]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory-failure.c
HID: wacom: fixup quirks setup for WACOM_DEVICETYPE_PAD
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c 45#include <linux/rmap.h>
b9e15baf 46#include <linux/export.h>
6a46079c
AK
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
facb6011
AK
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
7329bbeb
TL
181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
187 printk(KERN_ERR
7329bbeb 188 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
189 pfn, t->comm, t->pid);
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
6a46079c
AK
192 si.si_addr = (void *)addr;
193#ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195#endif
f9121153 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 197
a70ffcac 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 199 si.si_code = BUS_MCEERR_AR;
a70ffcac 200 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
6a46079c
AK
211 if (ret < 0)
212 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
213 t->comm, t->pid, ret);
214 return ret;
215}
216
588f9ce6
AK
217/*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
facb6011 221void shake_page(struct page *p, int access)
588f9ce6
AK
222{
223 if (!PageSlab(p)) {
224 lru_add_drain_all();
225 if (PageLRU(p))
226 return;
c0554329 227 drain_all_pages(page_zone(p));
588f9ce6
AK
228 if (PageLRU(p) || is_free_buddy_page(p))
229 return;
230 }
facb6011 231
588f9ce6 232 /*
6b4f7799
JW
233 * Only call shrink_node_slabs here (which would also shrink
234 * other caches) if access is not potentially fatal.
588f9ce6 235 */
cb731d6c
VD
236 if (access)
237 drop_slab_node(page_to_nid(p));
588f9ce6
AK
238}
239EXPORT_SYMBOL_GPL(shake_page);
240
6a46079c
AK
241/*
242 * Kill all processes that have a poisoned page mapped and then isolate
243 * the page.
244 *
245 * General strategy:
246 * Find all processes having the page mapped and kill them.
247 * But we keep a page reference around so that the page is not
248 * actually freed yet.
249 * Then stash the page away
250 *
251 * There's no convenient way to get back to mapped processes
252 * from the VMAs. So do a brute-force search over all
253 * running processes.
254 *
255 * Remember that machine checks are not common (or rather
256 * if they are common you have other problems), so this shouldn't
257 * be a performance issue.
258 *
259 * Also there are some races possible while we get from the
260 * error detection to actually handle it.
261 */
262
263struct to_kill {
264 struct list_head nd;
265 struct task_struct *tsk;
266 unsigned long addr;
9033ae16 267 char addr_valid;
6a46079c
AK
268};
269
270/*
271 * Failure handling: if we can't find or can't kill a process there's
272 * not much we can do. We just print a message and ignore otherwise.
273 */
274
275/*
276 * Schedule a process for later kill.
277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278 * TBD would GFP_NOIO be enough?
279 */
280static void add_to_kill(struct task_struct *tsk, struct page *p,
281 struct vm_area_struct *vma,
282 struct list_head *to_kill,
283 struct to_kill **tkc)
284{
285 struct to_kill *tk;
286
287 if (*tkc) {
288 tk = *tkc;
289 *tkc = NULL;
290 } else {
291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 if (!tk) {
293 printk(KERN_ERR
294 "MCE: Out of memory while machine check handling\n");
295 return;
296 }
297 }
298 tk->addr = page_address_in_vma(p, vma);
299 tk->addr_valid = 1;
300
301 /*
302 * In theory we don't have to kill when the page was
303 * munmaped. But it could be also a mremap. Since that's
304 * likely very rare kill anyways just out of paranoia, but use
305 * a SIGKILL because the error is not contained anymore.
306 */
307 if (tk->addr == -EFAULT) {
fb46e735 308 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
309 page_to_pfn(p), tsk->comm);
310 tk->addr_valid = 0;
311 }
312 get_task_struct(tsk);
313 tk->tsk = tsk;
314 list_add_tail(&tk->nd, to_kill);
315}
316
317/*
318 * Kill the processes that have been collected earlier.
319 *
320 * Only do anything when DOIT is set, otherwise just free the list
321 * (this is used for clean pages which do not need killing)
322 * Also when FAIL is set do a force kill because something went
323 * wrong earlier.
324 */
6751ed65 325static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
326 int fail, struct page *page, unsigned long pfn,
327 int flags)
6a46079c
AK
328{
329 struct to_kill *tk, *next;
330
331 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 332 if (forcekill) {
6a46079c 333 /*
af901ca1 334 * In case something went wrong with munmapping
6a46079c
AK
335 * make sure the process doesn't catch the
336 * signal and then access the memory. Just kill it.
6a46079c
AK
337 */
338 if (fail || tk->addr_valid == 0) {
339 printk(KERN_ERR
340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
7329bbeb
TL
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
6a46079c
AK
353 printk(KERN_ERR
354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360}
361
3ba08129
NH
362/*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 371{
3ba08129
NH
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378}
379
380/*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388{
389 struct task_struct *t;
6a46079c 390 if (!tsk->mm)
3ba08129 391 return NULL;
74614de1 392 if (force_early)
3ba08129
NH
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
6a46079c
AK
400}
401
402/*
403 * Collect processes when the error hit an anonymous page.
404 */
405static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 406 struct to_kill **tkc, int force_early)
6a46079c
AK
407{
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
bf181b9f 411 pgoff_t pgoff;
6a46079c 412
4fc3f1d6 413 av = page_lock_anon_vma_read(page);
6a46079c 414 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
415 return;
416
a0f7a756 417 pgoff = page_to_pgoff(page);
9b679320 418 read_lock(&tasklist_lock);
6a46079c 419 for_each_process (tsk) {
5beb4930 420 struct anon_vma_chain *vmac;
3ba08129 421 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 422
3ba08129 423 if (!t)
6a46079c 424 continue;
bf181b9f
ML
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
5beb4930 427 vma = vmac->vma;
6a46079c
AK
428 if (!page_mapped_in_vma(page, vma))
429 continue;
3ba08129
NH
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
432 }
433 }
6a46079c 434 read_unlock(&tasklist_lock);
4fc3f1d6 435 page_unlock_anon_vma_read(av);
6a46079c
AK
436}
437
438/*
439 * Collect processes when the error hit a file mapped page.
440 */
441static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 442 struct to_kill **tkc, int force_early)
6a46079c
AK
443{
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
6a46079c
AK
446 struct address_space *mapping = page->mapping;
447
d28eb9c8 448 i_mmap_lock_read(mapping);
9b679320 449 read_lock(&tasklist_lock);
6a46079c 450 for_each_process(tsk) {
a0f7a756 451 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 452 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 453
3ba08129 454 if (!t)
6a46079c 455 continue;
6b2dbba8 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
3ba08129
NH
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
467 }
468 }
6a46079c 469 read_unlock(&tasklist_lock);
d28eb9c8 470 i_mmap_unlock_read(mapping);
6a46079c
AK
471}
472
473/*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
74614de1
TL
479static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
6a46079c
AK
481{
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
74614de1 491 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 492 else
74614de1 493 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
494 kfree(tk);
495}
496
6a46079c 497static const char *action_name[] = {
cc637b17
XX
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
502};
503
504static const char * const action_page_types[] = {
cc637b17
XX
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
525};
526
dc2a1cbf
WF
527/*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533static int delete_from_lru_cache(struct page *p)
534{
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
542 /*
543 * drop the page count elevated by isolate_lru_page()
544 */
545 page_cache_release(p);
546 return 0;
547 }
548 return -EIO;
549}
550
6a46079c
AK
551/*
552 * Error hit kernel page.
553 * Do nothing, try to be lucky and not touch this instead. For a few cases we
554 * could be more sophisticated.
555 */
556static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 557{
cc637b17 558 return MF_IGNORED;
6a46079c
AK
559}
560
561/*
562 * Page in unknown state. Do nothing.
563 */
564static int me_unknown(struct page *p, unsigned long pfn)
565{
566 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
cc637b17 567 return MF_FAILED;
6a46079c
AK
568}
569
6a46079c
AK
570/*
571 * Clean (or cleaned) page cache page.
572 */
573static int me_pagecache_clean(struct page *p, unsigned long pfn)
574{
575 int err;
cc637b17 576 int ret = MF_FAILED;
6a46079c
AK
577 struct address_space *mapping;
578
dc2a1cbf
WF
579 delete_from_lru_cache(p);
580
6a46079c
AK
581 /*
582 * For anonymous pages we're done the only reference left
583 * should be the one m_f() holds.
584 */
585 if (PageAnon(p))
cc637b17 586 return MF_RECOVERED;
6a46079c
AK
587
588 /*
589 * Now truncate the page in the page cache. This is really
590 * more like a "temporary hole punch"
591 * Don't do this for block devices when someone else
592 * has a reference, because it could be file system metadata
593 * and that's not safe to truncate.
594 */
595 mapping = page_mapping(p);
596 if (!mapping) {
597 /*
598 * Page has been teared down in the meanwhile
599 */
cc637b17 600 return MF_FAILED;
6a46079c
AK
601 }
602
603 /*
604 * Truncation is a bit tricky. Enable it per file system for now.
605 *
606 * Open: to take i_mutex or not for this? Right now we don't.
607 */
608 if (mapping->a_ops->error_remove_page) {
609 err = mapping->a_ops->error_remove_page(mapping, p);
610 if (err != 0) {
611 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
612 pfn, err);
613 } else if (page_has_private(p) &&
614 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 615 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c 616 } else {
cc637b17 617 ret = MF_RECOVERED;
6a46079c
AK
618 }
619 } else {
620 /*
621 * If the file system doesn't support it just invalidate
622 * This fails on dirty or anything with private pages
623 */
624 if (invalidate_inode_page(p))
cc637b17 625 ret = MF_RECOVERED;
6a46079c
AK
626 else
627 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
628 pfn);
629 }
630 return ret;
631}
632
633/*
549543df 634 * Dirty pagecache page
6a46079c
AK
635 * Issues: when the error hit a hole page the error is not properly
636 * propagated.
637 */
638static int me_pagecache_dirty(struct page *p, unsigned long pfn)
639{
640 struct address_space *mapping = page_mapping(p);
641
642 SetPageError(p);
643 /* TBD: print more information about the file. */
644 if (mapping) {
645 /*
646 * IO error will be reported by write(), fsync(), etc.
647 * who check the mapping.
648 * This way the application knows that something went
649 * wrong with its dirty file data.
650 *
651 * There's one open issue:
652 *
653 * The EIO will be only reported on the next IO
654 * operation and then cleared through the IO map.
655 * Normally Linux has two mechanisms to pass IO error
656 * first through the AS_EIO flag in the address space
657 * and then through the PageError flag in the page.
658 * Since we drop pages on memory failure handling the
659 * only mechanism open to use is through AS_AIO.
660 *
661 * This has the disadvantage that it gets cleared on
662 * the first operation that returns an error, while
663 * the PageError bit is more sticky and only cleared
664 * when the page is reread or dropped. If an
665 * application assumes it will always get error on
666 * fsync, but does other operations on the fd before
25985edc 667 * and the page is dropped between then the error
6a46079c
AK
668 * will not be properly reported.
669 *
670 * This can already happen even without hwpoisoned
671 * pages: first on metadata IO errors (which only
672 * report through AS_EIO) or when the page is dropped
673 * at the wrong time.
674 *
675 * So right now we assume that the application DTRT on
676 * the first EIO, but we're not worse than other parts
677 * of the kernel.
678 */
679 mapping_set_error(mapping, EIO);
680 }
681
682 return me_pagecache_clean(p, pfn);
683}
684
685/*
686 * Clean and dirty swap cache.
687 *
688 * Dirty swap cache page is tricky to handle. The page could live both in page
689 * cache and swap cache(ie. page is freshly swapped in). So it could be
690 * referenced concurrently by 2 types of PTEs:
691 * normal PTEs and swap PTEs. We try to handle them consistently by calling
692 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
693 * and then
694 * - clear dirty bit to prevent IO
695 * - remove from LRU
696 * - but keep in the swap cache, so that when we return to it on
697 * a later page fault, we know the application is accessing
698 * corrupted data and shall be killed (we installed simple
699 * interception code in do_swap_page to catch it).
700 *
701 * Clean swap cache pages can be directly isolated. A later page fault will
702 * bring in the known good data from disk.
703 */
704static int me_swapcache_dirty(struct page *p, unsigned long pfn)
705{
6a46079c
AK
706 ClearPageDirty(p);
707 /* Trigger EIO in shmem: */
708 ClearPageUptodate(p);
709
dc2a1cbf 710 if (!delete_from_lru_cache(p))
cc637b17 711 return MF_DELAYED;
dc2a1cbf 712 else
cc637b17 713 return MF_FAILED;
6a46079c
AK
714}
715
716static int me_swapcache_clean(struct page *p, unsigned long pfn)
717{
6a46079c 718 delete_from_swap_cache(p);
e43c3afb 719
dc2a1cbf 720 if (!delete_from_lru_cache(p))
cc637b17 721 return MF_RECOVERED;
dc2a1cbf 722 else
cc637b17 723 return MF_FAILED;
6a46079c
AK
724}
725
726/*
727 * Huge pages. Needs work.
728 * Issues:
93f70f90
NH
729 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
730 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
731 */
732static int me_huge_page(struct page *p, unsigned long pfn)
733{
6de2b1aa 734 int res = 0;
93f70f90 735 struct page *hpage = compound_head(p);
2491ffee
NH
736
737 if (!PageHuge(hpage))
738 return MF_DELAYED;
739
93f70f90
NH
740 /*
741 * We can safely recover from error on free or reserved (i.e.
742 * not in-use) hugepage by dequeuing it from freelist.
743 * To check whether a hugepage is in-use or not, we can't use
744 * page->lru because it can be used in other hugepage operations,
745 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 * So instead we use page_mapping() and PageAnon().
747 * We assume that this function is called with page lock held,
748 * so there is no race between isolation and mapping/unmapping.
749 */
750 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
751 res = dequeue_hwpoisoned_huge_page(hpage);
752 if (!res)
cc637b17 753 return MF_RECOVERED;
93f70f90 754 }
cc637b17 755 return MF_DELAYED;
6a46079c
AK
756}
757
758/*
759 * Various page states we can handle.
760 *
761 * A page state is defined by its current page->flags bits.
762 * The table matches them in order and calls the right handler.
763 *
764 * This is quite tricky because we can access page at any time
25985edc 765 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
766 *
767 * This is not complete. More states could be added.
768 * For any missing state don't attempt recovery.
769 */
770
771#define dirty (1UL << PG_dirty)
772#define sc (1UL << PG_swapcache)
773#define unevict (1UL << PG_unevictable)
774#define mlock (1UL << PG_mlocked)
775#define writeback (1UL << PG_writeback)
776#define lru (1UL << PG_lru)
777#define swapbacked (1UL << PG_swapbacked)
778#define head (1UL << PG_head)
779#define tail (1UL << PG_tail)
780#define compound (1UL << PG_compound)
781#define slab (1UL << PG_slab)
6a46079c
AK
782#define reserved (1UL << PG_reserved)
783
784static struct page_state {
785 unsigned long mask;
786 unsigned long res;
cc637b17 787 enum mf_action_page_type type;
6a46079c
AK
788 int (*action)(struct page *p, unsigned long pfn);
789} error_states[] = {
cc637b17 790 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
791 /*
792 * free pages are specially detected outside this table:
793 * PG_buddy pages only make a small fraction of all free pages.
794 */
6a46079c
AK
795
796 /*
797 * Could in theory check if slab page is free or if we can drop
798 * currently unused objects without touching them. But just
799 * treat it as standard kernel for now.
800 */
cc637b17 801 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c
AK
802
803#ifdef CONFIG_PAGEFLAGS_EXTENDED
cc637b17
XX
804 { head, head, MF_MSG_HUGE, me_huge_page },
805 { tail, tail, MF_MSG_HUGE, me_huge_page },
6a46079c 806#else
cc637b17 807 { compound, compound, MF_MSG_HUGE, me_huge_page },
6a46079c
AK
808#endif
809
cc637b17
XX
810 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
811 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 812
cc637b17
XX
813 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
814 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 815
cc637b17
XX
816 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
817 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 818
cc637b17
XX
819 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
820 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
821
822 /*
823 * Catchall entry: must be at end.
824 */
cc637b17 825 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
826};
827
2326c467
AK
828#undef dirty
829#undef sc
830#undef unevict
831#undef mlock
832#undef writeback
833#undef lru
834#undef swapbacked
835#undef head
836#undef tail
837#undef compound
838#undef slab
839#undef reserved
840
ff604cf6
NH
841/*
842 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
843 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
844 */
cc3e2af4
XX
845static void action_result(unsigned long pfn, enum mf_action_page_type type,
846 enum mf_result result)
6a46079c 847{
97f0b134
XX
848 trace_memory_failure_event(pfn, type, result);
849
64d37a2b
NH
850 pr_err("MCE %#lx: recovery action for %s: %s\n",
851 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
852}
853
854static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 855 unsigned long pfn)
6a46079c
AK
856{
857 int result;
7456b040 858 int count;
6a46079c
AK
859
860 result = ps->action(p, pfn);
7456b040 861
bd1ce5f9 862 count = page_count(p) - 1;
cc637b17 863 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
864 count--;
865 if (count != 0) {
6a46079c 866 printk(KERN_ERR
64d37a2b
NH
867 "MCE %#lx: %s still referenced by %d users\n",
868 pfn, action_page_types[ps->type], count);
cc637b17 869 result = MF_FAILED;
138ce286 870 }
64d37a2b 871 action_result(pfn, ps->type, result);
6a46079c
AK
872
873 /* Could do more checks here if page looks ok */
874 /*
875 * Could adjust zone counters here to correct for the missing page.
876 */
877
cc637b17 878 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
879}
880
ead07f6a
NH
881/**
882 * get_hwpoison_page() - Get refcount for memory error handling:
883 * @page: raw error page (hit by memory error)
884 *
885 * Return: return 0 if failed to grab the refcount, otherwise true (some
886 * non-zero value.)
887 */
888int get_hwpoison_page(struct page *page)
889{
890 struct page *head = compound_head(page);
891
892 if (PageHuge(head))
893 return get_page_unless_zero(head);
894
895 /*
896 * Thp tail page has special refcounting rule (refcount of tail pages
897 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
898 * directly for tail pages.
899 */
900 if (PageTransHuge(head)) {
98ed2b00
NH
901 /*
902 * Non anonymous thp exists only in allocation/free time. We
903 * can't handle such a case correctly, so let's give it up.
904 * This should be better than triggering BUG_ON when kernel
905 * tries to touch the "partially handled" page.
906 */
907 if (!PageAnon(head)) {
908 pr_err("MCE: %#lx: non anonymous thp\n",
909 page_to_pfn(page));
910 return 0;
911 }
912
ead07f6a
NH
913 if (get_page_unless_zero(head)) {
914 if (PageTail(page))
915 get_page(page);
916 return 1;
917 } else {
918 return 0;
919 }
920 }
921
922 return get_page_unless_zero(page);
923}
924EXPORT_SYMBOL_GPL(get_hwpoison_page);
925
94bf4ec8
WL
926/**
927 * put_hwpoison_page() - Put refcount for memory error handling:
928 * @page: raw error page (hit by memory error)
929 */
930void put_hwpoison_page(struct page *page)
931{
932 struct page *head = compound_head(page);
933
934 if (PageHuge(head)) {
935 put_page(head);
936 return;
937 }
938
939 if (PageTransHuge(head))
940 if (page != head)
941 put_page(head);
942
943 put_page(page);
944}
945EXPORT_SYMBOL_GPL(put_hwpoison_page);
946
6a46079c
AK
947/*
948 * Do all that is necessary to remove user space mappings. Unmap
949 * the pages and send SIGBUS to the processes if the data was dirty.
950 */
1668bfd5 951static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 952 int trapno, int flags, struct page **hpagep)
6a46079c
AK
953{
954 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 struct address_space *mapping;
956 LIST_HEAD(tokill);
957 int ret;
6751ed65 958 int kill = 1, forcekill;
54b9dd14 959 struct page *hpage = *hpagep;
6a46079c 960
93a9eb39
NH
961 /*
962 * Here we are interested only in user-mapped pages, so skip any
963 * other types of pages.
964 */
965 if (PageReserved(p) || PageSlab(p))
966 return SWAP_SUCCESS;
967 if (!(PageLRU(hpage) || PageHuge(p)))
1668bfd5 968 return SWAP_SUCCESS;
6a46079c 969
6a46079c
AK
970 /*
971 * This check implies we don't kill processes if their pages
972 * are in the swap cache early. Those are always late kills.
973 */
7af446a8 974 if (!page_mapped(hpage))
1668bfd5
WF
975 return SWAP_SUCCESS;
976
52089b14
NH
977 if (PageKsm(p)) {
978 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
1668bfd5 979 return SWAP_FAIL;
52089b14 980 }
6a46079c
AK
981
982 if (PageSwapCache(p)) {
983 printk(KERN_ERR
984 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
985 ttu |= TTU_IGNORE_HWPOISON;
986 }
987
988 /*
989 * Propagate the dirty bit from PTEs to struct page first, because we
990 * need this to decide if we should kill or just drop the page.
db0480b3
WF
991 * XXX: the dirty test could be racy: set_page_dirty() may not always
992 * be called inside page lock (it's recommended but not enforced).
6a46079c 993 */
7af446a8 994 mapping = page_mapping(hpage);
6751ed65 995 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
996 mapping_cap_writeback_dirty(mapping)) {
997 if (page_mkclean(hpage)) {
998 SetPageDirty(hpage);
6a46079c
AK
999 } else {
1000 kill = 0;
1001 ttu |= TTU_IGNORE_HWPOISON;
1002 printk(KERN_INFO
1003 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
1004 pfn);
1005 }
1006 }
1007
1008 /*
1009 * First collect all the processes that have the page
1010 * mapped in dirty form. This has to be done before try_to_unmap,
1011 * because ttu takes the rmap data structures down.
1012 *
1013 * Error handling: We ignore errors here because
1014 * there's nothing that can be done.
1015 */
1016 if (kill)
415c64c1 1017 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1018
415c64c1 1019 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
1020 if (ret != SWAP_SUCCESS)
1021 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
415c64c1 1022 pfn, page_mapcount(hpage));
a6d30ddd 1023
6a46079c
AK
1024 /*
1025 * Now that the dirty bit has been propagated to the
1026 * struct page and all unmaps done we can decide if
1027 * killing is needed or not. Only kill when the page
6751ed65
TL
1028 * was dirty or the process is not restartable,
1029 * otherwise the tokill list is merely
6a46079c
AK
1030 * freed. When there was a problem unmapping earlier
1031 * use a more force-full uncatchable kill to prevent
1032 * any accesses to the poisoned memory.
1033 */
415c64c1 1034 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
6751ed65 1035 kill_procs(&tokill, forcekill, trapno,
7329bbeb 1036 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
1037
1038 return ret;
6a46079c
AK
1039}
1040
7013febc
NH
1041static void set_page_hwpoison_huge_page(struct page *hpage)
1042{
1043 int i;
f9121153 1044 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1045 for (i = 0; i < nr_pages; i++)
1046 SetPageHWPoison(hpage + i);
1047}
1048
1049static void clear_page_hwpoison_huge_page(struct page *hpage)
1050{
1051 int i;
f9121153 1052 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1053 for (i = 0; i < nr_pages; i++)
1054 ClearPageHWPoison(hpage + i);
1055}
1056
cd42f4a3
TL
1057/**
1058 * memory_failure - Handle memory failure of a page.
1059 * @pfn: Page Number of the corrupted page
1060 * @trapno: Trap number reported in the signal to user space.
1061 * @flags: fine tune action taken
1062 *
1063 * This function is called by the low level machine check code
1064 * of an architecture when it detects hardware memory corruption
1065 * of a page. It tries its best to recover, which includes
1066 * dropping pages, killing processes etc.
1067 *
1068 * The function is primarily of use for corruptions that
1069 * happen outside the current execution context (e.g. when
1070 * detected by a background scrubber)
1071 *
1072 * Must run in process context (e.g. a work queue) with interrupts
1073 * enabled and no spinlocks hold.
1074 */
1075int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1076{
1077 struct page_state *ps;
1078 struct page *p;
7af446a8 1079 struct page *hpage;
415c64c1 1080 struct page *orig_head;
6a46079c 1081 int res;
c9fbdd5f 1082 unsigned int nr_pages;
524fca1e 1083 unsigned long page_flags;
6a46079c
AK
1084
1085 if (!sysctl_memory_failure_recovery)
1086 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1087
1088 if (!pfn_valid(pfn)) {
a7560fc8
WF
1089 printk(KERN_ERR
1090 "MCE %#lx: memory outside kernel control\n",
1091 pfn);
1092 return -ENXIO;
6a46079c
AK
1093 }
1094
1095 p = pfn_to_page(pfn);
415c64c1 1096 orig_head = hpage = compound_head(p);
6a46079c 1097 if (TestSetPageHWPoison(p)) {
d95ea51e 1098 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1099 return 0;
1100 }
1101
4db0e950
NH
1102 /*
1103 * Currently errors on hugetlbfs pages are measured in hugepage units,
1104 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1105 * transparent hugepages, they are supposed to be split and error
1106 * measurement is done in normal page units. So nr_pages should be one
1107 * in this case.
1108 */
1109 if (PageHuge(p))
1110 nr_pages = 1 << compound_order(hpage);
1111 else /* normal page or thp */
1112 nr_pages = 1;
8e30456b 1113 num_poisoned_pages_add(nr_pages);
6a46079c
AK
1114
1115 /*
1116 * We need/can do nothing about count=0 pages.
1117 * 1) it's a free page, and therefore in safe hand:
1118 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1119 * 2) it's a free hugepage, which is also safe:
1120 * an affected hugepage will be dequeued from hugepage freelist,
1121 * so there's no concern about reusing it ever after.
1122 * 3) it's part of a non-compound high order page.
6a46079c
AK
1123 * Implies some kernel user: cannot stop them from
1124 * R/W the page; let's pray that the page has been
1125 * used and will be freed some time later.
1126 * In fact it's dangerous to directly bump up page count from 0,
1127 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1128 */
ead07f6a 1129 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1130 if (is_free_buddy_page(p)) {
cc637b17 1131 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1132 return 0;
8c6c2ecb
NH
1133 } else if (PageHuge(hpage)) {
1134 /*
b985194c 1135 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1136 */
7eaceacc 1137 lock_page(hpage);
b985194c
CY
1138 if (PageHWPoison(hpage)) {
1139 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1140 || (p != hpage && TestSetPageHWPoison(hpage))) {
8e30456b 1141 num_poisoned_pages_sub(nr_pages);
b985194c
CY
1142 unlock_page(hpage);
1143 return 0;
1144 }
8c6c2ecb
NH
1145 }
1146 set_page_hwpoison_huge_page(hpage);
1147 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1148 action_result(pfn, MF_MSG_FREE_HUGE,
1149 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1150 unlock_page(hpage);
1151 return res;
8d22ba1b 1152 } else {
cc637b17 1153 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1154 return -EBUSY;
1155 }
6a46079c
AK
1156 }
1157
415c64c1 1158 if (!PageHuge(p) && PageTransHuge(hpage)) {
7f6bf39b
WL
1159 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1160 if (!PageAnon(hpage))
1161 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1162 else
1163 pr_err("MCE: %#lx: thp split failed\n", pfn);
ead07f6a 1164 if (TestClearPageHWPoison(p))
8e30456b 1165 num_poisoned_pages_sub(nr_pages);
665d9da7 1166 put_hwpoison_page(p);
415c64c1
NH
1167 return -EBUSY;
1168 }
1169 VM_BUG_ON_PAGE(!page_count(p), p);
1170 hpage = compound_head(p);
1171 }
1172
e43c3afb
WF
1173 /*
1174 * We ignore non-LRU pages for good reasons.
1175 * - PG_locked is only well defined for LRU pages and a few others
1176 * - to avoid races with __set_page_locked()
1177 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1178 * The check (unnecessarily) ignores LRU pages being isolated and
1179 * walked by the page reclaim code, however that's not a big loss.
1180 */
09789e5d 1181 if (!PageHuge(p)) {
415c64c1
NH
1182 if (!PageLRU(p))
1183 shake_page(p, 0);
1184 if (!PageLRU(p)) {
af241a08
JD
1185 /*
1186 * shake_page could have turned it free.
1187 */
1188 if (is_free_buddy_page(p)) {
2d421acd 1189 if (flags & MF_COUNT_INCREASED)
cc637b17 1190 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1191 else
cc637b17
XX
1192 action_result(pfn, MF_MSG_BUDDY_2ND,
1193 MF_DELAYED);
af241a08
JD
1194 return 0;
1195 }
0474a60e 1196 }
e43c3afb 1197 }
e43c3afb 1198
7eaceacc 1199 lock_page(hpage);
847ce401 1200
f37d4298
AK
1201 /*
1202 * The page could have changed compound pages during the locking.
1203 * If this happens just bail out.
1204 */
415c64c1 1205 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1206 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1207 res = -EBUSY;
1208 goto out;
1209 }
1210
524fca1e
NH
1211 /*
1212 * We use page flags to determine what action should be taken, but
1213 * the flags can be modified by the error containment action. One
1214 * example is an mlocked page, where PG_mlocked is cleared by
1215 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1216 * correctly, we save a copy of the page flags at this time.
1217 */
1218 page_flags = p->flags;
1219
847ce401
WF
1220 /*
1221 * unpoison always clear PG_hwpoison inside page lock
1222 */
1223 if (!PageHWPoison(p)) {
d95ea51e 1224 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
8e30456b 1225 num_poisoned_pages_sub(nr_pages);
a09233f3 1226 unlock_page(hpage);
665d9da7 1227 put_hwpoison_page(hpage);
a09233f3 1228 return 0;
847ce401 1229 }
7c116f2b
WF
1230 if (hwpoison_filter(p)) {
1231 if (TestClearPageHWPoison(p))
8e30456b 1232 num_poisoned_pages_sub(nr_pages);
7af446a8 1233 unlock_page(hpage);
665d9da7 1234 put_hwpoison_page(hpage);
7c116f2b
WF
1235 return 0;
1236 }
847ce401 1237
0bc1f8b0
CY
1238 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1239 goto identify_page_state;
1240
7013febc
NH
1241 /*
1242 * For error on the tail page, we should set PG_hwpoison
1243 * on the head page to show that the hugepage is hwpoisoned
1244 */
a6d30ddd 1245 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1246 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc 1247 unlock_page(hpage);
665d9da7 1248 put_hwpoison_page(hpage);
7013febc
NH
1249 return 0;
1250 }
1251 /*
1252 * Set PG_hwpoison on all pages in an error hugepage,
1253 * because containment is done in hugepage unit for now.
1254 * Since we have done TestSetPageHWPoison() for the head page with
1255 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1256 */
1257 if (PageHuge(p))
1258 set_page_hwpoison_huge_page(hpage);
1259
6edd6cc6
NH
1260 /*
1261 * It's very difficult to mess with pages currently under IO
1262 * and in many cases impossible, so we just avoid it here.
1263 */
6a46079c
AK
1264 wait_on_page_writeback(p);
1265
1266 /*
1267 * Now take care of user space mappings.
e64a782f 1268 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1269 *
1270 * When the raw error page is thp tail page, hpage points to the raw
1271 * page after thp split.
6a46079c 1272 */
54b9dd14
NH
1273 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1274 != SWAP_SUCCESS) {
cc637b17 1275 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1276 res = -EBUSY;
1277 goto out;
1278 }
6a46079c
AK
1279
1280 /*
1281 * Torn down by someone else?
1282 */
dc2a1cbf 1283 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1284 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1285 res = -EBUSY;
6a46079c
AK
1286 goto out;
1287 }
1288
0bc1f8b0 1289identify_page_state:
6a46079c 1290 res = -EBUSY;
524fca1e
NH
1291 /*
1292 * The first check uses the current page flags which may not have any
1293 * relevant information. The second check with the saved page flagss is
1294 * carried out only if the first check can't determine the page status.
1295 */
1296 for (ps = error_states;; ps++)
1297 if ((p->flags & ps->mask) == ps->res)
6a46079c 1298 break;
841fcc58
WL
1299
1300 page_flags |= (p->flags & (1UL << PG_dirty));
1301
524fca1e
NH
1302 if (!ps->mask)
1303 for (ps = error_states;; ps++)
1304 if ((page_flags & ps->mask) == ps->res)
1305 break;
1306 res = page_action(ps, p, pfn);
6a46079c 1307out:
7af446a8 1308 unlock_page(hpage);
6a46079c
AK
1309 return res;
1310}
cd42f4a3 1311EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1312
ea8f5fb8
HY
1313#define MEMORY_FAILURE_FIFO_ORDER 4
1314#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1315
1316struct memory_failure_entry {
1317 unsigned long pfn;
1318 int trapno;
1319 int flags;
1320};
1321
1322struct memory_failure_cpu {
1323 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1324 MEMORY_FAILURE_FIFO_SIZE);
1325 spinlock_t lock;
1326 struct work_struct work;
1327};
1328
1329static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1330
1331/**
1332 * memory_failure_queue - Schedule handling memory failure of a page.
1333 * @pfn: Page Number of the corrupted page
1334 * @trapno: Trap number reported in the signal to user space.
1335 * @flags: Flags for memory failure handling
1336 *
1337 * This function is called by the low level hardware error handler
1338 * when it detects hardware memory corruption of a page. It schedules
1339 * the recovering of error page, including dropping pages, killing
1340 * processes etc.
1341 *
1342 * The function is primarily of use for corruptions that
1343 * happen outside the current execution context (e.g. when
1344 * detected by a background scrubber)
1345 *
1346 * Can run in IRQ context.
1347 */
1348void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1349{
1350 struct memory_failure_cpu *mf_cpu;
1351 unsigned long proc_flags;
1352 struct memory_failure_entry entry = {
1353 .pfn = pfn,
1354 .trapno = trapno,
1355 .flags = flags,
1356 };
1357
1358 mf_cpu = &get_cpu_var(memory_failure_cpu);
1359 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1360 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1361 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1362 else
8e33a52f 1363 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1364 pfn);
1365 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1366 put_cpu_var(memory_failure_cpu);
1367}
1368EXPORT_SYMBOL_GPL(memory_failure_queue);
1369
1370static void memory_failure_work_func(struct work_struct *work)
1371{
1372 struct memory_failure_cpu *mf_cpu;
1373 struct memory_failure_entry entry = { 0, };
1374 unsigned long proc_flags;
1375 int gotten;
1376
7c8e0181 1377 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1378 for (;;) {
1379 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1380 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1381 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1382 if (!gotten)
1383 break;
cf870c70
NR
1384 if (entry.flags & MF_SOFT_OFFLINE)
1385 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1386 else
1387 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1388 }
1389}
1390
1391static int __init memory_failure_init(void)
1392{
1393 struct memory_failure_cpu *mf_cpu;
1394 int cpu;
1395
1396 for_each_possible_cpu(cpu) {
1397 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1398 spin_lock_init(&mf_cpu->lock);
1399 INIT_KFIFO(mf_cpu->fifo);
1400 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1401 }
1402
1403 return 0;
1404}
1405core_initcall(memory_failure_init);
1406
a5f65109
NH
1407#define unpoison_pr_info(fmt, pfn, rs) \
1408({ \
1409 if (__ratelimit(rs)) \
1410 pr_info(fmt, pfn); \
1411})
1412
847ce401
WF
1413/**
1414 * unpoison_memory - Unpoison a previously poisoned page
1415 * @pfn: Page number of the to be unpoisoned page
1416 *
1417 * Software-unpoison a page that has been poisoned by
1418 * memory_failure() earlier.
1419 *
1420 * This is only done on the software-level, so it only works
1421 * for linux injected failures, not real hardware failures
1422 *
1423 * Returns 0 for success, otherwise -errno.
1424 */
1425int unpoison_memory(unsigned long pfn)
1426{
1427 struct page *page;
1428 struct page *p;
1429 int freeit = 0;
c9fbdd5f 1430 unsigned int nr_pages;
a5f65109
NH
1431 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1432 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1433
1434 if (!pfn_valid(pfn))
1435 return -ENXIO;
1436
1437 p = pfn_to_page(pfn);
1438 page = compound_head(p);
1439
1440 if (!PageHWPoison(p)) {
a5f65109
NH
1441 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1442 pfn, &unpoison_rs);
847ce401
WF
1443 return 0;
1444 }
1445
230ac719 1446 if (page_count(page) > 1) {
a5f65109
NH
1447 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1448 pfn, &unpoison_rs);
230ac719
NH
1449 return 0;
1450 }
1451
1452 if (page_mapped(page)) {
a5f65109
NH
1453 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1454 pfn, &unpoison_rs);
230ac719
NH
1455 return 0;
1456 }
1457
1458 if (page_mapping(page)) {
a5f65109
NH
1459 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1460 pfn, &unpoison_rs);
230ac719
NH
1461 return 0;
1462 }
1463
0cea3fdc
WL
1464 /*
1465 * unpoison_memory() can encounter thp only when the thp is being
1466 * worked by memory_failure() and the page lock is not held yet.
1467 * In such case, we yield to memory_failure() and make unpoison fail.
1468 */
e76d30e2 1469 if (!PageHuge(page) && PageTransHuge(page)) {
a5f65109
NH
1470 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1471 pfn, &unpoison_rs);
ead07f6a 1472 return 0;
0cea3fdc
WL
1473 }
1474
f9121153 1475 nr_pages = 1 << compound_order(page);
c9fbdd5f 1476
ead07f6a 1477 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1478 /*
1479 * Since HWPoisoned hugepage should have non-zero refcount,
1480 * race between memory failure and unpoison seems to happen.
1481 * In such case unpoison fails and memory failure runs
1482 * to the end.
1483 */
1484 if (PageHuge(page)) {
a5f65109
NH
1485 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1486 pfn, &unpoison_rs);
8c6c2ecb
NH
1487 return 0;
1488 }
847ce401 1489 if (TestClearPageHWPoison(p))
8e30456b 1490 num_poisoned_pages_dec();
a5f65109
NH
1491 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1492 pfn, &unpoison_rs);
847ce401
WF
1493 return 0;
1494 }
1495
7eaceacc 1496 lock_page(page);
847ce401
WF
1497 /*
1498 * This test is racy because PG_hwpoison is set outside of page lock.
1499 * That's acceptable because that won't trigger kernel panic. Instead,
1500 * the PG_hwpoison page will be caught and isolated on the entrance to
1501 * the free buddy page pool.
1502 */
c9fbdd5f 1503 if (TestClearPageHWPoison(page)) {
a5f65109
NH
1504 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1505 pfn, &unpoison_rs);
8e30456b 1506 num_poisoned_pages_sub(nr_pages);
847ce401 1507 freeit = 1;
6a90181c
NH
1508 if (PageHuge(page))
1509 clear_page_hwpoison_huge_page(page);
847ce401
WF
1510 }
1511 unlock_page(page);
1512
665d9da7 1513 put_hwpoison_page(page);
3ba5eebc 1514 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1515 put_hwpoison_page(page);
847ce401
WF
1516
1517 return 0;
1518}
1519EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1520
1521static struct page *new_page(struct page *p, unsigned long private, int **x)
1522{
12686d15 1523 int nid = page_to_nid(p);
d950b958
NH
1524 if (PageHuge(p))
1525 return alloc_huge_page_node(page_hstate(compound_head(p)),
1526 nid);
1527 else
96db800f 1528 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1529}
1530
1531/*
1532 * Safely get reference count of an arbitrary page.
1533 * Returns 0 for a free page, -EIO for a zero refcount page
1534 * that is not free, and 1 for any other page type.
1535 * For 1 the page is returned with increased page count, otherwise not.
1536 */
af8fae7c 1537static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1538{
1539 int ret;
1540
1541 if (flags & MF_COUNT_INCREASED)
1542 return 1;
1543
d950b958
NH
1544 /*
1545 * When the target page is a free hugepage, just remove it
1546 * from free hugepage list.
1547 */
ead07f6a 1548 if (!get_hwpoison_page(p)) {
d950b958 1549 if (PageHuge(p)) {
71dd0b8a 1550 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1551 ret = 0;
d950b958 1552 } else if (is_free_buddy_page(p)) {
71dd0b8a 1553 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1554 ret = 0;
1555 } else {
71dd0b8a
BP
1556 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1557 __func__, pfn, p->flags);
facb6011
AK
1558 ret = -EIO;
1559 }
1560 } else {
1561 /* Not a free page */
1562 ret = 1;
1563 }
facb6011
AK
1564 return ret;
1565}
1566
af8fae7c
NH
1567static int get_any_page(struct page *page, unsigned long pfn, int flags)
1568{
1569 int ret = __get_any_page(page, pfn, flags);
1570
1571 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1572 /*
1573 * Try to free it.
1574 */
665d9da7 1575 put_hwpoison_page(page);
af8fae7c
NH
1576 shake_page(page, 1);
1577
1578 /*
1579 * Did it turn free?
1580 */
1581 ret = __get_any_page(page, pfn, 0);
1582 if (!PageLRU(page)) {
4f32be67 1583 /* Drop page reference which is from __get_any_page() */
665d9da7 1584 put_hwpoison_page(page);
af8fae7c
NH
1585 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1586 pfn, page->flags);
1587 return -EIO;
1588 }
1589 }
1590 return ret;
1591}
1592
d950b958
NH
1593static int soft_offline_huge_page(struct page *page, int flags)
1594{
1595 int ret;
1596 unsigned long pfn = page_to_pfn(page);
1597 struct page *hpage = compound_head(page);
b8ec1cee 1598 LIST_HEAD(pagelist);
d950b958 1599
af8fae7c
NH
1600 /*
1601 * This double-check of PageHWPoison is to avoid the race with
1602 * memory_failure(). See also comment in __soft_offline_page().
1603 */
1604 lock_page(hpage);
0ebff32c 1605 if (PageHWPoison(hpage)) {
af8fae7c 1606 unlock_page(hpage);
665d9da7 1607 put_hwpoison_page(hpage);
0ebff32c 1608 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1609 return -EBUSY;
0ebff32c 1610 }
af8fae7c 1611 unlock_page(hpage);
d950b958 1612
bcc54222 1613 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1614 /*
1615 * get_any_page() and isolate_huge_page() takes a refcount each,
1616 * so need to drop one here.
1617 */
665d9da7 1618 put_hwpoison_page(hpage);
03613808 1619 if (!ret) {
bcc54222
NH
1620 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1621 return -EBUSY;
1622 }
1623
68711a74 1624 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1625 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1626 if (ret) {
dd73e85f
DN
1627 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1628 pfn, ret, page->flags);
b8ec1cee
NH
1629 /*
1630 * We know that soft_offline_huge_page() tries to migrate
1631 * only one hugepage pointed to by hpage, so we need not
1632 * run through the pagelist here.
1633 */
1634 putback_active_hugepage(hpage);
1635 if (ret > 0)
1636 ret = -EIO;
af8fae7c 1637 } else {
a49ecbcd
JW
1638 /* overcommit hugetlb page will be freed to buddy */
1639 if (PageHuge(page)) {
1640 set_page_hwpoison_huge_page(hpage);
1641 dequeue_hwpoisoned_huge_page(hpage);
8e30456b 1642 num_poisoned_pages_add(1 << compound_order(hpage));
a49ecbcd
JW
1643 } else {
1644 SetPageHWPoison(page);
8e30456b 1645 num_poisoned_pages_inc();
a49ecbcd 1646 }
d950b958 1647 }
d950b958
NH
1648 return ret;
1649}
1650
af8fae7c
NH
1651static int __soft_offline_page(struct page *page, int flags)
1652{
1653 int ret;
1654 unsigned long pfn = page_to_pfn(page);
facb6011 1655
facb6011 1656 /*
af8fae7c
NH
1657 * Check PageHWPoison again inside page lock because PageHWPoison
1658 * is set by memory_failure() outside page lock. Note that
1659 * memory_failure() also double-checks PageHWPoison inside page lock,
1660 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1661 */
0ebff32c
XQ
1662 lock_page(page);
1663 wait_on_page_writeback(page);
af8fae7c
NH
1664 if (PageHWPoison(page)) {
1665 unlock_page(page);
665d9da7 1666 put_hwpoison_page(page);
af8fae7c
NH
1667 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1668 return -EBUSY;
1669 }
facb6011
AK
1670 /*
1671 * Try to invalidate first. This should work for
1672 * non dirty unmapped page cache pages.
1673 */
1674 ret = invalidate_inode_page(page);
1675 unlock_page(page);
facb6011 1676 /*
facb6011
AK
1677 * RED-PEN would be better to keep it isolated here, but we
1678 * would need to fix isolation locking first.
1679 */
facb6011 1680 if (ret == 1) {
665d9da7 1681 put_hwpoison_page(page);
fb46e735 1682 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1683 SetPageHWPoison(page);
8e30456b 1684 num_poisoned_pages_inc();
af8fae7c 1685 return 0;
facb6011
AK
1686 }
1687
1688 /*
1689 * Simple invalidation didn't work.
1690 * Try to migrate to a new page instead. migrate.c
1691 * handles a large number of cases for us.
1692 */
1693 ret = isolate_lru_page(page);
bd486285
KK
1694 /*
1695 * Drop page reference which is came from get_any_page()
1696 * successful isolate_lru_page() already took another one.
1697 */
665d9da7 1698 put_hwpoison_page(page);
facb6011
AK
1699 if (!ret) {
1700 LIST_HEAD(pagelist);
5db8a73a 1701 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1702 page_is_file_cache(page));
facb6011 1703 list_add(&page->lru, &pagelist);
68711a74 1704 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1705 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1706 if (ret) {
59c82b70
JK
1707 if (!list_empty(&pagelist)) {
1708 list_del(&page->lru);
1709 dec_zone_page_state(page, NR_ISOLATED_ANON +
1710 page_is_file_cache(page));
1711 putback_lru_page(page);
1712 }
1713
fb46e735 1714 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1715 pfn, ret, page->flags);
1716 if (ret > 0)
1717 ret = -EIO;
1718 }
1719 } else {
fb46e735 1720 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1721 pfn, ret, page_count(page), page->flags);
facb6011 1722 }
facb6011
AK
1723 return ret;
1724}
86e05773
WL
1725
1726/**
1727 * soft_offline_page - Soft offline a page.
1728 * @page: page to offline
1729 * @flags: flags. Same as memory_failure().
1730 *
1731 * Returns 0 on success, otherwise negated errno.
1732 *
1733 * Soft offline a page, by migration or invalidation,
1734 * without killing anything. This is for the case when
1735 * a page is not corrupted yet (so it's still valid to access),
1736 * but has had a number of corrected errors and is better taken
1737 * out.
1738 *
1739 * The actual policy on when to do that is maintained by
1740 * user space.
1741 *
1742 * This should never impact any application or cause data loss,
1743 * however it might take some time.
1744 *
1745 * This is not a 100% solution for all memory, but tries to be
1746 * ``good enough'' for the majority of memory.
1747 */
1748int soft_offline_page(struct page *page, int flags)
1749{
1750 int ret;
1751 unsigned long pfn = page_to_pfn(page);
668f9abb 1752 struct page *hpage = compound_head(page);
86e05773
WL
1753
1754 if (PageHWPoison(page)) {
1755 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1756 if (flags & MF_COUNT_INCREASED)
665d9da7 1757 put_hwpoison_page(page);
86e05773
WL
1758 return -EBUSY;
1759 }
1760 if (!PageHuge(page) && PageTransHuge(hpage)) {
1761 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1762 pr_info("soft offline: %#lx: failed to split THP\n",
1763 pfn);
7d1900c7 1764 if (flags & MF_COUNT_INCREASED)
665d9da7 1765 put_hwpoison_page(page);
86e05773
WL
1766 return -EBUSY;
1767 }
1768 }
1769
bfc8c901 1770 get_online_mems();
03b61ff3 1771
86e05773 1772 ret = get_any_page(page, pfn, flags);
bfc8c901 1773 put_online_mems();
03b61ff3 1774 if (ret > 0) { /* for in-use pages */
86e05773
WL
1775 if (PageHuge(page))
1776 ret = soft_offline_huge_page(page, flags);
1777 else
1778 ret = __soft_offline_page(page, flags);
03b61ff3 1779 } else if (ret == 0) { /* for free pages */
86e05773
WL
1780 if (PageHuge(page)) {
1781 set_page_hwpoison_huge_page(hpage);
602498f9 1782 if (!dequeue_hwpoisoned_huge_page(hpage))
8e30456b 1783 num_poisoned_pages_add(1 << compound_order(hpage));
86e05773 1784 } else {
602498f9 1785 if (!TestSetPageHWPoison(page))
8e30456b 1786 num_poisoned_pages_inc();
86e05773
WL
1787 }
1788 }
86e05773
WL
1789 return ret;
1790}