]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcg: convert numa stat to read_seq_string interface
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
e9f8974f
JW
94enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
100 MEM_CGROUP_EVENTS_NSTATS,
101};
7a159cc9
JW
102/*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 111 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
112 MEM_CGROUP_NTARGETS,
113};
a0db00fc
KS
114#define THRESHOLDS_EVENTS_TARGET 128
115#define SOFTLIMIT_EVENTS_TARGET 1024
116#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 117
d52aa412 118struct mem_cgroup_stat_cpu {
7a159cc9 119 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 121 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
122};
123
527a5ec9
JW
124struct mem_cgroup_reclaim_iter {
125 /* css_id of the last scanned hierarchy member */
126 int position;
127 /* scan generation, increased every round-trip */
128 unsigned int generation;
129};
130
6d12e2d8
KH
131/*
132 * per-zone information in memory controller.
133 */
6d12e2d8 134struct mem_cgroup_per_zone {
6290df54 135 struct lruvec lruvec;
1eb49272 136 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 137
527a5ec9
JW
138 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
139
f64c3f54
BS
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
d79154bb 144 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 145 /* use container_of */
6d12e2d8 146};
6d12e2d8
KH
147
148struct mem_cgroup_per_node {
149 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
150};
151
152struct mem_cgroup_lru_info {
153 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
154};
155
f64c3f54
BS
156/*
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
159 */
160
161struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
164};
165
166struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
172};
173
174static struct mem_cgroup_tree soft_limit_tree __read_mostly;
175
2e72b634
KS
176struct mem_cgroup_threshold {
177 struct eventfd_ctx *eventfd;
178 u64 threshold;
179};
180
9490ff27 181/* For threshold */
2e72b634 182struct mem_cgroup_threshold_ary {
748dad36 183 /* An array index points to threshold just below or equal to usage. */
5407a562 184 int current_threshold;
2e72b634
KS
185 /* Size of entries[] */
186 unsigned int size;
187 /* Array of thresholds */
188 struct mem_cgroup_threshold entries[0];
189};
2c488db2
KS
190
191struct mem_cgroup_thresholds {
192 /* Primary thresholds array */
193 struct mem_cgroup_threshold_ary *primary;
194 /*
195 * Spare threshold array.
196 * This is needed to make mem_cgroup_unregister_event() "never fail".
197 * It must be able to store at least primary->size - 1 entries.
198 */
199 struct mem_cgroup_threshold_ary *spare;
200};
201
9490ff27
KH
202/* for OOM */
203struct mem_cgroup_eventfd_list {
204 struct list_head list;
205 struct eventfd_ctx *eventfd;
206};
2e72b634 207
c0ff4b85
R
208static void mem_cgroup_threshold(struct mem_cgroup *memcg);
209static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 210
8cdea7c0
BS
211/*
212 * The memory controller data structure. The memory controller controls both
213 * page cache and RSS per cgroup. We would eventually like to provide
214 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
215 * to help the administrator determine what knobs to tune.
216 *
217 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
218 * we hit the water mark. May be even add a low water mark, such that
219 * no reclaim occurs from a cgroup at it's low water mark, this is
220 * a feature that will be implemented much later in the future.
8cdea7c0
BS
221 */
222struct mem_cgroup {
223 struct cgroup_subsys_state css;
224 /*
225 * the counter to account for memory usage
226 */
227 struct res_counter res;
59927fb9
HD
228
229 union {
230 /*
231 * the counter to account for mem+swap usage.
232 */
233 struct res_counter memsw;
234
235 /*
236 * rcu_freeing is used only when freeing struct mem_cgroup,
237 * so put it into a union to avoid wasting more memory.
238 * It must be disjoint from the css field. It could be
239 * in a union with the res field, but res plays a much
240 * larger part in mem_cgroup life than memsw, and might
241 * be of interest, even at time of free, when debugging.
242 * So share rcu_head with the less interesting memsw.
243 */
244 struct rcu_head rcu_freeing;
245 /*
246 * But when using vfree(), that cannot be done at
247 * interrupt time, so we must then queue the work.
248 */
249 struct work_struct work_freeing;
250 };
251
78fb7466
PE
252 /*
253 * Per cgroup active and inactive list, similar to the
254 * per zone LRU lists.
78fb7466 255 */
6d12e2d8 256 struct mem_cgroup_lru_info info;
889976db
YH
257 int last_scanned_node;
258#if MAX_NUMNODES > 1
259 nodemask_t scan_nodes;
453a9bf3
KH
260 atomic_t numainfo_events;
261 atomic_t numainfo_updating;
889976db 262#endif
18f59ea7
BS
263 /*
264 * Should the accounting and control be hierarchical, per subtree?
265 */
266 bool use_hierarchy;
79dfdacc
MH
267
268 bool oom_lock;
269 atomic_t under_oom;
270
8c7c6e34 271 atomic_t refcnt;
14797e23 272
1f4c025b 273 int swappiness;
3c11ecf4
KH
274 /* OOM-Killer disable */
275 int oom_kill_disable;
a7885eb8 276
22a668d7
KH
277 /* set when res.limit == memsw.limit */
278 bool memsw_is_minimum;
279
2e72b634
KS
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
282
283 /* thresholds for memory usage. RCU-protected */
2c488db2 284 struct mem_cgroup_thresholds thresholds;
907860ed 285
2e72b634 286 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 287 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 288
9490ff27
KH
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
185efc0f 291
7dc74be0
DN
292 /*
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
295 */
296 unsigned long move_charge_at_immigrate;
619d094b
KH
297 /*
298 * set > 0 if pages under this cgroup are moving to other cgroup.
299 */
300 atomic_t moving_account;
312734c0
KH
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
d52aa412 303 /*
c62b1a3b 304 * percpu counter.
d52aa412 305 */
3a7951b4 306 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
307 /*
308 * used when a cpu is offlined or other synchronizations
309 * See mem_cgroup_read_stat().
310 */
311 struct mem_cgroup_stat_cpu nocpu_base;
312 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
313
314#ifdef CONFIG_INET
315 struct tcp_memcontrol tcp_mem;
316#endif
8cdea7c0
BS
317};
318
7dc74be0
DN
319/* Stuffs for move charges at task migration. */
320/*
321 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
322 * left-shifted bitmap of these types.
323 */
324enum move_type {
4ffef5fe 325 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 326 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
327 NR_MOVE_TYPE,
328};
329
4ffef5fe
DN
330/* "mc" and its members are protected by cgroup_mutex */
331static struct move_charge_struct {
b1dd693e 332 spinlock_t lock; /* for from, to */
4ffef5fe
DN
333 struct mem_cgroup *from;
334 struct mem_cgroup *to;
335 unsigned long precharge;
854ffa8d 336 unsigned long moved_charge;
483c30b5 337 unsigned long moved_swap;
8033b97c
DN
338 struct task_struct *moving_task; /* a task moving charges */
339 wait_queue_head_t waitq; /* a waitq for other context */
340} mc = {
2bd9bb20 341 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
342 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
343};
4ffef5fe 344
90254a65
DN
345static bool move_anon(void)
346{
347 return test_bit(MOVE_CHARGE_TYPE_ANON,
348 &mc.to->move_charge_at_immigrate);
349}
350
87946a72
DN
351static bool move_file(void)
352{
353 return test_bit(MOVE_CHARGE_TYPE_FILE,
354 &mc.to->move_charge_at_immigrate);
355}
356
4e416953
BS
357/*
358 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
359 * limit reclaim to prevent infinite loops, if they ever occur.
360 */
a0db00fc
KS
361#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
362#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 363
217bc319
KH
364enum charge_type {
365 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
366 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 367 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 368 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 369 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 370 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
371 NR_CHARGE_TYPE,
372};
373
8c7c6e34 374/* for encoding cft->private value on file */
65c64ce8
GC
375#define _MEM (0)
376#define _MEMSWAP (1)
377#define _OOM_TYPE (2)
a0db00fc
KS
378#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
379#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 380#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
381/* Used for OOM nofiier */
382#define OOM_CONTROL (0)
8c7c6e34 383
75822b44
BS
384/*
385 * Reclaim flags for mem_cgroup_hierarchical_reclaim
386 */
387#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
388#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
389#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
390#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
391
c0ff4b85
R
392static void mem_cgroup_get(struct mem_cgroup *memcg);
393static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
394
395/* Writing them here to avoid exposing memcg's inner layout */
396#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 397#include <net/sock.h>
d1a4c0b3 398#include <net/ip.h>
e1aab161
GC
399
400static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
401void sock_update_memcg(struct sock *sk)
402{
376be5ff 403 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
404 struct mem_cgroup *memcg;
405
406 BUG_ON(!sk->sk_prot->proto_cgroup);
407
f3f511e1
GC
408 /* Socket cloning can throw us here with sk_cgrp already
409 * filled. It won't however, necessarily happen from
410 * process context. So the test for root memcg given
411 * the current task's memcg won't help us in this case.
412 *
413 * Respecting the original socket's memcg is a better
414 * decision in this case.
415 */
416 if (sk->sk_cgrp) {
417 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
418 mem_cgroup_get(sk->sk_cgrp->memcg);
419 return;
420 }
421
e1aab161
GC
422 rcu_read_lock();
423 memcg = mem_cgroup_from_task(current);
424 if (!mem_cgroup_is_root(memcg)) {
425 mem_cgroup_get(memcg);
426 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
427 }
428 rcu_read_unlock();
429 }
430}
431EXPORT_SYMBOL(sock_update_memcg);
432
433void sock_release_memcg(struct sock *sk)
434{
376be5ff 435 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
436 struct mem_cgroup *memcg;
437 WARN_ON(!sk->sk_cgrp->memcg);
438 memcg = sk->sk_cgrp->memcg;
439 mem_cgroup_put(memcg);
440 }
441}
d1a4c0b3 442
319d3b9c 443#ifdef CONFIG_INET
d1a4c0b3
GC
444struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
445{
446 if (!memcg || mem_cgroup_is_root(memcg))
447 return NULL;
448
449 return &memcg->tcp_mem.cg_proto;
450}
451EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
452#endif /* CONFIG_INET */
453#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
454
c0ff4b85 455static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 456
f64c3f54 457static struct mem_cgroup_per_zone *
c0ff4b85 458mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 459{
c0ff4b85 460 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
461}
462
c0ff4b85 463struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 464{
c0ff4b85 465 return &memcg->css;
d324236b
WF
466}
467
f64c3f54 468static struct mem_cgroup_per_zone *
c0ff4b85 469page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 470{
97a6c37b
JW
471 int nid = page_to_nid(page);
472 int zid = page_zonenum(page);
f64c3f54 473
c0ff4b85 474 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
475}
476
477static struct mem_cgroup_tree_per_zone *
478soft_limit_tree_node_zone(int nid, int zid)
479{
480 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
481}
482
483static struct mem_cgroup_tree_per_zone *
484soft_limit_tree_from_page(struct page *page)
485{
486 int nid = page_to_nid(page);
487 int zid = page_zonenum(page);
488
489 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
490}
491
492static void
c0ff4b85 493__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 494 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
495 struct mem_cgroup_tree_per_zone *mctz,
496 unsigned long long new_usage_in_excess)
f64c3f54
BS
497{
498 struct rb_node **p = &mctz->rb_root.rb_node;
499 struct rb_node *parent = NULL;
500 struct mem_cgroup_per_zone *mz_node;
501
502 if (mz->on_tree)
503 return;
504
ef8745c1
KH
505 mz->usage_in_excess = new_usage_in_excess;
506 if (!mz->usage_in_excess)
507 return;
f64c3f54
BS
508 while (*p) {
509 parent = *p;
510 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
511 tree_node);
512 if (mz->usage_in_excess < mz_node->usage_in_excess)
513 p = &(*p)->rb_left;
514 /*
515 * We can't avoid mem cgroups that are over their soft
516 * limit by the same amount
517 */
518 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
519 p = &(*p)->rb_right;
520 }
521 rb_link_node(&mz->tree_node, parent, p);
522 rb_insert_color(&mz->tree_node, &mctz->rb_root);
523 mz->on_tree = true;
4e416953
BS
524}
525
526static void
c0ff4b85 527__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
528 struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
530{
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
535}
536
f64c3f54 537static void
c0ff4b85 538mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
539 struct mem_cgroup_per_zone *mz,
540 struct mem_cgroup_tree_per_zone *mctz)
541{
542 spin_lock(&mctz->lock);
c0ff4b85 543 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
544 spin_unlock(&mctz->lock);
545}
546
f64c3f54 547
c0ff4b85 548static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 549{
ef8745c1 550 unsigned long long excess;
f64c3f54
BS
551 struct mem_cgroup_per_zone *mz;
552 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
553 int nid = page_to_nid(page);
554 int zid = page_zonenum(page);
f64c3f54
BS
555 mctz = soft_limit_tree_from_page(page);
556
557 /*
4e649152
KH
558 * Necessary to update all ancestors when hierarchy is used.
559 * because their event counter is not touched.
f64c3f54 560 */
c0ff4b85
R
561 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
562 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
563 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
564 /*
565 * We have to update the tree if mz is on RB-tree or
566 * mem is over its softlimit.
567 */
ef8745c1 568 if (excess || mz->on_tree) {
4e649152
KH
569 spin_lock(&mctz->lock);
570 /* if on-tree, remove it */
571 if (mz->on_tree)
c0ff4b85 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 573 /*
ef8745c1
KH
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
4e649152 576 */
c0ff4b85 577 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
578 spin_unlock(&mctz->lock);
579 }
f64c3f54
BS
580 }
581}
582
c0ff4b85 583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
584{
585 int node, zone;
586 struct mem_cgroup_per_zone *mz;
587 struct mem_cgroup_tree_per_zone *mctz;
588
3ed28fa1 589 for_each_node(node) {
f64c3f54 590 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 591 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 592 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 593 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
594 }
595 }
596}
597
4e416953
BS
598static struct mem_cgroup_per_zone *
599__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
600{
601 struct rb_node *rightmost = NULL;
26251eaf 602 struct mem_cgroup_per_zone *mz;
4e416953
BS
603
604retry:
26251eaf 605 mz = NULL;
4e416953
BS
606 rightmost = rb_last(&mctz->rb_root);
607 if (!rightmost)
608 goto done; /* Nothing to reclaim from */
609
610 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
611 /*
612 * Remove the node now but someone else can add it back,
613 * we will to add it back at the end of reclaim to its correct
614 * position in the tree.
615 */
d79154bb
HD
616 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
617 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
618 !css_tryget(&mz->memcg->css))
4e416953
BS
619 goto retry;
620done:
621 return mz;
622}
623
624static struct mem_cgroup_per_zone *
625mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
626{
627 struct mem_cgroup_per_zone *mz;
628
629 spin_lock(&mctz->lock);
630 mz = __mem_cgroup_largest_soft_limit_node(mctz);
631 spin_unlock(&mctz->lock);
632 return mz;
633}
634
711d3d2c
KH
635/*
636 * Implementation Note: reading percpu statistics for memcg.
637 *
638 * Both of vmstat[] and percpu_counter has threshold and do periodic
639 * synchronization to implement "quick" read. There are trade-off between
640 * reading cost and precision of value. Then, we may have a chance to implement
641 * a periodic synchronizion of counter in memcg's counter.
642 *
643 * But this _read() function is used for user interface now. The user accounts
644 * memory usage by memory cgroup and he _always_ requires exact value because
645 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
646 * have to visit all online cpus and make sum. So, for now, unnecessary
647 * synchronization is not implemented. (just implemented for cpu hotplug)
648 *
649 * If there are kernel internal actions which can make use of some not-exact
650 * value, and reading all cpu value can be performance bottleneck in some
651 * common workload, threashold and synchonization as vmstat[] should be
652 * implemented.
653 */
c0ff4b85 654static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 655 enum mem_cgroup_stat_index idx)
c62b1a3b 656{
7a159cc9 657 long val = 0;
c62b1a3b 658 int cpu;
c62b1a3b 659
711d3d2c
KH
660 get_online_cpus();
661 for_each_online_cpu(cpu)
c0ff4b85 662 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 663#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
664 spin_lock(&memcg->pcp_counter_lock);
665 val += memcg->nocpu_base.count[idx];
666 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
667#endif
668 put_online_cpus();
c62b1a3b
KH
669 return val;
670}
671
c0ff4b85 672static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
673 bool charge)
674{
675 int val = (charge) ? 1 : -1;
c0ff4b85 676 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
677}
678
c0ff4b85 679static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
680 enum mem_cgroup_events_index idx)
681{
682 unsigned long val = 0;
683 int cpu;
684
685 for_each_online_cpu(cpu)
c0ff4b85 686 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 687#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
688 spin_lock(&memcg->pcp_counter_lock);
689 val += memcg->nocpu_base.events[idx];
690 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
691#endif
692 return val;
693}
694
c0ff4b85 695static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 696 bool anon, int nr_pages)
d52aa412 697{
c62b1a3b
KH
698 preempt_disable();
699
b2402857
KH
700 /*
701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 * counted as CACHE even if it's on ANON LRU.
703 */
704 if (anon)
705 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 706 nr_pages);
d52aa412 707 else
b2402857 708 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 709 nr_pages);
55e462b0 710
e401f176
KH
711 /* pagein of a big page is an event. So, ignore page size */
712 if (nr_pages > 0)
c0ff4b85 713 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 714 else {
c0ff4b85 715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
716 nr_pages = -nr_pages; /* for event */
717 }
e401f176 718
c0ff4b85 719 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 720
c62b1a3b 721 preempt_enable();
6d12e2d8
KH
722}
723
bb2a0de9 724unsigned long
074291fe
KK
725mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
726{
727 struct mem_cgroup_per_zone *mz;
728
729 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
730 return mz->lru_size[lru];
731}
732
733static unsigned long
c0ff4b85 734mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 735 unsigned int lru_mask)
889976db
YH
736{
737 struct mem_cgroup_per_zone *mz;
f156ab93 738 enum lru_list lru;
bb2a0de9
KH
739 unsigned long ret = 0;
740
c0ff4b85 741 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 742
f156ab93
HD
743 for_each_lru(lru) {
744 if (BIT(lru) & lru_mask)
745 ret += mz->lru_size[lru];
bb2a0de9
KH
746 }
747 return ret;
748}
749
750static unsigned long
c0ff4b85 751mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
752 int nid, unsigned int lru_mask)
753{
889976db
YH
754 u64 total = 0;
755 int zid;
756
bb2a0de9 757 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
758 total += mem_cgroup_zone_nr_lru_pages(memcg,
759 nid, zid, lru_mask);
bb2a0de9 760
889976db
YH
761 return total;
762}
bb2a0de9 763
c0ff4b85 764static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 765 unsigned int lru_mask)
6d12e2d8 766{
889976db 767 int nid;
6d12e2d8
KH
768 u64 total = 0;
769
bb2a0de9 770 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 771 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 772 return total;
d52aa412
KH
773}
774
f53d7ce3
JW
775static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
776 enum mem_cgroup_events_target target)
7a159cc9
JW
777{
778 unsigned long val, next;
779
4799401f
SR
780 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
781 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 782 /* from time_after() in jiffies.h */
f53d7ce3
JW
783 if ((long)next - (long)val < 0) {
784 switch (target) {
785 case MEM_CGROUP_TARGET_THRESH:
786 next = val + THRESHOLDS_EVENTS_TARGET;
787 break;
788 case MEM_CGROUP_TARGET_SOFTLIMIT:
789 next = val + SOFTLIMIT_EVENTS_TARGET;
790 break;
791 case MEM_CGROUP_TARGET_NUMAINFO:
792 next = val + NUMAINFO_EVENTS_TARGET;
793 break;
794 default:
795 break;
796 }
797 __this_cpu_write(memcg->stat->targets[target], next);
798 return true;
7a159cc9 799 }
f53d7ce3 800 return false;
d2265e6f
KH
801}
802
803/*
804 * Check events in order.
805 *
806 */
c0ff4b85 807static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 808{
4799401f 809 preempt_disable();
d2265e6f 810 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
811 if (unlikely(mem_cgroup_event_ratelimit(memcg,
812 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
813 bool do_softlimit;
814 bool do_numainfo __maybe_unused;
f53d7ce3
JW
815
816 do_softlimit = mem_cgroup_event_ratelimit(memcg,
817 MEM_CGROUP_TARGET_SOFTLIMIT);
818#if MAX_NUMNODES > 1
819 do_numainfo = mem_cgroup_event_ratelimit(memcg,
820 MEM_CGROUP_TARGET_NUMAINFO);
821#endif
822 preempt_enable();
823
c0ff4b85 824 mem_cgroup_threshold(memcg);
f53d7ce3 825 if (unlikely(do_softlimit))
c0ff4b85 826 mem_cgroup_update_tree(memcg, page);
453a9bf3 827#if MAX_NUMNODES > 1
f53d7ce3 828 if (unlikely(do_numainfo))
c0ff4b85 829 atomic_inc(&memcg->numainfo_events);
453a9bf3 830#endif
f53d7ce3
JW
831 } else
832 preempt_enable();
d2265e6f
KH
833}
834
d1a4c0b3 835struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
836{
837 return container_of(cgroup_subsys_state(cont,
838 mem_cgroup_subsys_id), struct mem_cgroup,
839 css);
840}
841
cf475ad2 842struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 843{
31a78f23
BS
844 /*
845 * mm_update_next_owner() may clear mm->owner to NULL
846 * if it races with swapoff, page migration, etc.
847 * So this can be called with p == NULL.
848 */
849 if (unlikely(!p))
850 return NULL;
851
78fb7466
PE
852 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
853 struct mem_cgroup, css);
854}
855
a433658c 856struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 857{
c0ff4b85 858 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
859
860 if (!mm)
861 return NULL;
54595fe2
KH
862 /*
863 * Because we have no locks, mm->owner's may be being moved to other
864 * cgroup. We use css_tryget() here even if this looks
865 * pessimistic (rather than adding locks here).
866 */
867 rcu_read_lock();
868 do {
c0ff4b85
R
869 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
870 if (unlikely(!memcg))
54595fe2 871 break;
c0ff4b85 872 } while (!css_tryget(&memcg->css));
54595fe2 873 rcu_read_unlock();
c0ff4b85 874 return memcg;
54595fe2
KH
875}
876
5660048c
JW
877/**
878 * mem_cgroup_iter - iterate over memory cgroup hierarchy
879 * @root: hierarchy root
880 * @prev: previously returned memcg, NULL on first invocation
881 * @reclaim: cookie for shared reclaim walks, NULL for full walks
882 *
883 * Returns references to children of the hierarchy below @root, or
884 * @root itself, or %NULL after a full round-trip.
885 *
886 * Caller must pass the return value in @prev on subsequent
887 * invocations for reference counting, or use mem_cgroup_iter_break()
888 * to cancel a hierarchy walk before the round-trip is complete.
889 *
890 * Reclaimers can specify a zone and a priority level in @reclaim to
891 * divide up the memcgs in the hierarchy among all concurrent
892 * reclaimers operating on the same zone and priority.
893 */
894struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
895 struct mem_cgroup *prev,
896 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 897{
9f3a0d09
JW
898 struct mem_cgroup *memcg = NULL;
899 int id = 0;
711d3d2c 900
5660048c
JW
901 if (mem_cgroup_disabled())
902 return NULL;
903
9f3a0d09
JW
904 if (!root)
905 root = root_mem_cgroup;
7d74b06f 906
9f3a0d09
JW
907 if (prev && !reclaim)
908 id = css_id(&prev->css);
14067bb3 909
9f3a0d09
JW
910 if (prev && prev != root)
911 css_put(&prev->css);
14067bb3 912
9f3a0d09
JW
913 if (!root->use_hierarchy && root != root_mem_cgroup) {
914 if (prev)
915 return NULL;
916 return root;
917 }
14067bb3 918
9f3a0d09 919 while (!memcg) {
527a5ec9 920 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 921 struct cgroup_subsys_state *css;
711d3d2c 922
527a5ec9
JW
923 if (reclaim) {
924 int nid = zone_to_nid(reclaim->zone);
925 int zid = zone_idx(reclaim->zone);
926 struct mem_cgroup_per_zone *mz;
927
928 mz = mem_cgroup_zoneinfo(root, nid, zid);
929 iter = &mz->reclaim_iter[reclaim->priority];
930 if (prev && reclaim->generation != iter->generation)
931 return NULL;
932 id = iter->position;
933 }
7d74b06f 934
9f3a0d09
JW
935 rcu_read_lock();
936 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
937 if (css) {
938 if (css == &root->css || css_tryget(css))
939 memcg = container_of(css,
940 struct mem_cgroup, css);
941 } else
942 id = 0;
14067bb3 943 rcu_read_unlock();
14067bb3 944
527a5ec9
JW
945 if (reclaim) {
946 iter->position = id;
947 if (!css)
948 iter->generation++;
949 else if (!prev && memcg)
950 reclaim->generation = iter->generation;
951 }
9f3a0d09
JW
952
953 if (prev && !css)
954 return NULL;
955 }
956 return memcg;
14067bb3 957}
7d74b06f 958
5660048c
JW
959/**
960 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
961 * @root: hierarchy root
962 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
963 */
964void mem_cgroup_iter_break(struct mem_cgroup *root,
965 struct mem_cgroup *prev)
9f3a0d09
JW
966{
967 if (!root)
968 root = root_mem_cgroup;
969 if (prev && prev != root)
970 css_put(&prev->css);
971}
7d74b06f 972
9f3a0d09
JW
973/*
974 * Iteration constructs for visiting all cgroups (under a tree). If
975 * loops are exited prematurely (break), mem_cgroup_iter_break() must
976 * be used for reference counting.
977 */
978#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 979 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 980 iter != NULL; \
527a5ec9 981 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 982
9f3a0d09 983#define for_each_mem_cgroup(iter) \
527a5ec9 984 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 985 iter != NULL; \
527a5ec9 986 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 987
c0ff4b85 988static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 989{
c0ff4b85 990 return (memcg == root_mem_cgroup);
4b3bde4c
BS
991}
992
456f998e
YH
993void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
994{
c0ff4b85 995 struct mem_cgroup *memcg;
456f998e
YH
996
997 if (!mm)
998 return;
999
1000 rcu_read_lock();
c0ff4b85
R
1001 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1002 if (unlikely(!memcg))
456f998e
YH
1003 goto out;
1004
1005 switch (idx) {
456f998e 1006 case PGFAULT:
0e574a93
JW
1007 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1008 break;
1009 case PGMAJFAULT:
1010 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1011 break;
1012 default:
1013 BUG();
1014 }
1015out:
1016 rcu_read_unlock();
1017}
1018EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1019
925b7673
JW
1020/**
1021 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1022 * @zone: zone of the wanted lruvec
1023 * @mem: memcg of the wanted lruvec
1024 *
1025 * Returns the lru list vector holding pages for the given @zone and
1026 * @mem. This can be the global zone lruvec, if the memory controller
1027 * is disabled.
1028 */
1029struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1030 struct mem_cgroup *memcg)
1031{
1032 struct mem_cgroup_per_zone *mz;
1033
1034 if (mem_cgroup_disabled())
1035 return &zone->lruvec;
1036
1037 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1038 return &mz->lruvec;
1039}
1040
08e552c6
KH
1041/*
1042 * Following LRU functions are allowed to be used without PCG_LOCK.
1043 * Operations are called by routine of global LRU independently from memcg.
1044 * What we have to take care of here is validness of pc->mem_cgroup.
1045 *
1046 * Changes to pc->mem_cgroup happens when
1047 * 1. charge
1048 * 2. moving account
1049 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1050 * It is added to LRU before charge.
1051 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1052 * When moving account, the page is not on LRU. It's isolated.
1053 */
4f98a2fe 1054
925b7673
JW
1055/**
1056 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1057 * @zone: zone of the page
1058 * @page: the page
1059 * @lru: current lru
1060 *
1061 * This function accounts for @page being added to @lru, and returns
1062 * the lruvec for the given @zone and the memcg @page is charged to.
1063 *
1064 * The callsite is then responsible for physically linking the page to
1065 * the returned lruvec->lists[@lru].
1066 */
1067struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1068 enum lru_list lru)
08e552c6 1069{
08e552c6 1070 struct mem_cgroup_per_zone *mz;
925b7673
JW
1071 struct mem_cgroup *memcg;
1072 struct page_cgroup *pc;
6d12e2d8 1073
f8d66542 1074 if (mem_cgroup_disabled())
925b7673
JW
1075 return &zone->lruvec;
1076
08e552c6 1077 pc = lookup_page_cgroup(page);
38c5d72f 1078 memcg = pc->mem_cgroup;
7512102c
HD
1079
1080 /*
1081 * Surreptitiously switch any uncharged page to root:
1082 * an uncharged page off lru does nothing to secure
1083 * its former mem_cgroup from sudden removal.
1084 *
1085 * Our caller holds lru_lock, and PageCgroupUsed is updated
1086 * under page_cgroup lock: between them, they make all uses
1087 * of pc->mem_cgroup safe.
1088 */
1089 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1090 pc->mem_cgroup = memcg = root_mem_cgroup;
1091
925b7673
JW
1092 mz = page_cgroup_zoneinfo(memcg, page);
1093 /* compound_order() is stabilized through lru_lock */
1eb49272 1094 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1095 return &mz->lruvec;
08e552c6 1096}
b69408e8 1097
925b7673
JW
1098/**
1099 * mem_cgroup_lru_del_list - account for removing an lru page
1100 * @page: the page
1101 * @lru: target lru
1102 *
1103 * This function accounts for @page being removed from @lru.
1104 *
1105 * The callsite is then responsible for physically unlinking
1106 * @page->lru.
3f58a829 1107 */
925b7673 1108void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1109{
1110 struct mem_cgroup_per_zone *mz;
925b7673 1111 struct mem_cgroup *memcg;
3f58a829 1112 struct page_cgroup *pc;
3f58a829
MK
1113
1114 if (mem_cgroup_disabled())
1115 return;
1116
1117 pc = lookup_page_cgroup(page);
38c5d72f
KH
1118 memcg = pc->mem_cgroup;
1119 VM_BUG_ON(!memcg);
925b7673
JW
1120 mz = page_cgroup_zoneinfo(memcg, page);
1121 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1122 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1123 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1124}
1125
925b7673
JW
1126/**
1127 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1128 * @zone: zone of the page
1129 * @page: the page
1130 * @from: current lru
1131 * @to: target lru
1132 *
1133 * This function accounts for @page being moved between the lrus @from
1134 * and @to, and returns the lruvec for the given @zone and the memcg
1135 * @page is charged to.
1136 *
1137 * The callsite is then responsible for physically relinking
1138 * @page->lru to the returned lruvec->lists[@to].
1139 */
1140struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1141 struct page *page,
1142 enum lru_list from,
1143 enum lru_list to)
66e1707b 1144{
925b7673
JW
1145 /* XXX: Optimize this, especially for @from == @to */
1146 mem_cgroup_lru_del_list(page, from);
1147 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1148}
544122e5 1149
3e92041d 1150/*
c0ff4b85 1151 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1152 * hierarchy subtree
1153 */
c3ac9a8a
JW
1154bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 struct mem_cgroup *memcg)
3e92041d 1156{
91c63734
JW
1157 if (root_memcg == memcg)
1158 return true;
1159 if (!root_memcg->use_hierarchy)
1160 return false;
c3ac9a8a
JW
1161 return css_is_ancestor(&memcg->css, &root_memcg->css);
1162}
1163
1164static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1165 struct mem_cgroup *memcg)
1166{
1167 bool ret;
1168
91c63734 1169 rcu_read_lock();
c3ac9a8a 1170 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1171 rcu_read_unlock();
1172 return ret;
3e92041d
MH
1173}
1174
c0ff4b85 1175int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1176{
1177 int ret;
0b7f569e 1178 struct mem_cgroup *curr = NULL;
158e0a2d 1179 struct task_struct *p;
4c4a2214 1180
158e0a2d 1181 p = find_lock_task_mm(task);
de077d22
DR
1182 if (p) {
1183 curr = try_get_mem_cgroup_from_mm(p->mm);
1184 task_unlock(p);
1185 } else {
1186 /*
1187 * All threads may have already detached their mm's, but the oom
1188 * killer still needs to detect if they have already been oom
1189 * killed to prevent needlessly killing additional tasks.
1190 */
1191 task_lock(task);
1192 curr = mem_cgroup_from_task(task);
1193 if (curr)
1194 css_get(&curr->css);
1195 task_unlock(task);
1196 }
0b7f569e
KH
1197 if (!curr)
1198 return 0;
d31f56db 1199 /*
c0ff4b85 1200 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1201 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1202 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1203 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1204 */
c0ff4b85 1205 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1206 css_put(&curr->css);
4c4a2214
DR
1207 return ret;
1208}
1209
c56d5c7d 1210int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1211{
9b272977 1212 unsigned long inactive_ratio;
14797e23 1213 unsigned long inactive;
9b272977 1214 unsigned long active;
c772be93 1215 unsigned long gb;
14797e23 1216
c56d5c7d
KK
1217 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1218 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1219
c772be93
KM
1220 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1221 if (gb)
1222 inactive_ratio = int_sqrt(10 * gb);
1223 else
1224 inactive_ratio = 1;
1225
9b272977 1226 return inactive * inactive_ratio < active;
14797e23
KM
1227}
1228
c56d5c7d 1229int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1230{
1231 unsigned long active;
1232 unsigned long inactive;
1233
c56d5c7d
KK
1234 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1235 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1236
1237 return (active > inactive);
1238}
1239
3e2f41f1
KM
1240struct zone_reclaim_stat *
1241mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1242{
1243 struct page_cgroup *pc;
1244 struct mem_cgroup_per_zone *mz;
1245
1246 if (mem_cgroup_disabled())
1247 return NULL;
1248
1249 pc = lookup_page_cgroup(page);
bd112db8
DN
1250 if (!PageCgroupUsed(pc))
1251 return NULL;
713735b4
JW
1252 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1253 smp_rmb();
97a6c37b 1254 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
89abfab1 1255 return &mz->lruvec.reclaim_stat;
3e2f41f1
KM
1256}
1257
6d61ef40
BS
1258#define mem_cgroup_from_res_counter(counter, member) \
1259 container_of(counter, struct mem_cgroup, member)
1260
19942822 1261/**
9d11ea9f
JW
1262 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1263 * @mem: the memory cgroup
19942822 1264 *
9d11ea9f 1265 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1266 * pages.
19942822 1267 */
c0ff4b85 1268static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1269{
9d11ea9f
JW
1270 unsigned long long margin;
1271
c0ff4b85 1272 margin = res_counter_margin(&memcg->res);
9d11ea9f 1273 if (do_swap_account)
c0ff4b85 1274 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1275 return margin >> PAGE_SHIFT;
19942822
JW
1276}
1277
1f4c025b 1278int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1279{
1280 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1281
1282 /* root ? */
1283 if (cgrp->parent == NULL)
1284 return vm_swappiness;
1285
bf1ff263 1286 return memcg->swappiness;
a7885eb8
KM
1287}
1288
619d094b
KH
1289/*
1290 * memcg->moving_account is used for checking possibility that some thread is
1291 * calling move_account(). When a thread on CPU-A starts moving pages under
1292 * a memcg, other threads should check memcg->moving_account under
1293 * rcu_read_lock(), like this:
1294 *
1295 * CPU-A CPU-B
1296 * rcu_read_lock()
1297 * memcg->moving_account+1 if (memcg->mocing_account)
1298 * take heavy locks.
1299 * synchronize_rcu() update something.
1300 * rcu_read_unlock()
1301 * start move here.
1302 */
4331f7d3
KH
1303
1304/* for quick checking without looking up memcg */
1305atomic_t memcg_moving __read_mostly;
1306
c0ff4b85 1307static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1308{
4331f7d3 1309 atomic_inc(&memcg_moving);
619d094b 1310 atomic_inc(&memcg->moving_account);
32047e2a
KH
1311 synchronize_rcu();
1312}
1313
c0ff4b85 1314static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1315{
619d094b
KH
1316 /*
1317 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1318 * We check NULL in callee rather than caller.
1319 */
4331f7d3
KH
1320 if (memcg) {
1321 atomic_dec(&memcg_moving);
619d094b 1322 atomic_dec(&memcg->moving_account);
4331f7d3 1323 }
32047e2a 1324}
619d094b 1325
32047e2a
KH
1326/*
1327 * 2 routines for checking "mem" is under move_account() or not.
1328 *
13fd1dd9
AM
1329 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1330 * is used for avoiding races in accounting. If true,
32047e2a
KH
1331 * pc->mem_cgroup may be overwritten.
1332 *
1333 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1334 * under hierarchy of moving cgroups. This is for
1335 * waiting at hith-memory prressure caused by "move".
1336 */
1337
13fd1dd9 1338static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1339{
1340 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1341 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1342}
4b534334 1343
c0ff4b85 1344static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1345{
2bd9bb20
KH
1346 struct mem_cgroup *from;
1347 struct mem_cgroup *to;
4b534334 1348 bool ret = false;
2bd9bb20
KH
1349 /*
1350 * Unlike task_move routines, we access mc.to, mc.from not under
1351 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352 */
1353 spin_lock(&mc.lock);
1354 from = mc.from;
1355 to = mc.to;
1356 if (!from)
1357 goto unlock;
3e92041d 1358
c0ff4b85
R
1359 ret = mem_cgroup_same_or_subtree(memcg, from)
1360 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1361unlock:
1362 spin_unlock(&mc.lock);
4b534334
KH
1363 return ret;
1364}
1365
c0ff4b85 1366static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1367{
1368 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1369 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1370 DEFINE_WAIT(wait);
1371 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372 /* moving charge context might have finished. */
1373 if (mc.moving_task)
1374 schedule();
1375 finish_wait(&mc.waitq, &wait);
1376 return true;
1377 }
1378 }
1379 return false;
1380}
1381
312734c0
KH
1382/*
1383 * Take this lock when
1384 * - a code tries to modify page's memcg while it's USED.
1385 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1386 * see mem_cgroup_stolen(), too.
312734c0
KH
1387 */
1388static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1389 unsigned long *flags)
1390{
1391 spin_lock_irqsave(&memcg->move_lock, *flags);
1392}
1393
1394static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396{
1397 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1398}
1399
e222432b 1400/**
6a6135b6 1401 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1402 * @memcg: The memory cgroup that went over limit
1403 * @p: Task that is going to be killed
1404 *
1405 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1406 * enabled
1407 */
1408void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1409{
1410 struct cgroup *task_cgrp;
1411 struct cgroup *mem_cgrp;
1412 /*
1413 * Need a buffer in BSS, can't rely on allocations. The code relies
1414 * on the assumption that OOM is serialized for memory controller.
1415 * If this assumption is broken, revisit this code.
1416 */
1417 static char memcg_name[PATH_MAX];
1418 int ret;
1419
d31f56db 1420 if (!memcg || !p)
e222432b
BS
1421 return;
1422
e222432b
BS
1423 rcu_read_lock();
1424
1425 mem_cgrp = memcg->css.cgroup;
1426 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1427
1428 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1429 if (ret < 0) {
1430 /*
1431 * Unfortunately, we are unable to convert to a useful name
1432 * But we'll still print out the usage information
1433 */
1434 rcu_read_unlock();
1435 goto done;
1436 }
1437 rcu_read_unlock();
1438
1439 printk(KERN_INFO "Task in %s killed", memcg_name);
1440
1441 rcu_read_lock();
1442 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1443 if (ret < 0) {
1444 rcu_read_unlock();
1445 goto done;
1446 }
1447 rcu_read_unlock();
1448
1449 /*
1450 * Continues from above, so we don't need an KERN_ level
1451 */
1452 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1453done:
1454
1455 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1456 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1459 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1460 "failcnt %llu\n",
1461 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1464}
1465
81d39c20
KH
1466/*
1467 * This function returns the number of memcg under hierarchy tree. Returns
1468 * 1(self count) if no children.
1469 */
c0ff4b85 1470static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1471{
1472 int num = 0;
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
c0ff4b85 1475 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1476 num++;
81d39c20
KH
1477 return num;
1478}
1479
a63d83f4
DR
1480/*
1481 * Return the memory (and swap, if configured) limit for a memcg.
1482 */
1483u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1484{
1485 u64 limit;
1486 u64 memsw;
1487
f3e8eb70
JW
1488 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1489 limit += total_swap_pages << PAGE_SHIFT;
1490
a63d83f4
DR
1491 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1492 /*
1493 * If memsw is finite and limits the amount of swap space available
1494 * to this memcg, return that limit.
1495 */
1496 return min(limit, memsw);
1497}
1498
5660048c
JW
1499static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1500 gfp_t gfp_mask,
1501 unsigned long flags)
1502{
1503 unsigned long total = 0;
1504 bool noswap = false;
1505 int loop;
1506
1507 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1508 noswap = true;
1509 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1510 noswap = true;
1511
1512 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1513 if (loop)
1514 drain_all_stock_async(memcg);
1515 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1516 /*
1517 * Allow limit shrinkers, which are triggered directly
1518 * by userspace, to catch signals and stop reclaim
1519 * after minimal progress, regardless of the margin.
1520 */
1521 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1522 break;
1523 if (mem_cgroup_margin(memcg))
1524 break;
1525 /*
1526 * If nothing was reclaimed after two attempts, there
1527 * may be no reclaimable pages in this hierarchy.
1528 */
1529 if (loop && !total)
1530 break;
1531 }
1532 return total;
1533}
1534
4d0c066d
KH
1535/**
1536 * test_mem_cgroup_node_reclaimable
1537 * @mem: the target memcg
1538 * @nid: the node ID to be checked.
1539 * @noswap : specify true here if the user wants flle only information.
1540 *
1541 * This function returns whether the specified memcg contains any
1542 * reclaimable pages on a node. Returns true if there are any reclaimable
1543 * pages in the node.
1544 */
c0ff4b85 1545static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1546 int nid, bool noswap)
1547{
c0ff4b85 1548 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1549 return true;
1550 if (noswap || !total_swap_pages)
1551 return false;
c0ff4b85 1552 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1553 return true;
1554 return false;
1555
1556}
889976db
YH
1557#if MAX_NUMNODES > 1
1558
1559/*
1560 * Always updating the nodemask is not very good - even if we have an empty
1561 * list or the wrong list here, we can start from some node and traverse all
1562 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1563 *
1564 */
c0ff4b85 1565static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1566{
1567 int nid;
453a9bf3
KH
1568 /*
1569 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1570 * pagein/pageout changes since the last update.
1571 */
c0ff4b85 1572 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1573 return;
c0ff4b85 1574 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1575 return;
1576
889976db 1577 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1578 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1579
1580 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1581
c0ff4b85
R
1582 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1583 node_clear(nid, memcg->scan_nodes);
889976db 1584 }
453a9bf3 1585
c0ff4b85
R
1586 atomic_set(&memcg->numainfo_events, 0);
1587 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1588}
1589
1590/*
1591 * Selecting a node where we start reclaim from. Because what we need is just
1592 * reducing usage counter, start from anywhere is O,K. Considering
1593 * memory reclaim from current node, there are pros. and cons.
1594 *
1595 * Freeing memory from current node means freeing memory from a node which
1596 * we'll use or we've used. So, it may make LRU bad. And if several threads
1597 * hit limits, it will see a contention on a node. But freeing from remote
1598 * node means more costs for memory reclaim because of memory latency.
1599 *
1600 * Now, we use round-robin. Better algorithm is welcomed.
1601 */
c0ff4b85 1602int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1603{
1604 int node;
1605
c0ff4b85
R
1606 mem_cgroup_may_update_nodemask(memcg);
1607 node = memcg->last_scanned_node;
889976db 1608
c0ff4b85 1609 node = next_node(node, memcg->scan_nodes);
889976db 1610 if (node == MAX_NUMNODES)
c0ff4b85 1611 node = first_node(memcg->scan_nodes);
889976db
YH
1612 /*
1613 * We call this when we hit limit, not when pages are added to LRU.
1614 * No LRU may hold pages because all pages are UNEVICTABLE or
1615 * memcg is too small and all pages are not on LRU. In that case,
1616 * we use curret node.
1617 */
1618 if (unlikely(node == MAX_NUMNODES))
1619 node = numa_node_id();
1620
c0ff4b85 1621 memcg->last_scanned_node = node;
889976db
YH
1622 return node;
1623}
1624
4d0c066d
KH
1625/*
1626 * Check all nodes whether it contains reclaimable pages or not.
1627 * For quick scan, we make use of scan_nodes. This will allow us to skip
1628 * unused nodes. But scan_nodes is lazily updated and may not cotain
1629 * enough new information. We need to do double check.
1630 */
6bbda35c 1631static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1632{
1633 int nid;
1634
1635 /*
1636 * quick check...making use of scan_node.
1637 * We can skip unused nodes.
1638 */
c0ff4b85
R
1639 if (!nodes_empty(memcg->scan_nodes)) {
1640 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1641 nid < MAX_NUMNODES;
c0ff4b85 1642 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1643
c0ff4b85 1644 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1645 return true;
1646 }
1647 }
1648 /*
1649 * Check rest of nodes.
1650 */
1651 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1652 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1653 continue;
c0ff4b85 1654 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1655 return true;
1656 }
1657 return false;
1658}
1659
889976db 1660#else
c0ff4b85 1661int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 return 0;
1664}
4d0c066d 1665
6bbda35c 1666static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1667{
c0ff4b85 1668 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1669}
889976db
YH
1670#endif
1671
5660048c
JW
1672static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1673 struct zone *zone,
1674 gfp_t gfp_mask,
1675 unsigned long *total_scanned)
6d61ef40 1676{
9f3a0d09 1677 struct mem_cgroup *victim = NULL;
5660048c 1678 int total = 0;
04046e1a 1679 int loop = 0;
9d11ea9f 1680 unsigned long excess;
185efc0f 1681 unsigned long nr_scanned;
527a5ec9
JW
1682 struct mem_cgroup_reclaim_cookie reclaim = {
1683 .zone = zone,
1684 .priority = 0,
1685 };
9d11ea9f 1686
c0ff4b85 1687 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1688
4e416953 1689 while (1) {
527a5ec9 1690 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1691 if (!victim) {
04046e1a 1692 loop++;
4e416953
BS
1693 if (loop >= 2) {
1694 /*
1695 * If we have not been able to reclaim
1696 * anything, it might because there are
1697 * no reclaimable pages under this hierarchy
1698 */
5660048c 1699 if (!total)
4e416953 1700 break;
4e416953 1701 /*
25985edc 1702 * We want to do more targeted reclaim.
4e416953
BS
1703 * excess >> 2 is not to excessive so as to
1704 * reclaim too much, nor too less that we keep
1705 * coming back to reclaim from this cgroup
1706 */
1707 if (total >= (excess >> 2) ||
9f3a0d09 1708 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1709 break;
4e416953 1710 }
9f3a0d09 1711 continue;
4e416953 1712 }
5660048c 1713 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1714 continue;
5660048c
JW
1715 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1716 zone, &nr_scanned);
1717 *total_scanned += nr_scanned;
1718 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1719 break;
6d61ef40 1720 }
9f3a0d09 1721 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1722 return total;
6d61ef40
BS
1723}
1724
867578cb
KH
1725/*
1726 * Check OOM-Killer is already running under our hierarchy.
1727 * If someone is running, return false.
1af8efe9 1728 * Has to be called with memcg_oom_lock
867578cb 1729 */
c0ff4b85 1730static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1731{
79dfdacc 1732 struct mem_cgroup *iter, *failed = NULL;
a636b327 1733
9f3a0d09 1734 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1735 if (iter->oom_lock) {
79dfdacc
MH
1736 /*
1737 * this subtree of our hierarchy is already locked
1738 * so we cannot give a lock.
1739 */
79dfdacc 1740 failed = iter;
9f3a0d09
JW
1741 mem_cgroup_iter_break(memcg, iter);
1742 break;
23751be0
JW
1743 } else
1744 iter->oom_lock = true;
7d74b06f 1745 }
867578cb 1746
79dfdacc 1747 if (!failed)
23751be0 1748 return true;
79dfdacc
MH
1749
1750 /*
1751 * OK, we failed to lock the whole subtree so we have to clean up
1752 * what we set up to the failing subtree
1753 */
9f3a0d09 1754 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1755 if (iter == failed) {
9f3a0d09
JW
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
79dfdacc
MH
1758 }
1759 iter->oom_lock = false;
1760 }
23751be0 1761 return false;
a636b327 1762}
0b7f569e 1763
79dfdacc 1764/*
1af8efe9 1765 * Has to be called with memcg_oom_lock
79dfdacc 1766 */
c0ff4b85 1767static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1768{
7d74b06f
KH
1769 struct mem_cgroup *iter;
1770
c0ff4b85 1771 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1772 iter->oom_lock = false;
1773 return 0;
1774}
1775
c0ff4b85 1776static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1777{
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1781 atomic_inc(&iter->under_oom);
1782}
1783
c0ff4b85 1784static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1785{
1786 struct mem_cgroup *iter;
1787
867578cb
KH
1788 /*
1789 * When a new child is created while the hierarchy is under oom,
1790 * mem_cgroup_oom_lock() may not be called. We have to use
1791 * atomic_add_unless() here.
1792 */
c0ff4b85 1793 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1794 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1795}
1796
1af8efe9 1797static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1798static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1799
dc98df5a 1800struct oom_wait_info {
d79154bb 1801 struct mem_cgroup *memcg;
dc98df5a
KH
1802 wait_queue_t wait;
1803};
1804
1805static int memcg_oom_wake_function(wait_queue_t *wait,
1806 unsigned mode, int sync, void *arg)
1807{
d79154bb
HD
1808 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1809 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1810 struct oom_wait_info *oom_wait_info;
1811
1812 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1813 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1814
dc98df5a 1815 /*
d79154bb 1816 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1817 * Then we can use css_is_ancestor without taking care of RCU.
1818 */
c0ff4b85
R
1819 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1820 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1821 return 0;
dc98df5a
KH
1822 return autoremove_wake_function(wait, mode, sync, arg);
1823}
1824
c0ff4b85 1825static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1826{
c0ff4b85
R
1827 /* for filtering, pass "memcg" as argument. */
1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1829}
1830
c0ff4b85 1831static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1832{
c0ff4b85
R
1833 if (memcg && atomic_read(&memcg->under_oom))
1834 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1835}
1836
867578cb
KH
1837/*
1838 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1839 */
6bbda35c
KS
1840static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1841 int order)
0b7f569e 1842{
dc98df5a 1843 struct oom_wait_info owait;
3c11ecf4 1844 bool locked, need_to_kill;
867578cb 1845
d79154bb 1846 owait.memcg = memcg;
dc98df5a
KH
1847 owait.wait.flags = 0;
1848 owait.wait.func = memcg_oom_wake_function;
1849 owait.wait.private = current;
1850 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1851 need_to_kill = true;
c0ff4b85 1852 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1853
c0ff4b85 1854 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1855 spin_lock(&memcg_oom_lock);
c0ff4b85 1856 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1857 /*
1858 * Even if signal_pending(), we can't quit charge() loop without
1859 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1860 * under OOM is always welcomed, use TASK_KILLABLE here.
1861 */
3c11ecf4 1862 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1863 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1864 need_to_kill = false;
1865 if (locked)
c0ff4b85 1866 mem_cgroup_oom_notify(memcg);
1af8efe9 1867 spin_unlock(&memcg_oom_lock);
867578cb 1868
3c11ecf4
KH
1869 if (need_to_kill) {
1870 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1871 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1872 } else {
867578cb 1873 schedule();
dc98df5a 1874 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1875 }
1af8efe9 1876 spin_lock(&memcg_oom_lock);
79dfdacc 1877 if (locked)
c0ff4b85
R
1878 mem_cgroup_oom_unlock(memcg);
1879 memcg_wakeup_oom(memcg);
1af8efe9 1880 spin_unlock(&memcg_oom_lock);
867578cb 1881
c0ff4b85 1882 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1883
867578cb
KH
1884 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1885 return false;
1886 /* Give chance to dying process */
715a5ee8 1887 schedule_timeout_uninterruptible(1);
867578cb 1888 return true;
0b7f569e
KH
1889}
1890
d69b042f
BS
1891/*
1892 * Currently used to update mapped file statistics, but the routine can be
1893 * generalized to update other statistics as well.
32047e2a
KH
1894 *
1895 * Notes: Race condition
1896 *
1897 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1898 * it tends to be costly. But considering some conditions, we doesn't need
1899 * to do so _always_.
1900 *
1901 * Considering "charge", lock_page_cgroup() is not required because all
1902 * file-stat operations happen after a page is attached to radix-tree. There
1903 * are no race with "charge".
1904 *
1905 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1906 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1907 * if there are race with "uncharge". Statistics itself is properly handled
1908 * by flags.
1909 *
1910 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1911 * small, we check mm->moving_account and detect there are possibility of race
1912 * If there is, we take a lock.
d69b042f 1913 */
26174efd 1914
89c06bd5
KH
1915void __mem_cgroup_begin_update_page_stat(struct page *page,
1916 bool *locked, unsigned long *flags)
1917{
1918 struct mem_cgroup *memcg;
1919 struct page_cgroup *pc;
1920
1921 pc = lookup_page_cgroup(page);
1922again:
1923 memcg = pc->mem_cgroup;
1924 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1925 return;
1926 /*
1927 * If this memory cgroup is not under account moving, we don't
1928 * need to take move_lock_page_cgroup(). Because we already hold
1929 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1930 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1931 */
13fd1dd9 1932 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1933 return;
1934
1935 move_lock_mem_cgroup(memcg, flags);
1936 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1937 move_unlock_mem_cgroup(memcg, flags);
1938 goto again;
1939 }
1940 *locked = true;
1941}
1942
1943void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1944{
1945 struct page_cgroup *pc = lookup_page_cgroup(page);
1946
1947 /*
1948 * It's guaranteed that pc->mem_cgroup never changes while
1949 * lock is held because a routine modifies pc->mem_cgroup
1950 * should take move_lock_page_cgroup().
1951 */
1952 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1953}
1954
2a7106f2
GT
1955void mem_cgroup_update_page_stat(struct page *page,
1956 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1957{
c0ff4b85 1958 struct mem_cgroup *memcg;
32047e2a 1959 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1960 unsigned long uninitialized_var(flags);
d69b042f 1961
cfa44946 1962 if (mem_cgroup_disabled())
d69b042f 1963 return;
89c06bd5 1964
c0ff4b85
R
1965 memcg = pc->mem_cgroup;
1966 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1967 return;
26174efd 1968
26174efd 1969 switch (idx) {
2a7106f2 1970 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1971 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1972 break;
1973 default:
1974 BUG();
8725d541 1975 }
d69b042f 1976
c0ff4b85 1977 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1978}
26174efd 1979
cdec2e42
KH
1980/*
1981 * size of first charge trial. "32" comes from vmscan.c's magic value.
1982 * TODO: maybe necessary to use big numbers in big irons.
1983 */
7ec99d62 1984#define CHARGE_BATCH 32U
cdec2e42
KH
1985struct memcg_stock_pcp {
1986 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1987 unsigned int nr_pages;
cdec2e42 1988 struct work_struct work;
26fe6168 1989 unsigned long flags;
a0db00fc 1990#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1991};
1992static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1993static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1994
1995/*
11c9ea4e 1996 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1997 * from local stock and true is returned. If the stock is 0 or charges from a
1998 * cgroup which is not current target, returns false. This stock will be
1999 * refilled.
2000 */
c0ff4b85 2001static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2002{
2003 struct memcg_stock_pcp *stock;
2004 bool ret = true;
2005
2006 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2007 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2008 stock->nr_pages--;
cdec2e42
KH
2009 else /* need to call res_counter_charge */
2010 ret = false;
2011 put_cpu_var(memcg_stock);
2012 return ret;
2013}
2014
2015/*
2016 * Returns stocks cached in percpu to res_counter and reset cached information.
2017 */
2018static void drain_stock(struct memcg_stock_pcp *stock)
2019{
2020 struct mem_cgroup *old = stock->cached;
2021
11c9ea4e
JW
2022 if (stock->nr_pages) {
2023 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2024
2025 res_counter_uncharge(&old->res, bytes);
cdec2e42 2026 if (do_swap_account)
11c9ea4e
JW
2027 res_counter_uncharge(&old->memsw, bytes);
2028 stock->nr_pages = 0;
cdec2e42
KH
2029 }
2030 stock->cached = NULL;
cdec2e42
KH
2031}
2032
2033/*
2034 * This must be called under preempt disabled or must be called by
2035 * a thread which is pinned to local cpu.
2036 */
2037static void drain_local_stock(struct work_struct *dummy)
2038{
2039 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2040 drain_stock(stock);
26fe6168 2041 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2042}
2043
2044/*
2045 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2046 * This will be consumed by consume_stock() function, later.
cdec2e42 2047 */
c0ff4b85 2048static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2049{
2050 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2051
c0ff4b85 2052 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2053 drain_stock(stock);
c0ff4b85 2054 stock->cached = memcg;
cdec2e42 2055 }
11c9ea4e 2056 stock->nr_pages += nr_pages;
cdec2e42
KH
2057 put_cpu_var(memcg_stock);
2058}
2059
2060/*
c0ff4b85 2061 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2062 * of the hierarchy under it. sync flag says whether we should block
2063 * until the work is done.
cdec2e42 2064 */
c0ff4b85 2065static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2066{
26fe6168 2067 int cpu, curcpu;
d38144b7 2068
cdec2e42 2069 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2070 get_online_cpus();
5af12d0e 2071 curcpu = get_cpu();
cdec2e42
KH
2072 for_each_online_cpu(cpu) {
2073 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2074 struct mem_cgroup *memcg;
26fe6168 2075
c0ff4b85
R
2076 memcg = stock->cached;
2077 if (!memcg || !stock->nr_pages)
26fe6168 2078 continue;
c0ff4b85 2079 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2080 continue;
d1a05b69
MH
2081 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2082 if (cpu == curcpu)
2083 drain_local_stock(&stock->work);
2084 else
2085 schedule_work_on(cpu, &stock->work);
2086 }
cdec2e42 2087 }
5af12d0e 2088 put_cpu();
d38144b7
MH
2089
2090 if (!sync)
2091 goto out;
2092
2093 for_each_online_cpu(cpu) {
2094 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2095 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2096 flush_work(&stock->work);
2097 }
2098out:
cdec2e42 2099 put_online_cpus();
d38144b7
MH
2100}
2101
2102/*
2103 * Tries to drain stocked charges in other cpus. This function is asynchronous
2104 * and just put a work per cpu for draining localy on each cpu. Caller can
2105 * expects some charges will be back to res_counter later but cannot wait for
2106 * it.
2107 */
c0ff4b85 2108static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2109{
9f50fad6
MH
2110 /*
2111 * If someone calls draining, avoid adding more kworker runs.
2112 */
2113 if (!mutex_trylock(&percpu_charge_mutex))
2114 return;
c0ff4b85 2115 drain_all_stock(root_memcg, false);
9f50fad6 2116 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2117}
2118
2119/* This is a synchronous drain interface. */
c0ff4b85 2120static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2121{
2122 /* called when force_empty is called */
9f50fad6 2123 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2124 drain_all_stock(root_memcg, true);
9f50fad6 2125 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2126}
2127
711d3d2c
KH
2128/*
2129 * This function drains percpu counter value from DEAD cpu and
2130 * move it to local cpu. Note that this function can be preempted.
2131 */
c0ff4b85 2132static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2133{
2134 int i;
2135
c0ff4b85 2136 spin_lock(&memcg->pcp_counter_lock);
6104621d 2137 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2138 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2139
c0ff4b85
R
2140 per_cpu(memcg->stat->count[i], cpu) = 0;
2141 memcg->nocpu_base.count[i] += x;
711d3d2c 2142 }
e9f8974f 2143 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2144 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2145
c0ff4b85
R
2146 per_cpu(memcg->stat->events[i], cpu) = 0;
2147 memcg->nocpu_base.events[i] += x;
e9f8974f 2148 }
c0ff4b85 2149 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2150}
2151
2152static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2153 unsigned long action,
2154 void *hcpu)
2155{
2156 int cpu = (unsigned long)hcpu;
2157 struct memcg_stock_pcp *stock;
711d3d2c 2158 struct mem_cgroup *iter;
cdec2e42 2159
619d094b 2160 if (action == CPU_ONLINE)
1489ebad 2161 return NOTIFY_OK;
1489ebad 2162
d833049b 2163 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2164 return NOTIFY_OK;
711d3d2c 2165
9f3a0d09 2166 for_each_mem_cgroup(iter)
711d3d2c
KH
2167 mem_cgroup_drain_pcp_counter(iter, cpu);
2168
cdec2e42
KH
2169 stock = &per_cpu(memcg_stock, cpu);
2170 drain_stock(stock);
2171 return NOTIFY_OK;
2172}
2173
4b534334
KH
2174
2175/* See __mem_cgroup_try_charge() for details */
2176enum {
2177 CHARGE_OK, /* success */
2178 CHARGE_RETRY, /* need to retry but retry is not bad */
2179 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2180 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2181 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2182};
2183
c0ff4b85 2184static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2185 unsigned int nr_pages, bool oom_check)
4b534334 2186{
7ec99d62 2187 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2188 struct mem_cgroup *mem_over_limit;
2189 struct res_counter *fail_res;
2190 unsigned long flags = 0;
2191 int ret;
2192
c0ff4b85 2193 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2194
2195 if (likely(!ret)) {
2196 if (!do_swap_account)
2197 return CHARGE_OK;
c0ff4b85 2198 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2199 if (likely(!ret))
2200 return CHARGE_OK;
2201
c0ff4b85 2202 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2203 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2204 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2205 } else
2206 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2207 /*
7ec99d62
JW
2208 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2209 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2210 *
2211 * Never reclaim on behalf of optional batching, retry with a
2212 * single page instead.
2213 */
7ec99d62 2214 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2215 return CHARGE_RETRY;
2216
2217 if (!(gfp_mask & __GFP_WAIT))
2218 return CHARGE_WOULDBLOCK;
2219
5660048c 2220 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2221 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2222 return CHARGE_RETRY;
4b534334 2223 /*
19942822
JW
2224 * Even though the limit is exceeded at this point, reclaim
2225 * may have been able to free some pages. Retry the charge
2226 * before killing the task.
2227 *
2228 * Only for regular pages, though: huge pages are rather
2229 * unlikely to succeed so close to the limit, and we fall back
2230 * to regular pages anyway in case of failure.
4b534334 2231 */
7ec99d62 2232 if (nr_pages == 1 && ret)
4b534334
KH
2233 return CHARGE_RETRY;
2234
2235 /*
2236 * At task move, charge accounts can be doubly counted. So, it's
2237 * better to wait until the end of task_move if something is going on.
2238 */
2239 if (mem_cgroup_wait_acct_move(mem_over_limit))
2240 return CHARGE_RETRY;
2241
2242 /* If we don't need to call oom-killer at el, return immediately */
2243 if (!oom_check)
2244 return CHARGE_NOMEM;
2245 /* check OOM */
e845e199 2246 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2247 return CHARGE_OOM_DIE;
2248
2249 return CHARGE_RETRY;
2250}
2251
f817ed48 2252/*
38c5d72f
KH
2253 * __mem_cgroup_try_charge() does
2254 * 1. detect memcg to be charged against from passed *mm and *ptr,
2255 * 2. update res_counter
2256 * 3. call memory reclaim if necessary.
2257 *
2258 * In some special case, if the task is fatal, fatal_signal_pending() or
2259 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2260 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2261 * as possible without any hazards. 2: all pages should have a valid
2262 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2263 * pointer, that is treated as a charge to root_mem_cgroup.
2264 *
2265 * So __mem_cgroup_try_charge() will return
2266 * 0 ... on success, filling *ptr with a valid memcg pointer.
2267 * -ENOMEM ... charge failure because of resource limits.
2268 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2269 *
2270 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2271 * the oom-killer can be invoked.
8a9f3ccd 2272 */
f817ed48 2273static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2274 gfp_t gfp_mask,
7ec99d62 2275 unsigned int nr_pages,
c0ff4b85 2276 struct mem_cgroup **ptr,
7ec99d62 2277 bool oom)
8a9f3ccd 2278{
7ec99d62 2279 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2280 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2281 struct mem_cgroup *memcg = NULL;
4b534334 2282 int ret;
a636b327 2283
867578cb
KH
2284 /*
2285 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2286 * in system level. So, allow to go ahead dying process in addition to
2287 * MEMDIE process.
2288 */
2289 if (unlikely(test_thread_flag(TIF_MEMDIE)
2290 || fatal_signal_pending(current)))
2291 goto bypass;
a636b327 2292
8a9f3ccd 2293 /*
3be91277
HD
2294 * We always charge the cgroup the mm_struct belongs to.
2295 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2296 * thread group leader migrates. It's possible that mm is not
2297 * set, if so charge the init_mm (happens for pagecache usage).
2298 */
c0ff4b85 2299 if (!*ptr && !mm)
38c5d72f 2300 *ptr = root_mem_cgroup;
f75ca962 2301again:
c0ff4b85
R
2302 if (*ptr) { /* css should be a valid one */
2303 memcg = *ptr;
2304 VM_BUG_ON(css_is_removed(&memcg->css));
2305 if (mem_cgroup_is_root(memcg))
f75ca962 2306 goto done;
c0ff4b85 2307 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2308 goto done;
c0ff4b85 2309 css_get(&memcg->css);
4b534334 2310 } else {
f75ca962 2311 struct task_struct *p;
54595fe2 2312
f75ca962
KH
2313 rcu_read_lock();
2314 p = rcu_dereference(mm->owner);
f75ca962 2315 /*
ebb76ce1 2316 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2317 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2318 * race with swapoff. Then, we have small risk of mis-accouning.
2319 * But such kind of mis-account by race always happens because
2320 * we don't have cgroup_mutex(). It's overkill and we allo that
2321 * small race, here.
2322 * (*) swapoff at el will charge against mm-struct not against
2323 * task-struct. So, mm->owner can be NULL.
f75ca962 2324 */
c0ff4b85 2325 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2326 if (!memcg)
2327 memcg = root_mem_cgroup;
2328 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2329 rcu_read_unlock();
2330 goto done;
2331 }
c0ff4b85 2332 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2333 /*
2334 * It seems dagerous to access memcg without css_get().
2335 * But considering how consume_stok works, it's not
2336 * necessary. If consume_stock success, some charges
2337 * from this memcg are cached on this cpu. So, we
2338 * don't need to call css_get()/css_tryget() before
2339 * calling consume_stock().
2340 */
2341 rcu_read_unlock();
2342 goto done;
2343 }
2344 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2345 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2346 rcu_read_unlock();
2347 goto again;
2348 }
2349 rcu_read_unlock();
2350 }
8a9f3ccd 2351
4b534334
KH
2352 do {
2353 bool oom_check;
7a81b88c 2354
4b534334 2355 /* If killed, bypass charge */
f75ca962 2356 if (fatal_signal_pending(current)) {
c0ff4b85 2357 css_put(&memcg->css);
4b534334 2358 goto bypass;
f75ca962 2359 }
6d61ef40 2360
4b534334
KH
2361 oom_check = false;
2362 if (oom && !nr_oom_retries) {
2363 oom_check = true;
2364 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2365 }
66e1707b 2366
c0ff4b85 2367 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2368 switch (ret) {
2369 case CHARGE_OK:
2370 break;
2371 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2372 batch = nr_pages;
c0ff4b85
R
2373 css_put(&memcg->css);
2374 memcg = NULL;
f75ca962 2375 goto again;
4b534334 2376 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2377 css_put(&memcg->css);
4b534334
KH
2378 goto nomem;
2379 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2380 if (!oom) {
c0ff4b85 2381 css_put(&memcg->css);
867578cb 2382 goto nomem;
f75ca962 2383 }
4b534334
KH
2384 /* If oom, we never return -ENOMEM */
2385 nr_oom_retries--;
2386 break;
2387 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2388 css_put(&memcg->css);
867578cb 2389 goto bypass;
66e1707b 2390 }
4b534334
KH
2391 } while (ret != CHARGE_OK);
2392
7ec99d62 2393 if (batch > nr_pages)
c0ff4b85
R
2394 refill_stock(memcg, batch - nr_pages);
2395 css_put(&memcg->css);
0c3e73e8 2396done:
c0ff4b85 2397 *ptr = memcg;
7a81b88c
KH
2398 return 0;
2399nomem:
c0ff4b85 2400 *ptr = NULL;
7a81b88c 2401 return -ENOMEM;
867578cb 2402bypass:
38c5d72f
KH
2403 *ptr = root_mem_cgroup;
2404 return -EINTR;
7a81b88c 2405}
8a9f3ccd 2406
a3032a2c
DN
2407/*
2408 * Somemtimes we have to undo a charge we got by try_charge().
2409 * This function is for that and do uncharge, put css's refcnt.
2410 * gotten by try_charge().
2411 */
c0ff4b85 2412static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2413 unsigned int nr_pages)
a3032a2c 2414{
c0ff4b85 2415 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2416 unsigned long bytes = nr_pages * PAGE_SIZE;
2417
c0ff4b85 2418 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2419 if (do_swap_account)
c0ff4b85 2420 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2421 }
854ffa8d
DN
2422}
2423
d01dd17f
KH
2424/*
2425 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2426 * This is useful when moving usage to parent cgroup.
2427 */
2428static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2429 unsigned int nr_pages)
2430{
2431 unsigned long bytes = nr_pages * PAGE_SIZE;
2432
2433 if (mem_cgroup_is_root(memcg))
2434 return;
2435
2436 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2437 if (do_swap_account)
2438 res_counter_uncharge_until(&memcg->memsw,
2439 memcg->memsw.parent, bytes);
2440}
2441
a3b2d692
KH
2442/*
2443 * A helper function to get mem_cgroup from ID. must be called under
2444 * rcu_read_lock(). The caller must check css_is_removed() or some if
2445 * it's concern. (dropping refcnt from swap can be called against removed
2446 * memcg.)
2447 */
2448static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2449{
2450 struct cgroup_subsys_state *css;
2451
2452 /* ID 0 is unused ID */
2453 if (!id)
2454 return NULL;
2455 css = css_lookup(&mem_cgroup_subsys, id);
2456 if (!css)
2457 return NULL;
2458 return container_of(css, struct mem_cgroup, css);
2459}
2460
e42d9d5d 2461struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2462{
c0ff4b85 2463 struct mem_cgroup *memcg = NULL;
3c776e64 2464 struct page_cgroup *pc;
a3b2d692 2465 unsigned short id;
b5a84319
KH
2466 swp_entry_t ent;
2467
3c776e64
DN
2468 VM_BUG_ON(!PageLocked(page));
2469
3c776e64 2470 pc = lookup_page_cgroup(page);
c0bd3f63 2471 lock_page_cgroup(pc);
a3b2d692 2472 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2473 memcg = pc->mem_cgroup;
2474 if (memcg && !css_tryget(&memcg->css))
2475 memcg = NULL;
e42d9d5d 2476 } else if (PageSwapCache(page)) {
3c776e64 2477 ent.val = page_private(page);
9fb4b7cc 2478 id = lookup_swap_cgroup_id(ent);
a3b2d692 2479 rcu_read_lock();
c0ff4b85
R
2480 memcg = mem_cgroup_lookup(id);
2481 if (memcg && !css_tryget(&memcg->css))
2482 memcg = NULL;
a3b2d692 2483 rcu_read_unlock();
3c776e64 2484 }
c0bd3f63 2485 unlock_page_cgroup(pc);
c0ff4b85 2486 return memcg;
b5a84319
KH
2487}
2488
c0ff4b85 2489static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2490 struct page *page,
7ec99d62 2491 unsigned int nr_pages,
9ce70c02
HD
2492 enum charge_type ctype,
2493 bool lrucare)
7a81b88c 2494{
ce587e65 2495 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2496 struct zone *uninitialized_var(zone);
2497 bool was_on_lru = false;
b2402857 2498 bool anon;
9ce70c02 2499
ca3e0214
KH
2500 lock_page_cgroup(pc);
2501 if (unlikely(PageCgroupUsed(pc))) {
2502 unlock_page_cgroup(pc);
c0ff4b85 2503 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2504 return;
2505 }
2506 /*
2507 * we don't need page_cgroup_lock about tail pages, becase they are not
2508 * accessed by any other context at this point.
2509 */
9ce70c02
HD
2510
2511 /*
2512 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2513 * may already be on some other mem_cgroup's LRU. Take care of it.
2514 */
2515 if (lrucare) {
2516 zone = page_zone(page);
2517 spin_lock_irq(&zone->lru_lock);
2518 if (PageLRU(page)) {
2519 ClearPageLRU(page);
2520 del_page_from_lru_list(zone, page, page_lru(page));
2521 was_on_lru = true;
2522 }
2523 }
2524
c0ff4b85 2525 pc->mem_cgroup = memcg;
261fb61a
KH
2526 /*
2527 * We access a page_cgroup asynchronously without lock_page_cgroup().
2528 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2529 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2530 * before USED bit, we need memory barrier here.
2531 * See mem_cgroup_add_lru_list(), etc.
2532 */
08e552c6 2533 smp_wmb();
b2402857 2534 SetPageCgroupUsed(pc);
3be91277 2535
9ce70c02
HD
2536 if (lrucare) {
2537 if (was_on_lru) {
2538 VM_BUG_ON(PageLRU(page));
2539 SetPageLRU(page);
2540 add_page_to_lru_list(zone, page, page_lru(page));
2541 }
2542 spin_unlock_irq(&zone->lru_lock);
2543 }
2544
b2402857
KH
2545 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2546 anon = true;
2547 else
2548 anon = false;
2549
2550 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2551 unlock_page_cgroup(pc);
9ce70c02 2552
430e4863
KH
2553 /*
2554 * "charge_statistics" updated event counter. Then, check it.
2555 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2556 * if they exceeds softlimit.
2557 */
c0ff4b85 2558 memcg_check_events(memcg, page);
7a81b88c 2559}
66e1707b 2560
ca3e0214
KH
2561#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2562
a0db00fc 2563#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2564/*
2565 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2566 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2567 * charge/uncharge will be never happen and move_account() is done under
2568 * compound_lock(), so we don't have to take care of races.
ca3e0214 2569 */
e94c8a9c 2570void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2571{
2572 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2573 struct page_cgroup *pc;
2574 int i;
ca3e0214 2575
3d37c4a9
KH
2576 if (mem_cgroup_disabled())
2577 return;
e94c8a9c
KH
2578 for (i = 1; i < HPAGE_PMD_NR; i++) {
2579 pc = head_pc + i;
2580 pc->mem_cgroup = head_pc->mem_cgroup;
2581 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2582 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2583 }
ca3e0214 2584}
12d27107 2585#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2586
f817ed48 2587/**
de3638d9 2588 * mem_cgroup_move_account - move account of the page
5564e88b 2589 * @page: the page
7ec99d62 2590 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2591 * @pc: page_cgroup of the page.
2592 * @from: mem_cgroup which the page is moved from.
2593 * @to: mem_cgroup which the page is moved to. @from != @to.
2594 *
2595 * The caller must confirm following.
08e552c6 2596 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2597 * - compound_lock is held when nr_pages > 1
f817ed48 2598 *
2f3479b1
KH
2599 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2600 * from old cgroup.
f817ed48 2601 */
7ec99d62
JW
2602static int mem_cgroup_move_account(struct page *page,
2603 unsigned int nr_pages,
2604 struct page_cgroup *pc,
2605 struct mem_cgroup *from,
2f3479b1 2606 struct mem_cgroup *to)
f817ed48 2607{
de3638d9
JW
2608 unsigned long flags;
2609 int ret;
b2402857 2610 bool anon = PageAnon(page);
987eba66 2611
f817ed48 2612 VM_BUG_ON(from == to);
5564e88b 2613 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2614 /*
2615 * The page is isolated from LRU. So, collapse function
2616 * will not handle this page. But page splitting can happen.
2617 * Do this check under compound_page_lock(). The caller should
2618 * hold it.
2619 */
2620 ret = -EBUSY;
7ec99d62 2621 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2622 goto out;
2623
2624 lock_page_cgroup(pc);
2625
2626 ret = -EINVAL;
2627 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2628 goto unlock;
2629
312734c0 2630 move_lock_mem_cgroup(from, &flags);
f817ed48 2631
2ff76f11 2632 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2633 /* Update mapped_file data for mem_cgroup */
2634 preempt_disable();
2635 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2636 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 preempt_enable();
d69b042f 2638 }
b2402857 2639 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2640
854ffa8d 2641 /* caller should have done css_get */
08e552c6 2642 pc->mem_cgroup = to;
b2402857 2643 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2644 /*
2645 * We charges against "to" which may not have any tasks. Then, "to"
2646 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2647 * this function is just force_empty() and move charge, so it's
25985edc 2648 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2649 * status here.
88703267 2650 */
312734c0 2651 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2652 ret = 0;
2653unlock:
57f9fd7d 2654 unlock_page_cgroup(pc);
d2265e6f
KH
2655 /*
2656 * check events
2657 */
5564e88b
JW
2658 memcg_check_events(to, page);
2659 memcg_check_events(from, page);
de3638d9 2660out:
f817ed48
KH
2661 return ret;
2662}
2663
2664/*
2665 * move charges to its parent.
2666 */
2667
5564e88b
JW
2668static int mem_cgroup_move_parent(struct page *page,
2669 struct page_cgroup *pc,
f817ed48
KH
2670 struct mem_cgroup *child,
2671 gfp_t gfp_mask)
2672{
f817ed48 2673 struct mem_cgroup *parent;
7ec99d62 2674 unsigned int nr_pages;
4be4489f 2675 unsigned long uninitialized_var(flags);
f817ed48
KH
2676 int ret;
2677
2678 /* Is ROOT ? */
cc926f78 2679 if (mem_cgroup_is_root(child))
f817ed48
KH
2680 return -EINVAL;
2681
57f9fd7d
DN
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
52dbb905 2687
7ec99d62 2688 nr_pages = hpage_nr_pages(page);
08e552c6 2689
cc926f78
KH
2690 parent = parent_mem_cgroup(child);
2691 /*
2692 * If no parent, move charges to root cgroup.
2693 */
2694 if (!parent)
2695 parent = root_mem_cgroup;
f817ed48 2696
7ec99d62 2697 if (nr_pages > 1)
987eba66
KH
2698 flags = compound_lock_irqsave(page);
2699
cc926f78 2700 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2701 pc, child, parent);
cc926f78
KH
2702 if (!ret)
2703 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2704
7ec99d62 2705 if (nr_pages > 1)
987eba66 2706 compound_unlock_irqrestore(page, flags);
08e552c6 2707 putback_lru_page(page);
57f9fd7d 2708put:
40d58138 2709 put_page(page);
57f9fd7d 2710out:
f817ed48
KH
2711 return ret;
2712}
2713
7a81b88c
KH
2714/*
2715 * Charge the memory controller for page usage.
2716 * Return
2717 * 0 if the charge was successful
2718 * < 0 if the cgroup is over its limit
2719 */
2720static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2721 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2722{
c0ff4b85 2723 struct mem_cgroup *memcg = NULL;
7ec99d62 2724 unsigned int nr_pages = 1;
8493ae43 2725 bool oom = true;
7a81b88c 2726 int ret;
ec168510 2727
37c2ac78 2728 if (PageTransHuge(page)) {
7ec99d62 2729 nr_pages <<= compound_order(page);
37c2ac78 2730 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2731 /*
2732 * Never OOM-kill a process for a huge page. The
2733 * fault handler will fall back to regular pages.
2734 */
2735 oom = false;
37c2ac78 2736 }
7a81b88c 2737
c0ff4b85 2738 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2739 if (ret == -ENOMEM)
7a81b88c 2740 return ret;
ce587e65 2741 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2742 return 0;
8a9f3ccd
BS
2743}
2744
7a81b88c
KH
2745int mem_cgroup_newpage_charge(struct page *page,
2746 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2747{
f8d66542 2748 if (mem_cgroup_disabled())
cede86ac 2749 return 0;
7a0524cf
JW
2750 VM_BUG_ON(page_mapped(page));
2751 VM_BUG_ON(page->mapping && !PageAnon(page));
2752 VM_BUG_ON(!mm);
217bc319 2753 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2754 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2755}
2756
83aae4c7
DN
2757static void
2758__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2759 enum charge_type ctype);
2760
e1a1cd59
BS
2761int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2762 gfp_t gfp_mask)
8697d331 2763{
c0ff4b85 2764 struct mem_cgroup *memcg = NULL;
dc67d504 2765 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2766 int ret;
2767
f8d66542 2768 if (mem_cgroup_disabled())
cede86ac 2769 return 0;
52d4b9ac
KH
2770 if (PageCompound(page))
2771 return 0;
accf163e 2772
73045c47 2773 if (unlikely(!mm))
8697d331 2774 mm = &init_mm;
dc67d504
KH
2775 if (!page_is_file_cache(page))
2776 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2777
38c5d72f 2778 if (!PageSwapCache(page))
dc67d504 2779 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2780 else { /* page is swapcache/shmem */
c0ff4b85 2781 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2782 if (!ret)
dc67d504
KH
2783 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2784 }
b5a84319 2785 return ret;
e8589cc1
KH
2786}
2787
54595fe2
KH
2788/*
2789 * While swap-in, try_charge -> commit or cancel, the page is locked.
2790 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2791 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2792 * "commit()" or removed by "cancel()"
2793 */
8c7c6e34
KH
2794int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2795 struct page *page,
72835c86 2796 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2797{
c0ff4b85 2798 struct mem_cgroup *memcg;
54595fe2 2799 int ret;
8c7c6e34 2800
72835c86 2801 *memcgp = NULL;
56039efa 2802
f8d66542 2803 if (mem_cgroup_disabled())
8c7c6e34
KH
2804 return 0;
2805
2806 if (!do_swap_account)
2807 goto charge_cur_mm;
8c7c6e34
KH
2808 /*
2809 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2810 * the pte, and even removed page from swap cache: in those cases
2811 * do_swap_page()'s pte_same() test will fail; but there's also a
2812 * KSM case which does need to charge the page.
8c7c6e34
KH
2813 */
2814 if (!PageSwapCache(page))
407f9c8b 2815 goto charge_cur_mm;
c0ff4b85
R
2816 memcg = try_get_mem_cgroup_from_page(page);
2817 if (!memcg)
54595fe2 2818 goto charge_cur_mm;
72835c86
JW
2819 *memcgp = memcg;
2820 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2821 css_put(&memcg->css);
38c5d72f
KH
2822 if (ret == -EINTR)
2823 ret = 0;
54595fe2 2824 return ret;
8c7c6e34
KH
2825charge_cur_mm:
2826 if (unlikely(!mm))
2827 mm = &init_mm;
38c5d72f
KH
2828 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2829 if (ret == -EINTR)
2830 ret = 0;
2831 return ret;
8c7c6e34
KH
2832}
2833
83aae4c7 2834static void
72835c86 2835__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2836 enum charge_type ctype)
7a81b88c 2837{
f8d66542 2838 if (mem_cgroup_disabled())
7a81b88c 2839 return;
72835c86 2840 if (!memcg)
7a81b88c 2841 return;
72835c86 2842 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2843
ce587e65 2844 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2845 /*
2846 * Now swap is on-memory. This means this page may be
2847 * counted both as mem and swap....double count.
03f3c433
KH
2848 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2849 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2850 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2851 */
03f3c433 2852 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2853 swp_entry_t ent = {.val = page_private(page)};
86493009 2854 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2855 }
88703267
KH
2856 /*
2857 * At swapin, we may charge account against cgroup which has no tasks.
2858 * So, rmdir()->pre_destroy() can be called while we do this charge.
2859 * In that case, we need to call pre_destroy() again. check it here.
2860 */
72835c86 2861 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2862}
2863
72835c86
JW
2864void mem_cgroup_commit_charge_swapin(struct page *page,
2865 struct mem_cgroup *memcg)
83aae4c7 2866{
72835c86
JW
2867 __mem_cgroup_commit_charge_swapin(page, memcg,
2868 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2869}
2870
c0ff4b85 2871void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2872{
f8d66542 2873 if (mem_cgroup_disabled())
7a81b88c 2874 return;
c0ff4b85 2875 if (!memcg)
7a81b88c 2876 return;
c0ff4b85 2877 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2878}
2879
c0ff4b85 2880static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2881 unsigned int nr_pages,
2882 const enum charge_type ctype)
569b846d
KH
2883{
2884 struct memcg_batch_info *batch = NULL;
2885 bool uncharge_memsw = true;
7ec99d62 2886
569b846d
KH
2887 /* If swapout, usage of swap doesn't decrease */
2888 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2889 uncharge_memsw = false;
569b846d
KH
2890
2891 batch = &current->memcg_batch;
2892 /*
2893 * In usual, we do css_get() when we remember memcg pointer.
2894 * But in this case, we keep res->usage until end of a series of
2895 * uncharges. Then, it's ok to ignore memcg's refcnt.
2896 */
2897 if (!batch->memcg)
c0ff4b85 2898 batch->memcg = memcg;
3c11ecf4
KH
2899 /*
2900 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2901 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2902 * the same cgroup and we have chance to coalesce uncharges.
2903 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2904 * because we want to do uncharge as soon as possible.
2905 */
2906
2907 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2908 goto direct_uncharge;
2909
7ec99d62 2910 if (nr_pages > 1)
ec168510
AA
2911 goto direct_uncharge;
2912
569b846d
KH
2913 /*
2914 * In typical case, batch->memcg == mem. This means we can
2915 * merge a series of uncharges to an uncharge of res_counter.
2916 * If not, we uncharge res_counter ony by one.
2917 */
c0ff4b85 2918 if (batch->memcg != memcg)
569b846d
KH
2919 goto direct_uncharge;
2920 /* remember freed charge and uncharge it later */
7ffd4ca7 2921 batch->nr_pages++;
569b846d 2922 if (uncharge_memsw)
7ffd4ca7 2923 batch->memsw_nr_pages++;
569b846d
KH
2924 return;
2925direct_uncharge:
c0ff4b85 2926 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2927 if (uncharge_memsw)
c0ff4b85
R
2928 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2929 if (unlikely(batch->memcg != memcg))
2930 memcg_oom_recover(memcg);
569b846d 2931}
7a81b88c 2932
8a9f3ccd 2933/*
69029cd5 2934 * uncharge if !page_mapped(page)
8a9f3ccd 2935 */
8c7c6e34 2936static struct mem_cgroup *
69029cd5 2937__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2938{
c0ff4b85 2939 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2940 unsigned int nr_pages = 1;
2941 struct page_cgroup *pc;
b2402857 2942 bool anon;
8a9f3ccd 2943
f8d66542 2944 if (mem_cgroup_disabled())
8c7c6e34 2945 return NULL;
4077960e 2946
d13d1443 2947 if (PageSwapCache(page))
8c7c6e34 2948 return NULL;
d13d1443 2949
37c2ac78 2950 if (PageTransHuge(page)) {
7ec99d62 2951 nr_pages <<= compound_order(page);
37c2ac78
AA
2952 VM_BUG_ON(!PageTransHuge(page));
2953 }
8697d331 2954 /*
3c541e14 2955 * Check if our page_cgroup is valid
8697d331 2956 */
52d4b9ac 2957 pc = lookup_page_cgroup(page);
cfa44946 2958 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2959 return NULL;
b9c565d5 2960
52d4b9ac 2961 lock_page_cgroup(pc);
d13d1443 2962
c0ff4b85 2963 memcg = pc->mem_cgroup;
8c7c6e34 2964
d13d1443
KH
2965 if (!PageCgroupUsed(pc))
2966 goto unlock_out;
2967
b2402857
KH
2968 anon = PageAnon(page);
2969
d13d1443
KH
2970 switch (ctype) {
2971 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2972 /*
2973 * Generally PageAnon tells if it's the anon statistics to be
2974 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2975 * used before page reached the stage of being marked PageAnon.
2976 */
b2402857
KH
2977 anon = true;
2978 /* fallthrough */
8a9478ca 2979 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2980 /* See mem_cgroup_prepare_migration() */
2981 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2982 goto unlock_out;
2983 break;
2984 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2985 if (!PageAnon(page)) { /* Shared memory */
2986 if (page->mapping && !page_is_file_cache(page))
2987 goto unlock_out;
2988 } else if (page_mapped(page)) /* Anon */
2989 goto unlock_out;
2990 break;
2991 default:
2992 break;
52d4b9ac 2993 }
d13d1443 2994
b2402857 2995 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2996
52d4b9ac 2997 ClearPageCgroupUsed(pc);
544122e5
KH
2998 /*
2999 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3000 * freed from LRU. This is safe because uncharged page is expected not
3001 * to be reused (freed soon). Exception is SwapCache, it's handled by
3002 * special functions.
3003 */
b9c565d5 3004
52d4b9ac 3005 unlock_page_cgroup(pc);
f75ca962 3006 /*
c0ff4b85 3007 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3008 * will never be freed.
3009 */
c0ff4b85 3010 memcg_check_events(memcg, page);
f75ca962 3011 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3012 mem_cgroup_swap_statistics(memcg, true);
3013 mem_cgroup_get(memcg);
f75ca962 3014 }
c0ff4b85
R
3015 if (!mem_cgroup_is_root(memcg))
3016 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3017
c0ff4b85 3018 return memcg;
d13d1443
KH
3019
3020unlock_out:
3021 unlock_page_cgroup(pc);
8c7c6e34 3022 return NULL;
3c541e14
BS
3023}
3024
69029cd5
KH
3025void mem_cgroup_uncharge_page(struct page *page)
3026{
52d4b9ac
KH
3027 /* early check. */
3028 if (page_mapped(page))
3029 return;
40f23a21 3030 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3031 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3032}
3033
3034void mem_cgroup_uncharge_cache_page(struct page *page)
3035{
3036 VM_BUG_ON(page_mapped(page));
b7abea96 3037 VM_BUG_ON(page->mapping);
69029cd5
KH
3038 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3039}
3040
569b846d
KH
3041/*
3042 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3043 * In that cases, pages are freed continuously and we can expect pages
3044 * are in the same memcg. All these calls itself limits the number of
3045 * pages freed at once, then uncharge_start/end() is called properly.
3046 * This may be called prural(2) times in a context,
3047 */
3048
3049void mem_cgroup_uncharge_start(void)
3050{
3051 current->memcg_batch.do_batch++;
3052 /* We can do nest. */
3053 if (current->memcg_batch.do_batch == 1) {
3054 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3055 current->memcg_batch.nr_pages = 0;
3056 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3057 }
3058}
3059
3060void mem_cgroup_uncharge_end(void)
3061{
3062 struct memcg_batch_info *batch = &current->memcg_batch;
3063
3064 if (!batch->do_batch)
3065 return;
3066
3067 batch->do_batch--;
3068 if (batch->do_batch) /* If stacked, do nothing. */
3069 return;
3070
3071 if (!batch->memcg)
3072 return;
3073 /*
3074 * This "batch->memcg" is valid without any css_get/put etc...
3075 * bacause we hide charges behind us.
3076 */
7ffd4ca7
JW
3077 if (batch->nr_pages)
3078 res_counter_uncharge(&batch->memcg->res,
3079 batch->nr_pages * PAGE_SIZE);
3080 if (batch->memsw_nr_pages)
3081 res_counter_uncharge(&batch->memcg->memsw,
3082 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3083 memcg_oom_recover(batch->memcg);
569b846d
KH
3084 /* forget this pointer (for sanity check) */
3085 batch->memcg = NULL;
3086}
3087
e767e056 3088#ifdef CONFIG_SWAP
8c7c6e34 3089/*
e767e056 3090 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3091 * memcg information is recorded to swap_cgroup of "ent"
3092 */
8a9478ca
KH
3093void
3094mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3095{
3096 struct mem_cgroup *memcg;
8a9478ca
KH
3097 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3098
3099 if (!swapout) /* this was a swap cache but the swap is unused ! */
3100 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3101
3102 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3103
f75ca962
KH
3104 /*
3105 * record memcg information, if swapout && memcg != NULL,
3106 * mem_cgroup_get() was called in uncharge().
3107 */
3108 if (do_swap_account && swapout && memcg)
a3b2d692 3109 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3110}
e767e056 3111#endif
8c7c6e34
KH
3112
3113#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3114/*
3115 * called from swap_entry_free(). remove record in swap_cgroup and
3116 * uncharge "memsw" account.
3117 */
3118void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3119{
8c7c6e34 3120 struct mem_cgroup *memcg;
a3b2d692 3121 unsigned short id;
8c7c6e34
KH
3122
3123 if (!do_swap_account)
3124 return;
3125
a3b2d692
KH
3126 id = swap_cgroup_record(ent, 0);
3127 rcu_read_lock();
3128 memcg = mem_cgroup_lookup(id);
8c7c6e34 3129 if (memcg) {
a3b2d692
KH
3130 /*
3131 * We uncharge this because swap is freed.
3132 * This memcg can be obsolete one. We avoid calling css_tryget
3133 */
0c3e73e8 3134 if (!mem_cgroup_is_root(memcg))
4e649152 3135 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3136 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3137 mem_cgroup_put(memcg);
3138 }
a3b2d692 3139 rcu_read_unlock();
d13d1443 3140}
02491447
DN
3141
3142/**
3143 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3144 * @entry: swap entry to be moved
3145 * @from: mem_cgroup which the entry is moved from
3146 * @to: mem_cgroup which the entry is moved to
3147 *
3148 * It succeeds only when the swap_cgroup's record for this entry is the same
3149 * as the mem_cgroup's id of @from.
3150 *
3151 * Returns 0 on success, -EINVAL on failure.
3152 *
3153 * The caller must have charged to @to, IOW, called res_counter_charge() about
3154 * both res and memsw, and called css_get().
3155 */
3156static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3157 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3158{
3159 unsigned short old_id, new_id;
3160
3161 old_id = css_id(&from->css);
3162 new_id = css_id(&to->css);
3163
3164 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3165 mem_cgroup_swap_statistics(from, false);
483c30b5 3166 mem_cgroup_swap_statistics(to, true);
02491447 3167 /*
483c30b5
DN
3168 * This function is only called from task migration context now.
3169 * It postpones res_counter and refcount handling till the end
3170 * of task migration(mem_cgroup_clear_mc()) for performance
3171 * improvement. But we cannot postpone mem_cgroup_get(to)
3172 * because if the process that has been moved to @to does
3173 * swap-in, the refcount of @to might be decreased to 0.
02491447 3174 */
02491447 3175 mem_cgroup_get(to);
02491447
DN
3176 return 0;
3177 }
3178 return -EINVAL;
3179}
3180#else
3181static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3182 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3183{
3184 return -EINVAL;
3185}
8c7c6e34 3186#endif
d13d1443 3187
ae41be37 3188/*
01b1ae63
KH
3189 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3190 * page belongs to.
ae41be37 3191 */
ac39cf8c 3192int mem_cgroup_prepare_migration(struct page *page,
72835c86 3193 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3194{
c0ff4b85 3195 struct mem_cgroup *memcg = NULL;
7ec99d62 3196 struct page_cgroup *pc;
ac39cf8c 3197 enum charge_type ctype;
e8589cc1 3198 int ret = 0;
8869b8f6 3199
72835c86 3200 *memcgp = NULL;
56039efa 3201
ec168510 3202 VM_BUG_ON(PageTransHuge(page));
f8d66542 3203 if (mem_cgroup_disabled())
4077960e
BS
3204 return 0;
3205
52d4b9ac
KH
3206 pc = lookup_page_cgroup(page);
3207 lock_page_cgroup(pc);
3208 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3209 memcg = pc->mem_cgroup;
3210 css_get(&memcg->css);
ac39cf8c
AM
3211 /*
3212 * At migrating an anonymous page, its mapcount goes down
3213 * to 0 and uncharge() will be called. But, even if it's fully
3214 * unmapped, migration may fail and this page has to be
3215 * charged again. We set MIGRATION flag here and delay uncharge
3216 * until end_migration() is called
3217 *
3218 * Corner Case Thinking
3219 * A)
3220 * When the old page was mapped as Anon and it's unmap-and-freed
3221 * while migration was ongoing.
3222 * If unmap finds the old page, uncharge() of it will be delayed
3223 * until end_migration(). If unmap finds a new page, it's
3224 * uncharged when it make mapcount to be 1->0. If unmap code
3225 * finds swap_migration_entry, the new page will not be mapped
3226 * and end_migration() will find it(mapcount==0).
3227 *
3228 * B)
3229 * When the old page was mapped but migraion fails, the kernel
3230 * remaps it. A charge for it is kept by MIGRATION flag even
3231 * if mapcount goes down to 0. We can do remap successfully
3232 * without charging it again.
3233 *
3234 * C)
3235 * The "old" page is under lock_page() until the end of
3236 * migration, so, the old page itself will not be swapped-out.
3237 * If the new page is swapped out before end_migraton, our
3238 * hook to usual swap-out path will catch the event.
3239 */
3240 if (PageAnon(page))
3241 SetPageCgroupMigration(pc);
e8589cc1 3242 }
52d4b9ac 3243 unlock_page_cgroup(pc);
ac39cf8c
AM
3244 /*
3245 * If the page is not charged at this point,
3246 * we return here.
3247 */
c0ff4b85 3248 if (!memcg)
ac39cf8c 3249 return 0;
01b1ae63 3250
72835c86
JW
3251 *memcgp = memcg;
3252 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3253 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3254 if (ret) {
ac39cf8c
AM
3255 if (PageAnon(page)) {
3256 lock_page_cgroup(pc);
3257 ClearPageCgroupMigration(pc);
3258 unlock_page_cgroup(pc);
3259 /*
3260 * The old page may be fully unmapped while we kept it.
3261 */
3262 mem_cgroup_uncharge_page(page);
3263 }
38c5d72f 3264 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3265 return -ENOMEM;
e8589cc1 3266 }
ac39cf8c
AM
3267 /*
3268 * We charge new page before it's used/mapped. So, even if unlock_page()
3269 * is called before end_migration, we can catch all events on this new
3270 * page. In the case new page is migrated but not remapped, new page's
3271 * mapcount will be finally 0 and we call uncharge in end_migration().
3272 */
ac39cf8c
AM
3273 if (PageAnon(page))
3274 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3275 else if (page_is_file_cache(page))
3276 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3277 else
3278 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3279 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3280 return ret;
ae41be37 3281}
8869b8f6 3282
69029cd5 3283/* remove redundant charge if migration failed*/
c0ff4b85 3284void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3285 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3286{
ac39cf8c 3287 struct page *used, *unused;
01b1ae63 3288 struct page_cgroup *pc;
b2402857 3289 bool anon;
01b1ae63 3290
c0ff4b85 3291 if (!memcg)
01b1ae63 3292 return;
ac39cf8c 3293 /* blocks rmdir() */
c0ff4b85 3294 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3295 if (!migration_ok) {
ac39cf8c
AM
3296 used = oldpage;
3297 unused = newpage;
01b1ae63 3298 } else {
ac39cf8c 3299 used = newpage;
01b1ae63
KH
3300 unused = oldpage;
3301 }
69029cd5 3302 /*
ac39cf8c
AM
3303 * We disallowed uncharge of pages under migration because mapcount
3304 * of the page goes down to zero, temporarly.
3305 * Clear the flag and check the page should be charged.
01b1ae63 3306 */
ac39cf8c
AM
3307 pc = lookup_page_cgroup(oldpage);
3308 lock_page_cgroup(pc);
3309 ClearPageCgroupMigration(pc);
3310 unlock_page_cgroup(pc);
b2402857
KH
3311 anon = PageAnon(used);
3312 __mem_cgroup_uncharge_common(unused,
3313 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3314 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3315
01b1ae63 3316 /*
ac39cf8c
AM
3317 * If a page is a file cache, radix-tree replacement is very atomic
3318 * and we can skip this check. When it was an Anon page, its mapcount
3319 * goes down to 0. But because we added MIGRATION flage, it's not
3320 * uncharged yet. There are several case but page->mapcount check
3321 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3322 * check. (see prepare_charge() also)
69029cd5 3323 */
b2402857 3324 if (anon)
ac39cf8c 3325 mem_cgroup_uncharge_page(used);
88703267 3326 /*
ac39cf8c
AM
3327 * At migration, we may charge account against cgroup which has no
3328 * tasks.
88703267
KH
3329 * So, rmdir()->pre_destroy() can be called while we do this charge.
3330 * In that case, we need to call pre_destroy() again. check it here.
3331 */
c0ff4b85 3332 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3333}
78fb7466 3334
ab936cbc
KH
3335/*
3336 * At replace page cache, newpage is not under any memcg but it's on
3337 * LRU. So, this function doesn't touch res_counter but handles LRU
3338 * in correct way. Both pages are locked so we cannot race with uncharge.
3339 */
3340void mem_cgroup_replace_page_cache(struct page *oldpage,
3341 struct page *newpage)
3342{
bde05d1c 3343 struct mem_cgroup *memcg = NULL;
ab936cbc 3344 struct page_cgroup *pc;
ab936cbc 3345 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3346
3347 if (mem_cgroup_disabled())
3348 return;
3349
3350 pc = lookup_page_cgroup(oldpage);
3351 /* fix accounting on old pages */
3352 lock_page_cgroup(pc);
bde05d1c
HD
3353 if (PageCgroupUsed(pc)) {
3354 memcg = pc->mem_cgroup;
3355 mem_cgroup_charge_statistics(memcg, false, -1);
3356 ClearPageCgroupUsed(pc);
3357 }
ab936cbc
KH
3358 unlock_page_cgroup(pc);
3359
bde05d1c
HD
3360 /*
3361 * When called from shmem_replace_page(), in some cases the
3362 * oldpage has already been charged, and in some cases not.
3363 */
3364 if (!memcg)
3365 return;
3366
ab936cbc
KH
3367 if (PageSwapBacked(oldpage))
3368 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3369
ab936cbc
KH
3370 /*
3371 * Even if newpage->mapping was NULL before starting replacement,
3372 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3373 * LRU while we overwrite pc->mem_cgroup.
3374 */
ce587e65 3375 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3376}
3377
f212ad7c
DN
3378#ifdef CONFIG_DEBUG_VM
3379static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3380{
3381 struct page_cgroup *pc;
3382
3383 pc = lookup_page_cgroup(page);
cfa44946
JW
3384 /*
3385 * Can be NULL while feeding pages into the page allocator for
3386 * the first time, i.e. during boot or memory hotplug;
3387 * or when mem_cgroup_disabled().
3388 */
f212ad7c
DN
3389 if (likely(pc) && PageCgroupUsed(pc))
3390 return pc;
3391 return NULL;
3392}
3393
3394bool mem_cgroup_bad_page_check(struct page *page)
3395{
3396 if (mem_cgroup_disabled())
3397 return false;
3398
3399 return lookup_page_cgroup_used(page) != NULL;
3400}
3401
3402void mem_cgroup_print_bad_page(struct page *page)
3403{
3404 struct page_cgroup *pc;
3405
3406 pc = lookup_page_cgroup_used(page);
3407 if (pc) {
90b3feae 3408 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3409 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3410 }
3411}
3412#endif
3413
8c7c6e34
KH
3414static DEFINE_MUTEX(set_limit_mutex);
3415
d38d2a75 3416static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3417 unsigned long long val)
628f4235 3418{
81d39c20 3419 int retry_count;
3c11ecf4 3420 u64 memswlimit, memlimit;
628f4235 3421 int ret = 0;
81d39c20
KH
3422 int children = mem_cgroup_count_children(memcg);
3423 u64 curusage, oldusage;
3c11ecf4 3424 int enlarge;
81d39c20
KH
3425
3426 /*
3427 * For keeping hierarchical_reclaim simple, how long we should retry
3428 * is depends on callers. We set our retry-count to be function
3429 * of # of children which we should visit in this loop.
3430 */
3431 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3432
3433 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3434
3c11ecf4 3435 enlarge = 0;
8c7c6e34 3436 while (retry_count) {
628f4235
KH
3437 if (signal_pending(current)) {
3438 ret = -EINTR;
3439 break;
3440 }
8c7c6e34
KH
3441 /*
3442 * Rather than hide all in some function, I do this in
3443 * open coded manner. You see what this really does.
c0ff4b85 3444 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3445 */
3446 mutex_lock(&set_limit_mutex);
3447 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3448 if (memswlimit < val) {
3449 ret = -EINVAL;
3450 mutex_unlock(&set_limit_mutex);
628f4235
KH
3451 break;
3452 }
3c11ecf4
KH
3453
3454 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3455 if (memlimit < val)
3456 enlarge = 1;
3457
8c7c6e34 3458 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3459 if (!ret) {
3460 if (memswlimit == val)
3461 memcg->memsw_is_minimum = true;
3462 else
3463 memcg->memsw_is_minimum = false;
3464 }
8c7c6e34
KH
3465 mutex_unlock(&set_limit_mutex);
3466
3467 if (!ret)
3468 break;
3469
5660048c
JW
3470 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3471 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3472 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3473 /* Usage is reduced ? */
3474 if (curusage >= oldusage)
3475 retry_count--;
3476 else
3477 oldusage = curusage;
8c7c6e34 3478 }
3c11ecf4
KH
3479 if (!ret && enlarge)
3480 memcg_oom_recover(memcg);
14797e23 3481
8c7c6e34
KH
3482 return ret;
3483}
3484
338c8431
LZ
3485static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3486 unsigned long long val)
8c7c6e34 3487{
81d39c20 3488 int retry_count;
3c11ecf4 3489 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3490 int children = mem_cgroup_count_children(memcg);
3491 int ret = -EBUSY;
3c11ecf4 3492 int enlarge = 0;
8c7c6e34 3493
81d39c20
KH
3494 /* see mem_cgroup_resize_res_limit */
3495 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3496 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3497 while (retry_count) {
3498 if (signal_pending(current)) {
3499 ret = -EINTR;
3500 break;
3501 }
3502 /*
3503 * Rather than hide all in some function, I do this in
3504 * open coded manner. You see what this really does.
c0ff4b85 3505 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3506 */
3507 mutex_lock(&set_limit_mutex);
3508 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3509 if (memlimit > val) {
3510 ret = -EINVAL;
3511 mutex_unlock(&set_limit_mutex);
3512 break;
3513 }
3c11ecf4
KH
3514 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3515 if (memswlimit < val)
3516 enlarge = 1;
8c7c6e34 3517 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3518 if (!ret) {
3519 if (memlimit == val)
3520 memcg->memsw_is_minimum = true;
3521 else
3522 memcg->memsw_is_minimum = false;
3523 }
8c7c6e34
KH
3524 mutex_unlock(&set_limit_mutex);
3525
3526 if (!ret)
3527 break;
3528
5660048c
JW
3529 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3530 MEM_CGROUP_RECLAIM_NOSWAP |
3531 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3532 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3533 /* Usage is reduced ? */
8c7c6e34 3534 if (curusage >= oldusage)
628f4235 3535 retry_count--;
81d39c20
KH
3536 else
3537 oldusage = curusage;
628f4235 3538 }
3c11ecf4
KH
3539 if (!ret && enlarge)
3540 memcg_oom_recover(memcg);
628f4235
KH
3541 return ret;
3542}
3543
4e416953 3544unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3545 gfp_t gfp_mask,
3546 unsigned long *total_scanned)
4e416953
BS
3547{
3548 unsigned long nr_reclaimed = 0;
3549 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3550 unsigned long reclaimed;
3551 int loop = 0;
3552 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3553 unsigned long long excess;
0ae5e89c 3554 unsigned long nr_scanned;
4e416953
BS
3555
3556 if (order > 0)
3557 return 0;
3558
00918b6a 3559 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3560 /*
3561 * This loop can run a while, specially if mem_cgroup's continuously
3562 * keep exceeding their soft limit and putting the system under
3563 * pressure
3564 */
3565 do {
3566 if (next_mz)
3567 mz = next_mz;
3568 else
3569 mz = mem_cgroup_largest_soft_limit_node(mctz);
3570 if (!mz)
3571 break;
3572
0ae5e89c 3573 nr_scanned = 0;
d79154bb 3574 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3575 gfp_mask, &nr_scanned);
4e416953 3576 nr_reclaimed += reclaimed;
0ae5e89c 3577 *total_scanned += nr_scanned;
4e416953
BS
3578 spin_lock(&mctz->lock);
3579
3580 /*
3581 * If we failed to reclaim anything from this memory cgroup
3582 * it is time to move on to the next cgroup
3583 */
3584 next_mz = NULL;
3585 if (!reclaimed) {
3586 do {
3587 /*
3588 * Loop until we find yet another one.
3589 *
3590 * By the time we get the soft_limit lock
3591 * again, someone might have aded the
3592 * group back on the RB tree. Iterate to
3593 * make sure we get a different mem.
3594 * mem_cgroup_largest_soft_limit_node returns
3595 * NULL if no other cgroup is present on
3596 * the tree
3597 */
3598 next_mz =
3599 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3600 if (next_mz == mz)
d79154bb 3601 css_put(&next_mz->memcg->css);
39cc98f1 3602 else /* next_mz == NULL or other memcg */
4e416953
BS
3603 break;
3604 } while (1);
3605 }
d79154bb
HD
3606 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3607 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3608 /*
3609 * One school of thought says that we should not add
3610 * back the node to the tree if reclaim returns 0.
3611 * But our reclaim could return 0, simply because due
3612 * to priority we are exposing a smaller subset of
3613 * memory to reclaim from. Consider this as a longer
3614 * term TODO.
3615 */
ef8745c1 3616 /* If excess == 0, no tree ops */
d79154bb 3617 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3618 spin_unlock(&mctz->lock);
d79154bb 3619 css_put(&mz->memcg->css);
4e416953
BS
3620 loop++;
3621 /*
3622 * Could not reclaim anything and there are no more
3623 * mem cgroups to try or we seem to be looping without
3624 * reclaiming anything.
3625 */
3626 if (!nr_reclaimed &&
3627 (next_mz == NULL ||
3628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3629 break;
3630 } while (!nr_reclaimed);
3631 if (next_mz)
d79154bb 3632 css_put(&next_mz->memcg->css);
4e416953
BS
3633 return nr_reclaimed;
3634}
3635
cc847582
KH
3636/*
3637 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3638 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3639 */
c0ff4b85 3640static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3641 int node, int zid, enum lru_list lru)
cc847582 3642{
08e552c6 3643 struct mem_cgroup_per_zone *mz;
08e552c6 3644 unsigned long flags, loop;
072c56c1 3645 struct list_head *list;
925b7673
JW
3646 struct page *busy;
3647 struct zone *zone;
f817ed48 3648 int ret = 0;
072c56c1 3649
08e552c6 3650 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3651 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3652 list = &mz->lruvec.lists[lru];
cc847582 3653
1eb49272 3654 loop = mz->lru_size[lru];
f817ed48
KH
3655 /* give some margin against EBUSY etc...*/
3656 loop += 256;
3657 busy = NULL;
3658 while (loop--) {
925b7673 3659 struct page_cgroup *pc;
5564e88b
JW
3660 struct page *page;
3661
f817ed48 3662 ret = 0;
08e552c6 3663 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3664 if (list_empty(list)) {
08e552c6 3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3666 break;
f817ed48 3667 }
925b7673
JW
3668 page = list_entry(list->prev, struct page, lru);
3669 if (busy == page) {
3670 list_move(&page->lru, list);
648bcc77 3671 busy = NULL;
08e552c6 3672 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3673 continue;
3674 }
08e552c6 3675 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3676
925b7673 3677 pc = lookup_page_cgroup(page);
5564e88b 3678
c0ff4b85 3679 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3680 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3681 break;
f817ed48
KH
3682
3683 if (ret == -EBUSY || ret == -EINVAL) {
3684 /* found lock contention or "pc" is obsolete. */
925b7673 3685 busy = page;
f817ed48
KH
3686 cond_resched();
3687 } else
3688 busy = NULL;
cc847582 3689 }
08e552c6 3690
f817ed48
KH
3691 if (!ret && !list_empty(list))
3692 return -EBUSY;
3693 return ret;
cc847582
KH
3694}
3695
3696/*
3697 * make mem_cgroup's charge to be 0 if there is no task.
3698 * This enables deleting this mem_cgroup.
3699 */
c0ff4b85 3700static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3701{
f817ed48
KH
3702 int ret;
3703 int node, zid, shrink;
3704 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3705 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3706
c0ff4b85 3707 css_get(&memcg->css);
f817ed48
KH
3708
3709 shrink = 0;
c1e862c1
KH
3710 /* should free all ? */
3711 if (free_all)
3712 goto try_to_free;
f817ed48 3713move_account:
fce66477 3714 do {
f817ed48 3715 ret = -EBUSY;
c1e862c1
KH
3716 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3717 goto out;
3718 ret = -EINTR;
3719 if (signal_pending(current))
cc847582 3720 goto out;
52d4b9ac
KH
3721 /* This is for making all *used* pages to be on LRU. */
3722 lru_add_drain_all();
c0ff4b85 3723 drain_all_stock_sync(memcg);
f817ed48 3724 ret = 0;
c0ff4b85 3725 mem_cgroup_start_move(memcg);
299b4eaa 3726 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3727 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3728 enum lru_list lru;
3729 for_each_lru(lru) {
c0ff4b85 3730 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3731 node, zid, lru);
f817ed48
KH
3732 if (ret)
3733 break;
3734 }
1ecaab2b 3735 }
f817ed48
KH
3736 if (ret)
3737 break;
3738 }
c0ff4b85
R
3739 mem_cgroup_end_move(memcg);
3740 memcg_oom_recover(memcg);
f817ed48
KH
3741 /* it seems parent cgroup doesn't have enough mem */
3742 if (ret == -ENOMEM)
3743 goto try_to_free;
52d4b9ac 3744 cond_resched();
fce66477 3745 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3746 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3747out:
c0ff4b85 3748 css_put(&memcg->css);
cc847582 3749 return ret;
f817ed48
KH
3750
3751try_to_free:
c1e862c1
KH
3752 /* returns EBUSY if there is a task or if we come here twice. */
3753 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3754 ret = -EBUSY;
3755 goto out;
3756 }
c1e862c1
KH
3757 /* we call try-to-free pages for make this cgroup empty */
3758 lru_add_drain_all();
f817ed48
KH
3759 /* try to free all pages in this cgroup */
3760 shrink = 1;
569530fb 3761 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3762 int progress;
c1e862c1
KH
3763
3764 if (signal_pending(current)) {
3765 ret = -EINTR;
3766 goto out;
3767 }
c0ff4b85 3768 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3769 false);
c1e862c1 3770 if (!progress) {
f817ed48 3771 nr_retries--;
c1e862c1 3772 /* maybe some writeback is necessary */
8aa7e847 3773 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3774 }
f817ed48
KH
3775
3776 }
08e552c6 3777 lru_add_drain();
f817ed48 3778 /* try move_account...there may be some *locked* pages. */
fce66477 3779 goto move_account;
cc847582
KH
3780}
3781
6bbda35c 3782static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3783{
3784 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3785}
3786
3787
18f59ea7
BS
3788static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3789{
3790 return mem_cgroup_from_cont(cont)->use_hierarchy;
3791}
3792
3793static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3794 u64 val)
3795{
3796 int retval = 0;
c0ff4b85 3797 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3798 struct cgroup *parent = cont->parent;
c0ff4b85 3799 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3800
3801 if (parent)
c0ff4b85 3802 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3803
3804 cgroup_lock();
3805 /*
af901ca1 3806 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3807 * in the child subtrees. If it is unset, then the change can
3808 * occur, provided the current cgroup has no children.
3809 *
3810 * For the root cgroup, parent_mem is NULL, we allow value to be
3811 * set if there are no children.
3812 */
c0ff4b85 3813 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3814 (val == 1 || val == 0)) {
3815 if (list_empty(&cont->children))
c0ff4b85 3816 memcg->use_hierarchy = val;
18f59ea7
BS
3817 else
3818 retval = -EBUSY;
3819 } else
3820 retval = -EINVAL;
3821 cgroup_unlock();
3822
3823 return retval;
3824}
3825
0c3e73e8 3826
c0ff4b85 3827static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3828 enum mem_cgroup_stat_index idx)
0c3e73e8 3829{
7d74b06f 3830 struct mem_cgroup *iter;
7a159cc9 3831 long val = 0;
0c3e73e8 3832
7a159cc9 3833 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3834 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3835 val += mem_cgroup_read_stat(iter, idx);
3836
3837 if (val < 0) /* race ? */
3838 val = 0;
3839 return val;
0c3e73e8
BS
3840}
3841
c0ff4b85 3842static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3843{
7d74b06f 3844 u64 val;
104f3928 3845
c0ff4b85 3846 if (!mem_cgroup_is_root(memcg)) {
104f3928 3847 if (!swap)
65c64ce8 3848 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3849 else
65c64ce8 3850 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3851 }
3852
c0ff4b85
R
3853 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3854 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3855
7d74b06f 3856 if (swap)
c0ff4b85 3857 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3858
3859 return val << PAGE_SHIFT;
3860}
3861
af36f906
TH
3862static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3863 struct file *file, char __user *buf,
3864 size_t nbytes, loff_t *ppos)
8cdea7c0 3865{
c0ff4b85 3866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3867 char str[64];
104f3928 3868 u64 val;
af36f906 3869 int type, name, len;
8c7c6e34
KH
3870
3871 type = MEMFILE_TYPE(cft->private);
3872 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3873
3874 if (!do_swap_account && type == _MEMSWAP)
3875 return -EOPNOTSUPP;
3876
8c7c6e34
KH
3877 switch (type) {
3878 case _MEM:
104f3928 3879 if (name == RES_USAGE)
c0ff4b85 3880 val = mem_cgroup_usage(memcg, false);
104f3928 3881 else
c0ff4b85 3882 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3883 break;
3884 case _MEMSWAP:
104f3928 3885 if (name == RES_USAGE)
c0ff4b85 3886 val = mem_cgroup_usage(memcg, true);
104f3928 3887 else
c0ff4b85 3888 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3889 break;
3890 default:
3891 BUG();
8c7c6e34 3892 }
af36f906
TH
3893
3894 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3895 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3896}
628f4235
KH
3897/*
3898 * The user of this function is...
3899 * RES_LIMIT.
3900 */
856c13aa
PM
3901static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3902 const char *buffer)
8cdea7c0 3903{
628f4235 3904 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3905 int type, name;
628f4235
KH
3906 unsigned long long val;
3907 int ret;
3908
8c7c6e34
KH
3909 type = MEMFILE_TYPE(cft->private);
3910 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3911
3912 if (!do_swap_account && type == _MEMSWAP)
3913 return -EOPNOTSUPP;
3914
8c7c6e34 3915 switch (name) {
628f4235 3916 case RES_LIMIT:
4b3bde4c
BS
3917 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3918 ret = -EINVAL;
3919 break;
3920 }
628f4235
KH
3921 /* This function does all necessary parse...reuse it */
3922 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3923 if (ret)
3924 break;
3925 if (type == _MEM)
628f4235 3926 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3927 else
3928 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3929 break;
296c81d8
BS
3930 case RES_SOFT_LIMIT:
3931 ret = res_counter_memparse_write_strategy(buffer, &val);
3932 if (ret)
3933 break;
3934 /*
3935 * For memsw, soft limits are hard to implement in terms
3936 * of semantics, for now, we support soft limits for
3937 * control without swap
3938 */
3939 if (type == _MEM)
3940 ret = res_counter_set_soft_limit(&memcg->res, val);
3941 else
3942 ret = -EINVAL;
3943 break;
628f4235
KH
3944 default:
3945 ret = -EINVAL; /* should be BUG() ? */
3946 break;
3947 }
3948 return ret;
8cdea7c0
BS
3949}
3950
fee7b548
KH
3951static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3952 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3953{
3954 struct cgroup *cgroup;
3955 unsigned long long min_limit, min_memsw_limit, tmp;
3956
3957 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3958 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3959 cgroup = memcg->css.cgroup;
3960 if (!memcg->use_hierarchy)
3961 goto out;
3962
3963 while (cgroup->parent) {
3964 cgroup = cgroup->parent;
3965 memcg = mem_cgroup_from_cont(cgroup);
3966 if (!memcg->use_hierarchy)
3967 break;
3968 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3969 min_limit = min(min_limit, tmp);
3970 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3971 min_memsw_limit = min(min_memsw_limit, tmp);
3972 }
3973out:
3974 *mem_limit = min_limit;
3975 *memsw_limit = min_memsw_limit;
fee7b548
KH
3976}
3977
29f2a4da 3978static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3979{
af36f906 3980 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3981 int type, name;
c84872e1 3982
8c7c6e34
KH
3983 type = MEMFILE_TYPE(event);
3984 name = MEMFILE_ATTR(event);
af36f906
TH
3985
3986 if (!do_swap_account && type == _MEMSWAP)
3987 return -EOPNOTSUPP;
3988
8c7c6e34 3989 switch (name) {
29f2a4da 3990 case RES_MAX_USAGE:
8c7c6e34 3991 if (type == _MEM)
c0ff4b85 3992 res_counter_reset_max(&memcg->res);
8c7c6e34 3993 else
c0ff4b85 3994 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3995 break;
3996 case RES_FAILCNT:
8c7c6e34 3997 if (type == _MEM)
c0ff4b85 3998 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3999 else
c0ff4b85 4000 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4001 break;
4002 }
f64c3f54 4003
85cc59db 4004 return 0;
c84872e1
PE
4005}
4006
7dc74be0
DN
4007static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4008 struct cftype *cft)
4009{
4010 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4011}
4012
02491447 4013#ifdef CONFIG_MMU
7dc74be0
DN
4014static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4015 struct cftype *cft, u64 val)
4016{
c0ff4b85 4017 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4018
4019 if (val >= (1 << NR_MOVE_TYPE))
4020 return -EINVAL;
4021 /*
4022 * We check this value several times in both in can_attach() and
4023 * attach(), so we need cgroup lock to prevent this value from being
4024 * inconsistent.
4025 */
4026 cgroup_lock();
c0ff4b85 4027 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4028 cgroup_unlock();
4029
4030 return 0;
4031}
02491447
DN
4032#else
4033static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4034 struct cftype *cft, u64 val)
4035{
4036 return -ENOSYS;
4037}
4038#endif
7dc74be0 4039
14067bb3
KH
4040
4041/* For read statistics */
4042enum {
4043 MCS_CACHE,
4044 MCS_RSS,
d8046582 4045 MCS_FILE_MAPPED,
14067bb3
KH
4046 MCS_PGPGIN,
4047 MCS_PGPGOUT,
1dd3a273 4048 MCS_SWAP,
456f998e
YH
4049 MCS_PGFAULT,
4050 MCS_PGMAJFAULT,
14067bb3
KH
4051 MCS_INACTIVE_ANON,
4052 MCS_ACTIVE_ANON,
4053 MCS_INACTIVE_FILE,
4054 MCS_ACTIVE_FILE,
4055 MCS_UNEVICTABLE,
4056 NR_MCS_STAT,
4057};
4058
4059struct mcs_total_stat {
4060 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4061};
4062
6bbda35c 4063static struct {
14067bb3
KH
4064 char *local_name;
4065 char *total_name;
4066} memcg_stat_strings[NR_MCS_STAT] = {
4067 {"cache", "total_cache"},
4068 {"rss", "total_rss"},
d69b042f 4069 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4070 {"pgpgin", "total_pgpgin"},
4071 {"pgpgout", "total_pgpgout"},
1dd3a273 4072 {"swap", "total_swap"},
456f998e
YH
4073 {"pgfault", "total_pgfault"},
4074 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4075 {"inactive_anon", "total_inactive_anon"},
4076 {"active_anon", "total_active_anon"},
4077 {"inactive_file", "total_inactive_file"},
4078 {"active_file", "total_active_file"},
4079 {"unevictable", "total_unevictable"}
4080};
4081
4082
7d74b06f 4083static void
c0ff4b85 4084mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4085{
14067bb3
KH
4086 s64 val;
4087
4088 /* per cpu stat */
c0ff4b85 4089 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4090 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4091 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4092 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4093 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4094 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4095 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4096 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4097 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4098 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4099 if (do_swap_account) {
c0ff4b85 4100 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4101 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4102 }
c0ff4b85 4103 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4104 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4105 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4106 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4107
4108 /* per zone stat */
c0ff4b85 4109 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4110 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4111 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4112 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4114 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4115 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4116 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4117 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4118 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4119}
4120
4121static void
c0ff4b85 4122mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4123{
7d74b06f
KH
4124 struct mem_cgroup *iter;
4125
c0ff4b85 4126 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4127 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4128}
4129
406eb0c9 4130#ifdef CONFIG_NUMA
fada52ca
JW
4131static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4132 struct seq_file *m)
406eb0c9
YH
4133{
4134 int nid;
4135 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4136 unsigned long node_nr;
d79154bb 4137 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4138
d79154bb 4139 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4140 seq_printf(m, "total=%lu", total_nr);
4141 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4142 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4143 seq_printf(m, " N%d=%lu", nid, node_nr);
4144 }
4145 seq_putc(m, '\n');
4146
d79154bb 4147 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4148 seq_printf(m, "file=%lu", file_nr);
4149 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4150 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4151 LRU_ALL_FILE);
406eb0c9
YH
4152 seq_printf(m, " N%d=%lu", nid, node_nr);
4153 }
4154 seq_putc(m, '\n');
4155
d79154bb 4156 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4157 seq_printf(m, "anon=%lu", anon_nr);
4158 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4159 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4160 LRU_ALL_ANON);
406eb0c9
YH
4161 seq_printf(m, " N%d=%lu", nid, node_nr);
4162 }
4163 seq_putc(m, '\n');
4164
d79154bb 4165 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4166 seq_printf(m, "unevictable=%lu", unevictable_nr);
4167 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4168 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4169 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4170 seq_printf(m, " N%d=%lu", nid, node_nr);
4171 }
4172 seq_putc(m, '\n');
4173 return 0;
4174}
4175#endif /* CONFIG_NUMA */
4176
c64745cf
PM
4177static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4178 struct cgroup_map_cb *cb)
d2ceb9b7 4179{
d79154bb 4180 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4181 struct mcs_total_stat mystat;
d2ceb9b7
KH
4182 int i;
4183
14067bb3 4184 memset(&mystat, 0, sizeof(mystat));
d79154bb 4185 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4186
406eb0c9 4187
1dd3a273
DN
4188 for (i = 0; i < NR_MCS_STAT; i++) {
4189 if (i == MCS_SWAP && !do_swap_account)
4190 continue;
14067bb3 4191 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4192 }
7b854121 4193
14067bb3 4194 /* Hierarchical information */
fee7b548
KH
4195 {
4196 unsigned long long limit, memsw_limit;
d79154bb 4197 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4198 cb->fill(cb, "hierarchical_memory_limit", limit);
4199 if (do_swap_account)
4200 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4201 }
7f016ee8 4202
14067bb3 4203 memset(&mystat, 0, sizeof(mystat));
d79154bb 4204 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4205 for (i = 0; i < NR_MCS_STAT; i++) {
4206 if (i == MCS_SWAP && !do_swap_account)
4207 continue;
14067bb3 4208 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4209 }
14067bb3 4210
7f016ee8 4211#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4212 {
4213 int nid, zid;
4214 struct mem_cgroup_per_zone *mz;
89abfab1 4215 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4216 unsigned long recent_rotated[2] = {0, 0};
4217 unsigned long recent_scanned[2] = {0, 0};
4218
4219 for_each_online_node(nid)
4220 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4221 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4222 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4223
89abfab1
HD
4224 recent_rotated[0] += rstat->recent_rotated[0];
4225 recent_rotated[1] += rstat->recent_rotated[1];
4226 recent_scanned[0] += rstat->recent_scanned[0];
4227 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8
KM
4228 }
4229 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4230 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4231 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4232 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4233 }
4234#endif
4235
d2ceb9b7
KH
4236 return 0;
4237}
4238
a7885eb8
KM
4239static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4240{
4241 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4242
1f4c025b 4243 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4244}
4245
4246static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4247 u64 val)
4248{
4249 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4250 struct mem_cgroup *parent;
068b38c1 4251
a7885eb8
KM
4252 if (val > 100)
4253 return -EINVAL;
4254
4255 if (cgrp->parent == NULL)
4256 return -EINVAL;
4257
4258 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4259
4260 cgroup_lock();
4261
a7885eb8
KM
4262 /* If under hierarchy, only empty-root can set this value */
4263 if ((parent->use_hierarchy) ||
068b38c1
LZ
4264 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4265 cgroup_unlock();
a7885eb8 4266 return -EINVAL;
068b38c1 4267 }
a7885eb8 4268
a7885eb8 4269 memcg->swappiness = val;
a7885eb8 4270
068b38c1
LZ
4271 cgroup_unlock();
4272
a7885eb8
KM
4273 return 0;
4274}
4275
2e72b634
KS
4276static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4277{
4278 struct mem_cgroup_threshold_ary *t;
4279 u64 usage;
4280 int i;
4281
4282 rcu_read_lock();
4283 if (!swap)
2c488db2 4284 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4285 else
2c488db2 4286 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4287
4288 if (!t)
4289 goto unlock;
4290
4291 usage = mem_cgroup_usage(memcg, swap);
4292
4293 /*
748dad36 4294 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4295 * If it's not true, a threshold was crossed after last
4296 * call of __mem_cgroup_threshold().
4297 */
5407a562 4298 i = t->current_threshold;
2e72b634
KS
4299
4300 /*
4301 * Iterate backward over array of thresholds starting from
4302 * current_threshold and check if a threshold is crossed.
4303 * If none of thresholds below usage is crossed, we read
4304 * only one element of the array here.
4305 */
4306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4307 eventfd_signal(t->entries[i].eventfd, 1);
4308
4309 /* i = current_threshold + 1 */
4310 i++;
4311
4312 /*
4313 * Iterate forward over array of thresholds starting from
4314 * current_threshold+1 and check if a threshold is crossed.
4315 * If none of thresholds above usage is crossed, we read
4316 * only one element of the array here.
4317 */
4318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4319 eventfd_signal(t->entries[i].eventfd, 1);
4320
4321 /* Update current_threshold */
5407a562 4322 t->current_threshold = i - 1;
2e72b634
KS
4323unlock:
4324 rcu_read_unlock();
4325}
4326
4327static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4328{
ad4ca5f4
KS
4329 while (memcg) {
4330 __mem_cgroup_threshold(memcg, false);
4331 if (do_swap_account)
4332 __mem_cgroup_threshold(memcg, true);
4333
4334 memcg = parent_mem_cgroup(memcg);
4335 }
2e72b634
KS
4336}
4337
4338static int compare_thresholds(const void *a, const void *b)
4339{
4340 const struct mem_cgroup_threshold *_a = a;
4341 const struct mem_cgroup_threshold *_b = b;
4342
4343 return _a->threshold - _b->threshold;
4344}
4345
c0ff4b85 4346static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4347{
4348 struct mem_cgroup_eventfd_list *ev;
4349
c0ff4b85 4350 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4351 eventfd_signal(ev->eventfd, 1);
4352 return 0;
4353}
4354
c0ff4b85 4355static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4356{
7d74b06f
KH
4357 struct mem_cgroup *iter;
4358
c0ff4b85 4359 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4360 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4361}
4362
4363static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4364 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4365{
4366 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4367 struct mem_cgroup_thresholds *thresholds;
4368 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4369 int type = MEMFILE_TYPE(cft->private);
4370 u64 threshold, usage;
2c488db2 4371 int i, size, ret;
2e72b634
KS
4372
4373 ret = res_counter_memparse_write_strategy(args, &threshold);
4374 if (ret)
4375 return ret;
4376
4377 mutex_lock(&memcg->thresholds_lock);
2c488db2 4378
2e72b634 4379 if (type == _MEM)
2c488db2 4380 thresholds = &memcg->thresholds;
2e72b634 4381 else if (type == _MEMSWAP)
2c488db2 4382 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4383 else
4384 BUG();
4385
4386 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4387
4388 /* Check if a threshold crossed before adding a new one */
2c488db2 4389 if (thresholds->primary)
2e72b634
KS
4390 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4391
2c488db2 4392 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4393
4394 /* Allocate memory for new array of thresholds */
2c488db2 4395 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4396 GFP_KERNEL);
2c488db2 4397 if (!new) {
2e72b634
KS
4398 ret = -ENOMEM;
4399 goto unlock;
4400 }
2c488db2 4401 new->size = size;
2e72b634
KS
4402
4403 /* Copy thresholds (if any) to new array */
2c488db2
KS
4404 if (thresholds->primary) {
4405 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4406 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4407 }
4408
2e72b634 4409 /* Add new threshold */
2c488db2
KS
4410 new->entries[size - 1].eventfd = eventfd;
4411 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4412
4413 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4414 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4415 compare_thresholds, NULL);
4416
4417 /* Find current threshold */
2c488db2 4418 new->current_threshold = -1;
2e72b634 4419 for (i = 0; i < size; i++) {
748dad36 4420 if (new->entries[i].threshold <= usage) {
2e72b634 4421 /*
2c488db2
KS
4422 * new->current_threshold will not be used until
4423 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4424 * it here.
4425 */
2c488db2 4426 ++new->current_threshold;
748dad36
SZ
4427 } else
4428 break;
2e72b634
KS
4429 }
4430
2c488db2
KS
4431 /* Free old spare buffer and save old primary buffer as spare */
4432 kfree(thresholds->spare);
4433 thresholds->spare = thresholds->primary;
4434
4435 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4436
907860ed 4437 /* To be sure that nobody uses thresholds */
2e72b634
KS
4438 synchronize_rcu();
4439
2e72b634
KS
4440unlock:
4441 mutex_unlock(&memcg->thresholds_lock);
4442
4443 return ret;
4444}
4445
907860ed 4446static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4447 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4448{
4449 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4450 struct mem_cgroup_thresholds *thresholds;
4451 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4452 int type = MEMFILE_TYPE(cft->private);
4453 u64 usage;
2c488db2 4454 int i, j, size;
2e72b634
KS
4455
4456 mutex_lock(&memcg->thresholds_lock);
4457 if (type == _MEM)
2c488db2 4458 thresholds = &memcg->thresholds;
2e72b634 4459 else if (type == _MEMSWAP)
2c488db2 4460 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4461 else
4462 BUG();
4463
371528ca
AV
4464 if (!thresholds->primary)
4465 goto unlock;
4466
2e72b634
KS
4467 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4468
4469 /* Check if a threshold crossed before removing */
4470 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4471
4472 /* Calculate new number of threshold */
2c488db2
KS
4473 size = 0;
4474 for (i = 0; i < thresholds->primary->size; i++) {
4475 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4476 size++;
4477 }
4478
2c488db2 4479 new = thresholds->spare;
907860ed 4480
2e72b634
KS
4481 /* Set thresholds array to NULL if we don't have thresholds */
4482 if (!size) {
2c488db2
KS
4483 kfree(new);
4484 new = NULL;
907860ed 4485 goto swap_buffers;
2e72b634
KS
4486 }
4487
2c488db2 4488 new->size = size;
2e72b634
KS
4489
4490 /* Copy thresholds and find current threshold */
2c488db2
KS
4491 new->current_threshold = -1;
4492 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4493 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4494 continue;
4495
2c488db2 4496 new->entries[j] = thresholds->primary->entries[i];
748dad36 4497 if (new->entries[j].threshold <= usage) {
2e72b634 4498 /*
2c488db2 4499 * new->current_threshold will not be used
2e72b634
KS
4500 * until rcu_assign_pointer(), so it's safe to increment
4501 * it here.
4502 */
2c488db2 4503 ++new->current_threshold;
2e72b634
KS
4504 }
4505 j++;
4506 }
4507
907860ed 4508swap_buffers:
2c488db2
KS
4509 /* Swap primary and spare array */
4510 thresholds->spare = thresholds->primary;
8c757763
SZ
4511 /* If all events are unregistered, free the spare array */
4512 if (!new) {
4513 kfree(thresholds->spare);
4514 thresholds->spare = NULL;
4515 }
4516
2c488db2 4517 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4518
907860ed 4519 /* To be sure that nobody uses thresholds */
2e72b634 4520 synchronize_rcu();
371528ca 4521unlock:
2e72b634 4522 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4523}
c1e862c1 4524
9490ff27
KH
4525static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4526 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4527{
4528 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4529 struct mem_cgroup_eventfd_list *event;
4530 int type = MEMFILE_TYPE(cft->private);
4531
4532 BUG_ON(type != _OOM_TYPE);
4533 event = kmalloc(sizeof(*event), GFP_KERNEL);
4534 if (!event)
4535 return -ENOMEM;
4536
1af8efe9 4537 spin_lock(&memcg_oom_lock);
9490ff27
KH
4538
4539 event->eventfd = eventfd;
4540 list_add(&event->list, &memcg->oom_notify);
4541
4542 /* already in OOM ? */
79dfdacc 4543 if (atomic_read(&memcg->under_oom))
9490ff27 4544 eventfd_signal(eventfd, 1);
1af8efe9 4545 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4546
4547 return 0;
4548}
4549
907860ed 4550static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4551 struct cftype *cft, struct eventfd_ctx *eventfd)
4552{
c0ff4b85 4553 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4554 struct mem_cgroup_eventfd_list *ev, *tmp;
4555 int type = MEMFILE_TYPE(cft->private);
4556
4557 BUG_ON(type != _OOM_TYPE);
4558
1af8efe9 4559 spin_lock(&memcg_oom_lock);
9490ff27 4560
c0ff4b85 4561 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4562 if (ev->eventfd == eventfd) {
4563 list_del(&ev->list);
4564 kfree(ev);
4565 }
4566 }
4567
1af8efe9 4568 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4569}
4570
3c11ecf4
KH
4571static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4572 struct cftype *cft, struct cgroup_map_cb *cb)
4573{
c0ff4b85 4574 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4575
c0ff4b85 4576 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4577
c0ff4b85 4578 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4579 cb->fill(cb, "under_oom", 1);
4580 else
4581 cb->fill(cb, "under_oom", 0);
4582 return 0;
4583}
4584
3c11ecf4
KH
4585static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4586 struct cftype *cft, u64 val)
4587{
c0ff4b85 4588 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4589 struct mem_cgroup *parent;
4590
4591 /* cannot set to root cgroup and only 0 and 1 are allowed */
4592 if (!cgrp->parent || !((val == 0) || (val == 1)))
4593 return -EINVAL;
4594
4595 parent = mem_cgroup_from_cont(cgrp->parent);
4596
4597 cgroup_lock();
4598 /* oom-kill-disable is a flag for subhierarchy. */
4599 if ((parent->use_hierarchy) ||
c0ff4b85 4600 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4601 cgroup_unlock();
4602 return -EINVAL;
4603 }
c0ff4b85 4604 memcg->oom_kill_disable = val;
4d845ebf 4605 if (!val)
c0ff4b85 4606 memcg_oom_recover(memcg);
3c11ecf4
KH
4607 cgroup_unlock();
4608 return 0;
4609}
4610
e5671dfa 4611#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4612static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4613{
1d62e436 4614 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4615};
4616
1d62e436 4617static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4618{
1d62e436 4619 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4620}
e5671dfa 4621#else
cbe128e3 4622static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4623{
4624 return 0;
4625}
d1a4c0b3 4626
1d62e436 4627static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4628{
4629}
e5671dfa
GC
4630#endif
4631
8cdea7c0
BS
4632static struct cftype mem_cgroup_files[] = {
4633 {
0eea1030 4634 .name = "usage_in_bytes",
8c7c6e34 4635 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4636 .read = mem_cgroup_read,
9490ff27
KH
4637 .register_event = mem_cgroup_usage_register_event,
4638 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4639 },
c84872e1
PE
4640 {
4641 .name = "max_usage_in_bytes",
8c7c6e34 4642 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4643 .trigger = mem_cgroup_reset,
af36f906 4644 .read = mem_cgroup_read,
c84872e1 4645 },
8cdea7c0 4646 {
0eea1030 4647 .name = "limit_in_bytes",
8c7c6e34 4648 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4649 .write_string = mem_cgroup_write,
af36f906 4650 .read = mem_cgroup_read,
8cdea7c0 4651 },
296c81d8
BS
4652 {
4653 .name = "soft_limit_in_bytes",
4654 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4655 .write_string = mem_cgroup_write,
af36f906 4656 .read = mem_cgroup_read,
296c81d8 4657 },
8cdea7c0
BS
4658 {
4659 .name = "failcnt",
8c7c6e34 4660 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4661 .trigger = mem_cgroup_reset,
af36f906 4662 .read = mem_cgroup_read,
8cdea7c0 4663 },
d2ceb9b7
KH
4664 {
4665 .name = "stat",
c64745cf 4666 .read_map = mem_control_stat_show,
d2ceb9b7 4667 },
c1e862c1
KH
4668 {
4669 .name = "force_empty",
4670 .trigger = mem_cgroup_force_empty_write,
4671 },
18f59ea7
BS
4672 {
4673 .name = "use_hierarchy",
4674 .write_u64 = mem_cgroup_hierarchy_write,
4675 .read_u64 = mem_cgroup_hierarchy_read,
4676 },
a7885eb8
KM
4677 {
4678 .name = "swappiness",
4679 .read_u64 = mem_cgroup_swappiness_read,
4680 .write_u64 = mem_cgroup_swappiness_write,
4681 },
7dc74be0
DN
4682 {
4683 .name = "move_charge_at_immigrate",
4684 .read_u64 = mem_cgroup_move_charge_read,
4685 .write_u64 = mem_cgroup_move_charge_write,
4686 },
9490ff27
KH
4687 {
4688 .name = "oom_control",
3c11ecf4
KH
4689 .read_map = mem_cgroup_oom_control_read,
4690 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4691 .register_event = mem_cgroup_oom_register_event,
4692 .unregister_event = mem_cgroup_oom_unregister_event,
4693 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4694 },
406eb0c9
YH
4695#ifdef CONFIG_NUMA
4696 {
4697 .name = "numa_stat",
fada52ca 4698 .read_seq_string = mem_control_numa_stat_show,
406eb0c9
YH
4699 },
4700#endif
8c7c6e34 4701#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4702 {
4703 .name = "memsw.usage_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4705 .read = mem_cgroup_read,
9490ff27
KH
4706 .register_event = mem_cgroup_usage_register_event,
4707 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4708 },
4709 {
4710 .name = "memsw.max_usage_in_bytes",
4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4712 .trigger = mem_cgroup_reset,
af36f906 4713 .read = mem_cgroup_read,
8c7c6e34
KH
4714 },
4715 {
4716 .name = "memsw.limit_in_bytes",
4717 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4718 .write_string = mem_cgroup_write,
af36f906 4719 .read = mem_cgroup_read,
8c7c6e34
KH
4720 },
4721 {
4722 .name = "memsw.failcnt",
4723 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4724 .trigger = mem_cgroup_reset,
af36f906 4725 .read = mem_cgroup_read,
8c7c6e34 4726 },
8c7c6e34 4727#endif
6bc10349 4728 { }, /* terminate */
af36f906 4729};
8c7c6e34 4730
c0ff4b85 4731static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4732{
4733 struct mem_cgroup_per_node *pn;
1ecaab2b 4734 struct mem_cgroup_per_zone *mz;
41e3355d 4735 int zone, tmp = node;
1ecaab2b
KH
4736 /*
4737 * This routine is called against possible nodes.
4738 * But it's BUG to call kmalloc() against offline node.
4739 *
4740 * TODO: this routine can waste much memory for nodes which will
4741 * never be onlined. It's better to use memory hotplug callback
4742 * function.
4743 */
41e3355d
KH
4744 if (!node_state(node, N_NORMAL_MEMORY))
4745 tmp = -1;
17295c88 4746 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4747 if (!pn)
4748 return 1;
1ecaab2b 4749
1ecaab2b
KH
4750 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4751 mz = &pn->zoneinfo[zone];
7f5e86c2 4752 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4753 mz->usage_in_excess = 0;
4e416953 4754 mz->on_tree = false;
d79154bb 4755 mz->memcg = memcg;
1ecaab2b 4756 }
0a619e58 4757 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4758 return 0;
4759}
4760
c0ff4b85 4761static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4762{
c0ff4b85 4763 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4764}
4765
33327948
KH
4766static struct mem_cgroup *mem_cgroup_alloc(void)
4767{
d79154bb 4768 struct mem_cgroup *memcg;
c62b1a3b 4769 int size = sizeof(struct mem_cgroup);
33327948 4770
c62b1a3b 4771 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4772 if (size < PAGE_SIZE)
d79154bb 4773 memcg = kzalloc(size, GFP_KERNEL);
33327948 4774 else
d79154bb 4775 memcg = vzalloc(size);
33327948 4776
d79154bb 4777 if (!memcg)
e7bbcdf3
DC
4778 return NULL;
4779
d79154bb
HD
4780 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4781 if (!memcg->stat)
d2e61b8d 4782 goto out_free;
d79154bb
HD
4783 spin_lock_init(&memcg->pcp_counter_lock);
4784 return memcg;
d2e61b8d
DC
4785
4786out_free:
4787 if (size < PAGE_SIZE)
d79154bb 4788 kfree(memcg);
d2e61b8d 4789 else
d79154bb 4790 vfree(memcg);
d2e61b8d 4791 return NULL;
33327948
KH
4792}
4793
59927fb9
HD
4794/*
4795 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4796 * but in process context. The work_freeing structure is overlaid
4797 * on the rcu_freeing structure, which itself is overlaid on memsw.
4798 */
4799static void vfree_work(struct work_struct *work)
4800{
4801 struct mem_cgroup *memcg;
4802
4803 memcg = container_of(work, struct mem_cgroup, work_freeing);
4804 vfree(memcg);
4805}
4806static void vfree_rcu(struct rcu_head *rcu_head)
4807{
4808 struct mem_cgroup *memcg;
4809
4810 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4811 INIT_WORK(&memcg->work_freeing, vfree_work);
4812 schedule_work(&memcg->work_freeing);
4813}
4814
8c7c6e34
KH
4815/*
4816 * At destroying mem_cgroup, references from swap_cgroup can remain.
4817 * (scanning all at force_empty is too costly...)
4818 *
4819 * Instead of clearing all references at force_empty, we remember
4820 * the number of reference from swap_cgroup and free mem_cgroup when
4821 * it goes down to 0.
4822 *
8c7c6e34
KH
4823 * Removal of cgroup itself succeeds regardless of refs from swap.
4824 */
4825
c0ff4b85 4826static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4827{
08e552c6
KH
4828 int node;
4829
c0ff4b85
R
4830 mem_cgroup_remove_from_trees(memcg);
4831 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4832
3ed28fa1 4833 for_each_node(node)
c0ff4b85 4834 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4835
c0ff4b85 4836 free_percpu(memcg->stat);
c62b1a3b 4837 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4838 kfree_rcu(memcg, rcu_freeing);
33327948 4839 else
59927fb9 4840 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4841}
4842
c0ff4b85 4843static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4844{
c0ff4b85 4845 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4846}
4847
c0ff4b85 4848static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4849{
c0ff4b85
R
4850 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4851 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4852 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4853 if (parent)
4854 mem_cgroup_put(parent);
4855 }
8c7c6e34
KH
4856}
4857
c0ff4b85 4858static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4859{
c0ff4b85 4860 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4861}
4862
7bcc1bb1
DN
4863/*
4864 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4865 */
e1aab161 4866struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4867{
c0ff4b85 4868 if (!memcg->res.parent)
7bcc1bb1 4869 return NULL;
c0ff4b85 4870 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4871}
e1aab161 4872EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4873
c077719b
KH
4874#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4875static void __init enable_swap_cgroup(void)
4876{
f8d66542 4877 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4878 do_swap_account = 1;
4879}
4880#else
4881static void __init enable_swap_cgroup(void)
4882{
4883}
4884#endif
4885
f64c3f54
BS
4886static int mem_cgroup_soft_limit_tree_init(void)
4887{
4888 struct mem_cgroup_tree_per_node *rtpn;
4889 struct mem_cgroup_tree_per_zone *rtpz;
4890 int tmp, node, zone;
4891
3ed28fa1 4892 for_each_node(node) {
f64c3f54
BS
4893 tmp = node;
4894 if (!node_state(node, N_NORMAL_MEMORY))
4895 tmp = -1;
4896 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4897 if (!rtpn)
c3cecc68 4898 goto err_cleanup;
f64c3f54
BS
4899
4900 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4901
4902 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4903 rtpz = &rtpn->rb_tree_per_zone[zone];
4904 rtpz->rb_root = RB_ROOT;
4905 spin_lock_init(&rtpz->lock);
4906 }
4907 }
4908 return 0;
c3cecc68
MH
4909
4910err_cleanup:
3ed28fa1 4911 for_each_node(node) {
c3cecc68
MH
4912 if (!soft_limit_tree.rb_tree_per_node[node])
4913 break;
4914 kfree(soft_limit_tree.rb_tree_per_node[node]);
4915 soft_limit_tree.rb_tree_per_node[node] = NULL;
4916 }
4917 return 1;
4918
f64c3f54
BS
4919}
4920
0eb253e2 4921static struct cgroup_subsys_state * __ref
761b3ef5 4922mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4923{
c0ff4b85 4924 struct mem_cgroup *memcg, *parent;
04046e1a 4925 long error = -ENOMEM;
6d12e2d8 4926 int node;
8cdea7c0 4927
c0ff4b85
R
4928 memcg = mem_cgroup_alloc();
4929 if (!memcg)
04046e1a 4930 return ERR_PTR(error);
78fb7466 4931
3ed28fa1 4932 for_each_node(node)
c0ff4b85 4933 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4934 goto free_out;
f64c3f54 4935
c077719b 4936 /* root ? */
28dbc4b6 4937 if (cont->parent == NULL) {
cdec2e42 4938 int cpu;
c077719b 4939 enable_swap_cgroup();
28dbc4b6 4940 parent = NULL;
f64c3f54
BS
4941 if (mem_cgroup_soft_limit_tree_init())
4942 goto free_out;
a41c58a6 4943 root_mem_cgroup = memcg;
cdec2e42
KH
4944 for_each_possible_cpu(cpu) {
4945 struct memcg_stock_pcp *stock =
4946 &per_cpu(memcg_stock, cpu);
4947 INIT_WORK(&stock->work, drain_local_stock);
4948 }
711d3d2c 4949 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4950 } else {
28dbc4b6 4951 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4952 memcg->use_hierarchy = parent->use_hierarchy;
4953 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4954 }
28dbc4b6 4955
18f59ea7 4956 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4957 res_counter_init(&memcg->res, &parent->res);
4958 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4959 /*
4960 * We increment refcnt of the parent to ensure that we can
4961 * safely access it on res_counter_charge/uncharge.
4962 * This refcnt will be decremented when freeing this
4963 * mem_cgroup(see mem_cgroup_put).
4964 */
4965 mem_cgroup_get(parent);
18f59ea7 4966 } else {
c0ff4b85
R
4967 res_counter_init(&memcg->res, NULL);
4968 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4969 }
c0ff4b85
R
4970 memcg->last_scanned_node = MAX_NUMNODES;
4971 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4972
a7885eb8 4973 if (parent)
c0ff4b85
R
4974 memcg->swappiness = mem_cgroup_swappiness(parent);
4975 atomic_set(&memcg->refcnt, 1);
4976 memcg->move_charge_at_immigrate = 0;
4977 mutex_init(&memcg->thresholds_lock);
312734c0 4978 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4979
4980 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4981 if (error) {
4982 /*
4983 * We call put now because our (and parent's) refcnts
4984 * are already in place. mem_cgroup_put() will internally
4985 * call __mem_cgroup_free, so return directly
4986 */
4987 mem_cgroup_put(memcg);
4988 return ERR_PTR(error);
4989 }
c0ff4b85 4990 return &memcg->css;
6d12e2d8 4991free_out:
c0ff4b85 4992 __mem_cgroup_free(memcg);
04046e1a 4993 return ERR_PTR(error);
8cdea7c0
BS
4994}
4995
761b3ef5 4996static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4997{
c0ff4b85 4998 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4999
c0ff4b85 5000 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5001}
5002
761b3ef5 5003static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5004{
c0ff4b85 5005 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5006
1d62e436 5007 kmem_cgroup_destroy(memcg);
d1a4c0b3 5008
c0ff4b85 5009 mem_cgroup_put(memcg);
8cdea7c0
BS
5010}
5011
02491447 5012#ifdef CONFIG_MMU
7dc74be0 5013/* Handlers for move charge at task migration. */
854ffa8d
DN
5014#define PRECHARGE_COUNT_AT_ONCE 256
5015static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5016{
854ffa8d
DN
5017 int ret = 0;
5018 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5019 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5020
c0ff4b85 5021 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5022 mc.precharge += count;
5023 /* we don't need css_get for root */
5024 return ret;
5025 }
5026 /* try to charge at once */
5027 if (count > 1) {
5028 struct res_counter *dummy;
5029 /*
c0ff4b85 5030 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5031 * by cgroup_lock_live_cgroup() that it is not removed and we
5032 * are still under the same cgroup_mutex. So we can postpone
5033 * css_get().
5034 */
c0ff4b85 5035 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5036 goto one_by_one;
c0ff4b85 5037 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5038 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5039 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5040 goto one_by_one;
5041 }
5042 mc.precharge += count;
854ffa8d
DN
5043 return ret;
5044 }
5045one_by_one:
5046 /* fall back to one by one charge */
5047 while (count--) {
5048 if (signal_pending(current)) {
5049 ret = -EINTR;
5050 break;
5051 }
5052 if (!batch_count--) {
5053 batch_count = PRECHARGE_COUNT_AT_ONCE;
5054 cond_resched();
5055 }
c0ff4b85
R
5056 ret = __mem_cgroup_try_charge(NULL,
5057 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5058 if (ret)
854ffa8d 5059 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5060 return ret;
854ffa8d
DN
5061 mc.precharge++;
5062 }
4ffef5fe
DN
5063 return ret;
5064}
5065
5066/**
8d32ff84 5067 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5068 * @vma: the vma the pte to be checked belongs
5069 * @addr: the address corresponding to the pte to be checked
5070 * @ptent: the pte to be checked
02491447 5071 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5072 *
5073 * Returns
5074 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5075 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5076 * move charge. if @target is not NULL, the page is stored in target->page
5077 * with extra refcnt got(Callers should handle it).
02491447
DN
5078 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5079 * target for charge migration. if @target is not NULL, the entry is stored
5080 * in target->ent.
4ffef5fe
DN
5081 *
5082 * Called with pte lock held.
5083 */
4ffef5fe
DN
5084union mc_target {
5085 struct page *page;
02491447 5086 swp_entry_t ent;
4ffef5fe
DN
5087};
5088
4ffef5fe 5089enum mc_target_type {
8d32ff84 5090 MC_TARGET_NONE = 0,
4ffef5fe 5091 MC_TARGET_PAGE,
02491447 5092 MC_TARGET_SWAP,
4ffef5fe
DN
5093};
5094
90254a65
DN
5095static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5096 unsigned long addr, pte_t ptent)
4ffef5fe 5097{
90254a65 5098 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5099
90254a65
DN
5100 if (!page || !page_mapped(page))
5101 return NULL;
5102 if (PageAnon(page)) {
5103 /* we don't move shared anon */
4b91355e 5104 if (!move_anon())
90254a65 5105 return NULL;
87946a72
DN
5106 } else if (!move_file())
5107 /* we ignore mapcount for file pages */
90254a65
DN
5108 return NULL;
5109 if (!get_page_unless_zero(page))
5110 return NULL;
5111
5112 return page;
5113}
5114
4b91355e 5115#ifdef CONFIG_SWAP
90254a65
DN
5116static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5117 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5118{
90254a65
DN
5119 struct page *page = NULL;
5120 swp_entry_t ent = pte_to_swp_entry(ptent);
5121
5122 if (!move_anon() || non_swap_entry(ent))
5123 return NULL;
4b91355e
KH
5124 /*
5125 * Because lookup_swap_cache() updates some statistics counter,
5126 * we call find_get_page() with swapper_space directly.
5127 */
5128 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5129 if (do_swap_account)
5130 entry->val = ent.val;
5131
5132 return page;
5133}
4b91355e
KH
5134#else
5135static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5136 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5137{
5138 return NULL;
5139}
5140#endif
90254a65 5141
87946a72
DN
5142static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5143 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144{
5145 struct page *page = NULL;
87946a72
DN
5146 struct address_space *mapping;
5147 pgoff_t pgoff;
5148
5149 if (!vma->vm_file) /* anonymous vma */
5150 return NULL;
5151 if (!move_file())
5152 return NULL;
5153
87946a72
DN
5154 mapping = vma->vm_file->f_mapping;
5155 if (pte_none(ptent))
5156 pgoff = linear_page_index(vma, addr);
5157 else /* pte_file(ptent) is true */
5158 pgoff = pte_to_pgoff(ptent);
5159
5160 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5161 page = find_get_page(mapping, pgoff);
5162
5163#ifdef CONFIG_SWAP
5164 /* shmem/tmpfs may report page out on swap: account for that too. */
5165 if (radix_tree_exceptional_entry(page)) {
5166 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5167 if (do_swap_account)
aa3b1895
HD
5168 *entry = swap;
5169 page = find_get_page(&swapper_space, swap.val);
87946a72 5170 }
aa3b1895 5171#endif
87946a72
DN
5172 return page;
5173}
5174
8d32ff84 5175static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5176 unsigned long addr, pte_t ptent, union mc_target *target)
5177{
5178 struct page *page = NULL;
5179 struct page_cgroup *pc;
8d32ff84 5180 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5181 swp_entry_t ent = { .val = 0 };
5182
5183 if (pte_present(ptent))
5184 page = mc_handle_present_pte(vma, addr, ptent);
5185 else if (is_swap_pte(ptent))
5186 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5187 else if (pte_none(ptent) || pte_file(ptent))
5188 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5189
5190 if (!page && !ent.val)
8d32ff84 5191 return ret;
02491447
DN
5192 if (page) {
5193 pc = lookup_page_cgroup(page);
5194 /*
5195 * Do only loose check w/o page_cgroup lock.
5196 * mem_cgroup_move_account() checks the pc is valid or not under
5197 * the lock.
5198 */
5199 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5200 ret = MC_TARGET_PAGE;
5201 if (target)
5202 target->page = page;
5203 }
5204 if (!ret || !target)
5205 put_page(page);
5206 }
90254a65
DN
5207 /* There is a swap entry and a page doesn't exist or isn't charged */
5208 if (ent.val && !ret &&
9fb4b7cc 5209 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5210 ret = MC_TARGET_SWAP;
5211 if (target)
5212 target->ent = ent;
4ffef5fe 5213 }
4ffef5fe
DN
5214 return ret;
5215}
5216
12724850
NH
5217#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5218/*
5219 * We don't consider swapping or file mapped pages because THP does not
5220 * support them for now.
5221 * Caller should make sure that pmd_trans_huge(pmd) is true.
5222 */
5223static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5224 unsigned long addr, pmd_t pmd, union mc_target *target)
5225{
5226 struct page *page = NULL;
5227 struct page_cgroup *pc;
5228 enum mc_target_type ret = MC_TARGET_NONE;
5229
5230 page = pmd_page(pmd);
5231 VM_BUG_ON(!page || !PageHead(page));
5232 if (!move_anon())
5233 return ret;
5234 pc = lookup_page_cgroup(page);
5235 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5236 ret = MC_TARGET_PAGE;
5237 if (target) {
5238 get_page(page);
5239 target->page = page;
5240 }
5241 }
5242 return ret;
5243}
5244#else
5245static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5246 unsigned long addr, pmd_t pmd, union mc_target *target)
5247{
5248 return MC_TARGET_NONE;
5249}
5250#endif
5251
4ffef5fe
DN
5252static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5253 unsigned long addr, unsigned long end,
5254 struct mm_walk *walk)
5255{
5256 struct vm_area_struct *vma = walk->private;
5257 pte_t *pte;
5258 spinlock_t *ptl;
5259
12724850
NH
5260 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5261 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5262 mc.precharge += HPAGE_PMD_NR;
5263 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5264 return 0;
12724850 5265 }
03319327 5266
45f83cef
AA
5267 if (pmd_trans_unstable(pmd))
5268 return 0;
4ffef5fe
DN
5269 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5270 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5271 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5272 mc.precharge++; /* increment precharge temporarily */
5273 pte_unmap_unlock(pte - 1, ptl);
5274 cond_resched();
5275
7dc74be0
DN
5276 return 0;
5277}
5278
4ffef5fe
DN
5279static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5280{
5281 unsigned long precharge;
5282 struct vm_area_struct *vma;
5283
dfe076b0 5284 down_read(&mm->mmap_sem);
4ffef5fe
DN
5285 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5286 struct mm_walk mem_cgroup_count_precharge_walk = {
5287 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5288 .mm = mm,
5289 .private = vma,
5290 };
5291 if (is_vm_hugetlb_page(vma))
5292 continue;
4ffef5fe
DN
5293 walk_page_range(vma->vm_start, vma->vm_end,
5294 &mem_cgroup_count_precharge_walk);
5295 }
dfe076b0 5296 up_read(&mm->mmap_sem);
4ffef5fe
DN
5297
5298 precharge = mc.precharge;
5299 mc.precharge = 0;
5300
5301 return precharge;
5302}
5303
4ffef5fe
DN
5304static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5305{
dfe076b0
DN
5306 unsigned long precharge = mem_cgroup_count_precharge(mm);
5307
5308 VM_BUG_ON(mc.moving_task);
5309 mc.moving_task = current;
5310 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5311}
5312
dfe076b0
DN
5313/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5314static void __mem_cgroup_clear_mc(void)
4ffef5fe 5315{
2bd9bb20
KH
5316 struct mem_cgroup *from = mc.from;
5317 struct mem_cgroup *to = mc.to;
5318
4ffef5fe 5319 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5320 if (mc.precharge) {
5321 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5322 mc.precharge = 0;
5323 }
5324 /*
5325 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5326 * we must uncharge here.
5327 */
5328 if (mc.moved_charge) {
5329 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5330 mc.moved_charge = 0;
4ffef5fe 5331 }
483c30b5
DN
5332 /* we must fixup refcnts and charges */
5333 if (mc.moved_swap) {
483c30b5
DN
5334 /* uncharge swap account from the old cgroup */
5335 if (!mem_cgroup_is_root(mc.from))
5336 res_counter_uncharge(&mc.from->memsw,
5337 PAGE_SIZE * mc.moved_swap);
5338 __mem_cgroup_put(mc.from, mc.moved_swap);
5339
5340 if (!mem_cgroup_is_root(mc.to)) {
5341 /*
5342 * we charged both to->res and to->memsw, so we should
5343 * uncharge to->res.
5344 */
5345 res_counter_uncharge(&mc.to->res,
5346 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5347 }
5348 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5349 mc.moved_swap = 0;
5350 }
dfe076b0
DN
5351 memcg_oom_recover(from);
5352 memcg_oom_recover(to);
5353 wake_up_all(&mc.waitq);
5354}
5355
5356static void mem_cgroup_clear_mc(void)
5357{
5358 struct mem_cgroup *from = mc.from;
5359
5360 /*
5361 * we must clear moving_task before waking up waiters at the end of
5362 * task migration.
5363 */
5364 mc.moving_task = NULL;
5365 __mem_cgroup_clear_mc();
2bd9bb20 5366 spin_lock(&mc.lock);
4ffef5fe
DN
5367 mc.from = NULL;
5368 mc.to = NULL;
2bd9bb20 5369 spin_unlock(&mc.lock);
32047e2a 5370 mem_cgroup_end_move(from);
4ffef5fe
DN
5371}
5372
761b3ef5
LZ
5373static int mem_cgroup_can_attach(struct cgroup *cgroup,
5374 struct cgroup_taskset *tset)
7dc74be0 5375{
2f7ee569 5376 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5377 int ret = 0;
c0ff4b85 5378 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5379
c0ff4b85 5380 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5381 struct mm_struct *mm;
5382 struct mem_cgroup *from = mem_cgroup_from_task(p);
5383
c0ff4b85 5384 VM_BUG_ON(from == memcg);
7dc74be0
DN
5385
5386 mm = get_task_mm(p);
5387 if (!mm)
5388 return 0;
7dc74be0 5389 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5390 if (mm->owner == p) {
5391 VM_BUG_ON(mc.from);
5392 VM_BUG_ON(mc.to);
5393 VM_BUG_ON(mc.precharge);
854ffa8d 5394 VM_BUG_ON(mc.moved_charge);
483c30b5 5395 VM_BUG_ON(mc.moved_swap);
32047e2a 5396 mem_cgroup_start_move(from);
2bd9bb20 5397 spin_lock(&mc.lock);
4ffef5fe 5398 mc.from = from;
c0ff4b85 5399 mc.to = memcg;
2bd9bb20 5400 spin_unlock(&mc.lock);
dfe076b0 5401 /* We set mc.moving_task later */
4ffef5fe
DN
5402
5403 ret = mem_cgroup_precharge_mc(mm);
5404 if (ret)
5405 mem_cgroup_clear_mc();
dfe076b0
DN
5406 }
5407 mmput(mm);
7dc74be0
DN
5408 }
5409 return ret;
5410}
5411
761b3ef5
LZ
5412static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5413 struct cgroup_taskset *tset)
7dc74be0 5414{
4ffef5fe 5415 mem_cgroup_clear_mc();
7dc74be0
DN
5416}
5417
4ffef5fe
DN
5418static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5419 unsigned long addr, unsigned long end,
5420 struct mm_walk *walk)
7dc74be0 5421{
4ffef5fe
DN
5422 int ret = 0;
5423 struct vm_area_struct *vma = walk->private;
5424 pte_t *pte;
5425 spinlock_t *ptl;
12724850
NH
5426 enum mc_target_type target_type;
5427 union mc_target target;
5428 struct page *page;
5429 struct page_cgroup *pc;
4ffef5fe 5430
12724850
NH
5431 /*
5432 * We don't take compound_lock() here but no race with splitting thp
5433 * happens because:
5434 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5435 * under splitting, which means there's no concurrent thp split,
5436 * - if another thread runs into split_huge_page() just after we
5437 * entered this if-block, the thread must wait for page table lock
5438 * to be unlocked in __split_huge_page_splitting(), where the main
5439 * part of thp split is not executed yet.
5440 */
5441 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5442 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5443 spin_unlock(&vma->vm_mm->page_table_lock);
5444 return 0;
5445 }
5446 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5447 if (target_type == MC_TARGET_PAGE) {
5448 page = target.page;
5449 if (!isolate_lru_page(page)) {
5450 pc = lookup_page_cgroup(page);
5451 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5452 pc, mc.from, mc.to)) {
12724850
NH
5453 mc.precharge -= HPAGE_PMD_NR;
5454 mc.moved_charge += HPAGE_PMD_NR;
5455 }
5456 putback_lru_page(page);
5457 }
5458 put_page(page);
5459 }
5460 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5461 return 0;
12724850
NH
5462 }
5463
45f83cef
AA
5464 if (pmd_trans_unstable(pmd))
5465 return 0;
4ffef5fe
DN
5466retry:
5467 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5468 for (; addr != end; addr += PAGE_SIZE) {
5469 pte_t ptent = *(pte++);
02491447 5470 swp_entry_t ent;
4ffef5fe
DN
5471
5472 if (!mc.precharge)
5473 break;
5474
8d32ff84 5475 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5476 case MC_TARGET_PAGE:
5477 page = target.page;
5478 if (isolate_lru_page(page))
5479 goto put;
5480 pc = lookup_page_cgroup(page);
7ec99d62 5481 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5482 mc.from, mc.to)) {
4ffef5fe 5483 mc.precharge--;
854ffa8d
DN
5484 /* we uncharge from mc.from later. */
5485 mc.moved_charge++;
4ffef5fe
DN
5486 }
5487 putback_lru_page(page);
8d32ff84 5488put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5489 put_page(page);
5490 break;
02491447
DN
5491 case MC_TARGET_SWAP:
5492 ent = target.ent;
e91cbb42 5493 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5494 mc.precharge--;
483c30b5
DN
5495 /* we fixup refcnts and charges later. */
5496 mc.moved_swap++;
5497 }
02491447 5498 break;
4ffef5fe
DN
5499 default:
5500 break;
5501 }
5502 }
5503 pte_unmap_unlock(pte - 1, ptl);
5504 cond_resched();
5505
5506 if (addr != end) {
5507 /*
5508 * We have consumed all precharges we got in can_attach().
5509 * We try charge one by one, but don't do any additional
5510 * charges to mc.to if we have failed in charge once in attach()
5511 * phase.
5512 */
854ffa8d 5513 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5514 if (!ret)
5515 goto retry;
5516 }
5517
5518 return ret;
5519}
5520
5521static void mem_cgroup_move_charge(struct mm_struct *mm)
5522{
5523 struct vm_area_struct *vma;
5524
5525 lru_add_drain_all();
dfe076b0
DN
5526retry:
5527 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5528 /*
5529 * Someone who are holding the mmap_sem might be waiting in
5530 * waitq. So we cancel all extra charges, wake up all waiters,
5531 * and retry. Because we cancel precharges, we might not be able
5532 * to move enough charges, but moving charge is a best-effort
5533 * feature anyway, so it wouldn't be a big problem.
5534 */
5535 __mem_cgroup_clear_mc();
5536 cond_resched();
5537 goto retry;
5538 }
4ffef5fe
DN
5539 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5540 int ret;
5541 struct mm_walk mem_cgroup_move_charge_walk = {
5542 .pmd_entry = mem_cgroup_move_charge_pte_range,
5543 .mm = mm,
5544 .private = vma,
5545 };
5546 if (is_vm_hugetlb_page(vma))
5547 continue;
4ffef5fe
DN
5548 ret = walk_page_range(vma->vm_start, vma->vm_end,
5549 &mem_cgroup_move_charge_walk);
5550 if (ret)
5551 /*
5552 * means we have consumed all precharges and failed in
5553 * doing additional charge. Just abandon here.
5554 */
5555 break;
5556 }
dfe076b0 5557 up_read(&mm->mmap_sem);
7dc74be0
DN
5558}
5559
761b3ef5
LZ
5560static void mem_cgroup_move_task(struct cgroup *cont,
5561 struct cgroup_taskset *tset)
67e465a7 5562{
2f7ee569 5563 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5564 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5565
dfe076b0 5566 if (mm) {
a433658c
KM
5567 if (mc.to)
5568 mem_cgroup_move_charge(mm);
dfe076b0
DN
5569 mmput(mm);
5570 }
a433658c
KM
5571 if (mc.to)
5572 mem_cgroup_clear_mc();
67e465a7 5573}
5cfb80a7 5574#else /* !CONFIG_MMU */
761b3ef5
LZ
5575static int mem_cgroup_can_attach(struct cgroup *cgroup,
5576 struct cgroup_taskset *tset)
5cfb80a7
DN
5577{
5578 return 0;
5579}
761b3ef5
LZ
5580static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5581 struct cgroup_taskset *tset)
5cfb80a7
DN
5582{
5583}
761b3ef5
LZ
5584static void mem_cgroup_move_task(struct cgroup *cont,
5585 struct cgroup_taskset *tset)
5cfb80a7
DN
5586{
5587}
5588#endif
67e465a7 5589
8cdea7c0
BS
5590struct cgroup_subsys mem_cgroup_subsys = {
5591 .name = "memory",
5592 .subsys_id = mem_cgroup_subsys_id,
5593 .create = mem_cgroup_create,
df878fb0 5594 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5595 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5596 .can_attach = mem_cgroup_can_attach,
5597 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5598 .attach = mem_cgroup_move_task,
6bc10349 5599 .base_cftypes = mem_cgroup_files,
6d12e2d8 5600 .early_init = 0,
04046e1a 5601 .use_id = 1,
48ddbe19 5602 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5603};
c077719b
KH
5604
5605#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5606static int __init enable_swap_account(char *s)
5607{
5608 /* consider enabled if no parameter or 1 is given */
a2c8990a 5609 if (!strcmp(s, "1"))
a42c390c 5610 really_do_swap_account = 1;
a2c8990a 5611 else if (!strcmp(s, "0"))
a42c390c
MH
5612 really_do_swap_account = 0;
5613 return 1;
5614}
a2c8990a 5615__setup("swapaccount=", enable_swap_account);
c077719b 5616
c077719b 5617#endif