroup *memcg;
8ff69e2c 6139 size_t size;
33327948 6140
8ff69e2c
VD
6141 size = sizeof(struct mem_cgroup);
6142 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6143
8ff69e2c 6144 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6145 if (!memcg)
e7bbcdf3
DC
6146 return NULL;
6147
d79154bb
HD
6148 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6149 if (!memcg->stat)
d2e61b8d 6150 goto out_free;
d79154bb
HD
6151 spin_lock_init(&memcg->pcp_counter_lock);
6152 return memcg;
d2e61b8d
DC
6153
6154out_free:
8ff69e2c 6155 kfree(memcg);
d2e61b8d 6156 return NULL;
33327948
KH
6157}
6158
59927fb9 6159/*
c8b2a36f
GC
6160 * At destroying mem_cgroup, references from swap_cgroup can remain.
6161 * (scanning all at force_empty is too costly...)
6162 *
6163 * Instead of clearing all references at force_empty, we remember
6164 * the number of reference from swap_cgroup and free mem_cgroup when
6165 * it goes down to 0.
6166 *
6167 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6168 */
c8b2a36f
GC
6169
6170static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6171{
c8b2a36f 6172 int node;
59927fb9 6173
bb4cc1a8 6174 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6175
6176 for_each_node(node)
6177 free_mem_cgroup_per_zone_info(memcg, node);
6178
6179 free_percpu(memcg->stat);
6180
3f134619
GC
6181 /*
6182 * We need to make sure that (at least for now), the jump label
6183 * destruction code runs outside of the cgroup lock. This is because
6184 * get_online_cpus(), which is called from the static_branch update,
6185 * can't be called inside the cgroup_lock. cpusets are the ones
6186 * enforcing this dependency, so if they ever change, we might as well.
6187 *
6188 * schedule_work() will guarantee this happens. Be careful if you need
6189 * to move this code around, and make sure it is outside
6190 * the cgroup_lock.
6191 */
a8964b9b 6192 disarm_static_keys(memcg);
8ff69e2c 6193 kfree(memcg);
59927fb9 6194}
3afe36b1 6195
7bcc1bb1
DN
6196/*
6197 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6198 */
e1aab161 6199struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6200{
c0ff4b85 6201 if (!memcg->res.parent)
7bcc1bb1 6202 return NULL;
c0ff4b85 6203 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6204}
e1aab161 6205EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6206
bb4cc1a8
AM
6207static void __init mem_cgroup_soft_limit_tree_init(void)
6208{
6209 struct mem_cgroup_tree_per_node *rtpn;
6210 struct mem_cgroup_tree_per_zone *rtpz;
6211 int tmp, node, zone;
6212
6213 for_each_node(node) {
6214 tmp = node;
6215 if (!node_state(node, N_NORMAL_MEMORY))
6216 tmp = -1;
6217 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6218 BUG_ON(!rtpn);
6219
6220 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6221
6222 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6223 rtpz = &rtpn->rb_tree_per_zone[zone];
6224 rtpz->rb_root = RB_ROOT;
6225 spin_lock_init(&rtpz->lock);
6226 }
6227 }
6228}
6229
0eb253e2 6230static struct cgroup_subsys_state * __ref
eb95419b 6231mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6232{
d142e3e6 6233 struct mem_cgroup *memcg;
04046e1a 6234 long error = -ENOMEM;
6d12e2d8 6235 int node;
8cdea7c0 6236
c0ff4b85
R
6237 memcg = mem_cgroup_alloc();
6238 if (!memcg)
04046e1a 6239 return ERR_PTR(error);
78fb7466 6240
3ed28fa1 6241 for_each_node(node)
c0ff4b85 6242 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6243 goto free_out;
f64c3f54 6244
c077719b 6245 /* root ? */
eb95419b 6246 if (parent_css == NULL) {
a41c58a6 6247 root_mem_cgroup = memcg;
d142e3e6
GC
6248 res_counter_init(&memcg->res, NULL);
6249 res_counter_init(&memcg->memsw, NULL);
6250 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6251 }
28dbc4b6 6252
d142e3e6
GC
6253 memcg->last_scanned_node = MAX_NUMNODES;
6254 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6255 memcg->move_charge_at_immigrate = 0;
6256 mutex_init(&memcg->thresholds_lock);
6257 spin_lock_init(&memcg->move_lock);
70ddf637 6258 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6259 INIT_LIST_HEAD(&memcg->event_list);
6260 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6261
6262 return &memcg->css;
6263
6264free_out:
6265 __mem_cgroup_free(memcg);
6266 return ERR_PTR(error);
6267}
6268
6269static int
eb95419b 6270mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6271{
eb95419b
TH
6272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6273 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6274
4219b2da
LZ
6275 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6276 return -ENOSPC;
6277
63876986 6278 if (!parent)
d142e3e6
GC
6279 return 0;
6280
0999821b 6281 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6282
6283 memcg->use_hierarchy = parent->use_hierarchy;
6284 memcg->oom_kill_disable = parent->oom_kill_disable;
6285 memcg->swappiness = mem_cgroup_swappiness(parent);
6286
6287 if (parent->use_hierarchy) {
c0ff4b85
R
6288 res_counter_init(&memcg->res, &parent->res);
6289 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6290 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6291
7bcc1bb1 6292 /*
8d76a979
LZ
6293 * No need to take a reference to the parent because cgroup
6294 * core guarantees its existence.
7bcc1bb1 6295 */
18f59ea7 6296 } else {
c0ff4b85
R
6297 res_counter_init(&memcg->res, NULL);
6298 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6299 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6300 /*
6301 * Deeper hierachy with use_hierarchy == false doesn't make
6302 * much sense so let cgroup subsystem know about this
6303 * unfortunate state in our controller.
6304 */
d142e3e6 6305 if (parent != root_mem_cgroup)
073219e9 6306 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6307 }
0999821b 6308 mutex_unlock(&memcg_create_mutex);
d6441637 6309
073219e9 6310 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6311}
6312
5f578161
MH
6313/*
6314 * Announce all parents that a group from their hierarchy is gone.
6315 */
6316static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6317{
6318 struct mem_cgroup *parent = memcg;
6319
6320 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6321 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6322
6323 /*
6324 * if the root memcg is not hierarchical we have to check it
6325 * explicitely.
6326 */
6327 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6328 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6329}
6330
eb95419b 6331static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6332{
eb95419b 6333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6334 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6335 struct cgroup_subsys_state *iter;
79bd9814
TH
6336
6337 /*
6338 * Unregister events and notify userspace.
6339 * Notify userspace about cgroup removing only after rmdir of cgroup
6340 * directory to avoid race between userspace and kernelspace.
6341 */
fba94807
TH
6342 spin_lock(&memcg->event_list_lock);
6343 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6344 list_del_init(&event->list);
6345 schedule_work(&event->remove);
6346 }
fba94807 6347 spin_unlock(&memcg->event_list_lock);
ec64f515 6348
10d5ebf4
LZ
6349 kmem_cgroup_css_offline(memcg);
6350
5f578161 6351 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6352
6353 /*
6354 * This requires that offlining is serialized. Right now that is
6355 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6356 */
6357 css_for_each_descendant_post(iter, css)
6358 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6359
776ed0f0 6360 memcg_unregister_all_caches(memcg);
33cb876e 6361 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6362}
6363
eb95419b 6364static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6365{
eb95419b 6366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6367 /*
6368 * XXX: css_offline() would be where we should reparent all
6369 * memory to prepare the cgroup for destruction. However,
6370 * memcg does not do css_tryget() and res_counter charging
6371 * under the same RCU lock region, which means that charging
6372 * could race with offlining. Offlining only happens to
6373 * cgroups with no tasks in them but charges can show up
6374 * without any tasks from the swapin path when the target
6375 * memcg is looked up from the swapout record and not from the
6376 * current task as it usually is. A race like this can leak
6377 * charges and put pages with stale cgroup pointers into
6378 * circulation:
6379 *
6380 * #0 #1
6381 * lookup_swap_cgroup_id()
6382 * rcu_read_lock()
6383 * mem_cgroup_lookup()
6384 * css_tryget()
6385 * rcu_read_unlock()
6386 * disable css_tryget()
6387 * call_rcu()
6388 * offline_css()
6389 * reparent_charges()
6390 * res_counter_charge()
6391 * css_put()
6392 * css_free()
6393 * pc->mem_cgroup = dead memcg
6394 * add page to lru
6395 *
6396 * The bulk of the charges are still moved in offline_css() to
6397 * avoid pinning a lot of pages in case a long-term reference
6398 * like a swapout record is deferring the css_free() to long
6399 * after offlining. But this makes sure we catch any charges
6400 * made after offlining:
6401 */
6402 mem_cgroup_reparent_charges(memcg);
c268e994 6403
10d5ebf4 6404 memcg_destroy_kmem(memcg);
465939a1 6405 __mem_cgroup_free(memcg);
8cdea7c0
BS
6406}
6407
02491447 6408#ifdef CONFIG_MMU
7dc74be0 6409/* Handlers for move charge at task migration. */
854ffa8d
DN
6410#define PRECHARGE_COUNT_AT_ONCE 256
6411static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6412{
854ffa8d
DN
6413 int ret = 0;
6414 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6415 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6416
c0ff4b85 6417 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6418 mc.precharge += count;
6419 /* we don't need css_get for root */
6420 return ret;
6421 }
6422 /* try to charge at once */
6423 if (count > 1) {
6424 struct res_counter *dummy;
6425 /*
c0ff4b85 6426 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6427 * by cgroup_lock_live_cgroup() that it is not removed and we
6428 * are still under the same cgroup_mutex. So we can postpone
6429 * css_get().
6430 */
c0ff4b85 6431 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6432 goto one_by_one;
c0ff4b85 6433 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6434 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6435 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6436 goto one_by_one;
6437 }
6438 mc.precharge += count;
854ffa8d
DN
6439 return ret;
6440 }
6441one_by_one:
6442 /* fall back to one by one charge */
6443 while (count--) {
6444 if (signal_pending(current)) {
6445 ret = -EINTR;
6446 break;
6447 }
6448 if (!batch_count--) {
6449 batch_count = PRECHARGE_COUNT_AT_ONCE;
6450 cond_resched();
6451 }
6d1fdc48 6452 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6453 if (ret)
854ffa8d 6454 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6455 return ret;
854ffa8d
DN
6456 mc.precharge++;
6457 }
4ffef5fe
DN
6458 return ret;
6459}
6460
6461/**
8d32ff84 6462 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6463 * @vma: the vma the pte to be checked belongs
6464 * @addr: the address corresponding to the pte to be checked
6465 * @ptent: the pte to be checked
02491447 6466 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6467 *
6468 * Returns
6469 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6470 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6471 * move charge. if @target is not NULL, the page is stored in target->page
6472 * with extra refcnt got(Callers should handle it).
02491447
DN
6473 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6474 * target for charge migration. if @target is not NULL, the entry is stored
6475 * in target->ent.
4ffef5fe
DN
6476 *
6477 * Called with pte lock held.
6478 */
4ffef5fe
DN
6479union mc_target {
6480 struct page *page;
02491447 6481 swp_entry_t ent;
4ffef5fe
DN
6482};
6483
4ffef5fe 6484enum mc_target_type {
8d32ff84 6485 MC_TARGET_NONE = 0,
4ffef5fe 6486 MC_TARGET_PAGE,
02491447 6487 MC_TARGET_SWAP,
4ffef5fe
DN
6488};
6489
90254a65
DN
6490static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent)
4ffef5fe 6492{
90254a65 6493 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6494
90254a65
DN
6495 if (!page || !page_mapped(page))
6496 return NULL;
6497 if (PageAnon(page)) {
6498 /* we don't move shared anon */
4b91355e 6499 if (!move_anon())
90254a65 6500 return NULL;
87946a72
DN
6501 } else if (!move_file())
6502 /* we ignore mapcount for file pages */
90254a65
DN
6503 return NULL;
6504 if (!get_page_unless_zero(page))
6505 return NULL;
6506
6507 return page;
6508}
6509
4b91355e 6510#ifdef CONFIG_SWAP
90254a65
DN
6511static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6512 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6513{
90254a65
DN
6514 struct page *page = NULL;
6515 swp_entry_t ent = pte_to_swp_entry(ptent);
6516
6517 if (!move_anon() || non_swap_entry(ent))
6518 return NULL;
4b91355e
KH
6519 /*
6520 * Because lookup_swap_cache() updates some statistics counter,
6521 * we call find_get_page() with swapper_space directly.
6522 */
33806f06 6523 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6524 if (do_swap_account)
6525 entry->val = ent.val;
6526
6527 return page;
6528}
4b91355e
KH
6529#else
6530static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6531 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6532{
6533 return NULL;
6534}
6535#endif
90254a65 6536
87946a72
DN
6537static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6538 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6539{
6540 struct page *page = NULL;
87946a72
DN
6541 struct address_space *mapping;
6542 pgoff_t pgoff;
6543
6544 if (!vma->vm_file) /* anonymous vma */
6545 return NULL;
6546 if (!move_file())
6547 return NULL;
6548
87946a72
DN
6549 mapping = vma->vm_file->f_mapping;
6550 if (pte_none(ptent))
6551 pgoff = linear_page_index(vma, addr);
6552 else /* pte_file(ptent) is true */
6553 pgoff = pte_to_pgoff(ptent);
6554
6555 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6556#ifdef CONFIG_SWAP
6557 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6558 if (shmem_mapping(mapping)) {
6559 page = find_get_entry(mapping, pgoff);
6560 if (radix_tree_exceptional_entry(page)) {
6561 swp_entry_t swp = radix_to_swp_entry(page);
6562 if (do_swap_account)
6563 *entry = swp;
6564 page = find_get_page(swap_address_space(swp), swp.val);
6565 }
6566 } else
6567 page = find_get_page(mapping, pgoff);
6568#else
6569 page = find_get_page(mapping, pgoff);
aa3b1895 6570#endif
87946a72
DN
6571 return page;
6572}
6573
8d32ff84 6574static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6575 unsigned long addr, pte_t ptent, union mc_target *target)
6576{
6577 struct page *page = NULL;
6578 struct page_cgroup *pc;
8d32ff84 6579 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6580 swp_entry_t ent = { .val = 0 };
6581
6582 if (pte_present(ptent))
6583 page = mc_handle_present_pte(vma, addr, ptent);
6584 else if (is_swap_pte(ptent))
6585 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6586 else if (pte_none(ptent) || pte_file(ptent))
6587 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6588
6589 if (!page && !ent.val)
8d32ff84 6590 return ret;
02491447
DN
6591 if (page) {
6592 pc = lookup_page_cgroup(page);
6593 /*
6594 * Do only loose check w/o page_cgroup lock.
6595 * mem_cgroup_move_account() checks the pc is valid or not under
6596 * the lock.
6597 */
6598 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6599 ret = MC_TARGET_PAGE;
6600 if (target)
6601 target->page = page;
6602 }
6603 if (!ret || !target)
6604 put_page(page);
6605 }
90254a65
DN
6606 /* There is a swap entry and a page doesn't exist or isn't charged */
6607 if (ent.val && !ret &&
34c00c31 6608 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6609 ret = MC_TARGET_SWAP;
6610 if (target)
6611 target->ent = ent;
4ffef5fe 6612 }
4ffef5fe
DN
6613 return ret;
6614}
6615
12724850
NH
6616#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6617/*
6618 * We don't consider swapping or file mapped pages because THP does not
6619 * support them for now.
6620 * Caller should make sure that pmd_trans_huge(pmd) is true.
6621 */
6622static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6623 unsigned long addr, pmd_t pmd, union mc_target *target)
6624{
6625 struct page *page = NULL;
6626 struct page_cgroup *pc;
6627 enum mc_target_type ret = MC_TARGET_NONE;
6628
6629 page = pmd_page(pmd);
309381fe 6630 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6631 if (!move_anon())
6632 return ret;
6633 pc = lookup_page_cgroup(page);
6634 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6635 ret = MC_TARGET_PAGE;
6636 if (target) {
6637 get_page(page);
6638 target->page = page;
6639 }
6640 }
6641 return ret;
6642}
6643#else
6644static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6645 unsigned long addr, pmd_t pmd, union mc_target *target)
6646{
6647 return MC_TARGET_NONE;
6648}
6649#endif
6650
4ffef5fe
DN
6651static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6652 unsigned long addr, unsigned long end,
6653 struct mm_walk *walk)
6654{
6655 struct vm_area_struct *vma = walk->private;
6656 pte_t *pte;
6657 spinlock_t *ptl;
6658
bf929152 6659 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6661 mc.precharge += HPAGE_PMD_NR;
bf929152 6662 spin_unlock(ptl);
1a5a9906 6663 return 0;
12724850 6664 }
03319327 6665
45f83cef
AA
6666 if (pmd_trans_unstable(pmd))
6667 return 0;
4ffef5fe
DN
6668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6669 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6670 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6671 mc.precharge++; /* increment precharge temporarily */
6672 pte_unmap_unlock(pte - 1, ptl);
6673 cond_resched();
6674
7dc74be0
DN
6675 return 0;
6676}
6677
4ffef5fe
DN
6678static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6679{
6680 unsigned long precharge;
6681 struct vm_area_struct *vma;
6682
dfe076b0 6683 down_read(&mm->mmap_sem);
4ffef5fe
DN
6684 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6685 struct mm_walk mem_cgroup_count_precharge_walk = {
6686 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6687 .mm = mm,
6688 .private = vma,
6689 };
6690 if (is_vm_hugetlb_page(vma))
6691 continue;
4ffef5fe
DN
6692 walk_page_range(vma->vm_start, vma->vm_end,
6693 &mem_cgroup_count_precharge_walk);
6694 }
dfe076b0 6695 up_read(&mm->mmap_sem);
4ffef5fe
DN
6696
6697 precharge = mc.precharge;
6698 mc.precharge = 0;
6699
6700 return precharge;
6701}
6702
4ffef5fe
DN
6703static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6704{
dfe076b0
DN
6705 unsigned long precharge = mem_cgroup_count_precharge(mm);
6706
6707 VM_BUG_ON(mc.moving_task);
6708 mc.moving_task = current;
6709 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6710}
6711
dfe076b0
DN
6712/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6713static void __mem_cgroup_clear_mc(void)
4ffef5fe 6714{
2bd9bb20
KH
6715 struct mem_cgroup *from = mc.from;
6716 struct mem_cgroup *to = mc.to;
4050377b 6717 int i;
2bd9bb20 6718
4ffef5fe 6719 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6720 if (mc.precharge) {
6721 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6722 mc.precharge = 0;
6723 }
6724 /*
6725 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6726 * we must uncharge here.
6727 */
6728 if (mc.moved_charge) {
6729 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6730 mc.moved_charge = 0;
4ffef5fe 6731 }
483c30b5
DN
6732 /* we must fixup refcnts and charges */
6733 if (mc.moved_swap) {
483c30b5
DN
6734 /* uncharge swap account from the old cgroup */
6735 if (!mem_cgroup_is_root(mc.from))
6736 res_counter_uncharge(&mc.from->memsw,
6737 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6738
6739 for (i = 0; i < mc.moved_swap; i++)
6740 css_put(&mc.from->css);
483c30b5
DN
6741
6742 if (!mem_cgroup_is_root(mc.to)) {
6743 /*
6744 * we charged both to->res and to->memsw, so we should
6745 * uncharge to->res.
6746 */
6747 res_counter_uncharge(&mc.to->res,
6748 PAGE_SIZE * mc.moved_swap);
483c30b5 6749 }
4050377b 6750 /* we've already done css_get(mc.to) */
483c30b5
DN
6751 mc.moved_swap = 0;
6752 }
dfe076b0
DN
6753 memcg_oom_recover(from);
6754 memcg_oom_recover(to);
6755 wake_up_all(&mc.waitq);
6756}
6757
6758static void mem_cgroup_clear_mc(void)
6759{
6760 struct mem_cgroup *from = mc.from;
6761
6762 /*
6763 * we must clear moving_task before waking up waiters at the end of
6764 * task migration.
6765 */
6766 mc.moving_task = NULL;
6767 __mem_cgroup_clear_mc();
2bd9bb20 6768 spin_lock(&mc.lock);
4ffef5fe
DN
6769 mc.from = NULL;
6770 mc.to = NULL;
2bd9bb20 6771 spin_unlock(&mc.lock);
32047e2a 6772 mem_cgroup_end_move(from);
4ffef5fe
DN
6773}
6774
eb95419b 6775static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6776 struct cgroup_taskset *tset)
7dc74be0 6777{
2f7ee569 6778 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6779 int ret = 0;
eb95419b 6780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6781 unsigned long move_charge_at_immigrate;
7dc74be0 6782
ee5e8472
GC
6783 /*
6784 * We are now commited to this value whatever it is. Changes in this
6785 * tunable will only affect upcoming migrations, not the current one.
6786 * So we need to save it, and keep it going.
6787 */
6788 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6789 if (move_charge_at_immigrate) {
7dc74be0
DN
6790 struct mm_struct *mm;
6791 struct mem_cgroup *from = mem_cgroup_from_task(p);
6792
c0ff4b85 6793 VM_BUG_ON(from == memcg);
7dc74be0
DN
6794
6795 mm = get_task_mm(p);
6796 if (!mm)
6797 return 0;
7dc74be0 6798 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6799 if (mm->owner == p) {
6800 VM_BUG_ON(mc.from);
6801 VM_BUG_ON(mc.to);
6802 VM_BUG_ON(mc.precharge);
854ffa8d 6803 VM_BUG_ON(mc.moved_charge);
483c30b5 6804 VM_BUG_ON(mc.moved_swap);
32047e2a 6805 mem_cgroup_start_move(from);
2bd9bb20 6806 spin_lock(&mc.lock);
4ffef5fe 6807 mc.from = from;
c0ff4b85 6808 mc.to = memcg;
ee5e8472 6809 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6810 spin_unlock(&mc.lock);
dfe076b0 6811 /* We set mc.moving_task later */
4ffef5fe
DN
6812
6813 ret = mem_cgroup_precharge_mc(mm);
6814 if (ret)
6815 mem_cgroup_clear_mc();
dfe076b0
DN
6816 }
6817 mmput(mm);
7dc74be0
DN
6818 }
6819 return ret;
6820}
6821
eb95419b 6822static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6823 struct cgroup_taskset *tset)
7dc74be0 6824{
4ffef5fe 6825 mem_cgroup_clear_mc();
7dc74be0
DN
6826}
6827
4ffef5fe
DN
6828static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6829 unsigned long addr, unsigned long end,
6830 struct mm_walk *walk)
7dc74be0 6831{
4ffef5fe
DN
6832 int ret = 0;
6833 struct vm_area_struct *vma = walk->private;
6834 pte_t *pte;
6835 spinlock_t *ptl;
12724850
NH
6836 enum mc_target_type target_type;
6837 union mc_target target;
6838 struct page *page;
6839 struct page_cgroup *pc;
4ffef5fe 6840
12724850
NH
6841 /*
6842 * We don't take compound_lock() here but no race with splitting thp
6843 * happens because:
6844 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6845 * under splitting, which means there's no concurrent thp split,
6846 * - if another thread runs into split_huge_page() just after we
6847 * entered this if-block, the thread must wait for page table lock
6848 * to be unlocked in __split_huge_page_splitting(), where the main
6849 * part of thp split is not executed yet.
6850 */
bf929152 6851 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6852 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6853 spin_unlock(ptl);
12724850
NH
6854 return 0;
6855 }
6856 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6857 if (target_type == MC_TARGET_PAGE) {
6858 page = target.page;
6859 if (!isolate_lru_page(page)) {
6860 pc = lookup_page_cgroup(page);
6861 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6862 pc, mc.from, mc.to)) {
12724850
NH
6863 mc.precharge -= HPAGE_PMD_NR;
6864 mc.moved_charge += HPAGE_PMD_NR;
6865 }
6866 putback_lru_page(page);
6867 }
6868 put_page(page);
6869 }
bf929152 6870 spin_unlock(ptl);
1a5a9906 6871 return 0;
12724850
NH
6872 }
6873
45f83cef
AA
6874 if (pmd_trans_unstable(pmd))
6875 return 0;
4ffef5fe
DN
6876retry:
6877 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6878 for (; addr != end; addr += PAGE_SIZE) {
6879 pte_t ptent = *(pte++);
02491447 6880 swp_entry_t ent;
4ffef5fe
DN
6881
6882 if (!mc.precharge)
6883 break;
6884
8d32ff84 6885 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6886 case MC_TARGET_PAGE:
6887 page = target.page;
6888 if (isolate_lru_page(page))
6889 goto put;
6890 pc = lookup_page_cgroup(page);
7ec99d62 6891 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6892 mc.from, mc.to)) {
4ffef5fe 6893 mc.precharge--;
854ffa8d
DN
6894 /* we uncharge from mc.from later. */
6895 mc.moved_charge++;
4ffef5fe
DN
6896 }
6897 putback_lru_page(page);
8d32ff84 6898put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6899 put_page(page);
6900 break;
02491447
DN
6901 case MC_TARGET_SWAP:
6902 ent = target.ent;
e91cbb42 6903 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6904 mc.precharge--;
483c30b5
DN
6905 /* we fixup refcnts and charges later. */
6906 mc.moved_swap++;
6907 }
02491447 6908 break;
4ffef5fe
DN
6909 default:
6910 break;
6911 }
6912 }
6913 pte_unmap_unlock(pte - 1, ptl);
6914 cond_resched();
6915
6916 if (addr != end) {
6917 /*
6918 * We have consumed all precharges we got in can_attach().
6919 * We try charge one by one, but don't do any additional
6920 * charges to mc.to if we have failed in charge once in attach()
6921 * phase.
6922 */
854ffa8d 6923 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6924 if (!ret)
6925 goto retry;
6926 }
6927
6928 return ret;
6929}
6930
6931static void mem_cgroup_move_charge(struct mm_struct *mm)
6932{
6933 struct vm_area_struct *vma;
6934
6935 lru_add_drain_all();
dfe076b0
DN
6936retry:
6937 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6938 /*
6939 * Someone who are holding the mmap_sem might be waiting in
6940 * waitq. So we cancel all extra charges, wake up all waiters,
6941 * and retry. Because we cancel precharges, we might not be able
6942 * to move enough charges, but moving charge is a best-effort
6943 * feature anyway, so it wouldn't be a big problem.
6944 */
6945 __mem_cgroup_clear_mc();
6946 cond_resched();
6947 goto retry;
6948 }
4ffef5fe
DN
6949 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6950 int ret;
6951 struct mm_walk mem_cgroup_move_charge_walk = {
6952 .pmd_entry = mem_cgroup_move_charge_pte_range,
6953 .mm = mm,
6954 .private = vma,
6955 };
6956 if (is_vm_hugetlb_page(vma))
6957 continue;
4ffef5fe
DN
6958 ret = walk_page_range(vma->vm_start, vma->vm_end,
6959 &mem_cgroup_move_charge_walk);
6960 if (ret)
6961 /*
6962 * means we have consumed all precharges and failed in
6963 * doing additional charge. Just abandon here.
6964 */
6965 break;
6966 }
dfe076b0 6967 up_read(&mm->mmap_sem);
7dc74be0
DN
6968}
6969
eb95419b 6970static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6971 struct cgroup_taskset *tset)
67e465a7 6972{
2f7ee569 6973 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6974 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6975
dfe076b0 6976 if (mm) {
a433658c
KM
6977 if (mc.to)
6978 mem_cgroup_move_charge(mm);
dfe076b0
DN
6979 mmput(mm);
6980 }
a433658c
KM
6981 if (mc.to)
6982 mem_cgroup_clear_mc();
67e465a7 6983}
5cfb80a7 6984#else /* !CONFIG_MMU */
eb95419b 6985static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6986 struct cgroup_taskset *tset)
5cfb80a7
DN
6987{
6988 return 0;
6989}
eb95419b 6990static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6991 struct cgroup_taskset *tset)
5cfb80a7
DN
6992{
6993}
eb95419b 6994static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6995 struct cgroup_taskset *tset)
5cfb80a7
DN
6996{
6997}
6998#endif
67e465a7 6999
f00baae7
TH
7000/*
7001 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7002 * to verify sane_behavior flag on each mount attempt.
7003 */
eb95419b 7004static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7005{
7006 /*
7007 * use_hierarchy is forced with sane_behavior. cgroup core
7008 * guarantees that @root doesn't have any children, so turning it
7009 * on for the root memcg is enough.
7010 */
eb95419b
TH
7011 if (cgroup_sane_behavior(root_css->cgroup))
7012 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7013}
7014
073219e9 7015struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7016 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7017 .css_online = mem_cgroup_css_online,
92fb9748
TH
7018 .css_offline = mem_cgroup_css_offline,
7019 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7020 .can_attach = mem_cgroup_can_attach,
7021 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7022 .attach = mem_cgroup_move_task,
f00baae7 7023 .bind = mem_cgroup_bind,
6bc10349 7024 .base_cftypes = mem_cgroup_files,
6d12e2d8 7025 .early_init = 0,
8cdea7c0 7026};
c077719b 7027
c255a458 7028#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7029static int __init enable_swap_account(char *s)
7030{
a2c8990a 7031 if (!strcmp(s, "1"))
a42c390c 7032 really_do_swap_account = 1;
a2c8990a 7033 else if (!strcmp(s, "0"))
a42c390c
MH
7034 really_do_swap_account = 0;
7035 return 1;
7036}
a2c8990a 7037__setup("swapaccount=", enable_swap_account);
c077719b 7038
2d11085e
MH
7039static void __init memsw_file_init(void)
7040{
073219e9 7041 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7042}
7043
7044static void __init enable_swap_cgroup(void)
7045{
7046 if (!mem_cgroup_disabled() && really_do_swap_account) {
7047 do_swap_account = 1;
7048 memsw_file_init();
7049 }
2d11085e 7050}
6acc8b02 7051
2d11085e 7052#else
6acc8b02 7053static void __init enable_swap_cgroup(void)
2d11085e
MH
7054{
7055}
c077719b 7056#endif
2d11085e
MH
7057
7058/*
1081312f
MH
7059 * subsys_initcall() for memory controller.
7060 *
7061 * Some parts like hotcpu_notifier() have to be initialized from this context
7062 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7063 * everything that doesn't depend on a specific mem_cgroup structure should
7064 * be initialized from here.
2d11085e
MH
7065 */
7066static int __init mem_cgroup_init(void)
7067{
7068 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7069 enable_swap_cgroup();
bb4cc1a8 7070 mem_cgroup_soft_limit_tree_init();
e4777496 7071 memcg_stock_init();
2d11085e
MH
7072 return 0;
7073}
7074subsys_initcall(mem_cgroup_init);