]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh (alex@cconcepts.co.uk) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * (Gerhard.Wichert@pdb.siemens.de) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
8a9f3ccd | 53 | #include <linux/memcontrol.h> |
cddb8a5c | 54 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
55 | #include <linux/kallsyms.h> |
56 | #include <linux/swapops.h> | |
57 | #include <linux/elf.h> | |
1da177e4 LT |
58 | |
59 | #include <asm/pgalloc.h> | |
60 | #include <asm/uaccess.h> | |
61 | #include <asm/tlb.h> | |
62 | #include <asm/tlbflush.h> | |
63 | #include <asm/pgtable.h> | |
64 | ||
42b77728 JB |
65 | #include "internal.h" |
66 | ||
d41dee36 | 67 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
68 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
69 | unsigned long max_mapnr; | |
70 | struct page *mem_map; | |
71 | ||
72 | EXPORT_SYMBOL(max_mapnr); | |
73 | EXPORT_SYMBOL(mem_map); | |
74 | #endif | |
75 | ||
76 | unsigned long num_physpages; | |
77 | /* | |
78 | * A number of key systems in x86 including ioremap() rely on the assumption | |
79 | * that high_memory defines the upper bound on direct map memory, then end | |
80 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
81 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
82 | * and ZONE_HIGHMEM. | |
83 | */ | |
84 | void * high_memory; | |
1da177e4 LT |
85 | |
86 | EXPORT_SYMBOL(num_physpages); | |
87 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 88 | |
32a93233 IM |
89 | /* |
90 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
91 | * | |
92 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
93 | * as ancient (libc5 based) binaries can segfault. ) | |
94 | */ | |
95 | int randomize_va_space __read_mostly = | |
96 | #ifdef CONFIG_COMPAT_BRK | |
97 | 1; | |
98 | #else | |
99 | 2; | |
100 | #endif | |
a62eaf15 AK |
101 | |
102 | static int __init disable_randmaps(char *s) | |
103 | { | |
104 | randomize_va_space = 0; | |
9b41046c | 105 | return 1; |
a62eaf15 AK |
106 | } |
107 | __setup("norandmaps", disable_randmaps); | |
108 | ||
109 | ||
1da177e4 LT |
110 | /* |
111 | * If a p?d_bad entry is found while walking page tables, report | |
112 | * the error, before resetting entry to p?d_none. Usually (but | |
113 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
114 | */ | |
115 | ||
116 | void pgd_clear_bad(pgd_t *pgd) | |
117 | { | |
118 | pgd_ERROR(*pgd); | |
119 | pgd_clear(pgd); | |
120 | } | |
121 | ||
122 | void pud_clear_bad(pud_t *pud) | |
123 | { | |
124 | pud_ERROR(*pud); | |
125 | pud_clear(pud); | |
126 | } | |
127 | ||
128 | void pmd_clear_bad(pmd_t *pmd) | |
129 | { | |
130 | pmd_ERROR(*pmd); | |
131 | pmd_clear(pmd); | |
132 | } | |
133 | ||
134 | /* | |
135 | * Note: this doesn't free the actual pages themselves. That | |
136 | * has been handled earlier when unmapping all the memory regions. | |
137 | */ | |
9e1b32ca BH |
138 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
139 | unsigned long addr) | |
1da177e4 | 140 | { |
2f569afd | 141 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 142 | pmd_clear(pmd); |
9e1b32ca | 143 | pte_free_tlb(tlb, token, addr); |
e0da382c | 144 | tlb->mm->nr_ptes--; |
1da177e4 LT |
145 | } |
146 | ||
e0da382c HD |
147 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
148 | unsigned long addr, unsigned long end, | |
149 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
150 | { |
151 | pmd_t *pmd; | |
152 | unsigned long next; | |
e0da382c | 153 | unsigned long start; |
1da177e4 | 154 | |
e0da382c | 155 | start = addr; |
1da177e4 | 156 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
157 | do { |
158 | next = pmd_addr_end(addr, end); | |
159 | if (pmd_none_or_clear_bad(pmd)) | |
160 | continue; | |
9e1b32ca | 161 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
162 | } while (pmd++, addr = next, addr != end); |
163 | ||
e0da382c HD |
164 | start &= PUD_MASK; |
165 | if (start < floor) | |
166 | return; | |
167 | if (ceiling) { | |
168 | ceiling &= PUD_MASK; | |
169 | if (!ceiling) | |
170 | return; | |
1da177e4 | 171 | } |
e0da382c HD |
172 | if (end - 1 > ceiling - 1) |
173 | return; | |
174 | ||
175 | pmd = pmd_offset(pud, start); | |
176 | pud_clear(pud); | |
9e1b32ca | 177 | pmd_free_tlb(tlb, pmd, start); |
1da177e4 LT |
178 | } |
179 | ||
e0da382c HD |
180 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
181 | unsigned long addr, unsigned long end, | |
182 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
183 | { |
184 | pud_t *pud; | |
185 | unsigned long next; | |
e0da382c | 186 | unsigned long start; |
1da177e4 | 187 | |
e0da382c | 188 | start = addr; |
1da177e4 | 189 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
190 | do { |
191 | next = pud_addr_end(addr, end); | |
192 | if (pud_none_or_clear_bad(pud)) | |
193 | continue; | |
e0da382c | 194 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
195 | } while (pud++, addr = next, addr != end); |
196 | ||
e0da382c HD |
197 | start &= PGDIR_MASK; |
198 | if (start < floor) | |
199 | return; | |
200 | if (ceiling) { | |
201 | ceiling &= PGDIR_MASK; | |
202 | if (!ceiling) | |
203 | return; | |
1da177e4 | 204 | } |
e0da382c HD |
205 | if (end - 1 > ceiling - 1) |
206 | return; | |
207 | ||
208 | pud = pud_offset(pgd, start); | |
209 | pgd_clear(pgd); | |
9e1b32ca | 210 | pud_free_tlb(tlb, pud, start); |
1da177e4 LT |
211 | } |
212 | ||
213 | /* | |
e0da382c HD |
214 | * This function frees user-level page tables of a process. |
215 | * | |
1da177e4 LT |
216 | * Must be called with pagetable lock held. |
217 | */ | |
42b77728 | 218 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
219 | unsigned long addr, unsigned long end, |
220 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
221 | { |
222 | pgd_t *pgd; | |
223 | unsigned long next; | |
e0da382c HD |
224 | unsigned long start; |
225 | ||
226 | /* | |
227 | * The next few lines have given us lots of grief... | |
228 | * | |
229 | * Why are we testing PMD* at this top level? Because often | |
230 | * there will be no work to do at all, and we'd prefer not to | |
231 | * go all the way down to the bottom just to discover that. | |
232 | * | |
233 | * Why all these "- 1"s? Because 0 represents both the bottom | |
234 | * of the address space and the top of it (using -1 for the | |
235 | * top wouldn't help much: the masks would do the wrong thing). | |
236 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
237 | * the address space, but end 0 and ceiling 0 refer to the top | |
238 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
239 | * that end 0 case should be mythical). | |
240 | * | |
241 | * Wherever addr is brought up or ceiling brought down, we must | |
242 | * be careful to reject "the opposite 0" before it confuses the | |
243 | * subsequent tests. But what about where end is brought down | |
244 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
245 | * | |
246 | * Whereas we round start (addr) and ceiling down, by different | |
247 | * masks at different levels, in order to test whether a table | |
248 | * now has no other vmas using it, so can be freed, we don't | |
249 | * bother to round floor or end up - the tests don't need that. | |
250 | */ | |
1da177e4 | 251 | |
e0da382c HD |
252 | addr &= PMD_MASK; |
253 | if (addr < floor) { | |
254 | addr += PMD_SIZE; | |
255 | if (!addr) | |
256 | return; | |
257 | } | |
258 | if (ceiling) { | |
259 | ceiling &= PMD_MASK; | |
260 | if (!ceiling) | |
261 | return; | |
262 | } | |
263 | if (end - 1 > ceiling - 1) | |
264 | end -= PMD_SIZE; | |
265 | if (addr > end - 1) | |
266 | return; | |
267 | ||
268 | start = addr; | |
42b77728 | 269 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
270 | do { |
271 | next = pgd_addr_end(addr, end); | |
272 | if (pgd_none_or_clear_bad(pgd)) | |
273 | continue; | |
42b77728 | 274 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 275 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
276 | } |
277 | ||
42b77728 | 278 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 279 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
280 | { |
281 | while (vma) { | |
282 | struct vm_area_struct *next = vma->vm_next; | |
283 | unsigned long addr = vma->vm_start; | |
284 | ||
8f4f8c16 HD |
285 | /* |
286 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
287 | */ | |
288 | anon_vma_unlink(vma); | |
289 | unlink_file_vma(vma); | |
290 | ||
9da61aef | 291 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 292 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 293 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
294 | } else { |
295 | /* | |
296 | * Optimization: gather nearby vmas into one call down | |
297 | */ | |
298 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 299 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
300 | vma = next; |
301 | next = vma->vm_next; | |
8f4f8c16 HD |
302 | anon_vma_unlink(vma); |
303 | unlink_file_vma(vma); | |
3bf5ee95 HD |
304 | } |
305 | free_pgd_range(tlb, addr, vma->vm_end, | |
306 | floor, next? next->vm_start: ceiling); | |
307 | } | |
e0da382c HD |
308 | vma = next; |
309 | } | |
1da177e4 LT |
310 | } |
311 | ||
1bb3630e | 312 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 313 | { |
2f569afd | 314 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
315 | if (!new) |
316 | return -ENOMEM; | |
317 | ||
362a61ad NP |
318 | /* |
319 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
320 | * visible before the pte is made visible to other CPUs by being | |
321 | * put into page tables. | |
322 | * | |
323 | * The other side of the story is the pointer chasing in the page | |
324 | * table walking code (when walking the page table without locking; | |
325 | * ie. most of the time). Fortunately, these data accesses consist | |
326 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
327 | * being the notable exception) will already guarantee loads are | |
328 | * seen in-order. See the alpha page table accessors for the | |
329 | * smp_read_barrier_depends() barriers in page table walking code. | |
330 | */ | |
331 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
332 | ||
c74df32c | 333 | spin_lock(&mm->page_table_lock); |
2f569afd | 334 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 335 | mm->nr_ptes++; |
1da177e4 | 336 | pmd_populate(mm, pmd, new); |
2f569afd | 337 | new = NULL; |
1da177e4 | 338 | } |
c74df32c | 339 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
340 | if (new) |
341 | pte_free(mm, new); | |
1bb3630e | 342 | return 0; |
1da177e4 LT |
343 | } |
344 | ||
1bb3630e | 345 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 346 | { |
1bb3630e HD |
347 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
348 | if (!new) | |
349 | return -ENOMEM; | |
350 | ||
362a61ad NP |
351 | smp_wmb(); /* See comment in __pte_alloc */ |
352 | ||
1bb3630e | 353 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 354 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 355 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
356 | new = NULL; |
357 | } | |
1bb3630e | 358 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
359 | if (new) |
360 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 361 | return 0; |
1da177e4 LT |
362 | } |
363 | ||
ae859762 HD |
364 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
365 | { | |
366 | if (file_rss) | |
367 | add_mm_counter(mm, file_rss, file_rss); | |
368 | if (anon_rss) | |
369 | add_mm_counter(mm, anon_rss, anon_rss); | |
370 | } | |
371 | ||
b5810039 | 372 | /* |
6aab341e LT |
373 | * This function is called to print an error when a bad pte |
374 | * is found. For example, we might have a PFN-mapped pte in | |
375 | * a region that doesn't allow it. | |
b5810039 NP |
376 | * |
377 | * The calling function must still handle the error. | |
378 | */ | |
3dc14741 HD |
379 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
380 | pte_t pte, struct page *page) | |
b5810039 | 381 | { |
3dc14741 HD |
382 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
383 | pud_t *pud = pud_offset(pgd, addr); | |
384 | pmd_t *pmd = pmd_offset(pud, addr); | |
385 | struct address_space *mapping; | |
386 | pgoff_t index; | |
d936cf9b HD |
387 | static unsigned long resume; |
388 | static unsigned long nr_shown; | |
389 | static unsigned long nr_unshown; | |
390 | ||
391 | /* | |
392 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
393 | * or allow a steady drip of one report per second. | |
394 | */ | |
395 | if (nr_shown == 60) { | |
396 | if (time_before(jiffies, resume)) { | |
397 | nr_unshown++; | |
398 | return; | |
399 | } | |
400 | if (nr_unshown) { | |
1e9e6365 HD |
401 | printk(KERN_ALERT |
402 | "BUG: Bad page map: %lu messages suppressed\n", | |
d936cf9b HD |
403 | nr_unshown); |
404 | nr_unshown = 0; | |
405 | } | |
406 | nr_shown = 0; | |
407 | } | |
408 | if (nr_shown++ == 0) | |
409 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
410 | |
411 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
412 | index = linear_page_index(vma, addr); | |
413 | ||
1e9e6365 HD |
414 | printk(KERN_ALERT |
415 | "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", | |
3dc14741 HD |
416 | current->comm, |
417 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
418 | if (page) { | |
1e9e6365 | 419 | printk(KERN_ALERT |
3dc14741 HD |
420 | "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", |
421 | page, (void *)page->flags, page_count(page), | |
422 | page_mapcount(page), page->mapping, page->index); | |
423 | } | |
1e9e6365 | 424 | printk(KERN_ALERT |
3dc14741 HD |
425 | "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
426 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
427 | /* | |
428 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | |
429 | */ | |
430 | if (vma->vm_ops) | |
1e9e6365 | 431 | print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", |
3dc14741 HD |
432 | (unsigned long)vma->vm_ops->fault); |
433 | if (vma->vm_file && vma->vm_file->f_op) | |
1e9e6365 | 434 | print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", |
3dc14741 | 435 | (unsigned long)vma->vm_file->f_op->mmap); |
b5810039 | 436 | dump_stack(); |
3dc14741 | 437 | add_taint(TAINT_BAD_PAGE); |
b5810039 NP |
438 | } |
439 | ||
67121172 LT |
440 | static inline int is_cow_mapping(unsigned int flags) |
441 | { | |
442 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
443 | } | |
444 | ||
ee498ed7 | 445 | /* |
7e675137 | 446 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 447 | * |
7e675137 NP |
448 | * "Special" mappings do not wish to be associated with a "struct page" (either |
449 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
450 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 451 | * |
7e675137 NP |
452 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
453 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
454 | * may not have a spare pte bit, which requires a more complicated scheme, | |
455 | * described below. | |
456 | * | |
457 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
458 | * special mapping (even if there are underlying and valid "struct pages"). | |
459 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 460 | * |
b379d790 JH |
461 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
462 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
463 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
464 | * mapping will always honor the rule | |
6aab341e LT |
465 | * |
466 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
467 | * | |
7e675137 NP |
468 | * And for normal mappings this is false. |
469 | * | |
470 | * This restricts such mappings to be a linear translation from virtual address | |
471 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
472 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
473 | * special (because none can have been COWed). | |
b379d790 | 474 | * |
b379d790 | 475 | * |
7e675137 | 476 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
477 | * |
478 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
479 | * page" backing, however the difference is that _all_ pages with a struct | |
480 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
481 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
482 | * (which can be slower and simply not an option for some PFNMAP users). The | |
483 | * advantage is that we don't have to follow the strict linearity rule of | |
484 | * PFNMAP mappings in order to support COWable mappings. | |
485 | * | |
ee498ed7 | 486 | */ |
7e675137 NP |
487 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
488 | # define HAVE_PTE_SPECIAL 1 | |
489 | #else | |
490 | # define HAVE_PTE_SPECIAL 0 | |
491 | #endif | |
492 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
493 | pte_t pte) | |
ee498ed7 | 494 | { |
22b31eec | 495 | unsigned long pfn = pte_pfn(pte); |
7e675137 NP |
496 | |
497 | if (HAVE_PTE_SPECIAL) { | |
22b31eec HD |
498 | if (likely(!pte_special(pte))) |
499 | goto check_pfn; | |
500 | if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) | |
501 | print_bad_pte(vma, addr, pte, NULL); | |
7e675137 NP |
502 | return NULL; |
503 | } | |
504 | ||
505 | /* !HAVE_PTE_SPECIAL case follows: */ | |
506 | ||
b379d790 JH |
507 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
508 | if (vma->vm_flags & VM_MIXEDMAP) { | |
509 | if (!pfn_valid(pfn)) | |
510 | return NULL; | |
511 | goto out; | |
512 | } else { | |
7e675137 NP |
513 | unsigned long off; |
514 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
515 | if (pfn == vma->vm_pgoff + off) |
516 | return NULL; | |
517 | if (!is_cow_mapping(vma->vm_flags)) | |
518 | return NULL; | |
519 | } | |
6aab341e LT |
520 | } |
521 | ||
22b31eec HD |
522 | check_pfn: |
523 | if (unlikely(pfn > highest_memmap_pfn)) { | |
524 | print_bad_pte(vma, addr, pte, NULL); | |
525 | return NULL; | |
526 | } | |
6aab341e LT |
527 | |
528 | /* | |
7e675137 | 529 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 530 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 531 | */ |
b379d790 | 532 | out: |
6aab341e | 533 | return pfn_to_page(pfn); |
ee498ed7 HD |
534 | } |
535 | ||
1da177e4 LT |
536 | /* |
537 | * copy one vm_area from one task to the other. Assumes the page tables | |
538 | * already present in the new task to be cleared in the whole range | |
539 | * covered by this vma. | |
1da177e4 LT |
540 | */ |
541 | ||
8c103762 | 542 | static inline void |
1da177e4 | 543 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 544 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 545 | unsigned long addr, int *rss) |
1da177e4 | 546 | { |
b5810039 | 547 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
548 | pte_t pte = *src_pte; |
549 | struct page *page; | |
1da177e4 LT |
550 | |
551 | /* pte contains position in swap or file, so copy. */ | |
552 | if (unlikely(!pte_present(pte))) { | |
553 | if (!pte_file(pte)) { | |
0697212a CL |
554 | swp_entry_t entry = pte_to_swp_entry(pte); |
555 | ||
556 | swap_duplicate(entry); | |
1da177e4 LT |
557 | /* make sure dst_mm is on swapoff's mmlist. */ |
558 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
559 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
560 | if (list_empty(&dst_mm->mmlist)) |
561 | list_add(&dst_mm->mmlist, | |
562 | &src_mm->mmlist); | |
1da177e4 LT |
563 | spin_unlock(&mmlist_lock); |
564 | } | |
0697212a CL |
565 | if (is_write_migration_entry(entry) && |
566 | is_cow_mapping(vm_flags)) { | |
567 | /* | |
568 | * COW mappings require pages in both parent | |
569 | * and child to be set to read. | |
570 | */ | |
571 | make_migration_entry_read(&entry); | |
572 | pte = swp_entry_to_pte(entry); | |
573 | set_pte_at(src_mm, addr, src_pte, pte); | |
574 | } | |
1da177e4 | 575 | } |
ae859762 | 576 | goto out_set_pte; |
1da177e4 LT |
577 | } |
578 | ||
1da177e4 LT |
579 | /* |
580 | * If it's a COW mapping, write protect it both | |
581 | * in the parent and the child | |
582 | */ | |
67121172 | 583 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 584 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 585 | pte = pte_wrprotect(pte); |
1da177e4 LT |
586 | } |
587 | ||
588 | /* | |
589 | * If it's a shared mapping, mark it clean in | |
590 | * the child | |
591 | */ | |
592 | if (vm_flags & VM_SHARED) | |
593 | pte = pte_mkclean(pte); | |
594 | pte = pte_mkold(pte); | |
6aab341e LT |
595 | |
596 | page = vm_normal_page(vma, addr, pte); | |
597 | if (page) { | |
598 | get_page(page); | |
c97a9e10 | 599 | page_dup_rmap(page, vma, addr); |
6aab341e LT |
600 | rss[!!PageAnon(page)]++; |
601 | } | |
ae859762 HD |
602 | |
603 | out_set_pte: | |
604 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
605 | } |
606 | ||
607 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
608 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
609 | unsigned long addr, unsigned long end) | |
610 | { | |
611 | pte_t *src_pte, *dst_pte; | |
c74df32c | 612 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 613 | int progress = 0; |
8c103762 | 614 | int rss[2]; |
1da177e4 LT |
615 | |
616 | again: | |
ae859762 | 617 | rss[1] = rss[0] = 0; |
c74df32c | 618 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
619 | if (!dst_pte) |
620 | return -ENOMEM; | |
621 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 622 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 623 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 624 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 625 | |
1da177e4 LT |
626 | do { |
627 | /* | |
628 | * We are holding two locks at this point - either of them | |
629 | * could generate latencies in another task on another CPU. | |
630 | */ | |
e040f218 HD |
631 | if (progress >= 32) { |
632 | progress = 0; | |
633 | if (need_resched() || | |
95c354fe | 634 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
635 | break; |
636 | } | |
1da177e4 LT |
637 | if (pte_none(*src_pte)) { |
638 | progress++; | |
639 | continue; | |
640 | } | |
8c103762 | 641 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
642 | progress += 8; |
643 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 644 | |
6606c3e0 | 645 | arch_leave_lazy_mmu_mode(); |
c74df32c | 646 | spin_unlock(src_ptl); |
1da177e4 | 647 | pte_unmap_nested(src_pte - 1); |
ae859762 | 648 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
649 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
650 | cond_resched(); | |
1da177e4 LT |
651 | if (addr != end) |
652 | goto again; | |
653 | return 0; | |
654 | } | |
655 | ||
656 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
657 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
658 | unsigned long addr, unsigned long end) | |
659 | { | |
660 | pmd_t *src_pmd, *dst_pmd; | |
661 | unsigned long next; | |
662 | ||
663 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
664 | if (!dst_pmd) | |
665 | return -ENOMEM; | |
666 | src_pmd = pmd_offset(src_pud, addr); | |
667 | do { | |
668 | next = pmd_addr_end(addr, end); | |
669 | if (pmd_none_or_clear_bad(src_pmd)) | |
670 | continue; | |
671 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
672 | vma, addr, next)) | |
673 | return -ENOMEM; | |
674 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
675 | return 0; | |
676 | } | |
677 | ||
678 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
679 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
680 | unsigned long addr, unsigned long end) | |
681 | { | |
682 | pud_t *src_pud, *dst_pud; | |
683 | unsigned long next; | |
684 | ||
685 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
686 | if (!dst_pud) | |
687 | return -ENOMEM; | |
688 | src_pud = pud_offset(src_pgd, addr); | |
689 | do { | |
690 | next = pud_addr_end(addr, end); | |
691 | if (pud_none_or_clear_bad(src_pud)) | |
692 | continue; | |
693 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
694 | vma, addr, next)) | |
695 | return -ENOMEM; | |
696 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
697 | return 0; | |
698 | } | |
699 | ||
700 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
701 | struct vm_area_struct *vma) | |
702 | { | |
703 | pgd_t *src_pgd, *dst_pgd; | |
704 | unsigned long next; | |
705 | unsigned long addr = vma->vm_start; | |
706 | unsigned long end = vma->vm_end; | |
cddb8a5c | 707 | int ret; |
1da177e4 | 708 | |
d992895b NP |
709 | /* |
710 | * Don't copy ptes where a page fault will fill them correctly. | |
711 | * Fork becomes much lighter when there are big shared or private | |
712 | * readonly mappings. The tradeoff is that copy_page_range is more | |
713 | * efficient than faulting. | |
714 | */ | |
4d7672b4 | 715 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
716 | if (!vma->anon_vma) |
717 | return 0; | |
718 | } | |
719 | ||
1da177e4 LT |
720 | if (is_vm_hugetlb_page(vma)) |
721 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
722 | ||
34801ba9 | 723 | if (unlikely(is_pfn_mapping(vma))) { |
2ab64037 | 724 | /* |
725 | * We do not free on error cases below as remove_vma | |
726 | * gets called on error from higher level routine | |
727 | */ | |
728 | ret = track_pfn_vma_copy(vma); | |
729 | if (ret) | |
730 | return ret; | |
731 | } | |
732 | ||
cddb8a5c AA |
733 | /* |
734 | * We need to invalidate the secondary MMU mappings only when | |
735 | * there could be a permission downgrade on the ptes of the | |
736 | * parent mm. And a permission downgrade will only happen if | |
737 | * is_cow_mapping() returns true. | |
738 | */ | |
739 | if (is_cow_mapping(vma->vm_flags)) | |
740 | mmu_notifier_invalidate_range_start(src_mm, addr, end); | |
741 | ||
742 | ret = 0; | |
1da177e4 LT |
743 | dst_pgd = pgd_offset(dst_mm, addr); |
744 | src_pgd = pgd_offset(src_mm, addr); | |
745 | do { | |
746 | next = pgd_addr_end(addr, end); | |
747 | if (pgd_none_or_clear_bad(src_pgd)) | |
748 | continue; | |
cddb8a5c AA |
749 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
750 | vma, addr, next))) { | |
751 | ret = -ENOMEM; | |
752 | break; | |
753 | } | |
1da177e4 | 754 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c AA |
755 | |
756 | if (is_cow_mapping(vma->vm_flags)) | |
757 | mmu_notifier_invalidate_range_end(src_mm, | |
758 | vma->vm_start, end); | |
759 | return ret; | |
1da177e4 LT |
760 | } |
761 | ||
51c6f666 | 762 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 763 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 764 | unsigned long addr, unsigned long end, |
51c6f666 | 765 | long *zap_work, struct zap_details *details) |
1da177e4 | 766 | { |
b5810039 | 767 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 768 | pte_t *pte; |
508034a3 | 769 | spinlock_t *ptl; |
ae859762 HD |
770 | int file_rss = 0; |
771 | int anon_rss = 0; | |
1da177e4 | 772 | |
508034a3 | 773 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 774 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
775 | do { |
776 | pte_t ptent = *pte; | |
51c6f666 RH |
777 | if (pte_none(ptent)) { |
778 | (*zap_work)--; | |
1da177e4 | 779 | continue; |
51c6f666 | 780 | } |
6f5e6b9e HD |
781 | |
782 | (*zap_work) -= PAGE_SIZE; | |
783 | ||
1da177e4 | 784 | if (pte_present(ptent)) { |
ee498ed7 | 785 | struct page *page; |
51c6f666 | 786 | |
6aab341e | 787 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
788 | if (unlikely(details) && page) { |
789 | /* | |
790 | * unmap_shared_mapping_pages() wants to | |
791 | * invalidate cache without truncating: | |
792 | * unmap shared but keep private pages. | |
793 | */ | |
794 | if (details->check_mapping && | |
795 | details->check_mapping != page->mapping) | |
796 | continue; | |
797 | /* | |
798 | * Each page->index must be checked when | |
799 | * invalidating or truncating nonlinear. | |
800 | */ | |
801 | if (details->nonlinear_vma && | |
802 | (page->index < details->first_index || | |
803 | page->index > details->last_index)) | |
804 | continue; | |
805 | } | |
b5810039 | 806 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 807 | tlb->fullmm); |
1da177e4 LT |
808 | tlb_remove_tlb_entry(tlb, pte, addr); |
809 | if (unlikely(!page)) | |
810 | continue; | |
811 | if (unlikely(details) && details->nonlinear_vma | |
812 | && linear_page_index(details->nonlinear_vma, | |
813 | addr) != page->index) | |
b5810039 | 814 | set_pte_at(mm, addr, pte, |
1da177e4 | 815 | pgoff_to_pte(page->index)); |
1da177e4 | 816 | if (PageAnon(page)) |
86d912f4 | 817 | anon_rss--; |
6237bcd9 HD |
818 | else { |
819 | if (pte_dirty(ptent)) | |
820 | set_page_dirty(page); | |
4917e5d0 JW |
821 | if (pte_young(ptent) && |
822 | likely(!VM_SequentialReadHint(vma))) | |
bf3f3bc5 | 823 | mark_page_accessed(page); |
86d912f4 | 824 | file_rss--; |
6237bcd9 | 825 | } |
edc315fd | 826 | page_remove_rmap(page); |
3dc14741 HD |
827 | if (unlikely(page_mapcount(page) < 0)) |
828 | print_bad_pte(vma, addr, ptent, page); | |
1da177e4 LT |
829 | tlb_remove_page(tlb, page); |
830 | continue; | |
831 | } | |
832 | /* | |
833 | * If details->check_mapping, we leave swap entries; | |
834 | * if details->nonlinear_vma, we leave file entries. | |
835 | */ | |
836 | if (unlikely(details)) | |
837 | continue; | |
2509ef26 HD |
838 | if (pte_file(ptent)) { |
839 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) | |
840 | print_bad_pte(vma, addr, ptent, NULL); | |
841 | } else if | |
842 | (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) | |
843 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 844 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 845 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 846 | |
86d912f4 | 847 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 848 | arch_leave_lazy_mmu_mode(); |
508034a3 | 849 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
850 | |
851 | return addr; | |
1da177e4 LT |
852 | } |
853 | ||
51c6f666 | 854 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 855 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 856 | unsigned long addr, unsigned long end, |
51c6f666 | 857 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
858 | { |
859 | pmd_t *pmd; | |
860 | unsigned long next; | |
861 | ||
862 | pmd = pmd_offset(pud, addr); | |
863 | do { | |
864 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
865 | if (pmd_none_or_clear_bad(pmd)) { |
866 | (*zap_work)--; | |
1da177e4 | 867 | continue; |
51c6f666 RH |
868 | } |
869 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
870 | zap_work, details); | |
871 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
872 | ||
873 | return addr; | |
1da177e4 LT |
874 | } |
875 | ||
51c6f666 | 876 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 877 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 878 | unsigned long addr, unsigned long end, |
51c6f666 | 879 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
880 | { |
881 | pud_t *pud; | |
882 | unsigned long next; | |
883 | ||
884 | pud = pud_offset(pgd, addr); | |
885 | do { | |
886 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
887 | if (pud_none_or_clear_bad(pud)) { |
888 | (*zap_work)--; | |
1da177e4 | 889 | continue; |
51c6f666 RH |
890 | } |
891 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
892 | zap_work, details); | |
893 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
894 | ||
895 | return addr; | |
1da177e4 LT |
896 | } |
897 | ||
51c6f666 RH |
898 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
899 | struct vm_area_struct *vma, | |
1da177e4 | 900 | unsigned long addr, unsigned long end, |
51c6f666 | 901 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
902 | { |
903 | pgd_t *pgd; | |
904 | unsigned long next; | |
905 | ||
906 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
907 | details = NULL; | |
908 | ||
909 | BUG_ON(addr >= end); | |
910 | tlb_start_vma(tlb, vma); | |
911 | pgd = pgd_offset(vma->vm_mm, addr); | |
912 | do { | |
913 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
914 | if (pgd_none_or_clear_bad(pgd)) { |
915 | (*zap_work)--; | |
1da177e4 | 916 | continue; |
51c6f666 RH |
917 | } |
918 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
919 | zap_work, details); | |
920 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 921 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
922 | |
923 | return addr; | |
1da177e4 LT |
924 | } |
925 | ||
926 | #ifdef CONFIG_PREEMPT | |
927 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
928 | #else | |
929 | /* No preempt: go for improved straight-line efficiency */ | |
930 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
931 | #endif | |
932 | ||
933 | /** | |
934 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
935 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
936 | * @vma: the starting vma |
937 | * @start_addr: virtual address at which to start unmapping | |
938 | * @end_addr: virtual address at which to end unmapping | |
939 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
940 | * @details: details of nonlinear truncation or shared cache invalidation | |
941 | * | |
ee39b37b | 942 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 943 | * |
508034a3 | 944 | * Unmap all pages in the vma list. |
1da177e4 | 945 | * |
508034a3 HD |
946 | * We aim to not hold locks for too long (for scheduling latency reasons). |
947 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
948 | * return the ending mmu_gather to the caller. |
949 | * | |
950 | * Only addresses between `start' and `end' will be unmapped. | |
951 | * | |
952 | * The VMA list must be sorted in ascending virtual address order. | |
953 | * | |
954 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
955 | * range after unmap_vmas() returns. So the only responsibility here is to | |
956 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
957 | * drops the lock and schedules. | |
958 | */ | |
508034a3 | 959 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
960 | struct vm_area_struct *vma, unsigned long start_addr, |
961 | unsigned long end_addr, unsigned long *nr_accounted, | |
962 | struct zap_details *details) | |
963 | { | |
51c6f666 | 964 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
965 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
966 | int tlb_start_valid = 0; | |
ee39b37b | 967 | unsigned long start = start_addr; |
1da177e4 | 968 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 969 | int fullmm = (*tlbp)->fullmm; |
cddb8a5c | 970 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 971 | |
cddb8a5c | 972 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
1da177e4 | 973 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { |
1da177e4 LT |
974 | unsigned long end; |
975 | ||
976 | start = max(vma->vm_start, start_addr); | |
977 | if (start >= vma->vm_end) | |
978 | continue; | |
979 | end = min(vma->vm_end, end_addr); | |
980 | if (end <= vma->vm_start) | |
981 | continue; | |
982 | ||
983 | if (vma->vm_flags & VM_ACCOUNT) | |
984 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
985 | ||
34801ba9 | 986 | if (unlikely(is_pfn_mapping(vma))) |
2ab64037 | 987 | untrack_pfn_vma(vma, 0, 0); |
988 | ||
1da177e4 | 989 | while (start != end) { |
1da177e4 LT |
990 | if (!tlb_start_valid) { |
991 | tlb_start = start; | |
992 | tlb_start_valid = 1; | |
993 | } | |
994 | ||
51c6f666 | 995 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
996 | /* |
997 | * It is undesirable to test vma->vm_file as it | |
998 | * should be non-null for valid hugetlb area. | |
999 | * However, vm_file will be NULL in the error | |
1000 | * cleanup path of do_mmap_pgoff. When | |
1001 | * hugetlbfs ->mmap method fails, | |
1002 | * do_mmap_pgoff() nullifies vma->vm_file | |
1003 | * before calling this function to clean up. | |
1004 | * Since no pte has actually been setup, it is | |
1005 | * safe to do nothing in this case. | |
1006 | */ | |
1007 | if (vma->vm_file) { | |
1008 | unmap_hugepage_range(vma, start, end, NULL); | |
1009 | zap_work -= (end - start) / | |
a5516438 | 1010 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
1011 | } |
1012 | ||
51c6f666 RH |
1013 | start = end; |
1014 | } else | |
1015 | start = unmap_page_range(*tlbp, vma, | |
1016 | start, end, &zap_work, details); | |
1017 | ||
1018 | if (zap_work > 0) { | |
1019 | BUG_ON(start != end); | |
1020 | break; | |
1da177e4 LT |
1021 | } |
1022 | ||
1da177e4 LT |
1023 | tlb_finish_mmu(*tlbp, tlb_start, start); |
1024 | ||
1025 | if (need_resched() || | |
95c354fe | 1026 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 1027 | if (i_mmap_lock) { |
508034a3 | 1028 | *tlbp = NULL; |
1da177e4 LT |
1029 | goto out; |
1030 | } | |
1da177e4 | 1031 | cond_resched(); |
1da177e4 LT |
1032 | } |
1033 | ||
508034a3 | 1034 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 1035 | tlb_start_valid = 0; |
51c6f666 | 1036 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
1037 | } |
1038 | } | |
1039 | out: | |
cddb8a5c | 1040 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
ee39b37b | 1041 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
1042 | } |
1043 | ||
1044 | /** | |
1045 | * zap_page_range - remove user pages in a given range | |
1046 | * @vma: vm_area_struct holding the applicable pages | |
1047 | * @address: starting address of pages to zap | |
1048 | * @size: number of bytes to zap | |
1049 | * @details: details of nonlinear truncation or shared cache invalidation | |
1050 | */ | |
ee39b37b | 1051 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1052 | unsigned long size, struct zap_details *details) |
1053 | { | |
1054 | struct mm_struct *mm = vma->vm_mm; | |
1055 | struct mmu_gather *tlb; | |
1056 | unsigned long end = address + size; | |
1057 | unsigned long nr_accounted = 0; | |
1058 | ||
1da177e4 | 1059 | lru_add_drain(); |
1da177e4 | 1060 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 1061 | update_hiwater_rss(mm); |
508034a3 HD |
1062 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
1063 | if (tlb) | |
1064 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 1065 | return end; |
1da177e4 LT |
1066 | } |
1067 | ||
c627f9cc JS |
1068 | /** |
1069 | * zap_vma_ptes - remove ptes mapping the vma | |
1070 | * @vma: vm_area_struct holding ptes to be zapped | |
1071 | * @address: starting address of pages to zap | |
1072 | * @size: number of bytes to zap | |
1073 | * | |
1074 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1075 | * | |
1076 | * The entire address range must be fully contained within the vma. | |
1077 | * | |
1078 | * Returns 0 if successful. | |
1079 | */ | |
1080 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1081 | unsigned long size) | |
1082 | { | |
1083 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1084 | !(vma->vm_flags & VM_PFNMAP)) | |
1085 | return -1; | |
1086 | zap_page_range(vma, address, size, NULL); | |
1087 | return 0; | |
1088 | } | |
1089 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1090 | ||
1da177e4 LT |
1091 | /* |
1092 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 1093 | */ |
6aab341e | 1094 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 1095 | unsigned int flags) |
1da177e4 LT |
1096 | { |
1097 | pgd_t *pgd; | |
1098 | pud_t *pud; | |
1099 | pmd_t *pmd; | |
1100 | pte_t *ptep, pte; | |
deceb6cd | 1101 | spinlock_t *ptl; |
1da177e4 | 1102 | struct page *page; |
6aab341e | 1103 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1104 | |
deceb6cd HD |
1105 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
1106 | if (!IS_ERR(page)) { | |
1107 | BUG_ON(flags & FOLL_GET); | |
1108 | goto out; | |
1109 | } | |
1da177e4 | 1110 | |
deceb6cd | 1111 | page = NULL; |
1da177e4 LT |
1112 | pgd = pgd_offset(mm, address); |
1113 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 1114 | goto no_page_table; |
1da177e4 LT |
1115 | |
1116 | pud = pud_offset(pgd, address); | |
ceb86879 | 1117 | if (pud_none(*pud)) |
deceb6cd | 1118 | goto no_page_table; |
ceb86879 AK |
1119 | if (pud_huge(*pud)) { |
1120 | BUG_ON(flags & FOLL_GET); | |
1121 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1122 | goto out; | |
1123 | } | |
1124 | if (unlikely(pud_bad(*pud))) | |
1125 | goto no_page_table; | |
1126 | ||
1da177e4 | 1127 | pmd = pmd_offset(pud, address); |
aeed5fce | 1128 | if (pmd_none(*pmd)) |
deceb6cd | 1129 | goto no_page_table; |
deceb6cd HD |
1130 | if (pmd_huge(*pmd)) { |
1131 | BUG_ON(flags & FOLL_GET); | |
1132 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1133 | goto out; |
deceb6cd | 1134 | } |
aeed5fce HD |
1135 | if (unlikely(pmd_bad(*pmd))) |
1136 | goto no_page_table; | |
1137 | ||
deceb6cd | 1138 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1139 | |
1140 | pte = *ptep; | |
deceb6cd | 1141 | if (!pte_present(pte)) |
89f5b7da | 1142 | goto no_page; |
deceb6cd HD |
1143 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1144 | goto unlock; | |
6aab341e LT |
1145 | page = vm_normal_page(vma, address, pte); |
1146 | if (unlikely(!page)) | |
89f5b7da | 1147 | goto bad_page; |
1da177e4 | 1148 | |
deceb6cd HD |
1149 | if (flags & FOLL_GET) |
1150 | get_page(page); | |
1151 | if (flags & FOLL_TOUCH) { | |
1152 | if ((flags & FOLL_WRITE) && | |
1153 | !pte_dirty(pte) && !PageDirty(page)) | |
1154 | set_page_dirty(page); | |
bd775c42 KM |
1155 | /* |
1156 | * pte_mkyoung() would be more correct here, but atomic care | |
1157 | * is needed to avoid losing the dirty bit: it is easier to use | |
1158 | * mark_page_accessed(). | |
1159 | */ | |
deceb6cd HD |
1160 | mark_page_accessed(page); |
1161 | } | |
1162 | unlock: | |
1163 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1164 | out: |
deceb6cd | 1165 | return page; |
1da177e4 | 1166 | |
89f5b7da LT |
1167 | bad_page: |
1168 | pte_unmap_unlock(ptep, ptl); | |
1169 | return ERR_PTR(-EFAULT); | |
1170 | ||
1171 | no_page: | |
1172 | pte_unmap_unlock(ptep, ptl); | |
1173 | if (!pte_none(pte)) | |
1174 | return page; | |
1175 | /* Fall through to ZERO_PAGE handling */ | |
deceb6cd HD |
1176 | no_page_table: |
1177 | /* | |
1178 | * When core dumping an enormous anonymous area that nobody | |
1179 | * has touched so far, we don't want to allocate page tables. | |
1180 | */ | |
1181 | if (flags & FOLL_ANON) { | |
557ed1fa | 1182 | page = ZERO_PAGE(0); |
deceb6cd HD |
1183 | if (flags & FOLL_GET) |
1184 | get_page(page); | |
1185 | BUG_ON(flags & FOLL_WRITE); | |
1186 | } | |
1187 | return page; | |
1da177e4 LT |
1188 | } |
1189 | ||
672ca28e LT |
1190 | /* Can we do the FOLL_ANON optimization? */ |
1191 | static inline int use_zero_page(struct vm_area_struct *vma) | |
1192 | { | |
1193 | /* | |
1194 | * We don't want to optimize FOLL_ANON for make_pages_present() | |
1195 | * when it tries to page in a VM_LOCKED region. As to VM_SHARED, | |
1196 | * we want to get the page from the page tables to make sure | |
1197 | * that we serialize and update with any other user of that | |
1198 | * mapping. | |
1199 | */ | |
1200 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | |
1201 | return 0; | |
1202 | /* | |
0d71d10a | 1203 | * And if we have a fault routine, it's not an anonymous region. |
672ca28e | 1204 | */ |
0d71d10a | 1205 | return !vma->vm_ops || !vma->vm_ops->fault; |
672ca28e LT |
1206 | } |
1207 | ||
b291f000 NP |
1208 | |
1209 | ||
1210 | int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |
9d73777e PZ |
1211 | unsigned long start, int nr_pages, int flags, |
1212 | struct page **pages, struct vm_area_struct **vmas) | |
1da177e4 LT |
1213 | { |
1214 | int i; | |
b291f000 NP |
1215 | unsigned int vm_flags = 0; |
1216 | int write = !!(flags & GUP_FLAGS_WRITE); | |
1217 | int force = !!(flags & GUP_FLAGS_FORCE); | |
1218 | int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); | |
4779280d | 1219 | int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL); |
1da177e4 | 1220 | |
9d73777e | 1221 | if (nr_pages <= 0) |
900cf086 | 1222 | return 0; |
1da177e4 LT |
1223 | /* |
1224 | * Require read or write permissions. | |
1225 | * If 'force' is set, we only require the "MAY" flags. | |
1226 | */ | |
deceb6cd HD |
1227 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1228 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1229 | i = 0; |
1230 | ||
1231 | do { | |
deceb6cd HD |
1232 | struct vm_area_struct *vma; |
1233 | unsigned int foll_flags; | |
1da177e4 LT |
1234 | |
1235 | vma = find_extend_vma(mm, start); | |
1236 | if (!vma && in_gate_area(tsk, start)) { | |
1237 | unsigned long pg = start & PAGE_MASK; | |
1238 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1239 | pgd_t *pgd; | |
1240 | pud_t *pud; | |
1241 | pmd_t *pmd; | |
1242 | pte_t *pte; | |
b291f000 NP |
1243 | |
1244 | /* user gate pages are read-only */ | |
1245 | if (!ignore && write) | |
1da177e4 LT |
1246 | return i ? : -EFAULT; |
1247 | if (pg > TASK_SIZE) | |
1248 | pgd = pgd_offset_k(pg); | |
1249 | else | |
1250 | pgd = pgd_offset_gate(mm, pg); | |
1251 | BUG_ON(pgd_none(*pgd)); | |
1252 | pud = pud_offset(pgd, pg); | |
1253 | BUG_ON(pud_none(*pud)); | |
1254 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1255 | if (pmd_none(*pmd)) |
1256 | return i ? : -EFAULT; | |
1da177e4 | 1257 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1258 | if (pte_none(*pte)) { |
1259 | pte_unmap(pte); | |
1260 | return i ? : -EFAULT; | |
1261 | } | |
1da177e4 | 1262 | if (pages) { |
fa2a455b | 1263 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1264 | pages[i] = page; |
1265 | if (page) | |
1266 | get_page(page); | |
1da177e4 LT |
1267 | } |
1268 | pte_unmap(pte); | |
1269 | if (vmas) | |
1270 | vmas[i] = gate_vma; | |
1271 | i++; | |
1272 | start += PAGE_SIZE; | |
9d73777e | 1273 | nr_pages--; |
1da177e4 LT |
1274 | continue; |
1275 | } | |
1276 | ||
b291f000 NP |
1277 | if (!vma || |
1278 | (vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
1279 | (!ignore && !(vm_flags & vma->vm_flags))) | |
1da177e4 LT |
1280 | return i ? : -EFAULT; |
1281 | ||
1282 | if (is_vm_hugetlb_page(vma)) { | |
1283 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
9d73777e | 1284 | &start, &nr_pages, i, write); |
1da177e4 LT |
1285 | continue; |
1286 | } | |
deceb6cd HD |
1287 | |
1288 | foll_flags = FOLL_TOUCH; | |
1289 | if (pages) | |
1290 | foll_flags |= FOLL_GET; | |
672ca28e | 1291 | if (!write && use_zero_page(vma)) |
deceb6cd HD |
1292 | foll_flags |= FOLL_ANON; |
1293 | ||
1da177e4 | 1294 | do { |
08ef4729 | 1295 | struct page *page; |
1da177e4 | 1296 | |
462e00cc | 1297 | /* |
4779280d YH |
1298 | * If we have a pending SIGKILL, don't keep faulting |
1299 | * pages and potentially allocating memory, unless | |
1300 | * current is handling munlock--e.g., on exit. In | |
1301 | * that case, we are not allocating memory. Rather, | |
1302 | * we're only unlocking already resident/mapped pages. | |
462e00cc | 1303 | */ |
4779280d YH |
1304 | if (unlikely(!ignore_sigkill && |
1305 | fatal_signal_pending(current))) | |
1306 | return i ? i : -ERESTARTSYS; | |
462e00cc | 1307 | |
deceb6cd HD |
1308 | if (write) |
1309 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1310 | |
deceb6cd | 1311 | cond_resched(); |
6aab341e | 1312 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1313 | int ret; |
d06063cc | 1314 | |
d26ed650 HD |
1315 | ret = handle_mm_fault(mm, vma, start, |
1316 | (foll_flags & FOLL_WRITE) ? | |
1317 | FAULT_FLAG_WRITE : 0); | |
1318 | ||
83c54070 NP |
1319 | if (ret & VM_FAULT_ERROR) { |
1320 | if (ret & VM_FAULT_OOM) | |
1321 | return i ? i : -ENOMEM; | |
1322 | else if (ret & VM_FAULT_SIGBUS) | |
1323 | return i ? i : -EFAULT; | |
1324 | BUG(); | |
1325 | } | |
1326 | if (ret & VM_FAULT_MAJOR) | |
1327 | tsk->maj_flt++; | |
1328 | else | |
1329 | tsk->min_flt++; | |
1330 | ||
a68d2ebc | 1331 | /* |
83c54070 NP |
1332 | * The VM_FAULT_WRITE bit tells us that |
1333 | * do_wp_page has broken COW when necessary, | |
1334 | * even if maybe_mkwrite decided not to set | |
1335 | * pte_write. We can thus safely do subsequent | |
878b63ac HD |
1336 | * page lookups as if they were reads. But only |
1337 | * do so when looping for pte_write is futile: | |
1338 | * in some cases userspace may also be wanting | |
1339 | * to write to the gotten user page, which a | |
1340 | * read fault here might prevent (a readonly | |
1341 | * page might get reCOWed by userspace write). | |
a68d2ebc | 1342 | */ |
878b63ac HD |
1343 | if ((ret & VM_FAULT_WRITE) && |
1344 | !(vma->vm_flags & VM_WRITE)) | |
deceb6cd | 1345 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1346 | |
7f7bbbe5 | 1347 | cond_resched(); |
1da177e4 | 1348 | } |
89f5b7da LT |
1349 | if (IS_ERR(page)) |
1350 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1351 | if (pages) { |
08ef4729 | 1352 | pages[i] = page; |
03beb076 | 1353 | |
a6f36be3 | 1354 | flush_anon_page(vma, page, start); |
08ef4729 | 1355 | flush_dcache_page(page); |
1da177e4 LT |
1356 | } |
1357 | if (vmas) | |
1358 | vmas[i] = vma; | |
1359 | i++; | |
1360 | start += PAGE_SIZE; | |
9d73777e PZ |
1361 | nr_pages--; |
1362 | } while (nr_pages && start < vma->vm_end); | |
1363 | } while (nr_pages); | |
1da177e4 LT |
1364 | return i; |
1365 | } | |
b291f000 | 1366 | |
d2bf6be8 NP |
1367 | /** |
1368 | * get_user_pages() - pin user pages in memory | |
1369 | * @tsk: task_struct of target task | |
1370 | * @mm: mm_struct of target mm | |
1371 | * @start: starting user address | |
9d73777e | 1372 | * @nr_pages: number of pages from start to pin |
d2bf6be8 NP |
1373 | * @write: whether pages will be written to by the caller |
1374 | * @force: whether to force write access even if user mapping is | |
1375 | * readonly. This will result in the page being COWed even | |
1376 | * in MAP_SHARED mappings. You do not want this. | |
1377 | * @pages: array that receives pointers to the pages pinned. | |
1378 | * Should be at least nr_pages long. Or NULL, if caller | |
1379 | * only intends to ensure the pages are faulted in. | |
1380 | * @vmas: array of pointers to vmas corresponding to each page. | |
1381 | * Or NULL if the caller does not require them. | |
1382 | * | |
1383 | * Returns number of pages pinned. This may be fewer than the number | |
9d73777e | 1384 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
d2bf6be8 NP |
1385 | * were pinned, returns -errno. Each page returned must be released |
1386 | * with a put_page() call when it is finished with. vmas will only | |
1387 | * remain valid while mmap_sem is held. | |
1388 | * | |
1389 | * Must be called with mmap_sem held for read or write. | |
1390 | * | |
1391 | * get_user_pages walks a process's page tables and takes a reference to | |
1392 | * each struct page that each user address corresponds to at a given | |
1393 | * instant. That is, it takes the page that would be accessed if a user | |
1394 | * thread accesses the given user virtual address at that instant. | |
1395 | * | |
1396 | * This does not guarantee that the page exists in the user mappings when | |
1397 | * get_user_pages returns, and there may even be a completely different | |
1398 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
1399 | * and subsequently re faulted). However it does guarantee that the page | |
1400 | * won't be freed completely. And mostly callers simply care that the page | |
1401 | * contains data that was valid *at some point in time*. Typically, an IO | |
1402 | * or similar operation cannot guarantee anything stronger anyway because | |
1403 | * locks can't be held over the syscall boundary. | |
1404 | * | |
1405 | * If write=0, the page must not be written to. If the page is written to, | |
1406 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called | |
1407 | * after the page is finished with, and before put_page is called. | |
1408 | * | |
1409 | * get_user_pages is typically used for fewer-copy IO operations, to get a | |
1410 | * handle on the memory by some means other than accesses via the user virtual | |
1411 | * addresses. The pages may be submitted for DMA to devices or accessed via | |
1412 | * their kernel linear mapping (via the kmap APIs). Care should be taken to | |
1413 | * use the correct cache flushing APIs. | |
1414 | * | |
1415 | * See also get_user_pages_fast, for performance critical applications. | |
1416 | */ | |
b291f000 | 1417 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
9d73777e | 1418 | unsigned long start, int nr_pages, int write, int force, |
b291f000 NP |
1419 | struct page **pages, struct vm_area_struct **vmas) |
1420 | { | |
1421 | int flags = 0; | |
1422 | ||
1423 | if (write) | |
1424 | flags |= GUP_FLAGS_WRITE; | |
1425 | if (force) | |
1426 | flags |= GUP_FLAGS_FORCE; | |
1427 | ||
9d73777e | 1428 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); |
b291f000 NP |
1429 | } |
1430 | ||
1da177e4 LT |
1431 | EXPORT_SYMBOL(get_user_pages); |
1432 | ||
920c7a5d HH |
1433 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1434 | spinlock_t **ptl) | |
c9cfcddf LT |
1435 | { |
1436 | pgd_t * pgd = pgd_offset(mm, addr); | |
1437 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1438 | if (pud) { | |
49c91fb0 | 1439 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1440 | if (pmd) |
1441 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1442 | } | |
1443 | return NULL; | |
1444 | } | |
1445 | ||
238f58d8 LT |
1446 | /* |
1447 | * This is the old fallback for page remapping. | |
1448 | * | |
1449 | * For historical reasons, it only allows reserved pages. Only | |
1450 | * old drivers should use this, and they needed to mark their | |
1451 | * pages reserved for the old functions anyway. | |
1452 | */ | |
423bad60 NP |
1453 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1454 | struct page *page, pgprot_t prot) | |
238f58d8 | 1455 | { |
423bad60 | 1456 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1457 | int retval; |
c9cfcddf | 1458 | pte_t *pte; |
8a9f3ccd BS |
1459 | spinlock_t *ptl; |
1460 | ||
238f58d8 | 1461 | retval = -EINVAL; |
a145dd41 | 1462 | if (PageAnon(page)) |
5b4e655e | 1463 | goto out; |
238f58d8 LT |
1464 | retval = -ENOMEM; |
1465 | flush_dcache_page(page); | |
c9cfcddf | 1466 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1467 | if (!pte) |
5b4e655e | 1468 | goto out; |
238f58d8 LT |
1469 | retval = -EBUSY; |
1470 | if (!pte_none(*pte)) | |
1471 | goto out_unlock; | |
1472 | ||
1473 | /* Ok, finally just insert the thing.. */ | |
1474 | get_page(page); | |
1475 | inc_mm_counter(mm, file_rss); | |
1476 | page_add_file_rmap(page); | |
1477 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1478 | ||
1479 | retval = 0; | |
8a9f3ccd BS |
1480 | pte_unmap_unlock(pte, ptl); |
1481 | return retval; | |
238f58d8 LT |
1482 | out_unlock: |
1483 | pte_unmap_unlock(pte, ptl); | |
1484 | out: | |
1485 | return retval; | |
1486 | } | |
1487 | ||
bfa5bf6d REB |
1488 | /** |
1489 | * vm_insert_page - insert single page into user vma | |
1490 | * @vma: user vma to map to | |
1491 | * @addr: target user address of this page | |
1492 | * @page: source kernel page | |
1493 | * | |
a145dd41 LT |
1494 | * This allows drivers to insert individual pages they've allocated |
1495 | * into a user vma. | |
1496 | * | |
1497 | * The page has to be a nice clean _individual_ kernel allocation. | |
1498 | * If you allocate a compound page, you need to have marked it as | |
1499 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1500 | * (see split_page()). |
a145dd41 LT |
1501 | * |
1502 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1503 | * took an arbitrary page protection parameter. This doesn't allow | |
1504 | * that. Your vma protection will have to be set up correctly, which | |
1505 | * means that if you want a shared writable mapping, you'd better | |
1506 | * ask for a shared writable mapping! | |
1507 | * | |
1508 | * The page does not need to be reserved. | |
1509 | */ | |
423bad60 NP |
1510 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1511 | struct page *page) | |
a145dd41 LT |
1512 | { |
1513 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1514 | return -EFAULT; | |
1515 | if (!page_count(page)) | |
1516 | return -EINVAL; | |
4d7672b4 | 1517 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1518 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1519 | } |
e3c3374f | 1520 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1521 | |
423bad60 NP |
1522 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1523 | unsigned long pfn, pgprot_t prot) | |
1524 | { | |
1525 | struct mm_struct *mm = vma->vm_mm; | |
1526 | int retval; | |
1527 | pte_t *pte, entry; | |
1528 | spinlock_t *ptl; | |
1529 | ||
1530 | retval = -ENOMEM; | |
1531 | pte = get_locked_pte(mm, addr, &ptl); | |
1532 | if (!pte) | |
1533 | goto out; | |
1534 | retval = -EBUSY; | |
1535 | if (!pte_none(*pte)) | |
1536 | goto out_unlock; | |
1537 | ||
1538 | /* Ok, finally just insert the thing.. */ | |
1539 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1540 | set_pte_at(mm, addr, pte, entry); | |
1541 | update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ | |
1542 | ||
1543 | retval = 0; | |
1544 | out_unlock: | |
1545 | pte_unmap_unlock(pte, ptl); | |
1546 | out: | |
1547 | return retval; | |
1548 | } | |
1549 | ||
e0dc0d8f NP |
1550 | /** |
1551 | * vm_insert_pfn - insert single pfn into user vma | |
1552 | * @vma: user vma to map to | |
1553 | * @addr: target user address of this page | |
1554 | * @pfn: source kernel pfn | |
1555 | * | |
1556 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1557 | * they've allocated into a user vma. Same comments apply. | |
1558 | * | |
1559 | * This function should only be called from a vm_ops->fault handler, and | |
1560 | * in that case the handler should return NULL. | |
0d71d10a NP |
1561 | * |
1562 | * vma cannot be a COW mapping. | |
1563 | * | |
1564 | * As this is called only for pages that do not currently exist, we | |
1565 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1566 | */ |
1567 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1568 | unsigned long pfn) |
e0dc0d8f | 1569 | { |
2ab64037 | 1570 | int ret; |
e4b866ed | 1571 | pgprot_t pgprot = vma->vm_page_prot; |
7e675137 NP |
1572 | /* |
1573 | * Technically, architectures with pte_special can avoid all these | |
1574 | * restrictions (same for remap_pfn_range). However we would like | |
1575 | * consistency in testing and feature parity among all, so we should | |
1576 | * try to keep these invariants in place for everybody. | |
1577 | */ | |
b379d790 JH |
1578 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1579 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1580 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1581 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1582 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1583 | |
423bad60 NP |
1584 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1585 | return -EFAULT; | |
e4b866ed | 1586 | if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) |
2ab64037 | 1587 | return -EINVAL; |
1588 | ||
e4b866ed | 1589 | ret = insert_pfn(vma, addr, pfn, pgprot); |
2ab64037 | 1590 | |
1591 | if (ret) | |
1592 | untrack_pfn_vma(vma, pfn, PAGE_SIZE); | |
1593 | ||
1594 | return ret; | |
423bad60 NP |
1595 | } |
1596 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1597 | |
423bad60 NP |
1598 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1599 | unsigned long pfn) | |
1600 | { | |
1601 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1602 | |
423bad60 NP |
1603 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1604 | return -EFAULT; | |
e0dc0d8f | 1605 | |
423bad60 NP |
1606 | /* |
1607 | * If we don't have pte special, then we have to use the pfn_valid() | |
1608 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1609 | * refcount the page if pfn_valid is true (hence insert_page rather | |
1610 | * than insert_pfn). | |
1611 | */ | |
1612 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1613 | struct page *page; | |
1614 | ||
1615 | page = pfn_to_page(pfn); | |
1616 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1617 | } | |
1618 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1619 | } |
423bad60 | 1620 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1621 | |
1da177e4 LT |
1622 | /* |
1623 | * maps a range of physical memory into the requested pages. the old | |
1624 | * mappings are removed. any references to nonexistent pages results | |
1625 | * in null mappings (currently treated as "copy-on-access") | |
1626 | */ | |
1627 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1628 | unsigned long addr, unsigned long end, | |
1629 | unsigned long pfn, pgprot_t prot) | |
1630 | { | |
1631 | pte_t *pte; | |
c74df32c | 1632 | spinlock_t *ptl; |
1da177e4 | 1633 | |
c74df32c | 1634 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1635 | if (!pte) |
1636 | return -ENOMEM; | |
6606c3e0 | 1637 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1638 | do { |
1639 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1640 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1641 | pfn++; |
1642 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1643 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1644 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1645 | return 0; |
1646 | } | |
1647 | ||
1648 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1649 | unsigned long addr, unsigned long end, | |
1650 | unsigned long pfn, pgprot_t prot) | |
1651 | { | |
1652 | pmd_t *pmd; | |
1653 | unsigned long next; | |
1654 | ||
1655 | pfn -= addr >> PAGE_SHIFT; | |
1656 | pmd = pmd_alloc(mm, pud, addr); | |
1657 | if (!pmd) | |
1658 | return -ENOMEM; | |
1659 | do { | |
1660 | next = pmd_addr_end(addr, end); | |
1661 | if (remap_pte_range(mm, pmd, addr, next, | |
1662 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1663 | return -ENOMEM; | |
1664 | } while (pmd++, addr = next, addr != end); | |
1665 | return 0; | |
1666 | } | |
1667 | ||
1668 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1669 | unsigned long addr, unsigned long end, | |
1670 | unsigned long pfn, pgprot_t prot) | |
1671 | { | |
1672 | pud_t *pud; | |
1673 | unsigned long next; | |
1674 | ||
1675 | pfn -= addr >> PAGE_SHIFT; | |
1676 | pud = pud_alloc(mm, pgd, addr); | |
1677 | if (!pud) | |
1678 | return -ENOMEM; | |
1679 | do { | |
1680 | next = pud_addr_end(addr, end); | |
1681 | if (remap_pmd_range(mm, pud, addr, next, | |
1682 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1683 | return -ENOMEM; | |
1684 | } while (pud++, addr = next, addr != end); | |
1685 | return 0; | |
1686 | } | |
1687 | ||
bfa5bf6d REB |
1688 | /** |
1689 | * remap_pfn_range - remap kernel memory to userspace | |
1690 | * @vma: user vma to map to | |
1691 | * @addr: target user address to start at | |
1692 | * @pfn: physical address of kernel memory | |
1693 | * @size: size of map area | |
1694 | * @prot: page protection flags for this mapping | |
1695 | * | |
1696 | * Note: this is only safe if the mm semaphore is held when called. | |
1697 | */ | |
1da177e4 LT |
1698 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1699 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1700 | { | |
1701 | pgd_t *pgd; | |
1702 | unsigned long next; | |
2d15cab8 | 1703 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1704 | struct mm_struct *mm = vma->vm_mm; |
1705 | int err; | |
1706 | ||
1707 | /* | |
1708 | * Physically remapped pages are special. Tell the | |
1709 | * rest of the world about it: | |
1710 | * VM_IO tells people not to look at these pages | |
1711 | * (accesses can have side effects). | |
0b14c179 HD |
1712 | * VM_RESERVED is specified all over the place, because |
1713 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1714 | * in 2.6 the LRU scan won't even find its pages, so this | |
1715 | * flag means no more than count its pages in reserved_vm, | |
1716 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1717 | * VM_PFNMAP tells the core MM that the base pages are just |
1718 | * raw PFN mappings, and do not have a "struct page" associated | |
1719 | * with them. | |
fb155c16 LT |
1720 | * |
1721 | * There's a horrible special case to handle copy-on-write | |
1722 | * behaviour that some programs depend on. We mark the "original" | |
1723 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1724 | */ |
4bb9c5c0 | 1725 | if (addr == vma->vm_start && end == vma->vm_end) { |
fb155c16 | 1726 | vma->vm_pgoff = pfn; |
895791da | 1727 | vma->vm_flags |= VM_PFN_AT_MMAP; |
4bb9c5c0 | 1728 | } else if (is_cow_mapping(vma->vm_flags)) |
3c8bb73a | 1729 | return -EINVAL; |
fb155c16 | 1730 | |
6aab341e | 1731 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 | 1732 | |
e4b866ed | 1733 | err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); |
a3670613 | 1734 | if (err) { |
1735 | /* | |
1736 | * To indicate that track_pfn related cleanup is not | |
1737 | * needed from higher level routine calling unmap_vmas | |
1738 | */ | |
1739 | vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); | |
895791da | 1740 | vma->vm_flags &= ~VM_PFN_AT_MMAP; |
2ab64037 | 1741 | return -EINVAL; |
a3670613 | 1742 | } |
2ab64037 | 1743 | |
1da177e4 LT |
1744 | BUG_ON(addr >= end); |
1745 | pfn -= addr >> PAGE_SHIFT; | |
1746 | pgd = pgd_offset(mm, addr); | |
1747 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1748 | do { |
1749 | next = pgd_addr_end(addr, end); | |
1750 | err = remap_pud_range(mm, pgd, addr, next, | |
1751 | pfn + (addr >> PAGE_SHIFT), prot); | |
1752 | if (err) | |
1753 | break; | |
1754 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1755 | |
1756 | if (err) | |
1757 | untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); | |
1758 | ||
1da177e4 LT |
1759 | return err; |
1760 | } | |
1761 | EXPORT_SYMBOL(remap_pfn_range); | |
1762 | ||
aee16b3c JF |
1763 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1764 | unsigned long addr, unsigned long end, | |
1765 | pte_fn_t fn, void *data) | |
1766 | { | |
1767 | pte_t *pte; | |
1768 | int err; | |
2f569afd | 1769 | pgtable_t token; |
94909914 | 1770 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1771 | |
1772 | pte = (mm == &init_mm) ? | |
1773 | pte_alloc_kernel(pmd, addr) : | |
1774 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1775 | if (!pte) | |
1776 | return -ENOMEM; | |
1777 | ||
1778 | BUG_ON(pmd_huge(*pmd)); | |
1779 | ||
38e0edb1 JF |
1780 | arch_enter_lazy_mmu_mode(); |
1781 | ||
2f569afd | 1782 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1783 | |
1784 | do { | |
2f569afd | 1785 | err = fn(pte, token, addr, data); |
aee16b3c JF |
1786 | if (err) |
1787 | break; | |
1788 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1789 | ||
38e0edb1 JF |
1790 | arch_leave_lazy_mmu_mode(); |
1791 | ||
aee16b3c JF |
1792 | if (mm != &init_mm) |
1793 | pte_unmap_unlock(pte-1, ptl); | |
1794 | return err; | |
1795 | } | |
1796 | ||
1797 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1798 | unsigned long addr, unsigned long end, | |
1799 | pte_fn_t fn, void *data) | |
1800 | { | |
1801 | pmd_t *pmd; | |
1802 | unsigned long next; | |
1803 | int err; | |
1804 | ||
ceb86879 AK |
1805 | BUG_ON(pud_huge(*pud)); |
1806 | ||
aee16b3c JF |
1807 | pmd = pmd_alloc(mm, pud, addr); |
1808 | if (!pmd) | |
1809 | return -ENOMEM; | |
1810 | do { | |
1811 | next = pmd_addr_end(addr, end); | |
1812 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1813 | if (err) | |
1814 | break; | |
1815 | } while (pmd++, addr = next, addr != end); | |
1816 | return err; | |
1817 | } | |
1818 | ||
1819 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1820 | unsigned long addr, unsigned long end, | |
1821 | pte_fn_t fn, void *data) | |
1822 | { | |
1823 | pud_t *pud; | |
1824 | unsigned long next; | |
1825 | int err; | |
1826 | ||
1827 | pud = pud_alloc(mm, pgd, addr); | |
1828 | if (!pud) | |
1829 | return -ENOMEM; | |
1830 | do { | |
1831 | next = pud_addr_end(addr, end); | |
1832 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1833 | if (err) | |
1834 | break; | |
1835 | } while (pud++, addr = next, addr != end); | |
1836 | return err; | |
1837 | } | |
1838 | ||
1839 | /* | |
1840 | * Scan a region of virtual memory, filling in page tables as necessary | |
1841 | * and calling a provided function on each leaf page table. | |
1842 | */ | |
1843 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1844 | unsigned long size, pte_fn_t fn, void *data) | |
1845 | { | |
1846 | pgd_t *pgd; | |
1847 | unsigned long next; | |
cddb8a5c | 1848 | unsigned long start = addr, end = addr + size; |
aee16b3c JF |
1849 | int err; |
1850 | ||
1851 | BUG_ON(addr >= end); | |
cddb8a5c | 1852 | mmu_notifier_invalidate_range_start(mm, start, end); |
aee16b3c JF |
1853 | pgd = pgd_offset(mm, addr); |
1854 | do { | |
1855 | next = pgd_addr_end(addr, end); | |
1856 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1857 | if (err) | |
1858 | break; | |
1859 | } while (pgd++, addr = next, addr != end); | |
cddb8a5c | 1860 | mmu_notifier_invalidate_range_end(mm, start, end); |
aee16b3c JF |
1861 | return err; |
1862 | } | |
1863 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1864 | ||
8f4e2101 HD |
1865 | /* |
1866 | * handle_pte_fault chooses page fault handler according to an entry | |
1867 | * which was read non-atomically. Before making any commitment, on | |
1868 | * those architectures or configurations (e.g. i386 with PAE) which | |
1869 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1870 | * must check under lock before unmapping the pte and proceeding | |
1871 | * (but do_wp_page is only called after already making such a check; | |
1872 | * and do_anonymous_page and do_no_page can safely check later on). | |
1873 | */ | |
4c21e2f2 | 1874 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1875 | pte_t *page_table, pte_t orig_pte) |
1876 | { | |
1877 | int same = 1; | |
1878 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1879 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1880 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1881 | spin_lock(ptl); | |
8f4e2101 | 1882 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1883 | spin_unlock(ptl); |
8f4e2101 HD |
1884 | } |
1885 | #endif | |
1886 | pte_unmap(page_table); | |
1887 | return same; | |
1888 | } | |
1889 | ||
1da177e4 LT |
1890 | /* |
1891 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1892 | * servicing faults for write access. In the normal case, do always want | |
1893 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1894 | * that do not have writing enabled, when used by access_process_vm. | |
1895 | */ | |
1896 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1897 | { | |
1898 | if (likely(vma->vm_flags & VM_WRITE)) | |
1899 | pte = pte_mkwrite(pte); | |
1900 | return pte; | |
1901 | } | |
1902 | ||
9de455b2 | 1903 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1904 | { |
1905 | /* | |
1906 | * If the source page was a PFN mapping, we don't have | |
1907 | * a "struct page" for it. We do a best-effort copy by | |
1908 | * just copying from the original user address. If that | |
1909 | * fails, we just zero-fill it. Live with it. | |
1910 | */ | |
1911 | if (unlikely(!src)) { | |
1912 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1913 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1914 | ||
1915 | /* | |
1916 | * This really shouldn't fail, because the page is there | |
1917 | * in the page tables. But it might just be unreadable, | |
1918 | * in which case we just give up and fill the result with | |
1919 | * zeroes. | |
1920 | */ | |
1921 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1922 | memset(kaddr, 0, PAGE_SIZE); |
1923 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1924 | flush_dcache_page(dst); |
0ed361de NP |
1925 | } else |
1926 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
1927 | } |
1928 | ||
1da177e4 LT |
1929 | /* |
1930 | * This routine handles present pages, when users try to write | |
1931 | * to a shared page. It is done by copying the page to a new address | |
1932 | * and decrementing the shared-page counter for the old page. | |
1933 | * | |
1da177e4 LT |
1934 | * Note that this routine assumes that the protection checks have been |
1935 | * done by the caller (the low-level page fault routine in most cases). | |
1936 | * Thus we can safely just mark it writable once we've done any necessary | |
1937 | * COW. | |
1938 | * | |
1939 | * We also mark the page dirty at this point even though the page will | |
1940 | * change only once the write actually happens. This avoids a few races, | |
1941 | * and potentially makes it more efficient. | |
1942 | * | |
8f4e2101 HD |
1943 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1944 | * but allow concurrent faults), with pte both mapped and locked. | |
1945 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1946 | */ |
65500d23 HD |
1947 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1948 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1949 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1950 | { |
e5bbe4df | 1951 | struct page *old_page, *new_page; |
1da177e4 | 1952 | pte_t entry; |
83c54070 | 1953 | int reuse = 0, ret = 0; |
a200ee18 | 1954 | int page_mkwrite = 0; |
d08b3851 | 1955 | struct page *dirty_page = NULL; |
1da177e4 | 1956 | |
6aab341e | 1957 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
1958 | if (!old_page) { |
1959 | /* | |
1960 | * VM_MIXEDMAP !pfn_valid() case | |
1961 | * | |
1962 | * We should not cow pages in a shared writeable mapping. | |
1963 | * Just mark the pages writable as we can't do any dirty | |
1964 | * accounting on raw pfn maps. | |
1965 | */ | |
1966 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
1967 | (VM_WRITE|VM_SHARED)) | |
1968 | goto reuse; | |
6aab341e | 1969 | goto gotten; |
251b97f5 | 1970 | } |
1da177e4 | 1971 | |
d08b3851 | 1972 | /* |
ee6a6457 PZ |
1973 | * Take out anonymous pages first, anonymous shared vmas are |
1974 | * not dirty accountable. | |
d08b3851 | 1975 | */ |
ee6a6457 | 1976 | if (PageAnon(old_page)) { |
ab967d86 HD |
1977 | if (!trylock_page(old_page)) { |
1978 | page_cache_get(old_page); | |
1979 | pte_unmap_unlock(page_table, ptl); | |
1980 | lock_page(old_page); | |
1981 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1982 | &ptl); | |
1983 | if (!pte_same(*page_table, orig_pte)) { | |
1984 | unlock_page(old_page); | |
1985 | page_cache_release(old_page); | |
1986 | goto unlock; | |
1987 | } | |
1988 | page_cache_release(old_page); | |
ee6a6457 | 1989 | } |
7b1fe597 | 1990 | reuse = reuse_swap_page(old_page); |
ab967d86 | 1991 | unlock_page(old_page); |
ee6a6457 | 1992 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 1993 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1994 | /* |
1995 | * Only catch write-faults on shared writable pages, | |
1996 | * read-only shared pages can get COWed by | |
1997 | * get_user_pages(.write=1, .force=1). | |
1998 | */ | |
9637a5ef | 1999 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2000 | struct vm_fault vmf; |
2001 | int tmp; | |
2002 | ||
2003 | vmf.virtual_address = (void __user *)(address & | |
2004 | PAGE_MASK); | |
2005 | vmf.pgoff = old_page->index; | |
2006 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | |
2007 | vmf.page = old_page; | |
2008 | ||
9637a5ef DH |
2009 | /* |
2010 | * Notify the address space that the page is about to | |
2011 | * become writable so that it can prohibit this or wait | |
2012 | * for the page to get into an appropriate state. | |
2013 | * | |
2014 | * We do this without the lock held, so that it can | |
2015 | * sleep if it needs to. | |
2016 | */ | |
2017 | page_cache_get(old_page); | |
2018 | pte_unmap_unlock(page_table, ptl); | |
2019 | ||
c2ec175c NP |
2020 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2021 | if (unlikely(tmp & | |
2022 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2023 | ret = tmp; | |
9637a5ef | 2024 | goto unwritable_page; |
c2ec175c | 2025 | } |
b827e496 NP |
2026 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2027 | lock_page(old_page); | |
2028 | if (!old_page->mapping) { | |
2029 | ret = 0; /* retry the fault */ | |
2030 | unlock_page(old_page); | |
2031 | goto unwritable_page; | |
2032 | } | |
2033 | } else | |
2034 | VM_BUG_ON(!PageLocked(old_page)); | |
9637a5ef | 2035 | |
9637a5ef DH |
2036 | /* |
2037 | * Since we dropped the lock we need to revalidate | |
2038 | * the PTE as someone else may have changed it. If | |
2039 | * they did, we just return, as we can count on the | |
2040 | * MMU to tell us if they didn't also make it writable. | |
2041 | */ | |
2042 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2043 | &ptl); | |
b827e496 NP |
2044 | if (!pte_same(*page_table, orig_pte)) { |
2045 | unlock_page(old_page); | |
2046 | page_cache_release(old_page); | |
9637a5ef | 2047 | goto unlock; |
b827e496 | 2048 | } |
a200ee18 PZ |
2049 | |
2050 | page_mkwrite = 1; | |
1da177e4 | 2051 | } |
d08b3851 PZ |
2052 | dirty_page = old_page; |
2053 | get_page(dirty_page); | |
9637a5ef | 2054 | reuse = 1; |
9637a5ef DH |
2055 | } |
2056 | ||
2057 | if (reuse) { | |
251b97f5 | 2058 | reuse: |
9637a5ef DH |
2059 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
2060 | entry = pte_mkyoung(orig_pte); | |
2061 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 2062 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 2063 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
2064 | ret |= VM_FAULT_WRITE; |
2065 | goto unlock; | |
1da177e4 | 2066 | } |
1da177e4 LT |
2067 | |
2068 | /* | |
2069 | * Ok, we need to copy. Oh, well.. | |
2070 | */ | |
b5810039 | 2071 | page_cache_get(old_page); |
920fc356 | 2072 | gotten: |
8f4e2101 | 2073 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2074 | |
2075 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 2076 | goto oom; |
557ed1fa NP |
2077 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
2078 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
2079 | if (!new_page) | |
2080 | goto oom; | |
b291f000 NP |
2081 | /* |
2082 | * Don't let another task, with possibly unlocked vma, | |
2083 | * keep the mlocked page. | |
2084 | */ | |
ab92661d | 2085 | if ((vma->vm_flags & VM_LOCKED) && old_page) { |
b291f000 NP |
2086 | lock_page(old_page); /* for LRU manipulation */ |
2087 | clear_page_mlock(old_page); | |
2088 | unlock_page(old_page); | |
2089 | } | |
557ed1fa | 2090 | cow_user_page(new_page, old_page, address, vma); |
0ed361de | 2091 | __SetPageUptodate(new_page); |
65500d23 | 2092 | |
2c26fdd7 | 2093 | if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2094 | goto oom_free_new; |
2095 | ||
1da177e4 LT |
2096 | /* |
2097 | * Re-check the pte - we dropped the lock | |
2098 | */ | |
8f4e2101 | 2099 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 2100 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 2101 | if (old_page) { |
920fc356 HD |
2102 | if (!PageAnon(old_page)) { |
2103 | dec_mm_counter(mm, file_rss); | |
2104 | inc_mm_counter(mm, anon_rss); | |
2105 | } | |
2106 | } else | |
4294621f | 2107 | inc_mm_counter(mm, anon_rss); |
eca35133 | 2108 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
2109 | entry = mk_pte(new_page, vma->vm_page_prot); |
2110 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
2111 | /* |
2112 | * Clear the pte entry and flush it first, before updating the | |
2113 | * pte with the new entry. This will avoid a race condition | |
2114 | * seen in the presence of one thread doing SMC and another | |
2115 | * thread doing COW. | |
2116 | */ | |
cddb8a5c | 2117 | ptep_clear_flush_notify(vma, address, page_table); |
9617d95e | 2118 | page_add_new_anon_rmap(new_page, vma, address); |
64d6519d LS |
2119 | set_pte_at(mm, address, page_table, entry); |
2120 | update_mmu_cache(vma, address, entry); | |
945754a1 NP |
2121 | if (old_page) { |
2122 | /* | |
2123 | * Only after switching the pte to the new page may | |
2124 | * we remove the mapcount here. Otherwise another | |
2125 | * process may come and find the rmap count decremented | |
2126 | * before the pte is switched to the new page, and | |
2127 | * "reuse" the old page writing into it while our pte | |
2128 | * here still points into it and can be read by other | |
2129 | * threads. | |
2130 | * | |
2131 | * The critical issue is to order this | |
2132 | * page_remove_rmap with the ptp_clear_flush above. | |
2133 | * Those stores are ordered by (if nothing else,) | |
2134 | * the barrier present in the atomic_add_negative | |
2135 | * in page_remove_rmap. | |
2136 | * | |
2137 | * Then the TLB flush in ptep_clear_flush ensures that | |
2138 | * no process can access the old page before the | |
2139 | * decremented mapcount is visible. And the old page | |
2140 | * cannot be reused until after the decremented | |
2141 | * mapcount is visible. So transitively, TLBs to | |
2142 | * old page will be flushed before it can be reused. | |
2143 | */ | |
edc315fd | 2144 | page_remove_rmap(old_page); |
945754a1 NP |
2145 | } |
2146 | ||
1da177e4 LT |
2147 | /* Free the old page.. */ |
2148 | new_page = old_page; | |
f33ea7f4 | 2149 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
2150 | } else |
2151 | mem_cgroup_uncharge_page(new_page); | |
2152 | ||
920fc356 HD |
2153 | if (new_page) |
2154 | page_cache_release(new_page); | |
2155 | if (old_page) | |
2156 | page_cache_release(old_page); | |
65500d23 | 2157 | unlock: |
8f4e2101 | 2158 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 2159 | if (dirty_page) { |
79352894 NP |
2160 | /* |
2161 | * Yes, Virginia, this is actually required to prevent a race | |
2162 | * with clear_page_dirty_for_io() from clearing the page dirty | |
2163 | * bit after it clear all dirty ptes, but before a racing | |
2164 | * do_wp_page installs a dirty pte. | |
2165 | * | |
2166 | * do_no_page is protected similarly. | |
2167 | */ | |
b827e496 NP |
2168 | if (!page_mkwrite) { |
2169 | wait_on_page_locked(dirty_page); | |
2170 | set_page_dirty_balance(dirty_page, page_mkwrite); | |
2171 | } | |
d08b3851 | 2172 | put_page(dirty_page); |
b827e496 NP |
2173 | if (page_mkwrite) { |
2174 | struct address_space *mapping = dirty_page->mapping; | |
2175 | ||
2176 | set_page_dirty(dirty_page); | |
2177 | unlock_page(dirty_page); | |
2178 | page_cache_release(dirty_page); | |
2179 | if (mapping) { | |
2180 | /* | |
2181 | * Some device drivers do not set page.mapping | |
2182 | * but still dirty their pages | |
2183 | */ | |
2184 | balance_dirty_pages_ratelimited(mapping); | |
2185 | } | |
2186 | } | |
2187 | ||
2188 | /* file_update_time outside page_lock */ | |
2189 | if (vma->vm_file) | |
2190 | file_update_time(vma->vm_file); | |
d08b3851 | 2191 | } |
f33ea7f4 | 2192 | return ret; |
8a9f3ccd | 2193 | oom_free_new: |
6dbf6d3b | 2194 | page_cache_release(new_page); |
65500d23 | 2195 | oom: |
b827e496 NP |
2196 | if (old_page) { |
2197 | if (page_mkwrite) { | |
2198 | unlock_page(old_page); | |
2199 | page_cache_release(old_page); | |
2200 | } | |
920fc356 | 2201 | page_cache_release(old_page); |
b827e496 | 2202 | } |
1da177e4 | 2203 | return VM_FAULT_OOM; |
9637a5ef DH |
2204 | |
2205 | unwritable_page: | |
2206 | page_cache_release(old_page); | |
c2ec175c | 2207 | return ret; |
1da177e4 LT |
2208 | } |
2209 | ||
2210 | /* | |
2211 | * Helper functions for unmap_mapping_range(). | |
2212 | * | |
2213 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
2214 | * | |
2215 | * We have to restart searching the prio_tree whenever we drop the lock, | |
2216 | * since the iterator is only valid while the lock is held, and anyway | |
2217 | * a later vma might be split and reinserted earlier while lock dropped. | |
2218 | * | |
2219 | * The list of nonlinear vmas could be handled more efficiently, using | |
2220 | * a placeholder, but handle it in the same way until a need is shown. | |
2221 | * It is important to search the prio_tree before nonlinear list: a vma | |
2222 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
2223 | * while the lock is dropped; but never shifted from list to prio_tree. | |
2224 | * | |
2225 | * In order to make forward progress despite restarting the search, | |
2226 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
2227 | * quickly skip it next time around. Since the prio_tree search only | |
2228 | * shows us those vmas affected by unmapping the range in question, we | |
2229 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
2230 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
2231 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
2232 | * i_mmap_lock. | |
2233 | * | |
2234 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 2235 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
2236 | * and restart from that address when we reach that vma again. It might |
2237 | * have been split or merged, shrunk or extended, but never shifted: so | |
2238 | * restart_addr remains valid so long as it remains in the vma's range. | |
2239 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
2240 | * values so we can save vma's restart_addr in its truncate_count field. | |
2241 | */ | |
2242 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
2243 | ||
2244 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
2245 | { | |
2246 | struct vm_area_struct *vma; | |
2247 | struct prio_tree_iter iter; | |
2248 | ||
2249 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
2250 | vma->vm_truncate_count = 0; | |
2251 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
2252 | vma->vm_truncate_count = 0; | |
2253 | } | |
2254 | ||
2255 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
2256 | unsigned long start_addr, unsigned long end_addr, | |
2257 | struct zap_details *details) | |
2258 | { | |
2259 | unsigned long restart_addr; | |
2260 | int need_break; | |
2261 | ||
d00806b1 NP |
2262 | /* |
2263 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 2264 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
2265 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
2266 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 2267 | */ |
d00806b1 | 2268 | |
1da177e4 LT |
2269 | again: |
2270 | restart_addr = vma->vm_truncate_count; | |
2271 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
2272 | start_addr = restart_addr; | |
2273 | if (start_addr >= end_addr) { | |
2274 | /* Top of vma has been split off since last time */ | |
2275 | vma->vm_truncate_count = details->truncate_count; | |
2276 | return 0; | |
2277 | } | |
2278 | } | |
2279 | ||
ee39b37b HD |
2280 | restart_addr = zap_page_range(vma, start_addr, |
2281 | end_addr - start_addr, details); | |
95c354fe | 2282 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 2283 | |
ee39b37b | 2284 | if (restart_addr >= end_addr) { |
1da177e4 LT |
2285 | /* We have now completed this vma: mark it so */ |
2286 | vma->vm_truncate_count = details->truncate_count; | |
2287 | if (!need_break) | |
2288 | return 0; | |
2289 | } else { | |
2290 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 2291 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
2292 | if (!need_break) |
2293 | goto again; | |
2294 | } | |
2295 | ||
2296 | spin_unlock(details->i_mmap_lock); | |
2297 | cond_resched(); | |
2298 | spin_lock(details->i_mmap_lock); | |
2299 | return -EINTR; | |
2300 | } | |
2301 | ||
2302 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2303 | struct zap_details *details) | |
2304 | { | |
2305 | struct vm_area_struct *vma; | |
2306 | struct prio_tree_iter iter; | |
2307 | pgoff_t vba, vea, zba, zea; | |
2308 | ||
2309 | restart: | |
2310 | vma_prio_tree_foreach(vma, &iter, root, | |
2311 | details->first_index, details->last_index) { | |
2312 | /* Skip quickly over those we have already dealt with */ | |
2313 | if (vma->vm_truncate_count == details->truncate_count) | |
2314 | continue; | |
2315 | ||
2316 | vba = vma->vm_pgoff; | |
2317 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2318 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2319 | zba = details->first_index; | |
2320 | if (zba < vba) | |
2321 | zba = vba; | |
2322 | zea = details->last_index; | |
2323 | if (zea > vea) | |
2324 | zea = vea; | |
2325 | ||
2326 | if (unmap_mapping_range_vma(vma, | |
2327 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2328 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2329 | details) < 0) | |
2330 | goto restart; | |
2331 | } | |
2332 | } | |
2333 | ||
2334 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2335 | struct zap_details *details) | |
2336 | { | |
2337 | struct vm_area_struct *vma; | |
2338 | ||
2339 | /* | |
2340 | * In nonlinear VMAs there is no correspondence between virtual address | |
2341 | * offset and file offset. So we must perform an exhaustive search | |
2342 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2343 | * whose virtual address lies outside the file truncation point. | |
2344 | */ | |
2345 | restart: | |
2346 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2347 | /* Skip quickly over those we have already dealt with */ | |
2348 | if (vma->vm_truncate_count == details->truncate_count) | |
2349 | continue; | |
2350 | details->nonlinear_vma = vma; | |
2351 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2352 | vma->vm_end, details) < 0) | |
2353 | goto restart; | |
2354 | } | |
2355 | } | |
2356 | ||
2357 | /** | |
72fd4a35 | 2358 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2359 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2360 | * @holebegin: byte in first page to unmap, relative to the start of |
2361 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
2362 | * boundary. Note that this is different from vmtruncate(), which | |
2363 | * must keep the partial page. In contrast, we must get rid of | |
2364 | * partial pages. | |
2365 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2366 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2367 | * end of the file. | |
2368 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2369 | * but 0 when invalidating pagecache, don't throw away private data. | |
2370 | */ | |
2371 | void unmap_mapping_range(struct address_space *mapping, | |
2372 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2373 | { | |
2374 | struct zap_details details; | |
2375 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2376 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2377 | ||
2378 | /* Check for overflow. */ | |
2379 | if (sizeof(holelen) > sizeof(hlen)) { | |
2380 | long long holeend = | |
2381 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2382 | if (holeend & ~(long long)ULONG_MAX) | |
2383 | hlen = ULONG_MAX - hba + 1; | |
2384 | } | |
2385 | ||
2386 | details.check_mapping = even_cows? NULL: mapping; | |
2387 | details.nonlinear_vma = NULL; | |
2388 | details.first_index = hba; | |
2389 | details.last_index = hba + hlen - 1; | |
2390 | if (details.last_index < details.first_index) | |
2391 | details.last_index = ULONG_MAX; | |
2392 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2393 | ||
2394 | spin_lock(&mapping->i_mmap_lock); | |
2395 | ||
d00806b1 | 2396 | /* Protect against endless unmapping loops */ |
1da177e4 | 2397 | mapping->truncate_count++; |
1da177e4 LT |
2398 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2399 | if (mapping->truncate_count == 0) | |
2400 | reset_vma_truncate_counts(mapping); | |
2401 | mapping->truncate_count++; | |
2402 | } | |
2403 | details.truncate_count = mapping->truncate_count; | |
2404 | ||
2405 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2406 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2407 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2408 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2409 | spin_unlock(&mapping->i_mmap_lock); | |
2410 | } | |
2411 | EXPORT_SYMBOL(unmap_mapping_range); | |
2412 | ||
bfa5bf6d REB |
2413 | /** |
2414 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
2415 | * @inode: inode of the file used | |
2416 | * @offset: file offset to start truncating | |
1da177e4 LT |
2417 | * |
2418 | * NOTE! We have to be ready to update the memory sharing | |
2419 | * between the file and the memory map for a potential last | |
2420 | * incomplete page. Ugly, but necessary. | |
2421 | */ | |
2422 | int vmtruncate(struct inode * inode, loff_t offset) | |
2423 | { | |
61d5048f CH |
2424 | if (inode->i_size < offset) { |
2425 | unsigned long limit; | |
2426 | ||
2427 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2428 | if (limit != RLIM_INFINITY && offset > limit) | |
2429 | goto out_sig; | |
2430 | if (offset > inode->i_sb->s_maxbytes) | |
2431 | goto out_big; | |
2432 | i_size_write(inode, offset); | |
2433 | } else { | |
2434 | struct address_space *mapping = inode->i_mapping; | |
1da177e4 | 2435 | |
61d5048f CH |
2436 | /* |
2437 | * truncation of in-use swapfiles is disallowed - it would | |
2438 | * cause subsequent swapout to scribble on the now-freed | |
2439 | * blocks. | |
2440 | */ | |
2441 | if (IS_SWAPFILE(inode)) | |
2442 | return -ETXTBSY; | |
2443 | i_size_write(inode, offset); | |
2444 | ||
2445 | /* | |
2446 | * unmap_mapping_range is called twice, first simply for | |
2447 | * efficiency so that truncate_inode_pages does fewer | |
2448 | * single-page unmaps. However after this first call, and | |
2449 | * before truncate_inode_pages finishes, it is possible for | |
2450 | * private pages to be COWed, which remain after | |
2451 | * truncate_inode_pages finishes, hence the second | |
2452 | * unmap_mapping_range call must be made for correctness. | |
2453 | */ | |
2454 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2455 | truncate_inode_pages(mapping, offset); | |
2456 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2457 | } | |
d00806b1 | 2458 | |
acfa4380 | 2459 | if (inode->i_op->truncate) |
1da177e4 LT |
2460 | inode->i_op->truncate(inode); |
2461 | return 0; | |
61d5048f | 2462 | |
1da177e4 LT |
2463 | out_sig: |
2464 | send_sig(SIGXFSZ, current, 0); | |
2465 | out_big: | |
2466 | return -EFBIG; | |
1da177e4 | 2467 | } |
1da177e4 LT |
2468 | EXPORT_SYMBOL(vmtruncate); |
2469 | ||
f6b3ec23 BP |
2470 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2471 | { | |
2472 | struct address_space *mapping = inode->i_mapping; | |
2473 | ||
2474 | /* | |
2475 | * If the underlying filesystem is not going to provide | |
2476 | * a way to truncate a range of blocks (punch a hole) - | |
2477 | * we should return failure right now. | |
2478 | */ | |
acfa4380 | 2479 | if (!inode->i_op->truncate_range) |
f6b3ec23 BP |
2480 | return -ENOSYS; |
2481 | ||
1b1dcc1b | 2482 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2483 | down_write(&inode->i_alloc_sem); |
2484 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2485 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2486 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2487 | inode->i_op->truncate_range(inode, offset, end); |
2488 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2489 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2490 | |
2491 | return 0; | |
2492 | } | |
f6b3ec23 | 2493 | |
1da177e4 | 2494 | /* |
8f4e2101 HD |
2495 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2496 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2497 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2498 | */ |
65500d23 HD |
2499 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2500 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2501 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2502 | { |
8f4e2101 | 2503 | spinlock_t *ptl; |
1da177e4 | 2504 | struct page *page; |
65500d23 | 2505 | swp_entry_t entry; |
1da177e4 | 2506 | pte_t pte; |
7a81b88c | 2507 | struct mem_cgroup *ptr = NULL; |
83c54070 | 2508 | int ret = 0; |
1da177e4 | 2509 | |
4c21e2f2 | 2510 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2511 | goto out; |
65500d23 HD |
2512 | |
2513 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2514 | if (is_migration_entry(entry)) { |
2515 | migration_entry_wait(mm, pmd, address); | |
2516 | goto out; | |
2517 | } | |
0ff92245 | 2518 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2519 | page = lookup_swap_cache(entry); |
2520 | if (!page) { | |
a5c9b696 | 2521 | grab_swap_token(mm); /* Contend for token _before_ read-in */ |
02098fea HD |
2522 | page = swapin_readahead(entry, |
2523 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2524 | if (!page) { |
2525 | /* | |
8f4e2101 HD |
2526 | * Back out if somebody else faulted in this pte |
2527 | * while we released the pte lock. | |
1da177e4 | 2528 | */ |
8f4e2101 | 2529 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2530 | if (likely(pte_same(*page_table, orig_pte))) |
2531 | ret = VM_FAULT_OOM; | |
0ff92245 | 2532 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2533 | goto unlock; |
1da177e4 LT |
2534 | } |
2535 | ||
2536 | /* Had to read the page from swap area: Major fault */ | |
2537 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2538 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2539 | } |
2540 | ||
073e587e KH |
2541 | lock_page(page); |
2542 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
2543 | ||
2c26fdd7 | 2544 | if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { |
8a9f3ccd | 2545 | ret = VM_FAULT_OOM; |
bc43f75c | 2546 | goto out_page; |
8a9f3ccd BS |
2547 | } |
2548 | ||
1da177e4 | 2549 | /* |
8f4e2101 | 2550 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2551 | */ |
8f4e2101 | 2552 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2553 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2554 | goto out_nomap; |
b8107480 KK |
2555 | |
2556 | if (unlikely(!PageUptodate(page))) { | |
2557 | ret = VM_FAULT_SIGBUS; | |
2558 | goto out_nomap; | |
1da177e4 LT |
2559 | } |
2560 | ||
8c7c6e34 KH |
2561 | /* |
2562 | * The page isn't present yet, go ahead with the fault. | |
2563 | * | |
2564 | * Be careful about the sequence of operations here. | |
2565 | * To get its accounting right, reuse_swap_page() must be called | |
2566 | * while the page is counted on swap but not yet in mapcount i.e. | |
2567 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2568 | * must be called after the swap_free(), or it will never succeed. | |
03f3c433 KH |
2569 | * Because delete_from_swap_page() may be called by reuse_swap_page(), |
2570 | * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry | |
2571 | * in page->private. In this case, a record in swap_cgroup is silently | |
2572 | * discarded at swap_free(). | |
8c7c6e34 | 2573 | */ |
1da177e4 | 2574 | |
4294621f | 2575 | inc_mm_counter(mm, anon_rss); |
1da177e4 | 2576 | pte = mk_pte(page, vma->vm_page_prot); |
30c9f3a9 | 2577 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
1da177e4 | 2578 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
30c9f3a9 | 2579 | flags &= ~FAULT_FLAG_WRITE; |
1da177e4 | 2580 | } |
1da177e4 LT |
2581 | flush_icache_page(vma, page); |
2582 | set_pte_at(mm, address, page_table, pte); | |
2583 | page_add_anon_rmap(page, vma, address); | |
03f3c433 KH |
2584 | /* It's better to call commit-charge after rmap is established */ |
2585 | mem_cgroup_commit_charge_swapin(page, ptr); | |
1da177e4 | 2586 | |
c475a8ab | 2587 | swap_free(entry); |
b291f000 | 2588 | if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) |
a2c43eed | 2589 | try_to_free_swap(page); |
c475a8ab HD |
2590 | unlock_page(page); |
2591 | ||
30c9f3a9 | 2592 | if (flags & FAULT_FLAG_WRITE) { |
61469f1d HD |
2593 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2594 | if (ret & VM_FAULT_ERROR) | |
2595 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2596 | goto out; |
2597 | } | |
2598 | ||
2599 | /* No need to invalidate - it was non-present before */ | |
2600 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2601 | unlock: |
8f4e2101 | 2602 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2603 | out: |
2604 | return ret; | |
b8107480 | 2605 | out_nomap: |
7a81b88c | 2606 | mem_cgroup_cancel_charge_swapin(ptr); |
8f4e2101 | 2607 | pte_unmap_unlock(page_table, ptl); |
bc43f75c | 2608 | out_page: |
b8107480 KK |
2609 | unlock_page(page); |
2610 | page_cache_release(page); | |
65500d23 | 2611 | return ret; |
1da177e4 LT |
2612 | } |
2613 | ||
2614 | /* | |
8f4e2101 HD |
2615 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2616 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2617 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2618 | */ |
65500d23 HD |
2619 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2620 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2621 | unsigned int flags) |
1da177e4 | 2622 | { |
8f4e2101 HD |
2623 | struct page *page; |
2624 | spinlock_t *ptl; | |
1da177e4 | 2625 | pte_t entry; |
1da177e4 | 2626 | |
557ed1fa NP |
2627 | /* Allocate our own private page. */ |
2628 | pte_unmap(page_table); | |
8f4e2101 | 2629 | |
557ed1fa NP |
2630 | if (unlikely(anon_vma_prepare(vma))) |
2631 | goto oom; | |
2632 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2633 | if (!page) | |
2634 | goto oom; | |
0ed361de | 2635 | __SetPageUptodate(page); |
8f4e2101 | 2636 | |
2c26fdd7 | 2637 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2638 | goto oom_free_page; |
2639 | ||
557ed1fa NP |
2640 | entry = mk_pte(page, vma->vm_page_prot); |
2641 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 | 2642 | |
557ed1fa NP |
2643 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2644 | if (!pte_none(*page_table)) | |
2645 | goto release; | |
2646 | inc_mm_counter(mm, anon_rss); | |
557ed1fa | 2647 | page_add_new_anon_rmap(page, vma, address); |
65500d23 | 2648 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2649 | |
2650 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2651 | update_mmu_cache(vma, address, entry); |
65500d23 | 2652 | unlock: |
8f4e2101 | 2653 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2654 | return 0; |
8f4e2101 | 2655 | release: |
8a9f3ccd | 2656 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2657 | page_cache_release(page); |
2658 | goto unlock; | |
8a9f3ccd | 2659 | oom_free_page: |
6dbf6d3b | 2660 | page_cache_release(page); |
65500d23 | 2661 | oom: |
1da177e4 LT |
2662 | return VM_FAULT_OOM; |
2663 | } | |
2664 | ||
2665 | /* | |
54cb8821 | 2666 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2667 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2668 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2669 | * the next page fault. | |
1da177e4 LT |
2670 | * |
2671 | * As this is called only for pages that do not currently exist, we | |
2672 | * do not need to flush old virtual caches or the TLB. | |
2673 | * | |
8f4e2101 | 2674 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2675 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2676 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2677 | */ |
54cb8821 | 2678 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2679 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2680 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2681 | { |
16abfa08 | 2682 | pte_t *page_table; |
8f4e2101 | 2683 | spinlock_t *ptl; |
d0217ac0 | 2684 | struct page *page; |
1da177e4 | 2685 | pte_t entry; |
1da177e4 | 2686 | int anon = 0; |
5b4e655e | 2687 | int charged = 0; |
d08b3851 | 2688 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2689 | struct vm_fault vmf; |
2690 | int ret; | |
a200ee18 | 2691 | int page_mkwrite = 0; |
54cb8821 | 2692 | |
d0217ac0 NP |
2693 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2694 | vmf.pgoff = pgoff; | |
2695 | vmf.flags = flags; | |
2696 | vmf.page = NULL; | |
1da177e4 | 2697 | |
3c18ddd1 NP |
2698 | ret = vma->vm_ops->fault(vma, &vmf); |
2699 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2700 | return ret; | |
1da177e4 | 2701 | |
d00806b1 | 2702 | /* |
d0217ac0 | 2703 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2704 | * locked. |
2705 | */ | |
83c54070 | 2706 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2707 | lock_page(vmf.page); |
54cb8821 | 2708 | else |
d0217ac0 | 2709 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2710 | |
1da177e4 LT |
2711 | /* |
2712 | * Should we do an early C-O-W break? | |
2713 | */ | |
d0217ac0 | 2714 | page = vmf.page; |
54cb8821 | 2715 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2716 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2717 | anon = 1; |
d00806b1 | 2718 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2719 | ret = VM_FAULT_OOM; |
54cb8821 | 2720 | goto out; |
d00806b1 | 2721 | } |
83c54070 NP |
2722 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2723 | vma, address); | |
d00806b1 | 2724 | if (!page) { |
d0217ac0 | 2725 | ret = VM_FAULT_OOM; |
54cb8821 | 2726 | goto out; |
d00806b1 | 2727 | } |
2c26fdd7 | 2728 | if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { |
5b4e655e KH |
2729 | ret = VM_FAULT_OOM; |
2730 | page_cache_release(page); | |
2731 | goto out; | |
2732 | } | |
2733 | charged = 1; | |
b291f000 NP |
2734 | /* |
2735 | * Don't let another task, with possibly unlocked vma, | |
2736 | * keep the mlocked page. | |
2737 | */ | |
2738 | if (vma->vm_flags & VM_LOCKED) | |
2739 | clear_page_mlock(vmf.page); | |
d0217ac0 | 2740 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2741 | __SetPageUptodate(page); |
9637a5ef | 2742 | } else { |
54cb8821 NP |
2743 | /* |
2744 | * If the page will be shareable, see if the backing | |
9637a5ef | 2745 | * address space wants to know that the page is about |
54cb8821 NP |
2746 | * to become writable |
2747 | */ | |
69676147 | 2748 | if (vma->vm_ops->page_mkwrite) { |
c2ec175c NP |
2749 | int tmp; |
2750 | ||
69676147 | 2751 | unlock_page(page); |
b827e496 | 2752 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; |
c2ec175c NP |
2753 | tmp = vma->vm_ops->page_mkwrite(vma, &vmf); |
2754 | if (unlikely(tmp & | |
2755 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { | |
2756 | ret = tmp; | |
b827e496 | 2757 | goto unwritable_page; |
d0217ac0 | 2758 | } |
b827e496 NP |
2759 | if (unlikely(!(tmp & VM_FAULT_LOCKED))) { |
2760 | lock_page(page); | |
2761 | if (!page->mapping) { | |
2762 | ret = 0; /* retry the fault */ | |
2763 | unlock_page(page); | |
2764 | goto unwritable_page; | |
2765 | } | |
2766 | } else | |
2767 | VM_BUG_ON(!PageLocked(page)); | |
a200ee18 | 2768 | page_mkwrite = 1; |
9637a5ef DH |
2769 | } |
2770 | } | |
54cb8821 | 2771 | |
1da177e4 LT |
2772 | } |
2773 | ||
8f4e2101 | 2774 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2775 | |
2776 | /* | |
2777 | * This silly early PAGE_DIRTY setting removes a race | |
2778 | * due to the bad i386 page protection. But it's valid | |
2779 | * for other architectures too. | |
2780 | * | |
30c9f3a9 | 2781 | * Note that if FAULT_FLAG_WRITE is set, we either now have |
1da177e4 LT |
2782 | * an exclusive copy of the page, or this is a shared mapping, |
2783 | * so we can make it writable and dirty to avoid having to | |
2784 | * handle that later. | |
2785 | */ | |
2786 | /* Only go through if we didn't race with anybody else... */ | |
54cb8821 | 2787 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2788 | flush_icache_page(vma, page); |
2789 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2790 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 | 2791 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
1da177e4 | 2792 | if (anon) { |
64d6519d | 2793 | inc_mm_counter(mm, anon_rss); |
64d6519d | 2794 | page_add_new_anon_rmap(page, vma, address); |
f57e88a8 | 2795 | } else { |
4294621f | 2796 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2797 | page_add_file_rmap(page); |
54cb8821 | 2798 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2799 | dirty_page = page; |
d08b3851 PZ |
2800 | get_page(dirty_page); |
2801 | } | |
4294621f | 2802 | } |
64d6519d | 2803 | set_pte_at(mm, address, page_table, entry); |
d00806b1 NP |
2804 | |
2805 | /* no need to invalidate: a not-present page won't be cached */ | |
2806 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2807 | } else { |
5b4e655e KH |
2808 | if (charged) |
2809 | mem_cgroup_uncharge_page(page); | |
d00806b1 NP |
2810 | if (anon) |
2811 | page_cache_release(page); | |
2812 | else | |
54cb8821 | 2813 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2814 | } |
2815 | ||
8f4e2101 | 2816 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2817 | |
2818 | out: | |
b827e496 NP |
2819 | if (dirty_page) { |
2820 | struct address_space *mapping = page->mapping; | |
8f7b3d15 | 2821 | |
b827e496 NP |
2822 | if (set_page_dirty(dirty_page)) |
2823 | page_mkwrite = 1; | |
2824 | unlock_page(dirty_page); | |
d08b3851 | 2825 | put_page(dirty_page); |
b827e496 NP |
2826 | if (page_mkwrite && mapping) { |
2827 | /* | |
2828 | * Some device drivers do not set page.mapping but still | |
2829 | * dirty their pages | |
2830 | */ | |
2831 | balance_dirty_pages_ratelimited(mapping); | |
2832 | } | |
2833 | ||
2834 | /* file_update_time outside page_lock */ | |
2835 | if (vma->vm_file) | |
2836 | file_update_time(vma->vm_file); | |
2837 | } else { | |
2838 | unlock_page(vmf.page); | |
2839 | if (anon) | |
2840 | page_cache_release(vmf.page); | |
d08b3851 | 2841 | } |
d00806b1 | 2842 | |
83c54070 | 2843 | return ret; |
b827e496 NP |
2844 | |
2845 | unwritable_page: | |
2846 | page_cache_release(page); | |
2847 | return ret; | |
54cb8821 | 2848 | } |
d00806b1 | 2849 | |
54cb8821 NP |
2850 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2851 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2852 | unsigned int flags, pte_t orig_pte) |
54cb8821 NP |
2853 | { |
2854 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2855 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 | 2856 | |
16abfa08 HD |
2857 | pte_unmap(page_table); |
2858 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2859 | } |
2860 | ||
1da177e4 LT |
2861 | /* |
2862 | * Fault of a previously existing named mapping. Repopulate the pte | |
2863 | * from the encoded file_pte if possible. This enables swappable | |
2864 | * nonlinear vmas. | |
8f4e2101 HD |
2865 | * |
2866 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2867 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2868 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2869 | */ |
d0217ac0 | 2870 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 | 2871 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
30c9f3a9 | 2872 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2873 | { |
65500d23 | 2874 | pgoff_t pgoff; |
1da177e4 | 2875 | |
30c9f3a9 LT |
2876 | flags |= FAULT_FLAG_NONLINEAR; |
2877 | ||
4c21e2f2 | 2878 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2879 | return 0; |
1da177e4 | 2880 | |
2509ef26 | 2881 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { |
65500d23 HD |
2882 | /* |
2883 | * Page table corrupted: show pte and kill process. | |
2884 | */ | |
3dc14741 | 2885 | print_bad_pte(vma, address, orig_pte, NULL); |
65500d23 HD |
2886 | return VM_FAULT_OOM; |
2887 | } | |
65500d23 HD |
2888 | |
2889 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2890 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2891 | } |
2892 | ||
2893 | /* | |
2894 | * These routines also need to handle stuff like marking pages dirty | |
2895 | * and/or accessed for architectures that don't do it in hardware (most | |
2896 | * RISC architectures). The early dirtying is also good on the i386. | |
2897 | * | |
2898 | * There is also a hook called "update_mmu_cache()" that architectures | |
2899 | * with external mmu caches can use to update those (ie the Sparc or | |
2900 | * PowerPC hashed page tables that act as extended TLBs). | |
2901 | * | |
c74df32c HD |
2902 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2903 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2904 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2905 | */ |
2906 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 | 2907 | struct vm_area_struct *vma, unsigned long address, |
30c9f3a9 | 2908 | pte_t *pte, pmd_t *pmd, unsigned int flags) |
1da177e4 LT |
2909 | { |
2910 | pte_t entry; | |
8f4e2101 | 2911 | spinlock_t *ptl; |
1da177e4 | 2912 | |
8dab5241 | 2913 | entry = *pte; |
1da177e4 | 2914 | if (!pte_present(entry)) { |
65500d23 | 2915 | if (pte_none(entry)) { |
f4b81804 | 2916 | if (vma->vm_ops) { |
3c18ddd1 | 2917 | if (likely(vma->vm_ops->fault)) |
54cb8821 | 2918 | return do_linear_fault(mm, vma, address, |
30c9f3a9 | 2919 | pte, pmd, flags, entry); |
f4b81804 JS |
2920 | } |
2921 | return do_anonymous_page(mm, vma, address, | |
30c9f3a9 | 2922 | pte, pmd, flags); |
65500d23 | 2923 | } |
1da177e4 | 2924 | if (pte_file(entry)) |
d0217ac0 | 2925 | return do_nonlinear_fault(mm, vma, address, |
30c9f3a9 | 2926 | pte, pmd, flags, entry); |
65500d23 | 2927 | return do_swap_page(mm, vma, address, |
30c9f3a9 | 2928 | pte, pmd, flags, entry); |
1da177e4 LT |
2929 | } |
2930 | ||
4c21e2f2 | 2931 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2932 | spin_lock(ptl); |
2933 | if (unlikely(!pte_same(*pte, entry))) | |
2934 | goto unlock; | |
30c9f3a9 | 2935 | if (flags & FAULT_FLAG_WRITE) { |
1da177e4 | 2936 | if (!pte_write(entry)) |
8f4e2101 HD |
2937 | return do_wp_page(mm, vma, address, |
2938 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2939 | entry = pte_mkdirty(entry); |
2940 | } | |
2941 | entry = pte_mkyoung(entry); | |
30c9f3a9 | 2942 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { |
1a44e149 | 2943 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2944 | } else { |
2945 | /* | |
2946 | * This is needed only for protection faults but the arch code | |
2947 | * is not yet telling us if this is a protection fault or not. | |
2948 | * This still avoids useless tlb flushes for .text page faults | |
2949 | * with threads. | |
2950 | */ | |
30c9f3a9 | 2951 | if (flags & FAULT_FLAG_WRITE) |
1a44e149 AA |
2952 | flush_tlb_page(vma, address); |
2953 | } | |
8f4e2101 HD |
2954 | unlock: |
2955 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 2956 | return 0; |
1da177e4 LT |
2957 | } |
2958 | ||
2959 | /* | |
2960 | * By the time we get here, we already hold the mm semaphore | |
2961 | */ | |
83c54070 | 2962 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
d06063cc | 2963 | unsigned long address, unsigned int flags) |
1da177e4 LT |
2964 | { |
2965 | pgd_t *pgd; | |
2966 | pud_t *pud; | |
2967 | pmd_t *pmd; | |
2968 | pte_t *pte; | |
2969 | ||
2970 | __set_current_state(TASK_RUNNING); | |
2971 | ||
f8891e5e | 2972 | count_vm_event(PGFAULT); |
1da177e4 | 2973 | |
ac9b9c66 | 2974 | if (unlikely(is_vm_hugetlb_page(vma))) |
30c9f3a9 | 2975 | return hugetlb_fault(mm, vma, address, flags); |
1da177e4 | 2976 | |
1da177e4 | 2977 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2978 | pud = pud_alloc(mm, pgd, address); |
2979 | if (!pud) | |
c74df32c | 2980 | return VM_FAULT_OOM; |
1da177e4 LT |
2981 | pmd = pmd_alloc(mm, pud, address); |
2982 | if (!pmd) | |
c74df32c | 2983 | return VM_FAULT_OOM; |
1da177e4 LT |
2984 | pte = pte_alloc_map(mm, pmd, address); |
2985 | if (!pte) | |
c74df32c | 2986 | return VM_FAULT_OOM; |
1da177e4 | 2987 | |
30c9f3a9 | 2988 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
1da177e4 LT |
2989 | } |
2990 | ||
2991 | #ifndef __PAGETABLE_PUD_FOLDED | |
2992 | /* | |
2993 | * Allocate page upper directory. | |
872fec16 | 2994 | * We've already handled the fast-path in-line. |
1da177e4 | 2995 | */ |
1bb3630e | 2996 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2997 | { |
c74df32c HD |
2998 | pud_t *new = pud_alloc_one(mm, address); |
2999 | if (!new) | |
1bb3630e | 3000 | return -ENOMEM; |
1da177e4 | 3001 | |
362a61ad NP |
3002 | smp_wmb(); /* See comment in __pte_alloc */ |
3003 | ||
872fec16 | 3004 | spin_lock(&mm->page_table_lock); |
1bb3630e | 3005 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 3006 | pud_free(mm, new); |
1bb3630e HD |
3007 | else |
3008 | pgd_populate(mm, pgd, new); | |
c74df32c | 3009 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3010 | return 0; |
1da177e4 LT |
3011 | } |
3012 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
3013 | ||
3014 | #ifndef __PAGETABLE_PMD_FOLDED | |
3015 | /* | |
3016 | * Allocate page middle directory. | |
872fec16 | 3017 | * We've already handled the fast-path in-line. |
1da177e4 | 3018 | */ |
1bb3630e | 3019 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 3020 | { |
c74df32c HD |
3021 | pmd_t *new = pmd_alloc_one(mm, address); |
3022 | if (!new) | |
1bb3630e | 3023 | return -ENOMEM; |
1da177e4 | 3024 | |
362a61ad NP |
3025 | smp_wmb(); /* See comment in __pte_alloc */ |
3026 | ||
872fec16 | 3027 | spin_lock(&mm->page_table_lock); |
1da177e4 | 3028 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 3029 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 3030 | pmd_free(mm, new); |
1bb3630e HD |
3031 | else |
3032 | pud_populate(mm, pud, new); | |
1da177e4 | 3033 | #else |
1bb3630e | 3034 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 3035 | pmd_free(mm, new); |
1bb3630e HD |
3036 | else |
3037 | pgd_populate(mm, pud, new); | |
1da177e4 | 3038 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 3039 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3040 | return 0; |
e0f39591 | 3041 | } |
1da177e4 LT |
3042 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3043 | ||
3044 | int make_pages_present(unsigned long addr, unsigned long end) | |
3045 | { | |
3046 | int ret, len, write; | |
3047 | struct vm_area_struct * vma; | |
3048 | ||
3049 | vma = find_vma(current->mm, addr); | |
3050 | if (!vma) | |
a477097d | 3051 | return -ENOMEM; |
1da177e4 | 3052 | write = (vma->vm_flags & VM_WRITE) != 0; |
5bcb28b1 ES |
3053 | BUG_ON(addr >= end); |
3054 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 3055 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
3056 | ret = get_user_pages(current, current->mm, addr, |
3057 | len, write, 0, NULL, NULL); | |
c11d69d8 | 3058 | if (ret < 0) |
1da177e4 | 3059 | return ret; |
9978ad58 | 3060 | return ret == len ? 0 : -EFAULT; |
1da177e4 LT |
3061 | } |
3062 | ||
1da177e4 LT |
3063 | #if !defined(__HAVE_ARCH_GATE_AREA) |
3064 | ||
3065 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 3066 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
3067 | |
3068 | static int __init gate_vma_init(void) | |
3069 | { | |
3070 | gate_vma.vm_mm = NULL; | |
3071 | gate_vma.vm_start = FIXADDR_USER_START; | |
3072 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
3073 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
3074 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
3075 | /* |
3076 | * Make sure the vDSO gets into every core dump. | |
3077 | * Dumping its contents makes post-mortem fully interpretable later | |
3078 | * without matching up the same kernel and hardware config to see | |
3079 | * what PC values meant. | |
3080 | */ | |
3081 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
3082 | return 0; |
3083 | } | |
3084 | __initcall(gate_vma_init); | |
3085 | #endif | |
3086 | ||
3087 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
3088 | { | |
3089 | #ifdef AT_SYSINFO_EHDR | |
3090 | return &gate_vma; | |
3091 | #else | |
3092 | return NULL; | |
3093 | #endif | |
3094 | } | |
3095 | ||
3096 | int in_gate_area_no_task(unsigned long addr) | |
3097 | { | |
3098 | #ifdef AT_SYSINFO_EHDR | |
3099 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
3100 | return 1; | |
3101 | #endif | |
3102 | return 0; | |
3103 | } | |
3104 | ||
3105 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 3106 | |
f8ad0f49 JW |
3107 | static int follow_pte(struct mm_struct *mm, unsigned long address, |
3108 | pte_t **ptepp, spinlock_t **ptlp) | |
3109 | { | |
3110 | pgd_t *pgd; | |
3111 | pud_t *pud; | |
3112 | pmd_t *pmd; | |
3113 | pte_t *ptep; | |
3114 | ||
3115 | pgd = pgd_offset(mm, address); | |
3116 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
3117 | goto out; | |
3118 | ||
3119 | pud = pud_offset(pgd, address); | |
3120 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
3121 | goto out; | |
3122 | ||
3123 | pmd = pmd_offset(pud, address); | |
3124 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
3125 | goto out; | |
3126 | ||
3127 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
3128 | if (pmd_huge(*pmd)) | |
3129 | goto out; | |
3130 | ||
3131 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
3132 | if (!ptep) | |
3133 | goto out; | |
3134 | if (!pte_present(*ptep)) | |
3135 | goto unlock; | |
3136 | *ptepp = ptep; | |
3137 | return 0; | |
3138 | unlock: | |
3139 | pte_unmap_unlock(ptep, *ptlp); | |
3140 | out: | |
3141 | return -EINVAL; | |
3142 | } | |
3143 | ||
3b6748e2 JW |
3144 | /** |
3145 | * follow_pfn - look up PFN at a user virtual address | |
3146 | * @vma: memory mapping | |
3147 | * @address: user virtual address | |
3148 | * @pfn: location to store found PFN | |
3149 | * | |
3150 | * Only IO mappings and raw PFN mappings are allowed. | |
3151 | * | |
3152 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | |
3153 | */ | |
3154 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
3155 | unsigned long *pfn) | |
3156 | { | |
3157 | int ret = -EINVAL; | |
3158 | spinlock_t *ptl; | |
3159 | pte_t *ptep; | |
3160 | ||
3161 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
3162 | return ret; | |
3163 | ||
3164 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
3165 | if (ret) | |
3166 | return ret; | |
3167 | *pfn = pte_pfn(*ptep); | |
3168 | pte_unmap_unlock(ptep, ptl); | |
3169 | return 0; | |
3170 | } | |
3171 | EXPORT_SYMBOL(follow_pfn); | |
3172 | ||
28b2ee20 | 3173 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 3174 | int follow_phys(struct vm_area_struct *vma, |
3175 | unsigned long address, unsigned int flags, | |
3176 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 3177 | { |
03668a4d | 3178 | int ret = -EINVAL; |
28b2ee20 RR |
3179 | pte_t *ptep, pte; |
3180 | spinlock_t *ptl; | |
28b2ee20 | 3181 | |
d87fe660 | 3182 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3183 | goto out; | |
28b2ee20 | 3184 | |
03668a4d | 3185 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 3186 | goto out; |
28b2ee20 | 3187 | pte = *ptep; |
03668a4d | 3188 | |
28b2ee20 RR |
3189 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
3190 | goto unlock; | |
28b2ee20 RR |
3191 | |
3192 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 3193 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 3194 | |
03668a4d | 3195 | ret = 0; |
28b2ee20 RR |
3196 | unlock: |
3197 | pte_unmap_unlock(ptep, ptl); | |
3198 | out: | |
d87fe660 | 3199 | return ret; |
28b2ee20 RR |
3200 | } |
3201 | ||
3202 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
3203 | void *buf, int len, int write) | |
3204 | { | |
3205 | resource_size_t phys_addr; | |
3206 | unsigned long prot = 0; | |
2bc7273b | 3207 | void __iomem *maddr; |
28b2ee20 RR |
3208 | int offset = addr & (PAGE_SIZE-1); |
3209 | ||
d87fe660 | 3210 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
3211 | return -EINVAL; |
3212 | ||
3213 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
3214 | if (write) | |
3215 | memcpy_toio(maddr + offset, buf, len); | |
3216 | else | |
3217 | memcpy_fromio(buf, maddr + offset, len); | |
3218 | iounmap(maddr); | |
3219 | ||
3220 | return len; | |
3221 | } | |
3222 | #endif | |
3223 | ||
0ec76a11 DH |
3224 | /* |
3225 | * Access another process' address space. | |
3226 | * Source/target buffer must be kernel space, | |
3227 | * Do not walk the page table directly, use get_user_pages | |
3228 | */ | |
3229 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
3230 | { | |
3231 | struct mm_struct *mm; | |
3232 | struct vm_area_struct *vma; | |
0ec76a11 DH |
3233 | void *old_buf = buf; |
3234 | ||
3235 | mm = get_task_mm(tsk); | |
3236 | if (!mm) | |
3237 | return 0; | |
3238 | ||
3239 | down_read(&mm->mmap_sem); | |
183ff22b | 3240 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
3241 | while (len) { |
3242 | int bytes, ret, offset; | |
3243 | void *maddr; | |
28b2ee20 | 3244 | struct page *page = NULL; |
0ec76a11 DH |
3245 | |
3246 | ret = get_user_pages(tsk, mm, addr, 1, | |
3247 | write, 1, &page, &vma); | |
28b2ee20 RR |
3248 | if (ret <= 0) { |
3249 | /* | |
3250 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
3251 | * we can access using slightly different code. | |
3252 | */ | |
3253 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
3254 | vma = find_vma(mm, addr); | |
3255 | if (!vma) | |
3256 | break; | |
3257 | if (vma->vm_ops && vma->vm_ops->access) | |
3258 | ret = vma->vm_ops->access(vma, addr, buf, | |
3259 | len, write); | |
3260 | if (ret <= 0) | |
3261 | #endif | |
3262 | break; | |
3263 | bytes = ret; | |
0ec76a11 | 3264 | } else { |
28b2ee20 RR |
3265 | bytes = len; |
3266 | offset = addr & (PAGE_SIZE-1); | |
3267 | if (bytes > PAGE_SIZE-offset) | |
3268 | bytes = PAGE_SIZE-offset; | |
3269 | ||
3270 | maddr = kmap(page); | |
3271 | if (write) { | |
3272 | copy_to_user_page(vma, page, addr, | |
3273 | maddr + offset, buf, bytes); | |
3274 | set_page_dirty_lock(page); | |
3275 | } else { | |
3276 | copy_from_user_page(vma, page, addr, | |
3277 | buf, maddr + offset, bytes); | |
3278 | } | |
3279 | kunmap(page); | |
3280 | page_cache_release(page); | |
0ec76a11 | 3281 | } |
0ec76a11 DH |
3282 | len -= bytes; |
3283 | buf += bytes; | |
3284 | addr += bytes; | |
3285 | } | |
3286 | up_read(&mm->mmap_sem); | |
3287 | mmput(mm); | |
3288 | ||
3289 | return buf - old_buf; | |
3290 | } | |
03252919 AK |
3291 | |
3292 | /* | |
3293 | * Print the name of a VMA. | |
3294 | */ | |
3295 | void print_vma_addr(char *prefix, unsigned long ip) | |
3296 | { | |
3297 | struct mm_struct *mm = current->mm; | |
3298 | struct vm_area_struct *vma; | |
3299 | ||
e8bff74a IM |
3300 | /* |
3301 | * Do not print if we are in atomic | |
3302 | * contexts (in exception stacks, etc.): | |
3303 | */ | |
3304 | if (preempt_count()) | |
3305 | return; | |
3306 | ||
03252919 AK |
3307 | down_read(&mm->mmap_sem); |
3308 | vma = find_vma(mm, ip); | |
3309 | if (vma && vma->vm_file) { | |
3310 | struct file *f = vma->vm_file; | |
3311 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3312 | if (buf) { | |
3313 | char *p, *s; | |
3314 | ||
cf28b486 | 3315 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
3316 | if (IS_ERR(p)) |
3317 | p = "?"; | |
3318 | s = strrchr(p, '/'); | |
3319 | if (s) | |
3320 | p = s+1; | |
3321 | printk("%s%s[%lx+%lx]", prefix, p, | |
3322 | vma->vm_start, | |
3323 | vma->vm_end - vma->vm_start); | |
3324 | free_page((unsigned long)buf); | |
3325 | } | |
3326 | } | |
3327 | up_read(¤t->mm->mmap_sem); | |
3328 | } | |
3ee1afa3 NP |
3329 | |
3330 | #ifdef CONFIG_PROVE_LOCKING | |
3331 | void might_fault(void) | |
3332 | { | |
95156f00 PZ |
3333 | /* |
3334 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
3335 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
3336 | * get paged out, therefore we'll never actually fault, and the | |
3337 | * below annotations will generate false positives. | |
3338 | */ | |
3339 | if (segment_eq(get_fs(), KERNEL_DS)) | |
3340 | return; | |
3341 | ||
3ee1afa3 NP |
3342 | might_sleep(); |
3343 | /* | |
3344 | * it would be nicer only to annotate paths which are not under | |
3345 | * pagefault_disable, however that requires a larger audit and | |
3346 | * providing helpers like get_user_atomic. | |
3347 | */ | |
3348 | if (!in_atomic() && current->mm) | |
3349 | might_lock_read(¤t->mm->mmap_sem); | |
3350 | } | |
3351 | EXPORT_SYMBOL(might_fault); | |
3352 | #endif |