]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory.c
scsi: aic7xxx: fix EISA support
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/kallsyms.h>
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
1da177e4 73
6952b61d 74#include <asm/io.h>
33a709b2 75#include <asm/mmu_context.h>
1da177e4 76#include <asm/pgalloc.h>
7c0f6ba6 77#include <linux/uaccess.h>
1da177e4
LT
78#include <asm/tlb.h>
79#include <asm/tlbflush.h>
80#include <asm/pgtable.h>
81
42b77728
JB
82#include "internal.h"
83
f1521c14 84#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
86#endif
87
d41dee36 88#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
89/* use the per-pgdat data instead for discontigmem - mbligh */
90unsigned long max_mapnr;
1da177e4 91EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
92
93struct page *mem_map;
1da177e4
LT
94EXPORT_SYMBOL(mem_map);
95#endif
96
1da177e4
LT
97/*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
166f61b9 104void *high_memory;
1da177e4 105EXPORT_SYMBOL(high_memory);
1da177e4 106
32a93233
IM
107/*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113int randomize_va_space __read_mostly =
114#ifdef CONFIG_COMPAT_BRK
115 1;
116#else
117 2;
118#endif
a62eaf15
AK
119
120static int __init disable_randmaps(char *s)
121{
122 randomize_va_space = 0;
9b41046c 123 return 1;
a62eaf15
AK
124}
125__setup("norandmaps", disable_randmaps);
126
62eede62 127unsigned long zero_pfn __read_mostly;
0b70068e
AB
128EXPORT_SYMBOL(zero_pfn);
129
166f61b9
TH
130unsigned long highest_memmap_pfn __read_mostly;
131
a13ea5b7
HD
132/*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135static int __init init_zero_pfn(void)
136{
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139}
140core_initcall(init_zero_pfn);
a62eaf15 141
d559db08 142
34e55232
KH
143#if defined(SPLIT_RSS_COUNTING)
144
ea48cf78 145void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
146{
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
34e55232
KH
153 }
154 }
05af2e10 155 current->rss_stat.events = 0;
34e55232
KH
156}
157
158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159{
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166}
167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170/* sync counter once per 64 page faults */
171#define TASK_RSS_EVENTS_THRESH (64)
172static void check_sync_rss_stat(struct task_struct *task)
173{
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 177 sync_mm_rss(task->mm);
34e55232 178}
9547d01b 179#else /* SPLIT_RSS_COUNTING */
34e55232
KH
180
181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184static void check_sync_rss_stat(struct task_struct *task)
185{
186}
187
9547d01b
PZ
188#endif /* SPLIT_RSS_COUNTING */
189
190#ifdef HAVE_GENERIC_MMU_GATHER
191
ca1d6c7d 192static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
193{
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
ca1d6c7d 199 return true;
9547d01b
PZ
200 }
201
53a59fc6 202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 203 return false;
53a59fc6 204
9547d01b
PZ
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
ca1d6c7d 207 return false;
9547d01b 208
53a59fc6 209 tlb->batch_count++;
9547d01b
PZ
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
ca1d6c7d 217 return true;
9547d01b
PZ
218}
219
56236a59
MK
220void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
9547d01b
PZ
222{
223 tlb->mm = mm;
224
2b047252
LT
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
1de14c3c 227 tlb->need_flush_all = 0;
9547d01b
PZ
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
53a59fc6 232 tlb->batch_count = 0;
9547d01b
PZ
233
234#ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236#endif
e77b0852 237 tlb->page_size = 0;
fb7332a9
WD
238
239 __tlb_reset_range(tlb);
9547d01b
PZ
240}
241
1cf35d47 242static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 243{
721c21c1
WD
244 if (!tlb->end)
245 return;
246
9547d01b 247 tlb_flush(tlb);
34ee645e 248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
fb7332a9 249 __tlb_reset_range(tlb);
1cf35d47
LT
250}
251
252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253{
254 struct mmu_gather_batch *batch;
34e55232 255
7607e716
NP
256#ifdef CONFIG_HAVE_RCU_TABLE_FREE
257 tlb_table_flush(tlb);
258#endif
721c21c1 259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264}
265
1cf35d47
LT
266void tlb_flush_mmu(struct mmu_gather *tlb)
267{
1cf35d47
LT
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270}
271
9547d01b
PZ
272/* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
56236a59 276void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 277 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
278{
279 struct mmu_gather_batch *batch, *next;
280
99baac21
MK
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
9547d01b
PZ
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294}
295
296/* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 301 *returns true if the caller should flush.
9547d01b 302 */
e77b0852 303bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
304{
305 struct mmu_gather_batch *batch;
306
fb7332a9 307 VM_BUG_ON(!tlb->end);
692a68c1 308 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 309
9547d01b 310 batch = tlb->active;
692a68c1
AK
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
9547d01b
PZ
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
e9d55e15 318 return true;
0b43c3aa 319 batch = tlb->active;
9547d01b 320 }
309381fe 321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 322
e9d55e15 323 return false;
9547d01b
PZ
324}
325
326#endif /* HAVE_GENERIC_MMU_GATHER */
327
26723911
PZ
328#ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330/*
331 * See the comment near struct mmu_table_batch.
332 */
333
021d5b54
PZ
334/*
335 * If we want tlb_remove_table() to imply TLB invalidates.
336 */
337static inline void tlb_table_invalidate(struct mmu_gather *tlb)
338{
339#ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
340 /*
341 * Invalidate page-table caches used by hardware walkers. Then we still
342 * need to RCU-sched wait while freeing the pages because software
343 * walkers can still be in-flight.
344 */
345 tlb_flush_mmu_tlbonly(tlb);
346#endif
347}
348
26723911
PZ
349static void tlb_remove_table_smp_sync(void *arg)
350{
351 /* Simply deliver the interrupt */
352}
353
354static void tlb_remove_table_one(void *table)
355{
356 /*
357 * This isn't an RCU grace period and hence the page-tables cannot be
358 * assumed to be actually RCU-freed.
359 *
360 * It is however sufficient for software page-table walkers that rely on
361 * IRQ disabling. See the comment near struct mmu_table_batch.
362 */
363 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
364 __tlb_remove_table(table);
365}
366
367static void tlb_remove_table_rcu(struct rcu_head *head)
368{
369 struct mmu_table_batch *batch;
370 int i;
371
372 batch = container_of(head, struct mmu_table_batch, rcu);
373
374 for (i = 0; i < batch->nr; i++)
375 __tlb_remove_table(batch->tables[i]);
376
377 free_page((unsigned long)batch);
378}
379
380void tlb_table_flush(struct mmu_gather *tlb)
381{
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 if (*batch) {
021d5b54 385 tlb_table_invalidate(tlb);
26723911
PZ
386 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
387 *batch = NULL;
388 }
389}
390
391void tlb_remove_table(struct mmu_gather *tlb, void *table)
392{
393 struct mmu_table_batch **batch = &tlb->batch;
394
26723911
PZ
395 if (*batch == NULL) {
396 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
397 if (*batch == NULL) {
021d5b54 398 tlb_table_invalidate(tlb);
26723911
PZ
399 tlb_remove_table_one(table);
400 return;
401 }
402 (*batch)->nr = 0;
403 }
021d5b54 404
26723911
PZ
405 (*batch)->tables[(*batch)->nr++] = table;
406 if ((*batch)->nr == MAX_TABLE_BATCH)
407 tlb_table_flush(tlb);
408}
409
9547d01b 410#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 411
56236a59
MK
412/* tlb_gather_mmu
413 * Called to initialize an (on-stack) mmu_gather structure for page-table
414 * tear-down from @mm. The @fullmm argument is used when @mm is without
415 * users and we're going to destroy the full address space (exit/execve).
416 */
417void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
418 unsigned long start, unsigned long end)
419{
420 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 421 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
422}
423
424void tlb_finish_mmu(struct mmu_gather *tlb,
425 unsigned long start, unsigned long end)
426{
99baac21
MK
427 /*
428 * If there are parallel threads are doing PTE changes on same range
429 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
430 * flush by batching, a thread has stable TLB entry can fail to flush
431 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
432 * forcefully if we detect parallel PTE batching threads.
433 */
434 bool force = mm_tlb_flush_nested(tlb->mm);
435
436 arch_tlb_finish_mmu(tlb, start, end, force);
437 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
438}
439
1da177e4
LT
440/*
441 * Note: this doesn't free the actual pages themselves. That
442 * has been handled earlier when unmapping all the memory regions.
443 */
9e1b32ca
BH
444static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
445 unsigned long addr)
1da177e4 446{
2f569afd 447 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 448 pmd_clear(pmd);
9e1b32ca 449 pte_free_tlb(tlb, token, addr);
c4812909 450 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
451}
452
e0da382c
HD
453static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
1da177e4
LT
456{
457 pmd_t *pmd;
458 unsigned long next;
e0da382c 459 unsigned long start;
1da177e4 460
e0da382c 461 start = addr;
1da177e4 462 pmd = pmd_offset(pud, addr);
1da177e4
LT
463 do {
464 next = pmd_addr_end(addr, end);
465 if (pmd_none_or_clear_bad(pmd))
466 continue;
9e1b32ca 467 free_pte_range(tlb, pmd, addr);
1da177e4
LT
468 } while (pmd++, addr = next, addr != end);
469
e0da382c
HD
470 start &= PUD_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PUD_MASK;
475 if (!ceiling)
476 return;
1da177e4 477 }
e0da382c
HD
478 if (end - 1 > ceiling - 1)
479 return;
480
481 pmd = pmd_offset(pud, start);
482 pud_clear(pud);
9e1b32ca 483 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 484 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
485}
486
c2febafc 487static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
488 unsigned long addr, unsigned long end,
489 unsigned long floor, unsigned long ceiling)
1da177e4
LT
490{
491 pud_t *pud;
492 unsigned long next;
e0da382c 493 unsigned long start;
1da177e4 494
e0da382c 495 start = addr;
c2febafc 496 pud = pud_offset(p4d, addr);
1da177e4
LT
497 do {
498 next = pud_addr_end(addr, end);
499 if (pud_none_or_clear_bad(pud))
500 continue;
e0da382c 501 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
502 } while (pud++, addr = next, addr != end);
503
c2febafc
KS
504 start &= P4D_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= P4D_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(p4d, start);
516 p4d_clear(p4d);
517 pud_free_tlb(tlb, pud, start);
b4e98d9a 518 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
519}
520
521static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
522 unsigned long addr, unsigned long end,
523 unsigned long floor, unsigned long ceiling)
524{
525 p4d_t *p4d;
526 unsigned long next;
527 unsigned long start;
528
529 start = addr;
530 p4d = p4d_offset(pgd, addr);
531 do {
532 next = p4d_addr_end(addr, end);
533 if (p4d_none_or_clear_bad(p4d))
534 continue;
535 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
536 } while (p4d++, addr = next, addr != end);
537
e0da382c
HD
538 start &= PGDIR_MASK;
539 if (start < floor)
540 return;
541 if (ceiling) {
542 ceiling &= PGDIR_MASK;
543 if (!ceiling)
544 return;
1da177e4 545 }
e0da382c
HD
546 if (end - 1 > ceiling - 1)
547 return;
548
c2febafc 549 p4d = p4d_offset(pgd, start);
e0da382c 550 pgd_clear(pgd);
c2febafc 551 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
552}
553
554/*
e0da382c 555 * This function frees user-level page tables of a process.
1da177e4 556 */
42b77728 557void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
558 unsigned long addr, unsigned long end,
559 unsigned long floor, unsigned long ceiling)
1da177e4
LT
560{
561 pgd_t *pgd;
562 unsigned long next;
e0da382c
HD
563
564 /*
565 * The next few lines have given us lots of grief...
566 *
567 * Why are we testing PMD* at this top level? Because often
568 * there will be no work to do at all, and we'd prefer not to
569 * go all the way down to the bottom just to discover that.
570 *
571 * Why all these "- 1"s? Because 0 represents both the bottom
572 * of the address space and the top of it (using -1 for the
573 * top wouldn't help much: the masks would do the wrong thing).
574 * The rule is that addr 0 and floor 0 refer to the bottom of
575 * the address space, but end 0 and ceiling 0 refer to the top
576 * Comparisons need to use "end - 1" and "ceiling - 1" (though
577 * that end 0 case should be mythical).
578 *
579 * Wherever addr is brought up or ceiling brought down, we must
580 * be careful to reject "the opposite 0" before it confuses the
581 * subsequent tests. But what about where end is brought down
582 * by PMD_SIZE below? no, end can't go down to 0 there.
583 *
584 * Whereas we round start (addr) and ceiling down, by different
585 * masks at different levels, in order to test whether a table
586 * now has no other vmas using it, so can be freed, we don't
587 * bother to round floor or end up - the tests don't need that.
588 */
1da177e4 589
e0da382c
HD
590 addr &= PMD_MASK;
591 if (addr < floor) {
592 addr += PMD_SIZE;
593 if (!addr)
594 return;
595 }
596 if (ceiling) {
597 ceiling &= PMD_MASK;
598 if (!ceiling)
599 return;
600 }
601 if (end - 1 > ceiling - 1)
602 end -= PMD_SIZE;
603 if (addr > end - 1)
604 return;
07e32661
AK
605 /*
606 * We add page table cache pages with PAGE_SIZE,
607 * (see pte_free_tlb()), flush the tlb if we need
608 */
609 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 610 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
611 do {
612 next = pgd_addr_end(addr, end);
613 if (pgd_none_or_clear_bad(pgd))
614 continue;
c2febafc 615 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 616 } while (pgd++, addr = next, addr != end);
e0da382c
HD
617}
618
42b77728 619void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 620 unsigned long floor, unsigned long ceiling)
e0da382c
HD
621{
622 while (vma) {
623 struct vm_area_struct *next = vma->vm_next;
624 unsigned long addr = vma->vm_start;
625
8f4f8c16 626 /*
25d9e2d1 627 * Hide vma from rmap and truncate_pagecache before freeing
628 * pgtables
8f4f8c16 629 */
5beb4930 630 unlink_anon_vmas(vma);
8f4f8c16
HD
631 unlink_file_vma(vma);
632
9da61aef 633 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 634 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 635 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
636 } else {
637 /*
638 * Optimization: gather nearby vmas into one call down
639 */
640 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 641 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
642 vma = next;
643 next = vma->vm_next;
5beb4930 644 unlink_anon_vmas(vma);
8f4f8c16 645 unlink_file_vma(vma);
3bf5ee95
HD
646 }
647 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 648 floor, next ? next->vm_start : ceiling);
3bf5ee95 649 }
e0da382c
HD
650 vma = next;
651 }
1da177e4
LT
652}
653
3ed3a4f0 654int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 655{
c4088ebd 656 spinlock_t *ptl;
2f569afd 657 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
658 if (!new)
659 return -ENOMEM;
660
362a61ad
NP
661 /*
662 * Ensure all pte setup (eg. pte page lock and page clearing) are
663 * visible before the pte is made visible to other CPUs by being
664 * put into page tables.
665 *
666 * The other side of the story is the pointer chasing in the page
667 * table walking code (when walking the page table without locking;
668 * ie. most of the time). Fortunately, these data accesses consist
669 * of a chain of data-dependent loads, meaning most CPUs (alpha
670 * being the notable exception) will already guarantee loads are
671 * seen in-order. See the alpha page table accessors for the
672 * smp_read_barrier_depends() barriers in page table walking code.
673 */
674 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
675
c4088ebd 676 ptl = pmd_lock(mm, pmd);
8ac1f832 677 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 678 mm_inc_nr_ptes(mm);
1da177e4 679 pmd_populate(mm, pmd, new);
2f569afd 680 new = NULL;
4b471e88 681 }
c4088ebd 682 spin_unlock(ptl);
2f569afd
MS
683 if (new)
684 pte_free(mm, new);
1bb3630e 685 return 0;
1da177e4
LT
686}
687
1bb3630e 688int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 689{
1bb3630e
HD
690 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
691 if (!new)
692 return -ENOMEM;
693
362a61ad
NP
694 smp_wmb(); /* See comment in __pte_alloc */
695
1bb3630e 696 spin_lock(&init_mm.page_table_lock);
8ac1f832 697 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 698 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 699 new = NULL;
4b471e88 700 }
1bb3630e 701 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
702 if (new)
703 pte_free_kernel(&init_mm, new);
1bb3630e 704 return 0;
1da177e4
LT
705}
706
d559db08
KH
707static inline void init_rss_vec(int *rss)
708{
709 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
710}
711
712static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 713{
d559db08
KH
714 int i;
715
34e55232 716 if (current->mm == mm)
05af2e10 717 sync_mm_rss(mm);
d559db08
KH
718 for (i = 0; i < NR_MM_COUNTERS; i++)
719 if (rss[i])
720 add_mm_counter(mm, i, rss[i]);
ae859762
HD
721}
722
b5810039 723/*
6aab341e
LT
724 * This function is called to print an error when a bad pte
725 * is found. For example, we might have a PFN-mapped pte in
726 * a region that doesn't allow it.
b5810039
NP
727 *
728 * The calling function must still handle the error.
729 */
3dc14741
HD
730static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
731 pte_t pte, struct page *page)
b5810039 732{
3dc14741 733 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
734 p4d_t *p4d = p4d_offset(pgd, addr);
735 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
736 pmd_t *pmd = pmd_offset(pud, addr);
737 struct address_space *mapping;
738 pgoff_t index;
d936cf9b
HD
739 static unsigned long resume;
740 static unsigned long nr_shown;
741 static unsigned long nr_unshown;
742
743 /*
744 * Allow a burst of 60 reports, then keep quiet for that minute;
745 * or allow a steady drip of one report per second.
746 */
747 if (nr_shown == 60) {
748 if (time_before(jiffies, resume)) {
749 nr_unshown++;
750 return;
751 }
752 if (nr_unshown) {
1170532b
JP
753 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
754 nr_unshown);
d936cf9b
HD
755 nr_unshown = 0;
756 }
757 nr_shown = 0;
758 }
759 if (nr_shown++ == 0)
760 resume = jiffies + 60 * HZ;
3dc14741
HD
761
762 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
763 index = linear_page_index(vma, addr);
764
1170532b
JP
765 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
766 current->comm,
767 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 768 if (page)
f0b791a3 769 dump_page(page, "bad pte");
1170532b
JP
770 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
771 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
772 /*
773 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
774 */
2682582a
KK
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
b5810039 780 dump_stack();
373d4d09 781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
782}
783
ee498ed7 784/*
7e675137 785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 786 *
7e675137
NP
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 790 *
7e675137
NP
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 799 *
b379d790
JH
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
6aab341e
LT
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
7e675137
NP
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
b379d790 813 *
b379d790 814 *
7e675137 815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
ee498ed7 825 */
7e675137
NP
826#ifdef __HAVE_ARCH_PTE_SPECIAL
827# define HAVE_PTE_SPECIAL 1
828#else
829# define HAVE_PTE_SPECIAL 0
830#endif
df6ad698
JG
831struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
832 pte_t pte, bool with_public_device)
ee498ed7 833{
22b31eec 834 unsigned long pfn = pte_pfn(pte);
7e675137
NP
835
836 if (HAVE_PTE_SPECIAL) {
b38af472 837 if (likely(!pte_special(pte)))
22b31eec 838 goto check_pfn;
667a0a06
DV
839 if (vma->vm_ops && vma->vm_ops->find_special_page)
840 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
841 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
842 return NULL;
df6ad698
JG
843 if (is_zero_pfn(pfn))
844 return NULL;
845
846 /*
847 * Device public pages are special pages (they are ZONE_DEVICE
848 * pages but different from persistent memory). They behave
849 * allmost like normal pages. The difference is that they are
850 * not on the lru and thus should never be involve with any-
851 * thing that involve lru manipulation (mlock, numa balancing,
852 * ...).
853 *
854 * This is why we still want to return NULL for such page from
855 * vm_normal_page() so that we do not have to special case all
856 * call site of vm_normal_page().
857 */
7d790d2d 858 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
859 struct page *page = pfn_to_page(pfn);
860
861 if (is_device_public_page(page)) {
862 if (with_public_device)
863 return page;
864 return NULL;
865 }
866 }
867 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
868 return NULL;
869 }
870
871 /* !HAVE_PTE_SPECIAL case follows: */
872
b379d790
JH
873 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
874 if (vma->vm_flags & VM_MIXEDMAP) {
875 if (!pfn_valid(pfn))
876 return NULL;
877 goto out;
878 } else {
7e675137
NP
879 unsigned long off;
880 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
881 if (pfn == vma->vm_pgoff + off)
882 return NULL;
883 if (!is_cow_mapping(vma->vm_flags))
884 return NULL;
885 }
6aab341e
LT
886 }
887
b38af472
HD
888 if (is_zero_pfn(pfn))
889 return NULL;
22b31eec
HD
890check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
6aab341e
LT
895
896 /*
7e675137 897 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 898 * eg. VDSO mappings can cause them to exist.
6aab341e 899 */
b379d790 900out:
6aab341e 901 return pfn_to_page(pfn);
ee498ed7
HD
902}
903
28093f9f
GS
904#ifdef CONFIG_TRANSPARENT_HUGEPAGE
905struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907{
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (is_zero_pfn(pfn))
931 return NULL;
932 if (unlikely(pfn > highest_memmap_pfn))
933 return NULL;
934
935 /*
936 * NOTE! We still have PageReserved() pages in the page tables.
937 * eg. VDSO mappings can cause them to exist.
938 */
939out:
940 return pfn_to_page(pfn);
941}
942#endif
943
1da177e4
LT
944/*
945 * copy one vm_area from one task to the other. Assumes the page tables
946 * already present in the new task to be cleared in the whole range
947 * covered by this vma.
1da177e4
LT
948 */
949
570a335b 950static inline unsigned long
1da177e4 951copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 952 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 953 unsigned long addr, int *rss)
1da177e4 954{
b5810039 955 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
956 pte_t pte = *src_pte;
957 struct page *page;
1da177e4
LT
958
959 /* pte contains position in swap or file, so copy. */
960 if (unlikely(!pte_present(pte))) {
0661a336
KS
961 swp_entry_t entry = pte_to_swp_entry(pte);
962
963 if (likely(!non_swap_entry(entry))) {
964 if (swap_duplicate(entry) < 0)
965 return entry.val;
966
967 /* make sure dst_mm is on swapoff's mmlist. */
968 if (unlikely(list_empty(&dst_mm->mmlist))) {
969 spin_lock(&mmlist_lock);
970 if (list_empty(&dst_mm->mmlist))
971 list_add(&dst_mm->mmlist,
972 &src_mm->mmlist);
973 spin_unlock(&mmlist_lock);
974 }
975 rss[MM_SWAPENTS]++;
976 } else if (is_migration_entry(entry)) {
977 page = migration_entry_to_page(entry);
978
eca56ff9 979 rss[mm_counter(page)]++;
0661a336
KS
980
981 if (is_write_migration_entry(entry) &&
982 is_cow_mapping(vm_flags)) {
983 /*
984 * COW mappings require pages in both
985 * parent and child to be set to read.
986 */
987 make_migration_entry_read(&entry);
988 pte = swp_entry_to_pte(entry);
989 if (pte_swp_soft_dirty(*src_pte))
990 pte = pte_swp_mksoft_dirty(pte);
991 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 992 }
5042db43
JG
993 } else if (is_device_private_entry(entry)) {
994 page = device_private_entry_to_page(entry);
995
996 /*
997 * Update rss count even for unaddressable pages, as
998 * they should treated just like normal pages in this
999 * respect.
1000 *
1001 * We will likely want to have some new rss counters
1002 * for unaddressable pages, at some point. But for now
1003 * keep things as they are.
1004 */
1005 get_page(page);
1006 rss[mm_counter(page)]++;
1007 page_dup_rmap(page, false);
1008
1009 /*
1010 * We do not preserve soft-dirty information, because so
1011 * far, checkpoint/restore is the only feature that
1012 * requires that. And checkpoint/restore does not work
1013 * when a device driver is involved (you cannot easily
1014 * save and restore device driver state).
1015 */
1016 if (is_write_device_private_entry(entry) &&
1017 is_cow_mapping(vm_flags)) {
1018 make_device_private_entry_read(&entry);
1019 pte = swp_entry_to_pte(entry);
1020 set_pte_at(src_mm, addr, src_pte, pte);
1021 }
1da177e4 1022 }
ae859762 1023 goto out_set_pte;
1da177e4
LT
1024 }
1025
1da177e4
LT
1026 /*
1027 * If it's a COW mapping, write protect it both
1028 * in the parent and the child
1029 */
67121172 1030 if (is_cow_mapping(vm_flags)) {
1da177e4 1031 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 1032 pte = pte_wrprotect(pte);
1da177e4
LT
1033 }
1034
1035 /*
1036 * If it's a shared mapping, mark it clean in
1037 * the child
1038 */
1039 if (vm_flags & VM_SHARED)
1040 pte = pte_mkclean(pte);
1041 pte = pte_mkold(pte);
6aab341e
LT
1042
1043 page = vm_normal_page(vma, addr, pte);
1044 if (page) {
1045 get_page(page);
53f9263b 1046 page_dup_rmap(page, false);
eca56ff9 1047 rss[mm_counter(page)]++;
df6ad698
JG
1048 } else if (pte_devmap(pte)) {
1049 page = pte_page(pte);
1050
1051 /*
1052 * Cache coherent device memory behave like regular page and
1053 * not like persistent memory page. For more informations see
1054 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1055 */
1056 if (is_device_public_page(page)) {
1057 get_page(page);
1058 page_dup_rmap(page, false);
1059 rss[mm_counter(page)]++;
1060 }
6aab341e 1061 }
ae859762
HD
1062
1063out_set_pte:
1064 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 1065 return 0;
1da177e4
LT
1066}
1067
21bda264 1068static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
1069 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1070 unsigned long addr, unsigned long end)
1da177e4 1071{
c36987e2 1072 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1073 pte_t *src_pte, *dst_pte;
c74df32c 1074 spinlock_t *src_ptl, *dst_ptl;
e040f218 1075 int progress = 0;
d559db08 1076 int rss[NR_MM_COUNTERS];
570a335b 1077 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1078
1079again:
d559db08
KH
1080 init_rss_vec(rss);
1081
c74df32c 1082 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1083 if (!dst_pte)
1084 return -ENOMEM;
ece0e2b6 1085 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1086 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1088 orig_src_pte = src_pte;
1089 orig_dst_pte = dst_pte;
6606c3e0 1090 arch_enter_lazy_mmu_mode();
1da177e4 1091
1da177e4
LT
1092 do {
1093 /*
1094 * We are holding two locks at this point - either of them
1095 * could generate latencies in another task on another CPU.
1096 */
e040f218
HD
1097 if (progress >= 32) {
1098 progress = 0;
1099 if (need_resched() ||
95c354fe 1100 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1101 break;
1102 }
1da177e4
LT
1103 if (pte_none(*src_pte)) {
1104 progress++;
1105 continue;
1106 }
570a335b
HD
1107 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1108 vma, addr, rss);
1109 if (entry.val)
1110 break;
1da177e4
LT
1111 progress += 8;
1112 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1113
6606c3e0 1114 arch_leave_lazy_mmu_mode();
c74df32c 1115 spin_unlock(src_ptl);
ece0e2b6 1116 pte_unmap(orig_src_pte);
d559db08 1117 add_mm_rss_vec(dst_mm, rss);
c36987e2 1118 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1119 cond_resched();
570a335b
HD
1120
1121 if (entry.val) {
1122 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1123 return -ENOMEM;
1124 progress = 0;
1125 }
1da177e4
LT
1126 if (addr != end)
1127 goto again;
1128 return 0;
1129}
1130
1131static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1132 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1133 unsigned long addr, unsigned long end)
1134{
1135 pmd_t *src_pmd, *dst_pmd;
1136 unsigned long next;
1137
1138 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1139 if (!dst_pmd)
1140 return -ENOMEM;
1141 src_pmd = pmd_offset(src_pud, addr);
1142 do {
1143 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1144 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1145 || pmd_devmap(*src_pmd)) {
71e3aac0 1146 int err;
a00cc7d9 1147 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1148 err = copy_huge_pmd(dst_mm, src_mm,
1149 dst_pmd, src_pmd, addr, vma);
1150 if (err == -ENOMEM)
1151 return -ENOMEM;
1152 if (!err)
1153 continue;
1154 /* fall through */
1155 }
1da177e4
LT
1156 if (pmd_none_or_clear_bad(src_pmd))
1157 continue;
1158 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1159 vma, addr, next))
1160 return -ENOMEM;
1161 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1162 return 0;
1163}
1164
1165static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1166 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1167 unsigned long addr, unsigned long end)
1168{
1169 pud_t *src_pud, *dst_pud;
1170 unsigned long next;
1171
c2febafc 1172 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1173 if (!dst_pud)
1174 return -ENOMEM;
c2febafc 1175 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1176 do {
1177 next = pud_addr_end(addr, end);
a00cc7d9
MW
1178 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1179 int err;
1180
1181 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1182 err = copy_huge_pud(dst_mm, src_mm,
1183 dst_pud, src_pud, addr, vma);
1184 if (err == -ENOMEM)
1185 return -ENOMEM;
1186 if (!err)
1187 continue;
1188 /* fall through */
1189 }
1da177e4
LT
1190 if (pud_none_or_clear_bad(src_pud))
1191 continue;
1192 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1193 vma, addr, next))
1194 return -ENOMEM;
1195 } while (dst_pud++, src_pud++, addr = next, addr != end);
1196 return 0;
1197}
1198
c2febafc
KS
1199static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1200 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1201 unsigned long addr, unsigned long end)
1202{
1203 p4d_t *src_p4d, *dst_p4d;
1204 unsigned long next;
1205
1206 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1207 if (!dst_p4d)
1208 return -ENOMEM;
1209 src_p4d = p4d_offset(src_pgd, addr);
1210 do {
1211 next = p4d_addr_end(addr, end);
1212 if (p4d_none_or_clear_bad(src_p4d))
1213 continue;
1214 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1215 vma, addr, next))
1216 return -ENOMEM;
1217 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1218 return 0;
1219}
1220
1da177e4
LT
1221int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1222 struct vm_area_struct *vma)
1223{
1224 pgd_t *src_pgd, *dst_pgd;
1225 unsigned long next;
1226 unsigned long addr = vma->vm_start;
1227 unsigned long end = vma->vm_end;
2ec74c3e
SG
1228 unsigned long mmun_start; /* For mmu_notifiers */
1229 unsigned long mmun_end; /* For mmu_notifiers */
1230 bool is_cow;
cddb8a5c 1231 int ret;
1da177e4 1232
d992895b
NP
1233 /*
1234 * Don't copy ptes where a page fault will fill them correctly.
1235 * Fork becomes much lighter when there are big shared or private
1236 * readonly mappings. The tradeoff is that copy_page_range is more
1237 * efficient than faulting.
1238 */
0661a336
KS
1239 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1240 !vma->anon_vma)
1241 return 0;
d992895b 1242
1da177e4
LT
1243 if (is_vm_hugetlb_page(vma))
1244 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1245
b3b9c293 1246 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1247 /*
1248 * We do not free on error cases below as remove_vma
1249 * gets called on error from higher level routine
1250 */
5180da41 1251 ret = track_pfn_copy(vma);
2ab64037 1252 if (ret)
1253 return ret;
1254 }
1255
cddb8a5c
AA
1256 /*
1257 * We need to invalidate the secondary MMU mappings only when
1258 * there could be a permission downgrade on the ptes of the
1259 * parent mm. And a permission downgrade will only happen if
1260 * is_cow_mapping() returns true.
1261 */
2ec74c3e
SG
1262 is_cow = is_cow_mapping(vma->vm_flags);
1263 mmun_start = addr;
1264 mmun_end = end;
1265 if (is_cow)
1266 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1267 mmun_end);
cddb8a5c
AA
1268
1269 ret = 0;
1da177e4
LT
1270 dst_pgd = pgd_offset(dst_mm, addr);
1271 src_pgd = pgd_offset(src_mm, addr);
1272 do {
1273 next = pgd_addr_end(addr, end);
1274 if (pgd_none_or_clear_bad(src_pgd))
1275 continue;
c2febafc 1276 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1277 vma, addr, next))) {
1278 ret = -ENOMEM;
1279 break;
1280 }
1da177e4 1281 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1282
2ec74c3e
SG
1283 if (is_cow)
1284 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1285 return ret;
1da177e4
LT
1286}
1287
51c6f666 1288static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1289 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1290 unsigned long addr, unsigned long end,
97a89413 1291 struct zap_details *details)
1da177e4 1292{
b5810039 1293 struct mm_struct *mm = tlb->mm;
d16dfc55 1294 int force_flush = 0;
d559db08 1295 int rss[NR_MM_COUNTERS];
97a89413 1296 spinlock_t *ptl;
5f1a1907 1297 pte_t *start_pte;
97a89413 1298 pte_t *pte;
8a5f14a2 1299 swp_entry_t entry;
d559db08 1300
07e32661 1301 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1302again:
e303297e 1303 init_rss_vec(rss);
5f1a1907
SR
1304 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1305 pte = start_pte;
3ea27719 1306 flush_tlb_batched_pending(mm);
6606c3e0 1307 arch_enter_lazy_mmu_mode();
1da177e4
LT
1308 do {
1309 pte_t ptent = *pte;
166f61b9 1310 if (pte_none(ptent))
1da177e4 1311 continue;
6f5e6b9e 1312
1da177e4 1313 if (pte_present(ptent)) {
ee498ed7 1314 struct page *page;
51c6f666 1315
df6ad698 1316 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1317 if (unlikely(details) && page) {
1318 /*
1319 * unmap_shared_mapping_pages() wants to
1320 * invalidate cache without truncating:
1321 * unmap shared but keep private pages.
1322 */
1323 if (details->check_mapping &&
800d8c63 1324 details->check_mapping != page_rmapping(page))
1da177e4 1325 continue;
1da177e4 1326 }
b5810039 1327 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1328 tlb->fullmm);
1da177e4
LT
1329 tlb_remove_tlb_entry(tlb, pte, addr);
1330 if (unlikely(!page))
1331 continue;
eca56ff9
JM
1332
1333 if (!PageAnon(page)) {
1cf35d47
LT
1334 if (pte_dirty(ptent)) {
1335 force_flush = 1;
6237bcd9 1336 set_page_dirty(page);
1cf35d47 1337 }
4917e5d0 1338 if (pte_young(ptent) &&
64363aad 1339 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1340 mark_page_accessed(page);
6237bcd9 1341 }
eca56ff9 1342 rss[mm_counter(page)]--;
d281ee61 1343 page_remove_rmap(page, false);
3dc14741
HD
1344 if (unlikely(page_mapcount(page) < 0))
1345 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1346 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1347 force_flush = 1;
ce9ec37b 1348 addr += PAGE_SIZE;
d16dfc55 1349 break;
1cf35d47 1350 }
1da177e4
LT
1351 continue;
1352 }
5042db43
JG
1353
1354 entry = pte_to_swp_entry(ptent);
1355 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1356 struct page *page = device_private_entry_to_page(entry);
1357
1358 if (unlikely(details && details->check_mapping)) {
1359 /*
1360 * unmap_shared_mapping_pages() wants to
1361 * invalidate cache without truncating:
1362 * unmap shared but keep private pages.
1363 */
1364 if (details->check_mapping !=
1365 page_rmapping(page))
1366 continue;
1367 }
1368
1369 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1370 rss[mm_counter(page)]--;
1371 page_remove_rmap(page, false);
1372 put_page(page);
1373 continue;
1374 }
1375
3e8715fd
KS
1376 /* If details->check_mapping, we leave swap entries. */
1377 if (unlikely(details))
1da177e4 1378 continue;
b084d435 1379
8a5f14a2
KS
1380 entry = pte_to_swp_entry(ptent);
1381 if (!non_swap_entry(entry))
1382 rss[MM_SWAPENTS]--;
1383 else if (is_migration_entry(entry)) {
1384 struct page *page;
9f9f1acd 1385
8a5f14a2 1386 page = migration_entry_to_page(entry);
eca56ff9 1387 rss[mm_counter(page)]--;
b084d435 1388 }
8a5f14a2
KS
1389 if (unlikely(!free_swap_and_cache(entry)))
1390 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1391 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1392 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1393
d559db08 1394 add_mm_rss_vec(mm, rss);
6606c3e0 1395 arch_leave_lazy_mmu_mode();
51c6f666 1396
1cf35d47 1397 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1398 if (force_flush)
1cf35d47 1399 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1400 pte_unmap_unlock(start_pte, ptl);
1401
1402 /*
1403 * If we forced a TLB flush (either due to running out of
1404 * batch buffers or because we needed to flush dirty TLB
1405 * entries before releasing the ptl), free the batched
1406 * memory too. Restart if we didn't do everything.
1407 */
1408 if (force_flush) {
1409 force_flush = 0;
1410 tlb_flush_mmu_free(tlb);
2b047252 1411 if (addr != end)
d16dfc55
PZ
1412 goto again;
1413 }
1414
51c6f666 1415 return addr;
1da177e4
LT
1416}
1417
51c6f666 1418static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1419 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1420 unsigned long addr, unsigned long end,
97a89413 1421 struct zap_details *details)
1da177e4
LT
1422{
1423 pmd_t *pmd;
1424 unsigned long next;
1425
1426 pmd = pmd_offset(pud, addr);
1427 do {
1428 next = pmd_addr_end(addr, end);
84c3fc4e 1429 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
56ccc392 1430 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1431 __split_huge_pmd(vma, pmd, addr, false, NULL);
56ccc392 1432 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1433 goto next;
71e3aac0
AA
1434 /* fall through */
1435 }
1a5a9906
AA
1436 /*
1437 * Here there can be other concurrent MADV_DONTNEED or
1438 * trans huge page faults running, and if the pmd is
1439 * none or trans huge it can change under us. This is
1440 * because MADV_DONTNEED holds the mmap_sem in read
1441 * mode.
1442 */
1443 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1444 goto next;
97a89413 1445 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1446next:
97a89413
PZ
1447 cond_resched();
1448 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1449
1450 return addr;
1da177e4
LT
1451}
1452
51c6f666 1453static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1454 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1455 unsigned long addr, unsigned long end,
97a89413 1456 struct zap_details *details)
1da177e4
LT
1457{
1458 pud_t *pud;
1459 unsigned long next;
1460
c2febafc 1461 pud = pud_offset(p4d, addr);
1da177e4
LT
1462 do {
1463 next = pud_addr_end(addr, end);
a00cc7d9
MW
1464 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1465 if (next - addr != HPAGE_PUD_SIZE) {
1466 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1467 split_huge_pud(vma, pud, addr);
1468 } else if (zap_huge_pud(tlb, vma, pud, addr))
1469 goto next;
1470 /* fall through */
1471 }
97a89413 1472 if (pud_none_or_clear_bad(pud))
1da177e4 1473 continue;
97a89413 1474 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1475next:
1476 cond_resched();
97a89413 1477 } while (pud++, addr = next, addr != end);
51c6f666
RH
1478
1479 return addr;
1da177e4
LT
1480}
1481
c2febafc
KS
1482static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1483 struct vm_area_struct *vma, pgd_t *pgd,
1484 unsigned long addr, unsigned long end,
1485 struct zap_details *details)
1486{
1487 p4d_t *p4d;
1488 unsigned long next;
1489
1490 p4d = p4d_offset(pgd, addr);
1491 do {
1492 next = p4d_addr_end(addr, end);
1493 if (p4d_none_or_clear_bad(p4d))
1494 continue;
1495 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1496 } while (p4d++, addr = next, addr != end);
1497
1498 return addr;
1499}
1500
aac45363 1501void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1502 struct vm_area_struct *vma,
1503 unsigned long addr, unsigned long end,
1504 struct zap_details *details)
1da177e4
LT
1505{
1506 pgd_t *pgd;
1507 unsigned long next;
1508
1da177e4
LT
1509 BUG_ON(addr >= end);
1510 tlb_start_vma(tlb, vma);
1511 pgd = pgd_offset(vma->vm_mm, addr);
1512 do {
1513 next = pgd_addr_end(addr, end);
97a89413 1514 if (pgd_none_or_clear_bad(pgd))
1da177e4 1515 continue;
c2febafc 1516 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1517 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1518 tlb_end_vma(tlb, vma);
1519}
51c6f666 1520
f5cc4eef
AV
1521
1522static void unmap_single_vma(struct mmu_gather *tlb,
1523 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1524 unsigned long end_addr,
f5cc4eef
AV
1525 struct zap_details *details)
1526{
1527 unsigned long start = max(vma->vm_start, start_addr);
1528 unsigned long end;
1529
1530 if (start >= vma->vm_end)
1531 return;
1532 end = min(vma->vm_end, end_addr);
1533 if (end <= vma->vm_start)
1534 return;
1535
cbc91f71
SD
1536 if (vma->vm_file)
1537 uprobe_munmap(vma, start, end);
1538
b3b9c293 1539 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1540 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1541
1542 if (start != end) {
1543 if (unlikely(is_vm_hugetlb_page(vma))) {
1544 /*
1545 * It is undesirable to test vma->vm_file as it
1546 * should be non-null for valid hugetlb area.
1547 * However, vm_file will be NULL in the error
7aa6b4ad 1548 * cleanup path of mmap_region. When
f5cc4eef 1549 * hugetlbfs ->mmap method fails,
7aa6b4ad 1550 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1551 * before calling this function to clean up.
1552 * Since no pte has actually been setup, it is
1553 * safe to do nothing in this case.
1554 */
24669e58 1555 if (vma->vm_file) {
83cde9e8 1556 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1557 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1558 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1559 }
f5cc4eef
AV
1560 } else
1561 unmap_page_range(tlb, vma, start, end, details);
1562 }
1da177e4
LT
1563}
1564
1da177e4
LT
1565/**
1566 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1567 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1568 * @vma: the starting vma
1569 * @start_addr: virtual address at which to start unmapping
1570 * @end_addr: virtual address at which to end unmapping
1da177e4 1571 *
508034a3 1572 * Unmap all pages in the vma list.
1da177e4 1573 *
1da177e4
LT
1574 * Only addresses between `start' and `end' will be unmapped.
1575 *
1576 * The VMA list must be sorted in ascending virtual address order.
1577 *
1578 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1579 * range after unmap_vmas() returns. So the only responsibility here is to
1580 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1581 * drops the lock and schedules.
1582 */
6e8bb019 1583void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1584 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1585 unsigned long end_addr)
1da177e4 1586{
cddb8a5c 1587 struct mm_struct *mm = vma->vm_mm;
1da177e4 1588
cddb8a5c 1589 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1590 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1591 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1592 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1593}
1594
1595/**
1596 * zap_page_range - remove user pages in a given range
1597 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1598 * @start: starting address of pages to zap
1da177e4 1599 * @size: number of bytes to zap
f5cc4eef
AV
1600 *
1601 * Caller must protect the VMA list
1da177e4 1602 */
7e027b14 1603void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1604 unsigned long size)
1da177e4
LT
1605{
1606 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1607 struct mmu_gather tlb;
7e027b14 1608 unsigned long end = start + size;
1da177e4 1609
1da177e4 1610 lru_add_drain();
2b047252 1611 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1612 update_hiwater_rss(mm);
7e027b14 1613 mmu_notifier_invalidate_range_start(mm, start, end);
4647706e 1614 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
ecf1385d 1615 unmap_single_vma(&tlb, vma, start, end, NULL);
4647706e
MG
1616
1617 /*
1618 * zap_page_range does not specify whether mmap_sem should be
1619 * held for read or write. That allows parallel zap_page_range
1620 * operations to unmap a PTE and defer a flush meaning that
1621 * this call observes pte_none and fails to flush the TLB.
1622 * Rather than adding a complex API, ensure that no stale
1623 * TLB entries exist when this call returns.
1624 */
1625 flush_tlb_range(vma, start, end);
1626 }
1627
7e027b14
LT
1628 mmu_notifier_invalidate_range_end(mm, start, end);
1629 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1630}
1631
f5cc4eef
AV
1632/**
1633 * zap_page_range_single - remove user pages in a given range
1634 * @vma: vm_area_struct holding the applicable pages
1635 * @address: starting address of pages to zap
1636 * @size: number of bytes to zap
8a5f14a2 1637 * @details: details of shared cache invalidation
f5cc4eef
AV
1638 *
1639 * The range must fit into one VMA.
1da177e4 1640 */
f5cc4eef 1641static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1642 unsigned long size, struct zap_details *details)
1643{
1644 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1645 struct mmu_gather tlb;
1da177e4 1646 unsigned long end = address + size;
1da177e4 1647
1da177e4 1648 lru_add_drain();
2b047252 1649 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1650 update_hiwater_rss(mm);
f5cc4eef 1651 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1652 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1653 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1654 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1655}
1656
c627f9cc
JS
1657/**
1658 * zap_vma_ptes - remove ptes mapping the vma
1659 * @vma: vm_area_struct holding ptes to be zapped
1660 * @address: starting address of pages to zap
1661 * @size: number of bytes to zap
1662 *
1663 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664 *
1665 * The entire address range must be fully contained within the vma.
1666 *
1667 * Returns 0 if successful.
1668 */
1669int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670 unsigned long size)
1671{
1672 if (address < vma->vm_start || address + size > vma->vm_end ||
1673 !(vma->vm_flags & VM_PFNMAP))
1674 return -1;
f5cc4eef 1675 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1676 return 0;
1677}
1678EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679
25ca1d6c 1680pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1681 spinlock_t **ptl)
c9cfcddf 1682{
c2febafc
KS
1683 pgd_t *pgd;
1684 p4d_t *p4d;
1685 pud_t *pud;
1686 pmd_t *pmd;
1687
1688 pgd = pgd_offset(mm, addr);
1689 p4d = p4d_alloc(mm, pgd, addr);
1690 if (!p4d)
1691 return NULL;
1692 pud = pud_alloc(mm, p4d, addr);
1693 if (!pud)
1694 return NULL;
1695 pmd = pmd_alloc(mm, pud, addr);
1696 if (!pmd)
1697 return NULL;
1698
1699 VM_BUG_ON(pmd_trans_huge(*pmd));
1700 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1701}
1702
238f58d8
LT
1703/*
1704 * This is the old fallback for page remapping.
1705 *
1706 * For historical reasons, it only allows reserved pages. Only
1707 * old drivers should use this, and they needed to mark their
1708 * pages reserved for the old functions anyway.
1709 */
423bad60
NP
1710static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1711 struct page *page, pgprot_t prot)
238f58d8 1712{
423bad60 1713 struct mm_struct *mm = vma->vm_mm;
238f58d8 1714 int retval;
c9cfcddf 1715 pte_t *pte;
8a9f3ccd
BS
1716 spinlock_t *ptl;
1717
238f58d8 1718 retval = -EINVAL;
a145dd41 1719 if (PageAnon(page))
5b4e655e 1720 goto out;
238f58d8
LT
1721 retval = -ENOMEM;
1722 flush_dcache_page(page);
c9cfcddf 1723 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1724 if (!pte)
5b4e655e 1725 goto out;
238f58d8
LT
1726 retval = -EBUSY;
1727 if (!pte_none(*pte))
1728 goto out_unlock;
1729
1730 /* Ok, finally just insert the thing.. */
1731 get_page(page);
eca56ff9 1732 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1733 page_add_file_rmap(page, false);
238f58d8
LT
1734 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735
1736 retval = 0;
8a9f3ccd
BS
1737 pte_unmap_unlock(pte, ptl);
1738 return retval;
238f58d8
LT
1739out_unlock:
1740 pte_unmap_unlock(pte, ptl);
1741out:
1742 return retval;
1743}
1744
bfa5bf6d
REB
1745/**
1746 * vm_insert_page - insert single page into user vma
1747 * @vma: user vma to map to
1748 * @addr: target user address of this page
1749 * @page: source kernel page
1750 *
a145dd41
LT
1751 * This allows drivers to insert individual pages they've allocated
1752 * into a user vma.
1753 *
1754 * The page has to be a nice clean _individual_ kernel allocation.
1755 * If you allocate a compound page, you need to have marked it as
1756 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1757 * (see split_page()).
a145dd41
LT
1758 *
1759 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1760 * took an arbitrary page protection parameter. This doesn't allow
1761 * that. Your vma protection will have to be set up correctly, which
1762 * means that if you want a shared writable mapping, you'd better
1763 * ask for a shared writable mapping!
1764 *
1765 * The page does not need to be reserved.
4b6e1e37
KK
1766 *
1767 * Usually this function is called from f_op->mmap() handler
1768 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1769 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1770 * function from other places, for example from page-fault handler.
a145dd41 1771 */
423bad60
NP
1772int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1773 struct page *page)
a145dd41
LT
1774{
1775 if (addr < vma->vm_start || addr >= vma->vm_end)
1776 return -EFAULT;
1777 if (!page_count(page))
1778 return -EINVAL;
4b6e1e37
KK
1779 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1780 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1781 BUG_ON(vma->vm_flags & VM_PFNMAP);
1782 vma->vm_flags |= VM_MIXEDMAP;
1783 }
423bad60 1784 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1785}
e3c3374f 1786EXPORT_SYMBOL(vm_insert_page);
a145dd41 1787
423bad60 1788static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1789 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1790{
1791 struct mm_struct *mm = vma->vm_mm;
1792 int retval;
1793 pte_t *pte, entry;
1794 spinlock_t *ptl;
1795
1796 retval = -ENOMEM;
1797 pte = get_locked_pte(mm, addr, &ptl);
1798 if (!pte)
1799 goto out;
1800 retval = -EBUSY;
b2770da6
RZ
1801 if (!pte_none(*pte)) {
1802 if (mkwrite) {
1803 /*
1804 * For read faults on private mappings the PFN passed
1805 * in may not match the PFN we have mapped if the
1806 * mapped PFN is a writeable COW page. In the mkwrite
1807 * case we are creating a writable PTE for a shared
92632762
JK
1808 * mapping and we expect the PFNs to match. If they
1809 * don't match, we are likely racing with block
1810 * allocation and mapping invalidation so just skip the
1811 * update.
b2770da6 1812 */
92632762
JK
1813 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1814 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1815 goto out_unlock;
92632762 1816 }
e8833fc8
JK
1817 entry = pte_mkyoung(*pte);
1818 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1820 update_mmu_cache(vma, addr, pte);
1821 }
1822 goto out_unlock;
b2770da6 1823 }
423bad60
NP
1824
1825 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1826 if (pfn_t_devmap(pfn))
1827 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1828 else
1829 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1830
b2770da6
RZ
1831 if (mkwrite) {
1832 entry = pte_mkyoung(entry);
1833 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1834 }
1835
423bad60 1836 set_pte_at(mm, addr, pte, entry);
4b3073e1 1837 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1838
1839 retval = 0;
1840out_unlock:
1841 pte_unmap_unlock(pte, ptl);
1842out:
1843 return retval;
1844}
1845
e0dc0d8f
NP
1846/**
1847 * vm_insert_pfn - insert single pfn into user vma
1848 * @vma: user vma to map to
1849 * @addr: target user address of this page
1850 * @pfn: source kernel pfn
1851 *
c462f179 1852 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1853 * they've allocated into a user vma. Same comments apply.
1854 *
1855 * This function should only be called from a vm_ops->fault handler, and
1856 * in that case the handler should return NULL.
0d71d10a
NP
1857 *
1858 * vma cannot be a COW mapping.
1859 *
1860 * As this is called only for pages that do not currently exist, we
1861 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1862 */
1863int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1864 unsigned long pfn)
1745cbc5
AL
1865{
1866 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1867}
1868EXPORT_SYMBOL(vm_insert_pfn);
1869
1870/**
1871 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1872 * @vma: user vma to map to
1873 * @addr: target user address of this page
1874 * @pfn: source kernel pfn
1875 * @pgprot: pgprot flags for the inserted page
1876 *
1877 * This is exactly like vm_insert_pfn, except that it allows drivers to
1878 * to override pgprot on a per-page basis.
1879 *
1880 * This only makes sense for IO mappings, and it makes no sense for
1881 * cow mappings. In general, using multiple vmas is preferable;
1882 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1883 * impractical.
1884 */
1885int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1886 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1887{
2ab64037 1888 int ret;
7e675137
NP
1889 /*
1890 * Technically, architectures with pte_special can avoid all these
1891 * restrictions (same for remap_pfn_range). However we would like
1892 * consistency in testing and feature parity among all, so we should
1893 * try to keep these invariants in place for everybody.
1894 */
b379d790
JH
1895 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1896 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1897 (VM_PFNMAP|VM_MIXEDMAP));
1898 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1899 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1900
423bad60
NP
1901 if (addr < vma->vm_start || addr >= vma->vm_end)
1902 return -EFAULT;
308a047c 1903
0831b2a2
AK
1904 if (!pfn_modify_allowed(pfn, pgprot))
1905 return -EACCES;
1906
308a047c 1907 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1908
b2770da6
RZ
1909 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1910 false);
2ab64037 1911
2ab64037 1912 return ret;
423bad60 1913}
1745cbc5 1914EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1915
c11da42b
DW
1916static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1917{
1918 /* these checks mirror the abort conditions in vm_normal_page */
1919 if (vma->vm_flags & VM_MIXEDMAP)
1920 return true;
1921 if (pfn_t_devmap(pfn))
1922 return true;
1923 if (pfn_t_special(pfn))
1924 return true;
1925 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1926 return true;
1927 return false;
1928}
1929
b2770da6
RZ
1930static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1931 pfn_t pfn, bool mkwrite)
423bad60 1932{
87744ab3
DW
1933 pgprot_t pgprot = vma->vm_page_prot;
1934
c11da42b 1935 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1936
423bad60
NP
1937 if (addr < vma->vm_start || addr >= vma->vm_end)
1938 return -EFAULT;
308a047c
BP
1939
1940 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1941
0831b2a2
AK
1942 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1943 return -EACCES;
1944
423bad60
NP
1945 /*
1946 * If we don't have pte special, then we have to use the pfn_valid()
1947 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1948 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1949 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1950 * without pte special, it would there be refcounted as a normal page.
423bad60 1951 */
03fc2da6 1952 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1953 struct page *page;
1954
03fc2da6
DW
1955 /*
1956 * At this point we are committed to insert_page()
1957 * regardless of whether the caller specified flags that
1958 * result in pfn_t_has_page() == false.
1959 */
1960 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1961 return insert_page(vma, addr, page, pgprot);
423bad60 1962 }
b2770da6
RZ
1963 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1964}
1965
1966int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1967 pfn_t pfn)
1968{
1969 return __vm_insert_mixed(vma, addr, pfn, false);
1970
e0dc0d8f 1971}
423bad60 1972EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1973
b2770da6
RZ
1974int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1975 pfn_t pfn)
1976{
1977 return __vm_insert_mixed(vma, addr, pfn, true);
1978}
1979EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1980
1da177e4
LT
1981/*
1982 * maps a range of physical memory into the requested pages. the old
1983 * mappings are removed. any references to nonexistent pages results
1984 * in null mappings (currently treated as "copy-on-access")
1985 */
1986static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1987 unsigned long addr, unsigned long end,
1988 unsigned long pfn, pgprot_t prot)
1989{
1990 pte_t *pte;
c74df32c 1991 spinlock_t *ptl;
0831b2a2 1992 int err = 0;
1da177e4 1993
c74df32c 1994 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1995 if (!pte)
1996 return -ENOMEM;
6606c3e0 1997 arch_enter_lazy_mmu_mode();
1da177e4
LT
1998 do {
1999 BUG_ON(!pte_none(*pte));
0831b2a2
AK
2000 if (!pfn_modify_allowed(pfn, prot)) {
2001 err = -EACCES;
2002 break;
2003 }
7e675137 2004 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2005 pfn++;
2006 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2007 arch_leave_lazy_mmu_mode();
c74df32c 2008 pte_unmap_unlock(pte - 1, ptl);
0831b2a2 2009 return err;
1da177e4
LT
2010}
2011
2012static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2013 unsigned long addr, unsigned long end,
2014 unsigned long pfn, pgprot_t prot)
2015{
2016 pmd_t *pmd;
2017 unsigned long next;
0831b2a2 2018 int err;
1da177e4
LT
2019
2020 pfn -= addr >> PAGE_SHIFT;
2021 pmd = pmd_alloc(mm, pud, addr);
2022 if (!pmd)
2023 return -ENOMEM;
f66055ab 2024 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2025 do {
2026 next = pmd_addr_end(addr, end);
0831b2a2
AK
2027 err = remap_pte_range(mm, pmd, addr, next,
2028 pfn + (addr >> PAGE_SHIFT), prot);
2029 if (err)
2030 return err;
1da177e4
LT
2031 } while (pmd++, addr = next, addr != end);
2032 return 0;
2033}
2034
c2febafc 2035static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2036 unsigned long addr, unsigned long end,
2037 unsigned long pfn, pgprot_t prot)
2038{
2039 pud_t *pud;
2040 unsigned long next;
0831b2a2 2041 int err;
1da177e4
LT
2042
2043 pfn -= addr >> PAGE_SHIFT;
c2febafc 2044 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2045 if (!pud)
2046 return -ENOMEM;
2047 do {
2048 next = pud_addr_end(addr, end);
0831b2a2
AK
2049 err = remap_pmd_range(mm, pud, addr, next,
2050 pfn + (addr >> PAGE_SHIFT), prot);
2051 if (err)
2052 return err;
1da177e4
LT
2053 } while (pud++, addr = next, addr != end);
2054 return 0;
2055}
2056
c2febafc
KS
2057static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2058 unsigned long addr, unsigned long end,
2059 unsigned long pfn, pgprot_t prot)
2060{
2061 p4d_t *p4d;
2062 unsigned long next;
0831b2a2 2063 int err;
c2febafc
KS
2064
2065 pfn -= addr >> PAGE_SHIFT;
2066 p4d = p4d_alloc(mm, pgd, addr);
2067 if (!p4d)
2068 return -ENOMEM;
2069 do {
2070 next = p4d_addr_end(addr, end);
0831b2a2
AK
2071 err = remap_pud_range(mm, p4d, addr, next,
2072 pfn + (addr >> PAGE_SHIFT), prot);
2073 if (err)
2074 return err;
c2febafc
KS
2075 } while (p4d++, addr = next, addr != end);
2076 return 0;
2077}
2078
bfa5bf6d
REB
2079/**
2080 * remap_pfn_range - remap kernel memory to userspace
2081 * @vma: user vma to map to
2082 * @addr: target user address to start at
2083 * @pfn: physical address of kernel memory
2084 * @size: size of map area
2085 * @prot: page protection flags for this mapping
2086 *
2087 * Note: this is only safe if the mm semaphore is held when called.
2088 */
1da177e4
LT
2089int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2090 unsigned long pfn, unsigned long size, pgprot_t prot)
2091{
2092 pgd_t *pgd;
2093 unsigned long next;
2d15cab8 2094 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2095 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2096 unsigned long remap_pfn = pfn;
1da177e4
LT
2097 int err;
2098
2099 /*
2100 * Physically remapped pages are special. Tell the
2101 * rest of the world about it:
2102 * VM_IO tells people not to look at these pages
2103 * (accesses can have side effects).
6aab341e
LT
2104 * VM_PFNMAP tells the core MM that the base pages are just
2105 * raw PFN mappings, and do not have a "struct page" associated
2106 * with them.
314e51b9
KK
2107 * VM_DONTEXPAND
2108 * Disable vma merging and expanding with mremap().
2109 * VM_DONTDUMP
2110 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2111 *
2112 * There's a horrible special case to handle copy-on-write
2113 * behaviour that some programs depend on. We mark the "original"
2114 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2115 * See vm_normal_page() for details.
1da177e4 2116 */
b3b9c293
KK
2117 if (is_cow_mapping(vma->vm_flags)) {
2118 if (addr != vma->vm_start || end != vma->vm_end)
2119 return -EINVAL;
fb155c16 2120 vma->vm_pgoff = pfn;
b3b9c293
KK
2121 }
2122
d5957d2f 2123 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2124 if (err)
3c8bb73a 2125 return -EINVAL;
fb155c16 2126
314e51b9 2127 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2128
2129 BUG_ON(addr >= end);
2130 pfn -= addr >> PAGE_SHIFT;
2131 pgd = pgd_offset(mm, addr);
2132 flush_cache_range(vma, addr, end);
1da177e4
LT
2133 do {
2134 next = pgd_addr_end(addr, end);
c2febafc 2135 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2136 pfn + (addr >> PAGE_SHIFT), prot);
2137 if (err)
2138 break;
2139 } while (pgd++, addr = next, addr != end);
2ab64037 2140
2141 if (err)
d5957d2f 2142 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2143
1da177e4
LT
2144 return err;
2145}
2146EXPORT_SYMBOL(remap_pfn_range);
2147
b4cbb197
LT
2148/**
2149 * vm_iomap_memory - remap memory to userspace
2150 * @vma: user vma to map to
2151 * @start: start of area
2152 * @len: size of area
2153 *
2154 * This is a simplified io_remap_pfn_range() for common driver use. The
2155 * driver just needs to give us the physical memory range to be mapped,
2156 * we'll figure out the rest from the vma information.
2157 *
2158 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2159 * whatever write-combining details or similar.
2160 */
2161int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2162{
2163 unsigned long vm_len, pfn, pages;
2164
2165 /* Check that the physical memory area passed in looks valid */
2166 if (start + len < start)
2167 return -EINVAL;
2168 /*
2169 * You *really* shouldn't map things that aren't page-aligned,
2170 * but we've historically allowed it because IO memory might
2171 * just have smaller alignment.
2172 */
2173 len += start & ~PAGE_MASK;
2174 pfn = start >> PAGE_SHIFT;
2175 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2176 if (pfn + pages < pfn)
2177 return -EINVAL;
2178
2179 /* We start the mapping 'vm_pgoff' pages into the area */
2180 if (vma->vm_pgoff > pages)
2181 return -EINVAL;
2182 pfn += vma->vm_pgoff;
2183 pages -= vma->vm_pgoff;
2184
2185 /* Can we fit all of the mapping? */
2186 vm_len = vma->vm_end - vma->vm_start;
2187 if (vm_len >> PAGE_SHIFT > pages)
2188 return -EINVAL;
2189
2190 /* Ok, let it rip */
2191 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2192}
2193EXPORT_SYMBOL(vm_iomap_memory);
2194
aee16b3c
JF
2195static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196 unsigned long addr, unsigned long end,
2197 pte_fn_t fn, void *data)
2198{
2199 pte_t *pte;
2200 int err;
2f569afd 2201 pgtable_t token;
94909914 2202 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2203
2204 pte = (mm == &init_mm) ?
2205 pte_alloc_kernel(pmd, addr) :
2206 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2207 if (!pte)
2208 return -ENOMEM;
2209
2210 BUG_ON(pmd_huge(*pmd));
2211
38e0edb1
JF
2212 arch_enter_lazy_mmu_mode();
2213
2f569afd 2214 token = pmd_pgtable(*pmd);
aee16b3c
JF
2215
2216 do {
c36987e2 2217 err = fn(pte++, token, addr, data);
aee16b3c
JF
2218 if (err)
2219 break;
c36987e2 2220 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2221
38e0edb1
JF
2222 arch_leave_lazy_mmu_mode();
2223
aee16b3c
JF
2224 if (mm != &init_mm)
2225 pte_unmap_unlock(pte-1, ptl);
2226 return err;
2227}
2228
2229static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2230 unsigned long addr, unsigned long end,
2231 pte_fn_t fn, void *data)
2232{
2233 pmd_t *pmd;
2234 unsigned long next;
2235 int err;
2236
ceb86879
AK
2237 BUG_ON(pud_huge(*pud));
2238
aee16b3c
JF
2239 pmd = pmd_alloc(mm, pud, addr);
2240 if (!pmd)
2241 return -ENOMEM;
2242 do {
2243 next = pmd_addr_end(addr, end);
2244 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2245 if (err)
2246 break;
2247 } while (pmd++, addr = next, addr != end);
2248 return err;
2249}
2250
c2febafc 2251static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2252 unsigned long addr, unsigned long end,
2253 pte_fn_t fn, void *data)
2254{
2255 pud_t *pud;
2256 unsigned long next;
2257 int err;
2258
c2febafc 2259 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2260 if (!pud)
2261 return -ENOMEM;
2262 do {
2263 next = pud_addr_end(addr, end);
2264 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2265 if (err)
2266 break;
2267 } while (pud++, addr = next, addr != end);
2268 return err;
2269}
2270
c2febafc
KS
2271static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2272 unsigned long addr, unsigned long end,
2273 pte_fn_t fn, void *data)
2274{
2275 p4d_t *p4d;
2276 unsigned long next;
2277 int err;
2278
2279 p4d = p4d_alloc(mm, pgd, addr);
2280 if (!p4d)
2281 return -ENOMEM;
2282 do {
2283 next = p4d_addr_end(addr, end);
2284 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2285 if (err)
2286 break;
2287 } while (p4d++, addr = next, addr != end);
2288 return err;
2289}
2290
aee16b3c
JF
2291/*
2292 * Scan a region of virtual memory, filling in page tables as necessary
2293 * and calling a provided function on each leaf page table.
2294 */
2295int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2296 unsigned long size, pte_fn_t fn, void *data)
2297{
2298 pgd_t *pgd;
2299 unsigned long next;
57250a5b 2300 unsigned long end = addr + size;
aee16b3c
JF
2301 int err;
2302
9cb65bc3
MP
2303 if (WARN_ON(addr >= end))
2304 return -EINVAL;
2305
aee16b3c
JF
2306 pgd = pgd_offset(mm, addr);
2307 do {
2308 next = pgd_addr_end(addr, end);
c2febafc 2309 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2310 if (err)
2311 break;
2312 } while (pgd++, addr = next, addr != end);
57250a5b 2313
aee16b3c
JF
2314 return err;
2315}
2316EXPORT_SYMBOL_GPL(apply_to_page_range);
2317
8f4e2101 2318/*
9b4bdd2f
KS
2319 * handle_pte_fault chooses page fault handler according to an entry which was
2320 * read non-atomically. Before making any commitment, on those architectures
2321 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2322 * parts, do_swap_page must check under lock before unmapping the pte and
2323 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2324 * and do_anonymous_page can safely check later on).
8f4e2101 2325 */
4c21e2f2 2326static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2327 pte_t *page_table, pte_t orig_pte)
2328{
2329 int same = 1;
2330#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2331 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2332 spinlock_t *ptl = pte_lockptr(mm, pmd);
2333 spin_lock(ptl);
8f4e2101 2334 same = pte_same(*page_table, orig_pte);
4c21e2f2 2335 spin_unlock(ptl);
8f4e2101
HD
2336 }
2337#endif
2338 pte_unmap(page_table);
2339 return same;
2340}
2341
9de455b2 2342static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2343{
0abdd7a8
DW
2344 debug_dma_assert_idle(src);
2345
6aab341e
LT
2346 /*
2347 * If the source page was a PFN mapping, we don't have
2348 * a "struct page" for it. We do a best-effort copy by
2349 * just copying from the original user address. If that
2350 * fails, we just zero-fill it. Live with it.
2351 */
2352 if (unlikely(!src)) {
9b04c5fe 2353 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2354 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2355
2356 /*
2357 * This really shouldn't fail, because the page is there
2358 * in the page tables. But it might just be unreadable,
2359 * in which case we just give up and fill the result with
2360 * zeroes.
2361 */
2362 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2363 clear_page(kaddr);
9b04c5fe 2364 kunmap_atomic(kaddr);
c4ec7b0d 2365 flush_dcache_page(dst);
0ed361de
NP
2366 } else
2367 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2368}
2369
c20cd45e
MH
2370static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2371{
2372 struct file *vm_file = vma->vm_file;
2373
2374 if (vm_file)
2375 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2376
2377 /*
2378 * Special mappings (e.g. VDSO) do not have any file so fake
2379 * a default GFP_KERNEL for them.
2380 */
2381 return GFP_KERNEL;
2382}
2383
fb09a464
KS
2384/*
2385 * Notify the address space that the page is about to become writable so that
2386 * it can prohibit this or wait for the page to get into an appropriate state.
2387 *
2388 * We do this without the lock held, so that it can sleep if it needs to.
2389 */
38b8cb7f 2390static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2391{
fb09a464 2392 int ret;
38b8cb7f
JK
2393 struct page *page = vmf->page;
2394 unsigned int old_flags = vmf->flags;
fb09a464 2395
38b8cb7f 2396 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2397
11bac800 2398 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2399 /* Restore original flags so that caller is not surprised */
2400 vmf->flags = old_flags;
fb09a464
KS
2401 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2402 return ret;
2403 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2404 lock_page(page);
2405 if (!page->mapping) {
2406 unlock_page(page);
2407 return 0; /* retry */
2408 }
2409 ret |= VM_FAULT_LOCKED;
2410 } else
2411 VM_BUG_ON_PAGE(!PageLocked(page), page);
2412 return ret;
2413}
2414
97ba0c2b
JK
2415/*
2416 * Handle dirtying of a page in shared file mapping on a write fault.
2417 *
2418 * The function expects the page to be locked and unlocks it.
2419 */
2420static void fault_dirty_shared_page(struct vm_area_struct *vma,
2421 struct page *page)
2422{
2423 struct address_space *mapping;
2424 bool dirtied;
2425 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2426
2427 dirtied = set_page_dirty(page);
2428 VM_BUG_ON_PAGE(PageAnon(page), page);
2429 /*
2430 * Take a local copy of the address_space - page.mapping may be zeroed
2431 * by truncate after unlock_page(). The address_space itself remains
2432 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2433 * release semantics to prevent the compiler from undoing this copying.
2434 */
2435 mapping = page_rmapping(page);
2436 unlock_page(page);
2437
2438 if ((dirtied || page_mkwrite) && mapping) {
2439 /*
2440 * Some device drivers do not set page.mapping
2441 * but still dirty their pages
2442 */
2443 balance_dirty_pages_ratelimited(mapping);
2444 }
2445
2446 if (!page_mkwrite)
2447 file_update_time(vma->vm_file);
2448}
2449
4e047f89
SR
2450/*
2451 * Handle write page faults for pages that can be reused in the current vma
2452 *
2453 * This can happen either due to the mapping being with the VM_SHARED flag,
2454 * or due to us being the last reference standing to the page. In either
2455 * case, all we need to do here is to mark the page as writable and update
2456 * any related book-keeping.
2457 */
997dd98d 2458static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2459 __releases(vmf->ptl)
4e047f89 2460{
82b0f8c3 2461 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2462 struct page *page = vmf->page;
4e047f89
SR
2463 pte_t entry;
2464 /*
2465 * Clear the pages cpupid information as the existing
2466 * information potentially belongs to a now completely
2467 * unrelated process.
2468 */
2469 if (page)
2470 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471
2994302b
JK
2472 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2474 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2475 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476 update_mmu_cache(vma, vmf->address, vmf->pte);
2477 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2478}
2479
2f38ab2c
SR
2480/*
2481 * Handle the case of a page which we actually need to copy to a new page.
2482 *
2483 * Called with mmap_sem locked and the old page referenced, but
2484 * without the ptl held.
2485 *
2486 * High level logic flow:
2487 *
2488 * - Allocate a page, copy the content of the old page to the new one.
2489 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490 * - Take the PTL. If the pte changed, bail out and release the allocated page
2491 * - If the pte is still the way we remember it, update the page table and all
2492 * relevant references. This includes dropping the reference the page-table
2493 * held to the old page, as well as updating the rmap.
2494 * - In any case, unlock the PTL and drop the reference we took to the old page.
2495 */
a41b70d6 2496static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2497{
82b0f8c3 2498 struct vm_area_struct *vma = vmf->vma;
bae473a4 2499 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2500 struct page *old_page = vmf->page;
2f38ab2c 2501 struct page *new_page = NULL;
2f38ab2c
SR
2502 pte_t entry;
2503 int page_copied = 0;
82b0f8c3 2504 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2505 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2506 struct mem_cgroup *memcg;
2507
2508 if (unlikely(anon_vma_prepare(vma)))
2509 goto oom;
2510
2994302b 2511 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2512 new_page = alloc_zeroed_user_highpage_movable(vma,
2513 vmf->address);
2f38ab2c
SR
2514 if (!new_page)
2515 goto oom;
2516 } else {
bae473a4 2517 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2518 vmf->address);
2f38ab2c
SR
2519 if (!new_page)
2520 goto oom;
82b0f8c3 2521 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2522 }
2f38ab2c 2523
f627c2f5 2524 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2525 goto oom_free_new;
2526
eb3c24f3
MG
2527 __SetPageUptodate(new_page);
2528
2f38ab2c
SR
2529 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2530
2531 /*
2532 * Re-check the pte - we dropped the lock
2533 */
82b0f8c3 2534 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2535 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2536 if (old_page) {
2537 if (!PageAnon(old_page)) {
eca56ff9
JM
2538 dec_mm_counter_fast(mm,
2539 mm_counter_file(old_page));
2f38ab2c
SR
2540 inc_mm_counter_fast(mm, MM_ANONPAGES);
2541 }
2542 } else {
2543 inc_mm_counter_fast(mm, MM_ANONPAGES);
2544 }
2994302b 2545 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2546 entry = mk_pte(new_page, vma->vm_page_prot);
2547 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2548 /*
2549 * Clear the pte entry and flush it first, before updating the
2550 * pte with the new entry. This will avoid a race condition
2551 * seen in the presence of one thread doing SMC and another
2552 * thread doing COW.
2553 */
82b0f8c3
JK
2554 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2555 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2556 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2557 lru_cache_add_active_or_unevictable(new_page, vma);
2558 /*
2559 * We call the notify macro here because, when using secondary
2560 * mmu page tables (such as kvm shadow page tables), we want the
2561 * new page to be mapped directly into the secondary page table.
2562 */
82b0f8c3
JK
2563 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2564 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2565 if (old_page) {
2566 /*
2567 * Only after switching the pte to the new page may
2568 * we remove the mapcount here. Otherwise another
2569 * process may come and find the rmap count decremented
2570 * before the pte is switched to the new page, and
2571 * "reuse" the old page writing into it while our pte
2572 * here still points into it and can be read by other
2573 * threads.
2574 *
2575 * The critical issue is to order this
2576 * page_remove_rmap with the ptp_clear_flush above.
2577 * Those stores are ordered by (if nothing else,)
2578 * the barrier present in the atomic_add_negative
2579 * in page_remove_rmap.
2580 *
2581 * Then the TLB flush in ptep_clear_flush ensures that
2582 * no process can access the old page before the
2583 * decremented mapcount is visible. And the old page
2584 * cannot be reused until after the decremented
2585 * mapcount is visible. So transitively, TLBs to
2586 * old page will be flushed before it can be reused.
2587 */
d281ee61 2588 page_remove_rmap(old_page, false);
2f38ab2c
SR
2589 }
2590
2591 /* Free the old page.. */
2592 new_page = old_page;
2593 page_copied = 1;
2594 } else {
f627c2f5 2595 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2596 }
2597
2598 if (new_page)
09cbfeaf 2599 put_page(new_page);
2f38ab2c 2600
82b0f8c3 2601 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2602 /*
2603 * No need to double call mmu_notifier->invalidate_range() callback as
2604 * the above ptep_clear_flush_notify() did already call it.
2605 */
2606 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2607 if (old_page) {
2608 /*
2609 * Don't let another task, with possibly unlocked vma,
2610 * keep the mlocked page.
2611 */
2612 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2613 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2614 if (PageMlocked(old_page))
2615 munlock_vma_page(old_page);
2f38ab2c
SR
2616 unlock_page(old_page);
2617 }
09cbfeaf 2618 put_page(old_page);
2f38ab2c
SR
2619 }
2620 return page_copied ? VM_FAULT_WRITE : 0;
2621oom_free_new:
09cbfeaf 2622 put_page(new_page);
2f38ab2c
SR
2623oom:
2624 if (old_page)
09cbfeaf 2625 put_page(old_page);
2f38ab2c
SR
2626 return VM_FAULT_OOM;
2627}
2628
66a6197c
JK
2629/**
2630 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2631 * writeable once the page is prepared
2632 *
2633 * @vmf: structure describing the fault
2634 *
2635 * This function handles all that is needed to finish a write page fault in a
2636 * shared mapping due to PTE being read-only once the mapped page is prepared.
2637 * It handles locking of PTE and modifying it. The function returns
2638 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2639 * lock.
2640 *
2641 * The function expects the page to be locked or other protection against
2642 * concurrent faults / writeback (such as DAX radix tree locks).
2643 */
2644int finish_mkwrite_fault(struct vm_fault *vmf)
2645{
2646 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2647 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2648 &vmf->ptl);
2649 /*
2650 * We might have raced with another page fault while we released the
2651 * pte_offset_map_lock.
2652 */
2653 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2654 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2655 return VM_FAULT_NOPAGE;
66a6197c
JK
2656 }
2657 wp_page_reuse(vmf);
a19e2553 2658 return 0;
66a6197c
JK
2659}
2660
dd906184
BH
2661/*
2662 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2663 * mapping
2664 */
2994302b 2665static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2666{
82b0f8c3 2667 struct vm_area_struct *vma = vmf->vma;
bae473a4 2668
dd906184 2669 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2670 int ret;
2671
82b0f8c3 2672 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2673 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2674 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2675 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2676 return ret;
66a6197c 2677 return finish_mkwrite_fault(vmf);
dd906184 2678 }
997dd98d
JK
2679 wp_page_reuse(vmf);
2680 return VM_FAULT_WRITE;
dd906184
BH
2681}
2682
a41b70d6 2683static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2684 __releases(vmf->ptl)
93e478d4 2685{
82b0f8c3 2686 struct vm_area_struct *vma = vmf->vma;
93e478d4 2687
a41b70d6 2688 get_page(vmf->page);
93e478d4 2689
93e478d4
SR
2690 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2691 int tmp;
2692
82b0f8c3 2693 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2694 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2695 if (unlikely(!tmp || (tmp &
2696 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2697 put_page(vmf->page);
93e478d4
SR
2698 return tmp;
2699 }
66a6197c 2700 tmp = finish_mkwrite_fault(vmf);
a19e2553 2701 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2702 unlock_page(vmf->page);
a41b70d6 2703 put_page(vmf->page);
66a6197c 2704 return tmp;
93e478d4 2705 }
66a6197c
JK
2706 } else {
2707 wp_page_reuse(vmf);
997dd98d 2708 lock_page(vmf->page);
93e478d4 2709 }
997dd98d
JK
2710 fault_dirty_shared_page(vma, vmf->page);
2711 put_page(vmf->page);
93e478d4 2712
997dd98d 2713 return VM_FAULT_WRITE;
93e478d4
SR
2714}
2715
1da177e4
LT
2716/*
2717 * This routine handles present pages, when users try to write
2718 * to a shared page. It is done by copying the page to a new address
2719 * and decrementing the shared-page counter for the old page.
2720 *
1da177e4
LT
2721 * Note that this routine assumes that the protection checks have been
2722 * done by the caller (the low-level page fault routine in most cases).
2723 * Thus we can safely just mark it writable once we've done any necessary
2724 * COW.
2725 *
2726 * We also mark the page dirty at this point even though the page will
2727 * change only once the write actually happens. This avoids a few races,
2728 * and potentially makes it more efficient.
2729 *
8f4e2101
HD
2730 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2731 * but allow concurrent faults), with pte both mapped and locked.
2732 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2733 */
2994302b 2734static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2735 __releases(vmf->ptl)
1da177e4 2736{
82b0f8c3 2737 struct vm_area_struct *vma = vmf->vma;
1da177e4 2738
a41b70d6
JK
2739 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2740 if (!vmf->page) {
251b97f5 2741 /*
64e45507
PF
2742 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2743 * VM_PFNMAP VMA.
251b97f5
PZ
2744 *
2745 * We should not cow pages in a shared writeable mapping.
dd906184 2746 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2747 */
2748 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749 (VM_WRITE|VM_SHARED))
2994302b 2750 return wp_pfn_shared(vmf);
2f38ab2c 2751
82b0f8c3 2752 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2753 return wp_page_copy(vmf);
251b97f5 2754 }
1da177e4 2755
d08b3851 2756 /*
ee6a6457
PZ
2757 * Take out anonymous pages first, anonymous shared vmas are
2758 * not dirty accountable.
d08b3851 2759 */
a41b70d6 2760 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2761 int total_map_swapcount;
a41b70d6
JK
2762 if (!trylock_page(vmf->page)) {
2763 get_page(vmf->page);
82b0f8c3 2764 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2765 lock_page(vmf->page);
82b0f8c3
JK
2766 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2767 vmf->address, &vmf->ptl);
2994302b 2768 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2769 unlock_page(vmf->page);
82b0f8c3 2770 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2771 put_page(vmf->page);
28766805 2772 return 0;
ab967d86 2773 }
a41b70d6 2774 put_page(vmf->page);
ee6a6457 2775 }
ba3c4ce6
HY
2776 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2777 if (total_map_swapcount == 1) {
6d0a07ed
AA
2778 /*
2779 * The page is all ours. Move it to
2780 * our anon_vma so the rmap code will
2781 * not search our parent or siblings.
2782 * Protected against the rmap code by
2783 * the page lock.
2784 */
a41b70d6 2785 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2786 }
a41b70d6 2787 unlock_page(vmf->page);
997dd98d
JK
2788 wp_page_reuse(vmf);
2789 return VM_FAULT_WRITE;
b009c024 2790 }
a41b70d6 2791 unlock_page(vmf->page);
ee6a6457 2792 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2793 (VM_WRITE|VM_SHARED))) {
a41b70d6 2794 return wp_page_shared(vmf);
1da177e4 2795 }
1da177e4
LT
2796
2797 /*
2798 * Ok, we need to copy. Oh, well..
2799 */
a41b70d6 2800 get_page(vmf->page);
28766805 2801
82b0f8c3 2802 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2803 return wp_page_copy(vmf);
1da177e4
LT
2804}
2805
97a89413 2806static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2807 unsigned long start_addr, unsigned long end_addr,
2808 struct zap_details *details)
2809{
f5cc4eef 2810 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2811}
2812
f808c13f 2813static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2814 struct zap_details *details)
2815{
2816 struct vm_area_struct *vma;
1da177e4
LT
2817 pgoff_t vba, vea, zba, zea;
2818
6b2dbba8 2819 vma_interval_tree_foreach(vma, root,
1da177e4 2820 details->first_index, details->last_index) {
1da177e4
LT
2821
2822 vba = vma->vm_pgoff;
d6e93217 2823 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2824 zba = details->first_index;
2825 if (zba < vba)
2826 zba = vba;
2827 zea = details->last_index;
2828 if (zea > vea)
2829 zea = vea;
2830
97a89413 2831 unmap_mapping_range_vma(vma,
1da177e4
LT
2832 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2833 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2834 details);
1da177e4
LT
2835 }
2836}
2837
1da177e4 2838/**
8a5f14a2
KS
2839 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2840 * address_space corresponding to the specified page range in the underlying
2841 * file.
2842 *
3d41088f 2843 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2844 * @holebegin: byte in first page to unmap, relative to the start of
2845 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2846 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2847 * must keep the partial page. In contrast, we must get rid of
2848 * partial pages.
2849 * @holelen: size of prospective hole in bytes. This will be rounded
2850 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2851 * end of the file.
2852 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2853 * but 0 when invalidating pagecache, don't throw away private data.
2854 */
2855void unmap_mapping_range(struct address_space *mapping,
2856 loff_t const holebegin, loff_t const holelen, int even_cows)
2857{
aac45363 2858 struct zap_details details = { };
1da177e4
LT
2859 pgoff_t hba = holebegin >> PAGE_SHIFT;
2860 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2861
2862 /* Check for overflow. */
2863 if (sizeof(holelen) > sizeof(hlen)) {
2864 long long holeend =
2865 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2866 if (holeend & ~(long long)ULONG_MAX)
2867 hlen = ULONG_MAX - hba + 1;
2868 }
2869
166f61b9 2870 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2871 details.first_index = hba;
2872 details.last_index = hba + hlen - 1;
2873 if (details.last_index < details.first_index)
2874 details.last_index = ULONG_MAX;
1da177e4 2875
46c043ed 2876 i_mmap_lock_write(mapping);
f808c13f 2877 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
1da177e4 2878 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2879 i_mmap_unlock_write(mapping);
1da177e4
LT
2880}
2881EXPORT_SYMBOL(unmap_mapping_range);
2882
1da177e4 2883/*
8f4e2101
HD
2884 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2886 * We return with pte unmapped and unlocked.
2887 *
2888 * We return with the mmap_sem locked or unlocked in the same cases
2889 * as does filemap_fault().
1da177e4 2890 */
2994302b 2891int do_swap_page(struct vm_fault *vmf)
1da177e4 2892{
82b0f8c3 2893 struct vm_area_struct *vma = vmf->vma;
0bcac06f 2894 struct page *page = NULL, *swapcache = NULL;
00501b53 2895 struct mem_cgroup *memcg;
ec560175 2896 struct vma_swap_readahead swap_ra;
65500d23 2897 swp_entry_t entry;
1da177e4 2898 pte_t pte;
d065bd81 2899 int locked;
ad8c2ee8 2900 int exclusive = 0;
83c54070 2901 int ret = 0;
ec560175 2902 bool vma_readahead = swap_use_vma_readahead();
1da177e4 2903
f8020772 2904 if (vma_readahead) {
ec560175 2905 page = swap_readahead_detect(vmf, &swap_ra);
f8020772
MK
2906 swapcache = page;
2907 }
2908
ec560175
HY
2909 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2910 if (page)
2911 put_page(page);
8f4e2101 2912 goto out;
ec560175 2913 }
65500d23 2914
2994302b 2915 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2916 if (unlikely(non_swap_entry(entry))) {
2917 if (is_migration_entry(entry)) {
82b0f8c3
JK
2918 migration_entry_wait(vma->vm_mm, vmf->pmd,
2919 vmf->address);
5042db43
JG
2920 } else if (is_device_private_entry(entry)) {
2921 /*
2922 * For un-addressable device memory we call the pgmap
2923 * fault handler callback. The callback must migrate
2924 * the page back to some CPU accessible page.
2925 */
2926 ret = device_private_entry_fault(vma, vmf->address, entry,
2927 vmf->flags, vmf->pmd);
d1737fdb
AK
2928 } else if (is_hwpoison_entry(entry)) {
2929 ret = VM_FAULT_HWPOISON;
2930 } else {
2994302b 2931 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2932 ret = VM_FAULT_SIGBUS;
d1737fdb 2933 }
0697212a
CL
2934 goto out;
2935 }
0bcac06f
MK
2936
2937
0ff92245 2938 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
f8020772 2939 if (!page) {
ec560175
HY
2940 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2941 vmf->address);
f8020772
MK
2942 swapcache = page;
2943 }
2944
1da177e4 2945 if (!page) {
0bcac06f
MK
2946 struct swap_info_struct *si = swp_swap_info(entry);
2947
aa8d22a1
MK
2948 if (si->flags & SWP_SYNCHRONOUS_IO &&
2949 __swap_count(si, entry) == 1) {
0bcac06f
MK
2950 /* skip swapcache */
2951 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2952 if (page) {
2953 __SetPageLocked(page);
2954 __SetPageSwapBacked(page);
2955 set_page_private(page, entry.val);
2956 lru_cache_add_anon(page);
2957 swap_readpage(page, true);
2958 }
aa8d22a1
MK
2959 } else {
2960 if (vma_readahead)
2961 page = do_swap_page_readahead(entry,
2962 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2963 else
2964 page = swapin_readahead(entry,
2965 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2966 swapcache = page;
0bcac06f
MK
2967 }
2968
1da177e4
LT
2969 if (!page) {
2970 /*
8f4e2101
HD
2971 * Back out if somebody else faulted in this pte
2972 * while we released the pte lock.
1da177e4 2973 */
82b0f8c3
JK
2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975 vmf->address, &vmf->ptl);
2994302b 2976 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2977 ret = VM_FAULT_OOM;
0ff92245 2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2979 goto unlock;
1da177e4
LT
2980 }
2981
2982 /* Had to read the page from swap area: Major fault */
2983 ret = VM_FAULT_MAJOR;
f8891e5e 2984 count_vm_event(PGMAJFAULT);
2262185c 2985 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2986 } else if (PageHWPoison(page)) {
71f72525
WF
2987 /*
2988 * hwpoisoned dirty swapcache pages are kept for killing
2989 * owner processes (which may be unknown at hwpoison time)
2990 */
d1737fdb
AK
2991 ret = VM_FAULT_HWPOISON;
2992 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2993 swapcache = page;
4779cb31 2994 goto out_release;
1da177e4
LT
2995 }
2996
82b0f8c3 2997 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2998
073e587e 2999 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3000 if (!locked) {
3001 ret |= VM_FAULT_RETRY;
3002 goto out_release;
3003 }
073e587e 3004
4969c119 3005 /*
31c4a3d3
HD
3006 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3007 * release the swapcache from under us. The page pin, and pte_same
3008 * test below, are not enough to exclude that. Even if it is still
3009 * swapcache, we need to check that the page's swap has not changed.
4969c119 3010 */
0bcac06f
MK
3011 if (unlikely((!PageSwapCache(page) ||
3012 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3013 goto out_page;
3014
82b0f8c3 3015 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3016 if (unlikely(!page)) {
3017 ret = VM_FAULT_OOM;
3018 page = swapcache;
cbf86cfe 3019 goto out_page;
5ad64688
HD
3020 }
3021
bae473a4
KS
3022 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3023 &memcg, false)) {
8a9f3ccd 3024 ret = VM_FAULT_OOM;
bc43f75c 3025 goto out_page;
8a9f3ccd
BS
3026 }
3027
1da177e4 3028 /*
8f4e2101 3029 * Back out if somebody else already faulted in this pte.
1da177e4 3030 */
82b0f8c3
JK
3031 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3032 &vmf->ptl);
2994302b 3033 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3034 goto out_nomap;
b8107480
KK
3035
3036 if (unlikely(!PageUptodate(page))) {
3037 ret = VM_FAULT_SIGBUS;
3038 goto out_nomap;
1da177e4
LT
3039 }
3040
8c7c6e34
KH
3041 /*
3042 * The page isn't present yet, go ahead with the fault.
3043 *
3044 * Be careful about the sequence of operations here.
3045 * To get its accounting right, reuse_swap_page() must be called
3046 * while the page is counted on swap but not yet in mapcount i.e.
3047 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3048 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3049 */
1da177e4 3050
bae473a4
KS
3051 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3052 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3053 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3054 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3055 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3056 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3057 ret |= VM_FAULT_WRITE;
d281ee61 3058 exclusive = RMAP_EXCLUSIVE;
1da177e4 3059 }
1da177e4 3060 flush_icache_page(vma, page);
2994302b 3061 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3062 pte = pte_mksoft_dirty(pte);
82b0f8c3 3063 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 3064 vmf->orig_pte = pte;
0bcac06f
MK
3065
3066 /* ksm created a completely new copy */
3067 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3068 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3069 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3070 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3071 } else {
3072 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3073 mem_cgroup_commit_charge(page, memcg, true, false);
3074 activate_page(page);
00501b53 3075 }
1da177e4 3076
c475a8ab 3077 swap_free(entry);
5ccc5aba
VD
3078 if (mem_cgroup_swap_full(page) ||
3079 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3080 try_to_free_swap(page);
c475a8ab 3081 unlock_page(page);
0bcac06f 3082 if (page != swapcache && swapcache) {
4969c119
AA
3083 /*
3084 * Hold the lock to avoid the swap entry to be reused
3085 * until we take the PT lock for the pte_same() check
3086 * (to avoid false positives from pte_same). For
3087 * further safety release the lock after the swap_free
3088 * so that the swap count won't change under a
3089 * parallel locked swapcache.
3090 */
3091 unlock_page(swapcache);
09cbfeaf 3092 put_page(swapcache);
4969c119 3093 }
c475a8ab 3094
82b0f8c3 3095 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3096 ret |= do_wp_page(vmf);
61469f1d
HD
3097 if (ret & VM_FAULT_ERROR)
3098 ret &= VM_FAULT_ERROR;
1da177e4
LT
3099 goto out;
3100 }
3101
3102 /* No need to invalidate - it was non-present before */
82b0f8c3 3103 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3104unlock:
82b0f8c3 3105 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3106out:
3107 return ret;
b8107480 3108out_nomap:
f627c2f5 3109 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3110 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3111out_page:
b8107480 3112 unlock_page(page);
4779cb31 3113out_release:
09cbfeaf 3114 put_page(page);
0bcac06f 3115 if (page != swapcache && swapcache) {
4969c119 3116 unlock_page(swapcache);
09cbfeaf 3117 put_page(swapcache);
4969c119 3118 }
65500d23 3119 return ret;
1da177e4
LT
3120}
3121
3122/*
8f4e2101
HD
3123 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3124 * but allow concurrent faults), and pte mapped but not yet locked.
3125 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3126 */
82b0f8c3 3127static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 3128{
82b0f8c3 3129 struct vm_area_struct *vma = vmf->vma;
00501b53 3130 struct mem_cgroup *memcg;
8f4e2101 3131 struct page *page;
6b31d595 3132 int ret = 0;
1da177e4 3133 pte_t entry;
1da177e4 3134
6b7339f4
KS
3135 /* File mapping without ->vm_ops ? */
3136 if (vma->vm_flags & VM_SHARED)
3137 return VM_FAULT_SIGBUS;
3138
7267ec00
KS
3139 /*
3140 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3141 * pte_offset_map() on pmds where a huge pmd might be created
3142 * from a different thread.
3143 *
3144 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3145 * parallel threads are excluded by other means.
3146 *
3147 * Here we only have down_read(mmap_sem).
3148 */
82b0f8c3 3149 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
3150 return VM_FAULT_OOM;
3151
3152 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3153 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3154 return 0;
3155
11ac5524 3156 /* Use the zero-page for reads */
82b0f8c3 3157 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3158 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3159 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3160 vma->vm_page_prot));
82b0f8c3
JK
3161 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162 vmf->address, &vmf->ptl);
3163 if (!pte_none(*vmf->pte))
a13ea5b7 3164 goto unlock;
6b31d595
MH
3165 ret = check_stable_address_space(vma->vm_mm);
3166 if (ret)
3167 goto unlock;
6b251fc9
AA
3168 /* Deliver the page fault to userland, check inside PT lock */
3169 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3170 pte_unmap_unlock(vmf->pte, vmf->ptl);
3171 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3172 }
a13ea5b7
HD
3173 goto setpte;
3174 }
3175
557ed1fa 3176 /* Allocate our own private page. */
557ed1fa
NP
3177 if (unlikely(anon_vma_prepare(vma)))
3178 goto oom;
82b0f8c3 3179 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3180 if (!page)
3181 goto oom;
eb3c24f3 3182
bae473a4 3183 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
3184 goto oom_free_page;
3185
52f37629
MK
3186 /*
3187 * The memory barrier inside __SetPageUptodate makes sure that
3188 * preceeding stores to the page contents become visible before
3189 * the set_pte_at() write.
3190 */
0ed361de 3191 __SetPageUptodate(page);
8f4e2101 3192
557ed1fa 3193 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3194 if (vma->vm_flags & VM_WRITE)
3195 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3196
82b0f8c3
JK
3197 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3198 &vmf->ptl);
3199 if (!pte_none(*vmf->pte))
557ed1fa 3200 goto release;
9ba69294 3201
6b31d595
MH
3202 ret = check_stable_address_space(vma->vm_mm);
3203 if (ret)
3204 goto release;
3205
6b251fc9
AA
3206 /* Deliver the page fault to userland, check inside PT lock */
3207 if (userfaultfd_missing(vma)) {
82b0f8c3 3208 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3209 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3210 put_page(page);
82b0f8c3 3211 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3212 }
3213
bae473a4 3214 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3215 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3216 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3217 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3218setpte:
82b0f8c3 3219 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3220
3221 /* No need to invalidate - it was non-present before */
82b0f8c3 3222 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3223unlock:
82b0f8c3 3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3225 return ret;
8f4e2101 3226release:
f627c2f5 3227 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3228 put_page(page);
8f4e2101 3229 goto unlock;
8a9f3ccd 3230oom_free_page:
09cbfeaf 3231 put_page(page);
65500d23 3232oom:
1da177e4
LT
3233 return VM_FAULT_OOM;
3234}
3235
9a95f3cf
PC
3236/*
3237 * The mmap_sem must have been held on entry, and may have been
3238 * released depending on flags and vma->vm_ops->fault() return value.
3239 * See filemap_fault() and __lock_page_retry().
3240 */
936ca80d 3241static int __do_fault(struct vm_fault *vmf)
7eae74af 3242{
82b0f8c3 3243 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3244 int ret;
3245
ebe596ce
MH
3246 /*
3247 * Preallocate pte before we take page_lock because this might lead to
3248 * deadlocks for memcg reclaim which waits for pages under writeback:
3249 * lock_page(A)
3250 * SetPageWriteback(A)
3251 * unlock_page(A)
3252 * lock_page(B)
3253 * lock_page(B)
3254 * pte_alloc_pne
3255 * shrink_page_list
3256 * wait_on_page_writeback(A)
3257 * SetPageWriteback(B)
3258 * unlock_page(B)
3259 * # flush A, B to clear the writeback
3260 */
3261 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3262 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3263 vmf->address);
3264 if (!vmf->prealloc_pte)
3265 return VM_FAULT_OOM;
3266 smp_wmb(); /* See comment in __pte_alloc() */
3267 }
3268
11bac800 3269 ret = vma->vm_ops->fault(vmf);
3917048d 3270 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3271 VM_FAULT_DONE_COW)))
bc2466e4 3272 return ret;
7eae74af 3273
667240e0 3274 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3275 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3276 unlock_page(vmf->page);
3277 put_page(vmf->page);
936ca80d 3278 vmf->page = NULL;
7eae74af
KS
3279 return VM_FAULT_HWPOISON;
3280 }
3281
3282 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3283 lock_page(vmf->page);
7eae74af 3284 else
667240e0 3285 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3286
7eae74af
KS
3287 return ret;
3288}
3289
d0f0931d
RZ
3290/*
3291 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3292 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3293 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3294 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3295 */
3296static int pmd_devmap_trans_unstable(pmd_t *pmd)
3297{
3298 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3299}
3300
82b0f8c3 3301static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3302{
82b0f8c3 3303 struct vm_area_struct *vma = vmf->vma;
7267ec00 3304
82b0f8c3 3305 if (!pmd_none(*vmf->pmd))
7267ec00 3306 goto map_pte;
82b0f8c3
JK
3307 if (vmf->prealloc_pte) {
3308 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3309 if (unlikely(!pmd_none(*vmf->pmd))) {
3310 spin_unlock(vmf->ptl);
7267ec00
KS
3311 goto map_pte;
3312 }
3313
c4812909 3314 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3315 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3316 spin_unlock(vmf->ptl);
7f2b6ce8 3317 vmf->prealloc_pte = NULL;
82b0f8c3 3318 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3319 return VM_FAULT_OOM;
3320 }
3321map_pte:
3322 /*
3323 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3324 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3325 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3326 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3327 * running immediately after a huge pmd fault in a different thread of
3328 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3329 * All we have to ensure is that it is a regular pmd that we can walk
3330 * with pte_offset_map() and we can do that through an atomic read in
3331 * C, which is what pmd_trans_unstable() provides.
7267ec00 3332 */
d0f0931d 3333 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3334 return VM_FAULT_NOPAGE;
3335
d0f0931d
RZ
3336 /*
3337 * At this point we know that our vmf->pmd points to a page of ptes
3338 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3339 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3340 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3341 * be valid and we will re-check to make sure the vmf->pte isn't
3342 * pte_none() under vmf->ptl protection when we return to
3343 * alloc_set_pte().
3344 */
82b0f8c3
JK
3345 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3346 &vmf->ptl);
7267ec00
KS
3347 return 0;
3348}
3349
e496cf3d 3350#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3351
3352#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3353static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3354 unsigned long haddr)
3355{
3356 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3357 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3358 return false;
3359 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3360 return false;
3361 return true;
3362}
3363
82b0f8c3 3364static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3365{
82b0f8c3 3366 struct vm_area_struct *vma = vmf->vma;
953c66c2 3367
82b0f8c3 3368 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3369 /*
3370 * We are going to consume the prealloc table,
3371 * count that as nr_ptes.
3372 */
c4812909 3373 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3374 vmf->prealloc_pte = NULL;
953c66c2
AK
3375}
3376
82b0f8c3 3377static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3378{
82b0f8c3
JK
3379 struct vm_area_struct *vma = vmf->vma;
3380 bool write = vmf->flags & FAULT_FLAG_WRITE;
3381 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3382 pmd_t entry;
3383 int i, ret;
3384
3385 if (!transhuge_vma_suitable(vma, haddr))
3386 return VM_FAULT_FALLBACK;
3387
3388 ret = VM_FAULT_FALLBACK;
3389 page = compound_head(page);
3390
953c66c2
AK
3391 /*
3392 * Archs like ppc64 need additonal space to store information
3393 * related to pte entry. Use the preallocated table for that.
3394 */
82b0f8c3
JK
3395 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3396 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3397 if (!vmf->prealloc_pte)
953c66c2
AK
3398 return VM_FAULT_OOM;
3399 smp_wmb(); /* See comment in __pte_alloc() */
3400 }
3401
82b0f8c3
JK
3402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3403 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3404 goto out;
3405
3406 for (i = 0; i < HPAGE_PMD_NR; i++)
3407 flush_icache_page(vma, page + i);
3408
3409 entry = mk_huge_pmd(page, vma->vm_page_prot);
3410 if (write)
f55e1014 3411 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459
KS
3412
3413 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3414 page_add_file_rmap(page, true);
953c66c2
AK
3415 /*
3416 * deposit and withdraw with pmd lock held
3417 */
3418 if (arch_needs_pgtable_deposit())
82b0f8c3 3419 deposit_prealloc_pte(vmf);
10102459 3420
82b0f8c3 3421 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3422
82b0f8c3 3423 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3424
3425 /* fault is handled */
3426 ret = 0;
95ecedcd 3427 count_vm_event(THP_FILE_MAPPED);
10102459 3428out:
82b0f8c3 3429 spin_unlock(vmf->ptl);
10102459
KS
3430 return ret;
3431}
3432#else
82b0f8c3 3433static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3434{
3435 BUILD_BUG();
3436 return 0;
3437}
3438#endif
3439
8c6e50b0 3440/**
7267ec00
KS
3441 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3442 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3443 *
82b0f8c3 3444 * @vmf: fault environment
7267ec00 3445 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3446 * @page: page to map
8c6e50b0 3447 *
82b0f8c3
JK
3448 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3449 * return.
8c6e50b0
KS
3450 *
3451 * Target users are page handler itself and implementations of
3452 * vm_ops->map_pages.
3453 */
82b0f8c3 3454int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3455 struct page *page)
3bb97794 3456{
82b0f8c3
JK
3457 struct vm_area_struct *vma = vmf->vma;
3458 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3459 pte_t entry;
10102459
KS
3460 int ret;
3461
82b0f8c3 3462 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3463 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3464 /* THP on COW? */
3465 VM_BUG_ON_PAGE(memcg, page);
3466
82b0f8c3 3467 ret = do_set_pmd(vmf, page);
10102459 3468 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3469 return ret;
10102459 3470 }
3bb97794 3471
82b0f8c3
JK
3472 if (!vmf->pte) {
3473 ret = pte_alloc_one_map(vmf);
7267ec00 3474 if (ret)
b0b9b3df 3475 return ret;
7267ec00
KS
3476 }
3477
3478 /* Re-check under ptl */
b0b9b3df
HD
3479 if (unlikely(!pte_none(*vmf->pte)))
3480 return VM_FAULT_NOPAGE;
7267ec00 3481
3bb97794
KS
3482 flush_icache_page(vma, page);
3483 entry = mk_pte(page, vma->vm_page_prot);
3484 if (write)
3485 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3486 /* copy-on-write page */
3487 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3488 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3489 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3490 mem_cgroup_commit_charge(page, memcg, false, false);
3491 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3492 } else {
eca56ff9 3493 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3494 page_add_file_rmap(page, false);
3bb97794 3495 }
82b0f8c3 3496 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3497
3498 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3499 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3500
b0b9b3df 3501 return 0;
3bb97794
KS
3502}
3503
9118c0cb
JK
3504
3505/**
3506 * finish_fault - finish page fault once we have prepared the page to fault
3507 *
3508 * @vmf: structure describing the fault
3509 *
3510 * This function handles all that is needed to finish a page fault once the
3511 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3512 * given page, adds reverse page mapping, handles memcg charges and LRU
3513 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3514 * error.
3515 *
3516 * The function expects the page to be locked and on success it consumes a
3517 * reference of a page being mapped (for the PTE which maps it).
3518 */
3519int finish_fault(struct vm_fault *vmf)
3520{
3521 struct page *page;
6b31d595 3522 int ret = 0;
9118c0cb
JK
3523
3524 /* Did we COW the page? */
3525 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3526 !(vmf->vma->vm_flags & VM_SHARED))
3527 page = vmf->cow_page;
3528 else
3529 page = vmf->page;
6b31d595
MH
3530
3531 /*
3532 * check even for read faults because we might have lost our CoWed
3533 * page
3534 */
3535 if (!(vmf->vma->vm_flags & VM_SHARED))
3536 ret = check_stable_address_space(vmf->vma->vm_mm);
3537 if (!ret)
3538 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3539 if (vmf->pte)
3540 pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 return ret;
3542}
3543
3a91053a
KS
3544static unsigned long fault_around_bytes __read_mostly =
3545 rounddown_pow_of_two(65536);
a9b0f861 3546
a9b0f861
KS
3547#ifdef CONFIG_DEBUG_FS
3548static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3549{
a9b0f861 3550 *val = fault_around_bytes;
1592eef0
KS
3551 return 0;
3552}
3553
b4903d6e
AR
3554/*
3555 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3556 * rounded down to nearest page order. It's what do_fault_around() expects to
3557 * see.
3558 */
a9b0f861 3559static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3560{
a9b0f861 3561 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3562 return -EINVAL;
b4903d6e
AR
3563 if (val > PAGE_SIZE)
3564 fault_around_bytes = rounddown_pow_of_two(val);
3565 else
3566 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3567 return 0;
3568}
0a1345f8 3569DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3570 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3571
3572static int __init fault_around_debugfs(void)
3573{
3574 void *ret;
3575
0a1345f8 3576 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3577 &fault_around_bytes_fops);
1592eef0 3578 if (!ret)
a9b0f861 3579 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3580 return 0;
3581}
3582late_initcall(fault_around_debugfs);
1592eef0 3583#endif
8c6e50b0 3584
1fdb412b
KS
3585/*
3586 * do_fault_around() tries to map few pages around the fault address. The hope
3587 * is that the pages will be needed soon and this will lower the number of
3588 * faults to handle.
3589 *
3590 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3591 * not ready to be mapped: not up-to-date, locked, etc.
3592 *
3593 * This function is called with the page table lock taken. In the split ptlock
3594 * case the page table lock only protects only those entries which belong to
3595 * the page table corresponding to the fault address.
3596 *
3597 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3598 * only once.
3599 *
3600 * fault_around_pages() defines how many pages we'll try to map.
3601 * do_fault_around() expects it to return a power of two less than or equal to
3602 * PTRS_PER_PTE.
3603 *
3604 * The virtual address of the area that we map is naturally aligned to the
3605 * fault_around_pages() value (and therefore to page order). This way it's
3606 * easier to guarantee that we don't cross page table boundaries.
3607 */
0721ec8b 3608static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3609{
82b0f8c3 3610 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3611 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3612 pgoff_t end_pgoff;
7267ec00 3613 int off, ret = 0;
8c6e50b0 3614
4db0c3c2 3615 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3616 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3617
82b0f8c3
JK
3618 vmf->address = max(address & mask, vmf->vma->vm_start);
3619 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3620 start_pgoff -= off;
8c6e50b0
KS
3621
3622 /*
bae473a4
KS
3623 * end_pgoff is either end of page table or end of vma
3624 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3625 */
bae473a4 3626 end_pgoff = start_pgoff -
82b0f8c3 3627 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3628 PTRS_PER_PTE - 1;
82b0f8c3 3629 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3630 start_pgoff + nr_pages - 1);
8c6e50b0 3631
82b0f8c3
JK
3632 if (pmd_none(*vmf->pmd)) {
3633 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3634 vmf->address);
3635 if (!vmf->prealloc_pte)
c5f88bd2 3636 goto out;
7267ec00 3637 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3638 }
3639
82b0f8c3 3640 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3641
7267ec00 3642 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3643 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3644 ret = VM_FAULT_NOPAGE;
3645 goto out;
3646 }
3647
3648 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3649 if (!vmf->pte)
7267ec00
KS
3650 goto out;
3651
3652 /* check if the page fault is solved */
82b0f8c3
JK
3653 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3654 if (!pte_none(*vmf->pte))
7267ec00 3655 ret = VM_FAULT_NOPAGE;
82b0f8c3 3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3657out:
82b0f8c3
JK
3658 vmf->address = address;
3659 vmf->pte = NULL;
7267ec00 3660 return ret;
8c6e50b0
KS
3661}
3662
0721ec8b 3663static int do_read_fault(struct vm_fault *vmf)
e655fb29 3664{
82b0f8c3 3665 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3666 int ret = 0;
3667
3668 /*
3669 * Let's call ->map_pages() first and use ->fault() as fallback
3670 * if page by the offset is not ready to be mapped (cold cache or
3671 * something).
3672 */
9b4bdd2f 3673 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3674 ret = do_fault_around(vmf);
7267ec00
KS
3675 if (ret)
3676 return ret;
8c6e50b0 3677 }
e655fb29 3678
936ca80d 3679 ret = __do_fault(vmf);
e655fb29
KS
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3681 return ret;
3682
9118c0cb 3683 ret |= finish_fault(vmf);
936ca80d 3684 unlock_page(vmf->page);
7267ec00 3685 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3686 put_page(vmf->page);
e655fb29
KS
3687 return ret;
3688}
3689
0721ec8b 3690static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3691{
82b0f8c3 3692 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3693 int ret;
3694
3695 if (unlikely(anon_vma_prepare(vma)))
3696 return VM_FAULT_OOM;
3697
936ca80d
JK
3698 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3699 if (!vmf->cow_page)
ec47c3b9
KS
3700 return VM_FAULT_OOM;
3701
936ca80d 3702 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3703 &vmf->memcg, false)) {
936ca80d 3704 put_page(vmf->cow_page);
ec47c3b9
KS
3705 return VM_FAULT_OOM;
3706 }
3707
936ca80d 3708 ret = __do_fault(vmf);
ec47c3b9
KS
3709 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3710 goto uncharge_out;
3917048d
JK
3711 if (ret & VM_FAULT_DONE_COW)
3712 return ret;
ec47c3b9 3713
b1aa812b 3714 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3715 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3716
9118c0cb 3717 ret |= finish_fault(vmf);
b1aa812b
JK
3718 unlock_page(vmf->page);
3719 put_page(vmf->page);
7267ec00
KS
3720 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3721 goto uncharge_out;
ec47c3b9
KS
3722 return ret;
3723uncharge_out:
3917048d 3724 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3725 put_page(vmf->cow_page);
ec47c3b9
KS
3726 return ret;
3727}
3728
0721ec8b 3729static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3730{
82b0f8c3 3731 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3732 int ret, tmp;
1d65f86d 3733
936ca80d 3734 ret = __do_fault(vmf);
7eae74af 3735 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3736 return ret;
1da177e4
LT
3737
3738 /*
f0c6d4d2
KS
3739 * Check if the backing address space wants to know that the page is
3740 * about to become writable
1da177e4 3741 */
fb09a464 3742 if (vma->vm_ops->page_mkwrite) {
936ca80d 3743 unlock_page(vmf->page);
38b8cb7f 3744 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3745 if (unlikely(!tmp ||
3746 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3747 put_page(vmf->page);
fb09a464 3748 return tmp;
4294621f 3749 }
fb09a464
KS
3750 }
3751
9118c0cb 3752 ret |= finish_fault(vmf);
7267ec00
KS
3753 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3754 VM_FAULT_RETRY))) {
936ca80d
JK
3755 unlock_page(vmf->page);
3756 put_page(vmf->page);
f0c6d4d2 3757 return ret;
1da177e4 3758 }
b827e496 3759
97ba0c2b 3760 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3761 return ret;
54cb8821 3762}
d00806b1 3763
9a95f3cf
PC
3764/*
3765 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3766 * but allow concurrent faults).
3767 * The mmap_sem may have been released depending on flags and our
3768 * return value. See filemap_fault() and __lock_page_or_retry().
7cf95c17
JS
3769 * If mmap_sem is released, vma may become invalid (for example
3770 * by other thread calling munmap()).
9a95f3cf 3771 */
82b0f8c3 3772static int do_fault(struct vm_fault *vmf)
54cb8821 3773{
82b0f8c3 3774 struct vm_area_struct *vma = vmf->vma;
7cf95c17 3775 struct mm_struct *vm_mm = vma->vm_mm;
b0b9b3df 3776 int ret;
54cb8821 3777
f8c85d07
AK
3778 /*
3779 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3780 */
3781 if (!vma->vm_ops->fault) {
3782 /*
3783 * If we find a migration pmd entry or a none pmd entry, which
3784 * should never happen, return SIGBUS
3785 */
3786 if (unlikely(!pmd_present(*vmf->pmd)))
3787 ret = VM_FAULT_SIGBUS;
3788 else {
3789 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3790 vmf->pmd,
3791 vmf->address,
3792 &vmf->ptl);
3793 /*
3794 * Make sure this is not a temporary clearing of pte
3795 * by holding ptl and checking again. A R/M/W update
3796 * of pte involves: take ptl, clearing the pte so that
3797 * we don't have concurrent modification by hardware
3798 * followed by an update.
3799 */
3800 if (unlikely(pte_none(*vmf->pte)))
3801 ret = VM_FAULT_SIGBUS;
3802 else
3803 ret = VM_FAULT_NOPAGE;
3804
3805 pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 }
3807 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3808 ret = do_read_fault(vmf);
3809 else if (!(vma->vm_flags & VM_SHARED))
3810 ret = do_cow_fault(vmf);
3811 else
3812 ret = do_shared_fault(vmf);
3813
3814 /* preallocated pagetable is unused: free it */
3815 if (vmf->prealloc_pte) {
7cf95c17 3816 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3817 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3818 }
3819 return ret;
54cb8821
NP
3820}
3821
b19a9939 3822static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3823 unsigned long addr, int page_nid,
3824 int *flags)
9532fec1
MG
3825{
3826 get_page(page);
3827
3828 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3829 if (page_nid == numa_node_id()) {
9532fec1 3830 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3831 *flags |= TNF_FAULT_LOCAL;
3832 }
9532fec1
MG
3833
3834 return mpol_misplaced(page, vma, addr);
3835}
3836
2994302b 3837static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3838{
82b0f8c3 3839 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3840 struct page *page = NULL;
8191acbd 3841 int page_nid = -1;
90572890 3842 int last_cpupid;
cbee9f88 3843 int target_nid;
b8593bfd 3844 bool migrated = false;
cee216a6 3845 pte_t pte;
288bc549 3846 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3847 int flags = 0;
d10e63f2
MG
3848
3849 /*
166f61b9
TH
3850 * The "pte" at this point cannot be used safely without
3851 * validation through pte_unmap_same(). It's of NUMA type but
3852 * the pfn may be screwed if the read is non atomic.
166f61b9 3853 */
82b0f8c3
JK
3854 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3855 spin_lock(vmf->ptl);
cee216a6 3856 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3857 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3858 goto out;
3859 }
3860
cee216a6
AK
3861 /*
3862 * Make it present again, Depending on how arch implementes non
3863 * accessible ptes, some can allow access by kernel mode.
3864 */
3865 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3866 pte = pte_modify(pte, vma->vm_page_prot);
3867 pte = pte_mkyoung(pte);
b191f9b1
MG
3868 if (was_writable)
3869 pte = pte_mkwrite(pte);
cee216a6 3870 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3871 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3872
82b0f8c3 3873 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3874 if (!page) {
82b0f8c3 3875 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3876 return 0;
3877 }
3878
e81c4802
KS
3879 /* TODO: handle PTE-mapped THP */
3880 if (PageCompound(page)) {
82b0f8c3 3881 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3882 return 0;
3883 }
3884
6688cc05 3885 /*
bea66fbd
MG
3886 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3887 * much anyway since they can be in shared cache state. This misses
3888 * the case where a mapping is writable but the process never writes
3889 * to it but pte_write gets cleared during protection updates and
3890 * pte_dirty has unpredictable behaviour between PTE scan updates,
3891 * background writeback, dirty balancing and application behaviour.
6688cc05 3892 */
d59dc7bc 3893 if (!pte_write(pte))
6688cc05
PZ
3894 flags |= TNF_NO_GROUP;
3895
dabe1d99
RR
3896 /*
3897 * Flag if the page is shared between multiple address spaces. This
3898 * is later used when determining whether to group tasks together
3899 */
3900 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3901 flags |= TNF_SHARED;
3902
90572890 3903 last_cpupid = page_cpupid_last(page);
8191acbd 3904 page_nid = page_to_nid(page);
82b0f8c3 3905 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3906 &flags);
82b0f8c3 3907 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3908 if (target_nid == -1) {
4daae3b4
MG
3909 put_page(page);
3910 goto out;
3911 }
3912
3913 /* Migrate to the requested node */
1bc115d8 3914 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3915 if (migrated) {
8191acbd 3916 page_nid = target_nid;
6688cc05 3917 flags |= TNF_MIGRATED;
074c2381
MG
3918 } else
3919 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3920
3921out:
8191acbd 3922 if (page_nid != -1)
6688cc05 3923 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3924 return 0;
3925}
3926
91a90140 3927static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3928{
f4200391 3929 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3930 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3931 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3932 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3933 return VM_FAULT_FALLBACK;
3934}
3935
183f24aa
GU
3936/* `inline' is required to avoid gcc 4.1.2 build error */
3937static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3938{
82b0f8c3
JK
3939 if (vma_is_anonymous(vmf->vma))
3940 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3941 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3942 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3943
3944 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3945 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3946 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3947
b96375f7
MW
3948 return VM_FAULT_FALLBACK;
3949}
3950
38e08854
LS
3951static inline bool vma_is_accessible(struct vm_area_struct *vma)
3952{
3953 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3954}
3955
a00cc7d9
MW
3956static int create_huge_pud(struct vm_fault *vmf)
3957{
3958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3959 /* No support for anonymous transparent PUD pages yet */
3960 if (vma_is_anonymous(vmf->vma))
3961 return VM_FAULT_FALLBACK;
3962 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3963 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3964#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3965 return VM_FAULT_FALLBACK;
3966}
3967
3968static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3969{
3970#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3971 /* No support for anonymous transparent PUD pages yet */
3972 if (vma_is_anonymous(vmf->vma))
3973 return VM_FAULT_FALLBACK;
3974 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3975 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3976#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3977 return VM_FAULT_FALLBACK;
3978}
3979
1da177e4
LT
3980/*
3981 * These routines also need to handle stuff like marking pages dirty
3982 * and/or accessed for architectures that don't do it in hardware (most
3983 * RISC architectures). The early dirtying is also good on the i386.
3984 *
3985 * There is also a hook called "update_mmu_cache()" that architectures
3986 * with external mmu caches can use to update those (ie the Sparc or
3987 * PowerPC hashed page tables that act as extended TLBs).
3988 *
7267ec00
KS
3989 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3990 * concurrent faults).
9a95f3cf 3991 *
7267ec00
KS
3992 * The mmap_sem may have been released depending on flags and our return value.
3993 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3994 */
82b0f8c3 3995static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3996{
3997 pte_t entry;
3998
82b0f8c3 3999 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4000 /*
4001 * Leave __pte_alloc() until later: because vm_ops->fault may
4002 * want to allocate huge page, and if we expose page table
4003 * for an instant, it will be difficult to retract from
4004 * concurrent faults and from rmap lookups.
4005 */
82b0f8c3 4006 vmf->pte = NULL;
7267ec00
KS
4007 } else {
4008 /* See comment in pte_alloc_one_map() */
d0f0931d 4009 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4010 return 0;
4011 /*
4012 * A regular pmd is established and it can't morph into a huge
4013 * pmd from under us anymore at this point because we hold the
4014 * mmap_sem read mode and khugepaged takes it in write mode.
4015 * So now it's safe to run pte_offset_map().
4016 */
82b0f8c3 4017 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4018 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4019
4020 /*
4021 * some architectures can have larger ptes than wordsize,
4022 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4023 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4024 * accesses. The code below just needs a consistent view
4025 * for the ifs and we later double check anyway with the
7267ec00
KS
4026 * ptl lock held. So here a barrier will do.
4027 */
4028 barrier();
2994302b 4029 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4030 pte_unmap(vmf->pte);
4031 vmf->pte = NULL;
65500d23 4032 }
1da177e4
LT
4033 }
4034
82b0f8c3
JK
4035 if (!vmf->pte) {
4036 if (vma_is_anonymous(vmf->vma))
4037 return do_anonymous_page(vmf);
7267ec00 4038 else
82b0f8c3 4039 return do_fault(vmf);
7267ec00
KS
4040 }
4041
2994302b
JK
4042 if (!pte_present(vmf->orig_pte))
4043 return do_swap_page(vmf);
7267ec00 4044
2994302b
JK
4045 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4046 return do_numa_page(vmf);
d10e63f2 4047
82b0f8c3
JK
4048 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4049 spin_lock(vmf->ptl);
2994302b 4050 entry = vmf->orig_pte;
82b0f8c3 4051 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 4052 goto unlock;
82b0f8c3 4053 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4054 if (!pte_write(entry))
2994302b 4055 return do_wp_page(vmf);
1da177e4
LT
4056 entry = pte_mkdirty(entry);
4057 }
4058 entry = pte_mkyoung(entry);
82b0f8c3
JK
4059 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4060 vmf->flags & FAULT_FLAG_WRITE)) {
4061 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4062 } else {
4063 /*
4064 * This is needed only for protection faults but the arch code
4065 * is not yet telling us if this is a protection fault or not.
4066 * This still avoids useless tlb flushes for .text page faults
4067 * with threads.
4068 */
82b0f8c3
JK
4069 if (vmf->flags & FAULT_FLAG_WRITE)
4070 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4071 }
8f4e2101 4072unlock:
82b0f8c3 4073 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4074 return 0;
1da177e4
LT
4075}
4076
4077/*
4078 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4079 *
4080 * The mmap_sem may have been released depending on flags and our
4081 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4082 */
dcddffd4
KS
4083static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4084 unsigned int flags)
1da177e4 4085{
82b0f8c3 4086 struct vm_fault vmf = {
bae473a4 4087 .vma = vma,
1a29d85e 4088 .address = address & PAGE_MASK,
bae473a4 4089 .flags = flags,
0721ec8b 4090 .pgoff = linear_page_index(vma, address),
667240e0 4091 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4092 };
fde26bed 4093 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4094 struct mm_struct *mm = vma->vm_mm;
1da177e4 4095 pgd_t *pgd;
c2febafc 4096 p4d_t *p4d;
a2d58167 4097 int ret;
1da177e4 4098
1da177e4 4099 pgd = pgd_offset(mm, address);
c2febafc
KS
4100 p4d = p4d_alloc(mm, pgd, address);
4101 if (!p4d)
4102 return VM_FAULT_OOM;
a00cc7d9 4103
c2febafc 4104 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4105 if (!vmf.pud)
c74df32c 4106 return VM_FAULT_OOM;
a00cc7d9 4107 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4108 ret = create_huge_pud(&vmf);
4109 if (!(ret & VM_FAULT_FALLBACK))
4110 return ret;
4111 } else {
4112 pud_t orig_pud = *vmf.pud;
4113
4114 barrier();
4115 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4116
a00cc7d9
MW
4117 /* NUMA case for anonymous PUDs would go here */
4118
f6f37321 4119 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4120 ret = wp_huge_pud(&vmf, orig_pud);
4121 if (!(ret & VM_FAULT_FALLBACK))
4122 return ret;
4123 } else {
4124 huge_pud_set_accessed(&vmf, orig_pud);
4125 return 0;
4126 }
4127 }
4128 }
4129
4130 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4131 if (!vmf.pmd)
c74df32c 4132 return VM_FAULT_OOM;
82b0f8c3 4133 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 4134 ret = create_huge_pmd(&vmf);
c0292554
KS
4135 if (!(ret & VM_FAULT_FALLBACK))
4136 return ret;
71e3aac0 4137 } else {
82b0f8c3 4138 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4139
71e3aac0 4140 barrier();
84c3fc4e
ZY
4141 if (unlikely(is_swap_pmd(orig_pmd))) {
4142 VM_BUG_ON(thp_migration_supported() &&
4143 !is_pmd_migration_entry(orig_pmd));
4144 if (is_pmd_migration_entry(orig_pmd))
4145 pmd_migration_entry_wait(mm, vmf.pmd);
4146 return 0;
4147 }
5c7fb56e 4148 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4149 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4150 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4151
f6f37321 4152 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4153 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4154 if (!(ret & VM_FAULT_FALLBACK))
4155 return ret;
a1dd450b 4156 } else {
82b0f8c3 4157 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4158 return 0;
1f1d06c3 4159 }
71e3aac0
AA
4160 }
4161 }
4162
82b0f8c3 4163 return handle_pte_fault(&vmf);
1da177e4
LT
4164}
4165
9a95f3cf
PC
4166/*
4167 * By the time we get here, we already hold the mm semaphore
4168 *
4169 * The mmap_sem may have been released depending on flags and our
4170 * return value. See filemap_fault() and __lock_page_or_retry().
4171 */
dcddffd4
KS
4172int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4173 unsigned int flags)
519e5247
JW
4174{
4175 int ret;
4176
4177 __set_current_state(TASK_RUNNING);
4178
4179 count_vm_event(PGFAULT);
2262185c 4180 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4181
4182 /* do counter updates before entering really critical section. */
4183 check_sync_rss_stat(current);
4184
de0c799b
LD
4185 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4186 flags & FAULT_FLAG_INSTRUCTION,
4187 flags & FAULT_FLAG_REMOTE))
4188 return VM_FAULT_SIGSEGV;
4189
519e5247
JW
4190 /*
4191 * Enable the memcg OOM handling for faults triggered in user
4192 * space. Kernel faults are handled more gracefully.
4193 */
4194 if (flags & FAULT_FLAG_USER)
49426420 4195 mem_cgroup_oom_enable();
519e5247 4196
bae473a4
KS
4197 if (unlikely(is_vm_hugetlb_page(vma)))
4198 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4199 else
4200 ret = __handle_mm_fault(vma, address, flags);
519e5247 4201
49426420
JW
4202 if (flags & FAULT_FLAG_USER) {
4203 mem_cgroup_oom_disable();
166f61b9
TH
4204 /*
4205 * The task may have entered a memcg OOM situation but
4206 * if the allocation error was handled gracefully (no
4207 * VM_FAULT_OOM), there is no need to kill anything.
4208 * Just clean up the OOM state peacefully.
4209 */
4210 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4211 mem_cgroup_oom_synchronize(false);
49426420 4212 }
3812c8c8 4213
519e5247
JW
4214 return ret;
4215}
e1d6d01a 4216EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4217
90eceff1
KS
4218#ifndef __PAGETABLE_P4D_FOLDED
4219/*
4220 * Allocate p4d page table.
4221 * We've already handled the fast-path in-line.
4222 */
4223int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4224{
4225 p4d_t *new = p4d_alloc_one(mm, address);
4226 if (!new)
4227 return -ENOMEM;
4228
4229 smp_wmb(); /* See comment in __pte_alloc */
4230
4231 spin_lock(&mm->page_table_lock);
4232 if (pgd_present(*pgd)) /* Another has populated it */
4233 p4d_free(mm, new);
4234 else
4235 pgd_populate(mm, pgd, new);
4236 spin_unlock(&mm->page_table_lock);
4237 return 0;
4238}
4239#endif /* __PAGETABLE_P4D_FOLDED */
4240
1da177e4
LT
4241#ifndef __PAGETABLE_PUD_FOLDED
4242/*
4243 * Allocate page upper directory.
872fec16 4244 * We've already handled the fast-path in-line.
1da177e4 4245 */
c2febafc 4246int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4247{
c74df32c
HD
4248 pud_t *new = pud_alloc_one(mm, address);
4249 if (!new)
1bb3630e 4250 return -ENOMEM;
1da177e4 4251
362a61ad
NP
4252 smp_wmb(); /* See comment in __pte_alloc */
4253
872fec16 4254 spin_lock(&mm->page_table_lock);
c2febafc 4255#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4256 if (!p4d_present(*p4d)) {
4257 mm_inc_nr_puds(mm);
c2febafc 4258 p4d_populate(mm, p4d, new);
b4e98d9a 4259 } else /* Another has populated it */
5e541973 4260 pud_free(mm, new);
b4e98d9a
KS
4261#else
4262 if (!pgd_present(*p4d)) {
4263 mm_inc_nr_puds(mm);
c2febafc 4264 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4265 } else /* Another has populated it */
4266 pud_free(mm, new);
c2febafc 4267#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4268 spin_unlock(&mm->page_table_lock);
1bb3630e 4269 return 0;
1da177e4
LT
4270}
4271#endif /* __PAGETABLE_PUD_FOLDED */
4272
4273#ifndef __PAGETABLE_PMD_FOLDED
4274/*
4275 * Allocate page middle directory.
872fec16 4276 * We've already handled the fast-path in-line.
1da177e4 4277 */
1bb3630e 4278int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4279{
a00cc7d9 4280 spinlock_t *ptl;
c74df32c
HD
4281 pmd_t *new = pmd_alloc_one(mm, address);
4282 if (!new)
1bb3630e 4283 return -ENOMEM;
1da177e4 4284
362a61ad
NP
4285 smp_wmb(); /* See comment in __pte_alloc */
4286
a00cc7d9 4287 ptl = pud_lock(mm, pud);
1da177e4 4288#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4289 if (!pud_present(*pud)) {
4290 mm_inc_nr_pmds(mm);
1bb3630e 4291 pud_populate(mm, pud, new);
dc6c9a35 4292 } else /* Another has populated it */
5e541973 4293 pmd_free(mm, new);
dc6c9a35
KS
4294#else
4295 if (!pgd_present(*pud)) {
4296 mm_inc_nr_pmds(mm);
1bb3630e 4297 pgd_populate(mm, pud, new);
dc6c9a35
KS
4298 } else /* Another has populated it */
4299 pmd_free(mm, new);
1da177e4 4300#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4301 spin_unlock(ptl);
1bb3630e 4302 return 0;
e0f39591 4303}
1da177e4
LT
4304#endif /* __PAGETABLE_PMD_FOLDED */
4305
09796395 4306static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4307 unsigned long *start, unsigned long *end,
4308 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4309{
4310 pgd_t *pgd;
c2febafc 4311 p4d_t *p4d;
f8ad0f49
JW
4312 pud_t *pud;
4313 pmd_t *pmd;
4314 pte_t *ptep;
4315
4316 pgd = pgd_offset(mm, address);
4317 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4318 goto out;
4319
c2febafc
KS
4320 p4d = p4d_offset(pgd, address);
4321 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4322 goto out;
4323
4324 pud = pud_offset(p4d, address);
f8ad0f49
JW
4325 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4326 goto out;
4327
4328 pmd = pmd_offset(pud, address);
f66055ab 4329 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4330
09796395
RZ
4331 if (pmd_huge(*pmd)) {
4332 if (!pmdpp)
4333 goto out;
4334
a4d1a885
JG
4335 if (start && end) {
4336 *start = address & PMD_MASK;
4337 *end = *start + PMD_SIZE;
4338 mmu_notifier_invalidate_range_start(mm, *start, *end);
4339 }
09796395
RZ
4340 *ptlp = pmd_lock(mm, pmd);
4341 if (pmd_huge(*pmd)) {
4342 *pmdpp = pmd;
4343 return 0;
4344 }
4345 spin_unlock(*ptlp);
a4d1a885
JG
4346 if (start && end)
4347 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4348 }
4349
4350 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4351 goto out;
4352
a4d1a885
JG
4353 if (start && end) {
4354 *start = address & PAGE_MASK;
4355 *end = *start + PAGE_SIZE;
4356 mmu_notifier_invalidate_range_start(mm, *start, *end);
4357 }
f8ad0f49 4358 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4359 if (!pte_present(*ptep))
4360 goto unlock;
4361 *ptepp = ptep;
4362 return 0;
4363unlock:
4364 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4365 if (start && end)
4366 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4367out:
4368 return -EINVAL;
4369}
4370
f729c8c9
RZ
4371static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4372 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4373{
4374 int res;
4375
4376 /* (void) is needed to make gcc happy */
4377 (void) __cond_lock(*ptlp,
a4d1a885
JG
4378 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4379 ptepp, NULL, ptlp)));
09796395
RZ
4380 return res;
4381}
4382
4383int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4384 unsigned long *start, unsigned long *end,
09796395
RZ
4385 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4386{
4387 int res;
4388
4389 /* (void) is needed to make gcc happy */
4390 (void) __cond_lock(*ptlp,
a4d1a885
JG
4391 !(res = __follow_pte_pmd(mm, address, start, end,
4392 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4393 return res;
4394}
09796395 4395EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4396
3b6748e2
JW
4397/**
4398 * follow_pfn - look up PFN at a user virtual address
4399 * @vma: memory mapping
4400 * @address: user virtual address
4401 * @pfn: location to store found PFN
4402 *
4403 * Only IO mappings and raw PFN mappings are allowed.
4404 *
4405 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4406 */
4407int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4408 unsigned long *pfn)
4409{
4410 int ret = -EINVAL;
4411 spinlock_t *ptl;
4412 pte_t *ptep;
4413
4414 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4415 return ret;
4416
4417 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4418 if (ret)
4419 return ret;
4420 *pfn = pte_pfn(*ptep);
4421 pte_unmap_unlock(ptep, ptl);
4422 return 0;
4423}
4424EXPORT_SYMBOL(follow_pfn);
4425
28b2ee20 4426#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4427int follow_phys(struct vm_area_struct *vma,
4428 unsigned long address, unsigned int flags,
4429 unsigned long *prot, resource_size_t *phys)
28b2ee20 4430{
03668a4d 4431 int ret = -EINVAL;
28b2ee20
RR
4432 pte_t *ptep, pte;
4433 spinlock_t *ptl;
28b2ee20 4434
d87fe660 4435 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4436 goto out;
28b2ee20 4437
03668a4d 4438 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4439 goto out;
28b2ee20 4440 pte = *ptep;
03668a4d 4441
f6f37321 4442 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4443 goto unlock;
28b2ee20
RR
4444
4445 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4446 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4447
03668a4d 4448 ret = 0;
28b2ee20
RR
4449unlock:
4450 pte_unmap_unlock(ptep, ptl);
4451out:
d87fe660 4452 return ret;
28b2ee20
RR
4453}
4454
4455int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4456 void *buf, int len, int write)
4457{
4458 resource_size_t phys_addr;
4459 unsigned long prot = 0;
2bc7273b 4460 void __iomem *maddr;
28b2ee20
RR
4461 int offset = addr & (PAGE_SIZE-1);
4462
d87fe660 4463 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4464 return -EINVAL;
4465
9cb12d7b 4466 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
7b90b5c2 4467 if (!maddr)
4468 return -ENOMEM;
4469
28b2ee20
RR
4470 if (write)
4471 memcpy_toio(maddr + offset, buf, len);
4472 else
4473 memcpy_fromio(buf, maddr + offset, len);
4474 iounmap(maddr);
4475
4476 return len;
4477}
5a73633e 4478EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4479#endif
4480
0ec76a11 4481/*
206cb636
SW
4482 * Access another process' address space as given in mm. If non-NULL, use the
4483 * given task for page fault accounting.
0ec76a11 4484 */
84d77d3f 4485int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4486 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4487{
0ec76a11 4488 struct vm_area_struct *vma;
0ec76a11 4489 void *old_buf = buf;
442486ec 4490 int write = gup_flags & FOLL_WRITE;
0ec76a11 4491
0ec76a11 4492 down_read(&mm->mmap_sem);
183ff22b 4493 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4494 while (len) {
4495 int bytes, ret, offset;
4496 void *maddr;
28b2ee20 4497 struct page *page = NULL;
0ec76a11 4498
1e987790 4499 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4500 gup_flags, &page, &vma, NULL);
28b2ee20 4501 if (ret <= 0) {
dbffcd03
RR
4502#ifndef CONFIG_HAVE_IOREMAP_PROT
4503 break;
4504#else
28b2ee20
RR
4505 /*
4506 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4507 * we can access using slightly different code.
4508 */
28b2ee20 4509 vma = find_vma(mm, addr);
fe936dfc 4510 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4511 break;
4512 if (vma->vm_ops && vma->vm_ops->access)
4513 ret = vma->vm_ops->access(vma, addr, buf,
4514 len, write);
4515 if (ret <= 0)
28b2ee20
RR
4516 break;
4517 bytes = ret;
dbffcd03 4518#endif
0ec76a11 4519 } else {
28b2ee20
RR
4520 bytes = len;
4521 offset = addr & (PAGE_SIZE-1);
4522 if (bytes > PAGE_SIZE-offset)
4523 bytes = PAGE_SIZE-offset;
4524
4525 maddr = kmap(page);
4526 if (write) {
4527 copy_to_user_page(vma, page, addr,
4528 maddr + offset, buf, bytes);
4529 set_page_dirty_lock(page);
4530 } else {
4531 copy_from_user_page(vma, page, addr,
4532 buf, maddr + offset, bytes);
4533 }
4534 kunmap(page);
09cbfeaf 4535 put_page(page);
0ec76a11 4536 }
0ec76a11
DH
4537 len -= bytes;
4538 buf += bytes;
4539 addr += bytes;
4540 }
4541 up_read(&mm->mmap_sem);
0ec76a11
DH
4542
4543 return buf - old_buf;
4544}
03252919 4545
5ddd36b9 4546/**
ae91dbfc 4547 * access_remote_vm - access another process' address space
5ddd36b9
SW
4548 * @mm: the mm_struct of the target address space
4549 * @addr: start address to access
4550 * @buf: source or destination buffer
4551 * @len: number of bytes to transfer
6347e8d5 4552 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4553 *
4554 * The caller must hold a reference on @mm.
4555 */
4556int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4557 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4558{
6347e8d5 4559 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4560}
4561
206cb636
SW
4562/*
4563 * Access another process' address space.
4564 * Source/target buffer must be kernel space,
4565 * Do not walk the page table directly, use get_user_pages
4566 */
4567int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4568 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4569{
4570 struct mm_struct *mm;
4571 int ret;
4572
4573 mm = get_task_mm(tsk);
4574 if (!mm)
4575 return 0;
4576
f307ab6d 4577 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4578
206cb636
SW
4579 mmput(mm);
4580
4581 return ret;
4582}
fcd35857 4583EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4584
03252919
AK
4585/*
4586 * Print the name of a VMA.
4587 */
4588void print_vma_addr(char *prefix, unsigned long ip)
4589{
4590 struct mm_struct *mm = current->mm;
4591 struct vm_area_struct *vma;
4592
e8bff74a 4593 /*
0a7f682d 4594 * we might be running from an atomic context so we cannot sleep
e8bff74a 4595 */
0a7f682d 4596 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4597 return;
4598
03252919
AK
4599 vma = find_vma(mm, ip);
4600 if (vma && vma->vm_file) {
4601 struct file *f = vma->vm_file;
0a7f682d 4602 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4603 if (buf) {
2fbc57c5 4604 char *p;
03252919 4605
9bf39ab2 4606 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4607 if (IS_ERR(p))
4608 p = "?";
2fbc57c5 4609 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4610 vma->vm_start,
4611 vma->vm_end - vma->vm_start);
4612 free_page((unsigned long)buf);
4613 }
4614 }
51a07e50 4615 up_read(&mm->mmap_sem);
03252919 4616}
3ee1afa3 4617
662bbcb2 4618#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4619void __might_fault(const char *file, int line)
3ee1afa3 4620{
95156f00
PZ
4621 /*
4622 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4623 * holding the mmap_sem, this is safe because kernel memory doesn't
4624 * get paged out, therefore we'll never actually fault, and the
4625 * below annotations will generate false positives.
4626 */
db68ce10 4627 if (uaccess_kernel())
95156f00 4628 return;
9ec23531 4629 if (pagefault_disabled())
662bbcb2 4630 return;
9ec23531
DH
4631 __might_sleep(file, line, 0);
4632#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4633 if (current->mm)
3ee1afa3 4634 might_lock_read(&current->mm->mmap_sem);
9ec23531 4635#endif
3ee1afa3 4636}
9ec23531 4637EXPORT_SYMBOL(__might_fault);
3ee1afa3 4638#endif
47ad8475
AA
4639
4640#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4641static void clear_gigantic_page(struct page *page,
4642 unsigned long addr,
4643 unsigned int pages_per_huge_page)
4644{
4645 int i;
4646 struct page *p = page;
4647
4648 might_sleep();
4649 for (i = 0; i < pages_per_huge_page;
4650 i++, p = mem_map_next(p, page, i)) {
4651 cond_resched();
4652 clear_user_highpage(p, addr + i * PAGE_SIZE);
4653 }
4654}
4655void clear_huge_page(struct page *page,
c79b57e4 4656 unsigned long addr_hint, unsigned int pages_per_huge_page)
47ad8475 4657{
c79b57e4
HY
4658 int i, n, base, l;
4659 unsigned long addr = addr_hint &
4660 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475
AA
4661
4662 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4663 clear_gigantic_page(page, addr, pages_per_huge_page);
4664 return;
4665 }
4666
c79b57e4 4667 /* Clear sub-page to access last to keep its cache lines hot */
47ad8475 4668 might_sleep();
c79b57e4
HY
4669 n = (addr_hint - addr) / PAGE_SIZE;
4670 if (2 * n <= pages_per_huge_page) {
4671 /* If sub-page to access in first half of huge page */
4672 base = 0;
4673 l = n;
4674 /* Clear sub-pages at the end of huge page */
4675 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4676 cond_resched();
4677 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4678 }
4679 } else {
4680 /* If sub-page to access in second half of huge page */
4681 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4682 l = pages_per_huge_page - n;
4683 /* Clear sub-pages at the begin of huge page */
4684 for (i = 0; i < base; i++) {
4685 cond_resched();
4686 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4687 }
4688 }
4689 /*
4690 * Clear remaining sub-pages in left-right-left-right pattern
4691 * towards the sub-page to access
4692 */
4693 for (i = 0; i < l; i++) {
4694 int left_idx = base + i;
4695 int right_idx = base + 2 * l - 1 - i;
4696
4697 cond_resched();
4698 clear_user_highpage(page + left_idx,
4699 addr + left_idx * PAGE_SIZE);
47ad8475 4700 cond_resched();
c79b57e4
HY
4701 clear_user_highpage(page + right_idx,
4702 addr + right_idx * PAGE_SIZE);
47ad8475
AA
4703 }
4704}
4705
4706static void copy_user_gigantic_page(struct page *dst, struct page *src,
4707 unsigned long addr,
4708 struct vm_area_struct *vma,
4709 unsigned int pages_per_huge_page)
4710{
4711 int i;
4712 struct page *dst_base = dst;
4713 struct page *src_base = src;
4714
4715 for (i = 0; i < pages_per_huge_page; ) {
4716 cond_resched();
4717 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4718
4719 i++;
4720 dst = mem_map_next(dst, dst_base, i);
4721 src = mem_map_next(src, src_base, i);
4722 }
4723}
4724
4725void copy_user_huge_page(struct page *dst, struct page *src,
4726 unsigned long addr, struct vm_area_struct *vma,
4727 unsigned int pages_per_huge_page)
4728{
4729 int i;
4730
4731 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4732 copy_user_gigantic_page(dst, src, addr, vma,
4733 pages_per_huge_page);
4734 return;
4735 }
4736
4737 might_sleep();
4738 for (i = 0; i < pages_per_huge_page; i++) {
4739 cond_resched();
4740 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4741 }
4742}
fa4d75c1
MK
4743
4744long copy_huge_page_from_user(struct page *dst_page,
4745 const void __user *usr_src,
810a56b9
MK
4746 unsigned int pages_per_huge_page,
4747 bool allow_pagefault)
fa4d75c1
MK
4748{
4749 void *src = (void *)usr_src;
4750 void *page_kaddr;
4751 unsigned long i, rc = 0;
4752 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4753
4754 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4755 if (allow_pagefault)
4756 page_kaddr = kmap(dst_page + i);
4757 else
4758 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4759 rc = copy_from_user(page_kaddr,
4760 (const void __user *)(src + i * PAGE_SIZE),
4761 PAGE_SIZE);
810a56b9
MK
4762 if (allow_pagefault)
4763 kunmap(dst_page + i);
4764 else
4765 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4766
4767 ret_val -= (PAGE_SIZE - rc);
4768 if (rc)
4769 break;
4770
4771 cond_resched();
4772 }
4773 return ret_val;
4774}
47ad8475 4775#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4776
40b64acd 4777#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4778
4779static struct kmem_cache *page_ptl_cachep;
4780
4781void __init ptlock_cache_init(void)
4782{
4783 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4784 SLAB_PANIC, NULL);
4785}
4786
539edb58 4787bool ptlock_alloc(struct page *page)
49076ec2
KS
4788{
4789 spinlock_t *ptl;
4790
b35f1819 4791 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4792 if (!ptl)
4793 return false;
539edb58 4794 page->ptl = ptl;
49076ec2
KS
4795 return true;
4796}
4797
539edb58 4798void ptlock_free(struct page *page)
49076ec2 4799{
b35f1819 4800 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4801}
4802#endif