]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
cgroup: remove struct cgroup_scanner
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
465939a1
LZ
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
59927fb9 270
510fc4e1
GC
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
18f59ea7
BS
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
510fc4e1 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
280
281 bool oom_lock;
282 atomic_t under_oom;
283
1f4c025b 284 int swappiness;
3c11ecf4
KH
285 /* OOM-Killer disable */
286 int oom_kill_disable;
a7885eb8 287
22a668d7
KH
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
2e72b634
KS
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
2c488db2 295 struct mem_cgroup_thresholds thresholds;
907860ed 296
2e72b634 297 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 298 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 299
9490ff27
KH
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
185efc0f 302
7dc74be0
DN
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
619d094b
KH
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312734c0
KH
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
d52aa412 314 /*
c62b1a3b 315 * percpu counter.
d52aa412 316 */
3a7951b4 317 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
d1a4c0b3 324
5f578161 325 atomic_t dead_count;
4bd2c1ee 326#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
327 struct tcp_memcontrol tcp_mem;
328#endif
2633d7a0
GC
329#if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336#endif
45cf7ebd
GC
337
338 int last_scanned_node;
339#if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343#endif
70ddf637 344
54f72fe0
JW
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
347};
348
45cf7ebd
GC
349static size_t memcg_size(void)
350{
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353}
354
510fc4e1
GC
355/* internal only representation about the status of kmem accounting. */
356enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
360};
361
a8964b9b
GC
362/* We account when limit is on, but only after call sites are patched */
363#define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
365
366#ifdef CONFIG_MEMCG_KMEM
367static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368{
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370}
7de37682
GC
371
372static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373{
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375}
376
a8964b9b
GC
377static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378{
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380}
381
55007d84
GC
382static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383{
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385}
386
7de37682
GC
387static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388{
10d5ebf4
LZ
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
7de37682
GC
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396}
397
398static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399{
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402}
510fc4e1
GC
403#endif
404
7dc74be0
DN
405/* Stuffs for move charges at task migration. */
406/*
ee5e8472
GC
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
409 */
410enum move_type {
4ffef5fe 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
413 NR_MOVE_TYPE,
414};
415
4ffef5fe
DN
416/* "mc" and its members are protected by cgroup_mutex */
417static struct move_charge_struct {
b1dd693e 418 spinlock_t lock; /* for from, to */
4ffef5fe
DN
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
ee5e8472 421 unsigned long immigrate_flags;
4ffef5fe 422 unsigned long precharge;
854ffa8d 423 unsigned long moved_charge;
483c30b5 424 unsigned long moved_swap;
8033b97c
DN
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427} mc = {
2bd9bb20 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430};
4ffef5fe 431
90254a65
DN
432static bool move_anon(void)
433{
ee5e8472 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
435}
436
87946a72
DN
437static bool move_file(void)
438{
ee5e8472 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
440}
441
4e416953
BS
442/*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
a0db00fc
KS
446#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 448
217bc319
KH
449enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 451 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
454 NR_CHARGE_TYPE,
455};
456
8c7c6e34 457/* for encoding cft->private value on file */
86ae53e1
GC
458enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
510fc4e1 462 _KMEM,
86ae53e1
GC
463};
464
a0db00fc
KS
465#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 467#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
468/* Used for OOM nofiier */
469#define OOM_CONTROL (0)
8c7c6e34 470
75822b44
BS
471/*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
0999821b
GC
479/*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484static DEFINE_MUTEX(memcg_create_mutex);
485
b2145145
WL
486struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487{
a7c6d554 488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
489}
490
70ddf637
AV
491/* Some nice accessors for the vmpressure. */
492struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493{
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497}
498
499struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500{
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502}
503
504struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505{
506 return &mem_cgroup_from_css(css)->vmpressure;
507}
508
7ffc0edc
MH
509static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510{
511 return (memcg == root_mem_cgroup);
512}
513
e1aab161 514/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 515#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 516
e1aab161
GC
517void sock_update_memcg(struct sock *sk)
518{
376be5ff 519 if (mem_cgroup_sockets_enabled) {
e1aab161 520 struct mem_cgroup *memcg;
3f134619 521 struct cg_proto *cg_proto;
e1aab161
GC
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
f3f511e1
GC
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 535 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
536 return;
537 }
538
e1aab161
GC
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
3f134619 541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 544 sk->sk_cgrp = cg_proto;
e1aab161
GC
545 }
546 rcu_read_unlock();
547 }
548}
549EXPORT_SYMBOL(sock_update_memcg);
550
551void sock_release_memcg(struct sock *sk)
552{
376be5ff 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
5347e5ae 557 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
558 }
559}
d1a4c0b3
GC
560
561struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562{
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567}
568EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 569
3f134619
GC
570static void disarm_sock_keys(struct mem_cgroup *memcg)
571{
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575}
576#else
577static void disarm_sock_keys(struct mem_cgroup *memcg)
578{
579}
580#endif
581
a8964b9b 582#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
583/*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
601int memcg_limited_groups_array_size;
602
55007d84
GC
603/*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615#define MEMCG_CACHES_MIN_SIZE 4
616#define MEMCG_CACHES_MAX_SIZE 65535
617
d7f25f8a
GC
618/*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
a8964b9b 624struct static_key memcg_kmem_enabled_key;
d7f25f8a 625EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
626
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
55007d84 629 if (memcg_kmem_is_active(memcg)) {
a8964b9b 630 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
bea207c8
GC
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
638}
639#else
640static void disarm_kmem_keys(struct mem_cgroup *memcg)
641{
642}
643#endif /* CONFIG_MEMCG_KMEM */
644
645static void disarm_static_keys(struct mem_cgroup *memcg)
646{
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649}
650
c0ff4b85 651static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 652
f64c3f54 653static struct mem_cgroup_per_zone *
c0ff4b85 654mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 655{
45cf7ebd 656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
c0ff4b85 660struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 661{
c0ff4b85 662 return &memcg->css;
d324236b
WF
663}
664
f64c3f54 665static struct mem_cgroup_per_zone *
c0ff4b85 666page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 667{
97a6c37b
JW
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
f64c3f54 670
c0ff4b85 671 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
672}
673
674static struct mem_cgroup_tree_per_zone *
675soft_limit_tree_node_zone(int nid, int zid)
676{
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678}
679
680static struct mem_cgroup_tree_per_zone *
681soft_limit_tree_from_page(struct page *page)
682{
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687}
688
689static void
c0ff4b85 690__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 691 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
f64c3f54
BS
694{
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
ef8745c1
KH
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
f64c3f54
BS
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
4e416953
BS
721}
722
723static void
c0ff4b85 724__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727{
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732}
733
f64c3f54 734static void
c0ff4b85 735mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738{
739 spin_lock(&mctz->lock);
c0ff4b85 740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
741 spin_unlock(&mctz->lock);
742}
743
f64c3f54 744
c0ff4b85 745static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 746{
ef8745c1 747 unsigned long long excess;
f64c3f54
BS
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
f64c3f54
BS
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
4e649152
KH
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
f64c3f54 757 */
c0ff4b85
R
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
ef8745c1 765 if (excess || mz->on_tree) {
4e649152
KH
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
c0ff4b85 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 770 /*
ef8745c1
KH
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
4e649152 773 */
c0ff4b85 774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
775 spin_unlock(&mctz->lock);
776 }
f64c3f54
BS
777 }
778}
779
c0ff4b85 780static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
781{
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
3ed28fa1 786 for_each_node(node) {
f64c3f54 787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 789 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
791 }
792 }
793}
794
4e416953
BS
795static struct mem_cgroup_per_zone *
796__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797{
798 struct rb_node *rightmost = NULL;
26251eaf 799 struct mem_cgroup_per_zone *mz;
4e416953
BS
800
801retry:
26251eaf 802 mz = NULL;
4e416953
BS
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
d79154bb
HD
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
4e416953
BS
816 goto retry;
817done:
818 return mz;
819}
820
821static struct mem_cgroup_per_zone *
822mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830}
831
711d3d2c
KH
832/*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
c0ff4b85 851static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 852 enum mem_cgroup_stat_index idx)
c62b1a3b 853{
7a159cc9 854 long val = 0;
c62b1a3b 855 int cpu;
c62b1a3b 856
711d3d2c
KH
857 get_online_cpus();
858 for_each_online_cpu(cpu)
c0ff4b85 859 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 860#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
864#endif
865 put_online_cpus();
c62b1a3b
KH
866 return val;
867}
868
c0ff4b85 869static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
870 bool charge)
871{
872 int val = (charge) ? 1 : -1;
bff6bb83 873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
874}
875
c0ff4b85 876static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
877 enum mem_cgroup_events_index idx)
878{
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
c0ff4b85 883 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 884#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
888#endif
889 return val;
890}
891
c0ff4b85 892static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 893 struct page *page,
b2402857 894 bool anon, int nr_pages)
d52aa412 895{
c62b1a3b
KH
896 preempt_disable();
897
b2402857
KH
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 904 nr_pages);
d52aa412 905 else
b2402857 906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 907 nr_pages);
55e462b0 908
b070e65c
DR
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
e401f176
KH
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
c0ff4b85 915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 916 else {
c0ff4b85 917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
918 nr_pages = -nr_pages; /* for event */
919 }
e401f176 920
13114716 921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 922
c62b1a3b 923 preempt_enable();
6d12e2d8
KH
924}
925
bb2a0de9 926unsigned long
4d7dcca2 927mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
928{
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933}
934
935static unsigned long
c0ff4b85 936mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 937 unsigned int lru_mask)
889976db
YH
938{
939 struct mem_cgroup_per_zone *mz;
f156ab93 940 enum lru_list lru;
bb2a0de9
KH
941 unsigned long ret = 0;
942
c0ff4b85 943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 944
f156ab93
HD
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
bb2a0de9
KH
948 }
949 return ret;
950}
951
952static unsigned long
c0ff4b85 953mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
954 int nid, unsigned int lru_mask)
955{
889976db
YH
956 u64 total = 0;
957 int zid;
958
bb2a0de9 959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
bb2a0de9 962
889976db
YH
963 return total;
964}
bb2a0de9 965
c0ff4b85 966static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 967 unsigned int lru_mask)
6d12e2d8 968{
889976db 969 int nid;
6d12e2d8
KH
970 u64 total = 0;
971
31aaea4a 972 for_each_node_state(nid, N_MEMORY)
c0ff4b85 973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 974 return total;
d52aa412
KH
975}
976
f53d7ce3
JW
977static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
7a159cc9
JW
979{
980 unsigned long val, next;
981
13114716 982 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 983 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 984 /* from time_after() in jiffies.h */
f53d7ce3
JW
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
7a159cc9 1001 }
f53d7ce3 1002 return false;
d2265e6f
KH
1003}
1004
1005/*
1006 * Check events in order.
1007 *
1008 */
c0ff4b85 1009static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1010{
4799401f 1011 preempt_disable();
d2265e6f 1012 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020#if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023#endif
1024 preempt_enable();
1025
c0ff4b85 1026 mem_cgroup_threshold(memcg);
f53d7ce3 1027 if (unlikely(do_softlimit))
c0ff4b85 1028 mem_cgroup_update_tree(memcg, page);
453a9bf3 1029#if MAX_NUMNODES > 1
f53d7ce3 1030 if (unlikely(do_numainfo))
c0ff4b85 1031 atomic_inc(&memcg->numainfo_events);
453a9bf3 1032#endif
f53d7ce3
JW
1033 } else
1034 preempt_enable();
d2265e6f
KH
1035}
1036
182446d0 1037static inline struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1038{
8af01f56 1039 return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1040}
1041
cf475ad2 1042struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1043{
31a78f23
BS
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
8af01f56 1052 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1053}
1054
a433658c 1055struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1056{
c0ff4b85 1057 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1058
1059 if (!mm)
1060 return NULL;
54595fe2
KH
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
c0ff4b85
R
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
54595fe2 1070 break;
c0ff4b85 1071 } while (!css_tryget(&memcg->css));
54595fe2 1072 rcu_read_unlock();
c0ff4b85 1073 return memcg;
54595fe2
KH
1074}
1075
16248d8f
MH
1076/*
1077 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1078 * ref. count) or NULL if the whole root's subtree has been visited.
1079 *
1080 * helper function to be used by mem_cgroup_iter
1081 */
1082static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083 struct mem_cgroup *last_visited)
1084{
492eb21b 1085 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f
MH
1086
1087 /*
1088 * Root is not visited by cgroup iterators so it needs an
1089 * explicit visit.
1090 */
1091 if (!last_visited)
1092 return root;
1093
492eb21b 1094 prev_css = (last_visited == root) ? NULL : &last_visited->css;
16248d8f 1095skip_node:
492eb21b 1096 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1097
1098 /*
1099 * Even if we found a group we have to make sure it is
1100 * alive. css && !memcg means that the groups should be
1101 * skipped and we should continue the tree walk.
1102 * last_visited css is safe to use because it is
1103 * protected by css_get and the tree walk is rcu safe.
1104 */
492eb21b
TH
1105 if (next_css) {
1106 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1107
16248d8f
MH
1108 if (css_tryget(&mem->css))
1109 return mem;
1110 else {
492eb21b 1111 prev_css = next_css;
16248d8f
MH
1112 goto skip_node;
1113 }
1114 }
1115
1116 return NULL;
1117}
1118
519ebea3
JW
1119static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120{
1121 /*
1122 * When a group in the hierarchy below root is destroyed, the
1123 * hierarchy iterator can no longer be trusted since it might
1124 * have pointed to the destroyed group. Invalidate it.
1125 */
1126 atomic_inc(&root->dead_count);
1127}
1128
1129static struct mem_cgroup *
1130mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 struct mem_cgroup *root,
1132 int *sequence)
1133{
1134 struct mem_cgroup *position = NULL;
1135 /*
1136 * A cgroup destruction happens in two stages: offlining and
1137 * release. They are separated by a RCU grace period.
1138 *
1139 * If the iterator is valid, we may still race with an
1140 * offlining. The RCU lock ensures the object won't be
1141 * released, tryget will fail if we lost the race.
1142 */
1143 *sequence = atomic_read(&root->dead_count);
1144 if (iter->last_dead_count == *sequence) {
1145 smp_rmb();
1146 position = iter->last_visited;
1147 if (position && !css_tryget(&position->css))
1148 position = NULL;
1149 }
1150 return position;
1151}
1152
1153static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1154 struct mem_cgroup *last_visited,
1155 struct mem_cgroup *new_position,
1156 int sequence)
1157{
1158 if (last_visited)
1159 css_put(&last_visited->css);
1160 /*
1161 * We store the sequence count from the time @last_visited was
1162 * loaded successfully instead of rereading it here so that we
1163 * don't lose destruction events in between. We could have
1164 * raced with the destruction of @new_position after all.
1165 */
1166 iter->last_visited = new_position;
1167 smp_wmb();
1168 iter->last_dead_count = sequence;
1169}
1170
5660048c
JW
1171/**
1172 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1173 * @root: hierarchy root
1174 * @prev: previously returned memcg, NULL on first invocation
1175 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1176 *
1177 * Returns references to children of the hierarchy below @root, or
1178 * @root itself, or %NULL after a full round-trip.
1179 *
1180 * Caller must pass the return value in @prev on subsequent
1181 * invocations for reference counting, or use mem_cgroup_iter_break()
1182 * to cancel a hierarchy walk before the round-trip is complete.
1183 *
1184 * Reclaimers can specify a zone and a priority level in @reclaim to
1185 * divide up the memcgs in the hierarchy among all concurrent
1186 * reclaimers operating on the same zone and priority.
1187 */
1188struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1189 struct mem_cgroup *prev,
1190 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1191{
9f3a0d09 1192 struct mem_cgroup *memcg = NULL;
542f85f9 1193 struct mem_cgroup *last_visited = NULL;
711d3d2c 1194
5660048c
JW
1195 if (mem_cgroup_disabled())
1196 return NULL;
1197
9f3a0d09
JW
1198 if (!root)
1199 root = root_mem_cgroup;
7d74b06f 1200
9f3a0d09 1201 if (prev && !reclaim)
542f85f9 1202 last_visited = prev;
14067bb3 1203
9f3a0d09
JW
1204 if (!root->use_hierarchy && root != root_mem_cgroup) {
1205 if (prev)
c40046f3 1206 goto out_css_put;
9f3a0d09
JW
1207 return root;
1208 }
14067bb3 1209
542f85f9 1210 rcu_read_lock();
9f3a0d09 1211 while (!memcg) {
527a5ec9 1212 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1213 int uninitialized_var(seq);
711d3d2c 1214
527a5ec9
JW
1215 if (reclaim) {
1216 int nid = zone_to_nid(reclaim->zone);
1217 int zid = zone_idx(reclaim->zone);
1218 struct mem_cgroup_per_zone *mz;
1219
1220 mz = mem_cgroup_zoneinfo(root, nid, zid);
1221 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1222 if (prev && reclaim->generation != iter->generation) {
5f578161 1223 iter->last_visited = NULL;
542f85f9
MH
1224 goto out_unlock;
1225 }
5f578161 1226
519ebea3 1227 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1228 }
7d74b06f 1229
16248d8f 1230 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1231
527a5ec9 1232 if (reclaim) {
519ebea3 1233 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1234
19f39402 1235 if (!memcg)
527a5ec9
JW
1236 iter->generation++;
1237 else if (!prev && memcg)
1238 reclaim->generation = iter->generation;
1239 }
9f3a0d09 1240
19f39402 1241 if (prev && !memcg)
542f85f9 1242 goto out_unlock;
9f3a0d09 1243 }
542f85f9
MH
1244out_unlock:
1245 rcu_read_unlock();
c40046f3
MH
1246out_css_put:
1247 if (prev && prev != root)
1248 css_put(&prev->css);
1249
9f3a0d09 1250 return memcg;
14067bb3 1251}
7d74b06f 1252
5660048c
JW
1253/**
1254 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1255 * @root: hierarchy root
1256 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1257 */
1258void mem_cgroup_iter_break(struct mem_cgroup *root,
1259 struct mem_cgroup *prev)
9f3a0d09
JW
1260{
1261 if (!root)
1262 root = root_mem_cgroup;
1263 if (prev && prev != root)
1264 css_put(&prev->css);
1265}
7d74b06f 1266
9f3a0d09
JW
1267/*
1268 * Iteration constructs for visiting all cgroups (under a tree). If
1269 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1270 * be used for reference counting.
1271 */
1272#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1273 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1274 iter != NULL; \
527a5ec9 1275 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1276
9f3a0d09 1277#define for_each_mem_cgroup(iter) \
527a5ec9 1278 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1279 iter != NULL; \
527a5ec9 1280 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1281
68ae564b 1282void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1283{
c0ff4b85 1284 struct mem_cgroup *memcg;
456f998e 1285
456f998e 1286 rcu_read_lock();
c0ff4b85
R
1287 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1288 if (unlikely(!memcg))
456f998e
YH
1289 goto out;
1290
1291 switch (idx) {
456f998e 1292 case PGFAULT:
0e574a93
JW
1293 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1294 break;
1295 case PGMAJFAULT:
1296 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1297 break;
1298 default:
1299 BUG();
1300 }
1301out:
1302 rcu_read_unlock();
1303}
68ae564b 1304EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1305
925b7673
JW
1306/**
1307 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1308 * @zone: zone of the wanted lruvec
fa9add64 1309 * @memcg: memcg of the wanted lruvec
925b7673
JW
1310 *
1311 * Returns the lru list vector holding pages for the given @zone and
1312 * @mem. This can be the global zone lruvec, if the memory controller
1313 * is disabled.
1314 */
1315struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1316 struct mem_cgroup *memcg)
1317{
1318 struct mem_cgroup_per_zone *mz;
bea8c150 1319 struct lruvec *lruvec;
925b7673 1320
bea8c150
HD
1321 if (mem_cgroup_disabled()) {
1322 lruvec = &zone->lruvec;
1323 goto out;
1324 }
925b7673
JW
1325
1326 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1327 lruvec = &mz->lruvec;
1328out:
1329 /*
1330 * Since a node can be onlined after the mem_cgroup was created,
1331 * we have to be prepared to initialize lruvec->zone here;
1332 * and if offlined then reonlined, we need to reinitialize it.
1333 */
1334 if (unlikely(lruvec->zone != zone))
1335 lruvec->zone = zone;
1336 return lruvec;
925b7673
JW
1337}
1338
08e552c6
KH
1339/*
1340 * Following LRU functions are allowed to be used without PCG_LOCK.
1341 * Operations are called by routine of global LRU independently from memcg.
1342 * What we have to take care of here is validness of pc->mem_cgroup.
1343 *
1344 * Changes to pc->mem_cgroup happens when
1345 * 1. charge
1346 * 2. moving account
1347 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1348 * It is added to LRU before charge.
1349 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1350 * When moving account, the page is not on LRU. It's isolated.
1351 */
4f98a2fe 1352
925b7673 1353/**
fa9add64 1354 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1355 * @page: the page
fa9add64 1356 * @zone: zone of the page
925b7673 1357 */
fa9add64 1358struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1359{
08e552c6 1360 struct mem_cgroup_per_zone *mz;
925b7673
JW
1361 struct mem_cgroup *memcg;
1362 struct page_cgroup *pc;
bea8c150 1363 struct lruvec *lruvec;
6d12e2d8 1364
bea8c150
HD
1365 if (mem_cgroup_disabled()) {
1366 lruvec = &zone->lruvec;
1367 goto out;
1368 }
925b7673 1369
08e552c6 1370 pc = lookup_page_cgroup(page);
38c5d72f 1371 memcg = pc->mem_cgroup;
7512102c
HD
1372
1373 /*
fa9add64 1374 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1375 * an uncharged page off lru does nothing to secure
1376 * its former mem_cgroup from sudden removal.
1377 *
1378 * Our caller holds lru_lock, and PageCgroupUsed is updated
1379 * under page_cgroup lock: between them, they make all uses
1380 * of pc->mem_cgroup safe.
1381 */
fa9add64 1382 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1383 pc->mem_cgroup = memcg = root_mem_cgroup;
1384
925b7673 1385 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1386 lruvec = &mz->lruvec;
1387out:
1388 /*
1389 * Since a node can be onlined after the mem_cgroup was created,
1390 * we have to be prepared to initialize lruvec->zone here;
1391 * and if offlined then reonlined, we need to reinitialize it.
1392 */
1393 if (unlikely(lruvec->zone != zone))
1394 lruvec->zone = zone;
1395 return lruvec;
08e552c6 1396}
b69408e8 1397
925b7673 1398/**
fa9add64
HD
1399 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1400 * @lruvec: mem_cgroup per zone lru vector
1401 * @lru: index of lru list the page is sitting on
1402 * @nr_pages: positive when adding or negative when removing
925b7673 1403 *
fa9add64
HD
1404 * This function must be called when a page is added to or removed from an
1405 * lru list.
3f58a829 1406 */
fa9add64
HD
1407void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1408 int nr_pages)
3f58a829
MK
1409{
1410 struct mem_cgroup_per_zone *mz;
fa9add64 1411 unsigned long *lru_size;
3f58a829
MK
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
fa9add64
HD
1416 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1417 lru_size = mz->lru_size + lru;
1418 *lru_size += nr_pages;
1419 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1420}
544122e5 1421
3e92041d 1422/*
c0ff4b85 1423 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1424 * hierarchy subtree
1425 */
c3ac9a8a
JW
1426bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
3e92041d 1428{
91c63734
JW
1429 if (root_memcg == memcg)
1430 return true;
3a981f48 1431 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1432 return false;
c3ac9a8a
JW
1433 return css_is_ancestor(&memcg->css, &root_memcg->css);
1434}
1435
1436static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1437 struct mem_cgroup *memcg)
1438{
1439 bool ret;
1440
91c63734 1441 rcu_read_lock();
c3ac9a8a 1442 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1443 rcu_read_unlock();
1444 return ret;
3e92041d
MH
1445}
1446
ffbdccf5
DR
1447bool task_in_mem_cgroup(struct task_struct *task,
1448 const struct mem_cgroup *memcg)
4c4a2214 1449{
0b7f569e 1450 struct mem_cgroup *curr = NULL;
158e0a2d 1451 struct task_struct *p;
ffbdccf5 1452 bool ret;
4c4a2214 1453
158e0a2d 1454 p = find_lock_task_mm(task);
de077d22
DR
1455 if (p) {
1456 curr = try_get_mem_cgroup_from_mm(p->mm);
1457 task_unlock(p);
1458 } else {
1459 /*
1460 * All threads may have already detached their mm's, but the oom
1461 * killer still needs to detect if they have already been oom
1462 * killed to prevent needlessly killing additional tasks.
1463 */
ffbdccf5 1464 rcu_read_lock();
de077d22
DR
1465 curr = mem_cgroup_from_task(task);
1466 if (curr)
1467 css_get(&curr->css);
ffbdccf5 1468 rcu_read_unlock();
de077d22 1469 }
0b7f569e 1470 if (!curr)
ffbdccf5 1471 return false;
d31f56db 1472 /*
c0ff4b85 1473 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1474 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1475 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1476 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1477 */
c0ff4b85 1478 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1479 css_put(&curr->css);
4c4a2214
DR
1480 return ret;
1481}
1482
c56d5c7d 1483int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1484{
9b272977 1485 unsigned long inactive_ratio;
14797e23 1486 unsigned long inactive;
9b272977 1487 unsigned long active;
c772be93 1488 unsigned long gb;
14797e23 1489
4d7dcca2
HD
1490 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1491 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1492
c772be93
KM
1493 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1494 if (gb)
1495 inactive_ratio = int_sqrt(10 * gb);
1496 else
1497 inactive_ratio = 1;
1498
9b272977 1499 return inactive * inactive_ratio < active;
14797e23
KM
1500}
1501
6d61ef40
BS
1502#define mem_cgroup_from_res_counter(counter, member) \
1503 container_of(counter, struct mem_cgroup, member)
1504
19942822 1505/**
9d11ea9f 1506 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1507 * @memcg: the memory cgroup
19942822 1508 *
9d11ea9f 1509 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1510 * pages.
19942822 1511 */
c0ff4b85 1512static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1513{
9d11ea9f
JW
1514 unsigned long long margin;
1515
c0ff4b85 1516 margin = res_counter_margin(&memcg->res);
9d11ea9f 1517 if (do_swap_account)
c0ff4b85 1518 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1519 return margin >> PAGE_SHIFT;
19942822
JW
1520}
1521
1f4c025b 1522int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1523{
a7885eb8 1524 /* root ? */
63876986 1525 if (!css_parent(&memcg->css))
a7885eb8
KM
1526 return vm_swappiness;
1527
bf1ff263 1528 return memcg->swappiness;
a7885eb8
KM
1529}
1530
619d094b
KH
1531/*
1532 * memcg->moving_account is used for checking possibility that some thread is
1533 * calling move_account(). When a thread on CPU-A starts moving pages under
1534 * a memcg, other threads should check memcg->moving_account under
1535 * rcu_read_lock(), like this:
1536 *
1537 * CPU-A CPU-B
1538 * rcu_read_lock()
1539 * memcg->moving_account+1 if (memcg->mocing_account)
1540 * take heavy locks.
1541 * synchronize_rcu() update something.
1542 * rcu_read_unlock()
1543 * start move here.
1544 */
4331f7d3
KH
1545
1546/* for quick checking without looking up memcg */
1547atomic_t memcg_moving __read_mostly;
1548
c0ff4b85 1549static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1550{
4331f7d3 1551 atomic_inc(&memcg_moving);
619d094b 1552 atomic_inc(&memcg->moving_account);
32047e2a
KH
1553 synchronize_rcu();
1554}
1555
c0ff4b85 1556static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1557{
619d094b
KH
1558 /*
1559 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 * We check NULL in callee rather than caller.
1561 */
4331f7d3
KH
1562 if (memcg) {
1563 atomic_dec(&memcg_moving);
619d094b 1564 atomic_dec(&memcg->moving_account);
4331f7d3 1565 }
32047e2a 1566}
619d094b 1567
32047e2a
KH
1568/*
1569 * 2 routines for checking "mem" is under move_account() or not.
1570 *
13fd1dd9
AM
1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1572 * is used for avoiding races in accounting. If true,
32047e2a
KH
1573 * pc->mem_cgroup may be overwritten.
1574 *
1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576 * under hierarchy of moving cgroups. This is for
1577 * waiting at hith-memory prressure caused by "move".
1578 */
1579
13fd1dd9 1580static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1581{
1582 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1583 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1584}
4b534334 1585
c0ff4b85 1586static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1587{
2bd9bb20
KH
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
4b534334 1590 bool ret = false;
2bd9bb20
KH
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
3e92041d 1600
c0ff4b85
R
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1603unlock:
1604 spin_unlock(&mc.lock);
4b534334
KH
1605 return ret;
1606}
1607
c0ff4b85 1608static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1609{
1610 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1611 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622}
1623
312734c0
KH
1624/*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1628 * see mem_cgroup_stolen(), too.
312734c0
KH
1629 */
1630static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 unsigned long *flags)
1632{
1633 spin_lock_irqsave(&memcg->move_lock, *flags);
1634}
1635
1636static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638{
1639 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640}
1641
58cf188e 1642#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1643/**
58cf188e 1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1645 * @memcg: The memory cgroup that went over limit
1646 * @p: Task that is going to be killed
1647 *
1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649 * enabled
1650 */
1651void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652{
1653 struct cgroup *task_cgrp;
1654 struct cgroup *mem_cgrp;
1655 /*
1656 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 * on the assumption that OOM is serialized for memory controller.
1658 * If this assumption is broken, revisit this code.
1659 */
1660 static char memcg_name[PATH_MAX];
1661 int ret;
58cf188e
SZ
1662 struct mem_cgroup *iter;
1663 unsigned int i;
e222432b 1664
58cf188e 1665 if (!p)
e222432b
BS
1666 return;
1667
e222432b
BS
1668 rcu_read_lock();
1669
1670 mem_cgrp = memcg->css.cgroup;
1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672
1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 if (ret < 0) {
1675 /*
1676 * Unfortunately, we are unable to convert to a useful name
1677 * But we'll still print out the usage information
1678 */
1679 rcu_read_unlock();
1680 goto done;
1681 }
1682 rcu_read_unlock();
1683
d045197f 1684 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1685
1686 rcu_read_lock();
1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 if (ret < 0) {
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
1694 /*
1695 * Continues from above, so we don't need an KERN_ level
1696 */
d045197f 1697 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1698done:
1699
d045197f 1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 pr_info("Memory cgroup stats");
1715
1716 rcu_read_lock();
1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 if (!ret)
1719 pr_cont(" for %s", memcg_name);
1720 rcu_read_unlock();
1721 pr_cont(":");
1722
1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 continue;
1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 K(mem_cgroup_read_stat(iter, i)));
1728 }
1729
1730 for (i = 0; i < NR_LRU_LISTS; i++)
1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733
1734 pr_cont("\n");
1735 }
e222432b
BS
1736}
1737
81d39c20
KH
1738/*
1739 * This function returns the number of memcg under hierarchy tree. Returns
1740 * 1(self count) if no children.
1741 */
c0ff4b85 1742static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1743{
1744 int num = 0;
7d74b06f
KH
1745 struct mem_cgroup *iter;
1746
c0ff4b85 1747 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1748 num++;
81d39c20
KH
1749 return num;
1750}
1751
a63d83f4
DR
1752/*
1753 * Return the memory (and swap, if configured) limit for a memcg.
1754 */
9cbb78bb 1755static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1756{
1757 u64 limit;
a63d83f4 1758
f3e8eb70 1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1760
a63d83f4 1761 /*
9a5a8f19 1762 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1763 */
9a5a8f19
MH
1764 if (mem_cgroup_swappiness(memcg)) {
1765 u64 memsw;
1766
1767 limit += total_swap_pages << PAGE_SHIFT;
1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769
1770 /*
1771 * If memsw is finite and limits the amount of swap space
1772 * available to this memcg, return that limit.
1773 */
1774 limit = min(limit, memsw);
1775 }
1776
1777 return limit;
a63d83f4
DR
1778}
1779
19965460
DR
1780static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 int order)
9cbb78bb
DR
1782{
1783 struct mem_cgroup *iter;
1784 unsigned long chosen_points = 0;
1785 unsigned long totalpages;
1786 unsigned int points = 0;
1787 struct task_struct *chosen = NULL;
1788
876aafbf 1789 /*
465adcf1
DR
1790 * If current has a pending SIGKILL or is exiting, then automatically
1791 * select it. The goal is to allow it to allocate so that it may
1792 * quickly exit and free its memory.
876aafbf 1793 */
465adcf1 1794 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1795 set_thread_flag(TIF_MEMDIE);
1796 return;
1797 }
1798
1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 struct cgroup *cgroup = iter->css.cgroup;
0942eeee 1803 struct cgroup_task_iter it;
9cbb78bb
DR
1804 struct task_struct *task;
1805
0942eeee 1806 cgroup_task_iter_start(cgroup, &it);
c59cd3d8 1807 while ((task = cgroup_task_iter_next(&it))) {
9cbb78bb
DR
1808 switch (oom_scan_process_thread(task, totalpages, NULL,
1809 false)) {
1810 case OOM_SCAN_SELECT:
1811 if (chosen)
1812 put_task_struct(chosen);
1813 chosen = task;
1814 chosen_points = ULONG_MAX;
1815 get_task_struct(chosen);
1816 /* fall through */
1817 case OOM_SCAN_CONTINUE:
1818 continue;
1819 case OOM_SCAN_ABORT:
c59cd3d8 1820 cgroup_task_iter_end(&it);
9cbb78bb
DR
1821 mem_cgroup_iter_break(memcg, iter);
1822 if (chosen)
1823 put_task_struct(chosen);
1824 return;
1825 case OOM_SCAN_OK:
1826 break;
1827 };
1828 points = oom_badness(task, memcg, NULL, totalpages);
1829 if (points > chosen_points) {
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1835 }
1836 }
c59cd3d8 1837 cgroup_task_iter_end(&it);
9cbb78bb
DR
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1845}
1846
5660048c
JW
1847static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850{
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881}
1882
4d0c066d
KH
1883/**
1884 * test_mem_cgroup_node_reclaimable
dad7557e 1885 * @memcg: the target memcg
4d0c066d
KH
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
c0ff4b85 1893static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1894 int nid, bool noswap)
1895{
c0ff4b85 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
c0ff4b85 1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1901 return true;
1902 return false;
1903
1904}
889976db
YH
1905#if MAX_NUMNODES > 1
1906
1907/*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
c0ff4b85 1913static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1914{
1915 int nid;
453a9bf3
KH
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
c0ff4b85 1920 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1921 return;
c0ff4b85 1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1923 return;
1924
889976db 1925 /* make a nodemask where this memcg uses memory from */
31aaea4a 1926 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1927
31aaea4a 1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1929
c0ff4b85
R
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
889976db 1932 }
453a9bf3 1933
c0ff4b85
R
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1936}
1937
1938/*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
c0ff4b85 1950int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int node;
1953
c0ff4b85
R
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
889976db 1956
c0ff4b85 1957 node = next_node(node, memcg->scan_nodes);
889976db 1958 if (node == MAX_NUMNODES)
c0ff4b85 1959 node = first_node(memcg->scan_nodes);
889976db
YH
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
c0ff4b85 1969 memcg->last_scanned_node = node;
889976db
YH
1970 return node;
1971}
1972
4d0c066d
KH
1973/*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
6bbda35c 1979static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1980{
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
c0ff4b85
R
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1989 nid < MAX_NUMNODES;
c0ff4b85 1990 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1991
c0ff4b85 1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
31aaea4a 1999 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2000 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2001 continue;
c0ff4b85 2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2003 return true;
2004 }
2005 return false;
2006}
2007
889976db 2008#else
c0ff4b85 2009int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2010{
2011 return 0;
2012}
4d0c066d 2013
6bbda35c 2014static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2015{
c0ff4b85 2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2017}
889976db
YH
2018#endif
2019
5660048c
JW
2020static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
6d61ef40 2024{
9f3a0d09 2025 struct mem_cgroup *victim = NULL;
5660048c 2026 int total = 0;
04046e1a 2027 int loop = 0;
9d11ea9f 2028 unsigned long excess;
185efc0f 2029 unsigned long nr_scanned;
527a5ec9
JW
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
9d11ea9f 2034
c0ff4b85 2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2036
4e416953 2037 while (1) {
527a5ec9 2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2039 if (!victim) {
04046e1a 2040 loop++;
4e416953
BS
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
5660048c 2047 if (!total)
4e416953 2048 break;
4e416953 2049 /*
25985edc 2050 * We want to do more targeted reclaim.
4e416953
BS
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
9f3a0d09 2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2057 break;
4e416953 2058 }
9f3a0d09 2059 continue;
4e416953 2060 }
5660048c 2061 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2062 continue;
5660048c
JW
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2067 break;
6d61ef40 2068 }
9f3a0d09 2069 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2070 return total;
6d61ef40
BS
2071}
2072
867578cb
KH
2073/*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
1af8efe9 2076 * Has to be called with memcg_oom_lock
867578cb 2077 */
c0ff4b85 2078static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2079{
79dfdacc 2080 struct mem_cgroup *iter, *failed = NULL;
a636b327 2081
9f3a0d09 2082 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2083 if (iter->oom_lock) {
79dfdacc
MH
2084 /*
2085 * this subtree of our hierarchy is already locked
2086 * so we cannot give a lock.
2087 */
79dfdacc 2088 failed = iter;
9f3a0d09
JW
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
23751be0
JW
2091 } else
2092 iter->oom_lock = true;
7d74b06f 2093 }
867578cb 2094
79dfdacc 2095 if (!failed)
23751be0 2096 return true;
79dfdacc
MH
2097
2098 /*
2099 * OK, we failed to lock the whole subtree so we have to clean up
2100 * what we set up to the failing subtree
2101 */
9f3a0d09 2102 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2103 if (iter == failed) {
9f3a0d09
JW
2104 mem_cgroup_iter_break(memcg, iter);
2105 break;
79dfdacc
MH
2106 }
2107 iter->oom_lock = false;
2108 }
23751be0 2109 return false;
a636b327 2110}
0b7f569e 2111
79dfdacc 2112/*
1af8efe9 2113 * Has to be called with memcg_oom_lock
79dfdacc 2114 */
c0ff4b85 2115static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2116{
7d74b06f
KH
2117 struct mem_cgroup *iter;
2118
c0ff4b85 2119 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2120 iter->oom_lock = false;
2121 return 0;
2122}
2123
c0ff4b85 2124static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2125{
2126 struct mem_cgroup *iter;
2127
c0ff4b85 2128 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2129 atomic_inc(&iter->under_oom);
2130}
2131
c0ff4b85 2132static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2133{
2134 struct mem_cgroup *iter;
2135
867578cb
KH
2136 /*
2137 * When a new child is created while the hierarchy is under oom,
2138 * mem_cgroup_oom_lock() may not be called. We have to use
2139 * atomic_add_unless() here.
2140 */
c0ff4b85 2141 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2142 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2143}
2144
1af8efe9 2145static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2146static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
dc98df5a 2148struct oom_wait_info {
d79154bb 2149 struct mem_cgroup *memcg;
dc98df5a
KH
2150 wait_queue_t wait;
2151};
2152
2153static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155{
d79154bb
HD
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2161 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2162
dc98df5a 2163 /*
d79154bb 2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
c0ff4b85
R
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2169 return 0;
dc98df5a
KH
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171}
2172
c0ff4b85 2173static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2174{
c0ff4b85
R
2175 /* for filtering, pass "memcg" as argument. */
2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2177}
2178
c0ff4b85 2179static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2180{
c0ff4b85
R
2181 if (memcg && atomic_read(&memcg->under_oom))
2182 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2183}
2184
867578cb
KH
2185/*
2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187 */
6bbda35c
KS
2188static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 int order)
0b7f569e 2190{
dc98df5a 2191 struct oom_wait_info owait;
3c11ecf4 2192 bool locked, need_to_kill;
867578cb 2193
d79154bb 2194 owait.memcg = memcg;
dc98df5a
KH
2195 owait.wait.flags = 0;
2196 owait.wait.func = memcg_oom_wake_function;
2197 owait.wait.private = current;
2198 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2199 need_to_kill = true;
c0ff4b85 2200 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2201
c0ff4b85 2202 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2203 spin_lock(&memcg_oom_lock);
c0ff4b85 2204 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2205 /*
2206 * Even if signal_pending(), we can't quit charge() loop without
2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 */
3c11ecf4 2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2211 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2212 need_to_kill = false;
2213 if (locked)
c0ff4b85 2214 mem_cgroup_oom_notify(memcg);
1af8efe9 2215 spin_unlock(&memcg_oom_lock);
867578cb 2216
3c11ecf4
KH
2217 if (need_to_kill) {
2218 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2219 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2220 } else {
867578cb 2221 schedule();
dc98df5a 2222 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2223 }
1af8efe9 2224 spin_lock(&memcg_oom_lock);
79dfdacc 2225 if (locked)
c0ff4b85
R
2226 mem_cgroup_oom_unlock(memcg);
2227 memcg_wakeup_oom(memcg);
1af8efe9 2228 spin_unlock(&memcg_oom_lock);
867578cb 2229
c0ff4b85 2230 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2231
867578cb
KH
2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 return false;
2234 /* Give chance to dying process */
715a5ee8 2235 schedule_timeout_uninterruptible(1);
867578cb 2236 return true;
0b7f569e
KH
2237}
2238
d69b042f
BS
2239/*
2240 * Currently used to update mapped file statistics, but the routine can be
2241 * generalized to update other statistics as well.
32047e2a
KH
2242 *
2243 * Notes: Race condition
2244 *
2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246 * it tends to be costly. But considering some conditions, we doesn't need
2247 * to do so _always_.
2248 *
2249 * Considering "charge", lock_page_cgroup() is not required because all
2250 * file-stat operations happen after a page is attached to radix-tree. There
2251 * are no race with "charge".
2252 *
2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255 * if there are race with "uncharge". Statistics itself is properly handled
2256 * by flags.
2257 *
2258 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2259 * small, we check mm->moving_account and detect there are possibility of race
2260 * If there is, we take a lock.
d69b042f 2261 */
26174efd 2262
89c06bd5
KH
2263void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 bool *locked, unsigned long *flags)
2265{
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc;
2268
2269 pc = lookup_page_cgroup(page);
2270again:
2271 memcg = pc->mem_cgroup;
2272 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 return;
2274 /*
2275 * If this memory cgroup is not under account moving, we don't
da92c47d 2276 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2277 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2278 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2279 */
13fd1dd9 2280 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2281 return;
2282
2283 move_lock_mem_cgroup(memcg, flags);
2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 move_unlock_mem_cgroup(memcg, flags);
2286 goto again;
2287 }
2288 *locked = true;
2289}
2290
2291void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292{
2293 struct page_cgroup *pc = lookup_page_cgroup(page);
2294
2295 /*
2296 * It's guaranteed that pc->mem_cgroup never changes while
2297 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2298 * should take move_lock_mem_cgroup().
89c06bd5
KH
2299 */
2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301}
2302
2a7106f2
GT
2303void mem_cgroup_update_page_stat(struct page *page,
2304 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2305{
c0ff4b85 2306 struct mem_cgroup *memcg;
32047e2a 2307 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2308 unsigned long uninitialized_var(flags);
d69b042f 2309
cfa44946 2310 if (mem_cgroup_disabled())
d69b042f 2311 return;
89c06bd5 2312
c0ff4b85
R
2313 memcg = pc->mem_cgroup;
2314 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2315 return;
26174efd 2316
26174efd 2317 switch (idx) {
2a7106f2 2318 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2319 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2320 break;
2321 default:
2322 BUG();
8725d541 2323 }
d69b042f 2324
c0ff4b85 2325 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2326}
26174efd 2327
cdec2e42
KH
2328/*
2329 * size of first charge trial. "32" comes from vmscan.c's magic value.
2330 * TODO: maybe necessary to use big numbers in big irons.
2331 */
7ec99d62 2332#define CHARGE_BATCH 32U
cdec2e42
KH
2333struct memcg_stock_pcp {
2334 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2335 unsigned int nr_pages;
cdec2e42 2336 struct work_struct work;
26fe6168 2337 unsigned long flags;
a0db00fc 2338#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2339};
2340static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2341static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2342
a0956d54
SS
2343/**
2344 * consume_stock: Try to consume stocked charge on this cpu.
2345 * @memcg: memcg to consume from.
2346 * @nr_pages: how many pages to charge.
2347 *
2348 * The charges will only happen if @memcg matches the current cpu's memcg
2349 * stock, and at least @nr_pages are available in that stock. Failure to
2350 * service an allocation will refill the stock.
2351 *
2352 * returns true if successful, false otherwise.
cdec2e42 2353 */
a0956d54 2354static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2355{
2356 struct memcg_stock_pcp *stock;
2357 bool ret = true;
2358
a0956d54
SS
2359 if (nr_pages > CHARGE_BATCH)
2360 return false;
2361
cdec2e42 2362 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 stock->nr_pages -= nr_pages;
cdec2e42
KH
2365 else /* need to call res_counter_charge */
2366 ret = false;
2367 put_cpu_var(memcg_stock);
2368 return ret;
2369}
2370
2371/*
2372 * Returns stocks cached in percpu to res_counter and reset cached information.
2373 */
2374static void drain_stock(struct memcg_stock_pcp *stock)
2375{
2376 struct mem_cgroup *old = stock->cached;
2377
11c9ea4e
JW
2378 if (stock->nr_pages) {
2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380
2381 res_counter_uncharge(&old->res, bytes);
cdec2e42 2382 if (do_swap_account)
11c9ea4e
JW
2383 res_counter_uncharge(&old->memsw, bytes);
2384 stock->nr_pages = 0;
cdec2e42
KH
2385 }
2386 stock->cached = NULL;
cdec2e42
KH
2387}
2388
2389/*
2390 * This must be called under preempt disabled or must be called by
2391 * a thread which is pinned to local cpu.
2392 */
2393static void drain_local_stock(struct work_struct *dummy)
2394{
2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 drain_stock(stock);
26fe6168 2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2398}
2399
e4777496
MH
2400static void __init memcg_stock_init(void)
2401{
2402 int cpu;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct memcg_stock_pcp *stock =
2406 &per_cpu(memcg_stock, cpu);
2407 INIT_WORK(&stock->work, drain_local_stock);
2408 }
2409}
2410
cdec2e42
KH
2411/*
2412 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2413 * This will be consumed by consume_stock() function, later.
cdec2e42 2414 */
c0ff4b85 2415static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2416{
2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418
c0ff4b85 2419 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2420 drain_stock(stock);
c0ff4b85 2421 stock->cached = memcg;
cdec2e42 2422 }
11c9ea4e 2423 stock->nr_pages += nr_pages;
cdec2e42
KH
2424 put_cpu_var(memcg_stock);
2425}
2426
2427/*
c0ff4b85 2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2429 * of the hierarchy under it. sync flag says whether we should block
2430 * until the work is done.
cdec2e42 2431 */
c0ff4b85 2432static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2433{
26fe6168 2434 int cpu, curcpu;
d38144b7 2435
cdec2e42 2436 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2437 get_online_cpus();
5af12d0e 2438 curcpu = get_cpu();
cdec2e42
KH
2439 for_each_online_cpu(cpu) {
2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2441 struct mem_cgroup *memcg;
26fe6168 2442
c0ff4b85
R
2443 memcg = stock->cached;
2444 if (!memcg || !stock->nr_pages)
26fe6168 2445 continue;
c0ff4b85 2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2447 continue;
d1a05b69
MH
2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 if (cpu == curcpu)
2450 drain_local_stock(&stock->work);
2451 else
2452 schedule_work_on(cpu, &stock->work);
2453 }
cdec2e42 2454 }
5af12d0e 2455 put_cpu();
d38144b7
MH
2456
2457 if (!sync)
2458 goto out;
2459
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2463 flush_work(&stock->work);
2464 }
2465out:
cdec2e42 2466 put_online_cpus();
d38144b7
MH
2467}
2468
2469/*
2470 * Tries to drain stocked charges in other cpus. This function is asynchronous
2471 * and just put a work per cpu for draining localy on each cpu. Caller can
2472 * expects some charges will be back to res_counter later but cannot wait for
2473 * it.
2474 */
c0ff4b85 2475static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2476{
9f50fad6
MH
2477 /*
2478 * If someone calls draining, avoid adding more kworker runs.
2479 */
2480 if (!mutex_trylock(&percpu_charge_mutex))
2481 return;
c0ff4b85 2482 drain_all_stock(root_memcg, false);
9f50fad6 2483 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2484}
2485
2486/* This is a synchronous drain interface. */
c0ff4b85 2487static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2488{
2489 /* called when force_empty is called */
9f50fad6 2490 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2491 drain_all_stock(root_memcg, true);
9f50fad6 2492 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2493}
2494
711d3d2c
KH
2495/*
2496 * This function drains percpu counter value from DEAD cpu and
2497 * move it to local cpu. Note that this function can be preempted.
2498 */
c0ff4b85 2499static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2500{
2501 int i;
2502
c0ff4b85 2503 spin_lock(&memcg->pcp_counter_lock);
6104621d 2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2505 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2506
c0ff4b85
R
2507 per_cpu(memcg->stat->count[i], cpu) = 0;
2508 memcg->nocpu_base.count[i] += x;
711d3d2c 2509 }
e9f8974f 2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2512
c0ff4b85
R
2513 per_cpu(memcg->stat->events[i], cpu) = 0;
2514 memcg->nocpu_base.events[i] += x;
e9f8974f 2515 }
c0ff4b85 2516 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2517}
2518
2519static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2520 unsigned long action,
2521 void *hcpu)
2522{
2523 int cpu = (unsigned long)hcpu;
2524 struct memcg_stock_pcp *stock;
711d3d2c 2525 struct mem_cgroup *iter;
cdec2e42 2526
619d094b 2527 if (action == CPU_ONLINE)
1489ebad 2528 return NOTIFY_OK;
1489ebad 2529
d833049b 2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2531 return NOTIFY_OK;
711d3d2c 2532
9f3a0d09 2533 for_each_mem_cgroup(iter)
711d3d2c
KH
2534 mem_cgroup_drain_pcp_counter(iter, cpu);
2535
cdec2e42
KH
2536 stock = &per_cpu(memcg_stock, cpu);
2537 drain_stock(stock);
2538 return NOTIFY_OK;
2539}
2540
4b534334
KH
2541
2542/* See __mem_cgroup_try_charge() for details */
2543enum {
2544 CHARGE_OK, /* success */
2545 CHARGE_RETRY, /* need to retry but retry is not bad */
2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2549};
2550
c0ff4b85 2551static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2552 unsigned int nr_pages, unsigned int min_pages,
2553 bool oom_check)
4b534334 2554{
7ec99d62 2555 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2556 struct mem_cgroup *mem_over_limit;
2557 struct res_counter *fail_res;
2558 unsigned long flags = 0;
2559 int ret;
2560
c0ff4b85 2561 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2562
2563 if (likely(!ret)) {
2564 if (!do_swap_account)
2565 return CHARGE_OK;
c0ff4b85 2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2567 if (likely(!ret))
2568 return CHARGE_OK;
2569
c0ff4b85 2570 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 } else
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2575 /*
9221edb7
JW
2576 * Never reclaim on behalf of optional batching, retry with a
2577 * single page instead.
2578 */
4c9c5359 2579 if (nr_pages > min_pages)
4b534334
KH
2580 return CHARGE_RETRY;
2581
2582 if (!(gfp_mask & __GFP_WAIT))
2583 return CHARGE_WOULDBLOCK;
2584
4c9c5359
SS
2585 if (gfp_mask & __GFP_NORETRY)
2586 return CHARGE_NOMEM;
2587
5660048c 2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2590 return CHARGE_RETRY;
4b534334 2591 /*
19942822
JW
2592 * Even though the limit is exceeded at this point, reclaim
2593 * may have been able to free some pages. Retry the charge
2594 * before killing the task.
2595 *
2596 * Only for regular pages, though: huge pages are rather
2597 * unlikely to succeed so close to the limit, and we fall back
2598 * to regular pages anyway in case of failure.
4b534334 2599 */
4c9c5359 2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2601 return CHARGE_RETRY;
2602
2603 /*
2604 * At task move, charge accounts can be doubly counted. So, it's
2605 * better to wait until the end of task_move if something is going on.
2606 */
2607 if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 return CHARGE_RETRY;
2609
2610 /* If we don't need to call oom-killer at el, return immediately */
2611 if (!oom_check)
2612 return CHARGE_NOMEM;
2613 /* check OOM */
e845e199 2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2615 return CHARGE_OOM_DIE;
2616
2617 return CHARGE_RETRY;
2618}
2619
f817ed48 2620/*
38c5d72f
KH
2621 * __mem_cgroup_try_charge() does
2622 * 1. detect memcg to be charged against from passed *mm and *ptr,
2623 * 2. update res_counter
2624 * 3. call memory reclaim if necessary.
2625 *
2626 * In some special case, if the task is fatal, fatal_signal_pending() or
2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629 * as possible without any hazards. 2: all pages should have a valid
2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631 * pointer, that is treated as a charge to root_mem_cgroup.
2632 *
2633 * So __mem_cgroup_try_charge() will return
2634 * 0 ... on success, filling *ptr with a valid memcg pointer.
2635 * -ENOMEM ... charge failure because of resource limits.
2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2637 *
2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639 * the oom-killer can be invoked.
8a9f3ccd 2640 */
f817ed48 2641static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2642 gfp_t gfp_mask,
7ec99d62 2643 unsigned int nr_pages,
c0ff4b85 2644 struct mem_cgroup **ptr,
7ec99d62 2645 bool oom)
8a9f3ccd 2646{
7ec99d62 2647 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2649 struct mem_cgroup *memcg = NULL;
4b534334 2650 int ret;
a636b327 2651
867578cb
KH
2652 /*
2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 * in system level. So, allow to go ahead dying process in addition to
2655 * MEMDIE process.
2656 */
2657 if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 || fatal_signal_pending(current)))
2659 goto bypass;
a636b327 2660
8a9f3ccd 2661 /*
3be91277
HD
2662 * We always charge the cgroup the mm_struct belongs to.
2663 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2664 * thread group leader migrates. It's possible that mm is not
24467cac 2665 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2666 */
c0ff4b85 2667 if (!*ptr && !mm)
38c5d72f 2668 *ptr = root_mem_cgroup;
f75ca962 2669again:
c0ff4b85
R
2670 if (*ptr) { /* css should be a valid one */
2671 memcg = *ptr;
c0ff4b85 2672 if (mem_cgroup_is_root(memcg))
f75ca962 2673 goto done;
a0956d54 2674 if (consume_stock(memcg, nr_pages))
f75ca962 2675 goto done;
c0ff4b85 2676 css_get(&memcg->css);
4b534334 2677 } else {
f75ca962 2678 struct task_struct *p;
54595fe2 2679
f75ca962
KH
2680 rcu_read_lock();
2681 p = rcu_dereference(mm->owner);
f75ca962 2682 /*
ebb76ce1 2683 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2684 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2685 * race with swapoff. Then, we have small risk of mis-accouning.
2686 * But such kind of mis-account by race always happens because
2687 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 * small race, here.
2689 * (*) swapoff at el will charge against mm-struct not against
2690 * task-struct. So, mm->owner can be NULL.
f75ca962 2691 */
c0ff4b85 2692 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2693 if (!memcg)
2694 memcg = root_mem_cgroup;
2695 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2696 rcu_read_unlock();
2697 goto done;
2698 }
a0956d54 2699 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2700 /*
2701 * It seems dagerous to access memcg without css_get().
2702 * But considering how consume_stok works, it's not
2703 * necessary. If consume_stock success, some charges
2704 * from this memcg are cached on this cpu. So, we
2705 * don't need to call css_get()/css_tryget() before
2706 * calling consume_stock().
2707 */
2708 rcu_read_unlock();
2709 goto done;
2710 }
2711 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2712 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2713 rcu_read_unlock();
2714 goto again;
2715 }
2716 rcu_read_unlock();
2717 }
8a9f3ccd 2718
4b534334
KH
2719 do {
2720 bool oom_check;
7a81b88c 2721
4b534334 2722 /* If killed, bypass charge */
f75ca962 2723 if (fatal_signal_pending(current)) {
c0ff4b85 2724 css_put(&memcg->css);
4b534334 2725 goto bypass;
f75ca962 2726 }
6d61ef40 2727
4b534334
KH
2728 oom_check = false;
2729 if (oom && !nr_oom_retries) {
2730 oom_check = true;
2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2732 }
66e1707b 2733
4c9c5359
SS
2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 oom_check);
4b534334
KH
2736 switch (ret) {
2737 case CHARGE_OK:
2738 break;
2739 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2740 batch = nr_pages;
c0ff4b85
R
2741 css_put(&memcg->css);
2742 memcg = NULL;
f75ca962 2743 goto again;
4b534334 2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2745 css_put(&memcg->css);
4b534334
KH
2746 goto nomem;
2747 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2748 if (!oom) {
c0ff4b85 2749 css_put(&memcg->css);
867578cb 2750 goto nomem;
f75ca962 2751 }
4b534334
KH
2752 /* If oom, we never return -ENOMEM */
2753 nr_oom_retries--;
2754 break;
2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2756 css_put(&memcg->css);
867578cb 2757 goto bypass;
66e1707b 2758 }
4b534334
KH
2759 } while (ret != CHARGE_OK);
2760
7ec99d62 2761 if (batch > nr_pages)
c0ff4b85
R
2762 refill_stock(memcg, batch - nr_pages);
2763 css_put(&memcg->css);
0c3e73e8 2764done:
c0ff4b85 2765 *ptr = memcg;
7a81b88c
KH
2766 return 0;
2767nomem:
c0ff4b85 2768 *ptr = NULL;
7a81b88c 2769 return -ENOMEM;
867578cb 2770bypass:
38c5d72f
KH
2771 *ptr = root_mem_cgroup;
2772 return -EINTR;
7a81b88c 2773}
8a9f3ccd 2774
a3032a2c
DN
2775/*
2776 * Somemtimes we have to undo a charge we got by try_charge().
2777 * This function is for that and do uncharge, put css's refcnt.
2778 * gotten by try_charge().
2779 */
c0ff4b85 2780static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2781 unsigned int nr_pages)
a3032a2c 2782{
c0ff4b85 2783 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2784 unsigned long bytes = nr_pages * PAGE_SIZE;
2785
c0ff4b85 2786 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2787 if (do_swap_account)
c0ff4b85 2788 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2789 }
854ffa8d
DN
2790}
2791
d01dd17f
KH
2792/*
2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794 * This is useful when moving usage to parent cgroup.
2795 */
2796static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 unsigned int nr_pages)
2798{
2799 unsigned long bytes = nr_pages * PAGE_SIZE;
2800
2801 if (mem_cgroup_is_root(memcg))
2802 return;
2803
2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 if (do_swap_account)
2806 res_counter_uncharge_until(&memcg->memsw,
2807 memcg->memsw.parent, bytes);
2808}
2809
a3b2d692
KH
2810/*
2811 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814 * called against removed memcg.)
a3b2d692
KH
2815 */
2816static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817{
2818 struct cgroup_subsys_state *css;
2819
2820 /* ID 0 is unused ID */
2821 if (!id)
2822 return NULL;
2823 css = css_lookup(&mem_cgroup_subsys, id);
2824 if (!css)
2825 return NULL;
b2145145 2826 return mem_cgroup_from_css(css);
a3b2d692
KH
2827}
2828
e42d9d5d 2829struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2830{
c0ff4b85 2831 struct mem_cgroup *memcg = NULL;
3c776e64 2832 struct page_cgroup *pc;
a3b2d692 2833 unsigned short id;
b5a84319
KH
2834 swp_entry_t ent;
2835
3c776e64
DN
2836 VM_BUG_ON(!PageLocked(page));
2837
3c776e64 2838 pc = lookup_page_cgroup(page);
c0bd3f63 2839 lock_page_cgroup(pc);
a3b2d692 2840 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2841 memcg = pc->mem_cgroup;
2842 if (memcg && !css_tryget(&memcg->css))
2843 memcg = NULL;
e42d9d5d 2844 } else if (PageSwapCache(page)) {
3c776e64 2845 ent.val = page_private(page);
9fb4b7cc 2846 id = lookup_swap_cgroup_id(ent);
a3b2d692 2847 rcu_read_lock();
c0ff4b85
R
2848 memcg = mem_cgroup_lookup(id);
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
a3b2d692 2851 rcu_read_unlock();
3c776e64 2852 }
c0bd3f63 2853 unlock_page_cgroup(pc);
c0ff4b85 2854 return memcg;
b5a84319
KH
2855}
2856
c0ff4b85 2857static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2858 struct page *page,
7ec99d62 2859 unsigned int nr_pages,
9ce70c02
HD
2860 enum charge_type ctype,
2861 bool lrucare)
7a81b88c 2862{
ce587e65 2863 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2864 struct zone *uninitialized_var(zone);
fa9add64 2865 struct lruvec *lruvec;
9ce70c02 2866 bool was_on_lru = false;
b2402857 2867 bool anon;
9ce70c02 2868
ca3e0214 2869 lock_page_cgroup(pc);
90deb788 2870 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2871 /*
2872 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 * accessed by any other context at this point.
2874 */
9ce70c02
HD
2875
2876 /*
2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 * may already be on some other mem_cgroup's LRU. Take care of it.
2879 */
2880 if (lrucare) {
2881 zone = page_zone(page);
2882 spin_lock_irq(&zone->lru_lock);
2883 if (PageLRU(page)) {
fa9add64 2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2885 ClearPageLRU(page);
fa9add64 2886 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2887 was_on_lru = true;
2888 }
2889 }
2890
c0ff4b85 2891 pc->mem_cgroup = memcg;
261fb61a
KH
2892 /*
2893 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 * before USED bit, we need memory barrier here.
2897 * See mem_cgroup_add_lru_list(), etc.
2898 */
08e552c6 2899 smp_wmb();
b2402857 2900 SetPageCgroupUsed(pc);
3be91277 2901
9ce70c02
HD
2902 if (lrucare) {
2903 if (was_on_lru) {
fa9add64 2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2905 VM_BUG_ON(PageLRU(page));
2906 SetPageLRU(page);
fa9add64 2907 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2908 }
2909 spin_unlock_irq(&zone->lru_lock);
2910 }
2911
41326c17 2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2913 anon = true;
2914 else
2915 anon = false;
2916
b070e65c 2917 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2918 unlock_page_cgroup(pc);
9ce70c02 2919
430e4863
KH
2920 /*
2921 * "charge_statistics" updated event counter. Then, check it.
2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 * if they exceeds softlimit.
2924 */
c0ff4b85 2925 memcg_check_events(memcg, page);
7a81b88c 2926}
66e1707b 2927
7cf27982
GC
2928static DEFINE_MUTEX(set_limit_mutex);
2929
7ae1e1d0
GC
2930#ifdef CONFIG_MEMCG_KMEM
2931static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932{
2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935}
2936
1f458cbf
GC
2937/*
2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939 * in the memcg_cache_params struct.
2940 */
2941static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942{
2943 struct kmem_cache *cachep;
2944
2945 VM_BUG_ON(p->is_root_cache);
2946 cachep = p->root_cache;
2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948}
2949
749c5415 2950#ifdef CONFIG_SLABINFO
182446d0
TH
2951static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2952 struct cftype *cft, struct seq_file *m)
749c5415 2953{
182446d0 2954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2955 struct memcg_cache_params *params;
2956
2957 if (!memcg_can_account_kmem(memcg))
2958 return -EIO;
2959
2960 print_slabinfo_header(m);
2961
2962 mutex_lock(&memcg->slab_caches_mutex);
2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 cache_show(memcg_params_to_cache(params), m);
2965 mutex_unlock(&memcg->slab_caches_mutex);
2966
2967 return 0;
2968}
2969#endif
2970
7ae1e1d0
GC
2971static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972{
2973 struct res_counter *fail_res;
2974 struct mem_cgroup *_memcg;
2975 int ret = 0;
2976 bool may_oom;
2977
2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 if (ret)
2980 return ret;
2981
2982 /*
2983 * Conditions under which we can wait for the oom_killer. Those are
2984 * the same conditions tested by the core page allocator
2985 */
2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987
2988 _memcg = memcg;
2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 &_memcg, may_oom);
2991
2992 if (ret == -EINTR) {
2993 /*
2994 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 * OOM kill or fatal signal. Since our only options are to
2996 * either fail the allocation or charge it to this cgroup, do
2997 * it as a temporary condition. But we can't fail. From a
2998 * kmem/slab perspective, the cache has already been selected,
2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 * our minds.
3001 *
3002 * This condition will only trigger if the task entered
3003 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 * __mem_cgroup_try_charge() above. Tasks that were already
3005 * dying when the allocation triggers should have been already
3006 * directed to the root cgroup in memcontrol.h
3007 */
3008 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 if (do_swap_account)
3010 res_counter_charge_nofail(&memcg->memsw, size,
3011 &fail_res);
3012 ret = 0;
3013 } else if (ret)
3014 res_counter_uncharge(&memcg->kmem, size);
3015
3016 return ret;
3017}
3018
3019static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020{
7ae1e1d0
GC
3021 res_counter_uncharge(&memcg->res, size);
3022 if (do_swap_account)
3023 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3024
3025 /* Not down to 0 */
3026 if (res_counter_uncharge(&memcg->kmem, size))
3027 return;
3028
10d5ebf4
LZ
3029 /*
3030 * Releases a reference taken in kmem_cgroup_css_offline in case
3031 * this last uncharge is racing with the offlining code or it is
3032 * outliving the memcg existence.
3033 *
3034 * The memory barrier imposed by test&clear is paired with the
3035 * explicit one in memcg_kmem_mark_dead().
3036 */
7de37682 3037 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3038 css_put(&memcg->css);
7ae1e1d0
GC
3039}
3040
2633d7a0
GC
3041void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3042{
3043 if (!memcg)
3044 return;
3045
3046 mutex_lock(&memcg->slab_caches_mutex);
3047 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3048 mutex_unlock(&memcg->slab_caches_mutex);
3049}
3050
3051/*
3052 * helper for acessing a memcg's index. It will be used as an index in the
3053 * child cache array in kmem_cache, and also to derive its name. This function
3054 * will return -1 when this is not a kmem-limited memcg.
3055 */
3056int memcg_cache_id(struct mem_cgroup *memcg)
3057{
3058 return memcg ? memcg->kmemcg_id : -1;
3059}
3060
55007d84
GC
3061/*
3062 * This ends up being protected by the set_limit mutex, during normal
3063 * operation, because that is its main call site.
3064 *
3065 * But when we create a new cache, we can call this as well if its parent
3066 * is kmem-limited. That will have to hold set_limit_mutex as well.
3067 */
3068int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3069{
3070 int num, ret;
3071
3072 num = ida_simple_get(&kmem_limited_groups,
3073 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3074 if (num < 0)
3075 return num;
3076 /*
3077 * After this point, kmem_accounted (that we test atomically in
3078 * the beginning of this conditional), is no longer 0. This
3079 * guarantees only one process will set the following boolean
3080 * to true. We don't need test_and_set because we're protected
3081 * by the set_limit_mutex anyway.
3082 */
3083 memcg_kmem_set_activated(memcg);
3084
3085 ret = memcg_update_all_caches(num+1);
3086 if (ret) {
3087 ida_simple_remove(&kmem_limited_groups, num);
3088 memcg_kmem_clear_activated(memcg);
3089 return ret;
3090 }
3091
3092 memcg->kmemcg_id = num;
3093 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3094 mutex_init(&memcg->slab_caches_mutex);
3095 return 0;
3096}
3097
3098static size_t memcg_caches_array_size(int num_groups)
3099{
3100 ssize_t size;
3101 if (num_groups <= 0)
3102 return 0;
3103
3104 size = 2 * num_groups;
3105 if (size < MEMCG_CACHES_MIN_SIZE)
3106 size = MEMCG_CACHES_MIN_SIZE;
3107 else if (size > MEMCG_CACHES_MAX_SIZE)
3108 size = MEMCG_CACHES_MAX_SIZE;
3109
3110 return size;
3111}
3112
3113/*
3114 * We should update the current array size iff all caches updates succeed. This
3115 * can only be done from the slab side. The slab mutex needs to be held when
3116 * calling this.
3117 */
3118void memcg_update_array_size(int num)
3119{
3120 if (num > memcg_limited_groups_array_size)
3121 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3122}
3123
15cf17d2
KK
3124static void kmem_cache_destroy_work_func(struct work_struct *w);
3125
55007d84
GC
3126int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3127{
3128 struct memcg_cache_params *cur_params = s->memcg_params;
3129
3130 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3131
3132 if (num_groups > memcg_limited_groups_array_size) {
3133 int i;
3134 ssize_t size = memcg_caches_array_size(num_groups);
3135
3136 size *= sizeof(void *);
3137 size += sizeof(struct memcg_cache_params);
3138
3139 s->memcg_params = kzalloc(size, GFP_KERNEL);
3140 if (!s->memcg_params) {
3141 s->memcg_params = cur_params;
3142 return -ENOMEM;
3143 }
3144
3145 s->memcg_params->is_root_cache = true;
3146
3147 /*
3148 * There is the chance it will be bigger than
3149 * memcg_limited_groups_array_size, if we failed an allocation
3150 * in a cache, in which case all caches updated before it, will
3151 * have a bigger array.
3152 *
3153 * But if that is the case, the data after
3154 * memcg_limited_groups_array_size is certainly unused
3155 */
3156 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3157 if (!cur_params->memcg_caches[i])
3158 continue;
3159 s->memcg_params->memcg_caches[i] =
3160 cur_params->memcg_caches[i];
3161 }
3162
3163 /*
3164 * Ideally, we would wait until all caches succeed, and only
3165 * then free the old one. But this is not worth the extra
3166 * pointer per-cache we'd have to have for this.
3167 *
3168 * It is not a big deal if some caches are left with a size
3169 * bigger than the others. And all updates will reset this
3170 * anyway.
3171 */
3172 kfree(cur_params);
3173 }
3174 return 0;
3175}
3176
943a451a
GC
3177int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3178 struct kmem_cache *root_cache)
2633d7a0
GC
3179{
3180 size_t size = sizeof(struct memcg_cache_params);
3181
3182 if (!memcg_kmem_enabled())
3183 return 0;
3184
55007d84
GC
3185 if (!memcg)
3186 size += memcg_limited_groups_array_size * sizeof(void *);
3187
2633d7a0
GC
3188 s->memcg_params = kzalloc(size, GFP_KERNEL);
3189 if (!s->memcg_params)
3190 return -ENOMEM;
3191
15cf17d2
KK
3192 INIT_WORK(&s->memcg_params->destroy,
3193 kmem_cache_destroy_work_func);
943a451a 3194 if (memcg) {
2633d7a0 3195 s->memcg_params->memcg = memcg;
943a451a 3196 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3197 } else
3198 s->memcg_params->is_root_cache = true;
3199
2633d7a0
GC
3200 return 0;
3201}
3202
3203void memcg_release_cache(struct kmem_cache *s)
3204{
d7f25f8a
GC
3205 struct kmem_cache *root;
3206 struct mem_cgroup *memcg;
3207 int id;
3208
3209 /*
3210 * This happens, for instance, when a root cache goes away before we
3211 * add any memcg.
3212 */
3213 if (!s->memcg_params)
3214 return;
3215
3216 if (s->memcg_params->is_root_cache)
3217 goto out;
3218
3219 memcg = s->memcg_params->memcg;
3220 id = memcg_cache_id(memcg);
3221
3222 root = s->memcg_params->root_cache;
3223 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3224
3225 mutex_lock(&memcg->slab_caches_mutex);
3226 list_del(&s->memcg_params->list);
3227 mutex_unlock(&memcg->slab_caches_mutex);
3228
20f05310 3229 css_put(&memcg->css);
d7f25f8a 3230out:
2633d7a0
GC
3231 kfree(s->memcg_params);
3232}
3233
0e9d92f2
GC
3234/*
3235 * During the creation a new cache, we need to disable our accounting mechanism
3236 * altogether. This is true even if we are not creating, but rather just
3237 * enqueing new caches to be created.
3238 *
3239 * This is because that process will trigger allocations; some visible, like
3240 * explicit kmallocs to auxiliary data structures, name strings and internal
3241 * cache structures; some well concealed, like INIT_WORK() that can allocate
3242 * objects during debug.
3243 *
3244 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3245 * to it. This may not be a bounded recursion: since the first cache creation
3246 * failed to complete (waiting on the allocation), we'll just try to create the
3247 * cache again, failing at the same point.
3248 *
3249 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3250 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3251 * inside the following two functions.
3252 */
3253static inline void memcg_stop_kmem_account(void)
3254{
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account++;
3257}
3258
3259static inline void memcg_resume_kmem_account(void)
3260{
3261 VM_BUG_ON(!current->mm);
3262 current->memcg_kmem_skip_account--;
3263}
3264
1f458cbf
GC
3265static void kmem_cache_destroy_work_func(struct work_struct *w)
3266{
3267 struct kmem_cache *cachep;
3268 struct memcg_cache_params *p;
3269
3270 p = container_of(w, struct memcg_cache_params, destroy);
3271
3272 cachep = memcg_params_to_cache(p);
3273
22933152
GC
3274 /*
3275 * If we get down to 0 after shrink, we could delete right away.
3276 * However, memcg_release_pages() already puts us back in the workqueue
3277 * in that case. If we proceed deleting, we'll get a dangling
3278 * reference, and removing the object from the workqueue in that case
3279 * is unnecessary complication. We are not a fast path.
3280 *
3281 * Note that this case is fundamentally different from racing with
3282 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3283 * kmem_cache_shrink, not only we would be reinserting a dead cache
3284 * into the queue, but doing so from inside the worker racing to
3285 * destroy it.
3286 *
3287 * So if we aren't down to zero, we'll just schedule a worker and try
3288 * again
3289 */
3290 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3291 kmem_cache_shrink(cachep);
3292 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3293 return;
3294 } else
1f458cbf
GC
3295 kmem_cache_destroy(cachep);
3296}
3297
3298void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3299{
3300 if (!cachep->memcg_params->dead)
3301 return;
3302
22933152
GC
3303 /*
3304 * There are many ways in which we can get here.
3305 *
3306 * We can get to a memory-pressure situation while the delayed work is
3307 * still pending to run. The vmscan shrinkers can then release all
3308 * cache memory and get us to destruction. If this is the case, we'll
3309 * be executed twice, which is a bug (the second time will execute over
3310 * bogus data). In this case, cancelling the work should be fine.
3311 *
3312 * But we can also get here from the worker itself, if
3313 * kmem_cache_shrink is enough to shake all the remaining objects and
3314 * get the page count to 0. In this case, we'll deadlock if we try to
3315 * cancel the work (the worker runs with an internal lock held, which
3316 * is the same lock we would hold for cancel_work_sync().)
3317 *
3318 * Since we can't possibly know who got us here, just refrain from
3319 * running if there is already work pending
3320 */
3321 if (work_pending(&cachep->memcg_params->destroy))
3322 return;
1f458cbf
GC
3323 /*
3324 * We have to defer the actual destroying to a workqueue, because
3325 * we might currently be in a context that cannot sleep.
3326 */
3327 schedule_work(&cachep->memcg_params->destroy);
3328}
3329
d9c10ddd
MH
3330/*
3331 * This lock protects updaters, not readers. We want readers to be as fast as
3332 * they can, and they will either see NULL or a valid cache value. Our model
3333 * allow them to see NULL, in which case the root memcg will be selected.
3334 *
3335 * We need this lock because multiple allocations to the same cache from a non
3336 * will span more than one worker. Only one of them can create the cache.
3337 */
3338static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3339
d9c10ddd
MH
3340/*
3341 * Called with memcg_cache_mutex held
3342 */
d7f25f8a
GC
3343static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3344 struct kmem_cache *s)
3345{
d7f25f8a 3346 struct kmem_cache *new;
d9c10ddd 3347 static char *tmp_name = NULL;
d7f25f8a 3348
d9c10ddd
MH
3349 lockdep_assert_held(&memcg_cache_mutex);
3350
3351 /*
3352 * kmem_cache_create_memcg duplicates the given name and
3353 * cgroup_name for this name requires RCU context.
3354 * This static temporary buffer is used to prevent from
3355 * pointless shortliving allocation.
3356 */
3357 if (!tmp_name) {
3358 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3359 if (!tmp_name)
3360 return NULL;
3361 }
3362
3363 rcu_read_lock();
3364 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3365 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3366 rcu_read_unlock();
d7f25f8a 3367
d9c10ddd 3368 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3369 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3370
d79923fa
GC
3371 if (new)
3372 new->allocflags |= __GFP_KMEMCG;
3373
d7f25f8a
GC
3374 return new;
3375}
3376
d7f25f8a
GC
3377static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3378 struct kmem_cache *cachep)
3379{
3380 struct kmem_cache *new_cachep;
3381 int idx;
3382
3383 BUG_ON(!memcg_can_account_kmem(memcg));
3384
3385 idx = memcg_cache_id(memcg);
3386
3387 mutex_lock(&memcg_cache_mutex);
3388 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3389 if (new_cachep) {
3390 css_put(&memcg->css);
d7f25f8a 3391 goto out;
20f05310 3392 }
d7f25f8a
GC
3393
3394 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3395 if (new_cachep == NULL) {
3396 new_cachep = cachep;
20f05310 3397 css_put(&memcg->css);
d7f25f8a
GC
3398 goto out;
3399 }
3400
1f458cbf 3401 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3402
3403 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3404 /*
3405 * the readers won't lock, make sure everybody sees the updated value,
3406 * so they won't put stuff in the queue again for no reason
3407 */
3408 wmb();
3409out:
3410 mutex_unlock(&memcg_cache_mutex);
3411 return new_cachep;
3412}
3413
7cf27982
GC
3414void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3415{
3416 struct kmem_cache *c;
3417 int i;
3418
3419 if (!s->memcg_params)
3420 return;
3421 if (!s->memcg_params->is_root_cache)
3422 return;
3423
3424 /*
3425 * If the cache is being destroyed, we trust that there is no one else
3426 * requesting objects from it. Even if there are, the sanity checks in
3427 * kmem_cache_destroy should caught this ill-case.
3428 *
3429 * Still, we don't want anyone else freeing memcg_caches under our
3430 * noses, which can happen if a new memcg comes to life. As usual,
3431 * we'll take the set_limit_mutex to protect ourselves against this.
3432 */
3433 mutex_lock(&set_limit_mutex);
3434 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3435 c = s->memcg_params->memcg_caches[i];
3436 if (!c)
3437 continue;
3438
3439 /*
3440 * We will now manually delete the caches, so to avoid races
3441 * we need to cancel all pending destruction workers and
3442 * proceed with destruction ourselves.
3443 *
3444 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3445 * and that could spawn the workers again: it is likely that
3446 * the cache still have active pages until this very moment.
3447 * This would lead us back to mem_cgroup_destroy_cache.
3448 *
3449 * But that will not execute at all if the "dead" flag is not
3450 * set, so flip it down to guarantee we are in control.
3451 */
3452 c->memcg_params->dead = false;
22933152 3453 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3454 kmem_cache_destroy(c);
3455 }
3456 mutex_unlock(&set_limit_mutex);
3457}
3458
d7f25f8a
GC
3459struct create_work {
3460 struct mem_cgroup *memcg;
3461 struct kmem_cache *cachep;
3462 struct work_struct work;
3463};
3464
1f458cbf
GC
3465static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3466{
3467 struct kmem_cache *cachep;
3468 struct memcg_cache_params *params;
3469
3470 if (!memcg_kmem_is_active(memcg))
3471 return;
3472
3473 mutex_lock(&memcg->slab_caches_mutex);
3474 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3475 cachep = memcg_params_to_cache(params);
3476 cachep->memcg_params->dead = true;
1f458cbf
GC
3477 schedule_work(&cachep->memcg_params->destroy);
3478 }
3479 mutex_unlock(&memcg->slab_caches_mutex);
3480}
3481
d7f25f8a
GC
3482static void memcg_create_cache_work_func(struct work_struct *w)
3483{
3484 struct create_work *cw;
3485
3486 cw = container_of(w, struct create_work, work);
3487 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3488 kfree(cw);
3489}
3490
3491/*
3492 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3493 */
0e9d92f2
GC
3494static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3495 struct kmem_cache *cachep)
d7f25f8a
GC
3496{
3497 struct create_work *cw;
3498
3499 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3500 if (cw == NULL) {
3501 css_put(&memcg->css);
d7f25f8a
GC
3502 return;
3503 }
3504
3505 cw->memcg = memcg;
3506 cw->cachep = cachep;
3507
3508 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3509 schedule_work(&cw->work);
3510}
3511
0e9d92f2
GC
3512static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3513 struct kmem_cache *cachep)
3514{
3515 /*
3516 * We need to stop accounting when we kmalloc, because if the
3517 * corresponding kmalloc cache is not yet created, the first allocation
3518 * in __memcg_create_cache_enqueue will recurse.
3519 *
3520 * However, it is better to enclose the whole function. Depending on
3521 * the debugging options enabled, INIT_WORK(), for instance, can
3522 * trigger an allocation. This too, will make us recurse. Because at
3523 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3524 * the safest choice is to do it like this, wrapping the whole function.
3525 */
3526 memcg_stop_kmem_account();
3527 __memcg_create_cache_enqueue(memcg, cachep);
3528 memcg_resume_kmem_account();
3529}
d7f25f8a
GC
3530/*
3531 * Return the kmem_cache we're supposed to use for a slab allocation.
3532 * We try to use the current memcg's version of the cache.
3533 *
3534 * If the cache does not exist yet, if we are the first user of it,
3535 * we either create it immediately, if possible, or create it asynchronously
3536 * in a workqueue.
3537 * In the latter case, we will let the current allocation go through with
3538 * the original cache.
3539 *
3540 * Can't be called in interrupt context or from kernel threads.
3541 * This function needs to be called with rcu_read_lock() held.
3542 */
3543struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3544 gfp_t gfp)
3545{
3546 struct mem_cgroup *memcg;
3547 int idx;
3548
3549 VM_BUG_ON(!cachep->memcg_params);
3550 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3551
0e9d92f2
GC
3552 if (!current->mm || current->memcg_kmem_skip_account)
3553 return cachep;
3554
d7f25f8a
GC
3555 rcu_read_lock();
3556 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3557
3558 if (!memcg_can_account_kmem(memcg))
ca0dde97 3559 goto out;
d7f25f8a
GC
3560
3561 idx = memcg_cache_id(memcg);
3562
3563 /*
3564 * barrier to mare sure we're always seeing the up to date value. The
3565 * code updating memcg_caches will issue a write barrier to match this.
3566 */
3567 read_barrier_depends();
ca0dde97
LZ
3568 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3569 cachep = cachep->memcg_params->memcg_caches[idx];
3570 goto out;
d7f25f8a
GC
3571 }
3572
ca0dde97
LZ
3573 /* The corresponding put will be done in the workqueue. */
3574 if (!css_tryget(&memcg->css))
3575 goto out;
3576 rcu_read_unlock();
3577
3578 /*
3579 * If we are in a safe context (can wait, and not in interrupt
3580 * context), we could be be predictable and return right away.
3581 * This would guarantee that the allocation being performed
3582 * already belongs in the new cache.
3583 *
3584 * However, there are some clashes that can arrive from locking.
3585 * For instance, because we acquire the slab_mutex while doing
3586 * kmem_cache_dup, this means no further allocation could happen
3587 * with the slab_mutex held.
3588 *
3589 * Also, because cache creation issue get_online_cpus(), this
3590 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3591 * that ends up reversed during cpu hotplug. (cpuset allocates
3592 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3593 * better to defer everything.
3594 */
3595 memcg_create_cache_enqueue(memcg, cachep);
3596 return cachep;
3597out:
3598 rcu_read_unlock();
3599 return cachep;
d7f25f8a
GC
3600}
3601EXPORT_SYMBOL(__memcg_kmem_get_cache);
3602
7ae1e1d0
GC
3603/*
3604 * We need to verify if the allocation against current->mm->owner's memcg is
3605 * possible for the given order. But the page is not allocated yet, so we'll
3606 * need a further commit step to do the final arrangements.
3607 *
3608 * It is possible for the task to switch cgroups in this mean time, so at
3609 * commit time, we can't rely on task conversion any longer. We'll then use
3610 * the handle argument to return to the caller which cgroup we should commit
3611 * against. We could also return the memcg directly and avoid the pointer
3612 * passing, but a boolean return value gives better semantics considering
3613 * the compiled-out case as well.
3614 *
3615 * Returning true means the allocation is possible.
3616 */
3617bool
3618__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3619{
3620 struct mem_cgroup *memcg;
3621 int ret;
3622
3623 *_memcg = NULL;
6d42c232
GC
3624
3625 /*
3626 * Disabling accounting is only relevant for some specific memcg
3627 * internal allocations. Therefore we would initially not have such
3628 * check here, since direct calls to the page allocator that are marked
3629 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3630 * concerned with cache allocations, and by having this test at
3631 * memcg_kmem_get_cache, we are already able to relay the allocation to
3632 * the root cache and bypass the memcg cache altogether.
3633 *
3634 * There is one exception, though: the SLUB allocator does not create
3635 * large order caches, but rather service large kmallocs directly from
3636 * the page allocator. Therefore, the following sequence when backed by
3637 * the SLUB allocator:
3638 *
3639 * memcg_stop_kmem_account();
3640 * kmalloc(<large_number>)
3641 * memcg_resume_kmem_account();
3642 *
3643 * would effectively ignore the fact that we should skip accounting,
3644 * since it will drive us directly to this function without passing
3645 * through the cache selector memcg_kmem_get_cache. Such large
3646 * allocations are extremely rare but can happen, for instance, for the
3647 * cache arrays. We bring this test here.
3648 */
3649 if (!current->mm || current->memcg_kmem_skip_account)
3650 return true;
3651
7ae1e1d0
GC
3652 memcg = try_get_mem_cgroup_from_mm(current->mm);
3653
3654 /*
3655 * very rare case described in mem_cgroup_from_task. Unfortunately there
3656 * isn't much we can do without complicating this too much, and it would
3657 * be gfp-dependent anyway. Just let it go
3658 */
3659 if (unlikely(!memcg))
3660 return true;
3661
3662 if (!memcg_can_account_kmem(memcg)) {
3663 css_put(&memcg->css);
3664 return true;
3665 }
3666
7ae1e1d0
GC
3667 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3668 if (!ret)
3669 *_memcg = memcg;
7ae1e1d0
GC
3670
3671 css_put(&memcg->css);
3672 return (ret == 0);
3673}
3674
3675void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3676 int order)
3677{
3678 struct page_cgroup *pc;
3679
3680 VM_BUG_ON(mem_cgroup_is_root(memcg));
3681
3682 /* The page allocation failed. Revert */
3683 if (!page) {
3684 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3685 return;
3686 }
3687
3688 pc = lookup_page_cgroup(page);
3689 lock_page_cgroup(pc);
3690 pc->mem_cgroup = memcg;
3691 SetPageCgroupUsed(pc);
3692 unlock_page_cgroup(pc);
3693}
3694
3695void __memcg_kmem_uncharge_pages(struct page *page, int order)
3696{
3697 struct mem_cgroup *memcg = NULL;
3698 struct page_cgroup *pc;
3699
3700
3701 pc = lookup_page_cgroup(page);
3702 /*
3703 * Fast unlocked return. Theoretically might have changed, have to
3704 * check again after locking.
3705 */
3706 if (!PageCgroupUsed(pc))
3707 return;
3708
3709 lock_page_cgroup(pc);
3710 if (PageCgroupUsed(pc)) {
3711 memcg = pc->mem_cgroup;
3712 ClearPageCgroupUsed(pc);
3713 }
3714 unlock_page_cgroup(pc);
3715
3716 /*
3717 * We trust that only if there is a memcg associated with the page, it
3718 * is a valid allocation
3719 */
3720 if (!memcg)
3721 return;
3722
3723 VM_BUG_ON(mem_cgroup_is_root(memcg));
3724 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3725}
1f458cbf
GC
3726#else
3727static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3728{
3729}
7ae1e1d0
GC
3730#endif /* CONFIG_MEMCG_KMEM */
3731
ca3e0214
KH
3732#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3733
a0db00fc 3734#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3735/*
3736 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3737 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3738 * charge/uncharge will be never happen and move_account() is done under
3739 * compound_lock(), so we don't have to take care of races.
ca3e0214 3740 */
e94c8a9c 3741void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3742{
3743 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3744 struct page_cgroup *pc;
b070e65c 3745 struct mem_cgroup *memcg;
e94c8a9c 3746 int i;
ca3e0214 3747
3d37c4a9
KH
3748 if (mem_cgroup_disabled())
3749 return;
b070e65c
DR
3750
3751 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3752 for (i = 1; i < HPAGE_PMD_NR; i++) {
3753 pc = head_pc + i;
b070e65c 3754 pc->mem_cgroup = memcg;
e94c8a9c 3755 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3756 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3757 }
b070e65c
DR
3758 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3759 HPAGE_PMD_NR);
ca3e0214 3760}
12d27107 3761#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3762
f817ed48 3763/**
de3638d9 3764 * mem_cgroup_move_account - move account of the page
5564e88b 3765 * @page: the page
7ec99d62 3766 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3767 * @pc: page_cgroup of the page.
3768 * @from: mem_cgroup which the page is moved from.
3769 * @to: mem_cgroup which the page is moved to. @from != @to.
3770 *
3771 * The caller must confirm following.
08e552c6 3772 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3773 * - compound_lock is held when nr_pages > 1
f817ed48 3774 *
2f3479b1
KH
3775 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3776 * from old cgroup.
f817ed48 3777 */
7ec99d62
JW
3778static int mem_cgroup_move_account(struct page *page,
3779 unsigned int nr_pages,
3780 struct page_cgroup *pc,
3781 struct mem_cgroup *from,
2f3479b1 3782 struct mem_cgroup *to)
f817ed48 3783{
de3638d9
JW
3784 unsigned long flags;
3785 int ret;
b2402857 3786 bool anon = PageAnon(page);
987eba66 3787
f817ed48 3788 VM_BUG_ON(from == to);
5564e88b 3789 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3790 /*
3791 * The page is isolated from LRU. So, collapse function
3792 * will not handle this page. But page splitting can happen.
3793 * Do this check under compound_page_lock(). The caller should
3794 * hold it.
3795 */
3796 ret = -EBUSY;
7ec99d62 3797 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3798 goto out;
3799
3800 lock_page_cgroup(pc);
3801
3802 ret = -EINVAL;
3803 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3804 goto unlock;
3805
312734c0 3806 move_lock_mem_cgroup(from, &flags);
f817ed48 3807
2ff76f11 3808 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3809 /* Update mapped_file data for mem_cgroup */
3810 preempt_disable();
3811 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3812 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3813 preempt_enable();
d69b042f 3814 }
b070e65c 3815 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3816
854ffa8d 3817 /* caller should have done css_get */
08e552c6 3818 pc->mem_cgroup = to;
b070e65c 3819 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3820 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3821 ret = 0;
3822unlock:
57f9fd7d 3823 unlock_page_cgroup(pc);
d2265e6f
KH
3824 /*
3825 * check events
3826 */
5564e88b
JW
3827 memcg_check_events(to, page);
3828 memcg_check_events(from, page);
de3638d9 3829out:
f817ed48
KH
3830 return ret;
3831}
3832
2ef37d3f
MH
3833/**
3834 * mem_cgroup_move_parent - moves page to the parent group
3835 * @page: the page to move
3836 * @pc: page_cgroup of the page
3837 * @child: page's cgroup
3838 *
3839 * move charges to its parent or the root cgroup if the group has no
3840 * parent (aka use_hierarchy==0).
3841 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3842 * mem_cgroup_move_account fails) the failure is always temporary and
3843 * it signals a race with a page removal/uncharge or migration. In the
3844 * first case the page is on the way out and it will vanish from the LRU
3845 * on the next attempt and the call should be retried later.
3846 * Isolation from the LRU fails only if page has been isolated from
3847 * the LRU since we looked at it and that usually means either global
3848 * reclaim or migration going on. The page will either get back to the
3849 * LRU or vanish.
3850 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3851 * (!PageCgroupUsed) or moved to a different group. The page will
3852 * disappear in the next attempt.
f817ed48 3853 */
5564e88b
JW
3854static int mem_cgroup_move_parent(struct page *page,
3855 struct page_cgroup *pc,
6068bf01 3856 struct mem_cgroup *child)
f817ed48 3857{
f817ed48 3858 struct mem_cgroup *parent;
7ec99d62 3859 unsigned int nr_pages;
4be4489f 3860 unsigned long uninitialized_var(flags);
f817ed48
KH
3861 int ret;
3862
d8423011 3863 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3864
57f9fd7d
DN
3865 ret = -EBUSY;
3866 if (!get_page_unless_zero(page))
3867 goto out;
3868 if (isolate_lru_page(page))
3869 goto put;
52dbb905 3870
7ec99d62 3871 nr_pages = hpage_nr_pages(page);
08e552c6 3872
cc926f78
KH
3873 parent = parent_mem_cgroup(child);
3874 /*
3875 * If no parent, move charges to root cgroup.
3876 */
3877 if (!parent)
3878 parent = root_mem_cgroup;
f817ed48 3879
2ef37d3f
MH
3880 if (nr_pages > 1) {
3881 VM_BUG_ON(!PageTransHuge(page));
987eba66 3882 flags = compound_lock_irqsave(page);
2ef37d3f 3883 }
987eba66 3884
cc926f78 3885 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3886 pc, child, parent);
cc926f78
KH
3887 if (!ret)
3888 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3889
7ec99d62 3890 if (nr_pages > 1)
987eba66 3891 compound_unlock_irqrestore(page, flags);
08e552c6 3892 putback_lru_page(page);
57f9fd7d 3893put:
40d58138 3894 put_page(page);
57f9fd7d 3895out:
f817ed48
KH
3896 return ret;
3897}
3898
7a81b88c
KH
3899/*
3900 * Charge the memory controller for page usage.
3901 * Return
3902 * 0 if the charge was successful
3903 * < 0 if the cgroup is over its limit
3904 */
3905static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3906 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3907{
c0ff4b85 3908 struct mem_cgroup *memcg = NULL;
7ec99d62 3909 unsigned int nr_pages = 1;
8493ae43 3910 bool oom = true;
7a81b88c 3911 int ret;
ec168510 3912
37c2ac78 3913 if (PageTransHuge(page)) {
7ec99d62 3914 nr_pages <<= compound_order(page);
37c2ac78 3915 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3916 /*
3917 * Never OOM-kill a process for a huge page. The
3918 * fault handler will fall back to regular pages.
3919 */
3920 oom = false;
37c2ac78 3921 }
7a81b88c 3922
c0ff4b85 3923 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3924 if (ret == -ENOMEM)
7a81b88c 3925 return ret;
ce587e65 3926 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3927 return 0;
8a9f3ccd
BS
3928}
3929
7a81b88c
KH
3930int mem_cgroup_newpage_charge(struct page *page,
3931 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3932{
f8d66542 3933 if (mem_cgroup_disabled())
cede86ac 3934 return 0;
7a0524cf
JW
3935 VM_BUG_ON(page_mapped(page));
3936 VM_BUG_ON(page->mapping && !PageAnon(page));
3937 VM_BUG_ON(!mm);
217bc319 3938 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3939 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3940}
3941
54595fe2
KH
3942/*
3943 * While swap-in, try_charge -> commit or cancel, the page is locked.
3944 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3945 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3946 * "commit()" or removed by "cancel()"
3947 */
0435a2fd
JW
3948static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3949 struct page *page,
3950 gfp_t mask,
3951 struct mem_cgroup **memcgp)
8c7c6e34 3952{
c0ff4b85 3953 struct mem_cgroup *memcg;
90deb788 3954 struct page_cgroup *pc;
54595fe2 3955 int ret;
8c7c6e34 3956
90deb788
JW
3957 pc = lookup_page_cgroup(page);
3958 /*
3959 * Every swap fault against a single page tries to charge the
3960 * page, bail as early as possible. shmem_unuse() encounters
3961 * already charged pages, too. The USED bit is protected by
3962 * the page lock, which serializes swap cache removal, which
3963 * in turn serializes uncharging.
3964 */
3965 if (PageCgroupUsed(pc))
3966 return 0;
8c7c6e34
KH
3967 if (!do_swap_account)
3968 goto charge_cur_mm;
c0ff4b85
R
3969 memcg = try_get_mem_cgroup_from_page(page);
3970 if (!memcg)
54595fe2 3971 goto charge_cur_mm;
72835c86
JW
3972 *memcgp = memcg;
3973 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3974 css_put(&memcg->css);
38c5d72f
KH
3975 if (ret == -EINTR)
3976 ret = 0;
54595fe2 3977 return ret;
8c7c6e34 3978charge_cur_mm:
38c5d72f
KH
3979 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3980 if (ret == -EINTR)
3981 ret = 0;
3982 return ret;
8c7c6e34
KH
3983}
3984
0435a2fd
JW
3985int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3986 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3987{
3988 *memcgp = NULL;
3989 if (mem_cgroup_disabled())
3990 return 0;
bdf4f4d2
JW
3991 /*
3992 * A racing thread's fault, or swapoff, may have already
3993 * updated the pte, and even removed page from swap cache: in
3994 * those cases unuse_pte()'s pte_same() test will fail; but
3995 * there's also a KSM case which does need to charge the page.
3996 */
3997 if (!PageSwapCache(page)) {
3998 int ret;
3999
4000 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4001 if (ret == -EINTR)
4002 ret = 0;
4003 return ret;
4004 }
0435a2fd
JW
4005 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4006}
4007
827a03d2
JW
4008void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4009{
4010 if (mem_cgroup_disabled())
4011 return;
4012 if (!memcg)
4013 return;
4014 __mem_cgroup_cancel_charge(memcg, 1);
4015}
4016
83aae4c7 4017static void
72835c86 4018__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4019 enum charge_type ctype)
7a81b88c 4020{
f8d66542 4021 if (mem_cgroup_disabled())
7a81b88c 4022 return;
72835c86 4023 if (!memcg)
7a81b88c 4024 return;
5a6475a4 4025
ce587e65 4026 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4027 /*
4028 * Now swap is on-memory. This means this page may be
4029 * counted both as mem and swap....double count.
03f3c433
KH
4030 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4031 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4032 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4033 */
03f3c433 4034 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4035 swp_entry_t ent = {.val = page_private(page)};
86493009 4036 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4037 }
7a81b88c
KH
4038}
4039
72835c86
JW
4040void mem_cgroup_commit_charge_swapin(struct page *page,
4041 struct mem_cgroup *memcg)
83aae4c7 4042{
72835c86 4043 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4044 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4045}
4046
827a03d2
JW
4047int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4048 gfp_t gfp_mask)
7a81b88c 4049{
827a03d2
JW
4050 struct mem_cgroup *memcg = NULL;
4051 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4052 int ret;
4053
f8d66542 4054 if (mem_cgroup_disabled())
827a03d2
JW
4055 return 0;
4056 if (PageCompound(page))
4057 return 0;
4058
827a03d2
JW
4059 if (!PageSwapCache(page))
4060 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4061 else { /* page is swapcache/shmem */
0435a2fd
JW
4062 ret = __mem_cgroup_try_charge_swapin(mm, page,
4063 gfp_mask, &memcg);
827a03d2
JW
4064 if (!ret)
4065 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4066 }
4067 return ret;
7a81b88c
KH
4068}
4069
c0ff4b85 4070static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4071 unsigned int nr_pages,
4072 const enum charge_type ctype)
569b846d
KH
4073{
4074 struct memcg_batch_info *batch = NULL;
4075 bool uncharge_memsw = true;
7ec99d62 4076
569b846d
KH
4077 /* If swapout, usage of swap doesn't decrease */
4078 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4079 uncharge_memsw = false;
569b846d
KH
4080
4081 batch = &current->memcg_batch;
4082 /*
4083 * In usual, we do css_get() when we remember memcg pointer.
4084 * But in this case, we keep res->usage until end of a series of
4085 * uncharges. Then, it's ok to ignore memcg's refcnt.
4086 */
4087 if (!batch->memcg)
c0ff4b85 4088 batch->memcg = memcg;
3c11ecf4
KH
4089 /*
4090 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4091 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4092 * the same cgroup and we have chance to coalesce uncharges.
4093 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4094 * because we want to do uncharge as soon as possible.
4095 */
4096
4097 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4098 goto direct_uncharge;
4099
7ec99d62 4100 if (nr_pages > 1)
ec168510
AA
4101 goto direct_uncharge;
4102
569b846d
KH
4103 /*
4104 * In typical case, batch->memcg == mem. This means we can
4105 * merge a series of uncharges to an uncharge of res_counter.
4106 * If not, we uncharge res_counter ony by one.
4107 */
c0ff4b85 4108 if (batch->memcg != memcg)
569b846d
KH
4109 goto direct_uncharge;
4110 /* remember freed charge and uncharge it later */
7ffd4ca7 4111 batch->nr_pages++;
569b846d 4112 if (uncharge_memsw)
7ffd4ca7 4113 batch->memsw_nr_pages++;
569b846d
KH
4114 return;
4115direct_uncharge:
c0ff4b85 4116 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4117 if (uncharge_memsw)
c0ff4b85
R
4118 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4119 if (unlikely(batch->memcg != memcg))
4120 memcg_oom_recover(memcg);
569b846d 4121}
7a81b88c 4122
8a9f3ccd 4123/*
69029cd5 4124 * uncharge if !page_mapped(page)
8a9f3ccd 4125 */
8c7c6e34 4126static struct mem_cgroup *
0030f535
JW
4127__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4128 bool end_migration)
8a9f3ccd 4129{
c0ff4b85 4130 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4131 unsigned int nr_pages = 1;
4132 struct page_cgroup *pc;
b2402857 4133 bool anon;
8a9f3ccd 4134
f8d66542 4135 if (mem_cgroup_disabled())
8c7c6e34 4136 return NULL;
4077960e 4137
37c2ac78 4138 if (PageTransHuge(page)) {
7ec99d62 4139 nr_pages <<= compound_order(page);
37c2ac78
AA
4140 VM_BUG_ON(!PageTransHuge(page));
4141 }
8697d331 4142 /*
3c541e14 4143 * Check if our page_cgroup is valid
8697d331 4144 */
52d4b9ac 4145 pc = lookup_page_cgroup(page);
cfa44946 4146 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4147 return NULL;
b9c565d5 4148
52d4b9ac 4149 lock_page_cgroup(pc);
d13d1443 4150
c0ff4b85 4151 memcg = pc->mem_cgroup;
8c7c6e34 4152
d13d1443
KH
4153 if (!PageCgroupUsed(pc))
4154 goto unlock_out;
4155
b2402857
KH
4156 anon = PageAnon(page);
4157
d13d1443 4158 switch (ctype) {
41326c17 4159 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4160 /*
4161 * Generally PageAnon tells if it's the anon statistics to be
4162 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4163 * used before page reached the stage of being marked PageAnon.
4164 */
b2402857
KH
4165 anon = true;
4166 /* fallthrough */
8a9478ca 4167 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4168 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4169 if (page_mapped(page))
4170 goto unlock_out;
4171 /*
4172 * Pages under migration may not be uncharged. But
4173 * end_migration() /must/ be the one uncharging the
4174 * unused post-migration page and so it has to call
4175 * here with the migration bit still set. See the
4176 * res_counter handling below.
4177 */
4178 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4179 goto unlock_out;
4180 break;
4181 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4182 if (!PageAnon(page)) { /* Shared memory */
4183 if (page->mapping && !page_is_file_cache(page))
4184 goto unlock_out;
4185 } else if (page_mapped(page)) /* Anon */
4186 goto unlock_out;
4187 break;
4188 default:
4189 break;
52d4b9ac 4190 }
d13d1443 4191
b070e65c 4192 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4193
52d4b9ac 4194 ClearPageCgroupUsed(pc);
544122e5
KH
4195 /*
4196 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4197 * freed from LRU. This is safe because uncharged page is expected not
4198 * to be reused (freed soon). Exception is SwapCache, it's handled by
4199 * special functions.
4200 */
b9c565d5 4201
52d4b9ac 4202 unlock_page_cgroup(pc);
f75ca962 4203 /*
c0ff4b85 4204 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4205 * will never be freed, so it's safe to call css_get().
f75ca962 4206 */
c0ff4b85 4207 memcg_check_events(memcg, page);
f75ca962 4208 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4209 mem_cgroup_swap_statistics(memcg, true);
4050377b 4210 css_get(&memcg->css);
f75ca962 4211 }
0030f535
JW
4212 /*
4213 * Migration does not charge the res_counter for the
4214 * replacement page, so leave it alone when phasing out the
4215 * page that is unused after the migration.
4216 */
4217 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4218 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4219
c0ff4b85 4220 return memcg;
d13d1443
KH
4221
4222unlock_out:
4223 unlock_page_cgroup(pc);
8c7c6e34 4224 return NULL;
3c541e14
BS
4225}
4226
69029cd5
KH
4227void mem_cgroup_uncharge_page(struct page *page)
4228{
52d4b9ac
KH
4229 /* early check. */
4230 if (page_mapped(page))
4231 return;
40f23a21 4232 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4233 /*
4234 * If the page is in swap cache, uncharge should be deferred
4235 * to the swap path, which also properly accounts swap usage
4236 * and handles memcg lifetime.
4237 *
4238 * Note that this check is not stable and reclaim may add the
4239 * page to swap cache at any time after this. However, if the
4240 * page is not in swap cache by the time page->mapcount hits
4241 * 0, there won't be any page table references to the swap
4242 * slot, and reclaim will free it and not actually write the
4243 * page to disk.
4244 */
0c59b89c
JW
4245 if (PageSwapCache(page))
4246 return;
0030f535 4247 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4248}
4249
4250void mem_cgroup_uncharge_cache_page(struct page *page)
4251{
4252 VM_BUG_ON(page_mapped(page));
b7abea96 4253 VM_BUG_ON(page->mapping);
0030f535 4254 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4255}
4256
569b846d
KH
4257/*
4258 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4259 * In that cases, pages are freed continuously and we can expect pages
4260 * are in the same memcg. All these calls itself limits the number of
4261 * pages freed at once, then uncharge_start/end() is called properly.
4262 * This may be called prural(2) times in a context,
4263 */
4264
4265void mem_cgroup_uncharge_start(void)
4266{
4267 current->memcg_batch.do_batch++;
4268 /* We can do nest. */
4269 if (current->memcg_batch.do_batch == 1) {
4270 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4271 current->memcg_batch.nr_pages = 0;
4272 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4273 }
4274}
4275
4276void mem_cgroup_uncharge_end(void)
4277{
4278 struct memcg_batch_info *batch = &current->memcg_batch;
4279
4280 if (!batch->do_batch)
4281 return;
4282
4283 batch->do_batch--;
4284 if (batch->do_batch) /* If stacked, do nothing. */
4285 return;
4286
4287 if (!batch->memcg)
4288 return;
4289 /*
4290 * This "batch->memcg" is valid without any css_get/put etc...
4291 * bacause we hide charges behind us.
4292 */
7ffd4ca7
JW
4293 if (batch->nr_pages)
4294 res_counter_uncharge(&batch->memcg->res,
4295 batch->nr_pages * PAGE_SIZE);
4296 if (batch->memsw_nr_pages)
4297 res_counter_uncharge(&batch->memcg->memsw,
4298 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4299 memcg_oom_recover(batch->memcg);
569b846d
KH
4300 /* forget this pointer (for sanity check) */
4301 batch->memcg = NULL;
4302}
4303
e767e056 4304#ifdef CONFIG_SWAP
8c7c6e34 4305/*
e767e056 4306 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4307 * memcg information is recorded to swap_cgroup of "ent"
4308 */
8a9478ca
KH
4309void
4310mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4311{
4312 struct mem_cgroup *memcg;
8a9478ca
KH
4313 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4314
4315 if (!swapout) /* this was a swap cache but the swap is unused ! */
4316 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4317
0030f535 4318 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4319
f75ca962
KH
4320 /*
4321 * record memcg information, if swapout && memcg != NULL,
4050377b 4322 * css_get() was called in uncharge().
f75ca962
KH
4323 */
4324 if (do_swap_account && swapout && memcg)
a3b2d692 4325 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4326}
e767e056 4327#endif
8c7c6e34 4328
c255a458 4329#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4330/*
4331 * called from swap_entry_free(). remove record in swap_cgroup and
4332 * uncharge "memsw" account.
4333 */
4334void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4335{
8c7c6e34 4336 struct mem_cgroup *memcg;
a3b2d692 4337 unsigned short id;
8c7c6e34
KH
4338
4339 if (!do_swap_account)
4340 return;
4341
a3b2d692
KH
4342 id = swap_cgroup_record(ent, 0);
4343 rcu_read_lock();
4344 memcg = mem_cgroup_lookup(id);
8c7c6e34 4345 if (memcg) {
a3b2d692
KH
4346 /*
4347 * We uncharge this because swap is freed.
4348 * This memcg can be obsolete one. We avoid calling css_tryget
4349 */
0c3e73e8 4350 if (!mem_cgroup_is_root(memcg))
4e649152 4351 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4352 mem_cgroup_swap_statistics(memcg, false);
4050377b 4353 css_put(&memcg->css);
8c7c6e34 4354 }
a3b2d692 4355 rcu_read_unlock();
d13d1443 4356}
02491447
DN
4357
4358/**
4359 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4360 * @entry: swap entry to be moved
4361 * @from: mem_cgroup which the entry is moved from
4362 * @to: mem_cgroup which the entry is moved to
4363 *
4364 * It succeeds only when the swap_cgroup's record for this entry is the same
4365 * as the mem_cgroup's id of @from.
4366 *
4367 * Returns 0 on success, -EINVAL on failure.
4368 *
4369 * The caller must have charged to @to, IOW, called res_counter_charge() about
4370 * both res and memsw, and called css_get().
4371 */
4372static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4373 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4374{
4375 unsigned short old_id, new_id;
4376
4377 old_id = css_id(&from->css);
4378 new_id = css_id(&to->css);
4379
4380 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4381 mem_cgroup_swap_statistics(from, false);
483c30b5 4382 mem_cgroup_swap_statistics(to, true);
02491447 4383 /*
483c30b5
DN
4384 * This function is only called from task migration context now.
4385 * It postpones res_counter and refcount handling till the end
4386 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4387 * improvement. But we cannot postpone css_get(to) because if
4388 * the process that has been moved to @to does swap-in, the
4389 * refcount of @to might be decreased to 0.
4390 *
4391 * We are in attach() phase, so the cgroup is guaranteed to be
4392 * alive, so we can just call css_get().
02491447 4393 */
4050377b 4394 css_get(&to->css);
02491447
DN
4395 return 0;
4396 }
4397 return -EINVAL;
4398}
4399#else
4400static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4401 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4402{
4403 return -EINVAL;
4404}
8c7c6e34 4405#endif
d13d1443 4406
ae41be37 4407/*
01b1ae63
KH
4408 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4409 * page belongs to.
ae41be37 4410 */
0030f535
JW
4411void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4412 struct mem_cgroup **memcgp)
ae41be37 4413{
c0ff4b85 4414 struct mem_cgroup *memcg = NULL;
b32967ff 4415 unsigned int nr_pages = 1;
7ec99d62 4416 struct page_cgroup *pc;
ac39cf8c 4417 enum charge_type ctype;
8869b8f6 4418
72835c86 4419 *memcgp = NULL;
56039efa 4420
f8d66542 4421 if (mem_cgroup_disabled())
0030f535 4422 return;
4077960e 4423
b32967ff
MG
4424 if (PageTransHuge(page))
4425 nr_pages <<= compound_order(page);
4426
52d4b9ac
KH
4427 pc = lookup_page_cgroup(page);
4428 lock_page_cgroup(pc);
4429 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4430 memcg = pc->mem_cgroup;
4431 css_get(&memcg->css);
ac39cf8c
AM
4432 /*
4433 * At migrating an anonymous page, its mapcount goes down
4434 * to 0 and uncharge() will be called. But, even if it's fully
4435 * unmapped, migration may fail and this page has to be
4436 * charged again. We set MIGRATION flag here and delay uncharge
4437 * until end_migration() is called
4438 *
4439 * Corner Case Thinking
4440 * A)
4441 * When the old page was mapped as Anon and it's unmap-and-freed
4442 * while migration was ongoing.
4443 * If unmap finds the old page, uncharge() of it will be delayed
4444 * until end_migration(). If unmap finds a new page, it's
4445 * uncharged when it make mapcount to be 1->0. If unmap code
4446 * finds swap_migration_entry, the new page will not be mapped
4447 * and end_migration() will find it(mapcount==0).
4448 *
4449 * B)
4450 * When the old page was mapped but migraion fails, the kernel
4451 * remaps it. A charge for it is kept by MIGRATION flag even
4452 * if mapcount goes down to 0. We can do remap successfully
4453 * without charging it again.
4454 *
4455 * C)
4456 * The "old" page is under lock_page() until the end of
4457 * migration, so, the old page itself will not be swapped-out.
4458 * If the new page is swapped out before end_migraton, our
4459 * hook to usual swap-out path will catch the event.
4460 */
4461 if (PageAnon(page))
4462 SetPageCgroupMigration(pc);
e8589cc1 4463 }
52d4b9ac 4464 unlock_page_cgroup(pc);
ac39cf8c
AM
4465 /*
4466 * If the page is not charged at this point,
4467 * we return here.
4468 */
c0ff4b85 4469 if (!memcg)
0030f535 4470 return;
01b1ae63 4471
72835c86 4472 *memcgp = memcg;
ac39cf8c
AM
4473 /*
4474 * We charge new page before it's used/mapped. So, even if unlock_page()
4475 * is called before end_migration, we can catch all events on this new
4476 * page. In the case new page is migrated but not remapped, new page's
4477 * mapcount will be finally 0 and we call uncharge in end_migration().
4478 */
ac39cf8c 4479 if (PageAnon(page))
41326c17 4480 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4481 else
62ba7442 4482 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4483 /*
4484 * The page is committed to the memcg, but it's not actually
4485 * charged to the res_counter since we plan on replacing the
4486 * old one and only one page is going to be left afterwards.
4487 */
b32967ff 4488 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4489}
8869b8f6 4490
69029cd5 4491/* remove redundant charge if migration failed*/
c0ff4b85 4492void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4493 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4494{
ac39cf8c 4495 struct page *used, *unused;
01b1ae63 4496 struct page_cgroup *pc;
b2402857 4497 bool anon;
01b1ae63 4498
c0ff4b85 4499 if (!memcg)
01b1ae63 4500 return;
b25ed609 4501
50de1dd9 4502 if (!migration_ok) {
ac39cf8c
AM
4503 used = oldpage;
4504 unused = newpage;
01b1ae63 4505 } else {
ac39cf8c 4506 used = newpage;
01b1ae63
KH
4507 unused = oldpage;
4508 }
0030f535 4509 anon = PageAnon(used);
7d188958
JW
4510 __mem_cgroup_uncharge_common(unused,
4511 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4512 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4513 true);
0030f535 4514 css_put(&memcg->css);
69029cd5 4515 /*
ac39cf8c
AM
4516 * We disallowed uncharge of pages under migration because mapcount
4517 * of the page goes down to zero, temporarly.
4518 * Clear the flag and check the page should be charged.
01b1ae63 4519 */
ac39cf8c
AM
4520 pc = lookup_page_cgroup(oldpage);
4521 lock_page_cgroup(pc);
4522 ClearPageCgroupMigration(pc);
4523 unlock_page_cgroup(pc);
ac39cf8c 4524
01b1ae63 4525 /*
ac39cf8c
AM
4526 * If a page is a file cache, radix-tree replacement is very atomic
4527 * and we can skip this check. When it was an Anon page, its mapcount
4528 * goes down to 0. But because we added MIGRATION flage, it's not
4529 * uncharged yet. There are several case but page->mapcount check
4530 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4531 * check. (see prepare_charge() also)
69029cd5 4532 */
b2402857 4533 if (anon)
ac39cf8c 4534 mem_cgroup_uncharge_page(used);
ae41be37 4535}
78fb7466 4536
ab936cbc
KH
4537/*
4538 * At replace page cache, newpage is not under any memcg but it's on
4539 * LRU. So, this function doesn't touch res_counter but handles LRU
4540 * in correct way. Both pages are locked so we cannot race with uncharge.
4541 */
4542void mem_cgroup_replace_page_cache(struct page *oldpage,
4543 struct page *newpage)
4544{
bde05d1c 4545 struct mem_cgroup *memcg = NULL;
ab936cbc 4546 struct page_cgroup *pc;
ab936cbc 4547 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4548
4549 if (mem_cgroup_disabled())
4550 return;
4551
4552 pc = lookup_page_cgroup(oldpage);
4553 /* fix accounting on old pages */
4554 lock_page_cgroup(pc);
bde05d1c
HD
4555 if (PageCgroupUsed(pc)) {
4556 memcg = pc->mem_cgroup;
b070e65c 4557 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4558 ClearPageCgroupUsed(pc);
4559 }
ab936cbc
KH
4560 unlock_page_cgroup(pc);
4561
bde05d1c
HD
4562 /*
4563 * When called from shmem_replace_page(), in some cases the
4564 * oldpage has already been charged, and in some cases not.
4565 */
4566 if (!memcg)
4567 return;
ab936cbc
KH
4568 /*
4569 * Even if newpage->mapping was NULL before starting replacement,
4570 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4571 * LRU while we overwrite pc->mem_cgroup.
4572 */
ce587e65 4573 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4574}
4575
f212ad7c
DN
4576#ifdef CONFIG_DEBUG_VM
4577static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4578{
4579 struct page_cgroup *pc;
4580
4581 pc = lookup_page_cgroup(page);
cfa44946
JW
4582 /*
4583 * Can be NULL while feeding pages into the page allocator for
4584 * the first time, i.e. during boot or memory hotplug;
4585 * or when mem_cgroup_disabled().
4586 */
f212ad7c
DN
4587 if (likely(pc) && PageCgroupUsed(pc))
4588 return pc;
4589 return NULL;
4590}
4591
4592bool mem_cgroup_bad_page_check(struct page *page)
4593{
4594 if (mem_cgroup_disabled())
4595 return false;
4596
4597 return lookup_page_cgroup_used(page) != NULL;
4598}
4599
4600void mem_cgroup_print_bad_page(struct page *page)
4601{
4602 struct page_cgroup *pc;
4603
4604 pc = lookup_page_cgroup_used(page);
4605 if (pc) {
d045197f
AM
4606 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4607 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4608 }
4609}
4610#endif
4611
d38d2a75 4612static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4613 unsigned long long val)
628f4235 4614{
81d39c20 4615 int retry_count;
3c11ecf4 4616 u64 memswlimit, memlimit;
628f4235 4617 int ret = 0;
81d39c20
KH
4618 int children = mem_cgroup_count_children(memcg);
4619 u64 curusage, oldusage;
3c11ecf4 4620 int enlarge;
81d39c20
KH
4621
4622 /*
4623 * For keeping hierarchical_reclaim simple, how long we should retry
4624 * is depends on callers. We set our retry-count to be function
4625 * of # of children which we should visit in this loop.
4626 */
4627 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4628
4629 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4630
3c11ecf4 4631 enlarge = 0;
8c7c6e34 4632 while (retry_count) {
628f4235
KH
4633 if (signal_pending(current)) {
4634 ret = -EINTR;
4635 break;
4636 }
8c7c6e34
KH
4637 /*
4638 * Rather than hide all in some function, I do this in
4639 * open coded manner. You see what this really does.
aaad153e 4640 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4641 */
4642 mutex_lock(&set_limit_mutex);
4643 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4644 if (memswlimit < val) {
4645 ret = -EINVAL;
4646 mutex_unlock(&set_limit_mutex);
628f4235
KH
4647 break;
4648 }
3c11ecf4
KH
4649
4650 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4651 if (memlimit < val)
4652 enlarge = 1;
4653
8c7c6e34 4654 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4655 if (!ret) {
4656 if (memswlimit == val)
4657 memcg->memsw_is_minimum = true;
4658 else
4659 memcg->memsw_is_minimum = false;
4660 }
8c7c6e34
KH
4661 mutex_unlock(&set_limit_mutex);
4662
4663 if (!ret)
4664 break;
4665
5660048c
JW
4666 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4667 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4668 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4669 /* Usage is reduced ? */
4670 if (curusage >= oldusage)
4671 retry_count--;
4672 else
4673 oldusage = curusage;
8c7c6e34 4674 }
3c11ecf4
KH
4675 if (!ret && enlarge)
4676 memcg_oom_recover(memcg);
14797e23 4677
8c7c6e34
KH
4678 return ret;
4679}
4680
338c8431
LZ
4681static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4682 unsigned long long val)
8c7c6e34 4683{
81d39c20 4684 int retry_count;
3c11ecf4 4685 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4686 int children = mem_cgroup_count_children(memcg);
4687 int ret = -EBUSY;
3c11ecf4 4688 int enlarge = 0;
8c7c6e34 4689
81d39c20
KH
4690 /* see mem_cgroup_resize_res_limit */
4691 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4692 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4693 while (retry_count) {
4694 if (signal_pending(current)) {
4695 ret = -EINTR;
4696 break;
4697 }
4698 /*
4699 * Rather than hide all in some function, I do this in
4700 * open coded manner. You see what this really does.
aaad153e 4701 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4702 */
4703 mutex_lock(&set_limit_mutex);
4704 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4705 if (memlimit > val) {
4706 ret = -EINVAL;
4707 mutex_unlock(&set_limit_mutex);
4708 break;
4709 }
3c11ecf4
KH
4710 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4711 if (memswlimit < val)
4712 enlarge = 1;
8c7c6e34 4713 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4714 if (!ret) {
4715 if (memlimit == val)
4716 memcg->memsw_is_minimum = true;
4717 else
4718 memcg->memsw_is_minimum = false;
4719 }
8c7c6e34
KH
4720 mutex_unlock(&set_limit_mutex);
4721
4722 if (!ret)
4723 break;
4724
5660048c
JW
4725 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4726 MEM_CGROUP_RECLAIM_NOSWAP |
4727 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4728 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4729 /* Usage is reduced ? */
8c7c6e34 4730 if (curusage >= oldusage)
628f4235 4731 retry_count--;
81d39c20
KH
4732 else
4733 oldusage = curusage;
628f4235 4734 }
3c11ecf4
KH
4735 if (!ret && enlarge)
4736 memcg_oom_recover(memcg);
628f4235
KH
4737 return ret;
4738}
4739
4e416953 4740unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4741 gfp_t gfp_mask,
4742 unsigned long *total_scanned)
4e416953
BS
4743{
4744 unsigned long nr_reclaimed = 0;
4745 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4746 unsigned long reclaimed;
4747 int loop = 0;
4748 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4749 unsigned long long excess;
0ae5e89c 4750 unsigned long nr_scanned;
4e416953
BS
4751
4752 if (order > 0)
4753 return 0;
4754
00918b6a 4755 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4756 /*
4757 * This loop can run a while, specially if mem_cgroup's continuously
4758 * keep exceeding their soft limit and putting the system under
4759 * pressure
4760 */
4761 do {
4762 if (next_mz)
4763 mz = next_mz;
4764 else
4765 mz = mem_cgroup_largest_soft_limit_node(mctz);
4766 if (!mz)
4767 break;
4768
0ae5e89c 4769 nr_scanned = 0;
d79154bb 4770 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4771 gfp_mask, &nr_scanned);
4e416953 4772 nr_reclaimed += reclaimed;
0ae5e89c 4773 *total_scanned += nr_scanned;
4e416953
BS
4774 spin_lock(&mctz->lock);
4775
4776 /*
4777 * If we failed to reclaim anything from this memory cgroup
4778 * it is time to move on to the next cgroup
4779 */
4780 next_mz = NULL;
4781 if (!reclaimed) {
4782 do {
4783 /*
4784 * Loop until we find yet another one.
4785 *
4786 * By the time we get the soft_limit lock
4787 * again, someone might have aded the
4788 * group back on the RB tree. Iterate to
4789 * make sure we get a different mem.
4790 * mem_cgroup_largest_soft_limit_node returns
4791 * NULL if no other cgroup is present on
4792 * the tree
4793 */
4794 next_mz =
4795 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4796 if (next_mz == mz)
d79154bb 4797 css_put(&next_mz->memcg->css);
39cc98f1 4798 else /* next_mz == NULL or other memcg */
4e416953
BS
4799 break;
4800 } while (1);
4801 }
d79154bb
HD
4802 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4803 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4804 /*
4805 * One school of thought says that we should not add
4806 * back the node to the tree if reclaim returns 0.
4807 * But our reclaim could return 0, simply because due
4808 * to priority we are exposing a smaller subset of
4809 * memory to reclaim from. Consider this as a longer
4810 * term TODO.
4811 */
ef8745c1 4812 /* If excess == 0, no tree ops */
d79154bb 4813 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4814 spin_unlock(&mctz->lock);
d79154bb 4815 css_put(&mz->memcg->css);
4e416953
BS
4816 loop++;
4817 /*
4818 * Could not reclaim anything and there are no more
4819 * mem cgroups to try or we seem to be looping without
4820 * reclaiming anything.
4821 */
4822 if (!nr_reclaimed &&
4823 (next_mz == NULL ||
4824 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4825 break;
4826 } while (!nr_reclaimed);
4827 if (next_mz)
d79154bb 4828 css_put(&next_mz->memcg->css);
4e416953
BS
4829 return nr_reclaimed;
4830}
4831
2ef37d3f
MH
4832/**
4833 * mem_cgroup_force_empty_list - clears LRU of a group
4834 * @memcg: group to clear
4835 * @node: NUMA node
4836 * @zid: zone id
4837 * @lru: lru to to clear
4838 *
3c935d18 4839 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4840 * reclaim the pages page themselves - pages are moved to the parent (or root)
4841 * group.
cc847582 4842 */
2ef37d3f 4843static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4844 int node, int zid, enum lru_list lru)
cc847582 4845{
bea8c150 4846 struct lruvec *lruvec;
2ef37d3f 4847 unsigned long flags;
072c56c1 4848 struct list_head *list;
925b7673
JW
4849 struct page *busy;
4850 struct zone *zone;
072c56c1 4851
08e552c6 4852 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4853 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4854 list = &lruvec->lists[lru];
cc847582 4855
f817ed48 4856 busy = NULL;
2ef37d3f 4857 do {
925b7673 4858 struct page_cgroup *pc;
5564e88b
JW
4859 struct page *page;
4860
08e552c6 4861 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4862 if (list_empty(list)) {
08e552c6 4863 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4864 break;
f817ed48 4865 }
925b7673
JW
4866 page = list_entry(list->prev, struct page, lru);
4867 if (busy == page) {
4868 list_move(&page->lru, list);
648bcc77 4869 busy = NULL;
08e552c6 4870 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4871 continue;
4872 }
08e552c6 4873 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4874
925b7673 4875 pc = lookup_page_cgroup(page);
5564e88b 4876
3c935d18 4877 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4878 /* found lock contention or "pc" is obsolete. */
925b7673 4879 busy = page;
f817ed48
KH
4880 cond_resched();
4881 } else
4882 busy = NULL;
2ef37d3f 4883 } while (!list_empty(list));
cc847582
KH
4884}
4885
4886/*
c26251f9
MH
4887 * make mem_cgroup's charge to be 0 if there is no task by moving
4888 * all the charges and pages to the parent.
cc847582 4889 * This enables deleting this mem_cgroup.
c26251f9
MH
4890 *
4891 * Caller is responsible for holding css reference on the memcg.
cc847582 4892 */
ab5196c2 4893static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4894{
c26251f9 4895 int node, zid;
bea207c8 4896 u64 usage;
f817ed48 4897
fce66477 4898 do {
52d4b9ac
KH
4899 /* This is for making all *used* pages to be on LRU. */
4900 lru_add_drain_all();
c0ff4b85 4901 drain_all_stock_sync(memcg);
c0ff4b85 4902 mem_cgroup_start_move(memcg);
31aaea4a 4903 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4904 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4905 enum lru_list lru;
4906 for_each_lru(lru) {
2ef37d3f 4907 mem_cgroup_force_empty_list(memcg,
f156ab93 4908 node, zid, lru);
f817ed48 4909 }
1ecaab2b 4910 }
f817ed48 4911 }
c0ff4b85
R
4912 mem_cgroup_end_move(memcg);
4913 memcg_oom_recover(memcg);
52d4b9ac 4914 cond_resched();
f817ed48 4915
2ef37d3f 4916 /*
bea207c8
GC
4917 * Kernel memory may not necessarily be trackable to a specific
4918 * process. So they are not migrated, and therefore we can't
4919 * expect their value to drop to 0 here.
4920 * Having res filled up with kmem only is enough.
4921 *
2ef37d3f
MH
4922 * This is a safety check because mem_cgroup_force_empty_list
4923 * could have raced with mem_cgroup_replace_page_cache callers
4924 * so the lru seemed empty but the page could have been added
4925 * right after the check. RES_USAGE should be safe as we always
4926 * charge before adding to the LRU.
4927 */
bea207c8
GC
4928 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4929 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4930 } while (usage > 0);
c26251f9
MH
4931}
4932
b5f99b53
GC
4933/*
4934 * This mainly exists for tests during the setting of set of use_hierarchy.
4935 * Since this is the very setting we are changing, the current hierarchy value
4936 * is meaningless
4937 */
4938static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4939{
492eb21b 4940 struct cgroup_subsys_state *pos;
b5f99b53
GC
4941
4942 /* bounce at first found */
492eb21b 4943 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4944 return true;
4945 return false;
4946}
4947
4948/*
0999821b
GC
4949 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4950 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4951 * from mem_cgroup_count_children(), in the sense that we don't really care how
4952 * many children we have; we only need to know if we have any. It also counts
4953 * any memcg without hierarchy as infertile.
4954 */
4955static inline bool memcg_has_children(struct mem_cgroup *memcg)
4956{
4957 return memcg->use_hierarchy && __memcg_has_children(memcg);
4958}
4959
c26251f9
MH
4960/*
4961 * Reclaims as many pages from the given memcg as possible and moves
4962 * the rest to the parent.
4963 *
4964 * Caller is responsible for holding css reference for memcg.
4965 */
4966static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4967{
4968 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4969 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4970
c1e862c1 4971 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4972 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4973 return -EBUSY;
4974
c1e862c1
KH
4975 /* we call try-to-free pages for make this cgroup empty */
4976 lru_add_drain_all();
f817ed48 4977 /* try to free all pages in this cgroup */
569530fb 4978 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4979 int progress;
c1e862c1 4980
c26251f9
MH
4981 if (signal_pending(current))
4982 return -EINTR;
4983
c0ff4b85 4984 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4985 false);
c1e862c1 4986 if (!progress) {
f817ed48 4987 nr_retries--;
c1e862c1 4988 /* maybe some writeback is necessary */
8aa7e847 4989 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4990 }
f817ed48
KH
4991
4992 }
08e552c6 4993 lru_add_drain();
ab5196c2
MH
4994 mem_cgroup_reparent_charges(memcg);
4995
4996 return 0;
cc847582
KH
4997}
4998
182446d0
TH
4999static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5000 unsigned int event)
c1e862c1 5001{
182446d0 5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9
MH
5003 int ret;
5004
d8423011
MH
5005 if (mem_cgroup_is_root(memcg))
5006 return -EINVAL;
c26251f9
MH
5007 css_get(&memcg->css);
5008 ret = mem_cgroup_force_empty(memcg);
5009 css_put(&memcg->css);
5010
5011 return ret;
c1e862c1
KH
5012}
5013
5014
182446d0
TH
5015static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5016 struct cftype *cft)
18f59ea7 5017{
182446d0 5018 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5019}
5020
182446d0
TH
5021static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5022 struct cftype *cft, u64 val)
18f59ea7
BS
5023{
5024 int retval = 0;
182446d0 5025 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5026 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5027
0999821b 5028 mutex_lock(&memcg_create_mutex);
567fb435
GC
5029
5030 if (memcg->use_hierarchy == val)
5031 goto out;
5032
18f59ea7 5033 /*
af901ca1 5034 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5035 * in the child subtrees. If it is unset, then the change can
5036 * occur, provided the current cgroup has no children.
5037 *
5038 * For the root cgroup, parent_mem is NULL, we allow value to be
5039 * set if there are no children.
5040 */
c0ff4b85 5041 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5042 (val == 1 || val == 0)) {
b5f99b53 5043 if (!__memcg_has_children(memcg))
c0ff4b85 5044 memcg->use_hierarchy = val;
18f59ea7
BS
5045 else
5046 retval = -EBUSY;
5047 } else
5048 retval = -EINVAL;
567fb435
GC
5049
5050out:
0999821b 5051 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5052
5053 return retval;
5054}
5055
0c3e73e8 5056
c0ff4b85 5057static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5058 enum mem_cgroup_stat_index idx)
0c3e73e8 5059{
7d74b06f 5060 struct mem_cgroup *iter;
7a159cc9 5061 long val = 0;
0c3e73e8 5062
7a159cc9 5063 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5064 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5065 val += mem_cgroup_read_stat(iter, idx);
5066
5067 if (val < 0) /* race ? */
5068 val = 0;
5069 return val;
0c3e73e8
BS
5070}
5071
c0ff4b85 5072static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5073{
7d74b06f 5074 u64 val;
104f3928 5075
c0ff4b85 5076 if (!mem_cgroup_is_root(memcg)) {
104f3928 5077 if (!swap)
65c64ce8 5078 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5079 else
65c64ce8 5080 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5081 }
5082
b070e65c
DR
5083 /*
5084 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5085 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5086 */
c0ff4b85
R
5087 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5088 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5089
7d74b06f 5090 if (swap)
bff6bb83 5091 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5092
5093 return val << PAGE_SHIFT;
5094}
5095
182446d0
TH
5096static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5097 struct cftype *cft, struct file *file,
5098 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5099{
182446d0 5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5101 char str[64];
104f3928 5102 u64 val;
86ae53e1
GC
5103 int name, len;
5104 enum res_type type;
8c7c6e34
KH
5105
5106 type = MEMFILE_TYPE(cft->private);
5107 name = MEMFILE_ATTR(cft->private);
af36f906 5108
8c7c6e34
KH
5109 switch (type) {
5110 case _MEM:
104f3928 5111 if (name == RES_USAGE)
c0ff4b85 5112 val = mem_cgroup_usage(memcg, false);
104f3928 5113 else
c0ff4b85 5114 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5115 break;
5116 case _MEMSWAP:
104f3928 5117 if (name == RES_USAGE)
c0ff4b85 5118 val = mem_cgroup_usage(memcg, true);
104f3928 5119 else
c0ff4b85 5120 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5121 break;
510fc4e1
GC
5122 case _KMEM:
5123 val = res_counter_read_u64(&memcg->kmem, name);
5124 break;
8c7c6e34
KH
5125 default:
5126 BUG();
8c7c6e34 5127 }
af36f906
TH
5128
5129 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5130 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5131}
510fc4e1 5132
182446d0 5133static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5134{
5135 int ret = -EINVAL;
5136#ifdef CONFIG_MEMCG_KMEM
182446d0 5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5138 /*
5139 * For simplicity, we won't allow this to be disabled. It also can't
5140 * be changed if the cgroup has children already, or if tasks had
5141 * already joined.
5142 *
5143 * If tasks join before we set the limit, a person looking at
5144 * kmem.usage_in_bytes will have no way to determine when it took
5145 * place, which makes the value quite meaningless.
5146 *
5147 * After it first became limited, changes in the value of the limit are
5148 * of course permitted.
510fc4e1 5149 */
0999821b 5150 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5151 mutex_lock(&set_limit_mutex);
5152 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
182446d0 5153 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5154 ret = -EBUSY;
5155 goto out;
5156 }
5157 ret = res_counter_set_limit(&memcg->kmem, val);
5158 VM_BUG_ON(ret);
5159
55007d84
GC
5160 ret = memcg_update_cache_sizes(memcg);
5161 if (ret) {
5162 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5163 goto out;
5164 }
692e89ab
GC
5165 static_key_slow_inc(&memcg_kmem_enabled_key);
5166 /*
5167 * setting the active bit after the inc will guarantee no one
5168 * starts accounting before all call sites are patched
5169 */
5170 memcg_kmem_set_active(memcg);
510fc4e1
GC
5171 } else
5172 ret = res_counter_set_limit(&memcg->kmem, val);
5173out:
5174 mutex_unlock(&set_limit_mutex);
0999821b 5175 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5176#endif
5177 return ret;
5178}
5179
6d043990 5180#ifdef CONFIG_MEMCG_KMEM
55007d84 5181static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5182{
55007d84 5183 int ret = 0;
510fc4e1
GC
5184 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5185 if (!parent)
55007d84
GC
5186 goto out;
5187
510fc4e1 5188 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5189 /*
5190 * When that happen, we need to disable the static branch only on those
5191 * memcgs that enabled it. To achieve this, we would be forced to
5192 * complicate the code by keeping track of which memcgs were the ones
5193 * that actually enabled limits, and which ones got it from its
5194 * parents.
5195 *
5196 * It is a lot simpler just to do static_key_slow_inc() on every child
5197 * that is accounted.
5198 */
55007d84
GC
5199 if (!memcg_kmem_is_active(memcg))
5200 goto out;
5201
5202 /*
10d5ebf4
LZ
5203 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5204 * memcg is active already. If the later initialization fails then the
5205 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5206 */
55007d84
GC
5207 static_key_slow_inc(&memcg_kmem_enabled_key);
5208
5209 mutex_lock(&set_limit_mutex);
425c598d 5210 memcg_stop_kmem_account();
55007d84 5211 ret = memcg_update_cache_sizes(memcg);
425c598d 5212 memcg_resume_kmem_account();
55007d84 5213 mutex_unlock(&set_limit_mutex);
55007d84
GC
5214out:
5215 return ret;
510fc4e1 5216}
6d043990 5217#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5218
628f4235
KH
5219/*
5220 * The user of this function is...
5221 * RES_LIMIT.
5222 */
182446d0 5223static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5224 const char *buffer)
8cdea7c0 5225{
182446d0 5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5227 enum res_type type;
5228 int name;
628f4235
KH
5229 unsigned long long val;
5230 int ret;
5231
8c7c6e34
KH
5232 type = MEMFILE_TYPE(cft->private);
5233 name = MEMFILE_ATTR(cft->private);
af36f906 5234
8c7c6e34 5235 switch (name) {
628f4235 5236 case RES_LIMIT:
4b3bde4c
BS
5237 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5238 ret = -EINVAL;
5239 break;
5240 }
628f4235
KH
5241 /* This function does all necessary parse...reuse it */
5242 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5243 if (ret)
5244 break;
5245 if (type == _MEM)
628f4235 5246 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5247 else if (type == _MEMSWAP)
8c7c6e34 5248 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5249 else if (type == _KMEM)
182446d0 5250 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5251 else
5252 return -EINVAL;
628f4235 5253 break;
296c81d8
BS
5254 case RES_SOFT_LIMIT:
5255 ret = res_counter_memparse_write_strategy(buffer, &val);
5256 if (ret)
5257 break;
5258 /*
5259 * For memsw, soft limits are hard to implement in terms
5260 * of semantics, for now, we support soft limits for
5261 * control without swap
5262 */
5263 if (type == _MEM)
5264 ret = res_counter_set_soft_limit(&memcg->res, val);
5265 else
5266 ret = -EINVAL;
5267 break;
628f4235
KH
5268 default:
5269 ret = -EINVAL; /* should be BUG() ? */
5270 break;
5271 }
5272 return ret;
8cdea7c0
BS
5273}
5274
fee7b548
KH
5275static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5276 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5277{
fee7b548
KH
5278 unsigned long long min_limit, min_memsw_limit, tmp;
5279
5280 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5281 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5282 if (!memcg->use_hierarchy)
5283 goto out;
5284
63876986
TH
5285 while (css_parent(&memcg->css)) {
5286 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5287 if (!memcg->use_hierarchy)
5288 break;
5289 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 min_limit = min(min_limit, tmp);
5291 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5292 min_memsw_limit = min(min_memsw_limit, tmp);
5293 }
5294out:
5295 *mem_limit = min_limit;
5296 *memsw_limit = min_memsw_limit;
fee7b548
KH
5297}
5298
182446d0 5299static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5300{
182446d0 5301 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5302 int name;
5303 enum res_type type;
c84872e1 5304
8c7c6e34
KH
5305 type = MEMFILE_TYPE(event);
5306 name = MEMFILE_ATTR(event);
af36f906 5307
8c7c6e34 5308 switch (name) {
29f2a4da 5309 case RES_MAX_USAGE:
8c7c6e34 5310 if (type == _MEM)
c0ff4b85 5311 res_counter_reset_max(&memcg->res);
510fc4e1 5312 else if (type == _MEMSWAP)
c0ff4b85 5313 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5314 else if (type == _KMEM)
5315 res_counter_reset_max(&memcg->kmem);
5316 else
5317 return -EINVAL;
29f2a4da
PE
5318 break;
5319 case RES_FAILCNT:
8c7c6e34 5320 if (type == _MEM)
c0ff4b85 5321 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5322 else if (type == _MEMSWAP)
c0ff4b85 5323 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5324 else if (type == _KMEM)
5325 res_counter_reset_failcnt(&memcg->kmem);
5326 else
5327 return -EINVAL;
29f2a4da
PE
5328 break;
5329 }
f64c3f54 5330
85cc59db 5331 return 0;
c84872e1
PE
5332}
5333
182446d0 5334static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5335 struct cftype *cft)
5336{
182446d0 5337 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5338}
5339
02491447 5340#ifdef CONFIG_MMU
182446d0 5341static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5342 struct cftype *cft, u64 val)
5343{
182446d0 5344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5345
5346 if (val >= (1 << NR_MOVE_TYPE))
5347 return -EINVAL;
ee5e8472 5348
7dc74be0 5349 /*
ee5e8472
GC
5350 * No kind of locking is needed in here, because ->can_attach() will
5351 * check this value once in the beginning of the process, and then carry
5352 * on with stale data. This means that changes to this value will only
5353 * affect task migrations starting after the change.
7dc74be0 5354 */
c0ff4b85 5355 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5356 return 0;
5357}
02491447 5358#else
182446d0 5359static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5360 struct cftype *cft, u64 val)
5361{
5362 return -ENOSYS;
5363}
5364#endif
7dc74be0 5365
406eb0c9 5366#ifdef CONFIG_NUMA
182446d0
TH
5367static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5368 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5369{
5370 int nid;
5371 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5372 unsigned long node_nr;
182446d0 5373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5374
d79154bb 5375 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5376 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5377 for_each_node_state(nid, N_MEMORY) {
d79154bb 5378 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5379 seq_printf(m, " N%d=%lu", nid, node_nr);
5380 }
5381 seq_putc(m, '\n');
5382
d79154bb 5383 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5384 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5385 for_each_node_state(nid, N_MEMORY) {
d79154bb 5386 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5387 LRU_ALL_FILE);
406eb0c9
YH
5388 seq_printf(m, " N%d=%lu", nid, node_nr);
5389 }
5390 seq_putc(m, '\n');
5391
d79154bb 5392 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5393 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5394 for_each_node_state(nid, N_MEMORY) {
d79154bb 5395 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5396 LRU_ALL_ANON);
406eb0c9
YH
5397 seq_printf(m, " N%d=%lu", nid, node_nr);
5398 }
5399 seq_putc(m, '\n');
5400
d79154bb 5401 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5402 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5403 for_each_node_state(nid, N_MEMORY) {
d79154bb 5404 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5405 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5406 seq_printf(m, " N%d=%lu", nid, node_nr);
5407 }
5408 seq_putc(m, '\n');
5409 return 0;
5410}
5411#endif /* CONFIG_NUMA */
5412
af7c4b0e
JW
5413static inline void mem_cgroup_lru_names_not_uptodate(void)
5414{
5415 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5416}
5417
182446d0 5418static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5419 struct seq_file *m)
d2ceb9b7 5420{
182446d0 5421 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5422 struct mem_cgroup *mi;
5423 unsigned int i;
406eb0c9 5424
af7c4b0e 5425 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5426 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5427 continue;
af7c4b0e
JW
5428 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5429 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5430 }
7b854121 5431
af7c4b0e
JW
5432 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5433 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5434 mem_cgroup_read_events(memcg, i));
5435
5436 for (i = 0; i < NR_LRU_LISTS; i++)
5437 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5438 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5439
14067bb3 5440 /* Hierarchical information */
fee7b548
KH
5441 {
5442 unsigned long long limit, memsw_limit;
d79154bb 5443 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5444 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5445 if (do_swap_account)
78ccf5b5
JW
5446 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5447 memsw_limit);
fee7b548 5448 }
7f016ee8 5449
af7c4b0e
JW
5450 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5451 long long val = 0;
5452
bff6bb83 5453 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5454 continue;
af7c4b0e
JW
5455 for_each_mem_cgroup_tree(mi, memcg)
5456 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5457 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5458 }
5459
5460 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5461 unsigned long long val = 0;
5462
5463 for_each_mem_cgroup_tree(mi, memcg)
5464 val += mem_cgroup_read_events(mi, i);
5465 seq_printf(m, "total_%s %llu\n",
5466 mem_cgroup_events_names[i], val);
5467 }
5468
5469 for (i = 0; i < NR_LRU_LISTS; i++) {
5470 unsigned long long val = 0;
5471
5472 for_each_mem_cgroup_tree(mi, memcg)
5473 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5474 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5475 }
14067bb3 5476
7f016ee8 5477#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5478 {
5479 int nid, zid;
5480 struct mem_cgroup_per_zone *mz;
89abfab1 5481 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5482 unsigned long recent_rotated[2] = {0, 0};
5483 unsigned long recent_scanned[2] = {0, 0};
5484
5485 for_each_online_node(nid)
5486 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5487 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5488 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5489
89abfab1
HD
5490 recent_rotated[0] += rstat->recent_rotated[0];
5491 recent_rotated[1] += rstat->recent_rotated[1];
5492 recent_scanned[0] += rstat->recent_scanned[0];
5493 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5494 }
78ccf5b5
JW
5495 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5496 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5497 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5498 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5499 }
5500#endif
5501
d2ceb9b7
KH
5502 return 0;
5503}
5504
182446d0
TH
5505static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5506 struct cftype *cft)
a7885eb8 5507{
182446d0 5508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5509
1f4c025b 5510 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5511}
5512
182446d0
TH
5513static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5514 struct cftype *cft, u64 val)
a7885eb8 5515{
182446d0 5516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5517 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5518
63876986 5519 if (val > 100 || !parent)
a7885eb8
KM
5520 return -EINVAL;
5521
0999821b 5522 mutex_lock(&memcg_create_mutex);
068b38c1 5523
a7885eb8 5524 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5525 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5526 mutex_unlock(&memcg_create_mutex);
a7885eb8 5527 return -EINVAL;
068b38c1 5528 }
a7885eb8 5529
a7885eb8 5530 memcg->swappiness = val;
a7885eb8 5531
0999821b 5532 mutex_unlock(&memcg_create_mutex);
068b38c1 5533
a7885eb8
KM
5534 return 0;
5535}
5536
2e72b634
KS
5537static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5538{
5539 struct mem_cgroup_threshold_ary *t;
5540 u64 usage;
5541 int i;
5542
5543 rcu_read_lock();
5544 if (!swap)
2c488db2 5545 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5546 else
2c488db2 5547 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5548
5549 if (!t)
5550 goto unlock;
5551
5552 usage = mem_cgroup_usage(memcg, swap);
5553
5554 /*
748dad36 5555 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5556 * If it's not true, a threshold was crossed after last
5557 * call of __mem_cgroup_threshold().
5558 */
5407a562 5559 i = t->current_threshold;
2e72b634
KS
5560
5561 /*
5562 * Iterate backward over array of thresholds starting from
5563 * current_threshold and check if a threshold is crossed.
5564 * If none of thresholds below usage is crossed, we read
5565 * only one element of the array here.
5566 */
5567 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5568 eventfd_signal(t->entries[i].eventfd, 1);
5569
5570 /* i = current_threshold + 1 */
5571 i++;
5572
5573 /*
5574 * Iterate forward over array of thresholds starting from
5575 * current_threshold+1 and check if a threshold is crossed.
5576 * If none of thresholds above usage is crossed, we read
5577 * only one element of the array here.
5578 */
5579 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5580 eventfd_signal(t->entries[i].eventfd, 1);
5581
5582 /* Update current_threshold */
5407a562 5583 t->current_threshold = i - 1;
2e72b634
KS
5584unlock:
5585 rcu_read_unlock();
5586}
5587
5588static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5589{
ad4ca5f4
KS
5590 while (memcg) {
5591 __mem_cgroup_threshold(memcg, false);
5592 if (do_swap_account)
5593 __mem_cgroup_threshold(memcg, true);
5594
5595 memcg = parent_mem_cgroup(memcg);
5596 }
2e72b634
KS
5597}
5598
5599static int compare_thresholds(const void *a, const void *b)
5600{
5601 const struct mem_cgroup_threshold *_a = a;
5602 const struct mem_cgroup_threshold *_b = b;
5603
5604 return _a->threshold - _b->threshold;
5605}
5606
c0ff4b85 5607static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5608{
5609 struct mem_cgroup_eventfd_list *ev;
5610
c0ff4b85 5611 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5612 eventfd_signal(ev->eventfd, 1);
5613 return 0;
5614}
5615
c0ff4b85 5616static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5617{
7d74b06f
KH
5618 struct mem_cgroup *iter;
5619
c0ff4b85 5620 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5621 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5622}
5623
5624static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5625 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5626{
5627 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5628 struct mem_cgroup_thresholds *thresholds;
5629 struct mem_cgroup_threshold_ary *new;
86ae53e1 5630 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5631 u64 threshold, usage;
2c488db2 5632 int i, size, ret;
2e72b634
KS
5633
5634 ret = res_counter_memparse_write_strategy(args, &threshold);
5635 if (ret)
5636 return ret;
5637
5638 mutex_lock(&memcg->thresholds_lock);
2c488db2 5639
2e72b634 5640 if (type == _MEM)
2c488db2 5641 thresholds = &memcg->thresholds;
2e72b634 5642 else if (type == _MEMSWAP)
2c488db2 5643 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5644 else
5645 BUG();
5646
5647 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5648
5649 /* Check if a threshold crossed before adding a new one */
2c488db2 5650 if (thresholds->primary)
2e72b634
KS
5651 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5652
2c488db2 5653 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5654
5655 /* Allocate memory for new array of thresholds */
2c488db2 5656 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5657 GFP_KERNEL);
2c488db2 5658 if (!new) {
2e72b634
KS
5659 ret = -ENOMEM;
5660 goto unlock;
5661 }
2c488db2 5662 new->size = size;
2e72b634
KS
5663
5664 /* Copy thresholds (if any) to new array */
2c488db2
KS
5665 if (thresholds->primary) {
5666 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5667 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5668 }
5669
2e72b634 5670 /* Add new threshold */
2c488db2
KS
5671 new->entries[size - 1].eventfd = eventfd;
5672 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5673
5674 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5675 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5676 compare_thresholds, NULL);
5677
5678 /* Find current threshold */
2c488db2 5679 new->current_threshold = -1;
2e72b634 5680 for (i = 0; i < size; i++) {
748dad36 5681 if (new->entries[i].threshold <= usage) {
2e72b634 5682 /*
2c488db2
KS
5683 * new->current_threshold will not be used until
5684 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5685 * it here.
5686 */
2c488db2 5687 ++new->current_threshold;
748dad36
SZ
5688 } else
5689 break;
2e72b634
KS
5690 }
5691
2c488db2
KS
5692 /* Free old spare buffer and save old primary buffer as spare */
5693 kfree(thresholds->spare);
5694 thresholds->spare = thresholds->primary;
5695
5696 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5697
907860ed 5698 /* To be sure that nobody uses thresholds */
2e72b634
KS
5699 synchronize_rcu();
5700
2e72b634
KS
5701unlock:
5702 mutex_unlock(&memcg->thresholds_lock);
5703
5704 return ret;
5705}
5706
907860ed 5707static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5708 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5709{
5710 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5711 struct mem_cgroup_thresholds *thresholds;
5712 struct mem_cgroup_threshold_ary *new;
86ae53e1 5713 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5714 u64 usage;
2c488db2 5715 int i, j, size;
2e72b634
KS
5716
5717 mutex_lock(&memcg->thresholds_lock);
5718 if (type == _MEM)
2c488db2 5719 thresholds = &memcg->thresholds;
2e72b634 5720 else if (type == _MEMSWAP)
2c488db2 5721 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5722 else
5723 BUG();
5724
371528ca
AV
5725 if (!thresholds->primary)
5726 goto unlock;
5727
2e72b634
KS
5728 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5729
5730 /* Check if a threshold crossed before removing */
5731 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5732
5733 /* Calculate new number of threshold */
2c488db2
KS
5734 size = 0;
5735 for (i = 0; i < thresholds->primary->size; i++) {
5736 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5737 size++;
5738 }
5739
2c488db2 5740 new = thresholds->spare;
907860ed 5741
2e72b634
KS
5742 /* Set thresholds array to NULL if we don't have thresholds */
5743 if (!size) {
2c488db2
KS
5744 kfree(new);
5745 new = NULL;
907860ed 5746 goto swap_buffers;
2e72b634
KS
5747 }
5748
2c488db2 5749 new->size = size;
2e72b634
KS
5750
5751 /* Copy thresholds and find current threshold */
2c488db2
KS
5752 new->current_threshold = -1;
5753 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5754 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5755 continue;
5756
2c488db2 5757 new->entries[j] = thresholds->primary->entries[i];
748dad36 5758 if (new->entries[j].threshold <= usage) {
2e72b634 5759 /*
2c488db2 5760 * new->current_threshold will not be used
2e72b634
KS
5761 * until rcu_assign_pointer(), so it's safe to increment
5762 * it here.
5763 */
2c488db2 5764 ++new->current_threshold;
2e72b634
KS
5765 }
5766 j++;
5767 }
5768
907860ed 5769swap_buffers:
2c488db2
KS
5770 /* Swap primary and spare array */
5771 thresholds->spare = thresholds->primary;
8c757763
SZ
5772 /* If all events are unregistered, free the spare array */
5773 if (!new) {
5774 kfree(thresholds->spare);
5775 thresholds->spare = NULL;
5776 }
5777
2c488db2 5778 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5779
907860ed 5780 /* To be sure that nobody uses thresholds */
2e72b634 5781 synchronize_rcu();
371528ca 5782unlock:
2e72b634 5783 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5784}
c1e862c1 5785
9490ff27
KH
5786static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5787 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5788{
5789 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5790 struct mem_cgroup_eventfd_list *event;
86ae53e1 5791 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5792
5793 BUG_ON(type != _OOM_TYPE);
5794 event = kmalloc(sizeof(*event), GFP_KERNEL);
5795 if (!event)
5796 return -ENOMEM;
5797
1af8efe9 5798 spin_lock(&memcg_oom_lock);
9490ff27
KH
5799
5800 event->eventfd = eventfd;
5801 list_add(&event->list, &memcg->oom_notify);
5802
5803 /* already in OOM ? */
79dfdacc 5804 if (atomic_read(&memcg->under_oom))
9490ff27 5805 eventfd_signal(eventfd, 1);
1af8efe9 5806 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5807
5808 return 0;
5809}
5810
907860ed 5811static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5812 struct cftype *cft, struct eventfd_ctx *eventfd)
5813{
c0ff4b85 5814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5815 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5816 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5817
5818 BUG_ON(type != _OOM_TYPE);
5819
1af8efe9 5820 spin_lock(&memcg_oom_lock);
9490ff27 5821
c0ff4b85 5822 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5823 if (ev->eventfd == eventfd) {
5824 list_del(&ev->list);
5825 kfree(ev);
5826 }
5827 }
5828
1af8efe9 5829 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5830}
5831
182446d0 5832static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5833 struct cftype *cft, struct cgroup_map_cb *cb)
5834{
182446d0 5835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5836
c0ff4b85 5837 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5838
c0ff4b85 5839 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5840 cb->fill(cb, "under_oom", 1);
5841 else
5842 cb->fill(cb, "under_oom", 0);
5843 return 0;
5844}
5845
182446d0 5846static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5847 struct cftype *cft, u64 val)
5848{
182446d0 5849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5850 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5851
5852 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5853 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5854 return -EINVAL;
5855
0999821b 5856 mutex_lock(&memcg_create_mutex);
3c11ecf4 5857 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5858 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5859 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5860 return -EINVAL;
5861 }
c0ff4b85 5862 memcg->oom_kill_disable = val;
4d845ebf 5863 if (!val)
c0ff4b85 5864 memcg_oom_recover(memcg);
0999821b 5865 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5866 return 0;
5867}
5868
c255a458 5869#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5870static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5871{
55007d84
GC
5872 int ret;
5873
2633d7a0 5874 memcg->kmemcg_id = -1;
55007d84
GC
5875 ret = memcg_propagate_kmem(memcg);
5876 if (ret)
5877 return ret;
2633d7a0 5878
1d62e436 5879 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5880}
e5671dfa 5881
10d5ebf4 5882static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5883{
1d62e436 5884 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5885}
5886
5887static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5888{
5889 if (!memcg_kmem_is_active(memcg))
5890 return;
5891
5892 /*
5893 * kmem charges can outlive the cgroup. In the case of slab
5894 * pages, for instance, a page contain objects from various
5895 * processes. As we prevent from taking a reference for every
5896 * such allocation we have to be careful when doing uncharge
5897 * (see memcg_uncharge_kmem) and here during offlining.
5898 *
5899 * The idea is that that only the _last_ uncharge which sees
5900 * the dead memcg will drop the last reference. An additional
5901 * reference is taken here before the group is marked dead
5902 * which is then paired with css_put during uncharge resp. here.
5903 *
5904 * Although this might sound strange as this path is called from
5905 * css_offline() when the referencemight have dropped down to 0
5906 * and shouldn't be incremented anymore (css_tryget would fail)
5907 * we do not have other options because of the kmem allocations
5908 * lifetime.
5909 */
5910 css_get(&memcg->css);
7de37682
GC
5911
5912 memcg_kmem_mark_dead(memcg);
5913
5914 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5915 return;
5916
7de37682 5917 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5918 css_put(&memcg->css);
d1a4c0b3 5919}
e5671dfa 5920#else
cbe128e3 5921static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5922{
5923 return 0;
5924}
d1a4c0b3 5925
10d5ebf4
LZ
5926static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5927{
5928}
5929
5930static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5931{
5932}
e5671dfa
GC
5933#endif
5934
8cdea7c0
BS
5935static struct cftype mem_cgroup_files[] = {
5936 {
0eea1030 5937 .name = "usage_in_bytes",
8c7c6e34 5938 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5939 .read = mem_cgroup_read,
9490ff27
KH
5940 .register_event = mem_cgroup_usage_register_event,
5941 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5942 },
c84872e1
PE
5943 {
5944 .name = "max_usage_in_bytes",
8c7c6e34 5945 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5946 .trigger = mem_cgroup_reset,
af36f906 5947 .read = mem_cgroup_read,
c84872e1 5948 },
8cdea7c0 5949 {
0eea1030 5950 .name = "limit_in_bytes",
8c7c6e34 5951 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5952 .write_string = mem_cgroup_write,
af36f906 5953 .read = mem_cgroup_read,
8cdea7c0 5954 },
296c81d8
BS
5955 {
5956 .name = "soft_limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5958 .write_string = mem_cgroup_write,
af36f906 5959 .read = mem_cgroup_read,
296c81d8 5960 },
8cdea7c0
BS
5961 {
5962 .name = "failcnt",
8c7c6e34 5963 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5964 .trigger = mem_cgroup_reset,
af36f906 5965 .read = mem_cgroup_read,
8cdea7c0 5966 },
d2ceb9b7
KH
5967 {
5968 .name = "stat",
ab215884 5969 .read_seq_string = memcg_stat_show,
d2ceb9b7 5970 },
c1e862c1
KH
5971 {
5972 .name = "force_empty",
5973 .trigger = mem_cgroup_force_empty_write,
5974 },
18f59ea7
BS
5975 {
5976 .name = "use_hierarchy",
f00baae7 5977 .flags = CFTYPE_INSANE,
18f59ea7
BS
5978 .write_u64 = mem_cgroup_hierarchy_write,
5979 .read_u64 = mem_cgroup_hierarchy_read,
5980 },
a7885eb8
KM
5981 {
5982 .name = "swappiness",
5983 .read_u64 = mem_cgroup_swappiness_read,
5984 .write_u64 = mem_cgroup_swappiness_write,
5985 },
7dc74be0
DN
5986 {
5987 .name = "move_charge_at_immigrate",
5988 .read_u64 = mem_cgroup_move_charge_read,
5989 .write_u64 = mem_cgroup_move_charge_write,
5990 },
9490ff27
KH
5991 {
5992 .name = "oom_control",
3c11ecf4
KH
5993 .read_map = mem_cgroup_oom_control_read,
5994 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5995 .register_event = mem_cgroup_oom_register_event,
5996 .unregister_event = mem_cgroup_oom_unregister_event,
5997 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5998 },
70ddf637
AV
5999 {
6000 .name = "pressure_level",
6001 .register_event = vmpressure_register_event,
6002 .unregister_event = vmpressure_unregister_event,
6003 },
406eb0c9
YH
6004#ifdef CONFIG_NUMA
6005 {
6006 .name = "numa_stat",
ab215884 6007 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6008 },
6009#endif
510fc4e1
GC
6010#ifdef CONFIG_MEMCG_KMEM
6011 {
6012 .name = "kmem.limit_in_bytes",
6013 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6014 .write_string = mem_cgroup_write,
6015 .read = mem_cgroup_read,
6016 },
6017 {
6018 .name = "kmem.usage_in_bytes",
6019 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6020 .read = mem_cgroup_read,
6021 },
6022 {
6023 .name = "kmem.failcnt",
6024 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6025 .trigger = mem_cgroup_reset,
6026 .read = mem_cgroup_read,
6027 },
6028 {
6029 .name = "kmem.max_usage_in_bytes",
6030 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6031 .trigger = mem_cgroup_reset,
6032 .read = mem_cgroup_read,
6033 },
749c5415
GC
6034#ifdef CONFIG_SLABINFO
6035 {
6036 .name = "kmem.slabinfo",
6037 .read_seq_string = mem_cgroup_slabinfo_read,
6038 },
6039#endif
8c7c6e34 6040#endif
6bc10349 6041 { }, /* terminate */
af36f906 6042};
8c7c6e34 6043
2d11085e
MH
6044#ifdef CONFIG_MEMCG_SWAP
6045static struct cftype memsw_cgroup_files[] = {
6046 {
6047 .name = "memsw.usage_in_bytes",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6049 .read = mem_cgroup_read,
6050 .register_event = mem_cgroup_usage_register_event,
6051 .unregister_event = mem_cgroup_usage_unregister_event,
6052 },
6053 {
6054 .name = "memsw.max_usage_in_bytes",
6055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6056 .trigger = mem_cgroup_reset,
6057 .read = mem_cgroup_read,
6058 },
6059 {
6060 .name = "memsw.limit_in_bytes",
6061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6062 .write_string = mem_cgroup_write,
6063 .read = mem_cgroup_read,
6064 },
6065 {
6066 .name = "memsw.failcnt",
6067 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6068 .trigger = mem_cgroup_reset,
6069 .read = mem_cgroup_read,
6070 },
6071 { }, /* terminate */
6072};
6073#endif
c0ff4b85 6074static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6075{
6076 struct mem_cgroup_per_node *pn;
1ecaab2b 6077 struct mem_cgroup_per_zone *mz;
41e3355d 6078 int zone, tmp = node;
1ecaab2b
KH
6079 /*
6080 * This routine is called against possible nodes.
6081 * But it's BUG to call kmalloc() against offline node.
6082 *
6083 * TODO: this routine can waste much memory for nodes which will
6084 * never be onlined. It's better to use memory hotplug callback
6085 * function.
6086 */
41e3355d
KH
6087 if (!node_state(node, N_NORMAL_MEMORY))
6088 tmp = -1;
17295c88 6089 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6090 if (!pn)
6091 return 1;
1ecaab2b 6092
1ecaab2b
KH
6093 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6094 mz = &pn->zoneinfo[zone];
bea8c150 6095 lruvec_init(&mz->lruvec);
f64c3f54 6096 mz->usage_in_excess = 0;
4e416953 6097 mz->on_tree = false;
d79154bb 6098 mz->memcg = memcg;
1ecaab2b 6099 }
54f72fe0 6100 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6101 return 0;
6102}
6103
c0ff4b85 6104static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6105{
54f72fe0 6106 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6107}
6108
33327948
KH
6109static struct mem_cgroup *mem_cgroup_alloc(void)
6110{
d79154bb 6111 struct mem_cgroup *memcg;
45cf7ebd 6112 size_t size = memcg_size();
33327948 6113
45cf7ebd 6114 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6115 if (size < PAGE_SIZE)
d79154bb 6116 memcg = kzalloc(size, GFP_KERNEL);
33327948 6117 else
d79154bb 6118 memcg = vzalloc(size);
33327948 6119
d79154bb 6120 if (!memcg)
e7bbcdf3
DC
6121 return NULL;
6122
d79154bb
HD
6123 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6124 if (!memcg->stat)
d2e61b8d 6125 goto out_free;
d79154bb
HD
6126 spin_lock_init(&memcg->pcp_counter_lock);
6127 return memcg;
d2e61b8d
DC
6128
6129out_free:
6130 if (size < PAGE_SIZE)
d79154bb 6131 kfree(memcg);
d2e61b8d 6132 else
d79154bb 6133 vfree(memcg);
d2e61b8d 6134 return NULL;
33327948
KH
6135}
6136
59927fb9 6137/*
c8b2a36f
GC
6138 * At destroying mem_cgroup, references from swap_cgroup can remain.
6139 * (scanning all at force_empty is too costly...)
6140 *
6141 * Instead of clearing all references at force_empty, we remember
6142 * the number of reference from swap_cgroup and free mem_cgroup when
6143 * it goes down to 0.
6144 *
6145 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6146 */
c8b2a36f
GC
6147
6148static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6149{
c8b2a36f 6150 int node;
45cf7ebd 6151 size_t size = memcg_size();
59927fb9 6152
c8b2a36f
GC
6153 mem_cgroup_remove_from_trees(memcg);
6154 free_css_id(&mem_cgroup_subsys, &memcg->css);
6155
6156 for_each_node(node)
6157 free_mem_cgroup_per_zone_info(memcg, node);
6158
6159 free_percpu(memcg->stat);
6160
3f134619
GC
6161 /*
6162 * We need to make sure that (at least for now), the jump label
6163 * destruction code runs outside of the cgroup lock. This is because
6164 * get_online_cpus(), which is called from the static_branch update,
6165 * can't be called inside the cgroup_lock. cpusets are the ones
6166 * enforcing this dependency, so if they ever change, we might as well.
6167 *
6168 * schedule_work() will guarantee this happens. Be careful if you need
6169 * to move this code around, and make sure it is outside
6170 * the cgroup_lock.
6171 */
a8964b9b 6172 disarm_static_keys(memcg);
3afe36b1
GC
6173 if (size < PAGE_SIZE)
6174 kfree(memcg);
6175 else
6176 vfree(memcg);
59927fb9 6177}
3afe36b1 6178
7bcc1bb1
DN
6179/*
6180 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6181 */
e1aab161 6182struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6183{
c0ff4b85 6184 if (!memcg->res.parent)
7bcc1bb1 6185 return NULL;
c0ff4b85 6186 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6187}
e1aab161 6188EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6189
8787a1df 6190static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6191{
6192 struct mem_cgroup_tree_per_node *rtpn;
6193 struct mem_cgroup_tree_per_zone *rtpz;
6194 int tmp, node, zone;
6195
3ed28fa1 6196 for_each_node(node) {
f64c3f54
BS
6197 tmp = node;
6198 if (!node_state(node, N_NORMAL_MEMORY))
6199 tmp = -1;
6200 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6201 BUG_ON(!rtpn);
f64c3f54
BS
6202
6203 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6204
6205 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6206 rtpz = &rtpn->rb_tree_per_zone[zone];
6207 rtpz->rb_root = RB_ROOT;
6208 spin_lock_init(&rtpz->lock);
6209 }
6210 }
f64c3f54
BS
6211}
6212
0eb253e2 6213static struct cgroup_subsys_state * __ref
eb95419b 6214mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6215{
d142e3e6 6216 struct mem_cgroup *memcg;
04046e1a 6217 long error = -ENOMEM;
6d12e2d8 6218 int node;
8cdea7c0 6219
c0ff4b85
R
6220 memcg = mem_cgroup_alloc();
6221 if (!memcg)
04046e1a 6222 return ERR_PTR(error);
78fb7466 6223
3ed28fa1 6224 for_each_node(node)
c0ff4b85 6225 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6226 goto free_out;
f64c3f54 6227
c077719b 6228 /* root ? */
eb95419b 6229 if (parent_css == NULL) {
a41c58a6 6230 root_mem_cgroup = memcg;
d142e3e6
GC
6231 res_counter_init(&memcg->res, NULL);
6232 res_counter_init(&memcg->memsw, NULL);
6233 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6234 }
28dbc4b6 6235
d142e3e6
GC
6236 memcg->last_scanned_node = MAX_NUMNODES;
6237 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6238 memcg->move_charge_at_immigrate = 0;
6239 mutex_init(&memcg->thresholds_lock);
6240 spin_lock_init(&memcg->move_lock);
70ddf637 6241 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6242
6243 return &memcg->css;
6244
6245free_out:
6246 __mem_cgroup_free(memcg);
6247 return ERR_PTR(error);
6248}
6249
6250static int
eb95419b 6251mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6252{
eb95419b
TH
6253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6254 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6255 int error = 0;
6256
63876986 6257 if (!parent)
d142e3e6
GC
6258 return 0;
6259
0999821b 6260 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6261
6262 memcg->use_hierarchy = parent->use_hierarchy;
6263 memcg->oom_kill_disable = parent->oom_kill_disable;
6264 memcg->swappiness = mem_cgroup_swappiness(parent);
6265
6266 if (parent->use_hierarchy) {
c0ff4b85
R
6267 res_counter_init(&memcg->res, &parent->res);
6268 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6269 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6270
7bcc1bb1 6271 /*
8d76a979
LZ
6272 * No need to take a reference to the parent because cgroup
6273 * core guarantees its existence.
7bcc1bb1 6274 */
18f59ea7 6275 } else {
c0ff4b85
R
6276 res_counter_init(&memcg->res, NULL);
6277 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6278 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6279 /*
6280 * Deeper hierachy with use_hierarchy == false doesn't make
6281 * much sense so let cgroup subsystem know about this
6282 * unfortunate state in our controller.
6283 */
d142e3e6 6284 if (parent != root_mem_cgroup)
8c7f6edb 6285 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6286 }
cbe128e3
GC
6287
6288 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6289 mutex_unlock(&memcg_create_mutex);
d142e3e6 6290 return error;
8cdea7c0
BS
6291}
6292
5f578161
MH
6293/*
6294 * Announce all parents that a group from their hierarchy is gone.
6295 */
6296static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6297{
6298 struct mem_cgroup *parent = memcg;
6299
6300 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6301 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6302
6303 /*
6304 * if the root memcg is not hierarchical we have to check it
6305 * explicitely.
6306 */
6307 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6308 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6309}
6310
eb95419b 6311static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6312{
eb95419b 6313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6314
10d5ebf4
LZ
6315 kmem_cgroup_css_offline(memcg);
6316
5f578161 6317 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6318 mem_cgroup_reparent_charges(memcg);
1f458cbf 6319 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6320}
6321
eb95419b 6322static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6323{
eb95419b 6324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6325
10d5ebf4 6326 memcg_destroy_kmem(memcg);
465939a1 6327 __mem_cgroup_free(memcg);
8cdea7c0
BS
6328}
6329
02491447 6330#ifdef CONFIG_MMU
7dc74be0 6331/* Handlers for move charge at task migration. */
854ffa8d
DN
6332#define PRECHARGE_COUNT_AT_ONCE 256
6333static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6334{
854ffa8d
DN
6335 int ret = 0;
6336 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6337 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6338
c0ff4b85 6339 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6340 mc.precharge += count;
6341 /* we don't need css_get for root */
6342 return ret;
6343 }
6344 /* try to charge at once */
6345 if (count > 1) {
6346 struct res_counter *dummy;
6347 /*
c0ff4b85 6348 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6349 * by cgroup_lock_live_cgroup() that it is not removed and we
6350 * are still under the same cgroup_mutex. So we can postpone
6351 * css_get().
6352 */
c0ff4b85 6353 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6354 goto one_by_one;
c0ff4b85 6355 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6356 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6357 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6358 goto one_by_one;
6359 }
6360 mc.precharge += count;
854ffa8d
DN
6361 return ret;
6362 }
6363one_by_one:
6364 /* fall back to one by one charge */
6365 while (count--) {
6366 if (signal_pending(current)) {
6367 ret = -EINTR;
6368 break;
6369 }
6370 if (!batch_count--) {
6371 batch_count = PRECHARGE_COUNT_AT_ONCE;
6372 cond_resched();
6373 }
c0ff4b85
R
6374 ret = __mem_cgroup_try_charge(NULL,
6375 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6376 if (ret)
854ffa8d 6377 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6378 return ret;
854ffa8d
DN
6379 mc.precharge++;
6380 }
4ffef5fe
DN
6381 return ret;
6382}
6383
6384/**
8d32ff84 6385 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6386 * @vma: the vma the pte to be checked belongs
6387 * @addr: the address corresponding to the pte to be checked
6388 * @ptent: the pte to be checked
02491447 6389 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6390 *
6391 * Returns
6392 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6393 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6394 * move charge. if @target is not NULL, the page is stored in target->page
6395 * with extra refcnt got(Callers should handle it).
02491447
DN
6396 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6397 * target for charge migration. if @target is not NULL, the entry is stored
6398 * in target->ent.
4ffef5fe
DN
6399 *
6400 * Called with pte lock held.
6401 */
4ffef5fe
DN
6402union mc_target {
6403 struct page *page;
02491447 6404 swp_entry_t ent;
4ffef5fe
DN
6405};
6406
4ffef5fe 6407enum mc_target_type {
8d32ff84 6408 MC_TARGET_NONE = 0,
4ffef5fe 6409 MC_TARGET_PAGE,
02491447 6410 MC_TARGET_SWAP,
4ffef5fe
DN
6411};
6412
90254a65
DN
6413static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6414 unsigned long addr, pte_t ptent)
4ffef5fe 6415{
90254a65 6416 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6417
90254a65
DN
6418 if (!page || !page_mapped(page))
6419 return NULL;
6420 if (PageAnon(page)) {
6421 /* we don't move shared anon */
4b91355e 6422 if (!move_anon())
90254a65 6423 return NULL;
87946a72
DN
6424 } else if (!move_file())
6425 /* we ignore mapcount for file pages */
90254a65
DN
6426 return NULL;
6427 if (!get_page_unless_zero(page))
6428 return NULL;
6429
6430 return page;
6431}
6432
4b91355e 6433#ifdef CONFIG_SWAP
90254a65
DN
6434static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6435 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6436{
90254a65
DN
6437 struct page *page = NULL;
6438 swp_entry_t ent = pte_to_swp_entry(ptent);
6439
6440 if (!move_anon() || non_swap_entry(ent))
6441 return NULL;
4b91355e
KH
6442 /*
6443 * Because lookup_swap_cache() updates some statistics counter,
6444 * we call find_get_page() with swapper_space directly.
6445 */
33806f06 6446 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6447 if (do_swap_account)
6448 entry->val = ent.val;
6449
6450 return page;
6451}
4b91355e
KH
6452#else
6453static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6454 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6455{
6456 return NULL;
6457}
6458#endif
90254a65 6459
87946a72
DN
6460static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6461 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6462{
6463 struct page *page = NULL;
87946a72
DN
6464 struct address_space *mapping;
6465 pgoff_t pgoff;
6466
6467 if (!vma->vm_file) /* anonymous vma */
6468 return NULL;
6469 if (!move_file())
6470 return NULL;
6471
87946a72
DN
6472 mapping = vma->vm_file->f_mapping;
6473 if (pte_none(ptent))
6474 pgoff = linear_page_index(vma, addr);
6475 else /* pte_file(ptent) is true */
6476 pgoff = pte_to_pgoff(ptent);
6477
6478 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6479 page = find_get_page(mapping, pgoff);
6480
6481#ifdef CONFIG_SWAP
6482 /* shmem/tmpfs may report page out on swap: account for that too. */
6483 if (radix_tree_exceptional_entry(page)) {
6484 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6485 if (do_swap_account)
aa3b1895 6486 *entry = swap;
33806f06 6487 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6488 }
aa3b1895 6489#endif
87946a72
DN
6490 return page;
6491}
6492
8d32ff84 6493static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6494 unsigned long addr, pte_t ptent, union mc_target *target)
6495{
6496 struct page *page = NULL;
6497 struct page_cgroup *pc;
8d32ff84 6498 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6499 swp_entry_t ent = { .val = 0 };
6500
6501 if (pte_present(ptent))
6502 page = mc_handle_present_pte(vma, addr, ptent);
6503 else if (is_swap_pte(ptent))
6504 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6505 else if (pte_none(ptent) || pte_file(ptent))
6506 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6507
6508 if (!page && !ent.val)
8d32ff84 6509 return ret;
02491447
DN
6510 if (page) {
6511 pc = lookup_page_cgroup(page);
6512 /*
6513 * Do only loose check w/o page_cgroup lock.
6514 * mem_cgroup_move_account() checks the pc is valid or not under
6515 * the lock.
6516 */
6517 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6518 ret = MC_TARGET_PAGE;
6519 if (target)
6520 target->page = page;
6521 }
6522 if (!ret || !target)
6523 put_page(page);
6524 }
90254a65
DN
6525 /* There is a swap entry and a page doesn't exist or isn't charged */
6526 if (ent.val && !ret &&
9fb4b7cc 6527 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6528 ret = MC_TARGET_SWAP;
6529 if (target)
6530 target->ent = ent;
4ffef5fe 6531 }
4ffef5fe
DN
6532 return ret;
6533}
6534
12724850
NH
6535#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6536/*
6537 * We don't consider swapping or file mapped pages because THP does not
6538 * support them for now.
6539 * Caller should make sure that pmd_trans_huge(pmd) is true.
6540 */
6541static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6542 unsigned long addr, pmd_t pmd, union mc_target *target)
6543{
6544 struct page *page = NULL;
6545 struct page_cgroup *pc;
6546 enum mc_target_type ret = MC_TARGET_NONE;
6547
6548 page = pmd_page(pmd);
6549 VM_BUG_ON(!page || !PageHead(page));
6550 if (!move_anon())
6551 return ret;
6552 pc = lookup_page_cgroup(page);
6553 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6554 ret = MC_TARGET_PAGE;
6555 if (target) {
6556 get_page(page);
6557 target->page = page;
6558 }
6559 }
6560 return ret;
6561}
6562#else
6563static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6564 unsigned long addr, pmd_t pmd, union mc_target *target)
6565{
6566 return MC_TARGET_NONE;
6567}
6568#endif
6569
4ffef5fe
DN
6570static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6571 unsigned long addr, unsigned long end,
6572 struct mm_walk *walk)
6573{
6574 struct vm_area_struct *vma = walk->private;
6575 pte_t *pte;
6576 spinlock_t *ptl;
6577
12724850
NH
6578 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6579 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6580 mc.precharge += HPAGE_PMD_NR;
6581 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6582 return 0;
12724850 6583 }
03319327 6584
45f83cef
AA
6585 if (pmd_trans_unstable(pmd))
6586 return 0;
4ffef5fe
DN
6587 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6588 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6589 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6590 mc.precharge++; /* increment precharge temporarily */
6591 pte_unmap_unlock(pte - 1, ptl);
6592 cond_resched();
6593
7dc74be0
DN
6594 return 0;
6595}
6596
4ffef5fe
DN
6597static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6598{
6599 unsigned long precharge;
6600 struct vm_area_struct *vma;
6601
dfe076b0 6602 down_read(&mm->mmap_sem);
4ffef5fe
DN
6603 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6604 struct mm_walk mem_cgroup_count_precharge_walk = {
6605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6606 .mm = mm,
6607 .private = vma,
6608 };
6609 if (is_vm_hugetlb_page(vma))
6610 continue;
4ffef5fe
DN
6611 walk_page_range(vma->vm_start, vma->vm_end,
6612 &mem_cgroup_count_precharge_walk);
6613 }
dfe076b0 6614 up_read(&mm->mmap_sem);
4ffef5fe
DN
6615
6616 precharge = mc.precharge;
6617 mc.precharge = 0;
6618
6619 return precharge;
6620}
6621
4ffef5fe
DN
6622static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6623{
dfe076b0
DN
6624 unsigned long precharge = mem_cgroup_count_precharge(mm);
6625
6626 VM_BUG_ON(mc.moving_task);
6627 mc.moving_task = current;
6628 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6629}
6630
dfe076b0
DN
6631/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6632static void __mem_cgroup_clear_mc(void)
4ffef5fe 6633{
2bd9bb20
KH
6634 struct mem_cgroup *from = mc.from;
6635 struct mem_cgroup *to = mc.to;
4050377b 6636 int i;
2bd9bb20 6637
4ffef5fe 6638 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6639 if (mc.precharge) {
6640 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6641 mc.precharge = 0;
6642 }
6643 /*
6644 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6645 * we must uncharge here.
6646 */
6647 if (mc.moved_charge) {
6648 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6649 mc.moved_charge = 0;
4ffef5fe 6650 }
483c30b5
DN
6651 /* we must fixup refcnts and charges */
6652 if (mc.moved_swap) {
483c30b5
DN
6653 /* uncharge swap account from the old cgroup */
6654 if (!mem_cgroup_is_root(mc.from))
6655 res_counter_uncharge(&mc.from->memsw,
6656 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6657
6658 for (i = 0; i < mc.moved_swap; i++)
6659 css_put(&mc.from->css);
483c30b5
DN
6660
6661 if (!mem_cgroup_is_root(mc.to)) {
6662 /*
6663 * we charged both to->res and to->memsw, so we should
6664 * uncharge to->res.
6665 */
6666 res_counter_uncharge(&mc.to->res,
6667 PAGE_SIZE * mc.moved_swap);
483c30b5 6668 }
4050377b 6669 /* we've already done css_get(mc.to) */
483c30b5
DN
6670 mc.moved_swap = 0;
6671 }
dfe076b0
DN
6672 memcg_oom_recover(from);
6673 memcg_oom_recover(to);
6674 wake_up_all(&mc.waitq);
6675}
6676
6677static void mem_cgroup_clear_mc(void)
6678{
6679 struct mem_cgroup *from = mc.from;
6680
6681 /*
6682 * we must clear moving_task before waking up waiters at the end of
6683 * task migration.
6684 */
6685 mc.moving_task = NULL;
6686 __mem_cgroup_clear_mc();
2bd9bb20 6687 spin_lock(&mc.lock);
4ffef5fe
DN
6688 mc.from = NULL;
6689 mc.to = NULL;
2bd9bb20 6690 spin_unlock(&mc.lock);
32047e2a 6691 mem_cgroup_end_move(from);
4ffef5fe
DN
6692}
6693
eb95419b 6694static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6695 struct cgroup_taskset *tset)
7dc74be0 6696{
2f7ee569 6697 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6698 int ret = 0;
eb95419b 6699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6700 unsigned long move_charge_at_immigrate;
7dc74be0 6701
ee5e8472
GC
6702 /*
6703 * We are now commited to this value whatever it is. Changes in this
6704 * tunable will only affect upcoming migrations, not the current one.
6705 * So we need to save it, and keep it going.
6706 */
6707 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6708 if (move_charge_at_immigrate) {
7dc74be0
DN
6709 struct mm_struct *mm;
6710 struct mem_cgroup *from = mem_cgroup_from_task(p);
6711
c0ff4b85 6712 VM_BUG_ON(from == memcg);
7dc74be0
DN
6713
6714 mm = get_task_mm(p);
6715 if (!mm)
6716 return 0;
7dc74be0 6717 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6718 if (mm->owner == p) {
6719 VM_BUG_ON(mc.from);
6720 VM_BUG_ON(mc.to);
6721 VM_BUG_ON(mc.precharge);
854ffa8d 6722 VM_BUG_ON(mc.moved_charge);
483c30b5 6723 VM_BUG_ON(mc.moved_swap);
32047e2a 6724 mem_cgroup_start_move(from);
2bd9bb20 6725 spin_lock(&mc.lock);
4ffef5fe 6726 mc.from = from;
c0ff4b85 6727 mc.to = memcg;
ee5e8472 6728 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6729 spin_unlock(&mc.lock);
dfe076b0 6730 /* We set mc.moving_task later */
4ffef5fe
DN
6731
6732 ret = mem_cgroup_precharge_mc(mm);
6733 if (ret)
6734 mem_cgroup_clear_mc();
dfe076b0
DN
6735 }
6736 mmput(mm);
7dc74be0
DN
6737 }
6738 return ret;
6739}
6740
eb95419b 6741static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6742 struct cgroup_taskset *tset)
7dc74be0 6743{
4ffef5fe 6744 mem_cgroup_clear_mc();
7dc74be0
DN
6745}
6746
4ffef5fe
DN
6747static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6748 unsigned long addr, unsigned long end,
6749 struct mm_walk *walk)
7dc74be0 6750{
4ffef5fe
DN
6751 int ret = 0;
6752 struct vm_area_struct *vma = walk->private;
6753 pte_t *pte;
6754 spinlock_t *ptl;
12724850
NH
6755 enum mc_target_type target_type;
6756 union mc_target target;
6757 struct page *page;
6758 struct page_cgroup *pc;
4ffef5fe 6759
12724850
NH
6760 /*
6761 * We don't take compound_lock() here but no race with splitting thp
6762 * happens because:
6763 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6764 * under splitting, which means there's no concurrent thp split,
6765 * - if another thread runs into split_huge_page() just after we
6766 * entered this if-block, the thread must wait for page table lock
6767 * to be unlocked in __split_huge_page_splitting(), where the main
6768 * part of thp split is not executed yet.
6769 */
6770 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6771 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6772 spin_unlock(&vma->vm_mm->page_table_lock);
6773 return 0;
6774 }
6775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6776 if (target_type == MC_TARGET_PAGE) {
6777 page = target.page;
6778 if (!isolate_lru_page(page)) {
6779 pc = lookup_page_cgroup(page);
6780 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6781 pc, mc.from, mc.to)) {
12724850
NH
6782 mc.precharge -= HPAGE_PMD_NR;
6783 mc.moved_charge += HPAGE_PMD_NR;
6784 }
6785 putback_lru_page(page);
6786 }
6787 put_page(page);
6788 }
6789 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6790 return 0;
12724850
NH
6791 }
6792
45f83cef
AA
6793 if (pmd_trans_unstable(pmd))
6794 return 0;
4ffef5fe
DN
6795retry:
6796 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6797 for (; addr != end; addr += PAGE_SIZE) {
6798 pte_t ptent = *(pte++);
02491447 6799 swp_entry_t ent;
4ffef5fe
DN
6800
6801 if (!mc.precharge)
6802 break;
6803
8d32ff84 6804 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6805 case MC_TARGET_PAGE:
6806 page = target.page;
6807 if (isolate_lru_page(page))
6808 goto put;
6809 pc = lookup_page_cgroup(page);
7ec99d62 6810 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6811 mc.from, mc.to)) {
4ffef5fe 6812 mc.precharge--;
854ffa8d
DN
6813 /* we uncharge from mc.from later. */
6814 mc.moved_charge++;
4ffef5fe
DN
6815 }
6816 putback_lru_page(page);
8d32ff84 6817put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6818 put_page(page);
6819 break;
02491447
DN
6820 case MC_TARGET_SWAP:
6821 ent = target.ent;
e91cbb42 6822 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6823 mc.precharge--;
483c30b5
DN
6824 /* we fixup refcnts and charges later. */
6825 mc.moved_swap++;
6826 }
02491447 6827 break;
4ffef5fe
DN
6828 default:
6829 break;
6830 }
6831 }
6832 pte_unmap_unlock(pte - 1, ptl);
6833 cond_resched();
6834
6835 if (addr != end) {
6836 /*
6837 * We have consumed all precharges we got in can_attach().
6838 * We try charge one by one, but don't do any additional
6839 * charges to mc.to if we have failed in charge once in attach()
6840 * phase.
6841 */
854ffa8d 6842 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6843 if (!ret)
6844 goto retry;
6845 }
6846
6847 return ret;
6848}
6849
6850static void mem_cgroup_move_charge(struct mm_struct *mm)
6851{
6852 struct vm_area_struct *vma;
6853
6854 lru_add_drain_all();
dfe076b0
DN
6855retry:
6856 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6857 /*
6858 * Someone who are holding the mmap_sem might be waiting in
6859 * waitq. So we cancel all extra charges, wake up all waiters,
6860 * and retry. Because we cancel precharges, we might not be able
6861 * to move enough charges, but moving charge is a best-effort
6862 * feature anyway, so it wouldn't be a big problem.
6863 */
6864 __mem_cgroup_clear_mc();
6865 cond_resched();
6866 goto retry;
6867 }
4ffef5fe
DN
6868 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6869 int ret;
6870 struct mm_walk mem_cgroup_move_charge_walk = {
6871 .pmd_entry = mem_cgroup_move_charge_pte_range,
6872 .mm = mm,
6873 .private = vma,
6874 };
6875 if (is_vm_hugetlb_page(vma))
6876 continue;
4ffef5fe
DN
6877 ret = walk_page_range(vma->vm_start, vma->vm_end,
6878 &mem_cgroup_move_charge_walk);
6879 if (ret)
6880 /*
6881 * means we have consumed all precharges and failed in
6882 * doing additional charge. Just abandon here.
6883 */
6884 break;
6885 }
dfe076b0 6886 up_read(&mm->mmap_sem);
7dc74be0
DN
6887}
6888
eb95419b 6889static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6890 struct cgroup_taskset *tset)
67e465a7 6891{
2f7ee569 6892 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6893 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6894
dfe076b0 6895 if (mm) {
a433658c
KM
6896 if (mc.to)
6897 mem_cgroup_move_charge(mm);
dfe076b0
DN
6898 mmput(mm);
6899 }
a433658c
KM
6900 if (mc.to)
6901 mem_cgroup_clear_mc();
67e465a7 6902}
5cfb80a7 6903#else /* !CONFIG_MMU */
eb95419b 6904static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6905 struct cgroup_taskset *tset)
5cfb80a7
DN
6906{
6907 return 0;
6908}
eb95419b 6909static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6910 struct cgroup_taskset *tset)
5cfb80a7
DN
6911{
6912}
eb95419b 6913static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6914 struct cgroup_taskset *tset)
5cfb80a7
DN
6915{
6916}
6917#endif
67e465a7 6918
f00baae7
TH
6919/*
6920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6921 * to verify sane_behavior flag on each mount attempt.
6922 */
eb95419b 6923static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6924{
6925 /*
6926 * use_hierarchy is forced with sane_behavior. cgroup core
6927 * guarantees that @root doesn't have any children, so turning it
6928 * on for the root memcg is enough.
6929 */
eb95419b
TH
6930 if (cgroup_sane_behavior(root_css->cgroup))
6931 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6932}
6933
8cdea7c0
BS
6934struct cgroup_subsys mem_cgroup_subsys = {
6935 .name = "memory",
6936 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6937 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6938 .css_online = mem_cgroup_css_online,
92fb9748
TH
6939 .css_offline = mem_cgroup_css_offline,
6940 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6941 .can_attach = mem_cgroup_can_attach,
6942 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6943 .attach = mem_cgroup_move_task,
f00baae7 6944 .bind = mem_cgroup_bind,
6bc10349 6945 .base_cftypes = mem_cgroup_files,
6d12e2d8 6946 .early_init = 0,
04046e1a 6947 .use_id = 1,
8cdea7c0 6948};
c077719b 6949
c255a458 6950#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6951static int __init enable_swap_account(char *s)
6952{
6953 /* consider enabled if no parameter or 1 is given */
a2c8990a 6954 if (!strcmp(s, "1"))
a42c390c 6955 really_do_swap_account = 1;
a2c8990a 6956 else if (!strcmp(s, "0"))
a42c390c
MH
6957 really_do_swap_account = 0;
6958 return 1;
6959}
a2c8990a 6960__setup("swapaccount=", enable_swap_account);
c077719b 6961
2d11085e
MH
6962static void __init memsw_file_init(void)
6963{
6acc8b02
MH
6964 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6965}
6966
6967static void __init enable_swap_cgroup(void)
6968{
6969 if (!mem_cgroup_disabled() && really_do_swap_account) {
6970 do_swap_account = 1;
6971 memsw_file_init();
6972 }
2d11085e 6973}
6acc8b02 6974
2d11085e 6975#else
6acc8b02 6976static void __init enable_swap_cgroup(void)
2d11085e
MH
6977{
6978}
c077719b 6979#endif
2d11085e
MH
6980
6981/*
1081312f
MH
6982 * subsys_initcall() for memory controller.
6983 *
6984 * Some parts like hotcpu_notifier() have to be initialized from this context
6985 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6986 * everything that doesn't depend on a specific mem_cgroup structure should
6987 * be initialized from here.
2d11085e
MH
6988 */
6989static int __init mem_cgroup_init(void)
6990{
6991 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6992 enable_swap_cgroup();
8787a1df 6993 mem_cgroup_soft_limit_tree_init();
e4777496 6994 memcg_stock_init();
2d11085e
MH
6995 return 0;
6996}
6997subsys_initcall(mem_cgroup_init);