]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg, slab: RCU protect memcg_params for root caches
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
5f578161
MH
152 unsigned long last_dead_count;
153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
388};
389
a8964b9b
GC
390/* We account when limit is on, but only after call sites are patched */
391#define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
393
394#ifdef CONFIG_MEMCG_KMEM
395static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396{
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
7de37682
GC
399
400static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401{
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403}
404
a8964b9b
GC
405static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406{
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408}
409
55007d84
GC
410static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411{
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413}
414
7de37682
GC
415static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416{
10d5ebf4
LZ
417 /*
418 * Our caller must use css_get() first, because memcg_uncharge_kmem()
419 * will call css_put() if it sees the memcg is dead.
420 */
421 smp_wmb();
7de37682
GC
422 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
423 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
424}
425
426static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
427{
428 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
429 &memcg->kmem_account_flags);
430}
510fc4e1
GC
431#endif
432
7dc74be0
DN
433/* Stuffs for move charges at task migration. */
434/*
ee5e8472
GC
435 * Types of charges to be moved. "move_charge_at_immitgrate" and
436 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
437 */
438enum move_type {
4ffef5fe 439 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 440 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
441 NR_MOVE_TYPE,
442};
443
4ffef5fe
DN
444/* "mc" and its members are protected by cgroup_mutex */
445static struct move_charge_struct {
b1dd693e 446 spinlock_t lock; /* for from, to */
4ffef5fe
DN
447 struct mem_cgroup *from;
448 struct mem_cgroup *to;
ee5e8472 449 unsigned long immigrate_flags;
4ffef5fe 450 unsigned long precharge;
854ffa8d 451 unsigned long moved_charge;
483c30b5 452 unsigned long moved_swap;
8033b97c
DN
453 struct task_struct *moving_task; /* a task moving charges */
454 wait_queue_head_t waitq; /* a waitq for other context */
455} mc = {
2bd9bb20 456 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
457 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
458};
4ffef5fe 459
90254a65
DN
460static bool move_anon(void)
461{
ee5e8472 462 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
463}
464
87946a72
DN
465static bool move_file(void)
466{
ee5e8472 467 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
468}
469
4e416953
BS
470/*
471 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
472 * limit reclaim to prevent infinite loops, if they ever occur.
473 */
a0db00fc 474#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 475#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 476
217bc319
KH
477enum charge_type {
478 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 479 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 480 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 481 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
482 NR_CHARGE_TYPE,
483};
484
8c7c6e34 485/* for encoding cft->private value on file */
86ae53e1
GC
486enum res_type {
487 _MEM,
488 _MEMSWAP,
489 _OOM_TYPE,
510fc4e1 490 _KMEM,
86ae53e1
GC
491};
492
a0db00fc
KS
493#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
494#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 495#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
496/* Used for OOM nofiier */
497#define OOM_CONTROL (0)
8c7c6e34 498
75822b44
BS
499/*
500 * Reclaim flags for mem_cgroup_hierarchical_reclaim
501 */
502#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
503#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
504#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
505#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
506
0999821b
GC
507/*
508 * The memcg_create_mutex will be held whenever a new cgroup is created.
509 * As a consequence, any change that needs to protect against new child cgroups
510 * appearing has to hold it as well.
511 */
512static DEFINE_MUTEX(memcg_create_mutex);
513
b2145145
WL
514struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
515{
a7c6d554 516 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
517}
518
70ddf637
AV
519/* Some nice accessors for the vmpressure. */
520struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
521{
522 if (!memcg)
523 memcg = root_mem_cgroup;
524 return &memcg->vmpressure;
525}
526
527struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
528{
529 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
530}
531
7ffc0edc
MH
532static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
533{
534 return (memcg == root_mem_cgroup);
535}
536
4219b2da
LZ
537/*
538 * We restrict the id in the range of [1, 65535], so it can fit into
539 * an unsigned short.
540 */
541#define MEM_CGROUP_ID_MAX USHRT_MAX
542
34c00c31
LZ
543static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
544{
545 /*
546 * The ID of the root cgroup is 0, but memcg treat 0 as an
547 * invalid ID, so we return (cgroup_id + 1).
548 */
549 return memcg->css.cgroup->id + 1;
550}
551
552static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
553{
554 struct cgroup_subsys_state *css;
555
556 css = css_from_id(id - 1, &mem_cgroup_subsys);
557 return mem_cgroup_from_css(css);
558}
559
e1aab161 560/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 561#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 562
e1aab161
GC
563void sock_update_memcg(struct sock *sk)
564{
376be5ff 565 if (mem_cgroup_sockets_enabled) {
e1aab161 566 struct mem_cgroup *memcg;
3f134619 567 struct cg_proto *cg_proto;
e1aab161
GC
568
569 BUG_ON(!sk->sk_prot->proto_cgroup);
570
f3f511e1
GC
571 /* Socket cloning can throw us here with sk_cgrp already
572 * filled. It won't however, necessarily happen from
573 * process context. So the test for root memcg given
574 * the current task's memcg won't help us in this case.
575 *
576 * Respecting the original socket's memcg is a better
577 * decision in this case.
578 */
579 if (sk->sk_cgrp) {
580 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 581 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
582 return;
583 }
584
e1aab161
GC
585 rcu_read_lock();
586 memcg = mem_cgroup_from_task(current);
3f134619 587 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
588 if (!mem_cgroup_is_root(memcg) &&
589 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 590 sk->sk_cgrp = cg_proto;
e1aab161
GC
591 }
592 rcu_read_unlock();
593 }
594}
595EXPORT_SYMBOL(sock_update_memcg);
596
597void sock_release_memcg(struct sock *sk)
598{
376be5ff 599 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
600 struct mem_cgroup *memcg;
601 WARN_ON(!sk->sk_cgrp->memcg);
602 memcg = sk->sk_cgrp->memcg;
5347e5ae 603 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
604 }
605}
d1a4c0b3
GC
606
607struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
608{
609 if (!memcg || mem_cgroup_is_root(memcg))
610 return NULL;
611
2e685cad 612 return &memcg->tcp_mem;
d1a4c0b3
GC
613}
614EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 615
3f134619
GC
616static void disarm_sock_keys(struct mem_cgroup *memcg)
617{
2e685cad 618 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
619 return;
620 static_key_slow_dec(&memcg_socket_limit_enabled);
621}
622#else
623static void disarm_sock_keys(struct mem_cgroup *memcg)
624{
625}
626#endif
627
a8964b9b 628#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
629/*
630 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
631 * The main reason for not using cgroup id for this:
632 * this works better in sparse environments, where we have a lot of memcgs,
633 * but only a few kmem-limited. Or also, if we have, for instance, 200
634 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
635 * 200 entry array for that.
55007d84
GC
636 *
637 * The current size of the caches array is stored in
638 * memcg_limited_groups_array_size. It will double each time we have to
639 * increase it.
640 */
641static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
642int memcg_limited_groups_array_size;
643
55007d84
GC
644/*
645 * MIN_SIZE is different than 1, because we would like to avoid going through
646 * the alloc/free process all the time. In a small machine, 4 kmem-limited
647 * cgroups is a reasonable guess. In the future, it could be a parameter or
648 * tunable, but that is strictly not necessary.
649 *
b8627835 650 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
651 * this constant directly from cgroup, but it is understandable that this is
652 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 653 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
654 * increase ours as well if it increases.
655 */
656#define MEMCG_CACHES_MIN_SIZE 4
b8627835 657#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 658
d7f25f8a
GC
659/*
660 * A lot of the calls to the cache allocation functions are expected to be
661 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
662 * conditional to this static branch, we'll have to allow modules that does
663 * kmem_cache_alloc and the such to see this symbol as well
664 */
a8964b9b 665struct static_key memcg_kmem_enabled_key;
d7f25f8a 666EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
667
668static void disarm_kmem_keys(struct mem_cgroup *memcg)
669{
55007d84 670 if (memcg_kmem_is_active(memcg)) {
a8964b9b 671 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
672 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
673 }
bea207c8
GC
674 /*
675 * This check can't live in kmem destruction function,
676 * since the charges will outlive the cgroup
677 */
678 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
679}
680#else
681static void disarm_kmem_keys(struct mem_cgroup *memcg)
682{
683}
684#endif /* CONFIG_MEMCG_KMEM */
685
686static void disarm_static_keys(struct mem_cgroup *memcg)
687{
688 disarm_sock_keys(memcg);
689 disarm_kmem_keys(memcg);
690}
691
c0ff4b85 692static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 693
f64c3f54 694static struct mem_cgroup_per_zone *
c0ff4b85 695mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 696{
45cf7ebd 697 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
699}
700
c0ff4b85 701struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 702{
c0ff4b85 703 return &memcg->css;
d324236b
WF
704}
705
f64c3f54 706static struct mem_cgroup_per_zone *
c0ff4b85 707page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 708{
97a6c37b
JW
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
f64c3f54 711
c0ff4b85 712 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
713}
714
bb4cc1a8
AM
715static struct mem_cgroup_tree_per_zone *
716soft_limit_tree_node_zone(int nid, int zid)
717{
718 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
719}
720
721static struct mem_cgroup_tree_per_zone *
722soft_limit_tree_from_page(struct page *page)
723{
724 int nid = page_to_nid(page);
725 int zid = page_zonenum(page);
726
727 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
728}
729
730static void
731__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz,
734 unsigned long long new_usage_in_excess)
735{
736 struct rb_node **p = &mctz->rb_root.rb_node;
737 struct rb_node *parent = NULL;
738 struct mem_cgroup_per_zone *mz_node;
739
740 if (mz->on_tree)
741 return;
742
743 mz->usage_in_excess = new_usage_in_excess;
744 if (!mz->usage_in_excess)
745 return;
746 while (*p) {
747 parent = *p;
748 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
749 tree_node);
750 if (mz->usage_in_excess < mz_node->usage_in_excess)
751 p = &(*p)->rb_left;
752 /*
753 * We can't avoid mem cgroups that are over their soft
754 * limit by the same amount
755 */
756 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
757 p = &(*p)->rb_right;
758 }
759 rb_link_node(&mz->tree_node, parent, p);
760 rb_insert_color(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = true;
762}
763
764static void
765__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768{
769 if (!mz->on_tree)
770 return;
771 rb_erase(&mz->tree_node, &mctz->rb_root);
772 mz->on_tree = false;
773}
774
775static void
776mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
777 struct mem_cgroup_per_zone *mz,
778 struct mem_cgroup_tree_per_zone *mctz)
779{
780 spin_lock(&mctz->lock);
781 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
782 spin_unlock(&mctz->lock);
783}
784
785
786static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
787{
788 unsigned long long excess;
789 struct mem_cgroup_per_zone *mz;
790 struct mem_cgroup_tree_per_zone *mctz;
791 int nid = page_to_nid(page);
792 int zid = page_zonenum(page);
793 mctz = soft_limit_tree_from_page(page);
794
795 /*
796 * Necessary to update all ancestors when hierarchy is used.
797 * because their event counter is not touched.
798 */
799 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
800 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
801 excess = res_counter_soft_limit_excess(&memcg->res);
802 /*
803 * We have to update the tree if mz is on RB-tree or
804 * mem is over its softlimit.
805 */
806 if (excess || mz->on_tree) {
807 spin_lock(&mctz->lock);
808 /* if on-tree, remove it */
809 if (mz->on_tree)
810 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 /*
812 * Insert again. mz->usage_in_excess will be updated.
813 * If excess is 0, no tree ops.
814 */
815 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
816 spin_unlock(&mctz->lock);
817 }
818 }
819}
820
821static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
822{
823 int node, zone;
824 struct mem_cgroup_per_zone *mz;
825 struct mem_cgroup_tree_per_zone *mctz;
826
827 for_each_node(node) {
828 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
829 mz = mem_cgroup_zoneinfo(memcg, node, zone);
830 mctz = soft_limit_tree_node_zone(node, zone);
831 mem_cgroup_remove_exceeded(memcg, mz, mctz);
832 }
833 }
834}
835
836static struct mem_cgroup_per_zone *
837__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
838{
839 struct rb_node *rightmost = NULL;
840 struct mem_cgroup_per_zone *mz;
841
842retry:
843 mz = NULL;
844 rightmost = rb_last(&mctz->rb_root);
845 if (!rightmost)
846 goto done; /* Nothing to reclaim from */
847
848 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
849 /*
850 * Remove the node now but someone else can add it back,
851 * we will to add it back at the end of reclaim to its correct
852 * position in the tree.
853 */
854 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
855 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
856 !css_tryget(&mz->memcg->css))
857 goto retry;
858done:
859 return mz;
860}
861
862static struct mem_cgroup_per_zone *
863mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
864{
865 struct mem_cgroup_per_zone *mz;
866
867 spin_lock(&mctz->lock);
868 mz = __mem_cgroup_largest_soft_limit_node(mctz);
869 spin_unlock(&mctz->lock);
870 return mz;
871}
872
711d3d2c
KH
873/*
874 * Implementation Note: reading percpu statistics for memcg.
875 *
876 * Both of vmstat[] and percpu_counter has threshold and do periodic
877 * synchronization to implement "quick" read. There are trade-off between
878 * reading cost and precision of value. Then, we may have a chance to implement
879 * a periodic synchronizion of counter in memcg's counter.
880 *
881 * But this _read() function is used for user interface now. The user accounts
882 * memory usage by memory cgroup and he _always_ requires exact value because
883 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
884 * have to visit all online cpus and make sum. So, for now, unnecessary
885 * synchronization is not implemented. (just implemented for cpu hotplug)
886 *
887 * If there are kernel internal actions which can make use of some not-exact
888 * value, and reading all cpu value can be performance bottleneck in some
889 * common workload, threashold and synchonization as vmstat[] should be
890 * implemented.
891 */
c0ff4b85 892static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 893 enum mem_cgroup_stat_index idx)
c62b1a3b 894{
7a159cc9 895 long val = 0;
c62b1a3b 896 int cpu;
c62b1a3b 897
711d3d2c
KH
898 get_online_cpus();
899 for_each_online_cpu(cpu)
c0ff4b85 900 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 901#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.count[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
905#endif
906 put_online_cpus();
c62b1a3b
KH
907 return val;
908}
909
c0ff4b85 910static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
911 bool charge)
912{
913 int val = (charge) ? 1 : -1;
bff6bb83 914 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
915}
916
c0ff4b85 917static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
918 enum mem_cgroup_events_index idx)
919{
920 unsigned long val = 0;
921 int cpu;
922
9c567512 923 get_online_cpus();
e9f8974f 924 for_each_online_cpu(cpu)
c0ff4b85 925 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 926#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
927 spin_lock(&memcg->pcp_counter_lock);
928 val += memcg->nocpu_base.events[idx];
929 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 930#endif
9c567512 931 put_online_cpus();
e9f8974f
JW
932 return val;
933}
934
c0ff4b85 935static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 936 struct page *page,
b2402857 937 bool anon, int nr_pages)
d52aa412 938{
c62b1a3b
KH
939 preempt_disable();
940
b2402857
KH
941 /*
942 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
943 * counted as CACHE even if it's on ANON LRU.
944 */
945 if (anon)
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 947 nr_pages);
d52aa412 948 else
b2402857 949 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 950 nr_pages);
55e462b0 951
b070e65c
DR
952 if (PageTransHuge(page))
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
954 nr_pages);
955
e401f176
KH
956 /* pagein of a big page is an event. So, ignore page size */
957 if (nr_pages > 0)
c0ff4b85 958 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 959 else {
c0ff4b85 960 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
961 nr_pages = -nr_pages; /* for event */
962 }
e401f176 963
13114716 964 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 965
c62b1a3b 966 preempt_enable();
6d12e2d8
KH
967}
968
bb2a0de9 969unsigned long
4d7dcca2 970mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
971{
972 struct mem_cgroup_per_zone *mz;
973
974 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
975 return mz->lru_size[lru];
976}
977
978static unsigned long
c0ff4b85 979mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 980 unsigned int lru_mask)
889976db
YH
981{
982 struct mem_cgroup_per_zone *mz;
f156ab93 983 enum lru_list lru;
bb2a0de9
KH
984 unsigned long ret = 0;
985
c0ff4b85 986 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 987
f156ab93
HD
988 for_each_lru(lru) {
989 if (BIT(lru) & lru_mask)
990 ret += mz->lru_size[lru];
bb2a0de9
KH
991 }
992 return ret;
993}
994
995static unsigned long
c0ff4b85 996mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
997 int nid, unsigned int lru_mask)
998{
889976db
YH
999 u64 total = 0;
1000 int zid;
1001
bb2a0de9 1002 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
1003 total += mem_cgroup_zone_nr_lru_pages(memcg,
1004 nid, zid, lru_mask);
bb2a0de9 1005
889976db
YH
1006 return total;
1007}
bb2a0de9 1008
c0ff4b85 1009static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 1010 unsigned int lru_mask)
6d12e2d8 1011{
889976db 1012 int nid;
6d12e2d8
KH
1013 u64 total = 0;
1014
31aaea4a 1015 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1016 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1017 return total;
d52aa412
KH
1018}
1019
f53d7ce3
JW
1020static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1021 enum mem_cgroup_events_target target)
7a159cc9
JW
1022{
1023 unsigned long val, next;
1024
13114716 1025 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1026 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1027 /* from time_after() in jiffies.h */
f53d7ce3
JW
1028 if ((long)next - (long)val < 0) {
1029 switch (target) {
1030 case MEM_CGROUP_TARGET_THRESH:
1031 next = val + THRESHOLDS_EVENTS_TARGET;
1032 break;
bb4cc1a8
AM
1033 case MEM_CGROUP_TARGET_SOFTLIMIT:
1034 next = val + SOFTLIMIT_EVENTS_TARGET;
1035 break;
f53d7ce3
JW
1036 case MEM_CGROUP_TARGET_NUMAINFO:
1037 next = val + NUMAINFO_EVENTS_TARGET;
1038 break;
1039 default:
1040 break;
1041 }
1042 __this_cpu_write(memcg->stat->targets[target], next);
1043 return true;
7a159cc9 1044 }
f53d7ce3 1045 return false;
d2265e6f
KH
1046}
1047
1048/*
1049 * Check events in order.
1050 *
1051 */
c0ff4b85 1052static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1053{
4799401f 1054 preempt_disable();
d2265e6f 1055 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1056 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1057 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1058 bool do_softlimit;
82b3f2a7 1059 bool do_numainfo __maybe_unused;
f53d7ce3 1060
bb4cc1a8
AM
1061 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1062 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1063#if MAX_NUMNODES > 1
1064 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1065 MEM_CGROUP_TARGET_NUMAINFO);
1066#endif
1067 preempt_enable();
1068
c0ff4b85 1069 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1070 if (unlikely(do_softlimit))
1071 mem_cgroup_update_tree(memcg, page);
453a9bf3 1072#if MAX_NUMNODES > 1
f53d7ce3 1073 if (unlikely(do_numainfo))
c0ff4b85 1074 atomic_inc(&memcg->numainfo_events);
453a9bf3 1075#endif
f53d7ce3
JW
1076 } else
1077 preempt_enable();
d2265e6f
KH
1078}
1079
cf475ad2 1080struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1081{
31a78f23
BS
1082 /*
1083 * mm_update_next_owner() may clear mm->owner to NULL
1084 * if it races with swapoff, page migration, etc.
1085 * So this can be called with p == NULL.
1086 */
1087 if (unlikely(!p))
1088 return NULL;
1089
8af01f56 1090 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1091}
1092
a433658c 1093struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1094{
c0ff4b85 1095 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1096
1097 if (!mm)
1098 return NULL;
54595fe2
KH
1099 /*
1100 * Because we have no locks, mm->owner's may be being moved to other
1101 * cgroup. We use css_tryget() here even if this looks
1102 * pessimistic (rather than adding locks here).
1103 */
1104 rcu_read_lock();
1105 do {
c0ff4b85
R
1106 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1107 if (unlikely(!memcg))
54595fe2 1108 break;
c0ff4b85 1109 } while (!css_tryget(&memcg->css));
54595fe2 1110 rcu_read_unlock();
c0ff4b85 1111 return memcg;
54595fe2
KH
1112}
1113
16248d8f
MH
1114/*
1115 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1116 * ref. count) or NULL if the whole root's subtree has been visited.
1117 *
1118 * helper function to be used by mem_cgroup_iter
1119 */
1120static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1121 struct mem_cgroup *last_visited)
16248d8f 1122{
492eb21b 1123 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1124
bd8815a6 1125 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1126skip_node:
492eb21b 1127 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1128
1129 /*
1130 * Even if we found a group we have to make sure it is
1131 * alive. css && !memcg means that the groups should be
1132 * skipped and we should continue the tree walk.
1133 * last_visited css is safe to use because it is
1134 * protected by css_get and the tree walk is rcu safe.
1135 */
492eb21b
TH
1136 if (next_css) {
1137 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1138
694fbc0f
AM
1139 if (css_tryget(&mem->css))
1140 return mem;
1141 else {
492eb21b 1142 prev_css = next_css;
16248d8f
MH
1143 goto skip_node;
1144 }
1145 }
1146
1147 return NULL;
1148}
1149
519ebea3
JW
1150static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1151{
1152 /*
1153 * When a group in the hierarchy below root is destroyed, the
1154 * hierarchy iterator can no longer be trusted since it might
1155 * have pointed to the destroyed group. Invalidate it.
1156 */
1157 atomic_inc(&root->dead_count);
1158}
1159
1160static struct mem_cgroup *
1161mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1162 struct mem_cgroup *root,
1163 int *sequence)
1164{
1165 struct mem_cgroup *position = NULL;
1166 /*
1167 * A cgroup destruction happens in two stages: offlining and
1168 * release. They are separated by a RCU grace period.
1169 *
1170 * If the iterator is valid, we may still race with an
1171 * offlining. The RCU lock ensures the object won't be
1172 * released, tryget will fail if we lost the race.
1173 */
1174 *sequence = atomic_read(&root->dead_count);
1175 if (iter->last_dead_count == *sequence) {
1176 smp_rmb();
1177 position = iter->last_visited;
1178 if (position && !css_tryget(&position->css))
1179 position = NULL;
1180 }
1181 return position;
1182}
1183
1184static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1185 struct mem_cgroup *last_visited,
1186 struct mem_cgroup *new_position,
1187 int sequence)
1188{
1189 if (last_visited)
1190 css_put(&last_visited->css);
1191 /*
1192 * We store the sequence count from the time @last_visited was
1193 * loaded successfully instead of rereading it here so that we
1194 * don't lose destruction events in between. We could have
1195 * raced with the destruction of @new_position after all.
1196 */
1197 iter->last_visited = new_position;
1198 smp_wmb();
1199 iter->last_dead_count = sequence;
1200}
1201
5660048c
JW
1202/**
1203 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1204 * @root: hierarchy root
1205 * @prev: previously returned memcg, NULL on first invocation
1206 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1207 *
1208 * Returns references to children of the hierarchy below @root, or
1209 * @root itself, or %NULL after a full round-trip.
1210 *
1211 * Caller must pass the return value in @prev on subsequent
1212 * invocations for reference counting, or use mem_cgroup_iter_break()
1213 * to cancel a hierarchy walk before the round-trip is complete.
1214 *
1215 * Reclaimers can specify a zone and a priority level in @reclaim to
1216 * divide up the memcgs in the hierarchy among all concurrent
1217 * reclaimers operating on the same zone and priority.
1218 */
694fbc0f 1219struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1220 struct mem_cgroup *prev,
694fbc0f 1221 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1222{
9f3a0d09 1223 struct mem_cgroup *memcg = NULL;
542f85f9 1224 struct mem_cgroup *last_visited = NULL;
711d3d2c 1225
694fbc0f
AM
1226 if (mem_cgroup_disabled())
1227 return NULL;
5660048c 1228
9f3a0d09
JW
1229 if (!root)
1230 root = root_mem_cgroup;
7d74b06f 1231
9f3a0d09 1232 if (prev && !reclaim)
542f85f9 1233 last_visited = prev;
14067bb3 1234
9f3a0d09
JW
1235 if (!root->use_hierarchy && root != root_mem_cgroup) {
1236 if (prev)
c40046f3 1237 goto out_css_put;
694fbc0f 1238 return root;
9f3a0d09 1239 }
14067bb3 1240
542f85f9 1241 rcu_read_lock();
9f3a0d09 1242 while (!memcg) {
527a5ec9 1243 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1244 int uninitialized_var(seq);
711d3d2c 1245
527a5ec9
JW
1246 if (reclaim) {
1247 int nid = zone_to_nid(reclaim->zone);
1248 int zid = zone_idx(reclaim->zone);
1249 struct mem_cgroup_per_zone *mz;
1250
1251 mz = mem_cgroup_zoneinfo(root, nid, zid);
1252 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1253 if (prev && reclaim->generation != iter->generation) {
5f578161 1254 iter->last_visited = NULL;
542f85f9
MH
1255 goto out_unlock;
1256 }
5f578161 1257
519ebea3 1258 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1259 }
7d74b06f 1260
694fbc0f 1261 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1262
527a5ec9 1263 if (reclaim) {
519ebea3 1264 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1265
19f39402 1266 if (!memcg)
527a5ec9
JW
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
9f3a0d09 1271
694fbc0f 1272 if (prev && !memcg)
542f85f9 1273 goto out_unlock;
9f3a0d09 1274 }
542f85f9
MH
1275out_unlock:
1276 rcu_read_unlock();
c40046f3
MH
1277out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
9f3a0d09 1281 return memcg;
14067bb3 1282}
7d74b06f 1283
5660048c
JW
1284/**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
9f3a0d09
JW
1291{
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296}
7d74b06f 1297
9f3a0d09
JW
1298/*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1305 iter != NULL; \
527a5ec9 1306 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1307
9f3a0d09 1308#define for_each_mem_cgroup(iter) \
527a5ec9 1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1310 iter != NULL; \
527a5ec9 1311 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1312
68ae564b 1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1314{
c0ff4b85 1315 struct mem_cgroup *memcg;
456f998e 1316
456f998e 1317 rcu_read_lock();
c0ff4b85
R
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
456f998e
YH
1320 goto out;
1321
1322 switch (idx) {
456f998e 1323 case PGFAULT:
0e574a93
JW
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1328 break;
1329 default:
1330 BUG();
1331 }
1332out:
1333 rcu_read_unlock();
1334}
68ae564b 1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1336
925b7673
JW
1337/**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
fa9add64 1340 * @memcg: memcg of the wanted lruvec
925b7673
JW
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348{
1349 struct mem_cgroup_per_zone *mz;
bea8c150 1350 struct lruvec *lruvec;
925b7673 1351
bea8c150
HD
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
925b7673
JW
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1358 lruvec = &mz->lruvec;
1359out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
925b7673
JW
1368}
1369
08e552c6
KH
1370/*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
4f98a2fe 1383
925b7673 1384/**
fa9add64 1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1386 * @page: the page
fa9add64 1387 * @zone: zone of the page
925b7673 1388 */
fa9add64 1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1390{
08e552c6 1391 struct mem_cgroup_per_zone *mz;
925b7673
JW
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
bea8c150 1394 struct lruvec *lruvec;
6d12e2d8 1395
bea8c150
HD
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
925b7673 1400
08e552c6 1401 pc = lookup_page_cgroup(page);
38c5d72f 1402 memcg = pc->mem_cgroup;
7512102c
HD
1403
1404 /*
fa9add64 1405 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
fa9add64 1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
925b7673 1416 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1417 lruvec = &mz->lruvec;
1418out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
08e552c6 1427}
b69408e8 1428
925b7673 1429/**
fa9add64
HD
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
925b7673 1434 *
fa9add64
HD
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
3f58a829 1437 */
fa9add64
HD
1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
3f58a829
MK
1440{
1441 struct mem_cgroup_per_zone *mz;
fa9add64 1442 unsigned long *lru_size;
3f58a829
MK
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
fa9add64
HD
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1451}
544122e5 1452
3e92041d 1453/*
c0ff4b85 1454 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1455 * hierarchy subtree
1456 */
c3ac9a8a
JW
1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
3e92041d 1459{
91c63734
JW
1460 if (root_memcg == memcg)
1461 return true;
3a981f48 1462 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1463 return false;
b47f77b5 1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1465}
1466
1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469{
1470 bool ret;
1471
91c63734 1472 rcu_read_lock();
c3ac9a8a 1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1474 rcu_read_unlock();
1475 return ret;
3e92041d
MH
1476}
1477
ffbdccf5
DR
1478bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
4c4a2214 1480{
0b7f569e 1481 struct mem_cgroup *curr = NULL;
158e0a2d 1482 struct task_struct *p;
ffbdccf5 1483 bool ret;
4c4a2214 1484
158e0a2d 1485 p = find_lock_task_mm(task);
de077d22
DR
1486 if (p) {
1487 curr = try_get_mem_cgroup_from_mm(p->mm);
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
ffbdccf5 1495 rcu_read_lock();
de077d22
DR
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
ffbdccf5 1499 rcu_read_unlock();
de077d22 1500 }
0b7f569e 1501 if (!curr)
ffbdccf5 1502 return false;
d31f56db 1503 /*
c0ff4b85 1504 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1505 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1506 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1507 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1508 */
c0ff4b85 1509 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1510 css_put(&curr->css);
4c4a2214
DR
1511 return ret;
1512}
1513
c56d5c7d 1514int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1515{
9b272977 1516 unsigned long inactive_ratio;
14797e23 1517 unsigned long inactive;
9b272977 1518 unsigned long active;
c772be93 1519 unsigned long gb;
14797e23 1520
4d7dcca2
HD
1521 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1522 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1523
c772be93
KM
1524 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1525 if (gb)
1526 inactive_ratio = int_sqrt(10 * gb);
1527 else
1528 inactive_ratio = 1;
1529
9b272977 1530 return inactive * inactive_ratio < active;
14797e23
KM
1531}
1532
6d61ef40
BS
1533#define mem_cgroup_from_res_counter(counter, member) \
1534 container_of(counter, struct mem_cgroup, member)
1535
19942822 1536/**
9d11ea9f 1537 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1538 * @memcg: the memory cgroup
19942822 1539 *
9d11ea9f 1540 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1541 * pages.
19942822 1542 */
c0ff4b85 1543static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1544{
9d11ea9f
JW
1545 unsigned long long margin;
1546
c0ff4b85 1547 margin = res_counter_margin(&memcg->res);
9d11ea9f 1548 if (do_swap_account)
c0ff4b85 1549 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1550 return margin >> PAGE_SHIFT;
19942822
JW
1551}
1552
1f4c025b 1553int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1554{
a7885eb8 1555 /* root ? */
63876986 1556 if (!css_parent(&memcg->css))
a7885eb8
KM
1557 return vm_swappiness;
1558
bf1ff263 1559 return memcg->swappiness;
a7885eb8
KM
1560}
1561
619d094b
KH
1562/*
1563 * memcg->moving_account is used for checking possibility that some thread is
1564 * calling move_account(). When a thread on CPU-A starts moving pages under
1565 * a memcg, other threads should check memcg->moving_account under
1566 * rcu_read_lock(), like this:
1567 *
1568 * CPU-A CPU-B
1569 * rcu_read_lock()
1570 * memcg->moving_account+1 if (memcg->mocing_account)
1571 * take heavy locks.
1572 * synchronize_rcu() update something.
1573 * rcu_read_unlock()
1574 * start move here.
1575 */
4331f7d3
KH
1576
1577/* for quick checking without looking up memcg */
1578atomic_t memcg_moving __read_mostly;
1579
c0ff4b85 1580static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1581{
4331f7d3 1582 atomic_inc(&memcg_moving);
619d094b 1583 atomic_inc(&memcg->moving_account);
32047e2a
KH
1584 synchronize_rcu();
1585}
1586
c0ff4b85 1587static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1588{
619d094b
KH
1589 /*
1590 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1591 * We check NULL in callee rather than caller.
1592 */
4331f7d3
KH
1593 if (memcg) {
1594 atomic_dec(&memcg_moving);
619d094b 1595 atomic_dec(&memcg->moving_account);
4331f7d3 1596 }
32047e2a 1597}
619d094b 1598
32047e2a
KH
1599/*
1600 * 2 routines for checking "mem" is under move_account() or not.
1601 *
13fd1dd9
AM
1602 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1603 * is used for avoiding races in accounting. If true,
32047e2a
KH
1604 * pc->mem_cgroup may be overwritten.
1605 *
1606 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1607 * under hierarchy of moving cgroups. This is for
1608 * waiting at hith-memory prressure caused by "move".
1609 */
1610
13fd1dd9 1611static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1612{
1613 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1614 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1615}
4b534334 1616
c0ff4b85 1617static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1618{
2bd9bb20
KH
1619 struct mem_cgroup *from;
1620 struct mem_cgroup *to;
4b534334 1621 bool ret = false;
2bd9bb20
KH
1622 /*
1623 * Unlike task_move routines, we access mc.to, mc.from not under
1624 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1625 */
1626 spin_lock(&mc.lock);
1627 from = mc.from;
1628 to = mc.to;
1629 if (!from)
1630 goto unlock;
3e92041d 1631
c0ff4b85
R
1632 ret = mem_cgroup_same_or_subtree(memcg, from)
1633 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1634unlock:
1635 spin_unlock(&mc.lock);
4b534334
KH
1636 return ret;
1637}
1638
c0ff4b85 1639static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1640{
1641 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1642 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1643 DEFINE_WAIT(wait);
1644 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1645 /* moving charge context might have finished. */
1646 if (mc.moving_task)
1647 schedule();
1648 finish_wait(&mc.waitq, &wait);
1649 return true;
1650 }
1651 }
1652 return false;
1653}
1654
312734c0
KH
1655/*
1656 * Take this lock when
1657 * - a code tries to modify page's memcg while it's USED.
1658 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1659 * see mem_cgroup_stolen(), too.
312734c0
KH
1660 */
1661static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1662 unsigned long *flags)
1663{
1664 spin_lock_irqsave(&memcg->move_lock, *flags);
1665}
1666
1667static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1668 unsigned long *flags)
1669{
1670 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1671}
1672
58cf188e 1673#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1674/**
58cf188e 1675 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1676 * @memcg: The memory cgroup that went over limit
1677 * @p: Task that is going to be killed
1678 *
1679 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1680 * enabled
1681 */
1682void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1683{
e222432b 1684 /*
947b3dd1
MH
1685 * protects memcg_name and makes sure that parallel ooms do not
1686 * interleave
e222432b 1687 */
947b3dd1
MH
1688 static DEFINE_SPINLOCK(oom_info_lock);
1689 struct cgroup *task_cgrp;
1690 struct cgroup *mem_cgrp;
e222432b
BS
1691 static char memcg_name[PATH_MAX];
1692 int ret;
58cf188e
SZ
1693 struct mem_cgroup *iter;
1694 unsigned int i;
e222432b 1695
58cf188e 1696 if (!p)
e222432b
BS
1697 return;
1698
947b3dd1 1699 spin_lock(&oom_info_lock);
e222432b
BS
1700 rcu_read_lock();
1701
1702 mem_cgrp = memcg->css.cgroup;
1703 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1704
1705 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1706 if (ret < 0) {
1707 /*
1708 * Unfortunately, we are unable to convert to a useful name
1709 * But we'll still print out the usage information
1710 */
1711 rcu_read_unlock();
1712 goto done;
1713 }
1714 rcu_read_unlock();
1715
d045197f 1716 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1717
1718 rcu_read_lock();
1719 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1720 if (ret < 0) {
1721 rcu_read_unlock();
1722 goto done;
1723 }
1724 rcu_read_unlock();
1725
1726 /*
1727 * Continues from above, so we don't need an KERN_ level
1728 */
d045197f 1729 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1730done:
1731
d045197f 1732 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1733 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1736 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1737 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1738 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1739 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1740 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1741 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1742 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1743 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1744
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 pr_info("Memory cgroup stats");
1747
1748 rcu_read_lock();
1749 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1750 if (!ret)
1751 pr_cont(" for %s", memcg_name);
1752 rcu_read_unlock();
1753 pr_cont(":");
1754
1755 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1756 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1757 continue;
1758 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1759 K(mem_cgroup_read_stat(iter, i)));
1760 }
1761
1762 for (i = 0; i < NR_LRU_LISTS; i++)
1763 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1764 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1765
1766 pr_cont("\n");
1767 }
947b3dd1 1768 spin_unlock(&oom_info_lock);
e222432b
BS
1769}
1770
81d39c20
KH
1771/*
1772 * This function returns the number of memcg under hierarchy tree. Returns
1773 * 1(self count) if no children.
1774 */
c0ff4b85 1775static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1776{
1777 int num = 0;
7d74b06f
KH
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1781 num++;
81d39c20
KH
1782 return num;
1783}
1784
a63d83f4
DR
1785/*
1786 * Return the memory (and swap, if configured) limit for a memcg.
1787 */
9cbb78bb 1788static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1789{
1790 u64 limit;
a63d83f4 1791
f3e8eb70 1792 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1793
a63d83f4 1794 /*
9a5a8f19 1795 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1796 */
9a5a8f19
MH
1797 if (mem_cgroup_swappiness(memcg)) {
1798 u64 memsw;
1799
1800 limit += total_swap_pages << PAGE_SHIFT;
1801 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1802
1803 /*
1804 * If memsw is finite and limits the amount of swap space
1805 * available to this memcg, return that limit.
1806 */
1807 limit = min(limit, memsw);
1808 }
1809
1810 return limit;
a63d83f4
DR
1811}
1812
19965460
DR
1813static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1814 int order)
9cbb78bb
DR
1815{
1816 struct mem_cgroup *iter;
1817 unsigned long chosen_points = 0;
1818 unsigned long totalpages;
1819 unsigned int points = 0;
1820 struct task_struct *chosen = NULL;
1821
876aafbf 1822 /*
465adcf1
DR
1823 * If current has a pending SIGKILL or is exiting, then automatically
1824 * select it. The goal is to allow it to allocate so that it may
1825 * quickly exit and free its memory.
876aafbf 1826 */
465adcf1 1827 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1828 set_thread_flag(TIF_MEMDIE);
1829 return;
1830 }
1831
1832 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1833 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1834 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1835 struct css_task_iter it;
9cbb78bb
DR
1836 struct task_struct *task;
1837
72ec7029
TH
1838 css_task_iter_start(&iter->css, &it);
1839 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1840 switch (oom_scan_process_thread(task, totalpages, NULL,
1841 false)) {
1842 case OOM_SCAN_SELECT:
1843 if (chosen)
1844 put_task_struct(chosen);
1845 chosen = task;
1846 chosen_points = ULONG_MAX;
1847 get_task_struct(chosen);
1848 /* fall through */
1849 case OOM_SCAN_CONTINUE:
1850 continue;
1851 case OOM_SCAN_ABORT:
72ec7029 1852 css_task_iter_end(&it);
9cbb78bb
DR
1853 mem_cgroup_iter_break(memcg, iter);
1854 if (chosen)
1855 put_task_struct(chosen);
1856 return;
1857 case OOM_SCAN_OK:
1858 break;
1859 };
1860 points = oom_badness(task, memcg, NULL, totalpages);
1861 if (points > chosen_points) {
1862 if (chosen)
1863 put_task_struct(chosen);
1864 chosen = task;
1865 chosen_points = points;
1866 get_task_struct(chosen);
1867 }
1868 }
72ec7029 1869 css_task_iter_end(&it);
9cbb78bb
DR
1870 }
1871
1872 if (!chosen)
1873 return;
1874 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1875 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1876 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1877}
1878
5660048c
JW
1879static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1880 gfp_t gfp_mask,
1881 unsigned long flags)
1882{
1883 unsigned long total = 0;
1884 bool noswap = false;
1885 int loop;
1886
1887 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1888 noswap = true;
1889 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1890 noswap = true;
1891
1892 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1893 if (loop)
1894 drain_all_stock_async(memcg);
1895 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1896 /*
1897 * Allow limit shrinkers, which are triggered directly
1898 * by userspace, to catch signals and stop reclaim
1899 * after minimal progress, regardless of the margin.
1900 */
1901 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1902 break;
1903 if (mem_cgroup_margin(memcg))
1904 break;
1905 /*
1906 * If nothing was reclaimed after two attempts, there
1907 * may be no reclaimable pages in this hierarchy.
1908 */
1909 if (loop && !total)
1910 break;
1911 }
1912 return total;
1913}
1914
4d0c066d
KH
1915/**
1916 * test_mem_cgroup_node_reclaimable
dad7557e 1917 * @memcg: the target memcg
4d0c066d
KH
1918 * @nid: the node ID to be checked.
1919 * @noswap : specify true here if the user wants flle only information.
1920 *
1921 * This function returns whether the specified memcg contains any
1922 * reclaimable pages on a node. Returns true if there are any reclaimable
1923 * pages in the node.
1924 */
c0ff4b85 1925static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1926 int nid, bool noswap)
1927{
c0ff4b85 1928 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1929 return true;
1930 if (noswap || !total_swap_pages)
1931 return false;
c0ff4b85 1932 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1933 return true;
1934 return false;
1935
1936}
bb4cc1a8 1937#if MAX_NUMNODES > 1
889976db
YH
1938
1939/*
1940 * Always updating the nodemask is not very good - even if we have an empty
1941 * list or the wrong list here, we can start from some node and traverse all
1942 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1943 *
1944 */
c0ff4b85 1945static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1946{
1947 int nid;
453a9bf3
KH
1948 /*
1949 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1950 * pagein/pageout changes since the last update.
1951 */
c0ff4b85 1952 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1953 return;
c0ff4b85 1954 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1955 return;
1956
889976db 1957 /* make a nodemask where this memcg uses memory from */
31aaea4a 1958 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1959
31aaea4a 1960 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1961
c0ff4b85
R
1962 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1963 node_clear(nid, memcg->scan_nodes);
889976db 1964 }
453a9bf3 1965
c0ff4b85
R
1966 atomic_set(&memcg->numainfo_events, 0);
1967 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1968}
1969
1970/*
1971 * Selecting a node where we start reclaim from. Because what we need is just
1972 * reducing usage counter, start from anywhere is O,K. Considering
1973 * memory reclaim from current node, there are pros. and cons.
1974 *
1975 * Freeing memory from current node means freeing memory from a node which
1976 * we'll use or we've used. So, it may make LRU bad. And if several threads
1977 * hit limits, it will see a contention on a node. But freeing from remote
1978 * node means more costs for memory reclaim because of memory latency.
1979 *
1980 * Now, we use round-robin. Better algorithm is welcomed.
1981 */
c0ff4b85 1982int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1983{
1984 int node;
1985
c0ff4b85
R
1986 mem_cgroup_may_update_nodemask(memcg);
1987 node = memcg->last_scanned_node;
889976db 1988
c0ff4b85 1989 node = next_node(node, memcg->scan_nodes);
889976db 1990 if (node == MAX_NUMNODES)
c0ff4b85 1991 node = first_node(memcg->scan_nodes);
889976db
YH
1992 /*
1993 * We call this when we hit limit, not when pages are added to LRU.
1994 * No LRU may hold pages because all pages are UNEVICTABLE or
1995 * memcg is too small and all pages are not on LRU. In that case,
1996 * we use curret node.
1997 */
1998 if (unlikely(node == MAX_NUMNODES))
1999 node = numa_node_id();
2000
c0ff4b85 2001 memcg->last_scanned_node = node;
889976db
YH
2002 return node;
2003}
2004
bb4cc1a8
AM
2005/*
2006 * Check all nodes whether it contains reclaimable pages or not.
2007 * For quick scan, we make use of scan_nodes. This will allow us to skip
2008 * unused nodes. But scan_nodes is lazily updated and may not cotain
2009 * enough new information. We need to do double check.
2010 */
2011static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2012{
2013 int nid;
2014
2015 /*
2016 * quick check...making use of scan_node.
2017 * We can skip unused nodes.
2018 */
2019 if (!nodes_empty(memcg->scan_nodes)) {
2020 for (nid = first_node(memcg->scan_nodes);
2021 nid < MAX_NUMNODES;
2022 nid = next_node(nid, memcg->scan_nodes)) {
2023
2024 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2025 return true;
2026 }
2027 }
2028 /*
2029 * Check rest of nodes.
2030 */
2031 for_each_node_state(nid, N_MEMORY) {
2032 if (node_isset(nid, memcg->scan_nodes))
2033 continue;
2034 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2035 return true;
2036 }
2037 return false;
2038}
2039
889976db 2040#else
c0ff4b85 2041int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2042{
2043 return 0;
2044}
4d0c066d 2045
bb4cc1a8
AM
2046static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2047{
2048 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2049}
889976db
YH
2050#endif
2051
0608f43d
AM
2052static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2053 struct zone *zone,
2054 gfp_t gfp_mask,
2055 unsigned long *total_scanned)
2056{
2057 struct mem_cgroup *victim = NULL;
2058 int total = 0;
2059 int loop = 0;
2060 unsigned long excess;
2061 unsigned long nr_scanned;
2062 struct mem_cgroup_reclaim_cookie reclaim = {
2063 .zone = zone,
2064 .priority = 0,
2065 };
2066
2067 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2068
2069 while (1) {
2070 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2071 if (!victim) {
2072 loop++;
2073 if (loop >= 2) {
2074 /*
2075 * If we have not been able to reclaim
2076 * anything, it might because there are
2077 * no reclaimable pages under this hierarchy
2078 */
2079 if (!total)
2080 break;
2081 /*
2082 * We want to do more targeted reclaim.
2083 * excess >> 2 is not to excessive so as to
2084 * reclaim too much, nor too less that we keep
2085 * coming back to reclaim from this cgroup
2086 */
2087 if (total >= (excess >> 2) ||
2088 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2089 break;
2090 }
2091 continue;
2092 }
2093 if (!mem_cgroup_reclaimable(victim, false))
2094 continue;
2095 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2096 zone, &nr_scanned);
2097 *total_scanned += nr_scanned;
2098 if (!res_counter_soft_limit_excess(&root_memcg->res))
2099 break;
6d61ef40 2100 }
0608f43d
AM
2101 mem_cgroup_iter_break(root_memcg, victim);
2102 return total;
6d61ef40
BS
2103}
2104
0056f4e6
JW
2105#ifdef CONFIG_LOCKDEP
2106static struct lockdep_map memcg_oom_lock_dep_map = {
2107 .name = "memcg_oom_lock",
2108};
2109#endif
2110
fb2a6fc5
JW
2111static DEFINE_SPINLOCK(memcg_oom_lock);
2112
867578cb
KH
2113/*
2114 * Check OOM-Killer is already running under our hierarchy.
2115 * If someone is running, return false.
2116 */
fb2a6fc5 2117static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2118{
79dfdacc 2119 struct mem_cgroup *iter, *failed = NULL;
a636b327 2120
fb2a6fc5
JW
2121 spin_lock(&memcg_oom_lock);
2122
9f3a0d09 2123 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2124 if (iter->oom_lock) {
79dfdacc
MH
2125 /*
2126 * this subtree of our hierarchy is already locked
2127 * so we cannot give a lock.
2128 */
79dfdacc 2129 failed = iter;
9f3a0d09
JW
2130 mem_cgroup_iter_break(memcg, iter);
2131 break;
23751be0
JW
2132 } else
2133 iter->oom_lock = true;
7d74b06f 2134 }
867578cb 2135
fb2a6fc5
JW
2136 if (failed) {
2137 /*
2138 * OK, we failed to lock the whole subtree so we have
2139 * to clean up what we set up to the failing subtree
2140 */
2141 for_each_mem_cgroup_tree(iter, memcg) {
2142 if (iter == failed) {
2143 mem_cgroup_iter_break(memcg, iter);
2144 break;
2145 }
2146 iter->oom_lock = false;
79dfdacc 2147 }
0056f4e6
JW
2148 } else
2149 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2150
2151 spin_unlock(&memcg_oom_lock);
2152
2153 return !failed;
a636b327 2154}
0b7f569e 2155
fb2a6fc5 2156static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2157{
7d74b06f
KH
2158 struct mem_cgroup *iter;
2159
fb2a6fc5 2160 spin_lock(&memcg_oom_lock);
0056f4e6 2161 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2162 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2163 iter->oom_lock = false;
fb2a6fc5 2164 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2165}
2166
c0ff4b85 2167static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2168{
2169 struct mem_cgroup *iter;
2170
c0ff4b85 2171 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2172 atomic_inc(&iter->under_oom);
2173}
2174
c0ff4b85 2175static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2176{
2177 struct mem_cgroup *iter;
2178
867578cb
KH
2179 /*
2180 * When a new child is created while the hierarchy is under oom,
2181 * mem_cgroup_oom_lock() may not be called. We have to use
2182 * atomic_add_unless() here.
2183 */
c0ff4b85 2184 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2185 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2186}
2187
867578cb
KH
2188static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2189
dc98df5a 2190struct oom_wait_info {
d79154bb 2191 struct mem_cgroup *memcg;
dc98df5a
KH
2192 wait_queue_t wait;
2193};
2194
2195static int memcg_oom_wake_function(wait_queue_t *wait,
2196 unsigned mode, int sync, void *arg)
2197{
d79154bb
HD
2198 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2199 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2200 struct oom_wait_info *oom_wait_info;
2201
2202 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2203 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2204
dc98df5a 2205 /*
d79154bb 2206 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2207 * Then we can use css_is_ancestor without taking care of RCU.
2208 */
c0ff4b85
R
2209 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2210 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2211 return 0;
dc98df5a
KH
2212 return autoremove_wake_function(wait, mode, sync, arg);
2213}
2214
c0ff4b85 2215static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2216{
3812c8c8 2217 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2218 /* for filtering, pass "memcg" as argument. */
2219 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2220}
2221
c0ff4b85 2222static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2223{
c0ff4b85
R
2224 if (memcg && atomic_read(&memcg->under_oom))
2225 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2226}
2227
3812c8c8 2228static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2229{
3812c8c8
JW
2230 if (!current->memcg_oom.may_oom)
2231 return;
867578cb 2232 /*
49426420
JW
2233 * We are in the middle of the charge context here, so we
2234 * don't want to block when potentially sitting on a callstack
2235 * that holds all kinds of filesystem and mm locks.
2236 *
2237 * Also, the caller may handle a failed allocation gracefully
2238 * (like optional page cache readahead) and so an OOM killer
2239 * invocation might not even be necessary.
2240 *
2241 * That's why we don't do anything here except remember the
2242 * OOM context and then deal with it at the end of the page
2243 * fault when the stack is unwound, the locks are released,
2244 * and when we know whether the fault was overall successful.
867578cb 2245 */
49426420
JW
2246 css_get(&memcg->css);
2247 current->memcg_oom.memcg = memcg;
2248 current->memcg_oom.gfp_mask = mask;
2249 current->memcg_oom.order = order;
3812c8c8
JW
2250}
2251
2252/**
2253 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2254 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2255 *
49426420
JW
2256 * This has to be called at the end of a page fault if the memcg OOM
2257 * handler was enabled.
3812c8c8 2258 *
49426420 2259 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2260 * sleep on a waitqueue until the userspace task resolves the
2261 * situation. Sleeping directly in the charge context with all kinds
2262 * of locks held is not a good idea, instead we remember an OOM state
2263 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2264 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2265 *
2266 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2267 * completed, %false otherwise.
3812c8c8 2268 */
49426420 2269bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2270{
49426420 2271 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2272 struct oom_wait_info owait;
49426420 2273 bool locked;
3812c8c8
JW
2274
2275 /* OOM is global, do not handle */
3812c8c8 2276 if (!memcg)
49426420 2277 return false;
3812c8c8 2278
49426420
JW
2279 if (!handle)
2280 goto cleanup;
3812c8c8
JW
2281
2282 owait.memcg = memcg;
2283 owait.wait.flags = 0;
2284 owait.wait.func = memcg_oom_wake_function;
2285 owait.wait.private = current;
2286 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2287
3812c8c8 2288 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2289 mem_cgroup_mark_under_oom(memcg);
2290
2291 locked = mem_cgroup_oom_trylock(memcg);
2292
2293 if (locked)
2294 mem_cgroup_oom_notify(memcg);
2295
2296 if (locked && !memcg->oom_kill_disable) {
2297 mem_cgroup_unmark_under_oom(memcg);
2298 finish_wait(&memcg_oom_waitq, &owait.wait);
2299 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2300 current->memcg_oom.order);
2301 } else {
3812c8c8 2302 schedule();
49426420
JW
2303 mem_cgroup_unmark_under_oom(memcg);
2304 finish_wait(&memcg_oom_waitq, &owait.wait);
2305 }
2306
2307 if (locked) {
fb2a6fc5
JW
2308 mem_cgroup_oom_unlock(memcg);
2309 /*
2310 * There is no guarantee that an OOM-lock contender
2311 * sees the wakeups triggered by the OOM kill
2312 * uncharges. Wake any sleepers explicitely.
2313 */
2314 memcg_oom_recover(memcg);
2315 }
49426420
JW
2316cleanup:
2317 current->memcg_oom.memcg = NULL;
3812c8c8 2318 css_put(&memcg->css);
867578cb 2319 return true;
0b7f569e
KH
2320}
2321
d69b042f
BS
2322/*
2323 * Currently used to update mapped file statistics, but the routine can be
2324 * generalized to update other statistics as well.
32047e2a
KH
2325 *
2326 * Notes: Race condition
2327 *
2328 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2329 * it tends to be costly. But considering some conditions, we doesn't need
2330 * to do so _always_.
2331 *
2332 * Considering "charge", lock_page_cgroup() is not required because all
2333 * file-stat operations happen after a page is attached to radix-tree. There
2334 * are no race with "charge".
2335 *
2336 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2337 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2338 * if there are race with "uncharge". Statistics itself is properly handled
2339 * by flags.
2340 *
2341 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2342 * small, we check mm->moving_account and detect there are possibility of race
2343 * If there is, we take a lock.
d69b042f 2344 */
26174efd 2345
89c06bd5
KH
2346void __mem_cgroup_begin_update_page_stat(struct page *page,
2347 bool *locked, unsigned long *flags)
2348{
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc;
2351
2352 pc = lookup_page_cgroup(page);
2353again:
2354 memcg = pc->mem_cgroup;
2355 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2356 return;
2357 /*
2358 * If this memory cgroup is not under account moving, we don't
da92c47d 2359 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2360 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2361 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2362 */
13fd1dd9 2363 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2364 return;
2365
2366 move_lock_mem_cgroup(memcg, flags);
2367 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2368 move_unlock_mem_cgroup(memcg, flags);
2369 goto again;
2370 }
2371 *locked = true;
2372}
2373
2374void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2375{
2376 struct page_cgroup *pc = lookup_page_cgroup(page);
2377
2378 /*
2379 * It's guaranteed that pc->mem_cgroup never changes while
2380 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2381 * should take move_lock_mem_cgroup().
89c06bd5
KH
2382 */
2383 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2384}
2385
2a7106f2 2386void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2387 enum mem_cgroup_stat_index idx, int val)
d69b042f 2388{
c0ff4b85 2389 struct mem_cgroup *memcg;
32047e2a 2390 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2391 unsigned long uninitialized_var(flags);
d69b042f 2392
cfa44946 2393 if (mem_cgroup_disabled())
d69b042f 2394 return;
89c06bd5 2395
658b72c5 2396 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2397 memcg = pc->mem_cgroup;
2398 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2399 return;
26174efd 2400
c0ff4b85 2401 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2402}
26174efd 2403
cdec2e42
KH
2404/*
2405 * size of first charge trial. "32" comes from vmscan.c's magic value.
2406 * TODO: maybe necessary to use big numbers in big irons.
2407 */
7ec99d62 2408#define CHARGE_BATCH 32U
cdec2e42
KH
2409struct memcg_stock_pcp {
2410 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2411 unsigned int nr_pages;
cdec2e42 2412 struct work_struct work;
26fe6168 2413 unsigned long flags;
a0db00fc 2414#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2415};
2416static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2417static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2418
a0956d54
SS
2419/**
2420 * consume_stock: Try to consume stocked charge on this cpu.
2421 * @memcg: memcg to consume from.
2422 * @nr_pages: how many pages to charge.
2423 *
2424 * The charges will only happen if @memcg matches the current cpu's memcg
2425 * stock, and at least @nr_pages are available in that stock. Failure to
2426 * service an allocation will refill the stock.
2427 *
2428 * returns true if successful, false otherwise.
cdec2e42 2429 */
a0956d54 2430static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2431{
2432 struct memcg_stock_pcp *stock;
2433 bool ret = true;
2434
a0956d54
SS
2435 if (nr_pages > CHARGE_BATCH)
2436 return false;
2437
cdec2e42 2438 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2439 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2440 stock->nr_pages -= nr_pages;
cdec2e42
KH
2441 else /* need to call res_counter_charge */
2442 ret = false;
2443 put_cpu_var(memcg_stock);
2444 return ret;
2445}
2446
2447/*
2448 * Returns stocks cached in percpu to res_counter and reset cached information.
2449 */
2450static void drain_stock(struct memcg_stock_pcp *stock)
2451{
2452 struct mem_cgroup *old = stock->cached;
2453
11c9ea4e
JW
2454 if (stock->nr_pages) {
2455 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2456
2457 res_counter_uncharge(&old->res, bytes);
cdec2e42 2458 if (do_swap_account)
11c9ea4e
JW
2459 res_counter_uncharge(&old->memsw, bytes);
2460 stock->nr_pages = 0;
cdec2e42
KH
2461 }
2462 stock->cached = NULL;
cdec2e42
KH
2463}
2464
2465/*
2466 * This must be called under preempt disabled or must be called by
2467 * a thread which is pinned to local cpu.
2468 */
2469static void drain_local_stock(struct work_struct *dummy)
2470{
2471 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2472 drain_stock(stock);
26fe6168 2473 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2474}
2475
e4777496
MH
2476static void __init memcg_stock_init(void)
2477{
2478 int cpu;
2479
2480 for_each_possible_cpu(cpu) {
2481 struct memcg_stock_pcp *stock =
2482 &per_cpu(memcg_stock, cpu);
2483 INIT_WORK(&stock->work, drain_local_stock);
2484 }
2485}
2486
cdec2e42
KH
2487/*
2488 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2489 * This will be consumed by consume_stock() function, later.
cdec2e42 2490 */
c0ff4b85 2491static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2492{
2493 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2494
c0ff4b85 2495 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2496 drain_stock(stock);
c0ff4b85 2497 stock->cached = memcg;
cdec2e42 2498 }
11c9ea4e 2499 stock->nr_pages += nr_pages;
cdec2e42
KH
2500 put_cpu_var(memcg_stock);
2501}
2502
2503/*
c0ff4b85 2504 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2505 * of the hierarchy under it. sync flag says whether we should block
2506 * until the work is done.
cdec2e42 2507 */
c0ff4b85 2508static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2509{
26fe6168 2510 int cpu, curcpu;
d38144b7 2511
cdec2e42 2512 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2513 get_online_cpus();
5af12d0e 2514 curcpu = get_cpu();
cdec2e42
KH
2515 for_each_online_cpu(cpu) {
2516 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2517 struct mem_cgroup *memcg;
26fe6168 2518
c0ff4b85
R
2519 memcg = stock->cached;
2520 if (!memcg || !stock->nr_pages)
26fe6168 2521 continue;
c0ff4b85 2522 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2523 continue;
d1a05b69
MH
2524 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2525 if (cpu == curcpu)
2526 drain_local_stock(&stock->work);
2527 else
2528 schedule_work_on(cpu, &stock->work);
2529 }
cdec2e42 2530 }
5af12d0e 2531 put_cpu();
d38144b7
MH
2532
2533 if (!sync)
2534 goto out;
2535
2536 for_each_online_cpu(cpu) {
2537 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2538 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2539 flush_work(&stock->work);
2540 }
2541out:
f894ffa8 2542 put_online_cpus();
d38144b7
MH
2543}
2544
2545/*
2546 * Tries to drain stocked charges in other cpus. This function is asynchronous
2547 * and just put a work per cpu for draining localy on each cpu. Caller can
2548 * expects some charges will be back to res_counter later but cannot wait for
2549 * it.
2550 */
c0ff4b85 2551static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2552{
9f50fad6
MH
2553 /*
2554 * If someone calls draining, avoid adding more kworker runs.
2555 */
2556 if (!mutex_trylock(&percpu_charge_mutex))
2557 return;
c0ff4b85 2558 drain_all_stock(root_memcg, false);
9f50fad6 2559 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2560}
2561
2562/* This is a synchronous drain interface. */
c0ff4b85 2563static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2564{
2565 /* called when force_empty is called */
9f50fad6 2566 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2567 drain_all_stock(root_memcg, true);
9f50fad6 2568 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2569}
2570
711d3d2c
KH
2571/*
2572 * This function drains percpu counter value from DEAD cpu and
2573 * move it to local cpu. Note that this function can be preempted.
2574 */
c0ff4b85 2575static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2576{
2577 int i;
2578
c0ff4b85 2579 spin_lock(&memcg->pcp_counter_lock);
6104621d 2580 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2581 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2582
c0ff4b85
R
2583 per_cpu(memcg->stat->count[i], cpu) = 0;
2584 memcg->nocpu_base.count[i] += x;
711d3d2c 2585 }
e9f8974f 2586 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2587 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2588
c0ff4b85
R
2589 per_cpu(memcg->stat->events[i], cpu) = 0;
2590 memcg->nocpu_base.events[i] += x;
e9f8974f 2591 }
c0ff4b85 2592 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2593}
2594
0db0628d 2595static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2596 unsigned long action,
2597 void *hcpu)
2598{
2599 int cpu = (unsigned long)hcpu;
2600 struct memcg_stock_pcp *stock;
711d3d2c 2601 struct mem_cgroup *iter;
cdec2e42 2602
619d094b 2603 if (action == CPU_ONLINE)
1489ebad 2604 return NOTIFY_OK;
1489ebad 2605
d833049b 2606 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2607 return NOTIFY_OK;
711d3d2c 2608
9f3a0d09 2609 for_each_mem_cgroup(iter)
711d3d2c
KH
2610 mem_cgroup_drain_pcp_counter(iter, cpu);
2611
cdec2e42
KH
2612 stock = &per_cpu(memcg_stock, cpu);
2613 drain_stock(stock);
2614 return NOTIFY_OK;
2615}
2616
4b534334
KH
2617
2618/* See __mem_cgroup_try_charge() for details */
2619enum {
2620 CHARGE_OK, /* success */
2621 CHARGE_RETRY, /* need to retry but retry is not bad */
2622 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2623 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2624};
2625
c0ff4b85 2626static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2627 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2628 bool invoke_oom)
4b534334 2629{
7ec99d62 2630 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2631 struct mem_cgroup *mem_over_limit;
2632 struct res_counter *fail_res;
2633 unsigned long flags = 0;
2634 int ret;
2635
c0ff4b85 2636 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2637
2638 if (likely(!ret)) {
2639 if (!do_swap_account)
2640 return CHARGE_OK;
c0ff4b85 2641 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2642 if (likely(!ret))
2643 return CHARGE_OK;
2644
c0ff4b85 2645 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2646 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2647 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2648 } else
2649 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2650 /*
9221edb7
JW
2651 * Never reclaim on behalf of optional batching, retry with a
2652 * single page instead.
2653 */
4c9c5359 2654 if (nr_pages > min_pages)
4b534334
KH
2655 return CHARGE_RETRY;
2656
2657 if (!(gfp_mask & __GFP_WAIT))
2658 return CHARGE_WOULDBLOCK;
2659
4c9c5359
SS
2660 if (gfp_mask & __GFP_NORETRY)
2661 return CHARGE_NOMEM;
2662
5660048c 2663 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2664 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2665 return CHARGE_RETRY;
4b534334 2666 /*
19942822
JW
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
4b534334 2674 */
4c9c5359 2675 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2676 return CHARGE_RETRY;
2677
2678 /*
2679 * At task move, charge accounts can be doubly counted. So, it's
2680 * better to wait until the end of task_move if something is going on.
2681 */
2682 if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 return CHARGE_RETRY;
2684
3812c8c8
JW
2685 if (invoke_oom)
2686 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2687
3812c8c8 2688 return CHARGE_NOMEM;
4b534334
KH
2689}
2690
f817ed48 2691/*
38c5d72f
KH
2692 * __mem_cgroup_try_charge() does
2693 * 1. detect memcg to be charged against from passed *mm and *ptr,
2694 * 2. update res_counter
2695 * 3. call memory reclaim if necessary.
2696 *
2697 * In some special case, if the task is fatal, fatal_signal_pending() or
2698 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2699 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2700 * as possible without any hazards. 2: all pages should have a valid
2701 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2702 * pointer, that is treated as a charge to root_mem_cgroup.
2703 *
2704 * So __mem_cgroup_try_charge() will return
2705 * 0 ... on success, filling *ptr with a valid memcg pointer.
2706 * -ENOMEM ... charge failure because of resource limits.
2707 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2708 *
2709 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2710 * the oom-killer can be invoked.
8a9f3ccd 2711 */
f817ed48 2712static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2713 gfp_t gfp_mask,
7ec99d62 2714 unsigned int nr_pages,
c0ff4b85 2715 struct mem_cgroup **ptr,
7ec99d62 2716 bool oom)
8a9f3ccd 2717{
7ec99d62 2718 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2719 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2720 struct mem_cgroup *memcg = NULL;
4b534334 2721 int ret;
a636b327 2722
867578cb
KH
2723 /*
2724 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2725 * in system level. So, allow to go ahead dying process in addition to
2726 * MEMDIE process.
2727 */
2728 if (unlikely(test_thread_flag(TIF_MEMDIE)
2729 || fatal_signal_pending(current)))
2730 goto bypass;
a636b327 2731
49426420 2732 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2733 goto nomem;
49426420 2734
a0d8b00a
JW
2735 if (gfp_mask & __GFP_NOFAIL)
2736 oom = false;
2737
8a9f3ccd 2738 /*
3be91277
HD
2739 * We always charge the cgroup the mm_struct belongs to.
2740 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2741 * thread group leader migrates. It's possible that mm is not
24467cac 2742 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2743 */
c0ff4b85 2744 if (!*ptr && !mm)
38c5d72f 2745 *ptr = root_mem_cgroup;
f75ca962 2746again:
c0ff4b85
R
2747 if (*ptr) { /* css should be a valid one */
2748 memcg = *ptr;
c0ff4b85 2749 if (mem_cgroup_is_root(memcg))
f75ca962 2750 goto done;
a0956d54 2751 if (consume_stock(memcg, nr_pages))
f75ca962 2752 goto done;
c0ff4b85 2753 css_get(&memcg->css);
4b534334 2754 } else {
f75ca962 2755 struct task_struct *p;
54595fe2 2756
f75ca962
KH
2757 rcu_read_lock();
2758 p = rcu_dereference(mm->owner);
f75ca962 2759 /*
ebb76ce1 2760 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2761 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2762 * race with swapoff. Then, we have small risk of mis-accouning.
2763 * But such kind of mis-account by race always happens because
2764 * we don't have cgroup_mutex(). It's overkill and we allo that
2765 * small race, here.
2766 * (*) swapoff at el will charge against mm-struct not against
2767 * task-struct. So, mm->owner can be NULL.
f75ca962 2768 */
c0ff4b85 2769 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2770 if (!memcg)
2771 memcg = root_mem_cgroup;
2772 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2773 rcu_read_unlock();
2774 goto done;
2775 }
a0956d54 2776 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2777 /*
2778 * It seems dagerous to access memcg without css_get().
2779 * But considering how consume_stok works, it's not
2780 * necessary. If consume_stock success, some charges
2781 * from this memcg are cached on this cpu. So, we
2782 * don't need to call css_get()/css_tryget() before
2783 * calling consume_stock().
2784 */
2785 rcu_read_unlock();
2786 goto done;
2787 }
2788 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2789 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2790 rcu_read_unlock();
2791 goto again;
2792 }
2793 rcu_read_unlock();
2794 }
8a9f3ccd 2795
4b534334 2796 do {
3812c8c8 2797 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2798
4b534334 2799 /* If killed, bypass charge */
f75ca962 2800 if (fatal_signal_pending(current)) {
c0ff4b85 2801 css_put(&memcg->css);
4b534334 2802 goto bypass;
f75ca962 2803 }
6d61ef40 2804
3812c8c8
JW
2805 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2806 nr_pages, invoke_oom);
4b534334
KH
2807 switch (ret) {
2808 case CHARGE_OK:
2809 break;
2810 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2811 batch = nr_pages;
c0ff4b85
R
2812 css_put(&memcg->css);
2813 memcg = NULL;
f75ca962 2814 goto again;
4b534334 2815 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2816 css_put(&memcg->css);
4b534334
KH
2817 goto nomem;
2818 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2819 if (!oom || invoke_oom) {
c0ff4b85 2820 css_put(&memcg->css);
867578cb 2821 goto nomem;
f75ca962 2822 }
4b534334
KH
2823 nr_oom_retries--;
2824 break;
66e1707b 2825 }
4b534334
KH
2826 } while (ret != CHARGE_OK);
2827
7ec99d62 2828 if (batch > nr_pages)
c0ff4b85
R
2829 refill_stock(memcg, batch - nr_pages);
2830 css_put(&memcg->css);
0c3e73e8 2831done:
c0ff4b85 2832 *ptr = memcg;
7a81b88c
KH
2833 return 0;
2834nomem:
3168ecbe
JW
2835 if (!(gfp_mask & __GFP_NOFAIL)) {
2836 *ptr = NULL;
2837 return -ENOMEM;
2838 }
867578cb 2839bypass:
38c5d72f
KH
2840 *ptr = root_mem_cgroup;
2841 return -EINTR;
7a81b88c 2842}
8a9f3ccd 2843
a3032a2c
DN
2844/*
2845 * Somemtimes we have to undo a charge we got by try_charge().
2846 * This function is for that and do uncharge, put css's refcnt.
2847 * gotten by try_charge().
2848 */
c0ff4b85 2849static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2850 unsigned int nr_pages)
a3032a2c 2851{
c0ff4b85 2852 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2853 unsigned long bytes = nr_pages * PAGE_SIZE;
2854
c0ff4b85 2855 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2856 if (do_swap_account)
c0ff4b85 2857 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2858 }
854ffa8d
DN
2859}
2860
d01dd17f
KH
2861/*
2862 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2863 * This is useful when moving usage to parent cgroup.
2864 */
2865static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867{
2868 unsigned long bytes = nr_pages * PAGE_SIZE;
2869
2870 if (mem_cgroup_is_root(memcg))
2871 return;
2872
2873 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2874 if (do_swap_account)
2875 res_counter_uncharge_until(&memcg->memsw,
2876 memcg->memsw.parent, bytes);
2877}
2878
a3b2d692
KH
2879/*
2880 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2881 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2882 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2883 * called against removed memcg.)
a3b2d692
KH
2884 */
2885static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2886{
a3b2d692
KH
2887 /* ID 0 is unused ID */
2888 if (!id)
2889 return NULL;
34c00c31 2890 return mem_cgroup_from_id(id);
a3b2d692
KH
2891}
2892
e42d9d5d 2893struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2894{
c0ff4b85 2895 struct mem_cgroup *memcg = NULL;
3c776e64 2896 struct page_cgroup *pc;
a3b2d692 2897 unsigned short id;
b5a84319
KH
2898 swp_entry_t ent;
2899
309381fe 2900 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2901
3c776e64 2902 pc = lookup_page_cgroup(page);
c0bd3f63 2903 lock_page_cgroup(pc);
a3b2d692 2904 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2905 memcg = pc->mem_cgroup;
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
e42d9d5d 2908 } else if (PageSwapCache(page)) {
3c776e64 2909 ent.val = page_private(page);
9fb4b7cc 2910 id = lookup_swap_cgroup_id(ent);
a3b2d692 2911 rcu_read_lock();
c0ff4b85
R
2912 memcg = mem_cgroup_lookup(id);
2913 if (memcg && !css_tryget(&memcg->css))
2914 memcg = NULL;
a3b2d692 2915 rcu_read_unlock();
3c776e64 2916 }
c0bd3f63 2917 unlock_page_cgroup(pc);
c0ff4b85 2918 return memcg;
b5a84319
KH
2919}
2920
c0ff4b85 2921static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2922 struct page *page,
7ec99d62 2923 unsigned int nr_pages,
9ce70c02
HD
2924 enum charge_type ctype,
2925 bool lrucare)
7a81b88c 2926{
ce587e65 2927 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2928 struct zone *uninitialized_var(zone);
fa9add64 2929 struct lruvec *lruvec;
9ce70c02 2930 bool was_on_lru = false;
b2402857 2931 bool anon;
9ce70c02 2932
ca3e0214 2933 lock_page_cgroup(pc);
309381fe 2934 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2935 /*
2936 * we don't need page_cgroup_lock about tail pages, becase they are not
2937 * accessed by any other context at this point.
2938 */
9ce70c02
HD
2939
2940 /*
2941 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2942 * may already be on some other mem_cgroup's LRU. Take care of it.
2943 */
2944 if (lrucare) {
2945 zone = page_zone(page);
2946 spin_lock_irq(&zone->lru_lock);
2947 if (PageLRU(page)) {
fa9add64 2948 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2949 ClearPageLRU(page);
fa9add64 2950 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2951 was_on_lru = true;
2952 }
2953 }
2954
c0ff4b85 2955 pc->mem_cgroup = memcg;
261fb61a
KH
2956 /*
2957 * We access a page_cgroup asynchronously without lock_page_cgroup().
2958 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2959 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2960 * before USED bit, we need memory barrier here.
2961 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2962 */
08e552c6 2963 smp_wmb();
b2402857 2964 SetPageCgroupUsed(pc);
3be91277 2965
9ce70c02
HD
2966 if (lrucare) {
2967 if (was_on_lru) {
fa9add64 2968 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2969 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2970 SetPageLRU(page);
fa9add64 2971 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2972 }
2973 spin_unlock_irq(&zone->lru_lock);
2974 }
2975
41326c17 2976 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2977 anon = true;
2978 else
2979 anon = false;
2980
b070e65c 2981 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2982 unlock_page_cgroup(pc);
9ce70c02 2983
430e4863 2984 /*
bb4cc1a8
AM
2985 * "charge_statistics" updated event counter. Then, check it.
2986 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2987 * if they exceeds softlimit.
430e4863 2988 */
c0ff4b85 2989 memcg_check_events(memcg, page);
7a81b88c 2990}
66e1707b 2991
7cf27982
GC
2992static DEFINE_MUTEX(set_limit_mutex);
2993
7ae1e1d0
GC
2994#ifdef CONFIG_MEMCG_KMEM
2995static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2996{
2997 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
1c98dd90
VD
2998 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK) ==
2999 KMEM_ACCOUNTED_MASK;
7ae1e1d0
GC
3000}
3001
1f458cbf
GC
3002/*
3003 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3004 * in the memcg_cache_params struct.
3005 */
3006static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3007{
3008 struct kmem_cache *cachep;
3009
3010 VM_BUG_ON(p->is_root_cache);
3011 cachep = p->root_cache;
7a67d7ab 3012 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3013}
3014
749c5415 3015#ifdef CONFIG_SLABINFO
2da8ca82 3016static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 3017{
2da8ca82 3018 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
3019 struct memcg_cache_params *params;
3020
3021 if (!memcg_can_account_kmem(memcg))
3022 return -EIO;
3023
3024 print_slabinfo_header(m);
3025
3026 mutex_lock(&memcg->slab_caches_mutex);
3027 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3028 cache_show(memcg_params_to_cache(params), m);
3029 mutex_unlock(&memcg->slab_caches_mutex);
3030
3031 return 0;
3032}
3033#endif
3034
7ae1e1d0
GC
3035static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3036{
3037 struct res_counter *fail_res;
3038 struct mem_cgroup *_memcg;
3039 int ret = 0;
7ae1e1d0
GC
3040
3041 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3042 if (ret)
3043 return ret;
3044
7ae1e1d0
GC
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3047 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074}
3075
3076static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077{
7ae1e1d0
GC
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
10d5ebf4
LZ
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
7de37682 3094 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3095 css_put(&memcg->css);
7ae1e1d0
GC
3096}
3097
2633d7a0
GC
3098/*
3099 * helper for acessing a memcg's index. It will be used as an index in the
3100 * child cache array in kmem_cache, and also to derive its name. This function
3101 * will return -1 when this is not a kmem-limited memcg.
3102 */
3103int memcg_cache_id(struct mem_cgroup *memcg)
3104{
3105 return memcg ? memcg->kmemcg_id : -1;
3106}
3107
55007d84
GC
3108/*
3109 * This ends up being protected by the set_limit mutex, during normal
3110 * operation, because that is its main call site.
3111 *
3112 * But when we create a new cache, we can call this as well if its parent
3113 * is kmem-limited. That will have to hold set_limit_mutex as well.
3114 */
2753b35b 3115static int memcg_update_cache_sizes(struct mem_cgroup *memcg)
55007d84
GC
3116{
3117 int num, ret;
3118
3119 num = ida_simple_get(&kmem_limited_groups,
3120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3121 if (num < 0)
3122 return num;
3123 /*
3124 * After this point, kmem_accounted (that we test atomically in
3125 * the beginning of this conditional), is no longer 0. This
3126 * guarantees only one process will set the following boolean
3127 * to true. We don't need test_and_set because we're protected
3128 * by the set_limit_mutex anyway.
3129 */
3130 memcg_kmem_set_activated(memcg);
3131
3132 ret = memcg_update_all_caches(num+1);
3133 if (ret) {
3134 ida_simple_remove(&kmem_limited_groups, num);
3135 memcg_kmem_clear_activated(memcg);
3136 return ret;
3137 }
3138
3139 memcg->kmemcg_id = num;
3140 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3141 mutex_init(&memcg->slab_caches_mutex);
3142 return 0;
3143}
3144
3145static size_t memcg_caches_array_size(int num_groups)
3146{
3147 ssize_t size;
3148 if (num_groups <= 0)
3149 return 0;
3150
3151 size = 2 * num_groups;
3152 if (size < MEMCG_CACHES_MIN_SIZE)
3153 size = MEMCG_CACHES_MIN_SIZE;
3154 else if (size > MEMCG_CACHES_MAX_SIZE)
3155 size = MEMCG_CACHES_MAX_SIZE;
3156
3157 return size;
3158}
3159
3160/*
3161 * We should update the current array size iff all caches updates succeed. This
3162 * can only be done from the slab side. The slab mutex needs to be held when
3163 * calling this.
3164 */
3165void memcg_update_array_size(int num)
3166{
3167 if (num > memcg_limited_groups_array_size)
3168 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3169}
3170
15cf17d2
KK
3171static void kmem_cache_destroy_work_func(struct work_struct *w);
3172
55007d84
GC
3173int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3174{
3175 struct memcg_cache_params *cur_params = s->memcg_params;
3176
f35c3a8e 3177 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3178
3179 if (num_groups > memcg_limited_groups_array_size) {
3180 int i;
f8570263 3181 struct memcg_cache_params *new_params;
55007d84
GC
3182 ssize_t size = memcg_caches_array_size(num_groups);
3183
3184 size *= sizeof(void *);
90c7a79c 3185 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3186
f8570263
VD
3187 new_params = kzalloc(size, GFP_KERNEL);
3188 if (!new_params)
55007d84 3189 return -ENOMEM;
55007d84 3190
f8570263 3191 new_params->is_root_cache = true;
55007d84
GC
3192
3193 /*
3194 * There is the chance it will be bigger than
3195 * memcg_limited_groups_array_size, if we failed an allocation
3196 * in a cache, in which case all caches updated before it, will
3197 * have a bigger array.
3198 *
3199 * But if that is the case, the data after
3200 * memcg_limited_groups_array_size is certainly unused
3201 */
3202 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3203 if (!cur_params->memcg_caches[i])
3204 continue;
f8570263 3205 new_params->memcg_caches[i] =
55007d84
GC
3206 cur_params->memcg_caches[i];
3207 }
3208
3209 /*
3210 * Ideally, we would wait until all caches succeed, and only
3211 * then free the old one. But this is not worth the extra
3212 * pointer per-cache we'd have to have for this.
3213 *
3214 * It is not a big deal if some caches are left with a size
3215 * bigger than the others. And all updates will reset this
3216 * anyway.
3217 */
f8570263
VD
3218 rcu_assign_pointer(s->memcg_params, new_params);
3219 if (cur_params)
3220 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3221 }
3222 return 0;
3223}
3224
363a044f
VD
3225int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3226 struct kmem_cache *root_cache)
2633d7a0 3227{
90c7a79c 3228 size_t size;
2633d7a0
GC
3229
3230 if (!memcg_kmem_enabled())
3231 return 0;
3232
90c7a79c
AV
3233 if (!memcg) {
3234 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3235 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3236 } else
3237 size = sizeof(struct memcg_cache_params);
55007d84 3238
2633d7a0
GC
3239 s->memcg_params = kzalloc(size, GFP_KERNEL);
3240 if (!s->memcg_params)
3241 return -ENOMEM;
3242
943a451a 3243 if (memcg) {
2633d7a0 3244 s->memcg_params->memcg = memcg;
943a451a 3245 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3246 INIT_WORK(&s->memcg_params->destroy,
3247 kmem_cache_destroy_work_func);
4ba902b5
GC
3248 } else
3249 s->memcg_params->is_root_cache = true;
3250
2633d7a0
GC
3251 return 0;
3252}
3253
363a044f
VD
3254void memcg_free_cache_params(struct kmem_cache *s)
3255{
3256 kfree(s->memcg_params);
3257}
3258
1aa13254 3259void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3260{
d7f25f8a
GC
3261 struct kmem_cache *root;
3262 struct mem_cgroup *memcg;
3263 int id;
3264
1aa13254
VD
3265 if (is_root_cache(s))
3266 return;
3267
2edefe11
VD
3268 /*
3269 * Holding the slab_mutex assures nobody will touch the memcg_caches
3270 * array while we are modifying it.
3271 */
3272 lockdep_assert_held(&slab_mutex);
3273
1aa13254
VD
3274 root = s->memcg_params->root_cache;
3275 memcg = s->memcg_params->memcg;
3276 id = memcg_cache_id(memcg);
3277
3278 css_get(&memcg->css);
3279
1aa13254 3280
d7f25f8a 3281 /*
959c8963
VD
3282 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3283 * barrier here to ensure nobody will see the kmem_cache partially
3284 * initialized.
d7f25f8a 3285 */
959c8963
VD
3286 smp_wmb();
3287
96403da2
VD
3288 /*
3289 * Initialize the pointer to this cache in its parent's memcg_params
3290 * before adding it to the memcg_slab_caches list, otherwise we can
3291 * fail to convert memcg_params_to_cache() while traversing the list.
3292 */
2edefe11 3293 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3294 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3295
3296 mutex_lock(&memcg->slab_caches_mutex);
3297 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3298 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3299}
d7f25f8a 3300
1aa13254
VD
3301void memcg_unregister_cache(struct kmem_cache *s)
3302{
3303 struct kmem_cache *root;
3304 struct mem_cgroup *memcg;
3305 int id;
3306
3307 if (is_root_cache(s))
3308 return;
d7f25f8a 3309
2edefe11
VD
3310 /*
3311 * Holding the slab_mutex assures nobody will touch the memcg_caches
3312 * array while we are modifying it.
3313 */
3314 lockdep_assert_held(&slab_mutex);
3315
d7f25f8a 3316 root = s->memcg_params->root_cache;
96403da2
VD
3317 memcg = s->memcg_params->memcg;
3318 id = memcg_cache_id(memcg);
d7f25f8a
GC
3319
3320 mutex_lock(&memcg->slab_caches_mutex);
3321 list_del(&s->memcg_params->list);
3322 mutex_unlock(&memcg->slab_caches_mutex);
3323
96403da2
VD
3324 /*
3325 * Clear the pointer to this cache in its parent's memcg_params only
3326 * after removing it from the memcg_slab_caches list, otherwise we can
3327 * fail to convert memcg_params_to_cache() while traversing the list.
3328 */
2edefe11 3329 VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
96403da2
VD
3330 root->memcg_params->memcg_caches[id] = NULL;
3331
20f05310 3332 css_put(&memcg->css);
2633d7a0
GC
3333}
3334
0e9d92f2
GC
3335/*
3336 * During the creation a new cache, we need to disable our accounting mechanism
3337 * altogether. This is true even if we are not creating, but rather just
3338 * enqueing new caches to be created.
3339 *
3340 * This is because that process will trigger allocations; some visible, like
3341 * explicit kmallocs to auxiliary data structures, name strings and internal
3342 * cache structures; some well concealed, like INIT_WORK() that can allocate
3343 * objects during debug.
3344 *
3345 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3346 * to it. This may not be a bounded recursion: since the first cache creation
3347 * failed to complete (waiting on the allocation), we'll just try to create the
3348 * cache again, failing at the same point.
3349 *
3350 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3351 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3352 * inside the following two functions.
3353 */
3354static inline void memcg_stop_kmem_account(void)
3355{
3356 VM_BUG_ON(!current->mm);
3357 current->memcg_kmem_skip_account++;
3358}
3359
3360static inline void memcg_resume_kmem_account(void)
3361{
3362 VM_BUG_ON(!current->mm);
3363 current->memcg_kmem_skip_account--;
3364}
3365
1f458cbf
GC
3366static void kmem_cache_destroy_work_func(struct work_struct *w)
3367{
3368 struct kmem_cache *cachep;
3369 struct memcg_cache_params *p;
3370
3371 p = container_of(w, struct memcg_cache_params, destroy);
3372
3373 cachep = memcg_params_to_cache(p);
3374
22933152
GC
3375 /*
3376 * If we get down to 0 after shrink, we could delete right away.
3377 * However, memcg_release_pages() already puts us back in the workqueue
3378 * in that case. If we proceed deleting, we'll get a dangling
3379 * reference, and removing the object from the workqueue in that case
3380 * is unnecessary complication. We are not a fast path.
3381 *
3382 * Note that this case is fundamentally different from racing with
3383 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3384 * kmem_cache_shrink, not only we would be reinserting a dead cache
3385 * into the queue, but doing so from inside the worker racing to
3386 * destroy it.
3387 *
3388 * So if we aren't down to zero, we'll just schedule a worker and try
3389 * again
3390 */
3391 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3392 kmem_cache_shrink(cachep);
3393 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3394 return;
3395 } else
1f458cbf
GC
3396 kmem_cache_destroy(cachep);
3397}
3398
3399void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3400{
3401 if (!cachep->memcg_params->dead)
3402 return;
3403
22933152
GC
3404 /*
3405 * There are many ways in which we can get here.
3406 *
3407 * We can get to a memory-pressure situation while the delayed work is
3408 * still pending to run. The vmscan shrinkers can then release all
3409 * cache memory and get us to destruction. If this is the case, we'll
3410 * be executed twice, which is a bug (the second time will execute over
3411 * bogus data). In this case, cancelling the work should be fine.
3412 *
3413 * But we can also get here from the worker itself, if
3414 * kmem_cache_shrink is enough to shake all the remaining objects and
3415 * get the page count to 0. In this case, we'll deadlock if we try to
3416 * cancel the work (the worker runs with an internal lock held, which
3417 * is the same lock we would hold for cancel_work_sync().)
3418 *
3419 * Since we can't possibly know who got us here, just refrain from
3420 * running if there is already work pending
3421 */
3422 if (work_pending(&cachep->memcg_params->destroy))
3423 return;
1f458cbf
GC
3424 /*
3425 * We have to defer the actual destroying to a workqueue, because
3426 * we might currently be in a context that cannot sleep.
3427 */
3428 schedule_work(&cachep->memcg_params->destroy);
3429}
3430
842e2873
VD
3431static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3432 struct kmem_cache *s)
d7f25f8a 3433{
d7f25f8a 3434 struct kmem_cache *new;
d9c10ddd 3435 static char *tmp_name = NULL;
842e2873 3436 static DEFINE_MUTEX(mutex); /* protects tmp_name */
d7f25f8a 3437
842e2873 3438 BUG_ON(!memcg_can_account_kmem(memcg));
d9c10ddd 3439
842e2873 3440 mutex_lock(&mutex);
d9c10ddd
MH
3441 /*
3442 * kmem_cache_create_memcg duplicates the given name and
3443 * cgroup_name for this name requires RCU context.
3444 * This static temporary buffer is used to prevent from
3445 * pointless shortliving allocation.
3446 */
3447 if (!tmp_name) {
3448 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3449 if (!tmp_name)
3450 return NULL;
3451 }
3452
3453 rcu_read_lock();
3454 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3455 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3456 rcu_read_unlock();
d7f25f8a 3457
d9c10ddd 3458 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3459 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3460
d79923fa
GC
3461 if (new)
3462 new->allocflags |= __GFP_KMEMCG;
842e2873
VD
3463 else
3464 new = s;
d79923fa 3465
842e2873 3466 mutex_unlock(&mutex);
d7f25f8a
GC
3467 return new;
3468}
3469
7cf27982
GC
3470void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3471{
3472 struct kmem_cache *c;
3473 int i;
3474
3475 if (!s->memcg_params)
3476 return;
3477 if (!s->memcg_params->is_root_cache)
3478 return;
3479
3480 /*
3481 * If the cache is being destroyed, we trust that there is no one else
3482 * requesting objects from it. Even if there are, the sanity checks in
3483 * kmem_cache_destroy should caught this ill-case.
3484 *
3485 * Still, we don't want anyone else freeing memcg_caches under our
3486 * noses, which can happen if a new memcg comes to life. As usual,
3487 * we'll take the set_limit_mutex to protect ourselves against this.
3488 */
3489 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3490 for_each_memcg_cache_index(i) {
3491 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3492 if (!c)
3493 continue;
3494
3495 /*
3496 * We will now manually delete the caches, so to avoid races
3497 * we need to cancel all pending destruction workers and
3498 * proceed with destruction ourselves.
3499 *
3500 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3501 * and that could spawn the workers again: it is likely that
3502 * the cache still have active pages until this very moment.
3503 * This would lead us back to mem_cgroup_destroy_cache.
3504 *
3505 * But that will not execute at all if the "dead" flag is not
3506 * set, so flip it down to guarantee we are in control.
3507 */
3508 c->memcg_params->dead = false;
22933152 3509 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3510 kmem_cache_destroy(c);
3511 }
3512 mutex_unlock(&set_limit_mutex);
3513}
3514
d7f25f8a
GC
3515struct create_work {
3516 struct mem_cgroup *memcg;
3517 struct kmem_cache *cachep;
3518 struct work_struct work;
3519};
3520
1f458cbf
GC
3521static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3522{
3523 struct kmem_cache *cachep;
3524 struct memcg_cache_params *params;
3525
3526 if (!memcg_kmem_is_active(memcg))
3527 return;
3528
3529 mutex_lock(&memcg->slab_caches_mutex);
3530 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3531 cachep = memcg_params_to_cache(params);
3532 cachep->memcg_params->dead = true;
1f458cbf
GC
3533 schedule_work(&cachep->memcg_params->destroy);
3534 }
3535 mutex_unlock(&memcg->slab_caches_mutex);
3536}
3537
d7f25f8a
GC
3538static void memcg_create_cache_work_func(struct work_struct *w)
3539{
3540 struct create_work *cw;
3541
3542 cw = container_of(w, struct create_work, work);
3543 memcg_create_kmem_cache(cw->memcg, cw->cachep);
1aa13254 3544 css_put(&cw->memcg->css);
d7f25f8a
GC
3545 kfree(cw);
3546}
3547
3548/*
3549 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3550 */
0e9d92f2
GC
3551static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3552 struct kmem_cache *cachep)
d7f25f8a
GC
3553{
3554 struct create_work *cw;
3555
3556 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3557 if (cw == NULL) {
3558 css_put(&memcg->css);
d7f25f8a
GC
3559 return;
3560 }
3561
3562 cw->memcg = memcg;
3563 cw->cachep = cachep;
3564
3565 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3566 schedule_work(&cw->work);
3567}
3568
0e9d92f2
GC
3569static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3570 struct kmem_cache *cachep)
3571{
3572 /*
3573 * We need to stop accounting when we kmalloc, because if the
3574 * corresponding kmalloc cache is not yet created, the first allocation
3575 * in __memcg_create_cache_enqueue will recurse.
3576 *
3577 * However, it is better to enclose the whole function. Depending on
3578 * the debugging options enabled, INIT_WORK(), for instance, can
3579 * trigger an allocation. This too, will make us recurse. Because at
3580 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3581 * the safest choice is to do it like this, wrapping the whole function.
3582 */
3583 memcg_stop_kmem_account();
3584 __memcg_create_cache_enqueue(memcg, cachep);
3585 memcg_resume_kmem_account();
3586}
d7f25f8a
GC
3587/*
3588 * Return the kmem_cache we're supposed to use for a slab allocation.
3589 * We try to use the current memcg's version of the cache.
3590 *
3591 * If the cache does not exist yet, if we are the first user of it,
3592 * we either create it immediately, if possible, or create it asynchronously
3593 * in a workqueue.
3594 * In the latter case, we will let the current allocation go through with
3595 * the original cache.
3596 *
3597 * Can't be called in interrupt context or from kernel threads.
3598 * This function needs to be called with rcu_read_lock() held.
3599 */
3600struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3601 gfp_t gfp)
3602{
3603 struct mem_cgroup *memcg;
959c8963 3604 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3605
3606 VM_BUG_ON(!cachep->memcg_params);
3607 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3608
0e9d92f2
GC
3609 if (!current->mm || current->memcg_kmem_skip_account)
3610 return cachep;
3611
d7f25f8a
GC
3612 rcu_read_lock();
3613 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3614
3615 if (!memcg_can_account_kmem(memcg))
ca0dde97 3616 goto out;
d7f25f8a 3617
959c8963
VD
3618 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3619 if (likely(memcg_cachep)) {
3620 cachep = memcg_cachep;
ca0dde97 3621 goto out;
d7f25f8a
GC
3622 }
3623
ca0dde97
LZ
3624 /* The corresponding put will be done in the workqueue. */
3625 if (!css_tryget(&memcg->css))
3626 goto out;
3627 rcu_read_unlock();
3628
3629 /*
3630 * If we are in a safe context (can wait, and not in interrupt
3631 * context), we could be be predictable and return right away.
3632 * This would guarantee that the allocation being performed
3633 * already belongs in the new cache.
3634 *
3635 * However, there are some clashes that can arrive from locking.
3636 * For instance, because we acquire the slab_mutex while doing
3637 * kmem_cache_dup, this means no further allocation could happen
3638 * with the slab_mutex held.
3639 *
3640 * Also, because cache creation issue get_online_cpus(), this
3641 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3642 * that ends up reversed during cpu hotplug. (cpuset allocates
3643 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3644 * better to defer everything.
3645 */
3646 memcg_create_cache_enqueue(memcg, cachep);
3647 return cachep;
3648out:
3649 rcu_read_unlock();
3650 return cachep;
d7f25f8a
GC
3651}
3652EXPORT_SYMBOL(__memcg_kmem_get_cache);
3653
7ae1e1d0
GC
3654/*
3655 * We need to verify if the allocation against current->mm->owner's memcg is
3656 * possible for the given order. But the page is not allocated yet, so we'll
3657 * need a further commit step to do the final arrangements.
3658 *
3659 * It is possible for the task to switch cgroups in this mean time, so at
3660 * commit time, we can't rely on task conversion any longer. We'll then use
3661 * the handle argument to return to the caller which cgroup we should commit
3662 * against. We could also return the memcg directly and avoid the pointer
3663 * passing, but a boolean return value gives better semantics considering
3664 * the compiled-out case as well.
3665 *
3666 * Returning true means the allocation is possible.
3667 */
3668bool
3669__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3670{
3671 struct mem_cgroup *memcg;
3672 int ret;
3673
3674 *_memcg = NULL;
6d42c232
GC
3675
3676 /*
3677 * Disabling accounting is only relevant for some specific memcg
3678 * internal allocations. Therefore we would initially not have such
3679 * check here, since direct calls to the page allocator that are marked
3680 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3681 * concerned with cache allocations, and by having this test at
3682 * memcg_kmem_get_cache, we are already able to relay the allocation to
3683 * the root cache and bypass the memcg cache altogether.
3684 *
3685 * There is one exception, though: the SLUB allocator does not create
3686 * large order caches, but rather service large kmallocs directly from
3687 * the page allocator. Therefore, the following sequence when backed by
3688 * the SLUB allocator:
3689 *
f894ffa8
AM
3690 * memcg_stop_kmem_account();
3691 * kmalloc(<large_number>)
3692 * memcg_resume_kmem_account();
6d42c232
GC
3693 *
3694 * would effectively ignore the fact that we should skip accounting,
3695 * since it will drive us directly to this function without passing
3696 * through the cache selector memcg_kmem_get_cache. Such large
3697 * allocations are extremely rare but can happen, for instance, for the
3698 * cache arrays. We bring this test here.
3699 */
3700 if (!current->mm || current->memcg_kmem_skip_account)
3701 return true;
3702
7ae1e1d0
GC
3703 memcg = try_get_mem_cgroup_from_mm(current->mm);
3704
3705 /*
3706 * very rare case described in mem_cgroup_from_task. Unfortunately there
3707 * isn't much we can do without complicating this too much, and it would
3708 * be gfp-dependent anyway. Just let it go
3709 */
3710 if (unlikely(!memcg))
3711 return true;
3712
3713 if (!memcg_can_account_kmem(memcg)) {
3714 css_put(&memcg->css);
3715 return true;
3716 }
3717
7ae1e1d0
GC
3718 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3719 if (!ret)
3720 *_memcg = memcg;
7ae1e1d0
GC
3721
3722 css_put(&memcg->css);
3723 return (ret == 0);
3724}
3725
3726void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3727 int order)
3728{
3729 struct page_cgroup *pc;
3730
3731 VM_BUG_ON(mem_cgroup_is_root(memcg));
3732
3733 /* The page allocation failed. Revert */
3734 if (!page) {
3735 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3736 return;
3737 }
3738
3739 pc = lookup_page_cgroup(page);
3740 lock_page_cgroup(pc);
3741 pc->mem_cgroup = memcg;
3742 SetPageCgroupUsed(pc);
3743 unlock_page_cgroup(pc);
3744}
3745
3746void __memcg_kmem_uncharge_pages(struct page *page, int order)
3747{
3748 struct mem_cgroup *memcg = NULL;
3749 struct page_cgroup *pc;
3750
3751
3752 pc = lookup_page_cgroup(page);
3753 /*
3754 * Fast unlocked return. Theoretically might have changed, have to
3755 * check again after locking.
3756 */
3757 if (!PageCgroupUsed(pc))
3758 return;
3759
3760 lock_page_cgroup(pc);
3761 if (PageCgroupUsed(pc)) {
3762 memcg = pc->mem_cgroup;
3763 ClearPageCgroupUsed(pc);
3764 }
3765 unlock_page_cgroup(pc);
3766
3767 /*
3768 * We trust that only if there is a memcg associated with the page, it
3769 * is a valid allocation
3770 */
3771 if (!memcg)
3772 return;
3773
309381fe 3774 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3775 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3776}
1f458cbf
GC
3777#else
3778static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3779{
3780}
7ae1e1d0
GC
3781#endif /* CONFIG_MEMCG_KMEM */
3782
ca3e0214
KH
3783#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3784
a0db00fc 3785#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3786/*
3787 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3788 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3789 * charge/uncharge will be never happen and move_account() is done under
3790 * compound_lock(), so we don't have to take care of races.
ca3e0214 3791 */
e94c8a9c 3792void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3793{
3794 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3795 struct page_cgroup *pc;
b070e65c 3796 struct mem_cgroup *memcg;
e94c8a9c 3797 int i;
ca3e0214 3798
3d37c4a9
KH
3799 if (mem_cgroup_disabled())
3800 return;
b070e65c
DR
3801
3802 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3803 for (i = 1; i < HPAGE_PMD_NR; i++) {
3804 pc = head_pc + i;
b070e65c 3805 pc->mem_cgroup = memcg;
e94c8a9c 3806 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3807 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3808 }
b070e65c
DR
3809 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3810 HPAGE_PMD_NR);
ca3e0214 3811}
12d27107 3812#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3813
3ea67d06
SZ
3814static inline
3815void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3816 struct mem_cgroup *to,
3817 unsigned int nr_pages,
3818 enum mem_cgroup_stat_index idx)
3819{
3820 /* Update stat data for mem_cgroup */
3821 preempt_disable();
5e8cfc3c 3822 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3823 __this_cpu_add(to->stat->count[idx], nr_pages);
3824 preempt_enable();
3825}
3826
f817ed48 3827/**
de3638d9 3828 * mem_cgroup_move_account - move account of the page
5564e88b 3829 * @page: the page
7ec99d62 3830 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3831 * @pc: page_cgroup of the page.
3832 * @from: mem_cgroup which the page is moved from.
3833 * @to: mem_cgroup which the page is moved to. @from != @to.
3834 *
3835 * The caller must confirm following.
08e552c6 3836 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3837 * - compound_lock is held when nr_pages > 1
f817ed48 3838 *
2f3479b1
KH
3839 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3840 * from old cgroup.
f817ed48 3841 */
7ec99d62
JW
3842static int mem_cgroup_move_account(struct page *page,
3843 unsigned int nr_pages,
3844 struct page_cgroup *pc,
3845 struct mem_cgroup *from,
2f3479b1 3846 struct mem_cgroup *to)
f817ed48 3847{
de3638d9
JW
3848 unsigned long flags;
3849 int ret;
b2402857 3850 bool anon = PageAnon(page);
987eba66 3851
f817ed48 3852 VM_BUG_ON(from == to);
309381fe 3853 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3854 /*
3855 * The page is isolated from LRU. So, collapse function
3856 * will not handle this page. But page splitting can happen.
3857 * Do this check under compound_page_lock(). The caller should
3858 * hold it.
3859 */
3860 ret = -EBUSY;
7ec99d62 3861 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3862 goto out;
3863
3864 lock_page_cgroup(pc);
3865
3866 ret = -EINVAL;
3867 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3868 goto unlock;
3869
312734c0 3870 move_lock_mem_cgroup(from, &flags);
f817ed48 3871
3ea67d06
SZ
3872 if (!anon && page_mapped(page))
3873 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3874 MEM_CGROUP_STAT_FILE_MAPPED);
3875
3876 if (PageWriteback(page))
3877 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3878 MEM_CGROUP_STAT_WRITEBACK);
3879
b070e65c 3880 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3881
854ffa8d 3882 /* caller should have done css_get */
08e552c6 3883 pc->mem_cgroup = to;
b070e65c 3884 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3885 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3886 ret = 0;
3887unlock:
57f9fd7d 3888 unlock_page_cgroup(pc);
d2265e6f
KH
3889 /*
3890 * check events
3891 */
5564e88b
JW
3892 memcg_check_events(to, page);
3893 memcg_check_events(from, page);
de3638d9 3894out:
f817ed48
KH
3895 return ret;
3896}
3897
2ef37d3f
MH
3898/**
3899 * mem_cgroup_move_parent - moves page to the parent group
3900 * @page: the page to move
3901 * @pc: page_cgroup of the page
3902 * @child: page's cgroup
3903 *
3904 * move charges to its parent or the root cgroup if the group has no
3905 * parent (aka use_hierarchy==0).
3906 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3907 * mem_cgroup_move_account fails) the failure is always temporary and
3908 * it signals a race with a page removal/uncharge or migration. In the
3909 * first case the page is on the way out and it will vanish from the LRU
3910 * on the next attempt and the call should be retried later.
3911 * Isolation from the LRU fails only if page has been isolated from
3912 * the LRU since we looked at it and that usually means either global
3913 * reclaim or migration going on. The page will either get back to the
3914 * LRU or vanish.
3915 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3916 * (!PageCgroupUsed) or moved to a different group. The page will
3917 * disappear in the next attempt.
f817ed48 3918 */
5564e88b
JW
3919static int mem_cgroup_move_parent(struct page *page,
3920 struct page_cgroup *pc,
6068bf01 3921 struct mem_cgroup *child)
f817ed48 3922{
f817ed48 3923 struct mem_cgroup *parent;
7ec99d62 3924 unsigned int nr_pages;
4be4489f 3925 unsigned long uninitialized_var(flags);
f817ed48
KH
3926 int ret;
3927
d8423011 3928 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3929
57f9fd7d
DN
3930 ret = -EBUSY;
3931 if (!get_page_unless_zero(page))
3932 goto out;
3933 if (isolate_lru_page(page))
3934 goto put;
52dbb905 3935
7ec99d62 3936 nr_pages = hpage_nr_pages(page);
08e552c6 3937
cc926f78
KH
3938 parent = parent_mem_cgroup(child);
3939 /*
3940 * If no parent, move charges to root cgroup.
3941 */
3942 if (!parent)
3943 parent = root_mem_cgroup;
f817ed48 3944
2ef37d3f 3945 if (nr_pages > 1) {
309381fe 3946 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3947 flags = compound_lock_irqsave(page);
2ef37d3f 3948 }
987eba66 3949
cc926f78 3950 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3951 pc, child, parent);
cc926f78
KH
3952 if (!ret)
3953 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3954
7ec99d62 3955 if (nr_pages > 1)
987eba66 3956 compound_unlock_irqrestore(page, flags);
08e552c6 3957 putback_lru_page(page);
57f9fd7d 3958put:
40d58138 3959 put_page(page);
57f9fd7d 3960out:
f817ed48
KH
3961 return ret;
3962}
3963
7a81b88c
KH
3964/*
3965 * Charge the memory controller for page usage.
3966 * Return
3967 * 0 if the charge was successful
3968 * < 0 if the cgroup is over its limit
3969 */
3970static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3971 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3972{
c0ff4b85 3973 struct mem_cgroup *memcg = NULL;
7ec99d62 3974 unsigned int nr_pages = 1;
8493ae43 3975 bool oom = true;
7a81b88c 3976 int ret;
ec168510 3977
37c2ac78 3978 if (PageTransHuge(page)) {
7ec99d62 3979 nr_pages <<= compound_order(page);
309381fe 3980 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3981 /*
3982 * Never OOM-kill a process for a huge page. The
3983 * fault handler will fall back to regular pages.
3984 */
3985 oom = false;
37c2ac78 3986 }
7a81b88c 3987
c0ff4b85 3988 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3989 if (ret == -ENOMEM)
7a81b88c 3990 return ret;
ce587e65 3991 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3992 return 0;
8a9f3ccd
BS
3993}
3994
7a81b88c
KH
3995int mem_cgroup_newpage_charge(struct page *page,
3996 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3997{
f8d66542 3998 if (mem_cgroup_disabled())
cede86ac 3999 return 0;
309381fe
SL
4000 VM_BUG_ON_PAGE(page_mapped(page), page);
4001 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
7a0524cf 4002 VM_BUG_ON(!mm);
217bc319 4003 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 4004 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4005}
4006
54595fe2
KH
4007/*
4008 * While swap-in, try_charge -> commit or cancel, the page is locked.
4009 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4010 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4011 * "commit()" or removed by "cancel()"
4012 */
0435a2fd
JW
4013static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4014 struct page *page,
4015 gfp_t mask,
4016 struct mem_cgroup **memcgp)
8c7c6e34 4017{
c0ff4b85 4018 struct mem_cgroup *memcg;
90deb788 4019 struct page_cgroup *pc;
54595fe2 4020 int ret;
8c7c6e34 4021
90deb788
JW
4022 pc = lookup_page_cgroup(page);
4023 /*
4024 * Every swap fault against a single page tries to charge the
4025 * page, bail as early as possible. shmem_unuse() encounters
4026 * already charged pages, too. The USED bit is protected by
4027 * the page lock, which serializes swap cache removal, which
4028 * in turn serializes uncharging.
4029 */
4030 if (PageCgroupUsed(pc))
4031 return 0;
8c7c6e34
KH
4032 if (!do_swap_account)
4033 goto charge_cur_mm;
c0ff4b85
R
4034 memcg = try_get_mem_cgroup_from_page(page);
4035 if (!memcg)
54595fe2 4036 goto charge_cur_mm;
72835c86
JW
4037 *memcgp = memcg;
4038 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4039 css_put(&memcg->css);
38c5d72f
KH
4040 if (ret == -EINTR)
4041 ret = 0;
54595fe2 4042 return ret;
8c7c6e34 4043charge_cur_mm:
38c5d72f
KH
4044 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4045 if (ret == -EINTR)
4046 ret = 0;
4047 return ret;
8c7c6e34
KH
4048}
4049
0435a2fd
JW
4050int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4051 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4052{
4053 *memcgp = NULL;
4054 if (mem_cgroup_disabled())
4055 return 0;
bdf4f4d2
JW
4056 /*
4057 * A racing thread's fault, or swapoff, may have already
4058 * updated the pte, and even removed page from swap cache: in
4059 * those cases unuse_pte()'s pte_same() test will fail; but
4060 * there's also a KSM case which does need to charge the page.
4061 */
4062 if (!PageSwapCache(page)) {
4063 int ret;
4064
4065 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4066 if (ret == -EINTR)
4067 ret = 0;
4068 return ret;
4069 }
0435a2fd
JW
4070 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4071}
4072
827a03d2
JW
4073void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4074{
4075 if (mem_cgroup_disabled())
4076 return;
4077 if (!memcg)
4078 return;
4079 __mem_cgroup_cancel_charge(memcg, 1);
4080}
4081
83aae4c7 4082static void
72835c86 4083__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4084 enum charge_type ctype)
7a81b88c 4085{
f8d66542 4086 if (mem_cgroup_disabled())
7a81b88c 4087 return;
72835c86 4088 if (!memcg)
7a81b88c 4089 return;
5a6475a4 4090
ce587e65 4091 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4092 /*
4093 * Now swap is on-memory. This means this page may be
4094 * counted both as mem and swap....double count.
03f3c433
KH
4095 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4096 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4097 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4098 */
03f3c433 4099 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4100 swp_entry_t ent = {.val = page_private(page)};
86493009 4101 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4102 }
7a81b88c
KH
4103}
4104
72835c86
JW
4105void mem_cgroup_commit_charge_swapin(struct page *page,
4106 struct mem_cgroup *memcg)
83aae4c7 4107{
72835c86 4108 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4109 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4110}
4111
827a03d2
JW
4112int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4113 gfp_t gfp_mask)
7a81b88c 4114{
827a03d2
JW
4115 struct mem_cgroup *memcg = NULL;
4116 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4117 int ret;
4118
f8d66542 4119 if (mem_cgroup_disabled())
827a03d2
JW
4120 return 0;
4121 if (PageCompound(page))
4122 return 0;
4123
827a03d2
JW
4124 if (!PageSwapCache(page))
4125 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4126 else { /* page is swapcache/shmem */
0435a2fd
JW
4127 ret = __mem_cgroup_try_charge_swapin(mm, page,
4128 gfp_mask, &memcg);
827a03d2
JW
4129 if (!ret)
4130 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4131 }
4132 return ret;
7a81b88c
KH
4133}
4134
c0ff4b85 4135static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4136 unsigned int nr_pages,
4137 const enum charge_type ctype)
569b846d
KH
4138{
4139 struct memcg_batch_info *batch = NULL;
4140 bool uncharge_memsw = true;
7ec99d62 4141
569b846d
KH
4142 /* If swapout, usage of swap doesn't decrease */
4143 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4144 uncharge_memsw = false;
569b846d
KH
4145
4146 batch = &current->memcg_batch;
4147 /*
4148 * In usual, we do css_get() when we remember memcg pointer.
4149 * But in this case, we keep res->usage until end of a series of
4150 * uncharges. Then, it's ok to ignore memcg's refcnt.
4151 */
4152 if (!batch->memcg)
c0ff4b85 4153 batch->memcg = memcg;
3c11ecf4
KH
4154 /*
4155 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4156 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4157 * the same cgroup and we have chance to coalesce uncharges.
4158 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4159 * because we want to do uncharge as soon as possible.
4160 */
4161
4162 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4163 goto direct_uncharge;
4164
7ec99d62 4165 if (nr_pages > 1)
ec168510
AA
4166 goto direct_uncharge;
4167
569b846d
KH
4168 /*
4169 * In typical case, batch->memcg == mem. This means we can
4170 * merge a series of uncharges to an uncharge of res_counter.
4171 * If not, we uncharge res_counter ony by one.
4172 */
c0ff4b85 4173 if (batch->memcg != memcg)
569b846d
KH
4174 goto direct_uncharge;
4175 /* remember freed charge and uncharge it later */
7ffd4ca7 4176 batch->nr_pages++;
569b846d 4177 if (uncharge_memsw)
7ffd4ca7 4178 batch->memsw_nr_pages++;
569b846d
KH
4179 return;
4180direct_uncharge:
c0ff4b85 4181 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4182 if (uncharge_memsw)
c0ff4b85
R
4183 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4184 if (unlikely(batch->memcg != memcg))
4185 memcg_oom_recover(memcg);
569b846d 4186}
7a81b88c 4187
8a9f3ccd 4188/*
69029cd5 4189 * uncharge if !page_mapped(page)
8a9f3ccd 4190 */
8c7c6e34 4191static struct mem_cgroup *
0030f535
JW
4192__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4193 bool end_migration)
8a9f3ccd 4194{
c0ff4b85 4195 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4196 unsigned int nr_pages = 1;
4197 struct page_cgroup *pc;
b2402857 4198 bool anon;
8a9f3ccd 4199
f8d66542 4200 if (mem_cgroup_disabled())
8c7c6e34 4201 return NULL;
4077960e 4202
37c2ac78 4203 if (PageTransHuge(page)) {
7ec99d62 4204 nr_pages <<= compound_order(page);
309381fe 4205 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4206 }
8697d331 4207 /*
3c541e14 4208 * Check if our page_cgroup is valid
8697d331 4209 */
52d4b9ac 4210 pc = lookup_page_cgroup(page);
cfa44946 4211 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4212 return NULL;
b9c565d5 4213
52d4b9ac 4214 lock_page_cgroup(pc);
d13d1443 4215
c0ff4b85 4216 memcg = pc->mem_cgroup;
8c7c6e34 4217
d13d1443
KH
4218 if (!PageCgroupUsed(pc))
4219 goto unlock_out;
4220
b2402857
KH
4221 anon = PageAnon(page);
4222
d13d1443 4223 switch (ctype) {
41326c17 4224 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4225 /*
4226 * Generally PageAnon tells if it's the anon statistics to be
4227 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4228 * used before page reached the stage of being marked PageAnon.
4229 */
b2402857
KH
4230 anon = true;
4231 /* fallthrough */
8a9478ca 4232 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4233 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4234 if (page_mapped(page))
4235 goto unlock_out;
4236 /*
4237 * Pages under migration may not be uncharged. But
4238 * end_migration() /must/ be the one uncharging the
4239 * unused post-migration page and so it has to call
4240 * here with the migration bit still set. See the
4241 * res_counter handling below.
4242 */
4243 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4244 goto unlock_out;
4245 break;
4246 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4247 if (!PageAnon(page)) { /* Shared memory */
4248 if (page->mapping && !page_is_file_cache(page))
4249 goto unlock_out;
4250 } else if (page_mapped(page)) /* Anon */
4251 goto unlock_out;
4252 break;
4253 default:
4254 break;
52d4b9ac 4255 }
d13d1443 4256
b070e65c 4257 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4258
52d4b9ac 4259 ClearPageCgroupUsed(pc);
544122e5
KH
4260 /*
4261 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4262 * freed from LRU. This is safe because uncharged page is expected not
4263 * to be reused (freed soon). Exception is SwapCache, it's handled by
4264 * special functions.
4265 */
b9c565d5 4266
52d4b9ac 4267 unlock_page_cgroup(pc);
f75ca962 4268 /*
c0ff4b85 4269 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4270 * will never be freed, so it's safe to call css_get().
f75ca962 4271 */
c0ff4b85 4272 memcg_check_events(memcg, page);
f75ca962 4273 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4274 mem_cgroup_swap_statistics(memcg, true);
4050377b 4275 css_get(&memcg->css);
f75ca962 4276 }
0030f535
JW
4277 /*
4278 * Migration does not charge the res_counter for the
4279 * replacement page, so leave it alone when phasing out the
4280 * page that is unused after the migration.
4281 */
4282 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4283 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4284
c0ff4b85 4285 return memcg;
d13d1443
KH
4286
4287unlock_out:
4288 unlock_page_cgroup(pc);
8c7c6e34 4289 return NULL;
3c541e14
BS
4290}
4291
69029cd5
KH
4292void mem_cgroup_uncharge_page(struct page *page)
4293{
52d4b9ac
KH
4294 /* early check. */
4295 if (page_mapped(page))
4296 return;
309381fe 4297 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4298 /*
4299 * If the page is in swap cache, uncharge should be deferred
4300 * to the swap path, which also properly accounts swap usage
4301 * and handles memcg lifetime.
4302 *
4303 * Note that this check is not stable and reclaim may add the
4304 * page to swap cache at any time after this. However, if the
4305 * page is not in swap cache by the time page->mapcount hits
4306 * 0, there won't be any page table references to the swap
4307 * slot, and reclaim will free it and not actually write the
4308 * page to disk.
4309 */
0c59b89c
JW
4310 if (PageSwapCache(page))
4311 return;
0030f535 4312 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4313}
4314
4315void mem_cgroup_uncharge_cache_page(struct page *page)
4316{
309381fe
SL
4317 VM_BUG_ON_PAGE(page_mapped(page), page);
4318 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4319 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4320}
4321
569b846d
KH
4322/*
4323 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4324 * In that cases, pages are freed continuously and we can expect pages
4325 * are in the same memcg. All these calls itself limits the number of
4326 * pages freed at once, then uncharge_start/end() is called properly.
4327 * This may be called prural(2) times in a context,
4328 */
4329
4330void mem_cgroup_uncharge_start(void)
4331{
4332 current->memcg_batch.do_batch++;
4333 /* We can do nest. */
4334 if (current->memcg_batch.do_batch == 1) {
4335 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4336 current->memcg_batch.nr_pages = 0;
4337 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4338 }
4339}
4340
4341void mem_cgroup_uncharge_end(void)
4342{
4343 struct memcg_batch_info *batch = &current->memcg_batch;
4344
4345 if (!batch->do_batch)
4346 return;
4347
4348 batch->do_batch--;
4349 if (batch->do_batch) /* If stacked, do nothing. */
4350 return;
4351
4352 if (!batch->memcg)
4353 return;
4354 /*
4355 * This "batch->memcg" is valid without any css_get/put etc...
4356 * bacause we hide charges behind us.
4357 */
7ffd4ca7
JW
4358 if (batch->nr_pages)
4359 res_counter_uncharge(&batch->memcg->res,
4360 batch->nr_pages * PAGE_SIZE);
4361 if (batch->memsw_nr_pages)
4362 res_counter_uncharge(&batch->memcg->memsw,
4363 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4364 memcg_oom_recover(batch->memcg);
569b846d
KH
4365 /* forget this pointer (for sanity check) */
4366 batch->memcg = NULL;
4367}
4368
e767e056 4369#ifdef CONFIG_SWAP
8c7c6e34 4370/*
e767e056 4371 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4372 * memcg information is recorded to swap_cgroup of "ent"
4373 */
8a9478ca
KH
4374void
4375mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4376{
4377 struct mem_cgroup *memcg;
8a9478ca
KH
4378 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4379
4380 if (!swapout) /* this was a swap cache but the swap is unused ! */
4381 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4382
0030f535 4383 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4384
f75ca962
KH
4385 /*
4386 * record memcg information, if swapout && memcg != NULL,
4050377b 4387 * css_get() was called in uncharge().
f75ca962
KH
4388 */
4389 if (do_swap_account && swapout && memcg)
34c00c31 4390 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4391}
e767e056 4392#endif
8c7c6e34 4393
c255a458 4394#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4395/*
4396 * called from swap_entry_free(). remove record in swap_cgroup and
4397 * uncharge "memsw" account.
4398 */
4399void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4400{
8c7c6e34 4401 struct mem_cgroup *memcg;
a3b2d692 4402 unsigned short id;
8c7c6e34
KH
4403
4404 if (!do_swap_account)
4405 return;
4406
a3b2d692
KH
4407 id = swap_cgroup_record(ent, 0);
4408 rcu_read_lock();
4409 memcg = mem_cgroup_lookup(id);
8c7c6e34 4410 if (memcg) {
a3b2d692
KH
4411 /*
4412 * We uncharge this because swap is freed.
4413 * This memcg can be obsolete one. We avoid calling css_tryget
4414 */
0c3e73e8 4415 if (!mem_cgroup_is_root(memcg))
4e649152 4416 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4417 mem_cgroup_swap_statistics(memcg, false);
4050377b 4418 css_put(&memcg->css);
8c7c6e34 4419 }
a3b2d692 4420 rcu_read_unlock();
d13d1443 4421}
02491447
DN
4422
4423/**
4424 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4425 * @entry: swap entry to be moved
4426 * @from: mem_cgroup which the entry is moved from
4427 * @to: mem_cgroup which the entry is moved to
4428 *
4429 * It succeeds only when the swap_cgroup's record for this entry is the same
4430 * as the mem_cgroup's id of @from.
4431 *
4432 * Returns 0 on success, -EINVAL on failure.
4433 *
4434 * The caller must have charged to @to, IOW, called res_counter_charge() about
4435 * both res and memsw, and called css_get().
4436 */
4437static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4438 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4439{
4440 unsigned short old_id, new_id;
4441
34c00c31
LZ
4442 old_id = mem_cgroup_id(from);
4443 new_id = mem_cgroup_id(to);
02491447
DN
4444
4445 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4446 mem_cgroup_swap_statistics(from, false);
483c30b5 4447 mem_cgroup_swap_statistics(to, true);
02491447 4448 /*
483c30b5
DN
4449 * This function is only called from task migration context now.
4450 * It postpones res_counter and refcount handling till the end
4451 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4452 * improvement. But we cannot postpone css_get(to) because if
4453 * the process that has been moved to @to does swap-in, the
4454 * refcount of @to might be decreased to 0.
4455 *
4456 * We are in attach() phase, so the cgroup is guaranteed to be
4457 * alive, so we can just call css_get().
02491447 4458 */
4050377b 4459 css_get(&to->css);
02491447
DN
4460 return 0;
4461 }
4462 return -EINVAL;
4463}
4464#else
4465static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4466 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4467{
4468 return -EINVAL;
4469}
8c7c6e34 4470#endif
d13d1443 4471
ae41be37 4472/*
01b1ae63
KH
4473 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4474 * page belongs to.
ae41be37 4475 */
0030f535
JW
4476void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4477 struct mem_cgroup **memcgp)
ae41be37 4478{
c0ff4b85 4479 struct mem_cgroup *memcg = NULL;
b32967ff 4480 unsigned int nr_pages = 1;
7ec99d62 4481 struct page_cgroup *pc;
ac39cf8c 4482 enum charge_type ctype;
8869b8f6 4483
72835c86 4484 *memcgp = NULL;
56039efa 4485
f8d66542 4486 if (mem_cgroup_disabled())
0030f535 4487 return;
4077960e 4488
b32967ff
MG
4489 if (PageTransHuge(page))
4490 nr_pages <<= compound_order(page);
4491
52d4b9ac
KH
4492 pc = lookup_page_cgroup(page);
4493 lock_page_cgroup(pc);
4494 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4495 memcg = pc->mem_cgroup;
4496 css_get(&memcg->css);
ac39cf8c
AM
4497 /*
4498 * At migrating an anonymous page, its mapcount goes down
4499 * to 0 and uncharge() will be called. But, even if it's fully
4500 * unmapped, migration may fail and this page has to be
4501 * charged again. We set MIGRATION flag here and delay uncharge
4502 * until end_migration() is called
4503 *
4504 * Corner Case Thinking
4505 * A)
4506 * When the old page was mapped as Anon and it's unmap-and-freed
4507 * while migration was ongoing.
4508 * If unmap finds the old page, uncharge() of it will be delayed
4509 * until end_migration(). If unmap finds a new page, it's
4510 * uncharged when it make mapcount to be 1->0. If unmap code
4511 * finds swap_migration_entry, the new page will not be mapped
4512 * and end_migration() will find it(mapcount==0).
4513 *
4514 * B)
4515 * When the old page was mapped but migraion fails, the kernel
4516 * remaps it. A charge for it is kept by MIGRATION flag even
4517 * if mapcount goes down to 0. We can do remap successfully
4518 * without charging it again.
4519 *
4520 * C)
4521 * The "old" page is under lock_page() until the end of
4522 * migration, so, the old page itself will not be swapped-out.
4523 * If the new page is swapped out before end_migraton, our
4524 * hook to usual swap-out path will catch the event.
4525 */
4526 if (PageAnon(page))
4527 SetPageCgroupMigration(pc);
e8589cc1 4528 }
52d4b9ac 4529 unlock_page_cgroup(pc);
ac39cf8c
AM
4530 /*
4531 * If the page is not charged at this point,
4532 * we return here.
4533 */
c0ff4b85 4534 if (!memcg)
0030f535 4535 return;
01b1ae63 4536
72835c86 4537 *memcgp = memcg;
ac39cf8c
AM
4538 /*
4539 * We charge new page before it's used/mapped. So, even if unlock_page()
4540 * is called before end_migration, we can catch all events on this new
4541 * page. In the case new page is migrated but not remapped, new page's
4542 * mapcount will be finally 0 and we call uncharge in end_migration().
4543 */
ac39cf8c 4544 if (PageAnon(page))
41326c17 4545 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4546 else
62ba7442 4547 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4548 /*
4549 * The page is committed to the memcg, but it's not actually
4550 * charged to the res_counter since we plan on replacing the
4551 * old one and only one page is going to be left afterwards.
4552 */
b32967ff 4553 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4554}
8869b8f6 4555
69029cd5 4556/* remove redundant charge if migration failed*/
c0ff4b85 4557void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4558 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4559{
ac39cf8c 4560 struct page *used, *unused;
01b1ae63 4561 struct page_cgroup *pc;
b2402857 4562 bool anon;
01b1ae63 4563
c0ff4b85 4564 if (!memcg)
01b1ae63 4565 return;
b25ed609 4566
50de1dd9 4567 if (!migration_ok) {
ac39cf8c
AM
4568 used = oldpage;
4569 unused = newpage;
01b1ae63 4570 } else {
ac39cf8c 4571 used = newpage;
01b1ae63
KH
4572 unused = oldpage;
4573 }
0030f535 4574 anon = PageAnon(used);
7d188958
JW
4575 __mem_cgroup_uncharge_common(unused,
4576 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4577 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4578 true);
0030f535 4579 css_put(&memcg->css);
69029cd5 4580 /*
ac39cf8c
AM
4581 * We disallowed uncharge of pages under migration because mapcount
4582 * of the page goes down to zero, temporarly.
4583 * Clear the flag and check the page should be charged.
01b1ae63 4584 */
ac39cf8c
AM
4585 pc = lookup_page_cgroup(oldpage);
4586 lock_page_cgroup(pc);
4587 ClearPageCgroupMigration(pc);
4588 unlock_page_cgroup(pc);
ac39cf8c 4589
01b1ae63 4590 /*
ac39cf8c
AM
4591 * If a page is a file cache, radix-tree replacement is very atomic
4592 * and we can skip this check. When it was an Anon page, its mapcount
4593 * goes down to 0. But because we added MIGRATION flage, it's not
4594 * uncharged yet. There are several case but page->mapcount check
4595 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4596 * check. (see prepare_charge() also)
69029cd5 4597 */
b2402857 4598 if (anon)
ac39cf8c 4599 mem_cgroup_uncharge_page(used);
ae41be37 4600}
78fb7466 4601
ab936cbc
KH
4602/*
4603 * At replace page cache, newpage is not under any memcg but it's on
4604 * LRU. So, this function doesn't touch res_counter but handles LRU
4605 * in correct way. Both pages are locked so we cannot race with uncharge.
4606 */
4607void mem_cgroup_replace_page_cache(struct page *oldpage,
4608 struct page *newpage)
4609{
bde05d1c 4610 struct mem_cgroup *memcg = NULL;
ab936cbc 4611 struct page_cgroup *pc;
ab936cbc 4612 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4613
4614 if (mem_cgroup_disabled())
4615 return;
4616
4617 pc = lookup_page_cgroup(oldpage);
4618 /* fix accounting on old pages */
4619 lock_page_cgroup(pc);
bde05d1c
HD
4620 if (PageCgroupUsed(pc)) {
4621 memcg = pc->mem_cgroup;
b070e65c 4622 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4623 ClearPageCgroupUsed(pc);
4624 }
ab936cbc
KH
4625 unlock_page_cgroup(pc);
4626
bde05d1c
HD
4627 /*
4628 * When called from shmem_replace_page(), in some cases the
4629 * oldpage has already been charged, and in some cases not.
4630 */
4631 if (!memcg)
4632 return;
ab936cbc
KH
4633 /*
4634 * Even if newpage->mapping was NULL before starting replacement,
4635 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4636 * LRU while we overwrite pc->mem_cgroup.
4637 */
ce587e65 4638 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4639}
4640
f212ad7c
DN
4641#ifdef CONFIG_DEBUG_VM
4642static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4643{
4644 struct page_cgroup *pc;
4645
4646 pc = lookup_page_cgroup(page);
cfa44946
JW
4647 /*
4648 * Can be NULL while feeding pages into the page allocator for
4649 * the first time, i.e. during boot or memory hotplug;
4650 * or when mem_cgroup_disabled().
4651 */
f212ad7c
DN
4652 if (likely(pc) && PageCgroupUsed(pc))
4653 return pc;
4654 return NULL;
4655}
4656
4657bool mem_cgroup_bad_page_check(struct page *page)
4658{
4659 if (mem_cgroup_disabled())
4660 return false;
4661
4662 return lookup_page_cgroup_used(page) != NULL;
4663}
4664
4665void mem_cgroup_print_bad_page(struct page *page)
4666{
4667 struct page_cgroup *pc;
4668
4669 pc = lookup_page_cgroup_used(page);
4670 if (pc) {
d045197f
AM
4671 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4672 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4673 }
4674}
4675#endif
4676
d38d2a75 4677static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4678 unsigned long long val)
628f4235 4679{
81d39c20 4680 int retry_count;
3c11ecf4 4681 u64 memswlimit, memlimit;
628f4235 4682 int ret = 0;
81d39c20
KH
4683 int children = mem_cgroup_count_children(memcg);
4684 u64 curusage, oldusage;
3c11ecf4 4685 int enlarge;
81d39c20
KH
4686
4687 /*
4688 * For keeping hierarchical_reclaim simple, how long we should retry
4689 * is depends on callers. We set our retry-count to be function
4690 * of # of children which we should visit in this loop.
4691 */
4692 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4693
4694 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4695
3c11ecf4 4696 enlarge = 0;
8c7c6e34 4697 while (retry_count) {
628f4235
KH
4698 if (signal_pending(current)) {
4699 ret = -EINTR;
4700 break;
4701 }
8c7c6e34
KH
4702 /*
4703 * Rather than hide all in some function, I do this in
4704 * open coded manner. You see what this really does.
aaad153e 4705 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4706 */
4707 mutex_lock(&set_limit_mutex);
4708 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4709 if (memswlimit < val) {
4710 ret = -EINVAL;
4711 mutex_unlock(&set_limit_mutex);
628f4235
KH
4712 break;
4713 }
3c11ecf4
KH
4714
4715 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4716 if (memlimit < val)
4717 enlarge = 1;
4718
8c7c6e34 4719 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4720 if (!ret) {
4721 if (memswlimit == val)
4722 memcg->memsw_is_minimum = true;
4723 else
4724 memcg->memsw_is_minimum = false;
4725 }
8c7c6e34
KH
4726 mutex_unlock(&set_limit_mutex);
4727
4728 if (!ret)
4729 break;
4730
5660048c
JW
4731 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4732 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4733 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4734 /* Usage is reduced ? */
f894ffa8 4735 if (curusage >= oldusage)
81d39c20
KH
4736 retry_count--;
4737 else
4738 oldusage = curusage;
8c7c6e34 4739 }
3c11ecf4
KH
4740 if (!ret && enlarge)
4741 memcg_oom_recover(memcg);
14797e23 4742
8c7c6e34
KH
4743 return ret;
4744}
4745
338c8431
LZ
4746static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4747 unsigned long long val)
8c7c6e34 4748{
81d39c20 4749 int retry_count;
3c11ecf4 4750 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4751 int children = mem_cgroup_count_children(memcg);
4752 int ret = -EBUSY;
3c11ecf4 4753 int enlarge = 0;
8c7c6e34 4754
81d39c20 4755 /* see mem_cgroup_resize_res_limit */
f894ffa8 4756 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4757 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4758 while (retry_count) {
4759 if (signal_pending(current)) {
4760 ret = -EINTR;
4761 break;
4762 }
4763 /*
4764 * Rather than hide all in some function, I do this in
4765 * open coded manner. You see what this really does.
aaad153e 4766 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4767 */
4768 mutex_lock(&set_limit_mutex);
4769 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4770 if (memlimit > val) {
4771 ret = -EINVAL;
4772 mutex_unlock(&set_limit_mutex);
4773 break;
4774 }
3c11ecf4
KH
4775 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4776 if (memswlimit < val)
4777 enlarge = 1;
8c7c6e34 4778 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4779 if (!ret) {
4780 if (memlimit == val)
4781 memcg->memsw_is_minimum = true;
4782 else
4783 memcg->memsw_is_minimum = false;
4784 }
8c7c6e34
KH
4785 mutex_unlock(&set_limit_mutex);
4786
4787 if (!ret)
4788 break;
4789
5660048c
JW
4790 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4791 MEM_CGROUP_RECLAIM_NOSWAP |
4792 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4793 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4794 /* Usage is reduced ? */
8c7c6e34 4795 if (curusage >= oldusage)
628f4235 4796 retry_count--;
81d39c20
KH
4797 else
4798 oldusage = curusage;
628f4235 4799 }
3c11ecf4
KH
4800 if (!ret && enlarge)
4801 memcg_oom_recover(memcg);
628f4235
KH
4802 return ret;
4803}
4804
0608f43d
AM
4805unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4806 gfp_t gfp_mask,
4807 unsigned long *total_scanned)
4808{
4809 unsigned long nr_reclaimed = 0;
4810 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4811 unsigned long reclaimed;
4812 int loop = 0;
4813 struct mem_cgroup_tree_per_zone *mctz;
4814 unsigned long long excess;
4815 unsigned long nr_scanned;
4816
4817 if (order > 0)
4818 return 0;
4819
4820 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4821 /*
4822 * This loop can run a while, specially if mem_cgroup's continuously
4823 * keep exceeding their soft limit and putting the system under
4824 * pressure
4825 */
4826 do {
4827 if (next_mz)
4828 mz = next_mz;
4829 else
4830 mz = mem_cgroup_largest_soft_limit_node(mctz);
4831 if (!mz)
4832 break;
4833
4834 nr_scanned = 0;
4835 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4836 gfp_mask, &nr_scanned);
4837 nr_reclaimed += reclaimed;
4838 *total_scanned += nr_scanned;
4839 spin_lock(&mctz->lock);
4840
4841 /*
4842 * If we failed to reclaim anything from this memory cgroup
4843 * it is time to move on to the next cgroup
4844 */
4845 next_mz = NULL;
4846 if (!reclaimed) {
4847 do {
4848 /*
4849 * Loop until we find yet another one.
4850 *
4851 * By the time we get the soft_limit lock
4852 * again, someone might have aded the
4853 * group back on the RB tree. Iterate to
4854 * make sure we get a different mem.
4855 * mem_cgroup_largest_soft_limit_node returns
4856 * NULL if no other cgroup is present on
4857 * the tree
4858 */
4859 next_mz =
4860 __mem_cgroup_largest_soft_limit_node(mctz);
4861 if (next_mz == mz)
4862 css_put(&next_mz->memcg->css);
4863 else /* next_mz == NULL or other memcg */
4864 break;
4865 } while (1);
4866 }
4867 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4868 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4869 /*
4870 * One school of thought says that we should not add
4871 * back the node to the tree if reclaim returns 0.
4872 * But our reclaim could return 0, simply because due
4873 * to priority we are exposing a smaller subset of
4874 * memory to reclaim from. Consider this as a longer
4875 * term TODO.
4876 */
4877 /* If excess == 0, no tree ops */
4878 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4879 spin_unlock(&mctz->lock);
4880 css_put(&mz->memcg->css);
4881 loop++;
4882 /*
4883 * Could not reclaim anything and there are no more
4884 * mem cgroups to try or we seem to be looping without
4885 * reclaiming anything.
4886 */
4887 if (!nr_reclaimed &&
4888 (next_mz == NULL ||
4889 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4890 break;
4891 } while (!nr_reclaimed);
4892 if (next_mz)
4893 css_put(&next_mz->memcg->css);
4894 return nr_reclaimed;
4895}
4896
2ef37d3f
MH
4897/**
4898 * mem_cgroup_force_empty_list - clears LRU of a group
4899 * @memcg: group to clear
4900 * @node: NUMA node
4901 * @zid: zone id
4902 * @lru: lru to to clear
4903 *
3c935d18 4904 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4905 * reclaim the pages page themselves - pages are moved to the parent (or root)
4906 * group.
cc847582 4907 */
2ef37d3f 4908static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4909 int node, int zid, enum lru_list lru)
cc847582 4910{
bea8c150 4911 struct lruvec *lruvec;
2ef37d3f 4912 unsigned long flags;
072c56c1 4913 struct list_head *list;
925b7673
JW
4914 struct page *busy;
4915 struct zone *zone;
072c56c1 4916
08e552c6 4917 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4918 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4919 list = &lruvec->lists[lru];
cc847582 4920
f817ed48 4921 busy = NULL;
2ef37d3f 4922 do {
925b7673 4923 struct page_cgroup *pc;
5564e88b
JW
4924 struct page *page;
4925
08e552c6 4926 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4927 if (list_empty(list)) {
08e552c6 4928 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4929 break;
f817ed48 4930 }
925b7673
JW
4931 page = list_entry(list->prev, struct page, lru);
4932 if (busy == page) {
4933 list_move(&page->lru, list);
648bcc77 4934 busy = NULL;
08e552c6 4935 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4936 continue;
4937 }
08e552c6 4938 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4939
925b7673 4940 pc = lookup_page_cgroup(page);
5564e88b 4941
3c935d18 4942 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4943 /* found lock contention or "pc" is obsolete. */
925b7673 4944 busy = page;
f817ed48
KH
4945 cond_resched();
4946 } else
4947 busy = NULL;
2ef37d3f 4948 } while (!list_empty(list));
cc847582
KH
4949}
4950
4951/*
c26251f9
MH
4952 * make mem_cgroup's charge to be 0 if there is no task by moving
4953 * all the charges and pages to the parent.
cc847582 4954 * This enables deleting this mem_cgroup.
c26251f9
MH
4955 *
4956 * Caller is responsible for holding css reference on the memcg.
cc847582 4957 */
ab5196c2 4958static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4959{
c26251f9 4960 int node, zid;
bea207c8 4961 u64 usage;
f817ed48 4962
fce66477 4963 do {
52d4b9ac
KH
4964 /* This is for making all *used* pages to be on LRU. */
4965 lru_add_drain_all();
c0ff4b85 4966 drain_all_stock_sync(memcg);
c0ff4b85 4967 mem_cgroup_start_move(memcg);
31aaea4a 4968 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4969 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4970 enum lru_list lru;
4971 for_each_lru(lru) {
2ef37d3f 4972 mem_cgroup_force_empty_list(memcg,
f156ab93 4973 node, zid, lru);
f817ed48 4974 }
1ecaab2b 4975 }
f817ed48 4976 }
c0ff4b85
R
4977 mem_cgroup_end_move(memcg);
4978 memcg_oom_recover(memcg);
52d4b9ac 4979 cond_resched();
f817ed48 4980
2ef37d3f 4981 /*
bea207c8
GC
4982 * Kernel memory may not necessarily be trackable to a specific
4983 * process. So they are not migrated, and therefore we can't
4984 * expect their value to drop to 0 here.
4985 * Having res filled up with kmem only is enough.
4986 *
2ef37d3f
MH
4987 * This is a safety check because mem_cgroup_force_empty_list
4988 * could have raced with mem_cgroup_replace_page_cache callers
4989 * so the lru seemed empty but the page could have been added
4990 * right after the check. RES_USAGE should be safe as we always
4991 * charge before adding to the LRU.
4992 */
bea207c8
GC
4993 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4994 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4995 } while (usage > 0);
c26251f9
MH
4996}
4997
b5f99b53
GC
4998static inline bool memcg_has_children(struct mem_cgroup *memcg)
4999{
696ac172
JW
5000 lockdep_assert_held(&memcg_create_mutex);
5001 /*
5002 * The lock does not prevent addition or deletion to the list
5003 * of children, but it prevents a new child from being
5004 * initialized based on this parent in css_online(), so it's
5005 * enough to decide whether hierarchically inherited
5006 * attributes can still be changed or not.
5007 */
5008 return memcg->use_hierarchy &&
5009 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5010}
5011
c26251f9
MH
5012/*
5013 * Reclaims as many pages from the given memcg as possible and moves
5014 * the rest to the parent.
5015 *
5016 * Caller is responsible for holding css reference for memcg.
5017 */
5018static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5019{
5020 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5021 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5022
c1e862c1 5023 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5024 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5025 return -EBUSY;
5026
c1e862c1
KH
5027 /* we call try-to-free pages for make this cgroup empty */
5028 lru_add_drain_all();
f817ed48 5029 /* try to free all pages in this cgroup */
569530fb 5030 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5031 int progress;
c1e862c1 5032
c26251f9
MH
5033 if (signal_pending(current))
5034 return -EINTR;
5035
c0ff4b85 5036 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5037 false);
c1e862c1 5038 if (!progress) {
f817ed48 5039 nr_retries--;
c1e862c1 5040 /* maybe some writeback is necessary */
8aa7e847 5041 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5042 }
f817ed48
KH
5043
5044 }
08e552c6 5045 lru_add_drain();
ab5196c2
MH
5046 mem_cgroup_reparent_charges(memcg);
5047
5048 return 0;
cc847582
KH
5049}
5050
182446d0
TH
5051static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5052 unsigned int event)
c1e862c1 5053{
182446d0 5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5055
d8423011
MH
5056 if (mem_cgroup_is_root(memcg))
5057 return -EINVAL;
c33bd835 5058 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5059}
5060
182446d0
TH
5061static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5062 struct cftype *cft)
18f59ea7 5063{
182446d0 5064 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5065}
5066
182446d0
TH
5067static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5068 struct cftype *cft, u64 val)
18f59ea7
BS
5069{
5070 int retval = 0;
182446d0 5071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5072 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5073
0999821b 5074 mutex_lock(&memcg_create_mutex);
567fb435
GC
5075
5076 if (memcg->use_hierarchy == val)
5077 goto out;
5078
18f59ea7 5079 /*
af901ca1 5080 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5081 * in the child subtrees. If it is unset, then the change can
5082 * occur, provided the current cgroup has no children.
5083 *
5084 * For the root cgroup, parent_mem is NULL, we allow value to be
5085 * set if there are no children.
5086 */
c0ff4b85 5087 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5088 (val == 1 || val == 0)) {
696ac172 5089 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5090 memcg->use_hierarchy = val;
18f59ea7
BS
5091 else
5092 retval = -EBUSY;
5093 } else
5094 retval = -EINVAL;
567fb435
GC
5095
5096out:
0999821b 5097 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5098
5099 return retval;
5100}
5101
0c3e73e8 5102
c0ff4b85 5103static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5104 enum mem_cgroup_stat_index idx)
0c3e73e8 5105{
7d74b06f 5106 struct mem_cgroup *iter;
7a159cc9 5107 long val = 0;
0c3e73e8 5108
7a159cc9 5109 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5110 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5111 val += mem_cgroup_read_stat(iter, idx);
5112
5113 if (val < 0) /* race ? */
5114 val = 0;
5115 return val;
0c3e73e8
BS
5116}
5117
c0ff4b85 5118static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5119{
7d74b06f 5120 u64 val;
104f3928 5121
c0ff4b85 5122 if (!mem_cgroup_is_root(memcg)) {
104f3928 5123 if (!swap)
65c64ce8 5124 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5125 else
65c64ce8 5126 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5127 }
5128
b070e65c
DR
5129 /*
5130 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5131 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5132 */
c0ff4b85
R
5133 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5134 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5135
7d74b06f 5136 if (swap)
bff6bb83 5137 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5138
5139 return val << PAGE_SHIFT;
5140}
5141
791badbd
TH
5142static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5143 struct cftype *cft)
8cdea7c0 5144{
182446d0 5145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 5146 u64 val;
791badbd 5147 int name;
86ae53e1 5148 enum res_type type;
8c7c6e34
KH
5149
5150 type = MEMFILE_TYPE(cft->private);
5151 name = MEMFILE_ATTR(cft->private);
af36f906 5152
8c7c6e34
KH
5153 switch (type) {
5154 case _MEM:
104f3928 5155 if (name == RES_USAGE)
c0ff4b85 5156 val = mem_cgroup_usage(memcg, false);
104f3928 5157 else
c0ff4b85 5158 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5159 break;
5160 case _MEMSWAP:
104f3928 5161 if (name == RES_USAGE)
c0ff4b85 5162 val = mem_cgroup_usage(memcg, true);
104f3928 5163 else
c0ff4b85 5164 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5165 break;
510fc4e1
GC
5166 case _KMEM:
5167 val = res_counter_read_u64(&memcg->kmem, name);
5168 break;
8c7c6e34
KH
5169 default:
5170 BUG();
8c7c6e34 5171 }
af36f906 5172
791badbd 5173 return val;
8cdea7c0 5174}
510fc4e1 5175
182446d0 5176static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5177{
5178 int ret = -EINVAL;
5179#ifdef CONFIG_MEMCG_KMEM
182446d0 5180 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5181 /*
5182 * For simplicity, we won't allow this to be disabled. It also can't
5183 * be changed if the cgroup has children already, or if tasks had
5184 * already joined.
5185 *
5186 * If tasks join before we set the limit, a person looking at
5187 * kmem.usage_in_bytes will have no way to determine when it took
5188 * place, which makes the value quite meaningless.
5189 *
5190 * After it first became limited, changes in the value of the limit are
5191 * of course permitted.
510fc4e1 5192 */
0999821b 5193 mutex_lock(&memcg_create_mutex);
510fc4e1 5194 mutex_lock(&set_limit_mutex);
6de5a8bf 5195 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5196 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5197 ret = -EBUSY;
5198 goto out;
5199 }
5200 ret = res_counter_set_limit(&memcg->kmem, val);
5201 VM_BUG_ON(ret);
5202
55007d84
GC
5203 ret = memcg_update_cache_sizes(memcg);
5204 if (ret) {
6de5a8bf 5205 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5206 goto out;
5207 }
692e89ab
GC
5208 static_key_slow_inc(&memcg_kmem_enabled_key);
5209 /*
5210 * setting the active bit after the inc will guarantee no one
5211 * starts accounting before all call sites are patched
5212 */
5213 memcg_kmem_set_active(memcg);
510fc4e1
GC
5214 } else
5215 ret = res_counter_set_limit(&memcg->kmem, val);
5216out:
5217 mutex_unlock(&set_limit_mutex);
0999821b 5218 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5219#endif
5220 return ret;
5221}
5222
6d043990 5223#ifdef CONFIG_MEMCG_KMEM
55007d84 5224static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5225{
55007d84 5226 int ret = 0;
510fc4e1
GC
5227 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5228 if (!parent)
55007d84
GC
5229 goto out;
5230
510fc4e1 5231 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5232 /*
5233 * When that happen, we need to disable the static branch only on those
5234 * memcgs that enabled it. To achieve this, we would be forced to
5235 * complicate the code by keeping track of which memcgs were the ones
5236 * that actually enabled limits, and which ones got it from its
5237 * parents.
5238 *
5239 * It is a lot simpler just to do static_key_slow_inc() on every child
5240 * that is accounted.
5241 */
55007d84
GC
5242 if (!memcg_kmem_is_active(memcg))
5243 goto out;
5244
5245 /*
10d5ebf4
LZ
5246 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5247 * memcg is active already. If the later initialization fails then the
5248 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5249 */
55007d84
GC
5250 static_key_slow_inc(&memcg_kmem_enabled_key);
5251
5252 mutex_lock(&set_limit_mutex);
425c598d 5253 memcg_stop_kmem_account();
55007d84 5254 ret = memcg_update_cache_sizes(memcg);
425c598d 5255 memcg_resume_kmem_account();
55007d84 5256 mutex_unlock(&set_limit_mutex);
55007d84
GC
5257out:
5258 return ret;
510fc4e1 5259}
6d043990 5260#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5261
628f4235
KH
5262/*
5263 * The user of this function is...
5264 * RES_LIMIT.
5265 */
182446d0 5266static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5267 const char *buffer)
8cdea7c0 5268{
182446d0 5269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5270 enum res_type type;
5271 int name;
628f4235
KH
5272 unsigned long long val;
5273 int ret;
5274
8c7c6e34
KH
5275 type = MEMFILE_TYPE(cft->private);
5276 name = MEMFILE_ATTR(cft->private);
af36f906 5277
8c7c6e34 5278 switch (name) {
628f4235 5279 case RES_LIMIT:
4b3bde4c
BS
5280 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5281 ret = -EINVAL;
5282 break;
5283 }
628f4235
KH
5284 /* This function does all necessary parse...reuse it */
5285 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5286 if (ret)
5287 break;
5288 if (type == _MEM)
628f4235 5289 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5290 else if (type == _MEMSWAP)
8c7c6e34 5291 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5292 else if (type == _KMEM)
182446d0 5293 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5294 else
5295 return -EINVAL;
628f4235 5296 break;
296c81d8
BS
5297 case RES_SOFT_LIMIT:
5298 ret = res_counter_memparse_write_strategy(buffer, &val);
5299 if (ret)
5300 break;
5301 /*
5302 * For memsw, soft limits are hard to implement in terms
5303 * of semantics, for now, we support soft limits for
5304 * control without swap
5305 */
5306 if (type == _MEM)
5307 ret = res_counter_set_soft_limit(&memcg->res, val);
5308 else
5309 ret = -EINVAL;
5310 break;
628f4235
KH
5311 default:
5312 ret = -EINVAL; /* should be BUG() ? */
5313 break;
5314 }
5315 return ret;
8cdea7c0
BS
5316}
5317
fee7b548
KH
5318static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5319 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5320{
fee7b548
KH
5321 unsigned long long min_limit, min_memsw_limit, tmp;
5322
5323 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5324 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5325 if (!memcg->use_hierarchy)
5326 goto out;
5327
63876986
TH
5328 while (css_parent(&memcg->css)) {
5329 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5330 if (!memcg->use_hierarchy)
5331 break;
5332 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5333 min_limit = min(min_limit, tmp);
5334 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5335 min_memsw_limit = min(min_memsw_limit, tmp);
5336 }
5337out:
5338 *mem_limit = min_limit;
5339 *memsw_limit = min_memsw_limit;
fee7b548
KH
5340}
5341
182446d0 5342static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5343{
182446d0 5344 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5345 int name;
5346 enum res_type type;
c84872e1 5347
8c7c6e34
KH
5348 type = MEMFILE_TYPE(event);
5349 name = MEMFILE_ATTR(event);
af36f906 5350
8c7c6e34 5351 switch (name) {
29f2a4da 5352 case RES_MAX_USAGE:
8c7c6e34 5353 if (type == _MEM)
c0ff4b85 5354 res_counter_reset_max(&memcg->res);
510fc4e1 5355 else if (type == _MEMSWAP)
c0ff4b85 5356 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5357 else if (type == _KMEM)
5358 res_counter_reset_max(&memcg->kmem);
5359 else
5360 return -EINVAL;
29f2a4da
PE
5361 break;
5362 case RES_FAILCNT:
8c7c6e34 5363 if (type == _MEM)
c0ff4b85 5364 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5365 else if (type == _MEMSWAP)
c0ff4b85 5366 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5367 else if (type == _KMEM)
5368 res_counter_reset_failcnt(&memcg->kmem);
5369 else
5370 return -EINVAL;
29f2a4da
PE
5371 break;
5372 }
f64c3f54 5373
85cc59db 5374 return 0;
c84872e1
PE
5375}
5376
182446d0 5377static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5378 struct cftype *cft)
5379{
182446d0 5380 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5381}
5382
02491447 5383#ifdef CONFIG_MMU
182446d0 5384static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5385 struct cftype *cft, u64 val)
5386{
182446d0 5387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5388
5389 if (val >= (1 << NR_MOVE_TYPE))
5390 return -EINVAL;
ee5e8472 5391
7dc74be0 5392 /*
ee5e8472
GC
5393 * No kind of locking is needed in here, because ->can_attach() will
5394 * check this value once in the beginning of the process, and then carry
5395 * on with stale data. This means that changes to this value will only
5396 * affect task migrations starting after the change.
7dc74be0 5397 */
c0ff4b85 5398 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5399 return 0;
5400}
02491447 5401#else
182446d0 5402static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5403 struct cftype *cft, u64 val)
5404{
5405 return -ENOSYS;
5406}
5407#endif
7dc74be0 5408
406eb0c9 5409#ifdef CONFIG_NUMA
2da8ca82 5410static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5411{
25485de6
GT
5412 struct numa_stat {
5413 const char *name;
5414 unsigned int lru_mask;
5415 };
5416
5417 static const struct numa_stat stats[] = {
5418 { "total", LRU_ALL },
5419 { "file", LRU_ALL_FILE },
5420 { "anon", LRU_ALL_ANON },
5421 { "unevictable", BIT(LRU_UNEVICTABLE) },
5422 };
5423 const struct numa_stat *stat;
406eb0c9 5424 int nid;
25485de6 5425 unsigned long nr;
2da8ca82 5426 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5427
25485de6
GT
5428 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5429 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5430 seq_printf(m, "%s=%lu", stat->name, nr);
5431 for_each_node_state(nid, N_MEMORY) {
5432 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5433 stat->lru_mask);
5434 seq_printf(m, " N%d=%lu", nid, nr);
5435 }
5436 seq_putc(m, '\n');
406eb0c9 5437 }
406eb0c9 5438
071aee13
YH
5439 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5440 struct mem_cgroup *iter;
5441
5442 nr = 0;
5443 for_each_mem_cgroup_tree(iter, memcg)
5444 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5445 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5446 for_each_node_state(nid, N_MEMORY) {
5447 nr = 0;
5448 for_each_mem_cgroup_tree(iter, memcg)
5449 nr += mem_cgroup_node_nr_lru_pages(
5450 iter, nid, stat->lru_mask);
5451 seq_printf(m, " N%d=%lu", nid, nr);
5452 }
5453 seq_putc(m, '\n');
406eb0c9 5454 }
406eb0c9 5455
406eb0c9
YH
5456 return 0;
5457}
5458#endif /* CONFIG_NUMA */
5459
af7c4b0e
JW
5460static inline void mem_cgroup_lru_names_not_uptodate(void)
5461{
5462 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5463}
5464
2da8ca82 5465static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5466{
2da8ca82 5467 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5468 struct mem_cgroup *mi;
5469 unsigned int i;
406eb0c9 5470
af7c4b0e 5471 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5472 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5473 continue;
af7c4b0e
JW
5474 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5475 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5476 }
7b854121 5477
af7c4b0e
JW
5478 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5479 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5480 mem_cgroup_read_events(memcg, i));
5481
5482 for (i = 0; i < NR_LRU_LISTS; i++)
5483 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5484 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5485
14067bb3 5486 /* Hierarchical information */
fee7b548
KH
5487 {
5488 unsigned long long limit, memsw_limit;
d79154bb 5489 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5490 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5491 if (do_swap_account)
78ccf5b5
JW
5492 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5493 memsw_limit);
fee7b548 5494 }
7f016ee8 5495
af7c4b0e
JW
5496 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5497 long long val = 0;
5498
bff6bb83 5499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5500 continue;
af7c4b0e
JW
5501 for_each_mem_cgroup_tree(mi, memcg)
5502 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5503 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5504 }
5505
5506 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5507 unsigned long long val = 0;
5508
5509 for_each_mem_cgroup_tree(mi, memcg)
5510 val += mem_cgroup_read_events(mi, i);
5511 seq_printf(m, "total_%s %llu\n",
5512 mem_cgroup_events_names[i], val);
5513 }
5514
5515 for (i = 0; i < NR_LRU_LISTS; i++) {
5516 unsigned long long val = 0;
5517
5518 for_each_mem_cgroup_tree(mi, memcg)
5519 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5520 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5521 }
14067bb3 5522
7f016ee8 5523#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5524 {
5525 int nid, zid;
5526 struct mem_cgroup_per_zone *mz;
89abfab1 5527 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5528 unsigned long recent_rotated[2] = {0, 0};
5529 unsigned long recent_scanned[2] = {0, 0};
5530
5531 for_each_online_node(nid)
5532 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5533 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5534 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5535
89abfab1
HD
5536 recent_rotated[0] += rstat->recent_rotated[0];
5537 recent_rotated[1] += rstat->recent_rotated[1];
5538 recent_scanned[0] += rstat->recent_scanned[0];
5539 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5540 }
78ccf5b5
JW
5541 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5542 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5543 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5544 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5545 }
5546#endif
5547
d2ceb9b7
KH
5548 return 0;
5549}
5550
182446d0
TH
5551static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5552 struct cftype *cft)
a7885eb8 5553{
182446d0 5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5555
1f4c025b 5556 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5557}
5558
182446d0
TH
5559static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5560 struct cftype *cft, u64 val)
a7885eb8 5561{
182446d0 5562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5563 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5564
63876986 5565 if (val > 100 || !parent)
a7885eb8
KM
5566 return -EINVAL;
5567
0999821b 5568 mutex_lock(&memcg_create_mutex);
068b38c1 5569
a7885eb8 5570 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5571 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5572 mutex_unlock(&memcg_create_mutex);
a7885eb8 5573 return -EINVAL;
068b38c1 5574 }
a7885eb8 5575
a7885eb8 5576 memcg->swappiness = val;
a7885eb8 5577
0999821b 5578 mutex_unlock(&memcg_create_mutex);
068b38c1 5579
a7885eb8
KM
5580 return 0;
5581}
5582
2e72b634
KS
5583static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5584{
5585 struct mem_cgroup_threshold_ary *t;
5586 u64 usage;
5587 int i;
5588
5589 rcu_read_lock();
5590 if (!swap)
2c488db2 5591 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5592 else
2c488db2 5593 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5594
5595 if (!t)
5596 goto unlock;
5597
5598 usage = mem_cgroup_usage(memcg, swap);
5599
5600 /*
748dad36 5601 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5602 * If it's not true, a threshold was crossed after last
5603 * call of __mem_cgroup_threshold().
5604 */
5407a562 5605 i = t->current_threshold;
2e72b634
KS
5606
5607 /*
5608 * Iterate backward over array of thresholds starting from
5609 * current_threshold and check if a threshold is crossed.
5610 * If none of thresholds below usage is crossed, we read
5611 * only one element of the array here.
5612 */
5613 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5614 eventfd_signal(t->entries[i].eventfd, 1);
5615
5616 /* i = current_threshold + 1 */
5617 i++;
5618
5619 /*
5620 * Iterate forward over array of thresholds starting from
5621 * current_threshold+1 and check if a threshold is crossed.
5622 * If none of thresholds above usage is crossed, we read
5623 * only one element of the array here.
5624 */
5625 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5626 eventfd_signal(t->entries[i].eventfd, 1);
5627
5628 /* Update current_threshold */
5407a562 5629 t->current_threshold = i - 1;
2e72b634
KS
5630unlock:
5631 rcu_read_unlock();
5632}
5633
5634static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5635{
ad4ca5f4
KS
5636 while (memcg) {
5637 __mem_cgroup_threshold(memcg, false);
5638 if (do_swap_account)
5639 __mem_cgroup_threshold(memcg, true);
5640
5641 memcg = parent_mem_cgroup(memcg);
5642 }
2e72b634
KS
5643}
5644
5645static int compare_thresholds(const void *a, const void *b)
5646{
5647 const struct mem_cgroup_threshold *_a = a;
5648 const struct mem_cgroup_threshold *_b = b;
5649
2bff24a3
GT
5650 if (_a->threshold > _b->threshold)
5651 return 1;
5652
5653 if (_a->threshold < _b->threshold)
5654 return -1;
5655
5656 return 0;
2e72b634
KS
5657}
5658
c0ff4b85 5659static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5660{
5661 struct mem_cgroup_eventfd_list *ev;
5662
c0ff4b85 5663 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5664 eventfd_signal(ev->eventfd, 1);
5665 return 0;
5666}
5667
c0ff4b85 5668static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5669{
7d74b06f
KH
5670 struct mem_cgroup *iter;
5671
c0ff4b85 5672 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5673 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5674}
5675
59b6f873 5676static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5677 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5678{
2c488db2
KS
5679 struct mem_cgroup_thresholds *thresholds;
5680 struct mem_cgroup_threshold_ary *new;
2e72b634 5681 u64 threshold, usage;
2c488db2 5682 int i, size, ret;
2e72b634
KS
5683
5684 ret = res_counter_memparse_write_strategy(args, &threshold);
5685 if (ret)
5686 return ret;
5687
5688 mutex_lock(&memcg->thresholds_lock);
2c488db2 5689
2e72b634 5690 if (type == _MEM)
2c488db2 5691 thresholds = &memcg->thresholds;
2e72b634 5692 else if (type == _MEMSWAP)
2c488db2 5693 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5694 else
5695 BUG();
5696
5697 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5698
5699 /* Check if a threshold crossed before adding a new one */
2c488db2 5700 if (thresholds->primary)
2e72b634
KS
5701 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5702
2c488db2 5703 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5704
5705 /* Allocate memory for new array of thresholds */
2c488db2 5706 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5707 GFP_KERNEL);
2c488db2 5708 if (!new) {
2e72b634
KS
5709 ret = -ENOMEM;
5710 goto unlock;
5711 }
2c488db2 5712 new->size = size;
2e72b634
KS
5713
5714 /* Copy thresholds (if any) to new array */
2c488db2
KS
5715 if (thresholds->primary) {
5716 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5717 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5718 }
5719
2e72b634 5720 /* Add new threshold */
2c488db2
KS
5721 new->entries[size - 1].eventfd = eventfd;
5722 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5723
5724 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5725 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5726 compare_thresholds, NULL);
5727
5728 /* Find current threshold */
2c488db2 5729 new->current_threshold = -1;
2e72b634 5730 for (i = 0; i < size; i++) {
748dad36 5731 if (new->entries[i].threshold <= usage) {
2e72b634 5732 /*
2c488db2
KS
5733 * new->current_threshold will not be used until
5734 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5735 * it here.
5736 */
2c488db2 5737 ++new->current_threshold;
748dad36
SZ
5738 } else
5739 break;
2e72b634
KS
5740 }
5741
2c488db2
KS
5742 /* Free old spare buffer and save old primary buffer as spare */
5743 kfree(thresholds->spare);
5744 thresholds->spare = thresholds->primary;
5745
5746 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5747
907860ed 5748 /* To be sure that nobody uses thresholds */
2e72b634
KS
5749 synchronize_rcu();
5750
2e72b634
KS
5751unlock:
5752 mutex_unlock(&memcg->thresholds_lock);
5753
5754 return ret;
5755}
5756
59b6f873 5757static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5758 struct eventfd_ctx *eventfd, const char *args)
5759{
59b6f873 5760 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5761}
5762
59b6f873 5763static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5764 struct eventfd_ctx *eventfd, const char *args)
5765{
59b6f873 5766 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5767}
5768
59b6f873 5769static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5770 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5771{
2c488db2
KS
5772 struct mem_cgroup_thresholds *thresholds;
5773 struct mem_cgroup_threshold_ary *new;
2e72b634 5774 u64 usage;
2c488db2 5775 int i, j, size;
2e72b634
KS
5776
5777 mutex_lock(&memcg->thresholds_lock);
5778 if (type == _MEM)
2c488db2 5779 thresholds = &memcg->thresholds;
2e72b634 5780 else if (type == _MEMSWAP)
2c488db2 5781 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5782 else
5783 BUG();
5784
371528ca
AV
5785 if (!thresholds->primary)
5786 goto unlock;
5787
2e72b634
KS
5788 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5789
5790 /* Check if a threshold crossed before removing */
5791 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5792
5793 /* Calculate new number of threshold */
2c488db2
KS
5794 size = 0;
5795 for (i = 0; i < thresholds->primary->size; i++) {
5796 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5797 size++;
5798 }
5799
2c488db2 5800 new = thresholds->spare;
907860ed 5801
2e72b634
KS
5802 /* Set thresholds array to NULL if we don't have thresholds */
5803 if (!size) {
2c488db2
KS
5804 kfree(new);
5805 new = NULL;
907860ed 5806 goto swap_buffers;
2e72b634
KS
5807 }
5808
2c488db2 5809 new->size = size;
2e72b634
KS
5810
5811 /* Copy thresholds and find current threshold */
2c488db2
KS
5812 new->current_threshold = -1;
5813 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5814 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5815 continue;
5816
2c488db2 5817 new->entries[j] = thresholds->primary->entries[i];
748dad36 5818 if (new->entries[j].threshold <= usage) {
2e72b634 5819 /*
2c488db2 5820 * new->current_threshold will not be used
2e72b634
KS
5821 * until rcu_assign_pointer(), so it's safe to increment
5822 * it here.
5823 */
2c488db2 5824 ++new->current_threshold;
2e72b634
KS
5825 }
5826 j++;
5827 }
5828
907860ed 5829swap_buffers:
2c488db2
KS
5830 /* Swap primary and spare array */
5831 thresholds->spare = thresholds->primary;
8c757763
SZ
5832 /* If all events are unregistered, free the spare array */
5833 if (!new) {
5834 kfree(thresholds->spare);
5835 thresholds->spare = NULL;
5836 }
5837
2c488db2 5838 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5839
907860ed 5840 /* To be sure that nobody uses thresholds */
2e72b634 5841 synchronize_rcu();
371528ca 5842unlock:
2e72b634 5843 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5844}
c1e862c1 5845
59b6f873 5846static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5847 struct eventfd_ctx *eventfd)
5848{
59b6f873 5849 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5850}
5851
59b6f873 5852static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5853 struct eventfd_ctx *eventfd)
5854{
59b6f873 5855 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5856}
5857
59b6f873 5858static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5859 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5860{
9490ff27 5861 struct mem_cgroup_eventfd_list *event;
9490ff27 5862
9490ff27
KH
5863 event = kmalloc(sizeof(*event), GFP_KERNEL);
5864 if (!event)
5865 return -ENOMEM;
5866
1af8efe9 5867 spin_lock(&memcg_oom_lock);
9490ff27
KH
5868
5869 event->eventfd = eventfd;
5870 list_add(&event->list, &memcg->oom_notify);
5871
5872 /* already in OOM ? */
79dfdacc 5873 if (atomic_read(&memcg->under_oom))
9490ff27 5874 eventfd_signal(eventfd, 1);
1af8efe9 5875 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5876
5877 return 0;
5878}
5879
59b6f873 5880static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5881 struct eventfd_ctx *eventfd)
9490ff27 5882{
9490ff27 5883 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5884
1af8efe9 5885 spin_lock(&memcg_oom_lock);
9490ff27 5886
c0ff4b85 5887 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5888 if (ev->eventfd == eventfd) {
5889 list_del(&ev->list);
5890 kfree(ev);
5891 }
5892 }
5893
1af8efe9 5894 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5895}
5896
2da8ca82 5897static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5898{
2da8ca82 5899 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5900
791badbd
TH
5901 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5902 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5903 return 0;
5904}
5905
182446d0 5906static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5907 struct cftype *cft, u64 val)
5908{
182446d0 5909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5910 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5911
5912 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5913 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5914 return -EINVAL;
5915
0999821b 5916 mutex_lock(&memcg_create_mutex);
3c11ecf4 5917 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5918 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5919 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5920 return -EINVAL;
5921 }
c0ff4b85 5922 memcg->oom_kill_disable = val;
4d845ebf 5923 if (!val)
c0ff4b85 5924 memcg_oom_recover(memcg);
0999821b 5925 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5926 return 0;
5927}
5928
c255a458 5929#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5930static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5931{
55007d84
GC
5932 int ret;
5933
2633d7a0 5934 memcg->kmemcg_id = -1;
55007d84
GC
5935 ret = memcg_propagate_kmem(memcg);
5936 if (ret)
5937 return ret;
2633d7a0 5938
1d62e436 5939 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5940}
e5671dfa 5941
10d5ebf4 5942static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5943{
1d62e436 5944 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5945}
5946
5947static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5948{
5949 if (!memcg_kmem_is_active(memcg))
5950 return;
5951
5952 /*
5953 * kmem charges can outlive the cgroup. In the case of slab
5954 * pages, for instance, a page contain objects from various
5955 * processes. As we prevent from taking a reference for every
5956 * such allocation we have to be careful when doing uncharge
5957 * (see memcg_uncharge_kmem) and here during offlining.
5958 *
5959 * The idea is that that only the _last_ uncharge which sees
5960 * the dead memcg will drop the last reference. An additional
5961 * reference is taken here before the group is marked dead
5962 * which is then paired with css_put during uncharge resp. here.
5963 *
5964 * Although this might sound strange as this path is called from
5965 * css_offline() when the referencemight have dropped down to 0
5966 * and shouldn't be incremented anymore (css_tryget would fail)
5967 * we do not have other options because of the kmem allocations
5968 * lifetime.
5969 */
5970 css_get(&memcg->css);
7de37682
GC
5971
5972 memcg_kmem_mark_dead(memcg);
5973
5974 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5975 return;
5976
7de37682 5977 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5978 css_put(&memcg->css);
d1a4c0b3 5979}
e5671dfa 5980#else
cbe128e3 5981static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5982{
5983 return 0;
5984}
d1a4c0b3 5985
10d5ebf4
LZ
5986static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5987{
5988}
5989
5990static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5991{
5992}
e5671dfa
GC
5993#endif
5994
3bc942f3
TH
5995/*
5996 * DO NOT USE IN NEW FILES.
5997 *
5998 * "cgroup.event_control" implementation.
5999 *
6000 * This is way over-engineered. It tries to support fully configurable
6001 * events for each user. Such level of flexibility is completely
6002 * unnecessary especially in the light of the planned unified hierarchy.
6003 *
6004 * Please deprecate this and replace with something simpler if at all
6005 * possible.
6006 */
6007
79bd9814
TH
6008/*
6009 * Unregister event and free resources.
6010 *
6011 * Gets called from workqueue.
6012 */
3bc942f3 6013static void memcg_event_remove(struct work_struct *work)
79bd9814 6014{
3bc942f3
TH
6015 struct mem_cgroup_event *event =
6016 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6017 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6018
6019 remove_wait_queue(event->wqh, &event->wait);
6020
59b6f873 6021 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6022
6023 /* Notify userspace the event is going away. */
6024 eventfd_signal(event->eventfd, 1);
6025
6026 eventfd_ctx_put(event->eventfd);
6027 kfree(event);
59b6f873 6028 css_put(&memcg->css);
79bd9814
TH
6029}
6030
6031/*
6032 * Gets called on POLLHUP on eventfd when user closes it.
6033 *
6034 * Called with wqh->lock held and interrupts disabled.
6035 */
3bc942f3
TH
6036static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6037 int sync, void *key)
79bd9814 6038{
3bc942f3
TH
6039 struct mem_cgroup_event *event =
6040 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6041 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6042 unsigned long flags = (unsigned long)key;
6043
6044 if (flags & POLLHUP) {
6045 /*
6046 * If the event has been detached at cgroup removal, we
6047 * can simply return knowing the other side will cleanup
6048 * for us.
6049 *
6050 * We can't race against event freeing since the other
6051 * side will require wqh->lock via remove_wait_queue(),
6052 * which we hold.
6053 */
fba94807 6054 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6055 if (!list_empty(&event->list)) {
6056 list_del_init(&event->list);
6057 /*
6058 * We are in atomic context, but cgroup_event_remove()
6059 * may sleep, so we have to call it in workqueue.
6060 */
6061 schedule_work(&event->remove);
6062 }
fba94807 6063 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6064 }
6065
6066 return 0;
6067}
6068
3bc942f3 6069static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6070 wait_queue_head_t *wqh, poll_table *pt)
6071{
3bc942f3
TH
6072 struct mem_cgroup_event *event =
6073 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6074
6075 event->wqh = wqh;
6076 add_wait_queue(wqh, &event->wait);
6077}
6078
6079/*
3bc942f3
TH
6080 * DO NOT USE IN NEW FILES.
6081 *
79bd9814
TH
6082 * Parse input and register new cgroup event handler.
6083 *
6084 * Input must be in format '<event_fd> <control_fd> <args>'.
6085 * Interpretation of args is defined by control file implementation.
6086 */
3bc942f3
TH
6087static int memcg_write_event_control(struct cgroup_subsys_state *css,
6088 struct cftype *cft, const char *buffer)
79bd9814 6089{
fba94807 6090 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6091 struct mem_cgroup_event *event;
79bd9814
TH
6092 struct cgroup_subsys_state *cfile_css;
6093 unsigned int efd, cfd;
6094 struct fd efile;
6095 struct fd cfile;
fba94807 6096 const char *name;
79bd9814
TH
6097 char *endp;
6098 int ret;
6099
6100 efd = simple_strtoul(buffer, &endp, 10);
6101 if (*endp != ' ')
6102 return -EINVAL;
6103 buffer = endp + 1;
6104
6105 cfd = simple_strtoul(buffer, &endp, 10);
6106 if ((*endp != ' ') && (*endp != '\0'))
6107 return -EINVAL;
6108 buffer = endp + 1;
6109
6110 event = kzalloc(sizeof(*event), GFP_KERNEL);
6111 if (!event)
6112 return -ENOMEM;
6113
59b6f873 6114 event->memcg = memcg;
79bd9814 6115 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6116 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6117 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6118 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6119
6120 efile = fdget(efd);
6121 if (!efile.file) {
6122 ret = -EBADF;
6123 goto out_kfree;
6124 }
6125
6126 event->eventfd = eventfd_ctx_fileget(efile.file);
6127 if (IS_ERR(event->eventfd)) {
6128 ret = PTR_ERR(event->eventfd);
6129 goto out_put_efile;
6130 }
6131
6132 cfile = fdget(cfd);
6133 if (!cfile.file) {
6134 ret = -EBADF;
6135 goto out_put_eventfd;
6136 }
6137
6138 /* the process need read permission on control file */
6139 /* AV: shouldn't we check that it's been opened for read instead? */
6140 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6141 if (ret < 0)
6142 goto out_put_cfile;
6143
fba94807
TH
6144 /*
6145 * Determine the event callbacks and set them in @event. This used
6146 * to be done via struct cftype but cgroup core no longer knows
6147 * about these events. The following is crude but the whole thing
6148 * is for compatibility anyway.
3bc942f3
TH
6149 *
6150 * DO NOT ADD NEW FILES.
fba94807
TH
6151 */
6152 name = cfile.file->f_dentry->d_name.name;
6153
6154 if (!strcmp(name, "memory.usage_in_bytes")) {
6155 event->register_event = mem_cgroup_usage_register_event;
6156 event->unregister_event = mem_cgroup_usage_unregister_event;
6157 } else if (!strcmp(name, "memory.oom_control")) {
6158 event->register_event = mem_cgroup_oom_register_event;
6159 event->unregister_event = mem_cgroup_oom_unregister_event;
6160 } else if (!strcmp(name, "memory.pressure_level")) {
6161 event->register_event = vmpressure_register_event;
6162 event->unregister_event = vmpressure_unregister_event;
6163 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6164 event->register_event = memsw_cgroup_usage_register_event;
6165 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6166 } else {
6167 ret = -EINVAL;
6168 goto out_put_cfile;
6169 }
6170
79bd9814 6171 /*
b5557c4c
TH
6172 * Verify @cfile should belong to @css. Also, remaining events are
6173 * automatically removed on cgroup destruction but the removal is
6174 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6175 */
6176 rcu_read_lock();
6177
6178 ret = -EINVAL;
b5557c4c
TH
6179 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6180 &mem_cgroup_subsys);
6181 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6182 ret = 0;
6183
6184 rcu_read_unlock();
6185 if (ret)
6186 goto out_put_cfile;
6187
59b6f873 6188 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6189 if (ret)
6190 goto out_put_css;
6191
6192 efile.file->f_op->poll(efile.file, &event->pt);
6193
fba94807
TH
6194 spin_lock(&memcg->event_list_lock);
6195 list_add(&event->list, &memcg->event_list);
6196 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6197
6198 fdput(cfile);
6199 fdput(efile);
6200
6201 return 0;
6202
6203out_put_css:
b5557c4c 6204 css_put(css);
79bd9814
TH
6205out_put_cfile:
6206 fdput(cfile);
6207out_put_eventfd:
6208 eventfd_ctx_put(event->eventfd);
6209out_put_efile:
6210 fdput(efile);
6211out_kfree:
6212 kfree(event);
6213
6214 return ret;
6215}
6216
8cdea7c0
BS
6217static struct cftype mem_cgroup_files[] = {
6218 {
0eea1030 6219 .name = "usage_in_bytes",
8c7c6e34 6220 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6221 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6222 },
c84872e1
PE
6223 {
6224 .name = "max_usage_in_bytes",
8c7c6e34 6225 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6226 .trigger = mem_cgroup_reset,
791badbd 6227 .read_u64 = mem_cgroup_read_u64,
c84872e1 6228 },
8cdea7c0 6229 {
0eea1030 6230 .name = "limit_in_bytes",
8c7c6e34 6231 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6232 .write_string = mem_cgroup_write,
791badbd 6233 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6234 },
296c81d8
BS
6235 {
6236 .name = "soft_limit_in_bytes",
6237 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6238 .write_string = mem_cgroup_write,
791badbd 6239 .read_u64 = mem_cgroup_read_u64,
296c81d8 6240 },
8cdea7c0
BS
6241 {
6242 .name = "failcnt",
8c7c6e34 6243 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6244 .trigger = mem_cgroup_reset,
791badbd 6245 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6246 },
d2ceb9b7
KH
6247 {
6248 .name = "stat",
2da8ca82 6249 .seq_show = memcg_stat_show,
d2ceb9b7 6250 },
c1e862c1
KH
6251 {
6252 .name = "force_empty",
6253 .trigger = mem_cgroup_force_empty_write,
6254 },
18f59ea7
BS
6255 {
6256 .name = "use_hierarchy",
f00baae7 6257 .flags = CFTYPE_INSANE,
18f59ea7
BS
6258 .write_u64 = mem_cgroup_hierarchy_write,
6259 .read_u64 = mem_cgroup_hierarchy_read,
6260 },
79bd9814 6261 {
3bc942f3
TH
6262 .name = "cgroup.event_control", /* XXX: for compat */
6263 .write_string = memcg_write_event_control,
79bd9814
TH
6264 .flags = CFTYPE_NO_PREFIX,
6265 .mode = S_IWUGO,
6266 },
a7885eb8
KM
6267 {
6268 .name = "swappiness",
6269 .read_u64 = mem_cgroup_swappiness_read,
6270 .write_u64 = mem_cgroup_swappiness_write,
6271 },
7dc74be0
DN
6272 {
6273 .name = "move_charge_at_immigrate",
6274 .read_u64 = mem_cgroup_move_charge_read,
6275 .write_u64 = mem_cgroup_move_charge_write,
6276 },
9490ff27
KH
6277 {
6278 .name = "oom_control",
2da8ca82 6279 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6280 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6281 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6282 },
70ddf637
AV
6283 {
6284 .name = "pressure_level",
70ddf637 6285 },
406eb0c9
YH
6286#ifdef CONFIG_NUMA
6287 {
6288 .name = "numa_stat",
2da8ca82 6289 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6290 },
6291#endif
510fc4e1
GC
6292#ifdef CONFIG_MEMCG_KMEM
6293 {
6294 .name = "kmem.limit_in_bytes",
6295 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6296 .write_string = mem_cgroup_write,
791badbd 6297 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6298 },
6299 {
6300 .name = "kmem.usage_in_bytes",
6301 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6302 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6303 },
6304 {
6305 .name = "kmem.failcnt",
6306 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6307 .trigger = mem_cgroup_reset,
791badbd 6308 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6309 },
6310 {
6311 .name = "kmem.max_usage_in_bytes",
6312 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6313 .trigger = mem_cgroup_reset,
791badbd 6314 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6315 },
749c5415
GC
6316#ifdef CONFIG_SLABINFO
6317 {
6318 .name = "kmem.slabinfo",
2da8ca82 6319 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6320 },
6321#endif
8c7c6e34 6322#endif
6bc10349 6323 { }, /* terminate */
af36f906 6324};
8c7c6e34 6325
2d11085e
MH
6326#ifdef CONFIG_MEMCG_SWAP
6327static struct cftype memsw_cgroup_files[] = {
6328 {
6329 .name = "memsw.usage_in_bytes",
6330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6331 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6332 },
6333 {
6334 .name = "memsw.max_usage_in_bytes",
6335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6336 .trigger = mem_cgroup_reset,
791badbd 6337 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6338 },
6339 {
6340 .name = "memsw.limit_in_bytes",
6341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6342 .write_string = mem_cgroup_write,
791badbd 6343 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6344 },
6345 {
6346 .name = "memsw.failcnt",
6347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6348 .trigger = mem_cgroup_reset,
791badbd 6349 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6350 },
6351 { }, /* terminate */
6352};
6353#endif
c0ff4b85 6354static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6355{
6356 struct mem_cgroup_per_node *pn;
1ecaab2b 6357 struct mem_cgroup_per_zone *mz;
41e3355d 6358 int zone, tmp = node;
1ecaab2b
KH
6359 /*
6360 * This routine is called against possible nodes.
6361 * But it's BUG to call kmalloc() against offline node.
6362 *
6363 * TODO: this routine can waste much memory for nodes which will
6364 * never be onlined. It's better to use memory hotplug callback
6365 * function.
6366 */
41e3355d
KH
6367 if (!node_state(node, N_NORMAL_MEMORY))
6368 tmp = -1;
17295c88 6369 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6370 if (!pn)
6371 return 1;
1ecaab2b 6372
1ecaab2b
KH
6373 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6374 mz = &pn->zoneinfo[zone];
bea8c150 6375 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6376 mz->usage_in_excess = 0;
6377 mz->on_tree = false;
d79154bb 6378 mz->memcg = memcg;
1ecaab2b 6379 }
54f72fe0 6380 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6381 return 0;
6382}
6383
c0ff4b85 6384static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6385{
54f72fe0 6386 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6387}
6388
33327948
KH
6389static struct mem_cgroup *mem_cgroup_alloc(void)
6390{
d79154bb 6391 struct mem_cgroup *memcg;
8ff69e2c 6392 size_t size;
33327948 6393
8ff69e2c
VD
6394 size = sizeof(struct mem_cgroup);
6395 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6396
8ff69e2c 6397 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6398 if (!memcg)
e7bbcdf3
DC
6399 return NULL;
6400
d79154bb
HD
6401 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6402 if (!memcg->stat)
d2e61b8d 6403 goto out_free;
d79154bb
HD
6404 spin_lock_init(&memcg->pcp_counter_lock);
6405 return memcg;
d2e61b8d
DC
6406
6407out_free:
8ff69e2c 6408 kfree(memcg);
d2e61b8d 6409 return NULL;
33327948
KH
6410}
6411
59927fb9 6412/*
c8b2a36f
GC
6413 * At destroying mem_cgroup, references from swap_cgroup can remain.
6414 * (scanning all at force_empty is too costly...)
6415 *
6416 * Instead of clearing all references at force_empty, we remember
6417 * the number of reference from swap_cgroup and free mem_cgroup when
6418 * it goes down to 0.
6419 *
6420 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6421 */
c8b2a36f
GC
6422
6423static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6424{
c8b2a36f 6425 int node;
59927fb9 6426
bb4cc1a8 6427 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6428
6429 for_each_node(node)
6430 free_mem_cgroup_per_zone_info(memcg, node);
6431
6432 free_percpu(memcg->stat);
6433
3f134619
GC
6434 /*
6435 * We need to make sure that (at least for now), the jump label
6436 * destruction code runs outside of the cgroup lock. This is because
6437 * get_online_cpus(), which is called from the static_branch update,
6438 * can't be called inside the cgroup_lock. cpusets are the ones
6439 * enforcing this dependency, so if they ever change, we might as well.
6440 *
6441 * schedule_work() will guarantee this happens. Be careful if you need
6442 * to move this code around, and make sure it is outside
6443 * the cgroup_lock.
6444 */
a8964b9b 6445 disarm_static_keys(memcg);
8ff69e2c 6446 kfree(memcg);
59927fb9 6447}
3afe36b1 6448
7bcc1bb1
DN
6449/*
6450 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6451 */
e1aab161 6452struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6453{
c0ff4b85 6454 if (!memcg->res.parent)
7bcc1bb1 6455 return NULL;
c0ff4b85 6456 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6457}
e1aab161 6458EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6459
bb4cc1a8
AM
6460static void __init mem_cgroup_soft_limit_tree_init(void)
6461{
6462 struct mem_cgroup_tree_per_node *rtpn;
6463 struct mem_cgroup_tree_per_zone *rtpz;
6464 int tmp, node, zone;
6465
6466 for_each_node(node) {
6467 tmp = node;
6468 if (!node_state(node, N_NORMAL_MEMORY))
6469 tmp = -1;
6470 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6471 BUG_ON(!rtpn);
6472
6473 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6474
6475 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6476 rtpz = &rtpn->rb_tree_per_zone[zone];
6477 rtpz->rb_root = RB_ROOT;
6478 spin_lock_init(&rtpz->lock);
6479 }
6480 }
6481}
6482
0eb253e2 6483static struct cgroup_subsys_state * __ref
eb95419b 6484mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6485{
d142e3e6 6486 struct mem_cgroup *memcg;
04046e1a 6487 long error = -ENOMEM;
6d12e2d8 6488 int node;
8cdea7c0 6489
c0ff4b85
R
6490 memcg = mem_cgroup_alloc();
6491 if (!memcg)
04046e1a 6492 return ERR_PTR(error);
78fb7466 6493
3ed28fa1 6494 for_each_node(node)
c0ff4b85 6495 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6496 goto free_out;
f64c3f54 6497
c077719b 6498 /* root ? */
eb95419b 6499 if (parent_css == NULL) {
a41c58a6 6500 root_mem_cgroup = memcg;
d142e3e6
GC
6501 res_counter_init(&memcg->res, NULL);
6502 res_counter_init(&memcg->memsw, NULL);
6503 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6504 }
28dbc4b6 6505
d142e3e6
GC
6506 memcg->last_scanned_node = MAX_NUMNODES;
6507 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6508 memcg->move_charge_at_immigrate = 0;
6509 mutex_init(&memcg->thresholds_lock);
6510 spin_lock_init(&memcg->move_lock);
70ddf637 6511 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6512 INIT_LIST_HEAD(&memcg->event_list);
6513 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6514
6515 return &memcg->css;
6516
6517free_out:
6518 __mem_cgroup_free(memcg);
6519 return ERR_PTR(error);
6520}
6521
6522static int
eb95419b 6523mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6524{
eb95419b
TH
6525 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6526 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6527 int error = 0;
6528
4219b2da
LZ
6529 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6530 return -ENOSPC;
6531
63876986 6532 if (!parent)
d142e3e6
GC
6533 return 0;
6534
0999821b 6535 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6536
6537 memcg->use_hierarchy = parent->use_hierarchy;
6538 memcg->oom_kill_disable = parent->oom_kill_disable;
6539 memcg->swappiness = mem_cgroup_swappiness(parent);
6540
6541 if (parent->use_hierarchy) {
c0ff4b85
R
6542 res_counter_init(&memcg->res, &parent->res);
6543 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6544 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6545
7bcc1bb1 6546 /*
8d76a979
LZ
6547 * No need to take a reference to the parent because cgroup
6548 * core guarantees its existence.
7bcc1bb1 6549 */
18f59ea7 6550 } else {
c0ff4b85
R
6551 res_counter_init(&memcg->res, NULL);
6552 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6553 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6554 /*
6555 * Deeper hierachy with use_hierarchy == false doesn't make
6556 * much sense so let cgroup subsystem know about this
6557 * unfortunate state in our controller.
6558 */
d142e3e6 6559 if (parent != root_mem_cgroup)
8c7f6edb 6560 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6561 }
cbe128e3
GC
6562
6563 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6564 mutex_unlock(&memcg_create_mutex);
d142e3e6 6565 return error;
8cdea7c0
BS
6566}
6567
5f578161
MH
6568/*
6569 * Announce all parents that a group from their hierarchy is gone.
6570 */
6571static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6572{
6573 struct mem_cgroup *parent = memcg;
6574
6575 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6576 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6577
6578 /*
6579 * if the root memcg is not hierarchical we have to check it
6580 * explicitely.
6581 */
6582 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6583 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6584}
6585
eb95419b 6586static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6587{
eb95419b 6588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6589 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6590
6591 /*
6592 * Unregister events and notify userspace.
6593 * Notify userspace about cgroup removing only after rmdir of cgroup
6594 * directory to avoid race between userspace and kernelspace.
6595 */
fba94807
TH
6596 spin_lock(&memcg->event_list_lock);
6597 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6598 list_del_init(&event->list);
6599 schedule_work(&event->remove);
6600 }
fba94807 6601 spin_unlock(&memcg->event_list_lock);
ec64f515 6602
10d5ebf4
LZ
6603 kmem_cgroup_css_offline(memcg);
6604
5f578161 6605 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6606 mem_cgroup_reparent_charges(memcg);
1f458cbf 6607 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6608 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6609}
6610
eb95419b 6611static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6612{
eb95419b 6613 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6614 /*
6615 * XXX: css_offline() would be where we should reparent all
6616 * memory to prepare the cgroup for destruction. However,
6617 * memcg does not do css_tryget() and res_counter charging
6618 * under the same RCU lock region, which means that charging
6619 * could race with offlining. Offlining only happens to
6620 * cgroups with no tasks in them but charges can show up
6621 * without any tasks from the swapin path when the target
6622 * memcg is looked up from the swapout record and not from the
6623 * current task as it usually is. A race like this can leak
6624 * charges and put pages with stale cgroup pointers into
6625 * circulation:
6626 *
6627 * #0 #1
6628 * lookup_swap_cgroup_id()
6629 * rcu_read_lock()
6630 * mem_cgroup_lookup()
6631 * css_tryget()
6632 * rcu_read_unlock()
6633 * disable css_tryget()
6634 * call_rcu()
6635 * offline_css()
6636 * reparent_charges()
6637 * res_counter_charge()
6638 * css_put()
6639 * css_free()
6640 * pc->mem_cgroup = dead memcg
6641 * add page to lru
6642 *
6643 * The bulk of the charges are still moved in offline_css() to
6644 * avoid pinning a lot of pages in case a long-term reference
6645 * like a swapout record is deferring the css_free() to long
6646 * after offlining. But this makes sure we catch any charges
6647 * made after offlining:
6648 */
6649 mem_cgroup_reparent_charges(memcg);
c268e994 6650
10d5ebf4 6651 memcg_destroy_kmem(memcg);
465939a1 6652 __mem_cgroup_free(memcg);
8cdea7c0
BS
6653}
6654
02491447 6655#ifdef CONFIG_MMU
7dc74be0 6656/* Handlers for move charge at task migration. */
854ffa8d
DN
6657#define PRECHARGE_COUNT_AT_ONCE 256
6658static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6659{
854ffa8d
DN
6660 int ret = 0;
6661 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6662 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6663
c0ff4b85 6664 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6665 mc.precharge += count;
6666 /* we don't need css_get for root */
6667 return ret;
6668 }
6669 /* try to charge at once */
6670 if (count > 1) {
6671 struct res_counter *dummy;
6672 /*
c0ff4b85 6673 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6674 * by cgroup_lock_live_cgroup() that it is not removed and we
6675 * are still under the same cgroup_mutex. So we can postpone
6676 * css_get().
6677 */
c0ff4b85 6678 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6679 goto one_by_one;
c0ff4b85 6680 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6681 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6682 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6683 goto one_by_one;
6684 }
6685 mc.precharge += count;
854ffa8d
DN
6686 return ret;
6687 }
6688one_by_one:
6689 /* fall back to one by one charge */
6690 while (count--) {
6691 if (signal_pending(current)) {
6692 ret = -EINTR;
6693 break;
6694 }
6695 if (!batch_count--) {
6696 batch_count = PRECHARGE_COUNT_AT_ONCE;
6697 cond_resched();
6698 }
c0ff4b85
R
6699 ret = __mem_cgroup_try_charge(NULL,
6700 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6701 if (ret)
854ffa8d 6702 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6703 return ret;
854ffa8d
DN
6704 mc.precharge++;
6705 }
4ffef5fe
DN
6706 return ret;
6707}
6708
6709/**
8d32ff84 6710 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6711 * @vma: the vma the pte to be checked belongs
6712 * @addr: the address corresponding to the pte to be checked
6713 * @ptent: the pte to be checked
02491447 6714 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6715 *
6716 * Returns
6717 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6718 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6719 * move charge. if @target is not NULL, the page is stored in target->page
6720 * with extra refcnt got(Callers should handle it).
02491447
DN
6721 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6722 * target for charge migration. if @target is not NULL, the entry is stored
6723 * in target->ent.
4ffef5fe
DN
6724 *
6725 * Called with pte lock held.
6726 */
4ffef5fe
DN
6727union mc_target {
6728 struct page *page;
02491447 6729 swp_entry_t ent;
4ffef5fe
DN
6730};
6731
4ffef5fe 6732enum mc_target_type {
8d32ff84 6733 MC_TARGET_NONE = 0,
4ffef5fe 6734 MC_TARGET_PAGE,
02491447 6735 MC_TARGET_SWAP,
4ffef5fe
DN
6736};
6737
90254a65
DN
6738static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6739 unsigned long addr, pte_t ptent)
4ffef5fe 6740{
90254a65 6741 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6742
90254a65
DN
6743 if (!page || !page_mapped(page))
6744 return NULL;
6745 if (PageAnon(page)) {
6746 /* we don't move shared anon */
4b91355e 6747 if (!move_anon())
90254a65 6748 return NULL;
87946a72
DN
6749 } else if (!move_file())
6750 /* we ignore mapcount for file pages */
90254a65
DN
6751 return NULL;
6752 if (!get_page_unless_zero(page))
6753 return NULL;
6754
6755 return page;
6756}
6757
4b91355e 6758#ifdef CONFIG_SWAP
90254a65
DN
6759static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6760 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6761{
90254a65
DN
6762 struct page *page = NULL;
6763 swp_entry_t ent = pte_to_swp_entry(ptent);
6764
6765 if (!move_anon() || non_swap_entry(ent))
6766 return NULL;
4b91355e
KH
6767 /*
6768 * Because lookup_swap_cache() updates some statistics counter,
6769 * we call find_get_page() with swapper_space directly.
6770 */
33806f06 6771 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6772 if (do_swap_account)
6773 entry->val = ent.val;
6774
6775 return page;
6776}
4b91355e
KH
6777#else
6778static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6779 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6780{
6781 return NULL;
6782}
6783#endif
90254a65 6784
87946a72
DN
6785static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6786 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6787{
6788 struct page *page = NULL;
87946a72
DN
6789 struct address_space *mapping;
6790 pgoff_t pgoff;
6791
6792 if (!vma->vm_file) /* anonymous vma */
6793 return NULL;
6794 if (!move_file())
6795 return NULL;
6796
87946a72
DN
6797 mapping = vma->vm_file->f_mapping;
6798 if (pte_none(ptent))
6799 pgoff = linear_page_index(vma, addr);
6800 else /* pte_file(ptent) is true */
6801 pgoff = pte_to_pgoff(ptent);
6802
6803 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6804 page = find_get_page(mapping, pgoff);
6805
6806#ifdef CONFIG_SWAP
6807 /* shmem/tmpfs may report page out on swap: account for that too. */
6808 if (radix_tree_exceptional_entry(page)) {
6809 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6810 if (do_swap_account)
aa3b1895 6811 *entry = swap;
33806f06 6812 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6813 }
aa3b1895 6814#endif
87946a72
DN
6815 return page;
6816}
6817
8d32ff84 6818static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6819 unsigned long addr, pte_t ptent, union mc_target *target)
6820{
6821 struct page *page = NULL;
6822 struct page_cgroup *pc;
8d32ff84 6823 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6824 swp_entry_t ent = { .val = 0 };
6825
6826 if (pte_present(ptent))
6827 page = mc_handle_present_pte(vma, addr, ptent);
6828 else if (is_swap_pte(ptent))
6829 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6830 else if (pte_none(ptent) || pte_file(ptent))
6831 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6832
6833 if (!page && !ent.val)
8d32ff84 6834 return ret;
02491447
DN
6835 if (page) {
6836 pc = lookup_page_cgroup(page);
6837 /*
6838 * Do only loose check w/o page_cgroup lock.
6839 * mem_cgroup_move_account() checks the pc is valid or not under
6840 * the lock.
6841 */
6842 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6843 ret = MC_TARGET_PAGE;
6844 if (target)
6845 target->page = page;
6846 }
6847 if (!ret || !target)
6848 put_page(page);
6849 }
90254a65
DN
6850 /* There is a swap entry and a page doesn't exist or isn't charged */
6851 if (ent.val && !ret &&
34c00c31 6852 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6853 ret = MC_TARGET_SWAP;
6854 if (target)
6855 target->ent = ent;
4ffef5fe 6856 }
4ffef5fe
DN
6857 return ret;
6858}
6859
12724850
NH
6860#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6861/*
6862 * We don't consider swapping or file mapped pages because THP does not
6863 * support them for now.
6864 * Caller should make sure that pmd_trans_huge(pmd) is true.
6865 */
6866static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6867 unsigned long addr, pmd_t pmd, union mc_target *target)
6868{
6869 struct page *page = NULL;
6870 struct page_cgroup *pc;
6871 enum mc_target_type ret = MC_TARGET_NONE;
6872
6873 page = pmd_page(pmd);
309381fe 6874 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6875 if (!move_anon())
6876 return ret;
6877 pc = lookup_page_cgroup(page);
6878 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6879 ret = MC_TARGET_PAGE;
6880 if (target) {
6881 get_page(page);
6882 target->page = page;
6883 }
6884 }
6885 return ret;
6886}
6887#else
6888static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6889 unsigned long addr, pmd_t pmd, union mc_target *target)
6890{
6891 return MC_TARGET_NONE;
6892}
6893#endif
6894
4ffef5fe
DN
6895static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6896 unsigned long addr, unsigned long end,
6897 struct mm_walk *walk)
6898{
6899 struct vm_area_struct *vma = walk->private;
6900 pte_t *pte;
6901 spinlock_t *ptl;
6902
bf929152 6903 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6904 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6905 mc.precharge += HPAGE_PMD_NR;
bf929152 6906 spin_unlock(ptl);
1a5a9906 6907 return 0;
12724850 6908 }
03319327 6909
45f83cef
AA
6910 if (pmd_trans_unstable(pmd))
6911 return 0;
4ffef5fe
DN
6912 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6913 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6914 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6915 mc.precharge++; /* increment precharge temporarily */
6916 pte_unmap_unlock(pte - 1, ptl);
6917 cond_resched();
6918
7dc74be0
DN
6919 return 0;
6920}
6921
4ffef5fe
DN
6922static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6923{
6924 unsigned long precharge;
6925 struct vm_area_struct *vma;
6926
dfe076b0 6927 down_read(&mm->mmap_sem);
4ffef5fe
DN
6928 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6929 struct mm_walk mem_cgroup_count_precharge_walk = {
6930 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6931 .mm = mm,
6932 .private = vma,
6933 };
6934 if (is_vm_hugetlb_page(vma))
6935 continue;
4ffef5fe
DN
6936 walk_page_range(vma->vm_start, vma->vm_end,
6937 &mem_cgroup_count_precharge_walk);
6938 }
dfe076b0 6939 up_read(&mm->mmap_sem);
4ffef5fe
DN
6940
6941 precharge = mc.precharge;
6942 mc.precharge = 0;
6943
6944 return precharge;
6945}
6946
4ffef5fe
DN
6947static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6948{
dfe076b0
DN
6949 unsigned long precharge = mem_cgroup_count_precharge(mm);
6950
6951 VM_BUG_ON(mc.moving_task);
6952 mc.moving_task = current;
6953 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6954}
6955
dfe076b0
DN
6956/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6957static void __mem_cgroup_clear_mc(void)
4ffef5fe 6958{
2bd9bb20
KH
6959 struct mem_cgroup *from = mc.from;
6960 struct mem_cgroup *to = mc.to;
4050377b 6961 int i;
2bd9bb20 6962
4ffef5fe 6963 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6964 if (mc.precharge) {
6965 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6966 mc.precharge = 0;
6967 }
6968 /*
6969 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6970 * we must uncharge here.
6971 */
6972 if (mc.moved_charge) {
6973 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6974 mc.moved_charge = 0;
4ffef5fe 6975 }
483c30b5
DN
6976 /* we must fixup refcnts and charges */
6977 if (mc.moved_swap) {
483c30b5
DN
6978 /* uncharge swap account from the old cgroup */
6979 if (!mem_cgroup_is_root(mc.from))
6980 res_counter_uncharge(&mc.from->memsw,
6981 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6982
6983 for (i = 0; i < mc.moved_swap; i++)
6984 css_put(&mc.from->css);
483c30b5
DN
6985
6986 if (!mem_cgroup_is_root(mc.to)) {
6987 /*
6988 * we charged both to->res and to->memsw, so we should
6989 * uncharge to->res.
6990 */
6991 res_counter_uncharge(&mc.to->res,
6992 PAGE_SIZE * mc.moved_swap);
483c30b5 6993 }
4050377b 6994 /* we've already done css_get(mc.to) */
483c30b5
DN
6995 mc.moved_swap = 0;
6996 }
dfe076b0
DN
6997 memcg_oom_recover(from);
6998 memcg_oom_recover(to);
6999 wake_up_all(&mc.waitq);
7000}
7001
7002static void mem_cgroup_clear_mc(void)
7003{
7004 struct mem_cgroup *from = mc.from;
7005
7006 /*
7007 * we must clear moving_task before waking up waiters at the end of
7008 * task migration.
7009 */
7010 mc.moving_task = NULL;
7011 __mem_cgroup_clear_mc();
2bd9bb20 7012 spin_lock(&mc.lock);
4ffef5fe
DN
7013 mc.from = NULL;
7014 mc.to = NULL;
2bd9bb20 7015 spin_unlock(&mc.lock);
32047e2a 7016 mem_cgroup_end_move(from);
4ffef5fe
DN
7017}
7018
eb95419b 7019static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7020 struct cgroup_taskset *tset)
7dc74be0 7021{
2f7ee569 7022 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7023 int ret = 0;
eb95419b 7024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7025 unsigned long move_charge_at_immigrate;
7dc74be0 7026
ee5e8472
GC
7027 /*
7028 * We are now commited to this value whatever it is. Changes in this
7029 * tunable will only affect upcoming migrations, not the current one.
7030 * So we need to save it, and keep it going.
7031 */
7032 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7033 if (move_charge_at_immigrate) {
7dc74be0
DN
7034 struct mm_struct *mm;
7035 struct mem_cgroup *from = mem_cgroup_from_task(p);
7036
c0ff4b85 7037 VM_BUG_ON(from == memcg);
7dc74be0
DN
7038
7039 mm = get_task_mm(p);
7040 if (!mm)
7041 return 0;
7dc74be0 7042 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7043 if (mm->owner == p) {
7044 VM_BUG_ON(mc.from);
7045 VM_BUG_ON(mc.to);
7046 VM_BUG_ON(mc.precharge);
854ffa8d 7047 VM_BUG_ON(mc.moved_charge);
483c30b5 7048 VM_BUG_ON(mc.moved_swap);
32047e2a 7049 mem_cgroup_start_move(from);
2bd9bb20 7050 spin_lock(&mc.lock);
4ffef5fe 7051 mc.from = from;
c0ff4b85 7052 mc.to = memcg;
ee5e8472 7053 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7054 spin_unlock(&mc.lock);
dfe076b0 7055 /* We set mc.moving_task later */
4ffef5fe
DN
7056
7057 ret = mem_cgroup_precharge_mc(mm);
7058 if (ret)
7059 mem_cgroup_clear_mc();
dfe076b0
DN
7060 }
7061 mmput(mm);
7dc74be0
DN
7062 }
7063 return ret;
7064}
7065
eb95419b 7066static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7067 struct cgroup_taskset *tset)
7dc74be0 7068{
4ffef5fe 7069 mem_cgroup_clear_mc();
7dc74be0
DN
7070}
7071
4ffef5fe
DN
7072static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7073 unsigned long addr, unsigned long end,
7074 struct mm_walk *walk)
7dc74be0 7075{
4ffef5fe
DN
7076 int ret = 0;
7077 struct vm_area_struct *vma = walk->private;
7078 pte_t *pte;
7079 spinlock_t *ptl;
12724850
NH
7080 enum mc_target_type target_type;
7081 union mc_target target;
7082 struct page *page;
7083 struct page_cgroup *pc;
4ffef5fe 7084
12724850
NH
7085 /*
7086 * We don't take compound_lock() here but no race with splitting thp
7087 * happens because:
7088 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7089 * under splitting, which means there's no concurrent thp split,
7090 * - if another thread runs into split_huge_page() just after we
7091 * entered this if-block, the thread must wait for page table lock
7092 * to be unlocked in __split_huge_page_splitting(), where the main
7093 * part of thp split is not executed yet.
7094 */
bf929152 7095 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7096 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7097 spin_unlock(ptl);
12724850
NH
7098 return 0;
7099 }
7100 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7101 if (target_type == MC_TARGET_PAGE) {
7102 page = target.page;
7103 if (!isolate_lru_page(page)) {
7104 pc = lookup_page_cgroup(page);
7105 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7106 pc, mc.from, mc.to)) {
12724850
NH
7107 mc.precharge -= HPAGE_PMD_NR;
7108 mc.moved_charge += HPAGE_PMD_NR;
7109 }
7110 putback_lru_page(page);
7111 }
7112 put_page(page);
7113 }
bf929152 7114 spin_unlock(ptl);
1a5a9906 7115 return 0;
12724850
NH
7116 }
7117
45f83cef
AA
7118 if (pmd_trans_unstable(pmd))
7119 return 0;
4ffef5fe
DN
7120retry:
7121 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7122 for (; addr != end; addr += PAGE_SIZE) {
7123 pte_t ptent = *(pte++);
02491447 7124 swp_entry_t ent;
4ffef5fe
DN
7125
7126 if (!mc.precharge)
7127 break;
7128
8d32ff84 7129 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7130 case MC_TARGET_PAGE:
7131 page = target.page;
7132 if (isolate_lru_page(page))
7133 goto put;
7134 pc = lookup_page_cgroup(page);
7ec99d62 7135 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7136 mc.from, mc.to)) {
4ffef5fe 7137 mc.precharge--;
854ffa8d
DN
7138 /* we uncharge from mc.from later. */
7139 mc.moved_charge++;
4ffef5fe
DN
7140 }
7141 putback_lru_page(page);
8d32ff84 7142put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7143 put_page(page);
7144 break;
02491447
DN
7145 case MC_TARGET_SWAP:
7146 ent = target.ent;
e91cbb42 7147 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7148 mc.precharge--;
483c30b5
DN
7149 /* we fixup refcnts and charges later. */
7150 mc.moved_swap++;
7151 }
02491447 7152 break;
4ffef5fe
DN
7153 default:
7154 break;
7155 }
7156 }
7157 pte_unmap_unlock(pte - 1, ptl);
7158 cond_resched();
7159
7160 if (addr != end) {
7161 /*
7162 * We have consumed all precharges we got in can_attach().
7163 * We try charge one by one, but don't do any additional
7164 * charges to mc.to if we have failed in charge once in attach()
7165 * phase.
7166 */
854ffa8d 7167 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7168 if (!ret)
7169 goto retry;
7170 }
7171
7172 return ret;
7173}
7174
7175static void mem_cgroup_move_charge(struct mm_struct *mm)
7176{
7177 struct vm_area_struct *vma;
7178
7179 lru_add_drain_all();
dfe076b0
DN
7180retry:
7181 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7182 /*
7183 * Someone who are holding the mmap_sem might be waiting in
7184 * waitq. So we cancel all extra charges, wake up all waiters,
7185 * and retry. Because we cancel precharges, we might not be able
7186 * to move enough charges, but moving charge is a best-effort
7187 * feature anyway, so it wouldn't be a big problem.
7188 */
7189 __mem_cgroup_clear_mc();
7190 cond_resched();
7191 goto retry;
7192 }
4ffef5fe
DN
7193 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7194 int ret;
7195 struct mm_walk mem_cgroup_move_charge_walk = {
7196 .pmd_entry = mem_cgroup_move_charge_pte_range,
7197 .mm = mm,
7198 .private = vma,
7199 };
7200 if (is_vm_hugetlb_page(vma))
7201 continue;
4ffef5fe
DN
7202 ret = walk_page_range(vma->vm_start, vma->vm_end,
7203 &mem_cgroup_move_charge_walk);
7204 if (ret)
7205 /*
7206 * means we have consumed all precharges and failed in
7207 * doing additional charge. Just abandon here.
7208 */
7209 break;
7210 }
dfe076b0 7211 up_read(&mm->mmap_sem);
7dc74be0
DN
7212}
7213
eb95419b 7214static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7215 struct cgroup_taskset *tset)
67e465a7 7216{
2f7ee569 7217 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7218 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7219
dfe076b0 7220 if (mm) {
a433658c
KM
7221 if (mc.to)
7222 mem_cgroup_move_charge(mm);
dfe076b0
DN
7223 mmput(mm);
7224 }
a433658c
KM
7225 if (mc.to)
7226 mem_cgroup_clear_mc();
67e465a7 7227}
5cfb80a7 7228#else /* !CONFIG_MMU */
eb95419b 7229static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7230 struct cgroup_taskset *tset)
5cfb80a7
DN
7231{
7232 return 0;
7233}
eb95419b 7234static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7235 struct cgroup_taskset *tset)
5cfb80a7
DN
7236{
7237}
eb95419b 7238static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7239 struct cgroup_taskset *tset)
5cfb80a7
DN
7240{
7241}
7242#endif
67e465a7 7243
f00baae7
TH
7244/*
7245 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7246 * to verify sane_behavior flag on each mount attempt.
7247 */
eb95419b 7248static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7249{
7250 /*
7251 * use_hierarchy is forced with sane_behavior. cgroup core
7252 * guarantees that @root doesn't have any children, so turning it
7253 * on for the root memcg is enough.
7254 */
eb95419b
TH
7255 if (cgroup_sane_behavior(root_css->cgroup))
7256 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7257}
7258
8cdea7c0
BS
7259struct cgroup_subsys mem_cgroup_subsys = {
7260 .name = "memory",
7261 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7262 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7263 .css_online = mem_cgroup_css_online,
92fb9748
TH
7264 .css_offline = mem_cgroup_css_offline,
7265 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7266 .can_attach = mem_cgroup_can_attach,
7267 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7268 .attach = mem_cgroup_move_task,
f00baae7 7269 .bind = mem_cgroup_bind,
6bc10349 7270 .base_cftypes = mem_cgroup_files,
6d12e2d8 7271 .early_init = 0,
8cdea7c0 7272};
c077719b 7273
c255a458 7274#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7275static int __init enable_swap_account(char *s)
7276{
a2c8990a 7277 if (!strcmp(s, "1"))
a42c390c 7278 really_do_swap_account = 1;
a2c8990a 7279 else if (!strcmp(s, "0"))
a42c390c
MH
7280 really_do_swap_account = 0;
7281 return 1;
7282}
a2c8990a 7283__setup("swapaccount=", enable_swap_account);
c077719b 7284
2d11085e
MH
7285static void __init memsw_file_init(void)
7286{
6acc8b02
MH
7287 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7288}
7289
7290static void __init enable_swap_cgroup(void)
7291{
7292 if (!mem_cgroup_disabled() && really_do_swap_account) {
7293 do_swap_account = 1;
7294 memsw_file_init();
7295 }
2d11085e 7296}
6acc8b02 7297
2d11085e 7298#else
6acc8b02 7299static void __init enable_swap_cgroup(void)
2d11085e
MH
7300{
7301}
c077719b 7302#endif
2d11085e
MH
7303
7304/*
1081312f
MH
7305 * subsys_initcall() for memory controller.
7306 *
7307 * Some parts like hotcpu_notifier() have to be initialized from this context
7308 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7309 * everything that doesn't depend on a specific mem_cgroup structure should
7310 * be initialized from here.
2d11085e
MH
7311 */
7312static int __init mem_cgroup_init(void)
7313{
7314 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7315 enable_swap_cgroup();
bb4cc1a8 7316 mem_cgroup_soft_limit_tree_init();
e4777496 7317 memcg_stock_init();
2d11085e
MH
7318 return 0;
7319}
7320subsys_initcall(mem_cgroup_init);