]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
166f61b9 | 33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) |
1da177e4 LT |
34 | * |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * (Gerhard.Wichert@pdb.siemens.de) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
6e84f315 | 43 | #include <linux/sched/mm.h> |
f7ccbae4 | 44 | #include <linux/sched/coredump.h> |
6a3827d7 | 45 | #include <linux/sched/numa_balancing.h> |
29930025 | 46 | #include <linux/sched/task.h> |
1da177e4 LT |
47 | #include <linux/hugetlb.h> |
48 | #include <linux/mman.h> | |
49 | #include <linux/swap.h> | |
50 | #include <linux/highmem.h> | |
51 | #include <linux/pagemap.h> | |
9a840895 | 52 | #include <linux/ksm.h> |
1da177e4 | 53 | #include <linux/rmap.h> |
b95f1b31 | 54 | #include <linux/export.h> |
0ff92245 | 55 | #include <linux/delayacct.h> |
1da177e4 | 56 | #include <linux/init.h> |
01c8f1c4 | 57 | #include <linux/pfn_t.h> |
edc79b2a | 58 | #include <linux/writeback.h> |
8a9f3ccd | 59 | #include <linux/memcontrol.h> |
cddb8a5c | 60 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
61 | #include <linux/kallsyms.h> |
62 | #include <linux/swapops.h> | |
63 | #include <linux/elf.h> | |
5a0e3ad6 | 64 | #include <linux/gfp.h> |
4daae3b4 | 65 | #include <linux/migrate.h> |
2fbc57c5 | 66 | #include <linux/string.h> |
0abdd7a8 | 67 | #include <linux/dma-debug.h> |
1592eef0 | 68 | #include <linux/debugfs.h> |
6b251fc9 | 69 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 70 | #include <linux/dax.h> |
1da177e4 | 71 | |
6952b61d | 72 | #include <asm/io.h> |
33a709b2 | 73 | #include <asm/mmu_context.h> |
1da177e4 | 74 | #include <asm/pgalloc.h> |
7c0f6ba6 | 75 | #include <linux/uaccess.h> |
1da177e4 LT |
76 | #include <asm/tlb.h> |
77 | #include <asm/tlbflush.h> | |
78 | #include <asm/pgtable.h> | |
79 | ||
42b77728 JB |
80 | #include "internal.h" |
81 | ||
90572890 PZ |
82 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
83 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. | |
75980e97 PZ |
84 | #endif |
85 | ||
d41dee36 | 86 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
87 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
88 | unsigned long max_mapnr; | |
1da177e4 | 89 | EXPORT_SYMBOL(max_mapnr); |
166f61b9 TH |
90 | |
91 | struct page *mem_map; | |
1da177e4 LT |
92 | EXPORT_SYMBOL(mem_map); |
93 | #endif | |
94 | ||
1da177e4 LT |
95 | /* |
96 | * A number of key systems in x86 including ioremap() rely on the assumption | |
97 | * that high_memory defines the upper bound on direct map memory, then end | |
98 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
99 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
100 | * and ZONE_HIGHMEM. | |
101 | */ | |
166f61b9 | 102 | void *high_memory; |
1da177e4 | 103 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 104 | |
32a93233 IM |
105 | /* |
106 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
107 | * | |
108 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
109 | * as ancient (libc5 based) binaries can segfault. ) | |
110 | */ | |
111 | int randomize_va_space __read_mostly = | |
112 | #ifdef CONFIG_COMPAT_BRK | |
113 | 1; | |
114 | #else | |
115 | 2; | |
116 | #endif | |
a62eaf15 AK |
117 | |
118 | static int __init disable_randmaps(char *s) | |
119 | { | |
120 | randomize_va_space = 0; | |
9b41046c | 121 | return 1; |
a62eaf15 AK |
122 | } |
123 | __setup("norandmaps", disable_randmaps); | |
124 | ||
62eede62 | 125 | unsigned long zero_pfn __read_mostly; |
0b70068e AB |
126 | EXPORT_SYMBOL(zero_pfn); |
127 | ||
166f61b9 TH |
128 | unsigned long highest_memmap_pfn __read_mostly; |
129 | ||
a13ea5b7 HD |
130 | /* |
131 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
132 | */ | |
133 | static int __init init_zero_pfn(void) | |
134 | { | |
135 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
136 | return 0; | |
137 | } | |
138 | core_initcall(init_zero_pfn); | |
a62eaf15 | 139 | |
d559db08 | 140 | |
34e55232 KH |
141 | #if defined(SPLIT_RSS_COUNTING) |
142 | ||
ea48cf78 | 143 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
144 | { |
145 | int i; | |
146 | ||
147 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
148 | if (current->rss_stat.count[i]) { |
149 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
150 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
151 | } |
152 | } | |
05af2e10 | 153 | current->rss_stat.events = 0; |
34e55232 KH |
154 | } |
155 | ||
156 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
157 | { | |
158 | struct task_struct *task = current; | |
159 | ||
160 | if (likely(task->mm == mm)) | |
161 | task->rss_stat.count[member] += val; | |
162 | else | |
163 | add_mm_counter(mm, member, val); | |
164 | } | |
165 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
166 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
167 | ||
168 | /* sync counter once per 64 page faults */ | |
169 | #define TASK_RSS_EVENTS_THRESH (64) | |
170 | static void check_sync_rss_stat(struct task_struct *task) | |
171 | { | |
172 | if (unlikely(task != current)) | |
173 | return; | |
174 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 175 | sync_mm_rss(task->mm); |
34e55232 | 176 | } |
9547d01b | 177 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
178 | |
179 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
180 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
181 | ||
182 | static void check_sync_rss_stat(struct task_struct *task) | |
183 | { | |
184 | } | |
185 | ||
9547d01b PZ |
186 | #endif /* SPLIT_RSS_COUNTING */ |
187 | ||
188 | #ifdef HAVE_GENERIC_MMU_GATHER | |
189 | ||
ca1d6c7d | 190 | static bool tlb_next_batch(struct mmu_gather *tlb) |
9547d01b PZ |
191 | { |
192 | struct mmu_gather_batch *batch; | |
193 | ||
194 | batch = tlb->active; | |
195 | if (batch->next) { | |
196 | tlb->active = batch->next; | |
ca1d6c7d | 197 | return true; |
9547d01b PZ |
198 | } |
199 | ||
53a59fc6 | 200 | if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) |
ca1d6c7d | 201 | return false; |
53a59fc6 | 202 | |
9547d01b PZ |
203 | batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); |
204 | if (!batch) | |
ca1d6c7d | 205 | return false; |
9547d01b | 206 | |
53a59fc6 | 207 | tlb->batch_count++; |
9547d01b PZ |
208 | batch->next = NULL; |
209 | batch->nr = 0; | |
210 | batch->max = MAX_GATHER_BATCH; | |
211 | ||
212 | tlb->active->next = batch; | |
213 | tlb->active = batch; | |
214 | ||
ca1d6c7d | 215 | return true; |
9547d01b PZ |
216 | } |
217 | ||
218 | /* tlb_gather_mmu | |
219 | * Called to initialize an (on-stack) mmu_gather structure for page-table | |
220 | * tear-down from @mm. The @fullmm argument is used when @mm is without | |
221 | * users and we're going to destroy the full address space (exit/execve). | |
222 | */ | |
2b047252 | 223 | void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) |
9547d01b PZ |
224 | { |
225 | tlb->mm = mm; | |
226 | ||
2b047252 LT |
227 | /* Is it from 0 to ~0? */ |
228 | tlb->fullmm = !(start | (end+1)); | |
1de14c3c | 229 | tlb->need_flush_all = 0; |
9547d01b PZ |
230 | tlb->local.next = NULL; |
231 | tlb->local.nr = 0; | |
232 | tlb->local.max = ARRAY_SIZE(tlb->__pages); | |
233 | tlb->active = &tlb->local; | |
53a59fc6 | 234 | tlb->batch_count = 0; |
9547d01b PZ |
235 | |
236 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | |
237 | tlb->batch = NULL; | |
238 | #endif | |
e77b0852 | 239 | tlb->page_size = 0; |
fb7332a9 WD |
240 | |
241 | __tlb_reset_range(tlb); | |
9547d01b PZ |
242 | } |
243 | ||
1cf35d47 | 244 | static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) |
9547d01b | 245 | { |
721c21c1 WD |
246 | if (!tlb->end) |
247 | return; | |
248 | ||
9547d01b | 249 | tlb_flush(tlb); |
34ee645e | 250 | mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); |
9547d01b PZ |
251 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE |
252 | tlb_table_flush(tlb); | |
34e55232 | 253 | #endif |
fb7332a9 | 254 | __tlb_reset_range(tlb); |
1cf35d47 LT |
255 | } |
256 | ||
257 | static void tlb_flush_mmu_free(struct mmu_gather *tlb) | |
258 | { | |
259 | struct mmu_gather_batch *batch; | |
34e55232 | 260 | |
721c21c1 | 261 | for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { |
9547d01b PZ |
262 | free_pages_and_swap_cache(batch->pages, batch->nr); |
263 | batch->nr = 0; | |
264 | } | |
265 | tlb->active = &tlb->local; | |
266 | } | |
267 | ||
1cf35d47 LT |
268 | void tlb_flush_mmu(struct mmu_gather *tlb) |
269 | { | |
1cf35d47 LT |
270 | tlb_flush_mmu_tlbonly(tlb); |
271 | tlb_flush_mmu_free(tlb); | |
272 | } | |
273 | ||
9547d01b PZ |
274 | /* tlb_finish_mmu |
275 | * Called at the end of the shootdown operation to free up any resources | |
276 | * that were required. | |
277 | */ | |
278 | void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) | |
279 | { | |
280 | struct mmu_gather_batch *batch, *next; | |
281 | ||
282 | tlb_flush_mmu(tlb); | |
283 | ||
284 | /* keep the page table cache within bounds */ | |
285 | check_pgt_cache(); | |
286 | ||
287 | for (batch = tlb->local.next; batch; batch = next) { | |
288 | next = batch->next; | |
289 | free_pages((unsigned long)batch, 0); | |
290 | } | |
291 | tlb->local.next = NULL; | |
292 | } | |
293 | ||
294 | /* __tlb_remove_page | |
295 | * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while | |
296 | * handling the additional races in SMP caused by other CPUs caching valid | |
297 | * mappings in their TLBs. Returns the number of free page slots left. | |
298 | * When out of page slots we must call tlb_flush_mmu(). | |
e9d55e15 | 299 | *returns true if the caller should flush. |
9547d01b | 300 | */ |
e77b0852 | 301 | bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) |
9547d01b PZ |
302 | { |
303 | struct mmu_gather_batch *batch; | |
304 | ||
fb7332a9 | 305 | VM_BUG_ON(!tlb->end); |
692a68c1 | 306 | VM_WARN_ON(tlb->page_size != page_size); |
e77b0852 | 307 | |
9547d01b | 308 | batch = tlb->active; |
692a68c1 AK |
309 | /* |
310 | * Add the page and check if we are full. If so | |
311 | * force a flush. | |
312 | */ | |
313 | batch->pages[batch->nr++] = page; | |
9547d01b PZ |
314 | if (batch->nr == batch->max) { |
315 | if (!tlb_next_batch(tlb)) | |
e9d55e15 | 316 | return true; |
0b43c3aa | 317 | batch = tlb->active; |
9547d01b | 318 | } |
309381fe | 319 | VM_BUG_ON_PAGE(batch->nr > batch->max, page); |
9547d01b | 320 | |
e9d55e15 | 321 | return false; |
9547d01b PZ |
322 | } |
323 | ||
324 | #endif /* HAVE_GENERIC_MMU_GATHER */ | |
325 | ||
26723911 PZ |
326 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE |
327 | ||
328 | /* | |
329 | * See the comment near struct mmu_table_batch. | |
330 | */ | |
331 | ||
332 | static void tlb_remove_table_smp_sync(void *arg) | |
333 | { | |
334 | /* Simply deliver the interrupt */ | |
335 | } | |
336 | ||
337 | static void tlb_remove_table_one(void *table) | |
338 | { | |
339 | /* | |
340 | * This isn't an RCU grace period and hence the page-tables cannot be | |
341 | * assumed to be actually RCU-freed. | |
342 | * | |
343 | * It is however sufficient for software page-table walkers that rely on | |
344 | * IRQ disabling. See the comment near struct mmu_table_batch. | |
345 | */ | |
346 | smp_call_function(tlb_remove_table_smp_sync, NULL, 1); | |
347 | __tlb_remove_table(table); | |
348 | } | |
349 | ||
350 | static void tlb_remove_table_rcu(struct rcu_head *head) | |
351 | { | |
352 | struct mmu_table_batch *batch; | |
353 | int i; | |
354 | ||
355 | batch = container_of(head, struct mmu_table_batch, rcu); | |
356 | ||
357 | for (i = 0; i < batch->nr; i++) | |
358 | __tlb_remove_table(batch->tables[i]); | |
359 | ||
360 | free_page((unsigned long)batch); | |
361 | } | |
362 | ||
363 | void tlb_table_flush(struct mmu_gather *tlb) | |
364 | { | |
365 | struct mmu_table_batch **batch = &tlb->batch; | |
366 | ||
367 | if (*batch) { | |
368 | call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); | |
369 | *batch = NULL; | |
370 | } | |
371 | } | |
372 | ||
373 | void tlb_remove_table(struct mmu_gather *tlb, void *table) | |
374 | { | |
375 | struct mmu_table_batch **batch = &tlb->batch; | |
376 | ||
26723911 PZ |
377 | /* |
378 | * When there's less then two users of this mm there cannot be a | |
379 | * concurrent page-table walk. | |
380 | */ | |
381 | if (atomic_read(&tlb->mm->mm_users) < 2) { | |
382 | __tlb_remove_table(table); | |
383 | return; | |
384 | } | |
385 | ||
386 | if (*batch == NULL) { | |
387 | *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); | |
388 | if (*batch == NULL) { | |
389 | tlb_remove_table_one(table); | |
390 | return; | |
391 | } | |
392 | (*batch)->nr = 0; | |
393 | } | |
394 | (*batch)->tables[(*batch)->nr++] = table; | |
395 | if ((*batch)->nr == MAX_TABLE_BATCH) | |
396 | tlb_table_flush(tlb); | |
397 | } | |
398 | ||
9547d01b | 399 | #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ |
26723911 | 400 | |
1da177e4 LT |
401 | /* |
402 | * Note: this doesn't free the actual pages themselves. That | |
403 | * has been handled earlier when unmapping all the memory regions. | |
404 | */ | |
9e1b32ca BH |
405 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
406 | unsigned long addr) | |
1da177e4 | 407 | { |
2f569afd | 408 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 409 | pmd_clear(pmd); |
9e1b32ca | 410 | pte_free_tlb(tlb, token, addr); |
e1f56c89 | 411 | atomic_long_dec(&tlb->mm->nr_ptes); |
1da177e4 LT |
412 | } |
413 | ||
e0da382c HD |
414 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
415 | unsigned long addr, unsigned long end, | |
416 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
417 | { |
418 | pmd_t *pmd; | |
419 | unsigned long next; | |
e0da382c | 420 | unsigned long start; |
1da177e4 | 421 | |
e0da382c | 422 | start = addr; |
1da177e4 | 423 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
424 | do { |
425 | next = pmd_addr_end(addr, end); | |
426 | if (pmd_none_or_clear_bad(pmd)) | |
427 | continue; | |
9e1b32ca | 428 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
429 | } while (pmd++, addr = next, addr != end); |
430 | ||
e0da382c HD |
431 | start &= PUD_MASK; |
432 | if (start < floor) | |
433 | return; | |
434 | if (ceiling) { | |
435 | ceiling &= PUD_MASK; | |
436 | if (!ceiling) | |
437 | return; | |
1da177e4 | 438 | } |
e0da382c HD |
439 | if (end - 1 > ceiling - 1) |
440 | return; | |
441 | ||
442 | pmd = pmd_offset(pud, start); | |
443 | pud_clear(pud); | |
9e1b32ca | 444 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 445 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
446 | } |
447 | ||
c2febafc | 448 | static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, |
e0da382c HD |
449 | unsigned long addr, unsigned long end, |
450 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
451 | { |
452 | pud_t *pud; | |
453 | unsigned long next; | |
e0da382c | 454 | unsigned long start; |
1da177e4 | 455 | |
e0da382c | 456 | start = addr; |
c2febafc | 457 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
458 | do { |
459 | next = pud_addr_end(addr, end); | |
460 | if (pud_none_or_clear_bad(pud)) | |
461 | continue; | |
e0da382c | 462 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
463 | } while (pud++, addr = next, addr != end); |
464 | ||
c2febafc KS |
465 | start &= P4D_MASK; |
466 | if (start < floor) | |
467 | return; | |
468 | if (ceiling) { | |
469 | ceiling &= P4D_MASK; | |
470 | if (!ceiling) | |
471 | return; | |
472 | } | |
473 | if (end - 1 > ceiling - 1) | |
474 | return; | |
475 | ||
476 | pud = pud_offset(p4d, start); | |
477 | p4d_clear(p4d); | |
478 | pud_free_tlb(tlb, pud, start); | |
479 | } | |
480 | ||
481 | static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, | |
482 | unsigned long addr, unsigned long end, | |
483 | unsigned long floor, unsigned long ceiling) | |
484 | { | |
485 | p4d_t *p4d; | |
486 | unsigned long next; | |
487 | unsigned long start; | |
488 | ||
489 | start = addr; | |
490 | p4d = p4d_offset(pgd, addr); | |
491 | do { | |
492 | next = p4d_addr_end(addr, end); | |
493 | if (p4d_none_or_clear_bad(p4d)) | |
494 | continue; | |
495 | free_pud_range(tlb, p4d, addr, next, floor, ceiling); | |
496 | } while (p4d++, addr = next, addr != end); | |
497 | ||
e0da382c HD |
498 | start &= PGDIR_MASK; |
499 | if (start < floor) | |
500 | return; | |
501 | if (ceiling) { | |
502 | ceiling &= PGDIR_MASK; | |
503 | if (!ceiling) | |
504 | return; | |
1da177e4 | 505 | } |
e0da382c HD |
506 | if (end - 1 > ceiling - 1) |
507 | return; | |
508 | ||
c2febafc | 509 | p4d = p4d_offset(pgd, start); |
e0da382c | 510 | pgd_clear(pgd); |
c2febafc | 511 | p4d_free_tlb(tlb, p4d, start); |
1da177e4 LT |
512 | } |
513 | ||
514 | /* | |
e0da382c | 515 | * This function frees user-level page tables of a process. |
1da177e4 | 516 | */ |
42b77728 | 517 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
518 | unsigned long addr, unsigned long end, |
519 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
520 | { |
521 | pgd_t *pgd; | |
522 | unsigned long next; | |
e0da382c HD |
523 | |
524 | /* | |
525 | * The next few lines have given us lots of grief... | |
526 | * | |
527 | * Why are we testing PMD* at this top level? Because often | |
528 | * there will be no work to do at all, and we'd prefer not to | |
529 | * go all the way down to the bottom just to discover that. | |
530 | * | |
531 | * Why all these "- 1"s? Because 0 represents both the bottom | |
532 | * of the address space and the top of it (using -1 for the | |
533 | * top wouldn't help much: the masks would do the wrong thing). | |
534 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
535 | * the address space, but end 0 and ceiling 0 refer to the top | |
536 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
537 | * that end 0 case should be mythical). | |
538 | * | |
539 | * Wherever addr is brought up or ceiling brought down, we must | |
540 | * be careful to reject "the opposite 0" before it confuses the | |
541 | * subsequent tests. But what about where end is brought down | |
542 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
543 | * | |
544 | * Whereas we round start (addr) and ceiling down, by different | |
545 | * masks at different levels, in order to test whether a table | |
546 | * now has no other vmas using it, so can be freed, we don't | |
547 | * bother to round floor or end up - the tests don't need that. | |
548 | */ | |
1da177e4 | 549 | |
e0da382c HD |
550 | addr &= PMD_MASK; |
551 | if (addr < floor) { | |
552 | addr += PMD_SIZE; | |
553 | if (!addr) | |
554 | return; | |
555 | } | |
556 | if (ceiling) { | |
557 | ceiling &= PMD_MASK; | |
558 | if (!ceiling) | |
559 | return; | |
560 | } | |
561 | if (end - 1 > ceiling - 1) | |
562 | end -= PMD_SIZE; | |
563 | if (addr > end - 1) | |
564 | return; | |
07e32661 AK |
565 | /* |
566 | * We add page table cache pages with PAGE_SIZE, | |
567 | * (see pte_free_tlb()), flush the tlb if we need | |
568 | */ | |
569 | tlb_remove_check_page_size_change(tlb, PAGE_SIZE); | |
42b77728 | 570 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
571 | do { |
572 | next = pgd_addr_end(addr, end); | |
573 | if (pgd_none_or_clear_bad(pgd)) | |
574 | continue; | |
c2febafc | 575 | free_p4d_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 576 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
577 | } |
578 | ||
42b77728 | 579 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 580 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
581 | { |
582 | while (vma) { | |
583 | struct vm_area_struct *next = vma->vm_next; | |
584 | unsigned long addr = vma->vm_start; | |
585 | ||
8f4f8c16 | 586 | /* |
25d9e2d1 | 587 | * Hide vma from rmap and truncate_pagecache before freeing |
588 | * pgtables | |
8f4f8c16 | 589 | */ |
5beb4930 | 590 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
591 | unlink_file_vma(vma); |
592 | ||
9da61aef | 593 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 594 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
166f61b9 | 595 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 HD |
596 | } else { |
597 | /* | |
598 | * Optimization: gather nearby vmas into one call down | |
599 | */ | |
600 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 601 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
602 | vma = next; |
603 | next = vma->vm_next; | |
5beb4930 | 604 | unlink_anon_vmas(vma); |
8f4f8c16 | 605 | unlink_file_vma(vma); |
3bf5ee95 HD |
606 | } |
607 | free_pgd_range(tlb, addr, vma->vm_end, | |
166f61b9 | 608 | floor, next ? next->vm_start : ceiling); |
3bf5ee95 | 609 | } |
e0da382c HD |
610 | vma = next; |
611 | } | |
1da177e4 LT |
612 | } |
613 | ||
3ed3a4f0 | 614 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 615 | { |
c4088ebd | 616 | spinlock_t *ptl; |
2f569afd | 617 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
618 | if (!new) |
619 | return -ENOMEM; | |
620 | ||
362a61ad NP |
621 | /* |
622 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
623 | * visible before the pte is made visible to other CPUs by being | |
624 | * put into page tables. | |
625 | * | |
626 | * The other side of the story is the pointer chasing in the page | |
627 | * table walking code (when walking the page table without locking; | |
628 | * ie. most of the time). Fortunately, these data accesses consist | |
629 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
630 | * being the notable exception) will already guarantee loads are | |
631 | * seen in-order. See the alpha page table accessors for the | |
632 | * smp_read_barrier_depends() barriers in page table walking code. | |
633 | */ | |
634 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
635 | ||
c4088ebd | 636 | ptl = pmd_lock(mm, pmd); |
8ac1f832 | 637 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
e1f56c89 | 638 | atomic_long_inc(&mm->nr_ptes); |
1da177e4 | 639 | pmd_populate(mm, pmd, new); |
2f569afd | 640 | new = NULL; |
4b471e88 | 641 | } |
c4088ebd | 642 | spin_unlock(ptl); |
2f569afd MS |
643 | if (new) |
644 | pte_free(mm, new); | |
1bb3630e | 645 | return 0; |
1da177e4 LT |
646 | } |
647 | ||
1bb3630e | 648 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 649 | { |
1bb3630e HD |
650 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
651 | if (!new) | |
652 | return -ENOMEM; | |
653 | ||
362a61ad NP |
654 | smp_wmb(); /* See comment in __pte_alloc */ |
655 | ||
1bb3630e | 656 | spin_lock(&init_mm.page_table_lock); |
8ac1f832 | 657 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
1bb3630e | 658 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 659 | new = NULL; |
4b471e88 | 660 | } |
1bb3630e | 661 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
662 | if (new) |
663 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 664 | return 0; |
1da177e4 LT |
665 | } |
666 | ||
d559db08 KH |
667 | static inline void init_rss_vec(int *rss) |
668 | { | |
669 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
670 | } | |
671 | ||
672 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 673 | { |
d559db08 KH |
674 | int i; |
675 | ||
34e55232 | 676 | if (current->mm == mm) |
05af2e10 | 677 | sync_mm_rss(mm); |
d559db08 KH |
678 | for (i = 0; i < NR_MM_COUNTERS; i++) |
679 | if (rss[i]) | |
680 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
681 | } |
682 | ||
b5810039 | 683 | /* |
6aab341e LT |
684 | * This function is called to print an error when a bad pte |
685 | * is found. For example, we might have a PFN-mapped pte in | |
686 | * a region that doesn't allow it. | |
b5810039 NP |
687 | * |
688 | * The calling function must still handle the error. | |
689 | */ | |
3dc14741 HD |
690 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
691 | pte_t pte, struct page *page) | |
b5810039 | 692 | { |
3dc14741 | 693 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
c2febafc KS |
694 | p4d_t *p4d = p4d_offset(pgd, addr); |
695 | pud_t *pud = pud_offset(p4d, addr); | |
3dc14741 HD |
696 | pmd_t *pmd = pmd_offset(pud, addr); |
697 | struct address_space *mapping; | |
698 | pgoff_t index; | |
d936cf9b HD |
699 | static unsigned long resume; |
700 | static unsigned long nr_shown; | |
701 | static unsigned long nr_unshown; | |
702 | ||
703 | /* | |
704 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
705 | * or allow a steady drip of one report per second. | |
706 | */ | |
707 | if (nr_shown == 60) { | |
708 | if (time_before(jiffies, resume)) { | |
709 | nr_unshown++; | |
710 | return; | |
711 | } | |
712 | if (nr_unshown) { | |
1170532b JP |
713 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
714 | nr_unshown); | |
d936cf9b HD |
715 | nr_unshown = 0; |
716 | } | |
717 | nr_shown = 0; | |
718 | } | |
719 | if (nr_shown++ == 0) | |
720 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
721 | |
722 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
723 | index = linear_page_index(vma, addr); | |
724 | ||
1170532b JP |
725 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
726 | current->comm, | |
727 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 728 | if (page) |
f0b791a3 | 729 | dump_page(page, "bad pte"); |
1170532b JP |
730 | pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
731 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
3dc14741 HD |
732 | /* |
733 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | |
734 | */ | |
2682582a KK |
735 | pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", |
736 | vma->vm_file, | |
737 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
738 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
739 | mapping ? mapping->a_ops->readpage : NULL); | |
b5810039 | 740 | dump_stack(); |
373d4d09 | 741 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
742 | } |
743 | ||
ee498ed7 | 744 | /* |
7e675137 | 745 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 746 | * |
7e675137 NP |
747 | * "Special" mappings do not wish to be associated with a "struct page" (either |
748 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
749 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 750 | * |
7e675137 NP |
751 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
752 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
753 | * may not have a spare pte bit, which requires a more complicated scheme, | |
754 | * described below. | |
755 | * | |
756 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
757 | * special mapping (even if there are underlying and valid "struct pages"). | |
758 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 759 | * |
b379d790 JH |
760 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
761 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
762 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
763 | * mapping will always honor the rule | |
6aab341e LT |
764 | * |
765 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
766 | * | |
7e675137 NP |
767 | * And for normal mappings this is false. |
768 | * | |
769 | * This restricts such mappings to be a linear translation from virtual address | |
770 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
771 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
772 | * special (because none can have been COWed). | |
b379d790 | 773 | * |
b379d790 | 774 | * |
7e675137 | 775 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
776 | * |
777 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
778 | * page" backing, however the difference is that _all_ pages with a struct | |
779 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
780 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
781 | * (which can be slower and simply not an option for some PFNMAP users). The | |
782 | * advantage is that we don't have to follow the strict linearity rule of | |
783 | * PFNMAP mappings in order to support COWable mappings. | |
784 | * | |
ee498ed7 | 785 | */ |
7e675137 NP |
786 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
787 | # define HAVE_PTE_SPECIAL 1 | |
788 | #else | |
789 | # define HAVE_PTE_SPECIAL 0 | |
790 | #endif | |
791 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
792 | pte_t pte) | |
ee498ed7 | 793 | { |
22b31eec | 794 | unsigned long pfn = pte_pfn(pte); |
7e675137 NP |
795 | |
796 | if (HAVE_PTE_SPECIAL) { | |
b38af472 | 797 | if (likely(!pte_special(pte))) |
22b31eec | 798 | goto check_pfn; |
667a0a06 DV |
799 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
800 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
801 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
802 | return NULL; | |
62eede62 | 803 | if (!is_zero_pfn(pfn)) |
22b31eec | 804 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
805 | return NULL; |
806 | } | |
807 | ||
808 | /* !HAVE_PTE_SPECIAL case follows: */ | |
809 | ||
b379d790 JH |
810 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
811 | if (vma->vm_flags & VM_MIXEDMAP) { | |
812 | if (!pfn_valid(pfn)) | |
813 | return NULL; | |
814 | goto out; | |
815 | } else { | |
7e675137 NP |
816 | unsigned long off; |
817 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
818 | if (pfn == vma->vm_pgoff + off) |
819 | return NULL; | |
820 | if (!is_cow_mapping(vma->vm_flags)) | |
821 | return NULL; | |
822 | } | |
6aab341e LT |
823 | } |
824 | ||
b38af472 HD |
825 | if (is_zero_pfn(pfn)) |
826 | return NULL; | |
22b31eec HD |
827 | check_pfn: |
828 | if (unlikely(pfn > highest_memmap_pfn)) { | |
829 | print_bad_pte(vma, addr, pte, NULL); | |
830 | return NULL; | |
831 | } | |
6aab341e LT |
832 | |
833 | /* | |
7e675137 | 834 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 835 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 836 | */ |
b379d790 | 837 | out: |
6aab341e | 838 | return pfn_to_page(pfn); |
ee498ed7 HD |
839 | } |
840 | ||
28093f9f GS |
841 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
842 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
843 | pmd_t pmd) | |
844 | { | |
845 | unsigned long pfn = pmd_pfn(pmd); | |
846 | ||
847 | /* | |
848 | * There is no pmd_special() but there may be special pmds, e.g. | |
849 | * in a direct-access (dax) mapping, so let's just replicate the | |
850 | * !HAVE_PTE_SPECIAL case from vm_normal_page() here. | |
851 | */ | |
852 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
853 | if (vma->vm_flags & VM_MIXEDMAP) { | |
854 | if (!pfn_valid(pfn)) | |
855 | return NULL; | |
856 | goto out; | |
857 | } else { | |
858 | unsigned long off; | |
859 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
860 | if (pfn == vma->vm_pgoff + off) | |
861 | return NULL; | |
862 | if (!is_cow_mapping(vma->vm_flags)) | |
863 | return NULL; | |
864 | } | |
865 | } | |
866 | ||
867 | if (is_zero_pfn(pfn)) | |
868 | return NULL; | |
869 | if (unlikely(pfn > highest_memmap_pfn)) | |
870 | return NULL; | |
871 | ||
872 | /* | |
873 | * NOTE! We still have PageReserved() pages in the page tables. | |
874 | * eg. VDSO mappings can cause them to exist. | |
875 | */ | |
876 | out: | |
877 | return pfn_to_page(pfn); | |
878 | } | |
879 | #endif | |
880 | ||
1da177e4 LT |
881 | /* |
882 | * copy one vm_area from one task to the other. Assumes the page tables | |
883 | * already present in the new task to be cleared in the whole range | |
884 | * covered by this vma. | |
1da177e4 LT |
885 | */ |
886 | ||
570a335b | 887 | static inline unsigned long |
1da177e4 | 888 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 889 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 890 | unsigned long addr, int *rss) |
1da177e4 | 891 | { |
b5810039 | 892 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
893 | pte_t pte = *src_pte; |
894 | struct page *page; | |
1da177e4 LT |
895 | |
896 | /* pte contains position in swap or file, so copy. */ | |
897 | if (unlikely(!pte_present(pte))) { | |
0661a336 KS |
898 | swp_entry_t entry = pte_to_swp_entry(pte); |
899 | ||
900 | if (likely(!non_swap_entry(entry))) { | |
901 | if (swap_duplicate(entry) < 0) | |
902 | return entry.val; | |
903 | ||
904 | /* make sure dst_mm is on swapoff's mmlist. */ | |
905 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
906 | spin_lock(&mmlist_lock); | |
907 | if (list_empty(&dst_mm->mmlist)) | |
908 | list_add(&dst_mm->mmlist, | |
909 | &src_mm->mmlist); | |
910 | spin_unlock(&mmlist_lock); | |
911 | } | |
912 | rss[MM_SWAPENTS]++; | |
913 | } else if (is_migration_entry(entry)) { | |
914 | page = migration_entry_to_page(entry); | |
915 | ||
eca56ff9 | 916 | rss[mm_counter(page)]++; |
0661a336 KS |
917 | |
918 | if (is_write_migration_entry(entry) && | |
919 | is_cow_mapping(vm_flags)) { | |
920 | /* | |
921 | * COW mappings require pages in both | |
922 | * parent and child to be set to read. | |
923 | */ | |
924 | make_migration_entry_read(&entry); | |
925 | pte = swp_entry_to_pte(entry); | |
926 | if (pte_swp_soft_dirty(*src_pte)) | |
927 | pte = pte_swp_mksoft_dirty(pte); | |
928 | set_pte_at(src_mm, addr, src_pte, pte); | |
0697212a | 929 | } |
1da177e4 | 930 | } |
ae859762 | 931 | goto out_set_pte; |
1da177e4 LT |
932 | } |
933 | ||
1da177e4 LT |
934 | /* |
935 | * If it's a COW mapping, write protect it both | |
936 | * in the parent and the child | |
937 | */ | |
67121172 | 938 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 939 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 940 | pte = pte_wrprotect(pte); |
1da177e4 LT |
941 | } |
942 | ||
943 | /* | |
944 | * If it's a shared mapping, mark it clean in | |
945 | * the child | |
946 | */ | |
947 | if (vm_flags & VM_SHARED) | |
948 | pte = pte_mkclean(pte); | |
949 | pte = pte_mkold(pte); | |
6aab341e LT |
950 | |
951 | page = vm_normal_page(vma, addr, pte); | |
952 | if (page) { | |
953 | get_page(page); | |
53f9263b | 954 | page_dup_rmap(page, false); |
eca56ff9 | 955 | rss[mm_counter(page)]++; |
6aab341e | 956 | } |
ae859762 HD |
957 | |
958 | out_set_pte: | |
959 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 960 | return 0; |
1da177e4 LT |
961 | } |
962 | ||
21bda264 | 963 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
71e3aac0 AA |
964 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
965 | unsigned long addr, unsigned long end) | |
1da177e4 | 966 | { |
c36987e2 | 967 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 968 | pte_t *src_pte, *dst_pte; |
c74df32c | 969 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 970 | int progress = 0; |
d559db08 | 971 | int rss[NR_MM_COUNTERS]; |
570a335b | 972 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
973 | |
974 | again: | |
d559db08 KH |
975 | init_rss_vec(rss); |
976 | ||
c74df32c | 977 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
978 | if (!dst_pte) |
979 | return -ENOMEM; | |
ece0e2b6 | 980 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 981 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 982 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
983 | orig_src_pte = src_pte; |
984 | orig_dst_pte = dst_pte; | |
6606c3e0 | 985 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 986 | |
1da177e4 LT |
987 | do { |
988 | /* | |
989 | * We are holding two locks at this point - either of them | |
990 | * could generate latencies in another task on another CPU. | |
991 | */ | |
e040f218 HD |
992 | if (progress >= 32) { |
993 | progress = 0; | |
994 | if (need_resched() || | |
95c354fe | 995 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
996 | break; |
997 | } | |
1da177e4 LT |
998 | if (pte_none(*src_pte)) { |
999 | progress++; | |
1000 | continue; | |
1001 | } | |
570a335b HD |
1002 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
1003 | vma, addr, rss); | |
1004 | if (entry.val) | |
1005 | break; | |
1da177e4 LT |
1006 | progress += 8; |
1007 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 1008 | |
6606c3e0 | 1009 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1010 | spin_unlock(src_ptl); |
ece0e2b6 | 1011 | pte_unmap(orig_src_pte); |
d559db08 | 1012 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 1013 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 1014 | cond_resched(); |
570a335b HD |
1015 | |
1016 | if (entry.val) { | |
1017 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
1018 | return -ENOMEM; | |
1019 | progress = 0; | |
1020 | } | |
1da177e4 LT |
1021 | if (addr != end) |
1022 | goto again; | |
1023 | return 0; | |
1024 | } | |
1025 | ||
1026 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
1027 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
1028 | unsigned long addr, unsigned long end) | |
1029 | { | |
1030 | pmd_t *src_pmd, *dst_pmd; | |
1031 | unsigned long next; | |
1032 | ||
1033 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
1034 | if (!dst_pmd) | |
1035 | return -ENOMEM; | |
1036 | src_pmd = pmd_offset(src_pud, addr); | |
1037 | do { | |
1038 | next = pmd_addr_end(addr, end); | |
5c7fb56e | 1039 | if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { |
71e3aac0 | 1040 | int err; |
a00cc7d9 | 1041 | VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); |
71e3aac0 AA |
1042 | err = copy_huge_pmd(dst_mm, src_mm, |
1043 | dst_pmd, src_pmd, addr, vma); | |
1044 | if (err == -ENOMEM) | |
1045 | return -ENOMEM; | |
1046 | if (!err) | |
1047 | continue; | |
1048 | /* fall through */ | |
1049 | } | |
1da177e4 LT |
1050 | if (pmd_none_or_clear_bad(src_pmd)) |
1051 | continue; | |
1052 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
1053 | vma, addr, next)) | |
1054 | return -ENOMEM; | |
1055 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1056 | return 0; | |
1057 | } | |
1058 | ||
1059 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
c2febafc | 1060 | p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, |
1da177e4 LT |
1061 | unsigned long addr, unsigned long end) |
1062 | { | |
1063 | pud_t *src_pud, *dst_pud; | |
1064 | unsigned long next; | |
1065 | ||
c2febafc | 1066 | dst_pud = pud_alloc(dst_mm, dst_p4d, addr); |
1da177e4 LT |
1067 | if (!dst_pud) |
1068 | return -ENOMEM; | |
c2febafc | 1069 | src_pud = pud_offset(src_p4d, addr); |
1da177e4 LT |
1070 | do { |
1071 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1072 | if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { |
1073 | int err; | |
1074 | ||
1075 | VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); | |
1076 | err = copy_huge_pud(dst_mm, src_mm, | |
1077 | dst_pud, src_pud, addr, vma); | |
1078 | if (err == -ENOMEM) | |
1079 | return -ENOMEM; | |
1080 | if (!err) | |
1081 | continue; | |
1082 | /* fall through */ | |
1083 | } | |
1da177e4 LT |
1084 | if (pud_none_or_clear_bad(src_pud)) |
1085 | continue; | |
1086 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
1087 | vma, addr, next)) | |
1088 | return -ENOMEM; | |
1089 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1090 | return 0; | |
1091 | } | |
1092 | ||
c2febafc KS |
1093 | static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
1094 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
1095 | unsigned long addr, unsigned long end) | |
1096 | { | |
1097 | p4d_t *src_p4d, *dst_p4d; | |
1098 | unsigned long next; | |
1099 | ||
1100 | dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); | |
1101 | if (!dst_p4d) | |
1102 | return -ENOMEM; | |
1103 | src_p4d = p4d_offset(src_pgd, addr); | |
1104 | do { | |
1105 | next = p4d_addr_end(addr, end); | |
1106 | if (p4d_none_or_clear_bad(src_p4d)) | |
1107 | continue; | |
1108 | if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, | |
1109 | vma, addr, next)) | |
1110 | return -ENOMEM; | |
1111 | } while (dst_p4d++, src_p4d++, addr = next, addr != end); | |
1112 | return 0; | |
1113 | } | |
1114 | ||
1da177e4 LT |
1115 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
1116 | struct vm_area_struct *vma) | |
1117 | { | |
1118 | pgd_t *src_pgd, *dst_pgd; | |
1119 | unsigned long next; | |
1120 | unsigned long addr = vma->vm_start; | |
1121 | unsigned long end = vma->vm_end; | |
2ec74c3e SG |
1122 | unsigned long mmun_start; /* For mmu_notifiers */ |
1123 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1124 | bool is_cow; | |
cddb8a5c | 1125 | int ret; |
1da177e4 | 1126 | |
d992895b NP |
1127 | /* |
1128 | * Don't copy ptes where a page fault will fill them correctly. | |
1129 | * Fork becomes much lighter when there are big shared or private | |
1130 | * readonly mappings. The tradeoff is that copy_page_range is more | |
1131 | * efficient than faulting. | |
1132 | */ | |
0661a336 KS |
1133 | if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && |
1134 | !vma->anon_vma) | |
1135 | return 0; | |
d992895b | 1136 | |
1da177e4 LT |
1137 | if (is_vm_hugetlb_page(vma)) |
1138 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
1139 | ||
b3b9c293 | 1140 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1141 | /* |
1142 | * We do not free on error cases below as remove_vma | |
1143 | * gets called on error from higher level routine | |
1144 | */ | |
5180da41 | 1145 | ret = track_pfn_copy(vma); |
2ab64037 | 1146 | if (ret) |
1147 | return ret; | |
1148 | } | |
1149 | ||
cddb8a5c AA |
1150 | /* |
1151 | * We need to invalidate the secondary MMU mappings only when | |
1152 | * there could be a permission downgrade on the ptes of the | |
1153 | * parent mm. And a permission downgrade will only happen if | |
1154 | * is_cow_mapping() returns true. | |
1155 | */ | |
2ec74c3e SG |
1156 | is_cow = is_cow_mapping(vma->vm_flags); |
1157 | mmun_start = addr; | |
1158 | mmun_end = end; | |
1159 | if (is_cow) | |
1160 | mmu_notifier_invalidate_range_start(src_mm, mmun_start, | |
1161 | mmun_end); | |
cddb8a5c AA |
1162 | |
1163 | ret = 0; | |
1da177e4 LT |
1164 | dst_pgd = pgd_offset(dst_mm, addr); |
1165 | src_pgd = pgd_offset(src_mm, addr); | |
1166 | do { | |
1167 | next = pgd_addr_end(addr, end); | |
1168 | if (pgd_none_or_clear_bad(src_pgd)) | |
1169 | continue; | |
c2febafc | 1170 | if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, |
cddb8a5c AA |
1171 | vma, addr, next))) { |
1172 | ret = -ENOMEM; | |
1173 | break; | |
1174 | } | |
1da177e4 | 1175 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1176 | |
2ec74c3e SG |
1177 | if (is_cow) |
1178 | mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); | |
cddb8a5c | 1179 | return ret; |
1da177e4 LT |
1180 | } |
1181 | ||
51c6f666 | 1182 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1183 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1184 | unsigned long addr, unsigned long end, |
97a89413 | 1185 | struct zap_details *details) |
1da177e4 | 1186 | { |
b5810039 | 1187 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1188 | int force_flush = 0; |
d559db08 | 1189 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1190 | spinlock_t *ptl; |
5f1a1907 | 1191 | pte_t *start_pte; |
97a89413 | 1192 | pte_t *pte; |
8a5f14a2 | 1193 | swp_entry_t entry; |
d559db08 | 1194 | |
07e32661 | 1195 | tlb_remove_check_page_size_change(tlb, PAGE_SIZE); |
d16dfc55 | 1196 | again: |
e303297e | 1197 | init_rss_vec(rss); |
5f1a1907 SR |
1198 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1199 | pte = start_pte; | |
6606c3e0 | 1200 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1201 | do { |
1202 | pte_t ptent = *pte; | |
166f61b9 | 1203 | if (pte_none(ptent)) |
1da177e4 | 1204 | continue; |
6f5e6b9e | 1205 | |
1da177e4 | 1206 | if (pte_present(ptent)) { |
ee498ed7 | 1207 | struct page *page; |
51c6f666 | 1208 | |
6aab341e | 1209 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
1210 | if (unlikely(details) && page) { |
1211 | /* | |
1212 | * unmap_shared_mapping_pages() wants to | |
1213 | * invalidate cache without truncating: | |
1214 | * unmap shared but keep private pages. | |
1215 | */ | |
1216 | if (details->check_mapping && | |
800d8c63 | 1217 | details->check_mapping != page_rmapping(page)) |
1da177e4 | 1218 | continue; |
1da177e4 | 1219 | } |
b5810039 | 1220 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1221 | tlb->fullmm); |
1da177e4 LT |
1222 | tlb_remove_tlb_entry(tlb, pte, addr); |
1223 | if (unlikely(!page)) | |
1224 | continue; | |
eca56ff9 JM |
1225 | |
1226 | if (!PageAnon(page)) { | |
1cf35d47 LT |
1227 | if (pte_dirty(ptent)) { |
1228 | force_flush = 1; | |
6237bcd9 | 1229 | set_page_dirty(page); |
1cf35d47 | 1230 | } |
4917e5d0 | 1231 | if (pte_young(ptent) && |
64363aad | 1232 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1233 | mark_page_accessed(page); |
6237bcd9 | 1234 | } |
eca56ff9 | 1235 | rss[mm_counter(page)]--; |
d281ee61 | 1236 | page_remove_rmap(page, false); |
3dc14741 HD |
1237 | if (unlikely(page_mapcount(page) < 0)) |
1238 | print_bad_pte(vma, addr, ptent, page); | |
e9d55e15 | 1239 | if (unlikely(__tlb_remove_page(tlb, page))) { |
1cf35d47 | 1240 | force_flush = 1; |
ce9ec37b | 1241 | addr += PAGE_SIZE; |
d16dfc55 | 1242 | break; |
1cf35d47 | 1243 | } |
1da177e4 LT |
1244 | continue; |
1245 | } | |
3e8715fd KS |
1246 | /* If details->check_mapping, we leave swap entries. */ |
1247 | if (unlikely(details)) | |
1da177e4 | 1248 | continue; |
b084d435 | 1249 | |
8a5f14a2 KS |
1250 | entry = pte_to_swp_entry(ptent); |
1251 | if (!non_swap_entry(entry)) | |
1252 | rss[MM_SWAPENTS]--; | |
1253 | else if (is_migration_entry(entry)) { | |
1254 | struct page *page; | |
9f9f1acd | 1255 | |
8a5f14a2 | 1256 | page = migration_entry_to_page(entry); |
eca56ff9 | 1257 | rss[mm_counter(page)]--; |
b084d435 | 1258 | } |
8a5f14a2 KS |
1259 | if (unlikely(!free_swap_and_cache(entry))) |
1260 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 1261 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
97a89413 | 1262 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1263 | |
d559db08 | 1264 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1265 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1266 | |
1cf35d47 | 1267 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1268 | if (force_flush) |
1cf35d47 | 1269 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1270 | pte_unmap_unlock(start_pte, ptl); |
1271 | ||
1272 | /* | |
1273 | * If we forced a TLB flush (either due to running out of | |
1274 | * batch buffers or because we needed to flush dirty TLB | |
1275 | * entries before releasing the ptl), free the batched | |
1276 | * memory too. Restart if we didn't do everything. | |
1277 | */ | |
1278 | if (force_flush) { | |
1279 | force_flush = 0; | |
1280 | tlb_flush_mmu_free(tlb); | |
2b047252 | 1281 | if (addr != end) |
d16dfc55 PZ |
1282 | goto again; |
1283 | } | |
1284 | ||
51c6f666 | 1285 | return addr; |
1da177e4 LT |
1286 | } |
1287 | ||
51c6f666 | 1288 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1289 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1290 | unsigned long addr, unsigned long end, |
97a89413 | 1291 | struct zap_details *details) |
1da177e4 LT |
1292 | { |
1293 | pmd_t *pmd; | |
1294 | unsigned long next; | |
1295 | ||
1296 | pmd = pmd_offset(pud, addr); | |
1297 | do { | |
1298 | next = pmd_addr_end(addr, end); | |
5c7fb56e | 1299 | if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
1a5a9906 | 1300 | if (next - addr != HPAGE_PMD_SIZE) { |
68428398 HD |
1301 | VM_BUG_ON_VMA(vma_is_anonymous(vma) && |
1302 | !rwsem_is_locked(&tlb->mm->mmap_sem), vma); | |
fd60775a | 1303 | __split_huge_pmd(vma, pmd, addr, false, NULL); |
f21760b1 | 1304 | } else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1305 | goto next; |
71e3aac0 AA |
1306 | /* fall through */ |
1307 | } | |
1a5a9906 AA |
1308 | /* |
1309 | * Here there can be other concurrent MADV_DONTNEED or | |
1310 | * trans huge page faults running, and if the pmd is | |
1311 | * none or trans huge it can change under us. This is | |
1312 | * because MADV_DONTNEED holds the mmap_sem in read | |
1313 | * mode. | |
1314 | */ | |
1315 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1316 | goto next; | |
97a89413 | 1317 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1318 | next: |
97a89413 PZ |
1319 | cond_resched(); |
1320 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1321 | |
1322 | return addr; | |
1da177e4 LT |
1323 | } |
1324 | ||
51c6f666 | 1325 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
c2febafc | 1326 | struct vm_area_struct *vma, p4d_t *p4d, |
1da177e4 | 1327 | unsigned long addr, unsigned long end, |
97a89413 | 1328 | struct zap_details *details) |
1da177e4 LT |
1329 | { |
1330 | pud_t *pud; | |
1331 | unsigned long next; | |
1332 | ||
c2febafc | 1333 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
1334 | do { |
1335 | next = pud_addr_end(addr, end); | |
a00cc7d9 MW |
1336 | if (pud_trans_huge(*pud) || pud_devmap(*pud)) { |
1337 | if (next - addr != HPAGE_PUD_SIZE) { | |
1338 | VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); | |
1339 | split_huge_pud(vma, pud, addr); | |
1340 | } else if (zap_huge_pud(tlb, vma, pud, addr)) | |
1341 | goto next; | |
1342 | /* fall through */ | |
1343 | } | |
97a89413 | 1344 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1345 | continue; |
97a89413 | 1346 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
a00cc7d9 MW |
1347 | next: |
1348 | cond_resched(); | |
97a89413 | 1349 | } while (pud++, addr = next, addr != end); |
51c6f666 RH |
1350 | |
1351 | return addr; | |
1da177e4 LT |
1352 | } |
1353 | ||
c2febafc KS |
1354 | static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, |
1355 | struct vm_area_struct *vma, pgd_t *pgd, | |
1356 | unsigned long addr, unsigned long end, | |
1357 | struct zap_details *details) | |
1358 | { | |
1359 | p4d_t *p4d; | |
1360 | unsigned long next; | |
1361 | ||
1362 | p4d = p4d_offset(pgd, addr); | |
1363 | do { | |
1364 | next = p4d_addr_end(addr, end); | |
1365 | if (p4d_none_or_clear_bad(p4d)) | |
1366 | continue; | |
1367 | next = zap_pud_range(tlb, vma, p4d, addr, next, details); | |
1368 | } while (p4d++, addr = next, addr != end); | |
1369 | ||
1370 | return addr; | |
1371 | } | |
1372 | ||
aac45363 | 1373 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1374 | struct vm_area_struct *vma, |
1375 | unsigned long addr, unsigned long end, | |
1376 | struct zap_details *details) | |
1da177e4 LT |
1377 | { |
1378 | pgd_t *pgd; | |
1379 | unsigned long next; | |
1380 | ||
1da177e4 LT |
1381 | BUG_ON(addr >= end); |
1382 | tlb_start_vma(tlb, vma); | |
1383 | pgd = pgd_offset(vma->vm_mm, addr); | |
1384 | do { | |
1385 | next = pgd_addr_end(addr, end); | |
97a89413 | 1386 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1387 | continue; |
c2febafc | 1388 | next = zap_p4d_range(tlb, vma, pgd, addr, next, details); |
97a89413 | 1389 | } while (pgd++, addr = next, addr != end); |
1da177e4 LT |
1390 | tlb_end_vma(tlb, vma); |
1391 | } | |
51c6f666 | 1392 | |
f5cc4eef AV |
1393 | |
1394 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1395 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1396 | unsigned long end_addr, |
f5cc4eef AV |
1397 | struct zap_details *details) |
1398 | { | |
1399 | unsigned long start = max(vma->vm_start, start_addr); | |
1400 | unsigned long end; | |
1401 | ||
1402 | if (start >= vma->vm_end) | |
1403 | return; | |
1404 | end = min(vma->vm_end, end_addr); | |
1405 | if (end <= vma->vm_start) | |
1406 | return; | |
1407 | ||
cbc91f71 SD |
1408 | if (vma->vm_file) |
1409 | uprobe_munmap(vma, start, end); | |
1410 | ||
b3b9c293 | 1411 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1412 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1413 | |
1414 | if (start != end) { | |
1415 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1416 | /* | |
1417 | * It is undesirable to test vma->vm_file as it | |
1418 | * should be non-null for valid hugetlb area. | |
1419 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1420 | * cleanup path of mmap_region. When |
f5cc4eef | 1421 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1422 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1423 | * before calling this function to clean up. |
1424 | * Since no pte has actually been setup, it is | |
1425 | * safe to do nothing in this case. | |
1426 | */ | |
24669e58 | 1427 | if (vma->vm_file) { |
83cde9e8 | 1428 | i_mmap_lock_write(vma->vm_file->f_mapping); |
d833352a | 1429 | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); |
83cde9e8 | 1430 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1431 | } |
f5cc4eef AV |
1432 | } else |
1433 | unmap_page_range(tlb, vma, start, end, details); | |
1434 | } | |
1da177e4 LT |
1435 | } |
1436 | ||
1da177e4 LT |
1437 | /** |
1438 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1439 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1440 | * @vma: the starting vma |
1441 | * @start_addr: virtual address at which to start unmapping | |
1442 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1443 | * |
508034a3 | 1444 | * Unmap all pages in the vma list. |
1da177e4 | 1445 | * |
1da177e4 LT |
1446 | * Only addresses between `start' and `end' will be unmapped. |
1447 | * | |
1448 | * The VMA list must be sorted in ascending virtual address order. | |
1449 | * | |
1450 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1451 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1452 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1453 | * drops the lock and schedules. | |
1454 | */ | |
6e8bb019 | 1455 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1456 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1457 | unsigned long end_addr) |
1da177e4 | 1458 | { |
cddb8a5c | 1459 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1460 | |
cddb8a5c | 1461 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
f5cc4eef | 1462 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
4f74d2c8 | 1463 | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); |
cddb8a5c | 1464 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
1da177e4 LT |
1465 | } |
1466 | ||
1467 | /** | |
1468 | * zap_page_range - remove user pages in a given range | |
1469 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1470 | * @start: starting address of pages to zap |
1da177e4 | 1471 | * @size: number of bytes to zap |
f5cc4eef AV |
1472 | * |
1473 | * Caller must protect the VMA list | |
1da177e4 | 1474 | */ |
7e027b14 | 1475 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
ecf1385d | 1476 | unsigned long size) |
1da177e4 LT |
1477 | { |
1478 | struct mm_struct *mm = vma->vm_mm; | |
d16dfc55 | 1479 | struct mmu_gather tlb; |
7e027b14 | 1480 | unsigned long end = start + size; |
1da177e4 | 1481 | |
1da177e4 | 1482 | lru_add_drain(); |
2b047252 | 1483 | tlb_gather_mmu(&tlb, mm, start, end); |
365e9c87 | 1484 | update_hiwater_rss(mm); |
7e027b14 LT |
1485 | mmu_notifier_invalidate_range_start(mm, start, end); |
1486 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) | |
ecf1385d | 1487 | unmap_single_vma(&tlb, vma, start, end, NULL); |
7e027b14 LT |
1488 | mmu_notifier_invalidate_range_end(mm, start, end); |
1489 | tlb_finish_mmu(&tlb, start, end); | |
1da177e4 LT |
1490 | } |
1491 | ||
f5cc4eef AV |
1492 | /** |
1493 | * zap_page_range_single - remove user pages in a given range | |
1494 | * @vma: vm_area_struct holding the applicable pages | |
1495 | * @address: starting address of pages to zap | |
1496 | * @size: number of bytes to zap | |
8a5f14a2 | 1497 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1498 | * |
1499 | * The range must fit into one VMA. | |
1da177e4 | 1500 | */ |
f5cc4eef | 1501 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1502 | unsigned long size, struct zap_details *details) |
1503 | { | |
1504 | struct mm_struct *mm = vma->vm_mm; | |
d16dfc55 | 1505 | struct mmu_gather tlb; |
1da177e4 | 1506 | unsigned long end = address + size; |
1da177e4 | 1507 | |
1da177e4 | 1508 | lru_add_drain(); |
2b047252 | 1509 | tlb_gather_mmu(&tlb, mm, address, end); |
365e9c87 | 1510 | update_hiwater_rss(mm); |
f5cc4eef | 1511 | mmu_notifier_invalidate_range_start(mm, address, end); |
4f74d2c8 | 1512 | unmap_single_vma(&tlb, vma, address, end, details); |
f5cc4eef | 1513 | mmu_notifier_invalidate_range_end(mm, address, end); |
d16dfc55 | 1514 | tlb_finish_mmu(&tlb, address, end); |
1da177e4 LT |
1515 | } |
1516 | ||
c627f9cc JS |
1517 | /** |
1518 | * zap_vma_ptes - remove ptes mapping the vma | |
1519 | * @vma: vm_area_struct holding ptes to be zapped | |
1520 | * @address: starting address of pages to zap | |
1521 | * @size: number of bytes to zap | |
1522 | * | |
1523 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1524 | * | |
1525 | * The entire address range must be fully contained within the vma. | |
1526 | * | |
1527 | * Returns 0 if successful. | |
1528 | */ | |
1529 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1530 | unsigned long size) | |
1531 | { | |
1532 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1533 | !(vma->vm_flags & VM_PFNMAP)) | |
1534 | return -1; | |
f5cc4eef | 1535 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1536 | return 0; |
1537 | } | |
1538 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1539 | ||
25ca1d6c | 1540 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
920c7a5d | 1541 | spinlock_t **ptl) |
c9cfcddf | 1542 | { |
c2febafc KS |
1543 | pgd_t *pgd; |
1544 | p4d_t *p4d; | |
1545 | pud_t *pud; | |
1546 | pmd_t *pmd; | |
1547 | ||
1548 | pgd = pgd_offset(mm, addr); | |
1549 | p4d = p4d_alloc(mm, pgd, addr); | |
1550 | if (!p4d) | |
1551 | return NULL; | |
1552 | pud = pud_alloc(mm, p4d, addr); | |
1553 | if (!pud) | |
1554 | return NULL; | |
1555 | pmd = pmd_alloc(mm, pud, addr); | |
1556 | if (!pmd) | |
1557 | return NULL; | |
1558 | ||
1559 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
1560 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
c9cfcddf LT |
1561 | } |
1562 | ||
238f58d8 LT |
1563 | /* |
1564 | * This is the old fallback for page remapping. | |
1565 | * | |
1566 | * For historical reasons, it only allows reserved pages. Only | |
1567 | * old drivers should use this, and they needed to mark their | |
1568 | * pages reserved for the old functions anyway. | |
1569 | */ | |
423bad60 NP |
1570 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1571 | struct page *page, pgprot_t prot) | |
238f58d8 | 1572 | { |
423bad60 | 1573 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1574 | int retval; |
c9cfcddf | 1575 | pte_t *pte; |
8a9f3ccd BS |
1576 | spinlock_t *ptl; |
1577 | ||
238f58d8 | 1578 | retval = -EINVAL; |
a145dd41 | 1579 | if (PageAnon(page)) |
5b4e655e | 1580 | goto out; |
238f58d8 LT |
1581 | retval = -ENOMEM; |
1582 | flush_dcache_page(page); | |
c9cfcddf | 1583 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1584 | if (!pte) |
5b4e655e | 1585 | goto out; |
238f58d8 LT |
1586 | retval = -EBUSY; |
1587 | if (!pte_none(*pte)) | |
1588 | goto out_unlock; | |
1589 | ||
1590 | /* Ok, finally just insert the thing.. */ | |
1591 | get_page(page); | |
eca56ff9 | 1592 | inc_mm_counter_fast(mm, mm_counter_file(page)); |
dd78fedd | 1593 | page_add_file_rmap(page, false); |
238f58d8 LT |
1594 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); |
1595 | ||
1596 | retval = 0; | |
8a9f3ccd BS |
1597 | pte_unmap_unlock(pte, ptl); |
1598 | return retval; | |
238f58d8 LT |
1599 | out_unlock: |
1600 | pte_unmap_unlock(pte, ptl); | |
1601 | out: | |
1602 | return retval; | |
1603 | } | |
1604 | ||
bfa5bf6d REB |
1605 | /** |
1606 | * vm_insert_page - insert single page into user vma | |
1607 | * @vma: user vma to map to | |
1608 | * @addr: target user address of this page | |
1609 | * @page: source kernel page | |
1610 | * | |
a145dd41 LT |
1611 | * This allows drivers to insert individual pages they've allocated |
1612 | * into a user vma. | |
1613 | * | |
1614 | * The page has to be a nice clean _individual_ kernel allocation. | |
1615 | * If you allocate a compound page, you need to have marked it as | |
1616 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1617 | * (see split_page()). |
a145dd41 LT |
1618 | * |
1619 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1620 | * took an arbitrary page protection parameter. This doesn't allow | |
1621 | * that. Your vma protection will have to be set up correctly, which | |
1622 | * means that if you want a shared writable mapping, you'd better | |
1623 | * ask for a shared writable mapping! | |
1624 | * | |
1625 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1626 | * |
1627 | * Usually this function is called from f_op->mmap() handler | |
1628 | * under mm->mmap_sem write-lock, so it can change vma->vm_flags. | |
1629 | * Caller must set VM_MIXEDMAP on vma if it wants to call this | |
1630 | * function from other places, for example from page-fault handler. | |
a145dd41 | 1631 | */ |
423bad60 NP |
1632 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1633 | struct page *page) | |
a145dd41 LT |
1634 | { |
1635 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1636 | return -EFAULT; | |
1637 | if (!page_count(page)) | |
1638 | return -EINVAL; | |
4b6e1e37 KK |
1639 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
1640 | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | |
1641 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
1642 | vma->vm_flags |= VM_MIXEDMAP; | |
1643 | } | |
423bad60 | 1644 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1645 | } |
e3c3374f | 1646 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1647 | |
423bad60 | 1648 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
01c8f1c4 | 1649 | pfn_t pfn, pgprot_t prot) |
423bad60 NP |
1650 | { |
1651 | struct mm_struct *mm = vma->vm_mm; | |
1652 | int retval; | |
1653 | pte_t *pte, entry; | |
1654 | spinlock_t *ptl; | |
1655 | ||
1656 | retval = -ENOMEM; | |
1657 | pte = get_locked_pte(mm, addr, &ptl); | |
1658 | if (!pte) | |
1659 | goto out; | |
1660 | retval = -EBUSY; | |
1661 | if (!pte_none(*pte)) | |
1662 | goto out_unlock; | |
1663 | ||
1664 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
1665 | if (pfn_t_devmap(pfn)) |
1666 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
1667 | else | |
1668 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
423bad60 | 1669 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 1670 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 NP |
1671 | |
1672 | retval = 0; | |
1673 | out_unlock: | |
1674 | pte_unmap_unlock(pte, ptl); | |
1675 | out: | |
1676 | return retval; | |
1677 | } | |
1678 | ||
e0dc0d8f NP |
1679 | /** |
1680 | * vm_insert_pfn - insert single pfn into user vma | |
1681 | * @vma: user vma to map to | |
1682 | * @addr: target user address of this page | |
1683 | * @pfn: source kernel pfn | |
1684 | * | |
c462f179 | 1685 | * Similar to vm_insert_page, this allows drivers to insert individual pages |
e0dc0d8f NP |
1686 | * they've allocated into a user vma. Same comments apply. |
1687 | * | |
1688 | * This function should only be called from a vm_ops->fault handler, and | |
1689 | * in that case the handler should return NULL. | |
0d71d10a NP |
1690 | * |
1691 | * vma cannot be a COW mapping. | |
1692 | * | |
1693 | * As this is called only for pages that do not currently exist, we | |
1694 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1695 | */ |
1696 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1697 | unsigned long pfn) |
1745cbc5 AL |
1698 | { |
1699 | return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
1700 | } | |
1701 | EXPORT_SYMBOL(vm_insert_pfn); | |
1702 | ||
1703 | /** | |
1704 | * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
1705 | * @vma: user vma to map to | |
1706 | * @addr: target user address of this page | |
1707 | * @pfn: source kernel pfn | |
1708 | * @pgprot: pgprot flags for the inserted page | |
1709 | * | |
1710 | * This is exactly like vm_insert_pfn, except that it allows drivers to | |
1711 | * to override pgprot on a per-page basis. | |
1712 | * | |
1713 | * This only makes sense for IO mappings, and it makes no sense for | |
1714 | * cow mappings. In general, using multiple vmas is preferable; | |
1715 | * vm_insert_pfn_prot should only be used if using multiple VMAs is | |
1716 | * impractical. | |
1717 | */ | |
1718 | int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
1719 | unsigned long pfn, pgprot_t pgprot) | |
e0dc0d8f | 1720 | { |
2ab64037 | 1721 | int ret; |
7e675137 NP |
1722 | /* |
1723 | * Technically, architectures with pte_special can avoid all these | |
1724 | * restrictions (same for remap_pfn_range). However we would like | |
1725 | * consistency in testing and feature parity among all, so we should | |
1726 | * try to keep these invariants in place for everybody. | |
1727 | */ | |
b379d790 JH |
1728 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1729 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1730 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1731 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1732 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1733 | |
423bad60 NP |
1734 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1735 | return -EFAULT; | |
308a047c BP |
1736 | |
1737 | track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); | |
2ab64037 | 1738 | |
01c8f1c4 | 1739 | ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); |
2ab64037 | 1740 | |
2ab64037 | 1741 | return ret; |
423bad60 | 1742 | } |
1745cbc5 | 1743 | EXPORT_SYMBOL(vm_insert_pfn_prot); |
e0dc0d8f | 1744 | |
423bad60 | 1745 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
01c8f1c4 | 1746 | pfn_t pfn) |
423bad60 | 1747 | { |
87744ab3 DW |
1748 | pgprot_t pgprot = vma->vm_page_prot; |
1749 | ||
423bad60 | 1750 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); |
e0dc0d8f | 1751 | |
423bad60 NP |
1752 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1753 | return -EFAULT; | |
308a047c BP |
1754 | |
1755 | track_pfn_insert(vma, &pgprot, pfn); | |
e0dc0d8f | 1756 | |
423bad60 NP |
1757 | /* |
1758 | * If we don't have pte special, then we have to use the pfn_valid() | |
1759 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1760 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1761 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1762 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 1763 | */ |
03fc2da6 | 1764 | if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { |
423bad60 NP |
1765 | struct page *page; |
1766 | ||
03fc2da6 DW |
1767 | /* |
1768 | * At this point we are committed to insert_page() | |
1769 | * regardless of whether the caller specified flags that | |
1770 | * result in pfn_t_has_page() == false. | |
1771 | */ | |
1772 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
87744ab3 | 1773 | return insert_page(vma, addr, page, pgprot); |
423bad60 | 1774 | } |
87744ab3 | 1775 | return insert_pfn(vma, addr, pfn, pgprot); |
e0dc0d8f | 1776 | } |
423bad60 | 1777 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1778 | |
1da177e4 LT |
1779 | /* |
1780 | * maps a range of physical memory into the requested pages. the old | |
1781 | * mappings are removed. any references to nonexistent pages results | |
1782 | * in null mappings (currently treated as "copy-on-access") | |
1783 | */ | |
1784 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1785 | unsigned long addr, unsigned long end, | |
1786 | unsigned long pfn, pgprot_t prot) | |
1787 | { | |
1788 | pte_t *pte; | |
c74df32c | 1789 | spinlock_t *ptl; |
1da177e4 | 1790 | |
c74df32c | 1791 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1792 | if (!pte) |
1793 | return -ENOMEM; | |
6606c3e0 | 1794 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1795 | do { |
1796 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1797 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1798 | pfn++; |
1799 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1800 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1801 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1802 | return 0; |
1803 | } | |
1804 | ||
1805 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1806 | unsigned long addr, unsigned long end, | |
1807 | unsigned long pfn, pgprot_t prot) | |
1808 | { | |
1809 | pmd_t *pmd; | |
1810 | unsigned long next; | |
1811 | ||
1812 | pfn -= addr >> PAGE_SHIFT; | |
1813 | pmd = pmd_alloc(mm, pud, addr); | |
1814 | if (!pmd) | |
1815 | return -ENOMEM; | |
f66055ab | 1816 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
1817 | do { |
1818 | next = pmd_addr_end(addr, end); | |
1819 | if (remap_pte_range(mm, pmd, addr, next, | |
1820 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1821 | return -ENOMEM; | |
1822 | } while (pmd++, addr = next, addr != end); | |
1823 | return 0; | |
1824 | } | |
1825 | ||
c2febafc | 1826 | static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, |
1da177e4 LT |
1827 | unsigned long addr, unsigned long end, |
1828 | unsigned long pfn, pgprot_t prot) | |
1829 | { | |
1830 | pud_t *pud; | |
1831 | unsigned long next; | |
1832 | ||
1833 | pfn -= addr >> PAGE_SHIFT; | |
c2febafc | 1834 | pud = pud_alloc(mm, p4d, addr); |
1da177e4 LT |
1835 | if (!pud) |
1836 | return -ENOMEM; | |
1837 | do { | |
1838 | next = pud_addr_end(addr, end); | |
1839 | if (remap_pmd_range(mm, pud, addr, next, | |
1840 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1841 | return -ENOMEM; | |
1842 | } while (pud++, addr = next, addr != end); | |
1843 | return 0; | |
1844 | } | |
1845 | ||
c2febafc KS |
1846 | static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
1847 | unsigned long addr, unsigned long end, | |
1848 | unsigned long pfn, pgprot_t prot) | |
1849 | { | |
1850 | p4d_t *p4d; | |
1851 | unsigned long next; | |
1852 | ||
1853 | pfn -= addr >> PAGE_SHIFT; | |
1854 | p4d = p4d_alloc(mm, pgd, addr); | |
1855 | if (!p4d) | |
1856 | return -ENOMEM; | |
1857 | do { | |
1858 | next = p4d_addr_end(addr, end); | |
1859 | if (remap_pud_range(mm, p4d, addr, next, | |
1860 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1861 | return -ENOMEM; | |
1862 | } while (p4d++, addr = next, addr != end); | |
1863 | return 0; | |
1864 | } | |
1865 | ||
bfa5bf6d REB |
1866 | /** |
1867 | * remap_pfn_range - remap kernel memory to userspace | |
1868 | * @vma: user vma to map to | |
1869 | * @addr: target user address to start at | |
1870 | * @pfn: physical address of kernel memory | |
1871 | * @size: size of map area | |
1872 | * @prot: page protection flags for this mapping | |
1873 | * | |
1874 | * Note: this is only safe if the mm semaphore is held when called. | |
1875 | */ | |
1da177e4 LT |
1876 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1877 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1878 | { | |
1879 | pgd_t *pgd; | |
1880 | unsigned long next; | |
2d15cab8 | 1881 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 | 1882 | struct mm_struct *mm = vma->vm_mm; |
d5957d2f | 1883 | unsigned long remap_pfn = pfn; |
1da177e4 LT |
1884 | int err; |
1885 | ||
1886 | /* | |
1887 | * Physically remapped pages are special. Tell the | |
1888 | * rest of the world about it: | |
1889 | * VM_IO tells people not to look at these pages | |
1890 | * (accesses can have side effects). | |
6aab341e LT |
1891 | * VM_PFNMAP tells the core MM that the base pages are just |
1892 | * raw PFN mappings, and do not have a "struct page" associated | |
1893 | * with them. | |
314e51b9 KK |
1894 | * VM_DONTEXPAND |
1895 | * Disable vma merging and expanding with mremap(). | |
1896 | * VM_DONTDUMP | |
1897 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
1898 | * |
1899 | * There's a horrible special case to handle copy-on-write | |
1900 | * behaviour that some programs depend on. We mark the "original" | |
1901 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 1902 | * See vm_normal_page() for details. |
1da177e4 | 1903 | */ |
b3b9c293 KK |
1904 | if (is_cow_mapping(vma->vm_flags)) { |
1905 | if (addr != vma->vm_start || end != vma->vm_end) | |
1906 | return -EINVAL; | |
fb155c16 | 1907 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
1908 | } |
1909 | ||
d5957d2f | 1910 | err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); |
b3b9c293 | 1911 | if (err) |
3c8bb73a | 1912 | return -EINVAL; |
fb155c16 | 1913 | |
314e51b9 | 1914 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
1915 | |
1916 | BUG_ON(addr >= end); | |
1917 | pfn -= addr >> PAGE_SHIFT; | |
1918 | pgd = pgd_offset(mm, addr); | |
1919 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1920 | do { |
1921 | next = pgd_addr_end(addr, end); | |
c2febafc | 1922 | err = remap_p4d_range(mm, pgd, addr, next, |
1da177e4 LT |
1923 | pfn + (addr >> PAGE_SHIFT), prot); |
1924 | if (err) | |
1925 | break; | |
1926 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1927 | |
1928 | if (err) | |
d5957d2f | 1929 | untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); |
2ab64037 | 1930 | |
1da177e4 LT |
1931 | return err; |
1932 | } | |
1933 | EXPORT_SYMBOL(remap_pfn_range); | |
1934 | ||
b4cbb197 LT |
1935 | /** |
1936 | * vm_iomap_memory - remap memory to userspace | |
1937 | * @vma: user vma to map to | |
1938 | * @start: start of area | |
1939 | * @len: size of area | |
1940 | * | |
1941 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
1942 | * driver just needs to give us the physical memory range to be mapped, | |
1943 | * we'll figure out the rest from the vma information. | |
1944 | * | |
1945 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
1946 | * whatever write-combining details or similar. | |
1947 | */ | |
1948 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
1949 | { | |
1950 | unsigned long vm_len, pfn, pages; | |
1951 | ||
1952 | /* Check that the physical memory area passed in looks valid */ | |
1953 | if (start + len < start) | |
1954 | return -EINVAL; | |
1955 | /* | |
1956 | * You *really* shouldn't map things that aren't page-aligned, | |
1957 | * but we've historically allowed it because IO memory might | |
1958 | * just have smaller alignment. | |
1959 | */ | |
1960 | len += start & ~PAGE_MASK; | |
1961 | pfn = start >> PAGE_SHIFT; | |
1962 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
1963 | if (pfn + pages < pfn) | |
1964 | return -EINVAL; | |
1965 | ||
1966 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
1967 | if (vma->vm_pgoff > pages) | |
1968 | return -EINVAL; | |
1969 | pfn += vma->vm_pgoff; | |
1970 | pages -= vma->vm_pgoff; | |
1971 | ||
1972 | /* Can we fit all of the mapping? */ | |
1973 | vm_len = vma->vm_end - vma->vm_start; | |
1974 | if (vm_len >> PAGE_SHIFT > pages) | |
1975 | return -EINVAL; | |
1976 | ||
1977 | /* Ok, let it rip */ | |
1978 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
1979 | } | |
1980 | EXPORT_SYMBOL(vm_iomap_memory); | |
1981 | ||
aee16b3c JF |
1982 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1983 | unsigned long addr, unsigned long end, | |
1984 | pte_fn_t fn, void *data) | |
1985 | { | |
1986 | pte_t *pte; | |
1987 | int err; | |
2f569afd | 1988 | pgtable_t token; |
94909914 | 1989 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1990 | |
1991 | pte = (mm == &init_mm) ? | |
1992 | pte_alloc_kernel(pmd, addr) : | |
1993 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1994 | if (!pte) | |
1995 | return -ENOMEM; | |
1996 | ||
1997 | BUG_ON(pmd_huge(*pmd)); | |
1998 | ||
38e0edb1 JF |
1999 | arch_enter_lazy_mmu_mode(); |
2000 | ||
2f569afd | 2001 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
2002 | |
2003 | do { | |
c36987e2 | 2004 | err = fn(pte++, token, addr, data); |
aee16b3c JF |
2005 | if (err) |
2006 | break; | |
c36987e2 | 2007 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 2008 | |
38e0edb1 JF |
2009 | arch_leave_lazy_mmu_mode(); |
2010 | ||
aee16b3c JF |
2011 | if (mm != &init_mm) |
2012 | pte_unmap_unlock(pte-1, ptl); | |
2013 | return err; | |
2014 | } | |
2015 | ||
2016 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
2017 | unsigned long addr, unsigned long end, | |
2018 | pte_fn_t fn, void *data) | |
2019 | { | |
2020 | pmd_t *pmd; | |
2021 | unsigned long next; | |
2022 | int err; | |
2023 | ||
ceb86879 AK |
2024 | BUG_ON(pud_huge(*pud)); |
2025 | ||
aee16b3c JF |
2026 | pmd = pmd_alloc(mm, pud, addr); |
2027 | if (!pmd) | |
2028 | return -ENOMEM; | |
2029 | do { | |
2030 | next = pmd_addr_end(addr, end); | |
2031 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
2032 | if (err) | |
2033 | break; | |
2034 | } while (pmd++, addr = next, addr != end); | |
2035 | return err; | |
2036 | } | |
2037 | ||
c2febafc | 2038 | static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, |
aee16b3c JF |
2039 | unsigned long addr, unsigned long end, |
2040 | pte_fn_t fn, void *data) | |
2041 | { | |
2042 | pud_t *pud; | |
2043 | unsigned long next; | |
2044 | int err; | |
2045 | ||
c2febafc | 2046 | pud = pud_alloc(mm, p4d, addr); |
aee16b3c JF |
2047 | if (!pud) |
2048 | return -ENOMEM; | |
2049 | do { | |
2050 | next = pud_addr_end(addr, end); | |
2051 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
2052 | if (err) | |
2053 | break; | |
2054 | } while (pud++, addr = next, addr != end); | |
2055 | return err; | |
2056 | } | |
2057 | ||
c2febafc KS |
2058 | static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, |
2059 | unsigned long addr, unsigned long end, | |
2060 | pte_fn_t fn, void *data) | |
2061 | { | |
2062 | p4d_t *p4d; | |
2063 | unsigned long next; | |
2064 | int err; | |
2065 | ||
2066 | p4d = p4d_alloc(mm, pgd, addr); | |
2067 | if (!p4d) | |
2068 | return -ENOMEM; | |
2069 | do { | |
2070 | next = p4d_addr_end(addr, end); | |
2071 | err = apply_to_pud_range(mm, p4d, addr, next, fn, data); | |
2072 | if (err) | |
2073 | break; | |
2074 | } while (p4d++, addr = next, addr != end); | |
2075 | return err; | |
2076 | } | |
2077 | ||
aee16b3c JF |
2078 | /* |
2079 | * Scan a region of virtual memory, filling in page tables as necessary | |
2080 | * and calling a provided function on each leaf page table. | |
2081 | */ | |
2082 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
2083 | unsigned long size, pte_fn_t fn, void *data) | |
2084 | { | |
2085 | pgd_t *pgd; | |
2086 | unsigned long next; | |
57250a5b | 2087 | unsigned long end = addr + size; |
aee16b3c JF |
2088 | int err; |
2089 | ||
9cb65bc3 MP |
2090 | if (WARN_ON(addr >= end)) |
2091 | return -EINVAL; | |
2092 | ||
aee16b3c JF |
2093 | pgd = pgd_offset(mm, addr); |
2094 | do { | |
2095 | next = pgd_addr_end(addr, end); | |
c2febafc | 2096 | err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); |
aee16b3c JF |
2097 | if (err) |
2098 | break; | |
2099 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 2100 | |
aee16b3c JF |
2101 | return err; |
2102 | } | |
2103 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
2104 | ||
8f4e2101 | 2105 | /* |
9b4bdd2f KS |
2106 | * handle_pte_fault chooses page fault handler according to an entry which was |
2107 | * read non-atomically. Before making any commitment, on those architectures | |
2108 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
2109 | * parts, do_swap_page must check under lock before unmapping the pte and | |
2110 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 2111 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 2112 | */ |
4c21e2f2 | 2113 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
2114 | pte_t *page_table, pte_t orig_pte) |
2115 | { | |
2116 | int same = 1; | |
2117 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
2118 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
2119 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
2120 | spin_lock(ptl); | |
8f4e2101 | 2121 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 2122 | spin_unlock(ptl); |
8f4e2101 HD |
2123 | } |
2124 | #endif | |
2125 | pte_unmap(page_table); | |
2126 | return same; | |
2127 | } | |
2128 | ||
9de455b2 | 2129 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e | 2130 | { |
0abdd7a8 DW |
2131 | debug_dma_assert_idle(src); |
2132 | ||
6aab341e LT |
2133 | /* |
2134 | * If the source page was a PFN mapping, we don't have | |
2135 | * a "struct page" for it. We do a best-effort copy by | |
2136 | * just copying from the original user address. If that | |
2137 | * fails, we just zero-fill it. Live with it. | |
2138 | */ | |
2139 | if (unlikely(!src)) { | |
9b04c5fe | 2140 | void *kaddr = kmap_atomic(dst); |
5d2a2dbb LT |
2141 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
2142 | ||
2143 | /* | |
2144 | * This really shouldn't fail, because the page is there | |
2145 | * in the page tables. But it might just be unreadable, | |
2146 | * in which case we just give up and fill the result with | |
2147 | * zeroes. | |
2148 | */ | |
2149 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
3ecb01df | 2150 | clear_page(kaddr); |
9b04c5fe | 2151 | kunmap_atomic(kaddr); |
c4ec7b0d | 2152 | flush_dcache_page(dst); |
0ed361de NP |
2153 | } else |
2154 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
2155 | } |
2156 | ||
c20cd45e MH |
2157 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2158 | { | |
2159 | struct file *vm_file = vma->vm_file; | |
2160 | ||
2161 | if (vm_file) | |
2162 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2163 | ||
2164 | /* | |
2165 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2166 | * a default GFP_KERNEL for them. | |
2167 | */ | |
2168 | return GFP_KERNEL; | |
2169 | } | |
2170 | ||
fb09a464 KS |
2171 | /* |
2172 | * Notify the address space that the page is about to become writable so that | |
2173 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2174 | * | |
2175 | * We do this without the lock held, so that it can sleep if it needs to. | |
2176 | */ | |
38b8cb7f | 2177 | static int do_page_mkwrite(struct vm_fault *vmf) |
fb09a464 | 2178 | { |
fb09a464 | 2179 | int ret; |
38b8cb7f JK |
2180 | struct page *page = vmf->page; |
2181 | unsigned int old_flags = vmf->flags; | |
fb09a464 | 2182 | |
38b8cb7f | 2183 | vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
fb09a464 | 2184 | |
11bac800 | 2185 | ret = vmf->vma->vm_ops->page_mkwrite(vmf); |
38b8cb7f JK |
2186 | /* Restore original flags so that caller is not surprised */ |
2187 | vmf->flags = old_flags; | |
fb09a464 KS |
2188 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) |
2189 | return ret; | |
2190 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2191 | lock_page(page); | |
2192 | if (!page->mapping) { | |
2193 | unlock_page(page); | |
2194 | return 0; /* retry */ | |
2195 | } | |
2196 | ret |= VM_FAULT_LOCKED; | |
2197 | } else | |
2198 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2199 | return ret; | |
2200 | } | |
2201 | ||
97ba0c2b JK |
2202 | /* |
2203 | * Handle dirtying of a page in shared file mapping on a write fault. | |
2204 | * | |
2205 | * The function expects the page to be locked and unlocks it. | |
2206 | */ | |
2207 | static void fault_dirty_shared_page(struct vm_area_struct *vma, | |
2208 | struct page *page) | |
2209 | { | |
2210 | struct address_space *mapping; | |
2211 | bool dirtied; | |
2212 | bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; | |
2213 | ||
2214 | dirtied = set_page_dirty(page); | |
2215 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2216 | /* | |
2217 | * Take a local copy of the address_space - page.mapping may be zeroed | |
2218 | * by truncate after unlock_page(). The address_space itself remains | |
2219 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
2220 | * release semantics to prevent the compiler from undoing this copying. | |
2221 | */ | |
2222 | mapping = page_rmapping(page); | |
2223 | unlock_page(page); | |
2224 | ||
2225 | if ((dirtied || page_mkwrite) && mapping) { | |
2226 | /* | |
2227 | * Some device drivers do not set page.mapping | |
2228 | * but still dirty their pages | |
2229 | */ | |
2230 | balance_dirty_pages_ratelimited(mapping); | |
2231 | } | |
2232 | ||
2233 | if (!page_mkwrite) | |
2234 | file_update_time(vma->vm_file); | |
2235 | } | |
2236 | ||
4e047f89 SR |
2237 | /* |
2238 | * Handle write page faults for pages that can be reused in the current vma | |
2239 | * | |
2240 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2241 | * or due to us being the last reference standing to the page. In either | |
2242 | * case, all we need to do here is to mark the page as writable and update | |
2243 | * any related book-keeping. | |
2244 | */ | |
997dd98d | 2245 | static inline void wp_page_reuse(struct vm_fault *vmf) |
82b0f8c3 | 2246 | __releases(vmf->ptl) |
4e047f89 | 2247 | { |
82b0f8c3 | 2248 | struct vm_area_struct *vma = vmf->vma; |
a41b70d6 | 2249 | struct page *page = vmf->page; |
4e047f89 SR |
2250 | pte_t entry; |
2251 | /* | |
2252 | * Clear the pages cpupid information as the existing | |
2253 | * information potentially belongs to a now completely | |
2254 | * unrelated process. | |
2255 | */ | |
2256 | if (page) | |
2257 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
2258 | ||
2994302b JK |
2259 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2260 | entry = pte_mkyoung(vmf->orig_pte); | |
4e047f89 | 2261 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
82b0f8c3 JK |
2262 | if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) |
2263 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2264 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
4e047f89 SR |
2265 | } |
2266 | ||
2f38ab2c SR |
2267 | /* |
2268 | * Handle the case of a page which we actually need to copy to a new page. | |
2269 | * | |
2270 | * Called with mmap_sem locked and the old page referenced, but | |
2271 | * without the ptl held. | |
2272 | * | |
2273 | * High level logic flow: | |
2274 | * | |
2275 | * - Allocate a page, copy the content of the old page to the new one. | |
2276 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
2277 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
2278 | * - If the pte is still the way we remember it, update the page table and all | |
2279 | * relevant references. This includes dropping the reference the page-table | |
2280 | * held to the old page, as well as updating the rmap. | |
2281 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
2282 | */ | |
a41b70d6 | 2283 | static int wp_page_copy(struct vm_fault *vmf) |
2f38ab2c | 2284 | { |
82b0f8c3 | 2285 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2286 | struct mm_struct *mm = vma->vm_mm; |
a41b70d6 | 2287 | struct page *old_page = vmf->page; |
2f38ab2c | 2288 | struct page *new_page = NULL; |
2f38ab2c SR |
2289 | pte_t entry; |
2290 | int page_copied = 0; | |
82b0f8c3 | 2291 | const unsigned long mmun_start = vmf->address & PAGE_MASK; |
bae473a4 | 2292 | const unsigned long mmun_end = mmun_start + PAGE_SIZE; |
2f38ab2c SR |
2293 | struct mem_cgroup *memcg; |
2294 | ||
2295 | if (unlikely(anon_vma_prepare(vma))) | |
2296 | goto oom; | |
2297 | ||
2994302b | 2298 | if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { |
82b0f8c3 JK |
2299 | new_page = alloc_zeroed_user_highpage_movable(vma, |
2300 | vmf->address); | |
2f38ab2c SR |
2301 | if (!new_page) |
2302 | goto oom; | |
2303 | } else { | |
bae473a4 | 2304 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, |
82b0f8c3 | 2305 | vmf->address); |
2f38ab2c SR |
2306 | if (!new_page) |
2307 | goto oom; | |
82b0f8c3 | 2308 | cow_user_page(new_page, old_page, vmf->address, vma); |
2f38ab2c | 2309 | } |
2f38ab2c | 2310 | |
f627c2f5 | 2311 | if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) |
2f38ab2c SR |
2312 | goto oom_free_new; |
2313 | ||
eb3c24f3 MG |
2314 | __SetPageUptodate(new_page); |
2315 | ||
2f38ab2c SR |
2316 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
2317 | ||
2318 | /* | |
2319 | * Re-check the pte - we dropped the lock | |
2320 | */ | |
82b0f8c3 | 2321 | vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); |
2994302b | 2322 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { |
2f38ab2c SR |
2323 | if (old_page) { |
2324 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
2325 | dec_mm_counter_fast(mm, |
2326 | mm_counter_file(old_page)); | |
2f38ab2c SR |
2327 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2328 | } | |
2329 | } else { | |
2330 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
2331 | } | |
2994302b | 2332 | flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); |
2f38ab2c SR |
2333 | entry = mk_pte(new_page, vma->vm_page_prot); |
2334 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2335 | /* | |
2336 | * Clear the pte entry and flush it first, before updating the | |
2337 | * pte with the new entry. This will avoid a race condition | |
2338 | * seen in the presence of one thread doing SMC and another | |
2339 | * thread doing COW. | |
2340 | */ | |
82b0f8c3 JK |
2341 | ptep_clear_flush_notify(vma, vmf->address, vmf->pte); |
2342 | page_add_new_anon_rmap(new_page, vma, vmf->address, false); | |
f627c2f5 | 2343 | mem_cgroup_commit_charge(new_page, memcg, false, false); |
2f38ab2c SR |
2344 | lru_cache_add_active_or_unevictable(new_page, vma); |
2345 | /* | |
2346 | * We call the notify macro here because, when using secondary | |
2347 | * mmu page tables (such as kvm shadow page tables), we want the | |
2348 | * new page to be mapped directly into the secondary page table. | |
2349 | */ | |
82b0f8c3 JK |
2350 | set_pte_at_notify(mm, vmf->address, vmf->pte, entry); |
2351 | update_mmu_cache(vma, vmf->address, vmf->pte); | |
2f38ab2c SR |
2352 | if (old_page) { |
2353 | /* | |
2354 | * Only after switching the pte to the new page may | |
2355 | * we remove the mapcount here. Otherwise another | |
2356 | * process may come and find the rmap count decremented | |
2357 | * before the pte is switched to the new page, and | |
2358 | * "reuse" the old page writing into it while our pte | |
2359 | * here still points into it and can be read by other | |
2360 | * threads. | |
2361 | * | |
2362 | * The critical issue is to order this | |
2363 | * page_remove_rmap with the ptp_clear_flush above. | |
2364 | * Those stores are ordered by (if nothing else,) | |
2365 | * the barrier present in the atomic_add_negative | |
2366 | * in page_remove_rmap. | |
2367 | * | |
2368 | * Then the TLB flush in ptep_clear_flush ensures that | |
2369 | * no process can access the old page before the | |
2370 | * decremented mapcount is visible. And the old page | |
2371 | * cannot be reused until after the decremented | |
2372 | * mapcount is visible. So transitively, TLBs to | |
2373 | * old page will be flushed before it can be reused. | |
2374 | */ | |
d281ee61 | 2375 | page_remove_rmap(old_page, false); |
2f38ab2c SR |
2376 | } |
2377 | ||
2378 | /* Free the old page.. */ | |
2379 | new_page = old_page; | |
2380 | page_copied = 1; | |
2381 | } else { | |
f627c2f5 | 2382 | mem_cgroup_cancel_charge(new_page, memcg, false); |
2f38ab2c SR |
2383 | } |
2384 | ||
2385 | if (new_page) | |
09cbfeaf | 2386 | put_page(new_page); |
2f38ab2c | 2387 | |
82b0f8c3 | 2388 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2f38ab2c SR |
2389 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
2390 | if (old_page) { | |
2391 | /* | |
2392 | * Don't let another task, with possibly unlocked vma, | |
2393 | * keep the mlocked page. | |
2394 | */ | |
2395 | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | |
2396 | lock_page(old_page); /* LRU manipulation */ | |
e90309c9 KS |
2397 | if (PageMlocked(old_page)) |
2398 | munlock_vma_page(old_page); | |
2f38ab2c SR |
2399 | unlock_page(old_page); |
2400 | } | |
09cbfeaf | 2401 | put_page(old_page); |
2f38ab2c SR |
2402 | } |
2403 | return page_copied ? VM_FAULT_WRITE : 0; | |
2404 | oom_free_new: | |
09cbfeaf | 2405 | put_page(new_page); |
2f38ab2c SR |
2406 | oom: |
2407 | if (old_page) | |
09cbfeaf | 2408 | put_page(old_page); |
2f38ab2c SR |
2409 | return VM_FAULT_OOM; |
2410 | } | |
2411 | ||
66a6197c JK |
2412 | /** |
2413 | * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE | |
2414 | * writeable once the page is prepared | |
2415 | * | |
2416 | * @vmf: structure describing the fault | |
2417 | * | |
2418 | * This function handles all that is needed to finish a write page fault in a | |
2419 | * shared mapping due to PTE being read-only once the mapped page is prepared. | |
2420 | * It handles locking of PTE and modifying it. The function returns | |
2421 | * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE | |
2422 | * lock. | |
2423 | * | |
2424 | * The function expects the page to be locked or other protection against | |
2425 | * concurrent faults / writeback (such as DAX radix tree locks). | |
2426 | */ | |
2427 | int finish_mkwrite_fault(struct vm_fault *vmf) | |
2428 | { | |
2429 | WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); | |
2430 | vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, | |
2431 | &vmf->ptl); | |
2432 | /* | |
2433 | * We might have raced with another page fault while we released the | |
2434 | * pte_offset_map_lock. | |
2435 | */ | |
2436 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { | |
2437 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
a19e2553 | 2438 | return VM_FAULT_NOPAGE; |
66a6197c JK |
2439 | } |
2440 | wp_page_reuse(vmf); | |
a19e2553 | 2441 | return 0; |
66a6197c JK |
2442 | } |
2443 | ||
dd906184 BH |
2444 | /* |
2445 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
2446 | * mapping | |
2447 | */ | |
2994302b | 2448 | static int wp_pfn_shared(struct vm_fault *vmf) |
dd906184 | 2449 | { |
82b0f8c3 | 2450 | struct vm_area_struct *vma = vmf->vma; |
bae473a4 | 2451 | |
dd906184 | 2452 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { |
dd906184 BH |
2453 | int ret; |
2454 | ||
82b0f8c3 | 2455 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
fe82221f | 2456 | vmf->flags |= FAULT_FLAG_MKWRITE; |
11bac800 | 2457 | ret = vma->vm_ops->pfn_mkwrite(vmf); |
2f89dc12 | 2458 | if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) |
dd906184 | 2459 | return ret; |
66a6197c | 2460 | return finish_mkwrite_fault(vmf); |
dd906184 | 2461 | } |
997dd98d JK |
2462 | wp_page_reuse(vmf); |
2463 | return VM_FAULT_WRITE; | |
dd906184 BH |
2464 | } |
2465 | ||
a41b70d6 | 2466 | static int wp_page_shared(struct vm_fault *vmf) |
82b0f8c3 | 2467 | __releases(vmf->ptl) |
93e478d4 | 2468 | { |
82b0f8c3 | 2469 | struct vm_area_struct *vma = vmf->vma; |
93e478d4 | 2470 | |
a41b70d6 | 2471 | get_page(vmf->page); |
93e478d4 | 2472 | |
93e478d4 SR |
2473 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2474 | int tmp; | |
2475 | ||
82b0f8c3 | 2476 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
38b8cb7f | 2477 | tmp = do_page_mkwrite(vmf); |
93e478d4 SR |
2478 | if (unlikely(!tmp || (tmp & |
2479 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
a41b70d6 | 2480 | put_page(vmf->page); |
93e478d4 SR |
2481 | return tmp; |
2482 | } | |
66a6197c | 2483 | tmp = finish_mkwrite_fault(vmf); |
a19e2553 | 2484 | if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { |
a41b70d6 | 2485 | unlock_page(vmf->page); |
a41b70d6 | 2486 | put_page(vmf->page); |
66a6197c | 2487 | return tmp; |
93e478d4 | 2488 | } |
66a6197c JK |
2489 | } else { |
2490 | wp_page_reuse(vmf); | |
997dd98d | 2491 | lock_page(vmf->page); |
93e478d4 | 2492 | } |
997dd98d JK |
2493 | fault_dirty_shared_page(vma, vmf->page); |
2494 | put_page(vmf->page); | |
93e478d4 | 2495 | |
997dd98d | 2496 | return VM_FAULT_WRITE; |
93e478d4 SR |
2497 | } |
2498 | ||
1da177e4 LT |
2499 | /* |
2500 | * This routine handles present pages, when users try to write | |
2501 | * to a shared page. It is done by copying the page to a new address | |
2502 | * and decrementing the shared-page counter for the old page. | |
2503 | * | |
1da177e4 LT |
2504 | * Note that this routine assumes that the protection checks have been |
2505 | * done by the caller (the low-level page fault routine in most cases). | |
2506 | * Thus we can safely just mark it writable once we've done any necessary | |
2507 | * COW. | |
2508 | * | |
2509 | * We also mark the page dirty at this point even though the page will | |
2510 | * change only once the write actually happens. This avoids a few races, | |
2511 | * and potentially makes it more efficient. | |
2512 | * | |
8f4e2101 HD |
2513 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2514 | * but allow concurrent faults), with pte both mapped and locked. | |
2515 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2516 | */ |
2994302b | 2517 | static int do_wp_page(struct vm_fault *vmf) |
82b0f8c3 | 2518 | __releases(vmf->ptl) |
1da177e4 | 2519 | { |
82b0f8c3 | 2520 | struct vm_area_struct *vma = vmf->vma; |
1da177e4 | 2521 | |
a41b70d6 JK |
2522 | vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); |
2523 | if (!vmf->page) { | |
251b97f5 | 2524 | /* |
64e45507 PF |
2525 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
2526 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
2527 | * |
2528 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 2529 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
2530 | */ |
2531 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2532 | (VM_WRITE|VM_SHARED)) | |
2994302b | 2533 | return wp_pfn_shared(vmf); |
2f38ab2c | 2534 | |
82b0f8c3 | 2535 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2536 | return wp_page_copy(vmf); |
251b97f5 | 2537 | } |
1da177e4 | 2538 | |
d08b3851 | 2539 | /* |
ee6a6457 PZ |
2540 | * Take out anonymous pages first, anonymous shared vmas are |
2541 | * not dirty accountable. | |
d08b3851 | 2542 | */ |
a41b70d6 | 2543 | if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { |
6d0a07ed | 2544 | int total_mapcount; |
a41b70d6 JK |
2545 | if (!trylock_page(vmf->page)) { |
2546 | get_page(vmf->page); | |
82b0f8c3 | 2547 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2548 | lock_page(vmf->page); |
82b0f8c3 JK |
2549 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2550 | vmf->address, &vmf->ptl); | |
2994302b | 2551 | if (!pte_same(*vmf->pte, vmf->orig_pte)) { |
a41b70d6 | 2552 | unlock_page(vmf->page); |
82b0f8c3 | 2553 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2554 | put_page(vmf->page); |
28766805 | 2555 | return 0; |
ab967d86 | 2556 | } |
a41b70d6 | 2557 | put_page(vmf->page); |
ee6a6457 | 2558 | } |
a41b70d6 | 2559 | if (reuse_swap_page(vmf->page, &total_mapcount)) { |
6d0a07ed AA |
2560 | if (total_mapcount == 1) { |
2561 | /* | |
2562 | * The page is all ours. Move it to | |
2563 | * our anon_vma so the rmap code will | |
2564 | * not search our parent or siblings. | |
2565 | * Protected against the rmap code by | |
2566 | * the page lock. | |
2567 | */ | |
a41b70d6 | 2568 | page_move_anon_rmap(vmf->page, vma); |
6d0a07ed | 2569 | } |
a41b70d6 | 2570 | unlock_page(vmf->page); |
997dd98d JK |
2571 | wp_page_reuse(vmf); |
2572 | return VM_FAULT_WRITE; | |
b009c024 | 2573 | } |
a41b70d6 | 2574 | unlock_page(vmf->page); |
ee6a6457 | 2575 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2576 | (VM_WRITE|VM_SHARED))) { |
a41b70d6 | 2577 | return wp_page_shared(vmf); |
1da177e4 | 2578 | } |
1da177e4 LT |
2579 | |
2580 | /* | |
2581 | * Ok, we need to copy. Oh, well.. | |
2582 | */ | |
a41b70d6 | 2583 | get_page(vmf->page); |
28766805 | 2584 | |
82b0f8c3 | 2585 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
a41b70d6 | 2586 | return wp_page_copy(vmf); |
1da177e4 LT |
2587 | } |
2588 | ||
97a89413 | 2589 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
2590 | unsigned long start_addr, unsigned long end_addr, |
2591 | struct zap_details *details) | |
2592 | { | |
f5cc4eef | 2593 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
2594 | } |
2595 | ||
6b2dbba8 | 2596 | static inline void unmap_mapping_range_tree(struct rb_root *root, |
1da177e4 LT |
2597 | struct zap_details *details) |
2598 | { | |
2599 | struct vm_area_struct *vma; | |
1da177e4 LT |
2600 | pgoff_t vba, vea, zba, zea; |
2601 | ||
6b2dbba8 | 2602 | vma_interval_tree_foreach(vma, root, |
1da177e4 | 2603 | details->first_index, details->last_index) { |
1da177e4 LT |
2604 | |
2605 | vba = vma->vm_pgoff; | |
d6e93217 | 2606 | vea = vba + vma_pages(vma) - 1; |
1da177e4 LT |
2607 | zba = details->first_index; |
2608 | if (zba < vba) | |
2609 | zba = vba; | |
2610 | zea = details->last_index; | |
2611 | if (zea > vea) | |
2612 | zea = vea; | |
2613 | ||
97a89413 | 2614 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
2615 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
2616 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 2617 | details); |
1da177e4 LT |
2618 | } |
2619 | } | |
2620 | ||
1da177e4 | 2621 | /** |
8a5f14a2 KS |
2622 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
2623 | * address_space corresponding to the specified page range in the underlying | |
2624 | * file. | |
2625 | * | |
3d41088f | 2626 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2627 | * @holebegin: byte in first page to unmap, relative to the start of |
2628 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 2629 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
2630 | * must keep the partial page. In contrast, we must get rid of |
2631 | * partial pages. | |
2632 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2633 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2634 | * end of the file. | |
2635 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2636 | * but 0 when invalidating pagecache, don't throw away private data. | |
2637 | */ | |
2638 | void unmap_mapping_range(struct address_space *mapping, | |
2639 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2640 | { | |
aac45363 | 2641 | struct zap_details details = { }; |
1da177e4 LT |
2642 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
2643 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2644 | ||
2645 | /* Check for overflow. */ | |
2646 | if (sizeof(holelen) > sizeof(hlen)) { | |
2647 | long long holeend = | |
2648 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2649 | if (holeend & ~(long long)ULONG_MAX) | |
2650 | hlen = ULONG_MAX - hba + 1; | |
2651 | } | |
2652 | ||
166f61b9 | 2653 | details.check_mapping = even_cows ? NULL : mapping; |
1da177e4 LT |
2654 | details.first_index = hba; |
2655 | details.last_index = hba + hlen - 1; | |
2656 | if (details.last_index < details.first_index) | |
2657 | details.last_index = ULONG_MAX; | |
1da177e4 | 2658 | |
46c043ed | 2659 | i_mmap_lock_write(mapping); |
6b2dbba8 | 2660 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) |
1da177e4 | 2661 | unmap_mapping_range_tree(&mapping->i_mmap, &details); |
46c043ed | 2662 | i_mmap_unlock_write(mapping); |
1da177e4 LT |
2663 | } |
2664 | EXPORT_SYMBOL(unmap_mapping_range); | |
2665 | ||
1da177e4 | 2666 | /* |
8f4e2101 HD |
2667 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2668 | * but allow concurrent faults), and pte mapped but not yet locked. | |
9a95f3cf PC |
2669 | * We return with pte unmapped and unlocked. |
2670 | * | |
2671 | * We return with the mmap_sem locked or unlocked in the same cases | |
2672 | * as does filemap_fault(). | |
1da177e4 | 2673 | */ |
2994302b | 2674 | int do_swap_page(struct vm_fault *vmf) |
1da177e4 | 2675 | { |
82b0f8c3 | 2676 | struct vm_area_struct *vma = vmf->vma; |
56f31801 | 2677 | struct page *page, *swapcache; |
00501b53 | 2678 | struct mem_cgroup *memcg; |
65500d23 | 2679 | swp_entry_t entry; |
1da177e4 | 2680 | pte_t pte; |
d065bd81 | 2681 | int locked; |
ad8c2ee8 | 2682 | int exclusive = 0; |
83c54070 | 2683 | int ret = 0; |
1da177e4 | 2684 | |
2994302b | 2685 | if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) |
8f4e2101 | 2686 | goto out; |
65500d23 | 2687 | |
2994302b | 2688 | entry = pte_to_swp_entry(vmf->orig_pte); |
d1737fdb AK |
2689 | if (unlikely(non_swap_entry(entry))) { |
2690 | if (is_migration_entry(entry)) { | |
82b0f8c3 JK |
2691 | migration_entry_wait(vma->vm_mm, vmf->pmd, |
2692 | vmf->address); | |
d1737fdb AK |
2693 | } else if (is_hwpoison_entry(entry)) { |
2694 | ret = VM_FAULT_HWPOISON; | |
2695 | } else { | |
2994302b | 2696 | print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); |
d99be1a8 | 2697 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 2698 | } |
0697212a CL |
2699 | goto out; |
2700 | } | |
0ff92245 | 2701 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2702 | page = lookup_swap_cache(entry); |
2703 | if (!page) { | |
82b0f8c3 JK |
2704 | page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, |
2705 | vmf->address); | |
1da177e4 LT |
2706 | if (!page) { |
2707 | /* | |
8f4e2101 HD |
2708 | * Back out if somebody else faulted in this pte |
2709 | * while we released the pte lock. | |
1da177e4 | 2710 | */ |
82b0f8c3 JK |
2711 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2712 | vmf->address, &vmf->ptl); | |
2994302b | 2713 | if (likely(pte_same(*vmf->pte, vmf->orig_pte))) |
1da177e4 | 2714 | ret = VM_FAULT_OOM; |
0ff92245 | 2715 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2716 | goto unlock; |
1da177e4 LT |
2717 | } |
2718 | ||
2719 | /* Had to read the page from swap area: Major fault */ | |
2720 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2721 | count_vm_event(PGMAJFAULT); |
bae473a4 | 2722 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
d1737fdb | 2723 | } else if (PageHWPoison(page)) { |
71f72525 WF |
2724 | /* |
2725 | * hwpoisoned dirty swapcache pages are kept for killing | |
2726 | * owner processes (which may be unknown at hwpoison time) | |
2727 | */ | |
d1737fdb AK |
2728 | ret = VM_FAULT_HWPOISON; |
2729 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
56f31801 | 2730 | swapcache = page; |
4779cb31 | 2731 | goto out_release; |
1da177e4 LT |
2732 | } |
2733 | ||
56f31801 | 2734 | swapcache = page; |
82b0f8c3 | 2735 | locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); |
e709ffd6 | 2736 | |
073e587e | 2737 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
d065bd81 ML |
2738 | if (!locked) { |
2739 | ret |= VM_FAULT_RETRY; | |
2740 | goto out_release; | |
2741 | } | |
073e587e | 2742 | |
4969c119 | 2743 | /* |
31c4a3d3 HD |
2744 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
2745 | * release the swapcache from under us. The page pin, and pte_same | |
2746 | * test below, are not enough to exclude that. Even if it is still | |
2747 | * swapcache, we need to check that the page's swap has not changed. | |
4969c119 | 2748 | */ |
31c4a3d3 | 2749 | if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) |
4969c119 AA |
2750 | goto out_page; |
2751 | ||
82b0f8c3 | 2752 | page = ksm_might_need_to_copy(page, vma, vmf->address); |
cbf86cfe HD |
2753 | if (unlikely(!page)) { |
2754 | ret = VM_FAULT_OOM; | |
2755 | page = swapcache; | |
cbf86cfe | 2756 | goto out_page; |
5ad64688 HD |
2757 | } |
2758 | ||
bae473a4 KS |
2759 | if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, |
2760 | &memcg, false)) { | |
8a9f3ccd | 2761 | ret = VM_FAULT_OOM; |
bc43f75c | 2762 | goto out_page; |
8a9f3ccd BS |
2763 | } |
2764 | ||
1da177e4 | 2765 | /* |
8f4e2101 | 2766 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2767 | */ |
82b0f8c3 JK |
2768 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
2769 | &vmf->ptl); | |
2994302b | 2770 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) |
b8107480 | 2771 | goto out_nomap; |
b8107480 KK |
2772 | |
2773 | if (unlikely(!PageUptodate(page))) { | |
2774 | ret = VM_FAULT_SIGBUS; | |
2775 | goto out_nomap; | |
1da177e4 LT |
2776 | } |
2777 | ||
8c7c6e34 KH |
2778 | /* |
2779 | * The page isn't present yet, go ahead with the fault. | |
2780 | * | |
2781 | * Be careful about the sequence of operations here. | |
2782 | * To get its accounting right, reuse_swap_page() must be called | |
2783 | * while the page is counted on swap but not yet in mapcount i.e. | |
2784 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2785 | * must be called after the swap_free(), or it will never succeed. | |
8c7c6e34 | 2786 | */ |
1da177e4 | 2787 | |
bae473a4 KS |
2788 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
2789 | dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); | |
1da177e4 | 2790 | pte = mk_pte(page, vma->vm_page_prot); |
82b0f8c3 | 2791 | if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { |
1da177e4 | 2792 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
82b0f8c3 | 2793 | vmf->flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 2794 | ret |= VM_FAULT_WRITE; |
d281ee61 | 2795 | exclusive = RMAP_EXCLUSIVE; |
1da177e4 | 2796 | } |
1da177e4 | 2797 | flush_icache_page(vma, page); |
2994302b | 2798 | if (pte_swp_soft_dirty(vmf->orig_pte)) |
179ef71c | 2799 | pte = pte_mksoft_dirty(pte); |
82b0f8c3 | 2800 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); |
2994302b | 2801 | vmf->orig_pte = pte; |
00501b53 | 2802 | if (page == swapcache) { |
82b0f8c3 | 2803 | do_page_add_anon_rmap(page, vma, vmf->address, exclusive); |
f627c2f5 | 2804 | mem_cgroup_commit_charge(page, memcg, true, false); |
1a8018fb | 2805 | activate_page(page); |
00501b53 | 2806 | } else { /* ksm created a completely new copy */ |
82b0f8c3 | 2807 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
f627c2f5 | 2808 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 JW |
2809 | lru_cache_add_active_or_unevictable(page, vma); |
2810 | } | |
1da177e4 | 2811 | |
c475a8ab | 2812 | swap_free(entry); |
5ccc5aba VD |
2813 | if (mem_cgroup_swap_full(page) || |
2814 | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | |
a2c43eed | 2815 | try_to_free_swap(page); |
c475a8ab | 2816 | unlock_page(page); |
56f31801 | 2817 | if (page != swapcache) { |
4969c119 AA |
2818 | /* |
2819 | * Hold the lock to avoid the swap entry to be reused | |
2820 | * until we take the PT lock for the pte_same() check | |
2821 | * (to avoid false positives from pte_same). For | |
2822 | * further safety release the lock after the swap_free | |
2823 | * so that the swap count won't change under a | |
2824 | * parallel locked swapcache. | |
2825 | */ | |
2826 | unlock_page(swapcache); | |
09cbfeaf | 2827 | put_page(swapcache); |
4969c119 | 2828 | } |
c475a8ab | 2829 | |
82b0f8c3 | 2830 | if (vmf->flags & FAULT_FLAG_WRITE) { |
2994302b | 2831 | ret |= do_wp_page(vmf); |
61469f1d HD |
2832 | if (ret & VM_FAULT_ERROR) |
2833 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2834 | goto out; |
2835 | } | |
2836 | ||
2837 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 2838 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 2839 | unlock: |
82b0f8c3 | 2840 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
1da177e4 LT |
2841 | out: |
2842 | return ret; | |
b8107480 | 2843 | out_nomap: |
f627c2f5 | 2844 | mem_cgroup_cancel_charge(page, memcg, false); |
82b0f8c3 | 2845 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bc43f75c | 2846 | out_page: |
b8107480 | 2847 | unlock_page(page); |
4779cb31 | 2848 | out_release: |
09cbfeaf | 2849 | put_page(page); |
56f31801 | 2850 | if (page != swapcache) { |
4969c119 | 2851 | unlock_page(swapcache); |
09cbfeaf | 2852 | put_page(swapcache); |
4969c119 | 2853 | } |
65500d23 | 2854 | return ret; |
1da177e4 LT |
2855 | } |
2856 | ||
320b2b8d | 2857 | /* |
8ca3eb08 TL |
2858 | * This is like a special single-page "expand_{down|up}wards()", |
2859 | * except we must first make sure that 'address{-|+}PAGE_SIZE' | |
320b2b8d | 2860 | * doesn't hit another vma. |
320b2b8d LT |
2861 | */ |
2862 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | |
2863 | { | |
2864 | address &= PAGE_MASK; | |
2865 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | |
0e8e50e2 LT |
2866 | struct vm_area_struct *prev = vma->vm_prev; |
2867 | ||
2868 | /* | |
2869 | * Is there a mapping abutting this one below? | |
2870 | * | |
2871 | * That's only ok if it's the same stack mapping | |
2872 | * that has gotten split.. | |
2873 | */ | |
2874 | if (prev && prev->vm_end == address) | |
2875 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | |
320b2b8d | 2876 | |
fee7e49d | 2877 | return expand_downwards(vma, address - PAGE_SIZE); |
320b2b8d | 2878 | } |
8ca3eb08 TL |
2879 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { |
2880 | struct vm_area_struct *next = vma->vm_next; | |
2881 | ||
2882 | /* As VM_GROWSDOWN but s/below/above/ */ | |
2883 | if (next && next->vm_start == address + PAGE_SIZE) | |
2884 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | |
2885 | ||
fee7e49d | 2886 | return expand_upwards(vma, address + PAGE_SIZE); |
8ca3eb08 | 2887 | } |
320b2b8d LT |
2888 | return 0; |
2889 | } | |
2890 | ||
1da177e4 | 2891 | /* |
8f4e2101 HD |
2892 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2893 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2894 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2895 | */ |
82b0f8c3 | 2896 | static int do_anonymous_page(struct vm_fault *vmf) |
1da177e4 | 2897 | { |
82b0f8c3 | 2898 | struct vm_area_struct *vma = vmf->vma; |
00501b53 | 2899 | struct mem_cgroup *memcg; |
8f4e2101 | 2900 | struct page *page; |
1da177e4 | 2901 | pte_t entry; |
1da177e4 | 2902 | |
6b7339f4 KS |
2903 | /* File mapping without ->vm_ops ? */ |
2904 | if (vma->vm_flags & VM_SHARED) | |
2905 | return VM_FAULT_SIGBUS; | |
2906 | ||
11ac5524 | 2907 | /* Check if we need to add a guard page to the stack */ |
82b0f8c3 | 2908 | if (check_stack_guard_page(vma, vmf->address) < 0) |
9c145c56 | 2909 | return VM_FAULT_SIGSEGV; |
320b2b8d | 2910 | |
7267ec00 KS |
2911 | /* |
2912 | * Use pte_alloc() instead of pte_alloc_map(). We can't run | |
2913 | * pte_offset_map() on pmds where a huge pmd might be created | |
2914 | * from a different thread. | |
2915 | * | |
2916 | * pte_alloc_map() is safe to use under down_write(mmap_sem) or when | |
2917 | * parallel threads are excluded by other means. | |
2918 | * | |
2919 | * Here we only have down_read(mmap_sem). | |
2920 | */ | |
82b0f8c3 | 2921 | if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) |
7267ec00 KS |
2922 | return VM_FAULT_OOM; |
2923 | ||
2924 | /* See the comment in pte_alloc_one_map() */ | |
82b0f8c3 | 2925 | if (unlikely(pmd_trans_unstable(vmf->pmd))) |
7267ec00 KS |
2926 | return 0; |
2927 | ||
11ac5524 | 2928 | /* Use the zero-page for reads */ |
82b0f8c3 | 2929 | if (!(vmf->flags & FAULT_FLAG_WRITE) && |
bae473a4 | 2930 | !mm_forbids_zeropage(vma->vm_mm)) { |
82b0f8c3 | 2931 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), |
62eede62 | 2932 | vma->vm_page_prot)); |
82b0f8c3 JK |
2933 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, |
2934 | vmf->address, &vmf->ptl); | |
2935 | if (!pte_none(*vmf->pte)) | |
a13ea5b7 | 2936 | goto unlock; |
6b251fc9 AA |
2937 | /* Deliver the page fault to userland, check inside PT lock */ |
2938 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 JK |
2939 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
2940 | return handle_userfault(vmf, VM_UFFD_MISSING); | |
6b251fc9 | 2941 | } |
a13ea5b7 HD |
2942 | goto setpte; |
2943 | } | |
2944 | ||
557ed1fa | 2945 | /* Allocate our own private page. */ |
557ed1fa NP |
2946 | if (unlikely(anon_vma_prepare(vma))) |
2947 | goto oom; | |
82b0f8c3 | 2948 | page = alloc_zeroed_user_highpage_movable(vma, vmf->address); |
557ed1fa NP |
2949 | if (!page) |
2950 | goto oom; | |
eb3c24f3 | 2951 | |
bae473a4 | 2952 | if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) |
eb3c24f3 MG |
2953 | goto oom_free_page; |
2954 | ||
52f37629 MK |
2955 | /* |
2956 | * The memory barrier inside __SetPageUptodate makes sure that | |
2957 | * preceeding stores to the page contents become visible before | |
2958 | * the set_pte_at() write. | |
2959 | */ | |
0ed361de | 2960 | __SetPageUptodate(page); |
8f4e2101 | 2961 | |
557ed1fa | 2962 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
2963 | if (vma->vm_flags & VM_WRITE) |
2964 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 2965 | |
82b0f8c3 JK |
2966 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
2967 | &vmf->ptl); | |
2968 | if (!pte_none(*vmf->pte)) | |
557ed1fa | 2969 | goto release; |
9ba69294 | 2970 | |
6b251fc9 AA |
2971 | /* Deliver the page fault to userland, check inside PT lock */ |
2972 | if (userfaultfd_missing(vma)) { | |
82b0f8c3 | 2973 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
f627c2f5 | 2974 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 2975 | put_page(page); |
82b0f8c3 | 2976 | return handle_userfault(vmf, VM_UFFD_MISSING); |
6b251fc9 AA |
2977 | } |
2978 | ||
bae473a4 | 2979 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
82b0f8c3 | 2980 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
f627c2f5 | 2981 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 | 2982 | lru_cache_add_active_or_unevictable(page, vma); |
a13ea5b7 | 2983 | setpte: |
82b0f8c3 | 2984 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
1da177e4 LT |
2985 | |
2986 | /* No need to invalidate - it was non-present before */ | |
82b0f8c3 | 2987 | update_mmu_cache(vma, vmf->address, vmf->pte); |
65500d23 | 2988 | unlock: |
82b0f8c3 | 2989 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 2990 | return 0; |
8f4e2101 | 2991 | release: |
f627c2f5 | 2992 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 2993 | put_page(page); |
8f4e2101 | 2994 | goto unlock; |
8a9f3ccd | 2995 | oom_free_page: |
09cbfeaf | 2996 | put_page(page); |
65500d23 | 2997 | oom: |
1da177e4 LT |
2998 | return VM_FAULT_OOM; |
2999 | } | |
3000 | ||
9a95f3cf PC |
3001 | /* |
3002 | * The mmap_sem must have been held on entry, and may have been | |
3003 | * released depending on flags and vma->vm_ops->fault() return value. | |
3004 | * See filemap_fault() and __lock_page_retry(). | |
3005 | */ | |
936ca80d | 3006 | static int __do_fault(struct vm_fault *vmf) |
7eae74af | 3007 | { |
82b0f8c3 | 3008 | struct vm_area_struct *vma = vmf->vma; |
7eae74af KS |
3009 | int ret; |
3010 | ||
11bac800 | 3011 | ret = vma->vm_ops->fault(vmf); |
3917048d | 3012 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | |
b1aa812b | 3013 | VM_FAULT_DONE_COW))) |
bc2466e4 | 3014 | return ret; |
7eae74af | 3015 | |
667240e0 | 3016 | if (unlikely(PageHWPoison(vmf->page))) { |
7eae74af | 3017 | if (ret & VM_FAULT_LOCKED) |
667240e0 JK |
3018 | unlock_page(vmf->page); |
3019 | put_page(vmf->page); | |
936ca80d | 3020 | vmf->page = NULL; |
7eae74af KS |
3021 | return VM_FAULT_HWPOISON; |
3022 | } | |
3023 | ||
3024 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
667240e0 | 3025 | lock_page(vmf->page); |
7eae74af | 3026 | else |
667240e0 | 3027 | VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); |
7eae74af | 3028 | |
7eae74af KS |
3029 | return ret; |
3030 | } | |
3031 | ||
82b0f8c3 | 3032 | static int pte_alloc_one_map(struct vm_fault *vmf) |
7267ec00 | 3033 | { |
82b0f8c3 | 3034 | struct vm_area_struct *vma = vmf->vma; |
7267ec00 | 3035 | |
82b0f8c3 | 3036 | if (!pmd_none(*vmf->pmd)) |
7267ec00 | 3037 | goto map_pte; |
82b0f8c3 JK |
3038 | if (vmf->prealloc_pte) { |
3039 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | |
3040 | if (unlikely(!pmd_none(*vmf->pmd))) { | |
3041 | spin_unlock(vmf->ptl); | |
7267ec00 KS |
3042 | goto map_pte; |
3043 | } | |
3044 | ||
3045 | atomic_long_inc(&vma->vm_mm->nr_ptes); | |
82b0f8c3 JK |
3046 | pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
3047 | spin_unlock(vmf->ptl); | |
7f2b6ce8 | 3048 | vmf->prealloc_pte = NULL; |
82b0f8c3 | 3049 | } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { |
7267ec00 KS |
3050 | return VM_FAULT_OOM; |
3051 | } | |
3052 | map_pte: | |
3053 | /* | |
3054 | * If a huge pmd materialized under us just retry later. Use | |
3055 | * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd | |
3056 | * didn't become pmd_trans_huge under us and then back to pmd_none, as | |
3057 | * a result of MADV_DONTNEED running immediately after a huge pmd fault | |
3058 | * in a different thread of this mm, in turn leading to a misleading | |
3059 | * pmd_trans_huge() retval. All we have to ensure is that it is a | |
3060 | * regular pmd that we can walk with pte_offset_map() and we can do that | |
3061 | * through an atomic read in C, which is what pmd_trans_unstable() | |
3062 | * provides. | |
3063 | */ | |
82b0f8c3 | 3064 | if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) |
7267ec00 KS |
3065 | return VM_FAULT_NOPAGE; |
3066 | ||
82b0f8c3 JK |
3067 | vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, |
3068 | &vmf->ptl); | |
7267ec00 KS |
3069 | return 0; |
3070 | } | |
3071 | ||
e496cf3d | 3072 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE |
10102459 KS |
3073 | |
3074 | #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) | |
3075 | static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, | |
3076 | unsigned long haddr) | |
3077 | { | |
3078 | if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != | |
3079 | (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) | |
3080 | return false; | |
3081 | if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) | |
3082 | return false; | |
3083 | return true; | |
3084 | } | |
3085 | ||
82b0f8c3 | 3086 | static void deposit_prealloc_pte(struct vm_fault *vmf) |
953c66c2 | 3087 | { |
82b0f8c3 | 3088 | struct vm_area_struct *vma = vmf->vma; |
953c66c2 | 3089 | |
82b0f8c3 | 3090 | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); |
953c66c2 AK |
3091 | /* |
3092 | * We are going to consume the prealloc table, | |
3093 | * count that as nr_ptes. | |
3094 | */ | |
3095 | atomic_long_inc(&vma->vm_mm->nr_ptes); | |
7f2b6ce8 | 3096 | vmf->prealloc_pte = NULL; |
953c66c2 AK |
3097 | } |
3098 | ||
82b0f8c3 | 3099 | static int do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 | 3100 | { |
82b0f8c3 JK |
3101 | struct vm_area_struct *vma = vmf->vma; |
3102 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3103 | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | |
10102459 KS |
3104 | pmd_t entry; |
3105 | int i, ret; | |
3106 | ||
3107 | if (!transhuge_vma_suitable(vma, haddr)) | |
3108 | return VM_FAULT_FALLBACK; | |
3109 | ||
3110 | ret = VM_FAULT_FALLBACK; | |
3111 | page = compound_head(page); | |
3112 | ||
953c66c2 AK |
3113 | /* |
3114 | * Archs like ppc64 need additonal space to store information | |
3115 | * related to pte entry. Use the preallocated table for that. | |
3116 | */ | |
82b0f8c3 JK |
3117 | if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { |
3118 | vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); | |
3119 | if (!vmf->prealloc_pte) | |
953c66c2 AK |
3120 | return VM_FAULT_OOM; |
3121 | smp_wmb(); /* See comment in __pte_alloc() */ | |
3122 | } | |
3123 | ||
82b0f8c3 JK |
3124 | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); |
3125 | if (unlikely(!pmd_none(*vmf->pmd))) | |
10102459 KS |
3126 | goto out; |
3127 | ||
3128 | for (i = 0; i < HPAGE_PMD_NR; i++) | |
3129 | flush_icache_page(vma, page + i); | |
3130 | ||
3131 | entry = mk_huge_pmd(page, vma->vm_page_prot); | |
3132 | if (write) | |
3133 | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | |
3134 | ||
3135 | add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); | |
3136 | page_add_file_rmap(page, true); | |
953c66c2 AK |
3137 | /* |
3138 | * deposit and withdraw with pmd lock held | |
3139 | */ | |
3140 | if (arch_needs_pgtable_deposit()) | |
82b0f8c3 | 3141 | deposit_prealloc_pte(vmf); |
10102459 | 3142 | |
82b0f8c3 | 3143 | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); |
10102459 | 3144 | |
82b0f8c3 | 3145 | update_mmu_cache_pmd(vma, haddr, vmf->pmd); |
10102459 KS |
3146 | |
3147 | /* fault is handled */ | |
3148 | ret = 0; | |
95ecedcd | 3149 | count_vm_event(THP_FILE_MAPPED); |
10102459 | 3150 | out: |
82b0f8c3 | 3151 | spin_unlock(vmf->ptl); |
10102459 KS |
3152 | return ret; |
3153 | } | |
3154 | #else | |
82b0f8c3 | 3155 | static int do_set_pmd(struct vm_fault *vmf, struct page *page) |
10102459 KS |
3156 | { |
3157 | BUILD_BUG(); | |
3158 | return 0; | |
3159 | } | |
3160 | #endif | |
3161 | ||
8c6e50b0 | 3162 | /** |
7267ec00 KS |
3163 | * alloc_set_pte - setup new PTE entry for given page and add reverse page |
3164 | * mapping. If needed, the fucntion allocates page table or use pre-allocated. | |
8c6e50b0 | 3165 | * |
82b0f8c3 | 3166 | * @vmf: fault environment |
7267ec00 | 3167 | * @memcg: memcg to charge page (only for private mappings) |
8c6e50b0 | 3168 | * @page: page to map |
8c6e50b0 | 3169 | * |
82b0f8c3 JK |
3170 | * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on |
3171 | * return. | |
8c6e50b0 KS |
3172 | * |
3173 | * Target users are page handler itself and implementations of | |
3174 | * vm_ops->map_pages. | |
3175 | */ | |
82b0f8c3 | 3176 | int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, |
7267ec00 | 3177 | struct page *page) |
3bb97794 | 3178 | { |
82b0f8c3 JK |
3179 | struct vm_area_struct *vma = vmf->vma; |
3180 | bool write = vmf->flags & FAULT_FLAG_WRITE; | |
3bb97794 | 3181 | pte_t entry; |
10102459 KS |
3182 | int ret; |
3183 | ||
82b0f8c3 | 3184 | if (pmd_none(*vmf->pmd) && PageTransCompound(page) && |
e496cf3d | 3185 | IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { |
10102459 KS |
3186 | /* THP on COW? */ |
3187 | VM_BUG_ON_PAGE(memcg, page); | |
3188 | ||
82b0f8c3 | 3189 | ret = do_set_pmd(vmf, page); |
10102459 | 3190 | if (ret != VM_FAULT_FALLBACK) |
b0b9b3df | 3191 | return ret; |
10102459 | 3192 | } |
3bb97794 | 3193 | |
82b0f8c3 JK |
3194 | if (!vmf->pte) { |
3195 | ret = pte_alloc_one_map(vmf); | |
7267ec00 | 3196 | if (ret) |
b0b9b3df | 3197 | return ret; |
7267ec00 KS |
3198 | } |
3199 | ||
3200 | /* Re-check under ptl */ | |
b0b9b3df HD |
3201 | if (unlikely(!pte_none(*vmf->pte))) |
3202 | return VM_FAULT_NOPAGE; | |
7267ec00 | 3203 | |
3bb97794 KS |
3204 | flush_icache_page(vma, page); |
3205 | entry = mk_pte(page, vma->vm_page_prot); | |
3206 | if (write) | |
3207 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
bae473a4 KS |
3208 | /* copy-on-write page */ |
3209 | if (write && !(vma->vm_flags & VM_SHARED)) { | |
3bb97794 | 3210 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); |
82b0f8c3 | 3211 | page_add_new_anon_rmap(page, vma, vmf->address, false); |
7267ec00 KS |
3212 | mem_cgroup_commit_charge(page, memcg, false, false); |
3213 | lru_cache_add_active_or_unevictable(page, vma); | |
3bb97794 | 3214 | } else { |
eca56ff9 | 3215 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
dd78fedd | 3216 | page_add_file_rmap(page, false); |
3bb97794 | 3217 | } |
82b0f8c3 | 3218 | set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); |
3bb97794 KS |
3219 | |
3220 | /* no need to invalidate: a not-present page won't be cached */ | |
82b0f8c3 | 3221 | update_mmu_cache(vma, vmf->address, vmf->pte); |
7267ec00 | 3222 | |
b0b9b3df | 3223 | return 0; |
3bb97794 KS |
3224 | } |
3225 | ||
9118c0cb JK |
3226 | |
3227 | /** | |
3228 | * finish_fault - finish page fault once we have prepared the page to fault | |
3229 | * | |
3230 | * @vmf: structure describing the fault | |
3231 | * | |
3232 | * This function handles all that is needed to finish a page fault once the | |
3233 | * page to fault in is prepared. It handles locking of PTEs, inserts PTE for | |
3234 | * given page, adds reverse page mapping, handles memcg charges and LRU | |
3235 | * addition. The function returns 0 on success, VM_FAULT_ code in case of | |
3236 | * error. | |
3237 | * | |
3238 | * The function expects the page to be locked and on success it consumes a | |
3239 | * reference of a page being mapped (for the PTE which maps it). | |
3240 | */ | |
3241 | int finish_fault(struct vm_fault *vmf) | |
3242 | { | |
3243 | struct page *page; | |
3244 | int ret; | |
3245 | ||
3246 | /* Did we COW the page? */ | |
3247 | if ((vmf->flags & FAULT_FLAG_WRITE) && | |
3248 | !(vmf->vma->vm_flags & VM_SHARED)) | |
3249 | page = vmf->cow_page; | |
3250 | else | |
3251 | page = vmf->page; | |
3252 | ret = alloc_set_pte(vmf, vmf->memcg, page); | |
3253 | if (vmf->pte) | |
3254 | pte_unmap_unlock(vmf->pte, vmf->ptl); | |
3255 | return ret; | |
3256 | } | |
3257 | ||
3a91053a KS |
3258 | static unsigned long fault_around_bytes __read_mostly = |
3259 | rounddown_pow_of_two(65536); | |
a9b0f861 | 3260 | |
a9b0f861 KS |
3261 | #ifdef CONFIG_DEBUG_FS |
3262 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 3263 | { |
a9b0f861 | 3264 | *val = fault_around_bytes; |
1592eef0 KS |
3265 | return 0; |
3266 | } | |
3267 | ||
b4903d6e AR |
3268 | /* |
3269 | * fault_around_pages() and fault_around_mask() expects fault_around_bytes | |
3270 | * rounded down to nearest page order. It's what do_fault_around() expects to | |
3271 | * see. | |
3272 | */ | |
a9b0f861 | 3273 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 3274 | { |
a9b0f861 | 3275 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 3276 | return -EINVAL; |
b4903d6e AR |
3277 | if (val > PAGE_SIZE) |
3278 | fault_around_bytes = rounddown_pow_of_two(val); | |
3279 | else | |
3280 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
3281 | return 0; |
3282 | } | |
a9b0f861 KS |
3283 | DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, |
3284 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); | |
1592eef0 KS |
3285 | |
3286 | static int __init fault_around_debugfs(void) | |
3287 | { | |
3288 | void *ret; | |
3289 | ||
a9b0f861 KS |
3290 | ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, |
3291 | &fault_around_bytes_fops); | |
1592eef0 | 3292 | if (!ret) |
a9b0f861 | 3293 | pr_warn("Failed to create fault_around_bytes in debugfs"); |
1592eef0 KS |
3294 | return 0; |
3295 | } | |
3296 | late_initcall(fault_around_debugfs); | |
1592eef0 | 3297 | #endif |
8c6e50b0 | 3298 | |
1fdb412b KS |
3299 | /* |
3300 | * do_fault_around() tries to map few pages around the fault address. The hope | |
3301 | * is that the pages will be needed soon and this will lower the number of | |
3302 | * faults to handle. | |
3303 | * | |
3304 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
3305 | * not ready to be mapped: not up-to-date, locked, etc. | |
3306 | * | |
3307 | * This function is called with the page table lock taken. In the split ptlock | |
3308 | * case the page table lock only protects only those entries which belong to | |
3309 | * the page table corresponding to the fault address. | |
3310 | * | |
3311 | * This function doesn't cross the VMA boundaries, in order to call map_pages() | |
3312 | * only once. | |
3313 | * | |
3314 | * fault_around_pages() defines how many pages we'll try to map. | |
3315 | * do_fault_around() expects it to return a power of two less than or equal to | |
3316 | * PTRS_PER_PTE. | |
3317 | * | |
3318 | * The virtual address of the area that we map is naturally aligned to the | |
3319 | * fault_around_pages() value (and therefore to page order). This way it's | |
3320 | * easier to guarantee that we don't cross page table boundaries. | |
3321 | */ | |
0721ec8b | 3322 | static int do_fault_around(struct vm_fault *vmf) |
8c6e50b0 | 3323 | { |
82b0f8c3 | 3324 | unsigned long address = vmf->address, nr_pages, mask; |
0721ec8b | 3325 | pgoff_t start_pgoff = vmf->pgoff; |
bae473a4 | 3326 | pgoff_t end_pgoff; |
7267ec00 | 3327 | int off, ret = 0; |
8c6e50b0 | 3328 | |
4db0c3c2 | 3329 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
3330 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
3331 | ||
82b0f8c3 JK |
3332 | vmf->address = max(address & mask, vmf->vma->vm_start); |
3333 | off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); | |
bae473a4 | 3334 | start_pgoff -= off; |
8c6e50b0 KS |
3335 | |
3336 | /* | |
bae473a4 KS |
3337 | * end_pgoff is either end of page table or end of vma |
3338 | * or fault_around_pages() from start_pgoff, depending what is nearest. | |
8c6e50b0 | 3339 | */ |
bae473a4 | 3340 | end_pgoff = start_pgoff - |
82b0f8c3 | 3341 | ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + |
8c6e50b0 | 3342 | PTRS_PER_PTE - 1; |
82b0f8c3 | 3343 | end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, |
bae473a4 | 3344 | start_pgoff + nr_pages - 1); |
8c6e50b0 | 3345 | |
82b0f8c3 JK |
3346 | if (pmd_none(*vmf->pmd)) { |
3347 | vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, | |
3348 | vmf->address); | |
3349 | if (!vmf->prealloc_pte) | |
c5f88bd2 | 3350 | goto out; |
7267ec00 | 3351 | smp_wmb(); /* See comment in __pte_alloc() */ |
8c6e50b0 KS |
3352 | } |
3353 | ||
82b0f8c3 | 3354 | vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); |
7267ec00 | 3355 | |
7267ec00 | 3356 | /* Huge page is mapped? Page fault is solved */ |
82b0f8c3 | 3357 | if (pmd_trans_huge(*vmf->pmd)) { |
7267ec00 KS |
3358 | ret = VM_FAULT_NOPAGE; |
3359 | goto out; | |
3360 | } | |
3361 | ||
3362 | /* ->map_pages() haven't done anything useful. Cold page cache? */ | |
82b0f8c3 | 3363 | if (!vmf->pte) |
7267ec00 KS |
3364 | goto out; |
3365 | ||
3366 | /* check if the page fault is solved */ | |
82b0f8c3 JK |
3367 | vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); |
3368 | if (!pte_none(*vmf->pte)) | |
7267ec00 | 3369 | ret = VM_FAULT_NOPAGE; |
82b0f8c3 | 3370 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
bae473a4 | 3371 | out: |
82b0f8c3 JK |
3372 | vmf->address = address; |
3373 | vmf->pte = NULL; | |
7267ec00 | 3374 | return ret; |
8c6e50b0 KS |
3375 | } |
3376 | ||
0721ec8b | 3377 | static int do_read_fault(struct vm_fault *vmf) |
e655fb29 | 3378 | { |
82b0f8c3 | 3379 | struct vm_area_struct *vma = vmf->vma; |
8c6e50b0 KS |
3380 | int ret = 0; |
3381 | ||
3382 | /* | |
3383 | * Let's call ->map_pages() first and use ->fault() as fallback | |
3384 | * if page by the offset is not ready to be mapped (cold cache or | |
3385 | * something). | |
3386 | */ | |
9b4bdd2f | 3387 | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { |
0721ec8b | 3388 | ret = do_fault_around(vmf); |
7267ec00 KS |
3389 | if (ret) |
3390 | return ret; | |
8c6e50b0 | 3391 | } |
e655fb29 | 3392 | |
936ca80d | 3393 | ret = __do_fault(vmf); |
e655fb29 KS |
3394 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3395 | return ret; | |
3396 | ||
9118c0cb | 3397 | ret |= finish_fault(vmf); |
936ca80d | 3398 | unlock_page(vmf->page); |
7267ec00 | 3399 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
936ca80d | 3400 | put_page(vmf->page); |
e655fb29 KS |
3401 | return ret; |
3402 | } | |
3403 | ||
0721ec8b | 3404 | static int do_cow_fault(struct vm_fault *vmf) |
ec47c3b9 | 3405 | { |
82b0f8c3 | 3406 | struct vm_area_struct *vma = vmf->vma; |
ec47c3b9 KS |
3407 | int ret; |
3408 | ||
3409 | if (unlikely(anon_vma_prepare(vma))) | |
3410 | return VM_FAULT_OOM; | |
3411 | ||
936ca80d JK |
3412 | vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); |
3413 | if (!vmf->cow_page) | |
ec47c3b9 KS |
3414 | return VM_FAULT_OOM; |
3415 | ||
936ca80d | 3416 | if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, |
3917048d | 3417 | &vmf->memcg, false)) { |
936ca80d | 3418 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3419 | return VM_FAULT_OOM; |
3420 | } | |
3421 | ||
936ca80d | 3422 | ret = __do_fault(vmf); |
ec47c3b9 KS |
3423 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3424 | goto uncharge_out; | |
3917048d JK |
3425 | if (ret & VM_FAULT_DONE_COW) |
3426 | return ret; | |
ec47c3b9 | 3427 | |
b1aa812b | 3428 | copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); |
936ca80d | 3429 | __SetPageUptodate(vmf->cow_page); |
ec47c3b9 | 3430 | |
9118c0cb | 3431 | ret |= finish_fault(vmf); |
b1aa812b JK |
3432 | unlock_page(vmf->page); |
3433 | put_page(vmf->page); | |
7267ec00 KS |
3434 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3435 | goto uncharge_out; | |
ec47c3b9 KS |
3436 | return ret; |
3437 | uncharge_out: | |
3917048d | 3438 | mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); |
936ca80d | 3439 | put_page(vmf->cow_page); |
ec47c3b9 KS |
3440 | return ret; |
3441 | } | |
3442 | ||
0721ec8b | 3443 | static int do_shared_fault(struct vm_fault *vmf) |
1da177e4 | 3444 | { |
82b0f8c3 | 3445 | struct vm_area_struct *vma = vmf->vma; |
f0c6d4d2 | 3446 | int ret, tmp; |
1d65f86d | 3447 | |
936ca80d | 3448 | ret = __do_fault(vmf); |
7eae74af | 3449 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 3450 | return ret; |
1da177e4 LT |
3451 | |
3452 | /* | |
f0c6d4d2 KS |
3453 | * Check if the backing address space wants to know that the page is |
3454 | * about to become writable | |
1da177e4 | 3455 | */ |
fb09a464 | 3456 | if (vma->vm_ops->page_mkwrite) { |
936ca80d | 3457 | unlock_page(vmf->page); |
38b8cb7f | 3458 | tmp = do_page_mkwrite(vmf); |
fb09a464 KS |
3459 | if (unlikely(!tmp || |
3460 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
936ca80d | 3461 | put_page(vmf->page); |
fb09a464 | 3462 | return tmp; |
4294621f | 3463 | } |
fb09a464 KS |
3464 | } |
3465 | ||
9118c0cb | 3466 | ret |= finish_fault(vmf); |
7267ec00 KS |
3467 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
3468 | VM_FAULT_RETRY))) { | |
936ca80d JK |
3469 | unlock_page(vmf->page); |
3470 | put_page(vmf->page); | |
f0c6d4d2 | 3471 | return ret; |
1da177e4 | 3472 | } |
b827e496 | 3473 | |
97ba0c2b | 3474 | fault_dirty_shared_page(vma, vmf->page); |
1d65f86d | 3475 | return ret; |
54cb8821 | 3476 | } |
d00806b1 | 3477 | |
9a95f3cf PC |
3478 | /* |
3479 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
3480 | * but allow concurrent faults). | |
3481 | * The mmap_sem may have been released depending on flags and our | |
3482 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
3483 | */ | |
82b0f8c3 | 3484 | static int do_fault(struct vm_fault *vmf) |
54cb8821 | 3485 | { |
82b0f8c3 | 3486 | struct vm_area_struct *vma = vmf->vma; |
b0b9b3df | 3487 | int ret; |
54cb8821 | 3488 | |
6b7339f4 KS |
3489 | /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ |
3490 | if (!vma->vm_ops->fault) | |
b0b9b3df HD |
3491 | ret = VM_FAULT_SIGBUS; |
3492 | else if (!(vmf->flags & FAULT_FLAG_WRITE)) | |
3493 | ret = do_read_fault(vmf); | |
3494 | else if (!(vma->vm_flags & VM_SHARED)) | |
3495 | ret = do_cow_fault(vmf); | |
3496 | else | |
3497 | ret = do_shared_fault(vmf); | |
3498 | ||
3499 | /* preallocated pagetable is unused: free it */ | |
3500 | if (vmf->prealloc_pte) { | |
3501 | pte_free(vma->vm_mm, vmf->prealloc_pte); | |
7f2b6ce8 | 3502 | vmf->prealloc_pte = NULL; |
b0b9b3df HD |
3503 | } |
3504 | return ret; | |
54cb8821 NP |
3505 | } |
3506 | ||
b19a9939 | 3507 | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
04bb2f94 RR |
3508 | unsigned long addr, int page_nid, |
3509 | int *flags) | |
9532fec1 MG |
3510 | { |
3511 | get_page(page); | |
3512 | ||
3513 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 3514 | if (page_nid == numa_node_id()) { |
9532fec1 | 3515 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
3516 | *flags |= TNF_FAULT_LOCAL; |
3517 | } | |
9532fec1 MG |
3518 | |
3519 | return mpol_misplaced(page, vma, addr); | |
3520 | } | |
3521 | ||
2994302b | 3522 | static int do_numa_page(struct vm_fault *vmf) |
d10e63f2 | 3523 | { |
82b0f8c3 | 3524 | struct vm_area_struct *vma = vmf->vma; |
4daae3b4 | 3525 | struct page *page = NULL; |
8191acbd | 3526 | int page_nid = -1; |
90572890 | 3527 | int last_cpupid; |
cbee9f88 | 3528 | int target_nid; |
b8593bfd | 3529 | bool migrated = false; |
cee216a6 | 3530 | pte_t pte; |
288bc549 | 3531 | bool was_writable = pte_savedwrite(vmf->orig_pte); |
6688cc05 | 3532 | int flags = 0; |
d10e63f2 MG |
3533 | |
3534 | /* | |
166f61b9 TH |
3535 | * The "pte" at this point cannot be used safely without |
3536 | * validation through pte_unmap_same(). It's of NUMA type but | |
3537 | * the pfn may be screwed if the read is non atomic. | |
166f61b9 | 3538 | */ |
82b0f8c3 JK |
3539 | vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); |
3540 | spin_lock(vmf->ptl); | |
cee216a6 | 3541 | if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { |
82b0f8c3 | 3542 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 MG |
3543 | goto out; |
3544 | } | |
3545 | ||
cee216a6 AK |
3546 | /* |
3547 | * Make it present again, Depending on how arch implementes non | |
3548 | * accessible ptes, some can allow access by kernel mode. | |
3549 | */ | |
3550 | pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); | |
4d942466 MG |
3551 | pte = pte_modify(pte, vma->vm_page_prot); |
3552 | pte = pte_mkyoung(pte); | |
b191f9b1 MG |
3553 | if (was_writable) |
3554 | pte = pte_mkwrite(pte); | |
cee216a6 | 3555 | ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); |
82b0f8c3 | 3556 | update_mmu_cache(vma, vmf->address, vmf->pte); |
d10e63f2 | 3557 | |
82b0f8c3 | 3558 | page = vm_normal_page(vma, vmf->address, pte); |
d10e63f2 | 3559 | if (!page) { |
82b0f8c3 | 3560 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
d10e63f2 MG |
3561 | return 0; |
3562 | } | |
3563 | ||
e81c4802 KS |
3564 | /* TODO: handle PTE-mapped THP */ |
3565 | if (PageCompound(page)) { | |
82b0f8c3 | 3566 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
e81c4802 KS |
3567 | return 0; |
3568 | } | |
3569 | ||
6688cc05 | 3570 | /* |
bea66fbd MG |
3571 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
3572 | * much anyway since they can be in shared cache state. This misses | |
3573 | * the case where a mapping is writable but the process never writes | |
3574 | * to it but pte_write gets cleared during protection updates and | |
3575 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
3576 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 3577 | */ |
d59dc7bc | 3578 | if (!pte_write(pte)) |
6688cc05 PZ |
3579 | flags |= TNF_NO_GROUP; |
3580 | ||
dabe1d99 RR |
3581 | /* |
3582 | * Flag if the page is shared between multiple address spaces. This | |
3583 | * is later used when determining whether to group tasks together | |
3584 | */ | |
3585 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
3586 | flags |= TNF_SHARED; | |
3587 | ||
90572890 | 3588 | last_cpupid = page_cpupid_last(page); |
8191acbd | 3589 | page_nid = page_to_nid(page); |
82b0f8c3 | 3590 | target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, |
bae473a4 | 3591 | &flags); |
82b0f8c3 | 3592 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
4daae3b4 | 3593 | if (target_nid == -1) { |
4daae3b4 MG |
3594 | put_page(page); |
3595 | goto out; | |
3596 | } | |
3597 | ||
3598 | /* Migrate to the requested node */ | |
1bc115d8 | 3599 | migrated = migrate_misplaced_page(page, vma, target_nid); |
6688cc05 | 3600 | if (migrated) { |
8191acbd | 3601 | page_nid = target_nid; |
6688cc05 | 3602 | flags |= TNF_MIGRATED; |
074c2381 MG |
3603 | } else |
3604 | flags |= TNF_MIGRATE_FAIL; | |
4daae3b4 MG |
3605 | |
3606 | out: | |
8191acbd | 3607 | if (page_nid != -1) |
6688cc05 | 3608 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 MG |
3609 | return 0; |
3610 | } | |
3611 | ||
82b0f8c3 | 3612 | static int create_huge_pmd(struct vm_fault *vmf) |
b96375f7 | 3613 | { |
f4200391 | 3614 | if (vma_is_anonymous(vmf->vma)) |
82b0f8c3 | 3615 | return do_huge_pmd_anonymous_page(vmf); |
a2d58167 | 3616 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 3617 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
b96375f7 MW |
3618 | return VM_FAULT_FALLBACK; |
3619 | } | |
3620 | ||
82b0f8c3 | 3621 | static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) |
b96375f7 | 3622 | { |
82b0f8c3 JK |
3623 | if (vma_is_anonymous(vmf->vma)) |
3624 | return do_huge_pmd_wp_page(vmf, orig_pmd); | |
a2d58167 | 3625 | if (vmf->vma->vm_ops->huge_fault) |
c791ace1 | 3626 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); |
af9e4d5f KS |
3627 | |
3628 | /* COW handled on pte level: split pmd */ | |
82b0f8c3 JK |
3629 | VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); |
3630 | __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); | |
af9e4d5f | 3631 | |
b96375f7 MW |
3632 | return VM_FAULT_FALLBACK; |
3633 | } | |
3634 | ||
38e08854 LS |
3635 | static inline bool vma_is_accessible(struct vm_area_struct *vma) |
3636 | { | |
3637 | return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); | |
3638 | } | |
3639 | ||
a00cc7d9 MW |
3640 | static int create_huge_pud(struct vm_fault *vmf) |
3641 | { | |
3642 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3643 | /* No support for anonymous transparent PUD pages yet */ | |
3644 | if (vma_is_anonymous(vmf->vma)) | |
3645 | return VM_FAULT_FALLBACK; | |
3646 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 3647 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
3648 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
3649 | return VM_FAULT_FALLBACK; | |
3650 | } | |
3651 | ||
3652 | static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) | |
3653 | { | |
3654 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
3655 | /* No support for anonymous transparent PUD pages yet */ | |
3656 | if (vma_is_anonymous(vmf->vma)) | |
3657 | return VM_FAULT_FALLBACK; | |
3658 | if (vmf->vma->vm_ops->huge_fault) | |
c791ace1 | 3659 | return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); |
a00cc7d9 MW |
3660 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
3661 | return VM_FAULT_FALLBACK; | |
3662 | } | |
3663 | ||
1da177e4 LT |
3664 | /* |
3665 | * These routines also need to handle stuff like marking pages dirty | |
3666 | * and/or accessed for architectures that don't do it in hardware (most | |
3667 | * RISC architectures). The early dirtying is also good on the i386. | |
3668 | * | |
3669 | * There is also a hook called "update_mmu_cache()" that architectures | |
3670 | * with external mmu caches can use to update those (ie the Sparc or | |
3671 | * PowerPC hashed page tables that act as extended TLBs). | |
3672 | * | |
7267ec00 KS |
3673 | * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow |
3674 | * concurrent faults). | |
9a95f3cf | 3675 | * |
7267ec00 KS |
3676 | * The mmap_sem may have been released depending on flags and our return value. |
3677 | * See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3678 | */ |
82b0f8c3 | 3679 | static int handle_pte_fault(struct vm_fault *vmf) |
1da177e4 LT |
3680 | { |
3681 | pte_t entry; | |
3682 | ||
82b0f8c3 | 3683 | if (unlikely(pmd_none(*vmf->pmd))) { |
7267ec00 KS |
3684 | /* |
3685 | * Leave __pte_alloc() until later: because vm_ops->fault may | |
3686 | * want to allocate huge page, and if we expose page table | |
3687 | * for an instant, it will be difficult to retract from | |
3688 | * concurrent faults and from rmap lookups. | |
3689 | */ | |
82b0f8c3 | 3690 | vmf->pte = NULL; |
7267ec00 KS |
3691 | } else { |
3692 | /* See comment in pte_alloc_one_map() */ | |
82b0f8c3 | 3693 | if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) |
7267ec00 KS |
3694 | return 0; |
3695 | /* | |
3696 | * A regular pmd is established and it can't morph into a huge | |
3697 | * pmd from under us anymore at this point because we hold the | |
3698 | * mmap_sem read mode and khugepaged takes it in write mode. | |
3699 | * So now it's safe to run pte_offset_map(). | |
3700 | */ | |
82b0f8c3 | 3701 | vmf->pte = pte_offset_map(vmf->pmd, vmf->address); |
2994302b | 3702 | vmf->orig_pte = *vmf->pte; |
7267ec00 KS |
3703 | |
3704 | /* | |
3705 | * some architectures can have larger ptes than wordsize, | |
3706 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and | |
3707 | * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee | |
3708 | * atomic accesses. The code below just needs a consistent | |
3709 | * view for the ifs and we later double check anyway with the | |
3710 | * ptl lock held. So here a barrier will do. | |
3711 | */ | |
3712 | barrier(); | |
2994302b | 3713 | if (pte_none(vmf->orig_pte)) { |
82b0f8c3 JK |
3714 | pte_unmap(vmf->pte); |
3715 | vmf->pte = NULL; | |
65500d23 | 3716 | } |
1da177e4 LT |
3717 | } |
3718 | ||
82b0f8c3 JK |
3719 | if (!vmf->pte) { |
3720 | if (vma_is_anonymous(vmf->vma)) | |
3721 | return do_anonymous_page(vmf); | |
7267ec00 | 3722 | else |
82b0f8c3 | 3723 | return do_fault(vmf); |
7267ec00 KS |
3724 | } |
3725 | ||
2994302b JK |
3726 | if (!pte_present(vmf->orig_pte)) |
3727 | return do_swap_page(vmf); | |
7267ec00 | 3728 | |
2994302b JK |
3729 | if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) |
3730 | return do_numa_page(vmf); | |
d10e63f2 | 3731 | |
82b0f8c3 JK |
3732 | vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); |
3733 | spin_lock(vmf->ptl); | |
2994302b | 3734 | entry = vmf->orig_pte; |
82b0f8c3 | 3735 | if (unlikely(!pte_same(*vmf->pte, entry))) |
8f4e2101 | 3736 | goto unlock; |
82b0f8c3 | 3737 | if (vmf->flags & FAULT_FLAG_WRITE) { |
1da177e4 | 3738 | if (!pte_write(entry)) |
2994302b | 3739 | return do_wp_page(vmf); |
1da177e4 LT |
3740 | entry = pte_mkdirty(entry); |
3741 | } | |
3742 | entry = pte_mkyoung(entry); | |
82b0f8c3 JK |
3743 | if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, |
3744 | vmf->flags & FAULT_FLAG_WRITE)) { | |
3745 | update_mmu_cache(vmf->vma, vmf->address, vmf->pte); | |
1a44e149 AA |
3746 | } else { |
3747 | /* | |
3748 | * This is needed only for protection faults but the arch code | |
3749 | * is not yet telling us if this is a protection fault or not. | |
3750 | * This still avoids useless tlb flushes for .text page faults | |
3751 | * with threads. | |
3752 | */ | |
82b0f8c3 JK |
3753 | if (vmf->flags & FAULT_FLAG_WRITE) |
3754 | flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); | |
1a44e149 | 3755 | } |
8f4e2101 | 3756 | unlock: |
82b0f8c3 | 3757 | pte_unmap_unlock(vmf->pte, vmf->ptl); |
83c54070 | 3758 | return 0; |
1da177e4 LT |
3759 | } |
3760 | ||
3761 | /* | |
3762 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf PC |
3763 | * |
3764 | * The mmap_sem may have been released depending on flags and our | |
3765 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3766 | */ |
dcddffd4 KS |
3767 | static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
3768 | unsigned int flags) | |
1da177e4 | 3769 | { |
82b0f8c3 | 3770 | struct vm_fault vmf = { |
bae473a4 | 3771 | .vma = vma, |
1a29d85e | 3772 | .address = address & PAGE_MASK, |
bae473a4 | 3773 | .flags = flags, |
0721ec8b | 3774 | .pgoff = linear_page_index(vma, address), |
667240e0 | 3775 | .gfp_mask = __get_fault_gfp_mask(vma), |
bae473a4 | 3776 | }; |
dcddffd4 | 3777 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 3778 | pgd_t *pgd; |
c2febafc | 3779 | p4d_t *p4d; |
a2d58167 | 3780 | int ret; |
1da177e4 | 3781 | |
1da177e4 | 3782 | pgd = pgd_offset(mm, address); |
c2febafc KS |
3783 | p4d = p4d_alloc(mm, pgd, address); |
3784 | if (!p4d) | |
3785 | return VM_FAULT_OOM; | |
a00cc7d9 | 3786 | |
c2febafc | 3787 | vmf.pud = pud_alloc(mm, p4d, address); |
a00cc7d9 | 3788 | if (!vmf.pud) |
c74df32c | 3789 | return VM_FAULT_OOM; |
a00cc7d9 | 3790 | if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { |
a00cc7d9 MW |
3791 | ret = create_huge_pud(&vmf); |
3792 | if (!(ret & VM_FAULT_FALLBACK)) | |
3793 | return ret; | |
3794 | } else { | |
3795 | pud_t orig_pud = *vmf.pud; | |
3796 | ||
3797 | barrier(); | |
3798 | if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { | |
3799 | unsigned int dirty = flags & FAULT_FLAG_WRITE; | |
3800 | ||
a00cc7d9 MW |
3801 | /* NUMA case for anonymous PUDs would go here */ |
3802 | ||
3803 | if (dirty && !pud_write(orig_pud)) { | |
3804 | ret = wp_huge_pud(&vmf, orig_pud); | |
3805 | if (!(ret & VM_FAULT_FALLBACK)) | |
3806 | return ret; | |
3807 | } else { | |
3808 | huge_pud_set_accessed(&vmf, orig_pud); | |
3809 | return 0; | |
3810 | } | |
3811 | } | |
3812 | } | |
3813 | ||
3814 | vmf.pmd = pmd_alloc(mm, vmf.pud, address); | |
82b0f8c3 | 3815 | if (!vmf.pmd) |
c74df32c | 3816 | return VM_FAULT_OOM; |
82b0f8c3 | 3817 | if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { |
a2d58167 | 3818 | ret = create_huge_pmd(&vmf); |
c0292554 KS |
3819 | if (!(ret & VM_FAULT_FALLBACK)) |
3820 | return ret; | |
71e3aac0 | 3821 | } else { |
82b0f8c3 | 3822 | pmd_t orig_pmd = *vmf.pmd; |
1f1d06c3 | 3823 | |
71e3aac0 | 3824 | barrier(); |
5c7fb56e | 3825 | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { |
38e08854 | 3826 | if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) |
82b0f8c3 | 3827 | return do_huge_pmd_numa_page(&vmf, orig_pmd); |
d10e63f2 | 3828 | |
82b0f8c3 | 3829 | if ((vmf.flags & FAULT_FLAG_WRITE) && |
bae473a4 | 3830 | !pmd_write(orig_pmd)) { |
82b0f8c3 | 3831 | ret = wp_huge_pmd(&vmf, orig_pmd); |
9845cbbd KS |
3832 | if (!(ret & VM_FAULT_FALLBACK)) |
3833 | return ret; | |
a1dd450b | 3834 | } else { |
82b0f8c3 | 3835 | huge_pmd_set_accessed(&vmf, orig_pmd); |
9845cbbd | 3836 | return 0; |
1f1d06c3 | 3837 | } |
71e3aac0 AA |
3838 | } |
3839 | } | |
3840 | ||
82b0f8c3 | 3841 | return handle_pte_fault(&vmf); |
1da177e4 LT |
3842 | } |
3843 | ||
9a95f3cf PC |
3844 | /* |
3845 | * By the time we get here, we already hold the mm semaphore | |
3846 | * | |
3847 | * The mmap_sem may have been released depending on flags and our | |
3848 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
3849 | */ | |
dcddffd4 KS |
3850 | int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, |
3851 | unsigned int flags) | |
519e5247 JW |
3852 | { |
3853 | int ret; | |
3854 | ||
3855 | __set_current_state(TASK_RUNNING); | |
3856 | ||
3857 | count_vm_event(PGFAULT); | |
dcddffd4 | 3858 | mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); |
519e5247 JW |
3859 | |
3860 | /* do counter updates before entering really critical section. */ | |
3861 | check_sync_rss_stat(current); | |
3862 | ||
3863 | /* | |
3864 | * Enable the memcg OOM handling for faults triggered in user | |
3865 | * space. Kernel faults are handled more gracefully. | |
3866 | */ | |
3867 | if (flags & FAULT_FLAG_USER) | |
49426420 | 3868 | mem_cgroup_oom_enable(); |
519e5247 | 3869 | |
bae473a4 KS |
3870 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
3871 | flags & FAULT_FLAG_INSTRUCTION, | |
3872 | flags & FAULT_FLAG_REMOTE)) | |
3873 | return VM_FAULT_SIGSEGV; | |
3874 | ||
3875 | if (unlikely(is_vm_hugetlb_page(vma))) | |
3876 | ret = hugetlb_fault(vma->vm_mm, vma, address, flags); | |
3877 | else | |
3878 | ret = __handle_mm_fault(vma, address, flags); | |
519e5247 | 3879 | |
49426420 JW |
3880 | if (flags & FAULT_FLAG_USER) { |
3881 | mem_cgroup_oom_disable(); | |
166f61b9 TH |
3882 | /* |
3883 | * The task may have entered a memcg OOM situation but | |
3884 | * if the allocation error was handled gracefully (no | |
3885 | * VM_FAULT_OOM), there is no need to kill anything. | |
3886 | * Just clean up the OOM state peacefully. | |
3887 | */ | |
3888 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
3889 | mem_cgroup_oom_synchronize(false); | |
49426420 | 3890 | } |
3812c8c8 | 3891 | |
3f70dc38 MH |
3892 | /* |
3893 | * This mm has been already reaped by the oom reaper and so the | |
3894 | * refault cannot be trusted in general. Anonymous refaults would | |
3895 | * lose data and give a zero page instead e.g. This is especially | |
3896 | * problem for use_mm() because regular tasks will just die and | |
3897 | * the corrupted data will not be visible anywhere while kthread | |
3898 | * will outlive the oom victim and potentially propagate the date | |
3899 | * further. | |
3900 | */ | |
3901 | if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) | |
3902 | && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) | |
3903 | ret = VM_FAULT_SIGBUS; | |
3904 | ||
519e5247 JW |
3905 | return ret; |
3906 | } | |
e1d6d01a | 3907 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 3908 | |
90eceff1 KS |
3909 | #ifndef __PAGETABLE_P4D_FOLDED |
3910 | /* | |
3911 | * Allocate p4d page table. | |
3912 | * We've already handled the fast-path in-line. | |
3913 | */ | |
3914 | int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | |
3915 | { | |
3916 | p4d_t *new = p4d_alloc_one(mm, address); | |
3917 | if (!new) | |
3918 | return -ENOMEM; | |
3919 | ||
3920 | smp_wmb(); /* See comment in __pte_alloc */ | |
3921 | ||
3922 | spin_lock(&mm->page_table_lock); | |
3923 | if (pgd_present(*pgd)) /* Another has populated it */ | |
3924 | p4d_free(mm, new); | |
3925 | else | |
3926 | pgd_populate(mm, pgd, new); | |
3927 | spin_unlock(&mm->page_table_lock); | |
3928 | return 0; | |
3929 | } | |
3930 | #endif /* __PAGETABLE_P4D_FOLDED */ | |
3931 | ||
1da177e4 LT |
3932 | #ifndef __PAGETABLE_PUD_FOLDED |
3933 | /* | |
3934 | * Allocate page upper directory. | |
872fec16 | 3935 | * We've already handled the fast-path in-line. |
1da177e4 | 3936 | */ |
c2febafc | 3937 | int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) |
1da177e4 | 3938 | { |
c74df32c HD |
3939 | pud_t *new = pud_alloc_one(mm, address); |
3940 | if (!new) | |
1bb3630e | 3941 | return -ENOMEM; |
1da177e4 | 3942 | |
362a61ad NP |
3943 | smp_wmb(); /* See comment in __pte_alloc */ |
3944 | ||
872fec16 | 3945 | spin_lock(&mm->page_table_lock); |
c2febafc KS |
3946 | #ifndef __ARCH_HAS_5LEVEL_HACK |
3947 | if (p4d_present(*p4d)) /* Another has populated it */ | |
5e541973 | 3948 | pud_free(mm, new); |
1bb3630e | 3949 | else |
c2febafc KS |
3950 | p4d_populate(mm, p4d, new); |
3951 | #else | |
3952 | if (pgd_present(*p4d)) /* Another has populated it */ | |
5e541973 | 3953 | pud_free(mm, new); |
1bb3630e | 3954 | else |
c2febafc KS |
3955 | pgd_populate(mm, p4d, new); |
3956 | #endif /* __ARCH_HAS_5LEVEL_HACK */ | |
c74df32c | 3957 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3958 | return 0; |
1da177e4 LT |
3959 | } |
3960 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
3961 | ||
3962 | #ifndef __PAGETABLE_PMD_FOLDED | |
3963 | /* | |
3964 | * Allocate page middle directory. | |
872fec16 | 3965 | * We've already handled the fast-path in-line. |
1da177e4 | 3966 | */ |
1bb3630e | 3967 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 3968 | { |
a00cc7d9 | 3969 | spinlock_t *ptl; |
c74df32c HD |
3970 | pmd_t *new = pmd_alloc_one(mm, address); |
3971 | if (!new) | |
1bb3630e | 3972 | return -ENOMEM; |
1da177e4 | 3973 | |
362a61ad NP |
3974 | smp_wmb(); /* See comment in __pte_alloc */ |
3975 | ||
a00cc7d9 | 3976 | ptl = pud_lock(mm, pud); |
1da177e4 | 3977 | #ifndef __ARCH_HAS_4LEVEL_HACK |
dc6c9a35 KS |
3978 | if (!pud_present(*pud)) { |
3979 | mm_inc_nr_pmds(mm); | |
1bb3630e | 3980 | pud_populate(mm, pud, new); |
dc6c9a35 | 3981 | } else /* Another has populated it */ |
5e541973 | 3982 | pmd_free(mm, new); |
dc6c9a35 KS |
3983 | #else |
3984 | if (!pgd_present(*pud)) { | |
3985 | mm_inc_nr_pmds(mm); | |
1bb3630e | 3986 | pgd_populate(mm, pud, new); |
dc6c9a35 KS |
3987 | } else /* Another has populated it */ |
3988 | pmd_free(mm, new); | |
1da177e4 | 3989 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
a00cc7d9 | 3990 | spin_unlock(ptl); |
1bb3630e | 3991 | return 0; |
e0f39591 | 3992 | } |
1da177e4 LT |
3993 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3994 | ||
09796395 RZ |
3995 | static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, |
3996 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | |
f8ad0f49 JW |
3997 | { |
3998 | pgd_t *pgd; | |
c2febafc | 3999 | p4d_t *p4d; |
f8ad0f49 JW |
4000 | pud_t *pud; |
4001 | pmd_t *pmd; | |
4002 | pte_t *ptep; | |
4003 | ||
4004 | pgd = pgd_offset(mm, address); | |
4005 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
4006 | goto out; | |
4007 | ||
c2febafc KS |
4008 | p4d = p4d_offset(pgd, address); |
4009 | if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) | |
4010 | goto out; | |
4011 | ||
4012 | pud = pud_offset(p4d, address); | |
f8ad0f49 JW |
4013 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) |
4014 | goto out; | |
4015 | ||
4016 | pmd = pmd_offset(pud, address); | |
f66055ab | 4017 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 | 4018 | |
09796395 RZ |
4019 | if (pmd_huge(*pmd)) { |
4020 | if (!pmdpp) | |
4021 | goto out; | |
4022 | ||
4023 | *ptlp = pmd_lock(mm, pmd); | |
4024 | if (pmd_huge(*pmd)) { | |
4025 | *pmdpp = pmd; | |
4026 | return 0; | |
4027 | } | |
4028 | spin_unlock(*ptlp); | |
4029 | } | |
4030 | ||
4031 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
f8ad0f49 JW |
4032 | goto out; |
4033 | ||
4034 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
4035 | if (!ptep) | |
4036 | goto out; | |
4037 | if (!pte_present(*ptep)) | |
4038 | goto unlock; | |
4039 | *ptepp = ptep; | |
4040 | return 0; | |
4041 | unlock: | |
4042 | pte_unmap_unlock(ptep, *ptlp); | |
4043 | out: | |
4044 | return -EINVAL; | |
4045 | } | |
4046 | ||
f729c8c9 RZ |
4047 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, |
4048 | pte_t **ptepp, spinlock_t **ptlp) | |
1b36ba81 NK |
4049 | { |
4050 | int res; | |
4051 | ||
4052 | /* (void) is needed to make gcc happy */ | |
4053 | (void) __cond_lock(*ptlp, | |
09796395 RZ |
4054 | !(res = __follow_pte_pmd(mm, address, ptepp, NULL, |
4055 | ptlp))); | |
4056 | return res; | |
4057 | } | |
4058 | ||
4059 | int follow_pte_pmd(struct mm_struct *mm, unsigned long address, | |
4060 | pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) | |
4061 | { | |
4062 | int res; | |
4063 | ||
4064 | /* (void) is needed to make gcc happy */ | |
4065 | (void) __cond_lock(*ptlp, | |
4066 | !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp, | |
4067 | ptlp))); | |
1b36ba81 NK |
4068 | return res; |
4069 | } | |
09796395 | 4070 | EXPORT_SYMBOL(follow_pte_pmd); |
1b36ba81 | 4071 | |
3b6748e2 JW |
4072 | /** |
4073 | * follow_pfn - look up PFN at a user virtual address | |
4074 | * @vma: memory mapping | |
4075 | * @address: user virtual address | |
4076 | * @pfn: location to store found PFN | |
4077 | * | |
4078 | * Only IO mappings and raw PFN mappings are allowed. | |
4079 | * | |
4080 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | |
4081 | */ | |
4082 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
4083 | unsigned long *pfn) | |
4084 | { | |
4085 | int ret = -EINVAL; | |
4086 | spinlock_t *ptl; | |
4087 | pte_t *ptep; | |
4088 | ||
4089 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
4090 | return ret; | |
4091 | ||
4092 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
4093 | if (ret) | |
4094 | return ret; | |
4095 | *pfn = pte_pfn(*ptep); | |
4096 | pte_unmap_unlock(ptep, ptl); | |
4097 | return 0; | |
4098 | } | |
4099 | EXPORT_SYMBOL(follow_pfn); | |
4100 | ||
28b2ee20 | 4101 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 4102 | int follow_phys(struct vm_area_struct *vma, |
4103 | unsigned long address, unsigned int flags, | |
4104 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 4105 | { |
03668a4d | 4106 | int ret = -EINVAL; |
28b2ee20 RR |
4107 | pte_t *ptep, pte; |
4108 | spinlock_t *ptl; | |
28b2ee20 | 4109 | |
d87fe660 | 4110 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
4111 | goto out; | |
28b2ee20 | 4112 | |
03668a4d | 4113 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 4114 | goto out; |
28b2ee20 | 4115 | pte = *ptep; |
03668a4d | 4116 | |
28b2ee20 RR |
4117 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
4118 | goto unlock; | |
28b2ee20 RR |
4119 | |
4120 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 4121 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 4122 | |
03668a4d | 4123 | ret = 0; |
28b2ee20 RR |
4124 | unlock: |
4125 | pte_unmap_unlock(ptep, ptl); | |
4126 | out: | |
d87fe660 | 4127 | return ret; |
28b2ee20 RR |
4128 | } |
4129 | ||
4130 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
4131 | void *buf, int len, int write) | |
4132 | { | |
4133 | resource_size_t phys_addr; | |
4134 | unsigned long prot = 0; | |
2bc7273b | 4135 | void __iomem *maddr; |
28b2ee20 RR |
4136 | int offset = addr & (PAGE_SIZE-1); |
4137 | ||
d87fe660 | 4138 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
4139 | return -EINVAL; |
4140 | ||
9cb12d7b | 4141 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
28b2ee20 RR |
4142 | if (write) |
4143 | memcpy_toio(maddr + offset, buf, len); | |
4144 | else | |
4145 | memcpy_fromio(buf, maddr + offset, len); | |
4146 | iounmap(maddr); | |
4147 | ||
4148 | return len; | |
4149 | } | |
5a73633e | 4150 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
4151 | #endif |
4152 | ||
0ec76a11 | 4153 | /* |
206cb636 SW |
4154 | * Access another process' address space as given in mm. If non-NULL, use the |
4155 | * given task for page fault accounting. | |
0ec76a11 | 4156 | */ |
84d77d3f | 4157 | int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
442486ec | 4158 | unsigned long addr, void *buf, int len, unsigned int gup_flags) |
0ec76a11 | 4159 | { |
0ec76a11 | 4160 | struct vm_area_struct *vma; |
0ec76a11 | 4161 | void *old_buf = buf; |
442486ec | 4162 | int write = gup_flags & FOLL_WRITE; |
0ec76a11 | 4163 | |
0ec76a11 | 4164 | down_read(&mm->mmap_sem); |
183ff22b | 4165 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
4166 | while (len) { |
4167 | int bytes, ret, offset; | |
4168 | void *maddr; | |
28b2ee20 | 4169 | struct page *page = NULL; |
0ec76a11 | 4170 | |
1e987790 | 4171 | ret = get_user_pages_remote(tsk, mm, addr, 1, |
5b56d49f | 4172 | gup_flags, &page, &vma, NULL); |
28b2ee20 | 4173 | if (ret <= 0) { |
dbffcd03 RR |
4174 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
4175 | break; | |
4176 | #else | |
28b2ee20 RR |
4177 | /* |
4178 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
4179 | * we can access using slightly different code. | |
4180 | */ | |
28b2ee20 | 4181 | vma = find_vma(mm, addr); |
fe936dfc | 4182 | if (!vma || vma->vm_start > addr) |
28b2ee20 RR |
4183 | break; |
4184 | if (vma->vm_ops && vma->vm_ops->access) | |
4185 | ret = vma->vm_ops->access(vma, addr, buf, | |
4186 | len, write); | |
4187 | if (ret <= 0) | |
28b2ee20 RR |
4188 | break; |
4189 | bytes = ret; | |
dbffcd03 | 4190 | #endif |
0ec76a11 | 4191 | } else { |
28b2ee20 RR |
4192 | bytes = len; |
4193 | offset = addr & (PAGE_SIZE-1); | |
4194 | if (bytes > PAGE_SIZE-offset) | |
4195 | bytes = PAGE_SIZE-offset; | |
4196 | ||
4197 | maddr = kmap(page); | |
4198 | if (write) { | |
4199 | copy_to_user_page(vma, page, addr, | |
4200 | maddr + offset, buf, bytes); | |
4201 | set_page_dirty_lock(page); | |
4202 | } else { | |
4203 | copy_from_user_page(vma, page, addr, | |
4204 | buf, maddr + offset, bytes); | |
4205 | } | |
4206 | kunmap(page); | |
09cbfeaf | 4207 | put_page(page); |
0ec76a11 | 4208 | } |
0ec76a11 DH |
4209 | len -= bytes; |
4210 | buf += bytes; | |
4211 | addr += bytes; | |
4212 | } | |
4213 | up_read(&mm->mmap_sem); | |
0ec76a11 DH |
4214 | |
4215 | return buf - old_buf; | |
4216 | } | |
03252919 | 4217 | |
5ddd36b9 | 4218 | /** |
ae91dbfc | 4219 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
4220 | * @mm: the mm_struct of the target address space |
4221 | * @addr: start address to access | |
4222 | * @buf: source or destination buffer | |
4223 | * @len: number of bytes to transfer | |
6347e8d5 | 4224 | * @gup_flags: flags modifying lookup behaviour |
5ddd36b9 SW |
4225 | * |
4226 | * The caller must hold a reference on @mm. | |
4227 | */ | |
4228 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
6347e8d5 | 4229 | void *buf, int len, unsigned int gup_flags) |
5ddd36b9 | 4230 | { |
6347e8d5 | 4231 | return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); |
5ddd36b9 SW |
4232 | } |
4233 | ||
206cb636 SW |
4234 | /* |
4235 | * Access another process' address space. | |
4236 | * Source/target buffer must be kernel space, | |
4237 | * Do not walk the page table directly, use get_user_pages | |
4238 | */ | |
4239 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
f307ab6d | 4240 | void *buf, int len, unsigned int gup_flags) |
206cb636 SW |
4241 | { |
4242 | struct mm_struct *mm; | |
4243 | int ret; | |
4244 | ||
4245 | mm = get_task_mm(tsk); | |
4246 | if (!mm) | |
4247 | return 0; | |
4248 | ||
f307ab6d | 4249 | ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); |
442486ec | 4250 | |
206cb636 SW |
4251 | mmput(mm); |
4252 | ||
4253 | return ret; | |
4254 | } | |
fcd35857 | 4255 | EXPORT_SYMBOL_GPL(access_process_vm); |
206cb636 | 4256 | |
03252919 AK |
4257 | /* |
4258 | * Print the name of a VMA. | |
4259 | */ | |
4260 | void print_vma_addr(char *prefix, unsigned long ip) | |
4261 | { | |
4262 | struct mm_struct *mm = current->mm; | |
4263 | struct vm_area_struct *vma; | |
4264 | ||
e8bff74a IM |
4265 | /* |
4266 | * Do not print if we are in atomic | |
4267 | * contexts (in exception stacks, etc.): | |
4268 | */ | |
4269 | if (preempt_count()) | |
4270 | return; | |
4271 | ||
03252919 AK |
4272 | down_read(&mm->mmap_sem); |
4273 | vma = find_vma(mm, ip); | |
4274 | if (vma && vma->vm_file) { | |
4275 | struct file *f = vma->vm_file; | |
4276 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
4277 | if (buf) { | |
2fbc57c5 | 4278 | char *p; |
03252919 | 4279 | |
9bf39ab2 | 4280 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
4281 | if (IS_ERR(p)) |
4282 | p = "?"; | |
2fbc57c5 | 4283 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
4284 | vma->vm_start, |
4285 | vma->vm_end - vma->vm_start); | |
4286 | free_page((unsigned long)buf); | |
4287 | } | |
4288 | } | |
51a07e50 | 4289 | up_read(&mm->mmap_sem); |
03252919 | 4290 | } |
3ee1afa3 | 4291 | |
662bbcb2 | 4292 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 4293 | void __might_fault(const char *file, int line) |
3ee1afa3 | 4294 | { |
95156f00 PZ |
4295 | /* |
4296 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
4297 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
4298 | * get paged out, therefore we'll never actually fault, and the | |
4299 | * below annotations will generate false positives. | |
4300 | */ | |
db68ce10 | 4301 | if (uaccess_kernel()) |
95156f00 | 4302 | return; |
9ec23531 | 4303 | if (pagefault_disabled()) |
662bbcb2 | 4304 | return; |
9ec23531 DH |
4305 | __might_sleep(file, line, 0); |
4306 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
662bbcb2 | 4307 | if (current->mm) |
3ee1afa3 | 4308 | might_lock_read(¤t->mm->mmap_sem); |
9ec23531 | 4309 | #endif |
3ee1afa3 | 4310 | } |
9ec23531 | 4311 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 4312 | #endif |
47ad8475 AA |
4313 | |
4314 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
4315 | static void clear_gigantic_page(struct page *page, | |
4316 | unsigned long addr, | |
4317 | unsigned int pages_per_huge_page) | |
4318 | { | |
4319 | int i; | |
4320 | struct page *p = page; | |
4321 | ||
4322 | might_sleep(); | |
4323 | for (i = 0; i < pages_per_huge_page; | |
4324 | i++, p = mem_map_next(p, page, i)) { | |
4325 | cond_resched(); | |
4326 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
4327 | } | |
4328 | } | |
4329 | void clear_huge_page(struct page *page, | |
4330 | unsigned long addr, unsigned int pages_per_huge_page) | |
4331 | { | |
4332 | int i; | |
4333 | ||
4334 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4335 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
4336 | return; | |
4337 | } | |
4338 | ||
4339 | might_sleep(); | |
4340 | for (i = 0; i < pages_per_huge_page; i++) { | |
4341 | cond_resched(); | |
4342 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | |
4343 | } | |
4344 | } | |
4345 | ||
4346 | static void copy_user_gigantic_page(struct page *dst, struct page *src, | |
4347 | unsigned long addr, | |
4348 | struct vm_area_struct *vma, | |
4349 | unsigned int pages_per_huge_page) | |
4350 | { | |
4351 | int i; | |
4352 | struct page *dst_base = dst; | |
4353 | struct page *src_base = src; | |
4354 | ||
4355 | for (i = 0; i < pages_per_huge_page; ) { | |
4356 | cond_resched(); | |
4357 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
4358 | ||
4359 | i++; | |
4360 | dst = mem_map_next(dst, dst_base, i); | |
4361 | src = mem_map_next(src, src_base, i); | |
4362 | } | |
4363 | } | |
4364 | ||
4365 | void copy_user_huge_page(struct page *dst, struct page *src, | |
4366 | unsigned long addr, struct vm_area_struct *vma, | |
4367 | unsigned int pages_per_huge_page) | |
4368 | { | |
4369 | int i; | |
4370 | ||
4371 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
4372 | copy_user_gigantic_page(dst, src, addr, vma, | |
4373 | pages_per_huge_page); | |
4374 | return; | |
4375 | } | |
4376 | ||
4377 | might_sleep(); | |
4378 | for (i = 0; i < pages_per_huge_page; i++) { | |
4379 | cond_resched(); | |
4380 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | |
4381 | } | |
4382 | } | |
fa4d75c1 MK |
4383 | |
4384 | long copy_huge_page_from_user(struct page *dst_page, | |
4385 | const void __user *usr_src, | |
810a56b9 MK |
4386 | unsigned int pages_per_huge_page, |
4387 | bool allow_pagefault) | |
fa4d75c1 MK |
4388 | { |
4389 | void *src = (void *)usr_src; | |
4390 | void *page_kaddr; | |
4391 | unsigned long i, rc = 0; | |
4392 | unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; | |
4393 | ||
4394 | for (i = 0; i < pages_per_huge_page; i++) { | |
810a56b9 MK |
4395 | if (allow_pagefault) |
4396 | page_kaddr = kmap(dst_page + i); | |
4397 | else | |
4398 | page_kaddr = kmap_atomic(dst_page + i); | |
fa4d75c1 MK |
4399 | rc = copy_from_user(page_kaddr, |
4400 | (const void __user *)(src + i * PAGE_SIZE), | |
4401 | PAGE_SIZE); | |
810a56b9 MK |
4402 | if (allow_pagefault) |
4403 | kunmap(dst_page + i); | |
4404 | else | |
4405 | kunmap_atomic(page_kaddr); | |
fa4d75c1 MK |
4406 | |
4407 | ret_val -= (PAGE_SIZE - rc); | |
4408 | if (rc) | |
4409 | break; | |
4410 | ||
4411 | cond_resched(); | |
4412 | } | |
4413 | return ret_val; | |
4414 | } | |
47ad8475 | 4415 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ |
49076ec2 | 4416 | |
40b64acd | 4417 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
4418 | |
4419 | static struct kmem_cache *page_ptl_cachep; | |
4420 | ||
4421 | void __init ptlock_cache_init(void) | |
4422 | { | |
4423 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
4424 | SLAB_PANIC, NULL); | |
4425 | } | |
4426 | ||
539edb58 | 4427 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
4428 | { |
4429 | spinlock_t *ptl; | |
4430 | ||
b35f1819 | 4431 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
4432 | if (!ptl) |
4433 | return false; | |
539edb58 | 4434 | page->ptl = ptl; |
49076ec2 KS |
4435 | return true; |
4436 | } | |
4437 | ||
539edb58 | 4438 | void ptlock_free(struct page *page) |
49076ec2 | 4439 | { |
b35f1819 | 4440 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
4441 | } |
4442 | #endif |