]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory-failure.c
mm: hwpoison: introduce memory_failure_hugetlb()
[mirror_ubuntu-jammy-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
facb6011 52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
7329bbeb
TL
181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
495367c0
CY
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
6a46079c
AK
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
6a46079c
AK
191 si.si_addr = (void *)addr;
192#ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194#endif
f9121153 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 196
a70ffcac 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 198 si.si_code = BUS_MCEERR_AR;
a70ffcac 199 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
6a46079c 210 if (ret < 0)
495367c0 211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 212 t->comm, t->pid, ret);
6a46079c
AK
213 return ret;
214}
215
588f9ce6
AK
216/*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
facb6011 220void shake_page(struct page *p, int access)
588f9ce6 221{
8bcb74de
NH
222 if (PageHuge(p))
223 return;
224
588f9ce6
AK
225 if (!PageSlab(p)) {
226 lru_add_drain_all();
227 if (PageLRU(p))
228 return;
c0554329 229 drain_all_pages(page_zone(p));
588f9ce6
AK
230 if (PageLRU(p) || is_free_buddy_page(p))
231 return;
232 }
facb6011 233
588f9ce6 234 /*
6b4f7799
JW
235 * Only call shrink_node_slabs here (which would also shrink
236 * other caches) if access is not potentially fatal.
588f9ce6 237 */
cb731d6c
VD
238 if (access)
239 drop_slab_node(page_to_nid(p));
588f9ce6
AK
240}
241EXPORT_SYMBOL_GPL(shake_page);
242
6a46079c
AK
243/*
244 * Kill all processes that have a poisoned page mapped and then isolate
245 * the page.
246 *
247 * General strategy:
248 * Find all processes having the page mapped and kill them.
249 * But we keep a page reference around so that the page is not
250 * actually freed yet.
251 * Then stash the page away
252 *
253 * There's no convenient way to get back to mapped processes
254 * from the VMAs. So do a brute-force search over all
255 * running processes.
256 *
257 * Remember that machine checks are not common (or rather
258 * if they are common you have other problems), so this shouldn't
259 * be a performance issue.
260 *
261 * Also there are some races possible while we get from the
262 * error detection to actually handle it.
263 */
264
265struct to_kill {
266 struct list_head nd;
267 struct task_struct *tsk;
268 unsigned long addr;
9033ae16 269 char addr_valid;
6a46079c
AK
270};
271
272/*
273 * Failure handling: if we can't find or can't kill a process there's
274 * not much we can do. We just print a message and ignore otherwise.
275 */
276
277/*
278 * Schedule a process for later kill.
279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280 * TBD would GFP_NOIO be enough?
281 */
282static void add_to_kill(struct task_struct *tsk, struct page *p,
283 struct vm_area_struct *vma,
284 struct list_head *to_kill,
285 struct to_kill **tkc)
286{
287 struct to_kill *tk;
288
289 if (*tkc) {
290 tk = *tkc;
291 *tkc = NULL;
292 } else {
293 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 if (!tk) {
495367c0 295 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
296 return;
297 }
298 }
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
301
302 /*
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
307 */
308 if (tk->addr == -EFAULT) {
495367c0 309 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
312 }
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
316}
317
318/*
319 * Kill the processes that have been collected earlier.
320 *
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
325 */
6751ed65 326static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
666e5a40 327 bool fail, struct page *page, unsigned long pfn,
7329bbeb 328 int flags)
6a46079c
AK
329{
330 struct to_kill *tk, *next;
331
332 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 333 if (forcekill) {
6a46079c 334 /*
af901ca1 335 * In case something went wrong with munmapping
6a46079c
AK
336 * make sure the process doesn't catch the
337 * signal and then access the memory. Just kill it.
6a46079c
AK
338 */
339 if (fail || tk->addr_valid == 0) {
495367c0 340 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 341 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
7329bbeb
TL
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
495367c0 353 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 354 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
355 }
356 put_task_struct(tk->tsk);
357 kfree(tk);
358 }
359}
360
3ba08129
NH
361/*
362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363 * on behalf of the thread group. Return task_struct of the (first found)
364 * dedicated thread if found, and return NULL otherwise.
365 *
366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367 * have to call rcu_read_lock/unlock() in this function.
368 */
369static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 370{
3ba08129
NH
371 struct task_struct *t;
372
373 for_each_thread(tsk, t)
374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 return t;
376 return NULL;
377}
378
379/*
380 * Determine whether a given process is "early kill" process which expects
381 * to be signaled when some page under the process is hwpoisoned.
382 * Return task_struct of the dedicated thread (main thread unless explicitly
383 * specified) if the process is "early kill," and otherwise returns NULL.
384 */
385static struct task_struct *task_early_kill(struct task_struct *tsk,
386 int force_early)
387{
388 struct task_struct *t;
6a46079c 389 if (!tsk->mm)
3ba08129 390 return NULL;
74614de1 391 if (force_early)
3ba08129
NH
392 return tsk;
393 t = find_early_kill_thread(tsk);
394 if (t)
395 return t;
396 if (sysctl_memory_failure_early_kill)
397 return tsk;
398 return NULL;
6a46079c
AK
399}
400
401/*
402 * Collect processes when the error hit an anonymous page.
403 */
404static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 405 struct to_kill **tkc, int force_early)
6a46079c
AK
406{
407 struct vm_area_struct *vma;
408 struct task_struct *tsk;
409 struct anon_vma *av;
bf181b9f 410 pgoff_t pgoff;
6a46079c 411
4fc3f1d6 412 av = page_lock_anon_vma_read(page);
6a46079c 413 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
414 return;
415
a0f7a756 416 pgoff = page_to_pgoff(page);
9b679320 417 read_lock(&tasklist_lock);
6a46079c 418 for_each_process (tsk) {
5beb4930 419 struct anon_vma_chain *vmac;
3ba08129 420 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 421
3ba08129 422 if (!t)
6a46079c 423 continue;
bf181b9f
ML
424 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 pgoff, pgoff) {
5beb4930 426 vma = vmac->vma;
6a46079c
AK
427 if (!page_mapped_in_vma(page, vma))
428 continue;
3ba08129
NH
429 if (vma->vm_mm == t->mm)
430 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
431 }
432 }
6a46079c 433 read_unlock(&tasklist_lock);
4fc3f1d6 434 page_unlock_anon_vma_read(av);
6a46079c
AK
435}
436
437/*
438 * Collect processes when the error hit a file mapped page.
439 */
440static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 441 struct to_kill **tkc, int force_early)
6a46079c
AK
442{
443 struct vm_area_struct *vma;
444 struct task_struct *tsk;
6a46079c
AK
445 struct address_space *mapping = page->mapping;
446
d28eb9c8 447 i_mmap_lock_read(mapping);
9b679320 448 read_lock(&tasklist_lock);
6a46079c 449 for_each_process(tsk) {
a0f7a756 450 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 451 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 452
3ba08129 453 if (!t)
6a46079c 454 continue;
6b2dbba8 455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
456 pgoff) {
457 /*
458 * Send early kill signal to tasks where a vma covers
459 * the page but the corrupted page is not necessarily
460 * mapped it in its pte.
461 * Assume applications who requested early kill want
462 * to be informed of all such data corruptions.
463 */
3ba08129
NH
464 if (vma->vm_mm == t->mm)
465 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
466 }
467 }
6a46079c 468 read_unlock(&tasklist_lock);
d28eb9c8 469 i_mmap_unlock_read(mapping);
6a46079c
AK
470}
471
472/*
473 * Collect the processes who have the corrupted page mapped to kill.
474 * This is done in two steps for locking reasons.
475 * First preallocate one tokill structure outside the spin locks,
476 * so that we can kill at least one process reasonably reliable.
477 */
74614de1
TL
478static void collect_procs(struct page *page, struct list_head *tokill,
479 int force_early)
6a46079c
AK
480{
481 struct to_kill *tk;
482
483 if (!page->mapping)
484 return;
485
486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 if (!tk)
488 return;
489 if (PageAnon(page))
74614de1 490 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 491 else
74614de1 492 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
493 kfree(tk);
494}
495
6a46079c 496static const char *action_name[] = {
cc637b17
XX
497 [MF_IGNORED] = "Ignored",
498 [MF_FAILED] = "Failed",
499 [MF_DELAYED] = "Delayed",
500 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
501};
502
503static const char * const action_page_types[] = {
cc637b17
XX
504 [MF_MSG_KERNEL] = "reserved kernel page",
505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
506 [MF_MSG_SLAB] = "kernel slab page",
507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
509 [MF_MSG_HUGE] = "huge page",
510 [MF_MSG_FREE_HUGE] = "free huge page",
511 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
512 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
513 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
514 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
515 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
516 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
517 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
518 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
519 [MF_MSG_CLEAN_LRU] = "clean LRU page",
520 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
521 [MF_MSG_BUDDY] = "free buddy page",
522 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
523 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
524};
525
dc2a1cbf
WF
526/*
527 * XXX: It is possible that a page is isolated from LRU cache,
528 * and then kept in swap cache or failed to remove from page cache.
529 * The page count will stop it from being freed by unpoison.
530 * Stress tests should be aware of this memory leak problem.
531 */
532static int delete_from_lru_cache(struct page *p)
533{
534 if (!isolate_lru_page(p)) {
535 /*
536 * Clear sensible page flags, so that the buddy system won't
537 * complain when the page is unpoison-and-freed.
538 */
539 ClearPageActive(p);
540 ClearPageUnevictable(p);
18365225
MH
541
542 /*
543 * Poisoned page might never drop its ref count to 0 so we have
544 * to uncharge it manually from its memcg.
545 */
546 mem_cgroup_uncharge(p);
547
dc2a1cbf
WF
548 /*
549 * drop the page count elevated by isolate_lru_page()
550 */
09cbfeaf 551 put_page(p);
dc2a1cbf
WF
552 return 0;
553 }
554 return -EIO;
555}
556
6a46079c
AK
557/*
558 * Error hit kernel page.
559 * Do nothing, try to be lucky and not touch this instead. For a few cases we
560 * could be more sophisticated.
561 */
562static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 563{
cc637b17 564 return MF_IGNORED;
6a46079c
AK
565}
566
567/*
568 * Page in unknown state. Do nothing.
569 */
570static int me_unknown(struct page *p, unsigned long pfn)
571{
495367c0 572 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 573 return MF_FAILED;
6a46079c
AK
574}
575
6a46079c
AK
576/*
577 * Clean (or cleaned) page cache page.
578 */
579static int me_pagecache_clean(struct page *p, unsigned long pfn)
580{
581 int err;
cc637b17 582 int ret = MF_FAILED;
6a46079c
AK
583 struct address_space *mapping;
584
dc2a1cbf
WF
585 delete_from_lru_cache(p);
586
6a46079c
AK
587 /*
588 * For anonymous pages we're done the only reference left
589 * should be the one m_f() holds.
590 */
591 if (PageAnon(p))
cc637b17 592 return MF_RECOVERED;
6a46079c
AK
593
594 /*
595 * Now truncate the page in the page cache. This is really
596 * more like a "temporary hole punch"
597 * Don't do this for block devices when someone else
598 * has a reference, because it could be file system metadata
599 * and that's not safe to truncate.
600 */
601 mapping = page_mapping(p);
602 if (!mapping) {
603 /*
604 * Page has been teared down in the meanwhile
605 */
cc637b17 606 return MF_FAILED;
6a46079c
AK
607 }
608
609 /*
610 * Truncation is a bit tricky. Enable it per file system for now.
611 *
612 * Open: to take i_mutex or not for this? Right now we don't.
613 */
614 if (mapping->a_ops->error_remove_page) {
615 err = mapping->a_ops->error_remove_page(mapping, p);
616 if (err != 0) {
495367c0 617 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
1170532b 618 pfn, err);
6a46079c
AK
619 } else if (page_has_private(p) &&
620 !try_to_release_page(p, GFP_NOIO)) {
495367c0
CY
621 pr_info("Memory failure: %#lx: failed to release buffers\n",
622 pfn);
6a46079c 623 } else {
cc637b17 624 ret = MF_RECOVERED;
6a46079c
AK
625 }
626 } else {
627 /*
628 * If the file system doesn't support it just invalidate
629 * This fails on dirty or anything with private pages
630 */
631 if (invalidate_inode_page(p))
cc637b17 632 ret = MF_RECOVERED;
6a46079c 633 else
495367c0
CY
634 pr_info("Memory failure: %#lx: Failed to invalidate\n",
635 pfn);
6a46079c
AK
636 }
637 return ret;
638}
639
640/*
549543df 641 * Dirty pagecache page
6a46079c
AK
642 * Issues: when the error hit a hole page the error is not properly
643 * propagated.
644 */
645static int me_pagecache_dirty(struct page *p, unsigned long pfn)
646{
647 struct address_space *mapping = page_mapping(p);
648
649 SetPageError(p);
650 /* TBD: print more information about the file. */
651 if (mapping) {
652 /*
653 * IO error will be reported by write(), fsync(), etc.
654 * who check the mapping.
655 * This way the application knows that something went
656 * wrong with its dirty file data.
657 *
658 * There's one open issue:
659 *
660 * The EIO will be only reported on the next IO
661 * operation and then cleared through the IO map.
662 * Normally Linux has two mechanisms to pass IO error
663 * first through the AS_EIO flag in the address space
664 * and then through the PageError flag in the page.
665 * Since we drop pages on memory failure handling the
666 * only mechanism open to use is through AS_AIO.
667 *
668 * This has the disadvantage that it gets cleared on
669 * the first operation that returns an error, while
670 * the PageError bit is more sticky and only cleared
671 * when the page is reread or dropped. If an
672 * application assumes it will always get error on
673 * fsync, but does other operations on the fd before
25985edc 674 * and the page is dropped between then the error
6a46079c
AK
675 * will not be properly reported.
676 *
677 * This can already happen even without hwpoisoned
678 * pages: first on metadata IO errors (which only
679 * report through AS_EIO) or when the page is dropped
680 * at the wrong time.
681 *
682 * So right now we assume that the application DTRT on
683 * the first EIO, but we're not worse than other parts
684 * of the kernel.
685 */
af21bfaf 686 mapping_set_error(mapping, -EIO);
6a46079c
AK
687 }
688
689 return me_pagecache_clean(p, pfn);
690}
691
692/*
693 * Clean and dirty swap cache.
694 *
695 * Dirty swap cache page is tricky to handle. The page could live both in page
696 * cache and swap cache(ie. page is freshly swapped in). So it could be
697 * referenced concurrently by 2 types of PTEs:
698 * normal PTEs and swap PTEs. We try to handle them consistently by calling
699 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
700 * and then
701 * - clear dirty bit to prevent IO
702 * - remove from LRU
703 * - but keep in the swap cache, so that when we return to it on
704 * a later page fault, we know the application is accessing
705 * corrupted data and shall be killed (we installed simple
706 * interception code in do_swap_page to catch it).
707 *
708 * Clean swap cache pages can be directly isolated. A later page fault will
709 * bring in the known good data from disk.
710 */
711static int me_swapcache_dirty(struct page *p, unsigned long pfn)
712{
6a46079c
AK
713 ClearPageDirty(p);
714 /* Trigger EIO in shmem: */
715 ClearPageUptodate(p);
716
dc2a1cbf 717 if (!delete_from_lru_cache(p))
cc637b17 718 return MF_DELAYED;
dc2a1cbf 719 else
cc637b17 720 return MF_FAILED;
6a46079c
AK
721}
722
723static int me_swapcache_clean(struct page *p, unsigned long pfn)
724{
6a46079c 725 delete_from_swap_cache(p);
e43c3afb 726
dc2a1cbf 727 if (!delete_from_lru_cache(p))
cc637b17 728 return MF_RECOVERED;
dc2a1cbf 729 else
cc637b17 730 return MF_FAILED;
6a46079c
AK
731}
732
733/*
734 * Huge pages. Needs work.
735 * Issues:
93f70f90
NH
736 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
737 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
738 */
739static int me_huge_page(struct page *p, unsigned long pfn)
740{
6de2b1aa 741 int res = 0;
93f70f90 742 struct page *hpage = compound_head(p);
2491ffee
NH
743
744 if (!PageHuge(hpage))
745 return MF_DELAYED;
746
93f70f90
NH
747 /*
748 * We can safely recover from error on free or reserved (i.e.
749 * not in-use) hugepage by dequeuing it from freelist.
750 * To check whether a hugepage is in-use or not, we can't use
751 * page->lru because it can be used in other hugepage operations,
752 * such as __unmap_hugepage_range() and gather_surplus_pages().
753 * So instead we use page_mapping() and PageAnon().
93f70f90
NH
754 */
755 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
756 res = dequeue_hwpoisoned_huge_page(hpage);
757 if (!res)
cc637b17 758 return MF_RECOVERED;
93f70f90 759 }
cc637b17 760 return MF_DELAYED;
6a46079c
AK
761}
762
763/*
764 * Various page states we can handle.
765 *
766 * A page state is defined by its current page->flags bits.
767 * The table matches them in order and calls the right handler.
768 *
769 * This is quite tricky because we can access page at any time
25985edc 770 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
771 *
772 * This is not complete. More states could be added.
773 * For any missing state don't attempt recovery.
774 */
775
776#define dirty (1UL << PG_dirty)
6326fec1 777#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
778#define unevict (1UL << PG_unevictable)
779#define mlock (1UL << PG_mlocked)
780#define writeback (1UL << PG_writeback)
781#define lru (1UL << PG_lru)
6a46079c 782#define head (1UL << PG_head)
6a46079c 783#define slab (1UL << PG_slab)
6a46079c
AK
784#define reserved (1UL << PG_reserved)
785
786static struct page_state {
787 unsigned long mask;
788 unsigned long res;
cc637b17 789 enum mf_action_page_type type;
6a46079c
AK
790 int (*action)(struct page *p, unsigned long pfn);
791} error_states[] = {
cc637b17 792 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
793 /*
794 * free pages are specially detected outside this table:
795 * PG_buddy pages only make a small fraction of all free pages.
796 */
6a46079c
AK
797
798 /*
799 * Could in theory check if slab page is free or if we can drop
800 * currently unused objects without touching them. But just
801 * treat it as standard kernel for now.
802 */
cc637b17 803 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 804
cc637b17 805 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 806
cc637b17
XX
807 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
808 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 809
cc637b17
XX
810 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
811 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 812
cc637b17
XX
813 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
814 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 815
cc637b17
XX
816 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
817 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
818
819 /*
820 * Catchall entry: must be at end.
821 */
cc637b17 822 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
823};
824
2326c467
AK
825#undef dirty
826#undef sc
827#undef unevict
828#undef mlock
829#undef writeback
830#undef lru
2326c467 831#undef head
2326c467
AK
832#undef slab
833#undef reserved
834
ff604cf6
NH
835/*
836 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
837 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
838 */
cc3e2af4
XX
839static void action_result(unsigned long pfn, enum mf_action_page_type type,
840 enum mf_result result)
6a46079c 841{
97f0b134
XX
842 trace_memory_failure_event(pfn, type, result);
843
495367c0 844 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 845 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
846}
847
848static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 849 unsigned long pfn)
6a46079c
AK
850{
851 int result;
7456b040 852 int count;
6a46079c
AK
853
854 result = ps->action(p, pfn);
7456b040 855
bd1ce5f9 856 count = page_count(p) - 1;
cc637b17 857 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
858 count--;
859 if (count != 0) {
495367c0 860 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 861 pfn, action_page_types[ps->type], count);
cc637b17 862 result = MF_FAILED;
138ce286 863 }
64d37a2b 864 action_result(pfn, ps->type, result);
6a46079c
AK
865
866 /* Could do more checks here if page looks ok */
867 /*
868 * Could adjust zone counters here to correct for the missing page.
869 */
870
cc637b17 871 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
872}
873
ead07f6a
NH
874/**
875 * get_hwpoison_page() - Get refcount for memory error handling:
876 * @page: raw error page (hit by memory error)
877 *
878 * Return: return 0 if failed to grab the refcount, otherwise true (some
879 * non-zero value.)
880 */
881int get_hwpoison_page(struct page *page)
882{
883 struct page *head = compound_head(page);
884
4e41a30c 885 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
886 /*
887 * Non anonymous thp exists only in allocation/free time. We
888 * can't handle such a case correctly, so let's give it up.
889 * This should be better than triggering BUG_ON when kernel
890 * tries to touch the "partially handled" page.
891 */
892 if (!PageAnon(head)) {
495367c0 893 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
894 page_to_pfn(page));
895 return 0;
896 }
ead07f6a
NH
897 }
898
c2e7e00b
KK
899 if (get_page_unless_zero(head)) {
900 if (head == compound_head(page))
901 return 1;
902
495367c0
CY
903 pr_info("Memory failure: %#lx cannot catch tail\n",
904 page_to_pfn(page));
c2e7e00b
KK
905 put_page(head);
906 }
907
908 return 0;
ead07f6a
NH
909}
910EXPORT_SYMBOL_GPL(get_hwpoison_page);
911
6a46079c
AK
912/*
913 * Do all that is necessary to remove user space mappings. Unmap
914 * the pages and send SIGBUS to the processes if the data was dirty.
915 */
666e5a40 916static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 917 int trapno, int flags, struct page **hpagep)
6a46079c 918{
a128ca71 919 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
920 struct address_space *mapping;
921 LIST_HEAD(tokill);
666e5a40 922 bool unmap_success;
6751ed65 923 int kill = 1, forcekill;
54b9dd14 924 struct page *hpage = *hpagep;
286c469a 925 bool mlocked = PageMlocked(hpage);
6a46079c 926
93a9eb39
NH
927 /*
928 * Here we are interested only in user-mapped pages, so skip any
929 * other types of pages.
930 */
931 if (PageReserved(p) || PageSlab(p))
666e5a40 932 return true;
93a9eb39 933 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 934 return true;
6a46079c 935
6a46079c
AK
936 /*
937 * This check implies we don't kill processes if their pages
938 * are in the swap cache early. Those are always late kills.
939 */
7af446a8 940 if (!page_mapped(hpage))
666e5a40 941 return true;
1668bfd5 942
52089b14 943 if (PageKsm(p)) {
495367c0 944 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 945 return false;
52089b14 946 }
6a46079c
AK
947
948 if (PageSwapCache(p)) {
495367c0
CY
949 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
950 pfn);
6a46079c
AK
951 ttu |= TTU_IGNORE_HWPOISON;
952 }
953
954 /*
955 * Propagate the dirty bit from PTEs to struct page first, because we
956 * need this to decide if we should kill or just drop the page.
db0480b3
WF
957 * XXX: the dirty test could be racy: set_page_dirty() may not always
958 * be called inside page lock (it's recommended but not enforced).
6a46079c 959 */
7af446a8 960 mapping = page_mapping(hpage);
6751ed65 961 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
962 mapping_cap_writeback_dirty(mapping)) {
963 if (page_mkclean(hpage)) {
964 SetPageDirty(hpage);
6a46079c
AK
965 } else {
966 kill = 0;
967 ttu |= TTU_IGNORE_HWPOISON;
495367c0 968 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
969 pfn);
970 }
971 }
972
973 /*
974 * First collect all the processes that have the page
975 * mapped in dirty form. This has to be done before try_to_unmap,
976 * because ttu takes the rmap data structures down.
977 *
978 * Error handling: We ignore errors here because
979 * there's nothing that can be done.
980 */
981 if (kill)
415c64c1 982 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 983
666e5a40
MK
984 unmap_success = try_to_unmap(hpage, ttu);
985 if (!unmap_success)
495367c0 986 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 987 pfn, page_mapcount(hpage));
a6d30ddd 988
286c469a
NH
989 /*
990 * try_to_unmap() might put mlocked page in lru cache, so call
991 * shake_page() again to ensure that it's flushed.
992 */
993 if (mlocked)
994 shake_page(hpage, 0);
995
6a46079c
AK
996 /*
997 * Now that the dirty bit has been propagated to the
998 * struct page and all unmaps done we can decide if
999 * killing is needed or not. Only kill when the page
6751ed65
TL
1000 * was dirty or the process is not restartable,
1001 * otherwise the tokill list is merely
6a46079c
AK
1002 * freed. When there was a problem unmapping earlier
1003 * use a more force-full uncatchable kill to prevent
1004 * any accesses to the poisoned memory.
1005 */
415c64c1 1006 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
666e5a40 1007 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1668bfd5 1008
666e5a40 1009 return unmap_success;
6a46079c
AK
1010}
1011
761ad8d7
NH
1012static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1013{
1014 struct page_state *ps;
1015 struct page *p = pfn_to_page(pfn);
1016 struct page *head = compound_head(p);
1017 int res;
1018 unsigned long page_flags;
1019
1020 if (TestSetPageHWPoison(head)) {
1021 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1022 pfn);
1023 return 0;
1024 }
1025
1026 num_poisoned_pages_inc();
1027
1028 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1029 /*
1030 * Check "filter hit" and "race with other subpage."
1031 */
1032 lock_page(head);
1033 if (PageHWPoison(head)) {
1034 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1035 || (p != head && TestSetPageHWPoison(head))) {
1036 num_poisoned_pages_dec();
1037 unlock_page(head);
1038 return 0;
1039 }
1040 }
1041 unlock_page(head);
1042 dissolve_free_huge_page(p);
1043 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1044 return 0;
1045 }
1046
1047 lock_page(head);
1048 page_flags = head->flags;
1049
1050 if (!PageHWPoison(head)) {
1051 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1052 num_poisoned_pages_dec();
1053 unlock_page(head);
1054 put_hwpoison_page(head);
1055 return 0;
1056 }
1057
1058 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1059 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1060 res = -EBUSY;
1061 goto out;
1062 }
1063
1064 res = -EBUSY;
1065
1066 for (ps = error_states;; ps++)
1067 if ((p->flags & ps->mask) == ps->res)
1068 break;
1069
1070 page_flags |= (p->flags & (1UL << PG_dirty));
1071
1072 if (!ps->mask)
1073 for (ps = error_states;; ps++)
1074 if ((page_flags & ps->mask) == ps->res)
1075 break;
1076 res = page_action(ps, p, pfn);
1077out:
1078 unlock_page(head);
1079 return res;
1080}
1081
cd42f4a3
TL
1082/**
1083 * memory_failure - Handle memory failure of a page.
1084 * @pfn: Page Number of the corrupted page
1085 * @trapno: Trap number reported in the signal to user space.
1086 * @flags: fine tune action taken
1087 *
1088 * This function is called by the low level machine check code
1089 * of an architecture when it detects hardware memory corruption
1090 * of a page. It tries its best to recover, which includes
1091 * dropping pages, killing processes etc.
1092 *
1093 * The function is primarily of use for corruptions that
1094 * happen outside the current execution context (e.g. when
1095 * detected by a background scrubber)
1096 *
1097 * Must run in process context (e.g. a work queue) with interrupts
1098 * enabled and no spinlocks hold.
1099 */
1100int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1101{
1102 struct page_state *ps;
1103 struct page *p;
7af446a8 1104 struct page *hpage;
415c64c1 1105 struct page *orig_head;
6a46079c 1106 int res;
524fca1e 1107 unsigned long page_flags;
6a46079c
AK
1108
1109 if (!sysctl_memory_failure_recovery)
1110 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1111
1112 if (!pfn_valid(pfn)) {
495367c0
CY
1113 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1114 pfn);
a7560fc8 1115 return -ENXIO;
6a46079c
AK
1116 }
1117
1118 p = pfn_to_page(pfn);
761ad8d7
NH
1119 if (PageHuge(p))
1120 return memory_failure_hugetlb(pfn, trapno, flags);
6a46079c 1121 if (TestSetPageHWPoison(p)) {
495367c0
CY
1122 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1123 pfn);
6a46079c
AK
1124 return 0;
1125 }
1126
761ad8d7 1127 orig_head = hpage = compound_head(p);
b37ff71c 1128 num_poisoned_pages_inc();
6a46079c
AK
1129
1130 /*
1131 * We need/can do nothing about count=0 pages.
1132 * 1) it's a free page, and therefore in safe hand:
1133 * prep_new_page() will be the gate keeper.
761ad8d7 1134 * 2) it's part of a non-compound high order page.
6a46079c
AK
1135 * Implies some kernel user: cannot stop them from
1136 * R/W the page; let's pray that the page has been
1137 * used and will be freed some time later.
1138 * In fact it's dangerous to directly bump up page count from 0,
1139 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1140 */
ead07f6a 1141 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1142 if (is_free_buddy_page(p)) {
cc637b17 1143 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b
WF
1144 return 0;
1145 } else {
cc637b17 1146 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1147 return -EBUSY;
1148 }
6a46079c
AK
1149 }
1150
761ad8d7 1151 if (PageTransHuge(hpage)) {
c3901e72
NH
1152 lock_page(p);
1153 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1154 unlock_page(p);
1155 if (!PageAnon(p))
495367c0
CY
1156 pr_err("Memory failure: %#lx: non anonymous thp\n",
1157 pfn);
7f6bf39b 1158 else
495367c0
CY
1159 pr_err("Memory failure: %#lx: thp split failed\n",
1160 pfn);
ead07f6a 1161 if (TestClearPageHWPoison(p))
b37ff71c 1162 num_poisoned_pages_dec();
665d9da7 1163 put_hwpoison_page(p);
415c64c1
NH
1164 return -EBUSY;
1165 }
c3901e72 1166 unlock_page(p);
415c64c1
NH
1167 VM_BUG_ON_PAGE(!page_count(p), p);
1168 hpage = compound_head(p);
1169 }
1170
e43c3afb
WF
1171 /*
1172 * We ignore non-LRU pages for good reasons.
1173 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1174 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1175 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1176 * The check (unnecessarily) ignores LRU pages being isolated and
1177 * walked by the page reclaim code, however that's not a big loss.
1178 */
8bcb74de
NH
1179 shake_page(p, 0);
1180 /* shake_page could have turned it free. */
1181 if (!PageLRU(p) && is_free_buddy_page(p)) {
1182 if (flags & MF_COUNT_INCREASED)
1183 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1184 else
1185 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1186 return 0;
e43c3afb 1187 }
e43c3afb 1188
761ad8d7 1189 lock_page(p);
847ce401 1190
f37d4298
AK
1191 /*
1192 * The page could have changed compound pages during the locking.
1193 * If this happens just bail out.
1194 */
415c64c1 1195 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1196 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1197 res = -EBUSY;
1198 goto out;
1199 }
1200
524fca1e
NH
1201 /*
1202 * We use page flags to determine what action should be taken, but
1203 * the flags can be modified by the error containment action. One
1204 * example is an mlocked page, where PG_mlocked is cleared by
1205 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1206 * correctly, we save a copy of the page flags at this time.
1207 */
7258ae5c
JM
1208 if (PageHuge(p))
1209 page_flags = hpage->flags;
1210 else
1211 page_flags = p->flags;
524fca1e 1212
847ce401
WF
1213 /*
1214 * unpoison always clear PG_hwpoison inside page lock
1215 */
1216 if (!PageHWPoison(p)) {
495367c0 1217 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1218 num_poisoned_pages_dec();
761ad8d7
NH
1219 unlock_page(p);
1220 put_hwpoison_page(p);
a09233f3 1221 return 0;
847ce401 1222 }
7c116f2b
WF
1223 if (hwpoison_filter(p)) {
1224 if (TestClearPageHWPoison(p))
b37ff71c 1225 num_poisoned_pages_dec();
761ad8d7
NH
1226 unlock_page(p);
1227 put_hwpoison_page(p);
7c116f2b
WF
1228 return 0;
1229 }
847ce401 1230
761ad8d7 1231 if (!PageTransTail(p) && !PageLRU(p))
0bc1f8b0
CY
1232 goto identify_page_state;
1233
6edd6cc6
NH
1234 /*
1235 * It's very difficult to mess with pages currently under IO
1236 * and in many cases impossible, so we just avoid it here.
1237 */
6a46079c
AK
1238 wait_on_page_writeback(p);
1239
1240 /*
1241 * Now take care of user space mappings.
e64a782f 1242 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1243 *
1244 * When the raw error page is thp tail page, hpage points to the raw
1245 * page after thp split.
6a46079c 1246 */
666e5a40 1247 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
cc637b17 1248 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1249 res = -EBUSY;
1250 goto out;
1251 }
6a46079c
AK
1252
1253 /*
1254 * Torn down by someone else?
1255 */
dc2a1cbf 1256 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1257 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1258 res = -EBUSY;
6a46079c
AK
1259 goto out;
1260 }
1261
0bc1f8b0 1262identify_page_state:
6a46079c 1263 res = -EBUSY;
524fca1e
NH
1264 /*
1265 * The first check uses the current page flags which may not have any
1266 * relevant information. The second check with the saved page flagss is
1267 * carried out only if the first check can't determine the page status.
1268 */
1269 for (ps = error_states;; ps++)
1270 if ((p->flags & ps->mask) == ps->res)
6a46079c 1271 break;
841fcc58
WL
1272
1273 page_flags |= (p->flags & (1UL << PG_dirty));
1274
524fca1e
NH
1275 if (!ps->mask)
1276 for (ps = error_states;; ps++)
1277 if ((page_flags & ps->mask) == ps->res)
1278 break;
1279 res = page_action(ps, p, pfn);
6a46079c 1280out:
761ad8d7 1281 unlock_page(p);
6a46079c
AK
1282 return res;
1283}
cd42f4a3 1284EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1285
ea8f5fb8
HY
1286#define MEMORY_FAILURE_FIFO_ORDER 4
1287#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1288
1289struct memory_failure_entry {
1290 unsigned long pfn;
1291 int trapno;
1292 int flags;
1293};
1294
1295struct memory_failure_cpu {
1296 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1297 MEMORY_FAILURE_FIFO_SIZE);
1298 spinlock_t lock;
1299 struct work_struct work;
1300};
1301
1302static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1303
1304/**
1305 * memory_failure_queue - Schedule handling memory failure of a page.
1306 * @pfn: Page Number of the corrupted page
1307 * @trapno: Trap number reported in the signal to user space.
1308 * @flags: Flags for memory failure handling
1309 *
1310 * This function is called by the low level hardware error handler
1311 * when it detects hardware memory corruption of a page. It schedules
1312 * the recovering of error page, including dropping pages, killing
1313 * processes etc.
1314 *
1315 * The function is primarily of use for corruptions that
1316 * happen outside the current execution context (e.g. when
1317 * detected by a background scrubber)
1318 *
1319 * Can run in IRQ context.
1320 */
1321void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1322{
1323 struct memory_failure_cpu *mf_cpu;
1324 unsigned long proc_flags;
1325 struct memory_failure_entry entry = {
1326 .pfn = pfn,
1327 .trapno = trapno,
1328 .flags = flags,
1329 };
1330
1331 mf_cpu = &get_cpu_var(memory_failure_cpu);
1332 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1333 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1334 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1335 else
8e33a52f 1336 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1337 pfn);
1338 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1339 put_cpu_var(memory_failure_cpu);
1340}
1341EXPORT_SYMBOL_GPL(memory_failure_queue);
1342
1343static void memory_failure_work_func(struct work_struct *work)
1344{
1345 struct memory_failure_cpu *mf_cpu;
1346 struct memory_failure_entry entry = { 0, };
1347 unsigned long proc_flags;
1348 int gotten;
1349
7c8e0181 1350 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1351 for (;;) {
1352 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1353 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1354 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1355 if (!gotten)
1356 break;
cf870c70
NR
1357 if (entry.flags & MF_SOFT_OFFLINE)
1358 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1359 else
1360 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1361 }
1362}
1363
1364static int __init memory_failure_init(void)
1365{
1366 struct memory_failure_cpu *mf_cpu;
1367 int cpu;
1368
1369 for_each_possible_cpu(cpu) {
1370 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1371 spin_lock_init(&mf_cpu->lock);
1372 INIT_KFIFO(mf_cpu->fifo);
1373 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1374 }
1375
1376 return 0;
1377}
1378core_initcall(memory_failure_init);
1379
a5f65109
NH
1380#define unpoison_pr_info(fmt, pfn, rs) \
1381({ \
1382 if (__ratelimit(rs)) \
1383 pr_info(fmt, pfn); \
1384})
1385
847ce401
WF
1386/**
1387 * unpoison_memory - Unpoison a previously poisoned page
1388 * @pfn: Page number of the to be unpoisoned page
1389 *
1390 * Software-unpoison a page that has been poisoned by
1391 * memory_failure() earlier.
1392 *
1393 * This is only done on the software-level, so it only works
1394 * for linux injected failures, not real hardware failures
1395 *
1396 * Returns 0 for success, otherwise -errno.
1397 */
1398int unpoison_memory(unsigned long pfn)
1399{
1400 struct page *page;
1401 struct page *p;
1402 int freeit = 0;
a5f65109
NH
1403 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1404 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1405
1406 if (!pfn_valid(pfn))
1407 return -ENXIO;
1408
1409 p = pfn_to_page(pfn);
1410 page = compound_head(p);
1411
1412 if (!PageHWPoison(p)) {
495367c0 1413 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1414 pfn, &unpoison_rs);
847ce401
WF
1415 return 0;
1416 }
1417
230ac719 1418 if (page_count(page) > 1) {
495367c0 1419 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1420 pfn, &unpoison_rs);
230ac719
NH
1421 return 0;
1422 }
1423
1424 if (page_mapped(page)) {
495367c0 1425 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1426 pfn, &unpoison_rs);
230ac719
NH
1427 return 0;
1428 }
1429
1430 if (page_mapping(page)) {
495367c0 1431 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1432 pfn, &unpoison_rs);
230ac719
NH
1433 return 0;
1434 }
1435
0cea3fdc
WL
1436 /*
1437 * unpoison_memory() can encounter thp only when the thp is being
1438 * worked by memory_failure() and the page lock is not held yet.
1439 * In such case, we yield to memory_failure() and make unpoison fail.
1440 */
e76d30e2 1441 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1442 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1443 pfn, &unpoison_rs);
ead07f6a 1444 return 0;
0cea3fdc
WL
1445 }
1446
ead07f6a 1447 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1448 /*
1449 * Since HWPoisoned hugepage should have non-zero refcount,
1450 * race between memory failure and unpoison seems to happen.
1451 * In such case unpoison fails and memory failure runs
1452 * to the end.
1453 */
1454 if (PageHuge(page)) {
495367c0 1455 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
a5f65109 1456 pfn, &unpoison_rs);
8c6c2ecb
NH
1457 return 0;
1458 }
847ce401 1459 if (TestClearPageHWPoison(p))
8e30456b 1460 num_poisoned_pages_dec();
495367c0 1461 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1462 pfn, &unpoison_rs);
847ce401
WF
1463 return 0;
1464 }
1465
7eaceacc 1466 lock_page(page);
847ce401
WF
1467 /*
1468 * This test is racy because PG_hwpoison is set outside of page lock.
1469 * That's acceptable because that won't trigger kernel panic. Instead,
1470 * the PG_hwpoison page will be caught and isolated on the entrance to
1471 * the free buddy page pool.
1472 */
c9fbdd5f 1473 if (TestClearPageHWPoison(page)) {
495367c0 1474 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1475 pfn, &unpoison_rs);
b37ff71c 1476 num_poisoned_pages_dec();
847ce401
WF
1477 freeit = 1;
1478 }
1479 unlock_page(page);
1480
665d9da7 1481 put_hwpoison_page(page);
3ba5eebc 1482 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1483 put_hwpoison_page(page);
847ce401
WF
1484
1485 return 0;
1486}
1487EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1488
1489static struct page *new_page(struct page *p, unsigned long private, int **x)
1490{
12686d15 1491 int nid = page_to_nid(p);
94310cbc
AK
1492 if (PageHuge(p)) {
1493 struct hstate *hstate = page_hstate(compound_head(p));
1494
1495 if (hstate_is_gigantic(hstate))
1496 return alloc_huge_page_node(hstate, NUMA_NO_NODE);
1497
1498 return alloc_huge_page_node(hstate, nid);
1499 } else {
96db800f 1500 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
94310cbc 1501 }
facb6011
AK
1502}
1503
1504/*
1505 * Safely get reference count of an arbitrary page.
1506 * Returns 0 for a free page, -EIO for a zero refcount page
1507 * that is not free, and 1 for any other page type.
1508 * For 1 the page is returned with increased page count, otherwise not.
1509 */
af8fae7c 1510static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1511{
1512 int ret;
1513
1514 if (flags & MF_COUNT_INCREASED)
1515 return 1;
1516
d950b958
NH
1517 /*
1518 * When the target page is a free hugepage, just remove it
1519 * from free hugepage list.
1520 */
ead07f6a 1521 if (!get_hwpoison_page(p)) {
d950b958 1522 if (PageHuge(p)) {
71dd0b8a 1523 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1524 ret = 0;
d950b958 1525 } else if (is_free_buddy_page(p)) {
71dd0b8a 1526 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1527 ret = 0;
1528 } else {
71dd0b8a
BP
1529 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1530 __func__, pfn, p->flags);
facb6011
AK
1531 ret = -EIO;
1532 }
1533 } else {
1534 /* Not a free page */
1535 ret = 1;
1536 }
facb6011
AK
1537 return ret;
1538}
1539
af8fae7c
NH
1540static int get_any_page(struct page *page, unsigned long pfn, int flags)
1541{
1542 int ret = __get_any_page(page, pfn, flags);
1543
85fbe5d1
YX
1544 if (ret == 1 && !PageHuge(page) &&
1545 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1546 /*
1547 * Try to free it.
1548 */
665d9da7 1549 put_hwpoison_page(page);
af8fae7c
NH
1550 shake_page(page, 1);
1551
1552 /*
1553 * Did it turn free?
1554 */
1555 ret = __get_any_page(page, pfn, 0);
d96b339f 1556 if (ret == 1 && !PageLRU(page)) {
4f32be67 1557 /* Drop page reference which is from __get_any_page() */
665d9da7 1558 put_hwpoison_page(page);
82a2481e
AK
1559 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1560 pfn, page->flags, &page->flags);
af8fae7c
NH
1561 return -EIO;
1562 }
1563 }
1564 return ret;
1565}
1566
d950b958
NH
1567static int soft_offline_huge_page(struct page *page, int flags)
1568{
1569 int ret;
1570 unsigned long pfn = page_to_pfn(page);
1571 struct page *hpage = compound_head(page);
b8ec1cee 1572 LIST_HEAD(pagelist);
d950b958 1573
af8fae7c
NH
1574 /*
1575 * This double-check of PageHWPoison is to avoid the race with
1576 * memory_failure(). See also comment in __soft_offline_page().
1577 */
1578 lock_page(hpage);
0ebff32c 1579 if (PageHWPoison(hpage)) {
af8fae7c 1580 unlock_page(hpage);
665d9da7 1581 put_hwpoison_page(hpage);
0ebff32c 1582 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1583 return -EBUSY;
0ebff32c 1584 }
af8fae7c 1585 unlock_page(hpage);
d950b958 1586
bcc54222 1587 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1588 /*
1589 * get_any_page() and isolate_huge_page() takes a refcount each,
1590 * so need to drop one here.
1591 */
665d9da7 1592 put_hwpoison_page(hpage);
03613808 1593 if (!ret) {
bcc54222
NH
1594 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1595 return -EBUSY;
1596 }
1597
68711a74 1598 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1599 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1600 if (ret) {
82a2481e
AK
1601 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1602 pfn, ret, page->flags, &page->flags);
30809f55
PA
1603 if (!list_empty(&pagelist))
1604 putback_movable_pages(&pagelist);
b8ec1cee
NH
1605 if (ret > 0)
1606 ret = -EIO;
af8fae7c 1607 } else {
b37ff71c 1608 if (PageHuge(page))
c3114a84 1609 dissolve_free_huge_page(page);
d950b958 1610 }
d950b958
NH
1611 return ret;
1612}
1613
af8fae7c
NH
1614static int __soft_offline_page(struct page *page, int flags)
1615{
1616 int ret;
1617 unsigned long pfn = page_to_pfn(page);
facb6011 1618
facb6011 1619 /*
af8fae7c
NH
1620 * Check PageHWPoison again inside page lock because PageHWPoison
1621 * is set by memory_failure() outside page lock. Note that
1622 * memory_failure() also double-checks PageHWPoison inside page lock,
1623 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1624 */
0ebff32c
XQ
1625 lock_page(page);
1626 wait_on_page_writeback(page);
af8fae7c
NH
1627 if (PageHWPoison(page)) {
1628 unlock_page(page);
665d9da7 1629 put_hwpoison_page(page);
af8fae7c
NH
1630 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1631 return -EBUSY;
1632 }
facb6011
AK
1633 /*
1634 * Try to invalidate first. This should work for
1635 * non dirty unmapped page cache pages.
1636 */
1637 ret = invalidate_inode_page(page);
1638 unlock_page(page);
facb6011 1639 /*
facb6011
AK
1640 * RED-PEN would be better to keep it isolated here, but we
1641 * would need to fix isolation locking first.
1642 */
facb6011 1643 if (ret == 1) {
665d9da7 1644 put_hwpoison_page(page);
fb46e735 1645 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1646 SetPageHWPoison(page);
8e30456b 1647 num_poisoned_pages_inc();
af8fae7c 1648 return 0;
facb6011
AK
1649 }
1650
1651 /*
1652 * Simple invalidation didn't work.
1653 * Try to migrate to a new page instead. migrate.c
1654 * handles a large number of cases for us.
1655 */
85fbe5d1
YX
1656 if (PageLRU(page))
1657 ret = isolate_lru_page(page);
1658 else
1659 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1660 /*
1661 * Drop page reference which is came from get_any_page()
1662 * successful isolate_lru_page() already took another one.
1663 */
665d9da7 1664 put_hwpoison_page(page);
facb6011
AK
1665 if (!ret) {
1666 LIST_HEAD(pagelist);
85fbe5d1
YX
1667 /*
1668 * After isolated lru page, the PageLRU will be cleared,
1669 * so use !__PageMovable instead for LRU page's mapping
1670 * cannot have PAGE_MAPPING_MOVABLE.
1671 */
1672 if (!__PageMovable(page))
1673 inc_node_page_state(page, NR_ISOLATED_ANON +
1674 page_is_file_cache(page));
facb6011 1675 list_add(&page->lru, &pagelist);
68711a74 1676 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1677 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1678 if (ret) {
85fbe5d1
YX
1679 if (!list_empty(&pagelist))
1680 putback_movable_pages(&pagelist);
59c82b70 1681
82a2481e
AK
1682 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1683 pfn, ret, page->flags, &page->flags);
facb6011
AK
1684 if (ret > 0)
1685 ret = -EIO;
1686 }
1687 } else {
82a2481e
AK
1688 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1689 pfn, ret, page_count(page), page->flags, &page->flags);
facb6011 1690 }
facb6011
AK
1691 return ret;
1692}
86e05773 1693
acc14dc4
NH
1694static int soft_offline_in_use_page(struct page *page, int flags)
1695{
1696 int ret;
1697 struct page *hpage = compound_head(page);
1698
1699 if (!PageHuge(page) && PageTransHuge(hpage)) {
1700 lock_page(hpage);
98fd1ef4
NH
1701 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1702 unlock_page(hpage);
1703 if (!PageAnon(hpage))
1704 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1705 else
1706 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1707 put_hwpoison_page(hpage);
acc14dc4
NH
1708 return -EBUSY;
1709 }
98fd1ef4 1710 unlock_page(hpage);
acc14dc4
NH
1711 get_hwpoison_page(page);
1712 put_hwpoison_page(hpage);
1713 }
1714
1715 if (PageHuge(page))
1716 ret = soft_offline_huge_page(page, flags);
1717 else
1718 ret = __soft_offline_page(page, flags);
1719
1720 return ret;
1721}
1722
1723static void soft_offline_free_page(struct page *page)
1724{
b37ff71c 1725 struct page *head = compound_head(page);
acc14dc4 1726
b37ff71c
NH
1727 if (!TestSetPageHWPoison(head)) {
1728 num_poisoned_pages_inc();
1729 if (PageHuge(head))
d4a3a60b 1730 dissolve_free_huge_page(page);
acc14dc4
NH
1731 }
1732}
1733
86e05773
WL
1734/**
1735 * soft_offline_page - Soft offline a page.
1736 * @page: page to offline
1737 * @flags: flags. Same as memory_failure().
1738 *
1739 * Returns 0 on success, otherwise negated errno.
1740 *
1741 * Soft offline a page, by migration or invalidation,
1742 * without killing anything. This is for the case when
1743 * a page is not corrupted yet (so it's still valid to access),
1744 * but has had a number of corrected errors and is better taken
1745 * out.
1746 *
1747 * The actual policy on when to do that is maintained by
1748 * user space.
1749 *
1750 * This should never impact any application or cause data loss,
1751 * however it might take some time.
1752 *
1753 * This is not a 100% solution for all memory, but tries to be
1754 * ``good enough'' for the majority of memory.
1755 */
1756int soft_offline_page(struct page *page, int flags)
1757{
1758 int ret;
1759 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1760
1761 if (PageHWPoison(page)) {
1762 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1763 if (flags & MF_COUNT_INCREASED)
665d9da7 1764 put_hwpoison_page(page);
86e05773
WL
1765 return -EBUSY;
1766 }
86e05773 1767
bfc8c901 1768 get_online_mems();
86e05773 1769 ret = get_any_page(page, pfn, flags);
bfc8c901 1770 put_online_mems();
4e41a30c 1771
acc14dc4
NH
1772 if (ret > 0)
1773 ret = soft_offline_in_use_page(page, flags);
1774 else if (ret == 0)
1775 soft_offline_free_page(page);
4e41a30c 1776
86e05773
WL
1777 return ret;
1778}