]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memory.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
42b77728
JB
86#include "internal.h"
87
af27d940 88#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 89#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
90#endif
91
d41dee36 92#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
93/* use the per-pgdat data instead for discontigmem - mbligh */
94unsigned long max_mapnr;
1da177e4 95EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
96
97struct page *mem_map;
1da177e4
LT
98EXPORT_SYMBOL(mem_map);
99#endif
100
1da177e4
LT
101/*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
166f61b9 108void *high_memory;
1da177e4 109EXPORT_SYMBOL(high_memory);
1da177e4 110
32a93233
IM
111/*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117int randomize_va_space __read_mostly =
118#ifdef CONFIG_COMPAT_BRK
119 1;
120#else
121 2;
122#endif
a62eaf15 123
83d116c5
JH
124#ifndef arch_faults_on_old_pte
125static inline bool arch_faults_on_old_pte(void)
126{
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133}
134#endif
135
a62eaf15
AK
136static int __init disable_randmaps(char *s)
137{
138 randomize_va_space = 0;
9b41046c 139 return 1;
a62eaf15
AK
140}
141__setup("norandmaps", disable_randmaps);
142
62eede62 143unsigned long zero_pfn __read_mostly;
0b70068e
AB
144EXPORT_SYMBOL(zero_pfn);
145
166f61b9
TH
146unsigned long highest_memmap_pfn __read_mostly;
147
a13ea5b7
HD
148/*
149 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
150 */
151static int __init init_zero_pfn(void)
152{
153 zero_pfn = page_to_pfn(ZERO_PAGE(0));
154 return 0;
155}
156core_initcall(init_zero_pfn);
a62eaf15 157
e4dcad20 158void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 159{
e4dcad20 160 trace_rss_stat(mm, member, count);
b3d1411b 161}
d559db08 162
34e55232
KH
163#if defined(SPLIT_RSS_COUNTING)
164
ea48cf78 165void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
166{
167 int i;
168
169 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
170 if (current->rss_stat.count[i]) {
171 add_mm_counter(mm, i, current->rss_stat.count[i]);
172 current->rss_stat.count[i] = 0;
34e55232
KH
173 }
174 }
05af2e10 175 current->rss_stat.events = 0;
34e55232
KH
176}
177
178static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
179{
180 struct task_struct *task = current;
181
182 if (likely(task->mm == mm))
183 task->rss_stat.count[member] += val;
184 else
185 add_mm_counter(mm, member, val);
186}
187#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
188#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
189
190/* sync counter once per 64 page faults */
191#define TASK_RSS_EVENTS_THRESH (64)
192static void check_sync_rss_stat(struct task_struct *task)
193{
194 if (unlikely(task != current))
195 return;
196 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 197 sync_mm_rss(task->mm);
34e55232 198}
9547d01b 199#else /* SPLIT_RSS_COUNTING */
34e55232
KH
200
201#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
202#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
203
204static void check_sync_rss_stat(struct task_struct *task)
205{
206}
207
9547d01b
PZ
208#endif /* SPLIT_RSS_COUNTING */
209
1da177e4
LT
210/*
211 * Note: this doesn't free the actual pages themselves. That
212 * has been handled earlier when unmapping all the memory regions.
213 */
9e1b32ca
BH
214static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
215 unsigned long addr)
1da177e4 216{
2f569afd 217 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 218 pmd_clear(pmd);
9e1b32ca 219 pte_free_tlb(tlb, token, addr);
c4812909 220 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
221}
222
e0da382c
HD
223static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
1da177e4
LT
226{
227 pmd_t *pmd;
228 unsigned long next;
e0da382c 229 unsigned long start;
1da177e4 230
e0da382c 231 start = addr;
1da177e4 232 pmd = pmd_offset(pud, addr);
1da177e4
LT
233 do {
234 next = pmd_addr_end(addr, end);
235 if (pmd_none_or_clear_bad(pmd))
236 continue;
9e1b32ca 237 free_pte_range(tlb, pmd, addr);
1da177e4
LT
238 } while (pmd++, addr = next, addr != end);
239
e0da382c
HD
240 start &= PUD_MASK;
241 if (start < floor)
242 return;
243 if (ceiling) {
244 ceiling &= PUD_MASK;
245 if (!ceiling)
246 return;
1da177e4 247 }
e0da382c
HD
248 if (end - 1 > ceiling - 1)
249 return;
250
251 pmd = pmd_offset(pud, start);
252 pud_clear(pud);
9e1b32ca 253 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 254 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
255}
256
c2febafc 257static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
258 unsigned long addr, unsigned long end,
259 unsigned long floor, unsigned long ceiling)
1da177e4
LT
260{
261 pud_t *pud;
262 unsigned long next;
e0da382c 263 unsigned long start;
1da177e4 264
e0da382c 265 start = addr;
c2febafc 266 pud = pud_offset(p4d, addr);
1da177e4
LT
267 do {
268 next = pud_addr_end(addr, end);
269 if (pud_none_or_clear_bad(pud))
270 continue;
e0da382c 271 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
272 } while (pud++, addr = next, addr != end);
273
c2febafc
KS
274 start &= P4D_MASK;
275 if (start < floor)
276 return;
277 if (ceiling) {
278 ceiling &= P4D_MASK;
279 if (!ceiling)
280 return;
281 }
282 if (end - 1 > ceiling - 1)
283 return;
284
285 pud = pud_offset(p4d, start);
286 p4d_clear(p4d);
287 pud_free_tlb(tlb, pud, start);
b4e98d9a 288 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
289}
290
291static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
292 unsigned long addr, unsigned long end,
293 unsigned long floor, unsigned long ceiling)
294{
295 p4d_t *p4d;
296 unsigned long next;
297 unsigned long start;
298
299 start = addr;
300 p4d = p4d_offset(pgd, addr);
301 do {
302 next = p4d_addr_end(addr, end);
303 if (p4d_none_or_clear_bad(p4d))
304 continue;
305 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
306 } while (p4d++, addr = next, addr != end);
307
e0da382c
HD
308 start &= PGDIR_MASK;
309 if (start < floor)
310 return;
311 if (ceiling) {
312 ceiling &= PGDIR_MASK;
313 if (!ceiling)
314 return;
1da177e4 315 }
e0da382c
HD
316 if (end - 1 > ceiling - 1)
317 return;
318
c2febafc 319 p4d = p4d_offset(pgd, start);
e0da382c 320 pgd_clear(pgd);
c2febafc 321 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
322}
323
324/*
e0da382c 325 * This function frees user-level page tables of a process.
1da177e4 326 */
42b77728 327void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
328 unsigned long addr, unsigned long end,
329 unsigned long floor, unsigned long ceiling)
1da177e4
LT
330{
331 pgd_t *pgd;
332 unsigned long next;
e0da382c
HD
333
334 /*
335 * The next few lines have given us lots of grief...
336 *
337 * Why are we testing PMD* at this top level? Because often
338 * there will be no work to do at all, and we'd prefer not to
339 * go all the way down to the bottom just to discover that.
340 *
341 * Why all these "- 1"s? Because 0 represents both the bottom
342 * of the address space and the top of it (using -1 for the
343 * top wouldn't help much: the masks would do the wrong thing).
344 * The rule is that addr 0 and floor 0 refer to the bottom of
345 * the address space, but end 0 and ceiling 0 refer to the top
346 * Comparisons need to use "end - 1" and "ceiling - 1" (though
347 * that end 0 case should be mythical).
348 *
349 * Wherever addr is brought up or ceiling brought down, we must
350 * be careful to reject "the opposite 0" before it confuses the
351 * subsequent tests. But what about where end is brought down
352 * by PMD_SIZE below? no, end can't go down to 0 there.
353 *
354 * Whereas we round start (addr) and ceiling down, by different
355 * masks at different levels, in order to test whether a table
356 * now has no other vmas using it, so can be freed, we don't
357 * bother to round floor or end up - the tests don't need that.
358 */
1da177e4 359
e0da382c
HD
360 addr &= PMD_MASK;
361 if (addr < floor) {
362 addr += PMD_SIZE;
363 if (!addr)
364 return;
365 }
366 if (ceiling) {
367 ceiling &= PMD_MASK;
368 if (!ceiling)
369 return;
370 }
371 if (end - 1 > ceiling - 1)
372 end -= PMD_SIZE;
373 if (addr > end - 1)
374 return;
07e32661
AK
375 /*
376 * We add page table cache pages with PAGE_SIZE,
377 * (see pte_free_tlb()), flush the tlb if we need
378 */
ed6a7935 379 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 380 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
381 do {
382 next = pgd_addr_end(addr, end);
383 if (pgd_none_or_clear_bad(pgd))
384 continue;
c2febafc 385 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 386 } while (pgd++, addr = next, addr != end);
e0da382c
HD
387}
388
42b77728 389void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 390 unsigned long floor, unsigned long ceiling)
e0da382c
HD
391{
392 while (vma) {
393 struct vm_area_struct *next = vma->vm_next;
394 unsigned long addr = vma->vm_start;
395
8f4f8c16 396 /*
25d9e2d1
NP
397 * Hide vma from rmap and truncate_pagecache before freeing
398 * pgtables
8f4f8c16 399 */
5beb4930 400 unlink_anon_vmas(vma);
8f4f8c16
HD
401 unlink_file_vma(vma);
402
9da61aef 403 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 404 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 405 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
406 } else {
407 /*
408 * Optimization: gather nearby vmas into one call down
409 */
410 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 411 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
412 vma = next;
413 next = vma->vm_next;
5beb4930 414 unlink_anon_vmas(vma);
8f4f8c16 415 unlink_file_vma(vma);
3bf5ee95
HD
416 }
417 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95 419 }
e0da382c
HD
420 vma = next;
421 }
1da177e4
LT
422}
423
4cf58924 424int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 425{
c4088ebd 426 spinlock_t *ptl;
4cf58924 427 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
428 if (!new)
429 return -ENOMEM;
430
362a61ad
NP
431 /*
432 * Ensure all pte setup (eg. pte page lock and page clearing) are
433 * visible before the pte is made visible to other CPUs by being
434 * put into page tables.
435 *
436 * The other side of the story is the pointer chasing in the page
437 * table walking code (when walking the page table without locking;
438 * ie. most of the time). Fortunately, these data accesses consist
439 * of a chain of data-dependent loads, meaning most CPUs (alpha
440 * being the notable exception) will already guarantee loads are
441 * seen in-order. See the alpha page table accessors for the
bb7cdd38 442 * smp_rmb() barriers in page table walking code.
362a61ad
NP
443 */
444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
445
c4088ebd 446 ptl = pmd_lock(mm, pmd);
8ac1f832 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 448 mm_inc_nr_ptes(mm);
1da177e4 449 pmd_populate(mm, pmd, new);
2f569afd 450 new = NULL;
4b471e88 451 }
c4088ebd 452 spin_unlock(ptl);
2f569afd
MS
453 if (new)
454 pte_free(mm, new);
1bb3630e 455 return 0;
1da177e4
LT
456}
457
4cf58924 458int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 459{
4cf58924 460 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
461 if (!new)
462 return -ENOMEM;
463
362a61ad
NP
464 smp_wmb(); /* See comment in __pte_alloc */
465
1bb3630e 466 spin_lock(&init_mm.page_table_lock);
8ac1f832 467 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 468 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 469 new = NULL;
4b471e88 470 }
1bb3630e 471 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
472 if (new)
473 pte_free_kernel(&init_mm, new);
1bb3630e 474 return 0;
1da177e4
LT
475}
476
d559db08
KH
477static inline void init_rss_vec(int *rss)
478{
479 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480}
481
482static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 483{
d559db08
KH
484 int i;
485
34e55232 486 if (current->mm == mm)
05af2e10 487 sync_mm_rss(mm);
d559db08
KH
488 for (i = 0; i < NR_MM_COUNTERS; i++)
489 if (rss[i])
490 add_mm_counter(mm, i, rss[i]);
ae859762
HD
491}
492
b5810039 493/*
6aab341e
LT
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
b5810039
NP
497 *
498 * The calling function must still handle the error.
499 */
3dc14741
HD
500static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 pte_t pte, struct page *page)
b5810039 502{
3dc14741 503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
504 p4d_t *p4d = p4d_offset(pgd, addr);
505 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
506 pmd_t *pmd = pmd_offset(pud, addr);
507 struct address_space *mapping;
508 pgoff_t index;
d936cf9b
HD
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 return;
521 }
522 if (nr_unshown) {
1170532b
JP
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524 nr_unshown);
d936cf9b
HD
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
3dc14741
HD
531
532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 index = linear_page_index(vma, addr);
534
1170532b
JP
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 current->comm,
537 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 538 if (page)
f0b791a3 539 dump_page(page, "bad pte");
6aa9b8b2 540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
543 vma->vm_file,
544 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 mapping ? mapping->a_ops->readpage : NULL);
b5810039 547 dump_stack();
373d4d09 548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
549}
550
ee498ed7 551/*
7e675137 552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 553 *
7e675137
NP
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 557 *
7e675137
NP
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
561 * described below.
562 *
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 566 *
b379d790
JH
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
6aab341e
LT
571 *
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 *
7e675137
NP
574 * And for normal mappings this is false.
575 *
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
b379d790 580 *
b379d790 581 *
7e675137 582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
583 *
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The disadvantage is that pages are refcounted
588 * (which can be slower and simply not an option for some PFNMAP users). The
589 * advantage is that we don't have to follow the strict linearity rule of
590 * PFNMAP mappings in order to support COWable mappings.
591 *
ee498ed7 592 */
25b2995a
CH
593struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
ee498ed7 595{
22b31eec 596 unsigned long pfn = pte_pfn(pte);
7e675137 597
00b3a331 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 599 if (likely(!pte_special(pte)))
22b31eec 600 goto check_pfn;
667a0a06
DV
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
df6ad698
JG
605 if (is_zero_pfn(pfn))
606 return NULL;
e1fb4a08
DJ
607 if (pte_devmap(pte))
608 return NULL;
609
df6ad698 610 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
611 return NULL;
612 }
613
00b3a331 614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 615
b379d790
JH
616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
617 if (vma->vm_flags & VM_MIXEDMAP) {
618 if (!pfn_valid(pfn))
619 return NULL;
620 goto out;
621 } else {
7e675137
NP
622 unsigned long off;
623 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
624 if (pfn == vma->vm_pgoff + off)
625 return NULL;
626 if (!is_cow_mapping(vma->vm_flags))
627 return NULL;
628 }
6aab341e
LT
629 }
630
b38af472
HD
631 if (is_zero_pfn(pfn))
632 return NULL;
00b3a331 633
22b31eec
HD
634check_pfn:
635 if (unlikely(pfn > highest_memmap_pfn)) {
636 print_bad_pte(vma, addr, pte, NULL);
637 return NULL;
638 }
6aab341e
LT
639
640 /*
7e675137 641 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 642 * eg. VDSO mappings can cause them to exist.
6aab341e 643 */
b379d790 644out:
6aab341e 645 return pfn_to_page(pfn);
ee498ed7
HD
646}
647
28093f9f
GS
648#ifdef CONFIG_TRANSPARENT_HUGEPAGE
649struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
650 pmd_t pmd)
651{
652 unsigned long pfn = pmd_pfn(pmd);
653
654 /*
655 * There is no pmd_special() but there may be special pmds, e.g.
656 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
658 */
659 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
660 if (vma->vm_flags & VM_MIXEDMAP) {
661 if (!pfn_valid(pfn))
662 return NULL;
663 goto out;
664 } else {
665 unsigned long off;
666 off = (addr - vma->vm_start) >> PAGE_SHIFT;
667 if (pfn == vma->vm_pgoff + off)
668 return NULL;
669 if (!is_cow_mapping(vma->vm_flags))
670 return NULL;
671 }
672 }
673
e1fb4a08
DJ
674 if (pmd_devmap(pmd))
675 return NULL;
3cde287b 676 if (is_huge_zero_pmd(pmd))
28093f9f
GS
677 return NULL;
678 if (unlikely(pfn > highest_memmap_pfn))
679 return NULL;
680
681 /*
682 * NOTE! We still have PageReserved() pages in the page tables.
683 * eg. VDSO mappings can cause them to exist.
684 */
685out:
686 return pfn_to_page(pfn);
687}
688#endif
689
1da177e4
LT
690/*
691 * copy one vm_area from one task to the other. Assumes the page tables
692 * already present in the new task to be cleared in the whole range
693 * covered by this vma.
1da177e4
LT
694 */
695
570a335b 696static inline unsigned long
1da177e4 697copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 698 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 699 unsigned long addr, int *rss)
1da177e4 700{
b5810039 701 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
702 pte_t pte = *src_pte;
703 struct page *page;
1da177e4
LT
704
705 /* pte contains position in swap or file, so copy. */
706 if (unlikely(!pte_present(pte))) {
0661a336
KS
707 swp_entry_t entry = pte_to_swp_entry(pte);
708
709 if (likely(!non_swap_entry(entry))) {
710 if (swap_duplicate(entry) < 0)
711 return entry.val;
712
713 /* make sure dst_mm is on swapoff's mmlist. */
714 if (unlikely(list_empty(&dst_mm->mmlist))) {
715 spin_lock(&mmlist_lock);
716 if (list_empty(&dst_mm->mmlist))
717 list_add(&dst_mm->mmlist,
718 &src_mm->mmlist);
719 spin_unlock(&mmlist_lock);
720 }
721 rss[MM_SWAPENTS]++;
722 } else if (is_migration_entry(entry)) {
723 page = migration_entry_to_page(entry);
724
eca56ff9 725 rss[mm_counter(page)]++;
0661a336
KS
726
727 if (is_write_migration_entry(entry) &&
728 is_cow_mapping(vm_flags)) {
729 /*
730 * COW mappings require pages in both
731 * parent and child to be set to read.
732 */
733 make_migration_entry_read(&entry);
734 pte = swp_entry_to_pte(entry);
735 if (pte_swp_soft_dirty(*src_pte))
736 pte = pte_swp_mksoft_dirty(pte);
f45ec5ff
PX
737 if (pte_swp_uffd_wp(*src_pte))
738 pte = pte_swp_mkuffd_wp(pte);
0661a336 739 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 740 }
5042db43
JG
741 } else if (is_device_private_entry(entry)) {
742 page = device_private_entry_to_page(entry);
743
744 /*
745 * Update rss count even for unaddressable pages, as
746 * they should treated just like normal pages in this
747 * respect.
748 *
749 * We will likely want to have some new rss counters
750 * for unaddressable pages, at some point. But for now
751 * keep things as they are.
752 */
753 get_page(page);
754 rss[mm_counter(page)]++;
755 page_dup_rmap(page, false);
756
757 /*
758 * We do not preserve soft-dirty information, because so
759 * far, checkpoint/restore is the only feature that
760 * requires that. And checkpoint/restore does not work
761 * when a device driver is involved (you cannot easily
762 * save and restore device driver state).
763 */
764 if (is_write_device_private_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 make_device_private_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
768 if (pte_swp_uffd_wp(*src_pte))
769 pte = pte_swp_mkuffd_wp(pte);
5042db43
JG
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
1da177e4 772 }
ae859762 773 goto out_set_pte;
1da177e4
LT
774 }
775
1da177e4
LT
776 /*
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
779 */
1b2de5d0 780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 781 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 782 pte = pte_wrprotect(pte);
1da177e4
LT
783 }
784
785 /*
786 * If it's a shared mapping, mark it clean in
787 * the child
788 */
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
6aab341e 792
b569a176
PX
793 /*
794 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
795 * does not have the VM_UFFD_WP, which means that the uffd
796 * fork event is not enabled.
797 */
798 if (!(vm_flags & VM_UFFD_WP))
799 pte = pte_clear_uffd_wp(pte);
800
6aab341e
LT
801 page = vm_normal_page(vma, addr, pte);
802 if (page) {
803 get_page(page);
53f9263b 804 page_dup_rmap(page, false);
eca56ff9 805 rss[mm_counter(page)]++;
6aab341e 806 }
ae859762
HD
807
808out_set_pte:
809 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 810 return 0;
1da177e4
LT
811}
812
21bda264 813static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
814 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
815 unsigned long addr, unsigned long end)
1da177e4 816{
c36987e2 817 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 818 pte_t *src_pte, *dst_pte;
c74df32c 819 spinlock_t *src_ptl, *dst_ptl;
e040f218 820 int progress = 0;
d559db08 821 int rss[NR_MM_COUNTERS];
570a335b 822 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
823
824again:
d559db08
KH
825 init_rss_vec(rss);
826
c74df32c 827 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
828 if (!dst_pte)
829 return -ENOMEM;
ece0e2b6 830 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 831 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 832 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
833 orig_src_pte = src_pte;
834 orig_dst_pte = dst_pte;
6606c3e0 835 arch_enter_lazy_mmu_mode();
1da177e4 836
1da177e4
LT
837 do {
838 /*
839 * We are holding two locks at this point - either of them
840 * could generate latencies in another task on another CPU.
841 */
e040f218
HD
842 if (progress >= 32) {
843 progress = 0;
844 if (need_resched() ||
95c354fe 845 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
846 break;
847 }
1da177e4
LT
848 if (pte_none(*src_pte)) {
849 progress++;
850 continue;
851 }
570a335b
HD
852 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
853 vma, addr, rss);
854 if (entry.val)
855 break;
1da177e4
LT
856 progress += 8;
857 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 858
6606c3e0 859 arch_leave_lazy_mmu_mode();
c74df32c 860 spin_unlock(src_ptl);
ece0e2b6 861 pte_unmap(orig_src_pte);
d559db08 862 add_mm_rss_vec(dst_mm, rss);
c36987e2 863 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 864 cond_resched();
570a335b
HD
865
866 if (entry.val) {
867 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
868 return -ENOMEM;
869 progress = 0;
870 }
1da177e4
LT
871 if (addr != end)
872 goto again;
873 return 0;
874}
875
876static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
878 unsigned long addr, unsigned long end)
879{
880 pmd_t *src_pmd, *dst_pmd;
881 unsigned long next;
882
883 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
884 if (!dst_pmd)
885 return -ENOMEM;
886 src_pmd = pmd_offset(src_pud, addr);
887 do {
888 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
889 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
890 || pmd_devmap(*src_pmd)) {
71e3aac0 891 int err;
a00cc7d9 892 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
893 err = copy_huge_pmd(dst_mm, src_mm,
894 dst_pmd, src_pmd, addr, vma);
895 if (err == -ENOMEM)
896 return -ENOMEM;
897 if (!err)
898 continue;
899 /* fall through */
900 }
1da177e4
LT
901 if (pmd_none_or_clear_bad(src_pmd))
902 continue;
903 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
904 vma, addr, next))
905 return -ENOMEM;
906 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
907 return 0;
908}
909
910static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 911 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
912 unsigned long addr, unsigned long end)
913{
914 pud_t *src_pud, *dst_pud;
915 unsigned long next;
916
c2febafc 917 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
918 if (!dst_pud)
919 return -ENOMEM;
c2febafc 920 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
921 do {
922 next = pud_addr_end(addr, end);
a00cc7d9
MW
923 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
924 int err;
925
926 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
927 err = copy_huge_pud(dst_mm, src_mm,
928 dst_pud, src_pud, addr, vma);
929 if (err == -ENOMEM)
930 return -ENOMEM;
931 if (!err)
932 continue;
933 /* fall through */
934 }
1da177e4
LT
935 if (pud_none_or_clear_bad(src_pud))
936 continue;
937 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
938 vma, addr, next))
939 return -ENOMEM;
940 } while (dst_pud++, src_pud++, addr = next, addr != end);
941 return 0;
942}
943
c2febafc
KS
944static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
947{
948 p4d_t *src_p4d, *dst_p4d;
949 unsigned long next;
950
951 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
952 if (!dst_p4d)
953 return -ENOMEM;
954 src_p4d = p4d_offset(src_pgd, addr);
955 do {
956 next = p4d_addr_end(addr, end);
957 if (p4d_none_or_clear_bad(src_p4d))
958 continue;
959 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
960 vma, addr, next))
961 return -ENOMEM;
962 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
963 return 0;
964}
965
1da177e4
LT
966int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 struct vm_area_struct *vma)
968{
969 pgd_t *src_pgd, *dst_pgd;
970 unsigned long next;
971 unsigned long addr = vma->vm_start;
972 unsigned long end = vma->vm_end;
ac46d4f3 973 struct mmu_notifier_range range;
2ec74c3e 974 bool is_cow;
cddb8a5c 975 int ret;
1da177e4 976
d992895b
NP
977 /*
978 * Don't copy ptes where a page fault will fill them correctly.
979 * Fork becomes much lighter when there are big shared or private
980 * readonly mappings. The tradeoff is that copy_page_range is more
981 * efficient than faulting.
982 */
0661a336
KS
983 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
984 !vma->anon_vma)
985 return 0;
d992895b 986
1da177e4
LT
987 if (is_vm_hugetlb_page(vma))
988 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
989
b3b9c293 990 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 991 /*
992 * We do not free on error cases below as remove_vma
993 * gets called on error from higher level routine
994 */
5180da41 995 ret = track_pfn_copy(vma);
2ab64037 996 if (ret)
997 return ret;
998 }
999
cddb8a5c
AA
1000 /*
1001 * We need to invalidate the secondary MMU mappings only when
1002 * there could be a permission downgrade on the ptes of the
1003 * parent mm. And a permission downgrade will only happen if
1004 * is_cow_mapping() returns true.
1005 */
2ec74c3e 1006 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1007
1008 if (is_cow) {
7269f999
JG
1009 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1010 0, vma, src_mm, addr, end);
ac46d4f3
JG
1011 mmu_notifier_invalidate_range_start(&range);
1012 }
cddb8a5c
AA
1013
1014 ret = 0;
1da177e4
LT
1015 dst_pgd = pgd_offset(dst_mm, addr);
1016 src_pgd = pgd_offset(src_mm, addr);
1017 do {
1018 next = pgd_addr_end(addr, end);
1019 if (pgd_none_or_clear_bad(src_pgd))
1020 continue;
c2febafc 1021 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1022 vma, addr, next))) {
1023 ret = -ENOMEM;
1024 break;
1025 }
1da177e4 1026 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1027
2ec74c3e 1028 if (is_cow)
ac46d4f3 1029 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1030 return ret;
1da177e4
LT
1031}
1032
51c6f666 1033static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1034 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1035 unsigned long addr, unsigned long end,
97a89413 1036 struct zap_details *details)
1da177e4 1037{
b5810039 1038 struct mm_struct *mm = tlb->mm;
d16dfc55 1039 int force_flush = 0;
d559db08 1040 int rss[NR_MM_COUNTERS];
97a89413 1041 spinlock_t *ptl;
5f1a1907 1042 pte_t *start_pte;
97a89413 1043 pte_t *pte;
8a5f14a2 1044 swp_entry_t entry;
d559db08 1045
ed6a7935 1046 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1047again:
e303297e 1048 init_rss_vec(rss);
5f1a1907
SR
1049 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1050 pte = start_pte;
3ea27719 1051 flush_tlb_batched_pending(mm);
6606c3e0 1052 arch_enter_lazy_mmu_mode();
1da177e4
LT
1053 do {
1054 pte_t ptent = *pte;
166f61b9 1055 if (pte_none(ptent))
1da177e4 1056 continue;
6f5e6b9e 1057
7b167b68
MK
1058 if (need_resched())
1059 break;
1060
1da177e4 1061 if (pte_present(ptent)) {
ee498ed7 1062 struct page *page;
51c6f666 1063
25b2995a 1064 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1065 if (unlikely(details) && page) {
1066 /*
1067 * unmap_shared_mapping_pages() wants to
1068 * invalidate cache without truncating:
1069 * unmap shared but keep private pages.
1070 */
1071 if (details->check_mapping &&
800d8c63 1072 details->check_mapping != page_rmapping(page))
1da177e4 1073 continue;
1da177e4 1074 }
b5810039 1075 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1076 tlb->fullmm);
1da177e4
LT
1077 tlb_remove_tlb_entry(tlb, pte, addr);
1078 if (unlikely(!page))
1079 continue;
eca56ff9
JM
1080
1081 if (!PageAnon(page)) {
1cf35d47
LT
1082 if (pte_dirty(ptent)) {
1083 force_flush = 1;
6237bcd9 1084 set_page_dirty(page);
1cf35d47 1085 }
4917e5d0 1086 if (pte_young(ptent) &&
64363aad 1087 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1088 mark_page_accessed(page);
6237bcd9 1089 }
eca56ff9 1090 rss[mm_counter(page)]--;
d281ee61 1091 page_remove_rmap(page, false);
3dc14741
HD
1092 if (unlikely(page_mapcount(page) < 0))
1093 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1094 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1095 force_flush = 1;
ce9ec37b 1096 addr += PAGE_SIZE;
d16dfc55 1097 break;
1cf35d47 1098 }
1da177e4
LT
1099 continue;
1100 }
5042db43
JG
1101
1102 entry = pte_to_swp_entry(ptent);
463b7a17 1103 if (is_device_private_entry(entry)) {
5042db43
JG
1104 struct page *page = device_private_entry_to_page(entry);
1105
1106 if (unlikely(details && details->check_mapping)) {
1107 /*
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1111 */
1112 if (details->check_mapping !=
1113 page_rmapping(page))
1114 continue;
1115 }
1116
1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1118 rss[mm_counter(page)]--;
1119 page_remove_rmap(page, false);
1120 put_page(page);
1121 continue;
1122 }
1123
3e8715fd
KS
1124 /* If details->check_mapping, we leave swap entries. */
1125 if (unlikely(details))
1da177e4 1126 continue;
b084d435 1127
8a5f14a2
KS
1128 if (!non_swap_entry(entry))
1129 rss[MM_SWAPENTS]--;
1130 else if (is_migration_entry(entry)) {
1131 struct page *page;
9f9f1acd 1132
8a5f14a2 1133 page = migration_entry_to_page(entry);
eca56ff9 1134 rss[mm_counter(page)]--;
b084d435 1135 }
8a5f14a2
KS
1136 if (unlikely(!free_swap_and_cache(entry)))
1137 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1139 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1140
d559db08 1141 add_mm_rss_vec(mm, rss);
6606c3e0 1142 arch_leave_lazy_mmu_mode();
51c6f666 1143
1cf35d47 1144 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1145 if (force_flush)
1cf35d47 1146 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1147 pte_unmap_unlock(start_pte, ptl);
1148
1149 /*
1150 * If we forced a TLB flush (either due to running out of
1151 * batch buffers or because we needed to flush dirty TLB
1152 * entries before releasing the ptl), free the batched
1153 * memory too. Restart if we didn't do everything.
1154 */
1155 if (force_flush) {
1156 force_flush = 0;
fa0aafb8 1157 tlb_flush_mmu(tlb);
7b167b68
MK
1158 }
1159
1160 if (addr != end) {
1161 cond_resched();
1162 goto again;
d16dfc55
PZ
1163 }
1164
51c6f666 1165 return addr;
1da177e4
LT
1166}
1167
51c6f666 1168static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1169 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1170 unsigned long addr, unsigned long end,
97a89413 1171 struct zap_details *details)
1da177e4
LT
1172{
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
84c3fc4e 1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1180 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1183 goto next;
71e3aac0
AA
1184 /* fall through */
1185 }
1a5a9906
AA
1186 /*
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
c1e8d7c6 1190 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1191 * mode.
1192 */
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 goto next;
97a89413 1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1196next:
97a89413
PZ
1197 cond_resched();
1198 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1199
1200 return addr;
1da177e4
LT
1201}
1202
51c6f666 1203static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1204 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1205 unsigned long addr, unsigned long end,
97a89413 1206 struct zap_details *details)
1da177e4
LT
1207{
1208 pud_t *pud;
1209 unsigned long next;
1210
c2febafc 1211 pud = pud_offset(p4d, addr);
1da177e4
LT
1212 do {
1213 next = pud_addr_end(addr, end);
a00cc7d9
MW
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1216 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1219 goto next;
1220 /* fall through */
1221 }
97a89413 1222 if (pud_none_or_clear_bad(pud))
1da177e4 1223 continue;
97a89413 1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1225next:
1226 cond_resched();
97a89413 1227 } while (pud++, addr = next, addr != end);
51c6f666
RH
1228
1229 return addr;
1da177e4
LT
1230}
1231
c2febafc
KS
1232static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236{
1237 p4d_t *p4d;
1238 unsigned long next;
1239
1240 p4d = p4d_offset(pgd, addr);
1241 do {
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1244 continue;
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1247
1248 return addr;
1249}
1250
aac45363 1251void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1da177e4
LT
1255{
1256 pgd_t *pgd;
1257 unsigned long next;
1258
1da177e4
LT
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
97a89413 1264 if (pgd_none_or_clear_bad(pgd))
1da177e4 1265 continue;
c2febafc 1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1267 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1268 tlb_end_vma(tlb, vma);
1269}
51c6f666 1270
f5cc4eef
AV
1271
1272static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1274 unsigned long end_addr,
f5cc4eef
AV
1275 struct zap_details *details)
1276{
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
cbc91f71
SD
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
b3b9c293 1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1290 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
7aa6b4ad 1298 * cleanup path of mmap_region. When
f5cc4eef 1299 * hugetlbfs ->mmap method fails,
7aa6b4ad 1300 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
24669e58 1305 if (vma->vm_file) {
83cde9e8 1306 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1309 }
f5cc4eef
AV
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1da177e4
LT
1313}
1314
1da177e4
LT
1315/**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1317 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1da177e4 1321 *
508034a3 1322 * Unmap all pages in the vma list.
1da177e4 1323 *
1da177e4
LT
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
6e8bb019 1333void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1334 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1335 unsigned long end_addr)
1da177e4 1336{
ac46d4f3 1337 struct mmu_notifier_range range;
1da177e4 1338
6f4f13e8
JG
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
ac46d4f3 1341 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1344 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1345}
1346
1347/**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1350 * @start: starting address of pages to zap
1da177e4 1351 * @size: number of bytes to zap
f5cc4eef
AV
1352 *
1353 * Caller must protect the VMA list
1da177e4 1354 */
7e027b14 1355void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1356 unsigned long size)
1da177e4 1357{
ac46d4f3 1358 struct mmu_notifier_range range;
d16dfc55 1359 struct mmu_gather tlb;
1da177e4 1360
1da177e4 1361 lru_add_drain();
7269f999 1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1363 start, start + size);
ac46d4f3
JG
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1371}
1372
f5cc4eef
AV
1373/**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
8a5f14a2 1378 * @details: details of shared cache invalidation
f5cc4eef
AV
1379 *
1380 * The range must fit into one VMA.
1da177e4 1381 */
f5cc4eef 1382static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1383 unsigned long size, struct zap_details *details)
1384{
ac46d4f3 1385 struct mmu_notifier_range range;
d16dfc55 1386 struct mmu_gather tlb;
1da177e4 1387
1da177e4 1388 lru_add_drain();
7269f999 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1390 address, address + size);
ac46d4f3
JG
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1397}
1398
c627f9cc
JS
1399/**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
c627f9cc 1409 */
27d036e3 1410void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1411 unsigned long size)
1412{
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1415 return;
1416
f5cc4eef 1417 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1418}
1419EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
8cd3984d 1421static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1422{
c2febafc
KS
1423 pgd_t *pgd;
1424 p4d_t *p4d;
1425 pud_t *pud;
1426 pmd_t *pmd;
1427
1428 pgd = pgd_offset(mm, addr);
1429 p4d = p4d_alloc(mm, pgd, addr);
1430 if (!p4d)
1431 return NULL;
1432 pud = pud_alloc(mm, p4d, addr);
1433 if (!pud)
1434 return NULL;
1435 pmd = pmd_alloc(mm, pud, addr);
1436 if (!pmd)
1437 return NULL;
1438
1439 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1440 return pmd;
1441}
1442
1443pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1444 spinlock_t **ptl)
1445{
1446 pmd_t *pmd = walk_to_pmd(mm, addr);
1447
1448 if (!pmd)
1449 return NULL;
c2febafc 1450 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1451}
1452
8efd6f5b
AR
1453static int validate_page_before_insert(struct page *page)
1454{
1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1456 return -EINVAL;
1457 flush_dcache_page(page);
1458 return 0;
1459}
1460
1461static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1462 unsigned long addr, struct page *page, pgprot_t prot)
1463{
1464 if (!pte_none(*pte))
1465 return -EBUSY;
1466 /* Ok, finally just insert the thing.. */
1467 get_page(page);
1468 inc_mm_counter_fast(mm, mm_counter_file(page));
1469 page_add_file_rmap(page, false);
1470 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1471 return 0;
1472}
1473
238f58d8
LT
1474/*
1475 * This is the old fallback for page remapping.
1476 *
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1480 */
423bad60
NP
1481static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page, pgprot_t prot)
238f58d8 1483{
423bad60 1484 struct mm_struct *mm = vma->vm_mm;
238f58d8 1485 int retval;
c9cfcddf 1486 pte_t *pte;
8a9f3ccd
BS
1487 spinlock_t *ptl;
1488
8efd6f5b
AR
1489 retval = validate_page_before_insert(page);
1490 if (retval)
5b4e655e 1491 goto out;
238f58d8 1492 retval = -ENOMEM;
c9cfcddf 1493 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1494 if (!pte)
5b4e655e 1495 goto out;
8efd6f5b 1496 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1497 pte_unmap_unlock(pte, ptl);
1498out:
1499 return retval;
1500}
1501
8cd3984d 1502#ifdef pte_index
7f70c2a6 1503static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1504 unsigned long addr, struct page *page, pgprot_t prot)
1505{
1506 int err;
1507
1508 if (!page_count(page))
1509 return -EINVAL;
1510 err = validate_page_before_insert(page);
7f70c2a6
AR
1511 if (err)
1512 return err;
1513 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1514}
1515
1516/* insert_pages() amortizes the cost of spinlock operations
1517 * when inserting pages in a loop. Arch *must* define pte_index.
1518 */
1519static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1520 struct page **pages, unsigned long *num, pgprot_t prot)
1521{
1522 pmd_t *pmd = NULL;
7f70c2a6
AR
1523 pte_t *start_pte, *pte;
1524 spinlock_t *pte_lock;
8cd3984d
AR
1525 struct mm_struct *const mm = vma->vm_mm;
1526 unsigned long curr_page_idx = 0;
1527 unsigned long remaining_pages_total = *num;
1528 unsigned long pages_to_write_in_pmd;
1529 int ret;
1530more:
1531 ret = -EFAULT;
1532 pmd = walk_to_pmd(mm, addr);
1533 if (!pmd)
1534 goto out;
1535
1536 pages_to_write_in_pmd = min_t(unsigned long,
1537 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1538
1539 /* Allocate the PTE if necessary; takes PMD lock once only. */
1540 ret = -ENOMEM;
1541 if (pte_alloc(mm, pmd))
1542 goto out;
8cd3984d
AR
1543
1544 while (pages_to_write_in_pmd) {
1545 int pte_idx = 0;
1546 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1547
7f70c2a6
AR
1548 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1549 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1550 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1551 addr, pages[curr_page_idx], prot);
1552 if (unlikely(err)) {
7f70c2a6 1553 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1554 ret = err;
1555 remaining_pages_total -= pte_idx;
1556 goto out;
1557 }
1558 addr += PAGE_SIZE;
1559 ++curr_page_idx;
1560 }
7f70c2a6 1561 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1562 pages_to_write_in_pmd -= batch_size;
1563 remaining_pages_total -= batch_size;
1564 }
1565 if (remaining_pages_total)
1566 goto more;
1567 ret = 0;
1568out:
1569 *num = remaining_pages_total;
1570 return ret;
1571}
1572#endif /* ifdef pte_index */
1573
1574/**
1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1576 * @vma: user vma to map to
1577 * @addr: target start user address of these pages
1578 * @pages: source kernel pages
1579 * @num: in: number of pages to map. out: number of pages that were *not*
1580 * mapped. (0 means all pages were successfully mapped).
1581 *
1582 * Preferred over vm_insert_page() when inserting multiple pages.
1583 *
1584 * In case of error, we may have mapped a subset of the provided
1585 * pages. It is the caller's responsibility to account for this case.
1586 *
1587 * The same restrictions apply as in vm_insert_page().
1588 */
1589int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1590 struct page **pages, unsigned long *num)
1591{
1592#ifdef pte_index
1593 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1594
1595 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1596 return -EFAULT;
1597 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1598 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1599 BUG_ON(vma->vm_flags & VM_PFNMAP);
1600 vma->vm_flags |= VM_MIXEDMAP;
1601 }
1602 /* Defer page refcount checking till we're about to map that page. */
1603 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1604#else
1605 unsigned long idx = 0, pgcount = *num;
45779b03 1606 int err = -EINVAL;
8cd3984d
AR
1607
1608 for (; idx < pgcount; ++idx) {
1609 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1610 if (err)
1611 break;
1612 }
1613 *num = pgcount - idx;
1614 return err;
1615#endif /* ifdef pte_index */
1616}
1617EXPORT_SYMBOL(vm_insert_pages);
1618
bfa5bf6d
REB
1619/**
1620 * vm_insert_page - insert single page into user vma
1621 * @vma: user vma to map to
1622 * @addr: target user address of this page
1623 * @page: source kernel page
1624 *
a145dd41
LT
1625 * This allows drivers to insert individual pages they've allocated
1626 * into a user vma.
1627 *
1628 * The page has to be a nice clean _individual_ kernel allocation.
1629 * If you allocate a compound page, you need to have marked it as
1630 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1631 * (see split_page()).
a145dd41
LT
1632 *
1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1634 * took an arbitrary page protection parameter. This doesn't allow
1635 * that. Your vma protection will have to be set up correctly, which
1636 * means that if you want a shared writable mapping, you'd better
1637 * ask for a shared writable mapping!
1638 *
1639 * The page does not need to be reserved.
4b6e1e37
KK
1640 *
1641 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1642 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1644 * function from other places, for example from page-fault handler.
a862f68a
MR
1645 *
1646 * Return: %0 on success, negative error code otherwise.
a145dd41 1647 */
423bad60
NP
1648int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1649 struct page *page)
a145dd41
LT
1650{
1651 if (addr < vma->vm_start || addr >= vma->vm_end)
1652 return -EFAULT;
1653 if (!page_count(page))
1654 return -EINVAL;
4b6e1e37 1655 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1656 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1657 BUG_ON(vma->vm_flags & VM_PFNMAP);
1658 vma->vm_flags |= VM_MIXEDMAP;
1659 }
423bad60 1660 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1661}
e3c3374f 1662EXPORT_SYMBOL(vm_insert_page);
a145dd41 1663
a667d745
SJ
1664/*
1665 * __vm_map_pages - maps range of kernel pages into user vma
1666 * @vma: user vma to map to
1667 * @pages: pointer to array of source kernel pages
1668 * @num: number of pages in page array
1669 * @offset: user's requested vm_pgoff
1670 *
1671 * This allows drivers to map range of kernel pages into a user vma.
1672 *
1673 * Return: 0 on success and error code otherwise.
1674 */
1675static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1676 unsigned long num, unsigned long offset)
1677{
1678 unsigned long count = vma_pages(vma);
1679 unsigned long uaddr = vma->vm_start;
1680 int ret, i;
1681
1682 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1683 if (offset >= num)
a667d745
SJ
1684 return -ENXIO;
1685
1686 /* Fail if the user requested size exceeds available object size */
1687 if (count > num - offset)
1688 return -ENXIO;
1689
1690 for (i = 0; i < count; i++) {
1691 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1692 if (ret < 0)
1693 return ret;
1694 uaddr += PAGE_SIZE;
1695 }
1696
1697 return 0;
1698}
1699
1700/**
1701 * vm_map_pages - maps range of kernel pages starts with non zero offset
1702 * @vma: user vma to map to
1703 * @pages: pointer to array of source kernel pages
1704 * @num: number of pages in page array
1705 *
1706 * Maps an object consisting of @num pages, catering for the user's
1707 * requested vm_pgoff
1708 *
1709 * If we fail to insert any page into the vma, the function will return
1710 * immediately leaving any previously inserted pages present. Callers
1711 * from the mmap handler may immediately return the error as their caller
1712 * will destroy the vma, removing any successfully inserted pages. Other
1713 * callers should make their own arrangements for calling unmap_region().
1714 *
1715 * Context: Process context. Called by mmap handlers.
1716 * Return: 0 on success and error code otherwise.
1717 */
1718int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1719 unsigned long num)
1720{
1721 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1722}
1723EXPORT_SYMBOL(vm_map_pages);
1724
1725/**
1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1727 * @vma: user vma to map to
1728 * @pages: pointer to array of source kernel pages
1729 * @num: number of pages in page array
1730 *
1731 * Similar to vm_map_pages(), except that it explicitly sets the offset
1732 * to 0. This function is intended for the drivers that did not consider
1733 * vm_pgoff.
1734 *
1735 * Context: Process context. Called by mmap handlers.
1736 * Return: 0 on success and error code otherwise.
1737 */
1738int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1739 unsigned long num)
1740{
1741 return __vm_map_pages(vma, pages, num, 0);
1742}
1743EXPORT_SYMBOL(vm_map_pages_zero);
1744
9b5a8e00 1745static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1746 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1747{
1748 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1749 pte_t *pte, entry;
1750 spinlock_t *ptl;
1751
423bad60
NP
1752 pte = get_locked_pte(mm, addr, &ptl);
1753 if (!pte)
9b5a8e00 1754 return VM_FAULT_OOM;
b2770da6
RZ
1755 if (!pte_none(*pte)) {
1756 if (mkwrite) {
1757 /*
1758 * For read faults on private mappings the PFN passed
1759 * in may not match the PFN we have mapped if the
1760 * mapped PFN is a writeable COW page. In the mkwrite
1761 * case we are creating a writable PTE for a shared
f2c57d91
JK
1762 * mapping and we expect the PFNs to match. If they
1763 * don't match, we are likely racing with block
1764 * allocation and mapping invalidation so just skip the
1765 * update.
b2770da6 1766 */
f2c57d91
JK
1767 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1769 goto out_unlock;
f2c57d91 1770 }
cae85cb8
JK
1771 entry = pte_mkyoung(*pte);
1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1774 update_mmu_cache(vma, addr, pte);
1775 }
1776 goto out_unlock;
b2770da6 1777 }
423bad60
NP
1778
1779 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1780 if (pfn_t_devmap(pfn))
1781 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1782 else
1783 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1784
b2770da6
RZ
1785 if (mkwrite) {
1786 entry = pte_mkyoung(entry);
1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 }
1789
423bad60 1790 set_pte_at(mm, addr, pte, entry);
4b3073e1 1791 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1792
423bad60
NP
1793out_unlock:
1794 pte_unmap_unlock(pte, ptl);
9b5a8e00 1795 return VM_FAULT_NOPAGE;
423bad60
NP
1796}
1797
f5e6d1d5
MW
1798/**
1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1800 * @vma: user vma to map to
1801 * @addr: target user address of this page
1802 * @pfn: source kernel pfn
1803 * @pgprot: pgprot flags for the inserted page
1804 *
a1a0aea5 1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1806 * to override pgprot on a per-page basis.
1807 *
1808 * This only makes sense for IO mappings, and it makes no sense for
1809 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1811 * impractical.
1812 *
574c5b3d
TH
1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1814 * a value of @pgprot different from that of @vma->vm_page_prot.
1815 *
ae2b01f3 1816 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1817 * Return: vm_fault_t value.
1818 */
1819vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1820 unsigned long pfn, pgprot_t pgprot)
1821{
6d958546
MW
1822 /*
1823 * Technically, architectures with pte_special can avoid all these
1824 * restrictions (same for remap_pfn_range). However we would like
1825 * consistency in testing and feature parity among all, so we should
1826 * try to keep these invariants in place for everybody.
1827 */
1828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1830 (VM_PFNMAP|VM_MIXEDMAP));
1831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1832 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1833
1834 if (addr < vma->vm_start || addr >= vma->vm_end)
1835 return VM_FAULT_SIGBUS;
1836
1837 if (!pfn_modify_allowed(pfn, pgprot))
1838 return VM_FAULT_SIGBUS;
1839
1840 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1841
9b5a8e00 1842 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1843 false);
f5e6d1d5
MW
1844}
1845EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1846
ae2b01f3
MW
1847/**
1848 * vmf_insert_pfn - insert single pfn into user vma
1849 * @vma: user vma to map to
1850 * @addr: target user address of this page
1851 * @pfn: source kernel pfn
1852 *
1853 * Similar to vm_insert_page, this allows drivers to insert individual pages
1854 * they've allocated into a user vma. Same comments apply.
1855 *
1856 * This function should only be called from a vm_ops->fault handler, and
1857 * in that case the handler should return the result of this function.
1858 *
1859 * vma cannot be a COW mapping.
1860 *
1861 * As this is called only for pages that do not currently exist, we
1862 * do not need to flush old virtual caches or the TLB.
1863 *
1864 * Context: Process context. May allocate using %GFP_KERNEL.
1865 * Return: vm_fault_t value.
1866 */
1867vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1868 unsigned long pfn)
1869{
1870 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1871}
1872EXPORT_SYMBOL(vmf_insert_pfn);
1873
785a3fab
DW
1874static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1875{
1876 /* these checks mirror the abort conditions in vm_normal_page */
1877 if (vma->vm_flags & VM_MIXEDMAP)
1878 return true;
1879 if (pfn_t_devmap(pfn))
1880 return true;
1881 if (pfn_t_special(pfn))
1882 return true;
1883 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1884 return true;
1885 return false;
1886}
1887
79f3aa5b 1888static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1889 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1890 bool mkwrite)
423bad60 1891{
79f3aa5b 1892 int err;
87744ab3 1893
785a3fab 1894 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1895
423bad60 1896 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1897 return VM_FAULT_SIGBUS;
308a047c
BP
1898
1899 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1900
42e4089c 1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1902 return VM_FAULT_SIGBUS;
42e4089c 1903
423bad60
NP
1904 /*
1905 * If we don't have pte special, then we have to use the pfn_valid()
1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1907 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1909 * without pte special, it would there be refcounted as a normal page.
423bad60 1910 */
00b3a331
LD
1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1912 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1913 struct page *page;
1914
03fc2da6
DW
1915 /*
1916 * At this point we are committed to insert_page()
1917 * regardless of whether the caller specified flags that
1918 * result in pfn_t_has_page() == false.
1919 */
1920 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1921 err = insert_page(vma, addr, page, pgprot);
1922 } else {
9b5a8e00 1923 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1924 }
b2770da6 1925
5d747637
MW
1926 if (err == -ENOMEM)
1927 return VM_FAULT_OOM;
1928 if (err < 0 && err != -EBUSY)
1929 return VM_FAULT_SIGBUS;
1930
1931 return VM_FAULT_NOPAGE;
e0dc0d8f 1932}
79f3aa5b 1933
574c5b3d
TH
1934/**
1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1936 * @vma: user vma to map to
1937 * @addr: target user address of this page
1938 * @pfn: source kernel pfn
1939 * @pgprot: pgprot flags for the inserted page
1940 *
a1a0aea5 1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
1942 * to override pgprot on a per-page basis.
1943 *
1944 * Typically this function should be used by drivers to set caching- and
1945 * encryption bits different than those of @vma->vm_page_prot, because
1946 * the caching- or encryption mode may not be known at mmap() time.
1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1948 * to set caching and encryption bits for those vmas (except for COW pages).
1949 * This is ensured by core vm only modifying these page table entries using
1950 * functions that don't touch caching- or encryption bits, using pte_modify()
1951 * if needed. (See for example mprotect()).
1952 * Also when new page-table entries are created, this is only done using the
1953 * fault() callback, and never using the value of vma->vm_page_prot,
1954 * except for page-table entries that point to anonymous pages as the result
1955 * of COW.
1956 *
1957 * Context: Process context. May allocate using %GFP_KERNEL.
1958 * Return: vm_fault_t value.
1959 */
1960vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1961 pfn_t pfn, pgprot_t pgprot)
1962{
1963 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1964}
5379e4dd 1965EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1966
79f3aa5b
MW
1967vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1968 pfn_t pfn)
1969{
574c5b3d 1970 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1971}
5d747637 1972EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1973
ab77dab4
SJ
1974/*
1975 * If the insertion of PTE failed because someone else already added a
1976 * different entry in the mean time, we treat that as success as we assume
1977 * the same entry was actually inserted.
1978 */
ab77dab4
SJ
1979vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1980 unsigned long addr, pfn_t pfn)
b2770da6 1981{
574c5b3d 1982 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1983}
ab77dab4 1984EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1985
1da177e4
LT
1986/*
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1990 */
1991static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 unsigned long addr, unsigned long end,
1993 unsigned long pfn, pgprot_t prot)
1994{
1995 pte_t *pte;
c74df32c 1996 spinlock_t *ptl;
42e4089c 1997 int err = 0;
1da177e4 1998
c74df32c 1999 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2000 if (!pte)
2001 return -ENOMEM;
6606c3e0 2002 arch_enter_lazy_mmu_mode();
1da177e4
LT
2003 do {
2004 BUG_ON(!pte_none(*pte));
42e4089c
AK
2005 if (!pfn_modify_allowed(pfn, prot)) {
2006 err = -EACCES;
2007 break;
2008 }
7e675137 2009 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2010 pfn++;
2011 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2012 arch_leave_lazy_mmu_mode();
c74df32c 2013 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2014 return err;
1da177e4
LT
2015}
2016
2017static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2018 unsigned long addr, unsigned long end,
2019 unsigned long pfn, pgprot_t prot)
2020{
2021 pmd_t *pmd;
2022 unsigned long next;
42e4089c 2023 int err;
1da177e4
LT
2024
2025 pfn -= addr >> PAGE_SHIFT;
2026 pmd = pmd_alloc(mm, pud, addr);
2027 if (!pmd)
2028 return -ENOMEM;
f66055ab 2029 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2030 do {
2031 next = pmd_addr_end(addr, end);
42e4089c
AK
2032 err = remap_pte_range(mm, pmd, addr, next,
2033 pfn + (addr >> PAGE_SHIFT), prot);
2034 if (err)
2035 return err;
1da177e4
LT
2036 } while (pmd++, addr = next, addr != end);
2037 return 0;
2038}
2039
c2febafc 2040static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2041 unsigned long addr, unsigned long end,
2042 unsigned long pfn, pgprot_t prot)
2043{
2044 pud_t *pud;
2045 unsigned long next;
42e4089c 2046 int err;
1da177e4
LT
2047
2048 pfn -= addr >> PAGE_SHIFT;
c2febafc 2049 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2050 if (!pud)
2051 return -ENOMEM;
2052 do {
2053 next = pud_addr_end(addr, end);
42e4089c
AK
2054 err = remap_pmd_range(mm, pud, addr, next,
2055 pfn + (addr >> PAGE_SHIFT), prot);
2056 if (err)
2057 return err;
1da177e4
LT
2058 } while (pud++, addr = next, addr != end);
2059 return 0;
2060}
2061
c2febafc
KS
2062static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2063 unsigned long addr, unsigned long end,
2064 unsigned long pfn, pgprot_t prot)
2065{
2066 p4d_t *p4d;
2067 unsigned long next;
42e4089c 2068 int err;
c2febafc
KS
2069
2070 pfn -= addr >> PAGE_SHIFT;
2071 p4d = p4d_alloc(mm, pgd, addr);
2072 if (!p4d)
2073 return -ENOMEM;
2074 do {
2075 next = p4d_addr_end(addr, end);
42e4089c
AK
2076 err = remap_pud_range(mm, p4d, addr, next,
2077 pfn + (addr >> PAGE_SHIFT), prot);
2078 if (err)
2079 return err;
c2febafc
KS
2080 } while (p4d++, addr = next, addr != end);
2081 return 0;
2082}
2083
bfa5bf6d
REB
2084/**
2085 * remap_pfn_range - remap kernel memory to userspace
2086 * @vma: user vma to map to
0c4123e3 2087 * @addr: target page aligned user address to start at
86a76331 2088 * @pfn: page frame number of kernel physical memory address
552657b7 2089 * @size: size of mapping area
bfa5bf6d
REB
2090 * @prot: page protection flags for this mapping
2091 *
a862f68a
MR
2092 * Note: this is only safe if the mm semaphore is held when called.
2093 *
2094 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2095 */
1da177e4
LT
2096int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2097 unsigned long pfn, unsigned long size, pgprot_t prot)
2098{
2099 pgd_t *pgd;
2100 unsigned long next;
2d15cab8 2101 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2102 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2103 unsigned long remap_pfn = pfn;
1da177e4
LT
2104 int err;
2105
0c4123e3
AZ
2106 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2107 return -EINVAL;
2108
1da177e4
LT
2109 /*
2110 * Physically remapped pages are special. Tell the
2111 * rest of the world about it:
2112 * VM_IO tells people not to look at these pages
2113 * (accesses can have side effects).
6aab341e
LT
2114 * VM_PFNMAP tells the core MM that the base pages are just
2115 * raw PFN mappings, and do not have a "struct page" associated
2116 * with them.
314e51b9
KK
2117 * VM_DONTEXPAND
2118 * Disable vma merging and expanding with mremap().
2119 * VM_DONTDUMP
2120 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2121 *
2122 * There's a horrible special case to handle copy-on-write
2123 * behaviour that some programs depend on. We mark the "original"
2124 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2125 * See vm_normal_page() for details.
1da177e4 2126 */
b3b9c293
KK
2127 if (is_cow_mapping(vma->vm_flags)) {
2128 if (addr != vma->vm_start || end != vma->vm_end)
2129 return -EINVAL;
fb155c16 2130 vma->vm_pgoff = pfn;
b3b9c293
KK
2131 }
2132
d5957d2f 2133 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2134 if (err)
3c8bb73a 2135 return -EINVAL;
fb155c16 2136
314e51b9 2137 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2138
2139 BUG_ON(addr >= end);
2140 pfn -= addr >> PAGE_SHIFT;
2141 pgd = pgd_offset(mm, addr);
2142 flush_cache_range(vma, addr, end);
1da177e4
LT
2143 do {
2144 next = pgd_addr_end(addr, end);
c2febafc 2145 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2146 pfn + (addr >> PAGE_SHIFT), prot);
2147 if (err)
2148 break;
2149 } while (pgd++, addr = next, addr != end);
2ab64037 2150
2151 if (err)
d5957d2f 2152 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2153
1da177e4
LT
2154 return err;
2155}
2156EXPORT_SYMBOL(remap_pfn_range);
2157
b4cbb197
LT
2158/**
2159 * vm_iomap_memory - remap memory to userspace
2160 * @vma: user vma to map to
abd69b9e 2161 * @start: start of the physical memory to be mapped
b4cbb197
LT
2162 * @len: size of area
2163 *
2164 * This is a simplified io_remap_pfn_range() for common driver use. The
2165 * driver just needs to give us the physical memory range to be mapped,
2166 * we'll figure out the rest from the vma information.
2167 *
2168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2169 * whatever write-combining details or similar.
a862f68a
MR
2170 *
2171 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2172 */
2173int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2174{
2175 unsigned long vm_len, pfn, pages;
2176
2177 /* Check that the physical memory area passed in looks valid */
2178 if (start + len < start)
2179 return -EINVAL;
2180 /*
2181 * You *really* shouldn't map things that aren't page-aligned,
2182 * but we've historically allowed it because IO memory might
2183 * just have smaller alignment.
2184 */
2185 len += start & ~PAGE_MASK;
2186 pfn = start >> PAGE_SHIFT;
2187 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2188 if (pfn + pages < pfn)
2189 return -EINVAL;
2190
2191 /* We start the mapping 'vm_pgoff' pages into the area */
2192 if (vma->vm_pgoff > pages)
2193 return -EINVAL;
2194 pfn += vma->vm_pgoff;
2195 pages -= vma->vm_pgoff;
2196
2197 /* Can we fit all of the mapping? */
2198 vm_len = vma->vm_end - vma->vm_start;
2199 if (vm_len >> PAGE_SHIFT > pages)
2200 return -EINVAL;
2201
2202 /* Ok, let it rip */
2203 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2204}
2205EXPORT_SYMBOL(vm_iomap_memory);
2206
aee16b3c
JF
2207static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 unsigned long addr, unsigned long end,
be1db475 2209 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2210{
2211 pte_t *pte;
be1db475 2212 int err = 0;
3f649ab7 2213 spinlock_t *ptl;
aee16b3c 2214
be1db475
DA
2215 if (create) {
2216 pte = (mm == &init_mm) ?
2217 pte_alloc_kernel(pmd, addr) :
2218 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2219 if (!pte)
2220 return -ENOMEM;
2221 } else {
2222 pte = (mm == &init_mm) ?
2223 pte_offset_kernel(pmd, addr) :
2224 pte_offset_map_lock(mm, pmd, addr, &ptl);
2225 }
aee16b3c
JF
2226
2227 BUG_ON(pmd_huge(*pmd));
2228
38e0edb1
JF
2229 arch_enter_lazy_mmu_mode();
2230
aee16b3c 2231 do {
be1db475
DA
2232 if (create || !pte_none(*pte)) {
2233 err = fn(pte++, addr, data);
2234 if (err)
2235 break;
2236 }
c36987e2 2237 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2238
38e0edb1
JF
2239 arch_leave_lazy_mmu_mode();
2240
aee16b3c
JF
2241 if (mm != &init_mm)
2242 pte_unmap_unlock(pte-1, ptl);
2243 return err;
2244}
2245
2246static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 unsigned long addr, unsigned long end,
be1db475 2248 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2249{
2250 pmd_t *pmd;
2251 unsigned long next;
be1db475 2252 int err = 0;
aee16b3c 2253
ceb86879
AK
2254 BUG_ON(pud_huge(*pud));
2255
be1db475
DA
2256 if (create) {
2257 pmd = pmd_alloc(mm, pud, addr);
2258 if (!pmd)
2259 return -ENOMEM;
2260 } else {
2261 pmd = pmd_offset(pud, addr);
2262 }
aee16b3c
JF
2263 do {
2264 next = pmd_addr_end(addr, end);
be1db475
DA
2265 if (create || !pmd_none_or_clear_bad(pmd)) {
2266 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2267 create);
2268 if (err)
2269 break;
2270 }
aee16b3c
JF
2271 } while (pmd++, addr = next, addr != end);
2272 return err;
2273}
2274
c2febafc 2275static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2276 unsigned long addr, unsigned long end,
be1db475 2277 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2278{
2279 pud_t *pud;
2280 unsigned long next;
be1db475 2281 int err = 0;
aee16b3c 2282
be1db475
DA
2283 if (create) {
2284 pud = pud_alloc(mm, p4d, addr);
2285 if (!pud)
2286 return -ENOMEM;
2287 } else {
2288 pud = pud_offset(p4d, addr);
2289 }
aee16b3c
JF
2290 do {
2291 next = pud_addr_end(addr, end);
be1db475
DA
2292 if (create || !pud_none_or_clear_bad(pud)) {
2293 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2294 create);
2295 if (err)
2296 break;
2297 }
aee16b3c
JF
2298 } while (pud++, addr = next, addr != end);
2299 return err;
2300}
2301
c2febafc
KS
2302static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2303 unsigned long addr, unsigned long end,
be1db475 2304 pte_fn_t fn, void *data, bool create)
c2febafc
KS
2305{
2306 p4d_t *p4d;
2307 unsigned long next;
be1db475 2308 int err = 0;
c2febafc 2309
be1db475
DA
2310 if (create) {
2311 p4d = p4d_alloc(mm, pgd, addr);
2312 if (!p4d)
2313 return -ENOMEM;
2314 } else {
2315 p4d = p4d_offset(pgd, addr);
2316 }
c2febafc
KS
2317 do {
2318 next = p4d_addr_end(addr, end);
be1db475
DA
2319 if (create || !p4d_none_or_clear_bad(p4d)) {
2320 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2321 create);
2322 if (err)
2323 break;
2324 }
c2febafc
KS
2325 } while (p4d++, addr = next, addr != end);
2326 return err;
2327}
2328
be1db475
DA
2329static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2330 unsigned long size, pte_fn_t fn,
2331 void *data, bool create)
aee16b3c
JF
2332{
2333 pgd_t *pgd;
2334 unsigned long next;
57250a5b 2335 unsigned long end = addr + size;
be1db475 2336 int err = 0;
aee16b3c 2337
9cb65bc3
MP
2338 if (WARN_ON(addr >= end))
2339 return -EINVAL;
2340
aee16b3c
JF
2341 pgd = pgd_offset(mm, addr);
2342 do {
2343 next = pgd_addr_end(addr, end);
be1db475
DA
2344 if (!create && pgd_none_or_clear_bad(pgd))
2345 continue;
2346 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
aee16b3c
JF
2347 if (err)
2348 break;
2349 } while (pgd++, addr = next, addr != end);
57250a5b 2350
aee16b3c
JF
2351 return err;
2352}
be1db475
DA
2353
2354/*
2355 * Scan a region of virtual memory, filling in page tables as necessary
2356 * and calling a provided function on each leaf page table.
2357 */
2358int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2359 unsigned long size, pte_fn_t fn, void *data)
2360{
2361 return __apply_to_page_range(mm, addr, size, fn, data, true);
2362}
aee16b3c
JF
2363EXPORT_SYMBOL_GPL(apply_to_page_range);
2364
be1db475
DA
2365/*
2366 * Scan a region of virtual memory, calling a provided function on
2367 * each leaf page table where it exists.
2368 *
2369 * Unlike apply_to_page_range, this does _not_ fill in page tables
2370 * where they are absent.
2371 */
2372int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2373 unsigned long size, pte_fn_t fn, void *data)
2374{
2375 return __apply_to_page_range(mm, addr, size, fn, data, false);
2376}
2377EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2378
8f4e2101 2379/*
9b4bdd2f
KS
2380 * handle_pte_fault chooses page fault handler according to an entry which was
2381 * read non-atomically. Before making any commitment, on those architectures
2382 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2383 * parts, do_swap_page must check under lock before unmapping the pte and
2384 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2385 * and do_anonymous_page can safely check later on).
8f4e2101 2386 */
4c21e2f2 2387static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2388 pte_t *page_table, pte_t orig_pte)
2389{
2390 int same = 1;
923717cb 2391#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2392 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2393 spinlock_t *ptl = pte_lockptr(mm, pmd);
2394 spin_lock(ptl);
8f4e2101 2395 same = pte_same(*page_table, orig_pte);
4c21e2f2 2396 spin_unlock(ptl);
8f4e2101
HD
2397 }
2398#endif
2399 pte_unmap(page_table);
2400 return same;
2401}
2402
83d116c5
JH
2403static inline bool cow_user_page(struct page *dst, struct page *src,
2404 struct vm_fault *vmf)
6aab341e 2405{
83d116c5
JH
2406 bool ret;
2407 void *kaddr;
2408 void __user *uaddr;
c3e5ea6e 2409 bool locked = false;
83d116c5
JH
2410 struct vm_area_struct *vma = vmf->vma;
2411 struct mm_struct *mm = vma->vm_mm;
2412 unsigned long addr = vmf->address;
2413
83d116c5
JH
2414 if (likely(src)) {
2415 copy_user_highpage(dst, src, addr, vma);
2416 return true;
2417 }
2418
6aab341e
LT
2419 /*
2420 * If the source page was a PFN mapping, we don't have
2421 * a "struct page" for it. We do a best-effort copy by
2422 * just copying from the original user address. If that
2423 * fails, we just zero-fill it. Live with it.
2424 */
83d116c5
JH
2425 kaddr = kmap_atomic(dst);
2426 uaddr = (void __user *)(addr & PAGE_MASK);
2427
2428 /*
2429 * On architectures with software "accessed" bits, we would
2430 * take a double page fault, so mark it accessed here.
2431 */
c3e5ea6e 2432 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2433 pte_t entry;
5d2a2dbb 2434
83d116c5 2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2436 locked = true;
83d116c5
JH
2437 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2438 /*
2439 * Other thread has already handled the fault
7df67697 2440 * and update local tlb only
83d116c5 2441 */
7df67697 2442 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2443 ret = false;
2444 goto pte_unlock;
2445 }
2446
2447 entry = pte_mkyoung(vmf->orig_pte);
2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2449 update_mmu_cache(vma, addr, vmf->pte);
2450 }
2451
2452 /*
2453 * This really shouldn't fail, because the page is there
2454 * in the page tables. But it might just be unreadable,
2455 * in which case we just give up and fill the result with
2456 * zeroes.
2457 */
2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2459 if (locked)
2460 goto warn;
2461
2462 /* Re-validate under PTL if the page is still mapped */
2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2464 locked = true;
2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2466 /* The PTE changed under us, update local tlb */
2467 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2468 ret = false;
2469 goto pte_unlock;
2470 }
2471
5d2a2dbb 2472 /*
985ba004 2473 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2474 * Try to copy again under PTL.
5d2a2dbb 2475 */
c3e5ea6e
KS
2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2477 /*
2478 * Give a warn in case there can be some obscure
2479 * use-case
2480 */
2481warn:
2482 WARN_ON_ONCE(1);
2483 clear_page(kaddr);
2484 }
83d116c5
JH
2485 }
2486
2487 ret = true;
2488
2489pte_unlock:
c3e5ea6e 2490 if (locked)
83d116c5
JH
2491 pte_unmap_unlock(vmf->pte, vmf->ptl);
2492 kunmap_atomic(kaddr);
2493 flush_dcache_page(dst);
2494
2495 return ret;
6aab341e
LT
2496}
2497
c20cd45e
MH
2498static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2499{
2500 struct file *vm_file = vma->vm_file;
2501
2502 if (vm_file)
2503 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2504
2505 /*
2506 * Special mappings (e.g. VDSO) do not have any file so fake
2507 * a default GFP_KERNEL for them.
2508 */
2509 return GFP_KERNEL;
2510}
2511
fb09a464
KS
2512/*
2513 * Notify the address space that the page is about to become writable so that
2514 * it can prohibit this or wait for the page to get into an appropriate state.
2515 *
2516 * We do this without the lock held, so that it can sleep if it needs to.
2517 */
2b740303 2518static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2519{
2b740303 2520 vm_fault_t ret;
38b8cb7f
JK
2521 struct page *page = vmf->page;
2522 unsigned int old_flags = vmf->flags;
fb09a464 2523
38b8cb7f 2524 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2525
dc617f29
DW
2526 if (vmf->vma->vm_file &&
2527 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2528 return VM_FAULT_SIGBUS;
2529
11bac800 2530 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2531 /* Restore original flags so that caller is not surprised */
2532 vmf->flags = old_flags;
fb09a464
KS
2533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2534 return ret;
2535 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2536 lock_page(page);
2537 if (!page->mapping) {
2538 unlock_page(page);
2539 return 0; /* retry */
2540 }
2541 ret |= VM_FAULT_LOCKED;
2542 } else
2543 VM_BUG_ON_PAGE(!PageLocked(page), page);
2544 return ret;
2545}
2546
97ba0c2b
JK
2547/*
2548 * Handle dirtying of a page in shared file mapping on a write fault.
2549 *
2550 * The function expects the page to be locked and unlocks it.
2551 */
89b15332 2552static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2553{
89b15332 2554 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2555 struct address_space *mapping;
89b15332 2556 struct page *page = vmf->page;
97ba0c2b
JK
2557 bool dirtied;
2558 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2559
2560 dirtied = set_page_dirty(page);
2561 VM_BUG_ON_PAGE(PageAnon(page), page);
2562 /*
2563 * Take a local copy of the address_space - page.mapping may be zeroed
2564 * by truncate after unlock_page(). The address_space itself remains
2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2566 * release semantics to prevent the compiler from undoing this copying.
2567 */
2568 mapping = page_rmapping(page);
2569 unlock_page(page);
2570
89b15332
JW
2571 if (!page_mkwrite)
2572 file_update_time(vma->vm_file);
2573
2574 /*
2575 * Throttle page dirtying rate down to writeback speed.
2576 *
2577 * mapping may be NULL here because some device drivers do not
2578 * set page.mapping but still dirty their pages
2579 *
c1e8d7c6 2580 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2581 * is pinning the mapping, as per above.
2582 */
97ba0c2b 2583 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2584 struct file *fpin;
2585
2586 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2587 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2588 if (fpin) {
2589 fput(fpin);
2590 return VM_FAULT_RETRY;
2591 }
97ba0c2b
JK
2592 }
2593
89b15332 2594 return 0;
97ba0c2b
JK
2595}
2596
4e047f89
SR
2597/*
2598 * Handle write page faults for pages that can be reused in the current vma
2599 *
2600 * This can happen either due to the mapping being with the VM_SHARED flag,
2601 * or due to us being the last reference standing to the page. In either
2602 * case, all we need to do here is to mark the page as writable and update
2603 * any related book-keeping.
2604 */
997dd98d 2605static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2606 __releases(vmf->ptl)
4e047f89 2607{
82b0f8c3 2608 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2609 struct page *page = vmf->page;
4e047f89
SR
2610 pte_t entry;
2611 /*
2612 * Clear the pages cpupid information as the existing
2613 * information potentially belongs to a now completely
2614 * unrelated process.
2615 */
2616 if (page)
2617 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2618
2994302b
JK
2619 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2620 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2622 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2623 update_mmu_cache(vma, vmf->address, vmf->pte);
2624 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2625}
2626
2f38ab2c
SR
2627/*
2628 * Handle the case of a page which we actually need to copy to a new page.
2629 *
c1e8d7c6 2630 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2631 * without the ptl held.
2632 *
2633 * High level logic flow:
2634 *
2635 * - Allocate a page, copy the content of the old page to the new one.
2636 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2637 * - Take the PTL. If the pte changed, bail out and release the allocated page
2638 * - If the pte is still the way we remember it, update the page table and all
2639 * relevant references. This includes dropping the reference the page-table
2640 * held to the old page, as well as updating the rmap.
2641 * - In any case, unlock the PTL and drop the reference we took to the old page.
2642 */
2b740303 2643static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2644{
82b0f8c3 2645 struct vm_area_struct *vma = vmf->vma;
bae473a4 2646 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2647 struct page *old_page = vmf->page;
2f38ab2c 2648 struct page *new_page = NULL;
2f38ab2c
SR
2649 pte_t entry;
2650 int page_copied = 0;
ac46d4f3 2651 struct mmu_notifier_range range;
2f38ab2c
SR
2652
2653 if (unlikely(anon_vma_prepare(vma)))
2654 goto oom;
2655
2994302b 2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2657 new_page = alloc_zeroed_user_highpage_movable(vma,
2658 vmf->address);
2f38ab2c
SR
2659 if (!new_page)
2660 goto oom;
2661 } else {
bae473a4 2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2663 vmf->address);
2f38ab2c
SR
2664 if (!new_page)
2665 goto oom;
83d116c5
JH
2666
2667 if (!cow_user_page(new_page, old_page, vmf)) {
2668 /*
2669 * COW failed, if the fault was solved by other,
2670 * it's fine. If not, userspace would re-fault on
2671 * the same address and we will handle the fault
2672 * from the second attempt.
2673 */
2674 put_page(new_page);
2675 if (old_page)
2676 put_page(old_page);
2677 return 0;
2678 }
2f38ab2c 2679 }
2f38ab2c 2680
d9eb1ea2 2681 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2682 goto oom_free_new;
9d82c694 2683 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2684
eb3c24f3
MG
2685 __SetPageUptodate(new_page);
2686
7269f999 2687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2688 vmf->address & PAGE_MASK,
ac46d4f3
JG
2689 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2690 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2691
2692 /*
2693 * Re-check the pte - we dropped the lock
2694 */
82b0f8c3 2695 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2696 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2697 if (old_page) {
2698 if (!PageAnon(old_page)) {
eca56ff9
JM
2699 dec_mm_counter_fast(mm,
2700 mm_counter_file(old_page));
2f38ab2c
SR
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 }
2703 } else {
2704 inc_mm_counter_fast(mm, MM_ANONPAGES);
2705 }
2994302b 2706 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2707 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2708 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2709 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2710 /*
2711 * Clear the pte entry and flush it first, before updating the
2712 * pte with the new entry. This will avoid a race condition
2713 * seen in the presence of one thread doing SMC and another
2714 * thread doing COW.
2715 */
82b0f8c3
JK
2716 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2717 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2718 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2719 /*
2720 * We call the notify macro here because, when using secondary
2721 * mmu page tables (such as kvm shadow page tables), we want the
2722 * new page to be mapped directly into the secondary page table.
2723 */
82b0f8c3
JK
2724 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2725 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2726 if (old_page) {
2727 /*
2728 * Only after switching the pte to the new page may
2729 * we remove the mapcount here. Otherwise another
2730 * process may come and find the rmap count decremented
2731 * before the pte is switched to the new page, and
2732 * "reuse" the old page writing into it while our pte
2733 * here still points into it and can be read by other
2734 * threads.
2735 *
2736 * The critical issue is to order this
2737 * page_remove_rmap with the ptp_clear_flush above.
2738 * Those stores are ordered by (if nothing else,)
2739 * the barrier present in the atomic_add_negative
2740 * in page_remove_rmap.
2741 *
2742 * Then the TLB flush in ptep_clear_flush ensures that
2743 * no process can access the old page before the
2744 * decremented mapcount is visible. And the old page
2745 * cannot be reused until after the decremented
2746 * mapcount is visible. So transitively, TLBs to
2747 * old page will be flushed before it can be reused.
2748 */
d281ee61 2749 page_remove_rmap(old_page, false);
2f38ab2c
SR
2750 }
2751
2752 /* Free the old page.. */
2753 new_page = old_page;
2754 page_copied = 1;
2755 } else {
7df67697 2756 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2757 }
2758
2759 if (new_page)
09cbfeaf 2760 put_page(new_page);
2f38ab2c 2761
82b0f8c3 2762 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2763 /*
2764 * No need to double call mmu_notifier->invalidate_range() callback as
2765 * the above ptep_clear_flush_notify() did already call it.
2766 */
ac46d4f3 2767 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2768 if (old_page) {
2769 /*
2770 * Don't let another task, with possibly unlocked vma,
2771 * keep the mlocked page.
2772 */
2773 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2774 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2775 if (PageMlocked(old_page))
2776 munlock_vma_page(old_page);
2f38ab2c
SR
2777 unlock_page(old_page);
2778 }
09cbfeaf 2779 put_page(old_page);
2f38ab2c
SR
2780 }
2781 return page_copied ? VM_FAULT_WRITE : 0;
2782oom_free_new:
09cbfeaf 2783 put_page(new_page);
2f38ab2c
SR
2784oom:
2785 if (old_page)
09cbfeaf 2786 put_page(old_page);
2f38ab2c
SR
2787 return VM_FAULT_OOM;
2788}
2789
66a6197c
JK
2790/**
2791 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2792 * writeable once the page is prepared
2793 *
2794 * @vmf: structure describing the fault
2795 *
2796 * This function handles all that is needed to finish a write page fault in a
2797 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2798 * It handles locking of PTE and modifying it.
66a6197c
JK
2799 *
2800 * The function expects the page to be locked or other protection against
2801 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2802 *
2803 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2804 * we acquired PTE lock.
66a6197c 2805 */
2b740303 2806vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2807{
2808 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2809 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2810 &vmf->ptl);
2811 /*
2812 * We might have raced with another page fault while we released the
2813 * pte_offset_map_lock.
2814 */
2815 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2816 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2817 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2818 return VM_FAULT_NOPAGE;
66a6197c
JK
2819 }
2820 wp_page_reuse(vmf);
a19e2553 2821 return 0;
66a6197c
JK
2822}
2823
dd906184
BH
2824/*
2825 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2826 * mapping
2827 */
2b740303 2828static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2829{
82b0f8c3 2830 struct vm_area_struct *vma = vmf->vma;
bae473a4 2831
dd906184 2832 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2833 vm_fault_t ret;
dd906184 2834
82b0f8c3 2835 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2836 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2837 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2838 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2839 return ret;
66a6197c 2840 return finish_mkwrite_fault(vmf);
dd906184 2841 }
997dd98d
JK
2842 wp_page_reuse(vmf);
2843 return VM_FAULT_WRITE;
dd906184
BH
2844}
2845
2b740303 2846static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2847 __releases(vmf->ptl)
93e478d4 2848{
82b0f8c3 2849 struct vm_area_struct *vma = vmf->vma;
89b15332 2850 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2851
a41b70d6 2852 get_page(vmf->page);
93e478d4 2853
93e478d4 2854 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2855 vm_fault_t tmp;
93e478d4 2856
82b0f8c3 2857 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2858 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2859 if (unlikely(!tmp || (tmp &
2860 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2861 put_page(vmf->page);
93e478d4
SR
2862 return tmp;
2863 }
66a6197c 2864 tmp = finish_mkwrite_fault(vmf);
a19e2553 2865 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2866 unlock_page(vmf->page);
a41b70d6 2867 put_page(vmf->page);
66a6197c 2868 return tmp;
93e478d4 2869 }
66a6197c
JK
2870 } else {
2871 wp_page_reuse(vmf);
997dd98d 2872 lock_page(vmf->page);
93e478d4 2873 }
89b15332 2874 ret |= fault_dirty_shared_page(vmf);
997dd98d 2875 put_page(vmf->page);
93e478d4 2876
89b15332 2877 return ret;
93e478d4
SR
2878}
2879
1da177e4
LT
2880/*
2881 * This routine handles present pages, when users try to write
2882 * to a shared page. It is done by copying the page to a new address
2883 * and decrementing the shared-page counter for the old page.
2884 *
1da177e4
LT
2885 * Note that this routine assumes that the protection checks have been
2886 * done by the caller (the low-level page fault routine in most cases).
2887 * Thus we can safely just mark it writable once we've done any necessary
2888 * COW.
2889 *
2890 * We also mark the page dirty at this point even though the page will
2891 * change only once the write actually happens. This avoids a few races,
2892 * and potentially makes it more efficient.
2893 *
c1e8d7c6 2894 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 2895 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 2896 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 2897 */
2b740303 2898static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2899 __releases(vmf->ptl)
1da177e4 2900{
82b0f8c3 2901 struct vm_area_struct *vma = vmf->vma;
1da177e4 2902
292924b2 2903 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2904 pte_unmap_unlock(vmf->pte, vmf->ptl);
2905 return handle_userfault(vmf, VM_UFFD_WP);
2906 }
2907
a41b70d6
JK
2908 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2909 if (!vmf->page) {
251b97f5 2910 /*
64e45507
PF
2911 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2912 * VM_PFNMAP VMA.
251b97f5
PZ
2913 *
2914 * We should not cow pages in a shared writeable mapping.
dd906184 2915 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2916 */
2917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2918 (VM_WRITE|VM_SHARED))
2994302b 2919 return wp_pfn_shared(vmf);
2f38ab2c 2920
82b0f8c3 2921 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2922 return wp_page_copy(vmf);
251b97f5 2923 }
1da177e4 2924
d08b3851 2925 /*
ee6a6457
PZ
2926 * Take out anonymous pages first, anonymous shared vmas are
2927 * not dirty accountable.
d08b3851 2928 */
52d1e606 2929 if (PageAnon(vmf->page)) {
ba3c4ce6 2930 int total_map_swapcount;
52d1e606
KT
2931 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2932 page_count(vmf->page) != 1))
2933 goto copy;
a41b70d6
JK
2934 if (!trylock_page(vmf->page)) {
2935 get_page(vmf->page);
82b0f8c3 2936 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2937 lock_page(vmf->page);
82b0f8c3
JK
2938 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2939 vmf->address, &vmf->ptl);
2994302b 2940 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2941 update_mmu_tlb(vma, vmf->address, vmf->pte);
a41b70d6 2942 unlock_page(vmf->page);
82b0f8c3 2943 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2944 put_page(vmf->page);
28766805 2945 return 0;
ab967d86 2946 }
a41b70d6 2947 put_page(vmf->page);
ee6a6457 2948 }
52d1e606
KT
2949 if (PageKsm(vmf->page)) {
2950 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2951 vmf->address);
2952 unlock_page(vmf->page);
2953 if (!reused)
2954 goto copy;
2955 wp_page_reuse(vmf);
2956 return VM_FAULT_WRITE;
2957 }
ba3c4ce6
HY
2958 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2959 if (total_map_swapcount == 1) {
6d0a07ed
AA
2960 /*
2961 * The page is all ours. Move it to
2962 * our anon_vma so the rmap code will
2963 * not search our parent or siblings.
2964 * Protected against the rmap code by
2965 * the page lock.
2966 */
a41b70d6 2967 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2968 }
a41b70d6 2969 unlock_page(vmf->page);
997dd98d
JK
2970 wp_page_reuse(vmf);
2971 return VM_FAULT_WRITE;
b009c024 2972 }
a41b70d6 2973 unlock_page(vmf->page);
ee6a6457 2974 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2975 (VM_WRITE|VM_SHARED))) {
a41b70d6 2976 return wp_page_shared(vmf);
1da177e4 2977 }
52d1e606 2978copy:
1da177e4
LT
2979 /*
2980 * Ok, we need to copy. Oh, well..
2981 */
a41b70d6 2982 get_page(vmf->page);
28766805 2983
82b0f8c3 2984 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2985 return wp_page_copy(vmf);
1da177e4
LT
2986}
2987
97a89413 2988static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2989 unsigned long start_addr, unsigned long end_addr,
2990 struct zap_details *details)
2991{
f5cc4eef 2992 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2993}
2994
f808c13f 2995static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2996 struct zap_details *details)
2997{
2998 struct vm_area_struct *vma;
1da177e4
LT
2999 pgoff_t vba, vea, zba, zea;
3000
6b2dbba8 3001 vma_interval_tree_foreach(vma, root,
1da177e4 3002 details->first_index, details->last_index) {
1da177e4
LT
3003
3004 vba = vma->vm_pgoff;
d6e93217 3005 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3006 zba = details->first_index;
3007 if (zba < vba)
3008 zba = vba;
3009 zea = details->last_index;
3010 if (zea > vea)
3011 zea = vea;
3012
97a89413 3013 unmap_mapping_range_vma(vma,
1da177e4
LT
3014 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3015 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3016 details);
1da177e4
LT
3017 }
3018}
3019
977fbdcd
MW
3020/**
3021 * unmap_mapping_pages() - Unmap pages from processes.
3022 * @mapping: The address space containing pages to be unmapped.
3023 * @start: Index of first page to be unmapped.
3024 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3025 * @even_cows: Whether to unmap even private COWed pages.
3026 *
3027 * Unmap the pages in this address space from any userspace process which
3028 * has them mmaped. Generally, you want to remove COWed pages as well when
3029 * a file is being truncated, but not when invalidating pages from the page
3030 * cache.
3031 */
3032void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3033 pgoff_t nr, bool even_cows)
3034{
3035 struct zap_details details = { };
3036
3037 details.check_mapping = even_cows ? NULL : mapping;
3038 details.first_index = start;
3039 details.last_index = start + nr - 1;
3040 if (details.last_index < details.first_index)
3041 details.last_index = ULONG_MAX;
3042
3043 i_mmap_lock_write(mapping);
3044 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3045 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3046 i_mmap_unlock_write(mapping);
3047}
3048
1da177e4 3049/**
8a5f14a2 3050 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3051 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3052 * file.
3053 *
3d41088f 3054 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3055 * @holebegin: byte in first page to unmap, relative to the start of
3056 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3057 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3058 * must keep the partial page. In contrast, we must get rid of
3059 * partial pages.
3060 * @holelen: size of prospective hole in bytes. This will be rounded
3061 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3062 * end of the file.
3063 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3064 * but 0 when invalidating pagecache, don't throw away private data.
3065 */
3066void unmap_mapping_range(struct address_space *mapping,
3067 loff_t const holebegin, loff_t const holelen, int even_cows)
3068{
1da177e4
LT
3069 pgoff_t hba = holebegin >> PAGE_SHIFT;
3070 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3071
3072 /* Check for overflow. */
3073 if (sizeof(holelen) > sizeof(hlen)) {
3074 long long holeend =
3075 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3076 if (holeend & ~(long long)ULONG_MAX)
3077 hlen = ULONG_MAX - hba + 1;
3078 }
3079
977fbdcd 3080 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3081}
3082EXPORT_SYMBOL(unmap_mapping_range);
3083
1da177e4 3084/*
c1e8d7c6 3085 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3086 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3087 * We return with pte unmapped and unlocked.
3088 *
c1e8d7c6 3089 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3090 * as does filemap_fault().
1da177e4 3091 */
2b740303 3092vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3093{
82b0f8c3 3094 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3095 struct page *page = NULL, *swapcache;
65500d23 3096 swp_entry_t entry;
1da177e4 3097 pte_t pte;
d065bd81 3098 int locked;
ad8c2ee8 3099 int exclusive = 0;
2b740303 3100 vm_fault_t ret = 0;
aae466b0 3101 void *shadow = NULL;
1da177e4 3102
eaf649eb 3103 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3104 goto out;
65500d23 3105
2994302b 3106 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3107 if (unlikely(non_swap_entry(entry))) {
3108 if (is_migration_entry(entry)) {
82b0f8c3
JK
3109 migration_entry_wait(vma->vm_mm, vmf->pmd,
3110 vmf->address);
5042db43 3111 } else if (is_device_private_entry(entry)) {
897e6365
CH
3112 vmf->page = device_private_entry_to_page(entry);
3113 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3114 } else if (is_hwpoison_entry(entry)) {
3115 ret = VM_FAULT_HWPOISON;
3116 } else {
2994302b 3117 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3118 ret = VM_FAULT_SIGBUS;
d1737fdb 3119 }
0697212a
CL
3120 goto out;
3121 }
0bcac06f
MK
3122
3123
0ff92245 3124 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3125 page = lookup_swap_cache(entry, vma, vmf->address);
3126 swapcache = page;
f8020772 3127
1da177e4 3128 if (!page) {
0bcac06f
MK
3129 struct swap_info_struct *si = swp_swap_info(entry);
3130
a449bf58
QC
3131 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3132 __swap_count(entry) == 1) {
0bcac06f 3133 /* skip swapcache */
e9e9b7ec
MK
3134 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3135 vmf->address);
0bcac06f 3136 if (page) {
4c6355b2
JW
3137 int err;
3138
0bcac06f
MK
3139 __SetPageLocked(page);
3140 __SetPageSwapBacked(page);
3141 set_page_private(page, entry.val);
4c6355b2
JW
3142
3143 /* Tell memcg to use swap ownership records */
3144 SetPageSwapCache(page);
3145 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3146 GFP_KERNEL);
4c6355b2 3147 ClearPageSwapCache(page);
545b1b07
MH
3148 if (err) {
3149 ret = VM_FAULT_OOM;
4c6355b2 3150 goto out_page;
545b1b07 3151 }
4c6355b2 3152
aae466b0
JK
3153 shadow = get_shadow_from_swap_cache(entry);
3154 if (shadow)
3155 workingset_refault(page, shadow);
0076f029 3156
6058eaec 3157 lru_cache_add(page);
0bcac06f
MK
3158 swap_readpage(page, true);
3159 }
aa8d22a1 3160 } else {
e9e9b7ec
MK
3161 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3162 vmf);
aa8d22a1 3163 swapcache = page;
0bcac06f
MK
3164 }
3165
1da177e4
LT
3166 if (!page) {
3167 /*
8f4e2101
HD
3168 * Back out if somebody else faulted in this pte
3169 * while we released the pte lock.
1da177e4 3170 */
82b0f8c3
JK
3171 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172 vmf->address, &vmf->ptl);
2994302b 3173 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3174 ret = VM_FAULT_OOM;
0ff92245 3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3176 goto unlock;
1da177e4
LT
3177 }
3178
3179 /* Had to read the page from swap area: Major fault */
3180 ret = VM_FAULT_MAJOR;
f8891e5e 3181 count_vm_event(PGMAJFAULT);
2262185c 3182 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3183 } else if (PageHWPoison(page)) {
71f72525
WF
3184 /*
3185 * hwpoisoned dirty swapcache pages are kept for killing
3186 * owner processes (which may be unknown at hwpoison time)
3187 */
d1737fdb
AK
3188 ret = VM_FAULT_HWPOISON;
3189 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3190 goto out_release;
1da177e4
LT
3191 }
3192
82b0f8c3 3193 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3194
073e587e 3195 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3196 if (!locked) {
3197 ret |= VM_FAULT_RETRY;
3198 goto out_release;
3199 }
073e587e 3200
4969c119 3201 /*
31c4a3d3
HD
3202 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203 * release the swapcache from under us. The page pin, and pte_same
3204 * test below, are not enough to exclude that. Even if it is still
3205 * swapcache, we need to check that the page's swap has not changed.
4969c119 3206 */
0bcac06f
MK
3207 if (unlikely((!PageSwapCache(page) ||
3208 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3209 goto out_page;
3210
82b0f8c3 3211 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3212 if (unlikely(!page)) {
3213 ret = VM_FAULT_OOM;
3214 page = swapcache;
cbf86cfe 3215 goto out_page;
5ad64688
HD
3216 }
3217
9d82c694 3218 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3219
1da177e4 3220 /*
8f4e2101 3221 * Back out if somebody else already faulted in this pte.
1da177e4 3222 */
82b0f8c3
JK
3223 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3224 &vmf->ptl);
2994302b 3225 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3226 goto out_nomap;
b8107480
KK
3227
3228 if (unlikely(!PageUptodate(page))) {
3229 ret = VM_FAULT_SIGBUS;
3230 goto out_nomap;
1da177e4
LT
3231 }
3232
8c7c6e34
KH
3233 /*
3234 * The page isn't present yet, go ahead with the fault.
3235 *
3236 * Be careful about the sequence of operations here.
3237 * To get its accounting right, reuse_swap_page() must be called
3238 * while the page is counted on swap but not yet in mapcount i.e.
3239 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3241 */
1da177e4 3242
bae473a4
KS
3243 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3245 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3246 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3247 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3248 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3249 ret |= VM_FAULT_WRITE;
d281ee61 3250 exclusive = RMAP_EXCLUSIVE;
1da177e4 3251 }
1da177e4 3252 flush_icache_page(vma, page);
2994302b 3253 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3254 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3255 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256 pte = pte_mkuffd_wp(pte);
3257 pte = pte_wrprotect(pte);
3258 }
82b0f8c3 3259 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3260 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3261 vmf->orig_pte = pte;
0bcac06f
MK
3262
3263 /* ksm created a completely new copy */
3264 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3265 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3266 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3267 } else {
3268 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3269 }
1da177e4 3270
c475a8ab 3271 swap_free(entry);
5ccc5aba
VD
3272 if (mem_cgroup_swap_full(page) ||
3273 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3274 try_to_free_swap(page);
c475a8ab 3275 unlock_page(page);
0bcac06f 3276 if (page != swapcache && swapcache) {
4969c119
AA
3277 /*
3278 * Hold the lock to avoid the swap entry to be reused
3279 * until we take the PT lock for the pte_same() check
3280 * (to avoid false positives from pte_same). For
3281 * further safety release the lock after the swap_free
3282 * so that the swap count won't change under a
3283 * parallel locked swapcache.
3284 */
3285 unlock_page(swapcache);
09cbfeaf 3286 put_page(swapcache);
4969c119 3287 }
c475a8ab 3288
82b0f8c3 3289 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3290 ret |= do_wp_page(vmf);
61469f1d
HD
3291 if (ret & VM_FAULT_ERROR)
3292 ret &= VM_FAULT_ERROR;
1da177e4
LT
3293 goto out;
3294 }
3295
3296 /* No need to invalidate - it was non-present before */
82b0f8c3 3297 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3298unlock:
82b0f8c3 3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3300out:
3301 return ret;
b8107480 3302out_nomap:
82b0f8c3 3303 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3304out_page:
b8107480 3305 unlock_page(page);
4779cb31 3306out_release:
09cbfeaf 3307 put_page(page);
0bcac06f 3308 if (page != swapcache && swapcache) {
4969c119 3309 unlock_page(swapcache);
09cbfeaf 3310 put_page(swapcache);
4969c119 3311 }
65500d23 3312 return ret;
1da177e4
LT
3313}
3314
3315/*
c1e8d7c6 3316 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3317 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3318 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3319 */
2b740303 3320static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3321{
82b0f8c3 3322 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3323 struct page *page;
2b740303 3324 vm_fault_t ret = 0;
1da177e4 3325 pte_t entry;
1da177e4 3326
6b7339f4
KS
3327 /* File mapping without ->vm_ops ? */
3328 if (vma->vm_flags & VM_SHARED)
3329 return VM_FAULT_SIGBUS;
3330
7267ec00
KS
3331 /*
3332 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3333 * pte_offset_map() on pmds where a huge pmd might be created
3334 * from a different thread.
3335 *
3e4e28c5 3336 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3337 * parallel threads are excluded by other means.
3338 *
3e4e28c5 3339 * Here we only have mmap_read_lock(mm).
7267ec00 3340 */
4cf58924 3341 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3342 return VM_FAULT_OOM;
3343
3344 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3345 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3346 return 0;
3347
11ac5524 3348 /* Use the zero-page for reads */
82b0f8c3 3349 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3350 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3351 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3352 vma->vm_page_prot));
82b0f8c3
JK
3353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3354 vmf->address, &vmf->ptl);
7df67697
BM
3355 if (!pte_none(*vmf->pte)) {
3356 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3357 goto unlock;
7df67697 3358 }
6b31d595
MH
3359 ret = check_stable_address_space(vma->vm_mm);
3360 if (ret)
3361 goto unlock;
6b251fc9
AA
3362 /* Deliver the page fault to userland, check inside PT lock */
3363 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3364 pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3366 }
a13ea5b7
HD
3367 goto setpte;
3368 }
3369
557ed1fa 3370 /* Allocate our own private page. */
557ed1fa
NP
3371 if (unlikely(anon_vma_prepare(vma)))
3372 goto oom;
82b0f8c3 3373 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3374 if (!page)
3375 goto oom;
eb3c24f3 3376
d9eb1ea2 3377 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3378 goto oom_free_page;
9d82c694 3379 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3380
52f37629
MK
3381 /*
3382 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3383 * preceding stores to the page contents become visible before
52f37629
MK
3384 * the set_pte_at() write.
3385 */
0ed361de 3386 __SetPageUptodate(page);
8f4e2101 3387
557ed1fa 3388 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3389 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3390 if (vma->vm_flags & VM_WRITE)
3391 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3392
82b0f8c3
JK
3393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3394 &vmf->ptl);
7df67697
BM
3395 if (!pte_none(*vmf->pte)) {
3396 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3397 goto release;
7df67697 3398 }
9ba69294 3399
6b31d595
MH
3400 ret = check_stable_address_space(vma->vm_mm);
3401 if (ret)
3402 goto release;
3403
6b251fc9
AA
3404 /* Deliver the page fault to userland, check inside PT lock */
3405 if (userfaultfd_missing(vma)) {
82b0f8c3 3406 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3407 put_page(page);
82b0f8c3 3408 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3409 }
3410
bae473a4 3411 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3412 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3413 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3414setpte:
82b0f8c3 3415 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3416
3417 /* No need to invalidate - it was non-present before */
82b0f8c3 3418 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3419unlock:
82b0f8c3 3420 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3421 return ret;
8f4e2101 3422release:
09cbfeaf 3423 put_page(page);
8f4e2101 3424 goto unlock;
8a9f3ccd 3425oom_free_page:
09cbfeaf 3426 put_page(page);
65500d23 3427oom:
1da177e4
LT
3428 return VM_FAULT_OOM;
3429}
3430
9a95f3cf 3431/*
c1e8d7c6 3432 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3433 * released depending on flags and vma->vm_ops->fault() return value.
3434 * See filemap_fault() and __lock_page_retry().
3435 */
2b740303 3436static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3437{
82b0f8c3 3438 struct vm_area_struct *vma = vmf->vma;
2b740303 3439 vm_fault_t ret;
7eae74af 3440
63f3655f
MH
3441 /*
3442 * Preallocate pte before we take page_lock because this might lead to
3443 * deadlocks for memcg reclaim which waits for pages under writeback:
3444 * lock_page(A)
3445 * SetPageWriteback(A)
3446 * unlock_page(A)
3447 * lock_page(B)
3448 * lock_page(B)
3449 * pte_alloc_pne
3450 * shrink_page_list
3451 * wait_on_page_writeback(A)
3452 * SetPageWriteback(B)
3453 * unlock_page(B)
3454 * # flush A, B to clear the writeback
3455 */
3456 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3457 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3458 if (!vmf->prealloc_pte)
3459 return VM_FAULT_OOM;
3460 smp_wmb(); /* See comment in __pte_alloc() */
3461 }
3462
11bac800 3463 ret = vma->vm_ops->fault(vmf);
3917048d 3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3465 VM_FAULT_DONE_COW)))
bc2466e4 3466 return ret;
7eae74af 3467
667240e0 3468 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3469 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3470 unlock_page(vmf->page);
3471 put_page(vmf->page);
936ca80d 3472 vmf->page = NULL;
7eae74af
KS
3473 return VM_FAULT_HWPOISON;
3474 }
3475
3476 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3477 lock_page(vmf->page);
7eae74af 3478 else
667240e0 3479 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3480
7eae74af
KS
3481 return ret;
3482}
3483
d0f0931d
RZ
3484/*
3485 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3486 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3487 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3488 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3489 */
3490static int pmd_devmap_trans_unstable(pmd_t *pmd)
3491{
3492 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3493}
3494
2b740303 3495static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3496{
82b0f8c3 3497 struct vm_area_struct *vma = vmf->vma;
7267ec00 3498
82b0f8c3 3499 if (!pmd_none(*vmf->pmd))
7267ec00 3500 goto map_pte;
82b0f8c3
JK
3501 if (vmf->prealloc_pte) {
3502 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3503 if (unlikely(!pmd_none(*vmf->pmd))) {
3504 spin_unlock(vmf->ptl);
7267ec00
KS
3505 goto map_pte;
3506 }
3507
c4812909 3508 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3509 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3510 spin_unlock(vmf->ptl);
7f2b6ce8 3511 vmf->prealloc_pte = NULL;
4cf58924 3512 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3513 return VM_FAULT_OOM;
3514 }
3515map_pte:
3516 /*
3517 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3518 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3519 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3520 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3521 * running immediately after a huge pmd fault in a different thread of
3522 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3523 * All we have to ensure is that it is a regular pmd that we can walk
3524 * with pte_offset_map() and we can do that through an atomic read in
3525 * C, which is what pmd_trans_unstable() provides.
7267ec00 3526 */
d0f0931d 3527 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3528 return VM_FAULT_NOPAGE;
3529
d0f0931d
RZ
3530 /*
3531 * At this point we know that our vmf->pmd points to a page of ptes
3532 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3533 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3534 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3535 * be valid and we will re-check to make sure the vmf->pte isn't
3536 * pte_none() under vmf->ptl protection when we return to
3537 * alloc_set_pte().
3538 */
82b0f8c3
JK
3539 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3540 &vmf->ptl);
7267ec00
KS
3541 return 0;
3542}
3543
396bcc52 3544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3545static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3546{
82b0f8c3 3547 struct vm_area_struct *vma = vmf->vma;
953c66c2 3548
82b0f8c3 3549 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3550 /*
3551 * We are going to consume the prealloc table,
3552 * count that as nr_ptes.
3553 */
c4812909 3554 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3555 vmf->prealloc_pte = NULL;
953c66c2
AK
3556}
3557
2b740303 3558static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3559{
82b0f8c3
JK
3560 struct vm_area_struct *vma = vmf->vma;
3561 bool write = vmf->flags & FAULT_FLAG_WRITE;
3562 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3563 pmd_t entry;
2b740303
SJ
3564 int i;
3565 vm_fault_t ret;
10102459
KS
3566
3567 if (!transhuge_vma_suitable(vma, haddr))
3568 return VM_FAULT_FALLBACK;
3569
3570 ret = VM_FAULT_FALLBACK;
3571 page = compound_head(page);
3572
953c66c2
AK
3573 /*
3574 * Archs like ppc64 need additonal space to store information
3575 * related to pte entry. Use the preallocated table for that.
3576 */
82b0f8c3 3577 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3578 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3579 if (!vmf->prealloc_pte)
953c66c2
AK
3580 return VM_FAULT_OOM;
3581 smp_wmb(); /* See comment in __pte_alloc() */
3582 }
3583
82b0f8c3
JK
3584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3585 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3586 goto out;
3587
3588 for (i = 0; i < HPAGE_PMD_NR; i++)
3589 flush_icache_page(vma, page + i);
3590
3591 entry = mk_huge_pmd(page, vma->vm_page_prot);
3592 if (write)
f55e1014 3593 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3594
fadae295 3595 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3596 page_add_file_rmap(page, true);
953c66c2
AK
3597 /*
3598 * deposit and withdraw with pmd lock held
3599 */
3600 if (arch_needs_pgtable_deposit())
82b0f8c3 3601 deposit_prealloc_pte(vmf);
10102459 3602
82b0f8c3 3603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3604
82b0f8c3 3605 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3606
3607 /* fault is handled */
3608 ret = 0;
95ecedcd 3609 count_vm_event(THP_FILE_MAPPED);
10102459 3610out:
82b0f8c3 3611 spin_unlock(vmf->ptl);
10102459
KS
3612 return ret;
3613}
3614#else
2b740303 3615static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3616{
3617 BUILD_BUG();
3618 return 0;
3619}
3620#endif
3621
8c6e50b0 3622/**
7267ec00
KS
3623 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3624 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3625 *
82b0f8c3 3626 * @vmf: fault environment
8c6e50b0 3627 * @page: page to map
8c6e50b0 3628 *
82b0f8c3
JK
3629 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3630 * return.
8c6e50b0
KS
3631 *
3632 * Target users are page handler itself and implementations of
3633 * vm_ops->map_pages.
a862f68a
MR
3634 *
3635 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3636 */
9d82c694 3637vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3638{
82b0f8c3
JK
3639 struct vm_area_struct *vma = vmf->vma;
3640 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3641 pte_t entry;
2b740303 3642 vm_fault_t ret;
10102459 3643
396bcc52 3644 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3645 ret = do_set_pmd(vmf, page);
10102459 3646 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3647 return ret;
10102459 3648 }
3bb97794 3649
82b0f8c3
JK
3650 if (!vmf->pte) {
3651 ret = pte_alloc_one_map(vmf);
7267ec00 3652 if (ret)
b0b9b3df 3653 return ret;
7267ec00
KS
3654 }
3655
3656 /* Re-check under ptl */
7df67697
BM
3657 if (unlikely(!pte_none(*vmf->pte))) {
3658 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3659 return VM_FAULT_NOPAGE;
7df67697 3660 }
7267ec00 3661
3bb97794
KS
3662 flush_icache_page(vma, page);
3663 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3664 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3665 if (write)
3666 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3667 /* copy-on-write page */
3668 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3669 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3670 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3671 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3672 } else {
eca56ff9 3673 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3674 page_add_file_rmap(page, false);
3bb97794 3675 }
82b0f8c3 3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3677
3678 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3679 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3680
b0b9b3df 3681 return 0;
3bb97794
KS
3682}
3683
9118c0cb
JK
3684
3685/**
3686 * finish_fault - finish page fault once we have prepared the page to fault
3687 *
3688 * @vmf: structure describing the fault
3689 *
3690 * This function handles all that is needed to finish a page fault once the
3691 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3692 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3693 * addition.
9118c0cb
JK
3694 *
3695 * The function expects the page to be locked and on success it consumes a
3696 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3697 *
3698 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3699 */
2b740303 3700vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3701{
3702 struct page *page;
2b740303 3703 vm_fault_t ret = 0;
9118c0cb
JK
3704
3705 /* Did we COW the page? */
3706 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3707 !(vmf->vma->vm_flags & VM_SHARED))
3708 page = vmf->cow_page;
3709 else
3710 page = vmf->page;
6b31d595
MH
3711
3712 /*
3713 * check even for read faults because we might have lost our CoWed
3714 * page
3715 */
3716 if (!(vmf->vma->vm_flags & VM_SHARED))
3717 ret = check_stable_address_space(vmf->vma->vm_mm);
3718 if (!ret)
9d82c694 3719 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3720 if (vmf->pte)
3721 pte_unmap_unlock(vmf->pte, vmf->ptl);
3722 return ret;
3723}
3724
3a91053a
KS
3725static unsigned long fault_around_bytes __read_mostly =
3726 rounddown_pow_of_two(65536);
a9b0f861 3727
a9b0f861
KS
3728#ifdef CONFIG_DEBUG_FS
3729static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3730{
a9b0f861 3731 *val = fault_around_bytes;
1592eef0
KS
3732 return 0;
3733}
3734
b4903d6e 3735/*
da391d64
WK
3736 * fault_around_bytes must be rounded down to the nearest page order as it's
3737 * what do_fault_around() expects to see.
b4903d6e 3738 */
a9b0f861 3739static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3740{
a9b0f861 3741 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3742 return -EINVAL;
b4903d6e
AR
3743 if (val > PAGE_SIZE)
3744 fault_around_bytes = rounddown_pow_of_two(val);
3745 else
3746 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3747 return 0;
3748}
0a1345f8 3749DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3750 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3751
3752static int __init fault_around_debugfs(void)
3753{
d9f7979c
GKH
3754 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3755 &fault_around_bytes_fops);
1592eef0
KS
3756 return 0;
3757}
3758late_initcall(fault_around_debugfs);
1592eef0 3759#endif
8c6e50b0 3760
1fdb412b
KS
3761/*
3762 * do_fault_around() tries to map few pages around the fault address. The hope
3763 * is that the pages will be needed soon and this will lower the number of
3764 * faults to handle.
3765 *
3766 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3767 * not ready to be mapped: not up-to-date, locked, etc.
3768 *
3769 * This function is called with the page table lock taken. In the split ptlock
3770 * case the page table lock only protects only those entries which belong to
3771 * the page table corresponding to the fault address.
3772 *
3773 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3774 * only once.
3775 *
da391d64
WK
3776 * fault_around_bytes defines how many bytes we'll try to map.
3777 * do_fault_around() expects it to be set to a power of two less than or equal
3778 * to PTRS_PER_PTE.
1fdb412b 3779 *
da391d64
WK
3780 * The virtual address of the area that we map is naturally aligned to
3781 * fault_around_bytes rounded down to the machine page size
3782 * (and therefore to page order). This way it's easier to guarantee
3783 * that we don't cross page table boundaries.
1fdb412b 3784 */
2b740303 3785static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3786{
82b0f8c3 3787 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3788 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3789 pgoff_t end_pgoff;
2b740303
SJ
3790 int off;
3791 vm_fault_t ret = 0;
8c6e50b0 3792
4db0c3c2 3793 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3794 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3795
82b0f8c3
JK
3796 vmf->address = max(address & mask, vmf->vma->vm_start);
3797 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3798 start_pgoff -= off;
8c6e50b0
KS
3799
3800 /*
da391d64
WK
3801 * end_pgoff is either the end of the page table, the end of
3802 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3803 */
bae473a4 3804 end_pgoff = start_pgoff -
82b0f8c3 3805 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3806 PTRS_PER_PTE - 1;
82b0f8c3 3807 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3808 start_pgoff + nr_pages - 1);
8c6e50b0 3809
82b0f8c3 3810 if (pmd_none(*vmf->pmd)) {
4cf58924 3811 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3812 if (!vmf->prealloc_pte)
c5f88bd2 3813 goto out;
7267ec00 3814 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3815 }
3816
82b0f8c3 3817 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3818
7267ec00 3819 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3820 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3821 ret = VM_FAULT_NOPAGE;
3822 goto out;
3823 }
3824
3825 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3826 if (!vmf->pte)
7267ec00
KS
3827 goto out;
3828
3829 /* check if the page fault is solved */
82b0f8c3
JK
3830 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3831 if (!pte_none(*vmf->pte))
7267ec00 3832 ret = VM_FAULT_NOPAGE;
82b0f8c3 3833 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3834out:
82b0f8c3
JK
3835 vmf->address = address;
3836 vmf->pte = NULL;
7267ec00 3837 return ret;
8c6e50b0
KS
3838}
3839
2b740303 3840static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3841{
82b0f8c3 3842 struct vm_area_struct *vma = vmf->vma;
2b740303 3843 vm_fault_t ret = 0;
8c6e50b0
KS
3844
3845 /*
3846 * Let's call ->map_pages() first and use ->fault() as fallback
3847 * if page by the offset is not ready to be mapped (cold cache or
3848 * something).
3849 */
9b4bdd2f 3850 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3851 ret = do_fault_around(vmf);
7267ec00
KS
3852 if (ret)
3853 return ret;
8c6e50b0 3854 }
e655fb29 3855
936ca80d 3856 ret = __do_fault(vmf);
e655fb29
KS
3857 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3858 return ret;
3859
9118c0cb 3860 ret |= finish_fault(vmf);
936ca80d 3861 unlock_page(vmf->page);
7267ec00 3862 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3863 put_page(vmf->page);
e655fb29
KS
3864 return ret;
3865}
3866
2b740303 3867static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3868{
82b0f8c3 3869 struct vm_area_struct *vma = vmf->vma;
2b740303 3870 vm_fault_t ret;
ec47c3b9
KS
3871
3872 if (unlikely(anon_vma_prepare(vma)))
3873 return VM_FAULT_OOM;
3874
936ca80d
JK
3875 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3876 if (!vmf->cow_page)
ec47c3b9
KS
3877 return VM_FAULT_OOM;
3878
d9eb1ea2 3879 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3880 put_page(vmf->cow_page);
ec47c3b9
KS
3881 return VM_FAULT_OOM;
3882 }
9d82c694 3883 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3884
936ca80d 3885 ret = __do_fault(vmf);
ec47c3b9
KS
3886 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3887 goto uncharge_out;
3917048d
JK
3888 if (ret & VM_FAULT_DONE_COW)
3889 return ret;
ec47c3b9 3890
b1aa812b 3891 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3892 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3893
9118c0cb 3894 ret |= finish_fault(vmf);
b1aa812b
JK
3895 unlock_page(vmf->page);
3896 put_page(vmf->page);
7267ec00
KS
3897 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3898 goto uncharge_out;
ec47c3b9
KS
3899 return ret;
3900uncharge_out:
936ca80d 3901 put_page(vmf->cow_page);
ec47c3b9
KS
3902 return ret;
3903}
3904
2b740303 3905static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3906{
82b0f8c3 3907 struct vm_area_struct *vma = vmf->vma;
2b740303 3908 vm_fault_t ret, tmp;
1d65f86d 3909
936ca80d 3910 ret = __do_fault(vmf);
7eae74af 3911 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3912 return ret;
1da177e4
LT
3913
3914 /*
f0c6d4d2
KS
3915 * Check if the backing address space wants to know that the page is
3916 * about to become writable
1da177e4 3917 */
fb09a464 3918 if (vma->vm_ops->page_mkwrite) {
936ca80d 3919 unlock_page(vmf->page);
38b8cb7f 3920 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3921 if (unlikely(!tmp ||
3922 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3923 put_page(vmf->page);
fb09a464 3924 return tmp;
4294621f 3925 }
fb09a464
KS
3926 }
3927
9118c0cb 3928 ret |= finish_fault(vmf);
7267ec00
KS
3929 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3930 VM_FAULT_RETRY))) {
936ca80d
JK
3931 unlock_page(vmf->page);
3932 put_page(vmf->page);
f0c6d4d2 3933 return ret;
1da177e4 3934 }
b827e496 3935
89b15332 3936 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3937 return ret;
54cb8821 3938}
d00806b1 3939
9a95f3cf 3940/*
c1e8d7c6 3941 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 3942 * but allow concurrent faults).
c1e8d7c6 3943 * The mmap_lock may have been released depending on flags and our
9a95f3cf 3944 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 3945 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 3946 * by other thread calling munmap()).
9a95f3cf 3947 */
2b740303 3948static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3949{
82b0f8c3 3950 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3951 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3952 vm_fault_t ret;
54cb8821 3953
ff09d7ec
AK
3954 /*
3955 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3956 */
3957 if (!vma->vm_ops->fault) {
3958 /*
3959 * If we find a migration pmd entry or a none pmd entry, which
3960 * should never happen, return SIGBUS
3961 */
3962 if (unlikely(!pmd_present(*vmf->pmd)))
3963 ret = VM_FAULT_SIGBUS;
3964 else {
3965 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3966 vmf->pmd,
3967 vmf->address,
3968 &vmf->ptl);
3969 /*
3970 * Make sure this is not a temporary clearing of pte
3971 * by holding ptl and checking again. A R/M/W update
3972 * of pte involves: take ptl, clearing the pte so that
3973 * we don't have concurrent modification by hardware
3974 * followed by an update.
3975 */
3976 if (unlikely(pte_none(*vmf->pte)))
3977 ret = VM_FAULT_SIGBUS;
3978 else
3979 ret = VM_FAULT_NOPAGE;
3980
3981 pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 }
3983 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3984 ret = do_read_fault(vmf);
3985 else if (!(vma->vm_flags & VM_SHARED))
3986 ret = do_cow_fault(vmf);
3987 else
3988 ret = do_shared_fault(vmf);
3989
3990 /* preallocated pagetable is unused: free it */
3991 if (vmf->prealloc_pte) {
fc8efd2d 3992 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3993 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3994 }
3995 return ret;
54cb8821
NP
3996}
3997
b19a9939 3998static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3999 unsigned long addr, int page_nid,
4000 int *flags)
9532fec1
MG
4001{
4002 get_page(page);
4003
4004 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4005 if (page_nid == numa_node_id()) {
9532fec1 4006 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4007 *flags |= TNF_FAULT_LOCAL;
4008 }
9532fec1
MG
4009
4010 return mpol_misplaced(page, vma, addr);
4011}
4012
2b740303 4013static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4014{
82b0f8c3 4015 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4016 struct page *page = NULL;
98fa15f3 4017 int page_nid = NUMA_NO_NODE;
90572890 4018 int last_cpupid;
cbee9f88 4019 int target_nid;
b8593bfd 4020 bool migrated = false;
04a86453 4021 pte_t pte, old_pte;
288bc549 4022 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4023 int flags = 0;
d10e63f2
MG
4024
4025 /*
166f61b9
TH
4026 * The "pte" at this point cannot be used safely without
4027 * validation through pte_unmap_same(). It's of NUMA type but
4028 * the pfn may be screwed if the read is non atomic.
166f61b9 4029 */
82b0f8c3
JK
4030 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4031 spin_lock(vmf->ptl);
cee216a6 4032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4033 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4034 goto out;
4035 }
4036
cee216a6
AK
4037 /*
4038 * Make it present again, Depending on how arch implementes non
4039 * accessible ptes, some can allow access by kernel mode.
4040 */
04a86453
AK
4041 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4042 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4043 pte = pte_mkyoung(pte);
b191f9b1
MG
4044 if (was_writable)
4045 pte = pte_mkwrite(pte);
04a86453 4046 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4047 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4048
82b0f8c3 4049 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4050 if (!page) {
82b0f8c3 4051 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4052 return 0;
4053 }
4054
e81c4802
KS
4055 /* TODO: handle PTE-mapped THP */
4056 if (PageCompound(page)) {
82b0f8c3 4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4058 return 0;
4059 }
4060
6688cc05 4061 /*
bea66fbd
MG
4062 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4063 * much anyway since they can be in shared cache state. This misses
4064 * the case where a mapping is writable but the process never writes
4065 * to it but pte_write gets cleared during protection updates and
4066 * pte_dirty has unpredictable behaviour between PTE scan updates,
4067 * background writeback, dirty balancing and application behaviour.
6688cc05 4068 */
d59dc7bc 4069 if (!pte_write(pte))
6688cc05
PZ
4070 flags |= TNF_NO_GROUP;
4071
dabe1d99
RR
4072 /*
4073 * Flag if the page is shared between multiple address spaces. This
4074 * is later used when determining whether to group tasks together
4075 */
4076 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4077 flags |= TNF_SHARED;
4078
90572890 4079 last_cpupid = page_cpupid_last(page);
8191acbd 4080 page_nid = page_to_nid(page);
82b0f8c3 4081 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4082 &flags);
82b0f8c3 4083 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4084 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4085 put_page(page);
4086 goto out;
4087 }
4088
4089 /* Migrate to the requested node */
1bc115d8 4090 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4091 if (migrated) {
8191acbd 4092 page_nid = target_nid;
6688cc05 4093 flags |= TNF_MIGRATED;
074c2381
MG
4094 } else
4095 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4096
4097out:
98fa15f3 4098 if (page_nid != NUMA_NO_NODE)
6688cc05 4099 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4100 return 0;
4101}
4102
2b740303 4103static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4104{
f4200391 4105 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4106 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4107 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4108 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4109 return VM_FAULT_FALLBACK;
4110}
4111
183f24aa 4112/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4113static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4114{
529b930b 4115 if (vma_is_anonymous(vmf->vma)) {
292924b2 4116 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4117 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4118 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4119 }
327e9fd4
THV
4120 if (vmf->vma->vm_ops->huge_fault) {
4121 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4122
4123 if (!(ret & VM_FAULT_FALLBACK))
4124 return ret;
4125 }
af9e4d5f 4126
327e9fd4 4127 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4128 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4129
b96375f7
MW
4130 return VM_FAULT_FALLBACK;
4131}
4132
2b740303 4133static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4134{
327e9fd4
THV
4135#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4136 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4137 /* No support for anonymous transparent PUD pages yet */
4138 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4139 goto split;
4140 if (vmf->vma->vm_ops->huge_fault) {
4141 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4142
4143 if (!(ret & VM_FAULT_FALLBACK))
4144 return ret;
4145 }
4146split:
4147 /* COW or write-notify not handled on PUD level: split pud.*/
4148 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4149#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4150 return VM_FAULT_FALLBACK;
4151}
4152
2b740303 4153static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4154{
4155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4156 /* No support for anonymous transparent PUD pages yet */
4157 if (vma_is_anonymous(vmf->vma))
4158 return VM_FAULT_FALLBACK;
4159 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4160 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4161#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4162 return VM_FAULT_FALLBACK;
4163}
4164
1da177e4
LT
4165/*
4166 * These routines also need to handle stuff like marking pages dirty
4167 * and/or accessed for architectures that don't do it in hardware (most
4168 * RISC architectures). The early dirtying is also good on the i386.
4169 *
4170 * There is also a hook called "update_mmu_cache()" that architectures
4171 * with external mmu caches can use to update those (ie the Sparc or
4172 * PowerPC hashed page tables that act as extended TLBs).
4173 *
c1e8d7c6 4174 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4175 * concurrent faults).
9a95f3cf 4176 *
c1e8d7c6 4177 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4178 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4179 */
2b740303 4180static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4181{
4182 pte_t entry;
4183
82b0f8c3 4184 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4185 /*
4186 * Leave __pte_alloc() until later: because vm_ops->fault may
4187 * want to allocate huge page, and if we expose page table
4188 * for an instant, it will be difficult to retract from
4189 * concurrent faults and from rmap lookups.
4190 */
82b0f8c3 4191 vmf->pte = NULL;
7267ec00
KS
4192 } else {
4193 /* See comment in pte_alloc_one_map() */
d0f0931d 4194 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4195 return 0;
4196 /*
4197 * A regular pmd is established and it can't morph into a huge
4198 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4199 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4200 * So now it's safe to run pte_offset_map().
4201 */
82b0f8c3 4202 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4203 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4204
4205 /*
4206 * some architectures can have larger ptes than wordsize,
4207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4208 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4209 * accesses. The code below just needs a consistent view
4210 * for the ifs and we later double check anyway with the
7267ec00
KS
4211 * ptl lock held. So here a barrier will do.
4212 */
4213 barrier();
2994302b 4214 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4215 pte_unmap(vmf->pte);
4216 vmf->pte = NULL;
65500d23 4217 }
1da177e4
LT
4218 }
4219
82b0f8c3
JK
4220 if (!vmf->pte) {
4221 if (vma_is_anonymous(vmf->vma))
4222 return do_anonymous_page(vmf);
7267ec00 4223 else
82b0f8c3 4224 return do_fault(vmf);
7267ec00
KS
4225 }
4226
2994302b
JK
4227 if (!pte_present(vmf->orig_pte))
4228 return do_swap_page(vmf);
7267ec00 4229
2994302b
JK
4230 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4231 return do_numa_page(vmf);
d10e63f2 4232
82b0f8c3
JK
4233 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4234 spin_lock(vmf->ptl);
2994302b 4235 entry = vmf->orig_pte;
7df67697
BM
4236 if (unlikely(!pte_same(*vmf->pte, entry))) {
4237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4238 goto unlock;
7df67697 4239 }
82b0f8c3 4240 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4241 if (!pte_write(entry))
2994302b 4242 return do_wp_page(vmf);
1da177e4
LT
4243 entry = pte_mkdirty(entry);
4244 }
4245 entry = pte_mkyoung(entry);
82b0f8c3
JK
4246 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4247 vmf->flags & FAULT_FLAG_WRITE)) {
4248 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4249 } else {
b7333b58
YS
4250 /* Skip spurious TLB flush for retried page fault */
4251 if (vmf->flags & FAULT_FLAG_TRIED)
4252 goto unlock;
1a44e149
AA
4253 /*
4254 * This is needed only for protection faults but the arch code
4255 * is not yet telling us if this is a protection fault or not.
4256 * This still avoids useless tlb flushes for .text page faults
4257 * with threads.
4258 */
82b0f8c3
JK
4259 if (vmf->flags & FAULT_FLAG_WRITE)
4260 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4261 }
8f4e2101 4262unlock:
82b0f8c3 4263 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4264 return 0;
1da177e4
LT
4265}
4266
4267/*
4268 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4269 *
c1e8d7c6 4270 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4271 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4272 */
2b740303
SJ
4273static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4274 unsigned long address, unsigned int flags)
1da177e4 4275{
82b0f8c3 4276 struct vm_fault vmf = {
bae473a4 4277 .vma = vma,
1a29d85e 4278 .address = address & PAGE_MASK,
bae473a4 4279 .flags = flags,
0721ec8b 4280 .pgoff = linear_page_index(vma, address),
667240e0 4281 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4282 };
fde26bed 4283 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4284 struct mm_struct *mm = vma->vm_mm;
1da177e4 4285 pgd_t *pgd;
c2febafc 4286 p4d_t *p4d;
2b740303 4287 vm_fault_t ret;
1da177e4 4288
1da177e4 4289 pgd = pgd_offset(mm, address);
c2febafc
KS
4290 p4d = p4d_alloc(mm, pgd, address);
4291 if (!p4d)
4292 return VM_FAULT_OOM;
a00cc7d9 4293
c2febafc 4294 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4295 if (!vmf.pud)
c74df32c 4296 return VM_FAULT_OOM;
625110b5 4297retry_pud:
7635d9cb 4298 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4299 ret = create_huge_pud(&vmf);
4300 if (!(ret & VM_FAULT_FALLBACK))
4301 return ret;
4302 } else {
4303 pud_t orig_pud = *vmf.pud;
4304
4305 barrier();
4306 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4307
a00cc7d9
MW
4308 /* NUMA case for anonymous PUDs would go here */
4309
f6f37321 4310 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4311 ret = wp_huge_pud(&vmf, orig_pud);
4312 if (!(ret & VM_FAULT_FALLBACK))
4313 return ret;
4314 } else {
4315 huge_pud_set_accessed(&vmf, orig_pud);
4316 return 0;
4317 }
4318 }
4319 }
4320
4321 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4322 if (!vmf.pmd)
c74df32c 4323 return VM_FAULT_OOM;
625110b5
TH
4324
4325 /* Huge pud page fault raced with pmd_alloc? */
4326 if (pud_trans_unstable(vmf.pud))
4327 goto retry_pud;
4328
7635d9cb 4329 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4330 ret = create_huge_pmd(&vmf);
c0292554
KS
4331 if (!(ret & VM_FAULT_FALLBACK))
4332 return ret;
71e3aac0 4333 } else {
82b0f8c3 4334 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4335
71e3aac0 4336 barrier();
84c3fc4e
ZY
4337 if (unlikely(is_swap_pmd(orig_pmd))) {
4338 VM_BUG_ON(thp_migration_supported() &&
4339 !is_pmd_migration_entry(orig_pmd));
4340 if (is_pmd_migration_entry(orig_pmd))
4341 pmd_migration_entry_wait(mm, vmf.pmd);
4342 return 0;
4343 }
5c7fb56e 4344 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4345 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4346 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4347
f6f37321 4348 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4349 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4350 if (!(ret & VM_FAULT_FALLBACK))
4351 return ret;
a1dd450b 4352 } else {
82b0f8c3 4353 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4354 return 0;
1f1d06c3 4355 }
71e3aac0
AA
4356 }
4357 }
4358
82b0f8c3 4359 return handle_pte_fault(&vmf);
1da177e4
LT
4360}
4361
bce617ed
PX
4362/**
4363 * mm_account_fault - Do page fault accountings
4364 *
4365 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4366 * of perf event counters, but we'll still do the per-task accounting to
4367 * the task who triggered this page fault.
4368 * @address: the faulted address.
4369 * @flags: the fault flags.
4370 * @ret: the fault retcode.
4371 *
4372 * This will take care of most of the page fault accountings. Meanwhile, it
4373 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4374 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4375 * still be in per-arch page fault handlers at the entry of page fault.
4376 */
4377static inline void mm_account_fault(struct pt_regs *regs,
4378 unsigned long address, unsigned int flags,
4379 vm_fault_t ret)
4380{
4381 bool major;
4382
4383 /*
4384 * We don't do accounting for some specific faults:
4385 *
4386 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4387 * includes arch_vma_access_permitted() failing before reaching here.
4388 * So this is not a "this many hardware page faults" counter. We
4389 * should use the hw profiling for that.
4390 *
4391 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4392 * once they're completed.
4393 */
4394 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4395 return;
4396
4397 /*
4398 * We define the fault as a major fault when the final successful fault
4399 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4400 * handle it immediately previously).
4401 */
4402 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4403
a2beb5f1
PX
4404 if (major)
4405 current->maj_flt++;
4406 else
4407 current->min_flt++;
4408
bce617ed 4409 /*
a2beb5f1
PX
4410 * If the fault is done for GUP, regs will be NULL. We only do the
4411 * accounting for the per thread fault counters who triggered the
4412 * fault, and we skip the perf event updates.
bce617ed
PX
4413 */
4414 if (!regs)
4415 return;
4416
a2beb5f1 4417 if (major)
bce617ed 4418 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4419 else
bce617ed 4420 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4421}
4422
9a95f3cf
PC
4423/*
4424 * By the time we get here, we already hold the mm semaphore
4425 *
c1e8d7c6 4426 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4427 * return value. See filemap_fault() and __lock_page_or_retry().
4428 */
2b740303 4429vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4430 unsigned int flags, struct pt_regs *regs)
519e5247 4431{
2b740303 4432 vm_fault_t ret;
519e5247
JW
4433
4434 __set_current_state(TASK_RUNNING);
4435
4436 count_vm_event(PGFAULT);
2262185c 4437 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4438
4439 /* do counter updates before entering really critical section. */
4440 check_sync_rss_stat(current);
4441
de0c799b
LD
4442 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4443 flags & FAULT_FLAG_INSTRUCTION,
4444 flags & FAULT_FLAG_REMOTE))
4445 return VM_FAULT_SIGSEGV;
4446
519e5247
JW
4447 /*
4448 * Enable the memcg OOM handling for faults triggered in user
4449 * space. Kernel faults are handled more gracefully.
4450 */
4451 if (flags & FAULT_FLAG_USER)
29ef680a 4452 mem_cgroup_enter_user_fault();
519e5247 4453
bae473a4
KS
4454 if (unlikely(is_vm_hugetlb_page(vma)))
4455 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4456 else
4457 ret = __handle_mm_fault(vma, address, flags);
519e5247 4458
49426420 4459 if (flags & FAULT_FLAG_USER) {
29ef680a 4460 mem_cgroup_exit_user_fault();
166f61b9
TH
4461 /*
4462 * The task may have entered a memcg OOM situation but
4463 * if the allocation error was handled gracefully (no
4464 * VM_FAULT_OOM), there is no need to kill anything.
4465 * Just clean up the OOM state peacefully.
4466 */
4467 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4468 mem_cgroup_oom_synchronize(false);
49426420 4469 }
3812c8c8 4470
bce617ed
PX
4471 mm_account_fault(regs, address, flags, ret);
4472
519e5247
JW
4473 return ret;
4474}
e1d6d01a 4475EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4476
90eceff1
KS
4477#ifndef __PAGETABLE_P4D_FOLDED
4478/*
4479 * Allocate p4d page table.
4480 * We've already handled the fast-path in-line.
4481 */
4482int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4483{
4484 p4d_t *new = p4d_alloc_one(mm, address);
4485 if (!new)
4486 return -ENOMEM;
4487
4488 smp_wmb(); /* See comment in __pte_alloc */
4489
4490 spin_lock(&mm->page_table_lock);
4491 if (pgd_present(*pgd)) /* Another has populated it */
4492 p4d_free(mm, new);
4493 else
4494 pgd_populate(mm, pgd, new);
4495 spin_unlock(&mm->page_table_lock);
4496 return 0;
4497}
4498#endif /* __PAGETABLE_P4D_FOLDED */
4499
1da177e4
LT
4500#ifndef __PAGETABLE_PUD_FOLDED
4501/*
4502 * Allocate page upper directory.
872fec16 4503 * We've already handled the fast-path in-line.
1da177e4 4504 */
c2febafc 4505int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4506{
c74df32c
HD
4507 pud_t *new = pud_alloc_one(mm, address);
4508 if (!new)
1bb3630e 4509 return -ENOMEM;
1da177e4 4510
362a61ad
NP
4511 smp_wmb(); /* See comment in __pte_alloc */
4512
872fec16 4513 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4514 if (!p4d_present(*p4d)) {
4515 mm_inc_nr_puds(mm);
c2febafc 4516 p4d_populate(mm, p4d, new);
b4e98d9a 4517 } else /* Another has populated it */
5e541973 4518 pud_free(mm, new);
c74df32c 4519 spin_unlock(&mm->page_table_lock);
1bb3630e 4520 return 0;
1da177e4
LT
4521}
4522#endif /* __PAGETABLE_PUD_FOLDED */
4523
4524#ifndef __PAGETABLE_PMD_FOLDED
4525/*
4526 * Allocate page middle directory.
872fec16 4527 * We've already handled the fast-path in-line.
1da177e4 4528 */
1bb3630e 4529int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4530{
a00cc7d9 4531 spinlock_t *ptl;
c74df32c
HD
4532 pmd_t *new = pmd_alloc_one(mm, address);
4533 if (!new)
1bb3630e 4534 return -ENOMEM;
1da177e4 4535
362a61ad
NP
4536 smp_wmb(); /* See comment in __pte_alloc */
4537
a00cc7d9 4538 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4539 if (!pud_present(*pud)) {
4540 mm_inc_nr_pmds(mm);
1bb3630e 4541 pud_populate(mm, pud, new);
dc6c9a35 4542 } else /* Another has populated it */
5e541973 4543 pmd_free(mm, new);
a00cc7d9 4544 spin_unlock(ptl);
1bb3630e 4545 return 0;
e0f39591 4546}
1da177e4
LT
4547#endif /* __PAGETABLE_PMD_FOLDED */
4548
09796395 4549static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4550 struct mmu_notifier_range *range,
a4d1a885 4551 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4552{
4553 pgd_t *pgd;
c2febafc 4554 p4d_t *p4d;
f8ad0f49
JW
4555 pud_t *pud;
4556 pmd_t *pmd;
4557 pte_t *ptep;
4558
4559 pgd = pgd_offset(mm, address);
4560 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4561 goto out;
4562
c2febafc
KS
4563 p4d = p4d_offset(pgd, address);
4564 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4565 goto out;
4566
4567 pud = pud_offset(p4d, address);
f8ad0f49
JW
4568 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4569 goto out;
4570
4571 pmd = pmd_offset(pud, address);
f66055ab 4572 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4573
09796395
RZ
4574 if (pmd_huge(*pmd)) {
4575 if (!pmdpp)
4576 goto out;
4577
ac46d4f3 4578 if (range) {
7269f999 4579 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4580 NULL, mm, address & PMD_MASK,
4581 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4582 mmu_notifier_invalidate_range_start(range);
a4d1a885 4583 }
09796395
RZ
4584 *ptlp = pmd_lock(mm, pmd);
4585 if (pmd_huge(*pmd)) {
4586 *pmdpp = pmd;
4587 return 0;
4588 }
4589 spin_unlock(*ptlp);
ac46d4f3
JG
4590 if (range)
4591 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4592 }
4593
4594 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4595 goto out;
4596
ac46d4f3 4597 if (range) {
7269f999 4598 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4599 address & PAGE_MASK,
4600 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4601 mmu_notifier_invalidate_range_start(range);
a4d1a885 4602 }
f8ad0f49 4603 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4604 if (!pte_present(*ptep))
4605 goto unlock;
4606 *ptepp = ptep;
4607 return 0;
4608unlock:
4609 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4610 if (range)
4611 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4612out:
4613 return -EINVAL;
4614}
4615
f729c8c9
RZ
4616static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4617 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4618{
4619 int res;
4620
4621 /* (void) is needed to make gcc happy */
4622 (void) __cond_lock(*ptlp,
ac46d4f3 4623 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4624 ptepp, NULL, ptlp)));
09796395
RZ
4625 return res;
4626}
4627
4628int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4629 struct mmu_notifier_range *range,
4630 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4631{
4632 int res;
4633
4634 /* (void) is needed to make gcc happy */
4635 (void) __cond_lock(*ptlp,
ac46d4f3 4636 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4637 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4638 return res;
4639}
09796395 4640EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4641
3b6748e2
JW
4642/**
4643 * follow_pfn - look up PFN at a user virtual address
4644 * @vma: memory mapping
4645 * @address: user virtual address
4646 * @pfn: location to store found PFN
4647 *
4648 * Only IO mappings and raw PFN mappings are allowed.
4649 *
a862f68a 4650 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4651 */
4652int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4653 unsigned long *pfn)
4654{
4655 int ret = -EINVAL;
4656 spinlock_t *ptl;
4657 pte_t *ptep;
4658
4659 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4660 return ret;
4661
4662 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4663 if (ret)
4664 return ret;
4665 *pfn = pte_pfn(*ptep);
4666 pte_unmap_unlock(ptep, ptl);
4667 return 0;
4668}
4669EXPORT_SYMBOL(follow_pfn);
4670
28b2ee20 4671#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4672int follow_phys(struct vm_area_struct *vma,
4673 unsigned long address, unsigned int flags,
4674 unsigned long *prot, resource_size_t *phys)
28b2ee20 4675{
03668a4d 4676 int ret = -EINVAL;
28b2ee20
RR
4677 pte_t *ptep, pte;
4678 spinlock_t *ptl;
28b2ee20 4679
d87fe660 4680 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4681 goto out;
28b2ee20 4682
03668a4d 4683 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4684 goto out;
28b2ee20 4685 pte = *ptep;
03668a4d 4686
f6f37321 4687 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4688 goto unlock;
28b2ee20
RR
4689
4690 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4691 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4692
03668a4d 4693 ret = 0;
28b2ee20
RR
4694unlock:
4695 pte_unmap_unlock(ptep, ptl);
4696out:
d87fe660 4697 return ret;
28b2ee20
RR
4698}
4699
4700int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4701 void *buf, int len, int write)
4702{
4703 resource_size_t phys_addr;
4704 unsigned long prot = 0;
2bc7273b 4705 void __iomem *maddr;
28b2ee20
RR
4706 int offset = addr & (PAGE_SIZE-1);
4707
d87fe660 4708 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4709 return -EINVAL;
4710
9cb12d7b 4711 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4712 if (!maddr)
4713 return -ENOMEM;
4714
28b2ee20
RR
4715 if (write)
4716 memcpy_toio(maddr + offset, buf, len);
4717 else
4718 memcpy_fromio(buf, maddr + offset, len);
4719 iounmap(maddr);
4720
4721 return len;
4722}
5a73633e 4723EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4724#endif
4725
0ec76a11 4726/*
206cb636
SW
4727 * Access another process' address space as given in mm. If non-NULL, use the
4728 * given task for page fault accounting.
0ec76a11 4729 */
84d77d3f 4730int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4731 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4732{
0ec76a11 4733 struct vm_area_struct *vma;
0ec76a11 4734 void *old_buf = buf;
442486ec 4735 int write = gup_flags & FOLL_WRITE;
0ec76a11 4736
d8ed45c5 4737 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4738 return 0;
4739
183ff22b 4740 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4741 while (len) {
4742 int bytes, ret, offset;
4743 void *maddr;
28b2ee20 4744 struct page *page = NULL;
0ec76a11 4745
64019a2e 4746 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4747 gup_flags, &page, &vma, NULL);
28b2ee20 4748 if (ret <= 0) {
dbffcd03
RR
4749#ifndef CONFIG_HAVE_IOREMAP_PROT
4750 break;
4751#else
28b2ee20
RR
4752 /*
4753 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4754 * we can access using slightly different code.
4755 */
28b2ee20 4756 vma = find_vma(mm, addr);
fe936dfc 4757 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4758 break;
4759 if (vma->vm_ops && vma->vm_ops->access)
4760 ret = vma->vm_ops->access(vma, addr, buf,
4761 len, write);
4762 if (ret <= 0)
28b2ee20
RR
4763 break;
4764 bytes = ret;
dbffcd03 4765#endif
0ec76a11 4766 } else {
28b2ee20
RR
4767 bytes = len;
4768 offset = addr & (PAGE_SIZE-1);
4769 if (bytes > PAGE_SIZE-offset)
4770 bytes = PAGE_SIZE-offset;
4771
4772 maddr = kmap(page);
4773 if (write) {
4774 copy_to_user_page(vma, page, addr,
4775 maddr + offset, buf, bytes);
4776 set_page_dirty_lock(page);
4777 } else {
4778 copy_from_user_page(vma, page, addr,
4779 buf, maddr + offset, bytes);
4780 }
4781 kunmap(page);
09cbfeaf 4782 put_page(page);
0ec76a11 4783 }
0ec76a11
DH
4784 len -= bytes;
4785 buf += bytes;
4786 addr += bytes;
4787 }
d8ed45c5 4788 mmap_read_unlock(mm);
0ec76a11
DH
4789
4790 return buf - old_buf;
4791}
03252919 4792
5ddd36b9 4793/**
ae91dbfc 4794 * access_remote_vm - access another process' address space
5ddd36b9
SW
4795 * @mm: the mm_struct of the target address space
4796 * @addr: start address to access
4797 * @buf: source or destination buffer
4798 * @len: number of bytes to transfer
6347e8d5 4799 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4800 *
4801 * The caller must hold a reference on @mm.
a862f68a
MR
4802 *
4803 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4804 */
4805int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4806 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4807{
6347e8d5 4808 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4809}
4810
206cb636
SW
4811/*
4812 * Access another process' address space.
4813 * Source/target buffer must be kernel space,
4814 * Do not walk the page table directly, use get_user_pages
4815 */
4816int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4817 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4818{
4819 struct mm_struct *mm;
4820 int ret;
4821
4822 mm = get_task_mm(tsk);
4823 if (!mm)
4824 return 0;
4825
f307ab6d 4826 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4827
206cb636
SW
4828 mmput(mm);
4829
4830 return ret;
4831}
fcd35857 4832EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4833
03252919
AK
4834/*
4835 * Print the name of a VMA.
4836 */
4837void print_vma_addr(char *prefix, unsigned long ip)
4838{
4839 struct mm_struct *mm = current->mm;
4840 struct vm_area_struct *vma;
4841
e8bff74a 4842 /*
0a7f682d 4843 * we might be running from an atomic context so we cannot sleep
e8bff74a 4844 */
d8ed45c5 4845 if (!mmap_read_trylock(mm))
e8bff74a
IM
4846 return;
4847
03252919
AK
4848 vma = find_vma(mm, ip);
4849 if (vma && vma->vm_file) {
4850 struct file *f = vma->vm_file;
0a7f682d 4851 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4852 if (buf) {
2fbc57c5 4853 char *p;
03252919 4854
9bf39ab2 4855 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4856 if (IS_ERR(p))
4857 p = "?";
2fbc57c5 4858 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4859 vma->vm_start,
4860 vma->vm_end - vma->vm_start);
4861 free_page((unsigned long)buf);
4862 }
4863 }
d8ed45c5 4864 mmap_read_unlock(mm);
03252919 4865}
3ee1afa3 4866
662bbcb2 4867#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4868void __might_fault(const char *file, int line)
3ee1afa3 4869{
95156f00
PZ
4870 /*
4871 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 4872 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
4873 * get paged out, therefore we'll never actually fault, and the
4874 * below annotations will generate false positives.
4875 */
db68ce10 4876 if (uaccess_kernel())
95156f00 4877 return;
9ec23531 4878 if (pagefault_disabled())
662bbcb2 4879 return;
9ec23531
DH
4880 __might_sleep(file, line, 0);
4881#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4882 if (current->mm)
da1c55f1 4883 might_lock_read(&current->mm->mmap_lock);
9ec23531 4884#endif
3ee1afa3 4885}
9ec23531 4886EXPORT_SYMBOL(__might_fault);
3ee1afa3 4887#endif
47ad8475
AA
4888
4889#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4890/*
4891 * Process all subpages of the specified huge page with the specified
4892 * operation. The target subpage will be processed last to keep its
4893 * cache lines hot.
4894 */
4895static inline void process_huge_page(
4896 unsigned long addr_hint, unsigned int pages_per_huge_page,
4897 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4898 void *arg)
47ad8475 4899{
c79b57e4
HY
4900 int i, n, base, l;
4901 unsigned long addr = addr_hint &
4902 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4903
c6ddfb6c 4904 /* Process target subpage last to keep its cache lines hot */
47ad8475 4905 might_sleep();
c79b57e4
HY
4906 n = (addr_hint - addr) / PAGE_SIZE;
4907 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4908 /* If target subpage in first half of huge page */
c79b57e4
HY
4909 base = 0;
4910 l = n;
c6ddfb6c 4911 /* Process subpages at the end of huge page */
c79b57e4
HY
4912 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4913 cond_resched();
c6ddfb6c 4914 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4915 }
4916 } else {
c6ddfb6c 4917 /* If target subpage in second half of huge page */
c79b57e4
HY
4918 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4919 l = pages_per_huge_page - n;
c6ddfb6c 4920 /* Process subpages at the begin of huge page */
c79b57e4
HY
4921 for (i = 0; i < base; i++) {
4922 cond_resched();
c6ddfb6c 4923 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4924 }
4925 }
4926 /*
c6ddfb6c
HY
4927 * Process remaining subpages in left-right-left-right pattern
4928 * towards the target subpage
c79b57e4
HY
4929 */
4930 for (i = 0; i < l; i++) {
4931 int left_idx = base + i;
4932 int right_idx = base + 2 * l - 1 - i;
4933
4934 cond_resched();
c6ddfb6c 4935 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4936 cond_resched();
c6ddfb6c 4937 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4938 }
4939}
4940
c6ddfb6c
HY
4941static void clear_gigantic_page(struct page *page,
4942 unsigned long addr,
4943 unsigned int pages_per_huge_page)
4944{
4945 int i;
4946 struct page *p = page;
4947
4948 might_sleep();
4949 for (i = 0; i < pages_per_huge_page;
4950 i++, p = mem_map_next(p, page, i)) {
4951 cond_resched();
4952 clear_user_highpage(p, addr + i * PAGE_SIZE);
4953 }
4954}
4955
4956static void clear_subpage(unsigned long addr, int idx, void *arg)
4957{
4958 struct page *page = arg;
4959
4960 clear_user_highpage(page + idx, addr);
4961}
4962
4963void clear_huge_page(struct page *page,
4964 unsigned long addr_hint, unsigned int pages_per_huge_page)
4965{
4966 unsigned long addr = addr_hint &
4967 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4968
4969 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4970 clear_gigantic_page(page, addr, pages_per_huge_page);
4971 return;
4972 }
4973
4974 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4975}
4976
47ad8475
AA
4977static void copy_user_gigantic_page(struct page *dst, struct page *src,
4978 unsigned long addr,
4979 struct vm_area_struct *vma,
4980 unsigned int pages_per_huge_page)
4981{
4982 int i;
4983 struct page *dst_base = dst;
4984 struct page *src_base = src;
4985
4986 for (i = 0; i < pages_per_huge_page; ) {
4987 cond_resched();
4988 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4989
4990 i++;
4991 dst = mem_map_next(dst, dst_base, i);
4992 src = mem_map_next(src, src_base, i);
4993 }
4994}
4995
c9f4cd71
HY
4996struct copy_subpage_arg {
4997 struct page *dst;
4998 struct page *src;
4999 struct vm_area_struct *vma;
5000};
5001
5002static void copy_subpage(unsigned long addr, int idx, void *arg)
5003{
5004 struct copy_subpage_arg *copy_arg = arg;
5005
5006 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5007 addr, copy_arg->vma);
5008}
5009
47ad8475 5010void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5011 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5012 unsigned int pages_per_huge_page)
5013{
c9f4cd71
HY
5014 unsigned long addr = addr_hint &
5015 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5016 struct copy_subpage_arg arg = {
5017 .dst = dst,
5018 .src = src,
5019 .vma = vma,
5020 };
47ad8475
AA
5021
5022 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5023 copy_user_gigantic_page(dst, src, addr, vma,
5024 pages_per_huge_page);
5025 return;
5026 }
5027
c9f4cd71 5028 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5029}
fa4d75c1
MK
5030
5031long copy_huge_page_from_user(struct page *dst_page,
5032 const void __user *usr_src,
810a56b9
MK
5033 unsigned int pages_per_huge_page,
5034 bool allow_pagefault)
fa4d75c1
MK
5035{
5036 void *src = (void *)usr_src;
5037 void *page_kaddr;
5038 unsigned long i, rc = 0;
5039 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5040
5041 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5042 if (allow_pagefault)
5043 page_kaddr = kmap(dst_page + i);
5044 else
5045 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5046 rc = copy_from_user(page_kaddr,
5047 (const void __user *)(src + i * PAGE_SIZE),
5048 PAGE_SIZE);
810a56b9
MK
5049 if (allow_pagefault)
5050 kunmap(dst_page + i);
5051 else
5052 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5053
5054 ret_val -= (PAGE_SIZE - rc);
5055 if (rc)
5056 break;
5057
5058 cond_resched();
5059 }
5060 return ret_val;
5061}
47ad8475 5062#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5063
40b64acd 5064#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5065
5066static struct kmem_cache *page_ptl_cachep;
5067
5068void __init ptlock_cache_init(void)
5069{
5070 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5071 SLAB_PANIC, NULL);
5072}
5073
539edb58 5074bool ptlock_alloc(struct page *page)
49076ec2
KS
5075{
5076 spinlock_t *ptl;
5077
b35f1819 5078 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5079 if (!ptl)
5080 return false;
539edb58 5081 page->ptl = ptl;
49076ec2
KS
5082 return true;
5083}
5084
539edb58 5085void ptlock_free(struct page *page)
49076ec2 5086{
b35f1819 5087 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5088}
5089#endif