]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory-failure.c
mm/madvise: move up the behavior parameter validation
[mirror_ubuntu-artful-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011
AK
51#include <linux/migrate.h>
52#include <linux/page-isolation.h>
53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
ea8f5fb8 59#include <linux/kfifo.h>
a5f65109 60#include <linux/ratelimit.h>
6a46079c 61#include "internal.h"
97f0b134 62#include "ras/ras_event.h"
6a46079c
AK
63
64int sysctl_memory_failure_early_kill __read_mostly = 0;
65
66int sysctl_memory_failure_recovery __read_mostly = 1;
67
293c07e3 68atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 69
27df5068
AK
70#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71
1bfe5feb 72u32 hwpoison_filter_enable = 0;
7c116f2b
WF
73u32 hwpoison_filter_dev_major = ~0U;
74u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
75u64 hwpoison_filter_flags_mask;
76u64 hwpoison_filter_flags_value;
1bfe5feb 77EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
82
83static int hwpoison_filter_dev(struct page *p)
84{
85 struct address_space *mapping;
86 dev_t dev;
87
88 if (hwpoison_filter_dev_major == ~0U &&
89 hwpoison_filter_dev_minor == ~0U)
90 return 0;
91
92 /*
1c80b990 93 * page_mapping() does not accept slab pages.
7c116f2b
WF
94 */
95 if (PageSlab(p))
96 return -EINVAL;
97
98 mapping = page_mapping(p);
99 if (mapping == NULL || mapping->host == NULL)
100 return -EINVAL;
101
102 dev = mapping->host->i_sb->s_dev;
103 if (hwpoison_filter_dev_major != ~0U &&
104 hwpoison_filter_dev_major != MAJOR(dev))
105 return -EINVAL;
106 if (hwpoison_filter_dev_minor != ~0U &&
107 hwpoison_filter_dev_minor != MINOR(dev))
108 return -EINVAL;
109
110 return 0;
111}
112
478c5ffc
WF
113static int hwpoison_filter_flags(struct page *p)
114{
115 if (!hwpoison_filter_flags_mask)
116 return 0;
117
118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 hwpoison_filter_flags_value)
120 return 0;
121 else
122 return -EINVAL;
123}
124
4fd466eb
AK
125/*
126 * This allows stress tests to limit test scope to a collection of tasks
127 * by putting them under some memcg. This prevents killing unrelated/important
128 * processes such as /sbin/init. Note that the target task may share clean
129 * pages with init (eg. libc text), which is harmless. If the target task
130 * share _dirty_ pages with another task B, the test scheme must make sure B
131 * is also included in the memcg. At last, due to race conditions this filter
132 * can only guarantee that the page either belongs to the memcg tasks, or is
133 * a freed page.
134 */
94a59fb3 135#ifdef CONFIG_MEMCG
4fd466eb
AK
136u64 hwpoison_filter_memcg;
137EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138static int hwpoison_filter_task(struct page *p)
139{
4fd466eb
AK
140 if (!hwpoison_filter_memcg)
141 return 0;
142
94a59fb3 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
144 return -EINVAL;
145
146 return 0;
147}
148#else
149static int hwpoison_filter_task(struct page *p) { return 0; }
150#endif
151
7c116f2b
WF
152int hwpoison_filter(struct page *p)
153{
1bfe5feb
HL
154 if (!hwpoison_filter_enable)
155 return 0;
156
7c116f2b
WF
157 if (hwpoison_filter_dev(p))
158 return -EINVAL;
159
478c5ffc
WF
160 if (hwpoison_filter_flags(p))
161 return -EINVAL;
162
4fd466eb
AK
163 if (hwpoison_filter_task(p))
164 return -EINVAL;
165
7c116f2b
WF
166 return 0;
167}
27df5068
AK
168#else
169int hwpoison_filter(struct page *p)
170{
171 return 0;
172}
173#endif
174
7c116f2b
WF
175EXPORT_SYMBOL_GPL(hwpoison_filter);
176
6a46079c 177/*
7329bbeb
TL
178 * Send all the processes who have the page mapped a signal.
179 * ``action optional'' if they are not immediately affected by the error
180 * ``action required'' if error happened in current execution context
6a46079c 181 */
7329bbeb
TL
182static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
184{
185 struct siginfo si;
186 int ret;
187
495367c0
CY
188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
6a46079c
AK
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
6a46079c
AK
192 si.si_addr = (void *)addr;
193#ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195#endif
f9121153 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 197
a70ffcac 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 199 si.si_code = BUS_MCEERR_AR;
a70ffcac 200 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
6a46079c 211 if (ret < 0)
495367c0 212 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 213 t->comm, t->pid, ret);
6a46079c
AK
214 return ret;
215}
216
588f9ce6
AK
217/*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
facb6011 221void shake_page(struct page *p, int access)
588f9ce6
AK
222{
223 if (!PageSlab(p)) {
224 lru_add_drain_all();
225 if (PageLRU(p))
226 return;
c0554329 227 drain_all_pages(page_zone(p));
588f9ce6
AK
228 if (PageLRU(p) || is_free_buddy_page(p))
229 return;
230 }
facb6011 231
588f9ce6 232 /*
6b4f7799
JW
233 * Only call shrink_node_slabs here (which would also shrink
234 * other caches) if access is not potentially fatal.
588f9ce6 235 */
cb731d6c
VD
236 if (access)
237 drop_slab_node(page_to_nid(p));
588f9ce6
AK
238}
239EXPORT_SYMBOL_GPL(shake_page);
240
6a46079c
AK
241/*
242 * Kill all processes that have a poisoned page mapped and then isolate
243 * the page.
244 *
245 * General strategy:
246 * Find all processes having the page mapped and kill them.
247 * But we keep a page reference around so that the page is not
248 * actually freed yet.
249 * Then stash the page away
250 *
251 * There's no convenient way to get back to mapped processes
252 * from the VMAs. So do a brute-force search over all
253 * running processes.
254 *
255 * Remember that machine checks are not common (or rather
256 * if they are common you have other problems), so this shouldn't
257 * be a performance issue.
258 *
259 * Also there are some races possible while we get from the
260 * error detection to actually handle it.
261 */
262
263struct to_kill {
264 struct list_head nd;
265 struct task_struct *tsk;
266 unsigned long addr;
9033ae16 267 char addr_valid;
6a46079c
AK
268};
269
270/*
271 * Failure handling: if we can't find or can't kill a process there's
272 * not much we can do. We just print a message and ignore otherwise.
273 */
274
275/*
276 * Schedule a process for later kill.
277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278 * TBD would GFP_NOIO be enough?
279 */
280static void add_to_kill(struct task_struct *tsk, struct page *p,
281 struct vm_area_struct *vma,
282 struct list_head *to_kill,
283 struct to_kill **tkc)
284{
285 struct to_kill *tk;
286
287 if (*tkc) {
288 tk = *tkc;
289 *tkc = NULL;
290 } else {
291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 if (!tk) {
495367c0 293 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
294 return;
295 }
296 }
297 tk->addr = page_address_in_vma(p, vma);
298 tk->addr_valid = 1;
299
300 /*
301 * In theory we don't have to kill when the page was
302 * munmaped. But it could be also a mremap. Since that's
303 * likely very rare kill anyways just out of paranoia, but use
304 * a SIGKILL because the error is not contained anymore.
305 */
306 if (tk->addr == -EFAULT) {
495367c0 307 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
308 page_to_pfn(p), tsk->comm);
309 tk->addr_valid = 0;
310 }
311 get_task_struct(tsk);
312 tk->tsk = tsk;
313 list_add_tail(&tk->nd, to_kill);
314}
315
316/*
317 * Kill the processes that have been collected earlier.
318 *
319 * Only do anything when DOIT is set, otherwise just free the list
320 * (this is used for clean pages which do not need killing)
321 * Also when FAIL is set do a force kill because something went
322 * wrong earlier.
323 */
6751ed65 324static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
666e5a40 325 bool fail, struct page *page, unsigned long pfn,
7329bbeb 326 int flags)
6a46079c
AK
327{
328 struct to_kill *tk, *next;
329
330 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 331 if (forcekill) {
6a46079c 332 /*
af901ca1 333 * In case something went wrong with munmapping
6a46079c
AK
334 * make sure the process doesn't catch the
335 * signal and then access the memory. Just kill it.
6a46079c
AK
336 */
337 if (fail || tk->addr_valid == 0) {
495367c0 338 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 339 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
340 force_sig(SIGKILL, tk->tsk);
341 }
342
343 /*
344 * In theory the process could have mapped
345 * something else on the address in-between. We could
346 * check for that, but we need to tell the
347 * process anyways.
348 */
7329bbeb
TL
349 else if (kill_proc(tk->tsk, tk->addr, trapno,
350 pfn, page, flags) < 0)
495367c0 351 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 352 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
353 }
354 put_task_struct(tk->tsk);
355 kfree(tk);
356 }
357}
358
3ba08129
NH
359/*
360 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
361 * on behalf of the thread group. Return task_struct of the (first found)
362 * dedicated thread if found, and return NULL otherwise.
363 *
364 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
365 * have to call rcu_read_lock/unlock() in this function.
366 */
367static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 368{
3ba08129
NH
369 struct task_struct *t;
370
371 for_each_thread(tsk, t)
372 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
373 return t;
374 return NULL;
375}
376
377/*
378 * Determine whether a given process is "early kill" process which expects
379 * to be signaled when some page under the process is hwpoisoned.
380 * Return task_struct of the dedicated thread (main thread unless explicitly
381 * specified) if the process is "early kill," and otherwise returns NULL.
382 */
383static struct task_struct *task_early_kill(struct task_struct *tsk,
384 int force_early)
385{
386 struct task_struct *t;
6a46079c 387 if (!tsk->mm)
3ba08129 388 return NULL;
74614de1 389 if (force_early)
3ba08129
NH
390 return tsk;
391 t = find_early_kill_thread(tsk);
392 if (t)
393 return t;
394 if (sysctl_memory_failure_early_kill)
395 return tsk;
396 return NULL;
6a46079c
AK
397}
398
399/*
400 * Collect processes when the error hit an anonymous page.
401 */
402static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 403 struct to_kill **tkc, int force_early)
6a46079c
AK
404{
405 struct vm_area_struct *vma;
406 struct task_struct *tsk;
407 struct anon_vma *av;
bf181b9f 408 pgoff_t pgoff;
6a46079c 409
4fc3f1d6 410 av = page_lock_anon_vma_read(page);
6a46079c 411 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
412 return;
413
a0f7a756 414 pgoff = page_to_pgoff(page);
9b679320 415 read_lock(&tasklist_lock);
6a46079c 416 for_each_process (tsk) {
5beb4930 417 struct anon_vma_chain *vmac;
3ba08129 418 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 419
3ba08129 420 if (!t)
6a46079c 421 continue;
bf181b9f
ML
422 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
423 pgoff, pgoff) {
5beb4930 424 vma = vmac->vma;
6a46079c
AK
425 if (!page_mapped_in_vma(page, vma))
426 continue;
3ba08129
NH
427 if (vma->vm_mm == t->mm)
428 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
429 }
430 }
6a46079c 431 read_unlock(&tasklist_lock);
4fc3f1d6 432 page_unlock_anon_vma_read(av);
6a46079c
AK
433}
434
435/*
436 * Collect processes when the error hit a file mapped page.
437 */
438static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 439 struct to_kill **tkc, int force_early)
6a46079c
AK
440{
441 struct vm_area_struct *vma;
442 struct task_struct *tsk;
6a46079c
AK
443 struct address_space *mapping = page->mapping;
444
d28eb9c8 445 i_mmap_lock_read(mapping);
9b679320 446 read_lock(&tasklist_lock);
6a46079c 447 for_each_process(tsk) {
a0f7a756 448 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 449 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 450
3ba08129 451 if (!t)
6a46079c 452 continue;
6b2dbba8 453 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
454 pgoff) {
455 /*
456 * Send early kill signal to tasks where a vma covers
457 * the page but the corrupted page is not necessarily
458 * mapped it in its pte.
459 * Assume applications who requested early kill want
460 * to be informed of all such data corruptions.
461 */
3ba08129
NH
462 if (vma->vm_mm == t->mm)
463 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
464 }
465 }
6a46079c 466 read_unlock(&tasklist_lock);
d28eb9c8 467 i_mmap_unlock_read(mapping);
6a46079c
AK
468}
469
470/*
471 * Collect the processes who have the corrupted page mapped to kill.
472 * This is done in two steps for locking reasons.
473 * First preallocate one tokill structure outside the spin locks,
474 * so that we can kill at least one process reasonably reliable.
475 */
74614de1
TL
476static void collect_procs(struct page *page, struct list_head *tokill,
477 int force_early)
6a46079c
AK
478{
479 struct to_kill *tk;
480
481 if (!page->mapping)
482 return;
483
484 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
485 if (!tk)
486 return;
487 if (PageAnon(page))
74614de1 488 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 489 else
74614de1 490 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
491 kfree(tk);
492}
493
6a46079c 494static const char *action_name[] = {
cc637b17
XX
495 [MF_IGNORED] = "Ignored",
496 [MF_FAILED] = "Failed",
497 [MF_DELAYED] = "Delayed",
498 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
499};
500
501static const char * const action_page_types[] = {
cc637b17
XX
502 [MF_MSG_KERNEL] = "reserved kernel page",
503 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
504 [MF_MSG_SLAB] = "kernel slab page",
505 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
506 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
507 [MF_MSG_HUGE] = "huge page",
508 [MF_MSG_FREE_HUGE] = "free huge page",
509 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
510 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
511 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
512 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
513 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
514 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
515 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
516 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
517 [MF_MSG_CLEAN_LRU] = "clean LRU page",
518 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
519 [MF_MSG_BUDDY] = "free buddy page",
520 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
521 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
522};
523
dc2a1cbf
WF
524/*
525 * XXX: It is possible that a page is isolated from LRU cache,
526 * and then kept in swap cache or failed to remove from page cache.
527 * The page count will stop it from being freed by unpoison.
528 * Stress tests should be aware of this memory leak problem.
529 */
530static int delete_from_lru_cache(struct page *p)
531{
532 if (!isolate_lru_page(p)) {
533 /*
534 * Clear sensible page flags, so that the buddy system won't
535 * complain when the page is unpoison-and-freed.
536 */
537 ClearPageActive(p);
538 ClearPageUnevictable(p);
539 /*
540 * drop the page count elevated by isolate_lru_page()
541 */
09cbfeaf 542 put_page(p);
dc2a1cbf
WF
543 return 0;
544 }
545 return -EIO;
546}
547
6a46079c
AK
548/*
549 * Error hit kernel page.
550 * Do nothing, try to be lucky and not touch this instead. For a few cases we
551 * could be more sophisticated.
552 */
553static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 554{
cc637b17 555 return MF_IGNORED;
6a46079c
AK
556}
557
558/*
559 * Page in unknown state. Do nothing.
560 */
561static int me_unknown(struct page *p, unsigned long pfn)
562{
495367c0 563 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 564 return MF_FAILED;
6a46079c
AK
565}
566
6a46079c
AK
567/*
568 * Clean (or cleaned) page cache page.
569 */
570static int me_pagecache_clean(struct page *p, unsigned long pfn)
571{
572 int err;
cc637b17 573 int ret = MF_FAILED;
6a46079c
AK
574 struct address_space *mapping;
575
dc2a1cbf
WF
576 delete_from_lru_cache(p);
577
6a46079c
AK
578 /*
579 * For anonymous pages we're done the only reference left
580 * should be the one m_f() holds.
581 */
582 if (PageAnon(p))
cc637b17 583 return MF_RECOVERED;
6a46079c
AK
584
585 /*
586 * Now truncate the page in the page cache. This is really
587 * more like a "temporary hole punch"
588 * Don't do this for block devices when someone else
589 * has a reference, because it could be file system metadata
590 * and that's not safe to truncate.
591 */
592 mapping = page_mapping(p);
593 if (!mapping) {
594 /*
595 * Page has been teared down in the meanwhile
596 */
cc637b17 597 return MF_FAILED;
6a46079c
AK
598 }
599
600 /*
601 * Truncation is a bit tricky. Enable it per file system for now.
602 *
603 * Open: to take i_mutex or not for this? Right now we don't.
604 */
605 if (mapping->a_ops->error_remove_page) {
606 err = mapping->a_ops->error_remove_page(mapping, p);
607 if (err != 0) {
495367c0 608 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
1170532b 609 pfn, err);
6a46079c
AK
610 } else if (page_has_private(p) &&
611 !try_to_release_page(p, GFP_NOIO)) {
495367c0
CY
612 pr_info("Memory failure: %#lx: failed to release buffers\n",
613 pfn);
6a46079c 614 } else {
cc637b17 615 ret = MF_RECOVERED;
6a46079c
AK
616 }
617 } else {
618 /*
619 * If the file system doesn't support it just invalidate
620 * This fails on dirty or anything with private pages
621 */
622 if (invalidate_inode_page(p))
cc637b17 623 ret = MF_RECOVERED;
6a46079c 624 else
495367c0
CY
625 pr_info("Memory failure: %#lx: Failed to invalidate\n",
626 pfn);
6a46079c
AK
627 }
628 return ret;
629}
630
631/*
549543df 632 * Dirty pagecache page
6a46079c
AK
633 * Issues: when the error hit a hole page the error is not properly
634 * propagated.
635 */
636static int me_pagecache_dirty(struct page *p, unsigned long pfn)
637{
638 struct address_space *mapping = page_mapping(p);
639
640 SetPageError(p);
641 /* TBD: print more information about the file. */
642 if (mapping) {
643 /*
644 * IO error will be reported by write(), fsync(), etc.
645 * who check the mapping.
646 * This way the application knows that something went
647 * wrong with its dirty file data.
648 *
649 * There's one open issue:
650 *
651 * The EIO will be only reported on the next IO
652 * operation and then cleared through the IO map.
653 * Normally Linux has two mechanisms to pass IO error
654 * first through the AS_EIO flag in the address space
655 * and then through the PageError flag in the page.
656 * Since we drop pages on memory failure handling the
657 * only mechanism open to use is through AS_AIO.
658 *
659 * This has the disadvantage that it gets cleared on
660 * the first operation that returns an error, while
661 * the PageError bit is more sticky and only cleared
662 * when the page is reread or dropped. If an
663 * application assumes it will always get error on
664 * fsync, but does other operations on the fd before
25985edc 665 * and the page is dropped between then the error
6a46079c
AK
666 * will not be properly reported.
667 *
668 * This can already happen even without hwpoisoned
669 * pages: first on metadata IO errors (which only
670 * report through AS_EIO) or when the page is dropped
671 * at the wrong time.
672 *
673 * So right now we assume that the application DTRT on
674 * the first EIO, but we're not worse than other parts
675 * of the kernel.
676 */
677 mapping_set_error(mapping, EIO);
678 }
679
680 return me_pagecache_clean(p, pfn);
681}
682
683/*
684 * Clean and dirty swap cache.
685 *
686 * Dirty swap cache page is tricky to handle. The page could live both in page
687 * cache and swap cache(ie. page is freshly swapped in). So it could be
688 * referenced concurrently by 2 types of PTEs:
689 * normal PTEs and swap PTEs. We try to handle them consistently by calling
690 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
691 * and then
692 * - clear dirty bit to prevent IO
693 * - remove from LRU
694 * - but keep in the swap cache, so that when we return to it on
695 * a later page fault, we know the application is accessing
696 * corrupted data and shall be killed (we installed simple
697 * interception code in do_swap_page to catch it).
698 *
699 * Clean swap cache pages can be directly isolated. A later page fault will
700 * bring in the known good data from disk.
701 */
702static int me_swapcache_dirty(struct page *p, unsigned long pfn)
703{
6a46079c
AK
704 ClearPageDirty(p);
705 /* Trigger EIO in shmem: */
706 ClearPageUptodate(p);
707
dc2a1cbf 708 if (!delete_from_lru_cache(p))
cc637b17 709 return MF_DELAYED;
dc2a1cbf 710 else
cc637b17 711 return MF_FAILED;
6a46079c
AK
712}
713
714static int me_swapcache_clean(struct page *p, unsigned long pfn)
715{
6a46079c 716 delete_from_swap_cache(p);
e43c3afb 717
dc2a1cbf 718 if (!delete_from_lru_cache(p))
cc637b17 719 return MF_RECOVERED;
dc2a1cbf 720 else
cc637b17 721 return MF_FAILED;
6a46079c
AK
722}
723
724/*
725 * Huge pages. Needs work.
726 * Issues:
93f70f90
NH
727 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
728 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
729 */
730static int me_huge_page(struct page *p, unsigned long pfn)
731{
6de2b1aa 732 int res = 0;
93f70f90 733 struct page *hpage = compound_head(p);
2491ffee
NH
734
735 if (!PageHuge(hpage))
736 return MF_DELAYED;
737
93f70f90
NH
738 /*
739 * We can safely recover from error on free or reserved (i.e.
740 * not in-use) hugepage by dequeuing it from freelist.
741 * To check whether a hugepage is in-use or not, we can't use
742 * page->lru because it can be used in other hugepage operations,
743 * such as __unmap_hugepage_range() and gather_surplus_pages().
744 * So instead we use page_mapping() and PageAnon().
93f70f90
NH
745 */
746 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
747 res = dequeue_hwpoisoned_huge_page(hpage);
748 if (!res)
cc637b17 749 return MF_RECOVERED;
93f70f90 750 }
cc637b17 751 return MF_DELAYED;
6a46079c
AK
752}
753
754/*
755 * Various page states we can handle.
756 *
757 * A page state is defined by its current page->flags bits.
758 * The table matches them in order and calls the right handler.
759 *
760 * This is quite tricky because we can access page at any time
25985edc 761 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
762 *
763 * This is not complete. More states could be added.
764 * For any missing state don't attempt recovery.
765 */
766
767#define dirty (1UL << PG_dirty)
6326fec1 768#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
769#define unevict (1UL << PG_unevictable)
770#define mlock (1UL << PG_mlocked)
771#define writeback (1UL << PG_writeback)
772#define lru (1UL << PG_lru)
6a46079c 773#define head (1UL << PG_head)
6a46079c 774#define slab (1UL << PG_slab)
6a46079c
AK
775#define reserved (1UL << PG_reserved)
776
777static struct page_state {
778 unsigned long mask;
779 unsigned long res;
cc637b17 780 enum mf_action_page_type type;
6a46079c
AK
781 int (*action)(struct page *p, unsigned long pfn);
782} error_states[] = {
cc637b17 783 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
784 /*
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
787 */
6a46079c
AK
788
789 /*
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
793 */
cc637b17 794 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 795
cc637b17 796 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 797
cc637b17
XX
798 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
799 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 800
cc637b17
XX
801 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
802 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 803
cc637b17
XX
804 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
805 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 806
cc637b17
XX
807 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
808 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
809
810 /*
811 * Catchall entry: must be at end.
812 */
cc637b17 813 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
814};
815
2326c467
AK
816#undef dirty
817#undef sc
818#undef unevict
819#undef mlock
820#undef writeback
821#undef lru
2326c467 822#undef head
2326c467
AK
823#undef slab
824#undef reserved
825
ff604cf6
NH
826/*
827 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
828 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
829 */
cc3e2af4
XX
830static void action_result(unsigned long pfn, enum mf_action_page_type type,
831 enum mf_result result)
6a46079c 832{
97f0b134
XX
833 trace_memory_failure_event(pfn, type, result);
834
495367c0 835 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 836 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
837}
838
839static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 840 unsigned long pfn)
6a46079c
AK
841{
842 int result;
7456b040 843 int count;
6a46079c
AK
844
845 result = ps->action(p, pfn);
7456b040 846
bd1ce5f9 847 count = page_count(p) - 1;
cc637b17 848 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
849 count--;
850 if (count != 0) {
495367c0 851 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 852 pfn, action_page_types[ps->type], count);
cc637b17 853 result = MF_FAILED;
138ce286 854 }
64d37a2b 855 action_result(pfn, ps->type, result);
6a46079c
AK
856
857 /* Could do more checks here if page looks ok */
858 /*
859 * Could adjust zone counters here to correct for the missing page.
860 */
861
cc637b17 862 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
863}
864
ead07f6a
NH
865/**
866 * get_hwpoison_page() - Get refcount for memory error handling:
867 * @page: raw error page (hit by memory error)
868 *
869 * Return: return 0 if failed to grab the refcount, otherwise true (some
870 * non-zero value.)
871 */
872int get_hwpoison_page(struct page *page)
873{
874 struct page *head = compound_head(page);
875
4e41a30c 876 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
877 /*
878 * Non anonymous thp exists only in allocation/free time. We
879 * can't handle such a case correctly, so let's give it up.
880 * This should be better than triggering BUG_ON when kernel
881 * tries to touch the "partially handled" page.
882 */
883 if (!PageAnon(head)) {
495367c0 884 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
885 page_to_pfn(page));
886 return 0;
887 }
ead07f6a
NH
888 }
889
c2e7e00b
KK
890 if (get_page_unless_zero(head)) {
891 if (head == compound_head(page))
892 return 1;
893
495367c0
CY
894 pr_info("Memory failure: %#lx cannot catch tail\n",
895 page_to_pfn(page));
c2e7e00b
KK
896 put_page(head);
897 }
898
899 return 0;
ead07f6a
NH
900}
901EXPORT_SYMBOL_GPL(get_hwpoison_page);
902
6a46079c
AK
903/*
904 * Do all that is necessary to remove user space mappings. Unmap
905 * the pages and send SIGBUS to the processes if the data was dirty.
906 */
666e5a40 907static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 908 int trapno, int flags, struct page **hpagep)
6a46079c 909{
a128ca71 910 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
911 struct address_space *mapping;
912 LIST_HEAD(tokill);
666e5a40 913 bool unmap_success;
6751ed65 914 int kill = 1, forcekill;
54b9dd14 915 struct page *hpage = *hpagep;
6a46079c 916
93a9eb39
NH
917 /*
918 * Here we are interested only in user-mapped pages, so skip any
919 * other types of pages.
920 */
921 if (PageReserved(p) || PageSlab(p))
666e5a40 922 return true;
93a9eb39 923 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 924 return true;
6a46079c 925
6a46079c
AK
926 /*
927 * This check implies we don't kill processes if their pages
928 * are in the swap cache early. Those are always late kills.
929 */
7af446a8 930 if (!page_mapped(hpage))
666e5a40 931 return true;
1668bfd5 932
52089b14 933 if (PageKsm(p)) {
495367c0 934 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 935 return false;
52089b14 936 }
6a46079c
AK
937
938 if (PageSwapCache(p)) {
495367c0
CY
939 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
940 pfn);
6a46079c
AK
941 ttu |= TTU_IGNORE_HWPOISON;
942 }
943
944 /*
945 * Propagate the dirty bit from PTEs to struct page first, because we
946 * need this to decide if we should kill or just drop the page.
db0480b3
WF
947 * XXX: the dirty test could be racy: set_page_dirty() may not always
948 * be called inside page lock (it's recommended but not enforced).
6a46079c 949 */
7af446a8 950 mapping = page_mapping(hpage);
6751ed65 951 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
952 mapping_cap_writeback_dirty(mapping)) {
953 if (page_mkclean(hpage)) {
954 SetPageDirty(hpage);
6a46079c
AK
955 } else {
956 kill = 0;
957 ttu |= TTU_IGNORE_HWPOISON;
495367c0 958 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
959 pfn);
960 }
961 }
962
963 /*
964 * First collect all the processes that have the page
965 * mapped in dirty form. This has to be done before try_to_unmap,
966 * because ttu takes the rmap data structures down.
967 *
968 * Error handling: We ignore errors here because
969 * there's nothing that can be done.
970 */
971 if (kill)
415c64c1 972 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 973
666e5a40
MK
974 unmap_success = try_to_unmap(hpage, ttu);
975 if (!unmap_success)
495367c0 976 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 977 pfn, page_mapcount(hpage));
a6d30ddd 978
6a46079c
AK
979 /*
980 * Now that the dirty bit has been propagated to the
981 * struct page and all unmaps done we can decide if
982 * killing is needed or not. Only kill when the page
6751ed65
TL
983 * was dirty or the process is not restartable,
984 * otherwise the tokill list is merely
6a46079c
AK
985 * freed. When there was a problem unmapping earlier
986 * use a more force-full uncatchable kill to prevent
987 * any accesses to the poisoned memory.
988 */
415c64c1 989 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
666e5a40 990 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1668bfd5 991
666e5a40 992 return unmap_success;
6a46079c
AK
993}
994
7013febc
NH
995static void set_page_hwpoison_huge_page(struct page *hpage)
996{
997 int i;
f9121153 998 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
999 for (i = 0; i < nr_pages; i++)
1000 SetPageHWPoison(hpage + i);
1001}
1002
1003static void clear_page_hwpoison_huge_page(struct page *hpage)
1004{
1005 int i;
f9121153 1006 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1007 for (i = 0; i < nr_pages; i++)
1008 ClearPageHWPoison(hpage + i);
1009}
1010
cd42f4a3
TL
1011/**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1030{
1031 struct page_state *ps;
1032 struct page *p;
7af446a8 1033 struct page *hpage;
415c64c1 1034 struct page *orig_head;
6a46079c 1035 int res;
c9fbdd5f 1036 unsigned int nr_pages;
524fca1e 1037 unsigned long page_flags;
6a46079c
AK
1038
1039 if (!sysctl_memory_failure_recovery)
1040 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042 if (!pfn_valid(pfn)) {
495367c0
CY
1043 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1044 pfn);
a7560fc8 1045 return -ENXIO;
6a46079c
AK
1046 }
1047
1048 p = pfn_to_page(pfn);
415c64c1 1049 orig_head = hpage = compound_head(p);
6a46079c 1050 if (TestSetPageHWPoison(p)) {
495367c0
CY
1051 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 pfn);
6a46079c
AK
1053 return 0;
1054 }
1055
4db0e950
NH
1056 /*
1057 * Currently errors on hugetlbfs pages are measured in hugepage units,
1058 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1059 * transparent hugepages, they are supposed to be split and error
1060 * measurement is done in normal page units. So nr_pages should be one
1061 * in this case.
1062 */
1063 if (PageHuge(p))
1064 nr_pages = 1 << compound_order(hpage);
1065 else /* normal page or thp */
1066 nr_pages = 1;
8e30456b 1067 num_poisoned_pages_add(nr_pages);
6a46079c
AK
1068
1069 /*
1070 * We need/can do nothing about count=0 pages.
1071 * 1) it's a free page, and therefore in safe hand:
1072 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1073 * 2) it's a free hugepage, which is also safe:
1074 * an affected hugepage will be dequeued from hugepage freelist,
1075 * so there's no concern about reusing it ever after.
1076 * 3) it's part of a non-compound high order page.
6a46079c
AK
1077 * Implies some kernel user: cannot stop them from
1078 * R/W the page; let's pray that the page has been
1079 * used and will be freed some time later.
1080 * In fact it's dangerous to directly bump up page count from 0,
1081 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1082 */
ead07f6a 1083 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1084 if (is_free_buddy_page(p)) {
cc637b17 1085 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1086 return 0;
8c6c2ecb
NH
1087 } else if (PageHuge(hpage)) {
1088 /*
b985194c 1089 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1090 */
7eaceacc 1091 lock_page(hpage);
b985194c
CY
1092 if (PageHWPoison(hpage)) {
1093 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094 || (p != hpage && TestSetPageHWPoison(hpage))) {
8e30456b 1095 num_poisoned_pages_sub(nr_pages);
b985194c
CY
1096 unlock_page(hpage);
1097 return 0;
1098 }
8c6c2ecb
NH
1099 }
1100 set_page_hwpoison_huge_page(hpage);
1101 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1102 action_result(pfn, MF_MSG_FREE_HUGE,
1103 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1104 unlock_page(hpage);
1105 return res;
8d22ba1b 1106 } else {
cc637b17 1107 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1108 return -EBUSY;
1109 }
6a46079c
AK
1110 }
1111
415c64c1 1112 if (!PageHuge(p) && PageTransHuge(hpage)) {
c3901e72
NH
1113 lock_page(p);
1114 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1115 unlock_page(p);
1116 if (!PageAnon(p))
495367c0
CY
1117 pr_err("Memory failure: %#lx: non anonymous thp\n",
1118 pfn);
7f6bf39b 1119 else
495367c0
CY
1120 pr_err("Memory failure: %#lx: thp split failed\n",
1121 pfn);
ead07f6a 1122 if (TestClearPageHWPoison(p))
8e30456b 1123 num_poisoned_pages_sub(nr_pages);
665d9da7 1124 put_hwpoison_page(p);
415c64c1
NH
1125 return -EBUSY;
1126 }
c3901e72 1127 unlock_page(p);
415c64c1
NH
1128 VM_BUG_ON_PAGE(!page_count(p), p);
1129 hpage = compound_head(p);
1130 }
1131
e43c3afb
WF
1132 /*
1133 * We ignore non-LRU pages for good reasons.
1134 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1135 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1136 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1137 * The check (unnecessarily) ignores LRU pages being isolated and
1138 * walked by the page reclaim code, however that's not a big loss.
1139 */
09789e5d 1140 if (!PageHuge(p)) {
415c64c1
NH
1141 if (!PageLRU(p))
1142 shake_page(p, 0);
1143 if (!PageLRU(p)) {
af241a08
JD
1144 /*
1145 * shake_page could have turned it free.
1146 */
1147 if (is_free_buddy_page(p)) {
2d421acd 1148 if (flags & MF_COUNT_INCREASED)
cc637b17 1149 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1150 else
cc637b17
XX
1151 action_result(pfn, MF_MSG_BUDDY_2ND,
1152 MF_DELAYED);
af241a08
JD
1153 return 0;
1154 }
0474a60e 1155 }
e43c3afb 1156 }
e43c3afb 1157
7eaceacc 1158 lock_page(hpage);
847ce401 1159
f37d4298
AK
1160 /*
1161 * The page could have changed compound pages during the locking.
1162 * If this happens just bail out.
1163 */
415c64c1 1164 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1165 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1166 res = -EBUSY;
1167 goto out;
1168 }
1169
524fca1e
NH
1170 /*
1171 * We use page flags to determine what action should be taken, but
1172 * the flags can be modified by the error containment action. One
1173 * example is an mlocked page, where PG_mlocked is cleared by
1174 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1175 * correctly, we save a copy of the page flags at this time.
1176 */
1177 page_flags = p->flags;
1178
847ce401
WF
1179 /*
1180 * unpoison always clear PG_hwpoison inside page lock
1181 */
1182 if (!PageHWPoison(p)) {
495367c0 1183 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
8e30456b 1184 num_poisoned_pages_sub(nr_pages);
a09233f3 1185 unlock_page(hpage);
665d9da7 1186 put_hwpoison_page(hpage);
a09233f3 1187 return 0;
847ce401 1188 }
7c116f2b
WF
1189 if (hwpoison_filter(p)) {
1190 if (TestClearPageHWPoison(p))
8e30456b 1191 num_poisoned_pages_sub(nr_pages);
7af446a8 1192 unlock_page(hpage);
665d9da7 1193 put_hwpoison_page(hpage);
7c116f2b
WF
1194 return 0;
1195 }
847ce401 1196
0bc1f8b0
CY
1197 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1198 goto identify_page_state;
1199
7013febc
NH
1200 /*
1201 * For error on the tail page, we should set PG_hwpoison
1202 * on the head page to show that the hugepage is hwpoisoned
1203 */
a6d30ddd 1204 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1205 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc 1206 unlock_page(hpage);
665d9da7 1207 put_hwpoison_page(hpage);
7013febc
NH
1208 return 0;
1209 }
1210 /*
1211 * Set PG_hwpoison on all pages in an error hugepage,
1212 * because containment is done in hugepage unit for now.
1213 * Since we have done TestSetPageHWPoison() for the head page with
1214 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1215 */
1216 if (PageHuge(p))
1217 set_page_hwpoison_huge_page(hpage);
1218
6edd6cc6
NH
1219 /*
1220 * It's very difficult to mess with pages currently under IO
1221 * and in many cases impossible, so we just avoid it here.
1222 */
6a46079c
AK
1223 wait_on_page_writeback(p);
1224
1225 /*
1226 * Now take care of user space mappings.
e64a782f 1227 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1228 *
1229 * When the raw error page is thp tail page, hpage points to the raw
1230 * page after thp split.
6a46079c 1231 */
666e5a40 1232 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
cc637b17 1233 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1234 res = -EBUSY;
1235 goto out;
1236 }
6a46079c
AK
1237
1238 /*
1239 * Torn down by someone else?
1240 */
dc2a1cbf 1241 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1242 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1243 res = -EBUSY;
6a46079c
AK
1244 goto out;
1245 }
1246
0bc1f8b0 1247identify_page_state:
6a46079c 1248 res = -EBUSY;
524fca1e
NH
1249 /*
1250 * The first check uses the current page flags which may not have any
1251 * relevant information. The second check with the saved page flagss is
1252 * carried out only if the first check can't determine the page status.
1253 */
1254 for (ps = error_states;; ps++)
1255 if ((p->flags & ps->mask) == ps->res)
6a46079c 1256 break;
841fcc58
WL
1257
1258 page_flags |= (p->flags & (1UL << PG_dirty));
1259
524fca1e
NH
1260 if (!ps->mask)
1261 for (ps = error_states;; ps++)
1262 if ((page_flags & ps->mask) == ps->res)
1263 break;
1264 res = page_action(ps, p, pfn);
6a46079c 1265out:
7af446a8 1266 unlock_page(hpage);
6a46079c
AK
1267 return res;
1268}
cd42f4a3 1269EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1270
ea8f5fb8
HY
1271#define MEMORY_FAILURE_FIFO_ORDER 4
1272#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1273
1274struct memory_failure_entry {
1275 unsigned long pfn;
1276 int trapno;
1277 int flags;
1278};
1279
1280struct memory_failure_cpu {
1281 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1282 MEMORY_FAILURE_FIFO_SIZE);
1283 spinlock_t lock;
1284 struct work_struct work;
1285};
1286
1287static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1288
1289/**
1290 * memory_failure_queue - Schedule handling memory failure of a page.
1291 * @pfn: Page Number of the corrupted page
1292 * @trapno: Trap number reported in the signal to user space.
1293 * @flags: Flags for memory failure handling
1294 *
1295 * This function is called by the low level hardware error handler
1296 * when it detects hardware memory corruption of a page. It schedules
1297 * the recovering of error page, including dropping pages, killing
1298 * processes etc.
1299 *
1300 * The function is primarily of use for corruptions that
1301 * happen outside the current execution context (e.g. when
1302 * detected by a background scrubber)
1303 *
1304 * Can run in IRQ context.
1305 */
1306void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1307{
1308 struct memory_failure_cpu *mf_cpu;
1309 unsigned long proc_flags;
1310 struct memory_failure_entry entry = {
1311 .pfn = pfn,
1312 .trapno = trapno,
1313 .flags = flags,
1314 };
1315
1316 mf_cpu = &get_cpu_var(memory_failure_cpu);
1317 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1318 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1319 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1320 else
8e33a52f 1321 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1322 pfn);
1323 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1324 put_cpu_var(memory_failure_cpu);
1325}
1326EXPORT_SYMBOL_GPL(memory_failure_queue);
1327
1328static void memory_failure_work_func(struct work_struct *work)
1329{
1330 struct memory_failure_cpu *mf_cpu;
1331 struct memory_failure_entry entry = { 0, };
1332 unsigned long proc_flags;
1333 int gotten;
1334
7c8e0181 1335 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1336 for (;;) {
1337 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1338 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1339 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1340 if (!gotten)
1341 break;
cf870c70
NR
1342 if (entry.flags & MF_SOFT_OFFLINE)
1343 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1344 else
1345 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1346 }
1347}
1348
1349static int __init memory_failure_init(void)
1350{
1351 struct memory_failure_cpu *mf_cpu;
1352 int cpu;
1353
1354 for_each_possible_cpu(cpu) {
1355 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1356 spin_lock_init(&mf_cpu->lock);
1357 INIT_KFIFO(mf_cpu->fifo);
1358 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1359 }
1360
1361 return 0;
1362}
1363core_initcall(memory_failure_init);
1364
a5f65109
NH
1365#define unpoison_pr_info(fmt, pfn, rs) \
1366({ \
1367 if (__ratelimit(rs)) \
1368 pr_info(fmt, pfn); \
1369})
1370
847ce401
WF
1371/**
1372 * unpoison_memory - Unpoison a previously poisoned page
1373 * @pfn: Page number of the to be unpoisoned page
1374 *
1375 * Software-unpoison a page that has been poisoned by
1376 * memory_failure() earlier.
1377 *
1378 * This is only done on the software-level, so it only works
1379 * for linux injected failures, not real hardware failures
1380 *
1381 * Returns 0 for success, otherwise -errno.
1382 */
1383int unpoison_memory(unsigned long pfn)
1384{
1385 struct page *page;
1386 struct page *p;
1387 int freeit = 0;
c9fbdd5f 1388 unsigned int nr_pages;
a5f65109
NH
1389 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1390 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1391
1392 if (!pfn_valid(pfn))
1393 return -ENXIO;
1394
1395 p = pfn_to_page(pfn);
1396 page = compound_head(p);
1397
1398 if (!PageHWPoison(p)) {
495367c0 1399 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1400 pfn, &unpoison_rs);
847ce401
WF
1401 return 0;
1402 }
1403
230ac719 1404 if (page_count(page) > 1) {
495367c0 1405 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1406 pfn, &unpoison_rs);
230ac719
NH
1407 return 0;
1408 }
1409
1410 if (page_mapped(page)) {
495367c0 1411 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1412 pfn, &unpoison_rs);
230ac719
NH
1413 return 0;
1414 }
1415
1416 if (page_mapping(page)) {
495367c0 1417 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1418 pfn, &unpoison_rs);
230ac719
NH
1419 return 0;
1420 }
1421
0cea3fdc
WL
1422 /*
1423 * unpoison_memory() can encounter thp only when the thp is being
1424 * worked by memory_failure() and the page lock is not held yet.
1425 * In such case, we yield to memory_failure() and make unpoison fail.
1426 */
e76d30e2 1427 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1428 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1429 pfn, &unpoison_rs);
ead07f6a 1430 return 0;
0cea3fdc
WL
1431 }
1432
f9121153 1433 nr_pages = 1 << compound_order(page);
c9fbdd5f 1434
ead07f6a 1435 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1436 /*
1437 * Since HWPoisoned hugepage should have non-zero refcount,
1438 * race between memory failure and unpoison seems to happen.
1439 * In such case unpoison fails and memory failure runs
1440 * to the end.
1441 */
1442 if (PageHuge(page)) {
495367c0 1443 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
a5f65109 1444 pfn, &unpoison_rs);
8c6c2ecb
NH
1445 return 0;
1446 }
847ce401 1447 if (TestClearPageHWPoison(p))
8e30456b 1448 num_poisoned_pages_dec();
495367c0 1449 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1450 pfn, &unpoison_rs);
847ce401
WF
1451 return 0;
1452 }
1453
7eaceacc 1454 lock_page(page);
847ce401
WF
1455 /*
1456 * This test is racy because PG_hwpoison is set outside of page lock.
1457 * That's acceptable because that won't trigger kernel panic. Instead,
1458 * the PG_hwpoison page will be caught and isolated on the entrance to
1459 * the free buddy page pool.
1460 */
c9fbdd5f 1461 if (TestClearPageHWPoison(page)) {
495367c0 1462 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1463 pfn, &unpoison_rs);
8e30456b 1464 num_poisoned_pages_sub(nr_pages);
847ce401 1465 freeit = 1;
6a90181c
NH
1466 if (PageHuge(page))
1467 clear_page_hwpoison_huge_page(page);
847ce401
WF
1468 }
1469 unlock_page(page);
1470
665d9da7 1471 put_hwpoison_page(page);
3ba5eebc 1472 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1473 put_hwpoison_page(page);
847ce401
WF
1474
1475 return 0;
1476}
1477EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1478
1479static struct page *new_page(struct page *p, unsigned long private, int **x)
1480{
12686d15 1481 int nid = page_to_nid(p);
d950b958
NH
1482 if (PageHuge(p))
1483 return alloc_huge_page_node(page_hstate(compound_head(p)),
1484 nid);
1485 else
96db800f 1486 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1487}
1488
1489/*
1490 * Safely get reference count of an arbitrary page.
1491 * Returns 0 for a free page, -EIO for a zero refcount page
1492 * that is not free, and 1 for any other page type.
1493 * For 1 the page is returned with increased page count, otherwise not.
1494 */
af8fae7c 1495static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1496{
1497 int ret;
1498
1499 if (flags & MF_COUNT_INCREASED)
1500 return 1;
1501
d950b958
NH
1502 /*
1503 * When the target page is a free hugepage, just remove it
1504 * from free hugepage list.
1505 */
ead07f6a 1506 if (!get_hwpoison_page(p)) {
d950b958 1507 if (PageHuge(p)) {
71dd0b8a 1508 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1509 ret = 0;
d950b958 1510 } else if (is_free_buddy_page(p)) {
71dd0b8a 1511 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1512 ret = 0;
1513 } else {
71dd0b8a
BP
1514 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1515 __func__, pfn, p->flags);
facb6011
AK
1516 ret = -EIO;
1517 }
1518 } else {
1519 /* Not a free page */
1520 ret = 1;
1521 }
facb6011
AK
1522 return ret;
1523}
1524
af8fae7c
NH
1525static int get_any_page(struct page *page, unsigned long pfn, int flags)
1526{
1527 int ret = __get_any_page(page, pfn, flags);
1528
85fbe5d1
YX
1529 if (ret == 1 && !PageHuge(page) &&
1530 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1531 /*
1532 * Try to free it.
1533 */
665d9da7 1534 put_hwpoison_page(page);
af8fae7c
NH
1535 shake_page(page, 1);
1536
1537 /*
1538 * Did it turn free?
1539 */
1540 ret = __get_any_page(page, pfn, 0);
d96b339f 1541 if (ret == 1 && !PageLRU(page)) {
4f32be67 1542 /* Drop page reference which is from __get_any_page() */
665d9da7 1543 put_hwpoison_page(page);
af8fae7c
NH
1544 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1545 pfn, page->flags);
1546 return -EIO;
1547 }
1548 }
1549 return ret;
1550}
1551
d950b958
NH
1552static int soft_offline_huge_page(struct page *page, int flags)
1553{
1554 int ret;
1555 unsigned long pfn = page_to_pfn(page);
1556 struct page *hpage = compound_head(page);
b8ec1cee 1557 LIST_HEAD(pagelist);
d950b958 1558
af8fae7c
NH
1559 /*
1560 * This double-check of PageHWPoison is to avoid the race with
1561 * memory_failure(). See also comment in __soft_offline_page().
1562 */
1563 lock_page(hpage);
0ebff32c 1564 if (PageHWPoison(hpage)) {
af8fae7c 1565 unlock_page(hpage);
665d9da7 1566 put_hwpoison_page(hpage);
0ebff32c 1567 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1568 return -EBUSY;
0ebff32c 1569 }
af8fae7c 1570 unlock_page(hpage);
d950b958 1571
bcc54222 1572 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1573 /*
1574 * get_any_page() and isolate_huge_page() takes a refcount each,
1575 * so need to drop one here.
1576 */
665d9da7 1577 put_hwpoison_page(hpage);
03613808 1578 if (!ret) {
bcc54222
NH
1579 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1580 return -EBUSY;
1581 }
1582
68711a74 1583 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1584 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1585 if (ret) {
dd73e85f
DN
1586 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1587 pfn, ret, page->flags);
b8ec1cee
NH
1588 /*
1589 * We know that soft_offline_huge_page() tries to migrate
1590 * only one hugepage pointed to by hpage, so we need not
1591 * run through the pagelist here.
1592 */
1593 putback_active_hugepage(hpage);
1594 if (ret > 0)
1595 ret = -EIO;
af8fae7c 1596 } else {
a49ecbcd
JW
1597 /* overcommit hugetlb page will be freed to buddy */
1598 if (PageHuge(page)) {
1599 set_page_hwpoison_huge_page(hpage);
1600 dequeue_hwpoisoned_huge_page(hpage);
8e30456b 1601 num_poisoned_pages_add(1 << compound_order(hpage));
a49ecbcd
JW
1602 } else {
1603 SetPageHWPoison(page);
8e30456b 1604 num_poisoned_pages_inc();
a49ecbcd 1605 }
d950b958 1606 }
d950b958
NH
1607 return ret;
1608}
1609
af8fae7c
NH
1610static int __soft_offline_page(struct page *page, int flags)
1611{
1612 int ret;
1613 unsigned long pfn = page_to_pfn(page);
facb6011 1614
facb6011 1615 /*
af8fae7c
NH
1616 * Check PageHWPoison again inside page lock because PageHWPoison
1617 * is set by memory_failure() outside page lock. Note that
1618 * memory_failure() also double-checks PageHWPoison inside page lock,
1619 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1620 */
0ebff32c
XQ
1621 lock_page(page);
1622 wait_on_page_writeback(page);
af8fae7c
NH
1623 if (PageHWPoison(page)) {
1624 unlock_page(page);
665d9da7 1625 put_hwpoison_page(page);
af8fae7c
NH
1626 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1627 return -EBUSY;
1628 }
facb6011
AK
1629 /*
1630 * Try to invalidate first. This should work for
1631 * non dirty unmapped page cache pages.
1632 */
1633 ret = invalidate_inode_page(page);
1634 unlock_page(page);
facb6011 1635 /*
facb6011
AK
1636 * RED-PEN would be better to keep it isolated here, but we
1637 * would need to fix isolation locking first.
1638 */
facb6011 1639 if (ret == 1) {
665d9da7 1640 put_hwpoison_page(page);
fb46e735 1641 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1642 SetPageHWPoison(page);
8e30456b 1643 num_poisoned_pages_inc();
af8fae7c 1644 return 0;
facb6011
AK
1645 }
1646
1647 /*
1648 * Simple invalidation didn't work.
1649 * Try to migrate to a new page instead. migrate.c
1650 * handles a large number of cases for us.
1651 */
85fbe5d1
YX
1652 if (PageLRU(page))
1653 ret = isolate_lru_page(page);
1654 else
1655 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1656 /*
1657 * Drop page reference which is came from get_any_page()
1658 * successful isolate_lru_page() already took another one.
1659 */
665d9da7 1660 put_hwpoison_page(page);
facb6011
AK
1661 if (!ret) {
1662 LIST_HEAD(pagelist);
85fbe5d1
YX
1663 /*
1664 * After isolated lru page, the PageLRU will be cleared,
1665 * so use !__PageMovable instead for LRU page's mapping
1666 * cannot have PAGE_MAPPING_MOVABLE.
1667 */
1668 if (!__PageMovable(page))
1669 inc_node_page_state(page, NR_ISOLATED_ANON +
1670 page_is_file_cache(page));
facb6011 1671 list_add(&page->lru, &pagelist);
68711a74 1672 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1673 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1674 if (ret) {
85fbe5d1
YX
1675 if (!list_empty(&pagelist))
1676 putback_movable_pages(&pagelist);
59c82b70 1677
fb46e735 1678 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1679 pfn, ret, page->flags);
1680 if (ret > 0)
1681 ret = -EIO;
1682 }
1683 } else {
fb46e735 1684 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1685 pfn, ret, page_count(page), page->flags);
facb6011 1686 }
facb6011
AK
1687 return ret;
1688}
86e05773 1689
acc14dc4
NH
1690static int soft_offline_in_use_page(struct page *page, int flags)
1691{
1692 int ret;
1693 struct page *hpage = compound_head(page);
1694
1695 if (!PageHuge(page) && PageTransHuge(hpage)) {
1696 lock_page(hpage);
98fd1ef4
NH
1697 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1698 unlock_page(hpage);
1699 if (!PageAnon(hpage))
1700 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1701 else
1702 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1703 put_hwpoison_page(hpage);
acc14dc4
NH
1704 return -EBUSY;
1705 }
98fd1ef4 1706 unlock_page(hpage);
acc14dc4
NH
1707 get_hwpoison_page(page);
1708 put_hwpoison_page(hpage);
1709 }
1710
1711 if (PageHuge(page))
1712 ret = soft_offline_huge_page(page, flags);
1713 else
1714 ret = __soft_offline_page(page, flags);
1715
1716 return ret;
1717}
1718
1719static void soft_offline_free_page(struct page *page)
1720{
1721 if (PageHuge(page)) {
1722 struct page *hpage = compound_head(page);
1723
1724 set_page_hwpoison_huge_page(hpage);
1725 if (!dequeue_hwpoisoned_huge_page(hpage))
1726 num_poisoned_pages_add(1 << compound_order(hpage));
1727 } else {
1728 if (!TestSetPageHWPoison(page))
1729 num_poisoned_pages_inc();
1730 }
1731}
1732
86e05773
WL
1733/**
1734 * soft_offline_page - Soft offline a page.
1735 * @page: page to offline
1736 * @flags: flags. Same as memory_failure().
1737 *
1738 * Returns 0 on success, otherwise negated errno.
1739 *
1740 * Soft offline a page, by migration or invalidation,
1741 * without killing anything. This is for the case when
1742 * a page is not corrupted yet (so it's still valid to access),
1743 * but has had a number of corrected errors and is better taken
1744 * out.
1745 *
1746 * The actual policy on when to do that is maintained by
1747 * user space.
1748 *
1749 * This should never impact any application or cause data loss,
1750 * however it might take some time.
1751 *
1752 * This is not a 100% solution for all memory, but tries to be
1753 * ``good enough'' for the majority of memory.
1754 */
1755int soft_offline_page(struct page *page, int flags)
1756{
1757 int ret;
1758 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1759
1760 if (PageHWPoison(page)) {
1761 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1762 if (flags & MF_COUNT_INCREASED)
665d9da7 1763 put_hwpoison_page(page);
86e05773
WL
1764 return -EBUSY;
1765 }
86e05773 1766
bfc8c901 1767 get_online_mems();
86e05773 1768 ret = get_any_page(page, pfn, flags);
bfc8c901 1769 put_online_mems();
4e41a30c 1770
acc14dc4
NH
1771 if (ret > 0)
1772 ret = soft_offline_in_use_page(page, flags);
1773 else if (ret == 0)
1774 soft_offline_free_page(page);
4e41a30c 1775
86e05773
WL
1776 return ret;
1777}