]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memory.c
tuntap: add sanity checks about msg_controllen in sendmsg
[mirror_ubuntu-focal-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15 120
c8efcda2
JH
121#ifndef arch_faults_on_old_pte
122static inline bool arch_faults_on_old_pte(void)
123{
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130}
131#endif
132
a62eaf15
AK
133static int __init disable_randmaps(char *s)
134{
135 randomize_va_space = 0;
9b41046c 136 return 1;
a62eaf15
AK
137}
138__setup("norandmaps", disable_randmaps);
139
62eede62 140unsigned long zero_pfn __read_mostly;
0b70068e
AB
141EXPORT_SYMBOL(zero_pfn);
142
166f61b9
TH
143unsigned long highest_memmap_pfn __read_mostly;
144
a13ea5b7
HD
145/*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148static int __init init_zero_pfn(void)
149{
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152}
1e0b9303 153early_initcall(init_zero_pfn);
a62eaf15 154
d559db08 155
34e55232
KH
156#if defined(SPLIT_RSS_COUNTING)
157
ea48cf78 158void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
159{
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
34e55232
KH
166 }
167 }
05af2e10 168 current->rss_stat.events = 0;
34e55232
KH
169}
170
171static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172{
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179}
180#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183/* sync counter once per 64 page faults */
184#define TASK_RSS_EVENTS_THRESH (64)
185static void check_sync_rss_stat(struct task_struct *task)
186{
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 190 sync_mm_rss(task->mm);
34e55232 191}
9547d01b 192#else /* SPLIT_RSS_COUNTING */
34e55232
KH
193
194#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197static void check_sync_rss_stat(struct task_struct *task)
198{
199}
200
9547d01b
PZ
201#endif /* SPLIT_RSS_COUNTING */
202
1da177e4
LT
203/*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
9e1b32ca
BH
207static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
1da177e4 209{
2f569afd 210 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 211 pmd_clear(pmd);
9e1b32ca 212 pte_free_tlb(tlb, token, addr);
c4812909 213 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
214}
215
e0da382c
HD
216static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
1da177e4
LT
219{
220 pmd_t *pmd;
221 unsigned long next;
e0da382c 222 unsigned long start;
1da177e4 223
e0da382c 224 start = addr;
1da177e4 225 pmd = pmd_offset(pud, addr);
1da177e4
LT
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
9e1b32ca 230 free_pte_range(tlb, pmd, addr);
1da177e4
LT
231 } while (pmd++, addr = next, addr != end);
232
e0da382c
HD
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
1da177e4 240 }
e0da382c
HD
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
9e1b32ca 246 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 247 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
248}
249
c2febafc 250static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
1da177e4
LT
253{
254 pud_t *pud;
255 unsigned long next;
e0da382c 256 unsigned long start;
1da177e4 257
e0da382c 258 start = addr;
c2febafc 259 pud = pud_offset(p4d, addr);
1da177e4
LT
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
e0da382c 264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
265 } while (pud++, addr = next, addr != end);
266
c2febafc
KS
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
b4e98d9a 281 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
282}
283
284static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287{
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
e0da382c
HD
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
1da177e4 308 }
e0da382c
HD
309 if (end - 1 > ceiling - 1)
310 return;
311
c2febafc 312 p4d = p4d_offset(pgd, start);
e0da382c 313 pgd_clear(pgd);
c2febafc 314 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
315}
316
317/*
e0da382c 318 * This function frees user-level page tables of a process.
1da177e4 319 */
42b77728 320void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
1da177e4
LT
323{
324 pgd_t *pgd;
325 unsigned long next;
e0da382c
HD
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
1da177e4 352
e0da382c
HD
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
07e32661
AK
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
ed6a7935 372 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 373 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
c2febafc 378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 379 } while (pgd++, addr = next, addr != end);
e0da382c
HD
380}
381
42b77728 382void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 383 unsigned long floor, unsigned long ceiling)
e0da382c
HD
384{
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
8f4f8c16 389 /*
25d9e2d1 390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
8f4f8c16 392 */
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16
HD
394 unlink_file_vma(vma);
395
9da61aef 396 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 404 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
405 vma = next;
406 next = vma->vm_next;
5beb4930 407 unlink_anon_vmas(vma);
8f4f8c16 408 unlink_file_vma(vma);
3bf5ee95
HD
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 411 floor, next ? next->vm_start : ceiling);
3bf5ee95 412 }
e0da382c
HD
413 vma = next;
414 }
1da177e4
LT
415}
416
4cf58924 417int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 418{
c4088ebd 419 spinlock_t *ptl;
4cf58924 420 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
421 if (!new)
422 return -ENOMEM;
423
362a61ad
NP
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
c4088ebd 439 ptl = pmd_lock(mm, pmd);
8ac1f832 440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 441 mm_inc_nr_ptes(mm);
1da177e4 442 pmd_populate(mm, pmd, new);
2f569afd 443 new = NULL;
4b471e88 444 }
c4088ebd 445 spin_unlock(ptl);
2f569afd
MS
446 if (new)
447 pte_free(mm, new);
1bb3630e 448 return 0;
1da177e4
LT
449}
450
4cf58924 451int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 452{
4cf58924 453 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
454 if (!new)
455 return -ENOMEM;
456
362a61ad
NP
457 smp_wmb(); /* See comment in __pte_alloc */
458
1bb3630e 459 spin_lock(&init_mm.page_table_lock);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 461 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
1bb3630e 464 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
465 if (new)
466 pte_free_kernel(&init_mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
d559db08
KH
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 476{
d559db08
KH
477 int i;
478
34e55232 479 if (current->mm == mm)
05af2e10 480 sync_mm_rss(mm);
d559db08
KH
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
ae859762
HD
484}
485
b5810039 486/*
6aab341e
LT
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
b5810039
NP
490 *
491 * The calling function must still handle the error.
492 */
3dc14741
HD
493static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
b5810039 495{
3dc14741 496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
d936cf9b
HD
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
1170532b
JP
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
d936cf9b
HD
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
3dc14741
HD
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
1170532b
JP
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 531 if (page)
f0b791a3 532 dump_page(page, "bad pte");
6aa9b8b2 533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
b5810039 540 dump_stack();
373d4d09 541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
542}
543
ee498ed7 544/*
7e675137 545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 546 *
7e675137
NP
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 550 *
7e675137
NP
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 559 *
b379d790
JH
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
6aab341e
LT
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
7e675137
NP
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
b379d790 573 *
b379d790 574 *
7e675137 575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
ee498ed7 585 */
25b2995a
CH
586struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
ee498ed7 588{
22b31eec 589 unsigned long pfn = pte_pfn(pte);
7e675137 590
00b3a331 591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 592 if (likely(!pte_special(pte)))
22b31eec 593 goto check_pfn;
667a0a06
DV
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
df6ad698
JG
598 if (is_zero_pfn(pfn))
599 return NULL;
e1fb4a08
DJ
600 if (pte_devmap(pte))
601 return NULL;
602
df6ad698 603 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
604 return NULL;
605 }
606
00b3a331 607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 608
b379d790
JH
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
7e675137
NP
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
6aab341e
LT
622 }
623
b38af472
HD
624 if (is_zero_pfn(pfn))
625 return NULL;
00b3a331 626
22b31eec
HD
627check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
6aab341e
LT
632
633 /*
7e675137 634 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 635 * eg. VDSO mappings can cause them to exist.
6aab341e 636 */
b379d790 637out:
6aab341e 638 return pfn_to_page(pfn);
ee498ed7
HD
639}
640
28093f9f
GS
641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644{
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
e1fb4a08
DJ
667 if (pmd_devmap(pmd))
668 return NULL;
28093f9f
GS
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678out:
679 return pfn_to_page(pfn);
680}
681#endif
682
1da177e4
LT
683/*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
1da177e4
LT
687 */
688
570a335b 689static inline unsigned long
1da177e4 690copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 692 unsigned long addr, int *rss)
1da177e4 693{
b5810039 694 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
695 pte_t pte = *src_pte;
696 struct page *page;
1da177e4
LT
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
0661a336
KS
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
eca56ff9 718 rss[mm_counter(page)]++;
0661a336
KS
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 731 }
5042db43
JG
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
1da177e4 761 }
ae859762 762 goto out_set_pte;
1da177e4
LT
763 }
764
1da177e4
LT
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
1b2de5d0 769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 770 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 771 pte = pte_wrprotect(pte);
1da177e4
LT
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
6aab341e
LT
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
53f9263b 785 page_dup_rmap(page, false);
eca56ff9 786 rss[mm_counter(page)]++;
df6ad698
JG
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
6aab341e 789 }
ae859762
HD
790
791out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 793 return 0;
1da177e4
LT
794}
795
21bda264 796static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
1da177e4 799{
c36987e2 800 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 801 pte_t *src_pte, *dst_pte;
c74df32c 802 spinlock_t *src_ptl, *dst_ptl;
e040f218 803 int progress = 0;
d559db08 804 int rss[NR_MM_COUNTERS];
570a335b 805 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
806
807again:
d559db08
KH
808 init_rss_vec(rss);
809
c74df32c 810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
811 if (!dst_pte)
812 return -ENOMEM;
ece0e2b6 813 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 814 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
6606c3e0 818 arch_enter_lazy_mmu_mode();
1da177e4 819
1da177e4
LT
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
e040f218
HD
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
95c354fe 828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
829 break;
830 }
1da177e4
LT
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
570a335b
HD
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
1da177e4
LT
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 841
6606c3e0 842 arch_leave_lazy_mmu_mode();
c74df32c 843 spin_unlock(src_ptl);
ece0e2b6 844 pte_unmap(orig_src_pte);
d559db08 845 add_mm_rss_vec(dst_mm, rss);
c36987e2 846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 847 cond_resched();
570a335b
HD
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
1da177e4
LT
854 if (addr != end)
855 goto again;
856 return 0;
857}
858
859static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862{
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
71e3aac0 874 int err;
a00cc7d9 875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
1da177e4
LT
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891}
892
893static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
895 unsigned long addr, unsigned long end)
896{
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
c2febafc 900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
901 if (!dst_pud)
902 return -ENOMEM;
c2febafc 903 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
904 do {
905 next = pud_addr_end(addr, end);
a00cc7d9
MW
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
1da177e4
LT
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925}
926
c2febafc
KS
927static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930{
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947}
948
1da177e4
LT
949int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951{
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
ac46d4f3 956 struct mmu_notifier_range range;
2ec74c3e 957 bool is_cow;
cddb8a5c 958 int ret;
1da177e4 959
d992895b
NP
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
0661a336
KS
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
d992895b 969
1da177e4
LT
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
b3b9c293 973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
5180da41 978 ret = track_pfn_copy(vma);
2ab64037 979 if (ret)
980 return ret;
981 }
982
cddb8a5c
AA
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
2ec74c3e 989 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
990
991 if (is_cow) {
7269f999
JG
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
ac46d4f3
JG
994 mmu_notifier_invalidate_range_start(&range);
995 }
cddb8a5c
AA
996
997 ret = 0;
1da177e4
LT
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
c2febafc 1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1da177e4 1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1010
2ec74c3e 1011 if (is_cow)
ac46d4f3 1012 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1013 return ret;
1da177e4
LT
1014}
1015
51c6f666 1016static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1017 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1018 unsigned long addr, unsigned long end,
97a89413 1019 struct zap_details *details)
1da177e4 1020{
b5810039 1021 struct mm_struct *mm = tlb->mm;
d16dfc55 1022 int force_flush = 0;
d559db08 1023 int rss[NR_MM_COUNTERS];
97a89413 1024 spinlock_t *ptl;
5f1a1907 1025 pte_t *start_pte;
97a89413 1026 pte_t *pte;
8a5f14a2 1027 swp_entry_t entry;
d559db08 1028
ed6a7935 1029 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1030again:
e303297e 1031 init_rss_vec(rss);
5f1a1907
SR
1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 pte = start_pte;
3ea27719 1034 flush_tlb_batched_pending(mm);
6606c3e0 1035 arch_enter_lazy_mmu_mode();
1da177e4
LT
1036 do {
1037 pte_t ptent = *pte;
166f61b9 1038 if (pte_none(ptent))
1da177e4 1039 continue;
6f5e6b9e 1040
7b167b68
MK
1041 if (need_resched())
1042 break;
1043
1da177e4 1044 if (pte_present(ptent)) {
ee498ed7 1045 struct page *page;
51c6f666 1046
25b2995a 1047 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1048 if (unlikely(details) && page) {
1049 /*
1050 * unmap_shared_mapping_pages() wants to
1051 * invalidate cache without truncating:
1052 * unmap shared but keep private pages.
1053 */
1054 if (details->check_mapping &&
800d8c63 1055 details->check_mapping != page_rmapping(page))
1da177e4 1056 continue;
1da177e4 1057 }
b5810039 1058 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1059 tlb->fullmm);
1da177e4
LT
1060 tlb_remove_tlb_entry(tlb, pte, addr);
1061 if (unlikely(!page))
1062 continue;
eca56ff9
JM
1063
1064 if (!PageAnon(page)) {
1cf35d47
LT
1065 if (pte_dirty(ptent)) {
1066 force_flush = 1;
6237bcd9 1067 set_page_dirty(page);
1cf35d47 1068 }
4917e5d0 1069 if (pte_young(ptent) &&
64363aad 1070 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1071 mark_page_accessed(page);
6237bcd9 1072 }
eca56ff9 1073 rss[mm_counter(page)]--;
d281ee61 1074 page_remove_rmap(page, false);
3dc14741
HD
1075 if (unlikely(page_mapcount(page) < 0))
1076 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1077 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1078 force_flush = 1;
ce9ec37b 1079 addr += PAGE_SIZE;
d16dfc55 1080 break;
1cf35d47 1081 }
1da177e4
LT
1082 continue;
1083 }
5042db43
JG
1084
1085 entry = pte_to_swp_entry(ptent);
1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 struct page *page = device_private_entry_to_page(entry);
1088
1089 if (unlikely(details && details->check_mapping)) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping !=
1096 page_rmapping(page))
1097 continue;
1098 }
1099
1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 rss[mm_counter(page)]--;
1102 page_remove_rmap(page, false);
1103 put_page(page);
1104 continue;
1105 }
1106
3e8715fd
KS
1107 /* If details->check_mapping, we leave swap entries. */
1108 if (unlikely(details))
1da177e4 1109 continue;
b084d435 1110
8a5f14a2
KS
1111 if (!non_swap_entry(entry))
1112 rss[MM_SWAPENTS]--;
1113 else if (is_migration_entry(entry)) {
1114 struct page *page;
9f9f1acd 1115
8a5f14a2 1116 page = migration_entry_to_page(entry);
eca56ff9 1117 rss[mm_counter(page)]--;
b084d435 1118 }
8a5f14a2
KS
1119 if (unlikely(!free_swap_and_cache(entry)))
1120 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1122 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1123
d559db08 1124 add_mm_rss_vec(mm, rss);
6606c3e0 1125 arch_leave_lazy_mmu_mode();
51c6f666 1126
1cf35d47 1127 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1128 if (force_flush)
1cf35d47 1129 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1130 pte_unmap_unlock(start_pte, ptl);
1131
1132 /*
1133 * If we forced a TLB flush (either due to running out of
1134 * batch buffers or because we needed to flush dirty TLB
1135 * entries before releasing the ptl), free the batched
1136 * memory too. Restart if we didn't do everything.
1137 */
1138 if (force_flush) {
1139 force_flush = 0;
fa0aafb8 1140 tlb_flush_mmu(tlb);
7b167b68
MK
1141 }
1142
1143 if (addr != end) {
1144 cond_resched();
1145 goto again;
d16dfc55
PZ
1146 }
1147
51c6f666 1148 return addr;
1da177e4
LT
1149}
1150
51c6f666 1151static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1152 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1153 unsigned long addr, unsigned long end,
97a89413 1154 struct zap_details *details)
1da177e4
LT
1155{
1156 pmd_t *pmd;
1157 unsigned long next;
1158
1159 pmd = pmd_offset(pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
84c3fc4e 1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1163 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1164 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1165 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1166 goto next;
71e3aac0 1167 /* fall through */
69f21c4e
HD
1168 } else if (details && details->single_page &&
1169 PageTransCompound(details->single_page) &&
1170 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1171 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1172 /*
1173 * Take and drop THP pmd lock so that we cannot return
1174 * prematurely, while zap_huge_pmd() has cleared *pmd,
1175 * but not yet decremented compound_mapcount().
1176 */
1177 spin_unlock(ptl);
71e3aac0 1178 }
69f21c4e 1179
1a5a9906
AA
1180 /*
1181 * Here there can be other concurrent MADV_DONTNEED or
1182 * trans huge page faults running, and if the pmd is
1183 * none or trans huge it can change under us. This is
1184 * because MADV_DONTNEED holds the mmap_sem in read
1185 * mode.
1186 */
1187 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1188 goto next;
97a89413 1189 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1190next:
97a89413
PZ
1191 cond_resched();
1192 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1193
1194 return addr;
1da177e4
LT
1195}
1196
51c6f666 1197static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1198 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1199 unsigned long addr, unsigned long end,
97a89413 1200 struct zap_details *details)
1da177e4
LT
1201{
1202 pud_t *pud;
1203 unsigned long next;
1204
c2febafc 1205 pud = pud_offset(p4d, addr);
1da177e4
LT
1206 do {
1207 next = pud_addr_end(addr, end);
a00cc7d9
MW
1208 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1209 if (next - addr != HPAGE_PUD_SIZE) {
1210 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1211 split_huge_pud(vma, pud, addr);
1212 } else if (zap_huge_pud(tlb, vma, pud, addr))
1213 goto next;
1214 /* fall through */
1215 }
97a89413 1216 if (pud_none_or_clear_bad(pud))
1da177e4 1217 continue;
97a89413 1218 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1219next:
1220 cond_resched();
97a89413 1221 } while (pud++, addr = next, addr != end);
51c6f666
RH
1222
1223 return addr;
1da177e4
LT
1224}
1225
c2febafc
KS
1226static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1227 struct vm_area_struct *vma, pgd_t *pgd,
1228 unsigned long addr, unsigned long end,
1229 struct zap_details *details)
1230{
1231 p4d_t *p4d;
1232 unsigned long next;
1233
1234 p4d = p4d_offset(pgd, addr);
1235 do {
1236 next = p4d_addr_end(addr, end);
1237 if (p4d_none_or_clear_bad(p4d))
1238 continue;
1239 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1240 } while (p4d++, addr = next, addr != end);
1241
1242 return addr;
1243}
1244
aac45363 1245void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1246 struct vm_area_struct *vma,
1247 unsigned long addr, unsigned long end,
1248 struct zap_details *details)
1da177e4
LT
1249{
1250 pgd_t *pgd;
1251 unsigned long next;
1252
1da177e4
LT
1253 BUG_ON(addr >= end);
1254 tlb_start_vma(tlb, vma);
1255 pgd = pgd_offset(vma->vm_mm, addr);
1256 do {
1257 next = pgd_addr_end(addr, end);
97a89413 1258 if (pgd_none_or_clear_bad(pgd))
1da177e4 1259 continue;
c2febafc 1260 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1261 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1262 tlb_end_vma(tlb, vma);
1263}
51c6f666 1264
f5cc4eef
AV
1265
1266static void unmap_single_vma(struct mmu_gather *tlb,
1267 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1268 unsigned long end_addr,
f5cc4eef
AV
1269 struct zap_details *details)
1270{
1271 unsigned long start = max(vma->vm_start, start_addr);
1272 unsigned long end;
1273
1274 if (start >= vma->vm_end)
1275 return;
1276 end = min(vma->vm_end, end_addr);
1277 if (end <= vma->vm_start)
1278 return;
1279
cbc91f71
SD
1280 if (vma->vm_file)
1281 uprobe_munmap(vma, start, end);
1282
b3b9c293 1283 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1284 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1285
1286 if (start != end) {
1287 if (unlikely(is_vm_hugetlb_page(vma))) {
1288 /*
1289 * It is undesirable to test vma->vm_file as it
1290 * should be non-null for valid hugetlb area.
1291 * However, vm_file will be NULL in the error
7aa6b4ad 1292 * cleanup path of mmap_region. When
f5cc4eef 1293 * hugetlbfs ->mmap method fails,
7aa6b4ad 1294 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1295 * before calling this function to clean up.
1296 * Since no pte has actually been setup, it is
1297 * safe to do nothing in this case.
1298 */
24669e58 1299 if (vma->vm_file) {
83cde9e8 1300 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1301 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1302 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1303 }
f5cc4eef
AV
1304 } else
1305 unmap_page_range(tlb, vma, start, end, details);
1306 }
1da177e4
LT
1307}
1308
1da177e4
LT
1309/**
1310 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1311 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1312 * @vma: the starting vma
1313 * @start_addr: virtual address at which to start unmapping
1314 * @end_addr: virtual address at which to end unmapping
1da177e4 1315 *
508034a3 1316 * Unmap all pages in the vma list.
1da177e4 1317 *
1da177e4
LT
1318 * Only addresses between `start' and `end' will be unmapped.
1319 *
1320 * The VMA list must be sorted in ascending virtual address order.
1321 *
1322 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1323 * range after unmap_vmas() returns. So the only responsibility here is to
1324 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1325 * drops the lock and schedules.
1326 */
6e8bb019 1327void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1328 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1329 unsigned long end_addr)
1da177e4 1330{
ac46d4f3 1331 struct mmu_notifier_range range;
1da177e4 1332
6f4f13e8
JG
1333 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1334 start_addr, end_addr);
ac46d4f3 1335 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1336 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1337 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1338 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1339}
1340
1341/**
1342 * zap_page_range - remove user pages in a given range
1343 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1344 * @start: starting address of pages to zap
1da177e4 1345 * @size: number of bytes to zap
f5cc4eef
AV
1346 *
1347 * Caller must protect the VMA list
1da177e4 1348 */
7e027b14 1349void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1350 unsigned long size)
1da177e4 1351{
ac46d4f3 1352 struct mmu_notifier_range range;
d16dfc55 1353 struct mmu_gather tlb;
1da177e4 1354
1da177e4 1355 lru_add_drain();
7269f999 1356 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1357 start, start + size);
ac46d4f3
JG
1358 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1359 update_hiwater_rss(vma->vm_mm);
1360 mmu_notifier_invalidate_range_start(&range);
1361 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1362 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1363 mmu_notifier_invalidate_range_end(&range);
1364 tlb_finish_mmu(&tlb, start, range.end);
1da177e4 1365}
ceaf03b4 1366EXPORT_SYMBOL(zap_page_range);
1da177e4 1367
f5cc4eef
AV
1368/**
1369 * zap_page_range_single - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @address: starting address of pages to zap
1372 * @size: number of bytes to zap
8a5f14a2 1373 * @details: details of shared cache invalidation
f5cc4eef
AV
1374 *
1375 * The range must fit into one VMA.
1da177e4 1376 */
f5cc4eef 1377static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
ac46d4f3 1380 struct mmu_notifier_range range;
d16dfc55 1381 struct mmu_gather tlb;
1da177e4 1382
1da177e4 1383 lru_add_drain();
7269f999 1384 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1385 address, address + size);
ac46d4f3
JG
1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1387 update_hiwater_rss(vma->vm_mm);
1388 mmu_notifier_invalidate_range_start(&range);
1389 unmap_single_vma(&tlb, vma, address, range.end, details);
1390 mmu_notifier_invalidate_range_end(&range);
1391 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1392}
1393
c627f9cc
JS
1394/**
1395 * zap_vma_ptes - remove ptes mapping the vma
1396 * @vma: vm_area_struct holding ptes to be zapped
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 *
1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1401 *
1402 * The entire address range must be fully contained within the vma.
1403 *
c627f9cc 1404 */
27d036e3 1405void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1406 unsigned long size)
1407{
1408 if (address < vma->vm_start || address + size > vma->vm_end ||
1409 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1410 return;
1411
f5cc4eef 1412 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1413}
1414EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
25ca1d6c 1416pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1417 spinlock_t **ptl)
c9cfcddf 1418{
c2febafc
KS
1419 pgd_t *pgd;
1420 p4d_t *p4d;
1421 pud_t *pud;
1422 pmd_t *pmd;
1423
1424 pgd = pgd_offset(mm, addr);
1425 p4d = p4d_alloc(mm, pgd, addr);
1426 if (!p4d)
1427 return NULL;
1428 pud = pud_alloc(mm, p4d, addr);
1429 if (!pud)
1430 return NULL;
1431 pmd = pmd_alloc(mm, pud, addr);
1432 if (!pmd)
1433 return NULL;
1434
1435 VM_BUG_ON(pmd_trans_huge(*pmd));
1436 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1437}
1438
238f58d8
LT
1439/*
1440 * This is the old fallback for page remapping.
1441 *
1442 * For historical reasons, it only allows reserved pages. Only
1443 * old drivers should use this, and they needed to mark their
1444 * pages reserved for the old functions anyway.
1445 */
423bad60
NP
1446static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1447 struct page *page, pgprot_t prot)
238f58d8 1448{
423bad60 1449 struct mm_struct *mm = vma->vm_mm;
238f58d8 1450 int retval;
c9cfcddf 1451 pte_t *pte;
8a9f3ccd
BS
1452 spinlock_t *ptl;
1453
238f58d8 1454 retval = -EINVAL;
0ee930e6 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1456 goto out;
238f58d8
LT
1457 retval = -ENOMEM;
1458 flush_dcache_page(page);
c9cfcddf 1459 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1460 if (!pte)
5b4e655e 1461 goto out;
238f58d8
LT
1462 retval = -EBUSY;
1463 if (!pte_none(*pte))
1464 goto out_unlock;
1465
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
eca56ff9 1468 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1469 page_add_file_rmap(page, false);
238f58d8
LT
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471
1472 retval = 0;
1473out_unlock:
1474 pte_unmap_unlock(pte, ptl);
1475out:
1476 return retval;
1477}
1478
bfa5bf6d
REB
1479/**
1480 * vm_insert_page - insert single page into user vma
1481 * @vma: user vma to map to
1482 * @addr: target user address of this page
1483 * @page: source kernel page
1484 *
a145dd41
LT
1485 * This allows drivers to insert individual pages they've allocated
1486 * into a user vma.
1487 *
1488 * The page has to be a nice clean _individual_ kernel allocation.
1489 * If you allocate a compound page, you need to have marked it as
1490 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1491 * (see split_page()).
a145dd41
LT
1492 *
1493 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1494 * took an arbitrary page protection parameter. This doesn't allow
1495 * that. Your vma protection will have to be set up correctly, which
1496 * means that if you want a shared writable mapping, you'd better
1497 * ask for a shared writable mapping!
1498 *
1499 * The page does not need to be reserved.
4b6e1e37
KK
1500 *
1501 * Usually this function is called from f_op->mmap() handler
1502 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1503 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1504 * function from other places, for example from page-fault handler.
a862f68a
MR
1505 *
1506 * Return: %0 on success, negative error code otherwise.
a145dd41 1507 */
423bad60
NP
1508int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1509 struct page *page)
a145dd41
LT
1510{
1511 if (addr < vma->vm_start || addr >= vma->vm_end)
1512 return -EFAULT;
1513 if (!page_count(page))
1514 return -EINVAL;
4b6e1e37
KK
1515 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1516 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1517 BUG_ON(vma->vm_flags & VM_PFNMAP);
1518 vma->vm_flags |= VM_MIXEDMAP;
1519 }
423bad60 1520 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1521}
e3c3374f 1522EXPORT_SYMBOL(vm_insert_page);
a145dd41 1523
a667d745
SJ
1524/*
1525 * __vm_map_pages - maps range of kernel pages into user vma
1526 * @vma: user vma to map to
1527 * @pages: pointer to array of source kernel pages
1528 * @num: number of pages in page array
1529 * @offset: user's requested vm_pgoff
1530 *
1531 * This allows drivers to map range of kernel pages into a user vma.
1532 *
1533 * Return: 0 on success and error code otherwise.
1534 */
1535static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1536 unsigned long num, unsigned long offset)
1537{
1538 unsigned long count = vma_pages(vma);
1539 unsigned long uaddr = vma->vm_start;
1540 int ret, i;
1541
1542 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1543 if (offset >= num)
a667d745
SJ
1544 return -ENXIO;
1545
1546 /* Fail if the user requested size exceeds available object size */
1547 if (count > num - offset)
1548 return -ENXIO;
1549
1550 for (i = 0; i < count; i++) {
1551 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1552 if (ret < 0)
1553 return ret;
1554 uaddr += PAGE_SIZE;
1555 }
1556
1557 return 0;
1558}
1559
1560/**
1561 * vm_map_pages - maps range of kernel pages starts with non zero offset
1562 * @vma: user vma to map to
1563 * @pages: pointer to array of source kernel pages
1564 * @num: number of pages in page array
1565 *
1566 * Maps an object consisting of @num pages, catering for the user's
1567 * requested vm_pgoff
1568 *
1569 * If we fail to insert any page into the vma, the function will return
1570 * immediately leaving any previously inserted pages present. Callers
1571 * from the mmap handler may immediately return the error as their caller
1572 * will destroy the vma, removing any successfully inserted pages. Other
1573 * callers should make their own arrangements for calling unmap_region().
1574 *
1575 * Context: Process context. Called by mmap handlers.
1576 * Return: 0 on success and error code otherwise.
1577 */
1578int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1579 unsigned long num)
1580{
1581 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1582}
1583EXPORT_SYMBOL(vm_map_pages);
1584
1585/**
1586 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1587 * @vma: user vma to map to
1588 * @pages: pointer to array of source kernel pages
1589 * @num: number of pages in page array
1590 *
1591 * Similar to vm_map_pages(), except that it explicitly sets the offset
1592 * to 0. This function is intended for the drivers that did not consider
1593 * vm_pgoff.
1594 *
1595 * Context: Process context. Called by mmap handlers.
1596 * Return: 0 on success and error code otherwise.
1597 */
1598int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1599 unsigned long num)
1600{
1601 return __vm_map_pages(vma, pages, num, 0);
1602}
1603EXPORT_SYMBOL(vm_map_pages_zero);
1604
9b5a8e00 1605static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1606 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1607{
1608 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1609 pte_t *pte, entry;
1610 spinlock_t *ptl;
1611
423bad60
NP
1612 pte = get_locked_pte(mm, addr, &ptl);
1613 if (!pte)
9b5a8e00 1614 return VM_FAULT_OOM;
b2770da6
RZ
1615 if (!pte_none(*pte)) {
1616 if (mkwrite) {
1617 /*
1618 * For read faults on private mappings the PFN passed
1619 * in may not match the PFN we have mapped if the
1620 * mapped PFN is a writeable COW page. In the mkwrite
1621 * case we are creating a writable PTE for a shared
f2c57d91
JK
1622 * mapping and we expect the PFNs to match. If they
1623 * don't match, we are likely racing with block
1624 * allocation and mapping invalidation so just skip the
1625 * update.
b2770da6 1626 */
f2c57d91
JK
1627 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1628 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1629 goto out_unlock;
f2c57d91 1630 }
cae85cb8
JK
1631 entry = pte_mkyoung(*pte);
1632 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1633 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1634 update_mmu_cache(vma, addr, pte);
1635 }
1636 goto out_unlock;
b2770da6 1637 }
423bad60
NP
1638
1639 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1640 if (pfn_t_devmap(pfn))
1641 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1642 else
1643 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1644
b2770da6
RZ
1645 if (mkwrite) {
1646 entry = pte_mkyoung(entry);
1647 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1648 }
1649
423bad60 1650 set_pte_at(mm, addr, pte, entry);
4b3073e1 1651 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1652
423bad60
NP
1653out_unlock:
1654 pte_unmap_unlock(pte, ptl);
9b5a8e00 1655 return VM_FAULT_NOPAGE;
423bad60
NP
1656}
1657
f5e6d1d5
MW
1658/**
1659 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1660 * @vma: user vma to map to
1661 * @addr: target user address of this page
1662 * @pfn: source kernel pfn
1663 * @pgprot: pgprot flags for the inserted page
1664 *
1665 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1666 * to override pgprot on a per-page basis.
1667 *
1668 * This only makes sense for IO mappings, and it makes no sense for
1669 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1670 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1671 * impractical.
1672 *
ae2b01f3 1673 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1674 * Return: vm_fault_t value.
1675 */
1676vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1677 unsigned long pfn, pgprot_t pgprot)
1678{
6d958546
MW
1679 /*
1680 * Technically, architectures with pte_special can avoid all these
1681 * restrictions (same for remap_pfn_range). However we would like
1682 * consistency in testing and feature parity among all, so we should
1683 * try to keep these invariants in place for everybody.
1684 */
1685 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1686 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1687 (VM_PFNMAP|VM_MIXEDMAP));
1688 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1689 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1690
1691 if (addr < vma->vm_start || addr >= vma->vm_end)
1692 return VM_FAULT_SIGBUS;
1693
1694 if (!pfn_modify_allowed(pfn, pgprot))
1695 return VM_FAULT_SIGBUS;
1696
1697 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1698
9b5a8e00 1699 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1700 false);
f5e6d1d5
MW
1701}
1702EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1703
ae2b01f3
MW
1704/**
1705 * vmf_insert_pfn - insert single pfn into user vma
1706 * @vma: user vma to map to
1707 * @addr: target user address of this page
1708 * @pfn: source kernel pfn
1709 *
1710 * Similar to vm_insert_page, this allows drivers to insert individual pages
1711 * they've allocated into a user vma. Same comments apply.
1712 *
1713 * This function should only be called from a vm_ops->fault handler, and
1714 * in that case the handler should return the result of this function.
1715 *
1716 * vma cannot be a COW mapping.
1717 *
1718 * As this is called only for pages that do not currently exist, we
1719 * do not need to flush old virtual caches or the TLB.
1720 *
1721 * Context: Process context. May allocate using %GFP_KERNEL.
1722 * Return: vm_fault_t value.
1723 */
1724vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1725 unsigned long pfn)
1726{
1727 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1728}
1729EXPORT_SYMBOL(vmf_insert_pfn);
1730
785a3fab
DW
1731static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1732{
1733 /* these checks mirror the abort conditions in vm_normal_page */
1734 if (vma->vm_flags & VM_MIXEDMAP)
1735 return true;
1736 if (pfn_t_devmap(pfn))
1737 return true;
1738 if (pfn_t_special(pfn))
1739 return true;
1740 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1741 return true;
1742 return false;
1743}
1744
79f3aa5b
MW
1745static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1746 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1747{
87744ab3 1748 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1749 int err;
87744ab3 1750
785a3fab 1751 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1752
423bad60 1753 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1754 return VM_FAULT_SIGBUS;
308a047c
BP
1755
1756 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1757
42e4089c 1758 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1759 return VM_FAULT_SIGBUS;
42e4089c 1760
423bad60
NP
1761 /*
1762 * If we don't have pte special, then we have to use the pfn_valid()
1763 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1764 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1765 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1766 * without pte special, it would there be refcounted as a normal page.
423bad60 1767 */
00b3a331
LD
1768 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1769 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1770 struct page *page;
1771
03fc2da6
DW
1772 /*
1773 * At this point we are committed to insert_page()
1774 * regardless of whether the caller specified flags that
1775 * result in pfn_t_has_page() == false.
1776 */
1777 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1778 err = insert_page(vma, addr, page, pgprot);
1779 } else {
9b5a8e00 1780 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1781 }
b2770da6 1782
5d747637
MW
1783 if (err == -ENOMEM)
1784 return VM_FAULT_OOM;
1785 if (err < 0 && err != -EBUSY)
1786 return VM_FAULT_SIGBUS;
1787
1788 return VM_FAULT_NOPAGE;
e0dc0d8f 1789}
79f3aa5b
MW
1790
1791vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1792 pfn_t pfn)
1793{
1794 return __vm_insert_mixed(vma, addr, pfn, false);
1795}
5d747637 1796EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1797
ab77dab4
SJ
1798/*
1799 * If the insertion of PTE failed because someone else already added a
1800 * different entry in the mean time, we treat that as success as we assume
1801 * the same entry was actually inserted.
1802 */
ab77dab4
SJ
1803vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1804 unsigned long addr, pfn_t pfn)
b2770da6 1805{
79f3aa5b 1806 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1807}
ab77dab4 1808EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1809
1da177e4
LT
1810/*
1811 * maps a range of physical memory into the requested pages. the old
1812 * mappings are removed. any references to nonexistent pages results
1813 * in null mappings (currently treated as "copy-on-access")
1814 */
1815static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1816 unsigned long addr, unsigned long end,
1817 unsigned long pfn, pgprot_t prot)
1818{
519d2087 1819 pte_t *pte, *mapped_pte;
c74df32c 1820 spinlock_t *ptl;
42e4089c 1821 int err = 0;
1da177e4 1822
519d2087 1823 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1824 if (!pte)
1825 return -ENOMEM;
6606c3e0 1826 arch_enter_lazy_mmu_mode();
1da177e4
LT
1827 do {
1828 BUG_ON(!pte_none(*pte));
42e4089c
AK
1829 if (!pfn_modify_allowed(pfn, prot)) {
1830 err = -EACCES;
1831 break;
1832 }
7e675137 1833 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1834 pfn++;
1835 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1836 arch_leave_lazy_mmu_mode();
519d2087 1837 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 1838 return err;
1da177e4
LT
1839}
1840
1841static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1842 unsigned long addr, unsigned long end,
1843 unsigned long pfn, pgprot_t prot)
1844{
1845 pmd_t *pmd;
1846 unsigned long next;
42e4089c 1847 int err;
1da177e4
LT
1848
1849 pfn -= addr >> PAGE_SHIFT;
1850 pmd = pmd_alloc(mm, pud, addr);
1851 if (!pmd)
1852 return -ENOMEM;
f66055ab 1853 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1854 do {
1855 next = pmd_addr_end(addr, end);
42e4089c
AK
1856 err = remap_pte_range(mm, pmd, addr, next,
1857 pfn + (addr >> PAGE_SHIFT), prot);
1858 if (err)
1859 return err;
1da177e4
LT
1860 } while (pmd++, addr = next, addr != end);
1861 return 0;
1862}
1863
c2febafc 1864static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1865 unsigned long addr, unsigned long end,
1866 unsigned long pfn, pgprot_t prot)
1867{
1868 pud_t *pud;
1869 unsigned long next;
42e4089c 1870 int err;
1da177e4
LT
1871
1872 pfn -= addr >> PAGE_SHIFT;
c2febafc 1873 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1874 if (!pud)
1875 return -ENOMEM;
1876 do {
1877 next = pud_addr_end(addr, end);
42e4089c
AK
1878 err = remap_pmd_range(mm, pud, addr, next,
1879 pfn + (addr >> PAGE_SHIFT), prot);
1880 if (err)
1881 return err;
1da177e4
LT
1882 } while (pud++, addr = next, addr != end);
1883 return 0;
1884}
1885
c2febafc
KS
1886static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1887 unsigned long addr, unsigned long end,
1888 unsigned long pfn, pgprot_t prot)
1889{
1890 p4d_t *p4d;
1891 unsigned long next;
42e4089c 1892 int err;
c2febafc
KS
1893
1894 pfn -= addr >> PAGE_SHIFT;
1895 p4d = p4d_alloc(mm, pgd, addr);
1896 if (!p4d)
1897 return -ENOMEM;
1898 do {
1899 next = p4d_addr_end(addr, end);
42e4089c
AK
1900 err = remap_pud_range(mm, p4d, addr, next,
1901 pfn + (addr >> PAGE_SHIFT), prot);
1902 if (err)
1903 return err;
c2febafc
KS
1904 } while (p4d++, addr = next, addr != end);
1905 return 0;
1906}
1907
bfa5bf6d
REB
1908/**
1909 * remap_pfn_range - remap kernel memory to userspace
1910 * @vma: user vma to map to
1911 * @addr: target user address to start at
1912 * @pfn: physical address of kernel memory
1913 * @size: size of map area
1914 * @prot: page protection flags for this mapping
1915 *
a862f68a
MR
1916 * Note: this is only safe if the mm semaphore is held when called.
1917 *
1918 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1919 */
1da177e4
LT
1920int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1921 unsigned long pfn, unsigned long size, pgprot_t prot)
1922{
1923 pgd_t *pgd;
1924 unsigned long next;
2d15cab8 1925 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1926 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1927 unsigned long remap_pfn = pfn;
1da177e4
LT
1928 int err;
1929
1930 /*
1931 * Physically remapped pages are special. Tell the
1932 * rest of the world about it:
1933 * VM_IO tells people not to look at these pages
1934 * (accesses can have side effects).
6aab341e
LT
1935 * VM_PFNMAP tells the core MM that the base pages are just
1936 * raw PFN mappings, and do not have a "struct page" associated
1937 * with them.
314e51b9
KK
1938 * VM_DONTEXPAND
1939 * Disable vma merging and expanding with mremap().
1940 * VM_DONTDUMP
1941 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1942 *
1943 * There's a horrible special case to handle copy-on-write
1944 * behaviour that some programs depend on. We mark the "original"
1945 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1946 * See vm_normal_page() for details.
1da177e4 1947 */
b3b9c293
KK
1948 if (is_cow_mapping(vma->vm_flags)) {
1949 if (addr != vma->vm_start || end != vma->vm_end)
1950 return -EINVAL;
fb155c16 1951 vma->vm_pgoff = pfn;
b3b9c293
KK
1952 }
1953
d5957d2f 1954 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1955 if (err)
3c8bb73a 1956 return -EINVAL;
fb155c16 1957
314e51b9 1958 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1959
1960 BUG_ON(addr >= end);
1961 pfn -= addr >> PAGE_SHIFT;
1962 pgd = pgd_offset(mm, addr);
1963 flush_cache_range(vma, addr, end);
1da177e4
LT
1964 do {
1965 next = pgd_addr_end(addr, end);
c2febafc 1966 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1967 pfn + (addr >> PAGE_SHIFT), prot);
1968 if (err)
1969 break;
1970 } while (pgd++, addr = next, addr != end);
2ab64037 1971
1972 if (err)
d5957d2f 1973 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1974
1da177e4
LT
1975 return err;
1976}
1977EXPORT_SYMBOL(remap_pfn_range);
1978
b4cbb197
LT
1979/**
1980 * vm_iomap_memory - remap memory to userspace
1981 * @vma: user vma to map to
1982 * @start: start of area
1983 * @len: size of area
1984 *
1985 * This is a simplified io_remap_pfn_range() for common driver use. The
1986 * driver just needs to give us the physical memory range to be mapped,
1987 * we'll figure out the rest from the vma information.
1988 *
1989 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1990 * whatever write-combining details or similar.
a862f68a
MR
1991 *
1992 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1993 */
1994int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1995{
1996 unsigned long vm_len, pfn, pages;
1997
1998 /* Check that the physical memory area passed in looks valid */
1999 if (start + len < start)
2000 return -EINVAL;
2001 /*
2002 * You *really* shouldn't map things that aren't page-aligned,
2003 * but we've historically allowed it because IO memory might
2004 * just have smaller alignment.
2005 */
2006 len += start & ~PAGE_MASK;
2007 pfn = start >> PAGE_SHIFT;
2008 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2009 if (pfn + pages < pfn)
2010 return -EINVAL;
2011
2012 /* We start the mapping 'vm_pgoff' pages into the area */
2013 if (vma->vm_pgoff > pages)
2014 return -EINVAL;
2015 pfn += vma->vm_pgoff;
2016 pages -= vma->vm_pgoff;
2017
2018 /* Can we fit all of the mapping? */
2019 vm_len = vma->vm_end - vma->vm_start;
2020 if (vm_len >> PAGE_SHIFT > pages)
2021 return -EINVAL;
2022
2023 /* Ok, let it rip */
2024 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2025}
2026EXPORT_SYMBOL(vm_iomap_memory);
2027
aee16b3c
JF
2028static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2029 unsigned long addr, unsigned long end,
2030 pte_fn_t fn, void *data)
2031{
2032 pte_t *pte;
2033 int err;
94909914 2034 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2035
2036 pte = (mm == &init_mm) ?
2037 pte_alloc_kernel(pmd, addr) :
2038 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2039 if (!pte)
2040 return -ENOMEM;
2041
2042 BUG_ON(pmd_huge(*pmd));
2043
38e0edb1
JF
2044 arch_enter_lazy_mmu_mode();
2045
aee16b3c 2046 do {
8b1e0f81 2047 err = fn(pte++, addr, data);
aee16b3c
JF
2048 if (err)
2049 break;
c36987e2 2050 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2051
38e0edb1
JF
2052 arch_leave_lazy_mmu_mode();
2053
aee16b3c
JF
2054 if (mm != &init_mm)
2055 pte_unmap_unlock(pte-1, ptl);
2056 return err;
2057}
2058
2059static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2060 unsigned long addr, unsigned long end,
2061 pte_fn_t fn, void *data)
2062{
2063 pmd_t *pmd;
2064 unsigned long next;
2065 int err;
2066
ceb86879
AK
2067 BUG_ON(pud_huge(*pud));
2068
aee16b3c
JF
2069 pmd = pmd_alloc(mm, pud, addr);
2070 if (!pmd)
2071 return -ENOMEM;
2072 do {
2073 next = pmd_addr_end(addr, end);
2074 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2075 if (err)
2076 break;
2077 } while (pmd++, addr = next, addr != end);
2078 return err;
2079}
2080
c2febafc 2081static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2082 unsigned long addr, unsigned long end,
2083 pte_fn_t fn, void *data)
2084{
2085 pud_t *pud;
2086 unsigned long next;
2087 int err;
2088
c2febafc 2089 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2090 if (!pud)
2091 return -ENOMEM;
2092 do {
2093 next = pud_addr_end(addr, end);
2094 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2095 if (err)
2096 break;
2097 } while (pud++, addr = next, addr != end);
2098 return err;
2099}
2100
c2febafc
KS
2101static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2102 unsigned long addr, unsigned long end,
2103 pte_fn_t fn, void *data)
2104{
2105 p4d_t *p4d;
2106 unsigned long next;
2107 int err;
2108
2109 p4d = p4d_alloc(mm, pgd, addr);
2110 if (!p4d)
2111 return -ENOMEM;
2112 do {
2113 next = p4d_addr_end(addr, end);
2114 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2115 if (err)
2116 break;
2117 } while (p4d++, addr = next, addr != end);
2118 return err;
2119}
2120
aee16b3c
JF
2121/*
2122 * Scan a region of virtual memory, filling in page tables as necessary
2123 * and calling a provided function on each leaf page table.
2124 */
2125int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2126 unsigned long size, pte_fn_t fn, void *data)
2127{
2128 pgd_t *pgd;
2129 unsigned long next;
57250a5b 2130 unsigned long end = addr + size;
aee16b3c
JF
2131 int err;
2132
9cb65bc3
MP
2133 if (WARN_ON(addr >= end))
2134 return -EINVAL;
2135
aee16b3c
JF
2136 pgd = pgd_offset(mm, addr);
2137 do {
2138 next = pgd_addr_end(addr, end);
c2febafc 2139 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2140 if (err)
2141 break;
2142 } while (pgd++, addr = next, addr != end);
57250a5b 2143
aee16b3c
JF
2144 return err;
2145}
2146EXPORT_SYMBOL_GPL(apply_to_page_range);
2147
8f4e2101 2148/*
9b4bdd2f
KS
2149 * handle_pte_fault chooses page fault handler according to an entry which was
2150 * read non-atomically. Before making any commitment, on those architectures
2151 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2152 * parts, do_swap_page must check under lock before unmapping the pte and
2153 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2154 * and do_anonymous_page can safely check later on).
8f4e2101 2155 */
4c21e2f2 2156static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2157 pte_t *page_table, pte_t orig_pte)
2158{
2159 int same = 1;
2160#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2161 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2162 spinlock_t *ptl = pte_lockptr(mm, pmd);
2163 spin_lock(ptl);
8f4e2101 2164 same = pte_same(*page_table, orig_pte);
4c21e2f2 2165 spin_unlock(ptl);
8f4e2101
HD
2166 }
2167#endif
2168 pte_unmap(page_table);
2169 return same;
2170}
2171
c8efcda2
JH
2172static inline bool cow_user_page(struct page *dst, struct page *src,
2173 struct vm_fault *vmf)
6aab341e 2174{
c8efcda2
JH
2175 bool ret;
2176 void *kaddr;
2177 void __user *uaddr;
528b3653 2178 bool locked = false;
c8efcda2
JH
2179 struct vm_area_struct *vma = vmf->vma;
2180 struct mm_struct *mm = vma->vm_mm;
2181 unsigned long addr = vmf->address;
2182
0abdd7a8
DW
2183 debug_dma_assert_idle(src);
2184
c8efcda2
JH
2185 if (likely(src)) {
2186 copy_user_highpage(dst, src, addr, vma);
2187 return true;
2188 }
2189
6aab341e
LT
2190 /*
2191 * If the source page was a PFN mapping, we don't have
2192 * a "struct page" for it. We do a best-effort copy by
2193 * just copying from the original user address. If that
2194 * fails, we just zero-fill it. Live with it.
2195 */
c8efcda2
JH
2196 kaddr = kmap_atomic(dst);
2197 uaddr = (void __user *)(addr & PAGE_MASK);
2198
2199 /*
2200 * On architectures with software "accessed" bits, we would
2201 * take a double page fault, so mark it accessed here.
2202 */
528b3653 2203 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
c8efcda2 2204 pte_t entry;
5d2a2dbb 2205
c8efcda2 2206 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
528b3653 2207 locked = true;
c8efcda2
JH
2208 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2209 /*
2210 * Other thread has already handled the fault
2211 * and we don't need to do anything. If it's
2212 * not the case, the fault will be triggered
2213 * again on the same address.
2214 */
2215 ret = false;
2216 goto pte_unlock;
2217 }
2218
2219 entry = pte_mkyoung(vmf->orig_pte);
2220 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2221 update_mmu_cache(vma, addr, vmf->pte);
2222 }
2223
2224 /*
2225 * This really shouldn't fail, because the page is there
2226 * in the page tables. But it might just be unreadable,
2227 * in which case we just give up and fill the result with
2228 * zeroes.
2229 */
2230 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
528b3653
KS
2231 if (locked)
2232 goto warn;
2233
2234 /* Re-validate under PTL if the page is still mapped */
2235 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2236 locked = true;
2237 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2238 /* The PTE changed under us. Retry page fault. */
2239 ret = false;
2240 goto pte_unlock;
2241 }
2242
5d2a2dbb 2243 /*
528b3653
KS
2244 * The same page can be mapped back since last copy attampt.
2245 * Try to copy again under PTL.
5d2a2dbb 2246 */
528b3653
KS
2247 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2248 /*
2249 * Give a warn in case there can be some obscure
2250 * use-case
2251 */
2252warn:
2253 WARN_ON_ONCE(1);
2254 clear_page(kaddr);
2255 }
c8efcda2
JH
2256 }
2257
2258 ret = true;
2259
2260pte_unlock:
528b3653 2261 if (locked)
c8efcda2
JH
2262 pte_unmap_unlock(vmf->pte, vmf->ptl);
2263 kunmap_atomic(kaddr);
2264 flush_dcache_page(dst);
2265
2266 return ret;
6aab341e
LT
2267}
2268
c20cd45e
MH
2269static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2270{
2271 struct file *vm_file = vma->vm_file;
2272
2273 if (vm_file)
2274 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2275
2276 /*
2277 * Special mappings (e.g. VDSO) do not have any file so fake
2278 * a default GFP_KERNEL for them.
2279 */
2280 return GFP_KERNEL;
2281}
2282
fb09a464
KS
2283/*
2284 * Notify the address space that the page is about to become writable so that
2285 * it can prohibit this or wait for the page to get into an appropriate state.
2286 *
2287 * We do this without the lock held, so that it can sleep if it needs to.
2288 */
2b740303 2289static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2290{
2b740303 2291 vm_fault_t ret;
38b8cb7f
JK
2292 struct page *page = vmf->page;
2293 unsigned int old_flags = vmf->flags;
fb09a464 2294
38b8cb7f 2295 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2296
dc617f29
DW
2297 if (vmf->vma->vm_file &&
2298 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2299 return VM_FAULT_SIGBUS;
2300
11bac800 2301 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2302 /* Restore original flags so that caller is not surprised */
2303 vmf->flags = old_flags;
fb09a464
KS
2304 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2305 return ret;
2306 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2307 lock_page(page);
2308 if (!page->mapping) {
2309 unlock_page(page);
2310 return 0; /* retry */
2311 }
2312 ret |= VM_FAULT_LOCKED;
2313 } else
2314 VM_BUG_ON_PAGE(!PageLocked(page), page);
2315 return ret;
2316}
2317
97ba0c2b
JK
2318/*
2319 * Handle dirtying of a page in shared file mapping on a write fault.
2320 *
2321 * The function expects the page to be locked and unlocks it.
2322 */
69191d05 2323static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2324{
69191d05 2325 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2326 struct address_space *mapping;
69191d05 2327 struct page *page = vmf->page;
97ba0c2b
JK
2328 bool dirtied;
2329 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2330
2331 dirtied = set_page_dirty(page);
2332 VM_BUG_ON_PAGE(PageAnon(page), page);
2333 /*
2334 * Take a local copy of the address_space - page.mapping may be zeroed
2335 * by truncate after unlock_page(). The address_space itself remains
2336 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2337 * release semantics to prevent the compiler from undoing this copying.
2338 */
2339 mapping = page_rmapping(page);
2340 unlock_page(page);
2341
69191d05
JW
2342 if (!page_mkwrite)
2343 file_update_time(vma->vm_file);
2344
2345 /*
2346 * Throttle page dirtying rate down to writeback speed.
2347 *
2348 * mapping may be NULL here because some device drivers do not
2349 * set page.mapping but still dirty their pages
2350 *
2351 * Drop the mmap_sem before waiting on IO, if we can. The file
2352 * is pinning the mapping, as per above.
2353 */
97ba0c2b 2354 if ((dirtied || page_mkwrite) && mapping) {
69191d05
JW
2355 struct file *fpin;
2356
2357 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2358 balance_dirty_pages_ratelimited(mapping);
69191d05
JW
2359 if (fpin) {
2360 fput(fpin);
2361 return VM_FAULT_RETRY;
2362 }
97ba0c2b
JK
2363 }
2364
69191d05 2365 return 0;
97ba0c2b
JK
2366}
2367
4e047f89
SR
2368/*
2369 * Handle write page faults for pages that can be reused in the current vma
2370 *
2371 * This can happen either due to the mapping being with the VM_SHARED flag,
2372 * or due to us being the last reference standing to the page. In either
2373 * case, all we need to do here is to mark the page as writable and update
2374 * any related book-keeping.
2375 */
997dd98d 2376static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2377 __releases(vmf->ptl)
4e047f89 2378{
82b0f8c3 2379 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2380 struct page *page = vmf->page;
4e047f89
SR
2381 pte_t entry;
2382 /*
2383 * Clear the pages cpupid information as the existing
2384 * information potentially belongs to a now completely
2385 * unrelated process.
2386 */
2387 if (page)
2388 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2389
2994302b
JK
2390 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2391 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2392 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2393 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2394 update_mmu_cache(vma, vmf->address, vmf->pte);
2395 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2396}
2397
2f38ab2c
SR
2398/*
2399 * Handle the case of a page which we actually need to copy to a new page.
2400 *
2401 * Called with mmap_sem locked and the old page referenced, but
2402 * without the ptl held.
2403 *
2404 * High level logic flow:
2405 *
2406 * - Allocate a page, copy the content of the old page to the new one.
2407 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2408 * - Take the PTL. If the pte changed, bail out and release the allocated page
2409 * - If the pte is still the way we remember it, update the page table and all
2410 * relevant references. This includes dropping the reference the page-table
2411 * held to the old page, as well as updating the rmap.
2412 * - In any case, unlock the PTL and drop the reference we took to the old page.
2413 */
2b740303 2414static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2415{
82b0f8c3 2416 struct vm_area_struct *vma = vmf->vma;
bae473a4 2417 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2418 struct page *old_page = vmf->page;
2f38ab2c 2419 struct page *new_page = NULL;
2f38ab2c
SR
2420 pte_t entry;
2421 int page_copied = 0;
2f38ab2c 2422 struct mem_cgroup *memcg;
ac46d4f3 2423 struct mmu_notifier_range range;
2f38ab2c
SR
2424
2425 if (unlikely(anon_vma_prepare(vma)))
2426 goto oom;
2427
2994302b 2428 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2429 new_page = alloc_zeroed_user_highpage_movable(vma,
2430 vmf->address);
2f38ab2c
SR
2431 if (!new_page)
2432 goto oom;
2433 } else {
bae473a4 2434 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2435 vmf->address);
2f38ab2c
SR
2436 if (!new_page)
2437 goto oom;
c8efcda2
JH
2438
2439 if (!cow_user_page(new_page, old_page, vmf)) {
2440 /*
2441 * COW failed, if the fault was solved by other,
2442 * it's fine. If not, userspace would re-fault on
2443 * the same address and we will handle the fault
2444 * from the second attempt.
2445 */
2446 put_page(new_page);
2447 if (old_page)
2448 put_page(old_page);
2449 return 0;
2450 }
2f38ab2c 2451 }
2f38ab2c 2452
2cf85583 2453 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2454 goto oom_free_new;
2455
eb3c24f3
MG
2456 __SetPageUptodate(new_page);
2457
7269f999 2458 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2459 vmf->address & PAGE_MASK,
ac46d4f3
JG
2460 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2461 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2462
2463 /*
2464 * Re-check the pte - we dropped the lock
2465 */
82b0f8c3 2466 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2467 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2468 if (old_page) {
2469 if (!PageAnon(old_page)) {
eca56ff9
JM
2470 dec_mm_counter_fast(mm,
2471 mm_counter_file(old_page));
2f38ab2c
SR
2472 inc_mm_counter_fast(mm, MM_ANONPAGES);
2473 }
2474 } else {
2475 inc_mm_counter_fast(mm, MM_ANONPAGES);
2476 }
2994302b 2477 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2478 entry = mk_pte(new_page, vma->vm_page_prot);
2479 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2480 /*
2481 * Clear the pte entry and flush it first, before updating the
2482 * pte with the new entry. This will avoid a race condition
2483 * seen in the presence of one thread doing SMC and another
2484 * thread doing COW.
2485 */
82b0f8c3
JK
2486 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2487 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2488 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2489 lru_cache_add_active_or_unevictable(new_page, vma);
2490 /*
2491 * We call the notify macro here because, when using secondary
2492 * mmu page tables (such as kvm shadow page tables), we want the
2493 * new page to be mapped directly into the secondary page table.
2494 */
82b0f8c3
JK
2495 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2496 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2497 if (old_page) {
2498 /*
2499 * Only after switching the pte to the new page may
2500 * we remove the mapcount here. Otherwise another
2501 * process may come and find the rmap count decremented
2502 * before the pte is switched to the new page, and
2503 * "reuse" the old page writing into it while our pte
2504 * here still points into it and can be read by other
2505 * threads.
2506 *
2507 * The critical issue is to order this
2508 * page_remove_rmap with the ptp_clear_flush above.
2509 * Those stores are ordered by (if nothing else,)
2510 * the barrier present in the atomic_add_negative
2511 * in page_remove_rmap.
2512 *
2513 * Then the TLB flush in ptep_clear_flush ensures that
2514 * no process can access the old page before the
2515 * decremented mapcount is visible. And the old page
2516 * cannot be reused until after the decremented
2517 * mapcount is visible. So transitively, TLBs to
2518 * old page will be flushed before it can be reused.
2519 */
d281ee61 2520 page_remove_rmap(old_page, false);
2f38ab2c
SR
2521 }
2522
2523 /* Free the old page.. */
2524 new_page = old_page;
2525 page_copied = 1;
2526 } else {
f627c2f5 2527 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2528 }
2529
2530 if (new_page)
09cbfeaf 2531 put_page(new_page);
2f38ab2c 2532
82b0f8c3 2533 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2534 /*
2535 * No need to double call mmu_notifier->invalidate_range() callback as
2536 * the above ptep_clear_flush_notify() did already call it.
2537 */
ac46d4f3 2538 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2539 if (old_page) {
2540 /*
2541 * Don't let another task, with possibly unlocked vma,
2542 * keep the mlocked page.
2543 */
2544 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2545 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2546 if (PageMlocked(old_page))
2547 munlock_vma_page(old_page);
2f38ab2c
SR
2548 unlock_page(old_page);
2549 }
09cbfeaf 2550 put_page(old_page);
2f38ab2c
SR
2551 }
2552 return page_copied ? VM_FAULT_WRITE : 0;
2553oom_free_new:
09cbfeaf 2554 put_page(new_page);
2f38ab2c
SR
2555oom:
2556 if (old_page)
09cbfeaf 2557 put_page(old_page);
2f38ab2c
SR
2558 return VM_FAULT_OOM;
2559}
2560
66a6197c
JK
2561/**
2562 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2563 * writeable once the page is prepared
2564 *
2565 * @vmf: structure describing the fault
2566 *
2567 * This function handles all that is needed to finish a write page fault in a
2568 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2569 * It handles locking of PTE and modifying it.
66a6197c
JK
2570 *
2571 * The function expects the page to be locked or other protection against
2572 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2573 *
2574 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2575 * we acquired PTE lock.
66a6197c 2576 */
2b740303 2577vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2578{
2579 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2580 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2581 &vmf->ptl);
2582 /*
2583 * We might have raced with another page fault while we released the
2584 * pte_offset_map_lock.
2585 */
2586 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2587 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2588 return VM_FAULT_NOPAGE;
66a6197c
JK
2589 }
2590 wp_page_reuse(vmf);
a19e2553 2591 return 0;
66a6197c
JK
2592}
2593
dd906184
BH
2594/*
2595 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2596 * mapping
2597 */
2b740303 2598static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2599{
82b0f8c3 2600 struct vm_area_struct *vma = vmf->vma;
bae473a4 2601
dd906184 2602 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2603 vm_fault_t ret;
dd906184 2604
82b0f8c3 2605 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2606 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2607 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2608 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2609 return ret;
66a6197c 2610 return finish_mkwrite_fault(vmf);
dd906184 2611 }
997dd98d
JK
2612 wp_page_reuse(vmf);
2613 return VM_FAULT_WRITE;
dd906184
BH
2614}
2615
2b740303 2616static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2617 __releases(vmf->ptl)
93e478d4 2618{
82b0f8c3 2619 struct vm_area_struct *vma = vmf->vma;
69191d05 2620 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2621
a41b70d6 2622 get_page(vmf->page);
93e478d4 2623
93e478d4 2624 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2625 vm_fault_t tmp;
93e478d4 2626
82b0f8c3 2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2628 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2629 if (unlikely(!tmp || (tmp &
2630 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2631 put_page(vmf->page);
93e478d4
SR
2632 return tmp;
2633 }
66a6197c 2634 tmp = finish_mkwrite_fault(vmf);
a19e2553 2635 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2636 unlock_page(vmf->page);
a41b70d6 2637 put_page(vmf->page);
66a6197c 2638 return tmp;
93e478d4 2639 }
66a6197c
JK
2640 } else {
2641 wp_page_reuse(vmf);
997dd98d 2642 lock_page(vmf->page);
93e478d4 2643 }
69191d05 2644 ret |= fault_dirty_shared_page(vmf);
997dd98d 2645 put_page(vmf->page);
93e478d4 2646
69191d05 2647 return ret;
93e478d4
SR
2648}
2649
1da177e4
LT
2650/*
2651 * This routine handles present pages, when users try to write
2652 * to a shared page. It is done by copying the page to a new address
2653 * and decrementing the shared-page counter for the old page.
2654 *
1da177e4
LT
2655 * Note that this routine assumes that the protection checks have been
2656 * done by the caller (the low-level page fault routine in most cases).
2657 * Thus we can safely just mark it writable once we've done any necessary
2658 * COW.
2659 *
2660 * We also mark the page dirty at this point even though the page will
2661 * change only once the write actually happens. This avoids a few races,
2662 * and potentially makes it more efficient.
2663 *
8f4e2101
HD
2664 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2665 * but allow concurrent faults), with pte both mapped and locked.
2666 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2667 */
2b740303 2668static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2669 __releases(vmf->ptl)
1da177e4 2670{
82b0f8c3 2671 struct vm_area_struct *vma = vmf->vma;
1da177e4 2672
a41b70d6
JK
2673 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2674 if (!vmf->page) {
251b97f5 2675 /*
64e45507
PF
2676 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2677 * VM_PFNMAP VMA.
251b97f5
PZ
2678 *
2679 * We should not cow pages in a shared writeable mapping.
dd906184 2680 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2681 */
2682 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2683 (VM_WRITE|VM_SHARED))
2994302b 2684 return wp_pfn_shared(vmf);
2f38ab2c 2685
82b0f8c3 2686 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2687 return wp_page_copy(vmf);
251b97f5 2688 }
1da177e4 2689
d08b3851 2690 /*
ee6a6457
PZ
2691 * Take out anonymous pages first, anonymous shared vmas are
2692 * not dirty accountable.
d08b3851 2693 */
52d1e606 2694 if (PageAnon(vmf->page)) {
ba3c4ce6 2695 int total_map_swapcount;
52d1e606
KT
2696 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2697 page_count(vmf->page) != 1))
2698 goto copy;
a41b70d6
JK
2699 if (!trylock_page(vmf->page)) {
2700 get_page(vmf->page);
82b0f8c3 2701 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2702 lock_page(vmf->page);
82b0f8c3
JK
2703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2704 vmf->address, &vmf->ptl);
2994302b 2705 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2706 unlock_page(vmf->page);
82b0f8c3 2707 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2708 put_page(vmf->page);
28766805 2709 return 0;
ab967d86 2710 }
a41b70d6 2711 put_page(vmf->page);
ee6a6457 2712 }
52d1e606
KT
2713 if (PageKsm(vmf->page)) {
2714 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2715 vmf->address);
2716 unlock_page(vmf->page);
2717 if (!reused)
2718 goto copy;
2719 wp_page_reuse(vmf);
2720 return VM_FAULT_WRITE;
2721 }
ba3c4ce6
HY
2722 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2723 if (total_map_swapcount == 1) {
6d0a07ed
AA
2724 /*
2725 * The page is all ours. Move it to
2726 * our anon_vma so the rmap code will
2727 * not search our parent or siblings.
2728 * Protected against the rmap code by
2729 * the page lock.
2730 */
a41b70d6 2731 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2732 }
a41b70d6 2733 unlock_page(vmf->page);
997dd98d
JK
2734 wp_page_reuse(vmf);
2735 return VM_FAULT_WRITE;
b009c024 2736 }
a41b70d6 2737 unlock_page(vmf->page);
ee6a6457 2738 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2739 (VM_WRITE|VM_SHARED))) {
a41b70d6 2740 return wp_page_shared(vmf);
1da177e4 2741 }
52d1e606 2742copy:
1da177e4
LT
2743 /*
2744 * Ok, we need to copy. Oh, well..
2745 */
a41b70d6 2746 get_page(vmf->page);
28766805 2747
82b0f8c3 2748 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2749 return wp_page_copy(vmf);
1da177e4
LT
2750}
2751
97a89413 2752static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2753 unsigned long start_addr, unsigned long end_addr,
2754 struct zap_details *details)
2755{
f5cc4eef 2756 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2757}
2758
f808c13f 2759static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2760 struct zap_details *details)
2761{
2762 struct vm_area_struct *vma;
1da177e4
LT
2763 pgoff_t vba, vea, zba, zea;
2764
6b2dbba8 2765 vma_interval_tree_foreach(vma, root,
1da177e4 2766 details->first_index, details->last_index) {
1da177e4
LT
2767
2768 vba = vma->vm_pgoff;
d6e93217 2769 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2770 zba = details->first_index;
2771 if (zba < vba)
2772 zba = vba;
2773 zea = details->last_index;
2774 if (zea > vea)
2775 zea = vea;
2776
97a89413 2777 unmap_mapping_range_vma(vma,
1da177e4
LT
2778 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2779 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2780 details);
1da177e4
LT
2781 }
2782}
2783
69f21c4e
HD
2784/**
2785 * unmap_mapping_page() - Unmap single page from processes.
2786 * @page: The locked page to be unmapped.
2787 *
2788 * Unmap this page from any userspace process which still has it mmaped.
2789 * Typically, for efficiency, the range of nearby pages has already been
2790 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
2791 * truncation or invalidation holds the lock on a page, it may find that
2792 * the page has been remapped again: and then uses unmap_mapping_page()
2793 * to unmap it finally.
2794 */
2795void unmap_mapping_page(struct page *page)
2796{
2797 struct address_space *mapping = page->mapping;
2798 struct zap_details details = { };
2799
2800 VM_BUG_ON(!PageLocked(page));
2801 VM_BUG_ON(PageTail(page));
2802
2803 details.check_mapping = mapping;
2804 details.first_index = page->index;
2805 details.last_index = page->index + hpage_nr_pages(page) - 1;
2806 details.single_page = page;
2807
2808 i_mmap_lock_write(mapping);
2809 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2810 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2811 i_mmap_unlock_write(mapping);
2812}
2813
977fbdcd
MW
2814/**
2815 * unmap_mapping_pages() - Unmap pages from processes.
2816 * @mapping: The address space containing pages to be unmapped.
2817 * @start: Index of first page to be unmapped.
2818 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2819 * @even_cows: Whether to unmap even private COWed pages.
2820 *
2821 * Unmap the pages in this address space from any userspace process which
2822 * has them mmaped. Generally, you want to remove COWed pages as well when
2823 * a file is being truncated, but not when invalidating pages from the page
2824 * cache.
2825 */
2826void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2827 pgoff_t nr, bool even_cows)
2828{
2829 struct zap_details details = { };
2830
2831 details.check_mapping = even_cows ? NULL : mapping;
2832 details.first_index = start;
2833 details.last_index = start + nr - 1;
2834 if (details.last_index < details.first_index)
2835 details.last_index = ULONG_MAX;
2836
2837 i_mmap_lock_write(mapping);
2838 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2839 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2840 i_mmap_unlock_write(mapping);
2841}
2842
1da177e4 2843/**
8a5f14a2 2844 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2845 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2846 * file.
2847 *
3d41088f 2848 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2849 * @holebegin: byte in first page to unmap, relative to the start of
2850 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2851 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2852 * must keep the partial page. In contrast, we must get rid of
2853 * partial pages.
2854 * @holelen: size of prospective hole in bytes. This will be rounded
2855 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2856 * end of the file.
2857 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2858 * but 0 when invalidating pagecache, don't throw away private data.
2859 */
2860void unmap_mapping_range(struct address_space *mapping,
2861 loff_t const holebegin, loff_t const holelen, int even_cows)
2862{
1da177e4
LT
2863 pgoff_t hba = holebegin >> PAGE_SHIFT;
2864 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2865
2866 /* Check for overflow. */
2867 if (sizeof(holelen) > sizeof(hlen)) {
2868 long long holeend =
2869 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2870 if (holeend & ~(long long)ULONG_MAX)
2871 hlen = ULONG_MAX - hba + 1;
2872 }
2873
977fbdcd 2874 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2875}
2876EXPORT_SYMBOL(unmap_mapping_range);
2877
1da177e4 2878/*
8f4e2101
HD
2879 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2880 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2881 * We return with pte unmapped and unlocked.
2882 *
2883 * We return with the mmap_sem locked or unlocked in the same cases
2884 * as does filemap_fault().
1da177e4 2885 */
2b740303 2886vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2887{
82b0f8c3 2888 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2889 struct page *page = NULL, *swapcache;
00501b53 2890 struct mem_cgroup *memcg;
65500d23 2891 swp_entry_t entry;
1da177e4 2892 pte_t pte;
d065bd81 2893 int locked;
ad8c2ee8 2894 int exclusive = 0;
2b740303 2895 vm_fault_t ret = 0;
1da177e4 2896
eaf649eb 2897 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2898 goto out;
65500d23 2899
2994302b 2900 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2901 if (unlikely(non_swap_entry(entry))) {
2902 if (is_migration_entry(entry)) {
82b0f8c3
JK
2903 migration_entry_wait(vma->vm_mm, vmf->pmd,
2904 vmf->address);
5042db43 2905 } else if (is_device_private_entry(entry)) {
897e6365
CH
2906 vmf->page = device_private_entry_to_page(entry);
2907 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2908 } else if (is_hwpoison_entry(entry)) {
2909 ret = VM_FAULT_HWPOISON;
2910 } else {
2994302b 2911 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2912 ret = VM_FAULT_SIGBUS;
d1737fdb 2913 }
0697212a
CL
2914 goto out;
2915 }
0bcac06f
MK
2916
2917
0ff92245 2918 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2919 page = lookup_swap_cache(entry, vma, vmf->address);
2920 swapcache = page;
f8020772 2921
1da177e4 2922 if (!page) {
0bcac06f
MK
2923 struct swap_info_struct *si = swp_swap_info(entry);
2924
aa8d22a1 2925 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2926 __swap_count(entry) == 1) {
0bcac06f 2927 /* skip swapcache */
e9e9b7ec
MK
2928 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2929 vmf->address);
0bcac06f
MK
2930 if (page) {
2931 __SetPageLocked(page);
2932 __SetPageSwapBacked(page);
2933 set_page_private(page, entry.val);
2934 lru_cache_add_anon(page);
2935 swap_readpage(page, true);
2936 }
aa8d22a1 2937 } else {
e9e9b7ec
MK
2938 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2939 vmf);
aa8d22a1 2940 swapcache = page;
0bcac06f
MK
2941 }
2942
1da177e4
LT
2943 if (!page) {
2944 /*
8f4e2101
HD
2945 * Back out if somebody else faulted in this pte
2946 * while we released the pte lock.
1da177e4 2947 */
82b0f8c3
JK
2948 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2949 vmf->address, &vmf->ptl);
2994302b 2950 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2951 ret = VM_FAULT_OOM;
0ff92245 2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2953 goto unlock;
1da177e4
LT
2954 }
2955
2956 /* Had to read the page from swap area: Major fault */
2957 ret = VM_FAULT_MAJOR;
f8891e5e 2958 count_vm_event(PGMAJFAULT);
2262185c 2959 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2960 } else if (PageHWPoison(page)) {
71f72525
WF
2961 /*
2962 * hwpoisoned dirty swapcache pages are kept for killing
2963 * owner processes (which may be unknown at hwpoison time)
2964 */
d1737fdb
AK
2965 ret = VM_FAULT_HWPOISON;
2966 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2967 goto out_release;
1da177e4
LT
2968 }
2969
82b0f8c3 2970 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2971
073e587e 2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2973 if (!locked) {
2974 ret |= VM_FAULT_RETRY;
2975 goto out_release;
2976 }
073e587e 2977
4969c119 2978 /*
31c4a3d3
HD
2979 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2980 * release the swapcache from under us. The page pin, and pte_same
2981 * test below, are not enough to exclude that. Even if it is still
2982 * swapcache, we need to check that the page's swap has not changed.
4969c119 2983 */
0bcac06f
MK
2984 if (unlikely((!PageSwapCache(page) ||
2985 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2986 goto out_page;
2987
82b0f8c3 2988 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2989 if (unlikely(!page)) {
2990 ret = VM_FAULT_OOM;
2991 page = swapcache;
cbf86cfe 2992 goto out_page;
5ad64688
HD
2993 }
2994
2cf85583
TH
2995 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2996 &memcg, false)) {
8a9f3ccd 2997 ret = VM_FAULT_OOM;
bc43f75c 2998 goto out_page;
8a9f3ccd
BS
2999 }
3000
1da177e4 3001 /*
8f4e2101 3002 * Back out if somebody else already faulted in this pte.
1da177e4 3003 */
82b0f8c3
JK
3004 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3005 &vmf->ptl);
2994302b 3006 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3007 goto out_nomap;
b8107480
KK
3008
3009 if (unlikely(!PageUptodate(page))) {
3010 ret = VM_FAULT_SIGBUS;
3011 goto out_nomap;
1da177e4
LT
3012 }
3013
8c7c6e34
KH
3014 /*
3015 * The page isn't present yet, go ahead with the fault.
3016 *
3017 * Be careful about the sequence of operations here.
3018 * To get its accounting right, reuse_swap_page() must be called
3019 * while the page is counted on swap but not yet in mapcount i.e.
3020 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3021 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3022 */
1da177e4 3023
bae473a4
KS
3024 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3025 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3026 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3027 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3028 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3029 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3030 ret |= VM_FAULT_WRITE;
d281ee61 3031 exclusive = RMAP_EXCLUSIVE;
1da177e4 3032 }
1da177e4 3033 flush_icache_page(vma, page);
2994302b 3034 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3035 pte = pte_mksoft_dirty(pte);
82b0f8c3 3036 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3037 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3038 vmf->orig_pte = pte;
0bcac06f
MK
3039
3040 /* ksm created a completely new copy */
3041 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3042 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3043 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3044 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3045 } else {
3046 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3047 mem_cgroup_commit_charge(page, memcg, true, false);
3048 activate_page(page);
00501b53 3049 }
1da177e4 3050
c475a8ab 3051 swap_free(entry);
5ccc5aba
VD
3052 if (mem_cgroup_swap_full(page) ||
3053 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3054 try_to_free_swap(page);
c475a8ab 3055 unlock_page(page);
0bcac06f 3056 if (page != swapcache && swapcache) {
4969c119
AA
3057 /*
3058 * Hold the lock to avoid the swap entry to be reused
3059 * until we take the PT lock for the pte_same() check
3060 * (to avoid false positives from pte_same). For
3061 * further safety release the lock after the swap_free
3062 * so that the swap count won't change under a
3063 * parallel locked swapcache.
3064 */
3065 unlock_page(swapcache);
09cbfeaf 3066 put_page(swapcache);
4969c119 3067 }
c475a8ab 3068
82b0f8c3 3069 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3070 ret |= do_wp_page(vmf);
61469f1d
HD
3071 if (ret & VM_FAULT_ERROR)
3072 ret &= VM_FAULT_ERROR;
1da177e4
LT
3073 goto out;
3074 }
3075
3076 /* No need to invalidate - it was non-present before */
82b0f8c3 3077 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3078unlock:
82b0f8c3 3079 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3080out:
3081 return ret;
b8107480 3082out_nomap:
f627c2f5 3083 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3084 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3085out_page:
b8107480 3086 unlock_page(page);
4779cb31 3087out_release:
09cbfeaf 3088 put_page(page);
0bcac06f 3089 if (page != swapcache && swapcache) {
4969c119 3090 unlock_page(swapcache);
09cbfeaf 3091 put_page(swapcache);
4969c119 3092 }
65500d23 3093 return ret;
1da177e4
LT
3094}
3095
3096/*
8f4e2101
HD
3097 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3098 * but allow concurrent faults), and pte mapped but not yet locked.
3099 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3100 */
2b740303 3101static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3102{
82b0f8c3 3103 struct vm_area_struct *vma = vmf->vma;
00501b53 3104 struct mem_cgroup *memcg;
8f4e2101 3105 struct page *page;
2b740303 3106 vm_fault_t ret = 0;
1da177e4 3107 pte_t entry;
1da177e4 3108
6b7339f4
KS
3109 /* File mapping without ->vm_ops ? */
3110 if (vma->vm_flags & VM_SHARED)
3111 return VM_FAULT_SIGBUS;
3112
7267ec00
KS
3113 /*
3114 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3115 * pte_offset_map() on pmds where a huge pmd might be created
3116 * from a different thread.
3117 *
3118 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3119 * parallel threads are excluded by other means.
3120 *
3121 * Here we only have down_read(mmap_sem).
3122 */
4cf58924 3123 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3124 return VM_FAULT_OOM;
3125
3126 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3127 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3128 return 0;
3129
11ac5524 3130 /* Use the zero-page for reads */
82b0f8c3 3131 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3132 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3133 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3134 vma->vm_page_prot));
82b0f8c3
JK
3135 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3136 vmf->address, &vmf->ptl);
3137 if (!pte_none(*vmf->pte))
a13ea5b7 3138 goto unlock;
6b31d595
MH
3139 ret = check_stable_address_space(vma->vm_mm);
3140 if (ret)
3141 goto unlock;
6b251fc9
AA
3142 /* Deliver the page fault to userland, check inside PT lock */
3143 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3144 pte_unmap_unlock(vmf->pte, vmf->ptl);
3145 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3146 }
a13ea5b7
HD
3147 goto setpte;
3148 }
3149
557ed1fa 3150 /* Allocate our own private page. */
557ed1fa
NP
3151 if (unlikely(anon_vma_prepare(vma)))
3152 goto oom;
82b0f8c3 3153 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3154 if (!page)
3155 goto oom;
eb3c24f3 3156
2cf85583
TH
3157 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3158 false))
eb3c24f3
MG
3159 goto oom_free_page;
3160
52f37629
MK
3161 /*
3162 * The memory barrier inside __SetPageUptodate makes sure that
3163 * preceeding stores to the page contents become visible before
3164 * the set_pte_at() write.
3165 */
0ed361de 3166 __SetPageUptodate(page);
8f4e2101 3167
557ed1fa 3168 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3169 if (vma->vm_flags & VM_WRITE)
3170 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3171
82b0f8c3
JK
3172 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3173 &vmf->ptl);
3174 if (!pte_none(*vmf->pte))
557ed1fa 3175 goto release;
9ba69294 3176
6b31d595
MH
3177 ret = check_stable_address_space(vma->vm_mm);
3178 if (ret)
3179 goto release;
3180
6b251fc9
AA
3181 /* Deliver the page fault to userland, check inside PT lock */
3182 if (userfaultfd_missing(vma)) {
82b0f8c3 3183 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3184 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3185 put_page(page);
82b0f8c3 3186 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3187 }
3188
bae473a4 3189 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3190 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3191 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3192 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3193setpte:
82b0f8c3 3194 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3195
3196 /* No need to invalidate - it was non-present before */
82b0f8c3 3197 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3198unlock:
82b0f8c3 3199 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3200 return ret;
8f4e2101 3201release:
f627c2f5 3202 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3203 put_page(page);
8f4e2101 3204 goto unlock;
8a9f3ccd 3205oom_free_page:
09cbfeaf 3206 put_page(page);
65500d23 3207oom:
1da177e4
LT
3208 return VM_FAULT_OOM;
3209}
3210
9a95f3cf
PC
3211/*
3212 * The mmap_sem must have been held on entry, and may have been
3213 * released depending on flags and vma->vm_ops->fault() return value.
3214 * See filemap_fault() and __lock_page_retry().
3215 */
2b740303 3216static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3217{
82b0f8c3 3218 struct vm_area_struct *vma = vmf->vma;
2b740303 3219 vm_fault_t ret;
7eae74af 3220
63f3655f
MH
3221 /*
3222 * Preallocate pte before we take page_lock because this might lead to
3223 * deadlocks for memcg reclaim which waits for pages under writeback:
3224 * lock_page(A)
3225 * SetPageWriteback(A)
3226 * unlock_page(A)
3227 * lock_page(B)
3228 * lock_page(B)
3229 * pte_alloc_pne
3230 * shrink_page_list
3231 * wait_on_page_writeback(A)
3232 * SetPageWriteback(B)
3233 * unlock_page(B)
3234 * # flush A, B to clear the writeback
3235 */
3236 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3237 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3238 if (!vmf->prealloc_pte)
3239 return VM_FAULT_OOM;
3240 smp_wmb(); /* See comment in __pte_alloc() */
3241 }
3242
11bac800 3243 ret = vma->vm_ops->fault(vmf);
3917048d 3244 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3245 VM_FAULT_DONE_COW)))
bc2466e4 3246 return ret;
7eae74af 3247
667240e0 3248 if (unlikely(PageHWPoison(vmf->page))) {
9a96a267 3249 struct page *page = vmf->page;
e6676aa6
RR
3250 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3251 if (ret & VM_FAULT_LOCKED) {
9a96a267
RR
3252 if (page_mapped(page))
3253 unmap_mapping_pages(page_mapping(page),
3254 page->index, 1, false);
e6676aa6 3255 /* Retry if a clean page was removed from the cache. */
9a96a267
RR
3256 if (invalidate_inode_page(page))
3257 poisonret = VM_FAULT_NOPAGE;
3258 unlock_page(page);
e6676aa6 3259 }
9a96a267 3260 put_page(page);
936ca80d 3261 vmf->page = NULL;
e6676aa6 3262 return poisonret;
7eae74af
KS
3263 }
3264
3265 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3266 lock_page(vmf->page);
7eae74af 3267 else
667240e0 3268 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3269
7eae74af
KS
3270 return ret;
3271}
3272
d0f0931d
RZ
3273/*
3274 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3275 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3276 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3277 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3278 */
3279static int pmd_devmap_trans_unstable(pmd_t *pmd)
3280{
3281 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3282}
3283
2b740303 3284static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3285{
82b0f8c3 3286 struct vm_area_struct *vma = vmf->vma;
7267ec00 3287
82b0f8c3 3288 if (!pmd_none(*vmf->pmd))
7267ec00 3289 goto map_pte;
82b0f8c3
JK
3290 if (vmf->prealloc_pte) {
3291 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3292 if (unlikely(!pmd_none(*vmf->pmd))) {
3293 spin_unlock(vmf->ptl);
7267ec00
KS
3294 goto map_pte;
3295 }
3296
c4812909 3297 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3298 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3299 spin_unlock(vmf->ptl);
7f2b6ce8 3300 vmf->prealloc_pte = NULL;
4cf58924 3301 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3302 return VM_FAULT_OOM;
3303 }
3304map_pte:
3305 /*
3306 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3307 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3308 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3309 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3310 * running immediately after a huge pmd fault in a different thread of
3311 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3312 * All we have to ensure is that it is a regular pmd that we can walk
3313 * with pte_offset_map() and we can do that through an atomic read in
3314 * C, which is what pmd_trans_unstable() provides.
7267ec00 3315 */
d0f0931d 3316 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3317 return VM_FAULT_NOPAGE;
3318
d0f0931d
RZ
3319 /*
3320 * At this point we know that our vmf->pmd points to a page of ptes
3321 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3322 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3323 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3324 * be valid and we will re-check to make sure the vmf->pte isn't
3325 * pte_none() under vmf->ptl protection when we return to
3326 * alloc_set_pte().
3327 */
82b0f8c3
JK
3328 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3329 &vmf->ptl);
7267ec00
KS
3330 return 0;
3331}
3332
e496cf3d 3333#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3334static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3335{
82b0f8c3 3336 struct vm_area_struct *vma = vmf->vma;
953c66c2 3337
82b0f8c3 3338 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3339 /*
3340 * We are going to consume the prealloc table,
3341 * count that as nr_ptes.
3342 */
c4812909 3343 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3344 vmf->prealloc_pte = NULL;
953c66c2
AK
3345}
3346
2b740303 3347static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3348{
82b0f8c3
JK
3349 struct vm_area_struct *vma = vmf->vma;
3350 bool write = vmf->flags & FAULT_FLAG_WRITE;
3351 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3352 pmd_t entry;
2b740303
SJ
3353 int i;
3354 vm_fault_t ret;
10102459
KS
3355
3356 if (!transhuge_vma_suitable(vma, haddr))
3357 return VM_FAULT_FALLBACK;
3358
3359 ret = VM_FAULT_FALLBACK;
3360 page = compound_head(page);
3361
953c66c2
AK
3362 /*
3363 * Archs like ppc64 need additonal space to store information
3364 * related to pte entry. Use the preallocated table for that.
3365 */
82b0f8c3 3366 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3367 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3368 if (!vmf->prealloc_pte)
953c66c2
AK
3369 return VM_FAULT_OOM;
3370 smp_wmb(); /* See comment in __pte_alloc() */
3371 }
3372
82b0f8c3
JK
3373 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3374 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3375 goto out;
3376
3377 for (i = 0; i < HPAGE_PMD_NR; i++)
3378 flush_icache_page(vma, page + i);
3379
3380 entry = mk_huge_pmd(page, vma->vm_page_prot);
3381 if (write)
f55e1014 3382 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3383
fadae295 3384 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3385 page_add_file_rmap(page, true);
953c66c2
AK
3386 /*
3387 * deposit and withdraw with pmd lock held
3388 */
3389 if (arch_needs_pgtable_deposit())
82b0f8c3 3390 deposit_prealloc_pte(vmf);
10102459 3391
82b0f8c3 3392 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3393
82b0f8c3 3394 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3395
3396 /* fault is handled */
3397 ret = 0;
95ecedcd 3398 count_vm_event(THP_FILE_MAPPED);
10102459 3399out:
82b0f8c3 3400 spin_unlock(vmf->ptl);
10102459
KS
3401 return ret;
3402}
3403#else
2b740303 3404static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3405{
3406 BUILD_BUG();
3407 return 0;
3408}
3409#endif
3410
8c6e50b0 3411/**
7267ec00
KS
3412 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3413 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3414 *
82b0f8c3 3415 * @vmf: fault environment
7267ec00 3416 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3417 * @page: page to map
8c6e50b0 3418 *
82b0f8c3
JK
3419 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3420 * return.
8c6e50b0
KS
3421 *
3422 * Target users are page handler itself and implementations of
3423 * vm_ops->map_pages.
a862f68a
MR
3424 *
3425 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3426 */
2b740303 3427vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3428 struct page *page)
3bb97794 3429{
82b0f8c3
JK
3430 struct vm_area_struct *vma = vmf->vma;
3431 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3432 pte_t entry;
2b740303 3433 vm_fault_t ret;
10102459 3434
82b0f8c3 3435 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3436 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3437 /* THP on COW? */
3438 VM_BUG_ON_PAGE(memcg, page);
3439
82b0f8c3 3440 ret = do_set_pmd(vmf, page);
10102459 3441 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3442 return ret;
10102459 3443 }
3bb97794 3444
82b0f8c3
JK
3445 if (!vmf->pte) {
3446 ret = pte_alloc_one_map(vmf);
7267ec00 3447 if (ret)
b0b9b3df 3448 return ret;
7267ec00
KS
3449 }
3450
3451 /* Re-check under ptl */
b0b9b3df
HD
3452 if (unlikely(!pte_none(*vmf->pte)))
3453 return VM_FAULT_NOPAGE;
7267ec00 3454
3bb97794
KS
3455 flush_icache_page(vma, page);
3456 entry = mk_pte(page, vma->vm_page_prot);
3457 if (write)
3458 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3459 /* copy-on-write page */
3460 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3461 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3462 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3463 mem_cgroup_commit_charge(page, memcg, false, false);
3464 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3465 } else {
eca56ff9 3466 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3467 page_add_file_rmap(page, false);
3bb97794 3468 }
82b0f8c3 3469 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3470
3471 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3472 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3473
b0b9b3df 3474 return 0;
3bb97794
KS
3475}
3476
9118c0cb
JK
3477
3478/**
3479 * finish_fault - finish page fault once we have prepared the page to fault
3480 *
3481 * @vmf: structure describing the fault
3482 *
3483 * This function handles all that is needed to finish a page fault once the
3484 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3485 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3486 * addition.
9118c0cb
JK
3487 *
3488 * The function expects the page to be locked and on success it consumes a
3489 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3490 *
3491 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3492 */
2b740303 3493vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3494{
3495 struct page *page;
2b740303 3496 vm_fault_t ret = 0;
9118c0cb
JK
3497
3498 /* Did we COW the page? */
3499 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3500 !(vmf->vma->vm_flags & VM_SHARED))
3501 page = vmf->cow_page;
3502 else
3503 page = vmf->page;
6b31d595
MH
3504
3505 /*
3506 * check even for read faults because we might have lost our CoWed
3507 * page
3508 */
3509 if (!(vmf->vma->vm_flags & VM_SHARED))
3510 ret = check_stable_address_space(vmf->vma->vm_mm);
3511 if (!ret)
3512 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3513 if (vmf->pte)
3514 pte_unmap_unlock(vmf->pte, vmf->ptl);
3515 return ret;
3516}
3517
3a91053a
KS
3518static unsigned long fault_around_bytes __read_mostly =
3519 rounddown_pow_of_two(65536);
a9b0f861 3520
a9b0f861
KS
3521#ifdef CONFIG_DEBUG_FS
3522static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3523{
a9b0f861 3524 *val = fault_around_bytes;
1592eef0
KS
3525 return 0;
3526}
3527
b4903d6e 3528/*
da391d64
WK
3529 * fault_around_bytes must be rounded down to the nearest page order as it's
3530 * what do_fault_around() expects to see.
b4903d6e 3531 */
a9b0f861 3532static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3533{
a9b0f861 3534 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3535 return -EINVAL;
b4903d6e
AR
3536 if (val > PAGE_SIZE)
3537 fault_around_bytes = rounddown_pow_of_two(val);
3538 else
3539 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3540 return 0;
3541}
0a1345f8 3542DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3543 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3544
3545static int __init fault_around_debugfs(void)
3546{
d9f7979c
GKH
3547 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548 &fault_around_bytes_fops);
1592eef0
KS
3549 return 0;
3550}
3551late_initcall(fault_around_debugfs);
1592eef0 3552#endif
8c6e50b0 3553
1fdb412b
KS
3554/*
3555 * do_fault_around() tries to map few pages around the fault address. The hope
3556 * is that the pages will be needed soon and this will lower the number of
3557 * faults to handle.
3558 *
3559 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3560 * not ready to be mapped: not up-to-date, locked, etc.
3561 *
3562 * This function is called with the page table lock taken. In the split ptlock
3563 * case the page table lock only protects only those entries which belong to
3564 * the page table corresponding to the fault address.
3565 *
3566 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3567 * only once.
3568 *
da391d64
WK
3569 * fault_around_bytes defines how many bytes we'll try to map.
3570 * do_fault_around() expects it to be set to a power of two less than or equal
3571 * to PTRS_PER_PTE.
1fdb412b 3572 *
da391d64
WK
3573 * The virtual address of the area that we map is naturally aligned to
3574 * fault_around_bytes rounded down to the machine page size
3575 * (and therefore to page order). This way it's easier to guarantee
3576 * that we don't cross page table boundaries.
1fdb412b 3577 */
2b740303 3578static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3579{
82b0f8c3 3580 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3581 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3582 pgoff_t end_pgoff;
2b740303
SJ
3583 int off;
3584 vm_fault_t ret = 0;
8c6e50b0 3585
4db0c3c2 3586 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3587 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3588
82b0f8c3
JK
3589 vmf->address = max(address & mask, vmf->vma->vm_start);
3590 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3591 start_pgoff -= off;
8c6e50b0
KS
3592
3593 /*
da391d64
WK
3594 * end_pgoff is either the end of the page table, the end of
3595 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3596 */
bae473a4 3597 end_pgoff = start_pgoff -
82b0f8c3 3598 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3599 PTRS_PER_PTE - 1;
82b0f8c3 3600 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3601 start_pgoff + nr_pages - 1);
8c6e50b0 3602
82b0f8c3 3603 if (pmd_none(*vmf->pmd)) {
4cf58924 3604 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3605 if (!vmf->prealloc_pte)
c5f88bd2 3606 goto out;
7267ec00 3607 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3608 }
3609
82b0f8c3 3610 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3611
7267ec00 3612 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3613 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3614 ret = VM_FAULT_NOPAGE;
3615 goto out;
3616 }
3617
3618 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3619 if (!vmf->pte)
7267ec00
KS
3620 goto out;
3621
3622 /* check if the page fault is solved */
82b0f8c3
JK
3623 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3624 if (!pte_none(*vmf->pte))
7267ec00 3625 ret = VM_FAULT_NOPAGE;
82b0f8c3 3626 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3627out:
82b0f8c3
JK
3628 vmf->address = address;
3629 vmf->pte = NULL;
7267ec00 3630 return ret;
8c6e50b0
KS
3631}
3632
2b740303 3633static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3634{
82b0f8c3 3635 struct vm_area_struct *vma = vmf->vma;
2b740303 3636 vm_fault_t ret = 0;
8c6e50b0
KS
3637
3638 /*
3639 * Let's call ->map_pages() first and use ->fault() as fallback
3640 * if page by the offset is not ready to be mapped (cold cache or
3641 * something).
3642 */
9b4bdd2f 3643 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3644 ret = do_fault_around(vmf);
7267ec00
KS
3645 if (ret)
3646 return ret;
8c6e50b0 3647 }
e655fb29 3648
936ca80d 3649 ret = __do_fault(vmf);
e655fb29
KS
3650 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651 return ret;
3652
9118c0cb 3653 ret |= finish_fault(vmf);
936ca80d 3654 unlock_page(vmf->page);
7267ec00 3655 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3656 put_page(vmf->page);
e655fb29
KS
3657 return ret;
3658}
3659
2b740303 3660static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3661{
82b0f8c3 3662 struct vm_area_struct *vma = vmf->vma;
2b740303 3663 vm_fault_t ret;
ec47c3b9
KS
3664
3665 if (unlikely(anon_vma_prepare(vma)))
3666 return VM_FAULT_OOM;
3667
936ca80d
JK
3668 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3669 if (!vmf->cow_page)
ec47c3b9
KS
3670 return VM_FAULT_OOM;
3671
2cf85583 3672 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3673 &vmf->memcg, false)) {
936ca80d 3674 put_page(vmf->cow_page);
ec47c3b9
KS
3675 return VM_FAULT_OOM;
3676 }
3677
936ca80d 3678 ret = __do_fault(vmf);
ec47c3b9
KS
3679 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3680 goto uncharge_out;
3917048d
JK
3681 if (ret & VM_FAULT_DONE_COW)
3682 return ret;
ec47c3b9 3683
b1aa812b 3684 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3685 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3686
9118c0cb 3687 ret |= finish_fault(vmf);
b1aa812b
JK
3688 unlock_page(vmf->page);
3689 put_page(vmf->page);
7267ec00
KS
3690 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3691 goto uncharge_out;
ec47c3b9
KS
3692 return ret;
3693uncharge_out:
3917048d 3694 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3695 put_page(vmf->cow_page);
ec47c3b9
KS
3696 return ret;
3697}
3698
2b740303 3699static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3700{
82b0f8c3 3701 struct vm_area_struct *vma = vmf->vma;
2b740303 3702 vm_fault_t ret, tmp;
1d65f86d 3703
936ca80d 3704 ret = __do_fault(vmf);
7eae74af 3705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3706 return ret;
1da177e4
LT
3707
3708 /*
f0c6d4d2
KS
3709 * Check if the backing address space wants to know that the page is
3710 * about to become writable
1da177e4 3711 */
fb09a464 3712 if (vma->vm_ops->page_mkwrite) {
936ca80d 3713 unlock_page(vmf->page);
38b8cb7f 3714 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3715 if (unlikely(!tmp ||
3716 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3717 put_page(vmf->page);
fb09a464 3718 return tmp;
4294621f 3719 }
fb09a464
KS
3720 }
3721
9118c0cb 3722 ret |= finish_fault(vmf);
7267ec00
KS
3723 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3724 VM_FAULT_RETRY))) {
936ca80d
JK
3725 unlock_page(vmf->page);
3726 put_page(vmf->page);
f0c6d4d2 3727 return ret;
1da177e4 3728 }
b827e496 3729
69191d05 3730 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3731 return ret;
54cb8821 3732}
d00806b1 3733
9a95f3cf
PC
3734/*
3735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3736 * but allow concurrent faults).
3737 * The mmap_sem may have been released depending on flags and our
3738 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3739 * If mmap_sem is released, vma may become invalid (for example
3740 * by other thread calling munmap()).
9a95f3cf 3741 */
2b740303 3742static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3743{
82b0f8c3 3744 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3745 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3746 vm_fault_t ret;
54cb8821 3747
ff09d7ec
AK
3748 /*
3749 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3750 */
3751 if (!vma->vm_ops->fault) {
3752 /*
3753 * If we find a migration pmd entry or a none pmd entry, which
3754 * should never happen, return SIGBUS
3755 */
3756 if (unlikely(!pmd_present(*vmf->pmd)))
3757 ret = VM_FAULT_SIGBUS;
3758 else {
3759 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3760 vmf->pmd,
3761 vmf->address,
3762 &vmf->ptl);
3763 /*
3764 * Make sure this is not a temporary clearing of pte
3765 * by holding ptl and checking again. A R/M/W update
3766 * of pte involves: take ptl, clearing the pte so that
3767 * we don't have concurrent modification by hardware
3768 * followed by an update.
3769 */
3770 if (unlikely(pte_none(*vmf->pte)))
3771 ret = VM_FAULT_SIGBUS;
3772 else
3773 ret = VM_FAULT_NOPAGE;
3774
3775 pte_unmap_unlock(vmf->pte, vmf->ptl);
3776 }
3777 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3778 ret = do_read_fault(vmf);
3779 else if (!(vma->vm_flags & VM_SHARED))
3780 ret = do_cow_fault(vmf);
3781 else
3782 ret = do_shared_fault(vmf);
3783
3784 /* preallocated pagetable is unused: free it */
3785 if (vmf->prealloc_pte) {
fc8efd2d 3786 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3787 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3788 }
3789 return ret;
54cb8821
NP
3790}
3791
b19a9939 3792static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3793 unsigned long addr, int page_nid,
3794 int *flags)
9532fec1
MG
3795{
3796 get_page(page);
3797
3798 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3799 if (page_nid == numa_node_id()) {
9532fec1 3800 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3801 *flags |= TNF_FAULT_LOCAL;
3802 }
9532fec1
MG
3803
3804 return mpol_misplaced(page, vma, addr);
3805}
3806
2b740303 3807static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3808{
82b0f8c3 3809 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3810 struct page *page = NULL;
98fa15f3 3811 int page_nid = NUMA_NO_NODE;
90572890 3812 int last_cpupid;
cbee9f88 3813 int target_nid;
b8593bfd 3814 bool migrated = false;
04a86453 3815 pte_t pte, old_pte;
288bc549 3816 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3817 int flags = 0;
d10e63f2
MG
3818
3819 /*
166f61b9
TH
3820 * The "pte" at this point cannot be used safely without
3821 * validation through pte_unmap_same(). It's of NUMA type but
3822 * the pfn may be screwed if the read is non atomic.
166f61b9 3823 */
82b0f8c3
JK
3824 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3825 spin_lock(vmf->ptl);
cee216a6 3826 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3827 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3828 goto out;
3829 }
3830
cee216a6
AK
3831 /*
3832 * Make it present again, Depending on how arch implementes non
3833 * accessible ptes, some can allow access by kernel mode.
3834 */
04a86453
AK
3835 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3836 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3837 pte = pte_mkyoung(pte);
b191f9b1
MG
3838 if (was_writable)
3839 pte = pte_mkwrite(pte);
04a86453 3840 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3841 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3842
82b0f8c3 3843 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3844 if (!page) {
82b0f8c3 3845 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3846 return 0;
3847 }
3848
e81c4802
KS
3849 /* TODO: handle PTE-mapped THP */
3850 if (PageCompound(page)) {
82b0f8c3 3851 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3852 return 0;
3853 }
3854
6688cc05 3855 /*
bea66fbd
MG
3856 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3857 * much anyway since they can be in shared cache state. This misses
3858 * the case where a mapping is writable but the process never writes
3859 * to it but pte_write gets cleared during protection updates and
3860 * pte_dirty has unpredictable behaviour between PTE scan updates,
3861 * background writeback, dirty balancing and application behaviour.
6688cc05 3862 */
d59dc7bc 3863 if (!pte_write(pte))
6688cc05
PZ
3864 flags |= TNF_NO_GROUP;
3865
dabe1d99
RR
3866 /*
3867 * Flag if the page is shared between multiple address spaces. This
3868 * is later used when determining whether to group tasks together
3869 */
3870 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3871 flags |= TNF_SHARED;
3872
90572890 3873 last_cpupid = page_cpupid_last(page);
8191acbd 3874 page_nid = page_to_nid(page);
82b0f8c3 3875 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3876 &flags);
82b0f8c3 3877 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3878 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3879 put_page(page);
3880 goto out;
3881 }
3882
3883 /* Migrate to the requested node */
1bc115d8 3884 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3885 if (migrated) {
8191acbd 3886 page_nid = target_nid;
6688cc05 3887 flags |= TNF_MIGRATED;
074c2381
MG
3888 } else
3889 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3890
3891out:
98fa15f3 3892 if (page_nid != NUMA_NO_NODE)
6688cc05 3893 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3894 return 0;
3895}
3896
2b740303 3897static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3898{
f4200391 3899 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3900 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3901 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3902 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3903 return VM_FAULT_FALLBACK;
3904}
3905
183f24aa 3906/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3907static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3908{
82b0f8c3
JK
3909 if (vma_is_anonymous(vmf->vma))
3910 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3911 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3913
3914 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3915 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3916 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3917
b96375f7
MW
3918 return VM_FAULT_FALLBACK;
3919}
3920
38e08854
LS
3921static inline bool vma_is_accessible(struct vm_area_struct *vma)
3922{
3923 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3924}
3925
2b740303 3926static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3927{
3928#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3929 /* No support for anonymous transparent PUD pages yet */
3930 if (vma_is_anonymous(vmf->vma))
3931 return VM_FAULT_FALLBACK;
3932 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3933 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3934#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3935 return VM_FAULT_FALLBACK;
3936}
3937
2b740303 3938static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3939{
3940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941 /* No support for anonymous transparent PUD pages yet */
3942 if (vma_is_anonymous(vmf->vma))
3943 return VM_FAULT_FALLBACK;
3944 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3945 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3946#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3947 return VM_FAULT_FALLBACK;
3948}
3949
1da177e4
LT
3950/*
3951 * These routines also need to handle stuff like marking pages dirty
3952 * and/or accessed for architectures that don't do it in hardware (most
3953 * RISC architectures). The early dirtying is also good on the i386.
3954 *
3955 * There is also a hook called "update_mmu_cache()" that architectures
3956 * with external mmu caches can use to update those (ie the Sparc or
3957 * PowerPC hashed page tables that act as extended TLBs).
3958 *
7267ec00
KS
3959 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3960 * concurrent faults).
9a95f3cf 3961 *
7267ec00
KS
3962 * The mmap_sem may have been released depending on flags and our return value.
3963 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3964 */
2b740303 3965static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3966{
3967 pte_t entry;
3968
82b0f8c3 3969 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3970 /*
3971 * Leave __pte_alloc() until later: because vm_ops->fault may
3972 * want to allocate huge page, and if we expose page table
3973 * for an instant, it will be difficult to retract from
3974 * concurrent faults and from rmap lookups.
3975 */
82b0f8c3 3976 vmf->pte = NULL;
7267ec00
KS
3977 } else {
3978 /* See comment in pte_alloc_one_map() */
d0f0931d 3979 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3980 return 0;
3981 /*
3982 * A regular pmd is established and it can't morph into a huge
3983 * pmd from under us anymore at this point because we hold the
3984 * mmap_sem read mode and khugepaged takes it in write mode.
3985 * So now it's safe to run pte_offset_map().
3986 */
82b0f8c3 3987 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3988 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3989
3990 /*
3991 * some architectures can have larger ptes than wordsize,
3992 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3993 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3994 * accesses. The code below just needs a consistent view
3995 * for the ifs and we later double check anyway with the
7267ec00
KS
3996 * ptl lock held. So here a barrier will do.
3997 */
3998 barrier();
2994302b 3999 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4000 pte_unmap(vmf->pte);
4001 vmf->pte = NULL;
65500d23 4002 }
1da177e4
LT
4003 }
4004
82b0f8c3
JK
4005 if (!vmf->pte) {
4006 if (vma_is_anonymous(vmf->vma))
4007 return do_anonymous_page(vmf);
7267ec00 4008 else
82b0f8c3 4009 return do_fault(vmf);
7267ec00
KS
4010 }
4011
2994302b
JK
4012 if (!pte_present(vmf->orig_pte))
4013 return do_swap_page(vmf);
7267ec00 4014
2994302b
JK
4015 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4016 return do_numa_page(vmf);
d10e63f2 4017
82b0f8c3
JK
4018 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4019 spin_lock(vmf->ptl);
2994302b 4020 entry = vmf->orig_pte;
82b0f8c3 4021 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 4022 goto unlock;
82b0f8c3 4023 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4024 if (!pte_write(entry))
2994302b 4025 return do_wp_page(vmf);
1da177e4
LT
4026 entry = pte_mkdirty(entry);
4027 }
4028 entry = pte_mkyoung(entry);
82b0f8c3
JK
4029 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4030 vmf->flags & FAULT_FLAG_WRITE)) {
4031 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4032 } else {
4033 /*
4034 * This is needed only for protection faults but the arch code
4035 * is not yet telling us if this is a protection fault or not.
4036 * This still avoids useless tlb flushes for .text page faults
4037 * with threads.
4038 */
82b0f8c3
JK
4039 if (vmf->flags & FAULT_FLAG_WRITE)
4040 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4041 }
8f4e2101 4042unlock:
82b0f8c3 4043 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4044 return 0;
1da177e4
LT
4045}
4046
4047/*
4048 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4049 *
4050 * The mmap_sem may have been released depending on flags and our
4051 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4052 */
2b740303
SJ
4053static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4054 unsigned long address, unsigned int flags)
1da177e4 4055{
82b0f8c3 4056 struct vm_fault vmf = {
bae473a4 4057 .vma = vma,
1a29d85e 4058 .address = address & PAGE_MASK,
bae473a4 4059 .flags = flags,
0721ec8b 4060 .pgoff = linear_page_index(vma, address),
667240e0 4061 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4062 };
fde26bed 4063 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4064 struct mm_struct *mm = vma->vm_mm;
1da177e4 4065 pgd_t *pgd;
c2febafc 4066 p4d_t *p4d;
2b740303 4067 vm_fault_t ret;
1da177e4 4068
1da177e4 4069 pgd = pgd_offset(mm, address);
c2febafc
KS
4070 p4d = p4d_alloc(mm, pgd, address);
4071 if (!p4d)
4072 return VM_FAULT_OOM;
a00cc7d9 4073
c2febafc 4074 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4075 if (!vmf.pud)
c74df32c 4076 return VM_FAULT_OOM;
7635d9cb 4077 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4078 ret = create_huge_pud(&vmf);
4079 if (!(ret & VM_FAULT_FALLBACK))
4080 return ret;
4081 } else {
4082 pud_t orig_pud = *vmf.pud;
4083
4084 barrier();
4085 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4086
a00cc7d9
MW
4087 /* NUMA case for anonymous PUDs would go here */
4088
f6f37321 4089 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4090 ret = wp_huge_pud(&vmf, orig_pud);
4091 if (!(ret & VM_FAULT_FALLBACK))
4092 return ret;
4093 } else {
4094 huge_pud_set_accessed(&vmf, orig_pud);
4095 return 0;
4096 }
4097 }
4098 }
4099
4100 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4101 if (!vmf.pmd)
c74df32c 4102 return VM_FAULT_OOM;
7635d9cb 4103 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4104 ret = create_huge_pmd(&vmf);
c0292554
KS
4105 if (!(ret & VM_FAULT_FALLBACK))
4106 return ret;
71e3aac0 4107 } else {
82b0f8c3 4108 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4109
71e3aac0 4110 barrier();
84c3fc4e
ZY
4111 if (unlikely(is_swap_pmd(orig_pmd))) {
4112 VM_BUG_ON(thp_migration_supported() &&
4113 !is_pmd_migration_entry(orig_pmd));
4114 if (is_pmd_migration_entry(orig_pmd))
4115 pmd_migration_entry_wait(mm, vmf.pmd);
4116 return 0;
4117 }
5c7fb56e 4118 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4119 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4120 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4121
f6f37321 4122 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4123 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4124 if (!(ret & VM_FAULT_FALLBACK))
4125 return ret;
a1dd450b 4126 } else {
82b0f8c3 4127 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4128 return 0;
1f1d06c3 4129 }
71e3aac0
AA
4130 }
4131 }
4132
82b0f8c3 4133 return handle_pte_fault(&vmf);
1da177e4
LT
4134}
4135
9a95f3cf
PC
4136/*
4137 * By the time we get here, we already hold the mm semaphore
4138 *
4139 * The mmap_sem may have been released depending on flags and our
4140 * return value. See filemap_fault() and __lock_page_or_retry().
4141 */
2b740303 4142vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4143 unsigned int flags)
519e5247 4144{
2b740303 4145 vm_fault_t ret;
519e5247
JW
4146
4147 __set_current_state(TASK_RUNNING);
4148
4149 count_vm_event(PGFAULT);
2262185c 4150 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4151
4152 /* do counter updates before entering really critical section. */
4153 check_sync_rss_stat(current);
4154
de0c799b
LD
4155 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4156 flags & FAULT_FLAG_INSTRUCTION,
4157 flags & FAULT_FLAG_REMOTE))
4158 return VM_FAULT_SIGSEGV;
4159
519e5247
JW
4160 /*
4161 * Enable the memcg OOM handling for faults triggered in user
4162 * space. Kernel faults are handled more gracefully.
4163 */
4164 if (flags & FAULT_FLAG_USER)
29ef680a 4165 mem_cgroup_enter_user_fault();
519e5247 4166
bae473a4
KS
4167 if (unlikely(is_vm_hugetlb_page(vma)))
4168 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4169 else
4170 ret = __handle_mm_fault(vma, address, flags);
519e5247 4171
49426420 4172 if (flags & FAULT_FLAG_USER) {
29ef680a 4173 mem_cgroup_exit_user_fault();
166f61b9
TH
4174 /*
4175 * The task may have entered a memcg OOM situation but
4176 * if the allocation error was handled gracefully (no
4177 * VM_FAULT_OOM), there is no need to kill anything.
4178 * Just clean up the OOM state peacefully.
4179 */
4180 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4181 mem_cgroup_oom_synchronize(false);
49426420 4182 }
3812c8c8 4183
519e5247
JW
4184 return ret;
4185}
e1d6d01a 4186EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4187
90eceff1
KS
4188#ifndef __PAGETABLE_P4D_FOLDED
4189/*
4190 * Allocate p4d page table.
4191 * We've already handled the fast-path in-line.
4192 */
4193int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4194{
4195 p4d_t *new = p4d_alloc_one(mm, address);
4196 if (!new)
4197 return -ENOMEM;
4198
4199 smp_wmb(); /* See comment in __pte_alloc */
4200
4201 spin_lock(&mm->page_table_lock);
4202 if (pgd_present(*pgd)) /* Another has populated it */
4203 p4d_free(mm, new);
4204 else
4205 pgd_populate(mm, pgd, new);
4206 spin_unlock(&mm->page_table_lock);
4207 return 0;
4208}
4209#endif /* __PAGETABLE_P4D_FOLDED */
4210
1da177e4
LT
4211#ifndef __PAGETABLE_PUD_FOLDED
4212/*
4213 * Allocate page upper directory.
872fec16 4214 * We've already handled the fast-path in-line.
1da177e4 4215 */
c2febafc 4216int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4217{
c74df32c
HD
4218 pud_t *new = pud_alloc_one(mm, address);
4219 if (!new)
1bb3630e 4220 return -ENOMEM;
1da177e4 4221
362a61ad
NP
4222 smp_wmb(); /* See comment in __pte_alloc */
4223
872fec16 4224 spin_lock(&mm->page_table_lock);
c2febafc 4225#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4226 if (!p4d_present(*p4d)) {
4227 mm_inc_nr_puds(mm);
c2febafc 4228 p4d_populate(mm, p4d, new);
b4e98d9a 4229 } else /* Another has populated it */
5e541973 4230 pud_free(mm, new);
b4e98d9a
KS
4231#else
4232 if (!pgd_present(*p4d)) {
4233 mm_inc_nr_puds(mm);
c2febafc 4234 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4235 } else /* Another has populated it */
4236 pud_free(mm, new);
c2febafc 4237#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4238 spin_unlock(&mm->page_table_lock);
1bb3630e 4239 return 0;
1da177e4
LT
4240}
4241#endif /* __PAGETABLE_PUD_FOLDED */
4242
4243#ifndef __PAGETABLE_PMD_FOLDED
4244/*
4245 * Allocate page middle directory.
872fec16 4246 * We've already handled the fast-path in-line.
1da177e4 4247 */
1bb3630e 4248int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4249{
a00cc7d9 4250 spinlock_t *ptl;
c74df32c
HD
4251 pmd_t *new = pmd_alloc_one(mm, address);
4252 if (!new)
1bb3630e 4253 return -ENOMEM;
1da177e4 4254
362a61ad
NP
4255 smp_wmb(); /* See comment in __pte_alloc */
4256
a00cc7d9 4257 ptl = pud_lock(mm, pud);
1da177e4 4258#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4259 if (!pud_present(*pud)) {
4260 mm_inc_nr_pmds(mm);
1bb3630e 4261 pud_populate(mm, pud, new);
dc6c9a35 4262 } else /* Another has populated it */
5e541973 4263 pmd_free(mm, new);
dc6c9a35
KS
4264#else
4265 if (!pgd_present(*pud)) {
4266 mm_inc_nr_pmds(mm);
1bb3630e 4267 pgd_populate(mm, pud, new);
dc6c9a35
KS
4268 } else /* Another has populated it */
4269 pmd_free(mm, new);
1da177e4 4270#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4271 spin_unlock(ptl);
1bb3630e 4272 return 0;
e0f39591 4273}
1da177e4
LT
4274#endif /* __PAGETABLE_PMD_FOLDED */
4275
5f369a12
PB
4276int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4277 struct mmu_notifier_range *range, pte_t **ptepp,
4278 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4279{
4280 pgd_t *pgd;
c2febafc 4281 p4d_t *p4d;
f8ad0f49
JW
4282 pud_t *pud;
4283 pmd_t *pmd;
4284 pte_t *ptep;
4285
4286 pgd = pgd_offset(mm, address);
4287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4288 goto out;
4289
c2febafc
KS
4290 p4d = p4d_offset(pgd, address);
4291 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4292 goto out;
4293
4294 pud = pud_offset(p4d, address);
f8ad0f49
JW
4295 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4296 goto out;
4297
4298 pmd = pmd_offset(pud, address);
f66055ab 4299 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4300
09796395
RZ
4301 if (pmd_huge(*pmd)) {
4302 if (!pmdpp)
4303 goto out;
4304
ac46d4f3 4305 if (range) {
7269f999 4306 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4307 NULL, mm, address & PMD_MASK,
4308 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4309 mmu_notifier_invalidate_range_start(range);
a4d1a885 4310 }
09796395
RZ
4311 *ptlp = pmd_lock(mm, pmd);
4312 if (pmd_huge(*pmd)) {
4313 *pmdpp = pmd;
4314 return 0;
4315 }
4316 spin_unlock(*ptlp);
ac46d4f3
JG
4317 if (range)
4318 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4319 }
4320
4321 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4322 goto out;
4323
ac46d4f3 4324 if (range) {
7269f999 4325 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4326 address & PAGE_MASK,
4327 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4328 mmu_notifier_invalidate_range_start(range);
a4d1a885 4329 }
f8ad0f49 4330 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4331 if (!pte_present(*ptep))
4332 goto unlock;
4333 *ptepp = ptep;
4334 return 0;
4335unlock:
4336 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4337 if (range)
4338 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4339out:
4340 return -EINVAL;
4341}
4342
5f369a12
PB
4343/**
4344 * follow_pte - look up PTE at a user virtual address
4345 * @mm: the mm_struct of the target address space
4346 * @address: user virtual address
4347 * @ptepp: location to store found PTE
4348 * @ptlp: location to store the lock for the PTE
4349 *
4350 * On a successful return, the pointer to the PTE is stored in @ptepp;
4351 * the corresponding lock is taken and its location is stored in @ptlp.
4352 * The contents of the PTE are only stable until @ptlp is released;
4353 * any further use, if any, must be protected against invalidation
4354 * with MMU notifiers.
4355 *
4356 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4357 * should be taken for read.
4358 *
4359 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4360 * it is not a good general-purpose API.
4361 *
4362 * Return: zero on success, -ve otherwise.
4363 */
4364int follow_pte(struct mm_struct *mm, unsigned long address,
4365 pte_t **ptepp, spinlock_t **ptlp)
4366{
4367 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4368}
4369EXPORT_SYMBOL_GPL(follow_pte);
4370
3b6748e2
JW
4371/**
4372 * follow_pfn - look up PFN at a user virtual address
4373 * @vma: memory mapping
4374 * @address: user virtual address
4375 * @pfn: location to store found PFN
4376 *
4377 * Only IO mappings and raw PFN mappings are allowed.
4378 *
5f369a12
PB
4379 * This function does not allow the caller to read the permissions
4380 * of the PTE. Do not use it.
4381 *
a862f68a 4382 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4383 */
4384int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4385 unsigned long *pfn)
4386{
4387 int ret = -EINVAL;
4388 spinlock_t *ptl;
4389 pte_t *ptep;
4390
4391 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4392 return ret;
4393
5f369a12 4394 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4395 if (ret)
4396 return ret;
4397 *pfn = pte_pfn(*ptep);
4398 pte_unmap_unlock(ptep, ptl);
4399 return 0;
4400}
4401EXPORT_SYMBOL(follow_pfn);
4402
28b2ee20 4403#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4404int follow_phys(struct vm_area_struct *vma,
4405 unsigned long address, unsigned int flags,
4406 unsigned long *prot, resource_size_t *phys)
28b2ee20 4407{
03668a4d 4408 int ret = -EINVAL;
28b2ee20
RR
4409 pte_t *ptep, pte;
4410 spinlock_t *ptl;
28b2ee20 4411
d87fe660 4412 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4413 goto out;
28b2ee20 4414
5f369a12 4415 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4416 goto out;
28b2ee20 4417 pte = *ptep;
03668a4d 4418
f6f37321 4419 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4420 goto unlock;
28b2ee20
RR
4421
4422 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4423 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4424
03668a4d 4425 ret = 0;
28b2ee20
RR
4426unlock:
4427 pte_unmap_unlock(ptep, ptl);
4428out:
d87fe660 4429 return ret;
28b2ee20
RR
4430}
4431
4432int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4433 void *buf, int len, int write)
4434{
4435 resource_size_t phys_addr;
4436 unsigned long prot = 0;
2bc7273b 4437 void __iomem *maddr;
28b2ee20
RR
4438 int offset = addr & (PAGE_SIZE-1);
4439
d87fe660 4440 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4441 return -EINVAL;
4442
9cb12d7b 4443 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4444 if (!maddr)
4445 return -ENOMEM;
4446
28b2ee20
RR
4447 if (write)
4448 memcpy_toio(maddr + offset, buf, len);
4449 else
4450 memcpy_fromio(buf, maddr + offset, len);
4451 iounmap(maddr);
4452
4453 return len;
4454}
5a73633e 4455EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4456#endif
4457
0ec76a11 4458/*
206cb636
SW
4459 * Access another process' address space as given in mm. If non-NULL, use the
4460 * given task for page fault accounting.
0ec76a11 4461 */
84d77d3f 4462int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4463 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4464{
0ec76a11 4465 struct vm_area_struct *vma;
0ec76a11 4466 void *old_buf = buf;
442486ec 4467 int write = gup_flags & FOLL_WRITE;
0ec76a11 4468
1e426fe2
KK
4469 if (down_read_killable(&mm->mmap_sem))
4470 return 0;
4471
183ff22b 4472 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4473 while (len) {
4474 int bytes, ret, offset;
4475 void *maddr;
28b2ee20 4476 struct page *page = NULL;
0ec76a11 4477
1e987790 4478 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4479 gup_flags, &page, &vma, NULL);
28b2ee20 4480 if (ret <= 0) {
dbffcd03
RR
4481#ifndef CONFIG_HAVE_IOREMAP_PROT
4482 break;
4483#else
28b2ee20
RR
4484 /*
4485 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4486 * we can access using slightly different code.
4487 */
28b2ee20 4488 vma = find_vma(mm, addr);
fe936dfc 4489 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4490 break;
4491 if (vma->vm_ops && vma->vm_ops->access)
4492 ret = vma->vm_ops->access(vma, addr, buf,
4493 len, write);
4494 if (ret <= 0)
28b2ee20
RR
4495 break;
4496 bytes = ret;
dbffcd03 4497#endif
0ec76a11 4498 } else {
28b2ee20
RR
4499 bytes = len;
4500 offset = addr & (PAGE_SIZE-1);
4501 if (bytes > PAGE_SIZE-offset)
4502 bytes = PAGE_SIZE-offset;
4503
4504 maddr = kmap(page);
4505 if (write) {
4506 copy_to_user_page(vma, page, addr,
4507 maddr + offset, buf, bytes);
4508 set_page_dirty_lock(page);
4509 } else {
4510 copy_from_user_page(vma, page, addr,
4511 buf, maddr + offset, bytes);
4512 }
4513 kunmap(page);
09cbfeaf 4514 put_page(page);
0ec76a11 4515 }
0ec76a11
DH
4516 len -= bytes;
4517 buf += bytes;
4518 addr += bytes;
4519 }
4520 up_read(&mm->mmap_sem);
0ec76a11
DH
4521
4522 return buf - old_buf;
4523}
03252919 4524
5ddd36b9 4525/**
ae91dbfc 4526 * access_remote_vm - access another process' address space
5ddd36b9
SW
4527 * @mm: the mm_struct of the target address space
4528 * @addr: start address to access
4529 * @buf: source or destination buffer
4530 * @len: number of bytes to transfer
6347e8d5 4531 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4532 *
4533 * The caller must hold a reference on @mm.
a862f68a
MR
4534 *
4535 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4536 */
4537int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4538 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4539{
6347e8d5 4540 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4541}
4542
206cb636
SW
4543/*
4544 * Access another process' address space.
4545 * Source/target buffer must be kernel space,
4546 * Do not walk the page table directly, use get_user_pages
4547 */
4548int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4549 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4550{
4551 struct mm_struct *mm;
4552 int ret;
4553
4554 mm = get_task_mm(tsk);
4555 if (!mm)
4556 return 0;
4557
f307ab6d 4558 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4559
206cb636
SW
4560 mmput(mm);
4561
4562 return ret;
4563}
fcd35857 4564EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4565
03252919
AK
4566/*
4567 * Print the name of a VMA.
4568 */
4569void print_vma_addr(char *prefix, unsigned long ip)
4570{
4571 struct mm_struct *mm = current->mm;
4572 struct vm_area_struct *vma;
4573
e8bff74a 4574 /*
0a7f682d 4575 * we might be running from an atomic context so we cannot sleep
e8bff74a 4576 */
0a7f682d 4577 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4578 return;
4579
03252919
AK
4580 vma = find_vma(mm, ip);
4581 if (vma && vma->vm_file) {
4582 struct file *f = vma->vm_file;
0a7f682d 4583 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4584 if (buf) {
2fbc57c5 4585 char *p;
03252919 4586
9bf39ab2 4587 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4588 if (IS_ERR(p))
4589 p = "?";
2fbc57c5 4590 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4591 vma->vm_start,
4592 vma->vm_end - vma->vm_start);
4593 free_page((unsigned long)buf);
4594 }
4595 }
51a07e50 4596 up_read(&mm->mmap_sem);
03252919 4597}
3ee1afa3 4598
662bbcb2 4599#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4600void __might_fault(const char *file, int line)
3ee1afa3 4601{
95156f00
PZ
4602 /*
4603 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4604 * holding the mmap_sem, this is safe because kernel memory doesn't
4605 * get paged out, therefore we'll never actually fault, and the
4606 * below annotations will generate false positives.
4607 */
db68ce10 4608 if (uaccess_kernel())
95156f00 4609 return;
9ec23531 4610 if (pagefault_disabled())
662bbcb2 4611 return;
9ec23531
DH
4612 __might_sleep(file, line, 0);
4613#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4614 if (current->mm)
3ee1afa3 4615 might_lock_read(&current->mm->mmap_sem);
9ec23531 4616#endif
3ee1afa3 4617}
9ec23531 4618EXPORT_SYMBOL(__might_fault);
3ee1afa3 4619#endif
47ad8475
AA
4620
4621#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4622/*
4623 * Process all subpages of the specified huge page with the specified
4624 * operation. The target subpage will be processed last to keep its
4625 * cache lines hot.
4626 */
4627static inline void process_huge_page(
4628 unsigned long addr_hint, unsigned int pages_per_huge_page,
4629 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4630 void *arg)
47ad8475 4631{
c79b57e4
HY
4632 int i, n, base, l;
4633 unsigned long addr = addr_hint &
4634 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4635
c6ddfb6c 4636 /* Process target subpage last to keep its cache lines hot */
47ad8475 4637 might_sleep();
c79b57e4
HY
4638 n = (addr_hint - addr) / PAGE_SIZE;
4639 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4640 /* If target subpage in first half of huge page */
c79b57e4
HY
4641 base = 0;
4642 l = n;
c6ddfb6c 4643 /* Process subpages at the end of huge page */
c79b57e4
HY
4644 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4645 cond_resched();
c6ddfb6c 4646 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4647 }
4648 } else {
c6ddfb6c 4649 /* If target subpage in second half of huge page */
c79b57e4
HY
4650 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4651 l = pages_per_huge_page - n;
c6ddfb6c 4652 /* Process subpages at the begin of huge page */
c79b57e4
HY
4653 for (i = 0; i < base; i++) {
4654 cond_resched();
c6ddfb6c 4655 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4656 }
4657 }
4658 /*
c6ddfb6c
HY
4659 * Process remaining subpages in left-right-left-right pattern
4660 * towards the target subpage
c79b57e4
HY
4661 */
4662 for (i = 0; i < l; i++) {
4663 int left_idx = base + i;
4664 int right_idx = base + 2 * l - 1 - i;
4665
4666 cond_resched();
c6ddfb6c 4667 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4668 cond_resched();
c6ddfb6c 4669 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4670 }
4671}
4672
c6ddfb6c
HY
4673static void clear_gigantic_page(struct page *page,
4674 unsigned long addr,
4675 unsigned int pages_per_huge_page)
4676{
4677 int i;
4678 struct page *p = page;
4679
4680 might_sleep();
4681 for (i = 0; i < pages_per_huge_page;
4682 i++, p = mem_map_next(p, page, i)) {
4683 cond_resched();
4684 clear_user_highpage(p, addr + i * PAGE_SIZE);
4685 }
4686}
4687
4688static void clear_subpage(unsigned long addr, int idx, void *arg)
4689{
4690 struct page *page = arg;
4691
4692 clear_user_highpage(page + idx, addr);
4693}
4694
4695void clear_huge_page(struct page *page,
4696 unsigned long addr_hint, unsigned int pages_per_huge_page)
4697{
4698 unsigned long addr = addr_hint &
4699 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4700
4701 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4702 clear_gigantic_page(page, addr, pages_per_huge_page);
4703 return;
4704 }
4705
4706 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4707}
4708
47ad8475
AA
4709static void copy_user_gigantic_page(struct page *dst, struct page *src,
4710 unsigned long addr,
4711 struct vm_area_struct *vma,
4712 unsigned int pages_per_huge_page)
4713{
4714 int i;
4715 struct page *dst_base = dst;
4716 struct page *src_base = src;
4717
4718 for (i = 0; i < pages_per_huge_page; ) {
4719 cond_resched();
4720 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4721
4722 i++;
4723 dst = mem_map_next(dst, dst_base, i);
4724 src = mem_map_next(src, src_base, i);
4725 }
4726}
4727
c9f4cd71
HY
4728struct copy_subpage_arg {
4729 struct page *dst;
4730 struct page *src;
4731 struct vm_area_struct *vma;
4732};
4733
4734static void copy_subpage(unsigned long addr, int idx, void *arg)
4735{
4736 struct copy_subpage_arg *copy_arg = arg;
4737
4738 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4739 addr, copy_arg->vma);
4740}
4741
47ad8475 4742void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4743 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4744 unsigned int pages_per_huge_page)
4745{
c9f4cd71
HY
4746 unsigned long addr = addr_hint &
4747 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4748 struct copy_subpage_arg arg = {
4749 .dst = dst,
4750 .src = src,
4751 .vma = vma,
4752 };
47ad8475
AA
4753
4754 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4755 copy_user_gigantic_page(dst, src, addr, vma,
4756 pages_per_huge_page);
4757 return;
4758 }
4759
c9f4cd71 4760 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4761}
fa4d75c1
MK
4762
4763long copy_huge_page_from_user(struct page *dst_page,
4764 const void __user *usr_src,
810a56b9
MK
4765 unsigned int pages_per_huge_page,
4766 bool allow_pagefault)
fa4d75c1
MK
4767{
4768 void *src = (void *)usr_src;
4769 void *page_kaddr;
4770 unsigned long i, rc = 0;
4771 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
ca23cbbe 4772 struct page *subpage = dst_page;
fa4d75c1 4773
ca23cbbe
MK
4774 for (i = 0; i < pages_per_huge_page;
4775 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 4776 if (allow_pagefault)
ca23cbbe 4777 page_kaddr = kmap(subpage);
810a56b9 4778 else
ca23cbbe 4779 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
4780 rc = copy_from_user(page_kaddr,
4781 (const void __user *)(src + i * PAGE_SIZE),
4782 PAGE_SIZE);
810a56b9 4783 if (allow_pagefault)
ca23cbbe 4784 kunmap(subpage);
810a56b9
MK
4785 else
4786 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4787
4788 ret_val -= (PAGE_SIZE - rc);
4789 if (rc)
4790 break;
4791
4792 cond_resched();
4793 }
4794 return ret_val;
4795}
47ad8475 4796#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4797
40b64acd 4798#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4799
4800static struct kmem_cache *page_ptl_cachep;
4801
4802void __init ptlock_cache_init(void)
4803{
4804 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4805 SLAB_PANIC, NULL);
4806}
4807
539edb58 4808bool ptlock_alloc(struct page *page)
49076ec2
KS
4809{
4810 spinlock_t *ptl;
4811
b35f1819 4812 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4813 if (!ptl)
4814 return false;
539edb58 4815 page->ptl = ptl;
49076ec2
KS
4816 return true;
4817}
4818
539edb58 4819void ptlock_free(struct page *page)
49076ec2 4820{
b35f1819 4821 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4822}
4823#endif