]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - mm/memory.c
thp: cleanup split_huge_page()
[mirror_ubuntu-eoan-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
1da177e4 66
6952b61d 67#include <asm/io.h>
1da177e4
LT
68#include <asm/pgalloc.h>
69#include <asm/uaccess.h>
70#include <asm/tlb.h>
71#include <asm/tlbflush.h>
72#include <asm/pgtable.h>
73
42b77728
JB
74#include "internal.h"
75
90572890
PZ
76#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
78#endif
79
d41dee36 80#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
81/* use the per-pgdat data instead for discontigmem - mbligh */
82unsigned long max_mapnr;
83struct page *mem_map;
84
85EXPORT_SYMBOL(max_mapnr);
86EXPORT_SYMBOL(mem_map);
87#endif
88
1da177e4
LT
89/*
90 * A number of key systems in x86 including ioremap() rely on the assumption
91 * that high_memory defines the upper bound on direct map memory, then end
92 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
93 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94 * and ZONE_HIGHMEM.
95 */
96void * high_memory;
1da177e4 97
1da177e4 98EXPORT_SYMBOL(high_memory);
1da177e4 99
32a93233
IM
100/*
101 * Randomize the address space (stacks, mmaps, brk, etc.).
102 *
103 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104 * as ancient (libc5 based) binaries can segfault. )
105 */
106int randomize_va_space __read_mostly =
107#ifdef CONFIG_COMPAT_BRK
108 1;
109#else
110 2;
111#endif
a62eaf15
AK
112
113static int __init disable_randmaps(char *s)
114{
115 randomize_va_space = 0;
9b41046c 116 return 1;
a62eaf15
AK
117}
118__setup("norandmaps", disable_randmaps);
119
62eede62 120unsigned long zero_pfn __read_mostly;
03f6462a 121unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 122
0b70068e
AB
123EXPORT_SYMBOL(zero_pfn);
124
a13ea5b7
HD
125/*
126 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127 */
128static int __init init_zero_pfn(void)
129{
130 zero_pfn = page_to_pfn(ZERO_PAGE(0));
131 return 0;
132}
133core_initcall(init_zero_pfn);
a62eaf15 134
d559db08 135
34e55232
KH
136#if defined(SPLIT_RSS_COUNTING)
137
ea48cf78 138void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
139{
140 int i;
141
142 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
143 if (current->rss_stat.count[i]) {
144 add_mm_counter(mm, i, current->rss_stat.count[i]);
145 current->rss_stat.count[i] = 0;
34e55232
KH
146 }
147 }
05af2e10 148 current->rss_stat.events = 0;
34e55232
KH
149}
150
151static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152{
153 struct task_struct *task = current;
154
155 if (likely(task->mm == mm))
156 task->rss_stat.count[member] += val;
157 else
158 add_mm_counter(mm, member, val);
159}
160#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163/* sync counter once per 64 page faults */
164#define TASK_RSS_EVENTS_THRESH (64)
165static void check_sync_rss_stat(struct task_struct *task)
166{
167 if (unlikely(task != current))
168 return;
169 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 170 sync_mm_rss(task->mm);
34e55232 171}
9547d01b 172#else /* SPLIT_RSS_COUNTING */
34e55232
KH
173
174#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177static void check_sync_rss_stat(struct task_struct *task)
178{
179}
180
9547d01b
PZ
181#endif /* SPLIT_RSS_COUNTING */
182
183#ifdef HAVE_GENERIC_MMU_GATHER
184
ca1d6c7d 185static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
186{
187 struct mmu_gather_batch *batch;
188
189 batch = tlb->active;
190 if (batch->next) {
191 tlb->active = batch->next;
ca1d6c7d 192 return true;
9547d01b
PZ
193 }
194
53a59fc6 195 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 196 return false;
53a59fc6 197
9547d01b
PZ
198 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199 if (!batch)
ca1d6c7d 200 return false;
9547d01b 201
53a59fc6 202 tlb->batch_count++;
9547d01b
PZ
203 batch->next = NULL;
204 batch->nr = 0;
205 batch->max = MAX_GATHER_BATCH;
206
207 tlb->active->next = batch;
208 tlb->active = batch;
209
ca1d6c7d 210 return true;
9547d01b
PZ
211}
212
213/* tlb_gather_mmu
214 * Called to initialize an (on-stack) mmu_gather structure for page-table
215 * tear-down from @mm. The @fullmm argument is used when @mm is without
216 * users and we're going to destroy the full address space (exit/execve).
217 */
2b047252 218void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
219{
220 tlb->mm = mm;
221
2b047252
LT
222 /* Is it from 0 to ~0? */
223 tlb->fullmm = !(start | (end+1));
1de14c3c 224 tlb->need_flush_all = 0;
9547d01b
PZ
225 tlb->local.next = NULL;
226 tlb->local.nr = 0;
227 tlb->local.max = ARRAY_SIZE(tlb->__pages);
228 tlb->active = &tlb->local;
53a59fc6 229 tlb->batch_count = 0;
9547d01b
PZ
230
231#ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb->batch = NULL;
233#endif
fb7332a9
WD
234
235 __tlb_reset_range(tlb);
9547d01b
PZ
236}
237
1cf35d47 238static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 239{
721c21c1
WD
240 if (!tlb->end)
241 return;
242
9547d01b 243 tlb_flush(tlb);
34ee645e 244 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
245#ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb_table_flush(tlb);
34e55232 247#endif
fb7332a9 248 __tlb_reset_range(tlb);
1cf35d47
LT
249}
250
251static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252{
253 struct mmu_gather_batch *batch;
34e55232 254
721c21c1 255 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
256 free_pages_and_swap_cache(batch->pages, batch->nr);
257 batch->nr = 0;
258 }
259 tlb->active = &tlb->local;
260}
261
1cf35d47
LT
262void tlb_flush_mmu(struct mmu_gather *tlb)
263{
1cf35d47
LT
264 tlb_flush_mmu_tlbonly(tlb);
265 tlb_flush_mmu_free(tlb);
266}
267
9547d01b
PZ
268/* tlb_finish_mmu
269 * Called at the end of the shootdown operation to free up any resources
270 * that were required.
271 */
272void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273{
274 struct mmu_gather_batch *batch, *next;
275
276 tlb_flush_mmu(tlb);
277
278 /* keep the page table cache within bounds */
279 check_pgt_cache();
280
281 for (batch = tlb->local.next; batch; batch = next) {
282 next = batch->next;
283 free_pages((unsigned long)batch, 0);
284 }
285 tlb->local.next = NULL;
286}
287
288/* __tlb_remove_page
289 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290 * handling the additional races in SMP caused by other CPUs caching valid
291 * mappings in their TLBs. Returns the number of free page slots left.
292 * When out of page slots we must call tlb_flush_mmu().
293 */
294int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295{
296 struct mmu_gather_batch *batch;
297
fb7332a9 298 VM_BUG_ON(!tlb->end);
9547d01b 299
9547d01b
PZ
300 batch = tlb->active;
301 batch->pages[batch->nr++] = page;
302 if (batch->nr == batch->max) {
303 if (!tlb_next_batch(tlb))
304 return 0;
0b43c3aa 305 batch = tlb->active;
9547d01b 306 }
309381fe 307 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
308
309 return batch->max - batch->nr;
310}
311
312#endif /* HAVE_GENERIC_MMU_GATHER */
313
26723911
PZ
314#ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316/*
317 * See the comment near struct mmu_table_batch.
318 */
319
320static void tlb_remove_table_smp_sync(void *arg)
321{
322 /* Simply deliver the interrupt */
323}
324
325static void tlb_remove_table_one(void *table)
326{
327 /*
328 * This isn't an RCU grace period and hence the page-tables cannot be
329 * assumed to be actually RCU-freed.
330 *
331 * It is however sufficient for software page-table walkers that rely on
332 * IRQ disabling. See the comment near struct mmu_table_batch.
333 */
334 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335 __tlb_remove_table(table);
336}
337
338static void tlb_remove_table_rcu(struct rcu_head *head)
339{
340 struct mmu_table_batch *batch;
341 int i;
342
343 batch = container_of(head, struct mmu_table_batch, rcu);
344
345 for (i = 0; i < batch->nr; i++)
346 __tlb_remove_table(batch->tables[i]);
347
348 free_page((unsigned long)batch);
349}
350
351void tlb_table_flush(struct mmu_gather *tlb)
352{
353 struct mmu_table_batch **batch = &tlb->batch;
354
355 if (*batch) {
356 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357 *batch = NULL;
358 }
359}
360
361void tlb_remove_table(struct mmu_gather *tlb, void *table)
362{
363 struct mmu_table_batch **batch = &tlb->batch;
364
26723911
PZ
365 /*
366 * When there's less then two users of this mm there cannot be a
367 * concurrent page-table walk.
368 */
369 if (atomic_read(&tlb->mm->mm_users) < 2) {
370 __tlb_remove_table(table);
371 return;
372 }
373
374 if (*batch == NULL) {
375 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376 if (*batch == NULL) {
377 tlb_remove_table_one(table);
378 return;
379 }
380 (*batch)->nr = 0;
381 }
382 (*batch)->tables[(*batch)->nr++] = table;
383 if ((*batch)->nr == MAX_TABLE_BATCH)
384 tlb_table_flush(tlb);
385}
386
9547d01b 387#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 388
1da177e4
LT
389/*
390 * Note: this doesn't free the actual pages themselves. That
391 * has been handled earlier when unmapping all the memory regions.
392 */
9e1b32ca
BH
393static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394 unsigned long addr)
1da177e4 395{
2f569afd 396 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 397 pmd_clear(pmd);
9e1b32ca 398 pte_free_tlb(tlb, token, addr);
e1f56c89 399 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
400}
401
e0da382c
HD
402static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403 unsigned long addr, unsigned long end,
404 unsigned long floor, unsigned long ceiling)
1da177e4
LT
405{
406 pmd_t *pmd;
407 unsigned long next;
e0da382c 408 unsigned long start;
1da177e4 409
e0da382c 410 start = addr;
1da177e4 411 pmd = pmd_offset(pud, addr);
1da177e4
LT
412 do {
413 next = pmd_addr_end(addr, end);
414 if (pmd_none_or_clear_bad(pmd))
415 continue;
9e1b32ca 416 free_pte_range(tlb, pmd, addr);
1da177e4
LT
417 } while (pmd++, addr = next, addr != end);
418
e0da382c
HD
419 start &= PUD_MASK;
420 if (start < floor)
421 return;
422 if (ceiling) {
423 ceiling &= PUD_MASK;
424 if (!ceiling)
425 return;
1da177e4 426 }
e0da382c
HD
427 if (end - 1 > ceiling - 1)
428 return;
429
430 pmd = pmd_offset(pud, start);
431 pud_clear(pud);
9e1b32ca 432 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 433 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
434}
435
e0da382c
HD
436static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437 unsigned long addr, unsigned long end,
438 unsigned long floor, unsigned long ceiling)
1da177e4
LT
439{
440 pud_t *pud;
441 unsigned long next;
e0da382c 442 unsigned long start;
1da177e4 443
e0da382c 444 start = addr;
1da177e4 445 pud = pud_offset(pgd, addr);
1da177e4
LT
446 do {
447 next = pud_addr_end(addr, end);
448 if (pud_none_or_clear_bad(pud))
449 continue;
e0da382c 450 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
451 } while (pud++, addr = next, addr != end);
452
e0da382c
HD
453 start &= PGDIR_MASK;
454 if (start < floor)
455 return;
456 if (ceiling) {
457 ceiling &= PGDIR_MASK;
458 if (!ceiling)
459 return;
1da177e4 460 }
e0da382c
HD
461 if (end - 1 > ceiling - 1)
462 return;
463
464 pud = pud_offset(pgd, start);
465 pgd_clear(pgd);
9e1b32ca 466 pud_free_tlb(tlb, pud, start);
1da177e4
LT
467}
468
469/*
e0da382c 470 * This function frees user-level page tables of a process.
1da177e4 471 */
42b77728 472void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
473 unsigned long addr, unsigned long end,
474 unsigned long floor, unsigned long ceiling)
1da177e4
LT
475{
476 pgd_t *pgd;
477 unsigned long next;
e0da382c
HD
478
479 /*
480 * The next few lines have given us lots of grief...
481 *
482 * Why are we testing PMD* at this top level? Because often
483 * there will be no work to do at all, and we'd prefer not to
484 * go all the way down to the bottom just to discover that.
485 *
486 * Why all these "- 1"s? Because 0 represents both the bottom
487 * of the address space and the top of it (using -1 for the
488 * top wouldn't help much: the masks would do the wrong thing).
489 * The rule is that addr 0 and floor 0 refer to the bottom of
490 * the address space, but end 0 and ceiling 0 refer to the top
491 * Comparisons need to use "end - 1" and "ceiling - 1" (though
492 * that end 0 case should be mythical).
493 *
494 * Wherever addr is brought up or ceiling brought down, we must
495 * be careful to reject "the opposite 0" before it confuses the
496 * subsequent tests. But what about where end is brought down
497 * by PMD_SIZE below? no, end can't go down to 0 there.
498 *
499 * Whereas we round start (addr) and ceiling down, by different
500 * masks at different levels, in order to test whether a table
501 * now has no other vmas using it, so can be freed, we don't
502 * bother to round floor or end up - the tests don't need that.
503 */
1da177e4 504
e0da382c
HD
505 addr &= PMD_MASK;
506 if (addr < floor) {
507 addr += PMD_SIZE;
508 if (!addr)
509 return;
510 }
511 if (ceiling) {
512 ceiling &= PMD_MASK;
513 if (!ceiling)
514 return;
515 }
516 if (end - 1 > ceiling - 1)
517 end -= PMD_SIZE;
518 if (addr > end - 1)
519 return;
520
42b77728 521 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
522 do {
523 next = pgd_addr_end(addr, end);
524 if (pgd_none_or_clear_bad(pgd))
525 continue;
42b77728 526 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 527 } while (pgd++, addr = next, addr != end);
e0da382c
HD
528}
529
42b77728 530void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 531 unsigned long floor, unsigned long ceiling)
e0da382c
HD
532{
533 while (vma) {
534 struct vm_area_struct *next = vma->vm_next;
535 unsigned long addr = vma->vm_start;
536
8f4f8c16 537 /*
25d9e2d1 538 * Hide vma from rmap and truncate_pagecache before freeing
539 * pgtables
8f4f8c16 540 */
5beb4930 541 unlink_anon_vmas(vma);
8f4f8c16
HD
542 unlink_file_vma(vma);
543
9da61aef 544 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 545 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 546 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
547 } else {
548 /*
549 * Optimization: gather nearby vmas into one call down
550 */
551 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 552 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
553 vma = next;
554 next = vma->vm_next;
5beb4930 555 unlink_anon_vmas(vma);
8f4f8c16 556 unlink_file_vma(vma);
3bf5ee95
HD
557 }
558 free_pgd_range(tlb, addr, vma->vm_end,
559 floor, next? next->vm_start: ceiling);
560 }
e0da382c
HD
561 vma = next;
562 }
1da177e4
LT
563}
564
8ac1f832
AA
565int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
566 pmd_t *pmd, unsigned long address)
1da177e4 567{
c4088ebd 568 spinlock_t *ptl;
2f569afd 569 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
570 if (!new)
571 return -ENOMEM;
572
362a61ad
NP
573 /*
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
577 *
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
585 */
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587
c4088ebd 588 ptl = pmd_lock(mm, pmd);
8ac1f832 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 590 atomic_long_inc(&mm->nr_ptes);
1da177e4 591 pmd_populate(mm, pmd, new);
2f569afd 592 new = NULL;
4b471e88 593 }
c4088ebd 594 spin_unlock(ptl);
2f569afd
MS
595 if (new)
596 pte_free(mm, new);
1bb3630e 597 return 0;
1da177e4
LT
598}
599
1bb3630e 600int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 601{
1bb3630e
HD
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
605
362a61ad
NP
606 smp_wmb(); /* See comment in __pte_alloc */
607
1bb3630e 608 spin_lock(&init_mm.page_table_lock);
8ac1f832 609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 610 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 611 new = NULL;
4b471e88 612 }
1bb3630e 613 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
614 if (new)
615 pte_free_kernel(&init_mm, new);
1bb3630e 616 return 0;
1da177e4
LT
617}
618
d559db08
KH
619static inline void init_rss_vec(int *rss)
620{
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622}
623
624static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 625{
d559db08
KH
626 int i;
627
34e55232 628 if (current->mm == mm)
05af2e10 629 sync_mm_rss(mm);
d559db08
KH
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
ae859762
HD
633}
634
b5810039 635/*
6aab341e
LT
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
b5810039
NP
639 *
640 * The calling function must still handle the error.
641 */
3dc14741
HD
642static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
b5810039 644{
3dc14741
HD
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
d936cf9b
HD
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
653
654 /*
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
657 */
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
662 }
663 if (nr_unshown) {
1e9e6365
HD
664 printk(KERN_ALERT
665 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
666 nr_unshown);
667 nr_unshown = 0;
668 }
669 nr_shown = 0;
670 }
671 if (nr_shown++ == 0)
672 resume = jiffies + 60 * HZ;
3dc14741
HD
673
674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 index = linear_page_index(vma, addr);
676
1e9e6365
HD
677 printk(KERN_ALERT
678 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
679 current->comm,
680 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 681 if (page)
f0b791a3 682 dump_page(page, "bad pte");
1e9e6365 683 printk(KERN_ALERT
3dc14741
HD
684 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
685 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
686 /*
687 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
688 */
2682582a
KK
689 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
690 vma->vm_file,
691 vma->vm_ops ? vma->vm_ops->fault : NULL,
692 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
693 mapping ? mapping->a_ops->readpage : NULL);
b5810039 694 dump_stack();
373d4d09 695 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
696}
697
ee498ed7 698/*
7e675137 699 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 700 *
7e675137
NP
701 * "Special" mappings do not wish to be associated with a "struct page" (either
702 * it doesn't exist, or it exists but they don't want to touch it). In this
703 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 704 *
7e675137
NP
705 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
706 * pte bit, in which case this function is trivial. Secondly, an architecture
707 * may not have a spare pte bit, which requires a more complicated scheme,
708 * described below.
709 *
710 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
711 * special mapping (even if there are underlying and valid "struct pages").
712 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 713 *
b379d790
JH
714 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
715 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
716 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
717 * mapping will always honor the rule
6aab341e
LT
718 *
719 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720 *
7e675137
NP
721 * And for normal mappings this is false.
722 *
723 * This restricts such mappings to be a linear translation from virtual address
724 * to pfn. To get around this restriction, we allow arbitrary mappings so long
725 * as the vma is not a COW mapping; in that case, we know that all ptes are
726 * special (because none can have been COWed).
b379d790 727 *
b379d790 728 *
7e675137 729 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
730 *
731 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
732 * page" backing, however the difference is that _all_ pages with a struct
733 * page (that is, those where pfn_valid is true) are refcounted and considered
734 * normal pages by the VM. The disadvantage is that pages are refcounted
735 * (which can be slower and simply not an option for some PFNMAP users). The
736 * advantage is that we don't have to follow the strict linearity rule of
737 * PFNMAP mappings in order to support COWable mappings.
738 *
ee498ed7 739 */
7e675137
NP
740#ifdef __HAVE_ARCH_PTE_SPECIAL
741# define HAVE_PTE_SPECIAL 1
742#else
743# define HAVE_PTE_SPECIAL 0
744#endif
745struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
746 pte_t pte)
ee498ed7 747{
22b31eec 748 unsigned long pfn = pte_pfn(pte);
7e675137
NP
749
750 if (HAVE_PTE_SPECIAL) {
b38af472 751 if (likely(!pte_special(pte)))
22b31eec 752 goto check_pfn;
667a0a06
DV
753 if (vma->vm_ops && vma->vm_ops->find_special_page)
754 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
755 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
756 return NULL;
62eede62 757 if (!is_zero_pfn(pfn))
22b31eec 758 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
759 return NULL;
760 }
761
762 /* !HAVE_PTE_SPECIAL case follows: */
763
b379d790
JH
764 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
765 if (vma->vm_flags & VM_MIXEDMAP) {
766 if (!pfn_valid(pfn))
767 return NULL;
768 goto out;
769 } else {
7e675137
NP
770 unsigned long off;
771 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
772 if (pfn == vma->vm_pgoff + off)
773 return NULL;
774 if (!is_cow_mapping(vma->vm_flags))
775 return NULL;
776 }
6aab341e
LT
777 }
778
b38af472
HD
779 if (is_zero_pfn(pfn))
780 return NULL;
22b31eec
HD
781check_pfn:
782 if (unlikely(pfn > highest_memmap_pfn)) {
783 print_bad_pte(vma, addr, pte, NULL);
784 return NULL;
785 }
6aab341e
LT
786
787 /*
7e675137 788 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 789 * eg. VDSO mappings can cause them to exist.
6aab341e 790 */
b379d790 791out:
6aab341e 792 return pfn_to_page(pfn);
ee498ed7
HD
793}
794
1da177e4
LT
795/*
796 * copy one vm_area from one task to the other. Assumes the page tables
797 * already present in the new task to be cleared in the whole range
798 * covered by this vma.
1da177e4
LT
799 */
800
570a335b 801static inline unsigned long
1da177e4 802copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 803 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 804 unsigned long addr, int *rss)
1da177e4 805{
b5810039 806 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
807 pte_t pte = *src_pte;
808 struct page *page;
1da177e4
LT
809
810 /* pte contains position in swap or file, so copy. */
811 if (unlikely(!pte_present(pte))) {
0661a336
KS
812 swp_entry_t entry = pte_to_swp_entry(pte);
813
814 if (likely(!non_swap_entry(entry))) {
815 if (swap_duplicate(entry) < 0)
816 return entry.val;
817
818 /* make sure dst_mm is on swapoff's mmlist. */
819 if (unlikely(list_empty(&dst_mm->mmlist))) {
820 spin_lock(&mmlist_lock);
821 if (list_empty(&dst_mm->mmlist))
822 list_add(&dst_mm->mmlist,
823 &src_mm->mmlist);
824 spin_unlock(&mmlist_lock);
825 }
826 rss[MM_SWAPENTS]++;
827 } else if (is_migration_entry(entry)) {
828 page = migration_entry_to_page(entry);
829
eca56ff9 830 rss[mm_counter(page)]++;
0661a336
KS
831
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
834 /*
835 * COW mappings require pages in both
836 * parent and child to be set to read.
837 */
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 843 }
1da177e4 844 }
ae859762 845 goto out_set_pte;
1da177e4
LT
846 }
847
1da177e4
LT
848 /*
849 * If it's a COW mapping, write protect it both
850 * in the parent and the child
851 */
67121172 852 if (is_cow_mapping(vm_flags)) {
1da177e4 853 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 854 pte = pte_wrprotect(pte);
1da177e4
LT
855 }
856
857 /*
858 * If it's a shared mapping, mark it clean in
859 * the child
860 */
861 if (vm_flags & VM_SHARED)
862 pte = pte_mkclean(pte);
863 pte = pte_mkold(pte);
6aab341e
LT
864
865 page = vm_normal_page(vma, addr, pte);
866 if (page) {
867 get_page(page);
53f9263b 868 page_dup_rmap(page, false);
eca56ff9 869 rss[mm_counter(page)]++;
6aab341e 870 }
ae859762
HD
871
872out_set_pte:
873 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 874 return 0;
1da177e4
LT
875}
876
21bda264 877static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
878 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
879 unsigned long addr, unsigned long end)
1da177e4 880{
c36987e2 881 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 882 pte_t *src_pte, *dst_pte;
c74df32c 883 spinlock_t *src_ptl, *dst_ptl;
e040f218 884 int progress = 0;
d559db08 885 int rss[NR_MM_COUNTERS];
570a335b 886 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
887
888again:
d559db08
KH
889 init_rss_vec(rss);
890
c74df32c 891 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
892 if (!dst_pte)
893 return -ENOMEM;
ece0e2b6 894 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 895 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 896 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
897 orig_src_pte = src_pte;
898 orig_dst_pte = dst_pte;
6606c3e0 899 arch_enter_lazy_mmu_mode();
1da177e4 900
1da177e4
LT
901 do {
902 /*
903 * We are holding two locks at this point - either of them
904 * could generate latencies in another task on another CPU.
905 */
e040f218
HD
906 if (progress >= 32) {
907 progress = 0;
908 if (need_resched() ||
95c354fe 909 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
910 break;
911 }
1da177e4
LT
912 if (pte_none(*src_pte)) {
913 progress++;
914 continue;
915 }
570a335b
HD
916 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
917 vma, addr, rss);
918 if (entry.val)
919 break;
1da177e4
LT
920 progress += 8;
921 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 922
6606c3e0 923 arch_leave_lazy_mmu_mode();
c74df32c 924 spin_unlock(src_ptl);
ece0e2b6 925 pte_unmap(orig_src_pte);
d559db08 926 add_mm_rss_vec(dst_mm, rss);
c36987e2 927 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 928 cond_resched();
570a335b
HD
929
930 if (entry.val) {
931 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
932 return -ENOMEM;
933 progress = 0;
934 }
1da177e4
LT
935 if (addr != end)
936 goto again;
937 return 0;
938}
939
940static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
941 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
942 unsigned long addr, unsigned long end)
943{
944 pmd_t *src_pmd, *dst_pmd;
945 unsigned long next;
946
947 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
948 if (!dst_pmd)
949 return -ENOMEM;
950 src_pmd = pmd_offset(src_pud, addr);
951 do {
952 next = pmd_addr_end(addr, end);
5c7fb56e 953 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 954 int err;
14d1a55c 955 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
956 err = copy_huge_pmd(dst_mm, src_mm,
957 dst_pmd, src_pmd, addr, vma);
958 if (err == -ENOMEM)
959 return -ENOMEM;
960 if (!err)
961 continue;
962 /* fall through */
963 }
1da177e4
LT
964 if (pmd_none_or_clear_bad(src_pmd))
965 continue;
966 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
967 vma, addr, next))
968 return -ENOMEM;
969 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
970 return 0;
971}
972
973static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
975 unsigned long addr, unsigned long end)
976{
977 pud_t *src_pud, *dst_pud;
978 unsigned long next;
979
980 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
981 if (!dst_pud)
982 return -ENOMEM;
983 src_pud = pud_offset(src_pgd, addr);
984 do {
985 next = pud_addr_end(addr, end);
986 if (pud_none_or_clear_bad(src_pud))
987 continue;
988 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
989 vma, addr, next))
990 return -ENOMEM;
991 } while (dst_pud++, src_pud++, addr = next, addr != end);
992 return 0;
993}
994
995int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
996 struct vm_area_struct *vma)
997{
998 pgd_t *src_pgd, *dst_pgd;
999 unsigned long next;
1000 unsigned long addr = vma->vm_start;
1001 unsigned long end = vma->vm_end;
2ec74c3e
SG
1002 unsigned long mmun_start; /* For mmu_notifiers */
1003 unsigned long mmun_end; /* For mmu_notifiers */
1004 bool is_cow;
cddb8a5c 1005 int ret;
1da177e4 1006
d992895b
NP
1007 /*
1008 * Don't copy ptes where a page fault will fill them correctly.
1009 * Fork becomes much lighter when there are big shared or private
1010 * readonly mappings. The tradeoff is that copy_page_range is more
1011 * efficient than faulting.
1012 */
0661a336
KS
1013 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1014 !vma->anon_vma)
1015 return 0;
d992895b 1016
1da177e4
LT
1017 if (is_vm_hugetlb_page(vma))
1018 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1019
b3b9c293 1020 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1021 /*
1022 * We do not free on error cases below as remove_vma
1023 * gets called on error from higher level routine
1024 */
5180da41 1025 ret = track_pfn_copy(vma);
2ab64037 1026 if (ret)
1027 return ret;
1028 }
1029
cddb8a5c
AA
1030 /*
1031 * We need to invalidate the secondary MMU mappings only when
1032 * there could be a permission downgrade on the ptes of the
1033 * parent mm. And a permission downgrade will only happen if
1034 * is_cow_mapping() returns true.
1035 */
2ec74c3e
SG
1036 is_cow = is_cow_mapping(vma->vm_flags);
1037 mmun_start = addr;
1038 mmun_end = end;
1039 if (is_cow)
1040 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1041 mmun_end);
cddb8a5c
AA
1042
1043 ret = 0;
1da177e4
LT
1044 dst_pgd = pgd_offset(dst_mm, addr);
1045 src_pgd = pgd_offset(src_mm, addr);
1046 do {
1047 next = pgd_addr_end(addr, end);
1048 if (pgd_none_or_clear_bad(src_pgd))
1049 continue;
cddb8a5c
AA
1050 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1051 vma, addr, next))) {
1052 ret = -ENOMEM;
1053 break;
1054 }
1da177e4 1055 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1056
2ec74c3e
SG
1057 if (is_cow)
1058 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1059 return ret;
1da177e4
LT
1060}
1061
51c6f666 1062static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1063 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1064 unsigned long addr, unsigned long end,
97a89413 1065 struct zap_details *details)
1da177e4 1066{
b5810039 1067 struct mm_struct *mm = tlb->mm;
d16dfc55 1068 int force_flush = 0;
d559db08 1069 int rss[NR_MM_COUNTERS];
97a89413 1070 spinlock_t *ptl;
5f1a1907 1071 pte_t *start_pte;
97a89413 1072 pte_t *pte;
8a5f14a2 1073 swp_entry_t entry;
d559db08 1074
d16dfc55 1075again:
e303297e 1076 init_rss_vec(rss);
5f1a1907
SR
1077 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1078 pte = start_pte;
6606c3e0 1079 arch_enter_lazy_mmu_mode();
1da177e4
LT
1080 do {
1081 pte_t ptent = *pte;
51c6f666 1082 if (pte_none(ptent)) {
1da177e4 1083 continue;
51c6f666 1084 }
6f5e6b9e 1085
1da177e4 1086 if (pte_present(ptent)) {
ee498ed7 1087 struct page *page;
51c6f666 1088
6aab341e 1089 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1090 if (unlikely(details) && page) {
1091 /*
1092 * unmap_shared_mapping_pages() wants to
1093 * invalidate cache without truncating:
1094 * unmap shared but keep private pages.
1095 */
1096 if (details->check_mapping &&
1097 details->check_mapping != page->mapping)
1098 continue;
1da177e4 1099 }
b5810039 1100 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1101 tlb->fullmm);
1da177e4
LT
1102 tlb_remove_tlb_entry(tlb, pte, addr);
1103 if (unlikely(!page))
1104 continue;
eca56ff9
JM
1105
1106 if (!PageAnon(page)) {
1cf35d47
LT
1107 if (pte_dirty(ptent)) {
1108 force_flush = 1;
6237bcd9 1109 set_page_dirty(page);
1cf35d47 1110 }
4917e5d0 1111 if (pte_young(ptent) &&
64363aad 1112 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1113 mark_page_accessed(page);
6237bcd9 1114 }
eca56ff9 1115 rss[mm_counter(page)]--;
d281ee61 1116 page_remove_rmap(page, false);
3dc14741
HD
1117 if (unlikely(page_mapcount(page) < 0))
1118 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1119 if (unlikely(!__tlb_remove_page(tlb, page))) {
1120 force_flush = 1;
ce9ec37b 1121 addr += PAGE_SIZE;
d16dfc55 1122 break;
1cf35d47 1123 }
1da177e4
LT
1124 continue;
1125 }
8a5f14a2 1126 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1127 if (unlikely(details))
1128 continue;
b084d435 1129
8a5f14a2
KS
1130 entry = pte_to_swp_entry(ptent);
1131 if (!non_swap_entry(entry))
1132 rss[MM_SWAPENTS]--;
1133 else if (is_migration_entry(entry)) {
1134 struct page *page;
9f9f1acd 1135
8a5f14a2 1136 page = migration_entry_to_page(entry);
eca56ff9 1137 rss[mm_counter(page)]--;
b084d435 1138 }
8a5f14a2
KS
1139 if (unlikely(!free_swap_and_cache(entry)))
1140 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1142 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1143
d559db08 1144 add_mm_rss_vec(mm, rss);
6606c3e0 1145 arch_leave_lazy_mmu_mode();
51c6f666 1146
1cf35d47 1147 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1148 if (force_flush)
1cf35d47 1149 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1150 pte_unmap_unlock(start_pte, ptl);
1151
1152 /*
1153 * If we forced a TLB flush (either due to running out of
1154 * batch buffers or because we needed to flush dirty TLB
1155 * entries before releasing the ptl), free the batched
1156 * memory too. Restart if we didn't do everything.
1157 */
1158 if (force_flush) {
1159 force_flush = 0;
1160 tlb_flush_mmu_free(tlb);
2b047252
LT
1161
1162 if (addr != end)
d16dfc55
PZ
1163 goto again;
1164 }
1165
51c6f666 1166 return addr;
1da177e4
LT
1167}
1168
51c6f666 1169static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1170 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1171 unsigned long addr, unsigned long end,
97a89413 1172 struct zap_details *details)
1da177e4
LT
1173{
1174 pmd_t *pmd;
1175 unsigned long next;
1176
1177 pmd = pmd_offset(pud, addr);
1178 do {
1179 next = pmd_addr_end(addr, end);
5c7fb56e 1180 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1181 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1182#ifdef CONFIG_DEBUG_VM
1183 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1184 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1185 __func__, addr, end,
1186 vma->vm_start,
1187 vma->vm_end);
1188 BUG();
1189 }
1190#endif
78ddc534 1191 split_huge_pmd(vma, pmd, addr);
f21760b1 1192 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1193 goto next;
71e3aac0
AA
1194 /* fall through */
1195 }
1a5a9906
AA
1196 /*
1197 * Here there can be other concurrent MADV_DONTNEED or
1198 * trans huge page faults running, and if the pmd is
1199 * none or trans huge it can change under us. This is
1200 * because MADV_DONTNEED holds the mmap_sem in read
1201 * mode.
1202 */
1203 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1204 goto next;
97a89413 1205 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1206next:
97a89413
PZ
1207 cond_resched();
1208 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1209
1210 return addr;
1da177e4
LT
1211}
1212
51c6f666 1213static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1214 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1215 unsigned long addr, unsigned long end,
97a89413 1216 struct zap_details *details)
1da177e4
LT
1217{
1218 pud_t *pud;
1219 unsigned long next;
1220
1221 pud = pud_offset(pgd, addr);
1222 do {
1223 next = pud_addr_end(addr, end);
97a89413 1224 if (pud_none_or_clear_bad(pud))
1da177e4 1225 continue;
97a89413
PZ
1226 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1227 } while (pud++, addr = next, addr != end);
51c6f666
RH
1228
1229 return addr;
1da177e4
LT
1230}
1231
038c7aa1
AV
1232static void unmap_page_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1da177e4
LT
1236{
1237 pgd_t *pgd;
1238 unsigned long next;
1239
8a5f14a2 1240 if (details && !details->check_mapping)
1da177e4
LT
1241 details = NULL;
1242
1243 BUG_ON(addr >= end);
1244 tlb_start_vma(tlb, vma);
1245 pgd = pgd_offset(vma->vm_mm, addr);
1246 do {
1247 next = pgd_addr_end(addr, end);
97a89413 1248 if (pgd_none_or_clear_bad(pgd))
1da177e4 1249 continue;
97a89413
PZ
1250 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1252 tlb_end_vma(tlb, vma);
1253}
51c6f666 1254
f5cc4eef
AV
1255
1256static void unmap_single_vma(struct mmu_gather *tlb,
1257 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1258 unsigned long end_addr,
f5cc4eef
AV
1259 struct zap_details *details)
1260{
1261 unsigned long start = max(vma->vm_start, start_addr);
1262 unsigned long end;
1263
1264 if (start >= vma->vm_end)
1265 return;
1266 end = min(vma->vm_end, end_addr);
1267 if (end <= vma->vm_start)
1268 return;
1269
cbc91f71
SD
1270 if (vma->vm_file)
1271 uprobe_munmap(vma, start, end);
1272
b3b9c293 1273 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1274 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1275
1276 if (start != end) {
1277 if (unlikely(is_vm_hugetlb_page(vma))) {
1278 /*
1279 * It is undesirable to test vma->vm_file as it
1280 * should be non-null for valid hugetlb area.
1281 * However, vm_file will be NULL in the error
7aa6b4ad 1282 * cleanup path of mmap_region. When
f5cc4eef 1283 * hugetlbfs ->mmap method fails,
7aa6b4ad 1284 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1285 * before calling this function to clean up.
1286 * Since no pte has actually been setup, it is
1287 * safe to do nothing in this case.
1288 */
24669e58 1289 if (vma->vm_file) {
83cde9e8 1290 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1291 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1292 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1293 }
f5cc4eef
AV
1294 } else
1295 unmap_page_range(tlb, vma, start, end, details);
1296 }
1da177e4
LT
1297}
1298
1da177e4
LT
1299/**
1300 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1301 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1302 * @vma: the starting vma
1303 * @start_addr: virtual address at which to start unmapping
1304 * @end_addr: virtual address at which to end unmapping
1da177e4 1305 *
508034a3 1306 * Unmap all pages in the vma list.
1da177e4 1307 *
1da177e4
LT
1308 * Only addresses between `start' and `end' will be unmapped.
1309 *
1310 * The VMA list must be sorted in ascending virtual address order.
1311 *
1312 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313 * range after unmap_vmas() returns. So the only responsibility here is to
1314 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315 * drops the lock and schedules.
1316 */
6e8bb019 1317void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1318 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1319 unsigned long end_addr)
1da177e4 1320{
cddb8a5c 1321 struct mm_struct *mm = vma->vm_mm;
1da177e4 1322
cddb8a5c 1323 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1324 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1325 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1326 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1327}
1328
1329/**
1330 * zap_page_range - remove user pages in a given range
1331 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1332 * @start: starting address of pages to zap
1da177e4 1333 * @size: number of bytes to zap
8a5f14a2 1334 * @details: details of shared cache invalidation
f5cc4eef
AV
1335 *
1336 * Caller must protect the VMA list
1da177e4 1337 */
7e027b14 1338void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1339 unsigned long size, struct zap_details *details)
1340{
1341 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1342 struct mmu_gather tlb;
7e027b14 1343 unsigned long end = start + size;
1da177e4 1344
1da177e4 1345 lru_add_drain();
2b047252 1346 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1347 update_hiwater_rss(mm);
7e027b14
LT
1348 mmu_notifier_invalidate_range_start(mm, start, end);
1349 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1350 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1351 mmu_notifier_invalidate_range_end(mm, start, end);
1352 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1353}
1354
f5cc4eef
AV
1355/**
1356 * zap_page_range_single - remove user pages in a given range
1357 * @vma: vm_area_struct holding the applicable pages
1358 * @address: starting address of pages to zap
1359 * @size: number of bytes to zap
8a5f14a2 1360 * @details: details of shared cache invalidation
f5cc4eef
AV
1361 *
1362 * The range must fit into one VMA.
1da177e4 1363 */
f5cc4eef 1364static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1365 unsigned long size, struct zap_details *details)
1366{
1367 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1368 struct mmu_gather tlb;
1da177e4 1369 unsigned long end = address + size;
1da177e4 1370
1da177e4 1371 lru_add_drain();
2b047252 1372 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1373 update_hiwater_rss(mm);
f5cc4eef 1374 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1375 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1376 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1377 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1378}
1379
c627f9cc
JS
1380/**
1381 * zap_vma_ptes - remove ptes mapping the vma
1382 * @vma: vm_area_struct holding ptes to be zapped
1383 * @address: starting address of pages to zap
1384 * @size: number of bytes to zap
1385 *
1386 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387 *
1388 * The entire address range must be fully contained within the vma.
1389 *
1390 * Returns 0 if successful.
1391 */
1392int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 unsigned long size)
1394{
1395 if (address < vma->vm_start || address + size > vma->vm_end ||
1396 !(vma->vm_flags & VM_PFNMAP))
1397 return -1;
f5cc4eef 1398 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1399 return 0;
1400}
1401EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402
25ca1d6c 1403pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1404 spinlock_t **ptl)
c9cfcddf
LT
1405{
1406 pgd_t * pgd = pgd_offset(mm, addr);
1407 pud_t * pud = pud_alloc(mm, pgd, addr);
1408 if (pud) {
49c91fb0 1409 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1410 if (pmd) {
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1413 }
c9cfcddf
LT
1414 }
1415 return NULL;
1416}
1417
238f58d8
LT
1418/*
1419 * This is the old fallback for page remapping.
1420 *
1421 * For historical reasons, it only allows reserved pages. Only
1422 * old drivers should use this, and they needed to mark their
1423 * pages reserved for the old functions anyway.
1424 */
423bad60
NP
1425static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 struct page *page, pgprot_t prot)
238f58d8 1427{
423bad60 1428 struct mm_struct *mm = vma->vm_mm;
238f58d8 1429 int retval;
c9cfcddf 1430 pte_t *pte;
8a9f3ccd
BS
1431 spinlock_t *ptl;
1432
238f58d8 1433 retval = -EINVAL;
a145dd41 1434 if (PageAnon(page))
5b4e655e 1435 goto out;
238f58d8
LT
1436 retval = -ENOMEM;
1437 flush_dcache_page(page);
c9cfcddf 1438 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1439 if (!pte)
5b4e655e 1440 goto out;
238f58d8
LT
1441 retval = -EBUSY;
1442 if (!pte_none(*pte))
1443 goto out_unlock;
1444
1445 /* Ok, finally just insert the thing.. */
1446 get_page(page);
eca56ff9 1447 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1448 page_add_file_rmap(page);
1449 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450
1451 retval = 0;
8a9f3ccd
BS
1452 pte_unmap_unlock(pte, ptl);
1453 return retval;
238f58d8
LT
1454out_unlock:
1455 pte_unmap_unlock(pte, ptl);
1456out:
1457 return retval;
1458}
1459
bfa5bf6d
REB
1460/**
1461 * vm_insert_page - insert single page into user vma
1462 * @vma: user vma to map to
1463 * @addr: target user address of this page
1464 * @page: source kernel page
1465 *
a145dd41
LT
1466 * This allows drivers to insert individual pages they've allocated
1467 * into a user vma.
1468 *
1469 * The page has to be a nice clean _individual_ kernel allocation.
1470 * If you allocate a compound page, you need to have marked it as
1471 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1472 * (see split_page()).
a145dd41
LT
1473 *
1474 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475 * took an arbitrary page protection parameter. This doesn't allow
1476 * that. Your vma protection will have to be set up correctly, which
1477 * means that if you want a shared writable mapping, you'd better
1478 * ask for a shared writable mapping!
1479 *
1480 * The page does not need to be reserved.
4b6e1e37
KK
1481 *
1482 * Usually this function is called from f_op->mmap() handler
1483 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485 * function from other places, for example from page-fault handler.
a145dd41 1486 */
423bad60
NP
1487int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 struct page *page)
a145dd41
LT
1489{
1490 if (addr < vma->vm_start || addr >= vma->vm_end)
1491 return -EFAULT;
1492 if (!page_count(page))
1493 return -EINVAL;
4b6e1e37
KK
1494 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 vma->vm_flags |= VM_MIXEDMAP;
1498 }
423bad60 1499 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1500}
e3c3374f 1501EXPORT_SYMBOL(vm_insert_page);
a145dd41 1502
423bad60 1503static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1504 pfn_t pfn, pgprot_t prot)
423bad60
NP
1505{
1506 struct mm_struct *mm = vma->vm_mm;
1507 int retval;
1508 pte_t *pte, entry;
1509 spinlock_t *ptl;
1510
1511 retval = -ENOMEM;
1512 pte = get_locked_pte(mm, addr, &ptl);
1513 if (!pte)
1514 goto out;
1515 retval = -EBUSY;
1516 if (!pte_none(*pte))
1517 goto out_unlock;
1518
1519 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1520 if (pfn_t_devmap(pfn))
1521 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 else
1523 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1524 set_pte_at(mm, addr, pte, entry);
4b3073e1 1525 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1526
1527 retval = 0;
1528out_unlock:
1529 pte_unmap_unlock(pte, ptl);
1530out:
1531 return retval;
1532}
1533
e0dc0d8f
NP
1534/**
1535 * vm_insert_pfn - insert single pfn into user vma
1536 * @vma: user vma to map to
1537 * @addr: target user address of this page
1538 * @pfn: source kernel pfn
1539 *
c462f179 1540 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1541 * they've allocated into a user vma. Same comments apply.
1542 *
1543 * This function should only be called from a vm_ops->fault handler, and
1544 * in that case the handler should return NULL.
0d71d10a
NP
1545 *
1546 * vma cannot be a COW mapping.
1547 *
1548 * As this is called only for pages that do not currently exist, we
1549 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1550 */
1551int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1552 unsigned long pfn)
e0dc0d8f 1553{
2ab64037 1554 int ret;
e4b866ed 1555 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1556 /*
1557 * Technically, architectures with pte_special can avoid all these
1558 * restrictions (same for remap_pfn_range). However we would like
1559 * consistency in testing and feature parity among all, so we should
1560 * try to keep these invariants in place for everybody.
1561 */
b379d790
JH
1562 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1563 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1564 (VM_PFNMAP|VM_MIXEDMAP));
1565 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1566 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1567
423bad60
NP
1568 if (addr < vma->vm_start || addr >= vma->vm_end)
1569 return -EFAULT;
f25748e3 1570 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1571 return -EINVAL;
1572
01c8f1c4 1573 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1574
2ab64037 1575 return ret;
423bad60
NP
1576}
1577EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1578
423bad60 1579int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1580 pfn_t pfn)
423bad60
NP
1581{
1582 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1583
423bad60
NP
1584 if (addr < vma->vm_start || addr >= vma->vm_end)
1585 return -EFAULT;
e0dc0d8f 1586
423bad60
NP
1587 /*
1588 * If we don't have pte special, then we have to use the pfn_valid()
1589 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1590 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1591 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1592 * without pte special, it would there be refcounted as a normal page.
423bad60 1593 */
03fc2da6 1594 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1595 struct page *page;
1596
03fc2da6
DW
1597 /*
1598 * At this point we are committed to insert_page()
1599 * regardless of whether the caller specified flags that
1600 * result in pfn_t_has_page() == false.
1601 */
1602 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1603 return insert_page(vma, addr, page, vma->vm_page_prot);
1604 }
1605 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1606}
423bad60 1607EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1608
1da177e4
LT
1609/*
1610 * maps a range of physical memory into the requested pages. the old
1611 * mappings are removed. any references to nonexistent pages results
1612 * in null mappings (currently treated as "copy-on-access")
1613 */
1614static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1615 unsigned long addr, unsigned long end,
1616 unsigned long pfn, pgprot_t prot)
1617{
1618 pte_t *pte;
c74df32c 1619 spinlock_t *ptl;
1da177e4 1620
c74df32c 1621 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1622 if (!pte)
1623 return -ENOMEM;
6606c3e0 1624 arch_enter_lazy_mmu_mode();
1da177e4
LT
1625 do {
1626 BUG_ON(!pte_none(*pte));
7e675137 1627 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1628 pfn++;
1629 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1630 arch_leave_lazy_mmu_mode();
c74df32c 1631 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1632 return 0;
1633}
1634
1635static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1636 unsigned long addr, unsigned long end,
1637 unsigned long pfn, pgprot_t prot)
1638{
1639 pmd_t *pmd;
1640 unsigned long next;
1641
1642 pfn -= addr >> PAGE_SHIFT;
1643 pmd = pmd_alloc(mm, pud, addr);
1644 if (!pmd)
1645 return -ENOMEM;
f66055ab 1646 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1647 do {
1648 next = pmd_addr_end(addr, end);
1649 if (remap_pte_range(mm, pmd, addr, next,
1650 pfn + (addr >> PAGE_SHIFT), prot))
1651 return -ENOMEM;
1652 } while (pmd++, addr = next, addr != end);
1653 return 0;
1654}
1655
1656static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1657 unsigned long addr, unsigned long end,
1658 unsigned long pfn, pgprot_t prot)
1659{
1660 pud_t *pud;
1661 unsigned long next;
1662
1663 pfn -= addr >> PAGE_SHIFT;
1664 pud = pud_alloc(mm, pgd, addr);
1665 if (!pud)
1666 return -ENOMEM;
1667 do {
1668 next = pud_addr_end(addr, end);
1669 if (remap_pmd_range(mm, pud, addr, next,
1670 pfn + (addr >> PAGE_SHIFT), prot))
1671 return -ENOMEM;
1672 } while (pud++, addr = next, addr != end);
1673 return 0;
1674}
1675
bfa5bf6d
REB
1676/**
1677 * remap_pfn_range - remap kernel memory to userspace
1678 * @vma: user vma to map to
1679 * @addr: target user address to start at
1680 * @pfn: physical address of kernel memory
1681 * @size: size of map area
1682 * @prot: page protection flags for this mapping
1683 *
1684 * Note: this is only safe if the mm semaphore is held when called.
1685 */
1da177e4
LT
1686int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1687 unsigned long pfn, unsigned long size, pgprot_t prot)
1688{
1689 pgd_t *pgd;
1690 unsigned long next;
2d15cab8 1691 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1692 struct mm_struct *mm = vma->vm_mm;
1693 int err;
1694
1695 /*
1696 * Physically remapped pages are special. Tell the
1697 * rest of the world about it:
1698 * VM_IO tells people not to look at these pages
1699 * (accesses can have side effects).
6aab341e
LT
1700 * VM_PFNMAP tells the core MM that the base pages are just
1701 * raw PFN mappings, and do not have a "struct page" associated
1702 * with them.
314e51b9
KK
1703 * VM_DONTEXPAND
1704 * Disable vma merging and expanding with mremap().
1705 * VM_DONTDUMP
1706 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1707 *
1708 * There's a horrible special case to handle copy-on-write
1709 * behaviour that some programs depend on. We mark the "original"
1710 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1711 * See vm_normal_page() for details.
1da177e4 1712 */
b3b9c293
KK
1713 if (is_cow_mapping(vma->vm_flags)) {
1714 if (addr != vma->vm_start || end != vma->vm_end)
1715 return -EINVAL;
fb155c16 1716 vma->vm_pgoff = pfn;
b3b9c293
KK
1717 }
1718
1719 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1720 if (err)
3c8bb73a 1721 return -EINVAL;
fb155c16 1722
314e51b9 1723 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1724
1725 BUG_ON(addr >= end);
1726 pfn -= addr >> PAGE_SHIFT;
1727 pgd = pgd_offset(mm, addr);
1728 flush_cache_range(vma, addr, end);
1da177e4
LT
1729 do {
1730 next = pgd_addr_end(addr, end);
1731 err = remap_pud_range(mm, pgd, addr, next,
1732 pfn + (addr >> PAGE_SHIFT), prot);
1733 if (err)
1734 break;
1735 } while (pgd++, addr = next, addr != end);
2ab64037 1736
1737 if (err)
5180da41 1738 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1739
1da177e4
LT
1740 return err;
1741}
1742EXPORT_SYMBOL(remap_pfn_range);
1743
b4cbb197
LT
1744/**
1745 * vm_iomap_memory - remap memory to userspace
1746 * @vma: user vma to map to
1747 * @start: start of area
1748 * @len: size of area
1749 *
1750 * This is a simplified io_remap_pfn_range() for common driver use. The
1751 * driver just needs to give us the physical memory range to be mapped,
1752 * we'll figure out the rest from the vma information.
1753 *
1754 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1755 * whatever write-combining details or similar.
1756 */
1757int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1758{
1759 unsigned long vm_len, pfn, pages;
1760
1761 /* Check that the physical memory area passed in looks valid */
1762 if (start + len < start)
1763 return -EINVAL;
1764 /*
1765 * You *really* shouldn't map things that aren't page-aligned,
1766 * but we've historically allowed it because IO memory might
1767 * just have smaller alignment.
1768 */
1769 len += start & ~PAGE_MASK;
1770 pfn = start >> PAGE_SHIFT;
1771 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1772 if (pfn + pages < pfn)
1773 return -EINVAL;
1774
1775 /* We start the mapping 'vm_pgoff' pages into the area */
1776 if (vma->vm_pgoff > pages)
1777 return -EINVAL;
1778 pfn += vma->vm_pgoff;
1779 pages -= vma->vm_pgoff;
1780
1781 /* Can we fit all of the mapping? */
1782 vm_len = vma->vm_end - vma->vm_start;
1783 if (vm_len >> PAGE_SHIFT > pages)
1784 return -EINVAL;
1785
1786 /* Ok, let it rip */
1787 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1788}
1789EXPORT_SYMBOL(vm_iomap_memory);
1790
aee16b3c
JF
1791static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 pte_fn_t fn, void *data)
1794{
1795 pte_t *pte;
1796 int err;
2f569afd 1797 pgtable_t token;
94909914 1798 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1799
1800 pte = (mm == &init_mm) ?
1801 pte_alloc_kernel(pmd, addr) :
1802 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1803 if (!pte)
1804 return -ENOMEM;
1805
1806 BUG_ON(pmd_huge(*pmd));
1807
38e0edb1
JF
1808 arch_enter_lazy_mmu_mode();
1809
2f569afd 1810 token = pmd_pgtable(*pmd);
aee16b3c
JF
1811
1812 do {
c36987e2 1813 err = fn(pte++, token, addr, data);
aee16b3c
JF
1814 if (err)
1815 break;
c36987e2 1816 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1817
38e0edb1
JF
1818 arch_leave_lazy_mmu_mode();
1819
aee16b3c
JF
1820 if (mm != &init_mm)
1821 pte_unmap_unlock(pte-1, ptl);
1822 return err;
1823}
1824
1825static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1826 unsigned long addr, unsigned long end,
1827 pte_fn_t fn, void *data)
1828{
1829 pmd_t *pmd;
1830 unsigned long next;
1831 int err;
1832
ceb86879
AK
1833 BUG_ON(pud_huge(*pud));
1834
aee16b3c
JF
1835 pmd = pmd_alloc(mm, pud, addr);
1836 if (!pmd)
1837 return -ENOMEM;
1838 do {
1839 next = pmd_addr_end(addr, end);
1840 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1841 if (err)
1842 break;
1843 } while (pmd++, addr = next, addr != end);
1844 return err;
1845}
1846
1847static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1850{
1851 pud_t *pud;
1852 unsigned long next;
1853 int err;
1854
1855 pud = pud_alloc(mm, pgd, addr);
1856 if (!pud)
1857 return -ENOMEM;
1858 do {
1859 next = pud_addr_end(addr, end);
1860 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1861 if (err)
1862 break;
1863 } while (pud++, addr = next, addr != end);
1864 return err;
1865}
1866
1867/*
1868 * Scan a region of virtual memory, filling in page tables as necessary
1869 * and calling a provided function on each leaf page table.
1870 */
1871int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1872 unsigned long size, pte_fn_t fn, void *data)
1873{
1874 pgd_t *pgd;
1875 unsigned long next;
57250a5b 1876 unsigned long end = addr + size;
aee16b3c
JF
1877 int err;
1878
9cb65bc3
MP
1879 if (WARN_ON(addr >= end))
1880 return -EINVAL;
1881
aee16b3c
JF
1882 pgd = pgd_offset(mm, addr);
1883 do {
1884 next = pgd_addr_end(addr, end);
1885 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1886 if (err)
1887 break;
1888 } while (pgd++, addr = next, addr != end);
57250a5b 1889
aee16b3c
JF
1890 return err;
1891}
1892EXPORT_SYMBOL_GPL(apply_to_page_range);
1893
8f4e2101 1894/*
9b4bdd2f
KS
1895 * handle_pte_fault chooses page fault handler according to an entry which was
1896 * read non-atomically. Before making any commitment, on those architectures
1897 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1898 * parts, do_swap_page must check under lock before unmapping the pte and
1899 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1900 * and do_anonymous_page can safely check later on).
8f4e2101 1901 */
4c21e2f2 1902static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1903 pte_t *page_table, pte_t orig_pte)
1904{
1905 int same = 1;
1906#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1907 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1908 spinlock_t *ptl = pte_lockptr(mm, pmd);
1909 spin_lock(ptl);
8f4e2101 1910 same = pte_same(*page_table, orig_pte);
4c21e2f2 1911 spin_unlock(ptl);
8f4e2101
HD
1912 }
1913#endif
1914 pte_unmap(page_table);
1915 return same;
1916}
1917
9de455b2 1918static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1919{
0abdd7a8
DW
1920 debug_dma_assert_idle(src);
1921
6aab341e
LT
1922 /*
1923 * If the source page was a PFN mapping, we don't have
1924 * a "struct page" for it. We do a best-effort copy by
1925 * just copying from the original user address. If that
1926 * fails, we just zero-fill it. Live with it.
1927 */
1928 if (unlikely(!src)) {
9b04c5fe 1929 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1930 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1931
1932 /*
1933 * This really shouldn't fail, because the page is there
1934 * in the page tables. But it might just be unreadable,
1935 * in which case we just give up and fill the result with
1936 * zeroes.
1937 */
1938 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1939 clear_page(kaddr);
9b04c5fe 1940 kunmap_atomic(kaddr);
c4ec7b0d 1941 flush_dcache_page(dst);
0ed361de
NP
1942 } else
1943 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1944}
1945
c20cd45e
MH
1946static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1947{
1948 struct file *vm_file = vma->vm_file;
1949
1950 if (vm_file)
1951 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1952
1953 /*
1954 * Special mappings (e.g. VDSO) do not have any file so fake
1955 * a default GFP_KERNEL for them.
1956 */
1957 return GFP_KERNEL;
1958}
1959
fb09a464
KS
1960/*
1961 * Notify the address space that the page is about to become writable so that
1962 * it can prohibit this or wait for the page to get into an appropriate state.
1963 *
1964 * We do this without the lock held, so that it can sleep if it needs to.
1965 */
1966static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1967 unsigned long address)
1968{
1969 struct vm_fault vmf;
1970 int ret;
1971
1972 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1973 vmf.pgoff = page->index;
1974 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 1975 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 1976 vmf.page = page;
2e4cdab0 1977 vmf.cow_page = NULL;
fb09a464
KS
1978
1979 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1981 return ret;
1982 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1983 lock_page(page);
1984 if (!page->mapping) {
1985 unlock_page(page);
1986 return 0; /* retry */
1987 }
1988 ret |= VM_FAULT_LOCKED;
1989 } else
1990 VM_BUG_ON_PAGE(!PageLocked(page), page);
1991 return ret;
1992}
1993
4e047f89
SR
1994/*
1995 * Handle write page faults for pages that can be reused in the current vma
1996 *
1997 * This can happen either due to the mapping being with the VM_SHARED flag,
1998 * or due to us being the last reference standing to the page. In either
1999 * case, all we need to do here is to mark the page as writable and update
2000 * any related book-keeping.
2001 */
2002static inline int wp_page_reuse(struct mm_struct *mm,
2003 struct vm_area_struct *vma, unsigned long address,
2004 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2005 struct page *page, int page_mkwrite,
2006 int dirty_shared)
2007 __releases(ptl)
2008{
2009 pte_t entry;
2010 /*
2011 * Clear the pages cpupid information as the existing
2012 * information potentially belongs to a now completely
2013 * unrelated process.
2014 */
2015 if (page)
2016 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2017
2018 flush_cache_page(vma, address, pte_pfn(orig_pte));
2019 entry = pte_mkyoung(orig_pte);
2020 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2021 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2022 update_mmu_cache(vma, address, page_table);
2023 pte_unmap_unlock(page_table, ptl);
2024
2025 if (dirty_shared) {
2026 struct address_space *mapping;
2027 int dirtied;
2028
2029 if (!page_mkwrite)
2030 lock_page(page);
2031
2032 dirtied = set_page_dirty(page);
2033 VM_BUG_ON_PAGE(PageAnon(page), page);
2034 mapping = page->mapping;
2035 unlock_page(page);
2036 page_cache_release(page);
2037
2038 if ((dirtied || page_mkwrite) && mapping) {
2039 /*
2040 * Some device drivers do not set page.mapping
2041 * but still dirty their pages
2042 */
2043 balance_dirty_pages_ratelimited(mapping);
2044 }
2045
2046 if (!page_mkwrite)
2047 file_update_time(vma->vm_file);
2048 }
2049
2050 return VM_FAULT_WRITE;
2051}
2052
2f38ab2c
SR
2053/*
2054 * Handle the case of a page which we actually need to copy to a new page.
2055 *
2056 * Called with mmap_sem locked and the old page referenced, but
2057 * without the ptl held.
2058 *
2059 * High level logic flow:
2060 *
2061 * - Allocate a page, copy the content of the old page to the new one.
2062 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2063 * - Take the PTL. If the pte changed, bail out and release the allocated page
2064 * - If the pte is still the way we remember it, update the page table and all
2065 * relevant references. This includes dropping the reference the page-table
2066 * held to the old page, as well as updating the rmap.
2067 * - In any case, unlock the PTL and drop the reference we took to the old page.
2068 */
2069static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2070 unsigned long address, pte_t *page_table, pmd_t *pmd,
2071 pte_t orig_pte, struct page *old_page)
2072{
2073 struct page *new_page = NULL;
2074 spinlock_t *ptl = NULL;
2075 pte_t entry;
2076 int page_copied = 0;
2077 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2078 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2079 struct mem_cgroup *memcg;
2080
2081 if (unlikely(anon_vma_prepare(vma)))
2082 goto oom;
2083
2084 if (is_zero_pfn(pte_pfn(orig_pte))) {
2085 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2086 if (!new_page)
2087 goto oom;
2088 } else {
2089 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2090 if (!new_page)
2091 goto oom;
2092 cow_user_page(new_page, old_page, address, vma);
2093 }
2f38ab2c 2094
f627c2f5 2095 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2096 goto oom_free_new;
2097
eb3c24f3
MG
2098 __SetPageUptodate(new_page);
2099
2f38ab2c
SR
2100 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2101
2102 /*
2103 * Re-check the pte - we dropped the lock
2104 */
2105 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2106 if (likely(pte_same(*page_table, orig_pte))) {
2107 if (old_page) {
2108 if (!PageAnon(old_page)) {
eca56ff9
JM
2109 dec_mm_counter_fast(mm,
2110 mm_counter_file(old_page));
2f38ab2c
SR
2111 inc_mm_counter_fast(mm, MM_ANONPAGES);
2112 }
2113 } else {
2114 inc_mm_counter_fast(mm, MM_ANONPAGES);
2115 }
2116 flush_cache_page(vma, address, pte_pfn(orig_pte));
2117 entry = mk_pte(new_page, vma->vm_page_prot);
2118 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2119 /*
2120 * Clear the pte entry and flush it first, before updating the
2121 * pte with the new entry. This will avoid a race condition
2122 * seen in the presence of one thread doing SMC and another
2123 * thread doing COW.
2124 */
2125 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2126 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2127 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2128 lru_cache_add_active_or_unevictable(new_page, vma);
2129 /*
2130 * We call the notify macro here because, when using secondary
2131 * mmu page tables (such as kvm shadow page tables), we want the
2132 * new page to be mapped directly into the secondary page table.
2133 */
2134 set_pte_at_notify(mm, address, page_table, entry);
2135 update_mmu_cache(vma, address, page_table);
2136 if (old_page) {
2137 /*
2138 * Only after switching the pte to the new page may
2139 * we remove the mapcount here. Otherwise another
2140 * process may come and find the rmap count decremented
2141 * before the pte is switched to the new page, and
2142 * "reuse" the old page writing into it while our pte
2143 * here still points into it and can be read by other
2144 * threads.
2145 *
2146 * The critical issue is to order this
2147 * page_remove_rmap with the ptp_clear_flush above.
2148 * Those stores are ordered by (if nothing else,)
2149 * the barrier present in the atomic_add_negative
2150 * in page_remove_rmap.
2151 *
2152 * Then the TLB flush in ptep_clear_flush ensures that
2153 * no process can access the old page before the
2154 * decremented mapcount is visible. And the old page
2155 * cannot be reused until after the decremented
2156 * mapcount is visible. So transitively, TLBs to
2157 * old page will be flushed before it can be reused.
2158 */
d281ee61 2159 page_remove_rmap(old_page, false);
2f38ab2c
SR
2160 }
2161
2162 /* Free the old page.. */
2163 new_page = old_page;
2164 page_copied = 1;
2165 } else {
f627c2f5 2166 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2167 }
2168
2169 if (new_page)
2170 page_cache_release(new_page);
2171
2172 pte_unmap_unlock(page_table, ptl);
2173 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e90309c9 2174 if (old_page) {
2f38ab2c
SR
2175 /*
2176 * Don't let another task, with possibly unlocked vma,
2177 * keep the mlocked page.
2178 */
2179 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2180 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2181 if (PageMlocked(old_page))
2182 munlock_vma_page(old_page);
2f38ab2c
SR
2183 unlock_page(old_page);
2184 }
2185 page_cache_release(old_page);
2186 }
2187 return page_copied ? VM_FAULT_WRITE : 0;
2188oom_free_new:
2189 page_cache_release(new_page);
2190oom:
2191 if (old_page)
2192 page_cache_release(old_page);
2193 return VM_FAULT_OOM;
2194}
2195
dd906184
BH
2196/*
2197 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2198 * mapping
2199 */
2200static int wp_pfn_shared(struct mm_struct *mm,
2201 struct vm_area_struct *vma, unsigned long address,
2202 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2203 pmd_t *pmd)
2204{
2205 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2206 struct vm_fault vmf = {
2207 .page = NULL,
2208 .pgoff = linear_page_index(vma, address),
2209 .virtual_address = (void __user *)(address & PAGE_MASK),
2210 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2211 };
2212 int ret;
2213
2214 pte_unmap_unlock(page_table, ptl);
2215 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2216 if (ret & VM_FAULT_ERROR)
2217 return ret;
2218 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2219 /*
2220 * We might have raced with another page fault while we
2221 * released the pte_offset_map_lock.
2222 */
2223 if (!pte_same(*page_table, orig_pte)) {
2224 pte_unmap_unlock(page_table, ptl);
2225 return 0;
2226 }
2227 }
2228 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2229 NULL, 0, 0);
2230}
2231
93e478d4
SR
2232static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2233 unsigned long address, pte_t *page_table,
2234 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2235 struct page *old_page)
2236 __releases(ptl)
2237{
2238 int page_mkwrite = 0;
2239
2240 page_cache_get(old_page);
2241
93e478d4
SR
2242 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2243 int tmp;
2244
2245 pte_unmap_unlock(page_table, ptl);
2246 tmp = do_page_mkwrite(vma, old_page, address);
2247 if (unlikely(!tmp || (tmp &
2248 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2249 page_cache_release(old_page);
2250 return tmp;
2251 }
2252 /*
2253 * Since we dropped the lock we need to revalidate
2254 * the PTE as someone else may have changed it. If
2255 * they did, we just return, as we can count on the
2256 * MMU to tell us if they didn't also make it writable.
2257 */
2258 page_table = pte_offset_map_lock(mm, pmd, address,
2259 &ptl);
2260 if (!pte_same(*page_table, orig_pte)) {
2261 unlock_page(old_page);
2262 pte_unmap_unlock(page_table, ptl);
2263 page_cache_release(old_page);
2264 return 0;
2265 }
2266 page_mkwrite = 1;
2267 }
2268
2269 return wp_page_reuse(mm, vma, address, page_table, ptl,
2270 orig_pte, old_page, page_mkwrite, 1);
2271}
2272
1da177e4
LT
2273/*
2274 * This routine handles present pages, when users try to write
2275 * to a shared page. It is done by copying the page to a new address
2276 * and decrementing the shared-page counter for the old page.
2277 *
1da177e4
LT
2278 * Note that this routine assumes that the protection checks have been
2279 * done by the caller (the low-level page fault routine in most cases).
2280 * Thus we can safely just mark it writable once we've done any necessary
2281 * COW.
2282 *
2283 * We also mark the page dirty at this point even though the page will
2284 * change only once the write actually happens. This avoids a few races,
2285 * and potentially makes it more efficient.
2286 *
8f4e2101
HD
2287 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2288 * but allow concurrent faults), with pte both mapped and locked.
2289 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2290 */
65500d23
HD
2291static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2292 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2293 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2294 __releases(ptl)
1da177e4 2295{
2f38ab2c 2296 struct page *old_page;
1da177e4 2297
6aab341e 2298 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2299 if (!old_page) {
2300 /*
64e45507
PF
2301 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2302 * VM_PFNMAP VMA.
251b97f5
PZ
2303 *
2304 * We should not cow pages in a shared writeable mapping.
dd906184 2305 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2306 */
2307 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2308 (VM_WRITE|VM_SHARED))
dd906184
BH
2309 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2310 orig_pte, pmd);
2f38ab2c
SR
2311
2312 pte_unmap_unlock(page_table, ptl);
2313 return wp_page_copy(mm, vma, address, page_table, pmd,
2314 orig_pte, old_page);
251b97f5 2315 }
1da177e4 2316
d08b3851 2317 /*
ee6a6457
PZ
2318 * Take out anonymous pages first, anonymous shared vmas are
2319 * not dirty accountable.
d08b3851 2320 */
9a840895 2321 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2322 if (!trylock_page(old_page)) {
2323 page_cache_get(old_page);
2324 pte_unmap_unlock(page_table, ptl);
2325 lock_page(old_page);
2326 page_table = pte_offset_map_lock(mm, pmd, address,
2327 &ptl);
2328 if (!pte_same(*page_table, orig_pte)) {
2329 unlock_page(old_page);
28766805
SR
2330 pte_unmap_unlock(page_table, ptl);
2331 page_cache_release(old_page);
2332 return 0;
ab967d86
HD
2333 }
2334 page_cache_release(old_page);
ee6a6457 2335 }
b009c024 2336 if (reuse_swap_page(old_page)) {
c44b6743
RR
2337 /*
2338 * The page is all ours. Move it to our anon_vma so
2339 * the rmap code will not search our parent or siblings.
2340 * Protected against the rmap code by the page lock.
2341 */
2342 page_move_anon_rmap(old_page, vma, address);
b009c024 2343 unlock_page(old_page);
4e047f89
SR
2344 return wp_page_reuse(mm, vma, address, page_table, ptl,
2345 orig_pte, old_page, 0, 0);
b009c024 2346 }
ab967d86 2347 unlock_page(old_page);
ee6a6457 2348 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2349 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2350 return wp_page_shared(mm, vma, address, page_table, pmd,
2351 ptl, orig_pte, old_page);
1da177e4 2352 }
1da177e4
LT
2353
2354 /*
2355 * Ok, we need to copy. Oh, well..
2356 */
b5810039 2357 page_cache_get(old_page);
28766805 2358
8f4e2101 2359 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2360 return wp_page_copy(mm, vma, address, page_table, pmd,
2361 orig_pte, old_page);
1da177e4
LT
2362}
2363
97a89413 2364static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2365 unsigned long start_addr, unsigned long end_addr,
2366 struct zap_details *details)
2367{
f5cc4eef 2368 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2369}
2370
6b2dbba8 2371static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2372 struct zap_details *details)
2373{
2374 struct vm_area_struct *vma;
1da177e4
LT
2375 pgoff_t vba, vea, zba, zea;
2376
6b2dbba8 2377 vma_interval_tree_foreach(vma, root,
1da177e4 2378 details->first_index, details->last_index) {
1da177e4
LT
2379
2380 vba = vma->vm_pgoff;
d6e93217 2381 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2382 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2383 zba = details->first_index;
2384 if (zba < vba)
2385 zba = vba;
2386 zea = details->last_index;
2387 if (zea > vea)
2388 zea = vea;
2389
97a89413 2390 unmap_mapping_range_vma(vma,
1da177e4
LT
2391 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2392 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2393 details);
1da177e4
LT
2394 }
2395}
2396
1da177e4 2397/**
8a5f14a2
KS
2398 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2399 * address_space corresponding to the specified page range in the underlying
2400 * file.
2401 *
3d41088f 2402 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2403 * @holebegin: byte in first page to unmap, relative to the start of
2404 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2405 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2406 * must keep the partial page. In contrast, we must get rid of
2407 * partial pages.
2408 * @holelen: size of prospective hole in bytes. This will be rounded
2409 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2410 * end of the file.
2411 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2412 * but 0 when invalidating pagecache, don't throw away private data.
2413 */
2414void unmap_mapping_range(struct address_space *mapping,
2415 loff_t const holebegin, loff_t const holelen, int even_cows)
2416{
2417 struct zap_details details;
2418 pgoff_t hba = holebegin >> PAGE_SHIFT;
2419 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2420
2421 /* Check for overflow. */
2422 if (sizeof(holelen) > sizeof(hlen)) {
2423 long long holeend =
2424 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425 if (holeend & ~(long long)ULONG_MAX)
2426 hlen = ULONG_MAX - hba + 1;
2427 }
2428
2429 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2430 details.first_index = hba;
2431 details.last_index = hba + hlen - 1;
2432 if (details.last_index < details.first_index)
2433 details.last_index = ULONG_MAX;
1da177e4 2434
0f90cc66
RZ
2435
2436 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2437 i_mmap_lock_write(mapping);
6b2dbba8 2438 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2439 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2440 i_mmap_unlock_write(mapping);
1da177e4
LT
2441}
2442EXPORT_SYMBOL(unmap_mapping_range);
2443
1da177e4 2444/*
8f4e2101
HD
2445 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2446 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2447 * We return with pte unmapped and unlocked.
2448 *
2449 * We return with the mmap_sem locked or unlocked in the same cases
2450 * as does filemap_fault().
1da177e4 2451 */
65500d23
HD
2452static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2453 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2454 unsigned int flags, pte_t orig_pte)
1da177e4 2455{
8f4e2101 2456 spinlock_t *ptl;
56f31801 2457 struct page *page, *swapcache;
00501b53 2458 struct mem_cgroup *memcg;
65500d23 2459 swp_entry_t entry;
1da177e4 2460 pte_t pte;
d065bd81 2461 int locked;
ad8c2ee8 2462 int exclusive = 0;
83c54070 2463 int ret = 0;
1da177e4 2464
4c21e2f2 2465 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2466 goto out;
65500d23
HD
2467
2468 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2469 if (unlikely(non_swap_entry(entry))) {
2470 if (is_migration_entry(entry)) {
2471 migration_entry_wait(mm, pmd, address);
2472 } else if (is_hwpoison_entry(entry)) {
2473 ret = VM_FAULT_HWPOISON;
2474 } else {
2475 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2476 ret = VM_FAULT_SIGBUS;
d1737fdb 2477 }
0697212a
CL
2478 goto out;
2479 }
0ff92245 2480 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2481 page = lookup_swap_cache(entry);
2482 if (!page) {
02098fea
HD
2483 page = swapin_readahead(entry,
2484 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2485 if (!page) {
2486 /*
8f4e2101
HD
2487 * Back out if somebody else faulted in this pte
2488 * while we released the pte lock.
1da177e4 2489 */
8f4e2101 2490 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2491 if (likely(pte_same(*page_table, orig_pte)))
2492 ret = VM_FAULT_OOM;
0ff92245 2493 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2494 goto unlock;
1da177e4
LT
2495 }
2496
2497 /* Had to read the page from swap area: Major fault */
2498 ret = VM_FAULT_MAJOR;
f8891e5e 2499 count_vm_event(PGMAJFAULT);
456f998e 2500 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2501 } else if (PageHWPoison(page)) {
71f72525
WF
2502 /*
2503 * hwpoisoned dirty swapcache pages are kept for killing
2504 * owner processes (which may be unknown at hwpoison time)
2505 */
d1737fdb
AK
2506 ret = VM_FAULT_HWPOISON;
2507 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2508 swapcache = page;
4779cb31 2509 goto out_release;
1da177e4
LT
2510 }
2511
56f31801 2512 swapcache = page;
d065bd81 2513 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2514
073e587e 2515 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2516 if (!locked) {
2517 ret |= VM_FAULT_RETRY;
2518 goto out_release;
2519 }
073e587e 2520
4969c119 2521 /*
31c4a3d3
HD
2522 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2523 * release the swapcache from under us. The page pin, and pte_same
2524 * test below, are not enough to exclude that. Even if it is still
2525 * swapcache, we need to check that the page's swap has not changed.
4969c119 2526 */
31c4a3d3 2527 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2528 goto out_page;
2529
cbf86cfe
HD
2530 page = ksm_might_need_to_copy(page, vma, address);
2531 if (unlikely(!page)) {
2532 ret = VM_FAULT_OOM;
2533 page = swapcache;
cbf86cfe 2534 goto out_page;
5ad64688
HD
2535 }
2536
f627c2f5 2537 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2538 ret = VM_FAULT_OOM;
bc43f75c 2539 goto out_page;
8a9f3ccd
BS
2540 }
2541
1da177e4 2542 /*
8f4e2101 2543 * Back out if somebody else already faulted in this pte.
1da177e4 2544 */
8f4e2101 2545 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2546 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2547 goto out_nomap;
b8107480
KK
2548
2549 if (unlikely(!PageUptodate(page))) {
2550 ret = VM_FAULT_SIGBUS;
2551 goto out_nomap;
1da177e4
LT
2552 }
2553
8c7c6e34
KH
2554 /*
2555 * The page isn't present yet, go ahead with the fault.
2556 *
2557 * Be careful about the sequence of operations here.
2558 * To get its accounting right, reuse_swap_page() must be called
2559 * while the page is counted on swap but not yet in mapcount i.e.
2560 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2561 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2562 */
1da177e4 2563
34e55232 2564 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2565 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2566 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2567 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2568 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2569 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2570 ret |= VM_FAULT_WRITE;
d281ee61 2571 exclusive = RMAP_EXCLUSIVE;
1da177e4 2572 }
1da177e4 2573 flush_icache_page(vma, page);
179ef71c
CG
2574 if (pte_swp_soft_dirty(orig_pte))
2575 pte = pte_mksoft_dirty(pte);
1da177e4 2576 set_pte_at(mm, address, page_table, pte);
00501b53 2577 if (page == swapcache) {
af34770e 2578 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2579 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2580 } else { /* ksm created a completely new copy */
d281ee61 2581 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2582 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2583 lru_cache_add_active_or_unevictable(page, vma);
2584 }
1da177e4 2585
c475a8ab 2586 swap_free(entry);
5ccc5aba
VD
2587 if (mem_cgroup_swap_full(page) ||
2588 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2589 try_to_free_swap(page);
c475a8ab 2590 unlock_page(page);
56f31801 2591 if (page != swapcache) {
4969c119
AA
2592 /*
2593 * Hold the lock to avoid the swap entry to be reused
2594 * until we take the PT lock for the pte_same() check
2595 * (to avoid false positives from pte_same). For
2596 * further safety release the lock after the swap_free
2597 * so that the swap count won't change under a
2598 * parallel locked swapcache.
2599 */
2600 unlock_page(swapcache);
2601 page_cache_release(swapcache);
2602 }
c475a8ab 2603
30c9f3a9 2604 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2605 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2606 if (ret & VM_FAULT_ERROR)
2607 ret &= VM_FAULT_ERROR;
1da177e4
LT
2608 goto out;
2609 }
2610
2611 /* No need to invalidate - it was non-present before */
4b3073e1 2612 update_mmu_cache(vma, address, page_table);
65500d23 2613unlock:
8f4e2101 2614 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2615out:
2616 return ret;
b8107480 2617out_nomap:
f627c2f5 2618 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2619 pte_unmap_unlock(page_table, ptl);
bc43f75c 2620out_page:
b8107480 2621 unlock_page(page);
4779cb31 2622out_release:
b8107480 2623 page_cache_release(page);
56f31801 2624 if (page != swapcache) {
4969c119
AA
2625 unlock_page(swapcache);
2626 page_cache_release(swapcache);
2627 }
65500d23 2628 return ret;
1da177e4
LT
2629}
2630
320b2b8d 2631/*
8ca3eb08
TL
2632 * This is like a special single-page "expand_{down|up}wards()",
2633 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2634 * doesn't hit another vma.
320b2b8d
LT
2635 */
2636static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2637{
2638 address &= PAGE_MASK;
2639 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2640 struct vm_area_struct *prev = vma->vm_prev;
2641
2642 /*
2643 * Is there a mapping abutting this one below?
2644 *
2645 * That's only ok if it's the same stack mapping
2646 * that has gotten split..
2647 */
2648 if (prev && prev->vm_end == address)
2649 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2650
fee7e49d 2651 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2652 }
8ca3eb08
TL
2653 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2654 struct vm_area_struct *next = vma->vm_next;
2655
2656 /* As VM_GROWSDOWN but s/below/above/ */
2657 if (next && next->vm_start == address + PAGE_SIZE)
2658 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2659
fee7e49d 2660 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2661 }
320b2b8d
LT
2662 return 0;
2663}
2664
1da177e4 2665/*
8f4e2101
HD
2666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2667 * but allow concurrent faults), and pte mapped but not yet locked.
2668 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2669 */
65500d23
HD
2670static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2671 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2672 unsigned int flags)
1da177e4 2673{
00501b53 2674 struct mem_cgroup *memcg;
8f4e2101
HD
2675 struct page *page;
2676 spinlock_t *ptl;
1da177e4 2677 pte_t entry;
1da177e4 2678
11ac5524
LT
2679 pte_unmap(page_table);
2680
6b7339f4
KS
2681 /* File mapping without ->vm_ops ? */
2682 if (vma->vm_flags & VM_SHARED)
2683 return VM_FAULT_SIGBUS;
2684
11ac5524
LT
2685 /* Check if we need to add a guard page to the stack */
2686 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2687 return VM_FAULT_SIGSEGV;
320b2b8d 2688
11ac5524 2689 /* Use the zero-page for reads */
593befa6 2690 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2691 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2692 vma->vm_page_prot));
11ac5524 2693 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2694 if (!pte_none(*page_table))
2695 goto unlock;
6b251fc9
AA
2696 /* Deliver the page fault to userland, check inside PT lock */
2697 if (userfaultfd_missing(vma)) {
2698 pte_unmap_unlock(page_table, ptl);
2699 return handle_userfault(vma, address, flags,
2700 VM_UFFD_MISSING);
2701 }
a13ea5b7
HD
2702 goto setpte;
2703 }
2704
557ed1fa 2705 /* Allocate our own private page. */
557ed1fa
NP
2706 if (unlikely(anon_vma_prepare(vma)))
2707 goto oom;
2708 page = alloc_zeroed_user_highpage_movable(vma, address);
2709 if (!page)
2710 goto oom;
eb3c24f3 2711
f627c2f5 2712 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2713 goto oom_free_page;
2714
52f37629
MK
2715 /*
2716 * The memory barrier inside __SetPageUptodate makes sure that
2717 * preceeding stores to the page contents become visible before
2718 * the set_pte_at() write.
2719 */
0ed361de 2720 __SetPageUptodate(page);
8f4e2101 2721
557ed1fa 2722 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2723 if (vma->vm_flags & VM_WRITE)
2724 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2725
557ed1fa 2726 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2727 if (!pte_none(*page_table))
557ed1fa 2728 goto release;
9ba69294 2729
6b251fc9
AA
2730 /* Deliver the page fault to userland, check inside PT lock */
2731 if (userfaultfd_missing(vma)) {
2732 pte_unmap_unlock(page_table, ptl);
f627c2f5 2733 mem_cgroup_cancel_charge(page, memcg, false);
6b251fc9
AA
2734 page_cache_release(page);
2735 return handle_userfault(vma, address, flags,
2736 VM_UFFD_MISSING);
2737 }
2738
34e55232 2739 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2740 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2741 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2742 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2743setpte:
65500d23 2744 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2745
2746 /* No need to invalidate - it was non-present before */
4b3073e1 2747 update_mmu_cache(vma, address, page_table);
65500d23 2748unlock:
8f4e2101 2749 pte_unmap_unlock(page_table, ptl);
83c54070 2750 return 0;
8f4e2101 2751release:
f627c2f5 2752 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101
HD
2753 page_cache_release(page);
2754 goto unlock;
8a9f3ccd 2755oom_free_page:
6dbf6d3b 2756 page_cache_release(page);
65500d23 2757oom:
1da177e4
LT
2758 return VM_FAULT_OOM;
2759}
2760
9a95f3cf
PC
2761/*
2762 * The mmap_sem must have been held on entry, and may have been
2763 * released depending on flags and vma->vm_ops->fault() return value.
2764 * See filemap_fault() and __lock_page_retry().
2765 */
7eae74af 2766static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2767 pgoff_t pgoff, unsigned int flags,
2768 struct page *cow_page, struct page **page)
7eae74af
KS
2769{
2770 struct vm_fault vmf;
2771 int ret;
2772
2773 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2774 vmf.pgoff = pgoff;
2775 vmf.flags = flags;
2776 vmf.page = NULL;
c20cd45e 2777 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2778 vmf.cow_page = cow_page;
7eae74af
KS
2779
2780 ret = vma->vm_ops->fault(vma, &vmf);
2781 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2782 return ret;
2e4cdab0
MW
2783 if (!vmf.page)
2784 goto out;
7eae74af
KS
2785
2786 if (unlikely(PageHWPoison(vmf.page))) {
2787 if (ret & VM_FAULT_LOCKED)
2788 unlock_page(vmf.page);
2789 page_cache_release(vmf.page);
2790 return VM_FAULT_HWPOISON;
2791 }
2792
2793 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2794 lock_page(vmf.page);
2795 else
2796 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2797
2e4cdab0 2798 out:
7eae74af
KS
2799 *page = vmf.page;
2800 return ret;
2801}
2802
8c6e50b0
KS
2803/**
2804 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2805 *
2806 * @vma: virtual memory area
2807 * @address: user virtual address
2808 * @page: page to map
2809 * @pte: pointer to target page table entry
2810 * @write: true, if new entry is writable
2811 * @anon: true, if it's anonymous page
2812 *
2813 * Caller must hold page table lock relevant for @pte.
2814 *
2815 * Target users are page handler itself and implementations of
2816 * vm_ops->map_pages.
2817 */
2818void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2819 struct page *page, pte_t *pte, bool write, bool anon)
2820{
2821 pte_t entry;
2822
2823 flush_icache_page(vma, page);
2824 entry = mk_pte(page, vma->vm_page_prot);
2825 if (write)
2826 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2827 if (anon) {
2828 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2829 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2830 } else {
eca56ff9 2831 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2832 page_add_file_rmap(page);
2833 }
2834 set_pte_at(vma->vm_mm, address, pte, entry);
2835
2836 /* no need to invalidate: a not-present page won't be cached */
2837 update_mmu_cache(vma, address, pte);
2838}
2839
3a91053a
KS
2840static unsigned long fault_around_bytes __read_mostly =
2841 rounddown_pow_of_two(65536);
a9b0f861 2842
a9b0f861
KS
2843#ifdef CONFIG_DEBUG_FS
2844static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2845{
a9b0f861 2846 *val = fault_around_bytes;
1592eef0
KS
2847 return 0;
2848}
2849
b4903d6e
AR
2850/*
2851 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2852 * rounded down to nearest page order. It's what do_fault_around() expects to
2853 * see.
2854 */
a9b0f861 2855static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2856{
a9b0f861 2857 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2858 return -EINVAL;
b4903d6e
AR
2859 if (val > PAGE_SIZE)
2860 fault_around_bytes = rounddown_pow_of_two(val);
2861 else
2862 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2863 return 0;
2864}
a9b0f861
KS
2865DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2866 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2867
2868static int __init fault_around_debugfs(void)
2869{
2870 void *ret;
2871
a9b0f861
KS
2872 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2873 &fault_around_bytes_fops);
1592eef0 2874 if (!ret)
a9b0f861 2875 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2876 return 0;
2877}
2878late_initcall(fault_around_debugfs);
1592eef0 2879#endif
8c6e50b0 2880
1fdb412b
KS
2881/*
2882 * do_fault_around() tries to map few pages around the fault address. The hope
2883 * is that the pages will be needed soon and this will lower the number of
2884 * faults to handle.
2885 *
2886 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2887 * not ready to be mapped: not up-to-date, locked, etc.
2888 *
2889 * This function is called with the page table lock taken. In the split ptlock
2890 * case the page table lock only protects only those entries which belong to
2891 * the page table corresponding to the fault address.
2892 *
2893 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2894 * only once.
2895 *
2896 * fault_around_pages() defines how many pages we'll try to map.
2897 * do_fault_around() expects it to return a power of two less than or equal to
2898 * PTRS_PER_PTE.
2899 *
2900 * The virtual address of the area that we map is naturally aligned to the
2901 * fault_around_pages() value (and therefore to page order). This way it's
2902 * easier to guarantee that we don't cross page table boundaries.
2903 */
8c6e50b0
KS
2904static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2905 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2906{
aecd6f44 2907 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2908 pgoff_t max_pgoff;
2909 struct vm_fault vmf;
2910 int off;
2911
4db0c3c2 2912 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2913 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2914
2915 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2916 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2917 pte -= off;
2918 pgoff -= off;
2919
2920 /*
2921 * max_pgoff is either end of page table or end of vma
850e9c69 2922 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2923 */
2924 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2925 PTRS_PER_PTE - 1;
2926 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2927 pgoff + nr_pages - 1);
8c6e50b0
KS
2928
2929 /* Check if it makes any sense to call ->map_pages */
2930 while (!pte_none(*pte)) {
2931 if (++pgoff > max_pgoff)
2932 return;
2933 start_addr += PAGE_SIZE;
2934 if (start_addr >= vma->vm_end)
2935 return;
2936 pte++;
2937 }
2938
2939 vmf.virtual_address = (void __user *) start_addr;
2940 vmf.pte = pte;
2941 vmf.pgoff = pgoff;
2942 vmf.max_pgoff = max_pgoff;
2943 vmf.flags = flags;
c20cd45e 2944 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
2945 vma->vm_ops->map_pages(vma, &vmf);
2946}
2947
e655fb29
KS
2948static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2949 unsigned long address, pmd_t *pmd,
2950 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2951{
2952 struct page *fault_page;
2953 spinlock_t *ptl;
3bb97794 2954 pte_t *pte;
8c6e50b0
KS
2955 int ret = 0;
2956
2957 /*
2958 * Let's call ->map_pages() first and use ->fault() as fallback
2959 * if page by the offset is not ready to be mapped (cold cache or
2960 * something).
2961 */
9b4bdd2f 2962 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2963 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2964 do_fault_around(vma, address, pte, pgoff, flags);
2965 if (!pte_same(*pte, orig_pte))
2966 goto unlock_out;
2967 pte_unmap_unlock(pte, ptl);
2968 }
e655fb29 2969
2e4cdab0 2970 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2972 return ret;
2973
2974 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2975 if (unlikely(!pte_same(*pte, orig_pte))) {
2976 pte_unmap_unlock(pte, ptl);
2977 unlock_page(fault_page);
2978 page_cache_release(fault_page);
2979 return ret;
2980 }
3bb97794 2981 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2982 unlock_page(fault_page);
8c6e50b0
KS
2983unlock_out:
2984 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2985 return ret;
2986}
2987
ec47c3b9
KS
2988static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2989 unsigned long address, pmd_t *pmd,
2990 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2991{
2992 struct page *fault_page, *new_page;
00501b53 2993 struct mem_cgroup *memcg;
ec47c3b9 2994 spinlock_t *ptl;
3bb97794 2995 pte_t *pte;
ec47c3b9
KS
2996 int ret;
2997
2998 if (unlikely(anon_vma_prepare(vma)))
2999 return VM_FAULT_OOM;
3000
3001 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3002 if (!new_page)
3003 return VM_FAULT_OOM;
3004
f627c2f5 3005 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
ec47c3b9
KS
3006 page_cache_release(new_page);
3007 return VM_FAULT_OOM;
3008 }
3009
2e4cdab0 3010 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
3011 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3012 goto uncharge_out;
3013
2e4cdab0
MW
3014 if (fault_page)
3015 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3016 __SetPageUptodate(new_page);
3017
3018 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3019 if (unlikely(!pte_same(*pte, orig_pte))) {
3020 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3021 if (fault_page) {
3022 unlock_page(fault_page);
3023 page_cache_release(fault_page);
3024 } else {
3025 /*
3026 * The fault handler has no page to lock, so it holds
0df9d41a 3027 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3028 */
0df9d41a 3029 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3030 }
ec47c3b9
KS
3031 goto uncharge_out;
3032 }
3bb97794 3033 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3034 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3035 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3036 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3037 if (fault_page) {
3038 unlock_page(fault_page);
3039 page_cache_release(fault_page);
3040 } else {
3041 /*
3042 * The fault handler has no page to lock, so it holds
0df9d41a 3043 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3044 */
0df9d41a 3045 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3046 }
ec47c3b9
KS
3047 return ret;
3048uncharge_out:
f627c2f5 3049 mem_cgroup_cancel_charge(new_page, memcg, false);
ec47c3b9
KS
3050 page_cache_release(new_page);
3051 return ret;
3052}
3053
f0c6d4d2 3054static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3055 unsigned long address, pmd_t *pmd,
54cb8821 3056 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3057{
f0c6d4d2
KS
3058 struct page *fault_page;
3059 struct address_space *mapping;
8f4e2101 3060 spinlock_t *ptl;
3bb97794 3061 pte_t *pte;
f0c6d4d2 3062 int dirtied = 0;
f0c6d4d2 3063 int ret, tmp;
1d65f86d 3064
2e4cdab0 3065 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3066 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3067 return ret;
1da177e4
LT
3068
3069 /*
f0c6d4d2
KS
3070 * Check if the backing address space wants to know that the page is
3071 * about to become writable
1da177e4 3072 */
fb09a464
KS
3073 if (vma->vm_ops->page_mkwrite) {
3074 unlock_page(fault_page);
3075 tmp = do_page_mkwrite(vma, fault_page, address);
3076 if (unlikely(!tmp ||
3077 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3078 page_cache_release(fault_page);
fb09a464 3079 return tmp;
4294621f 3080 }
fb09a464
KS
3081 }
3082
f0c6d4d2
KS
3083 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3084 if (unlikely(!pte_same(*pte, orig_pte))) {
3085 pte_unmap_unlock(pte, ptl);
3086 unlock_page(fault_page);
3087 page_cache_release(fault_page);
3088 return ret;
1da177e4 3089 }
3bb97794 3090 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3091 pte_unmap_unlock(pte, ptl);
b827e496 3092
f0c6d4d2
KS
3093 if (set_page_dirty(fault_page))
3094 dirtied = 1;
d82fa87d
AM
3095 /*
3096 * Take a local copy of the address_space - page.mapping may be zeroed
3097 * by truncate after unlock_page(). The address_space itself remains
3098 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3099 * release semantics to prevent the compiler from undoing this copying.
3100 */
1c290f64 3101 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3102 unlock_page(fault_page);
3103 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3104 /*
3105 * Some device drivers do not set page.mapping but still
3106 * dirty their pages
3107 */
3108 balance_dirty_pages_ratelimited(mapping);
d08b3851 3109 }
d00806b1 3110
74ec6751 3111 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3112 file_update_time(vma->vm_file);
b827e496 3113
1d65f86d 3114 return ret;
54cb8821 3115}
d00806b1 3116
9a95f3cf
PC
3117/*
3118 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3119 * but allow concurrent faults).
3120 * The mmap_sem may have been released depending on flags and our
3121 * return value. See filemap_fault() and __lock_page_or_retry().
3122 */
9b4bdd2f 3123static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3124 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3125 unsigned int flags, pte_t orig_pte)
54cb8821 3126{
88193f7c 3127 pgoff_t pgoff = linear_page_index(vma, address);
54cb8821 3128
16abfa08 3129 pte_unmap(page_table);
6b7339f4
KS
3130 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3131 if (!vma->vm_ops->fault)
3132 return VM_FAULT_SIGBUS;
e655fb29
KS
3133 if (!(flags & FAULT_FLAG_WRITE))
3134 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3135 orig_pte);
ec47c3b9
KS
3136 if (!(vma->vm_flags & VM_SHARED))
3137 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3138 orig_pte);
f0c6d4d2 3139 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3140}
3141
b19a9939 3142static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3143 unsigned long addr, int page_nid,
3144 int *flags)
9532fec1
MG
3145{
3146 get_page(page);
3147
3148 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3149 if (page_nid == numa_node_id()) {
9532fec1 3150 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3151 *flags |= TNF_FAULT_LOCAL;
3152 }
9532fec1
MG
3153
3154 return mpol_misplaced(page, vma, addr);
3155}
3156
b19a9939 3157static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3158 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3159{
4daae3b4 3160 struct page *page = NULL;
d10e63f2 3161 spinlock_t *ptl;
8191acbd 3162 int page_nid = -1;
90572890 3163 int last_cpupid;
cbee9f88 3164 int target_nid;
b8593bfd 3165 bool migrated = false;
b191f9b1 3166 bool was_writable = pte_write(pte);
6688cc05 3167 int flags = 0;
d10e63f2 3168
c0e7cad9
MG
3169 /* A PROT_NONE fault should not end up here */
3170 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3171
d10e63f2
MG
3172 /*
3173 * The "pte" at this point cannot be used safely without
3174 * validation through pte_unmap_same(). It's of NUMA type but
3175 * the pfn may be screwed if the read is non atomic.
3176 *
4d942466
MG
3177 * We can safely just do a "set_pte_at()", because the old
3178 * page table entry is not accessible, so there would be no
3179 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3180 */
3181 ptl = pte_lockptr(mm, pmd);
3182 spin_lock(ptl);
4daae3b4
MG
3183 if (unlikely(!pte_same(*ptep, pte))) {
3184 pte_unmap_unlock(ptep, ptl);
3185 goto out;
3186 }
3187
4d942466
MG
3188 /* Make it present again */
3189 pte = pte_modify(pte, vma->vm_page_prot);
3190 pte = pte_mkyoung(pte);
b191f9b1
MG
3191 if (was_writable)
3192 pte = pte_mkwrite(pte);
d10e63f2
MG
3193 set_pte_at(mm, addr, ptep, pte);
3194 update_mmu_cache(vma, addr, ptep);
3195
3196 page = vm_normal_page(vma, addr, pte);
3197 if (!page) {
3198 pte_unmap_unlock(ptep, ptl);
3199 return 0;
3200 }
3201
e81c4802
KS
3202 /* TODO: handle PTE-mapped THP */
3203 if (PageCompound(page)) {
3204 pte_unmap_unlock(ptep, ptl);
3205 return 0;
3206 }
3207
6688cc05 3208 /*
bea66fbd
MG
3209 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3210 * much anyway since they can be in shared cache state. This misses
3211 * the case where a mapping is writable but the process never writes
3212 * to it but pte_write gets cleared during protection updates and
3213 * pte_dirty has unpredictable behaviour between PTE scan updates,
3214 * background writeback, dirty balancing and application behaviour.
6688cc05 3215 */
bea66fbd 3216 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3217 flags |= TNF_NO_GROUP;
3218
dabe1d99
RR
3219 /*
3220 * Flag if the page is shared between multiple address spaces. This
3221 * is later used when determining whether to group tasks together
3222 */
3223 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3224 flags |= TNF_SHARED;
3225
90572890 3226 last_cpupid = page_cpupid_last(page);
8191acbd 3227 page_nid = page_to_nid(page);
04bb2f94 3228 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3229 pte_unmap_unlock(ptep, ptl);
4daae3b4 3230 if (target_nid == -1) {
4daae3b4
MG
3231 put_page(page);
3232 goto out;
3233 }
3234
3235 /* Migrate to the requested node */
1bc115d8 3236 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3237 if (migrated) {
8191acbd 3238 page_nid = target_nid;
6688cc05 3239 flags |= TNF_MIGRATED;
074c2381
MG
3240 } else
3241 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3242
3243out:
8191acbd 3244 if (page_nid != -1)
6688cc05 3245 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3246 return 0;
3247}
3248
b96375f7
MW
3249static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3250 unsigned long address, pmd_t *pmd, unsigned int flags)
3251{
fb6dd5fa 3252 if (vma_is_anonymous(vma))
b96375f7
MW
3253 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3254 if (vma->vm_ops->pmd_fault)
3255 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3256 return VM_FAULT_FALLBACK;
3257}
3258
3259static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3260 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3261 unsigned int flags)
3262{
fb6dd5fa 3263 if (vma_is_anonymous(vma))
b96375f7
MW
3264 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3265 if (vma->vm_ops->pmd_fault)
3266 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3267 return VM_FAULT_FALLBACK;
3268}
3269
1da177e4
LT
3270/*
3271 * These routines also need to handle stuff like marking pages dirty
3272 * and/or accessed for architectures that don't do it in hardware (most
3273 * RISC architectures). The early dirtying is also good on the i386.
3274 *
3275 * There is also a hook called "update_mmu_cache()" that architectures
3276 * with external mmu caches can use to update those (ie the Sparc or
3277 * PowerPC hashed page tables that act as extended TLBs).
3278 *
c74df32c
HD
3279 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3280 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3281 * We return with pte unmapped and unlocked.
3282 *
3283 * The mmap_sem may have been released depending on flags and our
3284 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3285 */
c0292554 3286static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3287 struct vm_area_struct *vma, unsigned long address,
3288 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3289{
3290 pte_t entry;
8f4e2101 3291 spinlock_t *ptl;
1da177e4 3292
e37c6982
CB
3293 /*
3294 * some architectures can have larger ptes than wordsize,
3295 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3296 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3297 * The code below just needs a consistent view for the ifs and
3298 * we later double check anyway with the ptl lock held. So here
3299 * a barrier will do.
3300 */
3301 entry = *pte;
3302 barrier();
1da177e4 3303 if (!pte_present(entry)) {
65500d23 3304 if (pte_none(entry)) {
b5330628
ON
3305 if (vma_is_anonymous(vma))
3306 return do_anonymous_page(mm, vma, address,
3307 pte, pmd, flags);
3308 else
6b7339f4
KS
3309 return do_fault(mm, vma, address, pte, pmd,
3310 flags, entry);
65500d23 3311 }
65500d23 3312 return do_swap_page(mm, vma, address,
30c9f3a9 3313 pte, pmd, flags, entry);
1da177e4
LT
3314 }
3315
8a0516ed 3316 if (pte_protnone(entry))
d10e63f2
MG
3317 return do_numa_page(mm, vma, address, entry, pte, pmd);
3318
4c21e2f2 3319 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3320 spin_lock(ptl);
3321 if (unlikely(!pte_same(*pte, entry)))
3322 goto unlock;
30c9f3a9 3323 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3324 if (!pte_write(entry))
8f4e2101
HD
3325 return do_wp_page(mm, vma, address,
3326 pte, pmd, ptl, entry);
1da177e4
LT
3327 entry = pte_mkdirty(entry);
3328 }
3329 entry = pte_mkyoung(entry);
30c9f3a9 3330 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3331 update_mmu_cache(vma, address, pte);
1a44e149
AA
3332 } else {
3333 /*
3334 * This is needed only for protection faults but the arch code
3335 * is not yet telling us if this is a protection fault or not.
3336 * This still avoids useless tlb flushes for .text page faults
3337 * with threads.
3338 */
30c9f3a9 3339 if (flags & FAULT_FLAG_WRITE)
61c77326 3340 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3341 }
8f4e2101
HD
3342unlock:
3343 pte_unmap_unlock(pte, ptl);
83c54070 3344 return 0;
1da177e4
LT
3345}
3346
3347/*
3348 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3349 *
3350 * The mmap_sem may have been released depending on flags and our
3351 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3352 */
519e5247
JW
3353static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3354 unsigned long address, unsigned int flags)
1da177e4
LT
3355{
3356 pgd_t *pgd;
3357 pud_t *pud;
3358 pmd_t *pmd;
3359 pte_t *pte;
3360
ac9b9c66 3361 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3362 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3363
1da177e4 3364 pgd = pgd_offset(mm, address);
1da177e4
LT
3365 pud = pud_alloc(mm, pgd, address);
3366 if (!pud)
c74df32c 3367 return VM_FAULT_OOM;
1da177e4
LT
3368 pmd = pmd_alloc(mm, pud, address);
3369 if (!pmd)
c74df32c 3370 return VM_FAULT_OOM;
71e3aac0 3371 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3372 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3373 if (!(ret & VM_FAULT_FALLBACK))
3374 return ret;
71e3aac0
AA
3375 } else {
3376 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3377 int ret;
3378
71e3aac0 3379 barrier();
5c7fb56e 3380 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
a1dd450b
WD
3381 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3382
8a0516ed 3383 if (pmd_protnone(orig_pmd))
4daae3b4 3384 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3385 orig_pmd, pmd);
3386
3d59eebc 3387 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3388 ret = wp_huge_pmd(mm, vma, address, pmd,
3389 orig_pmd, flags);
9845cbbd
KS
3390 if (!(ret & VM_FAULT_FALLBACK))
3391 return ret;
a1dd450b
WD
3392 } else {
3393 huge_pmd_set_accessed(mm, vma, address, pmd,
3394 orig_pmd, dirty);
9845cbbd 3395 return 0;
1f1d06c3 3396 }
71e3aac0
AA
3397 }
3398 }
3399
3400 /*
3401 * Use __pte_alloc instead of pte_alloc_map, because we can't
3402 * run pte_offset_map on the pmd, if an huge pmd could
3403 * materialize from under us from a different thread.
3404 */
4fd01770
MG
3405 if (unlikely(pmd_none(*pmd)) &&
3406 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3407 return VM_FAULT_OOM;
ad33bb04
AA
3408 /*
3409 * If a huge pmd materialized under us just retry later. Use
3410 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3411 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3412 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3413 * in a different thread of this mm, in turn leading to a misleading
3414 * pmd_trans_huge() retval. All we have to ensure is that it is a
3415 * regular pmd that we can walk with pte_offset_map() and we can do that
3416 * through an atomic read in C, which is what pmd_trans_unstable()
3417 * provides.
3418 */
3419 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
71e3aac0
AA
3420 return 0;
3421 /*
3422 * A regular pmd is established and it can't morph into a huge pmd
3423 * from under us anymore at this point because we hold the mmap_sem
3424 * read mode and khugepaged takes it in write mode. So now it's
3425 * safe to run pte_offset_map().
3426 */
3427 pte = pte_offset_map(pmd, address);
1da177e4 3428
30c9f3a9 3429 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3430}
3431
9a95f3cf
PC
3432/*
3433 * By the time we get here, we already hold the mm semaphore
3434 *
3435 * The mmap_sem may have been released depending on flags and our
3436 * return value. See filemap_fault() and __lock_page_or_retry().
3437 */
519e5247
JW
3438int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3439 unsigned long address, unsigned int flags)
3440{
3441 int ret;
3442
3443 __set_current_state(TASK_RUNNING);
3444
3445 count_vm_event(PGFAULT);
3446 mem_cgroup_count_vm_event(mm, PGFAULT);
3447
3448 /* do counter updates before entering really critical section. */
3449 check_sync_rss_stat(current);
3450
3451 /*
3452 * Enable the memcg OOM handling for faults triggered in user
3453 * space. Kernel faults are handled more gracefully.
3454 */
3455 if (flags & FAULT_FLAG_USER)
49426420 3456 mem_cgroup_oom_enable();
519e5247
JW
3457
3458 ret = __handle_mm_fault(mm, vma, address, flags);
3459
49426420
JW
3460 if (flags & FAULT_FLAG_USER) {
3461 mem_cgroup_oom_disable();
3462 /*
3463 * The task may have entered a memcg OOM situation but
3464 * if the allocation error was handled gracefully (no
3465 * VM_FAULT_OOM), there is no need to kill anything.
3466 * Just clean up the OOM state peacefully.
3467 */
3468 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3469 mem_cgroup_oom_synchronize(false);
3470 }
3812c8c8 3471
519e5247
JW
3472 return ret;
3473}
e1d6d01a 3474EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3475
1da177e4
LT
3476#ifndef __PAGETABLE_PUD_FOLDED
3477/*
3478 * Allocate page upper directory.
872fec16 3479 * We've already handled the fast-path in-line.
1da177e4 3480 */
1bb3630e 3481int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3482{
c74df32c
HD
3483 pud_t *new = pud_alloc_one(mm, address);
3484 if (!new)
1bb3630e 3485 return -ENOMEM;
1da177e4 3486
362a61ad
NP
3487 smp_wmb(); /* See comment in __pte_alloc */
3488
872fec16 3489 spin_lock(&mm->page_table_lock);
1bb3630e 3490 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3491 pud_free(mm, new);
1bb3630e
HD
3492 else
3493 pgd_populate(mm, pgd, new);
c74df32c 3494 spin_unlock(&mm->page_table_lock);
1bb3630e 3495 return 0;
1da177e4
LT
3496}
3497#endif /* __PAGETABLE_PUD_FOLDED */
3498
3499#ifndef __PAGETABLE_PMD_FOLDED
3500/*
3501 * Allocate page middle directory.
872fec16 3502 * We've already handled the fast-path in-line.
1da177e4 3503 */
1bb3630e 3504int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3505{
c74df32c
HD
3506 pmd_t *new = pmd_alloc_one(mm, address);
3507 if (!new)
1bb3630e 3508 return -ENOMEM;
1da177e4 3509
362a61ad
NP
3510 smp_wmb(); /* See comment in __pte_alloc */
3511
872fec16 3512 spin_lock(&mm->page_table_lock);
1da177e4 3513#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3514 if (!pud_present(*pud)) {
3515 mm_inc_nr_pmds(mm);
1bb3630e 3516 pud_populate(mm, pud, new);
dc6c9a35 3517 } else /* Another has populated it */
5e541973 3518 pmd_free(mm, new);
dc6c9a35
KS
3519#else
3520 if (!pgd_present(*pud)) {
3521 mm_inc_nr_pmds(mm);
1bb3630e 3522 pgd_populate(mm, pud, new);
dc6c9a35
KS
3523 } else /* Another has populated it */
3524 pmd_free(mm, new);
1da177e4 3525#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3526 spin_unlock(&mm->page_table_lock);
1bb3630e 3527 return 0;
e0f39591 3528}
1da177e4
LT
3529#endif /* __PAGETABLE_PMD_FOLDED */
3530
1b36ba81 3531static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3532 pte_t **ptepp, spinlock_t **ptlp)
3533{
3534 pgd_t *pgd;
3535 pud_t *pud;
3536 pmd_t *pmd;
3537 pte_t *ptep;
3538
3539 pgd = pgd_offset(mm, address);
3540 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3541 goto out;
3542
3543 pud = pud_offset(pgd, address);
3544 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3545 goto out;
3546
3547 pmd = pmd_offset(pud, address);
f66055ab 3548 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3549 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3550 goto out;
3551
3552 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3553 if (pmd_huge(*pmd))
3554 goto out;
3555
3556 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3557 if (!ptep)
3558 goto out;
3559 if (!pte_present(*ptep))
3560 goto unlock;
3561 *ptepp = ptep;
3562 return 0;
3563unlock:
3564 pte_unmap_unlock(ptep, *ptlp);
3565out:
3566 return -EINVAL;
3567}
3568
1b36ba81
NK
3569static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3570 pte_t **ptepp, spinlock_t **ptlp)
3571{
3572 int res;
3573
3574 /* (void) is needed to make gcc happy */
3575 (void) __cond_lock(*ptlp,
3576 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3577 return res;
3578}
3579
3b6748e2
JW
3580/**
3581 * follow_pfn - look up PFN at a user virtual address
3582 * @vma: memory mapping
3583 * @address: user virtual address
3584 * @pfn: location to store found PFN
3585 *
3586 * Only IO mappings and raw PFN mappings are allowed.
3587 *
3588 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3589 */
3590int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3591 unsigned long *pfn)
3592{
3593 int ret = -EINVAL;
3594 spinlock_t *ptl;
3595 pte_t *ptep;
3596
3597 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3598 return ret;
3599
3600 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3601 if (ret)
3602 return ret;
3603 *pfn = pte_pfn(*ptep);
3604 pte_unmap_unlock(ptep, ptl);
3605 return 0;
3606}
3607EXPORT_SYMBOL(follow_pfn);
3608
28b2ee20 3609#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3610int follow_phys(struct vm_area_struct *vma,
3611 unsigned long address, unsigned int flags,
3612 unsigned long *prot, resource_size_t *phys)
28b2ee20 3613{
03668a4d 3614 int ret = -EINVAL;
28b2ee20
RR
3615 pte_t *ptep, pte;
3616 spinlock_t *ptl;
28b2ee20 3617
d87fe660 3618 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3619 goto out;
28b2ee20 3620
03668a4d 3621 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3622 goto out;
28b2ee20 3623 pte = *ptep;
03668a4d 3624
28b2ee20
RR
3625 if ((flags & FOLL_WRITE) && !pte_write(pte))
3626 goto unlock;
28b2ee20
RR
3627
3628 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3629 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3630
03668a4d 3631 ret = 0;
28b2ee20
RR
3632unlock:
3633 pte_unmap_unlock(ptep, ptl);
3634out:
d87fe660 3635 return ret;
28b2ee20
RR
3636}
3637
3638int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3639 void *buf, int len, int write)
3640{
3641 resource_size_t phys_addr;
3642 unsigned long prot = 0;
2bc7273b 3643 void __iomem *maddr;
28b2ee20
RR
3644 int offset = addr & (PAGE_SIZE-1);
3645
d87fe660 3646 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3647 return -EINVAL;
3648
9cb12d7b 3649 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3650 if (write)
3651 memcpy_toio(maddr + offset, buf, len);
3652 else
3653 memcpy_fromio(buf, maddr + offset, len);
3654 iounmap(maddr);
3655
3656 return len;
3657}
5a73633e 3658EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3659#endif
3660
0ec76a11 3661/*
206cb636
SW
3662 * Access another process' address space as given in mm. If non-NULL, use the
3663 * given task for page fault accounting.
0ec76a11 3664 */
206cb636
SW
3665static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3666 unsigned long addr, void *buf, int len, int write)
0ec76a11 3667{
0ec76a11 3668 struct vm_area_struct *vma;
0ec76a11
DH
3669 void *old_buf = buf;
3670
0ec76a11 3671 down_read(&mm->mmap_sem);
183ff22b 3672 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3673 while (len) {
3674 int bytes, ret, offset;
3675 void *maddr;
28b2ee20 3676 struct page *page = NULL;
0ec76a11
DH
3677
3678 ret = get_user_pages(tsk, mm, addr, 1,
3679 write, 1, &page, &vma);
28b2ee20 3680 if (ret <= 0) {
dbffcd03
RR
3681#ifndef CONFIG_HAVE_IOREMAP_PROT
3682 break;
3683#else
28b2ee20
RR
3684 /*
3685 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3686 * we can access using slightly different code.
3687 */
28b2ee20 3688 vma = find_vma(mm, addr);
fe936dfc 3689 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3690 break;
3691 if (vma->vm_ops && vma->vm_ops->access)
3692 ret = vma->vm_ops->access(vma, addr, buf,
3693 len, write);
3694 if (ret <= 0)
28b2ee20
RR
3695 break;
3696 bytes = ret;
dbffcd03 3697#endif
0ec76a11 3698 } else {
28b2ee20
RR
3699 bytes = len;
3700 offset = addr & (PAGE_SIZE-1);
3701 if (bytes > PAGE_SIZE-offset)
3702 bytes = PAGE_SIZE-offset;
3703
3704 maddr = kmap(page);
3705 if (write) {
3706 copy_to_user_page(vma, page, addr,
3707 maddr + offset, buf, bytes);
3708 set_page_dirty_lock(page);
3709 } else {
3710 copy_from_user_page(vma, page, addr,
3711 buf, maddr + offset, bytes);
3712 }
3713 kunmap(page);
3714 page_cache_release(page);
0ec76a11 3715 }
0ec76a11
DH
3716 len -= bytes;
3717 buf += bytes;
3718 addr += bytes;
3719 }
3720 up_read(&mm->mmap_sem);
0ec76a11
DH
3721
3722 return buf - old_buf;
3723}
03252919 3724
5ddd36b9 3725/**
ae91dbfc 3726 * access_remote_vm - access another process' address space
5ddd36b9
SW
3727 * @mm: the mm_struct of the target address space
3728 * @addr: start address to access
3729 * @buf: source or destination buffer
3730 * @len: number of bytes to transfer
3731 * @write: whether the access is a write
3732 *
3733 * The caller must hold a reference on @mm.
3734 */
3735int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3736 void *buf, int len, int write)
3737{
3738 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3739}
3740
206cb636
SW
3741/*
3742 * Access another process' address space.
3743 * Source/target buffer must be kernel space,
3744 * Do not walk the page table directly, use get_user_pages
3745 */
3746int access_process_vm(struct task_struct *tsk, unsigned long addr,
3747 void *buf, int len, int write)
3748{
3749 struct mm_struct *mm;
3750 int ret;
3751
3752 mm = get_task_mm(tsk);
3753 if (!mm)
3754 return 0;
3755
3756 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3757 mmput(mm);
3758
3759 return ret;
3760}
3761
03252919
AK
3762/*
3763 * Print the name of a VMA.
3764 */
3765void print_vma_addr(char *prefix, unsigned long ip)
3766{
3767 struct mm_struct *mm = current->mm;
3768 struct vm_area_struct *vma;
3769
e8bff74a
IM
3770 /*
3771 * Do not print if we are in atomic
3772 * contexts (in exception stacks, etc.):
3773 */
3774 if (preempt_count())
3775 return;
3776
03252919
AK
3777 down_read(&mm->mmap_sem);
3778 vma = find_vma(mm, ip);
3779 if (vma && vma->vm_file) {
3780 struct file *f = vma->vm_file;
3781 char *buf = (char *)__get_free_page(GFP_KERNEL);
3782 if (buf) {
2fbc57c5 3783 char *p;
03252919 3784
9bf39ab2 3785 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3786 if (IS_ERR(p))
3787 p = "?";
2fbc57c5 3788 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3789 vma->vm_start,
3790 vma->vm_end - vma->vm_start);
3791 free_page((unsigned long)buf);
3792 }
3793 }
51a07e50 3794 up_read(&mm->mmap_sem);
03252919 3795}
3ee1afa3 3796
662bbcb2 3797#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3798void __might_fault(const char *file, int line)
3ee1afa3 3799{
95156f00
PZ
3800 /*
3801 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3802 * holding the mmap_sem, this is safe because kernel memory doesn't
3803 * get paged out, therefore we'll never actually fault, and the
3804 * below annotations will generate false positives.
3805 */
3806 if (segment_eq(get_fs(), KERNEL_DS))
3807 return;
9ec23531 3808 if (pagefault_disabled())
662bbcb2 3809 return;
9ec23531
DH
3810 __might_sleep(file, line, 0);
3811#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3812 if (current->mm)
3ee1afa3 3813 might_lock_read(&current->mm->mmap_sem);
9ec23531 3814#endif
3ee1afa3 3815}
9ec23531 3816EXPORT_SYMBOL(__might_fault);
3ee1afa3 3817#endif
47ad8475
AA
3818
3819#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3820static void clear_gigantic_page(struct page *page,
3821 unsigned long addr,
3822 unsigned int pages_per_huge_page)
3823{
3824 int i;
3825 struct page *p = page;
3826
3827 might_sleep();
3828 for (i = 0; i < pages_per_huge_page;
3829 i++, p = mem_map_next(p, page, i)) {
3830 cond_resched();
3831 clear_user_highpage(p, addr + i * PAGE_SIZE);
3832 }
3833}
3834void clear_huge_page(struct page *page,
3835 unsigned long addr, unsigned int pages_per_huge_page)
3836{
3837 int i;
3838
3839 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3840 clear_gigantic_page(page, addr, pages_per_huge_page);
3841 return;
3842 }
3843
3844 might_sleep();
3845 for (i = 0; i < pages_per_huge_page; i++) {
3846 cond_resched();
3847 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3848 }
3849}
3850
3851static void copy_user_gigantic_page(struct page *dst, struct page *src,
3852 unsigned long addr,
3853 struct vm_area_struct *vma,
3854 unsigned int pages_per_huge_page)
3855{
3856 int i;
3857 struct page *dst_base = dst;
3858 struct page *src_base = src;
3859
3860 for (i = 0; i < pages_per_huge_page; ) {
3861 cond_resched();
3862 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3863
3864 i++;
3865 dst = mem_map_next(dst, dst_base, i);
3866 src = mem_map_next(src, src_base, i);
3867 }
3868}
3869
3870void copy_user_huge_page(struct page *dst, struct page *src,
3871 unsigned long addr, struct vm_area_struct *vma,
3872 unsigned int pages_per_huge_page)
3873{
3874 int i;
3875
3876 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3877 copy_user_gigantic_page(dst, src, addr, vma,
3878 pages_per_huge_page);
3879 return;
3880 }
3881
3882 might_sleep();
3883 for (i = 0; i < pages_per_huge_page; i++) {
3884 cond_resched();
3885 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3886 }
3887}
3888#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3889
40b64acd 3890#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3891
3892static struct kmem_cache *page_ptl_cachep;
3893
3894void __init ptlock_cache_init(void)
3895{
3896 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3897 SLAB_PANIC, NULL);
3898}
3899
539edb58 3900bool ptlock_alloc(struct page *page)
49076ec2
KS
3901{
3902 spinlock_t *ptl;
3903
b35f1819 3904 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3905 if (!ptl)
3906 return false;
539edb58 3907 page->ptl = ptl;
49076ec2
KS
3908 return true;
3909}
3910
539edb58 3911void ptlock_free(struct page *page)
49076ec2 3912{
b35f1819 3913 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3914}
3915#endif